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de coefficients à estimer. L'estimateur est adaptatif et atteint les vitesses classiques dans ce contexte pour une large classe d'erreur. Des illustrations numériques sont réalisées pour illustrer la performance de l'estimateur. Le Chapitre 4 s'intéresse à l'estimation d'une fonction f à partir des données pypx k q, x k q issues du modèle de convolution-régression suivant :

où hpxq " f ‹gpxq " ş R f px´yqgpyqdy ; 0 ă T ă 8 est fixé ; g est supposée connue et f est la fonction inconnue que l'on cherche à estimer ; les erreurs pε k q ´nďkďn´1 sont i.i.d. avec Erε k s " 0 et Varpε k q " σ 2 ε ă 8, connu. Nous proposons deux procédures d'estimation. La première est une approche déconvolution-projection fondée sur une décomposition de h en base d'Hermite et une transformation de Fourier inverse de f . L'estimateur obtenu par cette première méthode est convergent et adaptatif. Ensuite, nous présentons une approche projection-projection consistant à décomposer f et h en base d'Hermite. On obtient un estimateur de f en injectant l'estimateur des moindres carrés de h dans la formule des coefficients de la décomposition de f . Il atteint la même vitesse que la première méthode d'estimation. La fin du chapitre est consacrée à des études numériques pour illustrer les résultats théoriques.
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Résumé

Dans cette thèse, nous développons des procédures d'estimation non paramétrique dans un cadre d'observation indirecte (problème inverse). La nouveauté dans ce travail est l'utilisation des bases de Laguerre et d'Hermite qui sont à support R `ou R respectivement. Elles ont des propriétés spécifiques que nous exploiterons pour construire des estimateurs pour divers problèmes inverses. Ces bases sont à support non compact et ne nécessitent donc pas de connaître le support de l'objet à estimer, cela est bien adapté dans notre contexte de problème inverse. Quand on utilise une base à support compact pour faire de l'estimation, on considère en théorie ce support comme fixé ; pourtant, en pratique, on le détermine grâce aux données. Les bases de Laguerre et d'Hermite ne sont pas concernées par le choix préliminaire du support d'estimation. Lorsque les variables sont positives, il est naturel d'utiliser la base de Laguerre. La base d'Hermite permet de construire des estimateurs de faible complexité donc résumant la fonction estimée à un petit nombre de coefficients estimés. Toutefois, l'utilisation de ces bases soulève des difficultés mathématiques nécessitant des outils spécifiques.

Cette thèse comporte deux parties.

1. La première partie étudie le problème d'estimation des dérivées d'une fonction de densité f en base de Laguerre et d'Hermite à partir d'observations indépendantes et identiquement distribuées (i.i.d.) de densité f . C'est l'objet du Chapitre 2 de cette thèse. Nous introduisons un estimateur par projection en utilisant les relations de récursivité entre les fonctions de Laguerre et d'Hermite et leurs dérivées. Nous proposons une procédure adaptative en utilisant un critère de sélection de modèles par pénalisation, avec une pénalité qui est indépendante de la base utilisée et nous démontrons qu'elle est optimale au sens du minimax si la densité appartient à une classe de régularité de Sobolev-Laguerre ou Sobolev-Hermite. Une étude numérique est réalisée et des comparaisons avec l'approche à noyau illustrent la bonne performance de notre procédure. La méthode fournit aussi une description parcimonieuse des dérivées d'une densité, puisqu'un petit nombre de coefficients suffit pour avoir des résultats très satisfaisants.

2. La deuxième partie est dédiée à l'estimation d'une densité et d'une fonction de régression dans un modèle convolution. Elle est divisée en deux chapitres. Le Chapitre 3 est consacré à l'estimation d'une densité en base d'Hermite dans un modèle à bruit additif. Nous observons les variables pZ k q 1ďkďn issues du modèle suivant : Z k " X k `εk , k " 1, . . . , n, où pX k q 1ďkďn et pε k q 1ďkďn sont indépendantes. Le but est donc d'estimer la densité commune f des variables pX k q 1ďkďn qui sont supposées soit i.i.d. soit strictement stationnaires et β-mélangeantes. On suppose en outre que les erreurs ε k sont i.i.d. de densité connue. En utilisant que la transformée de Fourier d'une fonction de la base d'Hermite est cette même fonction à une constante près, nous construisons un estimateur par projection fondée sur un développement en base d'Hermite. La méthode a l'avantage d'être parcimonieuse car elle ne requiert qu'un petit nombre 1. The first part studies the problem of estimating the derivatives of a density f in Laguerre and Hermite bases from independent and identically distributed (i.i.d.) observations with density f . This is the subject of Chapter 2 of this thesis. Using the recursive relations between the Laguerre and Hermite functions and their derivatives, we introduce a projection estimator. We propose an adaptive procedure by using penalization model selection criteria, with a penalty which is independent of the basis considered and we prove that it is minimax optimal if the density belongs to a Sobolev-Laguerre or Sobolev-Hermite regularity class. Numerical studies are realized and comparison with a kernel approach illustrates the good performances of our procedure. The method also provides a sparse description of the derivatives of a density, since a small number of coefficients is sufficient to obtain very satisfactory results.

2. The second part is devoted to the estimation of a density and a regression function in a convolution model. It is split in two chapters. Chapter 3 is dedicated to the estimation of a density in Hermite basis with additive noise. We observe the variables pZ k q 1ďkďn from the following model :

Z k " X k `εk , k " 1, . . . , n,
where pX k q 1ďkďn and pε k q 1ďkďn are independent. The aim is then to reconstruct the common density of variables pX k q 1ďkďn which are assumed to be either i.i.d. or strictly stationary and β-mixing. We also suppose that the errors pε k q 1ďkďn are i.i.d. of known density. Using that the Fourier transform of a function of the Hermite basis is also the same function up to a constant factor, we construct a projection estimator based on a development in the Hermite basis. The method has the advantage of being parsimonious because it requires only a small number of coefficients for the estimation. The estimator is adaptive and achieves classical rates in this context for a large class of errors. Numerical studies are performed to illustrate the performance of the estimator.
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In Chapter 4, we are interested in the estimation of a function f from the data pypx k q, x k q obtained from the following convolution-regression model : ypx k q " hpx k q `εk , x k " kT n , k " ´n, . . . , n ´1,

where hpxq " f ‹ gpxq " ş R f px ´yqgpyqdy ; 0 ă T ă 8 is fixed ; g is assumed to be known and f is the function of interest to be estimated ; the errors pε k q ´nďkďn´1 are i.i.d. such that Erε k s " 0 and Varpε k q " σ 2 ε ă `8, known. We propose two estimation procedures. The first is a deconvolution-projection approach based on the decomposition of h in the Hermite basis and recover f using an inverse Fourier transform. This estimator obtained by this first method is consistent and adaptive. Then, we present a projection-projection approach consisting in decomposing f and h in the Hermite basis. We obtain an estimator of f by injecting the least squares estimator of h into the formula of f 's coefficients. It reaches the same rate as the first estimation method. The end of the chapter is devoted to numerical studies to illustrate the theoretical results. 
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Motivations

En statistiques non paramétriques, les bases de Laguerre et d'Hermite sont des outils efficaces pour construire des estimateurs par projection. Elles ont des propriétés spécifiques qui ont été exploitées dans divers contextes : estimation d'une fonction de densité en observation directe, estimation d'une fonction de régression, problème inverse en présence d'un bruit additif ou multiplicatif (voir [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF], [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF], [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF], Comte and Genon-Catalot (2020a)). Ces bases ont la particularité de ne pas être à support compact. Cela peut avoir des intérêts pratiques ou théoriques, notamment dans le cas où les variables d'intérêt ne sont pas directement observées (problème inverse). Cependant, la caractéristique de non compacité peut créer des difficultés théoriques, en particulier dans le cas du problème d'estimation non paramétrique d'une fonction de régression dans un modèle de régression simple. Cela a été longtemps un obstacle. Récemment, les travaux de Comte and Genon-Catalot (2020a) ont permis de généraliser des résultats longtemps obtenus pour des bases à support compact aux bases de Laguerre et d'Hermite. Quand on utilise une base à support compact pour faire de l'estimation, on considère en théorie ce support comme fixé. Pourtant, en pratique, on le détermine grâce aux données. Les bases de Laguerre et d'Hermite ne sont pas touchées par ce paradoxe, car elles ne requièrent pas de choix préliminaire du support. Si les variables d'intérêt sont positives, il est naturel d'utiliser la base de Laguerre. Des travaux récents de [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] montrent que la base d'Hermite permet de construire des estimateurs de faible complexité, donc rapides numériquement, ne nécessitant l'estimation qu'un petit nombre de coefficients (parcimonieux). D'où l'intérêt d'utiliser la méthode de projection puisqu'elle permet de résumer l'estimation d'une fonction inconnue à un petit nombre de coefficients. Notons également que les fonctions de Laguerre ou d'Hermite ont de bonnes propriétés mathématiques : par exemple les dérivées s'expriment simplement comme une combinaison linéaire des autres fonctions de la base grâce au caractère récursif des polynômes de Laguerre ou d'Hermite, voir [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], [START_REF] Szegö | Orthogonal polynomials[END_REF]. Ces expressions seront exploitées pour étudier théoriquement et numériquement les estimateurs proposés dans ce manuscrit. L'objectif de cette thèse est d'utiliser les bases de Laguerre et d'Hermite pour traiter différents problèmes inverses :

1. Estimation des dérivées d'une densité, 2. Estimation de densité dans un modèle de convolution, 3. Estimation d'une fonction de régression dans un modèle de régression-convolution.

Les problèmes considérés se situent dans le cadre de l'estimation fonctionnelle ou estimation non paramétrique. Ainsi, nous présentons dans ce chapitre introductif la notion d'estimation non paramétrique par méthode de projection, le problème d'adaptation, préliminaires nécessaires à la lecture de ce manuscrit et les résultats obtenus dans la thèse sont ensuite détaillés.

La résultats de la section suivante sur les méthodes de projections s'inspirent en partie des travaux de [START_REF] Massart | Concentration inequalities and model selection[END_REF], [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] et [START_REF] Comte | Estimation non-paramétrique[END_REF]. Cette section permet aussi de fixer les notations utilisées dans cette thèse.

Généralités sur l'estimation non paramétrique

En statistique, le cadre classique d'estimation est la statistique paramétrique. Elle consiste à mettre un a priori sur la forme ou la nature du modèle statistique. Le modèle est donc décrit par un nombre fini de paramètres. L'inférence statistique vise à estimer les paramètres du modèle. Toutefois, il est rare d'avoir des informations précises sur la forme du modèle ou le problème qu'on souhaite traiter. De plus, les modèles paramétriques n'expliquent pas toujours bien la complexité des données dont les inconnues sont des fonctions. L'objet que l'on cherche à estimer n'est donc plus un ou plusieurs paramètres mais une fonction qui appartient à une certaine classe de régularité qui est en général de dimension infinie. On parle d'estimation non paramétrique ou d'estimation fonctionnelle. Concrètement, on dispose des observations X 1 , . . . , X n et on cherche à estimer une fonction inconnue notée f . On appelle estimateur noté p f n " p f n pX 1 , . . . , X n q, toute fonction mesurable et calculable en fonction des données.

On supposera que f est à valeurs réelles. L'estimateur p f n reflète avec une certaine erreur la vraie fonction f inconnue. Pour quantifier cette erreur dite erreur d'estimation, on considère la quantité Er pdp p f n , f qqs, où d est la distance qui mesure l'écart entre p f n et f , une fonction de perte et E est l'espérance mathématique. En moyenne, elle mesure l'erreur que l'on commet en estimant f par p f n pour la distance d et la perte . On le nomme aussi risque, et c'est le terme qu'on utilisera dans la suite. Les questions mathématiques "classiques" suivantes se posent : est-ce que Er pdp p f n , f qqs tend vers 0 lorsque le nombre d'observations augmente ? Si oui à quelle vitesse ? Peut-on faire mieux en terme de rapidité du point de vue général ? Pour répondre à ces interrogations, nous commençons d'abord par établir des majorations pour Er pdp p f n , f qqs, c'est-à-dire des inégalités du type :

sup f PF E " pdp p f n , f qq ı ď Cψ n , (1.1)
avec C une constante positive indépendante de n, ψ n une suite décroissante de n que l'on espère converger vers 0 quand n tend vers `8 et F une classe de fonctions contenant la fonction inconnue. On ne se contentera pas de majorations mais on cherchera aussi à obtenir des minorations qui garantissent l'optimalité de la vitesse du point de vue général.

Pour ce faire, nous prouvons des résultats de type bornes inférieures, c'est-à-dire de montrer que :

inf

p fn sup f PF E " pdp p f n , f qq ı ě cφ n , (1.2)
où l'infimum est pris sur tous les estimateurs possibles, c ą 0 une constante indépendante de n et φ n une suite décroissante tendant vers 0 quand n tend vers l'infini.

Définition 1.2.1. On dira qu'un estimateur est optimal au sens du minimax s'il vérifie (1.1) et (1.2), avec φ n " ψ n .

La notion de vitesse optimale n'est définie qu'à une constante multiplicative près. Dans cette thèse, on considère une perte quadratique puq " u 2 et une distance de type L 2 pAq définie par dps, tq " }t ´s} " ˆżA pt ´sq 2 pxqdx ˙1 2 , où A " R `en base Laguerre et A " R en base d'Hermite. Dans ce cas, la quantité E " pdp p f n , f qq ı " Er} p f n ´f } 2 s est appelée risque quadratique intégré, MISE (Mean Integrated Squared Error) en anglais. Ces choix sont motivés par les méthodes d'estimation utilisées, notamment la méthode de projection. D'autres exemples de distance et perte sont donnés dans le Chapitre 2, p. 65 de Tsybakov (2009).

Estimation non paramétrique par projection

Il existe deux grandes familles d'estimateurs non paramétrique : estimateur non paramétrique par projection fondé sur la minimisation d'un contraste et les estimateurs à noyau. Nous ne présentons que la méthode de projection, seule utilisée dans ce travail. Nous exposons pour préciser la méthode, en détails, le cas du problème d'estimation d'une densité en observation directe. Le lecteur peut se référer aux livres de [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] et [START_REF] Comte | Estimation non-paramétrique[END_REF] pour plus de détails sur les estimateurs à noyau.

Principe d'estimation par projection

Considérons des observations X " pX 1 , . . . , X n q et f une fonction inconnue que l'on cherche à estimer à partir des données. La méthode de projection consiste à décomposer la fonction inconnue dans une base orthonormée. Un estimateur de f est obtenu en substituant un nombre fini de coefficients de cette décomposition par un estimateur. L'estimateur appartient alors à un espace de dimension finie, d'où le terme projection. Plus précisément, soit pϕ j q jě0 une base orthonormée de L 2 pAq où A est une partie de R. On définit l'espace de projection pour chaque m ě 1 : S m " Vectpϕ 0 , . . . , ϕ m´1 q,

(1.3) l'espace vectoriel engendré par pϕ 0 , . . . , ϕ m´1 q de dimension m dans L 2 pAq. Pour f P L 2 pAq, nous avons que : f " ř jě0 a j pf qϕ j , a j pf q " xf, ϕ j y " ş A ϕ j pxqf pxqdx. Comme on ne peut pas estimer un nombre infini de coefficient, on considère le projeté de f sur S m . La projection orthogonale de f dans S m est directement donnée par les m premiers termes de la décomposition de f : Π Sm pf q " f m " m´1 ÿ j"0 a j pf qϕ j .

On obtient alors un estimateur de f en remplaçant les m premiers coefficients de f par des estimateurs p a j : p f m " ř m´1 j"0 p a j ϕ j . Pour calculer les coefficients p a j , on utilise deux méthodes classiques d'estimation : les méthodes de moment ou le principe de minimisation de contraste. On privilégie la deuxième approche car elle permet d'obtenir des estimateurs optimaux au sens de l'oracle que nous définirons dans la suite. À cette fin, on introduit un contraste γ n qui change selon le problème étudié et on écrira p f m comme le minimiseur du contraste : p f m " arg min tPSm γ n ptq.

(1.4)

Nous donnons dans le paragraphe suivant un exemple d'application du principe de projection.

Estimation d'une fonction de densité dans le cas d'observation directe

Considérons un échantillon X 1 , . . . , X n de variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) de densité commune f par rapport à la mesure de Lebesgue. Le but est d'estimer la fonction f . On part de la définition d'une projection orthogonale pour déterminer le contraste de minimisation, on a que f m " arg min tPSm }t ´f } 2 .

Posons γptq " }t ´f } 2 : la quantité γptq n'est pas calculable car elle dépend de f qui est inconnue. Il nous faut donc la remplacer par une quantité empirique calculable. Ainsi, on remplace la norme L 2 pAq par sa version empirique (à une constante près). On commence par la décomposition suivante : }t ´f } 2 " }t} 2 ´2xt, f y `}f } 2 , cela implique arg min tPSm }t ´f } 2 " arg min tPSm `}t} 2 ´2xt, f y ˘, car la quantité }f } 2 est indépendante de t. En remarquant que xt, f y " ş A tpxqf pxqdx " ErtpX 1 qs, on définit une version empirique du contraste à minimiser :

γ n ptq " }t} 2 ´2 n n ÿ i"1 tpX i q, }t} 2 " ż A t 2 pxqdx.
(1.5)

Par la loi des grands nombres γ n ptq p.s.

ÝÝÝÑ nÑ8 }t} 2 ´2xt, f y, où « p.s.» est l'abréviation de presque sûrement. Donc minimiser γ n ptq pour n grand revient donc à minimiser γptq " }t ´f } 2 pour t P S m . L'estimateur par projection de la densité est donc donné par :

p f m " m´1 ÿ j"0 p a j ϕ j , p a j " 1 n n ÿ i"1
ϕ j pX i q.

(1.6)

On remarque que p f m est un estimateur sans biais de f m : Er p f m s " f m . Notons aussi p f m coïncide avec l'estimateur obtenu par la méthode des moments puisque a j pf q " Erϕ j pX 1 qs. La question qui se pose ensuite c'est le choix pertinent de l'espace d'approximation S m . Dans cette optique, on fixe le choix de la base et on s'intéresse au choix de la dimension m. Ce choix relève de la sélection de modèles que nous décrivons un peu plus loin (voir Section 1.3).

Exemples de base orthonormée

Nous donnons ici quelques exemples de bases orthonormées. Nous commençons par deux bases classiques à supports compacts qui ne seront pas étudiées dans ce manuscrit.

' Base trigonométrique. On définit une famille de fonction sur un compact ra, bs par : ϕ 1 p¨q " 1 k " 1. Notons que les estimateurs obtenues en utilisant cette base sont constants par morceaux. On peut également construire des bases d'histogrammes irréguliers. Mais dans ce cas, la sélection de modèle (voir Section 1.3) est difficile à implémenter, voir le papier de [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF] pour plus de détails.

On rencontre souvent des bases sur r0, 1s, on obtient une base sur ra, bs en faisant des transformations affines. Le choix d'une base sur r0, 1s est fait pour des raisons de simplicité. On peut aussi citer d'autres bases à support compact : les polynômes par morceaux, la base de Legendre, les bases de Splines, les bases d'ondelettes (voir aussi le Chapitre 1 de [START_REF] Comte | Estimation non-paramétrique[END_REF]). En réalité, l'intervalle d'estimation n'est pas fixe et change selon le modèle. Il est déterminé grâce aux données du problème. Dans ce travail, nous utiliserons les deux bases suivantes qui sont à support non compact pour construire des estimateurs pour différents problèmes inverses (qui apparaissent quand on n'a pas d'information directe sur les données).

' Base de Laguerre. Les fonctions de Laguerre sont définies sur r0, `8r par l'expression j pxq " ?

2L j p2xqe ´x, L j pxq " j ÿ k"0 ˆj k ˙p´1q k x k k! , x ě 0, j ě 0, (1.7) où pL j q jě0 est le polynôme de Laguerre de degré j. Il vérifie : ş `8 0 L j pxqL k pxqe ´xdx " δ j,k (voir [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], chap 22.2.13) où δ j,k est le symbole de Kronecher, δ j,k " " 1 si j " k 0 sinon .

Ainsi, la famille p j q jě0 forme une base orthonormée sur L 2 pR `q qui satisfait

} j } 8 " sup xPR `| j pxq| " ? 2. 
(1.8)

' Base d'Hermite. De façon analogue, la base d'Hermite est définie à partir des polynômes d'Hermite pH j q jě0 : H j pxq " p´1q j e x 2 d j dx j pe ´x2 q.

Les polynômes d'Hermite sont orthogonaux par rapport à la fonction de poids e ´x2 : ş R H j pxqH k pxqe ´x2 " 2 j pj!q ? πδ j,k (voir [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], chap 22.2.14). On en déduit que la base d'Hermite ph j q jě0 est une base orthonormée sur L 2 pRq : h j pxq " c j H j pxqe ´x2 {2 , c j " p2 j j! ? πq ´1{2 , x P R.

(1.9)

La base d'Hermite est une base bornée satisfaisant }h j } 8 " sup xPR |h j pxq| ď π ´1{4 , (1.10) (voir [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], chap 22.14.17 et [START_REF] Indritz | An inequality for Hermite polynomials[END_REF]).

Compromis biais-variance et vitesse de convergence de l'estimateur par projection

Nous disposons d'une collection d'estimateurs p p f m q mě1 associés aux espaces S m . On veut valider le principe de projection. Pour ce faire, on calcule son risque quadratique intégré Er} p f m ´f } 2 s communément appelé MISE en anglais (Mean Integrated Squared Error), pour chaque m ě 1, afin de choisir la meilleure dimension parmi tous les choix possibles. Ce choix conduit à une vitesse de convergence. En utilisant le théorème de Pythagore, on considère la décomposition suivante :

Er} p f m ´f } 2 s " }f ´fm } 2 `Er} p f m ´fm } 2 s.

(1.11)

' Le premier terme }f ´fm } 2 " ř jěm a j pf q 2 de la décomposition (1.11) est appelé le biais. Il quantifie l'erreur d'approximation, c'est l'erreur qu'on commet en remplaçant f par son projeté f m , ' Le second terme Er} p f m ´fm } 2 s " ř m´1 j"0 Erpp a j ´aj pf qq 2 s est appelé la variance ou erreur stochastique qui vient du fait que l'on remplace les coefficients a j pf q par p a j pour j " 0, . . . , m ´1.

Les deux termes ont des comportements antagonistes par rapport à la dimension m. Le biais décroit lorsque m augmente puisque f se rapproche de plus en plus de f m alors que la variance augmente avec m. Il faut donc trouver un équilibre entre ces deux termes. D'où le terme compromis biais-variance. Soit m opt la dimension qui fait le compromis biais-variance dans (1.11), c'est-à-dire

m opt " arg min mě1 t}f ´fm } 2 `Er} p f m ´fm } 2 su.
Pour calculer la dimension pertinente m opt , on examine d'abord les ordres de grandeur du biais et de la variance. L'ordre du biais est obtenu en mettant une condition de régularité sur la fonction inconnue. En général, chaque base est associée à un espace de régularité spécifique. Les bases d'histogrammes, de polynômes par morceaux sont associées à des espaces de Besov. La base trigonométrique est associée aux Sobolev classiques. Les bases de Laguerre et d'Hermite qui sont utilisées dans cette thèse, sont associées respectivement à des espaces de Sobolev-Laguerre et Sobolev-d'Hermite. La classe Sobolev-d'Hermite est un sous espace du Sobolev classique (voir [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]) et donc des classes de Besov si la régularité est un entier positif. Dans la suite, nous rappellerons les définitions des classes de Sobolev, Sobolev-Laguerre et Sobolev-Hermite. Le lecteur peut se référer à DeVore and Lorentz (1993) pour plus de détails sur les classes de Besov. Très généralement, le biais est d'ordre m ´2s où s ą 0 est la régularité de la fonction inconnue. En ce qui concerne la variance, son ordre est une certaine fonction croissante de m divisée par le nombre d'observations. Cette fonction de m change selon le problème étudié. Nous précisons dans le paragraphe suivant son ordre exact dans le cas du problème direct de l'estimation de densité, cela conduit à une vitesse de convergence.

Vitesse classique dans le cas d'estimation d'une densité en observations directes

Dans ce cas particulier, l'estimateur par projection p f m est donné en (1.6), la méthode usuelle consiste à utiliser la majoration suivante : Er} p f m ´fm } 2 s ď C 2 ϕ m{n où C 2 ϕ ą 0 est une constante qui dépend de la base utilisée (C ϕ " 1 pour une base trigonométrique sur r0, 1s). On obtient alors

Er} p f m ´f } 2 s ď C f m ´2s `C2 ϕ m n ,
(1.12) où C f est une constante qui dépend de la classe de régularité considérée. En cherchant l'argmin du terme à droite de (1.12), on trouve m opt " p2C f {C 2 ϕ q 1{p2s`1q n 1{p2s`1q . Cela implique la borne suivante Er} p f mopt ´f } 2 s ď Cps, C f qn ´2s 2s`1 , (1.13) où Cps, C f q est une constante dépendant uniquement de s et C f et non de m. L'estimateur p f mopt , appelé, oracle converge à la vitesse n ´2s{p2s`1q . Cette vitesse est d'autant meilleure que s est grand. On peut donc interpréter cela par «Plus la fonction qu'on cherche à estimer est régulière plus elle est "facile" à estimer». C'est la vitesse classique dans le contexte d'estimation non paramétrique de densité. Elle est connue pour être optimale au sens minimax pour des espaces de Hölder, Sobolev... (voir Tsybakov (2009)). De plus, elle coïncide avec celle obtenue dans le cas où on estime f dans un modèle de régression non paramétrique (voir [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]). Elle est toujours moins bonne que la vitesse obtenue dans le cadre d'estimation paramétrique qui est souvent 1{n à erreur fixée, il faut plus de données pour avoir une performance équivalente au cas paramétrique. C'est le prix à payer pour l'utilisation d' approches non paramétriques.

Que se passe t-il avec les bases de Laguerre ou d'Hermite ? Avec les bases de Laguerre et d'Hermite, les ordres de grandeur du biais et de la variance ne sont plus donnés par (1.12). [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] établissent que l'ordre exact (majoration et minoration moins un reste près) du terme de variance est ? m{n. Elles obtiennent cet ordre en utilisant les formules d' [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF] et de Szegö (1959) sous des conditions de moment faibles. Pour contrôler le biais, on définit les espaces de régularité associés à ces deux bases.

Classe de Sobolev-Hermite. Définition 1.2.2. Soient s ą 0 et D ą 0, on définit l'espace Sobolev-Hermite de régularité s par (voir [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] :

W s H " # θ P L 2 pRq, |θ| 2 s " ÿ kě0 k s a 2 k pθq ă `8+ , a k pθq " ż R θpxqh k pxqdx,
où h j est la base d'Hermite donnée en (1.9). La boule de Sobolev-Hermite est donc définie par :

W s H pDq "

# θ P L 2 pRq, |θ| 2 s " ÿ kě0 k s a 2 k pθq ď D + , D ą 0,
où D est le rayon de la boule.

Cette régularité s peut-être vue comme l'ordre de dérivabilité de la fonction. En effet : si s ě 1 est entier, θ appartient à W s H si et seulement si θ admet des dérivées jusqu'à l'ordre s et les fonctions θ, . . . , θ psq , x s´l θ plq pour l " 0, . . . , s ´1 sont de carrés intégrables. Pour l " 0, . . . , s ´1, on a Il vient donc que si s ě 1, « θ P W s H » est équivalente à « θ est s fois dérivable et les fonctions θ, . . . , θ psq , x s θ plq sont de carrés intégrables sur R pour l " 0, . . . , s ´1». On peut donc comparer cet espace à la classe de Sobolev classique d'indice de régularité s, définie par : W s " " θ P L 2 pRq, ż p1 `u2 q s |θ ˚puq| 2 du ă 8 * , θ ˚puq " ż e iux θpxqdx.

Si s est entier W s devient W s " " θ P L 2 pRq, θ admet des dérivées jusqu'à l'ordre s, tel que ~θ~s ,sob :" ř s j"0 |θ pjq | 2 ă `8 * .

Pour s entier, on en déduit alors que W s H Ă W s (au sens large). De plus, il est prouvé dans [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] que W s H Ł W s (au sens strict) pour tout s ą 0 et si θ P W s est à support compact, c'est-à-dire supppθq Ă r´a, as avec a ą 0 alors θ P W s H . Ainsi, il y a donc une équivalence entre θ P W s et θ P W s H pour des fonctions à support compact. Notons aussi que θ et toutes ses dérivées jusqu'à l'ordre s ´1 s'annulent aux bords : θpaq " θp´aq " . . . θ ps´1q paq " θ ps´1q p´aq " 0 s'il est à support compact.

Classe de Sobolev-Laguerre. La classe de Sobolev-Laguerre est définie de façon analogue à la précédente.

Définition 1.2.3. La classe de Sobolev-Laguerre de régularité s est définie par (voir Bongioanni and Torrea (2006)) :

W s L " # θ P L 2 pR `q, |θ| 2 s " ÿ kě0 k s a 2 k pθq ă `8+ , a k pθq " ż R `θpxq k pxqdx,
j est la base de Laguerre, définie en (1.7). La boule de Sobolev-Laguerre est donc donnée par :

W s L pDq " # θ P L 2 pR `q, |θ| 2 s " ÿ kě0 k s a 2 k pθq ď D + , D ą 0.
Comme pour les W s H , la propriété θ P W s L est liée à la régularité de θ au sens des dérivées. En effet : si s ě 1 est entier, [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF] (voir Section 7) montrent que «θ P W s L » est équivalente à « θ admet des dérivées jusqu'à l'ordre s ´1 tel que f ps´1q est absoluement continue et les fonctions x pl`1q{2 ř l`1 j"0 `l`1 j ˘θpjq sont de carrés intégrables pour l " 0, . . . , s ´1». Ainsi, si θ est à support compact alors « θ P W s L » est équivalente à «θ P W s ». [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], [START_REF] Baraud | Model selection for regression on a random design[END_REF]), et cela est indépendant de la base utilisée. Elle conduit ainsi à la vitesse n ´s{ps`1q (voir Comte and Genon-Catalot (2020a) dont la procédure est fondée sur une approche des moindres carrés). C'est la vitesse optimale pour les classes de Sobolev-Laguerre ou Sobolev-Hermite dans ce contexte pour un bruit gaussien. Elle n'est pas standard et est spécifique aux bases de Laguerre et d'Hermite. En effet, dans [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], [START_REF] Baraud | Model selection for regression on a random design[END_REF], l'estimateur des moindres carrés converge à la vitesse n ´2s{p2s`1q si la fonction de régression appartient aux classes de Besov. On aura un résultat similaire dans le contexte du chapitre 4.

L'oracle p

f mopt n'est cependant pas calculable car il dépend de la fonction inconnue f , on dira que le choix m opt n'est pas adaptatif. Il faut donc trouver un autre stratégie pour choisir la dimension m. C'est l'objet de la Section 1.3.

Adaptation

On a vu dans la section précédente que le risque de l'oracle p f mopt dépend de la régularité de la fonction inconnue que l'on cherche à estimer. Cette régularité n'est donc évidemment pas connue puisque la fonction est elle même inconnue. Ainsi, des méthodes d'estimations adaptatives ont été développées dans les années 90. Ces méthodes de construction sont dites de "data driven", c'est-à-dire conduites par les données. Les estimateurs obtenus par ces méthodes sont calculables uniquement en fonction des données du problème sans aucun a priori sur la régularité de la fonction inconnue. Les estimateurs résultants de ces méthodes sont appelés estimateurs adaptatifs : en effet, sans connaître la régularité de la fonction inconnue, l'estimateur adaptatif atteint la même vitesse que si la régularité était connue, dans le sens où le compromis biais-variance est automatiquement réalisé.

Dans ce travail, nous utiliserons deux méthodes pour faire l'adaptation. La première est la sélection de modèles par pénalisation, utilisée pour faire la sélection de dimension pour un estimateur par projection. La deuxième méthode dite de Goldenshluger et Lepski (notée sélection GL dans la suite), utilisée à l'origine pour faire la sélection de fenêtre pour un estimateur à noyau, a été étendue aux méthodes de projection en dimension supérieure. Mentionnons, à titre indicatif, que d'autres approches de sélection de modèle existent, telles que le seuillage en ondelettes (voir [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] et [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]), les méthodes d'agrégation (voir [START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF]).

Dans cette thèse, nous adoptons le point de vue oracle. Il s'agit d'établir, pour une dimension p m résultant d'une des procédures de sélection, des inégalités du type : Les résultats du type oracle que nous établirons dans cette thèse sont de nature non asymptotique c'est-à-dire vrais pour n'importe quelle valeur du nombre d'observations.

Er} p f p m ´f } 2 s ď C inf mPMn ´Er} p f m ´f } 2 s ¯`R n , ( 1 

Sélection de modèles par pénalisation

Commençons par une brève chronologie. Les procédures de sélection de modèle par pénalisation ont été développées dans les années 90. Les premiers travaux ont été introduits par Akaike (1973) et [START_REF] Mallows | More comments on cp[END_REF] qui suggéreraient de pénaliser par la dimension du modèle. Ces travaux ont depuis été généralisés par [START_REF] Birgé | From model selection to adaptive estimation[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Massart | Concentration inequalities and model selection[END_REF] pour différents problèmes classiques : estimation d'une densité, d'une fonction de régression par exemple. La version que nous décrivons s'inspire de ces travaux.

Cette méthode de sélection est utilisée dans les chapitres 2 et 3 du manuscrit.

Description de la procédure de sélection par pénalisation

Considérons une suite croissante d'espace d'approximation pS m q mPN défini en (1.3) où l'on rappelle que m est la dimension de S m . Soit p p f m q mPMn une collection d'estimateurs définis en (1.4) associée à la sous collection pS m q mPMn où M n est une collection finie de modèles, mais assez massive pour permettre à la procédure d'avoir suffisamment de marge de manoeuvre. En effet, plus on donne de choix à la procédure moins il y a de chance qu'elle se trompe. Elle est en général choisie pour borner l'ordre de la variance. On peut choisir par exemple M n " t1, 2, . . . , nu. Dans le meilleur des mondes, on cherche m tel que le risque quadratique intégré est minimum : p m :" arg min mPMn tE } p f m ´f } 2 u. Ce minimiseur dépend de la fonction inconnue donc n'est pas calculable. Une approche naturelle serait de minimiser la version empirique du risque γ n p p f m q en m où γ n est par exemple donné en (1.5) pour l'estimation en observation directe d'une densité. Supposons que les modèles (S m ) sont emboîtés c'est-à-dire que si m ď m 1 alors on a S m Ă S m 1 . Cette hypothèse est assez forte mais est naturellement vérifiée par les espaces associés aux deux bases utilisées dans ce travail. Une condition plus faible consiste à considérer qu'il existe un espace englobant (voir [START_REF] Birgé | Minimum contrast estimators on sieves : exponential bounds and rates of convergence[END_REF] et [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]) : il existe m n P M n tel que pour tout m P M n , on a S m Ă S mn . La condition d'avoir des espaces S m emboîtés ou un englobant est naturelle dans le cadre de la sélection de modèles. Ainsi, pour S m 1 Ă S m , on a γ n p p f m q ď γ n p p f m 1 q. Le risque empirique γ n p p f m q décroit quand la dimension augmente, ce n'est pas le cas pour le vrai risque. On introduit alors le critère suivant :

critpmq " γ n p p f m q `penpmq, où γ n est un contraste de minimisation et pen : M n Þ Ñ R `est une fonction croissante du modèle introduite pour équilibrer le terme γ n p p f m q. On choisit donc la dimension pertinente en minimisant le critère :

p m " arg min mPMn crit(m).
Expliquons maintenant comment on choisit la fonction de pénalité. La fonction penpmq est très souvent choisie comme étant au moins la variance :

penpmq ě κEr} p f m ´fm } 2 ,
où κ est une constante numérique strictement positive et indépendante des données. Une valeur doit être attribuée à la constante κ. Les résultats théoriques obtenus grâce aux inégalités de déviation que nous donnerons dans la suite (Section 1.3.3) donnent une minoration de κ. Cependant, ces résultats sont obtenues après des majorations qui ne sont pas toujours les plus fines possibles. En pratique, κ est pris plus petit que la valeur théorique très généralement. Cette valeur est calibrée une fois pour toutes avec des simulations préliminaires, ou en utilisant des méthodes spécifiques. Il existe deux stratégies (l'heuristique de pente et la méthode de saut de dimension) qui permettent de déterminer une valeur de κ en fonction des données, décrites dans [START_REF] Baudry | Slope heuristics : overview and implementation[END_REF], et implémentées dans des programmes Matlab et R ("Capushe") librement accessibles.

L'objectif final est qu'on puisse établir pour l'estimateur résultant de cette sélection une inégalité du type (1.15) pour une pénalité bien choisie.

Nous détaillons dans le paragraphe suivant le choix de la pénalité et la valeur de γ n p p f m q dans un cas particulier.

Application à l'estimation d'une fonction de densité en observation directe

Concernant ce cas particulier, la quantité Varp p a j q.

γ n p p f m q est égale à ´} p f m } 2 et estime }f ´fm } 2 " }f } 2 ´}f m } 2 à la constante (par rapport à m) }f }
Comme Varpp a j q " 1 n Varpϕ j pX 1 qq car les ϕ j pX i q pour i " 1, . . . , n sont i.i.d., il vient alors

Er} p f m ´fm } 2 s ď 1 n m´1 ÿ j"0
Erpϕ j pX 1 qq 2 s.

En substituant ř m´1 j"0 Erpϕ j pX 1 qq 2 s par sa version empirique, on introduit la quantité

p V m " 1 n n ÿ i"1 m´1 ÿ j"0 pϕ j pX i qq 2 .
Finalement, on sélectionne p m comme suit : nalisation. On observe que le choix de la méthode est pertinent, parmi les 50 possibilités proposées. De plus, la figure de gauche permet de comprendre le compromis biais-variance, en effet : pour des dimensions petites, l'estimateur est biaisé par contre pour des dimensions grandes, on voit apparaître des oscillations (variance).

p m :" arg min mPMn t´} p f m } 2 `y penpmqu, où y penpmq " κ p V m n , ( 1 
Err} p f p m ´f } 2 s ď C inf mPMn ˜}f ´fm } 2 `κ ř m´1 j"0 Erpϕ j pX 1 q 2 qs n ¸`C 1 n , où C est

Sélection de modèles inspirée de Goldenshluger et Lepski

La méthode de Goldenshluger and Lepski (2011) a été introduite pour faire la sélection du paramètre de lissage (fenêtre) dans le cas de l'estimation d'une fonction de densité en dimension d quelconque. Cette dernière méthode s'adapte aussi à la sélection de modèle, on parlera de la sélection GL. Elle est fondée principalement sur la comparaison des estimateurs deux à deux. La différence principale avec la sélection de modèle par pénalisation réside sur l'estimation du biais. Les premières inégalités de type oracle ont été établies par [START_REF] Kerkyacharian | Nonlinear estimation in anisotropic multi-index denoising[END_REF], [START_REF] Goldenshluger | Structural adaptation via L p -norm oracle inequalities[END_REF] et [START_REF] Goldenshluger | Universal pointwise selection rule in multivariate function estimation[END_REF]. Le lien entre la sélection de modèle avec la méthode de Goldenshluger et Lepski a été fait par [START_REF] Birgé | An alternative point of view on Lepski's method[END_REF]. L'auteur s'inspire d'une stratégie antérieure des méthodes de Lepski. Cette approche peut être utile dans le cas où on ne procède pas par minimisation de contraste pour construire un estimateur par projection. Elle permet de faire de la sélection de modèle anisotropique en dimension supérieure. La version que nous allons décrire ici est utilisée dans des travaux de [START_REF] Comte | Adaptive functional linear regression[END_REF], [START_REF] Chagny | Penalization versus Goldenshluger-Lepski strategies in warped bases regression[END_REF] et récemment par [START_REF] Mabon | Adaptive deconvolution of linear functionals on the nonnegative real line[END_REF] dans divers contextes d'estimation. C'est une version simplifiée et adaptée à la sélection de modèle.

Cette méthode est également utilisée dans le chapitre 4 pour un estimateur obtenu en inversant une transformée de Fourier dans un modèle de convolution.

Description de la procédure de sélection GL

Considérons p p f m q mPMn la collection d'estimateurs définie en (1.4) et associée au sous espace pS m q mPMn défini en (1.3) avec M n une collection de modèle finie, M n " t1, 2, . . . , nu par exemple. Comme pour la sélection de modèle par pénalisation, le but est de trouver une dimension pertinente p m telle que l'estimateur résultant p f p m vérifie une inégalité d'oracle (Inégalité (1.15)). Pour ce faire, on part d'une décomposition biais-variance, plus précisément de (1.11). Nous allons donc remplacer le biais }f ´fm } 2 " }f ´ΠSm pf q} 2 par un estimateur. En substituant cette fois ci f par f m 1 avec m 1 non nécessairement égal à m, on peut donc substituer au biais le terme }Π S m 1 pf q ´ΠSm pΠ S m 1 pf qq} 2 " }Π S m 1 pf q ´ΠS m^m 1 pf q} 2 en utilisant que les espaces d'approximation sont emboîtés où m ^m1 désigne le minimum entre m et m 1 . On dispose ainsi de l'estimateur auxiliaire :

p f m 1 ^m " m^m 1 ´1 ÿ j"0 p a j ϕ j ,
où p a j estime a j pf q " ş A f pxqϕ j pxqdx. Pour κ 1 ą 0, on définit donc l'estimateur du biais :

p Apmq " sup m 1 PMn " ´} p f m 1 ´p f m 1 ^m} 2 ´κ1 V pm 1 q ¯`* ,
où V pmq est de l'ordre du terme de variance (dans le meilleur des cas). Le terme V pm 1 q dans l'expression de p Apmq est introduit pour corriger la quantité } p f m 1 ´p f m^m 1 } 2 qui contient de l'aléa alors que le terme de biais n'en contient pas. Heuristiquement, on souhaite que le terme p Apmq soit d'ordre du bais plus un reste négligeable d'ordre 1{n par exemple. Ainsi, on sélectionne p m en posant

p m " arg min mPMn ! p Apmq `κ2 V pmq ) , κ 2 ě κ 1 .
Pour une variance V pmq bien choisie et κ 1 au dessus d'un certain seuil, on veut que l'estimateur p f p m satisfasse une inégalité oracle non asymptotique du type :

Er} p f p m ´f } 2 s ď C inf mPMn `}f ´fm } 2 `V pmq ˘`R n .
(1.17)

De façon analogue au choix de penpmq, on prend la variance V pmq " C ϕ D m {n (D m " m pour les bases trigonométriques et d'histogrammes ou D m " ? m pour les bases de Laguerre et d'Hermite) où C ϕ ą 0 est une constante qui dépend de la base considérée et R n " 1{n pour le cas de l'estimation d'une densité en observation directe. Le même ordre de variance apparait dans les travaux de [START_REF] Chagny | Penalization versus Goldenshluger-Lepski strategies in warped bases regression[END_REF] (avec D m " m) qui compare les deux approches de sélection de modèles en régression non paramétrique. Comme pour la sélection de modèles par pénalisation, une valeur doit être attribuée à chacune des constantes κ 1 et κ 2 pour piloter la procédure GL en pratique. On peut choisir κ 2 " κ 1 , de façon à n'avoir qu'une constante à calibrer. Un calcul d'erreur empirique pour différentes valeurs de κ 1 permet par exemple de faire un bon compromis parmi plusieurs valeurs. Toutefois, cette calibration de κ 1 s'est révélée difficile en pratique dans le cas de la sélection de fenêtre pour un estimateur à noyau car on a une même constante qui apparait sur deux termes qui ont des comportements très différentes. [START_REF] Lacour | Minimal penalty for Goldenshluger-Lepski method[END_REF] développent l'idée de considérer deux constantes distinctes dans l'expression p Aphq et p h pour un estimateur à noyau d'une densité de fenêtre h. Ils proposent de prendre κ 2 " 2κ 1 . D'après leurs études κ 1 " 1 et κ 2 " 2 sont deux valeurs pertinentes en densité. Cette stratégie n'est pas toujours pertinente pour la méthode mixte. En effet, [START_REF] Mabon | Adaptive deconvolution of linear functionals on the nonnegative real line[END_REF] compare la qualité des estimations en choisissant κ 1 " κ 2 et κ 2 " 2κ 1 dans le cadre d'un modèle de convolution pour des variables positives pour l'estimation des fonctionnelles linéaires d'une densité. Il en ressort que les résultats étaient légèrement meilleurs pour le premier choix (κ 1 " κ 2 ). Il faut peut-être des tests adaptés au problème traité pour discriminer entre

κ 1 " κ 2 ou κ 1 ‰ κ 2 .
En outre, un travail récent de Lacour et al. (2017) propose l'idée de ne plus utiliser l'estimateur auxiliaire pour effectuer la sélection de fenêtre. En réadaptant cette idée ici, on sélectionne alors m par :

p m :" arg min mPMn t} p f m ´p f mmax } 2 `κV pmqu, m max " max M n ,
où κ ą 0 une constante à calibrer numériquement. Cela a l'avantage d'être plus rapide du point de vue numérique car on n'a plus besoin de comparer tous les estimateurs deux à deux pour calculer p Apmq. Par ailleurs, on a juste une constante à optimiser et la question de savoir comment calibrer les deux constantes ne se pose évidemment plus.

Dans le chapitre 2, nous généralisons en pratique la version dérivée de Goldenshluger et Lepski fondée sur les idées de Lacour et al. (2017) pour effectuer la sélection de fenêtre dans le cas d'estimations des dérivées d'une densité.

Comme pour la sélection de modèles par pénalisation, nous donnons dans la Figure 1.2, un exemple d'illustration de la sélection GL. On remarque que le choix de la procédure est aussi pertinent comparé aux 50 possibilités.

Inégalités de déviation

Nous présentons dans cette section deux inégalités de concentration qui sont des outils efficaces et incontournables pour obtenir des inégalités de type oracle. Ces deux inégalités sont : l'Inégalité de Bernstein et l'Inégalité de Talagrand. Elles permettent de contrôler les déviations de supremum de processus empiriques autour de leur moyenne. 

Inégalité de Talagrand

Les inégalités de Talagrand ont été prouvées dans [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], reformulées par [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. Le résultat ci-dessous en est une version donnée dans [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].

Elle est utilisée dans les trois chapitres de la thèse.

Lemme 1.3.1. Soient pX i q iPt1,...,nu une famille de variables aléatoires réelles indépendantes et F une classe dénombrable de fonctions mesurables. On définit pour tout s P F

ν n psq " 1 n n ÿ i"1
pspX i q ´ErspX i qsq.

Supposons qu'il existe trois constantes strictement positives M 1 , H et v telles que :

sup sPF }s} 8 ď M 1 , Ersup sPF |ν n psq|s ď H, sup sPF 1 n n ÿ i"1 VarpspX i qq ď v, alors pour tout δ ą 0, Cpδq " p ? 1 `δ ´1 ^1q et K 1 " 1{6, nous avons E "ˆs up sPF |ν 2 n psq| ´2p1 `2δqH 2 ˙` ď 4 K 1 ¨v n e ´K1 δ nH v `49M 2 1 K 1 C 2 pδqn 2 e ´?2K 1 Cpδq ? δ 7 nH M 1 ‹ '.
Sous certaines conditions, on peut étendre le résultat précédent à des classes de fonctions non dénombrables.

Inégalité de Bernstein

Les inégalités de Bernstein fournissent des bornes de déviation d'une somme de variables centrées. La preuve du résultat qui suit se trouve dans [START_REF] Massart | Concentration inequalities and model selection[END_REF]. Le lemme suivant est utilisée dans le chapitre 2.

Lemme 1.3.2. Soit X 1 , . . . X n des variables aléatoires réelles indépendantes et posons

S n " n ÿ i"1 pX i ´ErX i sq.
On suppose qu'il existe deux constantes s 2 et b, telles que VarpX i q ď s 2 et |X i | ď b presque sûrement (p.s.), alors pour tout x positif, nous avons

P ˆ|S n | ě ? 2ns 2 x `bx 3 ˙ď 2e ´x.
Classiquement, le nombre x est choisi comme étant un multiple de logpnq.

Les résultats obtenus

Dans cette section, nous présentons un résumé des principaux résultats obtenus dans cette thèse. Nous commençons d'abord par faire un point des résultats existants pour chaque problème traité puis donner à la fin nos résultats.

1. Singh (1977a) et [START_REF] Sasaki | Direct density derivative estimation[END_REF]. Les cas le plus communs sont pour d " 0, 1, 2. La première dérivée peut être utilisée pour la recherche de modes dans le cas du modèle de mélange et en analyse des données voir [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF]. La dérivée seconde quand à elle peut être utilisée pour estimer une paramètre d'une famille exponentielle (voir Genovese et al. (2016)), de développer un test pour des modes (voir Cheng (1995)), de sélectionner la fenêtre optimale pour l'estimation d'une densité (voir Silverman (1978)). Enfin, les dérivées d'une densité donnent aussi de l'information sur la pente d'une courbe, les extrema locaux, les points selles.... Deux exemples spécifiques sont détaillés dans l'introduction du chapitre.

Des méthodes à noyau, par projection et bayésiennes ont été développées pour estimer les dérivées d'une densité : voir [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF], [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF] , [START_REF] Chacón | Asymptotics for general multivariate kernel density derivative estimators[END_REF] pour les méthodes à noyau ; [START_REF] Efromovich | Simultaneous sharp estimation of functions and their derivatives[END_REF], [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] (pour le cas dépendant) pour les procédures de projection ; [START_REF] Shen | Posterior contraction rates of density derivative estimation[END_REF] pour l'approche bayésienne.

Dans ce chapitre, nous proposons un estimateur par projection en exploitant les relations entre les fonctions de Laguerre ou Hermite et leur dérivées.

Hypothèses et estimateur Nous considérons les hypothèses suivantes :

pH1q La densité f est d-fois dérivable et f pdq appartient à L 2 pR `q pour le cas Laguerre ou L 2 pRq pour le cas Hermite.

pH2q Pour tout r entier, 0 ď r ď d ´1, nous avons }f prq } 8 " sup xPR |f prq pxq| ă `8.

pH3q Pour tout r entier, 0 ď r ď d ´1, lim xÑ0 f prq pxq " 0 L'hypothèse pH3q est spécifique au cas Laguerre, elle évite un problème au bord de l'intervalle. Elle exclut des densités classiques comme la distribution exponentielle qui correspond parfois à la première fonction de la base de Laguerre, ϕ 0 " ? 2e ´x1 xě0 , dont une dimension (m " 1) suffit pour l'estimer. On verra dans la suite qu'on peut s'affranchir de cette hypothèse mais avec des performances moins bonnes. Sous les hypothèses pH1q à pH3q, en utilisant la méthode des moments, on introduit l'estimateur suivant

p f m,pdq " m´1 ÿ j"0 p a pdq j ϕ j , avec p a pdq j " p´1q d n n ÿ i"1 ϕ pdq j pX i q, (1.18)
où ϕ j la base Laguerre sur R `ou d'Hermite sur R (voir (1.7) et (1.9) respectivement pour les définitions).

Notons que pour d " 0 dans (1.18), on retrouve un estimateur classique de la densité.

Généralement pour la méthode à noyau, on obtient un estimateur des dérivées de f en dérivant l'estimateur à noyau de f . Avec les méthodes de projection, ce n'est pas bien adapté car la dérivée d'une base orthonormée n'est pas une base orthonormée. C'est pourquoi, notre stratégie est différente : on projette directement la dérivée d'ordre d dans une base orthonormée. On note dans la suite la projection orthogonale de f pdq dans S m " Vectpϕ 0 , . . . , ϕ m´1 q par f m,pdq " m´1 ÿ j"0 a j pf pdq qϕ j , a j pf pdq q " ż R f pdq pxqϕ j pxqdx.

Borne pour le risque Dans l'optique de calculer la vitesse de convergence, on établit d'abord la majoration suivante pour le risque de f :

Théorème 1. Précisons qu'un résultat similaire pour des espaces de Lipschitz périodique est donné dans [START_REF] Efromovich | Nonparametric curve estimation : methods, theory, and applications[END_REF], voir aussi [START_REF] Lepski | A new approach to estimator selection[END_REF] pour les classes de Nikol'ski.

Procédure adaptative Dans la Section 2.2.4, nous décrivons une procédure de sélection de modèle par pénalisation pour choisir la dimension pertinente. On introduit une pénalité aléatoire qui est en fait un estimateur d'un majorant de la variance. Notons que la pénalité est indépendante de la base utilisée. En outre, nous démontrons une inégalité oracle en utilisant les inégalités de Talagrand et de Bernstein permettant de réaliser automatiquement le compromis biais-variance dans (1.20).

Analogie avec les techniques noyaux et autres résultats Ensuite, dans la Section 2.3 nous comparons pour d " 1, notre estimateur ( p f m,p1q ) à la dérivée de l'estimateur par projection de la densité :

p p f m q pdq " m´1 ÿ k"0 p a p0q k ϕ pdq k , p a p0q k " 1 n n ÿ i"1 ϕ k pX i q.
Nous donnons des éléments pour s'affranchir de l'hypothèse pH3q (c'est-à-dire que f p0q " 0 pour d " 1). Par ailleurs, nous obtenons que notre estimateur converge à la même vitesse que l'estimateur p p f m q p1q pour le cas Hermite mais concernant le cas Laguerre notre stratégie est plus performant mais avec pH3q. Ansi, une correction de l'estimateur introduit en (1.18) sans pH3q est aussi effectuée dans la section 2.3. On définit l'estimateur suivant avec f p0q ‰ 0 :

r f 1 m,K " m´1 ÿ j"0 p a p1q j,K j , p a p1q j,K " ´1 n n ÿ i"1 1 j pX i q ´p f K p0q j p0q,
où j désigne la base de Laguerre définie en (1.7) et p f K p0q estime f p0q avec

p f K " K´1 ÿ j"0 p a p0q j j , p a p0q j " 1 n n ÿ i"1 j pX i q.
Pour r f 1 m,K , on obtient la même vitesse que p p f m q p1q . De plus, nous prouvons une inégalité oracle pour K :" K n fixé pour l'estimateur r f 1 p m K ,K où p m K dépend de K en utilisant une procédure par pénalisation.

Simulations En Section 2.4, nous présentons des simulations numériques pour illustrer les résultats théoriques et une comparaison avec la procédure à noyau pour une fenêtre choisie en s'inspirant de la méthode de Lacour et al. (2017) est effectuée.

Enfin, le chapitre se termine ainsi par la démonstration des résultats énoncés et des outils théoriques d'analyse et de probabilité.

Déconvolution d'une densité sur R en base d'Hermite

Contexte et modèle Dans ce chapitre, nous considérons le modèle de convolution Z k " X k `εk , k " 1, . . . , n, où pH1q les pX k q kě1 sont i.i.d. de densité f inconnue par rapport à la mesure de Lebesgue, pH2q les pε k q kě1 sont i.i.d. de densité f ε connue, par rapport à la mesure de Lebesgue, pH3q les suites pX k q kě1 et pε k q kě1 sont indépendantes. On cherche à estimer f à partir des données Z 1 , . . . , Z n . Notons f Z la densité de Z 1 . Sous pH3q nous avons que f Z " f ˚fε , où g ˚h désigne le produit de convolution entre g et h, g ˚hpxq " ş gpx ´yqhpyqdy, c'est ce qui explique le terme de "déconvolution" pour l'estimation de f . Outre la régularité de f , la régularité de f ε influe sur la vitesse de convergence des estimations. Elle est décrite par la décroissance de la transformée de Fourier de f ε . Nous considérons les deux hypothèses classiques en déconvolution sur la loi du bruit. pH4q @u P R, f ε puq ‰ 0, où t ˚désigne la transformée de Fourier de t, t ˚puq " ş e ixu tpxqdx.

On suppose aussi qu'il existe c 1 ě c 1 1 ą 0, et γ ě 0, µ ě 0, δ ě 0 (avec γ ą 0 si δ " 0) tels que

c 1 1 p1 `u2 q γ e µ|u| δ ď 1 |f ε puq| 2 ď c 1 p1 `u2 q γ e µ|u| δ .
(1.22)

Si δ " 0 dans (1.22), la loi du bruit f ε et les erreurs sont appelées ordinairement régulières ("ordinary smooth"), sinon elles sont dites super régulières ("super smooth"). Soulignons que la condition (1.22) implique pH4q et est vérifiée par certaines distributions classiques : on peut citer à titre d'exemple Laplace (avec δ " 0 et γ " 2), Gamma (δ " 0 et γ " p, où p est le paramètre de forme), Gaussienne (γ " 0 et δ " 2), Cauchy (γ " 0 et δ " 1).

Le problème de déconvolution a été beaucoup étudié dans la littérature. Les premiers travaux ont été menés dans le cas non adaptatif par : [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] et le livre de [START_REF] Meister | On testing for local monotonicity in deconvolution problems[END_REF] sur le sujet. La procédure d'estimation adaptative a été considérée en premier par : [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] puis massivement utilisée entre autres par [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] (cas bruit inconnu), [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] dans le cas où X k ě 0. . .. [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF], [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF] établissent l'optimalité des vitesses au sens minimax. Des généralisations multidimensionnelles [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]) ou sur la sphère [START_REF] Kerkyacharian | Localized spherical deconvolution[END_REF]) ont ensuite été considérées.

Nous présentons ici une nouvelle procédure fondée sur un développement en base d'Hermite, inspirée d'idées développées dans [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]. L'originalité de ce travail est d'utiliser la base d'Hermite qui est notée ϕ j . La transformée de Fourier d'une base d'Hermite est à constante près une base d'Hermite, ϕ j " ? 2πpiq j ϕ j , cela nous permet de définir un estimateur par projection.

Définition de l'estimateur

On considère le contraste de minimisation suivant :

γ n ptq " }t} 2 ´2 n n ÿ k"1 φ t pZ k q, φ t pxq " 1 2π ż t ˚puq f ε p´uq e ´ixu du.
En supposant que le ratio ϕ j {f ε est intégrable pour j " 0, . . . , m ´1, on définit un estimateur de f en minimisant le contraste ci-dessus pour tout t P S m :

p f m " m´1 ÿ j"0 p a j ϕ j , p a j " p´iq j ? 2π ż p f Z puq f ε puq ϕ j puqdu, (1.23) où p f Z ptq " 1 n ř n k"1 e itZ k
estime sans biais la fonction caractéristique de Z 1 . La spécificité de la base d'Hermite qui décroit en e ´cx 2 rend la quantité ϕ j {f ε intégrable pour beaucoup de fonctions f ε . Notons que le coefficient p a j est réel, en effet :

p a j " pp´iq j { ? 2πq ż p f Z p´uqϕ j puq{f ε p´uqdu " ppiq j { ? 2πq ż p f Z puqϕ j p´uq{f ε puqdu " p a j
puisque ϕ j p´xq " p´1q j ϕ j pxq. C'est aussi un estimateur naturel de a j pf q " xf, ϕ j y " par [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] 

1 2π ş f Z pf ε q ´1ϕ j d'

Estimation adaptative dans un modèle de régression en base d'Hermite

Contexte Le chapitre 4 est dédié à l'estimation d'une fonction de régression dans un modèle de convolution-régression. On considère le modèle de convolution suivant :

ypx k q " hpx k q `εk , k " ´n, . . . , n ´1, (1.25) où hpxq " f ‹ gpxq " ż R f px ´yqgpyqdy, (1.26)
où la fonction g appelée noyau est supposée connue et f est la fonction inconnue qu'on cherche à estimer ; les erreurs pε k q ´nďkďn´1 sont i.i.d. avec Erε k s " 0 et Varpε k q " σ 2 ε ă 8, connu ; les points px k " kT {nq ´nďkďn´1 sont déterministes et équirépartis sur r´T, T s, où 0 ă T ă 8 est fixé. Ce modèle apparait dans beaucoup de domaines d'applications : en analyse des données d'imagerie dynamique à contraste amélioré (voir [START_REF] Goh | Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetectorrow computed tomography : effect of acquisition time and implications for protocols[END_REF], [START_REF] Cuenod | Tumor angiogenesis : pathophysiology and implications for contrast-enhanced mri and ct assessment[END_REF], [START_REF] Goh | Functional imaging of colorectal cancer angiogenesis[END_REF], et [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF]) et dans l' étude du spectroscopie de fluorescence résolue en temps (voir [START_REF] Gafni | Analysis of fluorescence decay curves by means of the laplace transformation[END_REF][START_REF] Mckinnon | The deconvolution of photoluminescence data[END_REF], [START_REF] O'connor | Deconvolution of fluorescence decay curves. a critical comparison of techniques[END_REF], [START_REF] Ameloot | Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves[END_REF], [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF]). L'estimation de la fonction inconnue h à partir des données pypx k q, x k q est connue comme problème de régression non paramétrique en "fixed design". Ce problème a été largement étudié dans la littérature, voir [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] par exemple. Lorsqu'on cherche à estimer la densité f d'une variable aléatoire X quand on observe Z " X `ε avec ε indépendant de X de densité g se réduit à reconstruire f à partir d'un estimateur de f Z " f ‹g. Ce problème est connu comme un problème de déconvolution. Il s'agit d'un problème inverse qui est étudié aussi intensivement dans la littérature, voir par exemple [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]. Nous l'avons aussi étudié dans le Chapitre 3 en utilisant la base d'Hermite (voir Section 1.4.2 pour plus détails). Le modèle (1.25) cumule deux questions « régression et déconvolution», c'est pourquoi il est difficile. Les résultats théoriques sur ces deux problèmes traités indépendamment sont bien connus. Notons que les fonctions f et g ne sont pas nécessairement des densités dans ce chapitre. Le problème (1.25) a été étudié dans la littérature pour des fonctions particulières. Si f et g sont à support dans r0, 1s, [START_REF] Rice | Smoothing splines : regression, derivatives and deconvolution[END_REF] ont résolu le problème en supposant que f est de classe C 4 et en utilisant un spline de lissage pour x k " k{n avec k " 1, . . . , n. Le modèle (1.25) peut être vu comme une généralisation de celui de la convolution de Laplace. En effet si on impose que f et g sont à support dans R `, nous avons que : hpxq " ş x 0 f px ´yqgpyqdy dont la version stochastique discrète est donnée par (1.25) avec k " 1, . . . , n. Il a été étudié dans [START_REF] Dey | Input recovery from noisy output data, using regularized inversion of the laplace transform[END_REF] pour gpxq " be ´ax 1 xě0 et en utilisant que la solution de (1.26) satisfait une équation différentielle linéaire. Récemment, [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF] ont étudié le problème de la déconvolution de Laplace pour g connu : les auteurs résument le problème d'estimation de f à l'estimation des dérivées de h. Ces dérivées sont estimées par une méthode à noyau. [START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF] a aussi étudié le problème de Laplace déconvolution en utilisant la projection de Galerkin sur les fonctions de Laguerre pour un noyau g contaminé par un bruit blanc. [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] ont proposé un estimateur par projection, fondé sur un développement des fonctions f , g et h en base de Laguerre. Enfin, [START_REF] Benhaddou | Anisotropic functional Laplace deconvolution[END_REF] utilise aussi un développement en base de Laguerre pour une fonction f de trois variables (2 variables en espace et une variable en temps) et g une fonction d'une variable.

L'ensemble de ces études ont été menées pour des fonctions f et g à support dans R `ou r0, 1s. Dans ce travail, on considère le Modèle (1.25) avec des fonctions à support dans R. La base de Laguerre n'est clairement pas adaptée à notre problème général. On considère la base d'Hermite qui est à support R et est bien adaptée à ce contexte.

Nous considérons les hypothèses classiques suivantes en déconvolution sur le noyau g : pH1q La transformée Fourier de g notée g ˚est bien définie tel que : g ˚‰ 0, où t ˚puq " ş e iux tpxqdx, et i est le nombre complexe avec i 2 " ´1.

pH2q Il existe des constantes Étonnamment, la difficulté ici est de contrôler le biais de la fonction de régression. On aimerait que l'hypothèse h P W s`γ H pD 1 q soit une conséquence directe du fait que f P W s pDq et g vérifie pH2q pour s`γ entier. Les conditions satisfaisants cette hypothèse sont déferrées dans la section preuve du chapitre 4.7, Proposition 4.7.1. La difficulté provient du fait qu'on ne connait pas h et que les classes de régularité sont différentes pour f et g. De plus, nous soulignons que si f P W s pDq et g vérifie pH2q, on peut monter par un calcul élémentaire que h P W s`γ pD{c 1 q où c 1 est donné en pH2q. Nous avons aussi calculé des vitesses de convergence pour des fonctions f et g spécifiques. En particulier si le noyau g est gaussien, on retrouve la même vitesse qu' en déconvolution d'une densité voir aussi le Chapitre 3. Les résultats sont présentés dans le tableau 1.2 suivant :

c 1 , c 1 1 , γ, c 1 ě c 1 1 ą 0 et γ ą 0 telles que c 1 1 p1 `t2 q γ ď |g ˚ptq| ´2 ď c 1 p1 `t2 q γ , @t P R. ( 1 
f g Gaussian Gamma N p0, θ 2 q Γpq, θq Gaussian n ´σ2 σ 2 `θ2 logpnq σ 2 ´θ2 2 σ 2 `θ2 logpnq q n ´α α`1 N p0, σ 2 q α large Gamma logpnq ´p`1 2 n ´pp`q´2qp2p´1q pp`q´1qp2p`2q´1q
Γpq, θq Simulations La fin du chapitre 4 est dédiées à des simulations numériques dans la section 4.6 pour illustrer la procédure adaptative de l'approche FH. Dans le but de donner un tableau du risque, nous implémentons aussi une stratégie dérivant de la méthode de Goldenshluger et Lepski en s'inspirant de la procédure de Lacour et al. (2017). Les résultats obtenus sont satisfaisants mais la procédure semble trop lente. Il faut certainement la compléter en implémentant la procédure HH.

Enfin, nous donnons la preuve des résultats théoriques et des outils d'analyse et de probabilité à la fin chapitre.

Nous terminons ce chapitre en soulevant quelques points susceptibles de faire l'objet de futurs travaux.

Perspectives de recherche

Conclusions Dans ces travaux, nous avons construit des estimateurs non paramétriques ayant de bonnes propriétés statistiques. Les études du risque montrent que dans chaque cas nous avons un compromis biais-variance à effectuer pour déduire des vitesses de convergence. Nous avons développé des procédures adaptatives pour choisir les paramètres pertinents de chaque méthode utilisée. De plus, nous prouvons aussi des inégalités de type oracle grâce aux inégalités de déviations (voir Section 1.3.3). Les procédures développées sont facilement implémentables et des comparaisons avec d'autres méthodes existantes sont exposées dans les chapitres 2 et 3. Les résultats obtenus dans ce manuscrit ouvrent des pistes pour des futurs travaux. Énumérons sans tarder quelques pistes.

Estimation des dérivées d'une densité Dans le chapitre 2, nous avons étudié le problème d'estimation des dérivées d'une densité en supposant que les variables étaient i.i.d., ce cas ne reflète pas toujours la complexité des données. Il serait donc intéressant d'enquêter sur le cas où les variables sont dépendantes. Des résultats existent dans le contexte où les variables sont supposées β-mélangeantes (faiblement dépendantes) avec une pénalité qui dépend des coefficients de mélange inconnus. Une piste à explorer serait de voir s'il est possible d'étendre ces résultats pour une pénalité indépendante des coefficients de mélange, un peu comme dans [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF] en contexte de déconvolution. En outre, nous avons généralisé numériquement la méthode dite de PCO introduite dans [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF] pour un estimateur à noyau de la dérivée d'une densité. Une question intéressante serait d'étudier le risque théorique de l'estimateur résultant de cette sélection de fenêtre.

Déconvolution d'une densité en base d'Hermite

Dans le chapitre 3, nous avons introduit un estimateur de projection en base d'Hermite dans un modèle de bruit additif dans le cas i.i.d. et dépendant. Nous avons considéré dans ce chapitre que la densité du bruit était connue. Cette hypothèse est assez restrictive mais nécessaire pour des raisons d'identifiabilité. Une piste à suivre serait de considérer le cas où la densité du bruit est inconnue mais estimée grâce à un échantillon préliminaire du bruit (ε ´M , . . . , ε ´1) voir [START_REF] Neumann | Deconvolution from panel data with unknown error distribution[END_REF]. Cela permettrait de se comparer par exemple aux stratégies développées dans [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] et [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF].

La base d'Hermite peut être aussi considérée dans le cas d'estimation d'une fonction de régression avec erreur sur les variables. Le modèle est le suivant :

Y k " X k `εk , Z k " bpX k q `ηk , où ε k indépedant de η k .
Dans ce cadre, nous observons pY k , Z k q et nous cherchons à estimer la fonction de régression b. Les propriétés de la base d'Hermite pourraient être exploitées pour proposer un estimateur direct sans pour autant faire intervenir des estimateurs quotients.

Estimation dans un modèle de régression en base d'Hermite

Dans le chapitre 4, nous avons construit deux estimateurs pour estimer une fonction de régression dans un modèle généralisant celui de "Laplace convolution" (Model (1.25)). Nous avons obtenu des vitesses de convergence non standard comparées aux vitesses obtenues en déconvolution d'une densité (voir Chapitre 3). Ce serait une motivation pour d'établir des bornes inférieures afin d'étudier l'optimalité des vitesses. Nous avons aussi établi une inégalité oracle pour la première stratégie (stratégie Fourier-Hermite) en utilisant la méthode de Goldenshluter et Lepski. Une implémentation de cette dernière et d'une version dérivée inspirée de Lacour et al. (2017) montrent la bonne performance des deux procédures. Mais elles sont cependant relativement lentes en terme de temps de calcul (environ 5h pour avoir un résultat d'erreur après 100 répétitions). Une piste à creuser serait de considérer des procédures par pénalisation. En outre, nous avons testé numériquement la procédure HH. Nous remarquons une réduction considérable du temps de calcul (35mins environ pour avoir un résultat d'erreur après 100 répétitions) en adaptant la procédure de Lacour et al. (2017). On peut aussi enquêter sur une procédure par pénalisation.

De plus, nous avons supposé globalement que le noyau g était connu, on peut étudier le cas où il est inconnu, par exemple contaminé par un bruit blanc (voir Vareschi (2015)). Enfin, les données x k dans Modèle (1.25) sont déterministes dans le chapitre 4, il serait intéressant d'étudier le cas des x k aléatoires i.i.d. admettant une certaine densité commune. Cette dernière pourra faire intervenir des matrices aléatoires dans l'expression de l'estimateur de régression.

Global à tous les chapitres

Dans tous ces chapitres, on considère des fonctions d'une variable, une question naturelle est d'essayer d'étendre les résultats obtenus en dimension supérieure. On pourra par exemple utiliser la méthode de Goldenshluster et Lepski pour le choix des paramètres pertinents.

Chapitre 2

Optimal adaptive estimation of the derivative of a density on R or R Ce chapitre est issu de Comte, F., Duval, C., and Sacko, O. (2020). Optimal adaptive estimation on R or R `of the derivatives of a density. Math. Methods Statist., 29(1) :1-31.

Résumé. Dans ce chapitre, nous considérons le problème d'estimation de la dérivée d'ordre

d notée f pdq d'une densité f à partir des observations X 1 , . . . , X n i.i.d. de densité f à sup- port dans R ou R `.
Nous proposons des estimateurs par projection définis dans les bases orthonormales d'Hermite ou de Laguerre et étudions leur L 2 -risque intégré. Pour f appartenant à des espaces de régularité et pour un espace de projection choisi avec une dimension adéquate, nous obtenons des vitesses de convergence pour nos estimateurs qui sont optimaux au sens minimax. Le choix optimal de la dimension de l'espace de projection dépend de paramètres inconnus. De ce fait, nous décrivons une procédure adaptative pour choisir la dimension pertinente qui conduit à cette vitesse optimale. Nous discutons les hypothèses et nous comparons l'estimateur introduit à celui obtenu en dérivant simplement l'estimateur de densité. Enfin, des simulations sont réalisées. Elles illustrent les bonnes performances de la procédure et permettent de comparer numériquement les estimateurs par projection et par noyau.

Mots-clés.

Estimation des dérivées d'une densité, base d'Hermite, base de Laguerre, sélection de modèles, estimateur par projection.

Abstract. In this chapter, we consider the problem of estimating the d-th order derivative f pdq of a density f , relying on a sample of n i.i.d. observations X 1 , . . . , X n with density f supported on R or R `. We propose projection estimators defined in the orthonormal Hermite or Laguerre bases and study their integrated L 2 -risk. For the density f belonging to regularity spaces and for a projection space chosen with adequate dimension, we obtain rates of convergence for our estimators, which are optimal in the minimax sense. The optimal choice of the projection space depends on unknown parameters, so a general data-driven procedure is proposed to reach the bias-variance compromise automatically. We discuss the assumptions and the estimator is compared to the one obtained by simply differentiating the density estimator. Simulations are finally performed. 

Introduction

Motivations and content

Let X 1 , . . . , X n be n i.i.d. random variables with common density f with respect to the Lebesgue measure. The problem of estimating f in this simple model has been widely studied. In some contexts, it is also of interest to estimate the d-th order derivative f pdq of f , for different values of the integer d. Density derivatives provide information about the slope of the curves, local extrema or saddle points, for instance. Several examples of use of derivatives are developed in Singh (1977a) and [START_REF] Sasaki | Direct density derivative estimation[END_REF]. The most common cases are those with d P t1, 2u. The first order density derivative permits to reach information, such as mode seeking in mixture models and in data analysis, see e.g. [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF]. The second order derivative of the density can be used to estimate one parameter scale of exponential families (see [START_REF] Genovese | Nonparametric inference for density modes[END_REF]), to develop tests for mode (see [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF]), to select the optimal bandwidth parameter for density estimation (see [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF]). Let us detail two specific contexts.

1. The question arises when considering regression models. The estimation of the socalled "average derivative" defined by δ " ErY ψpXqs, with ψpxq " f p1q pxq{f pxq, and f is the marginal distribution of X (see [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivatives[END_REF] and [START_REF] Härdle | Bandwidth choice for average derivative estimation[END_REF]) relies on the estimation of the derivative of the density of X. This quantity enables to quantify the relative impact of X on the variable of interest Y .

In an econometric context, the average derivative is also used to verify empirically the law of demand : it allows to compare two economies with different price systems (see [START_REF] Härdle | Empirical evidence on the law of demand[END_REF] and [START_REF] Härdle | Bandwidth choice for average derivative estimation[END_REF], section 3). In [START_REF] Bercu | Nonparametric recursive estimation of the derivative of the regression function with application to sea shores water quality[END_REF], the study of sea shore water quality leads the authors to estimate the derivative of the regression function, and the derivative of a Nadaraya-Watson estimator involves the derivative of a density estimator. Regression curves (see [START_REF] Park | SiZer analysis for the comparison of regression curves[END_REF]) also involve derivatives of densities, consider rpxq " EpY |X " xq, Singh (1977a) (see Equation (2.1)) establishes that for specific families of conditional distributions of Y given X, on can express rpxq " ψpxq as ψpxq " f p1q pxq{f pxq where f is a density (see (2.1) in Singh (1977a)).

2. Derivatives also appear in the study of diffusion processes. Let pX t q tě0 be the solution of

dX t " bpX t qdt `σpX t qdW t , X 0 " η,
where W t is a standard Brownian independent of η. There exists a solution under standard assumptions on b and σ. The model is widely used, for example in finance and biology. One related statistical problem is to estimate the drift function b, from discrete time observations of the process X. Under additional conditions (see Schmisser ( 2013)), the model is stationary, admits a stationary distribution f and it holds that

f p1q pxq f pxq ∝ 2bpxq σ 2 pxq ´2 σ 1 pxq σpxq .
If the variance σ is either a constant or known, estimating f and f p1q lead to an estimator of b.

These examples illustrate the interest of the mathematical question of nonparametric estimation of derivatives as a general inverse problem.

Most proposals for estimating the derivative of a density are built as derivatives of kernel density estimators, see [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF], [START_REF] Schuster | Estimation of a probability density function and its derivatives[END_REF], [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF], [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chacón | Asymptotics for general multivariate kernel density derivative estimators[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF], [START_REF] Markovich | Gamma kernel estimation of the density derivative on the positive semi-axis by dependent data[END_REF] or [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF], either in independent or in α-mixing settings, in univariate or in multivariate contexts. A slightly different proposal still based on kernels can be found in [START_REF] Singh | Mean squared errors of estimates of a density and its derivatives[END_REF]. The question of bandwidth selection is only considered in the more recent papers.

For instance, [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF] propose a general cross-validation method in the multivariate case for a matrix bandwidth, see also the references therein. Most recently, [START_REF] Lepski | A new approach to estimator selection[END_REF] proposed a general original approach to bandwidth selection, and applies it to derivative estimation in a multivariate L p setting and for anisotropic Nikol'ski regularity classes. This paper is, to the best of our knowledge, the first to study the risk of an adaptive kernel estimator.

Projection estimators have also been considered for density and derivatives estimation. More precisely, using trigonometric basis, [START_REF] Efromovich | Simultaneous sharp estimation of functions and their derivatives[END_REF] proposes a complete study of optimality and sharpness of such estimators, on Sobolev periodic spaces. Lately, [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] propose a projection estimator and provide an upper bound for its L p -risk, p P r1, 8s. In a dependent context, [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] studies projection estimators in a compactly supported basis constrained on the borders or a non compact multi-resolution basis : she considers dependent β-mixing variables and a model selection method is proposed and proved to reach optimal rates on Besov spaces. In most results, the rate obtained for estimating f pdq the d-th order derivative assumed to belong to a regularity space associated to a regularity α, is of order n ´2α{p2α`2d`1q . Recently, a bayesian approach has been investigated in [START_REF] Shen | Posterior contraction rates of density derivative estimation[END_REF] relying on a B spline basis expansion, the procedure requires the knowledge of the regularity of the estimated function.

In the present work, we consider projection estimators on projection spaces generated by Hermite or Laguerre basis, which have non compact supports, R or R `. When using compactly supported bases, one has to choose the basis support : it is generally considered as a fixed interval say ra, bs, but the bounds a and b are in fact determined from the data. Hermite and Laguerre bases do not require this preliminary choice. Moreover, in a recent work, [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] prove that estimators represented in Hermite basis have a low complexity and that few coefficients are required for a good representation of the functions : therefore, the computation is numerically fast and the estimate is parsimonious.

If the X i 's are nonnegative, then one should use the Laguerre basis : thus, this basis is of natural use in survival analysis where most functions under study are R `-supported.

Lastly, we mention that derivatives of Laguerre or Hermite functions have interesting mathematical properties : their derivatives are simple and explicit linear combination of other functions of the bases. This property is fully exploited to construct our estimators.

The integrated L 2 -risk of such estimators is classically decomposed into a squared bias and a variance term. The specificity of our context is threefold.

1. The bias term is studied on specific regularity spaces, namely Sobolev Hermite and Sobolev Laguerre spaces, as defined in [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems ?[END_REF], enabling to consider non compact estimation support R or R `.

2. The order of the variance term depends on moment assumptions. This explains why, to perform a data driven selection of the projection space, we propose a random empirical estimator of the variance term, which has automatically the adequate order.

3. In standard settings, the dimension of the projection space is the relevant parameter that needs to be selected to achieve the bias-variance compromise. In our context, this role is played by the square root of the dimension.

We also mention that our procedure provides parsimonious estimators, as few coefficients are required to reconstruct functions accurately. Moreover, our regularity assumptions are naturally set on f and not on its derivatives, contrary to what is done in several papers. Our random penalty proposal is new, and most relevant in a context where the representative parameter of the projection space is not necessarily its dimension, but possibly the square root of the dimension. We compare our estimators with those defined as derivatives of projection density estimators, which is the strategy usually applied with kernel methods.

Finally, we also propose a numerical comparison between our projection procedure and a sophisticated kernel method inspired by the recent proposal in density estimation of [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF].

The chapter is organized as follows. In the remaining of this section, we define the Hermite and Laguerre bases and associated projection spaces. In Section 2.2, we define the estimators and establish general risk bounds, from which rates of convergence are obtained, and lower bounds in the minimax sense are proved. A model selection procedure is proposed, relying on a general variance estimate ; it leads to a data-driven bias-variance compromise. Further questions are studied in Section 2.3 : the comparison with the derivatives of the density estimator leads in our setting to different developments depending on the considered basis : interestingly Hermite and Laguerre cases happen to behave differently from this point of view. Lastly, a simulation study is conducted in Section 2.4, in which kernel and projection strategies are compared.

Notations and definition of the basis

The following notations are used in the remaining of this paper. For a, b two real numbers, denote a _ b " maxpa, bq and a `" maxp0, aq. For u and v two functions in L 2 pRq, denote xu, vy " ş `8 ´8 upxqvpxqdx the scalar product on L 2 pRq and }u} "

`ş`8 ´8 upxq 2 dx ˘1{2 the norm on L 2 pRq. Note that these definitions remain consistent if u and v are in L 2 pR `q.

The Laguerre basis.

Define the Laguerre basis by : j pxq " ?

2L j p2xqe ´x, L j pxq "

j ÿ k"0 ˆj k ˙p´1q k x k k! , x ě 0, j ě 0, (2.1)
where L j is the Laguerre polynomial of degree j. It satisfies : Abramowitz and Stegun (1964), 22.2.13), where δ k,j is the Kronecher symbol. The family p j q jě0 is an orthonormal basis on L 2 pR `q such that } j } 8 " sup xPR `| j pxq| " ? 2. The derivative of j satisfies a recursive formula (see Lemma 8.1 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]) that plays an important role in the sequel :

ş `8 0 L k pxqL j pxqe ´xdx " δ k,j (see
1 0 " ´ 0 , 1 j " ´ j ´2 j´1 ÿ k"0 k , @j ě 1. (2.
2)

The Hermite basis.

Define the Hermite basis ph j q jě0 from Hermite polynomials pH j q jě0 :

h j pxq " c j H j pxqe ´x2 {2 , H j pxq " p´1q j e x 2 d j dx j pe ´x2 q, c j " p2 j j! ? πq ´1{2 , x P R, j ě 0.
(2.

3)

The family pH j q jě0 is orthogonal with respect to the weight function e Abramowitz and Stegun (1964), 22.2.14). It follows that ph j q jě0 is an orthonormal basis on R. Moreover, h j is bounded by

´x2 : ş R H j pxqH k pxqe ´x2 dx " 2 j j! ? πδ j,k (see
}h j } 8 " sup xPR |h j pxq| ď φ 0 , with φ 0 " π ´1{4 , ( 2.4) 
(see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]Stegun (1964), chap.22.14.17 and[START_REF] Indritz | An inequality for Hermite polynomials[END_REF]). The derivatives of h j also satisfy a recursive formula (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], Equation ( 52) in Section 8.2),

h 1 0 " ´h1 { ? 2, h 1 j " p a j h j´1 ´aj `1h j`1 q{ ? 2, @j ě 1. (2.5)
In the sequel, we denote by ϕ j either for h j in the Hermite case or for j in the Laguerre case. Let g P L 2 pRq or g P L 2 pR `q, g develops either in the Hermite basis or the Laguerre basis :

g " ÿ jě0 a j pgqϕ j , a j pgq " xg, ϕ j y.

Define, for an integer m ě 1, the space

S m " Spantϕ 0 , . . . , ϕ m´1 u.
The orthogonal projection of g on S m is given by : g m " ř m´1 j"0 a j pgqϕ j .

Estimation of the derivatives 2.2.1 Assumptions and projection estimator of f pdq .

Let X 1 , . . . , X n be n i.i.d. random variables with common density f with respect to the Lebesgue measure and consider the following assumptions. Let d be an integer, d ě 1.

pA1q The density f is d-times differentiable and f pdq belongs to L 2 pR `q in the Laguerre case or L 2 pRq in the Hermite case.

pA2q For all integer r, 0 ď r ď d ´1, we have }f prq } 8 ă `8. pA3q For all integer r, 0 ď r ď d ´1, it holds lim xÑ0 f prq pxq " 0.

Assumption pA3q is specific to the Laguerre case and avoids boundary issue. In particular, it permits to establish Lemma 2.2.1 below that is central to define our estimator. This assumption can be removed at the expense of additional technicalities, see Section 2.3.

Under pA1q, we develop f pdq in the Laguerre or Hermite basis, its orthogonal projection on S m , m ě 1, is

f pdq m " m´1 ÿ j"0
a j pf pdq qϕ j , where, a j pf pdq q " xf pdq , ϕ j y.

(2.6)

The estimator is built by using the following result, proved in Appendix 2.6.8.

Lemma 2.2.1. Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold in the Laguerre case. Then a j pf pdq q " p´1q d Erϕ pdq j pX 1 qs, @j ě 0. Remark 2.1. If the support of the density f is a strict compact subset ra, bs of the estimation support (here R and a ă b or R `and 0 ă a ă b), then the regularity condition pA1q implies that f must be null in a, b, as well as its derivatives up to order d ´1( i.e. f px 0 q " f p1q px 0 q " ¨¨¨" f pd´1q px 0 q " 0 for x 0 P ta, bu). On the contrary, Assumption pA3q in the Laguerre case can be dropped out (see Section 2.3) and this shows that a specific problem occurs when the density support coincides with the estimation interval. This point presents a real difficulty and is either not discussed in the literature, or hidden by periodicity conditions.

We derive the following estimator of f pdq (see also [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] 

p.402) : let m ě 1, p f m,pdq " m´1 ÿ j"0 p a pdq j ϕ j , with p a pdq j " p´1q d n n ÿ i"1 ϕ pdq j pX i q.
(2.7)

For d " 0, we recover an estimator of the density f . Usually for kernel procedure, we obtain an estimator of f pdq by differentiating the kernel density estimator of f see [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chacón | Asymptotics for general multivariate kernel density derivative estimators[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF] or [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]. With projection estimators, it is not well adapted as the derivative of an orthonormal basis is not a orthonormal basis. This is why our strategy here is different. Moreover, a comparison with the derivative of the density estimator in our context is provided in the sequel (see Section 2.3)

Risk bound and rate of convergence.

We consider the L 2 -risk of p f m,pdq , defined in (2.7),

E " } p f m,pdq ´f pdq } 2 ‰ " }f pdq m ´f pdq } 2 `E" } p f m,pdq ´f pdq m } 2 ‰ , (2.8)
where f pdq m :" ř m´1 k"0 a j pf pdq qϕ j . The study of the second right-hand-side term of the equality (variance term) leads to the following result. (2.9)

Then, for sufficiently large m ě d, it holds that

E " } p f m,pdq ´f pdq } 2 ‰ ď }f pdq m ´f pdq } 2 `C m d`1 2 n ´}f pdq m } 2 n , (2.10)
for a positive constant C depending on the moments in condition (2.9) (but not on m nor n).

Remark 2.2. In the Laguerre case, condition (2.9) is a consequence of pA3q and f pdq p0q ă `8. Indeed, pA1q imposes that f pxq "

xÑ0 x d f pdq pxq which, under f pdq p0q ă `8, ensures integrability of x ´d´1{2 f pxq around 0 `(i.e. ş 0 x ´d´1{2 f pxqdx ă 8) ; integrability near 8 is a consequence of f P L 1 pr0, 8qq.
The bound obtained for p f m,pdq in Theorem 2.2.1 is sharp. Indeed, we can establish the following lower bound.

Proposition 2.2.1. Under the Assumptions of Theorem 2.2.1, it holds, for some constant

c ą 0, that E " } p f m,pdq ´f pdq } 2 ı ě }f pdq m ´f pdq } 2 `c m d`1 2 n ´}f pdq m } 2 n .
The next step is to compute the rate of convergence.

Definition of regularity classes and rate of convergence

The first two terms in the right hand side of (2.10) have an antagonistic behavior with respect to m : the first term, }f pdq m ´f pdq } 2 is a squared bias term which decreases when m increases, while the second m d`1{2 {n is a variance term which increases with m. Thus, the optimal choice of m requires a bias-variance compromise which allows to derive the rate of convergence of p f m,pdq . To evaluate the order of the bias term, we introduce Sobolev-Hermite and Sobolev-Laguerre regularity classes for f (see [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems ?[END_REF] and [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]).

Sobolev-Hermite classes

Let s ą 0 and D ą 0, define the Sobolev-Hermite ball of regularity s

W s H pDq " tθ P L 2 pRq, ÿ kě0 k s a 2 k pθq ď Du, (2.11)
where a 2 k pθq " xθ, h k y and k s is to be understood as p ? kq 2s , see Remark 2.3 below. The following Lemma relates the regularity of f pdq and the one of f . Lemma 2.2.2. Let s ě d and D ą 0, assume that f belongs to W s H pDq and pA2q, then there exist a constant

D d ą D such that f pdq is in W s´d H pD d q.

Sobolev-Laguerre classes

Similarly, consider the Sobolev-Laguerre ball of regularity s

W s L pDq " tθ P L 2 pR `q, |θ| 2 s " ÿ kě0 k s a 2 k pθq ď Du, D ą 0, (2.12)
where a k pθq " xθ, k y. If s ě 1 an integer, there is an equivalent norm of |θ| 2 s (see Section 7.2 of Belomestny et al. ( 2016)) defined by

~θ~2 s " s ÿ j"0 }θ} 2 j , }θ} 2 j " }x j{2 j ÿ k"0 ˆj k ˙θpkq } 2 . (2.13)
This inspires the definition, for s P N and D ą 0, of the subset Ă W s L pDq as

Ă W s L pDq " tθ P L 2 pR `q, θ pjq P Cpr0, 8qq, x Þ Ñ x k{2 θ pjq pxq P L 2 pR `q, 0 ď j ď k ď s, |θ| 2 s ď Du. (2.14) It is straightforward to see that Ă W s L pDq Ă W s L pDq.
Moreover, we can relate the regularity of f pdq and the one of f .

Lemma 2.2.3. Let s P N, s ě d ě 1, D ą 0 and θ P Ă W s L pDq, then, θ pdq P Ă W s´d L pD d q where D ď D d ă 8.

Rate of convergence of p f m,pdq

Assume that f P W s H pDq or f P Ă W s L pDq, then Lemmas 2.2.2 and 2.2.3 enable a control of the bias term in (2.10)

}f pdq m ´f pdq } 2 " ÿ jěm pa j pf pdq qq 2 " ÿ jěm j s´d pa j pf pdq qq 2 j ´ps´dq ď D d m ´ps´dq .
Injecting this in (2.10) yields

E " } p f m,pdq ´f pdq } 2 ‰ ď D 1 m ´ps´dq `c m d`1 2 n .
Remark 2.3. We stress that the squared bias and variance terms have orders specific to the use of Laguerre or Hermite bases. For instance if d " 0, the latter bound becomes m ´s `c? m{n showing that the associated spaces are represented by the square root of their dimension and not their dimension. Analogously in the context of derivatives, the role of the dimension in [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] is played in our case by ? m.

Consequently, selecting m opt " rn 2{p2s`1q s gives the rate of convergence

E " } p f mopt,pdq ´f pdq } 2 ‰ ď Cps, d, Dqn ´2ps´dq 2s`1 , (2.15)
where Cps, d, Dq depends only on s, d and D, not on m. This rate coincides with the one obtained by [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] in the dependent case and by ?. Contrary to [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] and [START_REF] Lepski | A new approach to estimator selection[END_REF], we set the regularity conditions on the function f and not on its derivatives : for a regularity s of f pdq , they obtain a quadratic risk n ´2ps´dq{p2s`1q (case p " 2 in [START_REF] Lepski | A new approach to estimator selection[END_REF] and dimension 1). Interestingly, m opt does not depend on d. This is in accordance with Lepski (2018)'s strategy, which consists in plugging in the derivative kernel estimator the bandwidth selected for the direct density estimation problem. Note that, for d " 0 in (2.15), we recover the optimal rate for estimation of the density f .

Remark 2.4. If f is a mixture of Gaussian densities in the Hermite case or a mixture of Gamma densities in the Laguerre case, it is known from Section 3.2 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] that the bias decreases with exponential rate. The computations therein can be extended to the present setting and imply in both Hermite and Laguerre cases that m opt is then proportional to logpnq. Therefore the risk has order rlogpnqs d`1 2 {n : for these collections of densities, the estimator converges much faster than in the general setting.

Lower bound

Contrary to the lower bound given in Proposition 2.2.1, which ensures that the upper bound derived in Theorem 2.2.1 for the specific estimator p f m,pdq is sharp, we provide a general lower bound that guarantees that the rate of the estimator p f m,pdq is minimax optimal. The following assertion states that the rate obtained in (2.15) is the optimal rate. Let s ě d be an integer and r f n,d be any estimator of f pdq . Then for n large enough, we have inf

r f n,d sup f PW s pDq Er} r f n,d ´f pdq } 2 s ě cn ´2ps´dq 2s`1 , (2.16)
where the infimum is taken over all estimator of f pdq , c a positive constant depending on s and d, and W s pDq stands either for W s L pDq or for W s H pDq. We provide in Section 2.6.3 the key elements to establish (2.16). We emphasize that the proof relies on compactly supported test functions, implying that the lower bound on usual Sobolev spaces and the present one coincide, as these functions belong to both. This had to be checked since Hermite Sobolev spaces are strict subspaces of usual Sobolev spaces. Similar lower bounds were known for this model for different regularity spaces. We mention e.g. (7.3.3) in [START_REF] Efromovich | Nonparametric curve estimation : methods, theory, and applications[END_REF], which considers perdiodic Lispchitz spaces, or [START_REF] Lepski | A new approach to estimator selection[END_REF], which examines general Nikol'ski spaces.

Adaptive estimator of f pdq .

The choice of m opt " rn 2{p2s`1q s leading to the optimal rate of convergence is not feasible in practice. In this section we provide an automatic choice of the dimension m, from the observations pX 1 , . . . , X n q, that realizes the bias-variance compromise in (2.10). Assume that m belongs to a finite model collection M n,d , we look for m that minimizes the bias-variance decomposition (2.8) rewritten as

E " } p f m,pdq ´f pdq } 2 ‰ " }f pdq m ´f pdq } 2 `1 n m´1 ÿ j"0 Var " ϕ pdq j pX 1 q ı .
Note that the bias is such that }f where κ is a positive numerical constant. If we set V m,d :" ř m´1 j"0 Erpϕ pdq j pX 1 q 2 s, it holds Ery pen d pmqs " κV m,d {n. In the sequel, we write pen d pmq :" κV m,d {n. To implement the procedure a value for κ has to be set. Theorem 2.2.2 below provides a theoretical lower bound for κ, which is however generally too large. In practice this constant is calibrated by intensive preliminary experiments, see Section 2.4. General calibration methods can be found in [START_REF] Baudry | Slope heuristics : overview and implementation[END_REF] for theoretical explanations and heuristics, and in the associated package, for practical implementation.

Remark 2.5. Note that in the definition of the penalty, instead of (2.18), we can plug the deterministic upper bound on the variance and take c m d`1 2 {n as a penalty (see Theorem 2.2.1) as Proposition 2.2.1 ensures its sharpness. However, this upper bound relies on additional assumptions given in (2.9) and depends on non explicit constants (see [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF]). This is why we choose to estimate directly the variance by p V m,n and use p V m,n {n as the penalty term. The constraint on the the largest element m n pdq of the collection M n,d ensures that the variance term, which is upper bounded by m d`1 2 {n vanishes asymptotically. The additional log term does not influence the rate of the optimal estimator : the optimal (and unknown) dimension m opt -n 2 2s`1 , with s the regularity index of f , is such that m opt ! n ´f pdq } 2 ‰ " Opn ´2ps´dq{p2s`1q q, which implies that the estimator is adaptive.

Further questions

We investigate here additional questions, and set for simplicity d " 1. Mainly, we compare our estimator to the derivative of a density estimator, and discuss condition pA3q in the Laguerre case.

Derivatives of the density estimator

When using kernel strategies, it is classical to build an estimator of the derivative of f by differentiating the kernel density estimator, as already mentioned in the Introduction.

For projection estimators, we find more relevant to proceed differently. Indeed, our aim is to obtain an estimator expressed in an orthonormal basis ; unfortunately, the derivative of an orthonormal basis is a collection of functions but not an orthonormal basis. So, our proposal (2.7) is easier to handle. Moreover, our estimator can be seen as a contrast minimizer, which makes model selection possible to settle up. However, Laguerre and Hermite cases are somehow different and can be more precisely compared. Let us recall that the projetion estimator of f on S m is defined by (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], or (2.7) for d " 0) :

p f m :" m´1 ÿ k"0 p a p0q k ϕ k , where p a p0q k :" 1 n n ÿ j"0 ϕ k pX j q.
As the functions pϕ j q j are infinitely differentiable, both in Hermite and Laguerre settings, this leads to the natural estimator of f pdq , d ě 1,

p p f m q pdq " m´1 ÿ k"0 p a p0q k ϕ pdq k .
(2.20)

For d " 1, we write p p f m q p1q " p p f m q 1 . We want to compare p p f m q 1 to p f m,p1q . In both Hermite and Laguerre cases, this estimator is consistent, under adequate regularity assumptions and for adequate choice of m as a function of n.

Comparison of p

f m,p1q with p p f m q 1 in the Hermite case.

Using the recursive formula (2.5), in (2.20) and (2.7) respectively, straightforward computations give

p p f m q 1 " 1 ? 2 p a p0q 1 h 0 `m´1 ÿ j"1 ˜c j `1 2 p a p0q j`1 ´c j 2 p a p0q j´1 ¸hj ´c m 2 ´p a p0q m h m´1 `p a p0q m´1 h m ¯, whereas p f m,p1q " 1 ? 2 p a p0q 1 h 0 `m´1 ÿ j"1 ˜c j `1 2 p a p0q j`1 ´c j 2 p a p0q j´1 ¸hj .
Therefore, it holds that Er}p p

f m q 1 ´p f m,p1q } 2 s " m{2 E " pp a p0q m q 2 ‰ `E " pp a p0q m´1 q 2 ‰( and 
Er}p p f m q 1 ´p f m,p1q } 2 s ď m 2 pa 2 m´1 pf q `a2 m pf qq `m 2n ˆż h 2 m pxqf pxqdx `ż h 2 m´1 pxqf pxqdx ˙.
Using Lemma 8.5 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] under Er|X 1 | 2{3 s ă `8 and for f in W s H pDq, s ą 1, it follows for some positive constant C that,

Er}p p f m q 1 ´p f m,p1q } 2 s ď D 2 m ´s`1 `C ? m n .
Under the same assumptions, (2.10) for d " 1 implies

Er}p p f m q 1 ´f 1 } 2 s ď D 1 m ´s`1 `c m 3{2 n .
Therefore, by triangle inequality, this implies that p p f m q 1 reaches the same (optimal) rate as p f m,p1q , under the same assumptions.

Comparison of p

f m,p1q with p p f m q 1 in the Laguerre case.

In the Laguerre case, assumption pA3q is required for the estimator p f m,p1q to be consistent, while it is not for the estimator p p f m q 1 . Proceeding as previously and taking advantage of the recursive formula (2.2) in (2.20) and (2.7) respectively, straightforward computations give, for m ě 1,

p p f m q 1 " m´1 ÿ j"0 ˜p a p0q j ´2 m´1 ÿ k"j p a p0q k ¸ j , whereas p f m,p1q " m´1 ÿ j"0 ˜p a p0q j `2 j´1 ÿ k"0 p a p0q k ¸ j .
(2.21) Therefore, in the Laguerre case, the coefficients of p f m,p1q in the basis p j q j do not depend on m while those of p p f m q 1 do. Moreover, computing the difference between the estimators leads to p f m,p1q ´p p

f m q 1 " 2 ř m´1 j"0 p ř m´1 k"0 p a p0q k q j and } p f m,p1q ´p p f m q 1 } 2 " 4m ˜m´1 ÿ k"0 p a p0q k ¸2 .
Heuristically, if f p0q " 0, as f p0q " ? 2 ř jě0 a j pf q " 0, it follows that ř m´1 j"0 a j pf q should be small for m large enough. Consequently, its consistent estimator ř m´1 k"0 p a p0q k should also be small. This would imply that, when f p0q " 0, the distance } p f m,p1q ´p p f m q 1 } 2 can be small ; on the contrary, the distance should tend to infinity with m if f p0q ‰ 0. This is due to the fact that p f m,p1q is not consistent, while p p f m q 1 is. Indeed, in the general case (f p0q ‰ 0), the risk bound we obtain for p p f m q 1 is the following.

Proposition 2.3.1. Assume that pA1q and pA2q hold for d " 1 and that f belongs to W s L pDq. Then, it holds

E}p p f m q 1 ´f 1 } 2 ď Cm ´s`2 `3 n }f } 8 m 2 . (2.22)
Obviously, for suitably chosen m the estimator is consistent and by selecting m opt -n 1{s , it reaches the rate : Er}p p f mopt q 1 ´f 1 } 2 s ď Cps, Dqn ´ps´2q{s . This rate is worse than the one obtained for p f m,p1q but it is valid without pA3q, and thus p f m,p1q is consistent to estimate an exponential density, or any mixture involving exponential densities. Note that both the order of the bias and the variance in (2.22) are deteriorated compared to (2.10), and we believe these orders are sharp.

In the following section, we investigate if the rate can be improved, if pA3q is not satisfied, by correcting our estimator (2.6).

Estimation of f

1 on R `with f p0q ą 0 Assumption pA1q excludes some classical distribution such as the exponential distribution or Beta distributions βpa, bq with a " 1. If f p0q ą 0, Lemma 2.2.1 no longer holds, and one has a j pf 1 q " ´f p0q j p0q ´Er 1 j pX 1 qs instead. Therefore, f p0q has to be estimated and we consider

p a p1q j,K " ´ j p0q p f K p0q ´1 n n ÿ i"1 1 j pX i q, with p f K " K´1 ÿ j"0 p a p0q j j , p a p0q j " 1 n n ÿ i"1 j pX i q. (2.23)
We estimate f 1 as follows

r f 1 m,K " m´1 ÿ j"0 p a p1q j,K j , with p a p1q j,K " ´1 n n ÿ i"1 1 j pX i q ´p f K p0q j p0q. (2.24)
Obviously, p a p1q j,K is a biased estimator of a j pf 1 q, implying that r f 1 m,K is a biased estimator of f 1 m . Now there are two dimensions m and K to be optimized. We can establish the following upper bound.

Proposition 2.3.2. Suppose pA1q is satisfied for d " 1, then it holds that E " } r f 1 m,K ´f 1 } 2 ‰ ď }f 1 ´f 1 m } 2 `2 n m´1 ÿ j"0 E "` 1 j pX 1 q ˘2‰ `4mpVarp p f K p0qq `pf p0q ´fK p0qq 2 q,
(2.25) where f K is the orthogonal projection of f on S K defined by : f K " ř K´1 j"0 a j pf q j .

The first two terms of the upper bound seem similar to the ones obtained under pA3q, but as we no longer assume f p0q " 0, Assumption (2.9) for d " 1 cannot hold and the tools used to bound the variance term V m,1 by m 3{2 no longer apply : we only get an order m 2 for this term, under }f } 8 ă `8.

The last two terms of (2.25) correspond to m times the pointwise risk of p f K p0q. Then, using } j } 8 ď ? 2, we obtain Varp p f K pxqq ď 4K 2 {n. If }f } 8 ă 8, this can be improved in Varp p f K pxqq ď }f } 8 K{n, using the orthonormality of p j q j .

To sum up, if f P Ă W s L pDq, and }f } 8 ă 8, then

E " } r f 1 m,K ´f 1 } 2 ‰ ď Cps, D, }f } 8 q " m ´s`2 `m2 n `m ˆK´s`1 `K n ˙* .
Choosing K opt " cn 1{s and m opt " cn 1{s gives the rate

E " } r f 1 mopt,Kopt ´f 1 } 2 ‰ ď Cn ´ps´2q{s
, that is the same rate as the one obtained for p p f mopt q 1 . Then, renouncing to Assumption pA3q has a cost, it renders the procedure burdensome and leads to slower rates.

We propose a model selection procedure adapted to this new estimator. Let

p f 1 m,K " arg min tPSm γ n ptq (2.26)
where

γ n ptq " }t} 2 `2 n ř n i"1 t 1 pX i q `2tp0q p f K p0q. Here, we consider that K " K n is chosen so that p f Kn satisfies " Ep p f Kn p0qq ´f p0q ı 2 ď K n logpnq n . (2.27)
This assumption is likely to be fulfilled for a K selected in order to provide a squared bias/variance compromise, see the pointwise adaptive procedure for density estimation in [START_REF] Plancade | Estimation of the density of regression errors by pointwise model selection[END_REF] ; however therein, the choice of K is random while we set K n as fixed, here. Then, we select m as follows : (2.27) holds. Then for c 1 and c 2 larger than fixed constants c 0,1 , c 0,2 , we have

p m K " arg min mPMn ! γ n p p f 1 m,K q `pen K pmq ) , M n " t1, . . . , r ? nsu (2.28) with pen K pmq " c 1 }f } 8 m 2 logpnq n `c2 p}f } 8 _1q m K logpnq n :" pen 1 pmq`pen 2,K pmq. (2.29) It is easy to ckeck that γ n p p f 1 m,K q " ´} p f 1 m,K } 2 .
E ´}f 1 ´p f 1 p m,Kn } 2 ¯ď C ˆ}f 1 ´f 1 m } 2 `m2 logpnq n `m K n logpnq n ˙`C 1 n ,
where C is a numerical constant and C 1 depends on f . Theorem 2.3.1 implies that the adaptive estimator p f 1 m,Kn provides the adequate compromise, up to log terms.

Numerical examples

In this section, we provide a nonexhaustive illustration of our theoretical results.

Simulation setting and implementation.

We illustrate the performances of the adaptive estimator p f p mn,pdq defined in (2.7), with p m selected by (2.17)-( 2.18), for different distributions and values of d (d " 1, 2). In the Hermite case we consider the following distributions which are estimated on the interval I, which we fix to ensure reproducibility of our experiments :

(i) Gaussian standard N p0, 1q, I " r´4, 4s, (ii) Mixed Gaussian 0.4N p´1, 1{4q `0.6N p1, 1{4q, I " r´2.5, 2.5s, (iii) Cauchy standard, density : f pxq " pπp1 `x2 qq ´1, I " r´6, 6s, (iv) Gamma Γp5, 5q{10, I " r0, 7s, (v) Beta 5βp4, 5q, I " r0, 5s.

In the Laguerre case we consider densities (iv), (v) and the two following additional distributions (vi) Weibull W p4, 1q, I " r0, 1.5s, (vii) Maxwell with density ? 2x 2 e ´x2 {p2σ 2 q {pσ 3 ? πq, with σ " 2 and I " r0, 8s.

All these distributions satisfy Assumptions pA1q, pA2q and densities (iv)-(vii) satisfy pA3q.

The moment conditions given in (2.9) are fulfilled for d " 1, 2, even by the Cauchy distribution (iii) which has finite moments of order 2{3 ă 1. For the adaptive procedure, the model collection considered is M n,d " td, . . . , m n pdqu, where the maximal dimension is m n pdq " 50 in the Laguerre case and m n pdq " 40 in the Hermite case, for all values of n and d (smaller values may be sufficient and spare computation time). In practice, the adaptive procedure follows the steps :

• For m in M n,d , compute ´řm´1 j"0 pp a pdq j q 2 `y pen d pmq, with p a pdq j

given in (2.7) and

y pen d pmq in (2.18), • Choose p m n via p m n " argmin mPM n,d
t´ř m´1 j"0 pp a pdq j q 2 `y pen d pmqu,

• Compute p f p mn,pdq " ř p m´1 j"0 p a pdq j ϕ j . Then, we compute the empirical Mean Integrated Squared Errors (MISE) of p f p mn,pdq . For that, we first compute the ISE by Riemann discretization in 100 points : for the j-th path, and the j-th estimate p g pjq p m of g, where g stands either for the density f or for its derivative f 1 , we set

}g´p g pjq p m } 2 « lengthpIq K K ÿ k"1 pp g pjq p m px k qq´gpx k qq 2 , x k " minpIq`k lengthpIq K , k " 1, . . . , K,
for j " 1, . . . R. To get the MISE, we average over j of these R values of ISEs.

The constant κ in the penalty is calibrated by preliminary experiments. A comparison of the MISEs for different values of κ and different distributions (distinct from the previous ones to avoid overfitting) allows to choose a relevant value. We take κ " 3.5 for the density and its first derivative and κ " 5 for the second order derivative in the Laguerre case or κ " 4 for the density and its first derivative and κ " 6.5 for the second order derivative in the Hermite case.

Comparison with kernel estimators. We compare the performances of our method with those of kernel estimators, and start by density estimation (d " 0). The density kernel estimator is defined as follows

p f h pxq " 1 nh n ÿ i"1 K ˆXi ´x h ˙, x P R
where h ą 0 is the bandwidth and K a kernel such that ş Kpxqdx " 1. These two quantities (h and K) are user-chosen. For density estimation, we use the function implemented in the statistical software R called density, where the kernel is chosen Gaussian and the bandwidth selected by plug-in (R-function bw.SJ), see Tables 2.2 and2 For the estimation of the derivative, the kernel estimator we compare with (see Tables 2.3 and2.5) is defined by :

p f 1 h pxq " ´1 nh 2 n ÿ i"1 K 1 ˆXi ´x h ˙.
In that latter case there is no ready-to-use procedure implemented in R ; therefore, we generalize the adaptive procedure of [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF] from density to derivative estimation. To that aim, we consider a kernel of order 7 (i.e. ş x j Kpxqdx " 0, for j " 1, . . . , 7) built as a Gaussian mixture defined by : Kpxq " 4n 1 pxq ´6n 2 pxq `4n 3 pxq ´n4 pxq, (2.30) where n j pxq is the density of a centered Gaussian with a variance equal to j : the higher the order, the better the results, in theory (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]) and in practice (see [START_REF] Comte | Bandwidth selection for the Wolverton-Wagner estimator[END_REF]). By analogy with the proposal of [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF] for density estimation, we select h by :

p h " argmin hPH t} p f 1 h ´p f 1 h min } 2 `penphqu, with penphq " 4 n xK 1 h , K h 1 min y,
where h min " min H, for H the collection of bandwidths chosen in rc{n, 1s and K h pxq "

1 h Kp x h q. Note that penphq " 4 n xK 1 h , K h 1 min y " 4 nh 2 h 2 min ż K 1 p u h qK 1 p u h min qdu
and this term can be explicitely computed with the definition of K in (2.30).

Results and discussion.

Figures 2.1 and 2.2 show 20 estimated f , f 1 , f 2 in case (ii), for two values of n, 500 and 2000. These plots can be read as variability bands illustrating the performance and the stability of the estimator. We observe that increasing n improves the estimation and, on the contrary, that increasing the order of the derivative makes the problem more difficult.

The means of the dimensions selected by the adaptive procedure are given in Table 2.1. Unsurprisingly, this dimension increases with the sample size n. In average, these dimensions are comparable for d P t0, 1, 2u, this is in accordance with the theory : the optimal value m opt does not depend on d. Tables 2.2 and2.4 for d " 0 and Tables 2.3 and 2.5 for d " 1 allow to compare the MISEs obtained with our method and the kernel method for different sample sizes and densities.The error decreases when the sample size increases for both methods. For density estimation (d " 0), the results obtained with our Hermite projection method in Table 2.2 are better in most cases than the kernel competitor, except for smallest sample size n " 100 and Gamma (iv) and Beta (v) distributions. Table 2.3 gives the risks obtained for derivative estimation in the Hermite basis : our method is better for densities (i), (ii), (iii) (except for n " 100 for Gaussian distribution (i)), but the kernel method is often better for densities (iv) and (v) ; they correspond to Gamma and beta densities which are in fact with support included in R `.

In Table 2.4, we compare the errors obtained for densities (iv)-(vii) with support in R `.

Our method is always better than the R-kernel estimate. For the derivatives, in Table 2.5, our method and the kernel estimator seem equivalent. Lastly, Table 2.6 allows to compare Laguerre and Hermite bases for the estimation of the second order derivatives of functions (iv) and (v), for larger sample sizes. As expected, the risks are larger, because the degree of ill posedness increases and thus the rate deteriorates. For these R `-supported functions, the Laguerre basis is clearly better. It is possible that scale of the functions themselves also increase (multiplicative factors appearing by derivation). Note that the same phenomenon is observed for the L 1 -risk computed in [START_REF] Shen | Posterior contraction rates of density derivative estimation[END_REF] ´f p2q } 2 for R " 100.

Concluding remarks

We introduced a projection estimator of f pdq from observations X 1 , . . . , X n of density f , relying on the Laguerre or Hermite basis. Theoretical study prove that our estimator is adaptive and minimax optimal in the minimax sense. We also provide numerical study and the comparison with the kernel method ensure the good performance and the stability of our procedure. For future works, it is interesting to extend these results to the dependent case. In literature, results exist (see e.g. Schmisser ( 2013)) with a penalty which depends on the mixing coefficient, which is unknown. It is therefore interesting to see if it is possible to propose an adaptive procedure with a penalty independent of the mixing coefficients.

Proofs

In the sequel C denotes a generic constant whose value may change from line to line and whose dependency is sometimes given in indexes.

Proof of Theorem 2.2.1

Following (2.8) we study the variance term, notice that

E " } p f m,pdq ´f pdq m } 2 ‰ " ř m´1 j"0 Varpp a pdq j q. By definition of p a pdq j given in (2.7), we have Varpp a pdq j q " Var ˜p´1q d n n ÿ i"1 ϕ pdq j pX i q ¸" 1 n Varpϕ pdq j pX 1 qq " 1 n Erpϕ pdq j pX 1 qq 2 s ´a2 j pf pdq q n .
(2.31)

Clearly, ř m´1 j"0 a 2 j pf pdq q " }f pdq m } 2 . In the sequel we denote by V m,d the quantity

V m,d " m´1 ÿ j"0 Erpϕ pdq j pX 1 qq 2 s. (2.32)
The remaining of the proof consists in showing that under (2.9) we have V m,d ď cm d`1{2 .

For that, write

V m,d " m´1 ÿ j"0 ż pϕ pdq j pxqq 2 f pxqdx " ˜d´1 ÿ j"0 ż pϕ pdq j pxqq 2 f pxqdx `m´1 ÿ j"d ż pϕ pdq j pxqq 2 f pxqdx ¸, (2.33) 
where

d´1 ÿ j"0 ż pϕ pdq j pxqq 2 f pxqdx ď d´1 ÿ j"0 }ϕ pdq j } 2 8 :" cpdq. (2.34)
To bound the second term in (2.33), we consider separately Hermite and Laguerre cases.

The Laguerre case.

We derive from (2.1) that pdq j pxq " ?

2 d ÿ k"0 p´1q d´k ˆd k ˙Lpkq j p2xqe ´x.
Using [START_REF] Koekoek | Generalizations of Laguerre polynomials[END_REF], Equation 2.10, we derive

L pkq j pxq " d k dx k L j pxq " p´1q k L j´k,pkq pxq, where L p,pδq pxq " 1 p! e x x ´δ d p dx p ´xδ`p e ´x¯1 δďp .
Moreover, introduce the orthonormal basis on L 2 pR `q p k,pδq q 0ďkă8 by k,pδq pxq "

2 δ`1 2 ˆk! Γpk `δ `1q ˙1{2 L k,pδq p2xqx δ 2 e ´x.
(2.35) Therefore, pL j p2xqq pkq " 2 k L j´k,pkq p2xq1 jěk , so that

pdq j pxq "p´1q d d ÿ k"0 ˆd k ˙2 k 2 x ´k{2 ˆj! pj ´kq! ˙1 2 j´k,pkq pxq, (2.36) 
where j,pδq is defined in (2.35). Using the Cauchy Schwarz inequality in (2.36), we derive that x ´kp j´k,pkq px{2qq 2 f px{2qdx.

Now we rely on the following Lemma, proved in Appendix 2.6.8.

Lemma 2.6.1. Let j ě k ě 0 and suppose that ErX ´k´1{2 s ă `8, it holds, for a positive constant C depending only on k, that

ż `8 0 x ´k " j´k,pkq px{2q ‰ 2 f px{2qdx ď C ? j .
From Lemma 2.6.1, we obtain

m´1 ÿ j"d ż p pdq j pxqq 2 f pxqdx ď C m´1 ÿ j"d d ÿ k"0 j d´1{2 ď Cm d`1{2 .
Plugging this and (2.34) in (2.33), gives the result (2.10) and Theorem 2.2.1 in the Laguerre case.

The Hermite case.

We first introduce a useful technical result, its proof is given in Appendix 2.6.8.

Lemma 2.6.2. Let h j given in (4.9), the d-th derivative of h j is such that

h pdq j " d ÿ k"´d b pdq k,j h j`k , where b pdq k,j " Opj d{2 q, j ě d ě |k|.
(2.37)

Using successively Lemma 2.6.2, the Cauchy Schwarz inequality and Lemma 8.5 in Comte and Genon-Catalot (2018) (using that Er|X 1 | 2{3 s ă 8), we obtain, for k `j large enough, 

m´1 ÿ j"d ż ph pdq j pxqq 2 f pxqdx ďp2d `1q m´1 ÿ j"d d ÿ k"´d pb pdq k,j q 2 ż h j`k pxq 2 f pxqdx ď dp2d `1q 2 d ÿ k"´d m´1 ÿ j"d cj d´1 2 ďc 1 pdqm d`1 2 . ( 2 

Proof of Proposition 2.2.1

We build a lower bound for (2.8). Recalling (2.31) and notation V m,d " ř m´1 j"0 Erpϕ pdq j pX 1 qq 2 s, to establish Proposition 2.2.1, we have to build a minorant for V m,d . We consider separately the Laguerre and Hermite cases.

The Laguerre case.

Using (2.36), we have

pdq j pxq "p´1q d 2 d{2 x ´d{2 ´j! pj ´dq! ¯1{2 j´d,pdq pxq `p´1q d d´1 ÿ k"0 ˆd k ˙2 k 2 x ´k{2 ˆj! pj ´kq! ˙1 2 j´k,pkq pxq :"T 1 pxq `T2 pxq.
It follows that

ż `8 0 p pdq j q 2 pxqf pxqdx ě ż `8 0 T 1 pxq 2 f pxqdx `2 ż `8 0 T 1 pxqT 2 pxqf pxqdx :" E 1 `E2 .
For the first term, as pA1q ensures that f is a continuous density, there exist 0 ď a ă b and c ą 0, such that inf aďxďb f pxq ě c ą 0. We derive

E 1 ě 2 d j! pj ´dq! ż `8 0 x ´d 2 j´d,pdq pxqf pxqdx ě c2 d pj ´dq d b ´d ż b a 2 j´d,pdq pxqdx.
By Theorem 8.22.5 in [START_REF] Szegö | Orthogonal polynomials[END_REF], for δ ą ´1 an integer, and for b{j ď x ď b, where b, b are arbitrary positive constants, it holds j,pδq pxq " dpjxq ´1 We derive that ş b a 2 j´d,pdq pxqdx ě Cpj ´dq ´1{2 , after a change of variable y " ?

x, for some positive constant C depending on a, b and d. Consequently, it holds

E 1 ě Cpj ´dq d´1 2 ě C 1 j d´1 2 , @j ě 2d, (2.40)
where C 1 depends on a, b, c and d. For the second term, we have

|E 2 | ď 2 ż `8 0 |T 1 pxqT 2 pxq|f pxqdx ď 2j d 2 j d´1 2 d´1 ÿ k"0 ˆd k ˙2 k`d 2 "ż `8 0 x ´d 2 j´d,pdq pxqf pxqdx `ż `8 0 x ´k 2 j´k,pkq pxqf pxqdx  .
By Lemma 2.6.1, it follows that

|E 2 | ď Cj d 2 j d´1 2 j ´1 2 d´1 ÿ k"0 ˆd k ˙2 k`d 2 ď Cj d´1 .
This together with (2.40), lead to ş `8 0 p pdq j q 2 pxqf pxqdx ě C 1 j d´1 2 , j ě 2d where C depends on a, b, c and d. We derive

V m,d ě Cm d`1 2 , (2.41)
which ends the proof in the Laguerre case.

The Hermite Case.

The proof is similar to the Laguerre case. Consider the following expression of h j (see [START_REF] Szegö | Orthogonal polynomials[END_REF], p.248) :

h j pxq " λ j cos ˆp2j `1q 1 2 x ´jπ 2 ˙`1 p2j `1q 1 2 ξ j pxq, @x P R, (2.42) 
where λ j " |h j p0q| for j even or λ j " |h 1 j p0q|{p2j `1q 1{2 for j odd and ξ j pxq "

ż x 0 sin ´p2j `1q 1 2 px ´tq ¯t2 h j ptqdt.
By Stirling Formula, it holds From pA1q, there exists a ă b and c ą 0 such that inf aďxďb f pxq ě c ą 0. It follows

λ 2j " p2jq! 1 2 2 j j!π 1{4 " π ´1{2 j ´1{4 and λ 2j`1 " λ 2j ? 2j `1 a 2j `3{2 " π ´1{2 j ´1{4 . ( 2 
ż R h pdq j pxq 2 f pxqdx ěcp2j `1q d λ 2 j ż b a cos 2 ´p2j `1q 1 2 x ´pj `dq π 2 ¯dx `2cλ j p2j `1q d´1 2 ż b a cos ´p2j `1q 1 2 x ´pj `dq π 2 ¯ξpdq j pxqdx :" E 1 `E2 .
For the first term, using cos 2 pxq " p1 `cosp2xqq{2 and (2.43), we get

E 1 " cp2j `1q d λ 2 j ˆb ´a 2 `Op 1 ? j q ˙ě c 1 j d´1 2 ˆb ´a 2 `Op 1 ? j q ˙.
For the second term we first show that @x P ra, bs, @j ě 0, @d ě 0, ξ pdq j pxq " Opj d{2 q.

(2.45)

To establish (2.45) we first note, using (2.44), that for d ě 2, @x P R, ξ pdq j pxq`p2j`1qξ pd´2q j pxq " pξ p2q j pxq`p2j`1qξ j pxqq pd´2q " a 2j `1px 2 h j pxqq pd´2q ": Ψ j,d pxq.

Together with Lemma 2.6.2, one easily obtains by induction that @x P ra, bs, @j ě 0, Ψ j,d pxq " Opj 

2 lead to ż R h pdq j pxq 2 f pxqdx ě c 1 j d´1 2 ˆb ´a 2 `Op 1 ? j q ˙´Opj d´3 4 q ě C 1 d j d´1 2 ,
and

V m,d ě c d m d`1 2 , (2.46)
which ends the proof of the Hermite case.

Proof of (2.16)

We apply Theorem 2.7 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]. We start by the construction of a family of hypotheses pf θ q θ . The construction is inspired by [START_REF] Belomestny | Correction to : Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF]. Define f 0 by f 0 pxq " P pxq1 s0,1r pxq `1 2 x1 r1,2s pxq `Qpxq1 s2,3s pxq, (2.47) where P and Q are positive polynomials, for 0 ď k ď s, P pkq p0q " Q pkq p3q " 0, P pkq p1q " lim xÓ1 px{2q pkq , Q pkq p2q " lim xÒ2 px{2q pkq and finally ş 1 0 P pxqdx "

ş 3 2 Qpxqdx " 1 8 . Consider f θ defined as a perturbation of f 0 f θ pxq " f 0 pxq `δK ´pγ`dq K´1 ÿ k"0 θ k`1 ψ `px ´1qpK `1q
´k˘, with K P N, (2.48) for some δ ą 0, θ " pθ 1 , . . . , θ K q P t0, 1u K , γ ą 0 and ψ which is supported on r1, 2s, admits bounded derivatives up to order s and is such that ş 2 1 ψpxqdx " 0. The lower bound (2.16) is a consequence of the following Lemma.

Lemma 2.6.3. piq. Let s ě d, @ θ P t0, 1u K , there exist δ small enough and γ ą 0 such that f θ is density. There exists D ą 0 such that f θ belongs to W s H pDq. If in addition γ ě s ´d, f θ belongs to W s L pDq. piiq. Let M an integer, for all j ă l ď M , @θ pjq , θ plq in t0, 1u K , it holds }f

pdq θ pjq ´f pdq θ plq } 2 ě Cδ 2 K ´2γ .
piiiq. For δ small enough, K " n 1{p2γ`2d`1q and for all pθ pjq q 1ďjďM P pt0, 1u K q M , it holds

1 M M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘ď αM,
where 0 ă α ă 1{8 and χ 2 pg, hq denotes the χ 2 divergence between the distributions g and h.

Choosing γ " s ´d, K " n 1{p2γ`2d`1q and δ small enough, we derive from Lemma 2.6.3 that,

}f pdq θ pjq ´f pdq θ plq } 2 ě Cδ 2 n
´2 ps´dq 2s`1 , @θ pjq , θ plq P t0, 1u K .

The announced result is then a consequence of Theorem 2.7 in Tsybakov (2009).

Proof of Theorem 2.2.2

Consider the contrast function defined as follows : Introduce the function ppm, m 1 q " 4

γ n,d ptq " }t} 2 ´2 n n ÿ i"1 p´1q d t pdq pX i q, t P L 2 pRq
V m_m 1 ,d n
, we get, after taking the expectation,

1 2 E " } p f p mn,pdq ´f pdq } 2 ı ď 3 2 }f pdq m ´f pdq } 2 `pen d pmq `4E «˜s up tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´ppm, p m n q ¸`ff `Er4ppm, p m n q ´pen d p p m n qs `E " ppen d p p m n q ´y pen d p p m n qq `‰ .
The remaining of the proof is a consequence of the following Lemma.

Lemma 2.6.4. Under the assumptions of Theorem 2.2.2, the following hold.

(i) There exists a constant Σ 1 such that :

E «˜s up tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´ppm, p m n q ¸`ff ď Σ 1 n .
(ii) There exists a constant Σ 2 such that :

E " ppen d p p m n q ´y pen d p p m n qq `‰ ď 1 2 Erpen d p p m n qs `Σ2 n .
Lemma 2.6.4 yields

1 2 E " } p f p mn,pdq ´f pdq } 2 ı ď 3 2 }f pdq m ´f pdq } 2 `pen d pmq `4 Σ 1 n `Er4ppm, p m n q ´1 2 pen d p p m n qs `Σ2 n .
Next, for κ ě 32 ": κ 0 , we have, 4ppm, p m n q ď pen d p p m n q{2 `pen d pmq{2. Therefore, we derive

E " } p f p mn,pdq ´f pdq } 2 ı ď 3}f pdq m ´f pdq } 2 `3pen d pmq `2 4Σ 1 `Σ2 n , @m P M n,d .
Taking the infimum on M n,d , C " 3 and C 1 " 2p4Σ 1 `Σ2 q{n completes the proof.

Proof of Proposition 2.3.1.

First, it holds that

E " }p p f m q 1 ´f 1 } 2 ı ď 2 " }pf m q 1 ´f 1 } 2 `Er}p p f m q 1 ´pf m q 1 } 2 s ı " 2 ż `8 0 p ÿ jěm a j pf q 1 j pxqq 2 dx `2E « } m´1 ÿ j"0 pp a p0q j ´aj pf qq 1 j } 2 ff .
For the first bias term, we derive from (2.2) that x 1 j , 1 k y " 2 `4j ^k for j ‰ k and x 1 j , 1 j y " 1 `4j, and we derive that

ż `8 0 p ÿ jěm a j pf q 1 j pxqq 2 dx " ÿ jěm a j pf q 2 p1 `4jq `2 ÿ mďjăk a j pf qa k pf qp2 `4jq.
First, for f in W s L pDq, we have ÿ jěm a j pf q 2 p1 `4jq ďm ´s ÿ jěm j s a j pf q 2 `4m ´s`1 ÿ jěm j s a j pf q 2 ď 5Dm ´s`1 , and by the Cauchy-Schwarz inequality, it holds for a positive constant C, Thus, it comes 2}pf m q 1 ´f 1 } 2 ď Cm ´ps´2q , (2.52) where C ą 0 depends on D. Second, for the variance term, straightforward computations lead to

ÿ mďjăk a j pf qa k pf q ď ˜ÿ mďjăk j s a j pf q 2 k s a k pf q 2 ¸1 2 ˜ÿ mďjăk j ´sk
E " } m´1 ÿ j"0 pp a p0q j ´aj pf qq 1 j } 2 ı " 1 n ż `8 0 Varp m´1 ÿ j"0 j pX 1 q 1 j pxqqdx ď 1 n ż `8 0 E « p m´1 ÿ j"0 j pX 1 q 1 j pxqq 2 ff dx.
By the orthonormality of p j q j and pA3q, we obtain

`8 ż 0 E « p m´1 ÿ j"0 j pX 1 q 1 j pxqq 2 ff dx ď }f } 8 m´1 ÿ j,k"0 `8 ż 0 `8 ż 0 j puq 1 j pxq k puq 1 k pxqdudx " }f } 8 m´1 ÿ j"0 p1 `4jq ď 3}f } 8 m 2 .
From this and (2.52), the result follows.

Proof of Proposition 2.3.2

By the Pythagoras Theorem, we have the bias-variance decomposition E

" } r f 1 m,K ´f 1 } 2 ‰ " }f 1 ´f 1 m } 2 `E" } r f 1 m,K ´f 1 m } 2 ‰ . As j p0q " ? 2, it follows that r f 1 m,K ´f 1 m " m´1 ÿ j"0 « ´?2p p f K p0q ´f p0qq ´1 n n ÿ i"1 p 1 j pX i q ´Er 1 j pX i qsq ff j .
From the orthonormality of p j q j , it follows

E " } r f 1 m,K ´f 1 m } 2 ‰ " m´1 ÿ j"0 E « ´?2p p f K p0q ´f p0qq ´1 n n ÿ i"1 p 1 j pX i q ´Er 1 j pX i qsq ff 2 ď 4mE " p p f K p0q ´f p0qq 2 ı `2 m´1 ÿ j"0 E » - ˜1 n n ÿ i"1 p 1 j pX i q ´Er 1 j pX i qsq ¸2fi fl .
Finally, using that the pX i q i are i.i.d. lead to the result in the second variance term.

Proof of Theorem 2.3.1

We have the decomposition :

γ n ptq ´γn psq " }t ´f 1 } 2 ´}s ´f 1 } 2 ´2xs ´t, f 1 y ´2 n n ÿ i"1
ps 1 ´t1 qpX i q ´2psp0q ´tp0qq p f K p0q

and as xt, f 1 y " ´tp0qf p0q ´ş t 1 f, we get γ n ptq ´γn psq " }t ´f 1 } 2 ´}s ´f 1 } 2 ´2ν n ps ´tq ´2psp0q ´tp0qqp p f K p0q ´f p0qq, (2.53)

with ν n ptq " 1 n n ÿ i"1 pt 1 pX i q ´xt 1 , f y.
First note that for

f 1 m,K " m´1 ÿ j"0 a p1q j,K j , a p1q j,K " Erp a p1q j,K s " xf 1 , j y ` j p0qpf p0q ´Er p f K p0qs, it holds that }f 1 ´f 1 m,K } 2 " › › › › › 8 ÿ j"0 xf 1 , j y j ´m´1 ÿ j"0 xf 1 , j y j ´m´1 ÿ j"0 j p0q `f p0q ´Er p f K p0qs ˘ j › › › › › 2 " ÿ jěm xf 1 , j y 2 `2 m´1 ÿ j"0 `f p0q ´Er p f K p0qs ˘2 " }f 1 ´f 1 m } 2 `2m `f p0q ´Er p f K p0qs ˘2.
Let us start by writing that, by definition of p m K , it holds, @m P M n ,

γ n p p f 1 p m K ,K q `pen K p p m K q ď γ n pf 1 m,K q `pen K pmq,
which yields, with (2.53) and notations introduced in (2.29),

} p f 1 p m K ,K ´f 1 } 2 ď }f 1 m,K ´f 1 } 2 `pen K pmq `2ν n pf 1 m,K ´p f 1 p m K ,K q ´pen 1 p p m K q `2pf 1 m,K p0q ´p f 1 p m K ,K p0qqp p f K p0q ´f p0qq ´pen 2,K p p m K q ď }f 1 m,K ´f 1 } 2 `pen K pmq `1 4 }f 1 m,K ´p f 1 p m K ,K } 2 `8 sup tPS m_x m K ν 2 n ptq ´pen 1 p p m K q `16pm _ p m K qr p f K p0q ´f p0qs 2 ´pen 2,K p p m K q.
To get the last line, we write that, for any t P S m , |tp0q| "

?

2 ˇˇˇˇm ´1 ÿ j"0 a j ptq ˇˇˇˇď g f f e 2m m ÿ j"0 a 2 j ptq ď ? 2m}t},
and we use that 2xy ď x 2 {8 `8y 2 for all real x, y. We obtain

1 2 } p f 1 p m K ,K ´f 1 } 2 ď 3 2 }f 1 m,K ´f 1 } 2 `pen K pmq `16mp p f K p0q ´f p0qq 2 `8 ˜sup tPS m_x m K ,}t}"1 ν 2 n ptq ´p1 pm _ p m K q ¸``8p 1 pm _ p m K q ´pen 1 p p m K q `16 p m K " p p f K p0q ´f p0qq 2 ´c2 p}f } 8 _ 1qK logpnq n  , ( 2.54) 
where

p 1 pmq " bp1 `2 logpnqq}f } 8 m 2 n , b ą 0.
The following Lemma can be proved using the Talagrand Inequality (see Section 2.7.2).

Lemma 2.6.5. Under the assumptions of Theorem 2.3.1, and b ě 6,

ÿ mPMn E « sup tPSm,}t}"1 ν 2 n ptq ´p1 pmq ff `ď c n .
It follows that .55) This implies that 8p 1 pm _ p m K q ď pen 1 pmq `pen 1 p p m K q for c 1 -defined in (2.29)-large enough. Moreover, let a ą 0 and

E ˜sup tPS m_x m K ,}t}"1 ν 2 n ptq ´p1 pm _ p m K q ¸`ď ÿ m 1 PMn E ˜sup tPS m 1 _m ,}t}"1 ν 2 n ptq ´p1 pm _ m 1 q ¸ď c n . ( 2 
Ω K :" #ˇˇˇˇˇ1 n n ÿ i"1 pZ K i ´EpZ K i qq ˇˇˇˇď c ap}f } 8 _ 1q K logpnq n + ,
where Z K i :" ř K´1 j"0 j pX i q. To apply the Bernstein Inequality (see Section 2.7.3), we compute s 2 " }f } 8 K and b " ? 2K and note that K logpnq{n ď 1. Thus, we get that there exist constants c 0 , c such that For a ą c 0 , PpΩ c K q ď c n 4 .

(2.56)

On Ω K , it holds that

p p f K p0q ´fK p0qq 2 " ˜1 n n ÿ i"1 pZ K i ´EpZ K i qq ¸2 ď 2ap}f } 8 _ 1qK logpnq n .
(2.57)

For any K n ď rn{ logpnqs satisfying condition (2.27), we have

E " p m Kn " p p f Kn p0q ´f p0qq 2 ´c2 p}f } 8 _ 1qK n logpnq n * ď E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n *
Now we note that | p f K pxq| ď 2K for all x P R `and any integer K and by using the definition of (2.57), provided that c 2 ą 2a `2, we obtain

E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n * ď E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n  1 Ω Kn * `E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n  1 Ω c Kn * À Cn 5{2 PpΩ c Kn q À 1 n ,
the term on Ω Kn being less than or equal to 0. Plugging this and (2.55) into (2.54), we get

E ´} p f 1 p m K ,K ´f 1 } 2 ¯ď 3}f 1 m,K ´f 1 } 2 `4pen K pmq `32mp p f K p0q ´f p0qq 2 `c n
which gives the result of Theorem 2.3.1. l

Proofs of auxiliary results

Proof of Lemma 2.2.1

In the Hermite case ϕ j " h j and f : R Þ Ñ r0, 8q, allowing d successive integration by parts, it holds that

a j pf pdq q " ż R f pdq pxqh j pxqdx " « d´1 ÿ k"0 p´1q k f pd´1´kq pxqh pkq j pxq ff `8 ´8 `p´1q d ż R h pdq j pxqf pxqdx.
(2.58)

By definition for all j ě 0, h j pxq " c j H j pxqe ´x2

2 where H j is a polynomial. Then, its k-th derivative, 0 ď k ď d ´1, is a polynomial multiplied by e ´x2 {2 and lim |x|Ñ`8 h pkq j pxq " 0. This together with pA2q, gives that the bracket in (2.58) is null and the result follows.

Similarly in the Laguerre case, (2.58) holds integrating on r0, 8q instead of R and replacing h j by j . The term in the bracket is null at 0 from pA1q. It is also null at infinity using pA2q together with the fact that j are polynomials multiplied by e ´x leading similarly to lim xÑ8 f pd´1´kq pxq pkq j pxq " 0, 0 ď k ď d ´1, j ě 0. The result follows.

Proof of Lemma 2.2.2

We control the quantity

ÿ jě0 j s´d xf pdq , h j y 2 " d´1 ÿ j"0 j s´d xf pdq , h j y 2 `ÿ jěd j s´d xf pdq , h j y 2 .
(2.59)

The first term is a constant which depending on d. For the second term using Lemma 2.6.2, we obtain

ÿ jěd j s´d xf pdq , h j y 2 " ÿ jěd j s´d ˜d ÿ k"´d b pdq k,j ż h j`k pxqf pxqdx ¸2 ďC d ÿ jěd j s d ÿ k"´d ˆż h j`k pxqf pxqdx ˙2 " C d d ÿ k"´d ÿ jěd j s xh j`k , f y 2 "C d d ÿ k"´d ˜ÿ jěd`k |j ´k| s xh j , f y 2 ¸ď C d d ÿ k"´d ˜ÿ jě0 2 s j s xh j , f y 2 ¸" p2d `1q2 s DC d .
Inserting this in (2.59), we obtain the announced result.

Proof of Lemma 2.2.3

We establish the result for d " 1, the general case is an immediate consequence. It follows from the definition of Ă W s L pDq that pθ 1 q pjq , 0 ď j ď s´1 are in Cpr0, 8qq. Moreover, it holds that x Þ Ñ x k{2 pθ 1 q pjq pxq P L 2 pR `q for all 0 ď j ă k ď s ´1. The case k " j is obtained using that θ pjq is continuous on Cpr0, 8qq and that x Þ Ñ x pj`1q{2 pθ 1 q pjq pxq P L 2 pR `q. It follows that

~θ1 ~2 s " s´1 ÿ j"0 › › ›x j{2 j ÿ k"0 ˆj k ˙pθ 1 q pkq › › › 2 ď 2 s´1 ÿ j"0 › › ›x j{2 j´1 ÿ k"0 ˆj k ˙pθ 1 q pkq › › › 2 `2 s´1 ÿ j"0 › › ›x j{2 pθ 1 q pjq › › › 2 ď C `2 s´1 ÿ j"0 }x pj`1q{2 pθ 1 q pjq pxq} 2 ă 8,
where C depends on D. Finally, using the equivalence of the norms |.| s and ~.~s, the value of D 1 follows from the latter inequality.

Proof of Lemma 2.6.1.

Consider the decomposition ż `8 0

x ´kp j´k,pkq px{2qq 2 f px{2qdx "

6 ÿ i"1 I i ,
where for ν " 4j ´2k `2, j ě k, we used the decomposition p0, 8q " p0,

1 ν s Y p 1 ν , ν 2 s Y p ν 2 , ν ´ν1{3 s Y pν ´ν1{3 , ν `ν{13 s Y pν `ν1{3 , 3ν{2s Y p3ν{2, 8q
. Using Askey and Wainger (1965) (see Appendix 2.7.1) and straightforward inequalities give

I 1 À ż 1 ν 0 x ´kpxνq k f px{2qdx ď ż 1 ν 0 x ´kpxνq ´1{2 f px{2qdx À ν ´1{2 ErX ´k´1{2 s, I 2 À ż ν 2 1{ν x ´kppxνq ´1{4 q 2 f px{2qdx " ν ´1{2 ż ν 2 1{ν
x ´k´1{2 f px{2qdx ď ν ´1{2 ErX ´k´1{2 s,

I 3 À ż ν´ν 1{3 ν 2 x ´kpν ´1{4 pν ´xq ´1{4 q 2 f px{2qdx " ν ´1{2 ż ν´ν 1{3 ν 2 x ´kpν ´xq ´1{2 f px{2qdx À ν ´1{2 , I 4 À ż ν`ν 1{3 ν´ν 1{3 x ´kpν ´1{3 q 2 f px{2qdx ď ν ´2{3 ż ν`ν 1{3 ν 2 x ´kf px{2qdx À ν ´1{2 ν ´k ď ν ´1{2 , I 5 À ż 3ν{2 ν`ν 1{3 x ´kν ´1{2 px ´νq ´1{2 e ´2γ 1 ν ´1{2 px´νq 3{2 f px{2qdx À ν ´1{2 ν ´1{6 ν ´k ż f px{2qdx À ν ´1{2 , I 6 À ż `8 3ν{2
x ´ke ´2γ 2 x f px{2qdx À e ´3γ 2 ν{2 " Opν ´1{2 q.

Gathering these inequalities give the announced result.

Proof of Lemma 2.6.2.

The result is obtained by induction on d. If d " 1, h 1 j is given by (2.5), with b p1q ´1,j´1 " j 1{2 { ? 2, b 0,j " 0 and b p1q 1,j " pj `1q 1{2 { ? 2, @j ě 1. Thus, it holds b p1q k,j " Opj 1{2 q and (2.37) is satisfied for d " 1. Let Ppdq the proposition given by Equation (2.37) and assume Ppdq holds and we establish Ppd `1q. It holds using successively Ppdq and (2.5) that

h pd`1q j pxq " d ÿ k"´d b pdq k,j " ? j `k ? 2 h j`k´1 ´?j `k `1 ? 2 h j`k`1  " d´1 ÿ k 1 "´d´1 b pdq k 1 `1,j ? j `k1 `1 ? 2 h j`k 1 ´d`1 ÿ k 1 "´d`1 b pdq k 1 ´1,j ? j `k1 ? 2 h j`k 1 :" d`1 ÿ k"´d´1 b pd`1q k,j h j`k 1 ,
where b pdq k,j " Opj d{2 q, @j ě d ě |k| and b

pd`1q k,j " b pdq k`1,j ? j `k `1 ? 2 1 |k|ďd´1 ´bpdq k´1,j ? j `k ? 2 1 |k|ďd`1 . It follows that |b pd`1q k,j | ď 2 a pj `d `1q{2j d 2 ď C d j d`1
2 , |k| ď d ď j, which completes the proof.

2.6.9 Proof of Lemma 2.6.3.

Proof of part piq.

By construction, f 0 is positive and @θ P t0, 1u K , ş f θ pxqdx " ş f 0 pxqdx " 1. It remains to show that f θ is nonnegative. The supports of `ψpp. ´1qpK `1q ´kq ˘0ďkďK´1 are disjoint and are in r1, 2s, then f θ pxq ě 0 for all x P Rzr1, 2s. Now, for all x in r1, 2s, there exists k 0 such that

f θ pxq " x 2 `δK ´γ´d θ k 0 `1ψ `px ´1qpK `1q ´k0 ˘ě 1 2 ´δ}ψ} 8 K ´γ´d ,
which is nonnegative if δ ď }ψ} ´1 8 {2. Now, let us show that f 0 and f θ belong to W s pDq.

The Laguerre case. We use the equivalent norm ~.~s of |.| s (see (2.13)) and start with f 0 . As f 0 is s-th differentiable, we have

~f0 ~2 s " s ÿ j"0 ż 3 0 ˜xj{2 j ÿ k"0 ˆj k ˙f pkq 0 pxq ¸2 dx ď s ÿ j"0 2 j j ÿ k"0 ˆj k ˙ż 3 0 px j{2 f pkq 0 pxqq 2 dx. As ş 3 0 px j{2 f pkq 0 pxqq 2 dx ď cpsq ă `8, 0 ď k ď j ď s, it follows |f | 2 s ď 3D{4, D depends on s. For f θ , we have ~fθ ´f0 ~2 s "δ 2 K ´2γ´2d s ÿ j"0 ż 2 1 ˜j ÿ l"0 ˆj l ˙K´1 ÿ k"0 x j{2 θ k`1 pK `1q l ψ plq `px ´1qpK `1q ´k˘¸2 dx ďδ 2 K ´2γ´2d s ÿ j"0 j ÿ l"0 2 j ˆj l ˙ż 2 1 ˜xj{2 K´1 ÿ k"0 θ k`1 pK `1q l ψ plq `px ´1qpK `1q ´k˘¸2 dx.
Using that ψ plq `px´1qpK `1q´k ˘, ψ plq `px´1qpK `1q´k 1 ˘have disjoint supports for k ‰ k 1 and that ψ plq are bounded by c, we get after the change of variable y " px ´1qpK `1q ´k,

~fθ ´f0 ~2 s ďδ 2 2 3s c 2 K ´2γ´2d s ÿ j"0 K´1 ÿ k"0 pK `1q 2j´1 ď Cpsqδ 2 K ´2γ´2d`2s .
For γ ě s ´d and δ small enough, it holds |f θ ´f0 | s ď D{4 and therefore

|f θ | s ď |f θ ´f0 | s `|f 0 | s ď D.
The Hermite case. The usual Sobolev space W s , if s is integer, is defined by W s " tf P L 2 pRq, f admits derivatives up to order s, such that ~f ~s,sob "

s ÿ j"0 }f pjq } 2 ă `8u.
It is proved in [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] that : if f P W s has compact support, then f belongs to W s H . By construction f 0 and f θ have a compact support and as they admit derivatives up to order s, they belong to W s . It follows that f 0 and f θ belong W s H . This completes the proof of (i).

Proof of part (ii).

As for k ‰ k 1 , ψ `p. ´1qpK `1q ´k˘, ψ `p. ´1qpK `1q ´k1 ˘have disjoint supports, we have, @θ pjq , θ plq P t0, 1u K ,

}f pdq θ pjq ´f pdq θ plq } 2 "δ 2 K´1 ÿ k"0 pθ pjq k`1 ´θplq k`1 q 2 K ´2γ´2d pK `1q 2d ż 2 1 ψ pdq `px ´1qpK `1q ´k˘2 dx ě δ 2 }ψ pdq } 2 K ´2γ´1 ρpθ pjq , θ plq q,
where ρpθ pjq , θ plq q "

ř K k"1 1 θ pjq k ‰θ plq k
is the Hamming distance. By Lemma 2.7 in Tsybakov ( 2009), for K ě 8, there exist tθ p0q , . . . , θ pM q u in t0, 1u K such that

ρpθ pjq , θ plq q ě K 8 , @ 0 ď j ă l ď M and M ě 2 K 8 .
Thus, it holds, @θ pjq , θ plq P t0, 1u K , }f

pdq θ pjq ´f pdq θ plq } 2 ě δ 2 {8}ψ pdq } 2 K ´2γ , which gives (ii) if we set C " }ψ pdq } 2 {8.

Proof of part (iii).

For M integer and pθ pjq q 1ďjďM in pt0, 1u K q M , we have

M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘" M ÿ j"1 ``1 `χ2 pf θ pjq , f 0 q ˘n ´1˘" M ÿ j"1 ´en logp1`χ 2 pf θ pjq ,f 0 qq ´1¯.
(2.60)

Since f 0 ě c ą 0 on r1, 2s, it holds for any θ P t0, 1u K ,

χ 2 pf θ , f 0 q " ż 2 1 pf θ pxq ´f0 pxqq 2 f 0 pxq dx ď δ 2 c K ´2γ´2d K´1 ÿ k"0 ż 2 1 ´ψ`p x ´1qpK `1q ´k˘¯2 dx ď δ 2 c K ´2γ´2d }ψ} 2 ď 8δ 2 c log 2 logpM qK ´2γ´2d´1 ,
where we used that M ě 2 K 8 . Consequently, using in (2.60) that logp1 `xq ď x, for any x ě 0, and the latter inequality, give

1 M M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘ď e n 8δ 2 c log 2 logpM qK ´2γ´2d´1
´1.

For δ well chosen and K " n 1{p2γ`2d`1q , comes the result.

Proof of Lemma 2.6.4

Proof of part (i) First, it holds that 

E «˜s up tPSm`S x m ,}t}"1 |ν n,d ptq| 2 ´ppm, p m n q ¸`ff ď ÿ m 1 PM n,d E «˜s up tPSm`S m 1 ,}t}"1 |ν n,d ptq| 2 ´ppm, m 1 q ¸`ff , ( 2 
}t} 2 " } m ˚´1 ÿ j"0 a j ϕ j } 2 " m ˚´1 ÿ j"0 a 2 j " 1.
Computing H 2 . By the linearity of ν n,d and the Cauchy Schwarz inequality, we have

ν n,d ptq 2 " ˜m˚´1 ÿ j"0 a j ν n,d pϕ j q ¸2 ď m ˚´1 ÿ j"0 a 2 j m ˚´1 ÿ j"0 ν 2 n,d pϕ j q " m ˚´1 ÿ j"0 ν 2 n,d pϕ j q.
One can check that the latter is an equality for a j " ν n,d pϕ j q. Therefore, taking expectation, it follows

E « sup tPS m,}t}"1 ν 2 n,d ptq ff " m ˚´1 ÿ j"0 Varpν n,d pϕ j qq " 1 n m ˚´1 ÿ j"0 Varpϕ pdq j pX 1 qq ď 1 n m ˚´1 ÿ j"0 E " ϕ pdq j pX 1 q 2 ı " V m ˚,d n ": H 2 .
Computing v. It holds for t P S m `Sm 1 , }t} " 1, Var ´p´1q d t pdq pX 1 q ¯ď ż t pdq pxq 2 f pxqdx "

ż ˜m˚´1 ÿ j"0 a j ϕ pdq j pxq ¸2 f pxqdx (2.62) ď 2 ż ˜d´1 ÿ j"0 a j ϕ pdq j pxq ¸2 f pxqdx `2 ż ˜m˚´1 ÿ j"d a j ϕ pdq j pxq ¸2 f pxqdx.
The first term of the previous inequality is a constant depending only on d. For the second term, we consider separately the Laguerre and Hermite cases.

The Laguerre Case (ϕ j " j ). Using (2.36) and the Cauchy Schwarz inequality, it holds that

ż ˜m˚´1 ÿ j"d a j pdq j pxq ¸2 f pxqdx ď3 d d ÿ k"0 ˆd k ˙ż ˜m˚´1 ÿ j"d a j ˆj! pj ´kq! ˙1 2 x ´k 2 j´k,pkq pxq ¸2 f pxqdx ď3 d d ÿ k"0 ˆd k ˙sup xPR `f pxq x k m ˚´1 ÿ j"d a 2 j j! pj ´kq! ď Cpdqpm ˚qd , (2.63)
where we used the orthonormality of p j,pkq q jě0 and where Cpdq is a constant depending only on d and sup xPR `f pxq

x k . The Hermite case (ϕ j " h j ). Similarly, using Lemma 2.6.2 and the orthonormality of h j , it follows 

ż ˜m˚´1 ÿ j"d a j h pdq j pxq ¸2 f pxqdx ďp2d `1q d ÿ k"´d ż ˜m˚´1 ÿ j"d a j b k,j h j`k pxq ¸2 f pxqdx ďCpdq}f } 8 pm ˚qd . ( 2 
}p´1q d t pdq } 8 " } m ˚´1 ÿ j"0 p´1q d a j ϕ pdq j } 8 ď sup xPR g f f e m ˚´1 ÿ j"0 ϕ pdq j pxq 2 .
(2.65)

The Laguerre case. We use the following Lemma whose proof is a consequence of (2.2) and an induction on d.

Lemma 2.6.6. For j given in (2.1), the d-th derivative of j is such that } pdq j } 8 ď C d pj `1q d , @j ě 0 and where C d is a positive constant depending on d.

Using Lemma 2.6.6, we obtain

m ˚´1 ÿ j"0 pdq j pxq 2 ď C 2 d pm ˚q2d`1 .
(2.66)

The Hermite case. The d first terms in the sum in (2.65) can be bounded by a constant depending only on d. For the remaining terms, Lemma 2.6.2 and }h j } 8 ď φ 0 (see (4.10)) give

m ˚´1 ÿ j"d rh pdq j pxqs 2 ď C 2 d φ 2 0 d ÿ k"´d m ˚´1 ÿ j"d j d ď Cpm ˚qd`1 , (2.67)
where C is a positive constant depending on d and φ 0 .

Injecting either (2.66) or (2.67) in (2.65), we set M 1 " Opm d`1 2 q in the Laguerre case or M 1 " Opm d 2 `1 2 q in the Hermite case. Now, we apply the Talagrand Inequality see Appendix 2.7.2 with ε " 1{2, it follows

E «˜s up tPSm`S m 1 ,}t}"1 |ν n,d ptq| 2 ´4H 2 ¸`ff ď C 1 n ˆv exp ˆ´C 2 nH 2 v ˙`C 3 M 2 1 n exp ˆ´C 4 nH M 1 ˙: " C 1 n pU d pm ˚q `Vd pm ˚qq .
The Laguerre Case. We have

U d pm ˚q " c 1 pm ˚qd exp ˆ´C 2 V m ˚,d c 1 pm ˚qd ˙and V d pm ˚q " C 3 c 2 pm ˚q2d`1 n exp ˜´C 4 ? n a V m ˚,d c 2 pm ˚qd`1 2 ¸.
From (2.41) and the value of m n pdq, we obtain

U d pm ˚q ď c 1 pm ˚qd expp´C 1 2 m ˚1 2 q and V d pm ˚q ď C 3 c 2 pm ˚qd`1 2 expp´C 1 4 ? npm ˚q´d 2 ´1 4 q.
Using the value m n pdq, it holds pm ˚qd`1{2 ď n{log 3 pnq, which implies (recall m ˚" m_m 1 )

ÿ m 1 PM n,d V d pm ˚q ď C ÿ m 1 PM n,d pm ˚qd`1 2 exp `´C 4 log 2 pnq ˘ď Σ d,2 ,
where Σ d,2 is a constant depending only on d. Next, it follows

n ÿ m 1 "1 U d pm ˚q " m ÿ m 1 "1 U d pm ˚q `n ÿ m 1 "m U d pm ˚q " c 1 m d`1 expp´C 1 2 m 1 2 q `n ÿ m 1 "m c 1 pm 1 q d expp´C 1 2 m 1 1 2 q. The function m Þ Ñ m d`1 expp´C 1 2 m 1 2
q is bounded and the sum is finite on m 1 , it holds

C 1 n ÿ m 1 "1 U d pm ˚q ď Σ d,1
, where Σ d,1 depends only on d.

The Hermite case. Only the second term V d pm ˚q changes. Here, it is given by

V d pm ˚q " C 3 c 2 pm ˚qd`1 n exp ˜´C 3 ? n a V m ˚,d c 2 pm ˚q d 2 `1 2 ¸ď C 3 c 2 pm ˚q1{2 expp´C 1 4 ? npm ˚q´1 4 q ď C 3 c 2 pm ˚q1{2 expp´C 1 4 pm ˚q d 2 q,
where we used (2.46) and the value of m n pdq. We derive that

ř m 1 PM n,d V d pm ˚q ď Σ d,2 .
Gathering all terms, it follows

E «˜s up tPSm`S m 1 ,}t}"1 |ν n,d ptq| 2 ´4H 2 ¸`ff ď Σ n , where Σ " Σ d,1 `Σd,2
Plugging this in (2.61) gives the announced result.

Proof of part (ii).

We use the Bernstein Inequality (see Appendix 2.7.3) to prove the result. Define

Z pmq i " m´1 ÿ j"0 pϕ pdq j pX i qq 2 , then, p V m,d " 1 n n ÿ i"1 Z pmq i
We select s 2 and b such that VarpZ

pmq i q ď s 2 and |Z pmq i | ď b.
By the computation of M 1 (see Proof of part (i)), we set b :" C ˚mα , with α " 2d `1 (Laguerre case) or α " d `1 (Hermite case), where C ˚depends on d. For s 2 , using that VarpZ 

pmq i q ď ErpZ pmq i q 2 s ď b ř m´1 j"0 E " pϕ pdq j pX i qq 2 ı " C ˚mα V m,

A Talagrand Inequality.

The Talagrand inequalities have been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] and reworked by [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. Let pX i q 1ďiďn be independent real random variables and

ν n ptq " 1 n n ÿ i"1 ptpX i q ´ErtpX i qsq,
for t in F a class of measurable functions. If there exist M 1 , H and v such that :

sup tPF }t} 8 ď M 1 , Ersup tPF | ν n ptq |s ď H, sup tPF 1 n n ÿ i"1 VarptpX i qq ď v, then, for ε ą 0, E "" sup tPF |ν 2 n ptq| ´2p1 `2εqH 2 ˙` ď 4 K 1 $ ' & ' % v n e ´K1 ε nH 2 v `49M 2 1 K 1 C 2 pεqn 2 e ´K1 1 Cpεq ? ε nH M 1 , / .

/ -

, where Cpεq " p ? 1 `ε ´1q ^1, K 1 " 1{6 and K 1 1 a universal constant.

Bernstein Inequality (Massart (2007)).

Let X 1 , . . . X n , n independent real random variables. Assume there exist two constants s 2 and b, such that VarpX i q ď s 2 and |X i | ď b. Then, for all x positive, we have

P ˆ|S n | ě ? 2ns 2 x `bx 3 ˙ď 2e ´x, with S n " n ÿ i"1 pX i ´ErX i sq.

Deuxième partie

Déconvolution en base d'Hermite

Chapitre 3 Abstract. We consider the additive model : Z " X `ε, where X and ε are independent. We construct a new estimator of the density of X from n observations of Z. We propose a projection method which exploits the specific properties of the Hermite basis. We study the quality of the resulting estimator by proving a bound on the integrated quadratic risk. We show also that the results can be easily extended to dependent variables. We then propose an adaptive estimation procedure, that is a method of selecting a relevant model. The resulting estimator realizes automatically a bias-variance compromise. We check that our estimator reaches the classical convergence speeds of deconvolution. Numerical simulations are proposed and comparisons with the results of the method proposed in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] and with the direct case (ε " 0 almost surely ) are performed. 

Hermite density deconvolution

Keywords

Introduction

Consider the additive noise model :

Z k " X k `εk , k " 1, . . . , n (3.1)
where pH1q pX k q kě1 are independent and identically distributed (i.i.d.) with unknown density f , with respect to the Lebesgue measure, pH2q pε k q kě1 are i.i.d. with known common density f ε , with respect to the Lebesgue measure, pH3q pX k q kě1 and pε k q kě1 are independent.

We observe n copies Z 1 , . . . , Z n . We want to estimate f , the distribution of X 1 , using Z 1 , . . . , Z n only. Under pH3q, if we denote by f Z the density of Z 1 , we can write

f Z " f ˚fε , (3.2)
where g ˚hpxq " ş R gpuqhpx ´uqdu is the convolution product of the functions g and h under adequate assumptions. Formula (3.2) explains the term of "deconvolution" for density estimation in model (3.1). The deconvolution problem has been widely studied in the literature. It appears that two factors influence the rate of convergence : the regularity of f and the asymptotic decay of the Fourier transform of the errors f ε , with slower rate of convergence if this decay is faster. Two types of errors are usually considered : "ordinary smooth" errors, when the Fourier transform of f ε is polynomially decaying near infinity, and "super smooth" errors, when it is exponentially decaying near infinity. The first works proposed kernel nonadaptive estimators assuming that f is ordinary smooth and that f ε is ordinary or super smooth. We can cite [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], among others, see also the monograph of [START_REF] Meister | On testing for local monotonicity in deconvolution problems[END_REF] on the topic. Adaptive estimation, based on a wavelet method, was first considered by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]. [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] establishes the minimax rate in the case where f is super smooth and f ε is ordinary smooth while [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF] study optimality in the very difficult case where both functions are super smooth. Some more recent works were dedicated to this problem : [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] consider the case where the noise density is unknown, and propose an adaptive estimator in this setting, later improved by [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF]. [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] builds a projection estimator in Laguerre basis in the case where the variable of interest is positive.

Recently, Comte and Genon-Catalot (2018) and [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] described nice properties of Hermite basis. Projection methods allow to summarize the information available on the unknown function through a small number of coefficients. This is why we go further in this direction, and we define a new estimator taking advantage of these convenient properties of Hermite basis. We propose also an adaptive model selection procedure. We obtain a simple, fast and powerful procedure, which preserves standard deconvolution rates. Moreover, its numerical performances are very good.

The chapter is organized as follows : we define our estimator in Section 3.2.4. We prove a bound on the risk in both the independent and β-dependent cases in Section 3.3, and discuss rates of convergence in Section 3.3.2. In Section 3.4, an adaptive estimation procedure is proposed in the independent case and a risk control of the resulting estimator is provided. We then illustrate the performance and stability of the adaptive estimation procedure in Section 3.5, and we compare our results with [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]. Proofs of most theoretical results are gathered in Section 3.7.

Estimation procedure and Hermite basis

Notations.

For a, b P R, let a _ b " maxpa, bq, and a `" maxp0, aq. For f , g in L 2 pRq X L 1 pRq, we denote by xf, gy "

ş R f puqgpuqdu, }f } 2 " ş R |f puq| 2 du, f ˚pxq "
ş R e itu f puqdu and f ˚gpxq " ş R f px ´uqgpuqdu @x P R. Lastly, we recall Plancherel-Parseval formula xf, gy " p2πq ´1xf ˚, g ˚y. Before proposing an estimator, we start by recalling the definition of the Hermite basis.

Hermite basis

The Hermite basis pϕ j q jě0 is a basis on L 2 pRq defined from Hermite polynomials pH j q jě0 : H j pxq " p´1q j e x 2 d j dx j pe ´x2 q.

The Hermite polynomials are orthogonal with respect to the weight function e ´x2 : ż R H j pxqH k pxqe ´x2 dx " 2 j j! ? πδ j,k

(see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], chap 22.2.14), where δ j,k is the Kronecher symbol. Thus, we deduce that the basis :

ϕ j pxq " c j H j pxqe ´x2 {2 , c j " p2 j j! ? πq ´1{2 ,
is orthonormal in L 2 pRq. The Hermite basis pϕ j q jě0 is a bounded basis verifying [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], chap 22.14.17 and [START_REF] Indritz | An inequality for Hermite polynomials[END_REF]). The Fourier transform of pϕ j q jě0 verifies : ϕ j " ? 2πpiq j ϕ j .

}ϕ j } 8 " sup xPR |ϕ j pxq| ď φ 0 , with φ 0 " 1{π 1{4 (3.3) (see
(3.4)

Moreover, according to [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF], we have

|ϕ j pxq| ă Ce ´ξx 2 , |x| ě a 2j `1, C ą 0, (3.5)
where ξ is a positive constant independent of x, 0 ă ξ ă 1 2 .

Assumptions on the noise.

For the definition of our estimator, we assume the following :

pH4q the noise density f ε is such that f ε ‰ 0.
We also assume that f ε satisfies :

There exist c 1 ě c 1 1 ą 0, and γ ě 0, µ ě 0, δ ě 0 (with γ ą 0 if δ " 0) such that c 1 1 p1 `t2 q γ e µ|t| δ ď 1

|f ε ptq| 2 ď c 1 p1 `t2 q γ e µ|t| δ , for all t P R.

(3.6)

It is standard to assume a condition like (3.6) in the deconvolution setting. When δ " 0 in (3.6), the function f ε and the errors are called "ordinary smooth". When δ ą 0 (with the convention that δ ą 0 if and only if µ ą 0), they are called "super smooth". Note that (3.6) implies pH4q and is checked by some classical distributions : we can cite for example Laplace (with δ " 0 and γ " 2), Gamma (δ " 0 and γ " p, where p is the shape), Gaussian (γ " 0 and δ " 2), Cauchy distributions (γ " 0 and δ " 1).

Remark 3.1. According to [START_REF] Lukacs | Characteristic functions[END_REF], Theorem 4.1.1, the only characteristic function φ with φptq " 1 `opt 2 q, as t Ñ 0, is the function φptq " 1 for all t. That rules out characteristic functions of the form e ´µ|t| δ with δ ą 2. This implies that in definition (3.6), when γ " 0, if |f ε ptq| 2 " ce ´µ|t| δ then necessarily δ ď 2. Indeed, |f ε ptq| 2 is also the characteristic function of a probability density function (it is a characteristic function of ε 1 ´ε1 1 where ε 1 and ε 1 1 are i.i.d.).

Estimation procedure.

We denote by S m =spantϕ 0 , . . . , ϕ m´1 u, the linear space generated by (ϕ 0 , . . . , ϕ m´1 ) in L 2 pRq. Now, we construct an estimator of f relying on the data Z 1 , . . . , Z n , from model (3.1). We suppose that f belongs to L 2 pRq X L 1 pRq, thus we can write f " ř `8 j"0 a j ϕ j with a j " xf, ϕ j y and the orthogonal projection of f on S m is given by : f m " ř m´1 j"0 a j ϕ j . In fact, we estimate f m and therefore, we build m estimators p a j of a j , j " 0, . . . , m ´1.

Under pH4q and using (3.2), we have f ˚" f Z f ε . Therefore, using Parseval's Theorem and (3.4), we have :

a j " xf, ϕ j y " 1 2π xf ˚, ϕ j y " p´iq j ? 2π xf ˚, ϕ j y " p´iq j ? 2π ż f Z puq f ε puq ϕ j puqdu. (3.7)
Thus, to estimate a j , we replace f Z by an estimate. As f Z ptq " ş e itu f Z puqdu " Ere itZ 1 s, we set :

p f Z ptq " 1 n n ÿ k"1 e itZ k .
(3.8) Plugging (3.8) into (3.7), we can propose an estimator of f m , provided that ϕ j {f ε is integrable on R, for j " 0, . . . , m ´1 :

p f m " m´1 ÿ j"0 p a j ϕ j , p a j " p´iq j ? 2π ż p f Z puq f ε puq ϕ j puqdu.
(3.9)

Note that the coefficients p a j are real. Indeed, using that ϕ j p´xq " p´1q j ϕ j pxq, it holds :

p a j " piq j ? 2π ż p f Z p´uq f ε p´uq ϕ j puqdu " piq j ? 2π ż p f Z puq f ε puq ϕ j p´uqdu " p a j ,
where z denotes the complex conjugate of the complex number z. The Hermite basis has the specificity of leading to integrable ϕ j {f ε in a large number of cases. This estimator is different from the one proposed by [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], who propose to take instead of p a j , the estimator r a j, ?

m " pp´iq j { ? 2πq

ż |u|ďπ ? m p f Z puqϕ j puq{f ε puqdu.
The drawback of the latter estimator is that it is biased and the coefficients depend on m, making the choice of m untractable in the sequel. Our estimator is an unbiased estimator of f m and is easy to handle.

Risk study of the estimator

Risk of the estimator for fixed m.

Under the additional assumption : (3.11)

pH5q f Z is
Note that the constant l does not depend on m or n. The first right-hand side term of (3.10) is the bias term, it is decreasing with m as }f ´fm } 2 " ř jěm a 2 j . The second term is the main variance term, it is clearly increasing with m. The last term also comes from the variance computation, but we give in Proposition 3.3.1, part (ii) conditions ensuring that it is negligible. Thus, choosing m that minimizes the risk requires a bias-variance compromise.

So under the assumptions of Proposition 3.3.1, part (ii), (3.10) becomes :

Er} p f m ´f } 2 s ď }f ´fm } 2 `1 πn ż |u|ď ? lm du |f ε puq| 2 `c n , c ą 0, l ě 2.
Remark 3.2. Condition pH5q is not very strong and holds if f or f ε is bounded, or if both functions are square integrable. Indeed : we both have @x P R, |f Z pxq| " |f ˚fε pxq| ď minp}f } 8 , }f ε } 8 q and |f Z pxq| ď }f }. }f ε }.

Rate of convergence on a Sobolev-Hermite space.

To obtain rates of convergence, we have to evaluate the order of bias and variance terms.

In general, each basis is associated with a regularity space : here, we consider Sobolev-Hermite spaces.

Definition 3.3.1. For s ą 0, the Sobolev-Hermite space of regularity s (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]) is given by :

W s H " # θ : R Ñ R, θ P L 2 pRq, ÿ kě0 k s a 2 k pθq ă `8+ , a k pθq " ż θpuqϕ k puqdu
and the Sobolev-Hermite ball by :

W s H pDq " # θ P L 2 pRq, ÿ kě0 k s a 2 k pθq ď D + , D ą 0. (3.12)
For s integer, θ belongs to W s H if and only if θ admits derivatives up to order s and the functions θ, θ 1 , . . . , θ psq , x ps´kq θ pkq belong to L 2 pRq, with k " 0, . . . , s ´1. We can compare this space with the classical Sobolev space with regularity s, defined by : W s " " θ P L 2 pRq, ż p1 `u2s q|θ ˚puq| 2 du ă `8* .

Actually, [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] prove that, for s ą 0, W s H Ł W s . It is also proved therein and in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] where C ą 0, for two functions u, v, we denote upxq À vpxq if upxq ď cvpxq, with c is constant independent of x. This inequality is similar to the one in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], with m therein replaced now by ? m. It is worth underlining that the role of the dimension m in projection methods is played here by ? m : this is a specificity of the Hermite basis. The result is similar in density estimation when X k are directly observed, (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]). Let us denote by m opt the value of m for which the bias-variance compromise is obtained, relying on the same calculations as in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], the rates and the dimension m opt are given in Table 3.1.

δ " 0 0 ă δ ă 2 or δ " 2, µ ă ξ m opt rn 2 2s`2γ`1 s " 1 l ´log n 2µ ¯2 δ  Rate n ´2s 2s`2γ`1 plog nq ´2s δ Table 3.1 -Rate of convergence for the MISE if f P W s H pDq.
These rates coincide with the ones obtained by [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF].

They are known to be optimal : lower bounds corresponding to these rates for f ε verifying (3.6) are proved by [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] when f belongs to a Hölder class, and by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] for f in a Sobolev class.

Rates of convergence for specific function classes

We can obtain for some specific classes of functions a bias term with much smaller order, for instance Gaussian densities or mixtures of Gaussian. Indeed, then, we can explicitly compute the coefficients a j and obtain smaller bias than previously on W s H pDq. Let f µ,σ pxq " 1 σ ? 2π exp ˆ´px ´µq 2 2σ 2 ˙, g p,σ pxq "

x 2p σ 2p C 2p f 0,σ pxq, C 2p " E " X 2p ‰ ,
for X a standard Gaussian variable. We also define the class of mean mixtures, respectively of variance mixtures of the Gaussian distribution by :

FpCq " " f : f pxq " φ ‹ Πpxq " ż φpx ´uqdΠpuq, Π P PpCq * ,
where PpCq :" Π P PpRq, Πp|u| ą tq ď C expp´t 2 {Cq, @t P R `( , respectively

Gpvq "

" f : f pxq " ż `8 0 φpx{uq u dΠpuq, Π `"1{ ? v, ? v ‰˘" 1 * , v ą 1,
with φ the density of standard Gaussian and PpRq the set of probability measures on R.

The following results are based on bias evaluation obtained in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF].

The rate is given by the order of variance term, since in all these cases, the bias term is exponentially small. We can prove the following proposition.

Proposition 3.3.2. Assume the assumptions pH1q, . . ., pH5q hold and f ε is ordinary smooth, that is f ε satisfies 3.6 with δ " 0. For the choice m opt " rlogpnq{C 1 s, with

C 1 " logp2q `eµ 2 if f " f µ,1 , C 1 " log ´σ2 `1 σ 2 ´1 ¯2 where σ 2 ‰ 1 if f " f 0,σ , C 1 " 1 peC`1{ logp2qq if f P FpCq, C 1 " ´v2 ´1 v 2 `1 ¯if f P Gpvq, we have E " } p f mopt ´f } 2 ı À plog nq γ`1 2 n ,
where γ is given in (3.6).

The same result holds for f " g p,σ . This rate is similar to the one obtained in [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] for super-smooth functions f . Note that if σ 2 " 1, the bias is null and our estimator reaches the parametric rate.

However in all previous cases the choice m " m opt depends on the regularity of f and associated parameters, which are unknown. This is why we have to look for another method to make the bias-variance compromise, in a data-driven way (see Section 3.4).

Comparison with the classical estimator in deconvolution.

The "standard" deconvolution estimator (see [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], and choose sinus cardinal kernel) is given by :

f pxq " 1 2π ż π ´π e ´ixu x f Z puq f ε p´uq du, where x f Z is defined by (3.8). (3.14)
We mention that this estimator can be decomposed in an orthonormal basis namely ψ ,j pxq " ? ψp x ´jq, ψpxq " sin πx πx (see [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF], Section 3.2), but the development is infinite : f pxq " ÿ jPZ p a ,j ψ ,j , p a ,j "

1 n n ÿ k"1 1 2π ż ψ ˚ ,j p´uq f ε puq e iuZ k du
A finite (computable) development would require an additional approximation (truncation of the sum as in [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]) to k n ě n coefficients. From computation point of view, the low complexity of p f m in the Hermite basis is an advantage (see [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF], Section 4.5). The risk of f verifies

Er} f ´f } 2 s ď 1 2π ż |t|ąπ |f ˚puq| 2 du `1 2πn ż |u|ďπ du |f ε puq| 2 .
In this context, the regularity spaces which are considered are Sobolev balls defined by

W s pD 1 q " " f P L 2 pRq, ż p1 `u2s q|f ˚puq| 2 du ă D 1 * , D 1 ą 0.
Note that it is proved in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] that W s H pDq Ă W s pD 1 q, for D and D 1 related constants. For f P W s pDq the bias term is such that 1 2π ş |t|ąπ |f ˚puq| 2 du ď D 2π pπ q ´2s " C ´2s , where C " D 2π π ´2s . Therefore, for " ? m, the risks of the two estimators have the same order on W s H pDq. This implies that they have the same rates of convergence.

Extension to the dependent case.

Proposition 3.3.1 (and its consequences) may be extended to the context of dependent X i 's. We first define the mixing coefficients. Definition 3.3.2. Let (Ω, A, P) be a probability space, and U, V two σ-algebras of A. The β-mixing coefficient is defined by βpU, Vq " 1 2 supt

I ÿ i"1 J ÿ j"1 |PpU i X V j q ´PpU i qPpV j q|u, (3.15)
where the supremum is taken over all pairs finite partitions tU 1 , . . . , U I u and tV 1 , . . . , V J u of Ω, such that U i P U and V j P V.

Let pX k q kPZ a strictly stationary process. Let F 0 " σpX i , i ď 0q and F k " σpX i , i ě kq for all k P Z, where F 0 is the σ-algebra generated by the X i for i ď 0 and F k generated by X i for i ě k. The mixing coefficient β k is defined by β k " βpF 0 , F k q, where β is defined by (3.15).

The process pX k q kPZ is β-mixing if the sequence β k tends to zero at infinity.

In this section, we still consider model (3.1), but we replace pH1q by : pH 1 1q pX k q kě1 is strictly stationary and β-mixing.

The estimator is the same as in the independent case and we can prove a bound on the risk.

Proposition 3.3.3. Let assumptions pH 1 1q, pH2q, . . ., pH5q hold. Let 1 ď p, q ă `8 two real numbers such that 1 p `1 q " 1. This order is smaller than the order of the residual term stated in (4.4) of [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF], which is n ´1m 2 . Note that all estimators of their collection require to compute k n ě n coefficients, which can make the procedure slow when n is large.

Adaptive estimation and model selection

For sake of brevity and simplicity, we only study the independent case (i.i.d case) hereafter.

From now on, l given in Proposition 3.3.1, part (ii) is assumed to be fixed. In this section we propose an automatic selection of m which performs the bias-variance compromise. The procedure does not depend on the regularity of the density f , but only on data Z 1 , . . . , Z n . Consider the contrast function defined by

γ n ptq " }t} 2 ´2 n n ÿ k"1 φ t pZ k q, φ t pxq " 1 2π ż t ˚puq f ε p´uq e ´ixu du.
(3.17)

It is easy to check that p f m " argmin tPSm γ n ptq. Let ∆pmq " 1 π ż |u|ď ? lm du |f ε puq| 2 .
We consider M n , the collection of models, M n " tm P Nzt0u, ∆pmq ď nu .

This collection is finite and contains models with bounded variance. More precisely, as already noticed, |f ε puq| ď 1, implies ∆pmq ě 1 π ş |u|ď ? lm du " 2 ? lm π . Therefore, the elements m of M n satisfy m À n 2 . The cardinal of M n is therefore at most of order Opn 2 q. Our aim is to find the best model p m in M n , that is, to select p m such that, the risk of p f p m approximately performs the bias-variance trade-off, without any information on f . We set :

p m " argmin mPMn tγ n p p f m q `penpmqu, (3.18)
where penpmq is an increasing function defined by : penpmq "

# κ ∆pmq n , if f ε is ordinary smooth or super smooth with δ ă 1 2 , 2κ ´1 `24µl δ{2 m δ´1 2 ¯∆pmq n if f ε is super smooth with 1 2 ď δ ď 2, (3.19)
where κ ą 0 is a numerical constant, µ is the constant given in (3.6) and l ě 2 given in Proposition 3.3.1, fixed. As γ n p p f m q " ´} p f m } 2 " ´řm´1 j"0 p a 2 j , it is worth emphasizing that computing p m is numerically fast. Clearly the choice of m given by (2.18) is entirely determined by the data. The constant κ is independent of the data. The theoretical results show that κ ą 17 is suitable (see the proof of Lemma 3.7.2). In practice this value is too large and is calibrated by preliminary simulation experiments. They confirm that (see Section 3.5) smaller practical values must be chosen.

We can prove the following oracle inequality. 

Simulation and numerical results

Implementation of the adaptive estimator.

In this section, we propose some illustrations of the theoretical results. More precisely, we implement the projection estimator given by (3.9). To do this, we consider data simulated according to (3.1). For the density f , we choose the distributions (following [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]) :

(i) Gaussian standard N p0, 1q, I " r´4, 4s

(ii) Cauchy standard : f pxq " `π `1 `x2 ˘˘´1 , I " r´10, 10s

(iii) Laplace density : f pxq " e ´?2|x| { ? 2, I " r´5, 5s (iv) Gamma density Γp4, 1{ ? 3q{ ? 12, I " r0, 6s (v) Mixed-Gaussian density p0.5N p´2, 1q `0.5N p2, 1qq{ ? 5, I " r´3, 3s where I is the interval on which we compute the risks. Except the Cauchy density, all the densities are normalized to have variance equal to 1. Note also densities (i) and (v) belong to W s H with s " `8, (iv) has regularity s " 3 ´η, 0 ă η ă 3, (ii) and (iii) admit a regularity s " 1 ´η, 0 ă η ă 1 (but (ii) is infinitely differentiable). For noise distributions, we consider two cases with the same variance 1/10 and thus, except for the Cauchy density the signal to noise ratio is equal to 10.

' Case 1 : Laplace noise ("ordinary smooth")

We consider the density f ε :

f ε pxq " λ 2 e ´λ|x| ; f ε pxq " λ 2 λ 2 `x2 ; λ " 2 ? 5.
The penalty term is given by : penpmq " κ n ∆pmq " κ πn

ż |u|ď ? lm p1`u 2 λ 2 q 2 du " 2κ πn ˜?lm `2 3λ 2 p ? lmq 3 `p? lmq 5 5λ 4 ¸,
where l " 6.

' Case 2 : Gaussian noise ("super smooth")

We have :

f ε pxq " 1 ? 2πσ e ´x2 {2σ 2 ε ; f ε pxq " e ´σ2 ε x 2 {2 , σ 2 ε " 1{10.
The penalty proposed is :

penpmq " 4κ ´1 `24σ 2 ε lm 3{2 ¯?lm πn ˆż 1 0 e u 2 σ 2 ε lm du ˙,
where l " 4 here and the integral is computed by a Riemann sum discretized in 300 points. Then, we have to calibrate the penalty constant κ. This constant is fixed through preliminary simulations, by testing set of values on different densities f with a large number of repetitions. The comparison of the risks for these different values of κ makes it possible to make a reasonable choice. We choose κ " 0.4 for a Laplace noise, κ " 10 ´3 for a Gaussian noise. We fix the maximum dimension equal to 50 and consider the following collection of models for the two cases : M n " t1, . . . , 50u.

The estimation procedure is described as follows :

' For m in M n , compute ´řm´1 j"0 p a 2 j `penpmq " Crpmq, with p a j given by (3.9), ' Select p m such that p m " argmin mPMn Crpmq,

' Compute p f p m " ř p m´1
j"0 p a j ϕ j , and ş I p p f p m puq ´f puqq 2 du by discretization. Note that the coefficients p a j are computed by elementary discretization of the Riemann integrals. We used that p a j "

1 2π ż R p f Z puq f ε puq ϕ j puqdu " 1 2π ˜ż `8 0 p f Z puq f ε puq ϕ j p´uqdu `ż 0 ´8 p f Z puq f ε puq ϕ j p´uqdu " 1 π ˜ż `8 0 p f Z puq f ε puq ϕ j p´uqdu ¸,
where is the real part of a complex number. We approximate the integral 1 π ˆş`8

0 p f Z puq f ε puq ϕ j p´uqdu ḃy a Riemann sum on r0, bs, for b large enough, p a j « b πK ř K p"1 " p f Z p pb K q f ε p pb K q ϕ j p´p b K q  . We take b " 50.
Comparaison with the direct case. We also implemented the adaptive estimator r f m in the direct case (i.e. the case where we observe directly pZ i " X i q 1ďiďn with ε i " 0 almost surely in (3.1)). Recall that, it is given by (see also Chapter 2) :

r f m :" m´1 ÿ k"0 r a k ϕ k , where r a k :" 1 n n ÿ j"0 ϕ k pX j q.
In this case, to choose m, we set

r m :" argmin mPt1,...,nu t´} r f m } 2 `Ą pen d pmqu, where Ą pen p mq " κ r V m,d n ,
where r V m " 1 n ř n i"1 ř m´1 j"0 pϕ j pX i qq 2 and κ is a positive numerical constant which is calibrated to 4 after numerical test.

Simulations results.

Simulation results are given in Tables 3.2, 3.3 and3.4. The columns of Table 3.2 indicate the values of the MISE (Mean Integrated Squared Error) multiplied by 100 for a Laplace noise or a Gaussian noise, Table 3.3 gives the ratio of the risk values obtained in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] divided by the risk values obtained by our method : the larger it is, the better our method is. The errors obtained by our method are computed by a discretization of the integral as Riemann sums and averaged over 100 independent simulations. We remark that increasing the sample size makes the error smaller and thus improves the estimation. Globally the results of our simulations are satisfactory and our method is often better than [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] for both noise densities. The main exception concerns the Gamma density (iv) which has R `supported. Some failures for Cauchy density (ii) and super smooth noise are also observed, especially when n increases. In Table 3.4, we give the MISEs for the direct observation. Except the case (ii), it seems that the estimator obtained in direct case is better than the deconvolution cases. This illustrates the fact that we are in the context of an inverse problem.

We also illustrate our method by some figures. Figure 3.1 and 3.2 display the density and its 20 estimates in direct and deconvolution cases. For each graph, the first column corresponds to the direct case, the middle to Laplace noise and the right to Gaussian noise. These graphs illustrate the performance of estimation in the direct and deconvolution cases : it seems that the estimator obtained in direct case is better than the deconvolution cases (see also Table 3.4). This can be clearly seen in Figure 3.1 (n " 1000) and 3.2. Moreover, they show the stability of both cases. We provide in Table 3.5, the mean of p m or r m selected by the algorithm. In average, it is increasing when n is increasing.

n 

Concluding remarks

We proposed a projection estimator of the density of X in the convolution model (3.1), relying on the Hermite basis. The estimator has the advantage to be kernel-free, as the integral is over the entire real line and not truncated as in the previous works by [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]. The method provides a parsimonious description of the function under estimation : indeed the function is relevantly estimated thanks to a small number of coefficients. This has also the advantage of making the method numerically fast and convenient. We prove a bound on the quadratic risk in the independent and β-dependent cases which shows that the relevant parameter is not the dimension m but rather ? m. A data driven estimator is proposed : the model can be automatically chosen and the resulting estimator reaches optimal rates in most cases. We also provide numerical simulation 

' Proof of Part (i).

For p f m given by (3.9), we have :

E " } p f m ´f } 2 ı " }f ´fm } 2 `E " } p f m ´fm } 2 ı " }f ´fm } 2 `m´1 ÿ j"0 Varpp a j q. (3.21)
Now with the definition of p a j given by (3.9) we have Varpp a j q " Var

˜p´iq j ? 2πn ż R n ÿ k"1 e iuZ k ϕ j puq f ε puq du ¸" 1 2πn Var ˆp´iq j ż R e iuZ 1 ϕ j puq f ε puq du ď 1 2πn E « ˇˇˇp ´iq j ż R e iuZ 1 ϕ j puq f ε puq du ˇˇˇ2 ff .
Plugging this in (3.21) yields

E " } p f m ´f } 2 ı ď }f ´fm } 2 `1 2πn m´1 ÿ j"0 E « ˇˇˇż R e iuZ 1 ϕ j puq f ε puq du ˇˇˇ2 ff .
Using |a `b| 2 ď 2|a| 2 `2|b| 2 , we deduce

E « m´1 ÿ j"0 ˇˇˇż R e iuZ 1 ϕ j puq f ε puq du ˇˇˇ2 ff ď 2E » - m´1 ÿ j"0 ˇˇˇˇż |u|ą ? lm e iuZ 1 ϕ j puq f ε puq du ˇˇˇˇ2 fi fl `2E » - m´1 ÿ j"0 ˇˇˇˇż |u|ď ? lm e iuZ 1 ϕ j puq f ε puq du ˇˇˇˇ2 fi fl .
We evaluate the two right-hand side terms of the previous inequality. By Bessel inequality we have, for the last term :

E » - m´1 ÿ j"0 ˇˇˇˇż |u|ď ? lm e iuZ 1 ϕ j puq f ε puq du ˇˇˇˇ2 fi fl "E « m´1 ÿ j"0 ˇˇˇx e iZ 1 ' f ε 1 |'|ď ? lm , ϕ j y ˇˇˇ2 ff ď ż |u|ď ? lm du |f ε puq| 2 . (3.22)
Moreover, let ψ j puq " |f ε puq| 2 du " Opme ´ξlm q. Hence the result. l.

e iuz ϕ j puq f ε puq du ˇˇˇˇ2 f Z pzqdz ď}f Z } 8 m´1 ÿ j"0 ż R ˇˇˇˇż |u|ą ? lm e iuz ϕ j puq f ε puq du ˇˇˇˇ2 dz "}f Z } 8 m´1 ÿ j"0 }ψ j } 2 " 2π}f Z } 8 m´1 ÿ j"0 }ψ j } 2 . (3.

Proof of Proposition 3.3.2.

By (3.10) and (3.11), we have :

Er} p f m ´f } 2 s ď }f ´fm } 2 `1 πn ż |u|ď ? lm du |f ε puq| 2 `c n . (3.24)
Using Lemma 1 in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] p.586, we have

ż |u|ď ? lm du |f ε puq| 2 -m γ`1 ´δ 2 e µl δ 2 m δ 2 .
(3.25)

We denote for two functions u and v, upxqvpxq, if upxq À vpxq and vpxq À upxq.

From [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] the bias term is exponentially small (see Proposition 7, 8 and 9), thus, the rate of convergence is given by the order of variance term. As f ε is ordinary smooth, δ " 0 in (3.25) and replacing m by m opt " rlogpnq{C 1 s, with C 1 is given in Proposition 3.3.2, we have the result. l

Proof of Proposition 3.3.3.

As in the i.i.d. case, we have the bias-variance decomposition given by (3.21). Now, Varpp a j q " Var

˜p´iq j ? 2πn ż R n ÿ k"1 e iuZ k ϕ j puq f ε ptq du " 1 2πn 2 n ÿ k"1 Var ˆp´iq j ż R e iuZ k ϕ j puq f ε puq du 1 2πn 2 ÿ 1ďk, lďn,k‰l Cov ˆp´iq j ż R e iuZ k ϕ j puq f ε puq du, p´iq j ż R e iuZ l ϕ j puq f ε puq du ˙.
As VarpXq ď E|X| 2 , it comes

E " } p f m ´f } 2 ı ď }f ´fm } 2 `1 2πn m´1 ÿ j"0 E « ˇˇˇż R e iuZ 1 ϕ j puq f ε puq du ˇˇˇ2 ff `1 2πn 2 m´1 ÿ j"0 ÿ 1ďk,lďn,k‰l Cov ˆp´iq j ż R e iuZ k ϕ j puq f ε puq du, p´iq j ż R e iuZ l ϕ j puq f ε puq du ˙.
(3.26)

The first two right hand side terms are the same as in the independent case and are dealt with as in Proposition 3.3.1. We compute the covariance term. First,

Cov ˆp´iq j ż R e iuZ k ϕ j puq f ε puq du, p´iq j ż R e iuZ l ϕ j puq f ε puq du " E "ż R ż R e ipuZ k ´vZ l q ϕ j puq f ε puq ϕ j pvq f ε p´vq dudv  ´E "ż R e iuZ k ϕ j puq f ε puq du  E "ż R e ´ivZ l ϕ j pvq f ε p´vq dv  . (3.27)
The first expectation is equal to

E "ż R ż R e ipuZ k ´vZ l q ϕ j puq f ε puq ϕ j pvq f ε p´vq dudv  " ż R ż R E " e ipuX k `uε k ´vX l ´vε l q ı ϕ j puq f ε puq ϕ j pvq f ε p´vq dudv " ż R ż R E " e ipuX k ´vX l q ı ϕ j puqϕ j pvqdudv, (3.28)
and the second to : 

E "ż R e iuZ k ϕ j puq f ε puq du  E "ż R e ´ivZ l ϕ j pvq f ε p´vq dv  " ˇˇˇż R f ˚puqϕ j puqdu ˇˇˇ2 . ( 3 
Var ˜n ÿ k"1 ż R e iuX k ϕ j puqdu ¸ď 8πn « ż R bpuqϕ 2 0 puqf puqdu `m´1 ÿ j"1 ż R bpuqϕ j puq 2 f puqdu ff ď 8πn « φ 2 0 ÿ kě0 β k `m´1 ÿ j"1 c ?j ff . (3.32)
Using (3.32), Proposition 3.3.1 and in view of (3.26), we obtain the announced result l.

Proof of Lemma 2.6.1.

To prove this lemma, we first use the decomposition formula of the Hermite basis in the Laguerre basis (see Comte and Genon-Catalot (2018), Lemma 8.4, p. 287) given by :

ϕ 2k pxq " p´1q k a x{2ψ p´1{2q k px 2 {2q, ϕ 2k`1 pxq " p´1q k a x{2ψ p1{2q k px 2 {2q, x ě 0
where pψ pδq k q kě0 is the Laguerre function with index δ ą ´1 defined from the Laguerre polynomial pL pδq k q kě0 with index δ ą ´1 and degree k given by :

ψ pδq k pxq " 2 δ`1 2 p k! Γpk `δ `1q q 1{2 L pδq k p2xqx δ 2 e ´x, L pδq k pxq " 1 k! e x x ´δ d k dx k ´xδ`k e ´x¯.
Note that pψ pδq k q kě0 is an orthonormal basis on L 2 pR `q. Next, using the asymptotic formula of [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF] recalled in Section 3.8.2, we get a bound of pψ pδq k q kě0 , for k large enough. We distinguish two cases depending on the parity of j and we study only the first term of the following decomposition :

ż R bpxqϕ 2 j pxqf pxqdx " ż 8 0 bpxqϕ 2 j pxqf pxqdx `ż 8 0 bp´xqϕ 2 j pxqf p´xqdx,
since pϕ j q jě0 is even for j even and odd for j odd. The study of the other term is similar and its bound is the same as the one on the first term. For j even, j " 2k, we have :

ż 8 0 bpxqϕ 2 j pxqf pxqdx " 1 2 ż 8 0 x ´ψp´1{2q k px 2 {2q ¯2 f pxqbpxqdx :" 6 ÿ l"1 J l ,
where J l are integrals on disjoint domains specified below, see also Section 3.8.2. Setting ν " 4k `1, we have six terms to evaluate.

J 1 " 1 2 ż 1{ ? ν 0 x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż 1{ ? ν 0 x " px 2 νq ´1{4 ı 2 bpxqf pxqdx ď C 2 ? ν ż R bpxqf pxqdx ď C 2 ? ν ÿ kě0 β k . J 2 " 1 2 ż ? ν{2 1{ ? ν x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż ? ν{2 1{ ? ν xrpx 2 νq ´1{4 s 2 bpxqf pxqdx ď C 2 ? ν ÿ kě0 β k . J 3 " 1 2 ż pν´ν 1{3 q 1{2 ? ν{2 x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż pν´ν 1{3 q 1{2 ? ν{2 x ´ν´1{4 pν ´x2 q ´1{4 ¯2 bpxqf pxqdx " C 2 ż pν´ν 1{3 q 1{2 ? ν{2 x 1{3 x 2{3 ν ´1{2 pν ´x2 q ´1{2 bpxqf pxqdx ď C 2 ? ν ż R |x| 2{3 bpxqf pxqdx.
Using the Hölder inequality, we have

ż R |x| 2{3 bpxqf pxqdx ď ˆżR |x| 2q{3 f pxqdx ˙1{q ˆżR b p pxqf pxqdx ˙1{p " E " |X 1 | 2q{3 ı 1{q E rbpX 1 q p s 1{p ,
with 1 p `1 q " 1. By Lemma 4.2 in Viennet (1997), page 481, we have :

E rbpX 1 q p s ď p ÿ kě0 pk `1q p´1 β k .
It comes :

J 3 ď C 2 ? ν E " |X 1 | 2q{3 ‰ 1{q pp ř kě0 pk `1q p´1 β k q 1{p . J 4 " 1 2 ż pν`ν 1{3 q 1{2 pν´ν 1{3 q 1{2 x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż pν`ν 1{3 q 1{2 pν´ν 1{3 q 1{2 xpν ´1{3 q 2 bpxqf pxqdx ď C 2 ż pν`ν 1{3 q 1{2 pν´ν 1{3 q 1{2 x 1{3 x 2{3 ν ´2{3 bpxqf pxqdx ď C ? ν ż R |x| 2{3 bpxqf pxqdx.
By the same computation as for J 3 we deduce :

J 4 ď C ? ν E " |X 1 | 2q{3 ‰ 1{q pp ř kě0 pk 1q p´1 β k q 1{p . J 5 " 1 2 ż ? 3ν{2 pν`ν 1{3 q 1{2 x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż ? 3ν{2 pν`ν 1{3 q 1{2 x 1{3 x 2{3 ´ν´1{4 px 2 ´νq ´1{4 e ´γ1 ν ´1{2 px 2 ´νq 3{2 ¯2 bpxqf pxqdx ď C 2 ż ? 3ν{2 pν`ν 1{3 q 1{2 ν ´1{2 x 1{3 px 2 ´νq ´1{2 e ´2γ 1 ν ´1{2 px 2 ´νq 3{2 x 2{3 bpxqf pxqdx ď C ? ν ż R |x| 2{3 bpxqf pxqdx.
Again by the Hölder inequality we get :

J 5 ď C ? ν E " |X 1 | 2q{3 ‰ 1{q pp ř kě0 pk `1q p´1 β k q 1{p . Finally, it holds J 6 " 1 2 ż 8 ? 3ν{2 x ´ψp´1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż 8 ? 3ν{2 xe ´γ2 x 2 bpxqf pxqdx ď C 1 e ´3 γ 2 ν 4 ż R bpxqf pxqdx " C 1 e ´3 γ 2 ν 4 E rbpX 1 qs ď C 1 e ´3 γ 2 ν 4 ÿ kě0 β k .
For j odd, j " 2k `1, and setting ν " 4k `3, we have :

ż 8 0 bpxqϕ 2 2k`1 pxqf pxqdx " 1 2 ż 8 0 x ´ψp1{2q k px 2 {2q ¯2 f pxqbpxqdx :" 6 ÿ l"1 K l .
Only the first term changes, thus, we just compute K 1 and the other terms are such that the bounds coincide with the case where j is even for l " 2, . . . , 6.

K 1 " 1 2 ż 1{ ? ν 0 x ´ψp1{2q k px 2 {2q ¯2 bpxqf pxqdx ď C 2 ż 1{ ? ν 0 x " px 2 νq 1{4 ı 2 bpxqf pxqdx ď C 2 ? ν ÿ kě0 β k
By gathering all these inequalities according to the parity of j, we have the announced result.

Proof of Theorem 3.4.1.

By definition of p m, we have : γ n p p f p m q `penp p mq ď γ n pf m q `penpmq. Moreover, for two functions s, t in L 2 pRq, γ n ptq ´γn psq " }t ´f } 2 ´}s ´f } 2 ´2ν n pt ´sq, where

ν n ptq " 1 n n ÿ k"1 pφ t pZ k q ´xt, f yq,
where φ t is defined in (3.17). Thus, for m any element of M n , we have We decompose the empirical process ν n ptq in two processes. We set m ‹ " p m _ m. For t P S m ‹ , we have using Plancherel-Parseval

} p f p m ´f } 2 ď }f m ´f } 2 `penpmq `2ν n p p f p m ´fm q ´penp p mq As the function t Þ Ñ ν n ptq is linear, we deduce } p f p m ´f } 2 ď }f m ´f } 2 `penpmq `2} p f p m ´fm }ν n ˜p f p m ´fm } p f p m ´fm } ¸´penp p mq ď }f m ´f } 2 `penpmq `2} p f p m ´fm } sup tPSm`S x m ,
ν n ptq " 1 n n ÿ k"1 pφ t pZ k q ´xt, f yq " 1 n n ÿ k"1 ˜1 2π ż |u|ď ? lm ‹ t ˚puq f ε p´uq e ´iuZ k du ´E « 1 2π ż |u|ď ? lm ‹ t ˚puq f ε p´uq e ´iuZ k du ff1 n n ÿ k"1 ˜1 2π ż |u|ą ? lm ‹ t ˚puq f ε p´uq e ´iuZ k du ´E « 1 2π ż |u|ą ? lm ‹ t ˚puq f ε p´uq e ´iuZ k du ff" 1 n n ÿ k"1 pφ t,1 pZ k q ´E rφ t,1 pZ k qsq `1 2π ż |u|ą ? lm ‹ t ˚puq f ε p´uq p p f Z puq ´f Z puqqdu, (3.36) with φ t,1 pxq " 1 2π ş |u|ď ? lm ‹ t ˚puq
f ε p´uq e ´iux du. Therefore, we write ν n ptq " ν n,1 ptq `νn,2 ptq where

ν n,1 ptq " 1 n n ÿ k"1 pφ t,1 pZ k q ´E rφ t,1 pZ k qsq and ν n,2 ptq " 1 2π ż |u|ą ? lm ‹ t ˚puq f ε p´uq p p f Z p´uq ´f Z p´uqqdu.
Using that pν n,1 ptq `νn,2 ptqq 2 ď 2 pν n,1 ptqq 2 `2 pν n,2 ptqq 2 and by (3.35), (3.36) we deduce

1 2 } p f p m ´f } 2 ď 3 2 }f m ´f } 2 `penpmq `8 sup tPS m ‹ ,}t}"1 pν n,1 ptqq 2 `8 sup tPS m ‹ ,}t}"1
pν n,2 ptqq 2 ´penp p mq.

We introduce the function ppm, m 1 q " κ 8 ∆pm_m 1 q n if f ε is ordinary smooth or super smooth with δ ď 1{2 and ppm, m 1 q " 2κp1 `εpm, m 1 qq ∆pm_m 1 q 8n otherwise, where εpm, m 1 q is given below, which verifies 8ppm, m 1 q ď penpmq `penpm 1 q. We obtain :

} p f p m ´f } 2 ď3}f m ´f } 2 `4penpmq `16 ÿ m 1 PMn p sup tPS m_m 1 ,}t}"1 pν n,1 ptqq 2 ´ppm, m 1 qq 16 sup tPS m ‹ ,}t}"1 pν n,2 ptqq 2 .
By taking expectation, we get

E " } p f p m ´f } 2 ı ď 3}f m ´f } 2 `4penpmq `16E « sup tPS m ‹ ,}t}"1 pν n,2 ptqq 2 ff `16 ÿ m 1 PMn E «˜s up tPS m_m 1 ,}t}"1 pν n,1 ptqq 2 ´ppm, m 1 q ¸`ff .
The two followings lemmas lead to the result of Theorem 3.4.1 :

Lemma 3.7.2. Under the assumtions of Theorem 3.4.1, there exists a constant Σ 1 such that

ÿ m 1 PMn E «˜s up tPS m_m 1 ,}t}"1 pν n,1 ptqq 2 ´ppm, m 1 q ¸`ff ď Σ 1 n .
Lemma 3.7.3. Under the assumtions of Theorem 3.4.1, there exists a constant Σ 2 such that

E « sup tPS m ‹ ,}t}"1 pν n,2 ptqq 2 ff ď Σ 2 n .
Using Lemmas 3.7.2 and 3.7.3, we have the result choosing C " 4 and C 1 " 16pΣ 1 `Σ2 q. l Proof of Lemma 3.7.2.

To prove this lemma, we use Talagrand's inequality given in Appendix 3.8.3, and compute H 2 , M 1 , v defined there. Denote by m 2 " m _ m 1 . We start by computing H 2 . As the map t Þ Ñ ν n,1 ptq is linear, for t " ř m 2 ´1 j"0 a j ϕ j such that }t} " 1, we have

pν n,1 ptqq 2 " ˜m2 ´1 ÿ j"0 a j ν n,1 pϕ j q ¸2 ď m 2 ´1 ÿ j"0 a 2 j m 2 ´1 ÿ j"0 ν n,1 pϕ j q 2 " m 2 ´1 ÿ j"0 ν n,1 pϕ j q 2 .
Therefore, Thus, it follows sup

E «˜s up tPS m 2 ,}t}"1 pν n,1 ptqq 2 ¸ff ď E « m 2 ´1 ÿ j"0 ν n,1 pϕ j q 2 ff " m 2 ´1 ÿ j"0 1 n Var `φϕ j ,1 pZ 1 q ď 1 n m 2 ´1 ÿ j"0 E " |φ ϕ j ,1 pZ 1 q | 2 ‰ . It comes using (3.22) that, Er m 2 ´1 ÿ j"0 |φ ϕ j pZ 1 q | 2 s " 1 p2πq 2 Er m 2 ´1 ÿ j"0 ˇˇˇˇż |u|ď ? lm 2 ϕ j puqe ´iuZ 1 f ε p´uq du ˇˇˇˇ2 s ď ∆pm 2 q n :" H 2 . (3.
tPSm`S m 1 ,}t}"1 }φ t,1 } 8 ď a ∆pm 2 q :" M 1 . (3.38)
The case of v is more tedious,

Varpφ t,1 pZ 1 qq ď E " |φ t,1 pZ 1 q| 2 ı " 1 2π ż ˇˇˇˇż |u|ď ? lm 2 t ˚puq f ε p´uq e ´iuz du ˇˇˇˇ2 f Z pzqdz " 1 2π ¡ t ˚puq f ε p´uq t ˚p´vq f ε pvq e ´ipu´vqz f Z pzq1 |u|ď ? lm 2 1 |v|ď ? lm 2 dudvdz " 1 2π ij t ˚puq f ε p´uq t ˚p´vq f ε pvq f Z pv ´uq1 |u|ď ? lm 2 1 |v|ď ? lm 2 dudv ď 1 2π ij ˇˇˇt ˚puq f ε p´uq ˇˇˇ2 |f Z pv ´uq|1 |u|ď ? lm 2 1 |v|ď ? lm 2 dudv ď 1 2π ż |f Z pzq|dz ż ˇˇˇt ˚puq f ε p´uq ˇˇˇ2 1 |u|ď ? lm 2 du.
Using the Cauchy-Schwarz inequality and Parseval's theorem we have :

ż |f Z pzq|dz " ż |f ˚pzqf ε pzq|dz ď 2π}f ε }. }f }.
Thus, we get : Varpφ t,1 pZ 1 qq À ş ˇˇt ˚puq f ε p´uq ˇˇ2 1 |u|ď ? lm 2 du. We consider separately two cases. 1. Ordinary smooth case : In this case, we have by (3.37) and by (3.25) that H 2 -

m 2γ`1{2 n . Moreover, Varpφ t,1 pZ 1 qq ď ż |t ˚puq| 2 p1 `t2 q γ 1 |u|ď ? lm 2 du ď p1 `lγ m 2γ q ż |t ˚puq| 2 du " 2πp1 `lγ m 2γ q}t} 2 " 2πp1 `lγ m 2γ q.
We can set v " cm 2γ , with c ą 0. Thus, using Talagrand's inequality we have :

E «˜s up tPS m 2 , }t}"1 pν n,1 ptqq 2 ´ppm, m 1 q ¸`ff À " U pm 2 q `V pm 2 q ‰ , ( 3.39) 
with ppm, m 1 q " κ 8 ∆pm 2 q n " κ 8 H 2 ě 2p1 `2εqH 2 , we take κ 0 " 17, ε " 1{2, and

U pm 2 q " v n exp ˆ´K 1 2 nH 2 v ˙" cm 2γ n exp ¨´K 1 2 n m 2γ`1 2 n cm 2γ 'À m 2γ n e ´K1 2c m 2 1 2 , V pm 2 q " M 2 1 Cpεq 2 n 2 exp ˆ´K 1 1 Cpεq 1 ? 2 nH M 1 ˙" C 1 ∆pm 2 q n 2 exp ¨´C 2 n b ∆pm 2 q n a ∆pm 2 q ' À 1 n e ´C2 ? n ,
because for m P M n , ∆pmq ď n. Therefore, we deduce by (3.39) that :

ÿ m 1 PMn E «˜s up tPS m 2 , }t}"1 pν n,1 ptqq 2 ´ppm, m 1 q ¸`ff À ÿ m 1 PMn " U pm 2 q `V pm 2 q ‰ . As ÿ m 1 U pm 2 q À 1 n ÿ m 1 m 2γ e ´K1 2c ? m 2 " 1 n « m ÿ m 1 "0 m 2γ e ´K1 2c ? m 2 `n2 ÿ m 1 "m m 2γ e ´K1 2c ? m 2 ff " 1 n « m γ`1 e ´K1 2c ? m ``8 ÿ m 1 "m m 1γ e ´K1 2c ? m 1 ff ď C 1 1 n ,
and

ÿ m 1 PMn V pm 2 q À 1 n ÿ m 1 PMn e ´C2 ? n " 1 n |M n |e ´C2 ? n À ne ´C2 ? n ď C 2 1 n .
We deduce that

ÿ m 1 PMn E «˜s up tPS m 2 , ||t||"1 pν n,1 ptqq 2 ´ppm, m 1 q ¸`ff ď Σ 1 n , Σ 1 " C 1 1 `C2 1 . (3.40)
2. Super smooth case : In this case the order of H 2 is given by (3.25) :

H 2 - m 2 1´δ 2 e µl δ 2 m 2 δ 2 n , Varpφ t,1 pZ 1 qq ď c 1 ż |t ˚puq| 2 e µ|u| δ 1 |u|ď ? lm 2 du ď c 1 e µl δ 2 m 2 δ 2 ż |t ˚puq| 2 du " 2πc 1 e µl δ 2 m 2 δ 2 }t} 2 À e µl δ 2 m 2 δ 2 " v.
We use Talagrand's inequality again, we must compute U pm 2 q and V pm 2 q.

U pm 2 q " v n exp ˆ´K 1 ε nH 2 v ˙" ce µl δ 2 m 2 δ 2 n exp ¨´K 1 εn m 2 1´δ 2 e µl δ{2 m 2 δ 2 n e µl δ{2 m 2 δ 2 ‹ ' À 1 n e µl δ m 2 δ 2 ´K1 εm 2 1´δ 2 , V pm 2 q " M 2 1 C 2 pεqn 2 exp ˆ´K 1 1 Cpεq ? ε nH M 1 ˙" ∆pm 2 q C 2 pεqn 2 exp `´K 1 1 Cpεq ? ε ? n ď 1 C 2 pεqn exp `´K 1 1 Cpεq ? ε ? n ˘.
' Study of ř m 1 PMn U pm 2 q : we have

ÿ m 1 PMn U pm 2 q À 1 n ÿ m 1 PMn e µl δ 2 m 2 δ 2 ´K1 εm 2 1´δ 2 .
We are going to study this term according the value of δ.

(i) Case 0 ă δ ă 1{2 : In this case δ{2 ă p1 ´δq{2. Thus the choice ε "

1 implies that me µl δ m δ 2 ´K1 εm 1´δ 2
is bounded by a constant independent of m 1 , and

e µl δ m 1 δ 2 ´K1 εm 1 1´δ 2
is integrable in m 1 . We deduce that :

1 n ÿ m 1 PMn e µl δ m 2 δ 2 ´K1 εm 2 1´δ 2 " 1 n « m ÿ m 1 "1 e µl δ{2 m 2 δ 2 ´K1 εm 2 1´δ 2 `n2 ÿ m 1 "m e µl δ{2 m 2 δ 2 ´K1 εm 2 1´δ 2 ff ď 1 n « me µl δ{2 m δ 2 ´K1 εm 1´δ 2 `ÿ m 1 PMn e µl δ{2 m 1 δ 2 ´K1 εm 1 1´δ 2 ff ď C 2 1 n . (3.41) (ii) Case δ ě 1{2 : We choose ε such that µl δ{2 m 2 δ 2 ´K1 εm 2 1´δ 2 " ´µl δ 2 m 2 δ 2 , that is ε " 2µl δ{2 K 1 m 2δ´1 2 . This implies 1 n ÿ m 1 PMn e µl δ{2 m 2 δ 2 ´K1 εm 2 1´δ 2 " 1 n ÿ m 1 PMn e ´µl δ{2 m 2 δ 2 ď 1 n ÿ m 1 e ´µl δ{2 m 1 δ 2 ď C 2 1 n .
(3.42)

In the all cases, we have :

ř m 1 PMn U pm 2 q ď C 2 1 n . ' Study of ř m 1 PMn V pm 2 q As |M n | " Opn 2 q
and for all choice of ε in the study of U pm 2 q, we have Cpεq " 1, ε ě 1. Thus, it follows Here m ‹ " m _ p m. Using the Cauchy-Schwarz inequality for t " ř m ‹ ´1 j"0 a j ϕ j such that }t} 2 " ř m ‹ ´1 j"0 a 2 j " 1, we have :

ÿ m 1 PMn V pm 2 q ď |M n | C 2 pεqn exp `´K 1 1 Cpεqε ? n ˘ď n C 2 pεq exp `´K 1 1 Cpεq ? ε ? n ď C 1 1 n . ( 3 
ν n,2 ptq 2 " 1 p2πq 2 ˜ż|u|ą ? lm ‹ t ˚puq f ε p´uq p p f Z p´uq ´f Z p´uqqdu ¸2 ď 1 p2πq 2 ¨m‹ ´1 ÿ j"0 ˇˇˇˇż |u|ą ? lm ‹ ϕ j puq f ε p´uq p p f Z p´uq ´f Z p´uqqdu ˇˇˇˇ2 '.
By (3.4)-(3.5) and using the Cauchy-Schwarz inequality, we have :

m ‹ ´1 ÿ j"0 ˇˇˇˇż |u|ą ? lm ‹ ϕ j puq f ε p´uq p p f Z puq ´f Z puqqdu ˇˇˇˇ2 " 2π m ‹ ´1 ÿ j"0 ˇˇˇˇż |u|ą ? lm ‹ ϕ j puq f ε p´uq p p f Z p´uq ´f Z p´uqqdu ˇˇˇˇ2 À m ‹ ´1 ÿ j"0 ˜ż|u|ą ? lm ‹ | p f Z p´uq ´f Z p´uq| |f ε p´uq| |ϕ j puq|du ¸2 À m ‹ ´1 ÿ j"0 ˜ż|u|ą ? lm ‹ | p f Z p´uq ´f Z p´uq| |f ε p´uq| e ´ξu 2 du ¸2 À m ‹ ´1 ÿ j"0 ˜ż|u|ą ? lm ‹ | p f Z p´uq ´f Z p´uq| 2 |f ε p´uq| 2 e ´ξu 2 du ż|u|ą ? lm ‹ e ´ξu 2 du.
As ş |u|ą ?

lm ‹ e ´ξu 2 du ď ce ´ξm ‹ and the function x Þ Ñ xe ´ξx reaches its maximum p1{ξqe

´1 in x " 1{ξ, it implies ν n,2 ptq 2 À ş R | p f Z p´uq´f Z p´uq| 2 |f ε p´uq| 2 e ´ξu 2 du. Therefore, E « sup tPS m ‹ ,}t}"1 pν n,2 ptqq 2 ff À ż R E " | p f Z p´uq ´f Z p´uq| 2 ı |f ε p´uq| 2 e ´ξu 2 du. Now, we have E " | p f Z p´uq ´f Z p´uq| 2 ı " Varr p f Z p´uqs " 1 n Varre ´iuZ 1 s " 1 n `1 ´|f Z p´uq| 2 ˘ď 1 n .
Thus, by this last inequality we deduce

E « sup tPS m ˚, }t}"1 pν n,2 ptqq 2 ff À 1 n ż R 1 |f ε p´uq| 2 e ´ξu 2 du.

APPENDIX

where Cpεq " p ? 1 `ε ´1q ^1, K 1 " 1{6 and K 1 1 a universal constant. The Talagrand inequalities has been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], reworded by [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].

Chapitre 4

Hermite estimation in noisy convolution model

Un article écrit à partir des éléments de ce chapitre est prévu.

Résumé. Dans ce chapitre, nous étudions le problème d'estimation d'une fonction de régression dans un modèle de convolution. Nous considérons le modèle suivant : ypx k q " hpx k q`ε k , hpxq " f ‹gpxq " ş R f px´yqgpyqdy, k " ´n, . . . , n´1 où g est supposée connue et f est la fonction inconnue que l'on cherche à estimer ; les erreurs pε k q ´nďkďn´1 sont indépendantes et identiquement distribuées (i.i.d.) avec Erε k s " 0 et Varpε k q " σ 2 ε ă 8, connu ; les points px k " kT {nq ´nďkďn´1 sont déterministes et équirépartis sur r´T, T s, où 0 ă T ă 8 est fixé. Nous introduisons deux procédures d'estimation de f en exploitant les propriétés de la base d'Hermite. Nous proposons une étude du risque quadratique de chaque estimateur. Nous obtenons des vitesses de convergence pour f dans une boule de Sobolev pour la première approche ou dans une boule de Sobolev-Hermite pour la deuxième méthode. Nous présentons aussi une procédure de sélection de modèles en s'inspirant des méthodes de Goldenshluter et Lepski pour la première approche d'estimation : l'estimateur résultant satisfait une inégalité oracle pour ε sous-gaussienne. Enfin, nous illustrons numériquement cette méthode et une nouvelle procédure dérivée des méthodes de Goldenshluter et Lepski en s'inspirant de l'approche [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF].

Abstract.

In this chapter, we study the problem of estimating a regression function in a convolution model. We consider the following model : ypx k q " hpx k q `εk , hpxq " f ‹ gpxq " ş R f px ´yqgpyqdy, k " ´n, . . . , n ´1 where g is assumed to be known and f is the function of interest to be estimated ; the errors pε k q ´nďkďn´1 are independent and identically distributed (i.i.d.) such that Erε k s " 0 and Varpε k q " σ 2 ε ă `8, known ; the points px k " kT {nq ´nďkďn´1 are deterministic and equispaced on the interval r´T, T s, where 0 ă T ă 8 is fixed. Two estimation methods are considered to estimate f by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If f belongs to the Sobolev (first approach) or Sobolev-Hermite (second approach) spaces, we obtain rates of convergence. We also present an adaptive procedure to select the relevant parameter for the first approach inspired by Goldenshluter and Lepski methods, the

Introduction

Consider the convolution model ypx k q " hpx k q `εk , k " ´n, . . . , n ´1, (

where

hpxq " f ‹ gpxq " ż R f px ´yqgpyqdy, (4.2) 
where the kernel function g is supposed to be known and f is the unknown function to be estimated ; the errors pε k q ´nďkďn´1 are independent and identically distributed (i.i.d.) such that Erε k s " 0 and Varpε k q " σ 2 ε ă `8, known ; the points px k " kT {nq ´nďkďn´1 are deterministic and equispaced on the interval r´T, T s, where 0 ă T ă 8 is fixed. This model appears in several application contexts : in Dynamic Contrast Enhanced (DCE) imaging data analysis (see [START_REF] Goh | Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetectorrow computed tomography : effect of acquisition time and implications for protocols[END_REF], [START_REF] Cuenod | Tumor angiogenesis : pathophysiology and implications for contrast-enhanced mri and ct assessment[END_REF], [START_REF] Goh | Functional imaging of colorectal cancer angiogenesis[END_REF], [START_REF] Cao | Response to letter regarding article :"developing dce-ct to quantify intra-tumor heterogeneity in breast tumors with differing angiogenic phenotype[END_REF] and [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF]) and in the study of time-resolved measurements in fluorescence spectroscopy (see [START_REF] Gafni | Analysis of fluorescence decay curves by means of the laplace transformation[END_REF][START_REF] Mckinnon | The deconvolution of photoluminescence data[END_REF], [START_REF] O'connor | Deconvolution of fluorescence decay curves. a critical comparison of techniques[END_REF], [START_REF] Ameloot | Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves[END_REF], [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF]). If the function of interest is the unknown function h, this problem is known as a fixed design regression model. Nonparametric estimation of h has been studied at length in the literature, see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] and recently Comte and Genon-Catalot (2020a) for random design. Estimating the density f of a random variable X when observing Z " X `ε with ε independent of X with density g amounts to reconstruct f from an estimate of f Z " f ‹ g. This problem is known as a deconvolution problem. It is an inverse problem which has also been studied extensively in the literature, see [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], [START_REF] Delaigle | On deconvolution with repeated measurements[END_REF], [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF], [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], [START_REF] Sacko | Hermite density deconvolution[END_REF] among others, see also the monograph of [START_REF] Meister | On testing for local monotonicity in deconvolution problems[END_REF]. Model (4.1) cumulates the two questions of regression and deconvolution, and this is why it is difficult. We mention that in Model (4.1), the unknowns f and the kernel are not necessarily densities. When f and g are r0, 1s-supported, [START_REF] Rice | Smoothing splines : regression, derivatives and deconvolution[END_REF] solved the problem (4.1) using a smoothing spline approach for x k " k{n with k " 1, . . . , n. They obtain a control of the risk for f of class C 4 . However, the question of the smoothing parameter is not considered in their work. Another special case of Model (4.1) occurs when f and g are R `supported, it is called Laplace convolution. Then, we have hpxq " ş x 0 f px´yqgpyqdy, whose discrete noisy version is given by (4.1) with k " 1, . . . , n. It has been studied in [START_REF] Dey | Input recovery from noisy output data, using regularized inversion of the laplace transform[END_REF] for gpxq " be ´ax 1 xě0 , using that the solution of (4.2) satisfies a linear differential equation. The authors compute convergence rates for n Ñ 8, under the assumption that the s-th derivative of f is continuous, the procedure is not adaptive. [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF] study the Laplace deconvolution problem for g known : they summarize the estimating problem of f to estimation of the derivative of h. These derivatives are estimated by a kernel method, the procedure is adaptive and minimax optimal for f in a Sobolev class. Note that the rate depends on T " T n Ñ 8 as n Ñ 8. [START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF] studies also the Laplace deconvolution problem using the Galerkin projection on Laguerre functions for a g kernel contaminated by white noise. More recently, [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] proposed a projection estimator, based on the development of the functions f , g and h in the Laguerre basis. The coefficients of the decomposition of h are expressed as a linear combination of those of f , the link matrix being invertible. They also propose an adaptive procedure by penalization : the resulting estimator verifies an oracle inequality up to multiplicative log n factor. We emphasize that the px k q 1ďkďn are not necessary equispaced on r0, T s and T is fixed. Finally, if, f is a function of 3 variables and g of one variable, [START_REF] Benhaddou | Anisotropic functional Laplace deconvolution[END_REF] consider also the projection method on Laguerre and wavelet bases for a Gaussian white noise. Their method is adaptive and asymptotically optimal up to a logarithmic factor when f belongs to a three-dimensional Laguerre-Sobolev ball. Note that regression model and inverse problems can be encountered in different setting, see for instance [START_REF] Loubes | Adaptive estimation for an inverse regression model with unknown operator[END_REF] who study an econometric model ; then, the inverse problem arises from instrumental variables taken as covariate.

However, all previous studies were conducted for R `supported f and g. The novelty of present work, is that we consider Model (4.1) with R-supported function and our aims are the following : Define a consistent estimator of f ; Provide rates of convergence ; Propose an adaptive procedure and illustrate numerically its performances. The Laguerre basis which is R `-supported clearly no longer suits for our problem. We consider here the Hermite basis which has non compact support and is well adapted in our context. When using compactly supported bases, the support is a fixed interval determined in practice from the dataset. Hermite basis does not require this preliminary choice and is well adapted in our context. Recently, [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] show that the Hermite basis allows to build estimators of low complexity and therefore numerically fast.

In this chapter, we first propose a Fourier-Hermite (denoted by FH in the sequel) approach to estimate f . It consists in estimating h as regression function by a nonparametric least squares method, based on the development of h in the Hermite basis. Then, we use the inverse Fourier transform to recover f . Contrary to [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], we do not consider a compactly supported basis. Moreover, we obtain a new (to our knowledge) bound on the L 2 pRq-risk for regression function h. We provide an upper bound on the risk of the estimator of f which shows that a bias-variance compromise must be performed. For f belonging to a Sobolev ball, we obtain rates of convergence for adequate choice of some parameters (cut-off parameter and dimension of the regression function). We also present an adaptive procedure inspired by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation : oracle inequalities and adaptive minimax optimality[END_REF] method to select the relevant parameters : the resulting estimator satisfies an oracle inequality for ε sub-Gaussian (see below or [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF] for more details), and automatically realizes a bias-variance compromise up to a logarithm term. We also introduce another approach, called the Hermite-Hermite (denoted HH in the following) strategy. Both functions f and h are decomposed in the Hermite basis. We construct an estimator of f by replacing h by its nonparametric least squares estimator in the formula of the coefficients of f . As for the FH strategy, we provide a risk bound and the rate obtained therein for f belonging to a Sobolev-Hermite ball.

The plan of the chapter is the following : In Section 4.2, we present a first naive approach to estimate f and explain why it is not consistent. The study of the estimation of regression function h in the Hermite basis for fixed design is described in Section 4.3. Those results are exploited to study the FH and HH strategies. Section 4.4 is devoted to the FH strategy. In particular, we define the FH estimator in Section 4.4.1. A bias-variance decomposition is given in Section 4.4.2. In Section 4.4.3, we provide rates of convergence. Section 4.4.4 is devoted to selection of model for the FH procedure and an oracle inequality is proved for the resulting estimator therein. In Section 4.5, we describe the HH estimation strategy and a comparison with the FH method is performed. Section 4.6 is devoted to the numerical study to illustrate the performance of the adaptive procedure. Finally, all the proofs are presented in Section 4.7 and some useful results are given in the Appendix.

A first naive approach

Consider discrete observations px k , ypx k qq ´nďkďn´1 from model (4.1). Our aim is to estimate f using Fourier analysis tools. First, we consider the following assumption on the unknown f . pA1q The unknown function f and its Fourier transform f ˚belong to L 1 pRq. Assumption pA1q is introduced to use the Fourier transform inverse : tpxq " 1{p2πq ş R e iux t ˚puqdu. We will also need of the following assumption on the kernel g which are classical in deconvolution context : pA2q The Fourier transform of g denoted g ˚is well defined and such that : g ˚‰ 0, where t ˚puq " ş e iux tpxqdx, and i is the complex number with i 2 " ´1.

pA3q There exist c 1 ě c 1 1 ą 0, and γ ě 0, such that

c 1 1 p1 `t2 q γ ď |g ˚ptq| ´2 ď c 1 p1 `t2 q γ , @t P R. (4.3)
pA2q is necessary to define the estimator and pA3q is generally useful to study its risk. Under pA3q, the function g and the errors are called "ordinary smooth". Observe that pA3q implies pA2q and is verified by some classical distributions : we can cite for example the Laplace distribution (with γ " 2), Gamma distributions (γ " p, where p is the shape parameter) and more generally for all symmetric Gamma distributions. As h " f ‹ g (see (4.2)), under pA1q, pA2q and using the Fourier inversion formula, we have :

f pxq " ż R e ´iux h ˚puq g ˚puq du, @x P R (4.4) 
Equation (4.4) leads to an estimator of f by replacing h by an estimator. A simple idea is to use the following approximation :

T n n´1 ÿ j"´n e itx j hpx j q " ż T ´T e itx hpxqdx `O ˆT 2 n ˙. (4.5)
Then, we can estimate h ˚by :

r h ˚ptq " T n n´1 ÿ j"´n e itx j ypx j q. (4.6)
This brings us to the definition of the following estimator :

r f pxq " 1 2π
ż

´ e ´iux r h ˚puq g ˚puq du, for ą 0. (4.7)

The parameter of cut-off is introduced to make the ratio r h ˚{g ˚integrable.

In the following, }s} 8 " sup xPR |spxq| denotes the supremum norm of s on R, s 1 the first derivative of s. We can state the following bound for the risk of r f . Proposition 4.2.1. Let Assumptions pA1q and pA2q hold and assume that }h} 8 ă `8, }h 1 } 8 ă `8. Let r f be defined in (4.7) and set

Λp q " 1 π ż ´ du |g ˚puq| 2 . Then, we have Er} r f ´f } 2 s ď ż |u|ą |f ˚puq| 2 du`Λp qσ 2 ε T 2 n `Λp q T 4 n 2 p }h} 8 `}h 1 } 8 q 2 `Λp q ˜ż|u|ąT |hpxq|dx ¸2 . ( 4.8) 
-The first term of the bound (4.8), ş |u|ą |f ˚puq| 2 du is the classical bias term. -The second (σ 2 ε T Λp q{n) is the standard variance term for deconvolution problems. -The third term Λp q T 4 n 2 p }h} 8 `}h 1 } 8 q 2 comes from of the approximation error given in (4.5). If we consider the following collection of models t : T 2 n Λp q À 1u it has the order of variance term. Indeed, under pA3q, we have Λp q Á 2 for γ ě 1 2 , then Λp q ´T 4 n 2 p }h} 8 `}h 1 } 8 q 2 ¯À T 2 n 2 À T 2 n Λp q, where, for two functions u, v, we denote by upxq À vpxq if upxq ď cvpxq, with c is a constant independent of x.

-Finally, for fixed T , the term Λp qp ş |u|ąT |hpxq|dxq 2 does not tend to zero when n tends infinity, whatever the choice of is. Consequently, r f is not consistent for fixed T .

Then, we propose in sequel two estimations procedures : Fourier-Hermite strategy and Hermite-Hermite strategy. First, we study the estimation of h by using the least squares methods.

Hermite fixed design regression

We present a complete study of the regression function in Hermite basis. Let us start by recalling the definition of Hermite basis and the associated regularity space.

Notations

For φ, ψ belonging to L 2 pRq X L 1 pRq, denote xϕ, ψy " ş ϕpuqψpuqdu the scalar product on L 2 pRq and }ϕ} 2 " ş |ϕpuq| 2 du the associated norm on L 2 pRq. The Fourier transform of ϕ is defined by ϕ ˚puq " ş e iux ϕpxqdx. Lastly, we recall the Plancherel-Parseval equality xϕ, ψy " p2πq ´1xϕ ˚, ψ ˚y.

The Hermite basis

Define the Hermite basis pϕ j q jě0 from Hermite polynomials pH j q jě0 : ϕ j pxq " c j H j pxqe ´x2 {2 , H j pxq " p´1q j e x 2 d j dx j pe ´x2 q, c j " p2 j j! ? πq ´1{2 , x P R, j ě 0.

(4.9)

The Hermite polynomials pH j q jě0 are orthogonal with respect to the weight function e ´x2 : ş R H j pxqH k pxqe ´x2 dx " 2 j j! ? πδ j,k (see Abramowitz and Stegun (1964), 22.2.14), where δ j,k is the Kronecher symbol. It follows that the sequence pϕ j q jě0 is an orthonormal basis on R. Moreover, ϕ j is bounded by

}ϕ j } 8 " sup xPR |ϕ j pxq| ď φ 0 , with φ 0 " π ´1{4 , ( 4.10) 
(see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]Stegun (1964), chap.22.14.17 and[START_REF] Indritz | An inequality for Hermite polynomials[END_REF]) and the following bound holds

}ϕ j } 8 ď C 8 pj `1q 1 12 , ( 4.11) 
where C 8 is a constant given in [START_REF] Szegö | Orthogonal polynomials[END_REF]. The Fourier transform pϕ j q jě0 is given as follows ϕ j " ? 2πpiq j ϕ j . (4.12)

From [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF] or [START_REF] Markett | Norm estimates for (c, δ) means of hermite expansions and bounds for δeff[END_REF], it holds :

|ϕ j pxq| ď C 1 8 e ´ξx 2 , |x| ě a 2j `1, (4.13) 
where C 1 8 and ξ are constants independent of x and j. The infinity norm of the derivative of ϕ j satisfies (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], Lemma 7.3) :

}ϕ 1 j } 8 ď C 2 8 pj `1q 5 12 , j ě 0, (4.14) 
where C 2 8 ą 0 is a numerical constant.

Regularity spaces

We consider in the sequel the following regularity spaces (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]). For s an integer, it is proved in [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] and [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] (see Proposition 4) that θ belongs to W s H pLq if and only if θ admits derivatives up to order s and if the functions θ, θ 1 , . . . , θ psq , x s´l θ plq for l " 0, . . . , s ´1 belong to L 2 pRq. Recall also that the usual Sobolev ball W s pLq is defined, for s ą 0 by

W s pLq " tθ P L 2 pRq, ż p1 `u2 q s |θ ˚puq| 2 du ă Lu. (4.16)
If s is an integer and L ą 0, it holds (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] and Belomestny et al. ( 2019)) then ; ! θ P W s pLq " is equivalent to ! there exists L ˚ą 0 such that ř s j"0 }f pjq } 2 ă L ˚". Thus, it follows that W s H pLq Ă W s pL ˚q. Moreover, if f P W s pLq has compact support, then f P W s H pL ˚q. In other words, W s H pLq and W s pL ˚q coincide for compactly supported functions.

Definition of the regression estimator

Let d ě 1 an integer and

S d :" spantϕ 0 , . . . , ϕ d´1 u, (4.17) 
the linear space generated by ϕ 0 , . . . , ϕ d´1 , where ϕ j is the Hermite basis defined in (4.9). Assume that h belongs to L 2 pRq. Then, we can write h " ř jě0 b j phqϕ j , with b j phq " xh, ϕ j y. Moreover, we define h d " ř d´1 j"0 b j phqϕ j , the orthogonal projection of h on S d . Introduce the matrices :

Φ d " pϕ j px i qq ´nďiďn´1,0ďjďd´1 , Ψ d " T n Φ t d Φ d , (4.18) 
where Φ t d denotes the transpose of the matrix Φ d . We need of following Lemma to get an estimator of h. By the least squares method and Lemma 4.3.1, we derive the following projection estimator of h on S d :

p h d " d´1 ÿ j"0 p b pdq j ϕ j , where p b pdq " p p b pdq 0 , . . . , p b pdq d´1 q t " pΦ t d Φ d q ´1Φ t d y " T n Ψ ´1 d Φ t d y, ( 4.19) 
y " pypx ´nq, . . . , ypx n´1 qq t .

Comment on the assumption h P L 2 pRq. Let 1 ď p, q, r ď 8 such that 1{p `1{q " 1 `1{r. Let us recall that with the Young inequality, we have }h} r " }f ‹ g} r ď }f } p }g} q . Thus, for (f P L 2 pRq and g P L 1 pRq) or (g P L 2 pRq and f P L 1 pRq), it follows that h P L 2 pRq.

Risk bound of p h d and rate of convergence

For any s, t in L 2 pRq, we define :

}t} 2 n :" T n n´1 ÿ i"´n t 2 px i q, xs, ty n :" T n n´1 ÿ i"´n spx i qtpx i q,
The following bias-variance decompositions hold.

Proposition 4.3.1. Let px i , ypx i qq ´nďiďn´1 be observations from model (4.1). Assume that h belongs to L 2 pRq and consider the estimator p h d defined in (4.19).

(i) Then, it holds that

E " } p h d ´h} 2 n ı " inf tPS d }t ´h} 2 n `σ2 ε T d n . (4.20) (ii) Moreover, we have Er} p h d ´h} 2 s ď }h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n tr `Ψ´1 d ˘, (4.21) 
where trpAq is the trace of the matrix A and λ max pAq denotes the spectral radius of the matrix A.

The part (i) of Proposition 4.3.1 corresponds to a classical bias-variance decomposition for the empirical norm } ¨}n . The first term in the right-hand side of (4.20) is the bias term and the second term is the variance term. They behave in the opposite way with respect to d : inf tPS d }t ´h} 2 n decreases with d while σ 2 ε T d{n increases with d. The risk bound given in (4.21) is new to our knowledge and handles the integrated L 2 risk on R. It is a bias-variance decomposition with bias equal to }h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n and variance σ 2 ε tr `Ψ´1 d ˘T {n. In both cases, we have a bias-variance trade-off to make.

When the points px i q ´nďiďn´1 are i.i.d. random variables with common density µ (see Comte and Genon-Catalot (2020a)), we have

Erinf tPS d }t´h} 2 n s ď inf tPS d "ş ph ´tq 2 pxqµpxqdx ‰ instead of inf tPS d }t ´h} 2
n . In our context the bias term is studied by exploiting the specific property of the Hermite basis. The following Lemma leads to find the order of the bias :

Lemma 4.3.2. Assume that h belongs to W α H pLq (Sobolev-Hermite ball defined in (4.15)). (i) If α ą 11{6, we have }h ´hd } 2 n ď }h ´hd } 2 `Cpα, Lq T 2 n ,
where Cpα, Lq is a positive constant depending only on α and L.

(ii) If α ą 17{6, it hold that }h ´hd } 2 n ď }h ´hd } 2 `C1 pα, Lq T 3 12n 2 ,
where C 1 pα, Lq is a positive constant which depends on α and L.

For fixed T , the additional term T 2 {n or T 3 {n 2 is a residual term which is negligible compared to the variance term σ 2 ε dT {n for the empirical norm or σ 2 ε tr `Ψ´1 d ˘T {n for the integral L 2 pRq-norm. Furthermore, to get the rate of convergence for the integral norm } ¨}, we have to control tr `Ψ´1 d ˘and λ max pΨ ´1 d q. We consider the following assumption pA4q There exists a constant λ 2 ą 0 such that the maximum eigenvalue of Ψ ´1 d satisfies λ max pΨ ´1 d q ď λ 2 ă `8, uniformly in d.

For n large enough and T , d well chosen, we can show that (i) Then, we have

~Ψ´1 d ´Id
sup hPW α H pLq E " } p h dopt ´h} 2 n ı ď Cpα, L, T, σ ε qn ´α α`1 , (4.22)
where Cpα, L, T, σ ε q depends on α, L, T and σ ε .

(ii) If in addition pA4q is satisfied, it yields that

sup hPW α H pLq E " } p h dopt ´h} 2 ı ď Cpα, L, T, σ ε , λ 2 qn ´α α`1 . ( 4.23) 
Our estimator reaches the same rate as in the case where px i q are random variables (see Comte and Genon-Catalot (2020a)). From the lower bound stated therein, this rate is optimal when we use the Laguerre or the Hermite basis (at least for gaussian ε's). Note that it is not standard and is specific to the Laguerre and Hermite basis : in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], [START_REF] Baraud | Model selection for regression on a random design[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], the least squares estimator converges with rate n ´2α{p2α`1q if the regression function h belongs to a Besov space with regularity index α. The reason is that the variance order does not depend on the basis used while bias order does and changes according to the regularity spaces associated with the basis.

Remark 4.1. The constraint α ą 11{6 or α ą 17{6 comes from the study of }h´h d } 2 n (see the Proof of Lemma 4.3.2). It excludes some functions h (e.g. Cauchy since α " 3{2 ´η with 0 ă η ă 3{2 see Section 4 in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]). Without this constraint, we have for α ě 1 and h

P W α H pLq }h ´hd } 2 n " T n n´1 ÿ i"´n ph d px i q ´hpx i qq 2 ď 2T φ 2 0 ˜ÿ jěd j α{2 a j phqj ´α{2 ¸2 À d ´α`1 ,
where φ 0 is given in (4.10). It follows for the choice d opt " rn 1{pα`2q s that E

" } p h dopt ´h} 2 n ı " Opn ´α´1 α`2 q.
This rate is worse than the one obtained in (4.22). The estimator remains consistent in this case even if the rate deteriorates. In the sequel, we will see that the condition α ą 11{6 or α ą 17{6 is often satisfied.

Adaptive estimator for h

However, the choice of d " d opt depends on the regularity of h which is unknown ; thus this choice is only theoretical and cannot be used in practice. This is why an adaptive procedure is developed now. It allows to choose the relevant dimension by replacing the bias and variance terms by computable quantities. Let γ n p¨q be the empirical contrast :

γ n ptq " T n n´1 ÿ i"´n rypx i q ´tpx i qs 2 .
It where Cpκq " 2κp1 `4{pκ ´1qq ą 1 (for instance for κ " 2.5, Cp2.5q " 9.17) and C 1 ą 0 are numerical constants.

(ii) If in addition pA4q holds, we have

Er} p h p d ´h} 2 s ď C 1 inf dPMn ˆp2λ 2 2 `1q}h ´hd } 2 n `}h d ´h} 2 `σ2 ε T d n ˙`C 1 1 λ 2 T n , (4.26)
where λ 2 is given in pA4q, C 1 " maxp1, 2λ [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] and the bound given in (4.21).

Remark 4.2. The variance σ 2

ε of the noise which appears in (4.24) is assumed to be known but is in general unknown and must be estimated. A classical estimator is the residual least squares estimator :

x σ 2 ε :" T n n´1 ÿ i"´n " ypx i q ´p h d ˚px i q ı 2 ,
where d ˚is an arbitrarily chosen dimension (for instance d ˚" r ? ns suits see [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]).

Illustration for the regression estimator in Hermite basis

We illustrate the adaptive procedure of h. We compute the estimator p h p d defined in (4.19) with p d selected in (4.24). We consider the following test functions which are estimated on the interval I (i) f pxq " expp´2x 2 q, I " r´2, 2s, (ii) Gamma distribution Γp4, 4q, I " r0, 2.5s, (iii) f pxq " 4 ? 2π p0.4 expp´8px `1q 2 q `0.6 expp´8px ´1q 2 qq, I " r´2.5, 2.5s, (iv) f pxq " x 2 expp´xq1 xě0 , I " r0, 8s.

For the kernel g, we choose a Γp2, θq distribution i.e. gpxq " θ 2 x expp´θxq1 xě0 with θ " 4. The errors pε k q are centered Gaussian with standard deviation σ ε P t1{8, 1{4u. We also choose T " 10 and consider two values of the sample sizes n " 250, 1000. The maximal dimension of d is d max " 50. The regression h " f ‹ g is computed for each function test f and kernel g by Riemann sum discretization in 500 points. Computations of risk for different values of κ allow to fix κ " 2.25. The adaptive procedure is implemented as follows :

• For each d in M n , compute ´}p h d } 

Simulation results and comments

We present in Table 4.1 simulation results. For each function f , we provide the MISE (with the standard deviations in the parenthesis) on the first line computed over 200 repetitions using Riemann's sum discretization for the estimation of h. The second line corresponds to the average of p d selected by the algorithm. In the third line, we give also the mean of the theoretical value of Signal-to-noise ratio s2n which is defined here by : s2n :"

1 2n ř n´1 i"´n hpx i q 2 1 2n ř n´1 i"´n ε 2 i « 1 2n ř n´1 i"´n ypx i q 2 ´σ2 ε σ 2 ε ,
where the above approximation is obtained using the law of large numbers. We remark that increasing n and s2n improve estimations. We also observe that the mean of p d increases with n. Note also in view of the bias-variance decomposition given in ( We also illustrate the results by some graphs. Figure 4.1 and 4.2 show 25 beams of estimators of h " f ‹ g. For each graph, we plot the true function h and 25 estimates for n " 250 on the first line and n " 1000 on the last. We choose σ ε " 1{4 on the first column and σ ε " 1{8 on the second. Moreover, they ensure the stability of the procedure with some variance for n " 250 and σ ε " 1{4. This confirms the results obtained in 

Fourier-Hermite approach for the regression-deconvolution model

In this section, we construct an estimator of f using the Fourier inverse transform and then the least squares estimator. 

Estimation procedure

Risk bound for the deconvolution estimator

Now, we study the integrated quadratic risk of p f pdq given by (4.29). Define ∆p q " sup |u|ď |g ˚puq| ´2, f p q pxq " 1 2π

ż

´ e ´iux h ˚puq g ˚puq du, (4.31) Consider also the following assumption :

pA5q }h} 8 " sup xPR |hpxq| ă 8. We recall that, by the Cauchy-Schwarz inequality, }h} 8 ď }f }}g}. Therefore, if f and g are square integrable then, condition pA5q is automatically satisfied.

Then, we can state the following upper bound on the risk.

Proposition 4.4.1. Suppose that the assumptions pA1q to pA5q hold. For p f pdq given in (4.29), p f p q,d defined in (4.30) and ě ? 2d, we have

E " } p f pdq ´f } 2 ı ď 2Cλ 2 T e ´ξd `2E " } p f p q,d ´f } 2 ı , (4.32)
where C is a constant depending on C 1 8 , ξ given in (4.13), c 1 in pA3q and }h} 8 . For p f p q,d defined in (4.30) and any ą 0, it holds that (a) The first term on the right-hand side of (4.33) (}f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 du) is the classical bias term : it is decreasing with the cut-off .

E " } p f p q,d ´f } 2 ı ď }f ´fp q } 2 `∆p q ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n tr `Ψ´1 d ˘˙. ( 4 
(b) The term ∆p q corresponds to the deconvolution aspect of problem : it is studied using the regularity condition on g ˚given in pA3q and is increasing with .

(c) Finally, the terms in the big parenthesis represent the regression aspect of problem (see Proposition 4.3.1 (ii)).

We also mention that the term Cλ 2 T e ´ξd is negligible compared to E " } p f p q,d ´f } 2 ı for large enough and f P W s pLq (Sobolev ball see (4.16) for the definition of W s pLq) and under pA3q. Then, the two estimators ( p f p q,d and p f pdq ) have the same rate of convergence. We can also consider p f p q,d as an estimator. However, this requires to optimize two parameters, the cut-off and the dimension d in practice, contrary to p f pdq which requires only to optimize d.

Rate of convergence of p

f p q,d and p f pdq

In this section, we compute rates of convergence in a collection of specified cases. To derive convergence results, we will make two consecutive bias-variance compromises, first for the regression part (compromise in (4.23)) and then for the deconvolution part, by substituting this value in (4.33) and optimizing in to get the rates of p f p q,d and p f pdq . The following result of convergence holds. Theorem 4.4.1. Let assumptions pA1q to pA4q hold. Assume that h P W s`γ H pL 1 q, then we have for d opt " rn 1{ps`γ`1q s with s `γ ą 11{6 and opt ∝ n 1{2ps`γ`1q that

sup f PW s pLq E " } p f p optq,dopt ´f } 2 ı " O ´n´s s`γ`1 ¯,
where W s pLq is the classical Sobolev ball of regularity s defined in (4.16) and γ is given in pA3q.

The same result holds for the estimator p f pdoptq with the assumption pA5q, see (4.32). The estimator p f p optq,dopt and p f pdoptq converge at a polynomial rate as in density deconvolution for ordinary smooth noise.

The hypothesis h P W s`γ H p¨q is related to the regularity of f and g. Conditions ensuring that this assumption is fulfilled are given in Section 4.7. 4.3)). Then, h belongs to W s`γ pL{c 1 1 q, where c 1 1 is given in (4.3). Indeed, we have

Note that as

ż p1`u 2 q s`γ |h ˚puq| 2 du " ż p1`u 2 q s |f ˚puq| 2 p1`u 2 q γ |g ˚puq| 2 du ď 1 c 1 1 ż p1`u 2 q s |f ˚puq| 2 du ď L c 1 .
We derive that h is s`γ times differentiable if s`γ is assumed integer and these derivatives up to order s `γ belong to L 2 pRq. Then, it belongs to W s`γ H pLq if and only if the functions x s`γ´η h pηq belong to L 2 pRq for η " 0, . . . , s `γ ´1 (see Section 4.3.3). The latter is discussed in the proof section, see Proposition 4.7.1. For some classical functions, we can obtain the exact order of bias of the unknown function f and the regression function h. We only calculate the rate for p f p q,d , these results extend naturally to p f pdq (see Equation (4.32)) considering pA5q.

Rate of convergence for f Gaussian

Let

f σ pxq " 1 ? 2πσ exp ˆ´x 2 2σ 2 ˙, (4.34) 
we can establish the following result.

Proposition 4.4.2. Let assumptions pA1q to pA4q hold and f " f σ where f σ is defined in (4.34). Further suppose that x α g P L 1 pRq X L 2 pRq for α an integer which can be chosen as large as possible and l " 0, . . . , α ´1. Set d opt " rn 1{pα`1q s and 2 opt " β logpnq with β " α{pα `1qσ 2 , we have

E " } p f p optq,dopt ´f } 2 ı À logpnq γ n α α`1
, where γ is given in pA3q.

Note that the condition x α g P L 1 pRq X L 2 pRq holds for classical ordinary smooth functions (Laplace or Gamma distributions). As α can be chosen large, then, for α Ñ `8 (which corresponds to d opt " 1), p f p optq,dopt is order logpnq γ {n. In this case, the rate logpnq γ {n is better than the rate obtained in the classical density deconvolution since the rate is order logpnq γ`1{2 {n, see [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF].

Rate of convergence for Gaussian kernel

By reversing the role of f and g in Proposition 4.4.2, namely that gpxq " p2πσ 2 q ´1{2 e ´x2 2σ 2 and f P W s pLq, we recover the classical rate of the density deconvolution framework, see [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] and [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF].

Proposition 4.4.3. Let Assumptions pA1q, pA3q and pA4q hold, gpxq " p2πσ 2 q ´1{2 e ´x2 2σ 2 , f P W s pLq and x α f P L 1 pRq X L 2 pRq for α an integer which can be chosen as large as
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desired and l " 0, . . . , α ´1. Then, we have for d opt " rn 1{pα`1q s and 2 opt " σ 2 α 2pα`1q logpnq that E " } p f p optq,dopt ´f } 2 ı À logpnq ´s.

Rate of convergence for f and g Gaussian.

If f and h belong to W s H pLq and are of Gaussian-type, the order of the bias term decreases exponentially (see [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] Consequently, it comes for

2 opt " 1 σ 2 `θ2 logpnq ´3 2 1 θ 2 `σ2 log logpnq that E " } p f p optq,dopt ´f } 2 ı À n ´σ2 σ 2 `θ2 logpnq σ 2 ´θ2 2 σ 2 `θ2 .
The same result holds if f is a mixture of Gaussian random variables. It is known that the rates in double super smooth case are of type n ´δ with δ ą 0 up to a certain power of logpnq (see [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF], Theorem 3.1 in density deconvolution setting). Note that if σ 2 `θ2 " 1, we have h " f ‹ g " p ? 2q ´1pπq ´1 4 ϕ 0 where ϕ 0 is the first function of the Hermite basis given by (4.9), in this case h d " h and }h ´hd } :" 0 which implies that the rate can be better than the one given in Proposition 4.4.4.

Rate of convergence for the Gamma case

When f is Γpp, θq and g Γpq, θq, where Γpa, bq is the Gamma distribution of with shape parameter a and scale b, then, the regression function h is Γpp `q, θq. If in addition the shape parameter is an integer, we can derive the exact bias order of h and then the rate of convergence. Proposition 4.4.5. Let pA1q,. . .,pA4q hold, p and q be two integers such that p `q ą 2. Assume that f " Γpp, θq and g " Γpq, θq. For d opt " rn 1{pp`q´1q s, we have ˙.

E " } p h dopt ´h} 2 ı À n ´p`q´2
The estimator p f p optq,dopt converges with rate n ´pp`q´2qp2p´1q{pp`q´1qp2p`2q´1q if f and g are Gamma functions. The same results holds if f is a mixture of Gamma function.

Let us now summarize the previous results in the Table 4.2 :

f g Gaussian Gamma N p0, θ 2 q Γpq, θq Gaussian n ´σ2 σ 2 `θ2 logpnq σ 2 ´θ2 2 σ 2 `θ2 logpnq q n ´α α`1 N p0, σ 2 q α large Gamma logpnq ´p`1 2 n ´pp`q´2qp2p´1q pp`q´1qp2p`2q´1q
Γpq, θq 

Adaptive procedure for Fourier-Hermite strategy

The objective of this section is to propose a way of selection for the estimator p f p q,d . First, we remark that p f p q,d cannot be written as a minimizer of a contrast. Thus, we cannot use a procedure by penalization. This is why, we describe an adaptive choice inspired by the ideas developed by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation : oracle inequalities and adaptive minimax optimality[END_REF]. The procedure is mainly based on the comparison of estimators of f . From now, we set " ? 2d and introduce the following estimator p p f d pxq :" p f p ? 2dq,d pxq "

1 2π ż ? 2d 
´?2d e ´iux p h d puq g ˚puq du. (4.36) This choice of is motivated by the results obtained in Proposition 4.4.1 and Theorem 4.4.1. Indeed : the optimal choice of is the order of ? d and as the minimal admissible choice is " ? 2d ; this is why, we set " ? 2d.

Consider the following collection of models

M p1q n :" t1 ď d ď n, σ 2 ε λ 2 T d∆p ? 2dq n ď 1u
where ∆pdq is given by (4.31) and λ 2 in pA4q. Define p Apdq :" max .37) where κ 1 ą 0 is numerical constant which must be calibrated in practice by simulations and where κ 1 ď κ 2 and κ 2 must be also calibrated. The term p Apdq is an estimator of bias of p p f d and its construction is based on the comparison of estimators of f . We add the following assumption on the noise pA6q ε 1 is sub-Gaussian variable with proxy variance b ą 0, that is for every t P R, it holds

d 1 PM p1q n "ˆ} p p f d 1 ´p p f d^d 1 } 2 ´κ1 V pd 1 q ˙`* , ( 4 
V
Erexpptε 1 qs ď expp b 2 t 2 2 q.
It is also said that ε 1 is b-sub-Gaussian or sub-Gaussian with parameter b. The natural example of a sub-Gaussian random variable is a centered Gaussian. If ε 1 has N p0, σ 2 q distribution, it is easy to check Erexpptε 1 qs ď expp σ 2 t 2 2 q, then, ε 1 is sub-gaussian with parameter σ 2 . Assumption pA6q is also satisfied if ε 1 is bounded. 

C

is a numerical constant and C 1 " C 1 pErε 4 1 s, γ, c 1 , ξ, λ 2 , C 1 8 q with c 1 1 , γ given in pA3q, ξ, C 1 8 in (4.13) and λ 2 in pA4q. In addition, if f belongs to W s pLq and h to W s`γ H pL 1 q with s `γ ě 17{6, it holds

Er} p p f p d ´f } 2 s ď C 1 inf dPM p1q n `d´s `V pdq ˘`C 1 1 logpnq n , (4.41)
where C 1 is a constant depending on C, L, L 1 , s, γ and C 1 1 depending on C 1 , s and γ.

The term R b pdq has the same order as the classical bias of f (}f ´fp ? 2dq } 2 ) under adequate regularity conditions on f and g. Inequalities (4.40) and (4.41) are non asymptotic. In the assumptions of regularity, the values of s (for f ) and γ (s `γ for h) need not to be known for implementing the procedure or computing the estimator. The two inequalities show where C ą 0 is a numerical constant.

Hermite-Hermite strategy for the regression-deconvolution model

Our aim is to build a projection estimator of the unknown function f using the Hermite basis. The ideas is to decompose both functions f and h in the Hermite basis.

Estimation strategy

Let px k , ypx k qq ´nďkďn´1 from model (4.1), m ě 1, integer and consider S m defined in (4.17). Assuming that f belongs to L 2 pRq, we decompose f in the Hermite basis pϕ j q jě0 : f " ř 8 j"0 a j pf qϕ j , a j pf q " xf, ϕ j y " ş f pxqϕ j pxqdx and the orthogonal projection of f on S m is given by : f m " ř m´1 j"0 a j pf qϕ j . To estimate f , we build m estimators of the coefficients a j pf q. Under pA2q, using the Plancherel theorem and as h " f ‹ g, it follows that : 

a j pf q " 1 2π x h g ˚, ϕ j y

Risk bound for the projection estimator of f

The following risk bound holds for p f m,d . Note that the constant ρ ą 0 is independent from n, m and d. The same comments given after Proposition 4.4.1 for the deconvolution estimator p f p q,d hold here. The difference with p f p q,d can be found on the bias of p f m,d and the term Σpmq, the regression part does not change. Moreover, the term ř m´1 j"0 ş |x|ě ?

ρm |ϕ j pxq| 2 |g ˚pxq| ´2dx is exponentially decaying for ρ ě 2 (see Proposition 3.1 in Sacko ( 2020)) and thus negligible with respect of sup |x|ď ? ρm p|g ˚pxq| ´2q " ∆p ? ρmq, where ∆p q is given in (4.31). Thus, for f P W s H pLq and choosing -? m, the estimator p f p q,d and p f m,d have the same order and then rate of convergence (see also [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] and [START_REF] Sacko | Hermite density deconvolution[END_REF] in the framework of density deconvolution).

Rate of convergence of p f m,d

As for p f pdq , we propose a two-step bias-variance trade-off.

Theorem 4.5.1. Suppose that pA3q, pA4q and h belongs to W s`γ H pLq. For d opt " m opt " rn 1{ps`γ`1q s with s `γ ą 11{6, we derive that

sup f PW s H pLq E " } p f mopt,dopt ´f } 2 ı " O ´n´s s`γ`1 ¯,
where W s H pLq is the classical Sobolev-Hermite ball defined in (4.15).

The estimator p f mopt,dopt achieves the same rate as p f pdoptq obtained in Theorem 4.4.1. Note that the results for some special functions obtained for p f pdoptq in Proposition 4. 4.2, 4.4.3 and 4.4.4 apply here. For the Gamma case (see Proposition 4.4.5), we have a loss on the order of the bias of f , }f ´fm } 2 which is linked to the Hermite basis. Indeed, for 2 -m, p f m,d and p f p q,d have the same variance order but the bias is order : }f ´fm } 2 ď ´2p`4 contrary to the Fourier bias where }f ´f } -´2p`1 where p is the shape parameter of Gamma function. For p f m,d , we get for m opt " d 2 opt " rn 1 2pp`q´1q s the following rate of convergence

E " } p f mopt,dopt ´f } 2 ı " O ´n´p ´2 p`q´1
¯.

Numerical illustration

Practical implementation

In this section, we present the results of a simulation study to illustrate the performances of our strategies. We take the same test functions and kernel given in regression part (see Section 4.3.7). We set T " 10 and consider two values of the samples sizes n " 250, 1000. We simulate a Gaussian noise for the error with two noise levels σ ε P t1{8, 1{4u. We recall that the function regression h " f ‹ g is computed by Riemann sum discretization. We consider the following collection of models M p1q n " t1, 2, . . . , 30u. The Fourier transform of g is equal to g ˚ptq " p1 ´i t θ q ´2 with θ " 4 then, we consider the following variance term in practice :

V pdq " 2 p1 `24 logpnqq σ 2 ε p1 `2d θ 2 q λ 2 dT n , θ " 4, λ 2 " 1. (4.46)
The adaptive estimator is implemented as follows :

- In the sequel, this procedure is called ! GL ". Choice of constants κ 1 and κ 2 . We can choose κ 1 " κ 1 and have just one constant to calibrate, it is in this kind that the procedure (Goldenshluger and Lepski) was developed. Recently, [START_REF] Lacour | Minimal penalty for Goldenshluger-Lepski method[END_REF] suggest the idea to consider two different constants (κ 1 ‰ κ 2 ) and propose to take κ 2 " 2κ 1 for kernel density estimation using [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation : oracle inequalities and adaptive minimax optimality[END_REF] method. Here, we adopt the same idea to find the values of κ 1 and κ 2 . In a rather "rough" way and after some numerical tests, we choose κ 1 " 8 ˆ10 ´4 and κ 2 " 16 ˆ10 ´4. Of course, the values given to κ 1 and κ 2 may not be the most relevant but it gives quite satisfactory results. Then, we illustrate the procedure by some graphs. As GL method is slow and therefore difficult to calibrate, we implement the improvement proposed by [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF], which allows us to perform repetitions and propose risk tables. [START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF]'s strategy is introduced to perform bandwidth selection in the case of kernel estimation of a density, and has the advantage to be faster. Furthermore, we must only calibrate one constant denoted κ p1q . More precisely, the method (called ! PCO ") is described as follows Calibration of constant κ p1q . To find the value of κ p1q , we have evaluated the MISE for different test functions by varying κ p1q . These preliminary studies helped us to make a good compromise and then to fix κ p1q " 1.5 ˆ10 ´3.

Numerical simulation results

First, we illustrate the methods by presenting some pictures. Figure 4.3 presents the true unknown function (the bold red line), thirty estimators of f for all possible dimensions proposed for selection to GL method in green dotted lines, and the estimator chosen by the GL procedure in blue bold line for each test function (i), (ii), (iii) and (iv) from left to right. The dimension selected by the procedure is given under each graph. We observe that this choice is often relevant compared to the 30 estimators plots.

In Figures 4.4 The first line illustrates the influence of sample size and the second line shows how the noise levels can affect the performance of the estimates. We observe that increasing n improves the estimation and, on the contrary, that increasing the variance of noise makes the problem more difficult. We can also see some oscillations when σ ε " 1{4 which corresponds to a s2n ratio less than 1 (see Table 4.1), this effects decreases when the sample size increases. The mean of selected dimensions are given in Table 4.4. We observe that these averages are comparable to the dimension obtained in Figure 4.3 for (iii) and (iv).

In Table 4.3, we report the values of the MISEs with standard deviation in parentheses multiplied by 100 computed from 100 simulated samples for the estimator p p f r d with r d selected using the PCO algorithm. We also provide the average of r d selected by the procedure. As for graphical study, we see that increasing the sample size and decreasing the variance of noise (which corresponds to a s2n large see Table 4.1) improve the estimation. When n increases, the average of r d is increasing except in the case of function (i) with σ ε " 1{4. This case corresponds to a s2n equal to 0.60 see Table 4.1 and then the estimation is most difficult ; this can explain why the procedure will seek a large dimension for n " 250. Clearly, the influence of signal-to-noise ratio s2n is important, see in 

Proofs

In the sequel C denotes a generic constant whose value may change from line to line and whose dependency is sometimes given in indexes.

Proposition 4.7.1. (Regularity of h if g is ordinary smooth) Let s, γ and α integer such that α " s `γ. Assume that :

(i) f is in W s H p¨q, f plq and x α´l f plq for l " 0, . . . , s belong to L 1 pRq, (ii) g is ordinary smooth with parameter γ such that g P L 1 pRq, x α´l g ppq for p " 0, . . . , γ ´2 belong to L 1 pRq X L 2 pRq with γ ě 2.

Then, h " f ‹ g belongs to W α´1 H p¨q. Furthermore, if (iii) the map x Þ Ñ xh pα´1q pxq is square integrable.

It follows that h " f ‹ g P W α H p¨q.

-The assumptions given in piq are not very restrictive and are checked by many functions : Gaussian, Gamma, Mixed-Gaussian, Mixed-Gamma, Cauchy, Laplace with s " 0.

-The conditions on g given in (iiq are verified for the classical ordinary-smooth function : gpxq " x γ´1 e ´θx 1 xě0 with θ ą 0, gpxq " e ´b|x| , b ą 0 and all the symmetric Gamma distributions.

-However, the assumption piiiq is difficult to verify if the regression function cannot be known explicitly. Of course, this is linked to the fact that it is difficult to explicitly compute a convolution product. Indeed, in the simple cases where we can compute h " f ‹g, this assumption is checked (e.g. both functions f and g are of type Gamma with the same scale parameter, Laplace and Gaussian).

Proof of Proposition 4.7.1. Notice that as f P L 1 pRq and g is bounded, therefore, h " f ‹g is well defined and bounded. We known also that h belongs to W s`γ p¨q which is equivalent to h is s `γ times differentiable and h, h 1 , . . . , h for l " 0, . . . , α ´1 (see Section 4.3.3). As ż px α´l h plq q 2 dx ď ż ph plq pxqq 2 dx `ż px α h plq pxqq 2 dx, then, this equivalent to x α h pαq is squared integrable for l " 0, . . . , α ´1 since h l is squared integrable. We assume now s and γ are integers so that :

h plq " pf ‹ gq plq " " f plq ‹ g for l " 0, . . . , s f psq ‹ g ppq for l " s `p and p " 0, . . . , γ ´2. (4.47)

Now, we will prove that h P W α H pLq. Let us start by the case where l " 0, . . . , s. For l P t0, . . . , su, using the Parseveval-Plancherel Equality, we have, }x α h plq } 2 " 2π} ´xα h plq ¯˚} 2 " 2π}rph plq q ˚spα´lq } 2 " 2π}rpf plq q ˚g˚spα´lq } 2 .

For x α g P L 1 pRq and x α f plq P L 1 pRq, the Fourier transforms of g and f plq are α differentiable. Using successively Leibniz Formula and Cauchy-Schwarz Inequality, it follows that,

}x α´l h plq } 2 " 2π} α´l ÿ k"0 ˆα ´l k ˙pg ˚qpkq rpf plq q ˚spα´l´kq } 2 " 2π ż ˇˇˇˇα ÿ k"0 ˆα ´l k ˙pg ˚qpkq puqrpf plq q ˚spα´kq puq ˇˇˇˇ2 du ď 2π α´l ÿ k"0 ˆα k ˙α´l ÿ k"0 ˆα k ˙ż |pg ˚qpkq puq| 2 |rpf plq q ˚spα´kq puq| 2 du.
Recall that, let χ P L 1 pRq such that x p χ P L 1 pRq, then x k 1 χ is integrable for k 1 " 0, . . . , p.

Indeed, for all x P R, we have |x k 1 χpxq| ď p1 `|x| p q |χpxq| and it comes that

d k 1 du k 1 χ ˚"
pχ ˚qpk 1 q " piq k 1 ´xk 1 χ ¯˚. The Riemann-Lebesgue Theorem implies that }pχ ˚qpk 1 q } 8 ď }x Þ Ñ

x k 1 χ} 1 ă 8. Then, we derive that

}x α h plq } 2 ď 2π α ÿ k"0 ˆα k ˙α ÿ k"0 ˆα k ˙}rpf plq q ˚spα´l´kq } 2 8 ż |pg ˚qpkq puq| 2 du ď Cps, βq max 0ďkďα }rpf plq q ˚spα´kq } 2 8 α ÿ k"0 ˆα k ˙ż |pg ˚qpkq puq| 2 du.
As Now, we consider the case l " s `p, with p " 0, . . . , β ´2. As x α g ppq P L 1 pRq and x α f psq P L 1 pRq, we derive by the same computations as the case l " 0, . . . s, and from (4.47) :

}x α h plq } 2 " 2π}rpg ppq q ˚pf psq q ˚spαq } 2 ď Cps, βq α ÿ k"0 }rpf psq q ˚spα´kq } 2 8 ˆα k ˙ż |rpg ppq q ˚spkq | 2 du,
where f psq and g ppq play the role of f plq and g respectively. Using the same decomposition as in (4.48), we get ş |rpg ppq q ˚spkq | 2 du ă `8 provided that x α g ppq P L 2 pRq which is the case here and it holds that }x α h plq } 2 ă `8, l " s `p, p " 0, . . . , β ´2.

(4.50)

We derive from (4.49) and (4.50) that h belongs to W α´1 H pL 1 q. As by hypothesis, the maps x Þ Ñ xh pα´1q pxq is square integrable, we deduce that h P W α H pL 1 q.

Proofs of Section 4.2

Proof of Proposition 4.2.1. We start by introducing f defined by : f pxq " 1 2π

ż

´ e ixu h ˚puq g ˚puq du.

Then, we have

Er} r f ´f } 2 s " }f ´f } 2 `Er} p f ´f } 2 s " }f ´f } 2 `Er} r f ´Er r f s} 2 s `} Er r f s ´f } 2 . (4.51)
We study the two last term of (4.51). For the first one, we have

Er} r f ´Er r f s} 2 s " 1 2π ż ´ E ˇˇr h ˚puq ´Er r h ˚puqs ˇˇ2 |g ˚puq| 2 du.
By the definition of r h ˚given in (4.6), it holds that

E ˇˇr h ˚puq ´Er r h ˚puqs ˇˇ2 " E » -ˇˇˇˇT n n´1 ÿ j"´n e ix j u py j ´hpx j qq ˇˇˇˇ2 fi fl " T 2 n 2 E « ÿ ´nďj,kďn´1 e iupx j ´xk q ε j ε k ff " 2T 2 n σ 2 ε ,
since the pε j q ´nďjďn´1 are i. 

Proofs of Section 4.3

Proof of Lemma 4.3.1. Let w " pw 0 , . . . w d´1 q t , with Ψ d w " 0. Then, it holds

T n w T Φ T d Φ d w " T n }Φ d w} 2 2 " T n n ÿ i"´n ˜d´1 ÿ j"0 w j ϕ j px i q ¸2 " 0.
Therefore, for all ´n ď i ď n ´1, we have, ř d´1 j"0 w j ϕ j px i q " 0. As ϕ j pxq " c j H j pxqe ´x2 {2 , we derive P d px i q :" ř d´1 j"0 w j c j H j px i q " 0 i.e., P d is a polynomial of degree d ´1 admitting n ą d distinct roots. Consequently, it follows P d " 0 and thus w " 0. 

ε i ε k rP p xq i,k s ff " σ 2 ε n´1 ÿ i"´n ErP p xq i,i s " σ 2 ε trpP p xqq " σ 2 ε trpI d q " σ 2 ε d. Consequently, it holds E " } p h d ´Πd h} 2 n ı " σ 2 ε T d n .
Plugging this in (4.54) ends the proof of (4.20). We study the two first terms in the right hand side of the previous equality. For the first term, using the definition of p h d given in (4.28), we get

Proof of part (ii

E " } p h d ´Er p h d s} 2 ı " E} p b pdq ´E p b pdq } 2 R d " 2πE " p p b pdq ´E p b pdq q t p p b pdq ´E p b pdq q  . Note that p b pdq ´E p b pdq " pΦ t d Φ d q ´1Φ t d ε. This implies E " } p h d ´Er p h d s} 2 ı " E " ε t Φ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d ε ‰ " E " ε t M p xq ε ‰ , where M p xq " Φ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d . As ε i are i.i.d. of variance σ 2 ε , it holds E " ε t M p xq ε ‰ " E « ÿ ´nďi,kďn´1 ε i ε k rM p xq i,k s ff " σ 2 ε n´1 ÿ i"´n ErM p xq i,i s " σ 2 ε trpM p xqq " σ 2 ε trppΦ t d Φ d q ´1q. We derive that E " ε t M p xq ε ‰ " σ 2 ε T n tr `Ψ´1 d ˘and E " } p h d ´Er p h d s} 2 ı " σ 2 ε T n tr `Ψ´1 d ˘. ( 4 

.55)

For the other term, we have

}h d ´Er p h d s} 2 " › › › › › › › ¨xh, ϕ 0 y . . . xh, ϕ d´1 y ‹ '´pΦ t d Φ d q ´1Φ t d ¨hpx ´nq . . . hpx n q ‹ ' › › › › › › › 2 R d
. Now, we remark that ¨hd px ´nq . . .

h d px n´1 q ‹ '" d´1 ÿ k"0 xh, ϕ k y ¨ϕk px ´nq . . . ϕ k px n´1 q ‹ '" Φ d ¨xh, ϕ 0 y . . . xh, ϕ d´1 y ‹ '
and therefore,

pΦ t d Φ d q ´1Φ t d ¨hd px ´nq . . . h d px n´1 q ‹ '" ¨xh, ϕ 0 y . . . xh, ϕ d´1 y ‹ '.
Thus, it follows

}h d ´Er p h d s} 2 " }pΦ t d Φ d q ´1Φ t d ph d p xq ´hp xqqq } 2 R d ď }pΦ t d Φ d q ´1Φ t d } 2 op n´1 ÿ i"´n ph d px i q ´hpx i qq 2 ,
where }A} 2 op is the operator norm of the matrix A defined as the square root of the largest eigenvalue of A t A. Then, it yields 

}pΦ t d Φ d q ´1Φ t d } 2 op " λ max pΦ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d q " T n λ max `Ψ´1 d ˘(4.
ř n´1 i"´n ph d px i q´hpx i qq 2 ´şT ´T ph´h d q 2 puqdu ď C T 2
n and therefore }h ´hd } 2 n ď Cpα, Lq T 2 n `}h ´hd } 2 . This gives the part (i).

Proof of part (ii). Let us start by writing

}h ´hd } 2 n " T n n´1 ÿ i"´n ph ´hd q 2 px i q ď 2 T n n´1 ÿ i"´n " ph ´hd q 2 px i q `ph ´hd q 2 px i`1 q 2  " 2 T n n´1 ÿ i"´n " ph ´hd q 2 px i q `ph ´hd q 2 px i`1 q 2  ´2 ż T ´T ph ´hd q 2 pxqdx `2 ż T ´T ph ´hd q 2 pxqdx.
From Lemma 4.8.2 (ii) given in Appendix, we have

ˇˇˇˇT n n´1 ÿ i"´n " ph ´hd q 2 px i q `ph ´hd q 2 px i`1 q 2  ´ż T ´T ph ´hd q 2 pxqdx ˇˇˇˇď }ψ 2 } 8 T 3 12n 2 ,
where ψpxq " ph ´hd q 2 pxq " p ř jąd a j phqϕ j pxqq 2 with a j phq " xh, ϕ j y. Next, we evaluate the term }ψ 2 } 8 . By induction on d, the d-th derivative of ϕ j is given by (see Lemma 5.2 in Comte et al. (2020) for the proof) 

ϕ pdq j " d ÿ k"´d b pdq k,j ϕ j`k , where b pdq k,j " Opj d{2 q, j ě d ě |k|.
j ´α`1 1 6 ¸1 2 À pd ´α`1 1 6 `1q 1 2 " d ´α 2 `17 12 .
This implies that ψ is differentiable of order 2. Then, for any j ą d, it holds

ψ 2 pxq " 2 » - ÿ jąd a j phqϕ 2 j pxq ÿ jěd a j phqϕ j pxq `˜ÿ jąd a j phqϕ 1 j pxq ¸2fi fl ,
where the bound of last term is d ´α`1 1 6 for h P W α H pLq (see Proof of part (i)). Besides, the order of ř jěd a j phqϕ j pxq is d ´α 2 `5 12 . Therefore, it comes }ψ 2 } 8 À d ´α`1 1 6 and then

}h ´hd } 2 n ď 2}h ´hd } 2 `C T 3 12n 2 .
This ends the proof of part (ii) and then the proof of Lemma. 

" } p h d ´h} 2 n ı ď }h d ´h} 2 `pσ 2 ε T `Cpα, LqT 2 q d n ď Ld ´α `pσ 2 ε `Cpα, LqT 2 q d n ,
where Cpα, Lq ą 0 depends on α and L. The choice d " d opt " rn 1{pα`1q s yields

E " } p h dopt ´h} 2 n ı " Opn ´α α`1 q.
Hence the part (i) of Proposition 4.3.2. The part (ii) is similar considering pA4q.

Proof of Theorem 4.3.1. Inequality (4.25) follows from Corollary 3.1 in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], where all terms are multiplied by T with q " 1 and p " 8. The constant C 1 is given by :

C 1 " C 2 pκq Erε 8 1 s σ 6 ε ˜1 `ÿ dPMn d ´2¸ă `8.
Let us now prove (4.26). We recall that (see Equation ( 17) in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]) 

@d P N , sup tPS d ,t‰0 }t} }t} n " λ max pΨ ´1 d q. ( 4 

"

Cpκq inf

dPMn ˆinf tPS d }t ´h} 2 n `σ2 ε T d n ˙`C 1 n  `2λ 2 2 }h ´hd } 2 n `}h d ´h} 2 ď maxp1, 2λ 2 2 Cpκqq inf dPMn ˆp2λ 2 2 `1q}h ´hd } 2 n `}h d ´h} 2 `σ2 ε T d n ˙`2λ 2 2 C 1 T n .
This gives (4.26) and ends the proof of Theorem 4.3.1.

Proofs of Section 4.4

Proof of Proposition 4.4.1.

Proof of Equation (4.32). We have

Er} p f pdq ´f } 2 s ď 2 Er} p f pdq ´p f p q,d } 2 s `2 Er} p f p q,d ´f } 2 s.
We examine the first term. Using successively the Cauchy-Schwarz inequality, (4.13) and under pA3q, we deduce that

} p f pdq ´p f p q,d } 2 " 1 2π ż |u|ą | p h d puq| 2 |g ˚puq| 2 du " 1 2π ż |u|ą ˇˇp h d puq ´E p h d puq `E p h d puq ˇˇ2 |g ˚puq| 2 du " ż |u|ą ˇˇř d´1 j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯ϕj puq ˇˇ2 |g ˚puq| 2 du ď d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 d´1 ÿ j"0 ż |u|ą ϕ j puq 2 |g ˚puq| 2 du ď c 1 C 12 8 d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 de ´ξ 2 2 ż e ´ξu 2 
2 p1 `u2 q γ du.

As ş e ´ξu 2 2 p1 `u2 q γ du ď c 1 1 ă 8 with c 1 1 " c 1 1 pγ, ξq and ě ? 2d, then, it follows that 

E " } p f pdq ´p f p q,d } 2 ı ď c 1 c 1 1 C 2 8 E « d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2ff de ´ξd . ( 4 
« d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2ff " Er} p h d ´E p h d } 2 s `} E p h d } 2 ď σ 2 ε T n trpΨ ´1 d q `λmax `Ψ´1 d ˘}h} 2 n .
Under pA4q and pA5q, we have σ

2 ε T n trpΨ ´1 d q `λmax `Ψ´1 d ˘}h} 2 n ď maxpσ 2 ε , 2}h} 2 8 qλ 2 T . It comes that E " ř d´1 j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 ď maxpσ 2 ε , 2}h} 2 8 qλ 2 T . Injecting this in (4.60), we obtain Er} p f pdq ´p f p q,d } 2 s ď c 1 c 1 1 C 12 8 maxpσ 2 ε , 2}h} 2 8 qde ´ξd " Cλ 2 T e ´ξd 2 ,
where C " CpC 1 8 , c 1 , }h} 8 , ξq and therefore that

Er} p f pdq ´p f p q,d } 2 s ď Cλ 2 T e ´ξd `2 Er} p f p q,d ´f } 2 s.
Proof of Equation (4.33). For all ą 0, d ě 1, we have the following decomposition :

E " } p f p q,d ´f } 2 ı " }f ´fp q } 2 `E " }f p q ´p f p q,d } 2 ı . ( 4.61) 
We evaluate E " }f p q ´p f p q,d } 2 ı using the Plancherel formula : 

Er} p f p q,d ´fp q } 2 s " 1 2π E » - ż ´ ˇˇˇˇp h d puq
E " } p f p q,d ´f } 2 ı ď L ´2s `p1 ` 2 q γ " σ 2 ε λ 2 dT n `p1 `λ2 qL 1 d ´α `Cpα, Lq T 2 n  .
The choices d opt " rn 1{pα`1q s and " opt " n 1 2pα`1q end the proof.

Proof of Proposition 4.4.2. As f is Gaussian, then it belongs to W α H pDq (see (4.15)) with α as large as desired, since f is infinitely differentiable and f, . . . , f pαq , x α´l f plq for l " 0 . . . α ´1, see Section 4.3.3. Using the differentiation under the integral sign theorem, we have that h " f ‹ g is also infinitely differentiable for g P L 1 pRq and we write h plq " f plq ‹ g. Besides, it yields }h plq } ď }f plq }}g} 1 . Then, h belongs to W α p¨q (Sobolev ball) since these derivative up to order α belong to L 2 pRq. Thus, h P W α H p¨q if the function x α´l h plq is square integrable. This is equivalent to prove that x α h plq is square integrable. Now, we write }x α h plq } 2 " 2π} ´xpαq h plq ¯˚} 2 " 2π}rph plq q ˚spαq } 2 " 2π}rg ˚pf plq q ˚spαq } 2 .

As x α g P L 1 pRq X L 2 pRq and x α f plq P L 1 pRq, we get by the Leibniz Formula (same computation as the proof of Proposition 4.7.1 given in Section proof) and the Cauchy-Schwarz inequality that : 

}x α h plq } 2 "2π} α ÿ k"0 ˆα k ˙pg ˚qpkq rpf plq q ˚spα´kq } 2 "2π ż ˇˇˇˇα ÿ k"0 ˆα k ˙pg ˚qpkq puqrpf plq q ˚spα´kq puq ˇˇˇˇ2 du ďCpαq max 0ďkďα´l }rpf plq q ˚spα´kq }
" } p f p q,dopt ´f } 2 ı À ´1e ´σ 2 `c1 p1 ` 2 q γ n ´α α`1 .
Replacing 2 by 2 opt " α pα`1qσ 2 logpnq ends the proof.

Proof of Proposition 4.4.3. The proof is similar to that of Proposition 4.4.2. The regression part does not change i.e. for the choice d opt " rn 1{pα`1q s, we have always that Er} p h dopt h} 2 s À n ´α α`1 . (see the Proof of Proposition 4.4.2) with α as large as desired. But for the deconvolution part, the rate change since the order of the bias of f and ∆p q have changed. Now, these order are : ∆p q " sup |u|ď |g ˚puq| ´2 ď e σ 2 2 because g ˚puq " expp´σ 2 t 2 2 q and }f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 du ď ´2s for f P W s p¨q (see (4.16)). From the previous results, we derive from (4.33)

E " } p f p q,dopt ´f } 2 ı À ´2s `eσ 2 2 n ´α α`1 .
Choosing 

" } p f p q,dopt ´f } 2 ı ď }f ´fp q } 2 `∆p q logpnq n .
As g ˚puq " expp´θ 2 t 2

2 q then, it holds ∆p q " sup |u|ď |g ˚puq| ´2 ď e θ 2 2 . Using Lemma 2 in Comte and Lacour (2011), we have

}f ´fp q } 2 " 1 2π ż |u|ą |f ˚puq| 2 du -´1e ´σ2 2 .
Consequently, we get from (4.33)

E " } p f p q,dopt ´f } 2 ı À ´1e ´σ2 2 `eθ 2 2 logpnq n , Replacing 2 
opt " 1 pσ 2 `θ2 logpnq ´3 2pθ 2 `σ2 q log logpnq gives the announced result.

Proof of Proposition 4.4.5. Recall that as f is Γpp, θq and g Γpq, θq, then, the regression function h " f ‹ g " Γpp `q, θq and belongs to h P W pp`q´2q H since p `q ą 2. We have

Er} p h d ´h} 2 s ď Cd ´pp`q´2q `σ2 ε λ 2 T n d `Op T 2 n q.
Replacing d by d opt " rn 1{pp`q´1q s, we derive Er} p h dopt ´h} 2 s À n ´p`q´2 p`q´1 . Now, we consider the deconvolution part. The Fourier transform of g and its modulus are given by g ˚ptq " p1 ´i t θ q ´q, |g ˚ptq| " p1 `t2 θ 2 q ´q 2 .

Then, it holds that ∆p q " sup |u|ď |g ˚puq| ´2 ď p1 ` 2 θ 2 q q " c 2q and using Lemma 2 in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], it follows }f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 dup θ q ´2p`1 . Plugging the previous results in (4.33) yields 

E " } p f p q,dopt ´f } 2 ı À p θ q ´2p`1 `c 2q n ´p`q´2
p f d `p p f d ´f } 2 ď 3} p p f p d ´p p f p d^d } 2 `3} p p f p d^d ´p p f d } 2 `3} p p f d ´f } 2 ď 3p p Apdq `κ1 V p p dqq `3p p Ap p dq `κ1 V pdqq `3} p p f d ´f } 2 ď 6p p Apdq `κ2 V pdqq `3} p p f d ´f } 2 .
Taking the expectation in the previous inequality, we get Under pA3q, it comes from Lemma 4.3.2 (ii) and for h P W s`γ H pL 1 q, ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ďc 1 p1 `λ2 qp1 `2d 1 q γ L 1 pd 1 q ´s´γ `C∆p ? 2d 1 q T 3 n 2 ďC ˆd1´s `T 2 n ˙.

E " } p p f p d ´f } 2  ď 6 Er p Apdqs `6κ 2 V pdqq `3 E " } p p f d ´f } 2  . ( 4 
Then where p e i q ´nďiďn´1 is the vector of the canonical basis of R 2n . The matrix Ψ ´1 d is a definite symmetric, then diagonalizable and we can write Ψ ´1 d " P DP t , P t P " P P t " I d , D " Diagpµ 1 , . . . , µ d q,

where pµ i q 1ďiďd are the eigenvalues of matrix Ψ ´1 d . We can define its square root and we have for w " P t Ψ ´1 x i pu ´xi qdu " }ψ 1 } 8 T 2 n .

Proof of part (ii).

Define the Lagrangian interpoltor polynomial of ψ by ψ i pxq " ψpx i q `ψpx i`1 q ´ψpx i q x i`1 ´xi px ´xi q.

This linear function coincide with ψ for x P tx i , x i`1 u. We first remark that :

T n n´1 ÿ i"´n ψ p x i q `ψpx i`1 q 2 " n´1 ÿ i"´n

ż x i`1 x i ψ i pxqdx.
Then x i |ψ i pxq´ψpxq|dx for all x P R. We introduce the following function for fixed x on rx i , x i`1 s φptq " ψptq ´ψi ptq ´pt ´xi qpt ´xi`1 q px ´xi qpx ´xi`1 q pψpxq ´ψi pxqq

This function is null in t " x, x i and x i`1 . By the Rolle theorem, there exists a constant c x such that φ 2 pc x q " ψ 2 pc x q ´2 ψpxq´ψ i pxq px´x i qpx´x i`1 q " 0 which gives ψpxq ´ψi pxq " px ´xi qpx xi`1 q ψ 2 pcxq 2 . From this, we deduce that

ż x i`1
x i |ψ i pxq ´ψpxq|dx ď }ψ} 8 2

ż x i`1
x i px ´xi qpx i`1 ´xqdx ď }ψ} 8 12 px i`1 ´xi q 3 , and ˇˇT n ř n´1 i"´n ψpx i q`ψpx i`1 q 2 ´şT ´T ψpxqdx ˇˇď }ψ} 8 T 3 12n 2 . This concludes the proof.

Useful tools and inequalities

The proof of the following Theorem can be found in [START_REF] Stewart | Matrix perturbation theory[END_REF] (see also Equation (1.2) in [START_REF] Stewart | Matrix perturbation theory[END_REF]). Let pX i q ´nďiďn´1 be independent real random variables, F a class at most countable of measurable functions.

ν n psq " 1 2n n´1 ÿ i"´n pspX i q ´ErspX i qsq, @s P F. ẇhere Cpδq " p ? 1 `δ ´1q ^1, K 1 " 1{3 and K 1 1 a universal constant. The Talagrand inequalities has been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], reworded by [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. For each of these methods, we establish bounds for quadratic risk. For adequate choices of parameters (dimension of projection space or cut-off), we obtain rates of convergence of our estimators. However, theses parameters depend on unknown quantities. Thus, we propose adaptive procedures to select them in a relevant way inspired by model selection by penalization of [START_REF] Birgé | From model selection to adaptive estimation[END_REF]'s type or Goldenshluger and Lepski
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? b´a 1

 1 ra,bs p¨q, et pour k P r1, ds ϕ 2k p¨q " c 2 b ´a cosp2πk ¨´a b ´a q1 ra,bs p¨q, ϕ 2k`1 p¨q " c 2 b ´a sinp2πk ¨´a b ´a q1 ra,bs p¨q. On a donc que m " 2d `1 et la famille (ϕ 1 , ϕ 2 , . . . , ϕ m ) forme une base orthonormée sur ra, bs. ' Base d'histogrammes réguliers. La construction se fonde sur le fait de scinder l'intervalle ra, bs en m morceaux de tailles égales. Cette base est donnée par ϕ k p¨q " Pour k ‰ j, le produit ϕ k ϕ j " 0. La quantité b m b´a est un facteur de normalisation qui permet d'avoir ş b a ϕ 2

  ż R |x s´l θ plq pxq| 2 dx ď ż R |p1 `xs qθ plq pxq| 2 dx.

  Figure 1.1 -Collection d'estimateurs par projection en base d'Hermite de la densité d'une N p2, 1q en trait épais (rouge), la courbe sélectionnée à droite parmi 50 propositions données à gauche (en vert pointillés). La procédure par pénalisation sélectionne p m " 9 pour n " 1000.

Figure 1 . 2 -

 12 Figure 1.2 -Collection d'estimateurs par projection en base d'Hermite de la densité d'une N p2, 1q en trait épais (rouge), la courbe sélectionnée à droite parmi 50 propositions données à gauche (en vert pointillés). La procédure GL sélectionne p m " 7 pour n " 1000.

Theorem 2 . 2 . 1 .

 221 Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold in the Laguerre case. Assume that ErX ´d´1{2 1 s ă `8 in the Laguerre case and Er|X 1 | 2{3 s ă `8 in the Hermite case.

  .4.

Figure 2 .

 2 Figure 2.1 -20 estimates p f p mn,pdq in the Hermite basis of a Mixed Gaussian distribution (ii), with n " 500 (first line) and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2).

Figure 2 .

 2 Figure 2.2 -20 estimates p f p mn,pdq in the Laguerre basis of a Gamma distribution (iv), with n " 500 (first line), and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2).

  d and an immediate induction on d leads to (2.45). Injecting this in E 2 gives, together with (2.43), |E 2 | ď Cj d´3 4 , for a positive constant C depending on a, b, c and d. Gathering the bound on E 1 and E

2

 2 |a j pf q| ď DCm ´s`2 .

Figure 3

 3 Figure 3.1 -20 estimates of (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left : direct case, middle : Laplace noise, right : Gaussian noise).

Figure 3 . 2 -

 32 Figure 3.2 -20 estimates of (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left : direct case, middle : Laplace noise, right : Gaussian noise).

e

  iuZ l ϕ j puq f ε puq du " Cov ˆżR e iuX k ϕ j puqdu, ż R e iuX l ϕ j puqdu ˙. b k and b k , a sequence of measurable functions such that b 0 " 1, ş b k puqf puqdu " β k (see Theorem 2.1 in[START_REF] Viennet | Inequalities for absolutely regular sequences : application to density estimation[END_REF] given here in Appendix).Lemma 3.7.1. Under the assumptions and notations of Proposition 3.3.3, there exists a constant c ˚ą 0 depending on Er|X 1 | 2q{3 s and ř `8 k"0 pk `1q p´1 β k ă `8 such that :

  .43) Therefore, (3.40) holds and the result of Lemma 3.7.2 is proven. l Proof of Lemma 3.7.3.

Definition 4 . 3 . 1 .

 431 Let s, L ą 0, define the Sobolev-Hermite ball of regularity s by W s H pLq " tθ P L 2 pRq, ÿ kě0 k s a 2 k pθq ď Lu, where a k pθq " ż θpxqϕ k pxqdx. (4.15)

Lemma 4 .

 4 3.1. For all n ě d, Ψ d is invertible.

Figure 4 .

 4 Figure 4.1 -25 estimates of h for (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8).

Figure 4 . 2 -

 42 Figure 4.2 -25 estimates of h for (iv), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8).
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d

  realizes automatically a bias-variance trade-off up to log term, and an additional residual term C 1 logpnq n , which is negligible in general. Moreover, we derive from Theorem 4.4.1 with n replaced by n{ logpnq that under the assumptions of Theorem 4

  and 4.5, we plot the true function in bold red line with 25 estimators in dotted lines for the two last test functions (iii), (iv) by considering the PCO algorithm.

Figure 4 . 3 -

 43 Figure 4.3 -Estimators for all possible dimensions in dotted line (green), the chosen estimator by algorithm in bold blue, the true function in red with n " 1000, σ ε " 1{8 for the GL algorithm.

Figure 4 . 4 -

 44 Figure 4.4 -25 estimates of (iii), with n " 250 (first line) and n " 1000 (second line) for the PCO algorithm. The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8).

Figure 4 .

 4 Figure 4.5 -25 estimates of (iv), with n " 1000 (first line) and n " 4000 (second line) for the PCO algorithm. The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8).

Theorem 4 .

 4 8.1.Let A and E be two square matrices. If A is nonsingular and for some norm }A ´1E} ă 1, then we have}pA `Eq ´1 ´A´1 } ď }A} 2 }E} 1 ´}A ´1}}E} ,

1. 1

 1 Collection d'estimateurs par projection en base d'Hermite de la densité d'une N p2, 1q en trait épais (rouge), la courbe sélectionnée à droite parmi 50 propositions données à gauche (en vert pointillés). La procédure par pénalisation sélectionne p m " 9 pour n " 1000. . . . . . . . . . . . . . . . . . 1.2 Collection d'estimateurs par projection en base d'Hermite de la densité d'une N p2, 1q en trait épais (rouge), la courbe sélectionnée à droite parmi 50 propositions données à gauche (en vert pointillés). La procédure GL sélectionne p m " 7 pour n " 1000. . . . . . . . . . . . . . . . . . . . . . . . . 2.1 20 estimates p f p mn,pdq in the Hermite basis of a Mixed Gaussian distribution (ii), with n " 500 (first line) and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 20 estimates p f p mn,pdq in the Laguerre basis of a Gamma distribution (iv), with n " 500 (first line), and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 20 estimates of (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left : direct case, middle : Laplace noise, right : Gaussian noise). . . . . . . . . . . 3.2 20 estimates of (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left : direct case, middle : Laplace noise, right : Gaussian noise). . . . . . . . . . . 4.1 25 estimates of h for (iii), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 25 estimates of h for (iv), with n " 250 (first line) and n " 1000 (second line). The true quantity is in bold red and the estimate in dotted lines (left σ ε " 1{4, right σ ε " 1{8). . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 2 (left) and 100 ˆE} p f 1 p h ´f 1 } 2 (right) for R " 100 in the Hermite case. . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Empirical MISE (100 ˆE} p f p m,p0q ´f } 2 (left) and 100 ˆE} p f p h ´f } 2 (right) for R " 100 in the Laguerre case. . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Empirical MISE : 100 ˆE} p f p m,p1q ´f 1 } 2 (left) and 100 ˆE} p f 1 p h ´f 1 } 2 (right) for R " 100 in the Laguerre case. . . . . . . . . . . . . . . . . . . . . . . . .2.6 Empirical MISE 100 ˆE} p f p2q p m,p2q ´f p2q } 2 for R " 100. . . . . . . . . . . . . . 3.1 Rate of convergence for the MISE if f P W s H pDq. . . . . . . . . . . . . . . . 3.2 Empirical integrated mean squared errors computed from (100ˆE} p f p m ´f } 2 ) over 100 independent simulations for n " 100, 250, 500, 1000. . . . . . . . . . 3.3 Ratio of the risks obtained in Comte and Lacour (2011) divided by those of Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Empirical MISE 100 ˆE} r f r m ´f } 2 over 100 independent simulations for n " 100, 250, 500, 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Mean of selected dimensions p m or r m presented in Figures 3.1 and 3.2. . . . 4.1 First line : empirical 100ˆMISE (with 100ˆsd) for the estimation of h ; second line : mean of p d ; third line : mean of Signal/Noise ratio computed over 200 independent simulations for p h p d . . . . . . . . . . . . . . . . . . . . 4.2 Rate of convergence for the MISE of p f p optq,dopt in the specific cases. . . . . . 4.3 First line : empirical 100ˆMISE (with 100ˆsd) for the estimation of unknown function f computed over 100 independent simulations for p p f r d ; second line : mean of r d selected by the PCOalgorithm. . . . . . . . . . . . . . . . 133 4.4 Mean of selected dimensions p d presented in Figures 4.4 and 4.5. . . . . . . . 134 4.5 First line : Matrix norm of A ´Id with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " ? 2d ´1. Second line : values of d with T in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.6 Matrix norm of A ´Id with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Estimation par projection pour des problèmes inverses sur des espaces de Laguerre et d'Hermite Résumé. Dans cette thèse, nous développons des procédures d'estimation non paramétrique pour divers problèmes inverses sur des espaces de Laguerre et d'Hermite. La première partie est consacrée à l'estimation des dérivées d'une fonction de densité en base de Laguerre et d'Hermite. La deuxième partie est dédiée à l'estimation d'une densité et d'une fonction de régression dans un modèle de convolution en base d'Hermite. Différentes méthodes d'estimation sont présentées : méthode de projection fondée sur un développement de la fonction d'intérêt (densité, dérivée d'une densité, fonction de régression) en base de Laguerre ou d'Hermite ; mixte déconvolution-projection basée sur un développement en base d'Hermite et une transformation de Fourier inverse. Pour chacune de ces méthodes, nous établissons des bornes pour le risque quadratique. Pour des choix adéquats des paramètres (dimension de l'espace de projection ou cut-off), nous obtenons des vitesses de convergence de nos estimateurs. Ces paramètres dépendent cependant de quantités inconnues. Ainsi, nous proposons des procédures adaptatives pour les choisir de façon pertinente en s'inspirant des critères de sélection de modèles par pénalisation du type Birgé and Massart (1997) ou des méthodes de Goldenshluger and Lepski (2011) et nous démontrons des inégalités oracles non asymptotiques en utilisant les inégalités de concentration. Des études numériques et des comparaisons avec d'autres stratégies sont exposées pour illustrer les bonnes performances des méthodes proposées. Mots-clés : Estimation non paramétrique ; Estimation par projection ; Problème inverse ; Base d'Hermite ; Base de Laguerre ; Sélection de modèle ; Méthode de Goldenshluger et Lepski.Projection estimation for inverse problems on Laguerre and Hermite spacesAbstract. In this thesis, we develop non parametric estimation procedures for various inverse problems on Laguerre and Hermite classes. The first part is dedicated to the estimation of the derivatives of a density function in the Laguerre and Hermite basis. The second part is devoted to the estimation of a density function and a regression function in the Hermite basis in a convolution model. Different estimation methods are presented : projection method based on a development of the function of interest (density, derivative of a density, regression function) in the Laguerre or Hermite basis ; mixed deconvolutionprojection based on a development in the Hermite basis and an inverse Fourier transformation.

  Pour f P W s H pDq ou f P W s L pDq, on a que }f ´fm } 2 " ř jěm a j pf q 2 ď Dm ´s. On en déduit alors la borne suivante 1{2 , on retrouve ainsi la vitesse classique n ´2s{p2s`1q . Dans le chapitre 2, nous démontrons que c'est la vitesse optimale pour les classes de Sobolev-Laguerre et Sobolev-Hermite qui s'étendent aussi aux Sobolev classiques puisque les fonctions de test utilisées sont à support compact. Nous retrouverons le même phénomène dans le Chapitre 3. Cette spécificité d'avoir un biais en m ´s affecte les résultats de convergence dans d'autres contextes, notamment dans le cas du problème de régression non paramétrique dont la variance est exactement égal en m{n (voir

	Er} p f m ´f } 2 s ď Dm ´s	`c ? m n	, c ą 0.	(1.14)

Cette borne est la même que celle obtenue en (1.12) si on remplace m par ? m. Une première conséquence est que le rôle de la dimension est joué par ? m et non m pour les fonctions de Laguerre ou d'Hermite. En sélectionnant m opt 9n 1 s`

  Le terme R n est très souvent d'ordre à 1{n dans le meilleur des cas ou plogpnq p q{n où p est un entier positif que l'on espère pas trop grand. L'inégalité (1.15) est appelée type-oracle, son obtention est basée sur des inégalités de concentration que l'on rappellera dans la suite (voir Section 1.3.3). Cette borne est d'autant meilleure que la constante C est proche de 1. Les estimateurs qui vérifient (1.15) sont dits adaptatifs, dans le sens où le compromis biais-variance est automatiquement réalisé. L'estimateur final p f

.15) où C est une constante numérique strictement positive et R n un terme qui dépend de n, que l'on espère négligeable devant C inf mPMn ´Er} p f m ´f } 2 s ¯. p m est donc aussi performant que l'oracle à une constante multiplicative C près plus un reste R n négligeable.

  2 près. La pénalité est en général choisie comme déterministe et d'ordre de la variance (voir Équations (1.12) et (1.14)) : penpmq " κC 2 ϕ Dm n où C ϕ est une constante explicitement connue mais change en fonction de la base utilisée (C ϕ " 1 pour les bases trigonométriques ou d'histogramme régulier sur r0, 1s) et D m une fonction croissante de m. Cette quantité D m est égale m pour les bases trigonométriques et histogrammes réguliers ou ? m pour les bases de Laguerre et d'Hermite. Une stratégie plus générale introduite par Comte and Genon-Catalot (2018) consiste à estimer directement la quantité ř m´1 j"0 Erpϕ j pX 1 qq 2 s. En effet, dans le cas de la densité, on a

	Er} p f

m ´fm } 2 s " m´1 ÿ j"0 pp a j ´aj pf qq 2 " m´1 ÿ j"0

  Erpϕ j pX 1 qq 2 s. Cela a l'avantage de rendre la calibration de κ moins fastidieuse mais le prix à payer est qu'on a besoin d'autres outils mathématiques. En considérant les bases de Laguerre et d'Hermite, on peut établir l'inégalité oracle suivante (voir Comte

	ř m´1
	j"0 and Genon-Catalot (2018) et Belomestny et al. (2019)) pour p m sélectionné en (1.16) et
	κ ě 8 :

.16) où κ est une constante à calibrer. Nous avons une pénalité aléatoire et indépendante de la base utilisée. Elle est heuristiquement d'ordre de la variance puisque Er p V m s "

le cas Laguerre ou W s pDq " W s H pDq pour le cas Hermite et c ą 0 une constante qui dépend de s et d uniquement.

  W s L pDq, boule de Sobolev-Laguerre (un peu modifié voir Section 2.2.2 pour plus de détails) et f P W s H pDq (boule de Sobolev-Hermite), on en déduit pour le choix m opt " rn 2{p2s`1q s Dq dépend uniquement de s, d et D. Cette vitesse est la même que celle obtenue par[START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] pour le cas dépendant et par[START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]. Notons que les ordres de grandeur du biais et de la variance sont spécifiques à notre méthode : le rôle de la dimension est joué ici par ? m. Notons également que notre hypothèse de régularité est naturellement faite sur f et non sur f pdq (contrairement à ce qui apparait dans[START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] and[START_REF] Lepski | A new approach to estimator selection[END_REF]). Cette vitesse est meilleure que celle obtenue par[START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] dans le cas i.i.d. si on considère la même condition de régularité. De façon intéressante, la dimension m opt ne dépend pas de d. Cela coïncide avec la stratégie de[START_REF] Lepski | A new approach to estimator selection[END_REF] qui injectait la fenêtre optimale de l'estimateur à noyau d'une densité dans l'estimation de ces dérivées. Pour d " 0 dans (1.21), on retrouve la vitesse optimale pour l'estimation de f pour des classes d'Hölder, Sobolev voir Tsybakov (2009).

		E " } p f mopt,pdq	´f pdq } 2 ‰	ď C ps,d,Dq n	´2ps´dq 2s`1 ,	(1.21)
	où C ps,d,Nous soulignons pour des densités gaussiennes (cas Hermite) ou gamma (cas Laguerre)
	que le biais est à décroissance exponentielle. On obtient donc une vitesse plus rapide que
	le cas général : logpnq d`1{2 {n.			
	Dans la Section 2.2.3, nous prouvons également des minorations qui assurent l'optima-
	lité de la vitesse au sens du minimax pour les classes considérées. Le résultat est résumé
	dans le théorème suivant :					
	Théorème 1.4.2. Soit s ą d un entier et r f n,d un estimateur quelconque de f pdq . Alors
	pour n assez grand, nous avons			
		inf		sup	Er} r f n,d	´f pdq } 2 s ě cn ´2ps´dq 2s`1 ,
		r f n,d	f PW s pDq			
	où W s pDq " W s L pDq pour					
	E " } p f m,pdq	´f pdq } 2 ‰	ď }f m,pdq	´f pdq } 2 `C m d`1 2 n	´}f m } 2 pdq n	,	(1.20)

4.1. Sous les hypothèses pH1q à pH3q et si de plus ErX ´d´1{2 1 s ă `8 pour le cas Laguerre et Er|X 1 | 2{3 s ă `8 pour le cas Hermite. (1.19) Alors, pour m ě d assez grand, nous avons que où C est une constante qui ne dépend que des conditions de moment données en (1.19). Pour le cas Hermite, la condition de moment Er|X 1 | 2{3 s ă `8 n'est pas nécessaire (voir "Lemma 1" dans Comte and Lacour (2021)). Donc pour f P

  pf q 2 q est le terme de biais, il mesure la distance entre f et f m au sens de L 2 pRq. C'est un terme décroissant en m. Le deuxième terme est le terme principal de la variance, il croît clairement avec m. Le dernier terme vient aussi du calcul de variance, c'est un terme résiduel. Par conséquent le risque minimal s'obtient en faisant un compromis biais-variance. Si la densité f appartient à la boule de Sobolev-Hermite de régularité s et de rayon D notée par W s H pDq, nous obtenons les vitesses de convergence suivante pour l'oracle p f mopt . Ces vitesses sont connues pour être optimales. Elles coïncident avec celles obtenues

	le projeté de f : f m "	ř m´1 j"0 a j pf qϕ j contrairement à l'estimateur obtenu par Comte and
	Genon-Catalot (2018) où p a j est remplacé par :
		r a j, ? m " pp´iq j {	? 2πq	ż |u|ďπ	?	m	p f Z puqϕ j puq{f ε puqdu.
	Borne du risque Sous l'hypothèse additionnelle :
	pH5q }f Z } 8 " sup	|f Z pxq| ă 8,			
	xPR							
	on a la décomposition biais-variance suivante (voir Proposition 3.3.1 avec l " 2) :
	Er} p f m ´f } 2 s ď }f ´fm } 2 `1 πn	ż |u|ď ? 2m	du |f ε puq| 2 `c n	.	(1.24)
	où c est une constante qui dépend de }f Z } 8 , γ, µ, δ et d'autres constantes liées à la base
	d'Hermite. Le premier terme à droite de l'inégalité (1.24) (}f m ´f } 2 " jěm a j δ " 0 ř 0 ă δ ă 2 or δ " 2, µ ă ξ ď 1{2
	m opt	rn	2s`2γ`1 s 2			"	2 1	2µ ´log n	¯2 δ	
	Vitesse n	´2s 2s`2γ`1			plog nq ´2s δ
	Table 1.1 -Vitesse de convergence pour le MISE si f P W s H pDq.
			après le Théorème de Plancherel-Parseval. Donc p f m estime sans biais

  où c est une constante positive qui dépend par exemple de }f Z } 8 , γ, µ, δ, et c 1 est une constante dépendant des coefficients de mélange et d'une condition de moment sur X 1 .

	Le biais et la variance principale sont les mêmes que pour le cas i.i.d. avec un terme additionnel c 1 ? m n qui est spécifique au cas β-mélangeant. Comme |f ε puq| ď 1, nous avons 1 π ş |u|ď ? 2m du |f ε puq| 2 ě 2 ? 2 π ? m. Ainsi, le terme c 1 ? m n est aussi un reste qui est négligeable
	que le terme principal de la variance. D'où les mêmes vitesses que pour le cas i.i.d.
	Adaptation De plus, nous proposons une méthode pour choisir automatiquement le
	meilleur modèle m dans une collection pour le cas i.i.d.. On utilise la procédure par pé-
	nalisation du type Birgé and Massart (1997) et on prouve une inégalité oracle en utilisant
	l'inégalité de Talagrand (voir Section 1.3.3). La procédure complète est décrite dans la
	Section 3.4.						
	Simulations Enfin, nous illustrons numériquement la procédure adaptative et des com-
	paraisons avantageuses avec la stratégie de Comte and Lacour (2011) et le problème direct
	est effectué.						
	La preuve des résultats théoriques (Section 3.7) et quelques outils d'analyse et de proba-
	bilité terminent ce chapitre.						
		respectivement calculées sur les classes de
	Hölder et de Sobolev. Nous fournirons aussi des taux de convergence pour des densités de
	mélange gaussienne. Les résultats obtenus sont les mêmes que dans Butucea (2004) pour
	des fonctions f super-régulière.						
	Ensuite, nous montrons que les résultats obtenus jusqu'ici s'étendent au cas de variables
	dépendantes. En effet, on peut remplacer l'hypothèse pH1q par :			
	pH 1 1q pX k q kě1 est strictement stationnaire et β-mélangeant (voir Section 3.3.5 pour la
	définition).						
	Dans la Proposition 3.3.3, on obtient la décomposition biais-variance suivante sous des
	conditions classiques sur le coefficient de mélange et de moment :			
	Er} p f m ´f } 2 s ď}f ´fm } 2 `1 πn	ż |u|ď	? 2m	du |f ε puq| 2 `c n	`c1	? m n	,

Premier estimateur : approche "Fourier-Hermite" (notée FH dans la suite). Procédure d'estimation Pour

  ce faire, nous avons besoin de l'hypothèse suivante : pH3q La fonction f et sa transformée de Fourier f ˚sont intégrables. " pypx ´nq, . . . , ypx n´1 qq t et p h d est dans S d :" Vecttϕ 0 , . . . , ϕ d´1 u, l'espace linéaire engendré par pϕ j q 0ďjďd´1 . Notons que la base d'Hermite rend la matrice Ψ d inversible pour n ą d. En prenant la transformée de Fourier de (1.29) et en injectant cela dans (1.28), nous introduisons un premier estimateur de f par :

	Cette hypothèse est spécifique à cette première stratégie et est nécessaire pour utiliser la
	transformée de Fourier inverse.				
	Sous pH3q, pH1q, en utilisant la transformée de Fourier inverse, nous avons
			f pxq "	ż R	e ´iux h ˚puq g ˚puq	du, @x P R.	(1.28)
	L'équation (1.28) est la clé pour obtenir un estimateur de f en remplaçant h par un
	estimateur. Pour reconstruire h, on utilise la méthode des moindres carrés fondée sur un
	développement de h en base d'Hermite. A cette fin, on pose
			Φ d " pϕ j px i qq ´nďiďn´1,0ďjďd´1 , Ψ d "	T n	Φ t d Φ d ,
	avec Φ t d est la transposée de la matrice Φ d et ϕ j est la base d'Hermite (voir (1.9) pour sa
	définition). Ainsi, on estime h par				
	p h d "	d´1 ÿ j"0	p b pdq j ϕ j , p b pdq " p p b pdq 0 , . . . , p b pdq d´1 q t " pΦ t d Φ d q ´1Φ t d y "	T n	Ψ ´1 d Φ t d y,	(1.29)
	où y p f pdq pxq "	1 2π	ż	e ´iux	p h d puq g ˚puq	du.	(1.30)
	L'estimateur est bien défini car la base d'Hermite, qui décroit en e ´ξx 2 rend la fonction p h d {g ˚intégrable pour toutes les fonctions g telles que (1.27) est vraie ϕ j " ? 2πpiq j ϕ j . La
	qualité de p f pdq est clairement liée à celle de p h d . On se doute bien qu'en pratique, il faut
	introduire un cut-off pour calculer p f pdq . En outre, on verra que le contrôle du risque de
	p f pdq dépend d'une version tronquée de p f pdq . Ainsi, on considère l'estimateur suivant
			p f p q,d pxq "	1 2π	ż ´	e ´iux	p h d puq g ˚puq	du, for ą 0.	(1.31)
								.27)
	Nos objectifs sont les suivants : introduire un estimateur consistant de f ; donner des ré-
	sultats de convergence ; proposer une procédure adaptative et illustrer numériquement sa
	performance. Considérons les observations discrètes px k , ypx k qq ´nďkďn´1 issues du modèle
	(1.25). Le but est d'estimer f à partir des données px k , ypx k qq ´nďkďn´1 . Différentes ap-
	proches sont proposées dans le chapitre : mixte Fourier-projection et projection-projection.

Régression en fixe design en base d'Hermite En section

  

	Borne du risque de p f pdq et p f p q,d Pour valider l'estimateur p f pdq , on étudie son risque. Notons que ce résultat de convergence est valide aussi pour l'estimateur p f dopt avec l'hy-
	On introduit les notations suivantes pothèse pH5q, voir (1.35). Les estimateurs p f p optq,dopt et p f dopt convergent à une vitesse
			∆p q " sup |u|ď polynomiale comme en déconvolution d'une densité pour des fonctions ordinairement ré-|g ˚puq| ´2, f p q pxq " 1 2π ż ´ e ´iux h ˚puq g ˚puq du. (1.33) gulières.
	On considère les deux hypothèses suivantes :
	pH4q Il existe une constante λ ą 0 telle que
							0 ă λ max pΨ ´1 d q ď λ ă `8,
		où λ max pAq désigne le maximum des valeurs propres de la matrice A.
	pH5q }h} 8 " sup xPR |hpxq| ă `8.	
	La majoration du risque de p f pdq et p f p q,d est donnée dans la proposition suivante :
	Proposition 1.4.1. Supposons que les hypothèses pH1q et pH3q sont satisfaites. Alors,
	l'estimateur p f p q,d défini en (1.31) vérifie
	E	" } p f p q,d ´f } 2	ı	ď }f ´fp q } 2 `∆p q	ˆT n	tr `Ψ´1 d ˘`}h ´hd } 2 `λmax	`Ψ´1 d ˘}h ´hd } 2 n	˙,
									(1.34)
	où λ max pAq est le rayon spectral de la matrice A.
	Si de plus les hypothèses pH2q, pH4q et pH5q sont vérifiées, nous avons pour p f pdq donné en (1.30) et ě ? 2d
					E	" } p f pdq ´f } 2	ı	ď 2CλT e ´ξd `2E	" } p f p q,d ´f } 2	ı	,	(1.35)
	où C est une constante qui dépend de C 1 8 , ξ qui sont tels que |ϕ j pxq| ď C 1 8 e |x| ě ? 2j `1 et }h} 8 .	´ξ2 pour
	(a) Le premier terme à droite de (1.34) (}f ´fp q } 2 " 1 2π classique de biais : il décroît avec le cut-off .	ş	|u|ą |f ˚puq| 2 du) est le terme
	(b) Le terme ∆p q correspond à l'aspect déconvolution du problème : il est étudié en
		utilisant la condition de régularité sur g ˚donnée dans pH2q. Il croît avec le cut-off
			.					
	4.3, nous présentons une (c) Enfin, le terme dans la grande parenthèse représente le risque d'estimation de h (voir étude complète (théorique et numérique) de la régression non paramétrique en fixe design en base d'Hermite. Contrairement à Baraud (2000), on ne considère pas des bases à support Équation (1.32))
	compact. On obtient la borne suivante que nous exploitons dans la suite (voir Proposition L'étape d'après est donc de fournir des résultats de convergence pour p f pdq et p f p q,d . Un
	4.3.1) : résultat global est résumé dans le théorème suivant
	E Théorème 1.4.3. Sous pH1q, . . ., pH4q, pour f P W s pDq (Sobolev classique) et h P " } p h d ´h} 2 ı ď σ 2 ε T n tr `Ψ´1 d ˘`}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n . Cette borne est nouvelle à notre connaissance. Il s'agit d'une décomposition biais-variance, (1.32) de biais égal à λ max `Ψ´1 d ˘}h ´hd } 2 W s`γ H pD 1 q (Sobolev-Hermite), nous avons pour les choix d opt " rn 1{ps`γ`1q s et opt " n 1 2ps`γ`1q avec s `γ ě 11{6 que n où h d est le projeté de h dans S d et de variance à σ 2 ε tr `Ψ´1 d ˘T {n. C'est en partie grâce à cette borne qu'on a pu établi une inégalité oracle pour l'estimateur de régression pour la norme L 2 pRq (voir Theorem 4.3.1). En particulier, sup f PW s pDq E " } p f p optq,dopt ´f } 2 ı ď Cps, γ, D, T, σ ε qn ´s s`γ`1 ,
	nous établirons une inégalité oracle du risque pour la norme L 2 pRq qui est nouvelle à notre où Cps, γ, D, T, σ ε q est une constante qui ne dépend que de s, γ, L, T, σ ε et γ donné en
	pH2q.	connaissance.			

Table 1 .

 1 2 -Vitesse de convergence du MISE pour p f p optq,dopt dans les cas spécifiques.

	Adaptation pour p f p q,d D'après le Théorème 1.4.3, le choix pertinent du cut-off est d'ordre ? d, pour cette raison, on pose " ? 2d qui est la valeur minimale admissible.
	Dans la Section 4.4.4,

on propose une procédure de sélection de modèle en s'inspirant de la méthode de Goldenshluger and Lepski (2011) et nous démontrons une inégalité oracle : l'estimateur résultant réalise automatiquement un compromis-biais variance à un facteur

  logarithmique près. La procédure est décrite enSection 4.4.4. Dans un second temps, nous introduisons une autre approche appelée Hermite stratégie (notée HH) fondée sur un développent de f et h en base d'Hermite. Notons que les coefficients p a j sont réels et bien définis car la base d'Hermite rend la quantité p h d ϕ j {g ˚intégrable. Nous avons un estimateur qui dépend donc de deux paramètres qui doivent être optimisés. Comme pour la stratégie FH, la qualité de p f m,d dépend aussi de celle de p h d . La borne du risque obtenue (voir Proposition 4.5.1) est donnée par :

	Seconde stratégie. Définition de l'estimateur On construit l'estimateur suivant en remplaçant h par son
	estimateur des moindres carrés dans a j pf q " xh ˚pg ˚q´1 , ϕ j y :	
	p f m,d "	m´1 ÿ j"0	p a j,d ϕ j , p a j,d "	p´iq j ? 2π	ż	p h d puq g ˚puq	ϕ j puqdu,	(1.36)
	à condition que p h							

d ϕ j {g ˚est intégrable pour j " 0, . . . , m´1.

Borne du risque de p f m,d et comparaison avec l'approche FH Proposition 1.4.2. Supposons

  f et h sont de carré intégrable et posons

						ż	
		Σpmq " sup |u|ď ? ρm	|g ˚puq| ´2	`m´1 ÿ j"0	|u|ě ? ρm	|ϕ j puq| 2 |g ˚puq| ´2du, ρ ą 0.	(1.37)
	Pour p f m,d donné en (1.36), nous avons		
	E	" } p f m,d ´f } 2	ı	ď}f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax	`Ψ´1 d ˘}h ´hd } 2 n	`σ2 ε	T n	`tr `Ψ´1 d ˘^2π 2 m ˘˙.
									(1.38)
	La différence avec la borne obtenue pour la stratégie FH se trouve dans le biais de f
	(}f ´fm } 2 ) et Σpmq, l'étape de la partie régression ne change bien évidement pas. Le
	terme négligeable par rapport au terme sup |u|ď ? ρm |g ˚puq| ´2 " ∆p ř m´1 j"0 ş |u|ě ? ρm |ϕ j puq| 2 |g ˚puq| ´2du est à décroissance exponentielle si ρ ě 2 et donc ? ρmq. Donc, pour f P W s H pDq et -? m, on retrouve la même vitesse que pour la stratégie FH. L'ensemble des résultats
	sur la deuxième méthode est dans la Section 4.5.
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  pdq m ´f pdq } 2 " }f pdq } 2 ´}f pdq m } 2 where }f pdq } 2 is independent of m and can be dropped out. The remaining quantity ´}f pdq m } 2 is estimated by ´} p f m,pdq } 2 . The variance term is replaced by an estimator of a sharp upper bound, given by

	p V m,d "	1 n	n i"1 ÿ	m´1 j"0 ÿ pϕ pdq j pX i qq 2 .		(2.17)
	Finally, we set				
	p m n :" argmin mPM n,d t´} p f m,pdq } 2 `y pen d pmqu, where y pen d pmq " κ	p V m,d n	,	(2.18)

  For s " d, a log-loss in the rate would occur in the Laguerre case, but not in the Hermite case.Note that, in the Laguerre case, condition sup xPR realizes automatically a bias-variance compromise and is performing as well as the best model in the collection, up to the multiplicative constant C, since clearly, the last term C 1 {n is negligible. Thus, for f in Ă

		2 2d`1 as
	soon as s ą d. `f pxq x d ă `8 implies EpX 1 ´d´1{2 (see condition 2.9)) and is clearly related to pA3q. Inequality (2.19) is a key result and q ă `8
	expresses that p f p mn,pdq W s L pDq or W s H pDq and under the
	assumptions of Theorem 2.2.2, we have E "	} p f p m,pdq

  We prove the following result

	Theorem 2.3.1. Let p f 1 m,Kn be defined by (2.26) with m " p m Kn selected by (2.28)-(2.29)
	and K n such that

Table 2 .

 2 

1 -Mean of selected dimensions p m n presented in Figures 2.1 and 2.2.

Table 2 . 4

 24 , see their Table1.

			Our method		Kernel method
	f	n	100 500 1000	2000	100 500 1000 2000
	Gaussian (i)	0.12 0.03 0.02 4.10 ´3 0.74 0.23 0.13 0.07
	Mixed Gaussian (ii) 1.01 0.26 0.13	0.07	1.46 0.44 0.22 0.14
	Cauchy (iii)	0.63 0.38 0.19	0.10	4.26 3.42 1.75 0.89
	Gamma (iv)	1.46 0.36 0.18	0.09	0.99 0.26 0.14 0.08
	Beta (v)	1.09 0.18 0.10	0.05	0.96 0.26 0.151 0.09
	Table 2.2 -Empirical MISE 100 ˆE} p f p m,p0q ´f } 2 (left) and 100 ˆE} p f p h ´f } 2 (right, Kernel Estimator) for R " 100 in the Hermite case.

-Empirical MISE (100 ˆE} p f p m,p0q ´f } 2 (left) and 100 ˆE} p f p h ´f } 2 (right) for R " 100 in the Laguerre case.

  , P L 2 pRq, consider the decomposition : γ n,d ptq ´γn,d psq " }t ´f pdq } 2 ´}s ´f pdq } 2 ´2ν n,d pt ´sq, By (2.18), it holds for all m P M n,d , that γ n,d p p f p mn,pdq q `y pen d p p m n q ď γ n,d pf pdq m q `y pen d pmq. Plugging this in (2.49) yields, for all m P M n,d , ´f pdq } 2 `y pen d pmq `2ν n,d ´p f Note that for t P L 2 pRq, ν n,d ptq " }t}ν n,d `t{}t} ˘ď }t} sup sPSm`S

	} p f p mn,pdq	´f pdq } 2 ď }f pdq m		p mn,pdq	´f pdq m ¯´y pen d p p m n q. (2.50)
	quently, using 2xy ď x 2 {4 `4y 2 , we obtain	x m ,}s}"1 |ν n,d psq|. Conse-
	2ν n,d ´p f p mn,pdq	´f pdq m	¯ď 1 2	} p f p mn,pdq	´f pdq } 2 `1 2	}f pdq m	´f pdq } 2 `4	tPSm`S m ,||t||"1 x sup	|ν n,d ptq| 2 .
										(2.51)
	It follows from (2.50) and (2.51) that :
	1 2	} p f p mn,pdq	´f pdq } 2 ď	3 2	}f pdq
	for which p f m,pdq " argmin				
										(2.49)
	where								
					ν n,d ptq "	1 n

tPSm γ n,d ptq (see (2.7)) and γ n p p f m,pdq q " ´} p f m,pdq } 2 . For two functions t, s n ÿ i"1 ´p´1q d t pdq pX i q ´xt, f pdq y ¯. m ´f pdq } 2 `y pen d pmq `4 sup tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´y pen d p p m n q.

  .61) which we bound applying a Talagrand Inequality (see Section 2.7.2). Following notations of Section 2.7.2, we have three terms H 2 , v and M 1 to compute. Let us denote by m ˚" m_m 1 , for t P S m `Sm 1 , }t} " 1, it holds

  .64) Plugging(2.63) or(2.64) in (2.62), we set in the two cases v :" c 1 pm ˚qd where c 1 depends on d and either on sup xPR `f pxq x k (Laguerre case) or }f } 8 (Hermite case). Computing M 1 . The Cauchy Schwarz Inequality and }t} " 1 give
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  that, for s integer, Consequently, for s integer, it follows that W s H Ă W s . For more details on these regularity spaces, the reader is referred to Section 4.1 in[START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF].

	W s "	"	θ P L 2 pRq, θ admits derivatives up to order s, such that ~θ~s ,sob :" ř s j"0 |θ pjq | 2 ă `8	*	.
	Thus, for f in W s H pDq, we have }f ´fm } 2 " tions of Proposition 3.3.1 and for f P W s H pDq, we get : ř jěm j s a 2 j j ´s ď Dm ´s. Under the assump-
			Er} p f m ´f } 2 s ď Dm ´s	`1 πn	ż |u|ď ? lm	du |f ε puq| 2 `C n	,	(3.13)

  Now, we comment this bound of risk. We remark that we have the same bias and variance terms as in the i.i.d. case with an additional term c 1 ? m{n which is clearly specific to the β-mixing case. As |f ε puq| ď 1, we have, 1We compare the result given in Proposition 3.3.3 to Proposition 4.1 in[START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]. The first two right-hand side terms of (3.16) (}f ´fm } 2 `1 πn ş

	in Comte et al. (2008) with of Proposition 3.3.1 (ii) the other terms (residual terms) are order Opn ´1q `Op ? lm replaced by πm (see Section 3.3). Under the assumptions ? mn ´1q.
					ż					du
					|u|ď	? lm	|f ε puq| 2
	`2 n	}f Z } 8	m´1 ÿ j"0	ż |u|ą	? lm	|ϕ j puq| 2 |f ε puq| 2 du `c1	? n m	,	(3.16)
	? m{n has smaller order than 1 πn	ş |u|ď	? lm	π du |f ε puq| 2 and Inequality (3.16) implies that the ş |u|ď ? lm du |f ε puq| 2 ě 2 ? l ? m. Consequently, π
	risk of p f m here has the same order as in the i.i.d. case. We have therefore the same rates
	of convergence.								
										|u|ď	? lm	du |f ε puq| 2 ) are the same as

Then, if Er|X 1 | 2q{3 s ă `8 and the mixing coefficient are such that ř `8 k"0 pk `1q p´1 β k ă `8, we have Er} p f m ´f } 2 s ď}f ´fm } 2 `1 πn where l ě 2 is a positive constant, and c 1 is a constant depending on Er|X 1 | 2q{3 s and ř `8 k"0 pk `1q p´1 β k .

  Theorem 3.4.1. Assume pH1q, . . ., pH5q hold and f ε is square integrable. Let penpmq defined by(3.19), p f m " argmin with the rates obtained in Table3.1. Indeed, the term C 1 {n in (3.20) does not change the order of the rate, and is negligible compared to the term }f ´fm } 2 `penpmq. Moreover, (3.19) induces a loss in the order of penpmq compared to the variance term when δ ą 1{2, but this does not change the rate which is governed by the bias term in this case (see Table3.1 and choice of m opt of order plog nq).

		γ n ptq and p m selected by (3.18). Then, there exists a constant
		tPSm					
	κ 0 such that, for all κ ą κ 0 " 17, the estimator p f p m satisfies		
	E	" } p f p m ´f } 2	ı	ď C inf mPMn	`}f ´fm } 2 `penpmq ˘`C 1 n	,	(3.20)
	where C is a numerical constants (C=4 suits) and C 1 a constant depending on f ε .	
	Remark 3.3. Assume that the assumptions of Theorem 3.4.1 are satisfied. Then if f P
	W s H pDq the estimator p f					

p m converges to f

  Table 3.3 -Ratio of the risks obtained in Comte and Lacour (2011) divided by those of Table 3.2.

			n " 100	n " 250		n " 500	n " 1000
	f	Noise	Lap. Gauss. Lap. Gauss. Lap. Gauss. Lap. Gauss.
		Gaussian	1.95	1.27	5.67	5.00	5.01	5.11	2.41	3.41
		Cauchy	4.07	1.07	2.45	0.79	2.43	0.70	1.40	0.52
		Laplace	1.47	1.40	1.13	1.34	1.12	1.02	1.04	0.89
		Gamma	0.67	0.88	0.66	0.73	0.82	0.49	1	0.37
	Mixed-Gaussian 1.26	2.17	1.45	2.24	1.17	1.68	0.95	1.15
						Direct case	
			f	n	100 250 500		1000
			Gaussian	0.17 0.05 0.04 6.05 ˆ10 ´3
			Cauchy	0.62 0.50 0.36		0.18
			Laplace	2.43 1.09 0.69		0.42
			Gamma	1.20 0.54 0.23		0.13
		Mixed-Gaussian 1.35 0.49 0.26		0.15
	Table 3.4 -Empirical MISE 100 ˆE} r f r m ´f } 2 over 100 independent simulations for
	n " 100, 250, 500, 1000.						
			Density		Gamma	Mixed-Gaussain
			n			250 1000 250	1000
				Direct case 6.55 8.85 9.10	10.4
		Mean of p m	Lap. noise	5.80 8.10 7.30	8.5
			Gauss. noise 5.55 7.15 6.75	7.00
				" 100	n " 250		n " 500	n " 1000
	f Table 3.5 -Mean of selected dimensions p Noise Lap. Gauss. Lap. Gauss. Lap. Gauss. Lap. Gauss. m or r m presented in Figures 3.1 and 3.2.
		Gaussian	0.44	0.37	0.12	0.06		0.1	0.04	0.07	0.04
		Cauchy	0.28	0.89	0.20	0.56	0.14	0.37	0.10	0.29
		Laplace	1.65	2.18	1.06	1.34	0.75	1.16	0.57	0.87
		Gamma	1.70	1.27	0.98	0.97	0.50	0.90	0.28	0.83
		Mixed-Gaussian 2.82	1.91	1.09	0.87	0.66	0.69	0.41	0.53
		Table 3.2 -Empirical integrated mean squared errors computed from (100 ˆE} p f p m ´f } 2 )
		over 100 independent simulations for n " 100, 250, 500, 1000.

  where ~¨~is any matrix norm (see Section 4.8.1 in Appendix). It follows that Assumption pA4q holds asymptotically with λ 2 near of 1. The same type of hypothesis can be found in[START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] (seeAssumption 4) and[START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF] (seeAssumption 2.3). Then, we can deduce the rate of convergence.

	~2 ÝÑ nÑ`8	0,

Proposition 4.3.2. Assume that h belongs to W α H pLq with α ą 11{6 and select d opt " rn 1{pα`1q s.

  is easy to see that p h d " arg mintPS d γ n ptq. The quantity γ n p p h d q " ´}p h d } 2n is a classical estimator of the bias term. Then, we select the space S d by setting : " t1, . . . , d max u, d max ď n is the maximal dimension which depends on n and κ is a positive numerical constant. The constant κ is independent of the data and a value must be assigned in practice. Methods are proposed in[START_REF] Baudry | Slope heuristics : overview and implementation[END_REF] and programs for density estimation are given in the Softwares R and Matlab called "Capushe". The following oracle inequalities hold for the resulting estimator. Let px i , ypx i qq ´nďiďn´1 be observations, from model(4.1). Assume that

	p d :" arg min dPMn	tγ n p p h d q `penpdqu, where penpdq " κT	d n	σ 2 ε , κ ą 1	(4.24)
	where M n Theorem 4.3.1. Erε 8 1 s ă 8.							
	(i) Then, the estimator p h	p d satisfies :					
	Er} p h d ´h} 2 p n s ď Cpκq inf dPMn	ˆinf tPS d	}t ´h} 2 n	`σ2 ε T	d n	˙`C 1 T n	,	(4.25)

  ´α α`1 . Theorem 4.3.1 is a consequence of Theorem 3.1 given in

	2 2 Cpκqq and C 1 1 " 2C 1 are positive
	constants.	
	The estimator p h compromise is realized automatically, since C 1 T {n and λ 2 C 1 p d is adaptive and minimax optimal in the sense that the bias-variance 1 T {n are residual terms. Indeed,
	for h P W α H pLq, we deduce from Proposition 4.3.2 that Er} p h d ´h} 2 p n s À n ´α α`1 and Er} p h d p	h}
	2 s À n	

  The term ´}p h d } 2 estimates }h´h d } 2 " }h} 2 ´}h d } 2 since }h} 2 is independent on d and can be dropped. Numerically, the two choices of d given in (4.24) and (4.27) provide exactly the same result in average. That is in accordance with the theory (seeLemma 4.3.2).

		4.21), we can select
	d as follows :				
	p d p1q :" arg min dPMn	t´} p h d } 2 `penpdqu, where penpdq " κσ 2 ε T	d n	.	(4.27)
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	.1 -First line : empirical 100ˆMISE (with 100ˆsd) for the estimation of h ; second
	line : mean of p d ; third line : mean of Signal/Noise ratio computed over 200 independent
	simulations for p h d . p

  Consider discrete observations px k , ypx k qq ´nďkďn´1 from model (4.1).The estimator is well defined because the Hermite basis decreases as e ´ξx 2 (see (4.13)), which makes the ratio p h d {g ˚integrable for many functions g (see also[START_REF] Sacko | Hermite density deconvolution[END_REF]). The quality of p f pdq is related to that of p h d which is studied in Section 4.3. The dimension d must be optimized. In practice, we must introduce a cut-off to compute p f pdq . Moreover, to control the risk of p f pdq , we first consider the following estimator

								By taking the Fou-
	rier transform of (4.19), it yields						
						d´1
		p h d puq "	ÿ	p b pdq j ϕ j puq.	(4.28)
						j"0
	Plugging (4.28) in (4.4), we introduce the following estimator of f :
	p f pdq pxq "	1 2π	ż	e ´iux	p h d puq g ˚puq	du.	(4.29)
	p f p q,d pxq "	1 2π	ż ´	e ´iux	p h d puq g ˚puq	du, for ą 0.	(4.30)

  instead of }h ´hd } 2 ), for f P W s pLq and under pA3q, we have by an elementary calculation that h " f ‹ g P W s`γ pL{c 1 1 q (see Remark 4.3). Therefore, it yields under pA1q to pA4q that sup f PW s pLq E Assume that f belongs to W s pLq (seeSection 4.3.3) and g is ordinary smooth (i.e. g satisfies (

		Remark 4.3.			
	ě	2 opt ∝ d opt , then, we can just set " c ? 2d given in Proposition 4.4.1. If we had a Fourier bias instead of Hermite bias (i.e. 2d with c ě 1 in the constraint ?
	we have }h ´hp	? dq } 2 " } p f p optq,dopt ´f } 2	ı	" O	´n´s s`γ`1	¯.

  , section 4.3 and Lemma 2 in[START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]). The rate is therefore imposed by the variance term. Assume that pA1q, pA2q and pA4q hold, f pxq " p2πσ 2 q ´1{2 e with σ 2 `θ2 ‰ 1. Then, for d opt " rlogpnq{λ σ,θ s with, λ σ,θ "

	Proposition 4.4.4. ´x2 2σ 2
	and gpxq " p2πθ 2 q ´1{2 e " 2θ 2 log ´x2 ´σ2 `θ2 `1 σ 2 `θ2 ´1 ¯2 , we have						
	E	" } p h dopt ´h} 2	ı	À	logpnq n	.	(4.35)

Table 4 .

 4 2 -Rate of convergence for the MISE of p f p optq,dopt in the specific cases.

  h d ϕ j {g ˚is integrable for j " 0, . . . , m ´1. The coefficients p a j,d are real. Indeed, using that ϕ j pxq " p´1q j ϕ j p´xq (since H j p´xq " p´1q j H j pxq), we have where z is the complex conjugate of the complex number z. Under pA3q, the integrability condition of the ratio p h d ϕ j {g ˚is ensured (see Equation(4.13)). The two dimensions m and d must be optimized. As for p f pdq or p f p q,d , the performance of p f m,d depends on p h d which has good statistical properties (see Section 4.3).

					"	1 2π	ż	h ˚puq g ˚puq	ϕ j puqdx "	p´iq j ? 2π	ż	h ˚puq g ˚puq	ϕ j puqdu.	(4.42)
	Replacing h ˚by p h d defined in (4.28) and plugging this in (4.42), we define the following
	estimator :	p f m,d "	m´1 ÿ j"0	p a j,d ϕ j , p a j,d "	p´iq j ? 2π	ż	p h d puq g ˚puq	ϕ j puqdu,	(4.43)
	provided that p p a j,d "	piq j ? 2π	ż	p h d puq g ˚puq	ϕ j puqdu "	p´iq j ? 2π	ż	p h d puq g ˚puq	ϕ j puqdu " p a j,d ,

  Assume that f and h belong to L 2 pRq and set

	Proposition 4.5.1. Σpmq " sup |u|ď ? ρm	|g ˚puq| ´2	`m´1 ÿ j"0	ż	|u|ě	ρm ?	|ϕ j puq| 2 |g ˚puq| ´2du, ρ ą 0.	(4.44)
	For p f m,d given in (4.43), we have		
	E	" } p f m,d ´f } 2	ı	ď}f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax	`Ψ´1 d ˘}h ´hd } 2 n	`σ2 ε	T n	`tr `Ψ´1 d ˘^2π 2 m ˘˙.
									(4.45)

  For each d P M

		"ˆ}	˙`*
	p1q n , compute p Apdq " max d 1 PM p1q n	p p f d 1 ´p p f d^d 1 } 2 ´κ1 V pd 1 q	,
	where the integral }	p p f d 1 ´p p f d^d 1 } 2 is computed by Riemann's approximation and V pdq
	given in (4.46),		
		!	)
	-Select p d such that p d " arg min dPM p1q n -Compute p p f p d pxq " 1 2π ş ? 2 p d ´?2 p d e ´iux p h p d puq g ˚puq du. p Apdq `κ2 V pdq	,
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 4 4 -Mean of selected dimensions p d presented inFigures 4.4 and 4.5. 

	f		(iii)	(iv)
	n	250	1000 1000 4000
	σ ε " 1 8 σ ε " 1 4	16.20 23.32 22.24 28.24 12.68 16.60 17.88 21.12

  i.d., centered of variance σ 2 ε . From this, it comes that where ψ u pxq " e ixu hpxq. As ψ 1 u pxq " piuhpxq `h1 pxqqe iux , then, it follows that |ψ 1 u pxq| ď |u|}h} 8 `}h 1 } 8 , because }h} 8 ă 8 and }h 1 } 8 ă `8. This implies that

							Er} r f ´Er r f s} 2 s "	Λp q n	T 2 σ 2 ε .	(4.52)
	Now, we study } Er r f s ´f } 2 " 1 2π and write	ş ´	| E p h ˚puq´h ˚puq| 2 |g ˚puq| 2	du. We examine | E p h ˚puq ´h˚p uq| 2
	ˇˇE r h ˚puq ´h˚p uq ˇˇ2 "	ˇˇˇˇT n	n´1 ÿ j"´n	e iux j hpx j q	´T e iux hpxqdx ´ż T	´ż|x|ěT	e iux hpxqdx ˇˇˇˇ2
	ď2	ˇˇˇˇT n	n´1 ÿ j"´n	e iux j hpx j q	´ż T ´T e iux hpxqdx	ˇˇˇˇ2 `2 ˇˇˇˇż	|x|ěT	e iux hpxqdx	ˇˇˇˇ2 .
	From Lemma 4.8.2, we derive that
	ˇˇˇˇT n	n´1 ÿ j"´n	e iux j hpx j q	´ż T ´T e iux hpxqdx	ˇˇˇˇď }ψ 1 u } 8	T 2 n	,
	} Er r f s ´f } 2 ď Λp q	«	T 4 n 2 p }h} 8 `}h 1 } 8 q 2 `pż	|x|ěT	e iux hpxqdxq 2	ff	.	(4.53)
	Plugging (4.52) and (4.53) in (4.51) ends the proof.

  Proof ofProposition 4.3.1. Denote Π d h " Φ d b pdq " Φ d pΦ t d Φ d q ´1Φ td hp xq with hp xq " phpx ´nq, . . . , hpx n´1 qq t the orthogonal projection of h on S d for the empirical norm } ¨}2

						tPS d	}t ´h} 2 n	`}p h d ´Πd h} 2 n .
	Taking the expectation gives		
		E	" } p h d ´h} 2 n	ı	" inf tPS d	}t ´h} 2
	We have				
	«				
	Er ε t P p xq εs " E	ÿ		
	´nďi,kďn´1		

n .

Proof of part (i). We have

} p h d ´h} 2 n " }Π d h ´h} 2 n `}p h d ´Πd h} 2 n " inf n `E " } p h d ´Πd h} 2 n ı . (

4

.54) Then, for p b pdq given in (4.19), we can write p h d p xq " ´p h d px ´nq, . . . , p h d px n´1 q ¯t " Φ d p b pdq , and Π d h " Er p h d p xqs. Setting P p xq " Φ d pΦ t d Φ d q ´1Φ t d , we have } p h d ´Πd h} 2 n " }P p xq ε} 2 n " T n ε t P p xq t P p xq ε " T n ε t P p xq ε.

  56) ph d px i q ´hpx i qq 2 . ph d px i q ´hpx i qq 2 şT ´T ph ´hd q 2 puqdu `şT ´T ph ´hd q 2 puqdu. Using Lemma 4.8.2 given in the Appendix yieldsˇˇˇˇT d px i q ´hpx i qq 2 ´ż T ´T ph ´hd q 2 puqdu

	This implies									
							}h d ´Er p h d s} 2 ď λ max	`Ψ´1 d ˘}h ´hd } 2 n ,	(4.57)
	From (4.55) and (4.7.2), we derive		
			Er} p h d ´h} 2 s ď σ 2 ε	T n	tr `Ψ´1 d ˘`}h ´hd } 2 `λmax	`Ψ´1 d ˘}h ´hd } 2 n .	(4.58)
	Proof of Lemma 4.3.2. Recall that }h d ´h} 2 n " T n i"´n Proof of part (i). We write T ř n´1 n ř n´1 i"´n ph d px i q ´hpx i qq 2 " T n i"´n n ř n´1 n´1 ÿ i"´n ˇˇˇˇď }ψ 1 } 8	T 2 n	,
	where ψpxq " p ř jěd a j phqϕ j pxqq 2 . Using (4.11), (4.14) and the Cauchy-Schwarz inequality, we have for h P W α H pLq that
		ÿ jěd	a j phqϕ 1 j pxq ď	˜ÿ jěd	j α |a j phq| 2	¸1 2	˜ÿ jěd	j ´α`5 6	¸1 2	À ´d´α`5 6	`1¯1 2 " d ´α 2	`11 12 ,
	provided ´α `5{6 `1 ă 0, that is α ą 11{6. Then, ψ is differentiable and ψ 1 pxq "
	2 lity, we have for h P W α ř jěd a j phqϕ 1 j pxq ř jěd a j phqϕ j pxq. Again, using (4.11) and the Cauchy-Schwarz inequa-H pLq that
	ÿ jěd	|a j phqϕ j pxq| ď	ÿ jěd	j	α 2 |a j phq|j ´α 2 ´1 12 ď	˜ÿ jěd	j α |a j phq| 2	¸1 2	˜ÿ jěd	j ´α´1 6	¸1 2	À d ´α 2 `5 12 .
	Consequently, it follows for α ą 11{6 that T n

ph

  Using this for d " 2 and (4.11), it follows |ϕ 2 j pxq| À jpj `kq ´1 12 À j

							11 12 and then we get for
	W α H pLq and α ą 17{6				
	|	ÿ jąd	a j phqϕ 2 j pxq| ď	˜ÿ jąd	j α a j phq 2	¸1 2	˜ÿ jąd

  S dn , where d n ď n is the maximum dimension of the collections of models M n , it holds from (4.59) that } p h

				.59)
	Using that		
		Er} p h	p d ´h} 2 s ď 2Er} p h	p d ´hd } 2 s `2}h d ´h} 2
	Under pA4q and as p h Thus, for any d ě 1,	p d ´hd P p d ´hd } 2 ď 2λ 2 2 } p h d ´h} 2 p n `2λ 2 2 }h´h d } 2 n .
	Er} p h d ´h} 2 s ď 2λ 2 p 2 Er} p h d ´h} 2 p n s `2λ 2 2 }h ´hd } 2 n `}h d ´h} 2 .
	From (4.25), we derive that
	Er} p h d ´h} 2 s ď2λ 2 p 2		

  .60) By the definition p h d given in (4.19), it yields E

		"					"	
		ř d´1 j"0 ´p b pdq j	´E p b pdq j	`E p b pdq j	¯2	" E	ř d´1 j"0 ´p b pdq j	j ´E p b pdq	¯2
	ř d´1 j"0	´E p b pdq j ¯2 and } E p h d } 2 " } Er p b pdq s} 2 R d " }pΦ t d Φ d q ´1Φ t d h} 2 R d ď }pΦ t d Φ d q ´1Φ t d } 2 op	ř n´1 i"´n phpx i qq 2 .
	Using (4.55) and (4.56) (where h d :" 0), we derive that						
	E							

  dx`ş |x|ě1 |x pαq gpxq| 2 dx ă `8. Therefore, }x α h plq } 2 ă `8 and h belongs to W α H p¨q. Proposition 4.3.2 (ii) gives Er} p h dopt ´h} 2 s À n ´α α`1 . Plugging this in (4.33) and using Lemma 2 in Comte and Lacour (2011) yield

			2 8	α ÿ k"0 ˆα k	˙ż |pg ˚qpkq puq| 2 du.
	Moreover, it holds	ş	|pg ˚qpkq puq| 2 du " 1 2π |x|ď1 |gpxq| 2 E ş |x k gpxq| 2 dx ď ş

  Proof ofProposition 4.4.4. First, note that as f and g are Gaussian densities, then h " f ‹ g is it also a Gaussian density with variance σ 2 `θ2 . It is proved in[START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] (see Proof of Proposition 7, p. 55-56) that the bias for Gaussian density is exponentially decaying and its order is given by }h ´hd } 2 À 1

								? d expp´λ σ,θ dq, where
	"						
	λ σ,θ " log	´σ2 `θ2 `1 σ 2 `θ2 ´1 ¯2	ą 0. We derive that :
			Er} p h d ´h} 2 s À σ 2 ε λ 2	T n	d `1 ? d	expp´λ σ,θ dq `Op	T 2 n	q	(4.62)
	Injecting d opt " rlogpnq{λ σ,θ s in (4.62), we have (4.35). Injecting this in (4.33), it comes
			E				
	2 opt " p	α 2pα`1qσ 2 logpnqq, it yields that	
			E	" } p f p optq,dopt ´f } 2	ı	À logpnq ´s.

  Let us remark that if d 1 ď d, the last term is equal to zero. We have max q}h ´Er p h d 1 s} 2 `9}f ´fp and V pd 1 q ě V pd 1 ^dq, then, we have the following bound max Under the assumptions ofTheorem 4.4.2, it holds for κ 1 ě 12 and C 0 a positive constant, By Phythagoras Therorem, we have }h ´Er p h d s} " }h ´hd } 2 `}h d ´Er p h d s} 2 . (4.64) Then, we deduce from Lemma 4.7.1, (4.63), (4.61) and (4.55) that : Taking the infimum d and choosing C " maxp57, 7κ 2 q, C 1 " 54C 0 in (4.65) ends the proof of Inequality (4.40). Now, we prove Inequality (4.41). From (4.64)-(4.57) and pA4q, it holds ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ď p1 `λ2 q∆p ? 2d 1 q}h ´hd 1 } 2 `λ2 ∆p ? 2d 1 q}h ´hd 1 } 2 n .

		Besides, by definition of p f p ? 2dq,d given in (4.30) and f p ?	2dq in (4.31), we have for all d ě 1
		} Er p f p ? 2dq,d s ´fp and for d 1 ě d ÿ n dPM p1q E " ´} p ? 2dq } 2 " f p ? 2dq,d ´Er p 1 2π ż ? 2d ´?2d f p ? 2dq,d s} 2 ´κ1 | Er p h d puqs ´h˚p uq| 2 |g ˚puq| 2 6 V pdq ¯` ď	du ď ∆p ? C 0 logpnq n , 2dq}h ´Er p h d s} 2 ,
	}f p ? 2d 1 q ´fp ? where C 0 " C 0 pErε 4 1 s, γ, c 1 , ξ, λ 2 , C 1 2dq } 2 " ż ? 2dď|u|ď ? 2d 1 8 q.	|f ˚puq| 2 du ď	ż	|u|ě	? 2d	|f ˚puq| 2 du " }f ´fp ?	2dq } 2 .
		This implies		
							"
			p Apdq ď3 max d 1 PM p1q n	´} p f p	? 2d 1 q,d 1 ´Er p f p	? 2d 1 q,d 1 s} 2 ´κ1 6	V pd 1 q	¯`*
								"
	where	`3 max d 1 PM p1q n `9 max ´} Er p f p ? d 1 PM p1q ∆p d ´f } 2 s ď 57}f ´fp p p f Er} p ? 2dq } 2 `7κ 2 V pdq `54C 0 2d 1 ^?2dq,d 1 ^ds ´p f p ? 2d 1 ^?2dq,d 1 ^d} 2 ´κ1 6 logpnq `57R b pdq, n ? 2d 1 ? 2dq } 2 . n ,dďd 1 «	¯`* V pd 1 q (4.65)
		As			R b pdq :"	max d 1 PM
			"				"
		max d 1 PM p1q n	´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6	V pd 1 q	¯`*	ď	p1q n , we use the following n ÿ d 1 PM p1q ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6	V pd 1 q ¯`*
	decomposition				
		} f d 1 ´p p p p f d 1 ^d} 2 " } f d 1 ´Er p p f d 1 s `Er p p " ď 3} p p f d 1 ´Er p p f d 1 s} 2 `3} Er p p f d 1 s ´Er p p f d 1 ^ds ´p p p p f d 1 ^ds `Er f d 1 ^ds ´p p p p f d 1 ^d} 2 f d 1 ^d} 2 `3} Er p p f d 1 s ´Er f d 1 ^ds} 2 . p p d 1 PM p1q n ´} Er p f p ? 2d 1 ^?2dq,d 1 ^ds ´p f p ? 2d 1 ^?2dq,d 1 ^d} 6 V pd 1 q 2 ´κ1 ¯`*
								"
	Using this, it comes		ď	max d 1 PM p1q n ,d 1 ďd	´} Er p f p ? 2d 1 q,d 1 s ´p f p	? 2d 1 q,d 1 } 2 ´κ1 6	V pd 1 q ¯`*
	p Apdq ď3 max d 1 PM p1q n	"ˆ}	p p f d 1 ´Er f d 1 s} 2 ´κ1 p p 6 `"´} Er p V pd 1 q ˙`* f p ? 2dq,d s ´p f p `3 max d 1 PM p1q n ? 2dq,d } 2 ´κ1 "ˆ} 6 "	Er f d 1 ^ds ´p p p p f d 1 ^d} 2 ´κ1 ¯`* V pdq 6	V pd 1 q	˙`*
			`3 max d 1 PM p1q n	" } Er f d 1 s ´Er p p f d 1 ^ds} 2 p p ď 2 ÿ n d 1 PM p1q ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6	¯`* V pd 1 q	.
		Consequently, it follows
								"
	d 1 PM	p1q n	} Er f d 1 s ´Er p p E " f d 1 ^ds} 2 " p p " p Apdq ı ď 9	max d 1 PM p1q n ,dăd 1 max d 1 PM p1q n ,dăd 1 ÿ p1q E ´} p } Er p f p ? 2d 1 q,d 1 s ´Er p f p ! } Er p f p ? 2d 1 q,d 1 s ´fp ? ? 2dq,d s} 2 2d 1 q `fp ? f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 2d 1 q ´fp ¯` ? 2dq `fp ? 2dq ´Er p f p ? 2dq,d s} 2 V pd 1 q 6 d 1 PM n `9 max d 1 PM p1q n ,dďd 1 ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 `9}f ´fp ? 2dq } 2 .	)
		ď 3 Next, we have to control the term max d 1 PM p1q n ,dăd 1 `3 d 1 PM } Er p f p max p1q n ,dăd 1 ? 2d 1 q,d 1 s ´fp " }f p ? 2d 1 q ´fp ? 2d 1 q } 2 `3}f p ? 2dq } 2 . ř d 1 PM p1q n E ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 ? 2dq ´} Er p f p ? 2dq,d s} 2

.63) Now, we are interested in the study of Er p Apdqs. For all d P M * . 6 V pd 1 q ¯` . We use the following technical Lemma. Lemma 4.7.1. p1q n ,dďd 1 ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ff .

  , for d 1 ě d, we derive that R b pdq ď C ´d´s `T 2 n ¯. Plugging this in (4.65) and using }f ´f? 2d } 2 ď 2 ´sLd ´s because f P W s pLq concludes the proof of Theorem 4.4.2. Let us denote by S d :" tt P L 1 pRq X L 2 pRq, supp pt ˚q Ă r´?2d, ? 2dsu. We have, |ν n ptq| 2 ď }t} 2 } p By definition of p h d given in (4.19), we write,As the noise is not bounded, we cannot apply directly the Talagrand's inequality to the process ν n ptq. In this respect, we use the following decompositionε i " ζ i `ξi , ζ i " ε i 1 |ε i |ďkn ´Erε i 1 |ε i |ďkn s, ξ i " ε i 1 |ε i |ąkn ´Erε i 1 |ε i |ąkn s,where k n is chosen in the sequel. Then, it follows that Now, we study the last two terms. We start by the second. ´1 d Φ t d y, y " pypx ´nq, . . . , ypx n´1 qq t with ypx i q " hpx i q `ξi , here and only for the study of n E " sup tPS d ,}t}"1 |νThe bounds obtained for p h d extend to ȟd . Then, it yields from (4.55) (with σ 2 ε replaced by Erξ 2 1 s) and under pA4q that E Pp|ε 1 | ě k n q.We introduce the following technical Lemma to obtain a bound of Erξ 2 1 s. Under pA6q, it yields Pp|ε 1 | ě k n q ď 2e ´k2 n 2b 2 . Moreover, ε 1 admits a finite moment of any order, Er|ε 1 | p s ď p2b 2 q p 2 spΓp p 2 q, where Γp¨q denotes the gamma function defined by : Talagrand inequality given in Appendix 4.8.4. Let us first compute the three constants H 2 , M 1 and v. orthonormality of ϕ j , we have on the process ν

	where (see Equation (4.19)) ȟd "	ř d´1 j"0	bpdq j ϕ j , bpdq " p bpdq 0 , . . . , p1q n	bpdq d´1 q t " pΦ t d Φ d q ´1Φ t d y "
	ν n ptq "xt, p f p ? 2dq,d ´Er p f p " 1 2π T n ż ? 2d ´?2d ř d´1 ? 2dq,d sy " j"0 " Ψ ´1 d Φ t d ε ‰ 2π 1 p2q n ptq| 2 ı . It comes that }α t,d,i } 8 " sup tPS d ,}t}"1 sup xPR |α t,d,i pxq| " sup tPS d ,}t}"1 ż ? 2d ´?2d sup xPR ˇˇˇˇx 1 xďkn p h d puq ´Er p h d puqs g ˚puq T π xt ˚, d´1 ÿ " Ψ ´1 d Φ t t ˚p´uqdu d ‰ j,i j"0 j ϕ j puq g ˚puq t ˚p´uqdu Using that sup tPS d ,}t}"1 " Ψ ´1 d Φ t d ε ‰ 0ďjďd´1 " " ř n´1 ı E « sup tPS d ,}t}"1 |ν p2q n ptq| 2 ff ď }t} 2 ∆p ? 2dq E " } ȟd ´Er ȟd s} 2 ı . sup ¨2k n T π }t ˚}? 2π ˜ż ? 2d ´?2d | ř d´1 j"0 " Ψ ´1 d Φ t d ‰ ¸1 2 ' ϕ j g ˚1|¨|ď ? 2d y j,i ϕ j puq| 2 du |g ˚puq| 2 tPS d ,}t}"1 i"´n rΨ ´1 d Φ t d s j,i ε i , it holds 0ďjďd´1 ν n ptq " 1 2π T n n´1 ÿ i"´n ε i xt ˚, ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y " 1 2n n´1 ÿ α t,d,i pε i q " sup tPS d ,}t}"1 |ν p2q n ptq| 2 ı ď ∆p ? 2dqλ 2 d Erξ 2 1 s T ď 4k n T ˜∆p ? 2dq d´1 ÿ " Ψ ´1 d Φ t d ¸1 2 ‰ 2 j,i . n . By the j"0 Cauchy-Schwarz inequality, we have i"´n where α t,d,i pxq " x T π xt ˚, ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y. Erξ 2 1 s ď Erε 2 1 1 |ε 1 |ěkn s ď b a To bound the term ř d´1 j"0 " Ψ ´1 d Φ t d ‰ 2 j,i , we use : Erε 4 1 s d´1 ÿ " Ψ ´1 d Φ t d d´1 ‰ 2 j,i " ÿ " Ψ ´1 d Φ t d ‰ j,i " Ψ ´1 d Φ t d ‰ i,j " " Φ d Ψ ´1 d Ψ ´1 d Φ t d ‰ ´nďi,iďn´1 " e t i Φ d Ψ ´1 d Ψ ´1 d Φ t d e i ,	ˇˇˇď
	j"0		j"0							
	ν n ptq " ν p1q n ptq `νp2q n ptq, ν p1q n ptq " Lemma 4.7.2. Γptq " ż `8 x t´1 e ´xdx, @t P R. 1 2n n´1 ÿ i"´n α t,d,i pζ i q, ν p2q n ptq " 0 Using Lemma 4.7.2 with p " 4 and choosing	1 2n	n´1 ÿ i"´n	α t,d,i pξ i q,
	and		«˜s					k n " 2	¸`ff ? 2b a logpnq, «˜s	¸`ff (4.67)
	we get	E	up tPS d ,}t}"1	|ν n ptq| 2 ´κ1 6	V pdq	ď 2 E	up tPS d ,}t}"1	|ν p1q n ptq| 2 ´κ1 12	V pdq
											«	ff
	n E	« tPS d ,}t}"1 sup	|ν p2q n ptq| 2	ff	ď n∆p	? 2dqλ 2 d b	`2 E Erε 4 1 s a Pp|ε 1 | ě k n q sup tPS d ,}t}"1	|ν p2q n ptq| 2 T n ď C n ,	.	(4.68)
	This implies that " since ∆p ? 2dqλ 2 dT À n by definition of M	p1q n .	«˜s	¸`ff
	ÿ dPM p1q n Upper bound for E ´} p f p ? 2dq,d ´Er p f p ? 2dq,d s} 2 ´κ1 6 " ř dPM p1q n E `sup tPS d ,}t}"1 |ν p1q V pdq ¯` n ptq| 2 ´κ1 ď 2 ÿ dPM p1q n 12 V pdq E ˘`ı tPS d ,}t}"1 up . We bound this |ν p1q n ptq| 2 ´κ1 12	V pdq
	Proof of Lemma 4.7.1. Consider the process ν n ptq " xt, p f p ? term applying the Computing of H 2 . Similarly to the study of E " sup tPS d ,}t}"1 |ν 2dq,d ´Er p f p ? `2n E « sup tPS d ,}t}"1 ı p2q n ptq| 2 , we have under |ν p2q n ptq| 2 ff . pA4q and from (4.55), 2dq,d sy. f p ? 2dq,d ´Er p f p ? 2dq,d s} 2 with equality in t " p f p ? 2dq,d ´Er p f p ? 2dq,d s{p p f p ? 2dq,d ´Er p f p ? 2dq,d sq , then, it holds } p f p ? 2dq,d ´Er p f p ? 2dq,d s} 2 " sup Upper bound for n E " sup tPS d ,}t}"1 |ν p2q n ptq| 2 ‰ . For t P S d , we remark that ν p2q n ptq " 1 2π T n ż ? 2d ´?2d ř d´1 j"0 " Ψ ´1 d Φ t d ξ ı j ϕ j puq g ˚puq t ˚p´uqdu " 1 2π 2d ´?2d g ˚puq ȟd puq ´Er ȟd puqs (4.66) t ˚p´uqdu, ż ? E « sup tPS d ,}t}"1 |ν p1q n ptq| 2 ff ď λ 2 Erζ 2 1 s∆p ? 2dq dT n ď λ 2 σ 2 ε ∆p ? 2dq dT n :" H 2 .

tPS d ,}t}"1 |ν n ptq| 2 . T n Ψ

4 Proofs of Section 4.5

  ´1 2 d Ψ ´1 2 d Φ t d x ˙" λ max pΨ ´1 d qλ max pΦ d Ψ ´1 d Φ t d q.Furthermore, the matrixΦ d Ψ ´1 d Φ t d " n T Φ d pΦ t d Φ d q ´1Φ t d is an orthogonal projection matrix, then, it comesProof of Proposition 4.5.1. By the Pythagoras Theorem, we haveWe study the last two terms on the above expression. Start by the second. To do this, we introduce the matrix : By definition p h d given in(4.19), we remark p a j,d " rM p b pdq s j with p b pdq " p p b " pp a 0,d , . . . , p a m´1,d q t " rM p b pdq s 0ďjďm´1As Ψ ´1 d is a definite symmetric positive matrix, then, it is diagonalizable Ψ ´1 d " P DP t with D " diagpµ 1 , . . . , µ d q, where the µ i ą 0 are eigenvalues of matrix Ψ ´1 d and P P t " P t P " I d . We can define the root square of Ψ ´1 d and derive (see Proof of Theorem 4.4.2 when we compute M 1 ) trrΨ ´1 d M t M s ď λ max pΨ ´1 d qtrrM t M s. The Frobenuis norm and Bessel inequality give : }M } 2 F " trrM t M s " Plugging the two last terms on the above bound in 4.72, we obtain Proof of Theorem 4.5.1. Under pA3q, pA4q and the assumptions of Proposition 4.7.1 (i.e. h belongs to W α H for some condition on f and g), it holds from Lemma 4.3.2 :

	4.7.E Let us study the term E " } p f m,d ´f } 2 " } p f m,d ´fm } 2 ı " }f ´fm } 2 `E " } p f m,d ´fm } 2 ı . On the one hand, by definition of p ı d n 100 500 1000 We set p [n 1{2 ] 0.094 (0.101) 0.082 (0.087) 0.079 (0.084) 10 (4.359) 22 (6.557) 31 (7.810) f m,d Then, it yields " 0.103 (0.114) 0.094 (0.101) 0.090 (0.097) [n 1{3 ] 4 (2.646) 7 (3.606) 9 (4.123)  f m,d and f m , (4.70) pdq 0 , . . . , p b pdq d´1 q t . it yields E " } p f m,d ´Er p f m,d s} 2 ı " E } p f m,d ´Er p f m,d s} 2 R pmq " E " }M pΦ t d Φ d q ´1Φ t d ε} 2 R pmq ‰ 0.109 (0.121) 0.102 (0.111) 0.098 (0.107) [n 1{4 ] 3 (2.236) 4 (2.646) 5 (3)
	E	" } p f m,d ´fm } 2	ı	"Er m´1 ÿ j"0 pp a j,d ´aj q 2 s " E " σ 2 ε tr " Φ d pΦ t « m´1 ÿ j"0 d Φ d q ´1M t M pΦ t 1 2π |x d Φ d q ´1Φ t ff d p h d ´hg ˚, ϕ j y| 2 " σ 2 ε T n trrΨ ´1 d M t M s.	‰
					ď	1 π	E	« m´1 ÿ j"0	|x	p h d ´hg	˚1|¨|ď ? ρm , ϕ j y| 2	ff	`1 π	E	j"0 m´1 « ÿ	|x	p h d ´hg	˚1|¨|ě ? ρm , ϕ j y| 2	ff	.
	By the Bessel Inequality, it holds						
	2 d Φ t ˚1|¨|ď ? ρm , ϕ j y 2 ď } ď sup p h d ´hg ˚1|¨|ď ? ρm } 2 " |u|ď ? ρm 1 m´1 ÿ j"0 d´1 ÿ k"0 ˇˇˇż R ϕ j puqϕ k puq ż |x|ď ? ρm g ˚puq du ˇˇˇ2 ď 2π ˇˇˇˇp h d puq ´hg ˚puq m´1 ÿ j"0 ż |ϕ j puq| 2 ˇˇˇˇ2 du |g ˚puq| 2 du R |g ˚puq| 2 The Cauchy-Schwarz inequality gives, m´1 ÿ j"0 x p h d ´hg ď 4π 2 ˜m∆p ? ρmq `m´1 ÿ j"0 ż |u|ě ? ¸. |ϕ j puq| 2 |g ˚puq| 2 du ρm d e i d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i " e t i Φ d Ψ ´1 2 x p h d ´hg Consequently, it holds d´1 d Ψ ´1 d Ψ ´1 2 ÿ d Φ t d e i " j"0 j"0 " Ψ ´1 d Φ t Consequently, we get E " } p f m,d ´fm } 2 ı ď 1 π « sup |u|ď ? ρm 1 |g ˚puq| 2 `m´1 ÿ j"0 ż |u|ě ? ρm ff " ı E " } p f m,d ´Er p f m,d s} 2 ı ď 4π 2 ˜m∆p ? ρmq `m´1 ÿ j"0 ż |u|ě ? ρm |ϕ j puq| 2 |g ˚puq| 2 du ¸σ2 ε T n |ϕ j puq| 2 E } p h d ´h˚}2 " ı |g ˚puq| 2 du " 2ΣpmqE " Similarly to the study of quantity E } p f m,d ´fm } 2 where p f m,d is replaced by Er p . f m,d s, we ı } p h d ´h} 2 . have
	Injecting this in (4.70) and using Proposition 4.3.1 (ii), we get } Er p f m,d s ´fm } 2 ď 2Σpmq `}h ´hd } 2 `λmax	`Ψ´1 d ˘}h ´hd } 2 n	˘.
	d´1 ÿ j"0 ď }f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax " Ψ ´1 d Φ t d ‰ 2 j,i ď λ max pΨ ´1 d q `Ψ´1 n T . d ˘}h ´hd } 2 n f m,d ´f } 2 f m,d ´f } 2 } p " ı E " } p ı ď }f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 `σ2 ε n `2π 2 σ 2 T tr `Ψ´1 d ˘˙. n (4.69) (4.71) `Ψ´1 ε λ max d On the other hand, from (4.70), we have E Under pA4q, we obtain sup }α t,d,i } 8 ď 4k n T 1 2 p∆p ? 2dqλ 2 nq 1 2 :" M 1 . E " } p f m,d ´f } 2 ı " }f ´fm } 2 `} Er p f m,d s ´fm } 2 `E " } p f m,d ´Er p f m,d s} 2 ı . (4.72) Combining this and (4.71) ends the proof.	˘m T n	˙.
						tPS d ,}t}"1								
	For δ ą 0, the Talagrand inequality gives,					
		E	E " } p «˜s up tPS d ,}t}"1 M :" ˇˇν p1q n ptq ˇˇ2 ´2p1 `2δqH 2 ˆżR ϕ j ϕ f m,d ´f } 2 ı ď Lm ´s `2Σpmq " p1 `λ2 qL 1 d ´α `λ2 σ 2 ¸`ff ď 4 K 1 pT d `Ud q, ε T d n `Cpα, Lq	n T 2	

µ j w 2 j ď λ max pΨ ´1 d q w t w,

The definition of operator norm implies,

d´1 ÿ d ‰ 2 j,i ď λ max pΨ ´1 d q sup } x}"1 ˆ x t Φ d Ψ ż | p h d puq ´h˚|2 du. ˚1|¨|ě ? ρm , ϕ j y 2 ď } p h d ´h˚}2 } ϕ j g ˚1|¨|ě ? ρm } 2 . k g ˚˙0ďjďm´1, 0ďkďd´1

Table 4 .

 4 5 -First line : Matrix norm of A ´Id with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " ? 2d ´1. Second line : values of d with T in parentheses. 1{2 s 9.19e-16 ( 9.19e-16) 2.03e-15 (2.14e-15) 9.57e-11 (9.57e-11) rn 1{3 s 5.02e-16 (5.15e-16) 6.07e-16 (6.07e-16) 4.84e-16 (4.84e-16) rn 1{4 s 7.29e-16 (8.40e-16) 5.00e-16 (5.00e-16) 3.45e-16 (3.45e-16) Table 4.6 -Matrix norm of A ´Id with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " 10.excepted. The results of Table4.6 are better than those of Table4.5. This is due to the choice T " 10 larger than T " ? 2d ´1 for the choices of n et d given in Table4.5 (for instance for n " 1000, d " rn 1{2 s " 31, we have T « 7.81). Lastly, the norm ~Ψd ´Id ~is smaller than ~Ψ´1 Proof of Lemma 4.8.1. We prove the result only for the particular norm defined in (4.74) but the result is valid for any matrix norm since we are in finite dimension. The general term of pΨ d ´Id q is j piT {nqϕ k piT {nq ´ż ϕ j puqϕ k puqdu j piT {nqϕ k piT {nq ´ż ϕ j puqϕ k puqdu "T n j piT {nqϕ k piT {nq ´ż T ´T ϕ j puqϕ k puqdu ˇˇˇˇď }pϕ j ϕ k q 1 } 8 pxqϕ k pxq|dx ď C 12 8 e ´ξT 2 ż e ´ξx 2 dx ď C 1 e ´ξT 2 ,where C 1 is a positive constant since ş e ´ξx 2 dx ă `8. It comes

	d	n	100	500	1000
	rn				

d ´Id ~. ϕ ϕ ϕ |x|ěT |ϕ j

2 Estimating error in Riemann sums

  We give in this section the approximate errors of Riemann sum. Let n ě 1, T ą 0, px i " iT {nq ´nďiďn´1 . Then, (i) For ψ be a function of class C 1 on r´T, T s, we have Proof of Lemma 4.8.2. These proof are very classic when we approximate an integral by Rieman's sum.

	Lemma 4.8.2. ˇˇˇˇT n	n´1 ÿ i"´n	ψpx i q	´ż T ´T ψpxqdx	ˇˇˇˇď }ψ 1 } 8	T 2 n	.
			ˇˇˇˇT n	n´1 ÿ i"´n	ψpx i q `ψpx i`1 q 2	´ż T ´T ψpxqdx	ˇˇˇˇď }ψ 2 } 8	T 3 12n 2 .
	Proof of part (i). By Chasles's relation, it yields
				ż T			n`1 ÿ	ż x i`1
					´T ψpuqdu "	i"´n	x i	ψpuqdu.
	On the other hand, we write				
				T n	n´1 ÿ i"´n	ψpx i q "	n´1 ÿ i"´n	ż x i`1 x i	ψpx i qdu.
	Then, we have by the mean value theorem that
	ˇˇˇˇT n	n´1 ÿ i"´n	ψpx i q	´ż T ´T ψpxqdx	ˇˇˇˇď	n´1 ÿ i"´n	ż x i`1 x i	|ψpuq ´ψpx i q|du
									ď }ψ 1 } 8	n´1 ÿ	ż x i`1
									i"´n

(ii) For ψ be a function of class C 2 on r´T, T s,

  , it follows that

	ˇˇˇˇT n	n´1 ÿ i"´n	ψpx i q `ψpx i`1 q 2	´ż T ´T ψpxqdx	ˇˇˇˇď	n´1 ÿ i"´n	ż x i`1 x i	|ψ i pxq ´ψpxq|dx.
	Now, we look for a bound of	ş x i`1				

  We assume there exist third strictly positive constants M 1 , H, v such that :

		sup sPF	}s} 8 ď M 1 , Ersup sPF	|ν n psq|s ď H, and sup sPF	1 n	n´1 i"´n ÿ	VarpspX i qq ď v.
	Then, for all δ ą 0,						
	E	"ˆs up sPF	|ν 2 n psq| ´2p1 `2δqH 2	˙`	ď	4 K 1 ˆv n	e ´K1 δ nH 2 v	`49M 2 1 K 1 C 2 pδqn 2 e	´K1 1 Cpδq ?	δ nH M 1

  1.1 Vitesse de convergence pour le MISE si f P W s H pDq. . . . . . . . . . . . . . 1.2 Vitesse de convergence du MISE pour p f p optq,dopt dans les cas spécifiques. . . 2.1 Mean of selected dimensions p m n presented in Figures 2.1 and 2.2. . . . . . . 2.2 Empirical MISE 100 ˆE} p f p m,p0q ´f } 2 (left) and 100 ˆE} p f p h ´f } 2 (right, Kernel Estimator) for R " 100 in the Hermite case. . . . . . . . . . . . . .

	2.3 Empirical MISE 100 ˆE} p f p m,p1q

CHAPITRE 4. HERMITE ESTIMATION IN NOISY CONVOLUTION MODELresulting estimator satisfies an oracle inequality for ε's sub-Gaussian. Finally, we illustrate numerically this approach and a novel method inspired by[START_REF] Lacour | Estimator selection : a new method with applications to kernel density estimation[END_REF]'s procedure.

avec toi.

J'exprime aussi mes sincères et chaleureux remerciements à Cristina Butucea et

Première partie

Estimation adaptative et optimale des dérivées d'une densité 2.7 Some inequalities

Asymptotic Askey and Wainger formula

From [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF], we have for ν " 4k `2δ `2, and k large enough

where γ 1 and γ 2 are positive and fixed constants.

If f ε is ordinary smooth, the integral is convergent and the previous bound is of order 1{n. Assume now f ε super smooth, we have by (3.6) :

if δ ă 2, or if δ " 2, and µ ă ξ. This gives the announced result. l

Appendix

Covariance inequality (Viennet (1997))

Let pX i q iPZ be a strictly stationary absolutely process with β´missing sequence pβ k q kě0 . Then, there exists a sequence of measurable functions pb k q kě0 , with b 0 " 1, 0 ď b k ď 1, E P rb k s " β k such that for any measurable function f in L 2 pP q and any positive integer n, we have

Varp Lemma 4.2 in Viennet (1997)) p. 481).

Asymptotic Askey and Wainger formula

From [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF], we have for ν " 4k `2δ `2, and k large enough

where γ 1 and γ 2 are positive and fixed constants.

Talagrand's inequality.

Let pX i q 1ďiďn be independent real random variables, F a class at most countable of measurable functions and ν n pf q " 1 n ř n i"1 pf pX i q ´Erf pX i qsq for all f P F. We assume there exist third strictly positive constants M 1 , H, v such that :

Computing of v. For t P S d , it holds by the Cauchy-Schwarz inequality, Erζ 2 1 s ď σ 2 ε and as }t} 2 " 1,

´?2d

´?2d

The Fourier transform of pϕ j q, see (4.12) gives,

where we use the orthonormality pϕ j q. Recall that for A " pa i,j q 1ďiďm,1ďjďn a matrix with real coefficients, the Frobenius norm of A is defined by

Then, under pA4q, it yields

Computing of M 1 . Using successively (4.12), the Cauchy-Schwarz inequality and the where where the last bound is obtained using the fact that ε 1 is b-sub-Gaussian. The above inequality holds for any t ą 0, then, for the t which minimizes the bound. Set rptq "

2 ´st, we have r 1 ptq " 0 in t " s{b 2 and r 2 ptq ą 0 for any t ą 0. It follows that t " s{b 2 is the minimizer of rptq and inf tě0 rptq " ´s2 {p2b 2 q and then, Ppε 1 ą sq ď e Using the definition of the gamma function, we get Er|ε 1 | p s " p2b 2 q p 2 pΓp p 2 q.

Besides, under pA3q and from (4.13) with ρ ě 2, we have As sup |x|ď ? ρm |g ˚pxq| ´2 ď c 1 p1 `pmρq γ q, then, there exits a constant, denoted C 1 such that Σpmq ď C 1 m γ . Then, we obtain

and the choices m opt " d opt " rn 1{pα`1q s with α " s `γ ą 11{6 end the proof. Comment on Table 4.5 and 4.6. Globally, we see that increasing n makes the norm smaller but on the other hand the increase of d increases the norm. This is in accordance with the theory. Indeed in (4.73), we observe that for d large enough, it is the second term that determines the precision of these two norms. The increase with d of the norms is thus

Appendix