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RÉSUMÉ

Les modèles d'apprentissage modernes ont généralement besoin de volumes de 
données conséquents afin de réaliser de bonnes prédictions, et sont donc généralement 
entraînés de manière distribuée, c'est-à-dire en utilisant de nombreuses unités de 
calculs. Cette architecture distribuée peut venir de la taille des données, leur sensibilité, 
ou simplement pour entraîner les modèles plus rapidement. 

Cependant, les modèles d'apprentissage sont souvent entraînés en utilisant des 
méthodes d'optimisation stochastiques intrinsèquement séquentielles, qui utilisent de 
nombreux gradients bruités mais faciles à calculer. De plus, de nombreux algorithmes 
réutilisent de l'information passée afin d'accélérer la convergence, ce qui nécessite un 
haut niveau de synchronie et de partage d'information.

Cette thèse présente un ensemble de résultats permettant d'étendre les avancées 
récentes en optimisation stochastique et accélérée dans le cadre décentralisé, c'est à 
dire sans coordination centrale mais via un ensemble de communications pair à pair.

MOTS CLÉS

Optimisation, Calcul distribué, Optimisation Stochastique, Méthodes Décentralisées

ABSTRACT

In order to make meaningful predictions, modern machine learning models require 
huge amounts of data, and are generally trained in a distributed way, i.e., using many 
computing units. Indeed, the data is often too large or to sensitive to be gathered and 
stored at one place, and stacking computing units increases the computing power.

Yet, machine learning models are usually trained using stochastic optimization 
methods, that perform a sequence of steps which are noisy but relatively easy to 
compute. Besides, many algorithms reuse past information to speed up convergence, 
which requires a high level of synchrony between agents.

This thesis presents a set of results that extend the recent advances from 
stochastic and accelerated convex optimization to the decentralized setting, in which 
there is no central coordination but only pairwise communications.

KEYWORDS
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Summary. In order to make meaningful predictions, modern machine learning models
require huge amounts of data, and are generally trained in a distributed way, i.e., using
many computing units. Indeed, many datasets are so big that they cannot even fit into the
memory of a single computer. The data may also be sensitive, and the users that generate
it may not want to share it with other people. Finally, stacking computing units increases
the overall computing power, and thus allows for faster training.

Yet, machine learning models are usually trained using stochastic first-order optimization
methods, that use a sequence of gradient approximations which are noisy but relatively easy
to compute. By doing so, they rely on the fact that it is generally better to perform many
small approximate steps rather than a few precise steps. Because of this sequential nature,
and the fact that each individual step is rather inexpensive, leveraging parallel computing
capability is a key challenge in this case. Besides, many algorithms rely on acceleration,
which is an optimization technique that reuses past information to perform extrapolation
steps, in order to speed up convergence through the use of momentum. Yet, this use of past
information requires a high level of synchrony and knowledge sharing between computing
agents which can be difficult to achieve.

Indeed, in the centralized communication model, there is a server that aggregates the in-
formation sent by the many workers, and that can perform such global coordination (though
generally at the price of some synchrony). In the decentralized communication model, each
node has its own parameter, and communicates only with its neighbours in a given graph.
In this case, global coordination is much more difficult to achieve, and existing algorithms
are both slower and harder to analyze than in the centralized setting.

The first set of contributions of this thesis focuses on the decentralized setting. An ac-
celerated algorithm based on dual coordinate descent is first developed for the randomized
gossip model, in which communication edges activate uniformly at random, instead of syn-
chronously during global communication rounds. In particular, this extends the results that
were obtained using polynomial (Chebyshev) acceleration for synchronous algorithms. Then,
this algorithm is extended to incorporate a key aspect of convex optimization: stochastic up-
dates with variance reduction. We show the optimality of this finite-sum algorithm in many
settings (synchronous in particular) by exhibiting a matching lower bound. This thus closes
the gap between centralized and decentralized optimization, and shows that even though
decentralized algorithms are harder to design, they achieve the same performances. The
dual framework used leads to very appealing rates but relies on very strong oracles. We thus
give a decentralized stochastic variance-reduced algorithm that relies on the much weaker
primal oracles, although it is obtained through a dual approach.

Another contribution of this thesis is to study communication complexity in the central-
ized setting. The relative regularity framework is leveraged to combine acceleration with
statistical preconditioning (using some local data at the server), in order to make the most
progress with each update. We also show tight bounds on the relative condition number,
and develop stochastic extensions.

The final contribution of this thesis focuses on the problem of preserving privacy while
sharing information in a peer-to-peer fashion. We consider the rumor spreading problem in
a complete graph, and show tight bounds on the differential privacy guarantees that can
be obtained. We also precisely characterize the trade-off between privacy guarantees and
diffusion speed.
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Résumé. Les modèles d’apprentissage modernes ont généralement besoin de volumes
de données conséquents afin de réaliser de bonnes prédictions, et sont donc généralement
entraînés de manière distribuée, c’est-à-dire en utilisant de nombreuses unités de calculs. En
effet, de nombreux jeux de données sont tellement gros qu’ils ne peuvent être stockés dans
la mémoire d’un unique ordinateur. Dans d’autres cas, les données sont sensibles, et ceux
qui les génèrent acceptent de les utiliser pour entraîner des modèles, mais ne souhaitent pas
les envoyer telles quelles sur un serveur distant. Enfin, multiplier les unités de calcul permet
d’augmenter la puissance du système, et donc d’entraîner les modèles plus rapidement.

Cependant, les modèles d’apprentissage sont souvent entraînés en utilisant des méthodes
d’optimisation stochastique de premier ordre. Ces méthodes sont intrinsèquement séquen-
tielles puisqu’elles utilisent de nombreux gradients bruités mais faciles à calculer. De plus, de
nombreux algorithmes utilisent un mécanisme d’accélération, qui réutilise de l’information
passée afin d’extrapoler le paramètre courant, et donc d’accélérer l’algorithme à travers une
certaine forme d’inertie. Toutefois, ceci nécessite un haut niveau de synchronie entre les
différents agents, qui peut être coûteux à réaliser.

En effet, dans un modèle de communication centralisé, un serveur agrège l’information
envoyée par les noeuds du réseau, et peut s’occuper de cette coordination globale (au prix
d’une synchronisation accrue). Dans un modèle décentralisé, chaque noeud a son propre
paramètre, et ne communique qu’avec ses voisins dans un graphe donné. Dans ce cas, une
coordination globale est beaucoup plus difficile à mettre en place, et les algorithmes existants
sont à la fois plus lents et difficiles à analyser.

Le premier ensemble de contributions de cette thèse concerne le modèle décentralisé. Un
algorithme accéléré basé sur la descente par coordonnées dans le dual est développé pour des
communications pair-à-pair aléatoires (au lieu de communications globales de tous les agents
avec tous leurs voisins). Ceci étend les résultat précédemment obtenus pour des algorithmes
synchrones, qui utilisaient de l’accélération polynomiale (Chebyshev). Ensuite, cet algo-
rithme est généralisé pour incorporer un aspect crucial de l’optimisation convexe: l’utilisation
de gradients stochastiques avec réduction de variance. Nous montrons l’optimalité de cet
algorithme pour sommes finies dans de nombreux cas particuliers (en particulier le cas syn-
chrone) grâce à une borne inférieure sur la vitesse d’exécution de ces algorithmes. Le cadre
dual permet de développer des méthodes très rapides, mais basées sur des oracles difficiles à
calculer. Ainsi, nous développons enfin un algorithme décentralisé avec réduction de variance
qui n’utilise que des gradients du primal, bien qu’il soit obtenu par une approche duale.

Un second axe de contributions de cette thèse concerne l’optimisation centralisée. La
notion de régularité relative est utilisée pour combiner l’accélération avec le précondition-
nement statistique (réalisé en utilisant des données locales du serveur), dans le but de tirer le
meilleur parti de chaque pas de gradient. Des bornes précises sur le conditionnement relatif
du problème, ainsi que des extensions stochastiques de cette méthode sont aussi développées.

La dernière contribution de cette thèse étudie le problème du partage anonyme d’information
dans des protocoles pair-à-pair. Le problème de diffusion de rumeurs dans un graphe com-
plet est étudié, et des bornes (inférieures et supérieures) sur les garanties de confidentialité
différentielle sont données. L’existence d’un compromis entre vitesse de diffusion et garanties
de confidentialité est mise en évidence, et un algorithme paramétré permettant de régler le
niveau de confidentialité souhaité est donné.
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Contributions and outline

Chapter 1: In this opening Chapter, we give a brief introduction to the key concepts of
this thesis. In particular, we start by going over basics of convex optimization, and describe
several first-order methods such as stochastic, accelerated, and Bregman gradient algorithms.
Then, we present the two main distributed optimization settings: centralized and decentral-
ized. Then, we focus on decentralized algorithms, and present the main approaches to obtain
them. This manuscript is based on the papers that were published during this thesis. Thus, a
significant effort has been dedicated to the writing of this chapter, which is intended to high-
light the links between the other chapters, and how they consistently contribute to bringing
the advances of convex optimization to the distributed (and in particular the decentralized)
setting.

Chapter 2: A very simple decentralized optimization problem is decentralized averaging,
in which all nodes start with a value, and we would like to compute the average of all the
original values using pairwise interactions only. Interestingly, this problem already captures
most of the difficulty of decentralized optimization. While accelerated methods based on
Chebyshev polynomial were developed for the synchronous setting, it remained unknown
whether the same accelerated rates could be obtained using randomized communications. We
answer this question positively in this chapter, and show that this result actually extends
to more general optimization problems as long as dual gradients can be computed. This
Chapter is based on the paper Accelerated Decentralized Optimization with Local Updates for
Smooth and Strongly Convex Objectives [Hendrikx, Bach, and Massoulié, 2019a], published
at AISTATS 2019.

Chapter 3: In this chapter, we show that when the local objectives are finite sums, then
a fine-grained dual formulation with an augmented graph intuition can be used to derive an
algorithm that uses stochastic gradients locally. This requires more advanced optimization
tools than Chapter 2 (accelerated stochastic block coordinate descent for composite objec-
tives), as well as a finer understanding of synchronization times. Yet, we show that this
leads to an optimal algorithm in many settings, and in particular under synchronous com-
munications (which is a special case of stochastic communications in which the whole graph
is sampled at once). This chapter is based on the paper An Optimal Algorithm for De-
centralized Finite Sum Optimization [Hendrikx, Bach, and Massoulie, 2020b], accepted for
publication at the Siam Journal on Optimization (SIOPT), which is itself based on the pa-
per An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums [Hendrikx
et al., 2019b], published at NeurIPS 2019.

Chapter 4: This chapter closes the decentralized optimization contributions from this
thesis, and focuses on obtaining a “dual-free” algorithm (that only requires primal oracles),
from a dual approach. This is performed using Bregman coordinate descent with well-chosen
reference functions, and showing that the dual problem is relatively smooth under this choice.
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This Chapter is based on the paper Dual-Free Stochastic Decentralized Optimization with
Variance Reduction [Hendrikx, Bach, and Massoulié, 2020a], published at NeurIPS 2020.

Chapter 5: This chapter is devoted to cutting communication complexity in the cen-
tralized setting. This is achieved by performing “statistical preconditioning": the server uses
a (small) local dataset to precondition the updates, which is efficient if the local dataset
approximates the global one. We show that the complexity of this algorithm depends on the
relative condition number between the local objective of the server and the global objective,
and that a square root dependence on this relative condition number can (asymptotically)
be achieved by an accelerated algorithm. Finally, we precisely quantify this condition num-
ber when the dataset of the server is drawn i.i.d. from the same distribution as the global
dataset. Although computationally more demanding, this method can cut the communi-
cation cost by a factor proportional to the size of the server’s dataset. This Chapter is
based on the paper Statistically Preconditioned Accelerated Gradient Method for Distributed
Optimization [Hendrikx, Xiao, Bubeck, Bach, and Massoulie, 2020c], published at ICML
2020.

Chapter 6: In this chapter, we study the privacy guarantees of gossip protocols, in
the special case of rumor spreading in complete graphs. We give matching lower and upper
bounds on the differential privacy guarantees that can be achieved, and exhibit a trade-off
between spreading speed and privacy. Finally, we give a parametrized protocol that allows to
choose where to stand on this trade-off, and show that near-optimal privacy guarantees can
be achieved while retaining logarithmic convergence speed. This Chapter is based on Who
started this rumor? Quantifying the natural differential privacy of gossip protocols [Bellet,
Guerraoui, and Hendrikx, 2020], published at DISC 2020.

Before going further, we would like to insist on the fact that code for all papers is available
online.
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CHAPTER 1

Introduction

Machine Learning is a field that aims at making predictions, based on data. Typical
problems are for instance regression problems (determining the price of a house based on
its characteristics, such as size, location, or number of rooms), or classification problems
(determining whether a given picture represents a cat or a dog). To answer these questions,
prediction models generally need several parameters to be tuned in order to be accurate, and
assess the impact of a given variable on the final decision. For instance, how much does the
price of a house increase when its size increases? These parameters can be set using expert
knowledge, but it can be quite costly: in this case several real-estate agents are probably
needed to help setting them. Machine learning algorithms learn these parameters directly
from data. More specifically, given a model (e.g., linear), and a dataset (all the houses that
were sold on Craigslist or Leboncoin), the goal is to pick the model parameters that best
explain the dataset (give the more accurate prices for the houses). Thus, expert knowledge is
replaced by data when building the prediction model, and more data generally means better
performances.

The process we have described has two major components. The first one consists in
designing the model (what parameters should be learned, and what do they influence), and
the evaluation rule (how do we measure the error between the predictions of our model and
the ground truth). The study of this part is called statistical modelling, and it consists in
designing the problem such that the quality of predictions increases rapidly with the size of
the dataset. Then comes the optimization part: given a model and an error criterion, how
do we find the parameters that yield the minimal error on a given dataset? Although there
are interplays between the two (by trying to find models that are both easy to optimize and
have good learning properties), this thesis only focuses on the second aspect, in the context
of distributed systems.

Indeed, consider now that we would like to build a next word prediction model for
cellphone keyboards, or an injury classification model based on radio images. In the first
case, the dataset is made of all the words typed by all the cellphone users with the same
language and keyboard application, together with information about the user. This is huge,
and does not fit into the memory of a single computer. Yet, we would like to leverage all
this data, and thus need to learn from it in a distributed way. In the second case, people
may not want to send their medical data directly to the server, but would prefer to send a
partial model that has been locally udpated using their data. Another reason one would use
distributed computing is to increase the processing power: one can hope to achieve faster
training by using more computing units that can make progress in parallel.

For all these reasons, distributed optimization is now a key component of machine learn-
ing systems, and comes with a variety of challenges. In this chapter, we present the main
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tools and concepts that we rely on in this manuscript. We first start by describing convex op-
timization with a single machine, and then present the different distributed communication
models, and how the algorithms that we have shown extend to these models.

1.1. Basics of Convex Optimization

We start this chapter by introducing the basic convex optimization concepts that we will
use throughout the thesis. In order to present a self-contained introduction, all results are
given with short proofs of increasing complexity. More detailed introductions can be found
for instance in Boyd et al. [2004], Nesterov [2013c], Bubeck [2015]. We note Cp(Rd) the
set of p times continuously differentiable functions from Rd into R, and study the following
problem for f ∈ Cp(Rd) with p ≥ 1:

min
x∈Rd

f(x). (1.1.1)

Note that we do not consider non-smooth functions, and refer the interested reader to [Nes-
terov, 2013c, Chapter 3] in this case. We assume that Problem (1.1.1) is well-posed, i.e.,
that f? = infx∈Rd f(x) is finite, and that there exists x? ∈ Rd such that f(x?) = f?. We focus
on first-order methods, meaning that we assume that we have access to ∇f , the gradient of
f . We will sometimes assume stronger oracles, such as the gradient of the convex conjugate
of f , or its proximal operator (that we will introduce later). A very simple solution to find
the solution to Problem (1.1.1), consists in performing gradient descent. More precisely, we
start from some x0 ∈ Rd, and perform for some sequence ηt ≥ 0 the following algorithm:

xt+1 = xt − ηt∇f(xt). (1.1.2)
Since the gradient is a descent direction, we know that if ηt is small enough then f(xt+1) ≤
f(xt), meaning that the objective function decreases. At this point, several questions arise:

(1) Is it possible to quantify “small enough”, i.e., how do we set ηt?
(2) Does the sequence (xt)t≥0 converge, and where to?
(3) Is it possible to certify that f(xt) ≤ Et for some Et ∈ R?

These questions cannot be answered non-trivially for general objective functions f . We thus
make assumptions on the regularity of the objective function, that will allow us to analyze
the gradient descent algorithm.

1.1.1. Regularity assumptions. In order to guarantee that there exists non-trivial
step-sizes such that gradient descent converges, one needs to make assumptions on the gra-
dients. Indeed, we want to know how long the gradient information queried at point x ∈ Rd

remains relevant, which is directly related to how fast the gradient changes. In particular,
we assume that f is smooth, i.e., that its gradient is Lipschitz. Note that unless explicitly
stated, ‖ · ‖ refers to the Euclidean norm.

Definition 1 (Smoothness). A function f ∈ C1(Rd) is said to be L-smooth if the fol-
lowing condition is satisfied for all x, y ∈ Rd:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (1.1.3)
This condition is equivalent [Nesterov, 2013c] to:

|f(x)− f(y)−∇f(y)>(x− y)| ≤ L

2 ‖x− y‖
2. (1.1.4)
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We will see that the step-size sequence (ηt)t∈N for which gradient descent converges is
directly related with the smoothness constant L. We now introduce the notion of convexity.

Definition 2. A function f ∈ C1(Rd) is said to be convex if for any x, y ∈ Rd:
f(x) ≥ f(y) +∇f(y)>(x− y). (1.1.5)

It is said to be strictly convex if the inequality is strict for all x 6= y.

If x ∈ Rd is a local minimum, then convexity ensures that f(y) ≥ f(x) for x ∈ Rd since
∇f(x) = 0, and so all local minima are actually global minima (such that f(x) = f?). This
is a key property, as it prevents first-order methods from being stuck in suboptimal local
minima (since they do not exist). The notion of convexity can be strengthened as follows.

Definition 3 (Strong convexity). A function f ∈ C1(Rd) is said to be σ-strongly-convex
if the following condition is satisfied for all x, y ∈ Rd:

f(x)− f(y)−∇f(y)>(x− y) ≥ σ

2 ‖x− y‖
2. (1.1.6)

Note that if f ∈ C2(Rd), then strong convexity and smoothness are equivalent to:
σId 4 ∇2f(x) 4 LId, (1.1.7)

where Id ∈ Rd×d is the identity matrix of size d and for two symmetric matrices A,B ∈ Rd×D,
A 4 B if B−A is positive semi-definite. Before continuing further, we introduce the Bregman
divergence of f , which is defined for points x, y ∈ Rd by:

Df (x, y) = f(x)− f(y)−∇f(y)>(x− y). (1.1.8)
This divergence has many useful properties, and in particular the fact that if f is convex,
Df (x, y) ≥ 0 and Df is convex in its first argument (but not necessarily in the second one).
Using this definition, smoothness and strong convexity can simply be written as:

σ

2 ‖x− y‖
2 ≤ Df (x, y) ≤ L

2 ‖x− y‖
2. (1.1.9)

Note that D 1
2‖·‖

2
2
(x, y) = 1

2‖x − y‖
2
2, and so the left and right hand side of (1.1.9) can also

be expressed in terms of Bregman divergences. We will see in Section 1.1.5 that this allows
for useful generalizations of these regularity conditions. Smoothness and strong convexity
have graphical interpretations: they mean that at any point x0, the function f can be
lower bounded and upper bounded by quadratic functions that go through f(x0), and their
Hessians are defined respectively by σ and L times the identity matrix. An illustration of
this can be found on Figure 1, Before continuing, we now quickly introduce the notion of
proximal operator, which is defined for a convex function f ∈ C1(Rd) by:

proxf (x) = arg min
u∈Rd

f(u) + 1
2‖u− x‖

2. (1.1.10)

We also introduce the convex conjugate of f , which is defined as:
f ∗(x) = sup

u∈Rd
u>x− f(u). (1.1.11)

Note that convex conjugation has many interesting property, and in particular that if f ∈
C2(Rd) and is strictly convex on Rd, then f ∗ is well-defined and ∇f(∇f ∗(x)) = x for x ∈
Rd and ∇f ∗(x) = arg maxu∈Rd u>x − f(u). There are also many links between convex
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Figure 1. Graphical illustration of the quadratic upper-bound and lower
bound provided respectively by L-smoothness (in red) and σ-strong-convexity
(in blue) at point a x0 for a function f .

conjugation and the proximal operator, and we refer the interested reader to Beck and
Teboulle [2009b], Combettes and Pesquet [2011], Parikh and Boyd [2014], Chambolle and
Pock [2016]. Note that the proximal operator and the convex conjugate can be defined
for less regular functions, but we do not discuss them in this manuscript to avoid discussing
well-posedness issues. To make things more concrete, we give an example of typical objective
function that respects these assumptions. In particular, we consider a classification problem:
given a sample zi ∈ Rd, we would like to determine what label yi ∈ {−1, 1} our algorithm
should predict. To do so, we use a logistic regression model, which computes the probability
that z belongs to class 1 as:

px(yi = 1|zi) =
(
1 + exp(−z>i x)

)−1
, (1.1.12)

where x ∈ Rd is the parameter that we would like to learn, through the following optimization
problem:

x? = min
x∈Rd

{
f(x) =̂ 1

m

m∑
i=1

log
(
1 + exp(−yiz>i x)

)
+ λ

2‖x‖
2
}
, (1.1.13)

where λ is a regularization parameter that prevents overfitting, i.e., accounts for the fact
that data used to train the model might be slightly different from the data on which it will
be used. One can easily verify that the logistic regression objective defined in (1.1.13) is
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strongly convex and smooth, with parameters

σ = λ, L = λ+ 1
4mλmax

(
m∑
i=1

ziz
>
i

)
, (1.1.14)

where λmax(M) is the largest eigenvalue of the matrix M ∈ Rd×d. Now that we have
introduced the basic regularity assumptions and concepts, we can start proving convergence
results for our algorithms.

1.1.2. Convergence of Gradient Descent. In this section, we analyze gradient de-
scent, as given by Equation (1.1.2), and prove its speed of convergence. We first show that
smoothness allows to choose a step-size that ensures that gradient descent actually leads to
a decrease in function values.

Lemma 1 (Descent Lemma). If f ∈ C1(Rd) is L-smooth, then if xt+1 = xt − ηt∇f(xt)
for ηt ≤ 1

L
, it holds that:

ηt
2 ‖∇f(xt)‖2 ≤ f(xt)− f(xt+1). (1.1.15)

Proof. Using Equation (1.1.4),

f(xt+1)− f(xt)−∇f(xt)>(xt+1 − xt) = f(xt+1)− f(xt) + ηt‖∇f(xt)‖2 ≤ η2
tL

2 ‖∇f(xt)‖2.

The result is obtained by using that ηtL ≤ 1 and rearranging the terms. �

In particular, for some T ∈ N and with a constant step-size η ≤ 1/L, we have that the
iterates produced by gradient descent verify

T∑
t=0
‖∇f(xt)‖2 ≤ 2

η
[f(x0)− f(x?)] , (1.1.16)

so that ∇f(xt) → 0 as t → ∞. Thus, under the smoothness assumption, gradient descent
guarantees that the norm of the gradient converges to 0, so that (xt)t≥0 converges to a local
minimum (since f(xt) ≤ f(xt+1), the extremum cannot be a maximum unless the function
is flat). Since f is also convex, we thus know that f(xt)→ f? when t→∞. Yet, this is not
entirely satisfactory, as we cannot bound f(xt) − f? for a given t ∈ N yet. In other words,
we do not know how fast convergence is. This is adressed in the following theorem, which
is standard and very similar to Nesterov [2013c, Theorem 2.1.14] or Bubeck [2015, Theorem
3.10].

Theorem 1. If f ∈ C1(Rd) is L-smooth and σ-strongly convex, then if we choose ηt ≤
1/L for all t, the iterates (xt) produced by gradient descent are such that for any x? ∈
arg minx∈Rd f(x):

‖xT − x?‖2 ≤
T∏
t=0

(1− ηtσ) ‖x0 − x?‖2. (1.1.17)

Proof. We decompose the first term as:
‖xt+1 − x?‖2 = ‖xt − x?‖2 − 2ηt∇f(xt)(xt − x?) + η2

t ‖∇f(xt)‖2.

Then, using the definition of the Bregman divergence of f , we write that:
−∇f(xt)(xt − x?) = f(x?)− f(xt)−Df (x?, xt), (1.1.18)
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so that:

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − 2ηtDf (x?, xt)− 2ηt [f(xt)− f(x?)] + η2
t ‖∇f(xt)‖2 (1.1.19)

Combining Lemma 1 with Equation (1.1.19), we obtain that:

‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − ηtDf (x?, xt)− 2ηt [f(xt+1)− f(x?)] (1.1.20)

The result is obtained by using the strong convexity of f to bound the Df (x?, xt) term, using
the fact that f(xt+1) ≥ f(x?), and chaining the inequality for all t ≤ T . �

When σ = 0, the guarantees from Theorem 1 are trivial. Yet, the proof can be slightly
adapted to recover similar guarantees.

Theorem 2. If f ∈ C1(Rd) is convex and L-smooth, and ηt ≤ 1/L,

f(xT )− f(x?) ≤
1

2∑T−1
t=0 ηt

‖x0 − x?‖2. (1.1.21)

Proof. Using that f is convex, Equation (1.1.20) can be rearranged as:

ηt [f(xt+1)− f(x?)] ≤
1
2‖xt − x?‖

2 − 1
2‖xt+1 − x?‖2. (1.1.22)

Summing this for all t < T , we obtain that:
T−1∑
t=0

ηt [f(xt+1)− f(x?)] ≤
1
2‖x0 − x?‖2. (1.1.23)

Then, the result is obtained by using that f(xT ) ≤ f(xt) for all t ≤ T , which is obtained
from the descent lemma. �

We have seen that convergence rates can be obtained when σ = 0. Yet, to reach an error
ε, one needs to perform O(1/ε)) iterations (sublinear convergence rate) instead of O(log ε−1)
(linear convergence) when σ > 0. In the remainder of this thesis, we will focus on the
σ > 0 case, although most results have analogs when σ = 0. In general, similarly to the
case of gradient descent, the algorithm and the condition on the step-size are the same, or
at least very similar. Yet, only sublinear convergence is achieved when σ = 0, although
the complexity can be improved to O(1/

√
ε) iterations using acceleration, that we detail in

Section 1.2.1 for the strongly convex case.
We see in Theorem 1 that if we choose ηt = 1/L for all t ∈ N (which is the optimal choice

in this case), then we obtain that the convergence rate depends on the the condition number
κf , which is defined as:

κf = L

σ
. (1.1.24)

The condition number of the objective function is a key quantity in first-order (strongly)
convex optimization, as it generally dictates how fast methods are similarly to Theorem 1.
We will see in Theorem 6 that the pace of any gradient method is indeed limited by the
condition number. We provide a graphical intuition for the influence of the condition number
in Figure 2.
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(a) Small κf

  

(b) Big κf

Figure 2. Influence of the condition number on how easy a function is to
optimize. The black lines represent the level sets of a function f and the red
arrows the steps taken by gradient descent. A large condition number means
that the function grows much faster in some directions than in others, and
so the level-sets have an ellipsoidal shape. In the well-conditioned case (Fig-
ure 2(a)), the gradients roughly point towards the optimum x? so large steps
can be taken, and convergence is fast. In the ill-conditioned case (Figure 2(b)),
gradients point far from the optimum, and so small steps must be taken to en-
sure that gradient descent gets closer to the optimum. Thus, the optimization
process is very slow, because small steps are taken in a rather bad direction.

1.1.3. Stochastic Gradient Descent. In some cases, the gradient ∇f may be very
expensive to compute, but stochastic estimates can be obtained in a cheap way. This is for
instance the case in many machine learning applications, in which the objective function is
the average of a loss function (that measures how well a given model fits the data) over all
samples in a dataset. Computing a full gradient is expensive, since one needs to compute the
gradient of the loss for all samples of the dataset. Yet, a stochastic estimate of the gradient
can be obtained by drawing a few samples at random. This is the fundamental principle of
Stochastic Gradient Descent (SGD), introduced by Robbins and Monro [1951], which writes:

xt+1 = xt − ηtgt, with E[gt] = ∇f(xt). (1.1.25)
This method is widely used in practice, as it has very good performances for training large-
scale models [Bottou, 2010]. It also benefits from very good statistical properties, as it is
possible to avoid overfitting and obtain bounds on the testing error (the error on unseen data
generated from the true distribution) if only one pass is performed (each training sample is
used only once) [Nemirovski and Yudin, 1983, Polyak and Juditsky, 1992]. In particular, this
avoids the need for explicit regularization, represented by the λ term in Equation (1.1.13).
In order to analyze SGD, we need to assume further conditions on the stochastic estimates
gt. One of the simplest assumptions is that the variance of gt is bounded.

Assumption 1. The stochastic gradients gt are independent and such that:
E[‖gt −∇f(xt)‖2] ≤ χ2 (1.1.26)

This assumption is quite strong, as it requires the variance to be bounded at all times.
This may be hard to achieve when f is strongly convex, since the magnitude of ∇f grows
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(a) Small dataset (N = 100) (b) Large dataset (N = 10000)

Figure 3. Comparison between deterministic and stochastic gradient descent
on the LibSVM a9a dataset, for a regularization λ = 10−3. SGD was run with
step size η = G/L. We see that SGD decreases the error rapidly, but quickly
saturates to mean error level that depends on G.

when x is far from x?. Under this assumption, the following convergence result holds [Robbins
and Monro, 1951, Bottou et al., 2018].

Theorem 3. Under Assumption 1, the iterates produced by SGD with constant step-size
η ≤ 1

L
guarantee:

Et[‖xT − x?‖2] ≤ (1− ησ)T‖x0 − x?‖2 + ηχ2

σ
. (1.1.27)

Proof. Using that E[gt] = ∇f(xt), we obtain the following slightly perturbed version
of Equation (1.1.19):
Et[‖xt+1 − x?‖2] ≤ ‖xt − x?‖2 − 2ηtDf (x?, xt)− 2ηt [f(xt)− f(x?)] + η2

tEt[‖gt‖2]. (1.1.28)
Then, since E[gt] = ∇f(xt):

E[‖gt‖2] = E[‖gt −∇f(xt)‖2] + ‖∇f(xt)‖2 (1.1.29)
Thus, the exact same calculations as in the case of (deterministic) gradient descent can be
performed, and we obtain:

Et[‖xt+1 − x?‖2] ≤ (1− ηtσ)‖xt − x?‖2 + η2
tχ

2. (1.1.30)
Taking a constant ηt = η, and using that∑T

t=0(1−ησ)k ≤ 1/(ησ) leads to the final result. �
Thus, despite the fact that it only uses stochastic estimates of the gradient, SGD con-

verges as fast as its deterministic counterpart, but only up to a given precision. At some
point, the variance in the gradients takes over and SGD fails to optimize f beyond this
error. We illustrate this phenomenon on Figure 3, in which we compare the GD (Equa-
tion (1.1.2)) and SGD (Equation (1.1.25)) algorithms on the Logistic Regression Problem of
Equation (1.1.13). The a9a dataset was downloaded from the LibSVM repository1.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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In order to obtain exact convergence to x?, one needs to employ other techniques, such as
using a diminishing step-size, or averaging the iterates [Ruppert, 1988, Polyak and Juditsky,
1992]. Due to its huge practical impact, this method has been widely studied since [Bach and
Moulines, 2011a, Dieuleveut et al., 2017, Gower et al., 2019]. Yet, one does not obtain the
linear convergence rate that we show in Theorem 3 in this case, and only sublinear rates (in
O(T ) at best without acceleration) can be achieved. This thesis focuses on convex problems,
but SGD is also a widespread method both in theory and in practice for minimizing non-
convex problems. In this case, convergence guarantees only hold for the norm of the gradient
(in the form of Equation (1.1.16), plus a noise term).

1.1.4. Randomized Coordinate Descent. When the full gradient ∇f is expensive
to compute, another way to obtain cheap estimates of the gradient can be to only perform
coordinate updates (instead of full updates). This method is called randomized coordinate
descent, and can be seen as a special case of stochastic gradient descent. In its most simple
form, it writes, with pi ∈ R the probability to pick coordinate i:

xt+1 = xt −
ηt
pi
∇if(xt), (1.1.31)

with ∇if(xt) = eie
>
i ∇f(xt), where ei ∈ Rd is the unit vector corresponding to coordinate

i. In the case of coordinate descent, the variance at optimum is ‖e>i ∇f(x?)‖2 = 0, and so
one can mimick the deterministic gradient descent proof. In particular, we use the notion of
directional smoothness, and say that f is Li smooth in the direction i if for all δ > 0,

Df (x+ δei, x) ≤ Li
2 δ

2. (1.1.32)

Using this, the following theorem can be derived, where we denote Et[ · ] = E[ · |xt; It = i]
to simplify notations, where It is the coordinate picked at time t.

Theorem 4. Denote Lt = 1
2Et[‖xt − x?‖2 + η

pmin
[f(xt)− f(x?)]], with pmin = mini pi.

Then, if η ≤ piLi for all i, the iterates generated by coordinate descent (Equation (1.1.31))
verify:

Lt ≤ max(1− ησ, 1− pmin)tL0. (1.1.33)

Proof. We start again from the main Equation (1.1.19):

Et[‖xt+1−x?‖2] ≤ ‖xt−x?‖2−ηDf (x?, xt)−2η [f(xt)− f(x?)]+Et[
η2

p2
i

‖∇if(xt)‖2] (1.1.34)

This time, the update at time t has support on ei, and so:

Df (xt+1, xt) = f(xt+1)− f(xt) + η

pi
‖∇if(xt)‖2 ≤ η2Li

2p2
i

‖∇if(xt)‖2 ≤ η

2pi
‖∇if(xt)‖2,

Thus, f(xt+1) ≤ f(xt), and so

Et[
η2

p2
i

‖∇if(xt)‖2] ≤ 2η
pmin

[f(xt)− Et[f(xt+1)]] . (1.1.35)

Plugging this into Equation (1.1.34), we obtain:
1
2Et[‖xt+1−x?‖2+ η

pmin
[f(xt+1)− f(x?)]] ≤

1− ησ
2 Et[‖xt−x?‖2]+η(1− pmin)

pmin
[f(xt)− f(x?)] .
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The result is obtained by taking the minimum of the two terms, and chaining the inequalities.
�

Note that in this case, the Lyapunov function is not as simple as it was for gradient
descent. Because of the stochastic aspect, function values terms are required to guarantee
the decrease of the Lyapunov function Lt. Note that this introduces an additive pmin term in
the complexity which was expected: without further assumptions, one cannot guarantee a
given decrease of the objective if all coordinates have not been seen. Note that it is possible to
choose the coordinates in a cyclic fashion (instead of uniformly at random), but the analysis
is much more complex in this case [Saha and Tewari, 2013]. For more details on coordinate
descent methods, and in particular for composite objectives, we refer the interested reader
to Nesterov [2012], Richtárik and Takáč [2014], Lu and Xiao [2015]. Note that parallel and
block versions can also be derived in a similar way [Richtárik and Takáč, 2016], but we
discuss these methods in further details in Section 1.3.

1.1.5. Bregman gradients. To end this section, we present a last algorithm, which is
known as Mirror Descent [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003], or Bregman
gradients. The iterations are the same, but the “Mirror Descent” terminology is usually used
when the objective function is not smooth, whereas “Bregman gradients” is generally used
together with the notion of relative smoothness (that we introduce in Definition 4). This
algorithm is similar to gradient descent, but relies on a strictly convex potential function
h ∈ C2(Rd) to perform its updates:

∇h(xt+1) = ∇h(xt)− ηt∇f(xt). (1.1.36)

Another way to see these updates is to notice that the standard gradient descent iterations
from (1.1.2) are equivalent to:

xt+1 = arg min
x∈Rd

ηt∇f(xt)>x+ 1
2‖x− xt‖

2. (1.1.37)

In this form, we see that gradient descent consists in going in the direction of −∇f(xt), but
without going too far from the initial point xt in order to guarantee the descent condition.
The “without going too far” part is measured in terms of Euclidean distance, but one could
imagine measuring it differently, using Bregman divergences for instance, leading to the
following iterations:

xt+1 = arg min
x∈Rd

ηt∇f(xt)>x+Dh(x, xt). (1.1.38)

This is exactly the idea of Bregman gradient methods, and writing the optimality condi-
tion for the inner problem of (1.1.38) actually leads to (1.1.36), thus showing that these
two iterations are indeed equivalent. Thus, Bregman gradients can be seen as standard
gradient descent, on a space in which distances are measured using the function h, and is
often referred to as a “non-Euclidean method”. Mirror descent is widely used in the bandit
and reinforcement learning communities, in which the parameters that are optimized repre-
sented probabilities, and for which the Kullback-Leibler divergence is very natural [Even-Dar
et al., 2009, Bubeck, 2011, Hazan, 2012]. To take advantage of this non-Euclidean aspect,
smoothness and strong convexity need to be adapted and defined relatively to the function
h [Bauschke et al., 2017, Lu et al., 2018].
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Definition 4 (Relative smoothness and strong convexity). A function f is Lf/h smooth
and σf/h relatively strongly convex with respect to h if for all x, y,

σf/hDh(x, y) ≤ Df (x, y) ≤ Lf/hDh(x, y). (1.1.39)
First note that when h = 1

2‖·‖
2
2, then the usual notions of smoothness and strong convex-

ity are recovered (see Equation (1.1.9)). A very interesting consequence of this definition is
that it allows to perform “smooth analyses” for non-smooth functions by changing the gra-
dient step. For instance, some objectives (such as Poisson inverse problems) are non-smooth
in the classical definition, but they are smooth with respect to the entropy. Thus, taking
h as the entropy and performing Bregman gradients instead of gradient descent allows to
recover a smooth behaviour. For instance, using relative smoothness, it is possible to prove
the following lemma, which is a Bregman generalization of the cocoercivity inequality (a
consequence of smoothness for convex functions).

Lemma 2. [Dragomir et al., 2021a] For all ηt ≤ 1
Lf/h

, the following holds:

Dh∗(∇h(x)− ηt [∇f(x)−∇f(y)] ,∇h(x)) ≤ ηtDf (y, x). (1.1.40)
Using this Lemma, we can directly prove the following theorem, which can also be ob-

tained directly [Bauschke et al., 2017, Lu et al., 2018].
Theorem 5. Let T ∈ N. If f ∈ C1(Rd) is Lf/h smooth and σf/h strongly convex relative

to h, and ηt ≤ L−1
f/h for all t ≤ T , then the iterates produced by T mirror descent iterations

are such that:
Dh(x?, xT ) ≤

T∏
t=0

(1− ηtσf/h)Dh(x?, x0). (1.1.41)

The main difference in the proof is that in the Bregman framework, the natural notion
of distance to the solution is given by Dh(x?, x). Yet, Dh(x?, xt+1) cannot be decomposed
as easily as in the Euclidean case, but a Bregman analog of Equation (1.1.19) can still be
obtained, as we show below.

Proof. Define Vt(x) = ηt∇f(xt)>x+Dh(x, xt), so that ∇Vt(xt+1) = 0. Then, we write
that:

Vt(x?)− Vt(xt+1) = DVt(x?, xt+1) = Dh(x?, xt+1), (1.1.42)
using the fact that the Bregman divergences of Vt and h are equal (since they only differ by
a linear term). The previous equation can be rearranged as:
Dh(x?, xt+1) = Dh(x?, xt)−Dh(xt+1, xt)+ηt∇f(xt)>(x?−xt)−ηt∇f(xt)>(xt+1−xt). (1.1.43)

Then, the last term can be expressed as:
−ηt∇f(xt)>(xt+1 − xt) = (∇h(xt+1)−∇h(xt))>(xt+1 − xt) = Dh(xt+1, xt) +Dh(xt, xt+1),

and so we obtain a Bregman analog to Equation (1.1.19), which writes:
Dh(x?, xt+1) = Dh(x?, xt)− ηt [Df (x?, xt) + f(xt)− f(x?)] +Dh(xt, xt+1). (1.1.44)

Note that this equation is very similar to the base Equation (1.1.20), that we repeatedly used
in the Euclidean case, and that it can also be obtained directly by using that ∇h(xt+1) =
∇h(xt)− ηt∇f(xt). Then, Lemma 2 tells us that:

Dh(xt, xt+1) ≤ ηt [f(xt)− f(x?)] , (1.1.45)
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and so
Dh(x?, xt+1) = Dh(x?, xt)− ηtDf (x?, xt), (1.1.46)

and we finish the proof using the relative strong convexity of f . �

Theorem 5 is very interesting in the sense that modifying the notions of distance and
regularity from standard gradient descent does not change the convergence guarantees, but
only the way suboptimality is measured. In particular, specifying Theorem 5 to the case
h = 1

2‖ · ‖
2 exactly leads to Theorem 1. In Chapters 4 and 5, we show that the same thing

happens when extending Bregman gradients to the stochastic setting (coordinate descent and
stochastic gradient descent), so that the Euclidean convergence rates are recovered as specific
cases. Now that we have presented a few basic first-order methods for convex optimization,
we present more advanced techniques that improve the convergence guarantees.

1.2. Designing Faster methods

Gradient descent is a natural algorithm, and we have presented its convergence properties
in the previous section. Yet, one may wonder whether gradient descent is optimal, or if it is
possible to design algorithms that converge faster with the same assumptions.

1.2.1. Nesterov acceleration. In order to design such a method, a natural first ques-
tion is the following: How fast can first-order methods be? Yet, to answer this, one must
define the notion of speed. The common notion is that of oracle complexity. The complexity
of an algorithm is measured by the number of calls to an oracle (which in our case is the
gradient), to achieve a given precision level ε > 0. Then, one can design hard instances
that cannot be optimized up to a given precision without a minimum number of calls to the
oracle.

Theorem 6. [Nesterov, 2013c] For any x0 ∈ R∞ and any constants σ > 0, κf > 1 there
exists a function f ∈ C1(R∞) which is σ-strongly convex and σκf -smooth such that for any
first-order method M satisfying xk ∈ x0 + Lin{∇f(x0), · · · ,∇f(xk−1)} for all k ≥ 1, we
have (with x? the minimum of f):

‖xk − x?‖2 ≥
(√

κf − 1
√
κf + 1

)2k

‖x0 − x?‖2,

f(xk)− f(x?) ≥
σ

2

(√
κf − 1
√
κf + 1

)2k

‖x0 − x?‖2.

Proof sketch. For x ∈ Rd, we denote nz(x) the highest index k such that (x)k 6= 0.
The proof proceeds by considering a specific function f such that nz(∇f(x)) ≤ nz(x) + 1
and (x?)k = qk for some q > 0. Then, starting from x0 = 0d, we know that after t calls
to the oracle, and regardless of the algorithm used, it holds that nz(xt) ≤ t. In particular,
‖xt − x?‖2 ≥ ∑d

k=t+1 ‖(x?)k‖2 ≈ q2t. The rest of the proof consists in picking f to achieve
the desired constants. �

At this point, we know that gradient descent achieves the right order of convergence
(iteration complexity that scales with log(1/ε)), but there is a mismatch in the regularity
constants. Gradient descent scales linearly with κf , whereas the lower bound scales as √κf .
It could be that the lower bound is not tight, and that a better one can be achieved, but this
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(a) High regularisation (λ = 10−3)
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(b) Small regularisation (λ = 10−7)

Figure 4. Comparison between Gradient Descent (Equation 1.1.2) and Ac-
celerated Gradient Descent (Equation (1.2.1)) for a regularized logistic regres-
sion problem with varying regularization. We see that AGD is drastically
faster than GD, especially when λ is small. In particular, the GD curve is
almost flat for λ = 10−7, whereas AGD still converges quite fast.

is not the case as we will see. In particular, take β > 0 and Accelerated Gradient Descent
(AGD), which is given by the following iterations:

xt+1 = yt −
1
L
∇f(yt)

yt+1 = xt+1 + β(xt+1 − xt).
(1.2.1)

This algorithm corresponds to the standard gradient descent algorithm, but in which an
extrapolation step is added. It has the following convergence guarantees.

Theorem 7. [Nesterov, 2013c] If β =
√
κf−1
√
κf+1 , then the iterates produced by Equa-

tion (1.2.1) verify:

f(xk)− f(x?) ≤
(

1−
√
σ

L

)k [
f(x0)− f(x?) + σ

2 ‖x0 − x?‖2
]
. (1.2.2)

The proof of this theorem is out of scope of this section. The key point is that the con-
vergence rate of this algorithm matches the lower bound from Theorem 6 (up to constants).
This means that the lower bound is tight, and that Accelerated Gradient Descent (AGD)
achieves the fastest possible rates in this class of algorithms. The complexity gap between
gradient descent and accelerated gradient descent is significant, since the constant κf can
be very large for standard machine learning problems. Thus, having a √κf bound instead
of κf one can make a problem tractable, or allow to use much smaller regularization for a
given statistical learning problem (since κf scales as the inverse of the regularization). We
illustrate this speedup numerically in Figure 4.

We have presented acceleration for the standard gradient descent method in the smooth
and strongly convex setting, but it was originally introduced in the convex setting (σ = 0),
in which case the iteration complexity changes from O(1/ε) to O(1/

√
ε) [Nesterov, 1983].
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Another famous accelerated method is the so-called Heavy Ball Acceleration [Polyak, 1964],
but it enjoys weaker convergence guarantees in general. Nesterov acceleration can also be
applied to many other settings, for instance to composite objectives, which incorporate a
non-smooth term (but for which we know the proximal operator) [Beck and Teboulle, 2009b,
Nesterov, 2013a, Chambolle and Dossal, 2015]. Similar ideas can also be applied to the
proximal point algorithm (in which one iterates the proximal operator of the function instead
of applying gradient descent) [Güler, 1992]. Note that a generic acceleration framework
named Catalyst has also been developed, that allows to obtain comparable improvements in
the convergence rate (up to logarithmic factors) with any base algorithm [Lin et al., 2015a].
This framework is based on an accelerated proximal point algorithm in which inner problems
are solved by the algorithm that one wishes to accelerate. We refer the interested reader
to d’Aspremont et al. [2021] for more details on accelerated methods.

We see that acceleration significantly speeds up first-order algorithms for ill-conditioned
problems. A large part of this thesis is devoted to developping accelerated methods that are
relevant for distributed optimization.

Accelerated Stochastic methods. Just like standard gradient descent, accelerated gradient
descent can be used in stochastic settings. In this case, the following more general form of
accelerated gradient descent is generally prefered, with gt an approximation of the gradient:

yt = (1− αt)xt + αt(1− βt)vt
1− αtβt

vt+1 = (1− βt)vt + βtyt −
at+1

Bt+1
gt

xt+1 = yt + αt(vt+1 − (1− βt)vt − βtyt).

(1.2.3)

This algorithm is robust to stochastic noise as long as the gt are unbiased, i.e., as long
as E[gt] = ∇f(yt). In this case, convergence can be proven for accelerated coordinate de-
scent [Lin et al., 2015b, Nesterov and Stich, 2017, Allen-Zhu et al., 2016], which corresponds
to the special case:

gt = 1
pi
eie
>
i ∇f(yt). (1.2.4)

In Chapter 3, we study variants of this algorithm that support strong convexity in semi-
norms induced by non-PSD quadratics, together with proximal operators of a non-smooth
term and arbitrary sampling (non-uniform choice of pi). Other types of gradient estimates
can be used, and in particular Vaswani et al. [2019] prove convergence of iterations (1.2.3)
under a strong growth condition of the form

E[‖gt‖2] ≤ ρ‖∇f(xt)‖2, (1.2.5)

for some constant ρ > 0.
Bregman gradients. We have seen that the lower bound for smooth and strongly convex

optimization does not match the convergence rate of gradient descent, and that accelerated
versions can be developed in this setting. The lower bound from Theorem 6 is still valid
since the Bregman assumptions generalize that of gradient descent in the sense that it can
be recovered by choosing h = 1

2‖ · ‖
2. Yet, the acceleration proofs are specific to gradient

descent.
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Recall that the convergence results from gradient descent could directly be generalized to
the Bregman setting, so one may hope to obtain a complexity that is similar to the euclidean
case. Yet, surprisingly, the opposite happens in this case: the lower bound from Theorem 6 is
actually not tight in the case of arbitrary h, and can be strengthened as shown by Dragomir
et al. [2021b]. In particular, one cannot hope to beat the simple Bregman gradient scheme
presented in (1.1.36) without assuming more structure or regularity on the functions than
just relative smoothness.

Yet, weaker forms of acceleration can be obtained under a favorable triangle scaling
inequality [Hanzely et al., 2021], or when assuming that h is regular enough, as we detail in
Chapter 5.

1.2.2. Variance reduction. We have seen in Section 1.1.3 that SGD only converges
to a region around x? because of the variance in the gradients. We focus in this section on
the specific finite sum problem, in which the objective function f can be decomposed as:

f(x) = 1
m

m∑
i=1

fi(x), (1.2.6)

where each function fi ∈ C1(Rd) is L-smooth. This corresponds to the typical Empirical Risk
Minimization (ERM) problem in which we have a model x ∈ Rd, a dataset of samples (zi)
for i ∈ {1, . . . ,m}, and a loss function `, where `(x, z) measures the error made by a model
x when predicting a given sample z. In this case, the regularized ERM objective writes for
λ > 0:

1
m

m∑
i=1

`(x, zi) + λ

2‖x‖
2, (1.2.7)

and the goal is to minimize it in x in order to obtain the model that achieves the lowest
error on the training dataset. The regularization parameter λ > 0 allows to limit the model
complexity and prevent overfitting, i.e., having a model that performs well on the training
data, but would perform poorly on new test data. An instanciation of SGD for this problem
would be:

xt+1 = xt − ηt∇fit(xt), (1.2.8)
where it is a random index drawn at time t and fit(x) = `(x, zit) + λ

2‖x‖
2. Yet, the noise

has a lot of structure in this case, since we know that it comes from taking the gradient of
a specific function fit instead of f , and we know which fit it comes from.

Direct approaches. A direct approach for variance reduction is to perform the following
updates:

xt+1 = xt − ηtgt, (1.2.9)
where gt is a variance-reduced gradient. Informally, this means that we would like to have
that gt → 0 when xt → x?. Many such gt are possible, and we detail here the main ones.

Stochastic Average Gradient (SAG) [Schmidt et al., 2017]. A very natural estimate
gt consists in taking

gt = 1
m

m∑
i=1
∇fi(φ(i)

t ), (1.2.10)

where the φ(i)
t are such that φ(0)

t = x0, and then φ
(it)
t+1 = xt, and φ

(j)
t+1 = φ

(j)
t for j 6= it. In

other words, the algorithm stores the most recent ∇fi(xt) that it has computed for each
i, and aggregates them to form the pseudo-gradient gt. Ideally, one would like to have
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φ
(i)
t = xt for all i, but this would require recomputing the full gradient at each step, which

we specifically would like to avoid. As xt approaches the optimum, each φ(i)
t approaches x?

and so gt ≈ 1
n

∑m
i=1∇fi(x?) = 0. This algorithm corresponds to SAG, and although it has

a very simple form, it is quite hard to analyze. This mainly comes from the fact that the
updates are biased, in the sense that E[gt] 6= ∇f(xt).

SAGA [Defazio et al., 2014a]. As previously stated, SAG provides a biased estimator
of the gradient, and the method is thus very hard to analyze. Instead, SAGA uses a slightly
different update:

gt = ∇fi(xt)−∇fi(φ(i)
t ) + 1

m

m∑
i=1
∇fi(φ(i)

t ) (1.2.11)

Similarly to SAG, gt → 0 as xt converges to x?, but this time Et[gt] = ∇f(xt), so that
the stochastic updates are unbiased. The analysis is thus similar to that of SGD, with an
additional error term that vanishes this time.

Stochastic Variance Reduced Gradient (SVRG) [Johnson and Zhang, 2013b]. SAG
and SAGA store the stochastic gradients corresponding to each component and use them to
construct an estimate of the full gradient. Instead, the SVRG method maintains a running
point φ̃t, which is periodically updated, and performs the following update:

gt = ∇fi(xt)−∇fi(φ̃t) +∇f(φ̃t). (1.2.12)

If φ̃t is updated every K = O(m) rounds, then the overhead of computing a full gradient
every K iterations is only of a constant factor, and the memory cost is significantly lower
than SAG or SAGA since only φ̃t and ∇f(φ̃t) need to be stored. Yet, this algorithm has a
double-loop structure which makes it harder to tune in practice.

Other direct methods such as Finito [Defazio et al., 2014b] or MISO [Mairal, 2013] have
also been introduced, but we do not detail them in this thesis. One key feature is that
all these methods have very similar convergence rates. We refer the interested reader to
the corresponding paper for each method, but a general convergence theorem can be stated
informally as follows.

Theorem 8 (Informal). With an appropriate choice of parameters, the previous methods
take time Tε = O((κs +m) log ε−1) iterations to reach error ε, with κs = L/σ.

Thus, stochastic variance-reduced methods enjoy the same iteration complexity as de-
terministic methods, but using much cheaper gradients. Note that there is a subtle point
here, in the fact that κs is not the same condition number as previsouly introduced. Indeed,
the “batch” condition number κ = Lf/σ is defined using the condition number of f . Here,
the condition number number κs is defined using the smoothness of each individual fi. In
particular, the smoothness of the average is different from the average smoothness, and so
we have that κb ≤ κs ≤ mκb. In the worst case, κs = mκb, and so there is actually no
speedup over deterministic methods, since computing one full gradient takes the same time
as computing m stochastic gradients. Yet, stochastic variance-reduced methods converge
much faster than gradient descent in practice, indicating that κs << mκb in most practical
settings. We explain this difference more in details in Chapter 3, and for now only illustrate
this numerically on Figure 5, which uses the same setting as Figure 3 but now adds a com-
parison with the SAGA algorithm. We see that SAGA is as fast as SGD (when used with
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(b) Large dataset (N = 10000)

Figure 5. Comparison between deterministic, stochastic, and variance-
reduced methods on the LibSVM a9a dataset, for a regularization λ = 10−5.

the same step-size), but converges to the true optimum and not to a region determined by
the variance.

Dual approach. This section describes the dual approach to variance reduction that leads
to the Stochastic Dual Coordinate Ascent (SDCA) algorithm [Shalev-Shwartz and Zhang,
2013]. In particular, we study a variant of Problem (1.2.6) in which the regularization is
explicit, and rewrite it equivalently as:

min
x∈Rm×d

1
m

m∑
i=1

fi(xi) + σ

2 ‖x0‖2,

such that x0 = xi ∀i ∈ {1, · · · ,m}.
(1.2.13)

The equality constraints can be written A>x = 0 for some matrix A ∈ Rm×m which is such
that (A>x)i = µi(x0−xi) for some µi ∈ R. Thus, one can write the equality constraint using
Lagrangian multipliers y ∈ Rm×d in the following way:

min
x∈Rm×d

sup
y∈Rm×d

1
m

m∑
i=1

fi(xi) + σ

2 ‖x0‖2 − 1
m

Tr
(
y>A>x

)
. (1.2.14)

Indeed, Problems (1.2.13) and (1.2.14) are equivalent since the supremum is equal to infinity
if x is such that A>x 6= 0. From here, one can invert the min and the max and obtain:

sup
y∈Rm×d

− 1
m

m∑
i=1

max
xi∈Rd

[
x>i (Ay)i − fi(xi)

]
− max

x0∈Rd

1
m
x>0 (Ay)0 −

σ

2 ‖x0‖2. (1.2.15)

take the dual form of Problem (1.2.13), which writes:

sup
y∈Rd
− 1
m

[
m∑
i=1

f ∗i ((Ay)i) + 1
2σm‖(Ay)0‖2

]
, (1.2.16)

where f ∗i is the convex conjugate of fi, defined in Equation (1.1.11). Then, one can apply
a coordinate descent method on the dual problem, and obtain an algorithm in which only
one ∇f ∗i needs to be computed at each iteration, since (Ay)i = −µiyi. This is a coordinate
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descent algorithm, and so there is no residual variance χ > 0, and one can show that the
same rates as Theorem 8 are obtained with this algorithm.

There are two caveats to this method: the first one is that strong convexity needs to be
explicit (and we need to know it to set the parameters of the algorithm), and the second
and main one is that the oracle is ∇f ∗i instead of ∇fi. Although ∇f ∗i might be easier to
compute for some loss functions, it is in general much harder to evaluate, since it is as
hard as minimizing function fi itself (as can be seen from the characterization given after
Equation (1.1.11)). Yet, it is possible to fix these issues and there are alternative versions
of SDCA that can directly be formulated in a primal way [Shalev-Shwartz, 2016, He et al.,
2018]. A large part of this thesis builds on a related dual approach, and Chapter 4 presents a
decentralized method that is very similar to dual-free SDCA when used on a single machine.

1.2.3. Variance reduction and acceleration. When the objective function has the
form of Equation (1.2.6), and a stochastic oracle is assumed (at each step t ≥ 0, ∇fit is
computed, with it drawn at random), Lan and Zhou [2017] show a lower bound indicating
that the number of iterations Tε required to obtain an error smaller than a threshold ε > 0
is of order:

Tε = O((m+√mκs) log(ε−1)), (1.2.17)
which is faster than the convergence rate discussed in Theorem 8. Yet, it is possible to com-
bine acceleration and variance reduction to obtain an optimal finite-sum algorithm, as shown
by Lan and Zhou [2017] in a primal-dual approach. This acceleration can also be obtained
from a completely dual approach [Shalev-Shwartz and Zhang, 2014, Lin et al., 2014] by us-
ing accelerated (proximal) coordinate descent methods. Then, accelerated variants of direct
(primal) variance-reduced methods were developped, and in particular Katyusha [Allen-Zhu,
2017], which is an acceleration of the SVRG method, and a direct acceleration of the SAGA
method [Zhou, 2019]. In this thesis, we bridge the gap between convex and decentralized
optimization by showing that these approaches (and in particular the dual ones) can be
applied in the more general decentralized optimization setting. In particular, Chapter 3
proposes a decentralized method that reduces to APCG [Lin et al., 2014] when applied to a
single-machine problem.

1.3. Distributed Optimization Models

In the previous section, we have presented a brief overview of first-order convex optimiza-
tion algorithms. The common pattern was that they are all incremental algorithms, in which
an oracle (generally the gradient of the objective function) is queried, and the information
returned is used to construct a new estimate of the solution and a new point at which the
gradient will be queried (which are often the same points). In the distributed model, this
purely sequential nature changes, since operations can be performed in parallel on different
machines. Thus, the algorithms that we consider heavily depend on the modelling assump-
tions that we make, and that depend on the following questions: where is the data? What
communications are allowed? Is it possible to enforce synchrony? In this section, we present
two main communication models: centralized and decentralized, and then discuss how some
assumptions, such as synchronous communications, can be relaxed. Throughout this section,
we consider that the system is made of n computing nodes, that node i holds function fi,
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and that the global objective is:

min
x∈Rd

1
n

n∑
i=1

fi(x). (1.3.1)

1.3.1. Centralized model. A very simple communication model is the centralized one.
In this model, there is a central server that can aggregate information from all the nodes,
compute updates, and send the information back, as shown in Figure 1.3.1. In particular,
thanks to the linearity of the gradients, ∇f(x) = 1

n

∑n
i=1∇fi(x), so that one step of gradient

descent in the centralized setting can be simply expressed like this:
(1) The server sends the current parameter xt to the workers.
(2) Each worker i computes gt(i) = ∇fi(xt), and sends it to the server.
(3) The server computes the new parameter xt+1 = xt − ηt

n

∑n
i=1 gt(i).

Assuming each communication takes time τ , and each local gradient computation takes time
1, each iteration takes time 1 + τ , and so the time TGD

centralized(ε) to reach precision ε is given
by:

TGD
centralized(ε) = O((1 + τ)κ log(ε−1)). (1.3.2)

If one uses accelerated gradient descent instead, then the results directly translate to this
setting, and the new time complexity is:

TAGD
centralized(ε) = O((1 + τ)

√
κ log(ε−1)). (1.3.3)

We see that in this simple centralized setting with full gradient algorithms, the results
from single-machine convex optimization directly transfer to the centralized communication
model. In particular, the single-machine time to convergence is given by:

TAGD
serial (ε) = O(n

√
κ log(ε−1)). (1.3.4)

Thus, as long as the communication time is small enough (i.e., τ < 1), we have that:

TAGD
centralized(ε) = O

(
TAGD

serial (ε)
n

)
, (1.3.5)
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and so the accelerated gradient method achieves linear speedup, meaning that the algorithm
is n times faster when run on n machines. One can also use a similar approach to leverage
parallel computing power with stochastic gradient descent, in which case averaging reduces
the variance of the gradient estimator by a factor n. The same methodology can also be
applied to randomized block coordinate descent [Nesterov, 2012, Richtárik and Takáč, 2016,
Fercoq and Richtárik, 2015, Hannah et al., 2018] by having each worker compute random
coordinate gradients of the same function, and obtain a similar linear speedup. Yet, central-
ized algorithms are considered to be less robust because they have a single point of failure:
if the server breaks down, then the whole algorithm stops. Besides, centralized systems
cannot scale indefinitely: the server has a limited bandwidth and can only handle a limited
number of workers at the same time. Past this point, workers need to wait, which increases
the communication time. One way to deal with this communication bottleneck is to use
asynchronous communications, that allow nodes to still perform useful computations while
they are waiting for the response of the server, and which we present more in details in
Section 1.3.4. Another orthogonal line of work consists in performing iterations that are
more computationally intensive, but also much more efficient so that the overall communi-
cation complexity is lowered. These methods include CoCoA [Smith et al., 2018], and the
DANE algorithm [Shamir et al., 2014, Yuan and Li, 2020], and are studied in more details in
Chapter 5, in which we develop an accelerated method of this type with strong theoretical
guarantees.

1.3.2. Decentralized model. The decentralized model relies on a completely different
approach. First of all, nodes are assumed to be linked by a connected undirected graph
G = (V , E) where V and E are respectively the sets of nodes and edges of G, and can only
communicate with their neighbours in G, as shown in Figure 1.3.2. Besides, each node main-
tains a local copy of the parameter xt(i), whereas there was a global xt computed by the
server and broadcast to all nodes with centralized algorithms. In the centralized setting,
and although other actions are possible, the communication step actually only consisted in a
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global averaging of the gradients. In the same way, in this decentralized setting, communica-
tions are generally abstracted as a multiplication by a so-called “gossip matrix” W ∈ Rn×n,
which performs a partial averaging. Indeed, full averaging is not possible with only one round
of pairwise communications. Such algorithms are called gossip algorithms [Boyd et al., 2006,
Nedic and Ozdaglar, 2009, Shi et al., 2015a, Nedic et al., 2017], and the gossip matrix W
satisfies the following conditions:

(1) W is an n× n symmetric positive semi-definite matrix,
(2) The kernel of W is such that: Ker(W ) = Span(1), where 1 = (1, . . . , 1)>,
(3) W is such that Wij = 0 if i and j are not neighbours, i.e., (i, j) /∈ E .

Because there is no central point of failure, decentralized algorithms are generally more
robust than their centralized counterparts [Lian et al., 2017a]. In this paradigm, nodes can
perform two distinct actions to update their parameter:

• Local computations: query their local oracles (for instance to compute ∇fi(xt(i))),
• Local communications: communicate with their neighbours using matrix W .

One could hope to adapt gradient descent in the same way as it was adapted for centralized
methods, and perform the following iterations:

xt+1 = (I −W )xt − ηtG(xt), (1.3.6)
where xt ∈ Rn×d and Gt is such that (G(xt))i = ∇fi(xt(i)). This is for instance the form
of the distributed subgradient methods D-PSGD and its stochastic and asynchronous vari-
ants [Nedic and Ozdaglar, 2009, Ram et al., 2009, 2010], as well as other extensions [Lian
et al., 2017b, Tang et al., 2018b]. Yet, these iterations do not converge in general to
x? ⊗ 1, where x? the solution of Problem (1.3.1) and ⊗ is the Kronecker product. In-
deed, ∇fi(x?) 6= 0 in general so G(x?) 6= 0 and x? is not a fixed point of (1.3.6). In order
to recover a provable convergence rate, to the global optimum, diminishing step-sizes must
be used, which slow convergence down drastically even in the favorable smooth and strongly
convex case. Thus, more care is required when building decentralized algorithms than in
the centralized setting. We detail the main approaches and algorithms in Section 1.4, and
refer the interested reader to these surveys [Sayed, 2014, Nedic, 2020, Gorbunov et al., 2020]
for more general introductions to these algorithms. Besides the pure optimization setting,
decentralized algorithms, and in particular gossip protocols also guarantee some level of
anonymity, as we will see in Chapter 6.

1.3.3. Local methods and federated learning. The term Federated Learning [Kairouz
et al., 2019, McMahan et al., 2021] has gained a lot of attention in the past few years, and
refers to a subfield of distributed optimization that focuses on centralized architectures, with
decentralized data. Although there are many flavours of federated learning, it is not very
different from the setting presented in Section 1.3.1, since the data generally stays decen-
tralized: otherwise algorithms would consist in sending the data to the server, performing
computations, and then sending it back to the workers, which is trivial in term of paral-
lelism. Thus, in this paragraph, we will discuss local methods [Stich, 2018, Lin et al., 2019,
Karimireddy et al., 2020, Gorbunov et al., 2021], which are often what Federated Learning
algorithms are about. In particular, we focus on local SGD, (also called FedAvg [Konečnỳ
et al., 2016]), which consists in the following steps:

(1) The server broadcasts xt to all workers
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(2) Worker i sets xt,0(i) = xt, and for k = 1 toK, performs xt,k(i) = xt,k−1(i)−ηt,kgt,k(i),
with E[gt,k(i)] = ∇fi(xt,k−1(i)).

(3) All workers send xt,K to the server, which computes xt+1 = 1
n

∑n
i=1 xt,K(i).

Informally, each node performs a standard SGD algorithm locally, and periodic averaging
are performed every K iterations to control the drift between the local parameters of the
different nodes. Thus, this local SGD method (and local methods in general) interpolates
between the centralized and decentralized settings. Indeed,

• Each node has its own parameter, and updates it by performing local computations,
just like the decentralized setting.
• Nodes have access to a global averaging operation, which allows them to periodically
restart from a shared parameter, just like in the centralized setting.

Of course, there are many variants of local methods, and they do not all fall into this category,
but this midpoint interpretation between centralized and decentralized methods still holds
most of the time. In particular, results can be transfered from one setting to the other:
one can use a decentralized algorithm with a full averaging gossip matrix (W = I − 1

n
11>)

and obtain a local method, and one can replace the exact averaging step by an approximate
one (using xt+1 = (I − W )xt,K instead of xt+1 = 11>xt,K/n) and obtain a decentralized
algorithm. The other difference is about the algorithms that are considered: local methods
often consider SGD-like algorithms, in which all nodes draw stochastic gradients from the
same function. On the other hand, the study of decentralized algorithms often has a strong
focus on the dependence on the spectral gap of the gossip matrix, a quantity of interest
that does not appear in the study of local methods. In particular, the algorithms presented
in Chapters 3 and 4 can be seen as local methods since they alternate between a series of
local computation steps and (partial) averaging operations through gossip communications.
In summary, Federated Learning designates a wide variety of settings which are not (very)
different from standard centralized optimization, and the local methods used in this setting
can be seen as a midpoint between centralized and decentralized optimization, since there is
a global aggregator, the server, but each node has its own local parameter.

1.3.4. Asynchronous methods. So far and in particular when presenting centralized
algorithms in Section 1.3.1, we have assumed the communication time τ to be constant. Yet,
a more precise model would consider that each node i has a specific delay τi associated with
it, and in this case the time taken by centralized gradient descent would be:

TAGD
centralized(ε) = O((1 + max

i
τi)
√
κ log(ε−1)). (1.3.7)

In real systems, communication times may be rather heterogeneous, and yet in a synchro-
nous implementation of gradient descent, all nodes need to wait for τmax before they start
computing again. In this case, the slowest node sets the pace of the whole system, and so
it can actually be beneficial to remove nodes (and thus computing power), so that the other
nodes don’t wait so long. This is called the straggler problem. Note that if the delays τi
are stochastic, then E[maxi τi] can still be quite large even though all τi have small and
comparable means. Thus, asynchronous methods rely on aggregating small updates as soon
as they are available instead. For instance, asynchronous SGD would perform:

xt+1 = xt − ηt∇fi(xt−τi(t)), (1.3.8)
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where the delays τi(t) account for the fact that the parameter at the server has been updated
between the time the server sends the parameter to the node, and the time the node finishes
its local computation and sends the gradient back. With these asynchronous methods, the
updates are less efficient since they rely on old gradients, but much faster since no waiting is
required. There is a very large literature on asynchronous methods, ranging from HogWild
(Asynchronous SGD) [Recht et al., 2011, Mania et al., 2017], to asynchronous coordinate
descent [Liu et al., 2015, Cheung et al., 2021, 2020] and asynchronous versions of variance-
reduced algorithms [Reddi et al., 2015, Leblond et al., 2017]. Yet, the focus of this thesis is
not on asynchronous methods, and we refer the interested reader to Assran et al. [2020]. Note
that we mention “asynchronous gossip” at some point in Chapters 2 and 3, yet, this refers to
randomized gossip algorithms (local pairwise interactions) as opposed to synchronous gossip
algorithms, and not to asynchronous algorithms as presented in this section.

1.4. Standard Decentralized Approaches with Linear Convergence

We have briefly presented the decentralized setting in Section 1.3.2, and highlighted
that decentralized algorithms cannot be derived in a straightforward way from their single-
machine counterparts the way it can often be done with centralized algorithms. In this section
we introduce the basic approaches to obtain decentralized algorithms in the standard smooth
and strongly convex setting. We start by discussing the averaging problem [Shah, 2009], and
then how they can be extended to minimize more general objectives. Then, we introduce
the dual approach, which is at the heart of this thesis, and finally discuss other decentralized
related works.

1.4.1. The averaging problem. In the averaging problems, the n nodes of the network
possess a local value ci ∈ Rd, and the goal is to compute c̄ = 1

n

∑n
i=1 ci. This is equivalent to

Problem (1.3.1) with quadratic local functions fi(x) = 1
2‖x−ci‖

2. Decentralized averaging is
a historical problem [DeGroot, 1974, Chatterjee and Seneta, 1977] that still attracts attention
[Cao et al., 2006, Boyd et al., 2006, Loizou and Richtárik, 2018] with many applications for
averaging measurements in sensor networks [Xiao et al., 2005] or load balancing [Diekmann
et al., 1999]. The simplest gossip algorithm to solve this problem is to simply iterate, with
xt ∈ Rn×d the concatenation of all local parameters:

xt+1 =
(
I − 1

λmax(W )W
)
xt. (1.4.1)

If we denote γ ∈ [0, 1] the spectral gap of the matrixW , which is defined as the ratio between
the smallest non-zero eigenvalue and the largest eigenvalue ofW , i.e., γ = λ+

min(W )/λmax(W ),
then a very simple proof leads to:

‖xt+1 − c̄1‖2 ≤ (1− γ)t‖x0 − c̄1‖2. (1.4.2)
This highlights the role of γ as a central quantity in gossip algorithms, which will be the
case for all subsequent decentralized algorithms. This quantity depends on the size of the
network, and it is of order O(1) for the complete graph O(n−1) for the 2D grid, and O(n−2)
for the ring and line graphs [Mohar, 1997]. More generally, the eigengap of a graph is linked
with its diameter ∆ by γ−1/2 ≥ ∆/(2

√
2 log2(n)) for regular networks [Alon and Milman,

1985].
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It is possible to reduce the dependence on γ by multiplying by P (W ), with P a given
polynomial, instead of W . If P is of degree k, this consists in performing k communications
steps at once. In particular, a dependence on γ1/2 can be obtained when P is chosen as the
Chebyshev polynomial of degree dγ−1/2e [Oreshkin et al., 2010], since in this case P (W ) has
eigengap O(1). This is called Chebyshev acceleration, and it focuses only on improving the
dependency on the spectral gap (worst-case dependence). Faster methods (in the transitory
regime) that focus on the whole spectrum can be tailored to specific graphs by using other
families of orthogonal polynomials [Berthier et al., 2020].

Yet, the multiplication by W performed by the iterations (1.4.1) require global synchro-
nization: all nodes communicate with their neighbours at the same time, and then once this
is finished they repeat the operation. Instead, Randomized gossip algorithms [Boyd et al.,
2006] perform a series of pairwise averaging as follows:

xt+1(i) = xt+1(j) = xt(i) + xt(j)
2 , with probability pij. (1.4.3)

This simple algorithm achieves the same O(γ−1) asymptotic rate as (1.4.1), but relying
on random activations of edges only, instead of global synchronous communication. Yet,
acceleration based on orthogonal polynomials cannot be used in this case, and methods
based on shift registers [Cao et al., 2006] or heavy-ball acceleration [Loizou and Richtárik,
2018] only show improved convergence rates for expected iterate, which is equal to the one
that would be obtained by a synchronous method, and do not control the variance. Before
the results in this thesis, only ad-hoc accelerated methods have been developed for specific
graphs such as geographic gossip [Dimakis et al., 2010]. In Chapter 2, we show how the dual
approach specified to the averaging problem leads to an actual accelerated randomized gossip
algorithm with improved guarantee. Subsequent work obtains comparable results using the
randomized Kaczmarz algorithm [Loizou et al., 2019], but their results only apply to the
averaging problem, and do not extend to general convex optimization.

1.4.2. Linearly converging algorithms. In order to get rid of the diminishing step-
sizes from distributed subgradient methods and accelerate the convergence, two main direct
approaches exist: ad-hoc corrections of the iterations fixed-point to guarantee convergence
to the global optimum, and gradient tracking. We present these 2 approaches in this Section,
and leave the dual approach, which is at the heart of this thesis, to Section 1.4.3.

EXTRA [Shi et al., 2015a]-type methods. The main idea leading to the EXTRA [Shi
et al., 2015a,b] is that the naive implementation from (1.3.6) does not converge to the global
optimum in general because the gradients do not mix, and G(x?) 6= 0 in general. To cancel
this remaining error, EXTRA writes the steps from (1.3.6) for two consecutive timesteps
with two different gossip matrices W and W̃ :

xt+2 = (I − W̃ )xt+1 − ηG(xt+1),
xt+1 = (I −W )xt − ηG(xt),

and then perform the second-order recursion given by the difference of the two. One can easily
verify that the limit point of these iterations is consensual (Wx? = 0) and minimizes the
global problem (1>G(x?) = 0). Additionally, it is possible to prove that EXTRA converges
linearly to this global optimum. Extensions of EXTRA include, e.g., Li et al. [2019], which
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includes support for a separable non-smooth term. Tight convergence rates were then given
in Li and Lin [2020], together with a generic Catalyst [Lin et al., 2015a] acceleration.

Gradient Tracking. Instead of directly correcting the fixed point of the iterations like
EXTRA does, gradient tracking approaches are based on the fact that one would like to
(conceptually) apply the following iterations:

xt+1 = (I −W )xt −
ηt
n
11>G(xt). (1.4.4)

Yet, the global average gradient 1>G(xt)/n cannot be computed in a decentralized way, so
it is approximated, or tracked by an auxiliary variable yt instead:

yt+1 = (I −W )yt +G(xt+1)−G(xt). (1.4.5)
This idea was introduced independently by Xu et al. [2015] with the AUG-DGM algorithm,
and by Di Lorenzo and Scutari [2015] with the NEXT algorithm for the non-convex setting.
It is also at the heart of the DIGing algorithm [Nedic et al., 2017], which shows linear con-
vergence in the smooth and strongly convex setting, and supports time-varying and directed
digraphs. Gradient tracking is still a fruitful algorithm design principle, and is at the heart
of Sun et al. [2019b], Pu and Nedić [2020], Xin et al. [2020b]. It turns out that the two
previous approaches are very similar, and can actually be analyzed within the same frame-
work. This has been done by Jakovetić [2018] and by Xu et al. [2020c,b] in the composite
setting, along with tight convergence rates. More recently, Li and Lin [2020], Li et al. [2020c]
also contributed to the theory of these algorithms, and used it to develop accelerated and
variance-reduced versions, as we will see in the next sections.

1.4.3. The dual approach. In this section, we present the dual approach to building
decentralized optimization algorithms. We present it in more details than the previous ones
since Chapters 2, 3 and 4 build on this approach. More specifically, in the standard dual
approach [Boyd et al., 2011, Jakovetić et al., 2014], we rewrite Problem (1.3.1) as:

min
x∈Rn×d

n∑
i=1

fi(xi).

such that xi = xj ∀(i, j) ∈ E .
(1.4.6)

Using Lagrangian duality in the same way as in Section 1.2.2, we obtain that this problem
is equivalent to the following dual problem:

min
y∈RE×d

n∑
i=1

f ∗i (e>i Ay), (1.4.7)

where E is the number of edges in the graph G and A ∈ Rn×E is such that e>ijA>x =
µij(xi− xj). Lagrangian duality allows us to transform the constrained problem (1.4.6) into
an unconstrained problem. Yet, there is no decentralized interpretation at the moment. The
gradient descent iterations for the dual problem write:

yt+1 = yt − A>∇F ∗(zt), (1.4.8)
where F ∗ : x 7→ ∑n

i=1 f
∗
i (e>i x) for x ∈ Rn×d. In particular, with zt = Ayt ∈ Rn×d, these

iterations rewrite:
zt+1 = zt − AA>∇F ∗(zt). (1.4.9)

From here, two main observations can be made:
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• The dual gradient ∇F ∗(zt) is such that (∇F ∗(zt))i = ∇f ∗i ((zt)i) can be computed
locally at node i.
• The matrix AA> ∈ Rn×n is a gossip matrix on the graph G.

This justifies taking the notations W = AA> and Θt = ∇F ∗(zt), and gradient descent on
the dual problem can thus be written as:

Θt = ∇F ∗(zt)
zt+1 = zt −WΘt.

(1.4.10)

The primal-dual optimality conditions imply that if x? and y? are respectively the primal
and dual solutions, then for all i ∈ {1, . . . , n},

∇fi(x?) = e>i Ay?, so x? = ∇f ∗i (e>i Ay?). (1.4.11)
In particular, (Θt)i converges to the global minimizer x? for all i. Thus, the algorithm defined
by (1.4.10) is a valid decentralized algorithm that converges to the global minimizer. Its rate
of convergence is given by the condition number of the dual function, which can directly be
upper bounded by κl/γ (the condition number of the individual f ∗i , which is the same as the
fi, times the condition number of AA>, which is equal to γ−1).

Thus, the dual approach allows to design and analyze decentralized algorithms in a
principled way. We have shown the algorithm that we obtain by using gradient descent
on the dual problem, but other algorithms can be used to obtain meaningful results in a
wide variety of settings. In particular Scaman et al. [2017b] apply accelerated gradient
descent (and thus obtained an accelerated algorithm), whereas Maros and Jaldén [2018]
apply standard dual gradient ascent, but modify the iterates to handle time-varying directed
graphs. ADMM-type [Boyd et al., 2011, Jakovetic et al., 2011, Shi et al., 2014] or inexact
augmented Lagrangian methods [Jakovetić et al., 2014] can also be used on the primal-dual
formulation of the problem to obtain linearly converging decentralized algorithms.

Another interesting feature is that using Lagrangian duality, primal constraints become
dual variables. Since there is one constraint per edge in the primal problem, then there
is one variable per edge in the dual problem. In particular, pairwise algorithms can be
recovered directly by applying coordinate descent on the dual problem instead of batch
gradient descent. This observation is at the heart of Chapter 2.

Besides, one can notice that the structure of the problem and the derivations are very
similar to the dual approach for finite-sum problems, in particular when using coordinate
descent. A natural question in this case is thus whether it is possible to obtain a decentralized
variance-reduced algorithm by combining both approaches into the same problem. Chapter 3
answers this question positively, and Chapter 4 focuses on obtaining a dual-free version of
this algorithm.

1.4.4. Related settings. We have mainly discussed methods that focus on the smooth
and strongly convex setting, which is the one that we mainly study in this thesis. Yet, decen-
tralized optimization considers a wide variety of problems with a wide variety of approaches.
We mention in this Section the main ones that were not previously discussed.

Composite setting. A widespread problem is that of composite optimization, which is
when the objective is of the form f+g, where f is a smooth and strongly convex function, and
g is a non-smooth function but for which the proximal operator is known. This corresponds
for instance to `1-regularized problems, which are very common to obtain sparse models, or
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in computer vision. Decentralized algorithms that consider such setting include (but are not
restricted to) Shi et al. [2015b], Wang et al. [2018a], Li et al. [2019], Xu et al. [2020b,c].

Non-convex setting. A significant effort has also been dedicated to the non-convex setting,
and in particular for gradient-tracking algorithms [Di Lorenzo and Scutari, 2015, Tian et al.,
2018, Cannelli et al., 2020]. There is also another line of work, motivated mainly by deep
learning application, that studies variants of the D-PSGD algorithm [Lian et al., 2017b,
Assran et al., 2019, Tang et al., 2018b]. An analysis for the standard decentralized SGD
algorithm is also provided in [Koloskova et al., 2020].

Penalty method. The penalty method consists in replacing the hard consensus constraint
in the primal problem (1.4.6) by a soft penalization instead. Thus, these methods do not
converge to the exact global minimizer, but they are much simpler to design, as one can
then use standard convex optimization algorithms on the penalized problem [Dvinskikh and
Gasnikov, 2021, Li et al., 2020b, Rogozin and Gasnikov, 2020].

Compressed Communications. In modern machine learning applications, the dimension
of the models that we wish to optimize can be very big, and sending gradients can thus be
very expensive. To tackle this problem, a line of work focuses on using compressed com-
munications without degrading the performance (too much) [Tang et al., 2018a, Koloskova
et al., 2019a, 2020, Kovalev et al., 2021]

Time-varying graphs. Most of the methods discussed earlier focus on fixed undirected
networks. Yet, many real-life networks actually vary with time, and it is desirable to design
algorithms that are robust to this. Yet, the “time-varying" setting is large, and encompasses
many different assumptions. In particular, Rogozin et al. [2019] develop optimal algorithms
for graphs that vary slowly, while Sun et al. [2016], Koloskova et al. [2020] consider graphs
that may not be connected individually, but for which the composition of τ successive graphs
is (in expectation). In this work, and in particular in Chapter 2, we employ randomized
communications over a fixed graph, which can be seen as a special (restricted) case of time-
varying graphs.

Directed graphs. Undirected communications require some level of synchronization be-
tween agents, and can be quite challenging to implement in practice. Instead, communicating
over directed graphs allows nodes to push information to their neighbours in a much simpler
way. Yet, analyses are much more challenging, and in particular the dual approach is more
challenging to leverage in this case. We refer the interested reader to Kempe et al. [2003b],
Nedić and Olshevsky [2016], Sun et al. [2016], Assran et al. [2019] for more details on these
methods.

1.4.5. Optimal Decentralized Methods. So far, we have presented the main ap-
proaches that can be used to obtain decentralized algorithms, but without discussing the
main refinements that we presented in Section 1.2, i.e., acceleration and variance reduction.
We present accelerated decentralized optimization results in this section. We have seen in
Section 1.4.1 that acceleration for the synchronous gossip problem could be handled using
Chebyshev acceleration. Yet, the problem is much harder for general convex objectives, as
we now show. Similarly to the single-machine setting, we first introduce a lower bound and
then discuss the optimality of the methods.

Theorem 9. [Scaman et al., 2017b, Corollary 2] For any γ > 0, there exists a gossip
matrix W of eigengap γ and σ-strongly convex and L-smooth functions such that, with κ` =
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β/α, for any black-box procedure using W , the time to reach a precision ε > 0 is lower
bounded by:

Ω
(
√
κl

(
1 + τ
√
γ

)
ln(ε−1)

)
. (1.4.12)

In this case, black-box procedures are similar to the ones considered in 6, with the
difference that (xt+1)i can only be computed using first-order oracles of the local function fi,
the history (xk)i for k ≤ t and (xt)j if j is a neighbour of i. We recall that local computations
take time 1, whereas communications take time τ . Although the initial convergence results
on EXTRA are rather weak, Li and Lin [2020] prove that the iteration complexity to reach
precision ε with EXTRA is of order

O
(
(1 + τ)

(
κl + γ−1

)
log(ε−1)

)
. (1.4.13)

Surprisingly, these rates completely separate the influence of the graph (γ) and of the local
functions (κl), and they are optimal in the special cases in which κl = O(γ−1). Yet, they are
not optimal in general and, similarly to convex optimization, optimal methods are obtained
using acceleration. In particular, after introducing the lower bound, Scaman et al. [2017b]
introduce SSDA, which consists in applying accelerated gradient descent to the dual problem,
and which converges as:

O

(
(1 + τ)

√
κl
γ

ln(ε−1)
)
. (1.4.14)

This obtains the right dependence in the condition number, but does not exactly match the
lower bound from Equation (1.4.12). In particular, the spectral gap of the graph still plays a
role in the convergence rate, even when considering arbitrarily fast communications (τ → 0).
Yet, there is a simple fix in this case, which is to use Chebyshev acceleration just like in
the gossip averaging setting. This leads to the MSDA algorithm, for which the convergence
guarantee exactly matches the lower bound from (1.4.12). We refer to [Uribe et al., 2020]
for more details on the dual approach for optimal decentralized algorithms in a wide variety
of settings.

Yet, this is not the end of the story, as MSDA requires dual oracles, which are generally
much more expensive to compute than primal ones. Direct approaches relying on the com-
bination of gradient tracking and Nesterov acceleration were developped [Qu and Li, 2019],
but do not obtain the expected

√
κ dependence. Other approaches based on the penalty

method [Li et al., 2020b, Rogozin and Gasnikov, 2020] were developed, but they do not con-
verge to the true minimizer unless a decreasing penalty is used. Another line of work consists
in mimicking approximate centralized gradient descent by employing accelerated methods
from Section 1.4.1 to mix the gradients [Ye et al., 2020]. Yet, similarly to the penalty method
with decreasing step-size, these methods pay extra logarithmic factors in their convergence
rates. Arjevani et al. [2020] propose an inexact augmented Lagrangian framework that gener-
alizes MSDA, but still require computing the proximal operator of local functions. A catalyst
(generic) acceleration of the EXTRA was developed in Li and Lin [2020], but again due to
the generic nature of acceleration then extra logarithmic factors and hyperparameter tuning
need to be paid. The first primal accelerated decentralized method was obtained by Kovalev
et al. [2020], using a primal-dual approach together with Nesterov acceleration. Equivalent
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acceleration in the non strongly convex setting (σ = 0) were obtained independently using
a primal-dual approach as well [Xu et al., 2020a].

In order to finish the extension of the convex optimization results presented in Section 1.2
to the decentralized setting, we would need to present (accelerated) variance-reduced meth-
ods. Yet, this is the focus of Chapters 3 and 4, and the main other references that address
the same problem were published either concurrently of after the articles that correspond to
these chapters. Thus, we leave these discussions for the corresponding chapters.
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CHAPTER 2

Accelerated Decentralized Optimization with Pairwise Updates

In this Chapter, we study the problem of minimizing a sum of smooth and strongly
convex functions split over the nodes of a network in a decentralized fashion. We propose
the algorithm ESDACD, a decentralized accelerated algorithm that only requires local syn-
chrony. Its rate depends on the condition number κ of the local functions as well as the
network topology and delays. Under mild assumptions on the topology of the graph, ES-
DACD takes a time O((τmax + ∆max)

√
κ/γ ln(ε−1)) to reach a precision ε where γ is the

spectral gap of the graph, τmax the maximum communication delay and ∆max the maximum
computation time. Therefore, it matches the rate of SSDA [Scaman et al., 2017b], which is
optimal when τmax = Ω (∆max). Applying ESDACD to quadratic local functions leads to an
accelerated randomized gossip algorithm of rate O(

√
θgossip/n) where θgossip is the rate of the

standard randomized gossip [Boyd et al., 2006]. To the best of our knowledge, it is the first
asynchronous gossip algorithm with a provably improved rate of convergence of the second
moment of the error. We illustrate these results with experiments in idealized settings.

This Chapter is based on the paper Accelerated Decentralized Optimization with Local
Updates for Smooth and Strongly Convex Objectives [Hendrikx, Bach, and Massoulié, 2019a],
published at AISTATS 2019.

2.1. Introduction

Many modern machine learning applications require to process more data than one com-
puter can handle, thus forcing to distribute work among computers linked by a network. In
the typical machine learning setup, the function to optimize can be represented as a sum of
local functions f(x) = ∑n

i=1 fi(x), where each fi represents the objective over the data stored
at node i. This problem is usually solved incrementally by alternating rounds of gradient
computations and rounds of communications [Nedic and Ozdaglar, 2009, Boyd et al., 2011,
Duchi et al., 2012b, Shi et al., 2015a, Mokhtari and Ribeiro, 2016, Scaman et al., 2017b,
Nedic et al., 2017].

Most approaches assume a centralized network with a master-slave architecture in which
workers compute gradients and send it back to a master node that aggregates them. There
are two main different flavors of algorithms in this case, whether the algorithm is based
on stochastic gradient descent [Zinkevich et al., 2010, Recht et al., 2011] or randomized
coordinate descent [Nesterov, 2012, Liu and Wright, 2015, Liu et al., 2015, Fercoq and
Richtárik, 2015, Hannah et al., 2018]. Although this approach usually works best for small
networks, the central node represents a bottleneck both in terms of communications and
computations. Besides, such architectures are not very robust since the failure of the master
node makes the whole system fail. In this work, we focus on decentralized architectures in
which nodes only perform local computations and communications. These algorithms are
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generally more scalable and more robust than their centralized counterparts [Lian et al.,
2017a]. This setting can be used to handle a wide variety of tasks [Colin et al., 2016], but it
has been particularly studied for stochastic gradient descent, with the D-PSGD algorithm
[Nedic and Ozdaglar, 2009, Ram et al., 2009, 2010] and its extensions [Lian et al., 2017b,
Tang et al., 2018b].

A popular way to make first order optimization faster is to use Nesterov acceleration [Nes-
terov, 2013c]. Accelerated gradient descent in a dual formulation yields optimal synchronous
algorithms in the decentralized setting [Scaman et al., 2017b, Ghadimi et al., 2013]. Vari-
ants of accelerated gradient descent include the acceleration of the coordinate descent al-
gorithm [Nesterov, 2012, Allen-Zhu et al., 2016, Nesterov and Stich, 2017], that we use in
this paper to solve the problem in Scaman et al. [2017b]. This approach yields different
algorithms in which updates only involve two neighboring nodes instead of the full graph.
Our algorithm can be interpreted as an accelerated version of Gower and Richtárik [2015],
Necoara et al. [2017]. Updates consist in gossiping gradients along edges that are sequentially
picked from the same distribution independently from each other.

Using coordinate descent methods on the dual allows to have local gradient updates. Yet,
the algorithm also needs to perform a global contraction step involving all nodes. In this
paper, we introduce Edge Synchronous Dual Accelerated Coordinate Descent (ESDACD), an
algorithm that takes advantage of the acceleration speedup in a decentralized setting while
requiring only local synchrony. This weak form of synchrony consists in assuming that a
given node can only perform one update at a time, and that for a given node, updates have
to be performed in the order they are sampled. It is called the randomized or asynchronous
setting in the gossip literature [Boyd et al., 2006], as opposed to the synchronous setting in
which all nodes perform one update at each iteration. Following this convention, we may
call ESDACD an asynchronous algorithm. The locality of the algorithm allows parameters
to be fine-tuned for each edge, thus giving it a lot of flexibility to handle settings in which
the nodes have very different characteristics.

Synchronous algorithms force all nodes to be updated the same number of times, which
can be a real problem when some nodes, often called stragglers are much slower than the rest.
Yet, we show that we match (up to a constant factor) the speed rates of optimal synchronous
algorithms such as SSDA [Scaman et al., 2017b] even in idealized homogeneous settings in
which nodes never wait when performing synchronous algorithms. In terms of efficiency,
we match the oracle complexity of SSDA with lower communication cost. This extends a
result that is well-known in the case of averaging, i.e., that randomized gossip algorithms
match the rate of synchronous ones [Boyd et al., 2006]. We also exhibit a clear experimental
speedup when the distributions of nodes computing power and local smoothnesses have a
high variance.

Choosing quadratic fi functions leads to solving the distributed average consensus prob-
lem, in which each node has a variable ci and for which the goal is to find the mean of all
variables c̄ = 1

n

∑n
i=1 ci. It is a historical problem [DeGroot, 1974, Chatterjee and Seneta,

1977] that still attracts attention [Cao et al., 2006, Boyd et al., 2006, Loizou and Richtárik,
2018] with many applications for averaging measurements in sensor networks [Xiao et al.,
2005] or load balancing [Diekmann et al., 1999]. Fast synchronous algorithms to solve this
problem exist [Oreshkin et al., 2010] but no asynchronous algorithms match their rates. We
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show that ESDACD is faster at solving distributed average consensus than standard asyn-
chronous approaches [Boyd et al., 2006, Cao et al., 2006] as well as more recent ones [Loizou
and Richtárik, 2018] that do not show improved convergence rates for the second moment of
the error. The complexity of gossip algorithms generally depends on the smallest non-zero
eigenvalue of the gossip matrix W , a symmetric semi-definite positive matrix of size n × n
ruling how nodes aggregate the values of their neighbors such that Ker(W ) = Vec(1) where
1 is the constant vector. We improve the rate from λ+

min(W ) to O
(

1√
n

√
λ+

min(W )
)

where
λ+

min(W ) ≤ 1
n−1 is the smallest non-zero eigenvalue of the gossip matrix, thus gaining several

orders of magnitude in terms of scaling for sparse graphs. In particular, in well-studied
graphs such as the grid, we match (up to logarithmic factors that we do not consider) the
O(n3/2) iterations complexity of advanced gossip algorithms presented by Dimakis et al.
[2010].

2.2. Model

The communication network is represented by a graph G = (V,E). When clear from
the context, E will also be used to designate the number of edges. Each node i has a local
function fi on Rd and a local parameter xi ∈ Rd. The global cost function is the sum of
the functions at all nodes: F (x) = ∑n

i=1 fi(xi) Each fi is assumed to be Li-smooth and
σi-strongly convex, which means that for all x, y ∈ Rd:

fi(x)− fi(y) ≤ ∇fi(y)T (x− y) + Li
2 ‖x− y‖

2 (2.2.1)

fi(x)− fi(y) ≥ ∇fi(y)T (x− y) + σi
2 ‖x− y‖

2. (2.2.2)

Note that the Fenchel conjugate f ∗i of fi (defined in Equation (2.3.5)) is (L−1
i )-strongly

convex and (σ−1
i )-smooth, as shown in Kakade et al. [2009]. We denote Lmax = maxi Li and

σmin = mini σi. Then, we denote κl = Lmax
σmin

. κl is an upper bound of the condition number of
all fi as well as an upper bound of the global condition number. Adding the constraint that
all nodes should eventually agree on the final solution, so the optimization problem can be
cast as:

min
x∈Rn×d: xi=xj ∀i,j∈{1,...,n}

F (x). (2.2.3)

We assume that a communication between nodes i, j ∈ V takes a time τij. If (i, j) /∈ E, the
communication is impossible so τij =∞. Node i takes time ∆i to compute its local gradient.

2.3. Algorithm

In this section, we specify the Edge Synchronous Decentralized Accelerated Coordinate
Descent (ESDACD) algorithm. We first give a formal version in Algorithm 1 and prove its
convergence rate. Then, we present the modifications needed to obtain the implementable
version given by Algorithm 2.

43



2.3.1. Problem derivation. In order to obtain the algorithm, we consider a matrix
A ∈ Rn×E such that Ker(AT ) = Vec(1) where 1 = ∑n

i=1 ei and ei ∈ Rn×1 is the unit vector
of size n representing node i. Similarly, we will denote eij ∈ RE×1 the unit vector of size E
representing coordinate (i, j). Then, the constraint in Equation (2.2.3) can be expressed as
ATx = 0 because if x ∈ Ker(AT ) then all its coordinates are equal and the problem writes:

min
x∈Rn×d: AT x=0

F (x). (2.3.1)

This problem is equivalent to the following one:
min

x∈Rn×d
max
λ∈RE×d

F (x)− 〈λ,ATx〉, (2.3.2)

where the scalar product is the usual scalar product over matrices 〈x, y〉 = Tr
(
xTy

)
because

the value of the solution is infinite whenever the constraint is not met. This problem can be
rewritten:

max
λ∈RE×d

min
x∈Rn×d

F (x)− 〈Aλ, x〉 (2.3.3)

because F is convex and AT1 = 0. Then, we obtain the dual formulation of this problem,
which writes:

max
λ∈RE×d

−F ∗(Aλ), (2.3.4)
where F ∗ is the Fenchel conjugate of F which is obtained by the following formula:

F ∗(y) = max
x∈Rn×d

〈x, y〉 − F (x). (2.3.5)

F ∗ is well-defined and finite for all y ∈ RE×d because F is strongly convex. We solve this
problem by applying a coordinate descent method. If we denote F ∗A : λ→ F ∗(Aλ) then the
gradient of F ∗A in the direction (i, j) is equal to ∇ijF

∗
A = eTijA

T∇F ∗. Therefore, the sparsity
pattern of Aeij will determine how many nodes are involved in a single update. Since we
would like to have local updates that only involve the nodes at the end of a single edge, we
choose A such that, for any µij ∈ R:

Aeij = µij(ei − ej). (2.3.6)
This choice of A satisfies eTijAT1 = 0 for all (i, j) ∈ E and Ker(AT ) ⊂ Vec(1) as long as
(V,E+) is connex where E+ = {(i, j) ∈ E, µij > 0}. Such A happens to be canonical since
it is a square root of the Laplacian matrix if all µij are chosen to be equal to 1. When
not explicitly stated, all µij are assumed to be constant so that A only reflects the graph
topology. Other choices of A involving more than two nodes per row are possible and would
change the trade-off between the communication cost and computation cost but they are
beyond the scope of this paper.

2.3.2. Formal algorithm. The algorithm can then be obtained by applying ACDM
[Nesterov and Stich, 2017] on the dual formulation. We need to define several quantities.
Namely, we denote pij ∈ R the probability of selecting edge (i, j) and σA ∈ R the strong
convexity of F ∗A. A+ ∈ RE×n is the pseudo-inverse of A and ‖x‖2

A+A = xTA+Ax for x ∈ RE×1.
Variable S ∈ R is such that for all (i, j) ∈ E,

eTijA
+Aeijµ

2
ijp
−2
ij (σ−1

i + σ−1
j ) ≤ S2.

We define δ = θ 1−θ
1+θ ∈ R with
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θ2 = min
ij

p2
ij

µ2
ije

T
ijA

+Aeij

σA
σ−1
i + σ−1

j

≥ σA
S2 . (2.3.7)

Finally, ηij = 1
1+θ

(
µ−2
ij (σ−1

i + σ−1
j )−1 + (pijS2)−1

)
∈ R and

gij(yt) = eije
T
ijA

T∇F ∗(Ayt) ∈ RE×d. (2.3.8)

Algorithm 1 Asynchronous Decentralized Accelerated Coordinate Descent
y0 = 0, v0 = 0, t = 0
while t < T do
Sample (i, j) with probability pij
yt+1 = (1− δ)yt + δvt − ηijgij(yt)
vt+1 = (1− θ)vt + θyt − θ

σApij
gij(yt)

Theorem 10. Let yt and vt be the sequences generated by Algorithm 1. Then:
2 (E[F ∗A(xt)]− F ∗A(x∗)) + σAE[r2

t ] ≤ C(1− θ)t, (2.3.9)
with xt = (1+θ)yt−θvt, x∗ ∈ arg minx F ∗A(x), r2

t = ‖vt−x∗‖2
A+A and C = r2

0+2 (F ∗A(x0)− F ∗A(x∗)).

Theorem 10 shows that Algorithm 1 converges with rate θ. Lemma 6, in Appendix 2.C
shows that

σA ≥
λ+

min(ATA)
Lmax

, (2.3.10)

where λ+
min(ATA) ∈ R is the smallest eigenvalue of ATA. The condition number of the prob-

lem then appears in the Lmax
(
σ−1
i + σ−1

j

)
term whereas the other terms are strictly related

to the topology of the graph. Parameter θ is invariant to the scale of µ because rescaling µ
would also multiply λ+

min(ATA) by the same constant. The p2
ij/(σ−1

i + σ−1
j ) term indicates

that non-smooth edges should be sampled more often, and the square root dependency is
consistent with known results for accelerated coordinate descent methods [Allen-Zhu et al.,
2016, Nesterov and Stich, 2017]. If both sampling probabilities and smoothnesses are fixed,
the µij terms can be used to make the dual coordinate (which corresponds to the edge)
smoother so that larger step sizes can be used to compensate for the fact that they are only
rarely updated. Yet, this may decrease the spectral gap of the graph and slow convergence
down.

Proof. The proof consists in evaluating ‖vt+1−x∗‖2
A+A and follows the same scheme as

by Nesterov and Stich [2017]. However, F ∗A is not strongly convex because matrix ATA is
generally not full rank. Yet, F ∗A is strongly convex for the pseudo-norm A+A and the value
of F ∗A(x) only depends on the value of x on Ker(A)⊥. Gower et al. [2018] develop a similar
proof in the quadratic case but without assuming any specific structure on A. The detailed
proof can be found in Appendix 2.C. �
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2.3.3. Practical algorithm. Algorithm 1 is written in a form that is convenient for
analysis but it is not practical at all. Its logically equivalent implementation is described in
Algorithm 2. All nodes run the same procedure with a different rank r and their own local

functions fr and variables θr, vt(r) and yt(r). For convenience, we define B =
(

1− θ θ
δ 1− δ

)

and sij =
(

θµ2
ij

pijσA
µ2
ijηij

)T
.

Algorithm 2 Asynchronous Decentralized Accelerated Coordinate Descent
1: r // Id of the node
2: seed // The common seed
3: zr = 0, y0(r) = 0, v0(r) = 0, t = 0
4: Initialize random generator with seed
5: while t < T do
6: Sample e from P
7: if ∃j / e ∈ {(r, j), (j, r)} then

8:

(
vt(r)T
yt(r)T

)
r

= Bt−tr

(
vtr(r)T
ytr(r)T

)
9: zr = ∇f ∗r (yt(r))
10: send_gradient(xr, j) // non blocking
11: zdist = receive_gradient(j) // blocking
12: gt(r) = se (zr − zdist)

13:

(
vt+1(r)T
yt+1(r)T

)
r

= B

(
vt(r)T
yt(r)T

)
− gt(r)T

14: tr = t+ 1
15: t = t + 1
16: return zr

Note that each update only involves two nodes, thus allowing for many updates to be run
in parallel. Algorithm 2 is obtained by multiplying the updates of Algorithm 1 by A on the
left. This has the benefit of switching from edge variables (of size E×d) to node variables (of
size n× d). Then, if yt corresponds to the variable of Algorithm 1, yt(i) = eTi Ayt represents
the local yt variable of node i and is used to compute the gradient of f ∗i . We obtain vt(i) in
the same way. The updates can be expressed as a matrix multiplication (contraction step,
making yt and vt closer), plus a gradient term which is equal to 0 if the node is not at one
end of the sampled edge. The multiplication by Bt−tr corresponds to catching up the global
contraction steps for updates in which node r did not take part. The form of sij comes from
the fact that AeijeTijAT = µ2

ij(ei − ej)(ei − ej)T .

2.3.4. Communication schedule. Even though updates are actually local, nodes need
to keep track of the total number of updates performed (variable t) in order to properly
execute Algorithm 2.

This problem can be handled by generating in advance the sequence of all communi-
cations and then simply unrolling this sequence as the algorithm progresses. All nodes
perform the neighbors selection protocol starting with the same seed and only consider the
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communications they are involved in. Therefore, they can count the number of iterations
completed.

This way of selecting neighbours can cause some nodes to wait for the gradient of a
busy node before they can actually perform their update. Since the communication schedule
is defined in advance, they cannot choose a free neighbor and exchange with him instead.
However, any way of making edges sampled independent from the previous ones would be
equivalent to generating the sequence in advance. Indeed, choosing free neighbors over busy
ones would introduce correlations with the current state and therefore with the edges sampled
in the past.

2.4. Performances

2.4.1. Homogeneous decentralized networks. In this section, we introduce two
network-related assumptions under which the performances of ESDACD are provably com-
parable to the performances of randomized gossip averaging or SSDA. We denote pmax =
maxij pij and pmin = minij pij. We also note p̄(G) = maxi pi and p(G) = mini pi the maxi-
mum and minimum probabilities of nodes of a graph G where pi = ∑n

i=1 pij. We note dmax
and dmin the maximum and minimum degrees in the graph. The dependence on G is omitted
when clear from the context.

2.4.2. Average time per iteration. ESDACD updates are much cheaper than the
updates of any global synchronous algorithm such as SSDA. However, the partial synchrony
discussed in Section 2.3.4 may drastically slow the algorithm down, making it inefficient to
use cheaper iterations. Theorem 11 shows that this does not happen for regular graphs with
homogeneous probabilities. We note τmax the maximum delay of all edges.

Theorem 11. If we denote Tmax(k) the time taken by ESDACD to perform k iterations
when edges are sampled according to the distribution p:

τ̄ = E
[1
k
Tmax(k)

]
≤ cp̄τmax (2.4.1)

with a constant c < 14.

The proof of Theorem 11 is in Appendix 2.A. Note that the constant can be improved
in some settings, for example if all nodes have the same degrees and all edges have the same
weight then a tighter bound c < 4 holds. We now introduce an assumption on the degree of
the graphs.

Assumption 2. We say that a family of graph G with edge weights p is quasi-regular if
there exists a constant c such that for n ∈ N, pmax ≤ cpmin and dmax ≤ cdmin.

Assumption 2 is satisfied for many standard graphs and probability distribution over
edges. In particular, it is satisfied by the uniform distribution for regular degree graphs. It
can be used to show the following corollary:

Corollary 1. If G satisfies Assumption 2 then there exists c > 0 such that for any
n ∈ N, the expected average time per iteration taken by ESDACD in G(n) when edges are
sampled uniformly verifies:

E [Tmax(k)] ≤ c
τmax

n
k + o(k). (2.4.2)
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Corollary 1 shows that when all nodes have comparable activation frequencies then the
expected time required to complete one ESDACD iteration scales as the inverse of the number
of nodes in the network. This result essentially means that the synchronization cost of locking
edges does not grow with the size of the network and so iterations will not be longer on a
bigger network. At any given time, a constant fraction of the nodes is actively performing an
update (rather than waiting for a message) and this fraction does not shrink as the network
grows. The time per iteration can be as high as τmax for some graph topologies that break
Assumption 2, e.g., star networks. These topologies are more suited to centralized algorithms
because some nodes take part in almost all updates.

2.4.3. Distributed average consensus. Algorithm 2 solves the problem of distributed
gossip averaging if we set fi(θ) = 1

2‖θ− ci‖
2. In this setting, f ∗i (x) = 1

2‖x+ ci‖2− 1
2‖ci‖

2 and
so ∇f ∗i (x) = x+ ci. Local smoothness and strong convexity parameters are all equal to 1.

At each round, an edge is chosen and nodes exchange their current estimate of the mean
(which is equal to eTi yt + ci for node i). Yet, they do not update it directly but they keep
two sequences yt and vt that are updated according to a linear system. One step simply
consists in doing a convex combination of these values at the previous step, plus a mixing of
the current value with the value of the chosen neighbor.

The standard randomized gossip iteration consists in choosing an edge (i, j) and replacing
the current values of nodes i and j by their average. If we denote E2(t) the second moment
of the error at time t:

E2(t) ≤ (1− θgossip)2tE2(0), (2.4.3)
where θgossip = λ+

min(W̄ ), with W̄ = 1
E
L if L is the Laplacian matrix of the graph [Boyd

et al., 2006]. We now introduce the following assumption, is useful to analyze accelerated
randomized gossip.

Assumption 3. The family of graphs G is such that there exists a constant c such that
for n ∈ N, maxij eTijA+Aeij ≤ c n

E
where A is of the form of Equation (2.3.6) with µij = 1

and uniquely defines G(n).
This assumption essentially means that removing one edge or another should have a

similar impact on the connectivity of the graph. It is verified with c = 1 if the graph is
completely symmetric (ring or complete graph). Since A+A is a projector, eTijA+Aeij ≤ 1 so
Assumption 3 holds true any time the ratio n

E
is bounded below. In particular, the grid, the

hypercube, or any random graph with bounded degree respect Assumption 3.
Corollary 2. If G satisfies Assumption 3 then there exists c > 0 such that for any

n ∈ N, if θESDACD is the rate ESDACD in G(n) and θgossip the rate of randomized gossip
averaging when edges are sampled uniformly then they verify:

θESDACD ≥
c√
n

√
θgossip. (2.4.4)

We can use tools from Mohar [1997] to estimate the eigenvalues of usual graphs. In
the case of the complete graph, θgossip ≈ n−1 and so θESDACD ≈ θgossip. Actually, we
can show that in this case, ESDACD iterations are exactly the same as randomized gossip
iterations. In the case of the ring graph, θgossip ≈ n−3 and so θESDACD ≈ n−2 which is
significantly better for n large. For the grid graph, a similar analysis yields θESDACD =
O(n−3/2). Achieving this message complexity on a grid is an active research area and is
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often achieved with complex algorithms like geographic gossip [Dimakis et al., 2006], relying
on overlay networks, or LADA [Li et al., 2007], using lifted Markov chains [Diaconis et al.,
2000]. Although synchronous gossip algorithms achieved this rate [Oreshkin et al., 2010],
finding an asynchronous algorithm that could match the rates of geographic gossip was still,
to the best of our knowledge, an open area of research [Dimakis et al., 2010].

Therefore, ESDACD shows improved rate compared with standard gossip when the eigen-
gap of the gossip matrix is small. To our knowledge, this is the first time that better con-
vergence rates of the second moment of the error are proven. Indeed, though they both
show improved rates in expectation, the shift-register approach [Cao et al., 2006, Liu et al.,
2013] has no proven rates for the second moment and the rates for the second moment of
heavy ball gossip [Loizou and Richtárik, 2018] do not improve over standard randomized
gossip averaging. Surprisingly, our results show that gossip averaging is best analyzed as a
special case of a more general optimization algorithm that is not even restricted to quadratic
objectives. Standard acceleration techniques shed a new light on the problem and allows for
a better understanding of it.

We acknowledge that the improved rates of convergence do not come for free. The
accelerated gossip algorithm requires some global knowledge on the graph (eigenvalues of
the gossip matrix and probability of activating each edge). Even though these quantities
can be approximated relatively well for simple graphs with a known structure, evaluating
them can be more challenging for more complex graphs (and can be even harder than or of
equivalent difficulty to the problem of average consensus). Yet, we believe that ESDACD as
a gossip algorithm can still be practical in many cases, in particular when values need to be
averaged over the same network multiple times or when computing resources are available
at some time but not at the time of averaging. Such use cases can typically be encountered
in sensor networks, in which the computation of such hyperparameters can be anticipated
before deployment. In any case, the analysis shows that standard optimization tools are
useful to analyze randomized gossip algorithms.

2.4.4. Comparison to SSDA. The results described in Theorem 10 are rather precise
and allow for a fine tuning of the edges probabilities depending on the topology of the graph
and of the local smoothnesses. However, the rate cannot always be expressed in a way that
makes it simple to compare with SSDA.

Corollary 3. Let G be a family of graph verifying Assumptions 2 and 3. There exists
c > 0 such that:

θESDACD
τ̄ESDACD

≥ c
1

τmax

√
γ

κ
= c

θSSDA
τ̄SSDA

, (2.4.5)

where θESDACD is the rate of ESDACD when edges are sampled uniformly and θSSDA the
rate of SSDA when both algorithms use matrix A as defined in Equation (2.3.6).

The proof is in Appendix 2.B. Actually, sampling does not need to be uniform but a ratio√
pmin/pmax would appear in the constant otherwise. The result of Corollary 3 means that

asynchrony comes almost for free for decentralized gradient descent in these cases. Indeed,
both algorithms scale similarly in the network and optimization parameters. Note that in this
case, we compare ESDACD and SSDA (and not MSDA) meaning that we implicitly assume
that communication times are greater than computing times. This is because ESDACD is
very efficient in terms of communication but not necessarily in terms of gradients.
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Algorithm Improvement Communications Gradients computed Speed
SSDA

√
γ
κl

2E n 1

ESDACD O
(

1
n

√
γ
κl

)
2 2 O

(
1
n

)
Figure 1. Per iteration costs of SSDA and ESDACD for quasi-regular graphs.

Corollary 3 states that the rates per unit of time are similar. Figure 1 compares the two
algorithms in terms of network and computational resources usage. SSDA iterations require
all nodes to send messages to all their neighbors, resulting in a very high communication
cost. ESDACD avoids this cost by only performing local updates. SSDA uses n/2 times more
gradients per iterations so both algorithms have a comparable cost in terms of gradients.

At each SSDA iteration, nodes need to wait for the slowest node in the system whereas
many nodes can be updated in parallel with ESDACD. ESDACD can thus be tuned not
to sample slow edges too much, or on the opposite to sample quick edges but with highly
non-smooth nodes at both ends more often.

Edge updates yield a strong correlation between the probabilities of sampling edges and
the final rate. In heterogeneous cases (in terms of functions to optimize as well as network
characteristics), the greater flexibility of ESDACD allows for a better fine-tuning of the
parameters (step-size) and thus for better rates.

2.5. Experiments

2.5.1. ESDACD vs. gossip averaging. The goal of this part is to illustrate the rate
difference depending on the topology of the graph. We study graphs of n nodes where 10%
of the nodes have value 1 and the rest have value 0. Similar results are obtained with values
drawn from Gaussian distributions.

Figures 2(a) and 2(b) show that ESDACD consistently beats standard and heavy ball
gossip [Loizou and Richtárik, 2018]. The clear rates difference for the ring graph shown in
Figure 2(b) illustrates the fact that ESDACD scales far better for graphs with low connectiv-
ity. We chose the best performing parameters from the original paper (ω = 1 and β = 0.5)
for heavy ball gossip. ESDACD is slightly slower at the beginning because we chose constant
and simple learning rates. Choosing B0 and A0 from Appendix 2.C as in Nesterov and Stich
[2017] would lead to a more complex algorithm with better initial performances.

2.5.2. ESDACD vs. SSDA. In order to assess the performances of the algorithm in
a fully controlled setting, we perform experiments on two synthetic datasets, similar to the
one used by Scaman et al. [2017b]:

• Regression: Each node i has a vector of N observations, noted Xi ∈ Rd×N with
d = 50 drawn from a centered Gaussian with variance 1. The targets yi,j are
obtained by applying function g : x→ x̄i,j + cos(x̄j) + ε where x̄j = d−11TXiej and
ε is a centered Gaussian noise with variance 0.25. At each node, the loss function
is fi(θi) = 1

2‖X
T
i θ − yi‖2 + ci‖θ‖2 with ci = 1.

• Classification: Each node i has a vector of N observations, noted Xi ∈ Rd×N with
d = 50. Observations are drawn from a Gaussian of variance 1 centered at −1 for
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(a) 10× 10 grid. (b) Ring graph of size 100.

Figure 2. ESDACD, pairwise gossip and heavy ball gossip on various graphs

the first class and 1 for the second class. Classes are balanced. At each node, the
loss function is fi(θi) = ∑N

j=1 ln
(
1 + exp−yi,jXT

i,jθ
)

+ ci‖θ‖2 with ci = 1.

Our main focus is on the speed of execution. Recall that edge (i, j) takes time τij to transmit
a message and so if node i starts its kith update at time ti(ki) then ti(ki+1) = maxl=i,j tl(kl)+
τij and the same for j. This gives a simple recursion to compute the time needed to execute
the algorithm in an idealized setting, that we use as the x-axis for the plots.

To perform the experiments, the gossip matrix chosen for SSDA is the Laplacian matrix
and µ2

ij = p2
ij(σ−1

i + σ−1
j )−1 is chosen for ESDACD. The error plotted is the maximum

suboptimality maxi F (θi) − minx F (x). Experiments are conducted on the 10 × 10 grid
network. We perform n/4 times more iteration for ESDACD than for SSDA. Therefore, in
our experiments, an execution of SSDA uses roughly 2 times more gradients and 8 times
more messages (for the grid graph) than an execution of ESDACD. This also allows us to
compare the resources used by the 2 algorithms.

Homogeneous setting: In this setting, we choose uniform constant delays and N = 150
for each node. We notice on Figure 3(a) that SSDAis roughly two times faster than ESDACD,
meaning that n/8 ESDACD iterations are completed in parallel by the time SSDA completes
one iteration. This means that in average, a quarter of the nodes are actually waiting to
complete the schedule, since 2 nodes engage in each iteration.

Heterogeneous setting: In this setting, N is uniformly sampled between 50 (problem
dimension) and 300, thus leading to very different values for the local condition numbers. De-
lays are all exponentially distributed with parameter 1. Figure 3(b) shows that ESDACD is
computationally more efficient than SSDA on the regression problem because it has a far
lower final error although it uses 2 times less gradients. This can be explained by larger step
sizes along regular edges and suggests that ESDACD adapts more easily to changes in local
regularity, even with uniform sampling probabilities. ESDACD is also much faster since in
average, each node performs 2 iterations in half the time needed for one SSDA iteration.
For the classification problem, strong convexity is more homogeneous because it only comes
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(a) Homogeneous regression prob-
lem

(b) Heterogeneous regression prob-
lem

(c) Heterogeneous classification
problem.

Figure 3. Distributed Optimization experiments

from regularization. Therefore, ESDACD does not take full advantage of the local structure
of the problem and show performances that are similar to those of SSDA.

2.6. Conclusion
In this paper, we introduced the Edge Synchronous Dual Accelerated Coordinate De-

scent (ESDACD), a randomized gossip algorithm for the optimization of sums of smooth
and strongly convex functions. We showed that it matches the performances of SSDA,
its synchronous counterpart. Empirically, ESDACD even outperforms SSDA in heteroge-
neous settings. Applying ESDACD to the distributed average consensus problem yields the
first asynchronous gossip algorithm that provably achieves better rates in variance than the
standard randomized gossip algorithm, for example matching the rate of geographic gos-
sip [Dimakis et al., 2006] on a grid.

Promising lines of work include a communication accelerated version that would match
the speed of MSDA [Scaman et al., 2017b] when computations are more expensive than
communications, a fully asynchronous extension that could handle late gradients as well as
a stochastic version of the algorithm that would only use stochastic gradients of the local
functions.
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In this appendix, we present the missing proofs and details for this Chapter. In particular,
Section 2.A is devoted to proving Theorem 11, which shows that nodes are active a constant
fraction of the time in average. Then, we compare the speed of ESDACD with that of
standard gossip and of SSDA in Section 2.B, and finally prove the detailed convergence rate
of ESDACD in Section 2.C.

2.A. Detailed average time per iteration proof

The goal of this section is to prove Theorem 11. The proof develops an argument similar
to the one of Theorem 8.33 [Baccelli et al., 1992]. Yet, the theorem cannot be used directly
and we need to specialize the argument for our problem in order to get a tighter bound. We
note t the number of iterations that the algorithm performs, and we introduce the random
variable X t(i, w) such that if edge (i, j) is activated at time t+ 1 (with probability pij), then
for all w ∈ N∗:

X t+1(i, w) = X t(i, w − 1) +X t(j, w − 1).
and X t+1(k, w − 1) = X t(k, w − 1) otherwise. We start with the initial conditions

X0(i, 0) = 1 and X0(i, w) = 0 for any w > 0. The following lemma establishes a relationship
between the time taken by the algorithm to complete t iterations and variables X t.

Lemma 3. If we note Tmax(t) the time at which the last node of the system finishes
iteration t then for all θ > 0:

E [Tmax(t)] ≤ θt+
∑
w≥θt

n∑
i=1
E
[
X t(i, w)

]
.

Proof. We first prove by induction on t that if we denote Ti(t) the time at which node
i finishes iteration t, then for any i ∈ {1, .., n}:

Ti(t) = max
w∈N,Xt(i,w)>0

w. (2.A.1)

To ease notations, we write wmax(i, t) = maxw∈N,Xt(i,w)>0w. The property is true for
t = 0 because Ti(0) = 0 for all i.

We now assume that it is true for some fixed t > 0 and we assume that edge (k, l)
has been activated at time t. For all i /∈ {k, l}, Ti(t + 1) = Ti(t) and for all w ∈ N∗,
X t+1(i, w − 1) = X t(i, w − 1) so the property is true. Besides,

wmax(k, t+ 1) = max
w∈N∗,Xt(k,w−1)+Xt(l,w−1)>0

w

= max
w∈N,Xt(i,w)+Xt(i,w)>0

w + 1

= 1 + max (wmax(k, t), wmax(l, t))
= 1 + max (Tk(t), Tl(t)) = Tk(t+ 1).

We finish the proof of Equation (2.A.1) by observing that k and l are completely equiv-
alent.

The form of the recurrence guarantees that for any fixed t ∈ N and w > 1, if there
exists i such that X t(i, w) > 0 then for any w′ < w, there exists j such that X t(j, w′) > 0.
Therefore,
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Tmax(t) = max
i

max
w∈N,Xt(i,w)>0

w = max
w∈N,

∑
i
Xt(i,w)>0

w =
∑
w∈N

1

(
n∑
i=1

X t(i, w) ≥ 1
)
, (2.A.2)

because having X t(i, w) > 0 is equivalent to having X t(i, w) ≥ 1 since X t(i, w) is integer
valued. Therefore, for any θ ∈ [0, 1]

Tmax(t) ≤ θt+
∑
w≥θt

1

(
n∑
i=1

X t(i, w) ≥ 1
)
,

and the proof results from taking the expectation of the previous inequality and using
Markov inequality on the second term. �

Although there is still a maximum in the expression of Ti(t), the recursion for variable
X has a much simpler form. In particular, we will crucially exploit its linearity. We write
pi = ∑

j pij and introduce p = mini pi and p̄ = maxi pi. We now prove the following Lemma:

Lemma 4. For all i, if δ1 = p, δ2 = p̄ and δ = 2δ2−δ1
1−2δ2 then for all θ > 0∑

p≥θt
E
[
X t(i, p)

]
≤ (1 + δ)t P [Binom(2δ2, t) ≥ θt] . (2.A.3)

Proof. Taking the expectation over the edges that can be activated gives:

E
[
X t+1(i, w)

]
= (1− pi)E

[
X t(i, w)

]
+
∑
j

pijE
[
X t(j, w − 1)

]
+piE

[
X t(i, w − 1)

]
. (2.A.4)

In particular, for all i, E [X t+1(i, w)] ≤ X̄ t(w) where X̄0(w) = 1 if w = 0 and 0 otherwise,
and:

X̄ t+1(w) = (1− p) X̄ t(w) + 2p̄X̄ t(w − 1). (2.A.5)
We now introduce φt(z) = ∑

w∈N z
wX̄ t(w). A direct recursion leads to:

φt(z) = (1− p + 2p̄z)t . (2.A.6)
Then, using the fact that δ > 0:

φt(z) ≤ (1 + δ)t
(

1− 2δ2 + 2δ2

1 + δ
z

)t
≤ (1 + δ)t (1− 2δ2 + 2δ2z)t = (1 + δ)tφbin(2δ2, t)(z),

(2.A.7)
where φbin(2δ2, t) is the generating function of the Binomial law of parameters 2δ2 and t.

The inequalities above on the integral series φt and (1+δ)tφbin(2δ2, t) actually hold coefficient
by coefficient. Therefore, E [X t(i, p)] ≤ (1 + δ)tP (Binom(2δ2, t) = p) �

We conclude the proof of the theorem with this last lemma:

Lemma 5. If θ = 6δ2 + δ then:

lim
t∈N

∑
w≥θt

E
[
X t(i, w)

]
= 0 (2.A.8)
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Proof. We use tail bounds for the Binomial distribution [Arratia and Gordon, 1989] in
order to get for θ ≥ 2δ2:

lnP [Binom(2δ2, t) ≥ θt] ≤ −tD(θ||2δ2), (2.A.9)
where D(p||q) = p ln p

q
+ (1− p) ln 1−p

1−q so applying Lemma 4 yields:
∑
w≥θt

E
[
X t(i, w)

]
≤ e−t[D(θ||2δ2)−ln(1+δ)]. (2.A.10)

Therefore, we are left to prove that D(θ||2δ2)− ln(1 + δ) > 0. However,

D(θ||2δ2) = 2δ2 ln(2δ2

θ
) + (1− 2δ2) ln 1− 2δ2

1− θ ≥ 2δ2 ln(2δ2

θ
)− 2δ2 + θ (2.A.11)

by using that x
1+x ≤ ln(1+x) ≤ x. Since θ = 6δ2 +δ and δ ≤ 2δ2

1−2δ2 , assuming that δ2 ≤ 3
8

yields:

D(θ||2δ2) ≥ 2δ2

[
2− ln(3 + δ

2δ2
)
]

+ δ > δ ≥ ln(1 + δ). (2.A.12)

If δ2 ≥ 3
8 , then θ > 1 so the result is obvious because X t(i, w) = 0 for w > t.

�

2.B. Execution speed comparisons

2.B.1. Comparison with gossip. In this section, we prove Corollary 2.

Proof. We consider a matrix A such thatAeij = µij(ei−ej) and µ2
ij = 1

2 for all (i, j) ∈ E.
Then multiplying by Wij = Aeije

T
ijA

T corresponds to averaging the values of nodes i and j
and so the rate of uniform randomized gossip averaging depends on W̄ = E[Wij].

In this case, applying ESDACD with matrix A yields a rate of

θESDACD = min
ij

pij

µij
√
σ−1
i + σ−1

j

√
λ+

min(ATA)√
eijA+Aeij

≥

√
λ+

min(AAT )
cnE

(2.B.1)

where c is a constant independent of the size of the graph coming from Assumption 3.
Since W̄ = 1

E
AAT then θgossip = 1

E
λ+

min(AAT ) and so:

θESDACD ≥
c′√
n

√
θgossip (2.B.2)

with c′ = c−
1
2 . �

2.B.2. Comparison with SSDA. In this section, we prove Corollary 3. SSDA is based
on an arbitrary gossip matrix whereas the rate of ESDACD is based on a specific matrix
ATA where Aeij = µij(ei − ej). Yet, W = AAT is a perfectly valid gossip matrix. Indeed,
Ker(W ) = Ker(A) = V ec (1) and AAT is an n × n symmetric positive matrix defined on
the graph G(n). Besides, λ+

min(ATA) = λ+
min(AAT ), which enables us to compare the rates of

SSDA and ESDACD.
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Proof. For arbitrary µ, the rate of ESDACD writes:

θESDACD ≥ min
ij

pij

µij
√
Lmax(σ−1

i + σ−1
j )eTijA+Aeij

√
λ+

min(ATA). (2.B.3)

Here, we choose µ2
ij = 1

2 , which yields the bound:

θESDACD ≥ pmin

√√√√ λmax(AAT )
maxij eTijA+Aeij

√
γ

κ
. (2.B.4)

Therefore, combining this with Theorem 11 and Assumption 3 gives:

θESDACD
τ̄ESDACD

≥ pmin
√
E

cp̄τmax

√
λmax(AAT )

n

√
γ

κ
≥ c′

τmax

pmin

pmax

√
dmin

dmax

√
E

ndmax

√
γ

κ
(2.B.5)

where we have used that λmax ≥ 1
n
Tr(AAT ) ≥ dmin and p̄ ≤ pmaxdmax. We then use

Assumption 2 to get that there exists c′′ such that:
θESDACD
τ̄ESDACD

≥ c′′

τmax

√
γ

κ
= c′′

θSSDA
τ̄SSDA

(2.B.6)

�

In the proof above, it appears that having probabilities that are too unbalanced harms
the convergence rate of ESDACD. However, if these probabilities are carefully selected to
match the square root of the smoothness along the edge, and if delays are such that this
does not cause very slow edges to be sampled too often then unbalanced probabilities can
greatly boost the convergence rate.

2.C. Detailed rate proof

The proof of Theorem 10 is detailed in this section. Recall that we note A+ the pseudo-
inverse of A and we define the scalar product 〈x, y〉A+A = xTA+Ay. The associated norm is a
semi-norm because A+A is positive semi-definite. Since A+A is a projector on the orthogonal
of Ker(A), it is a norm on the orthogonal of Ker(A).

Our proof follows the key steps of Nesterov and Stich [2017]. However, we study the
problem in the norm defined by A+A because our problem is strongly convex only on the
orthogonal of Ker(A). Matrix A can be tuned so that F ∗A has the same smoothness in all
directions, thus leading to optimal rates. We start by two small lemmas to introduce the
strong convexity and smoothness inequalities for the A+A semi-norm. We note Uij = eije

T
ij.

Lemma 6 (Strong convexity of F ∗A). For all x, y ∈ RE,

F ∗A(x)− F ∗A(y) ≥ ∇F ∗A(y)T (x− y) + σA
2 ‖x− y‖

2
A+A (2.C.1)

with σA = λ+
min(ATA)
Lmax

Proof. Inequality (2.C.1) is obtained by writing the strong convexity inequality for
each f ∗i and then summing them. Then, we remark that Li ≤ Lmax for all i and that
‖Aw‖2 = ‖Aw‖2

A+A ≥ λ+
min(ATA)‖w‖2

A+A for w = x− y. More specifically:
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F ∗A(x)− F ∗A(y) =
n∑
i=1

(
f ∗i
(
eTi Ax

)
− f ∗i

(
eTi Ay

))

≥
n∑
i=1
∇f ∗i

(
eTi Ay

)T
eTi (Ax− Ay) + 1

2(Ax− Ay)T
(

n∑
i=1

L−1
i eie

T
i

)
(Ax− Ay)

≥ ∇F ∗A(y)T (x− y) + 1
2Lmax

(x− y)TATA(x− y)

≥ ∇F ∗A(y)T (x− y) + λmin(ATA)
2Lmax

‖x− y‖2
A+A

�

Lemma 7 (Smoothness of F ∗A). We note xt+1 = yt−hklUkl∇F ∗A(yt) where h−1
kl = µ2

kl(σ−1
k +

σ−1
l ). If edge (k, l) is sampled at time t,

F ∗A(xt+1)− F ∗A(yt) ≤ −
1

2µ2
kl

(
σ−1
k + σ−1

l

)‖Ukl∇F ∗A(yt)‖2. (2.C.2)

Equation (2.C.2) can be seen as an ESO inequality [Richtárik and Takáč, 2016] applied
to the directional update hklUkl∇F ∗A(yt).

Proof. Assuming that edge (k, l) is drawn at time t, we use that each f ∗i is (σ−1
i )-smooth

to write:

f ∗i
(
eTi Axt+1

)
−f ∗i

(
eTi Ayt

)
≤ −hkl∇f ∗i

(
eTi Ayt

)T
eTi AUkl∇F ∗A(yt)+

1
2σi
‖hkleTi AUkl∇F ∗A(yt)‖2.

Summing it over all values of i gives:

F ∗A(xt+1)− F ∗A(yt) ≤ ∇F ∗A(yt)T
[
−hklUkl + 1

2h
2
klUklA

T
n∑
i=1

σ−1
i eie

T
i AUkl

]
∇F ∗A(yt).

Then, we decompose by using that Aeij = µij(ei − ej) and Ukl = ekle
T
kl to get that

F ∗A(xt+1)− F ∗A(yt) ≤ ∇F ∗A(yt)TUkl
[
−hkl + 1

2h
2
klµ

2
kl(σ−1

k + σ−1
l )

]
∇F ∗A(yt).

We conclude the proof by using the fact that hkl = 1
µ2
kl

(σ−1
k

+σ−1
l

) . �

We can now start the proof of Theorem 10. We first prove the convergence of a different
algorithm which is essentially the one by Nesterov and Stich [2017] and show that Algorithm 1
is obtained for a specific choice of initial conditions.

Proof. More specifically, we choose A0, B0 ∈ R and recursively define the following
coefficients:

a2
t+1S

2 = At+1Bt+1 (2.C.3)
Bt+1 = Bt + σAat+1 (2.C.4)
At+1 = At + at+1 (2.C.5)
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αt = at+1

At+1
(2.C.6)

βt = σAat+1

Bt+1
. (2.C.7)

Then, we take arbitrary x0, y0, v0 ∈ RE×d and recursively define:

yt = (1− αt)xt + αt(1− βt)vt
1− αtβt

(2.C.8)

vt+1 = (1− βt)vt + βtyt −
at+1

Bt+1pij
Uij∇F ∗A(yt) (2.C.9)

xt+1 = yt −
1

µ2
ij(σ−1

i + σ−1
j )

Uij∇F ∗A(yt). (2.C.10)

For convenience, we write wt = (1 − βt)vt + βtyt. Then, we study the quantity r2
t =

‖vt − x∗‖2
A+A where x∗ is the minimizer of F ∗A. Recall that gij(yt) = at+1

Bt+1pij
Uij∇F ∗A(yt).

‖vt+1−x∗‖2
A+A = ‖wt−x∗‖2

A+A+‖ at+1

Bt+1pij
Uij∇F ∗A(yt)‖2

A+A−2 at+1

Bt+1pij
∇F ∗A(yt)TUijA+A(wt−x∗).

(2.C.11)
Then,

Eij[
at+1

Bt+1pij
∇F ∗A(yt)TUij] =

∑
ij

pij
at+1

Bt+1pij
∇F ∗A(yt)TUij = at+1

Bt+1
∇F ∗A(yt)T . (2.C.12)

Therefore, Equation (2.C.11) can be rewritten:

E
[
r2
t+1

]
≤ E

[
‖wt − x∗‖2

A+A

]
+E

[
eTijA

+Aeija
2
t+1

B2
t+1p

2
ij

‖Uij∇F ∗A(yt)‖2
]
− 2 at+1

Bt+1
∇F ∗A(yt)T (wt−x∗).

(2.C.13)
Now, the goal is to write a smoothness equation to control the middle term and make

F ∗A(xt+1) appear. This control is provided by Equation (2.C.2) in Lemma 7.
Therefore, if we choose S such that for all (i, j), eTijA

+Aeij(σ−1
i +σ−1

j )µ2
ij

p2
ij

≤ S2 then the
equation becomes:

‖vt+1−x∗‖2
A+A ≤ ‖wt−x∗‖2

A+A+ 2S2a2
t+1

B2
t+1

[F ∗A(yt)− E [F ∗A(xt+1)]]−2 at+1

Bt+1
∇F ∗A(yt)T (wt−x∗).

(2.C.14)
We use the convexity of the squared norm to get that ‖wt−x∗‖2

A+A ≤ (1−βt)r2
t +βt‖yt−

x∗‖2
A+A. Then, if we multiply both sides by Bt+1 we get:

Bt+1r
2
t+1 ≤ Btr

2
t+βtBt+1‖yt−x∗‖2

A+A+2S2a2
t+1

Bt+1
[F ∗A(yt)− E [F ∗A(xt+1)]]−2at+1∇F ∗A(yt)T (wt−x∗).

(2.C.15)
We can now use Equation (2.C.1) of Lemma 6 (strong convexity of F ∗A in norm A+A) to

write that:
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−at+1∇F ∗A(yt)T (wt − x∗) = at+1∇F ∗A(yt)TA+A
(
x∗ − yt + 1− αt

αt
(xt − yt)

)
≤ at+1

(
F ∗A(x∗)− F ∗A(yt)−

1
2σA‖yt − x

∗‖2
A+A + 1− αt

αt
(F ∗A(xt)− F ∗A(yt))

)
≤ at+1F

∗
A(x∗)− At+1F

∗
A(yt) + AtF

∗
A(xt)−

1
2at+1σA‖yt − x∗‖2

A+A.

Then, we combine the previous inequality with Equation (2.C.15) and we use the fact
that Bt+1βt = at+1σA so that:

Bt+1r
2
t+1 ≤ Btr

2
t+2At+1 [F ∗A(yt)− E [F ∗A(xt+1)]]−2 [(At+1 − At)F ∗A(x∗)− At+1F

∗
A(yt) + AtF

∗
A(xt)] ,

(2.C.16)
and so:

Bt+1r
2
t+1 −Btr

2
t ≤ 2At [F ∗A(xt)− F ∗A(x∗)]− 2At+1 [E [F ∗A(xt+1)]− F ∗A(x∗)] . (2.C.17)

By summing over all inequalities, we get that

2AtE [F ∗A(xt)− F ∗A(x∗)] +BtE[r2
t ] ≤ r2

0. (2.C.18)
Now, we need to estimate the growth of coefficients At and Bt. We prove by induction

on t that if A0 = 1 and B0 = σA then for all t ∈ N, αt = βt =
√
σA
S

At =
(
1−

√
σA
S

)−t
and

Bt = σAAt.
We can first combine Equation (2.C.5) and Equation (2.C.6) to obtain

at+1(α−1
t − 1) = At (2.C.19)

at+1(β−1
t − 1) = Bt

σA
(2.C.20)

For t = 0, we can combine equations (2.C.19) and (2.C.20) to obtain that α−1
0 −1 = β−1

0 −1
(since a1 6= 0 and so α0 = β0. Finally,

a2
1S

2 = A1B1 = a2
1σA
α0β0

and so α0 = β0 =
√
σA
S

.
Now suppose that the property is true for a given t ≥ 0. Then, we use Equation (2.C.19)

and the fact that At+1 = at+1 + At. Since 1 + (α−1
t − 1)−1 = α−1

t −1+1
α−1
t −1 = (1 − αt)−1 then by

induction assumption, At+1 =
(
1−

√
σA
S

)−t−1
.

We use Equation (2.C.20) in the same way to prove that Bt+1 = σAAt+1.
Then, we use equations (2.C.19) and (2.C.20) at time t+1 to get that α−1

t+1−1 = β−1
t+1−1

so αt+1 = βt+1. Their value can again be retrieved by using Equation (2.C.3), which finishes
the induction.
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We have proven that for this choice of A0 and B0 the α and β coefficients are constant
and are equal to θ =

√
σA
S

. Therefore, vt+1 = (1 − θ)vt + θyt − θ
pijσA

Uij∇F ∗A(yt). With this
choice of parameters, yt+1 can be expressed as:

yt+1 = (1− θ)xt+1 + θ(1− θ)vt+1

1− θ2 = xt+1 + θvt+1

1 + θ
.

Then, the coefficients of Algorithm 1 are recovered by replacing xt+1 and vt+1 by their
expressions in Equations (2.C.10) and (2.C.9). The actual values of at+1, At+1 and Bt+1 are
only used for the analysis because only at+1

Bt+1
= σA

βt
appears in the recursion. �
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CHAPTER 3

Accelerated Variance-reduced decentralized stochastic
optimization

In this chapter, we introduce a lower bound for decentralized stochastic optimization, and
match it with an accelerated dual method, based on an augmented graph formulation that
combines the strength of APCG [Lin et al., 2015b] and ESDACD, presented in Chapter 2.
More specifically, we introduce an efficient Accelerated Decentralized stochastic algorithm
for Finite Sums named ADFS, which uses local stochastic proximal updates (which are
generally more expensive than gradient updates) and decentralized communications between
nodes. On n machines, ADFS minimizes the objective function with nm samples in the
same time it takes optimal algorithms to optimize from m samples on one machine. This
scaling holds until a critical network size is reached, which depends on communication delays,
on the number of samples m, and on the network topology. We give a lower bound of
complexity to show that ADFS is optimal among decentralized algorithms. To derive ADFS,
we first develop an extension of the accelerated proximal coordinate gradient algorithm to
arbitrary sampling. Then, we apply this coordinate descent algorithm to a well-chosen dual
problem based on an augmented graph approach, leading to the general ADFS algorithm.
We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with
experiments.

This chapter is based on the paper An Optimal Algorithm for Decentralized Finite Sum
Optimization [Hendrikx, Bach, and Massoulie, 2020b], accepted for publication at the SIAM
Journal on Optimization (SIOPT), which is itself based on the paper An Accelerated Decen-
tralized Stochastic Proximal Algorithm for Finite Sums [Hendrikx et al., 2019b], published
at NeurIPS 2019. Yet, these articles have been reworked, and in particular the randomized
gossip aspect from the conference paper has been reintegrated in Section 3.7.1.

3.1. Introduction

The success of machine learning models is mainly due to their capacity to train on huge
amounts of data. Distributed systems can be used to process more data than one computer
can store or to increase the pace at which models are trained by splitting the work among
many computing nodes. In this work, we focus on problems of the form:

min
θ∈Rd

n∑
i=1

fi(θ), where fi(θ) =
m∑
j=1

fij(θ) + σi
2 ‖θ‖

2. (3.1.1)

This is the typical `2-regularized empirical risk minimization problem with n computing
nodes that have m local training examples each. The function fij represents the loss function
for the j-th training example of node i and is assumed to be convex and Lij-smooth [Nesterov,
2013c, Bubeck, 2015]. This kind of problems arises in machine learning problems such as
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image recognition [Goyal et al., 2017], as well as in other applications such as distributed
resource allocation [Xiao and Boyd, 2006] or distributed power control [Molzahn et al., 2017].

These problems are usually solved by first-order methods, and the basic distributed
algorithms compute gradients in parallel over several machines [Nedic and Ozdaglar, 2009].
Another way to speed up training is to use stochastic algorithms [Bottou, 2010, Defazio
et al., 2014a, Johnson and Zhang, 2013b], that take advantage of the finite sum structure
of the problem to use cheaper iterations while preserving fast convergence. Lower bounds
with matching optimal algorithms exist separately in both the finite-sum [Lan and Zhou,
2017] and the distributed setting [Scaman et al., 2017b]. This paper aims at bridging the
gap between these two lines of work when local functions are smooth and strongly convex.
In particular, we give lower complexity bounds for the distributed finite-sum setting, as well
as ADFS, an algorithm that matches these bounds. Our contributions are the following,
ordered by appearance in the paper:

(1) Tight lower complexity bounds. We recover as special cases the bounds from Scaman
et al. [2017b] when m = 1 (local functions are not finite sums), and the bounds
from Lan and Zhou [2017] when n = 1 (there is only one machine).

(2) Generalization of Accelerated Proximal Coordinate Gradient [Lin et al., 2015b, Fer-
coq and Richtárik, 2015] to arbitrary sampling of blocks and strong convexity in a
subspace.

(3) ADFS, a decentralized stochastic algorithm that matches our lower complexity
bounds, and recovers the rate of MSDA [Scaman et al., 2017b] when m = 1 and
the rate of optimal single machine stochastic algorithms [Lin et al., 2015b, Defazio,
2016] when n = 1.

The present paper is an extended journal version of the conference paper that introduces
ADFS [Hendrikx et al., 2019b]. In particular, this paper presents a more flexible version of
ADFS that can use synchronous rounds instead of local operations with global scheduling,
and the contributions listed above were not present in the original work. We discuss the
differences with the conference paper more in details later in the article. We now precisely
define our setting, and discuss relevant related work.

3.2. Model and notations

3.2.1. Optimization problem. In the rest of this paper, following Scaman et al.
[2017b], we assume that:

• Each node (computing unit) i ∈ {1, ..., n} can compute first-order characteristics,
such as the gradient of its own functions ∇fij, the gradient of the Fenchel conjugate
of its local function ∇f ∗i , or the proximal operator

proxηfij(x) = arg min
v

1
2η‖v − x‖

2 + fij(v) for x ∈ Rd. (3.2.1)

We assume that computing first-order characteristics for one function fij takes time
1, and so that computing them for the function fi takes time m. This hides the fact
that computing the proximal operator of a function (which is required by ADFS)
is generally significantly more expensive than computing its gradient. Yet, this
enables easier comparison between methods, and the difference between computing
the proximal operator compared to the gradient of a single function is only of a
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constant factor in the case of generalized linear models such as least-squares or
logistic regression.
• Nodes are linked by a communication network and can only exchange messages (i.e.,
vectors in Rd) with their neighbours. We assume that communications take time
τ . There are at this point no other restrictions on the communications, that can
happen asynchronously and in parallel.

Following notations from Xiao et al. [2019b], we define the batch condition number κb,
which is a classical quantity in optimization, such that for all i,

κb ≥ Lb(i)/σi where ∀x, Lb(i) ≥ λmax(∇2fi(x)). (3.2.2)
Similarly, we define the stochastic condition number κs, which is a classical quantity in the
analysis of finite sum optimization problems, such that

κs ≥ 1 + 1
σi

m∑
j=1

Lij where ∀x, Lij ≥ λmax(∇2fij(x)). (3.2.3)

Batch optimization methods such as gradient descent have an iteration complexity which is
proportional to κb, but they need to evaluate a full gradient (i.e. m individual gradients)
at each step. On the other hand, the iteration complexity of stochastic variance-reduced
algorithms [Johnson and Zhang, 2013b, Defazio et al., 2014a, Shalev-Shwartz and Zhang,
2013] depends on m+ κs, but only use one individual gradient at each iteration. Therefore,
stochastic variance-reduced methods improve over batch methods by replacing their O(mκb)
time complexity by O(m+κs). Yet, since ∇2fi(x) = σiId+∑m

j=1∇2fij(x) 4 (σi+
∑m
j=1 Lij)Id

then we directly obtain that Lb(i) ≤ σi + ∑m
i=1 Lij, and so κb ≤ κs. Similarly, ∇2fi(x) <

∇2fij(x) and so Lij ≤ Lb(i) for all j. Therefore, we always have
(m+ 1)κb ≥ κs ≥ κb. (3.2.4)

This means that finite-sum methods gain nothing in the worst case, in which all fij are
independent. However, the practical superiority of these methods suggests that κs << mκb
in many applications since samples are often correlated.

The upper bound on κs is tight when maxx λmax(∇2fi(x)) = maxx λmax(∇2fij(x)). Equal-
ity happens in particular in the extreme case in which all ∇2fij(x) are orthogonal, meaning
that the sum is separable and optimization can be performed separately for each function.
Considering least squares regression problems is also convenient to understand the difference
between κs and κb more in details. In particular, if we denote by C ∈ Rm×m the covariance
matrix of the data, then κb = λmax(C) the largest eigenvalue of C and κs = Tr(C). In
this case, it is clear that κs << mκb unless the covariance matrix is close to isotropic. In
summary, our goal is to replace the mκb computational time factors by m + κs. Whether
this improves the global time complexity depends on the structure of the problem (and thus
of the data) but this is generally verified in practice. Note that a specific sampling scheme
is required to obtain complexities that depend on κs as an average of local smoothnesses
instead of a max, which is why arbitary sampling (with minibatches) versions of existing
stochastic algorithms are sometimes analyzed [Qian et al., 2019b,a, Sebbouh et al., 2019].

3.2.2. Decentralized Communications. The focus of this paper is on the decentral-
ized setting. In this case, gossip algorithms [Boyd et al., 2006, Nedic and Ozdaglar, 2009,
Shi et al., 2015a, Nedic et al., 2017] are generally used. Gossip communication steps consist
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Algorithm Synchrony Stochastic Time

Point-SAGA [Defazio, 2016] N/A X nm+√nmκs
MSDA [Scaman et al., 2017b] Global × √

κb
(
m+ τ√

γ

)
ESDACD [Hendrikx et al., 2019a] Local × (m+ τ)

√
κb
γ

DSBA [Shen et al., 2018] Global X
(
m+ κs + γ−1) (1 + τ)

ADFS-Asynch [Hendrikx et al., 2019b] Local X m+√mκs + (1 + τ)
√

κs
γ

ADFS-Synch (This paper) Global X m+√mκs + τ
√

κcomm
γ

Table 1. Comparison of various state-of-the-art decentralized algorithms to
reach accuracy ε in regular graphs. Constant factors are omitted, as well as the
log (ε−1) factor in the Time column. The reported runtime for Point-SAGA
corresponds to running it on a single machine with nm samples. To allow for
direct comparison, we assume that computing a dual gradient of a function
fi as required by MSDA and ESDACD takes time m, although it is generally
more expensive than to compute m separate proximal operators of single fij
functions. Rates reported are for a homogeneous setting, i.e., when all nodes
have the same strong convexity parameter. For generalized linear models such
as logistic regression, the κcomm term in the rate of ADFS-Synch is defined in
Lemma 11 and is of order κcomm = O(κb).

in averaging gradients or parameters with neighbours, and can thus be abstracted as multi-
plication by a so-called gossip matrix W , which is an n×n symmetric positive semi-definite
matrix such that Ker(W ) = Span(1) where 1 is the constant vector of all ones, and Span(1)
denotes the vector space spanned by this vector. Besides, W is defined on the edges of the
network, meaning that Wk` = 0 if ` 6= k and ` /∈ N (k), the set of the neighbours of node k.

A simple choice of gossip matrix is L, the Laplacian matrix of the graph, which is such
that Lk` = degree(k) if k = `, Lk` = −1 if k ∈ N (`) and Lk` = 0 otherwise. We denote
λ+

min(W ) the smallest non-zero eigenvalue of the matrix W , and the eigengap of the gossip
matrix (also called spectral gap) is defined as γ = λ+

min(W )/λmax(W ). This natural constant
appears in the running time of many decentralized algorithms, and γ−1/2 is often close to
the diameter of the graph. For instance, γ−1/2 = 1 for the complete graph, γ−1/2 = 2n/π
for linear graphs and γ−1/2 = O(

√
n) for the 2D grid. More generally, γ−1/2 ≥ ∆

2
√

2 ln2(n)
for regular networks [Alon and Milman, 1985], and there is a simple distributed choice of
weights (the so-called Metropolis weights), such that γ−1/2 = O(n) for any graph (see, e.g.,
Olshevsky [2017]).

3.3. Related work

The next paragraphs discuss the state of the art for both distributed and stochastic
methods, and Table 1 sums up the speeds of the main decentralized algorithms for solving
Problem (3.1.1). Point-SAGA [Defazio, 2016], an optimal single-machine algorithm, is also
presented for comparison.
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Centralized gradient methods. A simple way to split work between nodes is to dis-
tribute gradient computations and to aggregate them on a parameter server. Provided the
network is fast enough, this allows the system to learn from the datasets of n workers in the
same time one worker would need to learn from its own dataset. Yet, these approaches are
very sensitive to stochastic delays, slow nodes, and communication bottlenecks. Asynchro-
nous methods may be used [Recht et al., 2011, Leblond et al., 2017, Xiao et al., 2019b] to
address the first two issues, but computing gradients on older (or even inconsistent) versions
of the parameter harms convergence [Chen et al., 2016]. Therefore, this paper focuses on de-
centralized algorithms, which are generally less sensitive to communication bottlenecks [Lian
et al., 2017a].

Decentralized gradient methods. In their synchronous versions, decentralized algo-
rithms alternate rounds of computations (in which all nodes compute gradients with respect
to their local data) and communications, in which nodes exchange information with their
direct neighbors. Typical examples include dual averaging [Duchi et al., 2012b], EXTRA [Shi
et al., 2015a], DIGing [Nedic et al., 2017] or NIDS [Li et al., 2019]. The convergence theory
of these algorithms has been refined over time so that EXTRA and NIDS are now known
to require time O((κb + γ−1)(m + τ)) log(ε−1)) to reach precision ε [Jakovetić, 2018, Xu
et al., 2020c, Li and Lin, 2020]. Chebyshev and Catalyst acceleration [Lin et al., 2015a] can
then be used to obtain the (batch) optimal O(√κb(1 + τ/

√
γ) log(ε−1)) rate up to log fac-

tors [Li and Lin, 2020]. Decentralized algorithms can also be obtained through the penalty
method [Li et al., 2018, Dvinskikh and Gasnikov, 2019], which consists in applying standard
optimization algorithms to problems augmented with a well-chosen Laplacian penalty. Yet,
these algorithms converge to the solution of the penalized problem instead of the original
one. Dual approaches [Scaman et al., 2017b, Uribe et al., 2020] are also successful to build
decentralized algorithms, and in particular MSDA [Scaman et al., 2017b] is optimal with
respect to the constants γ and κb, among the class of batch synchronous algorithms. Yet,
dual approaches generally assume access to the proximal operator or the gradient of the
Fenchel conjugate of the local functions, which is not very practical in general since it re-
quires solving a subproblem at each step. Recently, APAPC Kovalev et al. [2020] obtained
the same batch optimal rate, but using primal gradients only. OPTRA [Xu et al., 2020a],
another primal-dual algorithm, achieves similar optimal results in the convex (not strongly)
regime. The algorithms mentioned above are primarily designed for smooth and (strongly)
convex problems. For non-convex problems, one can use NEXT [Di Lorenzo and Scutari,
2016], which is based on the idea of tracking the global gradient, and which was later ex-
tended as SONATA, which handles time-varying digraphs [Sun et al., 2016]. SONATA also
enjoys fast convergence rates in the strongly convex setting, and even faster rates when lo-
cal objectives are statistically similar [Sun et al., 2019b], just like a decentralized variant
of DANE [Shamir et al., 2014, Li et al., 2020a]. Note that, similarly to PG-EXTRA [Shi
et al., 2015b], P2D2 [Alghunaim et al., 2019] or NIDS [Li et al., 2019], NEXT and SONATA
can also handle composite problems, in which an extra convex non-smooth regularizer is
added to the objective, and for which Xu et al. [2020c] provides a general unified analysis
framework.

Instead of performing global synchronous updates, some approaches inspired from gossip
algorithms [Boyd et al., 2006] use randomized pairwise communications [Nedic and Ozdaglar,
2009, Johansson et al., 2009, Colin et al., 2016]. This for instance allows fast nodes to
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perform more updates in order to benefit from their increased computing power. These
randomized algorithms generally do not suffer from the usual worst-case analyses of bounded-
delay asynchronous algorithms, and can thus have fast rates because the step-size does
not need to be reduced in the presence of delays. Such algorithms include Iutzeler et al.
[2013], Bianchi et al. [2015], Koloskova et al. [2020], Notarnicola and Notarstefano [2016]
or Cannelli et al. [2020], which also deals with delayed gradients. ESDACD [Hendrikx et al.,
2019a], which is very related to the conference version of ADFS [Hendrikx et al., 2019b],
is a dual pairwise gossip algorithm that achieves the same optimal speed as MSDA when
batch computations are faster than communications (τ > m). We refer the interested reader
to Assran et al. [2020] for a survey on asynchronous optimization.

Stochastic algorithms for finite sums. So far, we have mainly presented batch meth-
ods that compute full gradient steps of each function fi. Stochastic methods perform updates
based on randomly chosen functions fij. In the smooth and strongly convex setting, they can
be coupled with variance reduction [Schmidt et al., 2017, Shalev-Shwartz and Zhang, 2013,
Johnson and Zhang, 2013b, Defazio et al., 2014a] and acceleration, to achieve the m+√mκs
optimal finite-sum rate, which significantly improves over the m√κb batch optimum when
the dataset is large. Examples of such methods include Accelerated-SDCA [Shalev-Shwartz
and Zhang, 2014], APCG [Lin et al., 2015b], Point-SAGA [Defazio, 2016] or Katyusha [Allen-
Zhu, 2017].

Decentralized stochastic methods. The simplest (yet efficient) stochastic decentral-
ized algorithms are decentralized versions of the parallel SGD algorithm [Lian et al., 2017a,
Tang et al., 2018b, Koloskova et al., 2019a, Nadiradze et al., 2019, Assran et al., 2019,
Koloskova et al., 2020]. Conversely, [Zhang and You, 2019, Pu and Nedić, 2020] develop
stochastic variants of the celebrated gradient tracking approach (at the heart of NEXT
or DIGing, among others), in which each node estimates the global gradient. Yet, these
methods only converge to a neighbourhood of the solution when using a constant step-size.
In the smooth and strongly convex setting, DSA [Mokhtari and Ribeiro, 2016] and later
DSBA [Shen et al., 2018] are two linearly converging stochastic decentralized algorithms.
DSBA uses the proximal operator of individual functions fij to significantly improve over
DSA in terms of rates. Yet, DSBA does not enjoy the √mκs accelerated rate, and needs
an excellent network with very fast communications. Indeed, nodes need to communicate
each time they process a single sample, resulting in many communication steps. Other re-
cent variance-reduced methods include GT-SAGA/SVRG [Xin et al., 2020c], but the rates of
these methods depend on κ2

s instead of κs, and are thus much slower (although only gradients
of local functions are used instead of prox). Li et al. [2020a] also consider the same setting,
and prove super fast convergence of a network SVRG algorithm under the assumption that
all local functions are very similar. Therefore, to the best of our knowledge, there is no
decentralized stochastic algorithm with accelerated linear convergence rate or low commu-
nication complexity without sparsity assumptions (i.e., sparse features in linear supervised
learning).

ADFS. This paper main contribution is a locally synchronousAcceleratedDecentralized
stochastic algorithm for Finite Sums, named ADFS. It reduces to APCG for empirical risk
minimization [Lin et al., 2015b] in the limit case n = 1 (single machine), and therefore then
has a m +√mκs convergence rate. Besides, this rate stays unchanged when the number of
machines grows, meaning that ADFS can process n times more data than APCG in the same
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amount of time on a network of size n. This scaling lasts as long as τ√κcommγ
− 1

2 < m+√mκs,
meaning that the number of nodes can be arbitrarily large as long as delays are small enough.
Therefore, ADFS outperforms both MSDA and DSBA, combining optimal network scaling
with the efficient distribution of optimal sequential finite-sum algorithms. Note however
that, similarly to DSBA and Point-SAGA, ADFS requires evaluating proxfij , which requires
solving a local optimization problem. Yet, in the case of linear models such as logistic
regression, it is only a constant factor slower than computing ∇fij, and it is especially much
faster than computing the gradient of the conjugate of the full dual functions ∇f ∗i required
by ESDACD and MSDA.

Follow-up works. While this work was under review, accelerated variance reduced
versions of EXTRA and DIGing were developed in a preprint [Li et al., 2020c]. Accel-
erated VR EXTRA obtains optimal rates using primal gradients only. Yet, it leverages
SVRG-style [Johnson and Zhang, 2013b] variance reduction, and thus needs to periodically
recompute full gradients of the local objectives. Besides, in order to obtain optimal rates, the
computation-communication ratio needs to be balanced using minibatches of size b, whereas
the probability to compute and communicate can be tuned directly using ADFS. Finally,
only fixed synchronous undirected graphs are considered, whereas ADFS also handles ran-
domized pairwise communications. We thus believe that ADFS is still a relevant method for
accelerated decentralized stochastic variance-reduced optimization, especially when dealing
with linear models.

Improvements over the conference paper. This paper is based on the ADFS con-
ference paper [Hendrikx et al., 2019b]. Yet, it is not a strict extension, and some parts have
been removed in order to ease the reading. In particular, the locally synchronous aspect of
ADFS has been dropped in favor of standard synchronous gossip, which allows to remove
the sections about time and scheduling. This paper is based on arguments that are similar
to the ones used in the conference paper, but it presents new and stronger results. First
of all, we introduce a lower bound that was not present in the conference paper. Then,
we extend the accelerated proximal coordinate descent algorithm, which is the algorithmic
core of ADFS, to work with blocks of coordinates. This allows to present a synchronous
version of ADFS, which is both simpler and faster when communication and computation
delays are homogeneous (the same for all nodes and edges). Furthermore, we introduce the
constant κcomm, which captures the impact of the relationship between the topology of the
graph and the regularity of local functions on the iteration complexity of ADFS. This allows
us to obtain tight results on the communication complexity of ADFS and show that ADFS
is actually optimal since it matches the lower bound. Note that the locally synchronous
version of ADFS from the conference paper did not enjoy optimal runtime because of sched-
uling issues and a looser analysis. Therefore, and although they build on the same ideas as
the conference paper, all results presented in this paper are novel and contribute to building
a much more consistent theory. In this thesis, the contributions from the conference paper
have been reintegrated in Section 3.7.1.

The first contribution of this paper is a lower bound for distributed finite sum optimiza-
tion, presented in Section 3.4. Then, we introduce in Section 3.5 our second contribution, a
generalization of APCG that works with arbitrary sampling of blocks of coordinates. Our
last contribution is ADFS, obtained by applying the previous APCG algorithm to a novel
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augmented graph approach formulation presented in Section 3.6.1. The generic ADFS al-
gorithm is presented in Section 3.6.2. Finally, Section 3.6.5 presents a relevant choice of
parameters leading to the rates shown in Table 1, and an experimental comparison is done
in Section 3.8.

3.4. Optimal rates

Many of the algorithms discussed in the previous sections are proven to be optimal in
specific settings. In particular, APCG (when applied to the dual of empirical risk minimiza-
tion problems) and Point-SAGA are proven to be optimal among single-machine algorithms
to solve finite-sum problems [Lan and Zhou, 2017]. Similarly, MSDA is optimal among
batch decentralized algorithms [Scaman et al., 2017b]. Although other optimality results
have recently been proven when removing the strong convexity and smoothness assumptions
in the distributed setting [Scaman et al., 2018], there is, to the best of our knowledge, no
lower bound for distributed optimization when local functions are themselves finite sums.
We fill this gap in this section by extending the decentralized lower bound of Scaman et al.
[2017b] to the finite sum setting, using worst-case functions inspired from the single-machine
finite-sum lower bound Lan and Zhou [2017].

3.4.1. Black Box Model. The notion of black-box optimization procedure that we
use is largely based on Scaman et al. [2018]. The main difference is that nodes have many
local functions but they only choose one (possibly at random) at each step to perform their
update. More specifically, we consider distributed algorithms that respect:

(1) Local memory: each node i can store past values in an internal memoryMi,t ⊂
Rd at time t ≥ 0. The values in this local memory can come either from local
computation or communication, so that for all i ∈ {1, · · ·n}, Mi,t ⊂ Mcomm

i,t ∪
Mcomp

i,t .
(2) Local computation: each node can, at time t, compute ∇fi,ζt(θ), ∇f ∗i,ζt(θ) and

proxηfi,ζt (θ) for some η > 0, where ζt ∈ {1, · · · ,m} is fixed for a given t (but may
be chosen by the algorithm). This means that

Mcomp
i,t = Span

({
θ,∇fi,ζt(θ),∇f ∗i,ζt(θ), proxηfi,ζt (θ) : θ ∈Mi,t−1

}
, η ≥ 0

)
.

(3) Local communication: each node can, at time t, share a value to its neighbours
so that for all i ∈ {1, · · · , n},Mcomm

i,t = Span
(
∪j∈N (i)Mj,t−τ

)
.

(4) Output value: each node i must, at time specify one vector in its memory as local
output of the algorithm, that is, for all i ∈ {1, · · · , n}, θi,t ∈Mi,t.

The main difference with the definition from Scaman et al. [2018] is that at each step,
the first order characteristics are only computed for one summand (the one with index ζt)
of the local finite sum of node i.

3.4.2. Lower bounds. We first present a general lower bound for distributed opti-
mization. More specifically, we show that for any black-box optimization procedure, at least
Ω((m + √mκs) log(1/ε)) computation steps and Ω(τ

√
κb/γ log(1/ε)) communication steps

are needed. This lower bound is not surprising since it is similar to that of Scaman et al.
[2017b], but the lower bound on the computation cost is replaced by the standard finite-sum
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lower-bound for the computation cost [Lan and Zhou, 2017]. Theorem 12 shows that the
lower bound for both communications and computations can be achieved by the same func-
tion. Lower bound proofs for first-order methods usually rely on the fact that in the work
case, the algorithms can make progress in at most one dimension per oracle call [Nesterov,
2013c]. This means that the lower bounds are valid only for a number of iterations t that
depends on the dimension of the problem. In order to avoid this dependency, we prove a
result in `2, the space of square summable sequences. Yet, a similar result with a similar
proof would hold in Rd.

Theorem 12. Let G be a graph of size n > 0 and diameter ∆, and κb > 0. There exist
n × m functions fij : `2 → R such that each fij is convex and Lij-smooth, fi=̂

∑m
j=1 fij is

Li-smooth and σi-strongly convex with Lij and σi such that κb ≥ Li/σi ≥ Lij/σi for all i, j,
and such that if fi is the local function of node i then for any t ≥ 0 and black-box procedure
that generates and output θt such that (θt)i ∈ `2 is the output value of node i at time t, one
has:

2E[ ‖θ
t − θ∗‖2

‖θ0 − θ∗‖2 ] ≥
1− 2m

m+
√
mκs/3)


4dte
m

+
1− 2

1 +
√
κb/3

2+ 2dte
∆τ

.

where κs ≥
∑m
j=1 Lij/σi, q =

√
κb/3−1√
κb/3+1

, and θ∗ = arg minθ
∑n
i=1 fi(θ).

Proof. The proof relies on choosing particular functions that are hard to optimize lo-
cally and that require communication. Hard functions fi are chosen similar to that of Scaman
et al. [2017b], so that only a small set a of nodes can actually make progress towards the
optimum at a given point in time, meaning that parallelism is very restricted. Then, fij
are chosen such that they only depend on θj for θ ∈ (`2)m, so that progress along one
j ∈ {1, · · · ,m} does not result in progress along the other dimensions, as in Lan and Zhou
[2017]. The result is stated with `2 instead of (`2)m because if m is finite and x ∈ (`2)m,
then if θ is such that θkm+i = (xi)k for i ∈ {1, · · · ,m} and k ∈ N then θ ∈ `2.

More specifically, we consider Q a set of nodes and Qc
∆ the set of nodes at distance at

least ∆ from Q in the graph G. Let L, σ > 0 be such that L ≥ σ and κb > 3L/σ. Then, we
define for y ∈ `2 functions ψQi such that:

ψQi (y) = 1
2|Q|

[
σ

3 ‖y‖
2 + L− σ

4 (y>M1y − 2e>1 y)
]
if i ∈ Q, (3.4.1)

ψQi (y) = 1
2|Qc

∆|

[
σ

3 ‖y‖
2 + L− σ

4 y>M2y
]
if i ∈ Qc

∆, (3.4.2)

ψQi (y) = σ

6(n− |Qc
∆| − |Q|)

‖y‖2 otherwise, (3.4.3)

where M1 is the infinite block diagonal matrices with
(

1 −1
−1 1

)
on the diagonal and M2 =

Diag(1,M1). We then define for all i ∈ {1, · · · , n} the local subfunctions as:
fij : θ ∈ `m2 7→ ψQi (θj). (3.4.4)

Note that the regularity conditions on the fij are respected since 0 �M1+M2 � 4I. Besides,
the solution of miny∈`2

∑n
i=1 ψ

Q
i (y) is y∗ such that for k ≥ 1, the k-th coordinate of y∗ is
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y∗(k) = qk. We now consider a sequence θt ∈ `n×m2 generated by a black-box optimization
procedure as defined in Section 3.4.1 and such that θ0 = 0 without loss of generality. In this
case, θ∗ ∈ `n×m2 is such that θ∗ij = y∗, and:

E[
n∑
i=1

m∑
j=1

‖θtij − θ∗ij‖2

‖θ0
ij − θ∗ij‖2 ] ≥ E[

n∑
i=1

m∑
j=1

∑
l≥kj(t)

|θ∗ij(l)|2

‖θ0
ij − θ∗ij‖2 ] = n

m∑
j=1

E[q2kj(t)],

where kj(t) is the first index such that θtij(l) = 0 for all i and l ≥ kj(t). Thus, an upper
bound on kj(t) gives a lower bound on the expected error, and we consider two extreme
regimes.

Case 1 : Communication bottleneck. The first one consists in considering that
computations are instant so that nodes in Q and Qc

∆ perform a gradient update using
function i as soon as they receive a message. Due to the form of the fij, nodes in Q can only
increase kj(t) if it is odd, and node in Qc

∆ can only increase kj(t) if it is even. Considering
that a message takes time at least ∆τ (with ∆ the diameter of the network) to go from Q
to Qc

∆ we get:

kj(t) ≤ 1 + t

∆τ , and so E[q2kj(t)] ≥ q2+ 2t
∆τ . (3.4.5)

In this case, the stochastic gradient aspect does not matter and the time taken by the
algorithm is lower bounded by the time required for the information to go back and forth
between the nodes that can actually make progress.

Case 2 : Computations bottleneck. We now consider that communications are
instantaneous. At a given time t, due to the form of the local functions, the only nodes that
can increase kj(t) (and so improve the error for dimension j) when kj(t) is odd are the nodes
in Q. Thus, kj(t) is bounded by two times the number of times fij has been sampled by
nodes in Q, which leads to:

m∑
j=1

kj(t) ≤ 2
dte∑
l=1

∑
i∈Q

m∑
j=1
1{ζi(l) = j} ≤ 2|Q|dte, (3.4.6)

since each evaluation takes time 1. Parallelism is very limited in this case because only
nodes in Q actually contribute to the progress. We can then use Jensen inequality with the
convex function x 7→ q2x to write that 1

m

∑m
j=1 q

2kj(t) ≥ q
2
m

∑m

j=1 kj(t). We average the bounds
obtained with Equations (3.4.5) and (3.4.6) and obtain:

2
nm

E[
n∑
i=1

m∑
j=1

‖θtij − θ∗ij‖2

‖θ0
ij − θ∗ij‖2 ] ≥ q

4|Q|dte
m + q2+ 2dte

∆τ . (3.4.7)

Then, we use that that κs = mκb in this case, and we pick ∆ as the diameter of the graph
(or any constant fraction of the diameter, which only changes constant factors) and Q = {u}
where u ∈ arg maxu′ maxv d(u′, v) where d(u, v) is the distance between nodes u and v in the
graph G. �

This bound can be further simplified into the asymptotic expression below:

Corollary 4 (Centralized lower bound). Under the assumptions of Theorem 12, there
exist functions such that for any black-box procedure, the time to reach a precision ε is lower
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bounded by:
Ω
(
[m+√mκs + τ∆√κb] log(ε−1)

)
.

The previous lower bounds rely on the diameter of the network, without assuming any
structure. We use in this section the same trick as in Scaman et al. [2017b] to extend the
lower bounds to the gossip communications setting.

Corollary 5 (Decentralized lower bound). Let γ > 0, and κb > 0. There exist a gossip
matrix W with spectral gap γ and n×m functions fij : `2 → R such that each fij is convex
and Lij-smooth, fi=̂

∑m
j=1 fij is Li-smooth and σi-strongly convex with Lij and σi such that

κb ≥ Li/σi ≥ Lij/σi for all i, j, and such that if fi is the local function of node i then for
any black-box procedure, the time to reach precision ε is lower bounded by:

Ω
([
m+√mκs + τ

√
κb
γ

]
log(ε−1)

)
.

Proof. The proof relies on the fact that for all γ > 0, it is possible to construct a gossip
matrix on a line graph of size n with spectral gap γ. In this case, the diameter of the graph
is n, which is of order γ−1/2. Details can be found in Theorem 2 Scaman et al. [2017b]. �

It is interesting to remark that considering the finite-sum setting only changes the lower
bound on the computation cost. This is not surprising since it only allows to compute cheaper
stochastic gradients but cannot reduce communication cost without additional assumptions
on the functions used. As a matter of fact, the computation and communication aspects are
treated separately in the lower bound. This could suggest room for improvement for this
lower bound. Yet, the bound we obtain is actually tight in the sense that it is matched by the
ADFS-Synch algorithm. Similarly, the black-box model is not constrained to communicate
using W . Nevertheless, the result is tight in the sense that the bound is achieved by an
algorithm (ADFS-Synch) that communicates using only W , and so a better lower bound
cannot be obtained by considering a weaker communication model. However, considering
other communication models could potentially allow to state a stronger version of Corollary 5
by inverting the quantifiers, and having that for any gossip matrix W with spectral gap γ,
there exist functions fij such that the rest holds.

There is actually a small subtle gap between the lower and the upper bounds, which is
caused by the fact that the communication lower bound depends on κb, whereas the com-
plexity of ADFS-Synch depends on κcomm, which can be bigger. Yet, we show in Corollary 8
that κcomm = O(κb) in the case of the worst case function used for the lower bound. More
generally κcomm = O(κb) for generalized linear models such as linear regression when the
regularization parameter is the same for all nodes, which is a prime use-case for ADFS.

3.4.3. Linear speedup. Linear speedup, i.e., dividing the running time of an algorithm
by O(n) when using n nodes, is a key property in distributed optimization. In the non-
smooth setting, the (tight) lower bound [Scaman et al., 2018] is of the form Rτ

ε
√
γ

+ R2

ε2
and so

for small enough ε, convergence does not depend on τ or γ, and so linear speedup is achieved
since subgradients are computed n times faster with n nodes. In both the convex [Xu
et al., 2020a] and strongly convex [Scaman et al., 2017b] settings, lower bounds are of the
form (1 + τ/

√
γ)R(ε), where R(ε) is a rate that is independent of the network size or

topology. Thus, linear speedup can also be obtained provided communications are fast
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enough (τ/√γ < 1). We show a similar phenomenon in the distributed finite sum setting,
in which linear speedup is achieved as long as τ

√
κb/γ < m + √mκs. Note however that

for smooth problems, it is best to talk about network independence [Pu et al., 2020] rather
than linear speedup, since the running time does not increase with the number of nodes,
but the datasets processed are n times bigger. Yet, optimal single-machine variance-reduced
algorithms on the whole dataset enjoy a nm +√nmκs log(1/ε) complexity [Lan and Zhou,
2017], so processing datasets that are n times bigger is not necessarily n times longer, and
thus distributed algorithms cannot achieve linear speedup compared to the best single machine
algorithm on the same dataset.

Note that this does not contradict the linear speedup obtained by Katyusha [Allen-
Zhu, 2017], which considers a fixed number of samples processed by an increasing number of
nodes, which corresponds to the case in which all nodes have access to the whole (replicated)
dataset. In particular, the bound of Theorem 12 can be weakened to match the Katyusha
complexity results when all nodes are forced to have the same local functions. Indeed, very
few nodes actually contribute to reducing the error in the worst case (Theorem 12), whereas
this cannot happen if all nodes have the same local function. Similarly, these results change if
one considers stochastic gradient evaluations, without the finite sum structure. In this case,
sampling n times more stochastic gradient eventually divides the variance by n (see Davies
et al. [2020] for a discussion of how to do so with minimal communication), and so ultimately
yields linear speedup [Pu et al., 2020, Koloskova et al., 2020]. As in the non-smooth case,
network-related constants only affect higher-order terms, and so linear speedup is guaranteed
provided ε is small enough.

3.5. Block Accelerated Proximal Coordinate Gradient with Arbitrary Sampling

Before we start with the actual distributed algorithm, we first introduce a coordinate
descent method, which we will then apply to a well-chosen dual formulation to derive ADFS.
The convergence results of ADFS are based on the convergence of this Accelerated Proximal
Coordinate Gradient method. ADFS is derived in a way that is similar to that of the classical
APCG algorithm [Lin et al., 2015b], but we integrate the decentralized aspect, which requires
several improvements over the original APCG.

3.5.1. General formulation. In this section, we study the generic problem of acceler-
ated proximal coordinate descent. We give an algorithm that works with arbitrary sampling
of blocks of coordinates of arbitrary size, thus yielding a stronger result than state-of-the-art
approaches [Fercoq and Richtárik, 2015, Lin et al., 2015b]. This is a key contribution that
allows to obtain fast rates when sampling probabilities are heterogeneous and determined
by the problem. In the dual formulation of the problem, there is one coordinate per point in
the dataset as well as one for each edge of the network. Therefore, the block aspect allows
to have a synchronous algorithm by picking only coordinates of a given kind (data point
or network edge) to perform computation and communication rounds. Similarly, arbitrary
sampling is useful to pick different probabilities for computing and for communicating. To
avoid any confusion with the rest of the paper, we note d the dimension of the problem that
we wish to solve. More specifically, we study the following generic problem, where x(i) is the
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i-th coordinate of vector x ∈ Rd:

min
x∈Rd

qA(x) +
d∑
i=1

ψi(x(i)), (3.5.1)

where all the functions ψi are convex and qA is such that there exists a matrix A such
that qA is (σA)-strongly convex on Ker(A)⊥, the orthogonal of the kernel of A, as defined by
Equation (3.5.2). For the problems that we consider, Ker(A)⊥ ( Rd and so qA is not strongly
convex on the whole space. We introduce matrix A in order to recover the benefits of strong
convexity, but only on a subspace. We note A† is the pseudo-inverse of A, meaning that
A†A is the projector on Ker(A)⊥. We sometimes abuse notations by writing A− 1

2 instead of
(A†) 1

2 . The strong convexity on Ker(A)⊥ can be written as the fact that for all x, y ∈ Rd:
qA(x)− qA(y) ≥ ∇qA(y)>A†A(x− y) + σA

2 (x− y)>A†A(x− y). (3.5.2)
Note that this implies that qA is constant on Ker(A), so in particular there exists a function
q such that for any x ∈ Rd, qA(x) = q(Ax). In this case, σA is such that x>A>∇2q(y)Ax ≥
σA‖x‖2 for any x ∈ Ker(A)⊥ and y ∈ Rd. Besides, qA is assumed to be (M)-smooth on
Ker(A)⊥, meaning that there exists a matrix M such that:

qA(x)− qA(y) ≤ ∇qA(y)>A†A(x− y) + 1
2(x− y)>M(x− y). (3.5.3)

The block-version of APCG with arbitrary sampling is presented in Algorithm 3, and we
explicit its rate in Theorem 13.

3.5.2. Algorithm and results. In this section, we denote ei ∈ Rd the unit vector
corresponding to coordinate i, and so x(i) = e>i x for any x ∈ Rd. Let Ri = e>i A

†Aei and
pi be the probability that coordinate i is picked to be updated. For a batch of coordinates
b ⊂ {1, · · · , d}, we introduce the random matrix Pb which is a diagonal matrix such that
(Pb)ii = pi if i ∈ b and (Pb)ii = 0 otherwise, where pi = ∑

b, i∈b pb if pb is the probability
of sampling block b. In particular, E

[
P †b
]

= Id, where P †b is the pseudo-inverse of Pb. The
matrix Pb defines the sampling that is performed. This allows to have a flexible sampling
with blocks of arbitrary sizes sampled with arbitrary probabilities. Constant S is such that
S2 ≥ λmax(A†AP †bMP †bA

†A) for all batches b, where we recall that M is the smoothness
matrix of function qA, as defined in Equation (3.5.3). This definition of S is rather hard to
read, but one can see it as the max over b of the smooothness of qA in the direction given by
Pb, divided by p2

b . This then allows to set pb so that non-smooth directions are sampled more
often, and so λmax(A†AP †bMP †bA

†A) is the same for all b. Then, following the approach of
Nesterov and Stich [Nesterov and Stich, 2017], we fix A0, B0 ∈ R+ and recursively define the
sequences αt, βt, at, At and Bt such that:

a2
t+1S

2 = At+1Bt+1, Bt+1 = Bt + σAat+1, At+1 = At + at+1,

αt = at+1

At+1
, βt = σAat+1

Bt+1
.

Finally, we introduce the sequences (yt), (vt) and (xt), that are all initialized at 0. We define
ηt = at+1

Bt+1
and the proximal operator proxηf is defined in Equation (3.2.1).

For generalized APCG to work well, the proximal operator needs to be taken in the
subspace defined by the projector A†A, and so the non-smooth ψi terms have to be separable
after composition with A†A. Since A†A is a projector, this constraint is equivalent to stating
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Algorithm 3 Generalized APCG(A0, B0, S, σA)
y0 = 0, v0 = 0, t = 0
while t < T do
yt = (1−αt)xt+αt(1−βt)vt

1−αtβt
Sample bt with probability pbt
vt+1 = vt+ 1

2
= (1− βt)vt + βtyt − ηtP †b∇qA(yt)

v
(i)
t+1 = proxηtp−1

i ψi

(
v

(i)
t+ 1

2

)
for all i ∈ b

xt+1 = yt + αtP
†
bA
†A(vt+1 − (1− βt)vt − βtyt)

that either Ri = 1 (projection does not affect the coordinate i), or ψi = 0 (no proximal
update to make).

Assumption 4. The functions qA and ψ are such that Equation (3.5.2) holds for some
σA ≥ 0 and Equation (3.5.3) holds for some M . Besides, ψ and A are such that either
Ri = 1 or ψi = 0 for all i ∈ {1, ..., d}.

This natural assumption allows us to formulate the proximal update in standard squared
norm since the proximal operator is only used for coordinates i for which A†Aei = ei. Then,
we formulate Algorithm 3 and analyze its rate in Theorem 13.

Theorem 13. Let F : x 7→ qA(x) + ∑d
i=1 ψi

(
x(i)

)
such that Assumption 4 holds. If S

is such that S2 ≥ λmax((A†AP †bMP †bA
†A) for all b and 1 − βt − αt

pi
≥ 0 for all i such that

ψi 6= 0, the sequences vt and xt generated by APCG verify:
BtE[‖vt − θ?‖2

A†A] + 2At [E[F (xt)]− F (θ?)] ≤ C0,

where C0 = B0‖v0 − θ?‖2 + 2A0 [F (x0)− F (θ?)] and θ? is a minimizer of F . The rate of
APCG depends on S through the sequences αt and βt.

Proof. The proof is an adaptation of the proofs from Lin et al. [2015b] and Nesterov and
Stich [2017]. In particular, the structure is similar to that of Nesterov and Stich [2017]. The
difference is that the ‖vt+1− θ?‖2 is studied in norm A†A and that vt+1 cannot be expressed
simply as vt minus a gradient term the way it was before because of the proximal update.
Therefore, we develop ‖vt+1 − θ?‖2

A†A using the strong convexity of the proximal mapping
instead, which is a key argument from Lin et al. [2015b], thus leading to the following base
inequality, which is a block version of Hendrikx et al. [2019b, Equation (11)] that can be
derived using the same arguments:

1
2ηt

[‖vt+1 − θ?‖2
A†A + ‖vt+1 − wt‖2

A†A − ‖θ? − wt‖2
A†A]

≤ 〈P †b∇qA(yt), θ? − vt+1〉A†A +
∑
i∈b

1
pi

[
ψi
(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
.

The other key point of the APCG proof is that xt can be expressed as a convex combination
of all the vl for l ≤ t. This does not directly extend to the arbitrary sampling case because
the coefficients may not be the same for all coordinates, so we need to prove that the convex
combination property holds separately for each coordinate. This is possible because the only
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terms that depend on the coordinates in the decomposition of xt come from the vt+1 − wt
term, where wt = (1− βt)vt + βtyt. Yet, vt+1 = wt when the coordinate is not picked, so we
can still write that x(i)

t+1 = y
(i)
t + αt

pi
(v(i)
t+1−w

(i)
t ) even when coordinate i is not picked at time

t. Hendrikx et al. [2019b, Lemma 1]. The complete proof is given in Appendix 3.5.1.
�

3.5.3. Explicit rates. Algorithm 3 is a general method that requires to set values for
A0, B0, α0 and β0. The two following corollaries give choices of parameters depending on
whether σA > 0 or σA = 0, along with the rate of APCG in these cases.

Corollary 6 (Strongly Convex case). Let F verify the assumptions of Theorem 13. If
σA > 0, we choose for all t ∈ N αt = βt = ρ and At = σ−1

A Bt = (1− ρ)−t with ρ = √σAS−1.
In this case, the condition 1−βt− αt

pi
≥ 0 can be weakened to 1− αt

pi
≥ 0 and it is automatically

satisfied by our choice of S, αt and βt. Denoting C0 = σA‖v0− θ?‖2 + 2 [F (x0)− F (θ?)], the
sequences xt and vt verify:

σAE[‖vt − θ?‖2
A†A] + 2 [E[F (xt)]− F (θ?)] ≤ C0(1− ρ)t.

Corollary 6 is the extension of the results of Lin et al. [2015b] to block coordinates and
arbitrary sampling. In particular, APCG converges linearly in this case, and we recover the
rate of Lin et al. [2015b] in the special case in which we choose blocks of size 1 uniformly at
random. Note that an arbitrary sampling extension of accelerated coordinate descent was
already present in Hanzely and Richtárik [2019] but without the block or proximal aspects
on which our technical contributions are focused.

Corollary 7 (Convex case). Let F verify the assumptions of Theorem 13. If σA = 0,
we choose βt = 0 and α0 = p2

min with pmin = mini:ψi 6=0 pi. In this case, the condition
1− βt − αt

pi
≥ 0 is always satisfied for our choice of S and the error verifies:

E[F (xt)]− F (θ?) ≤ 2
t2

[
S2r2

t + 2
p2

min
[F (x0)− F (θ?)]

]
,

with r2
t = ‖v0 − θ?‖2

A†A − E[‖vt − θ?‖2
A†A]. Note that there is no need to choose parameters

At and Bt since only parameter αt is required in this case.

Proof of Corollary 7. Let Bt = B0 for some B0 > 0. This allows to write (At+1 −
At)2S2 = AtB0 for all t, which is a second degree polynomial in the variable At+1. We choose
the positive root in order to have at+1 ≥ 0, which yields At+1 = At+ B0

2S2 (1+(1+4S2B−1
0 At)

1
2 ).

From there, we can deduce the expression of at+1 and that of αt in terms of At. This leads
after some simplifications to: α−2

t+1 − α−1
t+1 − α−2

t = 0, and so αt+1(
√
α4
t + 4α2

t − α2
t )/2, which

is the exact same recursion as in Lin et al. [2015b] and Fercoq and Richtárik [2015]. In
particular, only the value of α0 matters and only the sequence αt actually needs to be
computed, since the only coefficients needed are the αt and at+1

Bt+1
= 1

αtS2 .
We would like to choose the highest possible α0, such that 1 − αt/pmin ≥ 0, so we take

α0 = pmin, which is enough since (αt) is a decreasing sequence. This leads to A0 = [(2/pmin−
1)2 − 1]B0/4S2 ≤ B0/(pminS)2. Since A0 ≥ 0, a direct recursion yields At ≥ B0t

2/(4S2).
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With ∆Ft = E[qA(xt) + ψ(xt)]− qA(θ?A) + ψA(θ?A), then:

∆Ft ≤
1

2At

(
B0r

2
t + 2A0F0

)
= B0

2At

(
r2
t + 2

S2p2
min

∆F0

)
≤ 2S2

t2

(
r2
t + 2

S2p2
min

∆F0

)
.

which finishes the proof of the rate. �

Our extended APCG algorithm is closely related with an arbitrary sampling version of
APPROX [Fercoq and Richtárik, 2015]. Similarly to Lee and Sidford [2013], APPROX also
uses iterations that can be more efficient, especially in the linear case. These extensions can
also be applied to APCG under the same assumptions, as shown by Lin et al. [2015b].

3.6. Accelerated Decentralized Stochastic Algorithm

Figure 1. Illustration of the augmented graph for n = 3 and m = 3.
3.6.1. The dual problem. We now specify our approach to solve the problem of Equa-

tion (3.1.1). The first (classical) step consists in considering that all nodes have a local pa-
rameter, but that all local parameters should be equal because the goal is to have the global
minimizer of the sum. Therefore, the problem writes:

min
θ∈Rn×d

n∑
i=1

fi(θ(i)) such that θ(i) = θ(j) if j ∈ N (i), (3.6.1)

where N (i) represents the neighbors of node i in the communication graph. Then, ES-
DACD and MSDA are obtained by applying accelerated (coordinate) gradient descent to
an appropriate dual formulation of Problem (3.6.1). In the dual formulation, constraints
become variables and so updating a dual coordinate consists in performing an update along
an edge of the network. In this work, we consider a new virtual graph in order to get a sto-
chastic algorithm for finite sums. The transformation is sketched in Figure 1, and consists
in replacing each node of the initial network by a star network. The centers of the stars are
connected by the actual communication network, and the center of the star network replac-
ing node i has the local function f comm

i : x 7→ σi
2 ‖x‖

2. The center of node i is then connected
with m nodes whose local functions are the functions fij for j ∈ {1, ...,m}. Denoting E the
number of edges of the initial graph, then the augmented graph has n(1 + m) nodes and
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E + nm edges. This augmented graph formulation was introduced in the conference version
of this paper [Hendrikx et al., 2019b].

Then, we consider one parameter vector θ(ij) for each function fij and one vector θ(i) for
each function f comm

i . Therefore, there is one parameter vector for each node in the augmented
graph. We impose the standard constraint that the parameter of each node must be equal
to the parameters of its neighbors, but neighbors are now taken in the augmented graph.
This yields the following minimization problem:

min
θ∈Rn(1+m)d

n∑
i=1

[
m∑
j=1

fij(θ(ij)) + σi
2 ‖θ

(i)‖2
]

such that θ(i) = θ(j) if j ∈ N (i), and θ(ij) = θ(i) ∀j ∈ {1, ..,m}.
(3.6.2)

In the rest of the paper, we use letters k, ` to refer to any nodes in the augmented
graph, and letters i, j to specifically refer to a communication node and one of its virtual
nodes. More precisely, we denote (k`) the edge between the nodes k and ` in the augmented
graph. Note that k and ` can be virtual or communication nodes. To clearly make the
distinction between node variables and edge variables, for any vector on the set of nodes
of the augmented graph x ∈ Rn(1+m)d and for k ∈ {1, ..., n(1 + m)}, we write x(k) ∈ Rd

(superscript notation) the subvector associated with node k. Similarly, for any vector on the
set of edges of the augmented graph λ ∈ R(E+nm)d and for any edge (k`) we write λk` ∈ Rd

(subscript notation) the vector associated with edge (k`). For node variables, we use the
subscript notation with a t to denote time, for instance in Algorithm 4. By a slight abuse of
notations, we use indices (ij) instead of (k`) when specifically referring to virtual edges (or
virtual nodes) and denote λij instead of λi,(ij) the virtual edge between node i and node (ij)
in the augmented graph. We note e(k) ∈ Rn(1+m) the unit vector associated with node k and
ek` ∈ RE+nm the unit vector associated with edge k`. We denote M1 ⊗M2 the Kronecker
product between matrices M1 and M2.

Constraints matrix. The constraints of Problem (3.6.2) can be rewritten A>θ = 0 in
matrix form A ∈ Rn(1+m)d×(nm+E)d is such that for any x ∈ Rd,

A(ek` ⊗ x) = µk`[(e(k) − e(`))⊗ Pk`x],
for some µk` > 0, and where Pk` is a projector. For communication edges, we choose Pk` = Id,
and for virtual edges, we choose Pij such that fij is Lij-smooth with respect to Pij, in the
sense that ∇2fij(x) 4 LijPij for all x (but Pij does not need to be full rank). Note that this
implies that f ∗ij is (1/Lij)-strongly convex on Ker(Pij)⊥ and infinite elsewhere. The matrix A
is therefore completely defined by the µk` and the Pij. Most results in the following sections
heavily depend on the matrix A and it is therefore very important to understand its structure.
In particular, decentralized communications are defined by the matrix A. Indeed, A can be
understood as the canonical square root of the weighted Laplacian of the augmented graph.
Similarly, if we note Acomm ∈ Rn×E the restriction of A to non-virtual edges then Acomm is a
square root of the weighted Laplacian of the communication graph. This is why a rescaled
version of AcommA

>
comm ∈ Rn×n is used as the gossip matrix in Algorithm 4. To make things

clearer, A can be written as:

A =
(
Acomm ⊗ Id Dµ

0 −Ddiag
µ

)
, with Ddiag

µ =

µ11P11 0 0
0 · · · 0
0 0 µnmPnm

 and
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Dµ =

µ11P11 · · · µ1mP1m 0 0 0 0
0 0 0 · · · 0 0 0
0 0 0 0 µn1Pn1 · · · µnmPnm

 ∈ Rnd×nmd.

All communication nodes are linked by the true graph, whereas all virtual nodes are linked to
their corresponding communication node. Note that A is defined differently in the conference
paper [Hendrikx et al., 2019b]. Although the new definition of A as an n(m+1)d×(E+nm)d
matrix is heavier in terms of notations, it allows to derive a much better communication
complexity in some cases, for instance when fij is a generalized linear model. Now that we
have defined the matrix A and emphasized its importance, we can write the dual formulation
of the problem as:

max
λ∈R(nm+E)d

−
n∑
i=1

[
m∑
j=1

f ∗ij
(
(Aλ)(ij)

)
+ 1

2σi
‖(Aλ)(i)‖2

]
, (3.6.3)

where the parameter λ is the Lagrange multiplier associated with the constraints of Prob-
lem (3.6.2)—more precisely, for an edge (k`), λk` ∈ Rd is the Lagrange multiplier asso-
ciated with the constraint µk`Pk`(θ(k) − θ(`)) = 0. This critically relies on the fact that
f ∗ij(Pijx) = f ∗ij(x) for all x ∈ dom(f ∗ij) = Ker(Pij)⊥. At this point, the functions fij are
only assumed to be convex (and not necessarily strongly convex) meaning that the func-
tions f ∗ij are potentially non-smooth. This problem could be bypassed by transferring some
of the quadratic penalty from the communication nodes to the virtual nodes before going
to the dual formulation. Yet, this approach fails when m is large because the smoothness
parameter of f ∗ij would scale as m/σi at best, whereas a smoothness of order 1/σi is required
to match optimal finite-sum methods. A better option is to consider the f ∗ij terms as non-
smooth and perform proximal updates on them. The rate of proximal gradient methods
such as APCG [Lin et al., 2015b] does not depend on the strong convexity parameter of the
non-smooth functions f ∗ij. Recall that each f ∗ij is (1/Lij)-strongly convex with respect to
Pij, so we can rewrite the previous equation in order to transfer all the strong convexity to
the communication node. Noting that (Aλ)(ij) = −µijλij when node (ij) is a virtual node
associated with node i, we rewrite the dual problem as:

min
λ∈R(E+nm)d

qA(λ) +
n∑
i=1

m∑
j=1

ψij(λij), (3.6.4)

with ψij : x 7→ f̃ ∗ij(−µijx) and f̃ ∗ij : x 7→ f ∗ij(x) − 1
2Lij ‖x‖

2
Pij

and qA : x 7→ 1
2x
>A>Σ†Ax,

where Σ is the diagonal matrix such that the upper left (communication) block is equal to
diag(σ1, · · · , σn)⊗Id, and the rest of the diagonal is made of the blocks LijPij for the virtual
node (ij). Since dual variables are associated with edges, using coordinate descent algorithms
on dual formulations from a well-chosen augmented graph of constraints allows us to handle
both computations and communications in the same framework. Indeed, choosing a variable
corresponding to an actual edge of the network results in a communication along this edge,
whereas choosing a virtual edge results in a local computation step. Then, we balance
the ratio between communications and computations by simply adjusting the probability of
picking a given kind of edges.

3.6.2. The Algorithm: ADFS Iterations and Expected Error. Recall that we
would like to solve the problem of Equation (3.6.4), which is to optimize the sum of a
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smooth and strongly convex term and of a non-smooth convex separable term. Proximal
coordinate gradient algorithms are known to work well for these problems, which is why we
would like to use APCG [Lin et al., 2014]. Yet, the following points would lead to suboptimal
rates if the standard APCG algorithm were used directly:

(1) The function qA is strongly-convex only on Ker(A)⊥.
(2) Picking blocks of coordinates is required to obtain a synchronous algorithm.
(3) Choosing different probabilities for computation and communication coordinates

allows to balance the ratio between communication and computation.
These 3 points show the need for extending APCG and motivate our assumptions for Algo-
rithm 3. Applying it to the problem of Equation (3.6.4) yields the general ADFS algorithm.
We denote Wk` ∈ Rn(1+m)×n(1+m) the matrix such that Wk` = (e(k) − e(`))(e(k) − e(`))> for
any edge (k`). In the previous section, we considered the problem variables to be vectors in
Rn(1+m)d in order to define the right matrix A. Yet, variables xt, yt and vt from Algorithm 4
are variables associated with the nodes of the augmented graph and we will therefore con-
sider them as matrices in Rn(1+m)×d (one row for each node) instead of vectors, which greatly
simplifies notations. These variables are obtained by multiplying the dual variables of the
proximal coordinate gradient algorithm applied to the dual problem of Equation (3.6.4) by
A on the left. We denote σA = λ+

min(A>Σ†A) the smallest non-zero eigenvalue of the matrix
A>Σ†A. Algorithm 4 depends on an undefined parameter ρ > 0 at this point. Yet, Theo-
rem 14 gives a condition on ρ that ensures convergence, and we give optimal choices of ρ for
specific settings later (Lemma 11).

Algorithm 4 ADFS(A, (σi), (Lij), (µk`), (pk`), ρ)

1: σA = λ+
min(A>Σ†A), η = ρ

σA
, Wb = AP †bA

>, W̃b = AP †bA
†.

2: x0 = y0 = v0 = z0 = 0(n+nm)×d // Initialization
3: for t = 0 to K − 1 do // Run for K iterations
4: yt = 1

1+ρ (xt + ρvt)
5: Sample block of edges b // Edges sampled from the augmented graph
6: zt+1 = vt+1 = (1− ρ)vt + ρyt − ηWbΣ†yt // (Virtual) Communication using Wb

7: if b is a block of virtual edges then
8: for i = 1 to n do
9: for j such that (ij) ∈ b do
10: v

(ij)
t+1 = prox

ηµ2
ijp
−1
ij f̃

∗
ij

(
z

(ij)
t+1

)
// Virtual node update using fij

11: v
(i)
t+1 = z

(i)
t+1 +∑

j,(ij)∈b(z
(ij)
t+1 − v

(ij)
t+1) // Center node update

12: xt+1 = yt + ρW̃b(vt+1 − (1− ρ)vt − ρyt)
13: return θK = Σ†vK // Return primal parameter

Theorem 14. We denote θ? the minimizer of F : x 7→ ∑n
i=1 fi(x) and θ?A a minimizer

of F ∗A = qA + ψ. Then θt as output by Algorithm 4 verifies:

E[‖θt − θ?‖2] ≤ C0(1− ρ)t, if ρ2 ≤ min
b

λ+
min(A>Σ†A)

λmax(A†AP †bA>Σ†AP †bA†A)
, (3.6.5)

with C0 = λmax(A>Σ−2A)
[
‖A†Aθ?A‖2 + 2σ−1

A (F ∗A(0)− F ∗A(θ?A))
]
.
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We now quickly discuss the convergence rate of ADFS, and present the basic derivations
required to obtain Algorithm 4, as well as the proof Theorem 14.

Convergence rate. The parameter ρ controls the convergence rate of ADFS. It is
defined by the minimum of the individual rates for each block, which involves the spectrum
of a product of matrices related to the regularity of the local functions (Σ†), to the graph (A)
and to the sampling scheme (P †b ). Note that Theorem 14 recovers the asynchronous version
of ADFS Hendrikx et al. [2019b] if only one coordinate is sampled at each step. Relations
are more complex in the general case, which is why simple scalar expressions are replaced
by the spectrum of products of matrices in this paper. In Section 3.6.5, we carefully choose
the free parameters µk` and pk` to get the best convergence speed.

Projection of virtual edges. We now verify that Assumption 4 is respected, so we can
use Theorem 13 to derive Theorem 14. For any edge (k`), either the proximal part ψk` = 0 or
the dual coordinate is such that for all θ ∈ Rd, (e>k`⊗ θ)A†A(ek`⊗ θ) = 1, which is equivalent
to having A†A(ek` ⊗ θ) = (ek` ⊗ θ). In our case, ψk` = 0 when (k`) is a communication
edge. The condition is actually not verified for virtual edges in our formulation since we
introduce the projectors Pij. Yet, we do not need this to hold for any θ ∈ Rd. Indeed, the
updates of Algorithm 4 are such that v(ij)

t ∈ Ker(Pij)⊥ for all t and (ij), so we only need
A†A(eij ⊗ θ) = (eij ⊗ θ) to hold for θ ∈ Ker(Pij)⊥. Lemma 8 shows that the projection
condition is satisfied by virtual edges.

Lemma 8. A†A(eij ⊗ θ) = eij ⊗ θ for all virtual edges (ij) and θ ∈ Ker(Pij)⊥.

Proof. Let θ ∈ Ker(Pij)⊥, and x ∈ RE+nm such that A(x⊗ θ) = 0. From the definition
of A, either x = 0 or the support of x is a cycle of the graph. Indeed, for any edge (k`),
A(ek` ⊗ θ) has non-zero weights only on nodes k and `. Virtual nodes have degree one,
so virtual edges are part of no cycles and therefore x>ek,` = 0 for all virtual edges (k`).
Operator A†A is the projection operator on the orthogonal the kernel of A, so it is equal to
Pij on virtual edges, and Pijθ = θ. �

Obtaining Line 6. The update of line 6 in Algorithm 4 comes from the fact that the
update of block b writes AP †b∇qA(yt) = AP †bA

>Σ†yt = WbΣ†yt.
From edge variables to node variables. Algorithm 4 is obtained by directly applying

Algorithm 3 on the dual problem of Equation (3.6.4). Then, all lines are multiplied by
A on the left in order to switch from dual variables in RE+nm associated with edges to
primal variables in Rn+nm associated with nodes, which is a standard transformation [Scaman
et al., 2017b, Hendrikx et al., 2019a]. Yet, APCG uses a proximal step, which is a non-
linear operation, but the derivations can be adapted, as shown below. Thus, Algorithm 4
corresponds to applying Algorithm 3 to the Problem of Equation (3.6.4), which verifies
Assumption 4, and so Theorem 14 is a corollary of Corollary 6.

We call ṽt, ỹt and z̃t the dual variable sequences in RE+nm obtained by applying Algo-
rithm 3 on the dual problem of Equation 3.6.4. The new update equations can be retrieved
by multiplying each line of Algorithm 3 by A on the left, so that for example vt = Aṽt. Yet,
there is still a z̃t+1 term because of the presence of the proximal update. More specifically,
we write for the virtual edge between node i and its j-th virtual node:

ṽTt+1eij = proxηijψij
(
z̃Tt+1eij

)
. (3.6.6)
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Fortunately, this update only modifies ṽt+1 when ψij 6= 0. This means that zt+1 is only mod-
ified for local computation edges. Since local computation nodes only have one neighbour,
the form of A ensures that for any z̃ ∈ Rn(1+m) and virtual edge (k, `) corresponding to node
i and its j-th virtual node, (Az̃)(ij) = −µk`z̃k`. In particular, if node k is the center node i
and node ` is the virtual node (ij), the proximal update can be rewritten:

(Aṽt+1)(ij) = −µijproxηijψij

(
− 1
µij

(Az̃t+1)(ij)
)

= −µij arg min
v

1
2ηij
‖v −

(
− 1
µij

(Az̃t+1)(ij)
)
‖2 + ψij(v)

= −µij arg min
v

1
2ηijµ2

ij

‖ − µijv − (Az̃t+1)(ij)‖2 + f ∗ij(−µijv)−
µ2
ij

2Lij
‖v‖2

= arg min
ṽ

1
2ηijµ2

ij

‖ṽ − (Az̃t+1)(ij)‖2 + f ∗ij(ṽ)− 1
2Lij
‖ṽ‖2

= proxηijµ2
ij f̃
∗
ij

(
(Az̃t+1)(ij)

)
,

where f̃ ∗ij : x→ f ∗ij(x)− 1
2Lij ‖x‖

2. For the center node, the update can be written:

(Aṽt+1)(i) = (Az̃t+1)(i) − µijeTij z̃t+1 + µijproxηijψij

(
− 1
µij

(Az̃t+1)(ij)
)

= (Az̃t+1)(i) + (Az̃t+1)(ij) − proxηijµ2
k`
f̃∗ij

(
(Az̃t+1)(ij)

)
.

3.6.3. Implementation details. We now discuss implementation details for Algo-
rithm 4, and provide its Python implementation in supplementary material.

Global information. The implementation of Algorithm 4 requires all nodes to have
some global knowledge to be able to compute ρ, as defined in Equation (3.6.5). The two terms
involved, λ+

min(A>Σ†A) and maxb λmax(A†AP †bA>Σ†AP †bA†A), mix information about the
topology of the graph and the regularity of local nodes. Yet, ρ can be computed beforehand,
and only an upper bound is needed so one could use a rough approximation as long as all
nodes agree on it before running the algorithm. Besides, ignoring the more subtle interactions
with the graph topology, setting ρ only requires knowing the eigengap of the graph and
the regularity of the local functions, which are typically assumed to be known quantities in
decentralized optimization. Note that accelerated methods typically require knowledge of the
smoothness and strong convexity constants of the problem (which includes the graph in our
case) to run optimally [d’Aspremont et al., 2021]. Finally, although Algorithm 4 is presented
from the point of view of a central coordinator, ADFS can be run in a fully decentralized
way, as shown for synchronous communications in Algorithm 5. Nodes only need to agree on
pcomm and on a seed at the beginning of the procedure to perform the communication steps
of lines 8-13. Otherwise, each node draws one fij to perform a local stochastic proximal
update. Without global synchronous rounds (as in the original conference paper), nodes
need to know a global iterations counter in order to perform the convex combination steps.
Yet, this can actually be relaxed using continuous-time contractions (but discrete gradient
updates), as shown in Even et al. [2020].
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Algorithm 5 Synch-ADFS, from the point of view of node i.
1: Choose parameters pij and µij as in Assumption 5 (may use communication).
2: Compute and agree on parameters ρ, η and pcomp (requires communication).
3: W = AcommA

>
comm is the gossip matrix of the communication graph

4: Agree on a common seed
5: x(i)

0 = y
(i)
0 = v

(i)
0 = z

(i)
0 = 0(n+nm)×d // Initialization

6: for t = 0 to K − 1 do // Run for K iterations
7: y

(i)
t = 1

1+ρ

(
x

(i)
t + ρv

(i)
t

)
8: Draw ucomm uniform in [0, 1], using the common seed.
9: if ucomm < pcomm (communication update) then
10: Broadcast y(i)

t and retrieve y(`)
t from neighbours.

11: δ
(i)
t = η

pcomm

∑n
`=1Wi`

y
(`)
t

σ`
// Gossip Communication

12: z
(i)
t+1 = v

(i)
t+1 = (1− ρ)v(i)

t + ρy
(i)
t − δ

(i)
t

13: x
(i)
t+1 = y

(i)
t − ρ

pcomm
δ

(i)
t

14: else
15: Sample function j with probability pij/pcomp (which sum to 1).
16: z

(i)
t+1 = (1− ρ)v(i)

t + ρy
(i)
t −

ηµ2
ij

pij

(
y

(i)
t

σi
− y

(ij)
t

Lij

)
17: z

(ij)
t+1 = (1− ρ)v(ij)

t + ρy
(ij)
t − ηµ2

ij

pij

(
y

(ij)
t

Lij
− y

(i)
t

σi

)
18: v

(ij)
t+1 = prox

ηµ2
ijp
−1
ij f̃

∗
ij

(
z

(ij)
t+1

)
// Virtual node update using fij

19: v
(i)
t+1 = z

(i)
t+1 +∑

j,(ij)∈b(z
(ij)
t+1 − v

(ij)
t+1) // Center node update

20: x
(i)
t+1 = y

(i)
t + ρ

pij
(v(i)
t+1 − (1− ρ)v(i)

t − ρy
(i)
t )

21: x
(ij)
t+1 = y

(ij)
t + ρ

pij
(v(ij)
t+1 − (1− ρ)v(ij)

t − ρy(ij)
t )

22: return θ
(i)
K = v

(i)
K /σi // Return primal parameter

Primal proximal updates. The proximal step of Line 10 is performed with the function
f̃ ∗ij : x → f ∗ij(x) − 1

2Lij ‖x‖
2 instead of fij. Yet, Moreau identity [Parikh and Boyd, 2014]

provides a way to retrieve the proximal operator of f ∗ using the proximal operator of f , but
this does not directly apply to f̃ ∗ij, making its proximal update hard to compute when no
analytical formula is available to compute f̃ ∗ij. Fortunately, the proximal operator of f̃ ∗ij can
be retrieved from the proximal operator of f ∗ij. Following the derivations from the conference
paper [Hendrikx et al., 2019b], we now show how to implement Algorithm 4 in a primal-only
way. More specifically, if we denote η̃ij = ηµ2

ijp
−1
ij then for any x ∈ Rn+nm, we can also

express the update only in terms of f ∗ij:

proxη̃ij f̃∗ij (x) = arg min
v

1
2η̃ij
‖v − x‖2 + f ∗ij(v)− 1

2Lij
‖v‖2

= arg min
v

1
2
(
η̃−1
ij − L−1

ij

)
‖v‖2 − η̃−1

ij v
>x+ f ∗ij(v)

82



= arg min
v

1
2
(
η̃−1
ij − L−1

ij

)−1‖v −
(
1− η̃ijL−1

ij

)−1
x‖2 + f ∗ij(v)

= prox(η̃−1
ij −L

−1
ij )−1

f∗ij

((
1− η̃ijL−1

ij

)−1
x
)
.

Then, we use the identity:

prox(ηf)∗(x) = ηproxη−1f∗

(
η−1x

)
, (3.6.7)

and the Moreau identity leads to:

proxηf∗(x) = x− ηproxη−1f

(
η−1x

)
. (3.6.8)

This allows us to retrieve the proximal operator on f̃ ∗ij using only the proximal operator
on fij: (

1− η̃ijL−1
ij

)
proxη̃ij f̃∗ij (x) = x− η̃ijprox(η̃−1

ij −L
−1
ij )fij

(
η̃−1
ij x

)
. (3.6.9)

Note that the previous calculations are valid as long as η̃ijL−1
ij ≤ 1 for all virtual edges.

Using the same values for µ2
ij as in Assumption 5, and using the fact that η = ρ/σA = 2ρ/α,

this condition writes 2ρ ≤ pij for all virtual edges (ij). By definition of ρ we have ρ ≤
pij/

√
2(1 + Lij/σi), so this constraint simply makes ρ smaller by a

√
2 factor in the worst

case (and does not change anything as long as Lij > σi for all j). In the case of Algorithm 4,
the update of Line 10 can be rewritten:

v
(ij)
t+1 =

(
η̃−1
ij − L−1

ij

)−1
[
η̃−1
ij z

(ij)
t+1 − prox(η̃−1

ij −L
−1
ij )fij

(
η̃−1
ij z

(ij)
t+1

)]
.

Communications. Communications in Algorithm 4 are abstracted by multiplication
by the Matrix Wb for a given batch of coordinates b. Note that if b is a set of virtual edges
then no communications in the network are required since Wb only requires information
exchange between central nodes and their virtual nodes. The formulation of ADFS suggests
that another communication round using the matrix W̃b is required for the actual update.
Yet, if bt is such that P †bA†AP

†
b is a diagonal matrix, then W̃bWb can be performed with only

one round of communications. This is the case for example if bt is a set of virtual edges (then
no communication is required). If bt is the set of all communication edges, then W̃bt = P †bt
since pcommP

†
bt
is the identity on Ker(A)⊥ so no extra communication is required in this case

either.
Linear case. For many standard machine learning problems, fij(θ) = `(X>ij θ) withXij ∈

Rd. This implies that f ∗ij(θ) = +∞ whenever θ /∈ Span (Xij). Therefore, the proximal steps
on the Fenchel conjugate only have support on Xij, meaning that they are one-dimensional
problems that can be solved in constant time using for example the Newton method when
no analytical solution is available. Warm starts (initializing on the previous solution) can
also be used for solving the local problems even faster so that in the end, a one-dimensional
proximal update is only a constant time slower than a gradient update. Note that this also
allows to store parameters vt and yt as scalar coefficients for virtual nodes, thus greatly
reducing the memory footprint of ADFS, and speeding up the updates when Xij are sparse.
Finally, the projectors are equal to Pij = XijX

>
ij/‖Xij‖2 in this case which, as we will see,

implies that κcomm = κb when σi = σ for all i. Yet, the convex combinations of lines 7 and
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12 still involve dense vectors. To alleviate this cost, one can instead use an efficient version
of APCG [Lee and Sidford, 2013, Lin et al., 2015b, Fercoq and Richtárik, 2015].

Virtual updates. If b is a block of virtual edges, then the update to vt+1 has support
on Ker(fij)⊥. Indeed, recall that Aeij has a projector part, and so ηWbΣ†yt is independent
of the value of y(i)

t and y(ij)
t on Ker(fij). This facilitates implementation in the linear case.

Unbalanced local datasets. We assume that all local datasets are of fixed size m in
order to ease reading. Yet, the impact of the value of m on Algorithm 4 is indirect, and
unbalanced datasets can be handled without any change.

Natural Strong Convexity. ADFS is derived when strong convexity is obtained
through L2 regularization. It is possible to generalize this to arbitrary strongly convex
functions ωi by simply replacing 1

2σi‖ · ‖
2 by ω∗i , and performing the same derivations. Yet,

we chose to focus on the L2 regularization case to ease reading of the paper.

3.6.4. Non-smooth setting. The accelerated proximal coordinate gradient algorithm
can be applied to the problem of Equation (3.6.4) even if the function qA is not strongly
convex on Ker(A)⊥. This is for instance the case when the functions fij are not smooth
so that Σ† has diagonal blocks equal to 0 and therefore Ker(A>Σ†A) 6⊂ Ker(A) so σA = 0.
In this case, the choice of coefficients from Corollary 7 leads to NS-ADFS, that provides
error guarantees when primal functions fij are not smooth. More formally, with F ∗ : x →∑n
i=1

[∑m
j=1 f

∗
ij

(
x(ij)

)
+ 1

2σi‖x
(i)‖2

]
, we have:

Theorem 15. If the functions fij are non-smooth then NS-ADFS guarantees:

E[F ∗(xt)]− F ∗(θ?) ≤
2
t2

[
S2

λ+
min(A>A)r

2
t + 6

p2
min

[F ∗(x0)− F ∗(θ?)]
]
,

with S2 = maxb λmax(A†AP †bA>Σ†AP †bA†A), r2
t = ‖v0 − θ?‖2 − ‖vt − θ?‖2 and pmin is taken

over virtual edges.
The guarantees provided by Theorem 15 are weaker than in the smooth setting. In

particular, we lose linear convergence and get the classical accelerated sublinear O(1/t2)
rate. We also lose the bound on the primal parameters— recovering primal guarantees is
beyond the scope of this work. Note that the extra λ+

min(A>A) term comes from the fact
that Theorem 15 is formulated with primal parameter sequences xt = Ax̃t. Also note that
αt = O (t−1).

3.6.5. Performances and Parameters Choice in the Homogeneous Setting. We
now prove the time to convergence of ADFS presented in Table 1, and detail the conditions
under which it holds. Indeed, Section 3.6.2 presents ADFS in full generality but the different
parameters have to be chosen carefully to reach optimal speed. In particular, we have to
choose the coefficients µ to make sure that the graph augmentation trick does not cause the
smallest positive eigenvalue of A>Σ†A to shrink too much, which is done by Lemma 9.

Assumption 5 (Parameters choice). For arbitrary µk` and for all communication edges,
we denote L = AcommA

>
comm ∈ Rn×n the Laplacian of the communication graph. Let DM

and D̃M be the diagonal matrices such that (DM)ii = σi + λmax
(∑m

j=1 LijPij
)
and (D̃M)ii =

σi + 2λmax
(∑m

j=1 LijPij
)
. The local condition number of node i is κi = (DM)ii/σi, and we
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choose the weights of virtual edges as µ2
ij = αLij, with α = 2λ+

min(A>commD̃
−1
M Acomm), and

their probabilities as pij = pcomp(1 + Lijσ
−1
i ) 1

2/Si with Si = ∑m
j=1(1 + Lijσ

−1
i ) 1

2 .

This choice of parameters allows to tightly bound λ+
min(A>Σ†A), which defines the rate

of convergence of ADFS.

Lemma 9. If Assumption 5 holds, then for any x ∈ RE+nm we have that ‖x‖2
A>Σ†A ≥

λ+
min(A>commD̃

−1
M Acomm)‖x‖2

A†A. In particular, σA ≥ α/2.

The proof studies the Schur complement of Σ− 1
2AA>Σ− 1

2 . This yields a characterization
of the eigenvalues ofA>Σ†A in terms of a determinant equation of the form det(Lcomm−∆λ) =
0, with ∆λ a block-diagonal matrix that depends on λ and Lcomm = AcommA

>
comm, where

Acomm ∈ Rnd×Ed is the restriction of A to communication nodes and edges. Lemma 10 gives
necessary conditions for an x to be in Ker(Lcomm −∆λ), and we thus deduce bounds on the
smallest eigenvalue of A>Σ†A from upper bounds on ∆λ. Note that the proof is simpler than
in the conference paper [Hendrikx et al., 2019b], and the choices in Assumption 5 allow for
a tighter bound. We start by a simple Lemma and then proceed to the actual proof.

Lemma 10. Let U, V ∈ Rd be two symmetric positive semi-definite matrices. Let x ∈
Ker(U−V ), that can be decomposed into x = x+ +x⊥, with x⊥ ∈ Ker(U) and x+ ∈ Ker(U)⊥.
Then, x>+Ux+ ≤ x>+V x+, and if x+ = 0 then x⊥ ∈ Ker(V ).

Proof. Let x ∈ Ker(U − V ). We write:
x>+Ux+ = x>Ux = x>V x = x>+V x+ + 2x>⊥V x+ + x>⊥V x⊥.

Besides, x>⊥(U − V )x = 0, and so x>⊥V x+ = −x>⊥V x⊥ ≤ 0. Therefore,
x>+Ux+ = x>+V x+ + x>⊥V x+ ≤ x>+V x+.

Finally, if x+ = 0 then x>⊥V x⊥ = −x>⊥V x+ = 0, and so x⊥ ∈ Ker(V ). �

Proof of Lemma 9. For any rectangular matrix Q, all non-zero singular values of the
matrix Q>Q are also non-zero singular values of the matrix QQ>, so we can analyze the
spectrum of the matrix L̃ = Σ−1/2AA>Σ−1/2 instead of the spectrum of A>Σ−1A. Recall
that A writes:

A =
(
Acomm ⊗ Id Dµ

0 −Ddiag
µ

)
(3.6.10)

Then, if we denote Lcomm the Laplacian matrix of the original true graph, the rescaled
Laplacian matrix of the augmented graph writes:

L̃ = Σ−1/2
(
Lcomm ⊗ Id +DµD

>
µ −DµDdiag

µ

−Ddiag
µ D>µ (Ddiag

µ )2

)
Σ−1/2. (3.6.11)

We define P⊥ = Diag(P11, · · · , Pnm) ∈ Rnmd×nmd. If we split Σ into two diagonal blocks
Σcomm = diag(σ1, · · · , σn)⊗ Id (for the communication nodes), and Σcomp (for the computa-
tion nodes) and apply the block determinant formula, we obtain:

det(L̃− λIn(m+1)d) = det(Σ−
1
2comp(Ddiag

µ )2Σ−
1
2comp − λInmd)

× det(Σ−
1
2comm[(Lcomm ⊗ Id) +DµD

>
µ − λΣcomm−
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DµD
diag
µ Σ−

1
2comp

(
Σ−

1
2comp(Ddiag

µ )2Σ−
1
2comp − λInmd

)†
Σ−

1
2compDdiag

µ D>µ ]Σ−
1
2comm).

Now, we use that µ2
ij = αLij for some α > 0, and note that:

(Σ−
1
2comp(Ddiag

µ )2Σ−
1
2comp)ij = (Ddiag

µ Σ−1
compD

diag
µ )ij = µ2

ijPij/Lij = αPij.

This can be used along with the fact that DµD
>
µ = DµP⊥D

>
µ to write:

det(L̃− λIn(m+1)d) = det(αP⊥ − λInmd)×
det(Lcomm ⊗ Id − λΣcomm − αDµP⊥(αP⊥ − λInmd)†D>µ ).

Note that since P⊥ is a projector, P⊥(αP⊥− λInmd)† = ((αP⊥− λInmd)P⊥)† = (α− λ)−1P⊥.
Therefore, the non-zero eigenvalues of A>Σ−1A are the λ that satisfy the following equation:

0 = det(αP⊥ − λInmd) det
(
Lcomm ⊗ Id − λ

(
Σcomm + 1

α− λ
DµD

>
µ

))
. (3.6.12)

We now consider 0 < λ ≤ α/2, so that: Σcomm + 1
α−λDµD

>
µ 4 D̃M ⊗ Id, with

(D̃M)ii = λmax

σiId + 2
α

m∑
j=1

µ2
ijPij

 = σi + 2λmax

 m∑
j=1

LijPij

 .
Therefore, for any y ∈ Ker(Lcomm ⊗ Id)⊥ such that y 6= 0,

y>(Lcomm ⊗ Id −∆λ)y > y>((Lcomm − λD̃M)⊗ Id)y.

In particular we have that if 0 < λ < λ+
min(D̃−

1
2

M LcommD̃
− 1

2
M ) then

y>(Lcomm ⊗ Id −∆λ)y > 0. (3.6.13)
Let x ∈ Ker(Lcomm⊗Id−∆λ) then Lemma 10 tells us that x = x++x⊥ with x+ ∈ Ker(Lcomm⊗
Id)⊥ and x>+(Lcomm ⊗ Id −∆λ)x+ ≤ 0. If x+ 6= 0 then this contradicts Equation (3.6.13) so
x+ = 0, meaning that x ∈ Ker(∆λ) using the second part of Lemma 10, and so x = 0.

Therefore, if λ is such that 0 < λ < min(λ+
min(D̃−

1
2

M LcommD̃
− 1

2
M ), α/2) then by using the

eigenvalue characterization given by Equation (3.6.12), λ is not an eigenvalue of A>Σ−1A

since Ker(Lcomm −∆λ) = {0}, so in particular λ+
min(A>Σ−1A) ≥ min(D̃−

1
2

M LcommD̃
− 1

2
M , α/2).

Besides, λ+
min(D̃−

1
2

M LcommD̃
− 1

2
M ) = λ+

min(A>commD̃
−1
M Acomm) and A>commD̃

−1
M Acomm is indepen-

dent of α since α only affects the µij weights when (i, j) is a computation edge, and so we
can choose α = 2λ+

min(A>commD̃
−1
M Acomm), so that λ+

min(A>Σ−1A) ≥ λ+
min(A>commD̃

−1
M Acomm).

Finally, Ker(A>Σ−1A) = Ker(A) and so
‖x‖2

A>Σ−1A ≥ λ+
min(A>Σ−1A)‖x‖2

A†A ≥ λ+
min(A>commD̃

−1
M Acomm)‖x‖2

A†A,

which finishes the proof. �

We now study parameter ρ more in details, which is defined in Equation (3.6.5) by
bounding the spectrum of a matrix that depends on the block of coordinates chosen. The
spectral properties of this matrix heavily depend on whether the block contains actual com-
munication edges or virtual edges. One can trade pcomp for pcomm so that the bound is the
same for both kind of edges. This amounts to tuning the ratio between communications and
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computations. We first make some assumptions on the sampling performed, and then detail
the communication and computation rate under this sampling.

Assumption 6 (Synchronous sampling). The sampling of edges is such that:
• With probability pcomm, bt = bcomm, the set of all communication edges. This cor-
responds to communicating over all edges of the network, which comes down to a
multiplication by the gossip matrix L.
• With probability pcomp = 1 − pcomm, a computation step is performed. In this case,
bt = {(i, jt(i)), i ∈ {1, ..., n}}, where jt(i) = j with probability pij. This corresponds
to each node sampling exactly one virtual edge.

This synchronous sampling defines the blocks of coordinates bt that are picked by Algo-
rithm 4. It is then possible to compute ρ, the rate of convergence of ADFS, depending on
the frequency of communication pcomm.

Lemma 11. We denote κs = maxi κi and γ the spectral gap of the Laplacian of the com-
munication graph Lcomm = AcommA

>
comm. Under the synchronous sampling of Assumption 6,

the convergence rate of ADFS is such that

ρ2 = min
(

γ

κcomm
p2

comm,
p2

comp

2(m+√mκs)2

)
, with

κcomm = λmax(A>commΣ−1
commAcomm) / λmax(A>commAcomm)

λ+
min(A>commD̃

−1
M Acomm) / λ+

min(A>commAcomm)
.

If σk = σ for all k (homogeneous case) then κcomm = maxi(D̃M)ii/σ. If fij(θ) = g(X>ij θ)
and g is Lg-smooth then (D̃M)ii = σi + 2Lgλmax

(∑m
j=1XijX

>
ij

)
. Therefore, κcomm is of order

κb rather than κs, and we recover the expected communication complexity for decentralized
algorithms.

Proof of Lemma 11. The proof is split into three parts. We first bound the value of
λmax((A†A)>P †bA>Σ−1AP †bA

†A) depending on whether b is a communication or a computa-
tion block, and then we give a bound on the rate ρ.

Communication blocks. Under the sampling of Assumption 6, all coordinates have
the same probability pe of being selected at each step. In this case, P †b = 1

pb
Ub where Ub

is the projector on communication edges that are in b (all the communication edges for
Assumption 6. We denote Vb ∈ R(m+1)nd×(m+1)nd the projector on {i, ∃j/(i, j) ∈ b}, the set
of nodes for which one of their vertices is updated, and write:

P †bA
>Σ−1AP †b = p−2

e UbA
>Σ−1AUb = p−2

e UbA
>VbΣ−1VbAUb.

In this case, the Laplacian Lb of the subgraph defined by the edges in b is such that Lb⊗Id =
AUbA

>, and we use that λmax(AUbA>) = λmax(UbA>AUb) to write:

λmax((A†A)>P †bA>Σ−1AP †bA
†A) ≤ λmax(Lb)

σminp2
e

. (3.6.14)

In particular, Equation (3.6.14) allows to consider dynamically changing graphs for which we
know that all edges have the same probability of appearing at each step and for which we can
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bound the Laplacian matrix of any subgraph. This allows to consider a complete underlying
communication graph while taking advantage of communications on subgraphs only. If we
take pe = pcomm (i.e. all communication edges are sampled at each communication step)
then this becomes:

λmax((A†A)>P †bA>Σ−1AP †bA
†A) ≤ λmax(L)

σminp2
comm

,

with L the Laplacian matrix of the original communication graph.

Computation blocks. We start with the case in which each node only samples the
coordinate associated with one virtual edge. In this case, we take λ ∈ RE+nmd and write:

(eb ⊗ λ)>P †bA>Σ−1AP †b (eb ⊗ λ)

=
n∑
i=1

∑
j,(i,j)∈b

e>ijA
>∑
u∈V

Σ−1
uueue

>
u

n∑
i′=1

∑
j′,(i′,j′)∈b

Aei′j′ × λ>ijPijPi′j′λi′j′

=
n∑
i=1

∑
j,(i,j)∈b

n∑
i′=1

∑
j′,(i′,j′)∈b

µij
pij

∑
u∈V

Σ−1
uu (ei − ej)>eue>u (e′i − e′j)λ>ijPijPi′j′λi′j′

=
n∑
i=1

∑
j,(i,j)∈b

µ2
ij(σ−1

i + f−1
ij )

p2
ij

× ‖λij‖2
Pij
.

We deduce that if only one coordinate is sampled per node then we have:

λmax(P †bA>Σ−1AP †b ) ≤ max
i,j

µ2
ij(σ−1

i + f−1
ij )

p2
ij

.

Rate of convergence. The rate of convergence of Synch-ADFS depends on:

ρ2 = min
b

σA

λmax((A†A)>P †bMP †bA
†A)

= min
b

λ+
min(A>commD̃

−1
M Acomm)

λmax((A†A)>P †bA>Σ−1AP †bA
†A)

,

where (D̃M)ii = σi + 2λmax
(∑m

j=1 fijPij
)
. If we take b to be the set of all communication

edges, then we obtain:

ρ2
comm = λ+

min(A>commD̃
−1
M Acomm)

λmax(A>commΣ−1
commAcomm)p

2
comm = γp2

comm
κcomm

,

ρ2
comp = min

ij

p2
ijσA

µ2
ij(σ−1

i + L−1
ij )

= min
ij

p2
ij

2(1 + Lijσ
−1
i )

,

(3.6.15)

where we used in the second equation that µ2
ij = αLij and α = 2σA. The constraint on ρ2

comp
is that all pij are normalized separately, i.e. ∑j pij = 1 for each node i. Indeed, exactly one
sample per node is chosen at each step, and so:

ρ2
comp =

p2
comp

2S2
i

≥
p2

comp

2S2
max

. (3.6.16)
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We finally use the concavity of the square root with Jensen inequality to get:

Si =
m∑
j=1

√
1 + Lijσ

−1
i ≤ m

√√√√ m∑
j=1

1
m

(1 + Lijσ
−1
i ) = m

√√√√1 +
m∑
j=1

Lij
mσi

,

which yields S2
max ≤ m2 +mκs, or Smax ≤ m+√mκs. �

Now that we have specified the rate of ADFS (improvement per iteration), the only step
left is to tune pcomm to minimize time needed to reach a given precision ε. Theorem 16 gives
a choice of pcomm that achieves optimal rates. Note that similar derivations can be performed
in the non-smooth case, but we do not detail them here due to lack of space.

Theorem 16. If pcomm =
(
1 +

√
2γ

κcomm
(m+√mκs)

)−1
, then running Algorithm 4 for

K = ρ−1 log (ε−1) iterations guarantees E [‖θK − θ?‖2] ≤ C0ε, and takes time T (K), with
T (K) such that:

E[T (K)] ≤
(√

2(m+√mκs) + τ

√
κcomm

γ

)
log

(1
ε

)
.

Proof. The execution time of the algorithm T (K) verifies:
E[T (K)] = (pcomp + τpcomm)K (3.6.17)

We know from Theorem 14 that using Algorithm 4 for Kε = log(1/ε)ρ−1 steps guarantees
to reach an error smaller than C0ε. Rewriting this in terms of ρcomm and ρcomp (defined
in (3.6.15)), we obtain:

E[T (Kε)]
log (ε−1) = max (T1(pcomm), T2(pcomm)) , with (3.6.18)

T1(pcomm) = ρ−1
comm(pcomp + τpcomm) = Ccomm

(
τ − 1 + 1

pcomm

)
, (3.6.19)

T2(pcomm) = ρ−1
comp(pcomp + τpcomm) = Ccomp

(
1 + τ

pcomm

1− pcomm

)
, (3.6.20)

where C2
comm = κcomm

γ
and C2

comp = 2S2
max which are independent of pcomp and pcomm. T1 is a

continuous decreasing function of pcomm with T1 → ∞ when pcomm → 0. Similarly, T2 is a
continuous increasing function of pcomm such that T2 →∞ when pcomm → 1. Therefore, the
best upper bound on the execution time is given by taking pcomm = p∗ where p∗ is such that
T1(p∗) = T2(p∗) and so ρcomm(p∗) = ρcomp(p∗). More specifically, p∗ is the solution of

p2
comp = p2

comm
Ccomp

Ccomm
= (1− pcomm)2, so p∗ =

(
1 + Ccomp

Ccomm

)− 1
2
. (3.6.21)

Plugging it back into Equation (3.6.19) and using that T1(p∗) = T2(p∗), we get E[T (Kε)]
log(ε−1) =

Ccomp + Ccommτ which completes our proof. �

For generalized linear models with homogeneous regularization, we already saw that
κcomm = O(κb), and thus ADFS is directly optimal. In heterogeneous cases, κcomm ≤
maxi D̃M/mini σi, but tighter bounds can be derived by capturing the interplay between
the regularity of the local functions and the topology of the communication graph. It is
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for instance the case for the functions used to derive the lower bound from Corollary 5.
Indeed, these functions do not have that σk = σ` for all k, `, so we cannot directly say that
κcomm = κb in this case. Fortunately, it is possible to exploit the structure of the graph and
of D̃M and Σ†comm to derive that κcomm = O(κb) anyway, as shown in the following corollary.

Corollary 8 (Tightness of the lower bound). The worst-case functions and graph used
in Corollary 5 are such that κcomm ≤ 12κb, so in particular the rate given by Theorem 16
matches the rate of the lower bound from Corollary 5.

Proof. We consider the same functions fij as in Theorem 12. In the decentralized
case, the graph considered is a line graph. In order to simplify the exposition, we assume
without loss of generality that n is odd and we choose parameter ∆ (for the set Qc

∆) such
that ∆ = (n− 1)/2 instead of the diameter. One can verify that as long as L ≥ σ/3, these
worst-case functions verify:

Σcomm <
σ

3nDn and D̃M 4
L

n
Dn, with Dn = Diag(n, 2, · · · , 2) ∈ Rn.

From there, using the structure of the line graph and of Dn, we obtain that for n ≥ 2,
A>commD

−1
n Acomm = 1

2A
>
commAcomm − µ2

comm
2

(
1− 2

n

)
e12e

>
12, and so:

λmax(A>commΣ−1
commAcomm) ≤ 3nλmax(A>commAcomm)

2σ . (3.6.22)

For the second part, we consider the matrix A>commDiag(α, 1, · · · , 1)Acomm and study Pn,α,
its characteristic polynomial, which can be obtained from the recursion:

Pn+1,α(λ) = (1 + α− λ)Pn,1(λ)− Pn−1,1(λ). (3.6.23)

Writing λ as λ = 2(1− cos(ϑ)), we obtain for α = 1, Pn,1(λ) = sin(nϑ)/ sinϑ and we recover
the standard eigenvalues λ of the line graph. For α = 0, the zeros of Pn,0 are obtained for ϑ
that satisfy sin(nϑ) = sin((n−1)ϑ). We solve for ϑk explicitly, and the smallest eigenvalue is
obtained for ϑ0 = π/(2n− 1). Using that D̃−1

M = (n/2L)Diag(2/n, 1, · · · , 1), simple algebra
then leads to:

λ+
min(A>commD̃

−1
M Acomm) ≥ 2n

2L(1− cosϑ0) ≥ 2n
8L(1− cos π

n
) = n

8Lλ
+
min(A>commAcomm).

This allows to evaluate κcomm and obtain the final result. �

3.7. Local synchrony and the randomized gossip model

In this section, we introduce a locally synchronous version of ADFS, in which commu-
nications are performed in the same way as in Chapter 2. The main difference with the
synchronous version presented in Algorithm 5 is that from Algorithm 4, the communication
and computation blocks b are of size 1, and thus restricted to one edge only.

Assumption 7 (Randomized sampling). The sampling of edges is such that:
• Let k, ` ∈ {1, . . . , n}. With probability pk`, bt = {(k, `)}, the communication edge
between nodes k and `. Note that ∑(k,`)∈E pk` = pcomm.
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• Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. With probability pij, bt = {(i, j)} the
computation edge between node i and its j-th virtual node. This means that node
i performs a local computation computation step using function fij. Note that∑n
i=1

∑m
j=1 pij = pcomp.

3.7.1. Distributed Execution and Synchronization Time. Theorem 14 gives bounds
on the expected error after a given number of iterations. To assess the actual speed of the
algorithm, it is still required to know how long executing a given number of iterations takes.
This is easy with Algorithm 5, since it is a synchronous algorithm in which all nodes it-
eratively perform local updates or communication rounds. In this case, executing ncomp
computing rounds and ncomm communication rounds simply takes time ncomp + τncomm. Yet,
we study in this section a variant of ADFS that relies on randomized pairwise communi-
cations, so it is necessary to sample a schedule, i.e., a random sequence of edges from the
augmented graph, and evaluate how fast this schedule can be executed. Note that the ex-
ecution time crucially depends on how many edges can be updated in parallel, which itself
depends on the graph and on the random schedule sampled.

Figure 2. Illustration of parallel execution and local synchrony. Nodes from
a toy graph execute the schedule [(A,C), (B,D), (A,B), (D), (C,D)], where
(D) means that node D performs a local update. Each node needs to execute
its updates in the partial order defined by the schedule. In particular, node
C has to perform update (A,C) and then update (C,D), so it is idle between
times τ and τ +1 because it needs to wait for node D to finish its local update
before the communication update (C,D) can start. We assume τ > 1 since the
local update terminates before the communication update (A,B). Contrary
to synchronous algorithms, no global notion of rounds exist and some nodes
(such as node D) perform more updates than others.

Shared schedule. Even though they only actively take part in a small fraction of the
updates, all nodes need to execute the same schedule to correctly implement ADFS with
local pairwise communications. To generate this shared schedule, all nodes are given a seed
and the sampling probabilities of all edges. This allows them to avoid deadlocks and to
precisely know how many convex combinations to perform between vt and yt.

Execution time. The problem of bounding the probability that a random schedule
of fixed length exceeds a given execution time can be cast in the framework of fork-join
queuing networks with blocking [Zeng et al., 2018]. In particular, queuing theory [Baccelli
et al., 1992] tells us that the average time per iteration exists for any fixed probability
distribution over a given augmented graph. Unfortunately, existing quantitative results are
not precise enough for our purpose so we generalize the method introduced by Hendrikx et al.
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[2019a] to get a finer bound. While their result is valid when the only possible operation is
communicating with a neighbor, we extend it to the case in which nodes can also perform
local computations. For the rest of this paper, we denote pcomm the probability of performing
a communication update and pcomp the probability of performing a local update. They are
such that pcomp + pcomm = 1. We also define pmax

comm = nmaxk
∑
`∈N (k) pk`/2, where neighbors

are in the communication network only. When all nodes have the same probability to
participate in an update, pmax

comm = pcomm. Then, the following theorem holds (see proof in
Appendix 3.B):

Theorem 17. Let T (t) be the time needed for the system to execute a schedule of size t,
i.e., t iterations of Algorithm 4 under the randomized sampling defined by Assumption 7. If
all nodes perform local computations with probability pcomp/n with pcomp > pmax

comm or if τ > 1
then there exists C < 24 such that:

P
(

1
t
T (t) ≤ C

n

(
pcomp + 2τpmax

comm

))
→ 1 as t→∞ (3.7.1)

Note that the constant C is a worst-case estimate and that it is much smaller for homo-
geneous communication probabilities. This novel result states that the number of iterations
that the pairwise instanciation of Algorithm 4 can perform per unit of time increases linearly
with the size of the network. This is possible because each iteration only involves two nodes
so many iterations can be done in parallel. The assumption pcomp > pcomm is responsible for
the 1 + τ factor instead of τ in Table 1, which prevents ADFS from benefiting from network
acceleration when communications are cheap (τ < 1). Note that this is an actual restriction
of following a schedule, as detailed in Appendix 3.B. Yet, network operations generally suffer
from communication protocols overhead whereas computing a single proximal update often
either has a closed-form solution or is a simple one-dimensional problem in the linear case.
Therefore, assuming τ > 1 is not very restrictive in the finite-sum setting.

3.7.2. Performances and Parameters Choice in the Homogeneous Setting. We
now prove the time to convergence of ADFS presented in Table 1, and detail the conditions
under which it holds. Indeed, Section 3.6.2 presents ADFS in full generality but the different
parameters have to be chosen carefully to reach optimal speed. In particular, we have to
choose the coefficients µ to make sure that the graph augmentation trick does not cause
the smallest positive eigenvalue of ATΣ−1A to shrink too much. Similarly, ρ is defined by a
minimum over all edges of a given quantity. This quantity heavily depends on whether the
edge is an actual communication edge or a virtual edge. One can trade pcomp for pcomm so
that the minimum is the same for both kind of edges, but Theorem 17 tells us that this is
only possible as long as pcomp > pcomm.

Parameters choice. We define L = AcommA
T
comm ∈ Rn×n the Laplacian of the commu-

nication graph, with Acomm ∈ Rn×E such that Acommek` = µk`(e(k)− e(`)) for all edge (k, `) ∈
Ecomm, the set of communication edges. We define γ̃ = min(k,`)∈Ecomm λ+

min(L)n2/(µ2
k`Rk`E

2).
As shown in Appendix 3.C.1, γ̃ ≈ γ for regular graphs such as the complete graph or the grid,
justifying the use of γ instead of γ̃ in Table 1. We assume for simplicity that σi = σ and that
κi = 1+σ−1

i

∑m
j=1 Lij = κs for all nodes. For virtual edges, we choose µ2

ij = λ+
min(L)Lij/(σκi)

and pij = pcomp(1 + Lijσ
−1
i ) 1

2/(nScomp) with Scomp = n−1∑n
i=1

∑m
j=1(1 + Lijσ

−1
i ) 1

2 . This
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corresponds to using a standard importance sampling scheme for selecting samples. For
communications edges (k, `) ∈ Ecomm, we choose uniform pk` = pcomm/E and µ2

k` = 1/2.
Parameters tuning. The previous paragraph specifies relevant choices of parameters

µk` and pk`. Therefore, ADFS can be run without manual tuning. Extra tuning (such as
communication probabilities) could be performed to adapt to specific heterogeneous situa-
tions. Yet, this should be considered as an extra degree of freedom that other algorithms
may not have access to rather than an extra parameter to tune. For example, the choice of
uniform communication probabilities is automatically enforced by synchronous gossip-based
algorithms such as MSDA or DSBA (all edges are activated at each step). Note that choosing
different values of µk` for communication edges amounts to tuning the gossip matrix, which
is generally considered as an input of the problem.

Theorem 18. If we choose pcomm = min
(

1/2,
(

1 + Scomp

√
γ̃/κs

)−1)
. Then, running

Algorithm 4 under the randomized sampling defined by Assumption 7 for Kε = ρ−1 log(ε−1)
iterations guarantees E [‖θKε − θ?‖2] ≤ C0ε, and takes time T (Kε), with:

T (Kε) ≤
√

2C
(
m+√mκs +

√
2
(

1 + 4τ
)√

κs
γ̃

)
log

(
1/ε

)
with probability tending to 1 as ρ−1 log(ε−1) → ∞, with C0 and C as in Theorems 14 and
17.

Theorem 18 assumes that all communication probabilities and condition numbers are
exactly equal in order to ease reading. A more detailed version with rates for more hetero-
geneous settings can be found in Appendix 3.C. Note that while algorithms such as MSDA
required to use polynomials of the initial gossip matrix to model several consecutive commu-
nication steps, we can more directly tune the amount of communication and computation
steps simply by adjusting pcomp and pcomm. Note that the results in this Section are directly
extracted from Hendrikx et al. [2019b] and thus obtain a dependence on κs instead of κcomm.
Yet, it is possible to refine the analysis as it was done in the synchronous case and obtain a
dependence on κcomm.

3.8. Experiments

In this section, we illustrate the theoretical results by showing how ADFS compares
with MSDA [Scaman et al., 2017b], Point-SAGA [Defazio, 2016], and DSBA [Shen et al.,
2018]. We also compare the synchronous version of ADFS (S-ADFS) to the locally syn-
chronous one of the conference paper (ADFS) Hendrikx et al. [2019b]. All algorithms (ex-
cept for DSBA, for which we fine-tuned the step-size) were run with out-of-the-box hy-
perparameters given by theory on data extracted from the standard Higgs and Covtype
datasets from LibSVM1. To obtain the local dataset Xi ∈ Rm×d of node i, m samples are
drawn at random, so local datasets of different nodes may overlap. We used the logis-
tic loss with quadratic regularization, meaning that the function at node i is fi : 1

m
θi 7→∑m

j=1 log
(
1 + exp(−lijX>ij θi)

)
+ σi

2 ‖θi‖
2, where lij ∈ {−1, 1} is the label associated with Xij,

1Datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.
html
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Figure 3. Performances of various decentralized algorithms on the logistic
regression task with m = 104 points per node, regularization parameter σ = 1
and communication delays τ = 5 on 2D grid networks of different sizes.

the k-th sample of node i. We then plot the average error n−1∑n
i=1

∑n
i′=1 fi′(θi). We chose

m = 104 and σ = 10−4 for all simulations. The underlying graph is a 2D grid network.
Experiments were run in a distributed manner on an actual computing cluster. Yet, plots
are shown for idealized times (computation delays are equal to 1 and communication delays
are equal to τ = 5) in order to abstract implementation details and ensure that reported
timings were not impacted by the cluster status.

First of all, we note on all the plots from Figure 3 that ADFS and S-ADFS exhibit very
similar performances. S-ADFS is always slightly faster because it suffers from no waiting
time but, as argued in the conference paper Hendrikx et al. [2019b], the waiting time due
to the local synchrony of ADFS is rather small. Although S-ADFS is easier to implement
(series of synchronous rounds), it offers less flexibility than ADFS to deal with identified
stragglers. In the next paragraph, we refer to both S-ADFS and ADFS as ADFS since the
differences are rather small.

Figure 3(a) shows that, as predicted by theory, ADFS and Point-SAGA have similar
rates on small networks. In this case, ADFS uses more computing power but has a small
overhead. Figures 3(b) and 3(c) use a much larger grid to evaluate how these algorithms
scale. In this setting, Point-SAGA is the slowest algorithm since it has 100 times less
computing power available. MSDA performs quite well on the Covtype dataset thanks to
its very good network scaling. Yet, the m

√
κ factor in its rate makes it scales poorly with

the condition number κ, which explains why it struggles on the Higgs dataset. DSBA is
slow as well despite the fine-tuning because it is the only non-accelerated method, and it
has to communicate after each proximal step, thus having to wait for a time τ = 5 at each
step. ADFS does not suffer from any of these drawbacks and outperforms other approaches
by a large margin on these experiments. This illustrates the fact that ADFS combines the
strengths of accelerated stochastic algorithms, such as Point-SAGA, and fast decentralized
algorithms, such as MSDA.
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3.9. Conclusion

In this paper, we develop an algorithmic framework for accelerated decentralized sto-
chastic optimization based on accelerated block coordinate descent with arbitrary sampling.
It is an extension of the conference paper [Hendrikx et al., 2019b] that provides stronger
convergence results, and allows more flexibility in the algorithm design. This flexibility is
obtained thanks to the arbitrary block sampling, so it is possible to transparently use global
synchronous communications as well as local pairwise communications, or anything in be-
tween. The rate of ADFS explicitly mixes optimization-related and graph-related quantities,
so that is is possible to adapt the parameters of the algorithm to heterogeneous problems
with specific structure, as done with the line graph for instance.

We also provide a lower bound for decentralized stochastic optimization, and show that
a synchronous implementation of ADFS almost matches this lower bound when parameters
are chosen in a suitable way. The bound is exactly matched for generalized linear models,
and otherwise a small gap due to the difference between the stochastic and batch condition
numbers may exist. The problem of closing this gap in full generality remains open.

3.A. Accelerated Proximal Block Coordinate Descent with Arbitrary Sampling

3.A.1. Missing proofs. In this Section, we give detailed proofs of Theorem 13 and
Corrolary 7. Before starting the actual proof, we define for v ∈ R:

V t
i (v) = Bt+1pi

2at+1
‖v − w(i)

t + ηie
>
i ∇f(yt)‖2 + ψi(v). (3.A.1)

Then, we give the following lemma, which generalizes the proofs in Lin et al. [2015b] and Fer-
coq and Richtárik [2015] by considering non-uniform probabilities and that works with blocks
of coordinates for both the convex and the strongly convex cases.

Lemma 12. If either 1 − βt − αt
pi
≥ 0 or αt = βt and 1 − αt

pi
≥ 0 for any i such that

ψi 6= 0, then for any t and i such that ψi 6= 0, we can write x(i)
t = ∑t

l=0 δ
(i)
t (l)v(i)

l such
that ∑t

l=0 δ
(i)
t (l) = 1 and for any l, δ(i)

t (l) ≥ 0. We define ψ̂(i)
t = ∑t

l=0 δ
(i)
t (l)ψi(v(i)

l ) and
ψ̂t = ∑d

i=1 ψ̂
(i)
t . Then, if Ri = 1 whenever ψi 6= 0, ψ(xt) ≤ ψ̂t and:

Eit
[
ψ̂t+1

]
≤ αtψ(ṽt+1) + (1− αt)ψ̂t. (3.A.2)

where ṽ(i)
t+1 = arg minv V t

i (v) for all i. In particular, v(i)
t+1 = ṽ

(i)
t+1 if i ∈ bt and v(i)

t+1 = w
(i)
t if

i /∈ bt.

Proof of Lemma 12. This lemma is a generalization of a part of the APCG to arbi-
trary probabilities (instead of uniform ones). It still uses the fact that xt can be written as a
convex combination of (vl)l≤t, but it requires to use a different convex combination for each
coordinate of xt, thus crucially exploiting separability of the proximal term. If coordinate i
is such that ψi = 0, then ψ̂(i)

t+1 ≤ αtψi(ṽ(i)
t+1) + (1 − αt)ψ̂(i)

t is automatically satisfied for any
δ

(i)
t . For coordinates i such that ψi 6= 0 (and so Ri = 1), we start by expressing xt+1 in terms
of xt, vt+1 and vt . More precisely, we write that for any t > 0:

x
(i)
t+1 = y

(i)
t + αt

pi
(v(i)
t+1 − w

(i)
t ).
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Indeed, either coordinate i is updated at time t or v(i)
t+1 = w

(i)
t so the previous equation

always holds. We can then develop the wt and yt terms to obtain x(i)
t+1 only in function of

x
(i)
t , v(i)

t and v(i)
t+1:

x
(i)
t+1 = αt

pi
v

(i)
t+1 +

(
1− αtβt

pi

)
y

(i)
t −

αt(1− βt)
pi

v
(i)
t

= αt
pi
v

(i)
t+1 +

(
1− αtβt

pi

)
(1− αt)x(i)

t + αt(1− βt)v(i)
t

1− αtβt
− αt(1− βt)

pi
v

(i)
t

= αt
pi
v

(i)
t+1 + αt(1− βt)

 1− αtβt
pi

1− αtβt
− 1
pi

 v(i)
t +

(
1− αtβt

pi

)
(1− αt)
1− αtβt

x
(i)
t

= αt
pi
v

(i)
t+1 + αt(1− βt)

1− αtβt

(
1− 1

pi

)
v

(i)
t +

(
1− αtβt

pi

)
(1− αt)
1− αtβt

x
(i)
t .

At this point, all coefficients sum to 1. Indeed, they all sum to 1 at the first line and we
have expressed w

(i)
t and then y

(i)
t as convex combinations of other terms, thus keeping the

value of the sum unchanged. Yet, pi < 1 so the coefficient on the second term is negative.
Fortunately, it is possible to show that the v(i)

t term in the decomposition of x(i)
t is large

enough so that the v(i)
t term in the decomposition of x(i)

t+1 is positive. More precisely, we now
show by recursion that for t ≥ 0:

x
(i)
t+1 = αt

pi
v

(i)
t+1 +

t∑
l=0

δ
(i)
t+1(l)v(i)

l , (3.A.3)

with δ
(i)
t+1(l) ≥ 0 for l ≤ t. For t = 0, x0 = v0 and x

(i)
1 = α0

pi
v

(i)
1 +

(
1− α0

pi

)
v

(i)
0 . We now

assume that Equation (3.A.3) holds for a given t > 0, and expand δ(i)
t+1(t) to show that it is

positive. Using that δ(i)
t (t) = αt

pi
, we write:

δ
(i)
t+1(t) =αt(1− βt)1− αtβt

(
1− 1

pi

)
+ αt
pi

(
1− αtβt

pi

)
(1− αt)
1− αtβt

= αt
1− αtβt

[
(1− βt)

(
1− 1

pi

)
+ (1− αt)

pi

(
1− αtβt

pi

)]

= αt
1− αtβt

[
1− βt −

1
pi

+ βt
pi

+ 1
pi
− αt
pi
− (1− αt)

αtβt
p2
i

]

= αt
1− αtβt

[(
1− βt −

αt
pi

)
+ βt
pi

(
1− (1− αt)

αt
pi

)]
.

We conclude that δ(i)
t+1(t) ≥ 0 since 1−βt− αt

pi
≥ 0. Note that this condition can be weakened

to 1− α2
t

p2
i
≥ 0 when βt = αt or when βt = 0. We also deduce from the form of x(i)

t+1 that for
l < t, the only coefficients on v(i)

l in the development of x(i)
t+1 come from the x(i)

t term and so:

δ
(i)
t+1(l) =

(
1− αtβt

pi

)
(1− αt)
1− αtβt

δ
(i)
t (l), (3.A.4)
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so these coefficients are positive as well. Since they also sum to 1, it implies that x(i)
t is a

convex combination of the v(i)
l for l ≤ t, and we use the convexity of ψi to write:

ψi(x(i)
t ) = ψi

(
t∑
l=0

δ
(i)
t (l)v(i)

l

)
≤

t∑
l=0

δ
(i)
t (l)ψi(v(i)

l ) = ψ̂
(i)
t .

Now, we can properly express ψ̂(i)
t+1 using the decomposition of x(i)

t+1 in terms of δ(i)
t+1:

E[ψ̂(i)
t+1] = E[αt

pi
ψi(v(i)

t+1)] + αt(1− βt)
1− αtβt

(
1− 1

pi

)
ψi(v(i)

t )

+
(

1− αtβt
pi

)
1− αt

1− αtβt

t∑
l=0

δ
(i)
t (l)ψi(v(i)

l )

= αtψi(ṽ(i)
t+1) + (1− pi)

αt
pi
ψi(w(i)

t ) + αt(1− βt)
1− αtβt

(
1− 1

pi

)
ψi(v(i)

t )

+
(

1− αtβt
pi

)
1− αt

1− αtβt
ψ̂

(i)
t

At this point, we use the convexity of ψi to develop ψi(w(i)
t ) and then ψi(y(i)

t ) in the following
way:

ψi(w(i)
t ) ≤ (1− βt)ψi(v(i)

t ) + βtψi(y(i)
t )

≤ (1− βt)ψi(v(i)
t ) + βt

1− αtβt

[
(1− αt)ψi(x(i)

t ) + αt(1− βt)ψi(v(i)
t )
]

= 1− βt
1− αtβt

ψi(v(i)
t ) + βt(1− αt)

1− αtβt
ψi(x(i)

t ).

If we plug these expressions into the development of E[ψ̂(i)
t+1], the ψi(v(i)

t ) terms cancel
and we obtain:

E[ψ̂(i)
t+1] ≤ αtψi(ṽ(i)

t+1) + αt

(
1
pi
− 1

)
βt(1− αt)
1− αtβt

ψi(x(i)
t ) +

(
1− αtβt

pi

)
1− αt

1− αtβt
ψ̂

(i)
t

We now use the fact that ψi(x(i)
t ) ≤ ψ̂

(i)
t (by convexity of ψi) to get:

E[ψ̂(i)
t+1] ≤ αtψi(ṽ(i)

t+1) + 1− αt
1− αtβt

[
αtβt

(
1
pi
− 1

)
+
(

1− αtβt
pi

)]
ψ̂

(i)
t

≤ αtψi(ṽ(i)
t+1) + (1− αt)ψ̂(i)

t

This holds for any coordinate i and so E[ψ̂t+1] ≤ αtψ(ṽt+1 +(1−αt)ψ̂t for all t ≥ 0, which
finishes the proof of the lemma. �

We now introduce and prove Lemma 13, which is the main inequality from which the
rest of the proof follows directly.
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Lemma 13. For any block of coordinates b, the following inequality holds:
1

2ηt
[‖vt+1 − θ?‖2

A†A + ‖vt+1 − wt‖2
A†A − ‖θ? − wt‖2

A†A]

≤ 〈P †b∇qA(yt), θ? − vt+1〉A†A +
∑
i∈b

1
pi

[
ψi
(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
.

(3.A.5)

Proof. We note v⊥t+1 the restriction of vt+1 to coordinates i such that ψi = 0. Similarly,
we note b⊥ the restriction of the block b to coordinates i such that ψi = 0. With these
notations, we write:

1
2ηt

[‖v⊥t+1−θ?
⊥‖2

A†A + ‖v⊥t+1 − w⊥t ‖2
A†A − ‖θ?

⊥ − w⊥t ‖2
A†A]

≤
∑
i∈b⊥

1
pi

[
〈∇iqA(yt), θ? − vt+1〉A†A + ψi

(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
.

(3.A.6)

Equation (3.A.6) follows directly from using v⊥t+1 = w⊥t −
∑
i∈b⊥

ηt
pi
∇iqA(yt) and basic algebra

(expanding the squared terms).
If i ∈ b is such that ψi 6= 0, we use the strong convexity of V t

i at points v(i)
t+1 (its

minimizer, by definition) and θ?(i) (i-th coordinate of a minimizer of F ) to write that
V t
i (v(i)

t+1) + Bt+1pi
2at+1

‖v(i)
t+1 − θ?(i)‖2 ≤ V t

i (θ?(i)). This is a key step from the proof of Lin et al.
[2015b] and uses the same arguments as Lemma 3 from Fercoq and Richtárik [2015]. Then,
expanding the V t

i terms yields:

‖v(i)
t+1 − θ?(i)‖2 + ‖v(i)

t+1 − w
(i)
t + at+1

Bt+1pi
∇iqA(yt)‖2

− ‖θ?(i) − w(i)
t + at+1

Bt+1pi
∇iqA(yt)‖2 ≤ 2at+1

Bt+1pi

[
ψi
(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
.

If we pull gradient terms out of the squares this yields:
1

2ηt
[‖v(i)

t+1−θ?(i)‖2
A†A + ‖v(i)

t+1 − w
(i)
t ‖2

A†A − ‖θ?
(i) − w(i)

t ‖2
A†A]

≤ 1
pi

[
〈∇iqA(yt), θ? − vt+1〉A†A + ψi

(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
.

(3.A.7)

Finally, if i /∈ b is such that ψi 6= 0 then v(i)
t+1 = w

(i)
t and so

‖v(i)
t+1 − θ?(i)‖2

A†A + ‖v(i)
t+1 − w

(i)
t ‖2

A†A − ‖θ?
(i) − w(i)

t ‖2
A†A = 0.

Note that A†Aei = ei for all i such that ψi 6= 0 since e>i A†Aei = 1 and A†A is a projector.
Therefore,

‖vt+1 − θ?‖2
A†A = ‖v⊥t+1 − θ?

⊥‖2
A†A +

∑
i,ψi 6=0

‖v(i)
t+1 − θ?(i)‖2

A†A (3.A.8)

so we can sum Equation (3.A.6) with Equation (3.A.7) for all i to finish the proof. �

Now that we have detailed the key lemmas presented in the proof sketch, we can proceed
to the actual proof.
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Proof of Theorem 13. This proof follows the same general structure as Nesterov and
Stich [Nesterov and Stich, 2017]. In particular, it follows from expanding the ‖vt+1 − θ?‖2

term. In the original proof, vt+1 = wt−g where g is a gradient term so the expansion is rather
straightforward. In our case, vt+1 is defined by a proximal mapping so a bit more work is
required. Yet, similar terms appear, along with the function values of the non-smooth term
that we control with Lemma 12. This expansion is done by Lemma 13, which relies on using
the strong convexity of the proximal mapping.

We now evaluate each term of Equation (3.A.5). First of all, we use that yt − xt+1 =
αtP

†
bA
†A(wt − vt+1) to write:

E[〈P †b∇qA(yt), θ? − vt+1〉A†A]
= E[〈P †b∇qA(yt), θ? − wt〉A†A] + E[∇qA(yt)>P †bA†A(wt − vt+1)]
= 〈∇qA(yt), θ? − wt〉A†A + α−1

t E[∇qA(yt)>(yt − xt+1)].
The rest of this proof closely follows the analysis from Hendrikx et al. [Hendrikx et al., 2019a],
which is an adaptation of Nesterov and Stich [Nesterov and Stich, 2017] to strong convexity
on a subspace. The main difference is that it is also necessary to control the function values
of ψ, which is done using Lemma 12. For the first term, we use the strong convexity of f as
well as the fact that wt = yt − 1−αt

αt
(xt − yt) to obtain:

at+1∇qA(yt)>A†A(θ? − wt) = at+1∇qA(yt)>A†A
(
θ? − yt + 1− αt

αt
(xt − yt)

)
≤ at+1

(
qA(θ?)− qA(yt)−

1
2σA‖yt − θ

?‖2
A†A + 1− αt

αt
(qA(xt)− qA(yt))

)
≤ at+1qA(θ?)− At+1qA(yt) + AtqA(xt)−

1
2at+1σA‖yt − θ?‖2

A†A.

For the second term we use the smoothness of qA and then the fact that xt+1−yt has support
on Uk only (just like vt+1 − wt), as well as the fact that A†A is symmetric to obtain:

at+1

αt
∇qA(yt)>(yt − xt+1)

≤ At+1 [qA(yt)− qA(xt+1)] + at+1

2αt
‖xt+1 − yt‖2

M

≤ At+1 [qA(yt)− qA(xt+1)] + at+1αt
2 ‖A†A(vt+1 − wt)‖2

P †
b
MP †

b

≤ At+1 [qA(yt)− qA(xt+1)] + a2
t+1λmax((A†AP †bMP †bA

†A)
2At+1

‖vt+1 − wt‖2
A†A.

Noting ∆qA(xt) = E[qA(xt)]− qA(θ?) and remarking that at+1 = At+1−At, we obtain, using
that αt = at+1

At+1
:

E[at+1〈P †b∇qA(yt), θ? − vt+1〉A†A]

≤ At∆qA(xt)− At+1∆qA(xt+1) + Bt+1

2 E[‖wt − vt+1‖2
A†A]− at+1σA

2 ‖yt − θ?‖2
A†A.

Using Lemma 12, we derive in the same way:

E[at+1

pi

[
ψi
(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]
]
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= at+1ψ(θ?)− At+1αtψ(ṽt+1)

≤ At
(
E[ψ̂t]− ψ(θ?)

)
− At+1

(
E[ψ̂t+1]− ψ(θ?)

)
.

Now, we can multiply Equation (3.A.5) by at+1
pi

and take the expectation over i. The ‖vt+1−
wt‖2

A†A terms cancel and we obtain:
Bt+1

2 E[‖vt+1 − θ?‖2
A†A] + At+1∆F̂A(xt+1)

≤ At∆F̂A(xt) + Bt+1

2 ‖wt − θ
?‖2
A†A −

at+1σA
2 ‖yt − θ?‖2

A†A,

where ∆F̂A(xt) = ∆qA(xt) + E[ψ̂t] − ψ(θ?). Convexity of the squared norm yields ‖wt −
θ?‖2

A†A ≤ (1− βt)‖vt − θ?‖2
A†A + βt‖yt − θ?‖2

A†A. Now remarking that Bt+1(1− βt) = Bt and
at+1σA = Bt+1βt, and summing the inequalities until t = 0, we obtain:

Bt‖vt − θ?‖2
A†A + 2At∆F̂A(xt) ≤ 2A0∆FA(x0) +B0‖v0 − θ?‖2

A†A.

We finish the proof by using the fact that ψ(xt) ≤ ψ̂t and ψ(x0) = ψ̂0 since x0 = v0. �

Proof of Corollary 7. We first prove that αt can actually be obtained by a simple
recursion. This comes from the (well-known) fact that the recursions in Lin et al. [2015b]
and Nesterov and Stich [2017] are actually the same. If σA = 0 then we have to choose
βt = 0 for all t. Then, we can choose Bt = B0 for any B0 > 0. This allows to write
(At+1 − At)2S2 = AtB0 for all t, which is a second degree polynomial in the variable At+1.
We choose the positive root in order to have at+1 ≥ 0, which yields:

At+1 = At + B0

2S2

(
1 +

√
1 + 4S2B−1

0 At

)
. (3.A.9)

Coefficients (at) can be computed using

at+1 = At+1 − At = B0

2S2

(
1 +

√
1 + 4S2B−1

0 At

)
,

and so we use the fact that at+1S
2 = At+1Bt+1, which can be rewritten as αt = B0

at+1S2 . to
obtain the sequence (αt) as:

αt = 2
1 +

√
1 + 4S2B−1

0 At
.

In particular,

At =
[( 2
αt
− 1

)2
− 1

]
B0

4S2 .

This expression for At and At+1 can be substituted in the relation At+1 = At + B0
at+1S2 , which

yields after some simplifications:
α−2
t+1 − α−1

t+1 − α−2
t = 0,

which is a second degree polynomial in the variable α−1
t+1. Solving for αt leads to

αt+1 = 2
1 +

√
1 + 4α−2

t

=

√
α4
t + 4α2

t − α2
t

2 ,
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which is the exact same recursion as in Lin et al. [2015b] and Fercoq and Richtárik [2015].
In particular, only the value of α0 matters and only the sequence αt actually needs to be
computed, since the only coefficients needed are the αt and at+1

Bt+1
= 1

αtS2 .
We would like to choose the highest possible α0, such that 1 − α0/pmin ≥ 0, so we take

α0 = pmin where pmin = mini pi where the minimum is over all coordinates such that ψi 6= 0.
This is enough to respect the condition αt ≤ pmin since (αt) is a decreasing sequence. This
leads to

A0 =
( 2

pmin
− 1

)2

− 1
 B0

4S2 ≤
B0

p2
minS

2 .

Since A0 ≥ 0, a direct recursion yields At ≥ B0t2

4S2 . We call r2
t = ‖v0−θ?A‖2

A†A−E[‖vt−θ?A‖2
A†A],

and ∆Ft = E[qA(xt) + ψ(xt)]− qA(θ?A) + ψA(θ?A), then:

Ft ≤
1

2At

(
B0r

2
t + 2A0F0

)
= B0

2At

(
r2
t + 2

S2p2
min

F0

)
≤ 2S2

t2

(
r2
t + 2

S2p2
min

F0

)
,

which finishes the proof of the rate.
�

Sampling with replacement. The arbitrary sampling litterature for accelerated coor-
dinate descent methods is vast [Lee and Sidford, 2013, Allen-Zhu et al., 2016, Nesterov and
Stich, 2017, Hanzely and Richtárik, 2019], and we present in this paper results for the general
setting of block proximal coordinate gradient. Yet, standard mini-batch stochastic gradient
descent algorithms use sampling with replacement, whereas coordinate descent methods al-
ways use the notion of blocks, i.e., without replacement. Algorithm 3 does not extend to
sampling with replacement, and this mainly comes from the fact that proximal updates do
not mix well with sampling with replacement, and Lemma 12 does not hold anymore in this
case.

3.A.2. Efficient implementation. Our extended APCG algorithm is also closely re-
lated with an arbitrary sampling version of APPROX Fercoq and Richtárik [2015]. Similarly
to Lee and Sidford Lee and Sidford [2013], APPROX also uses iterations that can be more
efficient, especially in the linear case. These extensions can also be applied to APCG under
the same assumptions, as shown in Lin et al. [2015b]. We present in this section the efficient
implementations of the generalized APCG algorithm. The main goal is to avoid as much as
possible to perform convex combinations of dense vectors. The main changes in Algorithm 6
are that we express the proximal operator of line 5 in a slightly different but equivalent
form and that line 6 requires a matrix product to take into account the block aspect and
the strong convexity in an arbitrary norm. The proof is a straightforward adaptation of Lin
et al. [2015b]. Note that the full vector wt never actually needs to be formed so local updates
are sparse.

We now present the convex case, which is an adaptation of Fercoq and Richtárik [2015].
We therefore refer the interested reader to this paper for the details of the equivalence
between Algorithm 3 in the convex case and Algorithm 7.
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Algorithm 6 Efficient Generalized APCG(ρ, σA, pi), Strongly Convex Case.
1: u0 = 0, z0 = 0, φ = 1−ρ

1+ρ , η = ρ
σA

2: while t < T do
3: wt = −φt+1ut + vt
4: gt = ηP †b∇qA(φt+1ut + zt)
5: h

(i)
t = proxηp−1

i ψi

(
w

(i)
t − g

(i)
t

)
− w(i)

t for all i ∈ b, 0 otherwise.

6: ut+1 = ut −
I−ρP †

bt
A†A

2φt+1 ht, zt+1 = zt + I+ρP †
bt
A†A

2 ht
7: return φTuT + zT

Algorithm 7 Efficient Generalized APCG(ρ, σA, pi), Convex Case.
1: u0 = 0, v0 = 0, α0 = mini,ψi 6=0 pi, ηt = 1

αtS2

2: while t < T do
3: gt = ηtP

†
b∇qA(α2

tut + zt)
4: z

(i)
t+1 = proxηtp−1

i ψi

(
z

(i)
t − g

(i)
t

)
for all i ∈ b, 0 otherwise.

5: ut+1 = ut −
I−αtP †btA

†A

2α2
t

(zt+1 − zt)

6: αt+1 =
√
α4
t+4α2

t−α2
t

2 = 2
1+
√

1+4α−2
t

7: return α2
T−1uT + vT

3.B. Average Time per Iteration

3.B.1. More communications implies more waiting. A fundamental assumption
for Theorem 17 is to assume that pcomm < pcomp. In particular, it prevents pcomm from being
too high since pcomm + pcomp = 1. Although this assumption seems quite restrictive in the
first place, it is very intuitive to want to avoid pcomm from being too high, especially in the
limit of pcomm → 1 and τ arbitrarily small. Consider that one node (say node 0) starts a
local update at some point. Communications are very fast compared to computations so it
is very likely that the neighbors of node 0 will only perform communication updates, and
they will do so until they have to perform one with node 0. At this point, they will have to
wait until node 0 finishes its local computation, which can take a long time. Now that the
neighbors of node 0 are also blocked waiting for the computation to finish, their neighbors
will start establishing a dependence on them rather quickly. If the probability of computing
is small enough and if the computing time is large enough, all nodes will sooner or later need
to wait for node 0 to finish its local update before they can continue with the execution of
their part of the schedule. In the end, only node 0 will actually be performing computations
while all the others will be waiting.

This phenomenon is not restricted to the limit case presented above and the synchro-
nization cost blows up as soon as pcomm > pcomp and τ < 1. In the proof below, the goal
is to bound the total expected weight ∑n

i=1E [X t(i, w)] for w higher than a given threshold.
Local computing operations will move mass from small values of w to higher values of w.
On the other hand, communication operations will introduce synchronization between two
nodes, thus increasing the total available mass ∑w≥0

∑n
i=1E [X t(i, w)] (and not just moving
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it to higher values of w) because it will duplicate the mass for X t(i, w) to X t(j, w) if nodes i
and j communicate. This is the technical reason why pcomm < pcomp is needed for this proof.

3.B.2. Detailed average time per iteration proof. The goal of this section is to
prove Theorem 17. The proof is an extension of the proof of Theorem 2 from Hendrikx et al.
[2019a]. Similarly, we denote t the number of iterations that the algorithm performs and τ ijc
the random variable denoting the time taken by a communication on edge (i, j). Similarly,
τ il denotes the time taken by a local computation at node i. Then, we introduce the random
variable X t(i, w) such that if edge (i, j) is activated at time t+ 1 (with probability pij), then
for all w ∈ N∗:

X t+1(i, w) = X t(i, w − τ ijc (t)) +X t(j, w − τ ijc (t)),
where τ ijc (t) is the realization of τ ijc corresponding to the time taken by activating edge

(i, j) at time t. If node i is chosen for a local computation, which happens with probability
pcomp
i then X t+1(i, w + τ il (t)) = X t(i, w) for all w. Otherwise, X t+1(j, w) = X t(j, w) for all
w. At time t = 0, X0(i, 0) = 1 and X0(i, w) = 0 for all w. Lemma 14 gives a bound on the
probability that the time taken by the algorithm to complete t iterations is greater than a
given value, depending on variables X t. Note that a Lemma similar to the one by Hendrikx
et al. [2019a] holds although variable X has been modified.

Lemma 14. We denote Tmax(t) the time at which the last node of the system finishes
iteration t. Then for all ν > 0:

P (Tmax(t) ≥ νt) ≤
∑
w≥νt

n∑
i=1
E
[
X t(i, w)

]
.

Proof. We first prove by induction on t that for any i ∈ {1, .., n}:

Ti(t) = max
w∈N,Xt(i,w)>0

w. (3.B.1)

To ease notations, we write wmax(i, t) = maxw∈N,Xt(i,w)>0w. The property is true for
t = 0 because Ti(0) = 0 for all i.

We now assume that it is true for some fixed t > 0 and we assume that edge (k, l)
has been activated at time t. For all i /∈ {k, l}, Ti(t + 1) = Ti(t) and for all w ∈ N∗,
X t+1(i, w) = X t(i, w) so the property is true. Besides, if j 6= l,

wmax(k, t+ 1) = max
w∈N∗,Xt(k,w−τc(t))+Xt(l,w−τklc (t))>0

w

= max
w∈N,Xt(i,w)+Xt(i,w)>0

w + τ klc (t)

= τc(t) + max (wmax(k, t), wmax(l, t))
= τ klc (t) + max (Tk(t), Tl(t)) = Tk(t+ 1).

Similarly if k = l (a local computation is performed at iteration t), then wmax(k, t+ 1) =
τ kl (t) + wmax(k, t) = Tk(t) + τ kl (t) = Tk(t + 1). Then, we use the union bound and the the
fact that having X t(i, w) > 0 is equivalent to having X t(i, w) ≥ 1 since X t(i, w) is integer
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valued to show that:

P (Tmax(t) ≥ νt) = P
(

max
w,
∑n

i=1X
t
i (w)>0

w ≥ νt

)
≤ P

(
∪w≥νt

n∑
i=1

X t
i (w) ≥ 1

)
≤
∑
w≥νt

P
(

n∑
i=1

X t
i (w) ≥ 1

)
,

so using Markov inequality yields:

P (Tmax(t) ≥ νt) ≤
∑
w≥νt

n∑
i=1

E
[
X t
i (w)

]
. (3.B.2)

�

Variables X t
i are obtained by linear recursions, so Lemma 14 allows us to bound the

growth of variables with a simple recursion formula instead of evaluating a maximum. We
write pcomp

i and pcomm
i the probability that node i performs a computation (respectively

communication) update at a given time step, and pi = pcomp
i + pcomm

i . We introduce pcomp =
mini pcomp

i and p̄comp = maxi pcomp
i (and the same for communication probabilities).

Lemma 15. For all i, and all ν > 0, if 1
2 ≥ pcomp = p̄comp ≥ p̄comm then:

∑
w≥(νc+νl)t

n∑
i=1

E
[
X t(i, w)

]
→ 0 when t→∞, (3.B.3)

with νc = 6pcτc and νl = 9plτl where pc = 4p̄comm and pl = p̄comp.
Note that the constants in front of the ν parameters are very loose.
Proof. Taking the expectation over the edges that can be activated gives, with τ ijc (τ)

the probability that τ ijc takes value τ (and the same for τl):

E
[
X t+1(i, w)

]
= (1− pi)E

[
X t(i, w)

]
+ pcomm

n∑
j=1

pij
∞∑
τ=0

τ ijc (τ)
(
E
[
X t(i, w − τ)

]
+ E

[
X t(j, w − τ)

])

+ pcomp
i

∞∑
τ=0

τ ijl (τ)E
[
X t(i, w − τ)

]
.

In particular, for all i, E [X t+1(i, w)] ≤ X̄ t(w) where X̄0(w) = 1 if w = 0 and:

X̄ t+1(w) = (1− p) X̄ t(w) + 2p̄comm

∞∑
τ=0

τmax
c (τ)X̄ t(w − τ) + p̄comp

∞∑
τ=0

τmax
l (τ)X̄ t(w − τ).

with τmax
c (τ) = maxij τ ijc (τ) (and the same for τl). We now introduce φt(z) = ∑

w∈N z
wX̄ t(w).

We denote φc and φl the generating functions of τmax
c (τ) and τmax

l (τ). A direct recursion
leads to:

φt(z) =
(
1− pcomm − pcomp + p̄compφl(z) + 2p̄commφc(z)

)t
=
(
φ1(z)

)t
.

We denote φbin(p, t) the generating function associated with the binomial law of parameters
p and t. With this definition, we have:

φbin(pc, t)(φc(z))φbin(pl, t)(φl(z)) =
[(1− pc)(1− pl) + (1− pc)plφl(z) + (1− pl)pcφc(z) + pcplφc(z)φl(z)]t ,
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so we can define:

φt+(z) = (1 + δ)tφbin(pc, t)(φc(z))φbin(pl, t)(φl(z)),

where pc, pl and δ are such that:
pc

1− pc
≥ 2 p̄comm

1− p ,
pl

1− pl
= p̄comp

1− p and δ ≥ 1− p
(1− pc)(1− pl)

− 1.

Since p̄comp = pcomp then p ≥ p̄comp. Therefore, these conditions are satisfied for pc and
pl as given by Lemma 15 and δ = (1 − pc)−1 − 1. Then (1 + δ)(1 − pc)(1 − pl) ≥ 1 − p,
(1 + δ)(1 − pc)pl ≥ p̄comp and (1 + δ)(1 − pl)pc ≥ 2p̄comm. This means that if we write
φ1(z) = a0 + acφc(z) + alφl(z) and φ1

+(z) = b0 + bcφc(z) + blφl(z) then b0 ≥ a0, bc ≥ ac and
bl ≥ al. In particular, all the coefficients of φt are smaller than the coefficients of φt+ where
both functions are integral series. Therefore, if we call Zt the random variables associated
with the generating function (1 + δ)−tφt+ then for all i, t, w:

E
[
X t(i, w)

]
≤ (1 + δ)tP (Zt = w) , (3.B.4)

where Zt = Zt
c + Zt

l = Bin(pc, t)(Zc) + Bin(pl, Zl)(τl) where Zc and Zl are the random
variables modeling the time of one communication or computation update. We can then use
the bound p(Zt ≥ (νc + νl)t) ≤ p(Zt

c ≥ νct) + p(Zt
l ≥ νlt). This way, we can bound the

communication and computation costs independently. Then, we write a Chernoff bound, i.e.
for any λ > 0:

P
(
Zt
c ≥ νt

)
≤ e−λνtE[eλZtc ] = e−λνtE[eλZc ]t = e−λνt

[
1− pc + pc

∞∑
τ=0

pc(τ)eλτ
]t
,

where Sc is the sum of t i.i.d. random variables drawn from τc. If Zc = τc with probability
1 (deterministic delays) then this reduces to:

P
(
Zt
c ≥ νct

)
≤ e−λνct

[
1− pc + pce

λτc
]
.

Finally, we take νc = kpcτc, λ = 1
τc

ln(k) and we use the basic inequality ln(1 + x) ≥ x
1+x to

show that:

− ln
[
P
(
Zt
c ≥ νct

)]
≥ t

[
λνc − pc

(
eλτc − 1

)]
≥ t(k(ln(k)− 1)− 1)pc.

Using the same log inequality and the fact that pc ≥ 1
2 yields:

ln (1 + δ) = − ln(1− pc) ≤
pc

1− pc
≤ 2pc.

Therefore, choosing k = 6 ensures that k(ln(k)− 1)− 1 ≥ 3 and so:

(1 + δ)tP
(
Zt
c ≥ νct

)
≤ e−tpc .

We can apply the same reasoning to Zt
l , and the bound is still valid with k = 9 because

pl = p̄comp ≥ p̄comm = pc/4. We finish the proof by using Equation (3.B.4). �
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3.C. Algorithm Performances

ADFS has a linear convergence rate because it results from using generalized APCG.
Yet, it is not straightforward to derive hyperparameters that lead to a rate that is fast and
that can be easily interpreted. The goal of this section is to choose such parameters when
the functions fij are smooth.

3.C.1. Eigengap γ̃. This section aims as justifying the γ̃ notation. Recall that it is
defined such that γ̃ = min(k,`)∈Ecomm

λ+
min(L)n2

µ2
k`
eT
k`
A†Aek`E2 . We show in this section that for any given

family of regular graphs, there exists a constant Cγ independent of the size of the graph such
that Cγ γ̃ ≥ γ. Matrix A depends on µ, and we consider in this section that µ2

k` = µ0 for all
communication edges (k, `). Similar results can be obtained when µ is heterogeneous.

Regular graphs.. We say that a family of graph is regular if there exists Cγ > 0 such
that eTk`A†Aek` ≤ Cγ

n
E

for any n > 2.
Recall that E is the number of edges (usually constrained by the graph family and the

number of nodes), and eTk`A†Aek` is the effective resistance of edge (k, `). This assumption
seems a bit technical but it simply requires that all edges contribute equally to the connec-
tivity of the graph, and therefore is related to how symmetric the graph is. In particular, it
is verified with Cγ = 1 for any completely symmetric graph, such as the complete graph or
the ring. Since eTk`A†Aek` ≤ 1, it is also satisfied any time the ratio n/E is bounded below,
and in particular for the grid, the hypercube, or any graph with bounded degree. Under
these assumptions, and for any communication edge (k, `):

λ+
min(L)n2

µ2
k`e

T
k`A

†Aek`E2 ≥
γ

Cγ

λmax(L)n
µ2
k`E

≥ γ

Cγ

Trace(L)
µ2

0E
= 2 γ

Cγ
.

Here, we used the fact that Trace(L) = 2µ2
0E, which can be deduced directly from the form

of A (each edge has weight µ2
0 and contributes two times, one for each end). We conclude

by using the fact that since the previous inequalities are true for any (k, `) ∈ Ecomm, it is in
particular true for γ̃.

3.C.2. Communication rate and local rate. We know that the rate of ADFS can
be written as the minimum of a given quantity over all edges of the graph. This quantity
will be very different whether we consider communication edges or virtual edges. In this
section, we give lower bounds for each type of edge, and show that we can trade one for the
other by adjusting the probability of communication.

Lemma 16. With the choice of parameters of Theorem 18, parameter ρ satisfies:

ρ ≥ 1√
2n

min
pcomm∆p

√
γ̃

2κ, pcomp

√
rκ

Scomp

 . (3.C.1)

Proof. Recall that the rate ρ is defined as:

ρ2 = min
k`

p2
k`

µ2
k`e

T
k`A

†Aek`

λ+
min(L̃)

σ−1
k + σ−1

`

, (3.C.2)

and that Lemma 9 ensures that

λ+
min(L̃) ≥ λ+

min(L)
2σκ .
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Therefore, for communication edges the rate writes:

ρ2
comm ≥ min

(k,`)∈Ecomm

( 1
σk

+ 1
σ`

)−1 p2
k`

µ2
k`e

T
k`A

†Aek`

λ+
min (L)
2σκ . (3.C.3)

If we take σk = σ for all k and p2
k` ≥ ∆2

pp
2
comm/|E|2 (corresponding to a homogeneous case),

then we can make γ̃ appear to obtain:

ρ2
comm ≥ ∆2

p

γ̃

κ

p2
comm
4n2 . (3.C.4)

For “computation edges”, we can write:

ρ2
comp ≥ min

ij

p2
ij

2
(
σ−1
i + L−1

ij

) σκi
λ+

min (L)Lij
λ+

min (L)
σκ

, (3.C.5)

because eTijA†Aeij = 1 when (ij) is a virtual edge (because it is part of no cycle). Since
Scomp = 1

n

∑n
i=1

∑m
j=1

√
1 + Lijσ

−1
i , this can be rewritten:

ρ2
comp ≥

rκ
2

p2
comp

n2S2
comp

. (3.C.6)

�

3.C.3. Execution time. Now that we have specified the rate of ADFS (improvement
per iteration), we can bound the time needed to reach precision ε by plugging in the expected
time to execute the schedule. In particular, we show in this section Theorem 19, which is a
more precise version of Theorem 18.

We introduce ∆p, rκ and cτ to quantify how heterogeneous the system is. More specif-
ically, we can define σ = maxi σi, κi = 1 + σ−1

i

∑m
j=1 Lij and κs = maxi κi. Since they are

not all equal, we introduce rκ = mini κi/κs. We choose the probabilities of virtual edges,
such that ∑m

j=1 pij is constant for all i and such that pij = pcomp(1 + Lijσ
−1
i ) 1

2/(nScomp)
for Scomp = n−1∑n

i=1
∑m
j=1(1 + Lijσ

−1
i ) 1

2 . When (k, `) is a communication edge, we further
assume that pk` ≥ ∆ppcomm/|E| for some constant ∆p ≤ 1 and pmax

comm ≤ cτpcomm for some
cτ > 0.

Theorem 19. We choose µ2
k` = 1

2 for communication edges, µ2
ij = λ+

min(L)
σκi

Lij for com-

putation edges and pcomm = min
(

1
2 ,
(
1 +

√
γ̃

κmin
Scomp

)−1 )
. Then, running Algorithm 4

for K = ρ−1 log (ε−1) iterations with the randomized sampling of Assumption 7 guarantees
E [‖θK − θ?‖2] ≤ C0ε, and takes time T (K), with T (K) bounded by:

T (K) ≤ 2C
(
m+√mκs√

2rκ
+ (1 + 4cττ)

∆p

√
κs
γ̃

)
log

(1
ε

)
with probability tending to 1 as ρ−1 log (ε−1)→∞, where C is the same as in Theorem 17.

In heterogeneous settings, σi and sampling probabilities may be adapted to recover good
guarantees, but this is beyond the scope of this paper. Note that taking computing proba-
bilities exactly equal for all nodes is not necessary to ensure convergence, and only slightly
slows down convergence. Indeed, it is always possible to analyze a schedule for which all
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nodes have exactly the same probability of local update by adding a probability of doing
nothing for time 1 as a local update to the nodes that are chosen less frequently. If we denote
pwait the probability that we need to add so that all nodes have the same probability of being
selected, then pcomp + pcomm = 1 − pwait so θcomp will be slightly smaller for a given pcomm.
The actual algorithm can only be faster so this just gives a rough upper bound on the time
to convergence.

Proof. Using Theorem 17 on the average time per iteration, we know that as long as
pcomp > pcomm, the execution time of the algorithm verifies the following bound for some
C > 0 with high probability:

T (K) ≤ C

n
(pcomp + 2τpmax

comm)K (3.C.7)

Algorithm 4 requires − log(1/ε)/ log(1−ρ) iterations to reach error ε. Using that log(1+
x) ≤ x for any x > −1, we get that using Kε = log(1/ε)ρ−1 instead also guarantees to make
error less than ε. We now optimize the bound in ρ:

T (Kε)
log (ε−1) ≤

C

nρ
(pcomp + 2τpmax

comm) (3.C.8)

If we rewrite this in terms of ρcomm and ρcomp, we obtain:

T (Kε)
log (ε−1) ≤ C max (T1(pcomm), T2(pcomm)) (3.C.9)

with

T1(pcomm) = 1
nρcomm

(pcomp + 2cττpcomm) = 2
∆p

(
2cττ − 1 + 1

pcomm

)√
κ

γ̃
(3.C.10)

and

T2(pcomm) = Scomp

√
2
rκ

(
1 + (2cττ − 1)pcomm

1− pcomm

)
= Scomp

√
2
rκ

(
1 + 2τ pcomm

1− pcomm

)
(3.C.11)

T1 is a continuous decreasing function of pcomm with T1 →∞ when pcomm → 0. Similarly,
T2 is a continuous increasing function of pcomm such that pcomm → ∞ when pcomm → 1.
Therefore, the best upper bound on the execution time is given by taking pcomm = p∗ where
p∗ is such that T1(p∗) = T2(p∗) and so ρcomm(p∗) = ρcomp(p∗).

T (Kε)
log (ε−1) ≤ CT1(p∗) (3.C.12)

Then, p∗ can be found by finding the root in ]0, 1[ of a second degree polynomial. In
particular, p∗ is the solution of:

p2
comp = p2

comm
γ̃∆2

p

2κrκ
S2

comp = (1− pcomm)2 (3.C.13)

which leads to p∗ =
(
1 +

√
γ̃

2κmin
∆pScomp

)−1
.
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T (Kε)
log (ε−1) ≤ 2 C∆p

(
2cττ − 1 + 1

p∗

)√
κ

γ̃

≤ 2C
(

2τ cτ∆p

√
κ

γ̃
+ 1√

2rκ
Scomp

)
Finally, we use the concavity of the square root to show that:

Scomp = 1
n

n∑
i=1

m∑
j=1

√
1 + Lijσ

−1
i

≤ 1
n

n∑
i=1

m

√√√√ m∑
j=1

1
m

(
1 + Li,jσ

−1
i

)

≤ 1
n

n∑
i=1

m

√
1 + 1

m
(κi − 1)

≤ m+
√
mκ

Yet, this analysis only works as long as p∗ ≤ 1/2. When this constraint is not respected,
we know that: γ̃S2

comp ≤ 2κrκ. In this case, we can simply choose pcomp = pcomm = 1
2 and

then ρcomm ≤ ρcomp, so

T (Kε)
log (ε−1) ≤ CT1

(1
2

)
= 2 C∆p

(1 + 2cττ)
√
κ

γ̃
(3.C.14)

The sum of the two bounds is a valid upper bound in all situations, which finishes the
proof. �
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CHAPTER 4

Dual-Free Decentralized Algorithm with Variance Reduction

For finite-sum problems, fast single-machine algorithms for large datasets rely on sto-
chastic updates combined with variance reduction. Yet, existing decentralized stochastic
algorithms either do not obtain the full speedup allowed by stochastic updates, or require
oracles that are more expensive than regular gradients. In this Chapter, we introduce a
Decentralized stochastic algorithm with Variance Reduction called DVR. DVR only requires
computing stochastic gradients of the local functions, and is computationally as fast as a
standard stochastic variance-reduced algorithms run on a 1/n fraction of the dataset, where
n is the number of nodes. To derive DVR, we use Bregman coordinate descent on a well-
chosen dual problem, and obtain a dual-free algorithm using a specific Bregman divergence.
We give an accelerated version of DVR based on the Catalyst framework, and illustrate its
effectiveness with simulations on real data.

This Chapter is based on the paper Dual-Free Stochastic Decentralized Optimization with
Variance Reduction [Hendrikx, Bach, and Massoulié, 2020a], published at NeurIPS 2020.

4.1. Introduction

We consider the regularized empirical risk minimization problem distributed on a network
of n nodes. Each node has a local dataset of size m, and the problem thus writes:

min
x∈Rd

F (x) ,
n∑
i=1

fi(x), with fi(x) , σi
2 ‖x‖

2 +
m∑
j=1

fij(x), (4.1.1)

where fij typically corresponds to the loss function for training example j of machine i, and
σi is the local regularization parameter for node i. We assume that each function fij is
convex and Lij-smooth (see, e.g., Nesterov [2013c]), and that each function fi is Mi-smooth.
Following Xiao et al. [2019b], we denote κi = (1 + ∑m

i=1 Lij)/σi the stochastic condition
number of fi, and κs = maxi κi. Similarly, the batch condition number is κb = maxiMi/σi.
It always holds that κb ≤ κs ≤ mκb, but generally κs � mκb, which explains the success
of stochastic methods. Indeed, κs ≈ mκb when all Hessians are orthogonal to one another
which is rarely the case in practice, especially for a large dataset.

Regarding the distributed aspect, we follow the standard gossip framework [Boyd et al.,
2006, Nedic and Ozdaglar, 2009, Duchi et al., 2012b, Scaman et al., 2017b] and assume that
nodes are linked by a communication network which we represent as an undirected graph G.
We denote N (i) the set of neighbors of node i and 1 ∈ Rd the vector with all coordinates
equal to 1. Communication is abstracted by multiplication by a positive semi-definite matrix
W ∈ Rn×n, which is such that Wk` = 0 if k /∈ N (`), and Ker(W ) = Span(1). The matrix
W is called the gossip matrix, and we denote its spectral gap by γ = λ+

min(W )/λmax(W ), the
ratio between the smallest non-zero and the highest eigenvalue ofW , which is a key quantity
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in decentralized optimization. We finally assume that nodes can compute a local stochastic
gradient ∇fij in time 1, and that communication (i.e., multiplication by W ) takes time τ .

Single-machine stochastic methods. Problem (4.1.1) is generally solved using first-
order methods. Whenm is large, computing∇F becomes very expensive, and batch methods
require O(κb log(ε−1)) iterations, which takes time O(mκb log(ε−1)), to minimize F up to
precision ε. In this case, updates using the stochastic gradients ∇fij, where (i, j) is selected
randomly, can be much more effective [Bottou, 2010]. Yet, these updates are noisy and
plain stochastic gradient descent (SGD) does not converge to the exact solution unless the
step-size goes to zero, which slows down the algorithm. One way to fix this problem is to use
variance-reduced methods such as SAG [Schmidt et al., 2017], SDCA [Shalev-Shwartz and
Zhang, 2013], SVRG [Johnson and Zhang, 2013b] or SAGA [Defazio et al., 2014a]. These
methods require O((nm + κs) log(ε−1)) stochastic gradient evaluations, which can be much
smaller than O(mκb log(ε−1)).

Decentralized methods. Decentralized adaptations of gradient descent in the smooth
and strongly convex setting include EXTRA [Shi et al., 2015a], DIGing [Nedic et al., 2017]
or NIDS [Li et al., 2019]. These algorithms have sparked a lot of interest, and the lat-
est convergence results [Jakovetić, 2018, Xu et al., 2020b, Li and Lin, 2020] show that
EXTRA and NIDS require time O((κb + γ−1)(m + τ)) log(ε−1)) to reach precision ε. A
generic acceleration of EXTRA using Catalyst [Li and Lin, 2020] obtains the (batch) opti-
mal O(√κb(1+τ/

√
γ) log(ε−1)) rate up to log factors. Another line of work on decentralized

algorithms is based on the penalty method [Li et al., 2018, Dvinskikh and Gasnikov, 2019].
This consists in performing traditional optimization algorithms to problems augmented with
a Laplacian penalty, and in particular enables the use of accelerated methods. Yet, these
algorithms are sensitive to the value of the penalty parameter (when it is fixed), since it
directly influences the solution they converge to. Another natural way to construct decen-
tralized optimization algorithms is through dual approaches [Scaman et al., 2017b, Uribe
et al., 2020]. Although the dual approach leads to algorithms that are optimal both in
terms of number of communications and computations [Scaman et al., 2019, Hendrikx et al.,
2020b], they generally assume access to the proximal operator or the gradient of the Fenchel
conjugate of the local functions, which is not very practical in general since it requires solving
a subproblem at each step.

Decentralized stochastic optimization. Although both stochastic and decentralized
methods have a rich litterature, there exist few decentralized stochastic methods with linear
convergence rate. Although DSA [Mokhtari and Ribeiro, 2016], or GT-SAGA [Xin et al.,
2020a] propose such algorithms, they respectively take time O((mκs+κ4

sγ
−1(1+ τ) log(ε−1))

and O((m + κ2
sγ
−2)(1 + τ) log(ε−1)) to reach precision ε. Therefore, they have significantly

worse rates than decentralized batch methods when m = 1, and than single-machine sto-
chastic methods when n = 1. Other methods have better rates of convergence [Shen et al.,
2018, Hendrikx et al., 2019b] but they require evaluation of proximal operators, which may
be expensive.

Our contributions. This work develops a dual approach similar to that of Hendrikx
et al. [2019b], which leads to a decentralized stochastic algorithm with rate O(m + κs +
τκb/
√
γ), where the √γ factor comes from Chebyshev acceleration, such as used in Scaman

et al. [2017b]. Yet, our algorithm, called DVR, can be formulated in the primal only, thus
avoiding the need for computing expensive dual gradients or proximal operators. Besides,

112



DVR is derived by applying Bregman coordinate descent to the dual of a specific augmented
problem. Thus, its convergence follows from the convergence of block coordinate descent
with Bregman gradients, which we prove as a side contribution. When executed on a single-
machine, DVR is similar to dual-free SDCA [Shalev-Shwartz, 2016], and obtains similar rates.
We believe that the same methodology could be applied to tackle non-convex problems, but
we leave these extensions for future work.

We present in Section 4.2 the derivations leading to DVR, namely the dual approach
and the dual-free trick. Then, Section 4.3 presents the actual algorithm along with a con-
vergence theorem based on block Bregman coordinate descent (presented in Appendix 4.A).
Section 4.4 shows how to accelerate DVR, both in terms of network dependence (Cheby-
shev acceleration) and global iteration complexity (Catalyst acceleration [Lin et al., 2017]).
Finally, experiments on real-world data are presented in Section 4.5, that demonstrate the
effectiveness of DVR.

4.2. Algorithm Design

This section presents the key steps leading to DVR. We start by introducing a relevant
dual formulation from Hendrikx et al. [2019b], then introduce the dual-free trick based
on Lan and Zhou [2017], and finally show how this leads to DVR, an actual implementable
decentralized stochastic algorithm, as a special case of the previous derivations.

4.2.1. Dual formulation. The standard dual formulation of Problem (4.1.1) is ob-
tained by associating a parameter vector to each node, and imposing that two neighboring
nodes have the same parameters [Boyd et al., 2011, Jakovetić et al., 2014, Scaman et al.,
2017b]. This leads to the following constrained problem, in which we write θ(i) ∈ Rd the
local vector of node i:

min
θ∈Rnd

n∑
i=1

fi(θ(i)) such that ∀k, ` ∈ N (k), θ(k) = θ(`). (4.2.1)

Following the approach of Hendrikx et al. [2019b, 2020b], we further split the fi(θ(i)) term into
σi‖θ(i)‖2/2 +∑n

j=1 fij(θ(ij)), with the constraint that θ(i) = θ(ij) for all j. This is equivalent
to the previous approach performed on an augmented graph [Hendrikx et al., 2019b, 2020b]
in which each node is split into a star network with the regularization in the center and a
local summand at each tip of the star. Thus, the equivalent augmented constrained problem
that we consider writes:

min
θ∈Rn(m+1)d

n∑
i=1

σi
2 ‖θ

(i)‖2+
m∑
j=1

fij(θ(ij))
 s.t. ∀k, ` ∈ N (k), θ(k) = θ(`) and ∀i, j, θ(i) = θ(ij).

(4.2.2)
We now use Lagrangian duality, and introduce two kinds of multipliers. The variable x cor-
responds to multipliers associated with the constraints given by edges of the communication
graph (i.e., θ(k) = θ(`) if k ∈ N (`)), that we will call communication edges. Similarly, y
corresponds to the constraints associated with the edges that are specific to the augmented
graph (i.e., θ(i) = θ(ij) ∀i, j) that we call computation or virtual edges, since they are not
present in the original graph and were constructed for the augmented problem. Therefore,
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there are E communication edges (number of edges in the initial graph), and nm virtual
edges. The dual formulation of Problem (4.2.2) thus writes:

min
x∈REd, y∈Rnmd

1
2qA(x, y) +

n∑
i=1

m∑
j=1

f ∗ij((A(x, y))(ij)), with qA(x, y) , (x, y)>A>ΣA(x, y),

(4.2.3)
and where (x, y) ∈ R(E+nm)d is the concatenation of vectors x ∈ REd, which is associated with
the communication edges, and y ∈ Rnmd, which is the vector associated with computation
edges. We denote Σ = Diag(σ−1

1 , · · · , σ−1
n , 0, · · · , 0) ⊗ Id ∈ Rn(m+1)d×n(m+1)d and A is such

that for all z ∈ Rd, A(ek,` ⊗ z) = µk`(uk − u`)⊗ Pk`z for edge (k, `), where Pk` = Id if (k, `)
is a communication edge, Pij is the projector on Ker(fij)⊥ , (∩x∈RdKer(∇2fij(x)))⊥ if (i, j)
is a virtual edge, z1 ⊗ z2 is the Kronecker product of vectors z1 and z2, and ek,` ∈ RE+nm

and uk ∈ Rn(m+1) are the unit vectors associated with edge (k, `) and node k respectively.
Note that the upper left nd × nd block of AA> (corresponding to the communication

edges) is equal to W ⊗ Id where W is a gossip matrix (see, e.g., [Scaman et al., 2017b]) that
depends on the µk`. In particular, W is equal to the Laplacian of the communication graph
if µ2

k` = 1/2 for all (k, `). For computation edges, the projectors Pij account for the fact
that the parameters θ(i) and θ(ij) only need to be equal on the subspaces on which fij is not
constant, and we choose µij such that µ2

ij = αLij for some α > 0. Although this introduces
heavier notations, explicitly writing A as an n(1 + m)d × (E + nm)d matrix instead of an
n(1+m)×(E+nm) matrix allows to introduce the projectors Pij, which then yields a better
communication complexity than choosing Pij = Id. See Hendrikx et al. [2019b, 2020b] for
more details on this dual formulation, and in particular on the construction on the augmented
graph. Now that we have obtained a suitable dual problem, we would like to solve it without
computing gradients or proximal operators of f ∗ij, which can be very expensive.

4.2.2. Dual-free trick. Dual methods are based on variants of Problem (4.2.3), and
apply different algorithms to it. In particular, Scaman et al. [2017b], Uribe et al. [2020] use
accelerated gradient descent [Nesterov, 2013c], and Hendrikx et al. [2019a,b] use accelerated
(proximal) coordinate descent [Lin et al., 2015b]. Let pcomm denote the probability of per-
forming a communication step and pij be the probability that node i samples a gradient
of fij, which are such that for all i, ∑m

j=1 pij = 1 − pcomm. Applying a coordinate update
with step-size η/pcomm to Problem (4.2.3) in the direction x (associated with communication
edges) writes:

xt+1 = xt − ηp−1
comm∇xqA(xt, yt), (4.2.4)

where we denote∇x the gradient in coordinates that correspond to x (communication edges),
and ∇y,ij the gradient for coordinate (ij) (computation edge). Similarly, the standard coor-
dinate update of a local computation edge (i, j) can be written as:

y
(ij)
t+1 = arg min

y∈Rd

{(
∇y,ijqA(xt, yt) + µij∇f ∗ij(µijy

(ij)
t )

)>
y + pij

2η ‖y − y
(ij)
t ‖2

}
, (4.2.5)

where the minimization problem actually has a closed form solution. Yet, as mentioned
before, solving Equation (4.2.5) requires computing the derivative of f ∗ij. In order to avoid
this, a trick introduced by Lan and Zhou [2017] and later used in Wang and Xiao [2017] is to

114



replace the Euclidean distance term by a well-chosen Bregman divergence. More specifically,
the Bregman divergence of a convex function φ is defined as:

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)>(x− y). (4.2.6)
Bregman gradient algorithms typically enjoy the same kind of guarantees as standard gra-
dient algorithms, but with slightly different notions of relative smoothness and strong con-
vexity [Bauschke et al., 2017, Lu et al., 2018]. Note that the Bregman divergence of the
squared Euclidean norm is the squared Euclidean distance, and the standard gradient de-
scent algorithm is recovered in that case. We now replace the Euclidean distance by the
Bregman divergence induced by function φ : y 7→ (Lij/µ2

ij)f ∗ij(µijy(ij)), which is normalized
to be 1-strongly convex since f ∗ij is L−1

ij -strongly convex. We introduce the constant α > 0
such that µ2

ij = αLij for all computation edges (i, j). Using the definition of the Bregman
divergence with respect to φ, we write:

y
(ij)
t+1 = arg min

y∈Rd

(
∇y,ijqA(xt, yt) + µij∇f ∗ij(µijy

(ij)
t )

)>
y + pij

η
Dφ

(
y, y

(ij)
t

)

= arg min
y∈R

(
αη

pij
∇y,ijqA(xt, yt)−

(
1− αη

pij

)
µij∇f ∗ij(µijy

(ij)
t )

)>
y + f ∗ij(µijy)

= 1
µij
∇fij

((
1− αη

pij

)
∇f ∗ij(µijy

(ij)
t )− αη

µijpij
∇y,ijqA(xt, yt)

)
.

In particular, if we know ∇f ∗ij(µijy
(ij)
t ) then it is possible to compute y(ij)

t+1. Besides,

∇f ∗ij(µijy
(ij)
t+1) = (1− αη)∇f ∗ij(µijy

(ij)
t )− αη

µij
∇y,ijqA(xt, yt), (4.2.7)

so we can also compute ∇f ∗ij(µijy
(ij)
t+1), and we can use it for the next step. Therefore,

instead of computing a dual gradient at each step, we can simply choose y(i)
0 = µ−1

ij ∇fij(z
(ij)
0 )

for any z(ij)
0 , and iterate from this. Therefore, the Bregman coordinate update applied to

Problem (4.2.3) in the block of direction (i, j) with y(ij)
0 = µ−1

ij ∇fi(z
(ij)
0 ) yields:

z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t − αη

pijµij
∇y,ijqA(xt, yt), y

(ij)
t+1 = µ−1

ij ∇fi(z
(ij)
t+1). (4.2.8)

The iterations of (4.2.8) are called a dual-free algorithm because they are a transformation
of the iterations from (4.2.5) that do not require computing ∇f ∗ij anymore. This is obtained
by replacing the Euclidean distance in (4.2.5) by the Bregman divergence of a function pro-
portional to f ∗ij. Note that although we use the same dual-free trick the tools are different
since Lan and Zhou [2017] applies a randomized primal-dual algorithm with fixed Breg-
man divergences choice to a specific primal-dual formulation. Instead, we apply a generic
randomized Bregman coordinate descent algorithm to a specific dual formulation.

4.2.3. Distributed implementation. Iterations from (4.2.8) do not involve functions
f ∗ij anymore, which was our first goal. Yet, they consist in updating dual variables associated
with edges of the augmented graph, and have no clear distributed meaning yet. In this
section, we rewrite the updates of (4.2.8) in order to have an easy to implement distributed
algorithm. The key steps are (i) multiplication of the updates by A, (ii) expliciting the gossip
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matrix and (iii) remarking that θ(i)
t = (ΣA(xt, yt))(i) converges to the primal solution for all

i. For a vector z ∈ R(n+nm)d, we denote [z]comm ∈ Rnd its restriction to the communication
nodes, and [M ]comm ∈ Rnd×nd similarly refers to the restriction on communication edges of a
matrixM ∈ R(n+nm)d×(n+nm)d. By abuse of notations, we call Acomm ∈ Rnd×Ed the restriction
of A to communication nodes and edges. We denote Pcomm the projector on communication
edges, and Pcomp the projector on y. We multiply the x (communication) update in (4.2.8)
by A on the left (which is standard [Scaman et al., 2017b, Hendrikx et al., 2019b]) and
obtain:

Acommxt+1 = Acommxt − ηp−1
comm[APcommA

>]comm[ΣA(xt, yt)]comm. (4.2.9)

Note that [PcommA
>ΣA(xt, yt)]comm = [PcommA

>]comm[ΣA(xt, yt)]comm because Pcomm and Σ
are non-zero only for communication edges and nodes. Similarly, and as previously stated,
one can verify that Acomm[PcommA

>]comm = [APcommA
>]comm = W ⊗ Id ∈ Rnd×nd where W is

a gossip matrix. We finally introduce x̃t ∈ Rnd which is a variable associated with nodes, and
which is such that x̃t = Acommxt. With this rewriting, the communication update becomes:

x̃t+1 = x̃t − ηp−1
comm(W ⊗ Id)Σcomm [A(xt, yt)]comm .

To show that [A(xt, yt)]comm is locally accessible to each node, we write:

[A(xt, yt)](i)comm = (Acommxt)(i) −
(

n∑
k=1

m∑
j=1

(A(ekj ⊗ y(kj)
t ))(i)

)
= (x̃t)(i) −

m∑
j=1

µijy
(ij)
t .

We note this rescaled local vector θt = Σcomm([A(xt, yt)]comm), and obtain for variables x̃t the
gossip update of (4.2.11). Note that we directly write y(ij)

t instead of Pijy(ij)
t even though

there has been a multiplication by the matrix A. This is allowed because Equation (4.2.12)
implies that (i) y(ij)

t ∈ Ker(fij)⊥ for all t, and (ii) the value of (Id−Pij)z(ij)
t does not matter

since z(ij)
t is only used to compute ∇fij. We now consider computation edges, and remark

that:
∇y,ijqA(xt, yt) = −µij(Σcomm)ii([A(xt, yt)]comm)(i) = −µijθt. (4.2.10)

Plugging Equation (4.2.10) into the updates of (4.2.8), we obtain the following updates:

x̃t+1 = x̃t −
η

pcomm
(W ⊗ Id)θt, (4.2.11)

for communication edges, and for the local update of the j-th component of node i:

z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t + αη

pij
θ

(i)
t , θ

(i)
t+1 = 1

σi

(
x̃

(i)
t+1 −

m∑
j=1
∇fij(z(ij)

t+1)
)
. (4.2.12)

Finally, Algorithm 8 is obtained by expressing everything in terms of θt and removing variable
x̃t. To simplify notations, we further consider θ as a matrix in Rn×d (instead of a vector in
Rnd), and so the communication update of Equation (4.2.11) is a standard gossip update
with matrix W , which we recall is such that W ⊗ Id = [APcommA

>]comm. We now discuss
the local updates of Equation (4.2.12) more in details, which are closely related to dual-free
SDCA updates [Shalev-Shwartz, 2016].
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Algorithm 8 DVR(z0)

1: α = 2λ+
min(A>commD

−1
M Acomm), η = min

(
pcomm

λmax(A>commΣcommAcomm) ,
pij

α(1+σ−1
i Lij)

)
// Init.

2: θ(i)
0 = −(∑m

j=1∇fij(z
(ij)
0 ))/σi. // z0 is arbitrary but not θ0.

3: for t = 0 to K − 1 do // Run for K iterations
4: Sample ut uniformly in [0, 1]. // Randomly decide the kind of update
5: if ut ≤ pcomm then
6: θt+1 = θt − η

pcomm
ΣWθt // Communication using W

7: else
8: for i = 1 to n do
9: Sample j ∈ {1, · · · ,m} with probability pij.
10: z

(ij′)
t+1 = z

(ij′)
t for j 6= j′ // Only one virtual node is updated

11: z
(ij)
t+1 =

(
1− αη

pij

)
z

(ij)
t + αη

pij
θ

(i)
t // Virtual node update

12: θ
(i)
t+1 = θ

(i)
t − 1

σi

(
∇fij(z(ij)

t+1)−∇fij(z(ij)
t )

)
// Local update using fij

13: return θK

4.3. Convergence Rate

The goal of this section is to set parameters η and α in order to get the best conver-
gence guarantees. We introduce κcomm = γλmax(A>commΣcommAcomm)/λ+

min(A>commD
−1
M Acomm),

where λ+
min and λmax respectively refer to the smallest non-zero and the highest eigenvalue

of the corresponding matrices. We denote DM the diagonal matrix such that (DM)ii =
σi + λmax(∑m

j=1 LijPij), where ∇2fij(x) 4 LijPij for all x ∈ Rd. Note that we use notation
κcomm since it corresponds to a condition number. In particular, κcomm ≤ κs when σi = σj
for all i, j, and κcomm more finely captures the interplay between regularity of local functions
(through DM and Σcomm) and the topology of the network (through A) otherwise.

Theorem 20. We choose pcomm =
(
1+γ m+κs

κcomm

)−1
, pij ∝ (1−pcomm)(1+Lij/σi) and α and

η as in Algorithm 8. Then, there exists C0 > 0 that only depends on θ0 (initial conditions)
such that for all t > 0, the error and the expected time Tε required to reach precision ε are
such that:

n∑
i=1

1
2E[‖θ(i)

t − θ?‖2] ≤ C0

(
1− αη

2

)t
, and so Tε = O

([
m+ κs + τ

κcomm

γ

]
log ε−1

)
.

Proof sketch. We have seen in Section 4.2 that DVR is obtained by applying Bregman
coordinate descent on a well-chosen dual problem. Therefore, one of our key results consists
in proving convergence rates for Bregman coordinate descent in the relatively smooth setting.
Although a similar algorithm is analyzed in Hanzely and Richtárik [2018], we give sharper
results in the case of arbitrary sampling of blocks, and tightly adapt to the separability
structure. This is crucial to our analysis since the probabilities to sample a local gradient and
to communicate can be vastly different. In order to ease the reading of the paper, we present
these results for a general setting in Appendix 4.A, which is self-contained and which we
believe to be of independent interest (beyond its application to decentralized optimization).
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Then, Appendix 4.B focuses on the application to decentralized optimization. In partic-
ular, we recall the Equivalence between DVR and Bregman coordinate descent applied to
the dual problem of Equation (4.2.3), and show that its structure is suited to the application
of coordinate descent. Indeed, no two virtual edges adjacent to the same node are updated
at the same time with our sampling. Then, we evaluate the relative smoothness and strong
convexity constants of the augmented problem, which is rather challenging due to the com-
plex structure of the dual problem. This allows to derive adequate values for parameters α
and η. Finally, we choose pcomm in order to minimize the execution time of DVR. �

We would like to highlight the fact that the convergence theory of DVR decomposes
nicely into several building blocks, and thus simple rates are obtained. This is not so usual
for decentralized algorithms, for instance many follow-up papers were needed to obtain a
tight convergence theory for EXTRA [Shi et al., 2015a, Jakovetić, 2018, Xu et al., 2020b, Li
and Lin, 2020]. We now discuss the convergence rate of DVR more in details.

Computation complexity. The computation complexity of DVR is the same compu-
tation complexity as locally running a stochastic algorithm with variance reduction at each
node. This is not surprising since, as we argue later, DVR can be understood as a decen-
tralized version of an algorithm that is closely related to dual-free SDCA [Shalev-Shwartz,
2016]. Therefore, this improves the computation complexity of EXTRA from O(m(κb+γ−1))
individual gradients to O(m+κs), which is the expected improvement for stochastic variance-
reduced algorithm. In comparison, GT-SAGA [Xin et al., 2020a], a recent decentralized sto-
chastic algorithm, has a computation complexity of order O(m+κ2

s/γ
2), which is significantly

worse than that of DVR, and generally worse than that of EXTRA as well.
Communication complexity. The communication complexity of DVR (i.e., the num-

ber of communications, so the communication time is retrieved by multiplying by τ) is of
order O(κcomm/γ), and can be improved to O(κcomm/

√
γ) using Chebyshev acceleration (see

Section 4.4). Yet, this is in general worse than the O(κb+γ−1) communication complexity of
EXTRA or NIDS, which can be interpreted as a partly accelerated communication complex-
ity since the optimal dependence is O(

√
κb/γ) [Scaman et al., 2019], and 2

√
κb/γ = κb + γ−1

in the worst case (κb = γ−1). Yet, stochastic updates are mainly intended to deal with
cases in which the computation time dominates, and we show in the experimental section
that DVR outperforms EXTRA and NIDS for a wide range of communication times τ (the
computation complexity dominates roughly as long as τ < √γ(m+ κs)/κcomm). Finally, the
communication complexity of DVR is significantly lower than that of DSA and GT-SAGA,
the primal decentralized stochastic alternatives presented in Section 4.1.

Homogeneous parameter choice. In the homogeneous case (σi = σj for all i, j),
choosing the optimal pcomp and pcomm described above leads to ηλmax(W ) = σpcomm. There-
fore, the communication update becomes θt+1 = (I −W/λmax(W )) θt, which is a gossip
update with a standard step-size (independent of the optimization parameters). Similarly,
αη(m+ κs) = pcomp, and so the step-size for the computation updates is independent of the
network.

Links with SDCA. The single-machine version of Algorithm 8 (n = 1, pcomm = 0) is
closely related to dual-free SDCA [Shalev-Shwartz, 2016]. The difference is in the stochastic
gradient used: DVR uses ∇fij(z(ij)

t ), where z(ij)
t is a convex combination of θ(i)

k for k < t,
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whereas dual-free SDCA uses g(ij)
t , which is a convex combination of ∇fij(θ(i)

k ) for k < t.
Both algorithms obtain the same rates.

Local synchrony. Instead of using the synchronous communications of Algorithm 8, it
is possible to update edges one at a time, as in Hendrikx et al. [2019b]. This can be very
efficient in heterogeneous settings (both in terms of computation and communication times)
and similar convergence results can be obtained using the same framework, and we leave the
details for future work.

4.4. Acceleration

We show in this section how to modify DVR to improve the convergence rate of Theo-
rem 20.

Network acceleration. Algorithm 8 depends on γ−1, also called the mixing time of the
graph, which can be as high as O(n2) for a chain of length n [Mohar, 1997]. However, it is
possible to improve this dependency to γ−1/2 by using Chebyshev acceleration, as in Scaman
et al. [2017b]. To do so, the first step is to choose a polynomial P of degree k and communi-
cate with P (W ) instead ofW . In terms of implementation, this comes down to performing k
communication rounds instead of one, but this makes the algorithm depend on the spectral
gap of P (W ). Then, the important fact is that there is a polynomial Pγ of degree dγ−1/2e
such that the spectral gap of Pγ(W ) is of order 1. Each communication step with Pγ(W )
only takes time τdeg(Pγ) = τdγ−1/2e, and so the communication term in Theorem 20 can be
replaced by τκcommγ

−1/2, thus leading to network acceleration. The polynomial Pγ can for
example be chosen as a Chebyshev polynomial, and we refer the interested reader to Scaman
et al. [2017b] for more details. Finally, other polynomials yield even faster convergence when
the graph topology is known [Berthier et al., 2020].

Catalyst acceleration. Catalyst [Lin et al., 2015a] is a generic framework that achieves
acceleration by solving a sequence of subproblems. Because of space limitations, we only
present the accelerated convergence rate without specifying the algorithm in the main text.
Yet, only mild modifications to Algorithm 8 are required to obtain these rates, and the
detailed derivations and proofs are presented in Appendix 4.C.

Theorem 21. DVR can be accelerated using catalyst, so that the time Tε required to
reach precision ε is equal (up to log factors) to

Tε = Õ

([
m+√mκs + τ

√
κcomm

γ
×
√
m
κcomm

κs

]
log ε−1

)

Proof sketch. We follow the approach of Li and Lin [2020] to derive the algorithm,
and apply Catalyst acceleration to the primal problem on the mean parameter θ̄t (which is
never explicitly computed). Indeed, this conceptual algorithm can actually be implemented
in a fully decentralized manner.

Then, we proceed to the actual proof, which requires a tight control over both primal
and dual warm-start errors. Indeed, Theorem 23 (Appendix 4.B) controls dual variables but
Catalyst acceleration is applied to the primal variables. �

This rate recovers the computation complexity of optimal finite sum algorithms such as
ADFS [Hendrikx et al., 2019b, 2020b]. Although the communication time is slightly increased
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Figure 1. Experimental results for the RCV1 dataset with different graphs of
size n = 81, withm = 2430 samples per node, and with different regularization
parameters.

(by a factor
√
mκcomm/κs), ADFS uses a stronger oracle than DVR (proximal operator in-

stead of gradient), which is why we develop DVR in the first place. Although both ADFS and
DVR are derived using the same dual formulation, both the approach and the resulting algo-
rithms are rather different: ADFS uses accelerated coordinate descent, and thus has strong
convergence guarantees at the cost of requiring dual oracles. DVR uses coordinate descent
with the Bregman divergence of φij ∝ f ∗ij in order to work with primal oracles, but thus loses
direct acceleration, which is recovered through the Catalyst framework. Note that the pa-
rameters of accelerated DVR can also be set such that Tε = Õ

(√
κcomm

[
m+ τ/

√
γ
]

log ε−1
)
,

which recovers the convergence rate of optimal batch algorithms, but loses the finite-sum
speedup.

4.5. Experiments

We investigate in this section the practical performances of DVR. We solve a regularized
logistic regression problem on the RCV1 dataset [Lewis et al., 2004] (d = 47236) with n = 81
(leading to m = 2430) and two different graph topologies: an Erdős-Rényi random graph
(see, e.g., [Bollobás, 2001]) and a grid. We choose µ2

k` = 1/2 for all communication edges, so
the gossip matrix W is the Laplacian of the graph.

Figure 1 compares the performance of DVR with that of state-of-the-art primal algo-
rithms such as EXTRA [Shi et al., 2015a], NIDS [Li et al., 2019], GT-SAGA [Xin et al.,
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Figure 2. Experimental results for the RCV1 dataset with different graphs of
size n = 81, withm = 2430 samples per node, and with different regularization
parameters.

2020a], and Catalyst accelerated versions of EXTRA [Li and Lin, 2020] and DVR. Subopti-
mality refers to F (θ(0)

t )−F (θ?), where node 0 is chosen arbitrarily and F (θ?) is approximated
by the minimal error over all iterations. Each subplot of Figure 1(a) shows the same run
with different x axes. The left plot measures the complexity in terms of individual gradients
(∇fij) computed by each node whereas the center plot measures it in terms of communica-
tions (multiplications byW ). All other plots are taken with respect to (simulated) time (i.e.,
computing ∇fij takes time 1 and multiplying by W takes time τ) with τ = 250 in order to
report results that are independent of the computing cluster hardware and status. All pa-
rameters are chosen according to theory, except for the smoothness of the fi, which requires
finding the smallest eigenvalue of a d× d matrix. For this, we start with Lb = σi +∑m

j=1 Lij
(which is a known upper bound), and decrease it while convergence is ensured, leading to
κb = 0.01κs. The parameters for accelerated EXTRA are chosen as in Li and Lin [2020]
since tuning the number of inner iterations does not significantly improve the results (at the
cost of a high tuning effort). For accelerated DVR, we set the number of inner iterations to
N/pcomp (one pass over the local dataset). We use Chebyshev acceleration for (accelerated)
DVR but not for (accelerated) EXTRA since it is actually slower, as predicted by the theory.

As expected from their theoretical iteration complexities, NIDS and EXTRA perform
very similarly Li and Lin [2020], and GT-SAGA is the slowest method. Therefore, we only
plot NIDS and GT-SAGA in Figure 1(a). We then see that though it requires more communi-
cations, DVR has a much lower computation complexity than EXTRA, which illustrates the
benefits of stochastic methods. We see that DVR is faster overall if we choose τ = 250, and
both methods perform similarly for τ ≈ 1000, at which point communicating takes roughly
as much time as computing a full local gradient. We then see that accelerated EXTRA has
quite a lot of overhead and, despite our tuning efforts, is slower than EXTRA when the
regularization is rather high. On the other hand, accelerated DVR consistently outperforms
DVR by a relatively large margin. The communication complexity is in particular greatly
improved, allowing accelerated DVR to be the fastest method regardless of the setting.

Finally, Figure 2 presents the comparison between DVR and MSDA [Scaman et al.,
2017b], an optimal decentralized batch algorithm, in terms of communication complexity.
To implement MSDA, we compute the dual gradients by solving each local subproblem
(∇f ∗(x) = arg maxy x>y − f(y)) up to precision 10−11 using accelerated gradient descent.
Solving the subproblems with lower precision caused MSDA to plateau and not converge to
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the true optimum. In Figure 2(c), Acc. DVR comm (the brown line) refers to Accelerated
DVR with Catalyst parameter chosen to favor communication complexity (as explained after
Theorem 21). MSDA is the fastest algorithm as expected, but accelerated DVR is not too
far behind, especially given the fact that it relies on generic Catalyst acceleration, which
adds some complexity overhead. Therefore, the comparison with MSDA corroborates the
fact that accelerated DVR is competitive with optimal methods in terms of communication
while enjoying a drastically lower computational cost. Further experimental results are
given in Appendix 4.D, and the code is available in supplementary material and at https:
//github.com/HadrienHx/DVR_NeurIPS.

4.6. Conclusion

This paper introduces DVR, a Decentralized stochastic algorithm with Variance Reduc-
tion obtained using Bregman block coordinate descent on a well-chosen dual formulation.
Thanks to this approach, DVR inherits from the fast rates and simple theory of dual ap-
proaches without the computational burden of relying on dual oracles. Therefore, DVR
has a drastically lower computational cost than standard primal decentralized algorithms,
although sometimes at the cost of a slight increase in communication complexity. The frame-
work used to derive DVR is rather general and could in particular be extended to analyze
asynchronous algorithms. Finally, although deriving a direct acceleration of DVR is a chal-
lenging open problem, Catalyst and Chebyshev accelerations allow to significantly reduce
DVR’s communication overhead both in theory and in practice.

122

https://github.com/HadrienHx/DVR_NeurIPS
https://github.com/HadrienHx/DVR_NeurIPS


This appendix contains the details of the derivations and proofs from the main text.
More specifically, Appendix 4.A is a self-contained appendix that specifies the Bregman
coordinate descent algorithm and proves its convergence rate. Appendix 4.B focuses on
the application of Bregman coordinate descent to the dual problem (relative smoothness
and strong convexity constants, sparsity structure), and how to retrieve guarantees on the
primal parameters. Appendix 4.C is devoted to presenting the Catalyst acceleration of DVR
and proving its convergence speed, and Appendix 4.D details the experimental setting, along
with more experiments.

4.A. Bregman Coordinate Descent

We focus in this section on the general problem minimizing f + g using coordinate
Bregman gradient, where g is separable, i.e., g(x) = ∑d

i=1 gi(x(i)). This is a self-contained
section, and notations may differ from the rest of the paper. In particular, function f is
for now arbitrary and not related to F or fi from Problem (4.1.1), and the dimension d is
arbitrary as well.

We first precise the blocks sampling rule. More specifically, we define a block b ⊂
{1, . . . , d} as a collection of coordinates, and B is the set of all blocks that can be chosen
for the updates. Then, the algorithm updates each block b ∈ B with probability p(b), so
that the probability of updating a given coordinate is given by pi = ∑

i∈b p(b). Similarly to
individual coordinates, we write x(b) the restriction of x to coordinates in b. The Bregman
coordinate gradient update for a block of coordinates b writes:

xt+1 = arg min
x∈Rd

V b
t (x) ,

∑
i∈b

ηt
pi

[
∇if(xt)>x+ gi(x(i))

]
+Dφ(x, xt)

 , (4.A.1)

where ∇if denotes the gradient of f in direction i. In order to derive strong guarantees for
this block coordinate descent algorithm, we need to ensure that there is some separability
in functions f and φ, and that the block structure is suited to this separability. All the
assumptions about the separability structure of f , g and φ are contained in the following
assumption.

Assumption 8 (Separability). The function g is separable and the function φ is block-
separable for b, meaning that for all b ∈ B, there exist two convex functions φb and φ⊥b such
that for all x,

φ(x) = φb(x(b)) + φ⊥b (x− x(b)). (4.A.2)
Besides, for all b ∈ B, either of the following two hold:

(1) φ and f are separable for b, i.e., φb(x(b)) = ∑
i∈b φi(x(i)), and

∑
i∈b

[f(xt + δiei)− f(xt)] = f

xt +
∑
i∈b

δiei

− f(xt).

(2) pi = pj for all i, j ∈ b.

If φ is not block-separable, the support of the Bregman update in direction b may not
restricted to b. This causes some of the derivations below to fail, which is why we prevent it
by assuming that Equation (4.A.2) holds.
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Then, the first option ensures that within a block, the updates do not affect each other.
The function f is not separable, but some directions can be updated independently from
others. To have these independent updates, we also need to assume further separability of φ
within the blocks. The second option states that if only block-separability of φ is assumed
then within each block for which φ and f are not separable, coordinates must be picked with
the same probability.

Assumption 8 is a bit technical but we actually require all statements in Section 4.2. In
particular, we will see that the first option is verified for computation updates, whereas the
second option will be verified for communication updates.

Now that we have made assumptions on the structure of f , g and φ, we will make
assumptions on their regularity. We start by a directional relative smoothness assumption
between f and φ, i.e., we assume that for all i, there exists Lirel such that for all δ > 0 and
ei the unit vector of direction i,

Df (x+ δei, x) ≤ LirelDφ(x+ δei, x). (4.A.3)
Similarly, for σrel > 0, f is said to be σrel-strongly convex relatively to φ if for all x, y:

Df (x, y) ≥ σrelDφ(x, y). (4.A.4)
We finally assume that f and φ are convex (but not necessarily smooth). We can now state
the central theorem of this section:

Theorem 22. Let f and φ be such that f is Lirel-smooth in direction i and σrel-strongly
convex relatively to φ. Denote pmin = mini pi, and

Lt = Dφ(x, xt) + ηt
pmin

(F (xt)− F (x)) .

Then, if the blocks B respect Assumption 8 (separability) and ηtLirel < pi for all i, the Bregman
coordinate descent algorithm guarantees for all x:

E[Lt+1] ≤ (1− ηtσrel)Lt.

The same result holds with L′t = Dφ(x, xt) + 1
Lmax

rel
(F (xt)− F (x)), where Lmax

rel = maxi Lirel.

Theorem 22 is a mix of the coordinate descent (Theorem 4) and Bregman gradient
results (Theorem 5) presented in Section 1.1. To prove this theorem, we start by proving
the monotonicity of such iterations.

Lemma 17 (Monotonicity). We note δi = e>i (xt+1−xt)ei. If xt+1 = arg minx V b
t (x) then:

(1) If φ and f are separable for b then for all i ∈ b, if ηtLirel ≤ pi then F (xt) ≥ F (xt+δi).
(2) If pi = pj for all i, j ∈ b and ηtLbrel ≤ pb then F (xt) ≥ F (xt+1).

Proof. We start by the first point. If φ is separable for b then this means that each
coordinate is updated independently. By definition of x(i)

t+1, we have V b
t (x(b)

t+1) ≤ V b
t (xt). This

writes, splitting over each i and using the fact that Dφi(xt, xt) = 0:

gi(x(i)
t )− gi(x(i)

t+1) ≥ ∇if(xt)>(x(i)
t+1 − x

(i)
t ) + pi

η
Dφi(x

(i)
t+1, x

(i)
t )

= ∇if(xt)>(xt + δi − xt) + pi
η
Dφi(x

(i)
t+1, x

(i)
t )
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= f(xt + δi)− f(xt)−Df (x(i)
t+1, x

(i)
t ) + pi

η
Dφi(x

(i)
t+1, x

(i)
t )

≥ f(xt + δi)− f(xt) +
(
pi
η
− Lirel

)
Dφi(x

(i)
t+1, x

(i)
t )

≥ f(xt + δi)− f(xt).
The result follows from summing over all i ∈ b, and using Assumption 8. For the second
point, it is not possible to split the update per coordinate since φ is not separable. Yet, we
can still write (using separability of g):∑

i∈b

ηt
pi

[
g(x(i)

t )− g(x(i)
t+1)−∇if(xt)>(x(i)

t+1 − x
(i)
t )
]
≥ Dφ(xt+1, xt). (4.A.5)

Since g is separable and pi = pb for all i ∈ b, Equation (4.A.5) writes:

g(xt)− g(xt+1) ≥ ∇f(xt)>(xt+1 − xt) + pb
η
Dφ(xt+1, xt). (4.A.6)

Note that this crucially relies on xt+1 − xt having support on b, which is enforced by the
block-separability of φ. Then, the proof is similar to that of the first point, using that
ηtL

b
rel ≤ pb. �

Using this monotonicity result allows us to prove Theorem 22.

Proof of Theorem 22. First note that by convexity of all gi,

∇2V b
t (x) =

∑
i∈b

ηt
pi
∇2gi(x(i)) +∇2φ(x) < ∇2φ(x).

Therefore, we have DV bt
(x, y) ≥ Dφ(x, y) for all x, y ∈ Rd. Applying this with y = xt+1

yields:
V b
t (x)− V b

t (xt+1)−∇V b
t (xt+1)>(x− xt+1) ≥ Dφ(x, xt+1). (4.A.7)

Then, ∇V b
t (xt+1) = 0 by definition of xt+1, so Equation (4.A.7) writes:

Dφ(x, xt+1) +
∑
i∈b

ηt
pi

(
gi(x(i)

t+1)− g(x(i))
)
≤
∑
i∈b

ηt
pi
∇if(xt)>(x− xt+1)

+Dφ(x, xt)−Dφ(xt+1, xt).
We first consider that the first option of Assumption 8 holds, i.e., that f and φ are separable
in b. We note δi = e>i (xt+1 − xt)ei, so that:

−∇if(xt)>(xt+1 − xt) = ∇f(xt)>(xt + δi − xt)
= f(xt)− f(xt + δi) +Df (xt + δi, xt)

≤ f(xt)− f(xt + δi) + LirelDφi(x
(i)
t+1, x

(i)
t ).

Therefore, if ηtLirel ≤ pi for all i ∈ b,

−
∑
i∈b

ηt
pi
∇if(xt)>(xt+1 − xt)−Dφ(xt+1, xt)

≤
∑
i∈b

ηt
pi

[f(xt)− f(xt + δi)] +
∑
i∈b

(
ηtL

i
rel

pi
− 1

)
Dφi(x

(i)
t+1, x

(i)
t )
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≤
∑
i∈b

ηt
pi

[f(xt)− f(xt + δi)]

The gi(x(i)
t+1) − gi(x(i)) term can be replaced by g(xt + δi) − g(xt) + gi(x(i)

t ) − gi(x(i)) since
gj(xt+1) = gj(xt) for j 6= i. Therefore, we obtain:

Dφ(x, xt+1) +
∑
i∈b

ηt
pi

[F (xt + δi)− F (xt)] +
∑
i∈b

ηt
pi

(
gi(x(i)

t )− gi(x(i))
)

≤
∑
i∈b

ηt
pi
∇if(xt)>(x− xt) +Dφ(x, xt).

(4.A.8)

The separability of F in b and its monotonicity lead to, using the fact that xt+1 = xt+
∑
i∈b δi:∑

i∈b

ηt
pi

[F (xt + δi)− F (xt)] ≥
ηt
pmin

∑
i∈b

[F (xt + δi)− F (xt)] = ηt
pmin

[F (xt+1)− F (xt)] .

Therefore, if the first option of Assumption 8 holds, we obtain:

Dφ(x, xt+1) + ηt
pmin

[F (xt+1)− F (xt)] +
∑
i∈b

ηt
pi

(
gi(x(i)

t )− gi(x(i))
)

≤
∑
i∈b

ηt
pi
∇if(xt)>(x− xt) +Dφ(x, xt).

(4.A.9)

If the second option holds, i.e., pi = p for all i ∈ b, then∑
i∈b

ηt
pi
∇if(xt)>(xt+1 − xt) = ηt

p
∇f(xt)>(xt+1 − xt),

and Equation (4.A.9) can be obtained through similar derivations (at the block-level). Using
the separability of g, we obtain that

E[
∑
i∈b

1
pi

(
gi(x(i)

t )− gi(x(i))
)
] = g(xt)− g(x).

Then, since E[∑i∈b
1
pi
∇if(xt)] = ∑

i p
−1
i

∑
b:i∈b p(b)∇if(xt) = ∇f(xt), and the relative strong

convexity assumption yields:

E[
∑
i∈b

1
pi
∇if(xt)>(x− xt)] = ∇f(xt)>(x− xt) ≤ f(x)− f(xt)− σrelDφ(x, xt).

Therefore, taking the expectation of Equation (4.A.8) yields:

E[Dφ(x, xt+1) + ηt
pmin

(F (xt+1)− F (xt))] ≤ ηt (F (x)− F (xt)) + (1− ηtσrel)Dφ(x, xt).

We obtain after some rewriting:

E[Dφ(x, xt+1) + ηt
pmin

(F (xt+1)− F (x))]

≤ (1− pmin) ηt
pmin

(F (xt)− F (x)) + (1− ηtσrel)Dφ(x, xt).

Finally, σrel ≤ Lirel so ηtσrel ≤ ηtL
i
rel ≤ pi for all i, and in particular 1 − pmin ≤ 1 − ηtσrel,

which yields the desired result.
The result on L′t is be obtained by bounding η/pmin by Lmax

rel = maxi Lirel and remarking
that 1− ηtLmax

rel ≤ 1− ηtσrel since Lmax
rel ≥ σrel. �
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4.B. Convergence results for DVR

We now give a series of small results, that justify our approach. We start by showing
the applicability of Theorem 22 to Problem (4.2.3), and the associated constants. Finally,
we show how to obtain rates for the primal iterates θt.

4.B.1. Application to the dual of the augmented problem. In this section, we
note f ∗sum = ∑n

i=1
∑m
j=1 f

∗
ij, so that Problem 4.2.3 writes:

min
x,y

qA(x, y) + f ∗sum(y) (4.B.1)

Lemma 18. The iterations of Algorithm 8 are equivalent to the iteration of Equations (4.A.1)
applied to Problem (4.2.3) with g = 0 and φ(x, y) = φcomm(x) + ∑n

i=1
∑m
j=1 φij(y(ij)), with

φcomm(x) = 1
2‖x‖

2
A†A for coordinates associated with communication edges, and φij(y(ij)) =

Lij
µ2
ij
f ∗ij(µijyij) for coordinates associated with computation edges.

Proof. This result follows from the dual-free and implementation-friendly derivations
presented in the previous section. �

Lemma 19. Let α = 2λmin(A>commD
−1
M Acomm), and φ as in Lemma 18, then:

(1) qA + f ∗sum is (α/2)-strongly convex relatively to φ.
(2) qA + f ∗sum is (Lcomm

rel )-smooth relatively to φ in the direction of communication edges,
with

Lcomm
rel = λmax(A>commΣcommAcomm).

(3) qA + f ∗sum is (Lijrel)-smooth relatively to φ in the direction of virtual edge (i, j), with

Lijrel = α
(

1 + Lij
σi

)
.

Proof. First note that ∇2f ∗sum is a block-diagonal matrix, and its ij-th block is equal
to

(∇2f ∗sum(y))ij = A>(uiju>ij ⊗∇2f ∗ij(µijy(ij)))A < 1
Lij

A>(uiju>ij ⊗ Pij)A, (4.B.2)

where uij ∈ Rn(1+m) denotes the unit vector corresponding to virtual node (i, j). We denote
Σ̃ = Σ +∑n

i=1
∑m
j=1

1
Lij

(uiju>ij)⊗ Id. Then,

∇2qA(x, y) +∇2f ∗sum(y) = A>Σ̃A+∇2f ∗sum(y)− A>
 n∑
i=1

m∑
j=1

1
Lij

(uiju>ij)⊗ Pij

A. (4.B.3)

Relative strong convexity.. Then, Hendrikx et al. [2020b, Lemma 6.5] leads to
A>Σ̃A < σFA

†A. Note that the notations are slightly different, and the matrix Σ̃ in
this paper is the same as the matrix Σ† in Hendrikx et al. [2020b]. Then, remark that
(A†A)ij = Pij = 1

µ2
ij

(A>[(uiju>ij)⊗ Pij]A)ij, and φij = α−1f ∗ij, so that:

∇2qA(x, y) +∇2f ∗sum(y) < σF∇2φ(x, y)+

(1− α−1σF )
∇2f ∗sum(y)− A>

 n∑
i=1

m∑
j=1

1
Lij

(uiju>ij)⊗ Pij

A.
 .
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Finally, using that Equation (4.B.2) along with the fact that σF ≤ α implies that qA + f ∗sum
is σF -relatively strongly convex with respect to φ.

Relative smoothness.. We first prove the relative smoothness property for communi-
cate edges. For any x̃ ∈ REd, Equation (4.B.3) leads to:

(x̃, 0)>[∇2qA(x, y) +∇2f ∗sum(y)](x̃, 0) = (x̃, 0)>A>ΣA(x̃, 0) 4 Lcomm
rel (x̃, 0)>∇2φ(x, y)(x̃, 0).

Similarly, for any θ ∈ Rd, we consider ỹ = eij ⊗ θ and write:

ỹ>[∇2qA(x, y) +∇2f ∗sum(y)]ỹ = ỹ>A>Σ̃Aỹ + µ2
ijθ
>
[
∇2f ∗ij(µijy(ij))− 1

Lij
Pij

]
θ

4 Lirelỹ
>∇2φ(x, y)ỹ + (1− α−1Lirel)θ>

[
∇2f ∗ij(µijy(ij))− 1

Lij
Pij

]
θ,

with

Lirel = max
θ
µ2
iju
>
ijΣ̃uij

θ>Pijθ

‖θ‖2 ≤ α
(

1 + Lij
σi

)
.

Finally, ∇2f ∗ij(µijy(ij)) < Pij/Lij, and α ≤ Lirel, which ends the proof of the directional
relative smoothness result. �

Lemma 20. Assumption 8 holds with f = qA + f ∗sum, g = 0, and φ as in Lemma 18, and
when the sampling is such that either:

• All communication edges are sampled at once, or
• Each node samples exactly one virtual edge.

Proof. First of all, g = 0 is separable, and φ is separable with respect to the commu-
nication and computation blocks by construction.

We note bcomm the block of all communication edges, which is sampled with probability
pcomm. All communication edges are sampled at the same time, so pi = pcomm for all i ∈ bcomm
and so φ respects option 2 for the communication block.

Let us now consider a computation block b. First of all, φ is separable for the vir-
tual edges. Then, virtual blocks contain exactly one virtual edge per node, and so b =
{(1, j1), · · · , (n, jn)}. Let k 6= `, then

e>k,jkA
>ΣAe`,j` = µk,jkµ`,j`(ek − ek,jk)>Σ(e` − e`,j`) = 0.

Therefore,

qA

xt +
∑

(i,j)∈b
δij

− qA(xt) = 1
2

 ∑
(i,j)∈b

δij

A>ΣA
 ∑

(ij)∈b
δij

+
 ∑

(ij)∈b
Aδij

>ΣAxt

=
∑

(i,j)∈b

(
qA(δij) + δ>ijA

>ΣAxt
)

=
∑

(i,j)∈b
(qA(xt + δij)− qA(xt)) .

Finally, f ∗sum is separable, and so qA + f ∗sum respects option 2. �

We can now prove the main theorem on the convergence rate of DVR.
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Theorem 23. We choose pcomm =
(
1 + γ m+κs

κcomm

)−1
and pij ∝ (1 − pcomm)(1 + Lij/σi).

Then, for all θ0 ∈ Rn×d and all t > 0, the error is such that:

ηt
pmin

Dφ(λ?, λt) +D(λt)−D(λ?) ≤
(

1− αηt
2

)t [ ηt
pmin

Dφ(λ?, λ0) +D(λ0)−D(λ?)
]
, (4.B.4)

with pmin = min(pcomm,minij pij), λt = (xt, yt) and D = −(qA+f ∗sum). Therefore, the expected
time Tε required to reach precision ε is equal to:

Tε = O

([
m+ κs + τ

κcomm

γ

]
log ε−1

)
.

Proof. Using Lemmas 20 and 19, we apply Theorem 22 (convergence of Bregman coordi-
nate gradient descent), and obtain that the convergence rate is ηtα/2, with ηt ≤ minij pij/Lirel
and ηt ≤ pcomm/L

comm
rel . Therefore, for communication edges, we have that

ηt ≤
pcomm

Lcomm
rel

= pcomm

λmax(A>commΣ−1
commAcomm) .

For computation edges, we know that pij = pcomm(1 + Lij/σi)/(
∑m
j=1(1 + Lij/σi)), and so

ηt ≤
pij

Lijrel
= pcomp

α
∑m
j=1(1 + σ−1

i Lij)
≤ pcomp

α(m+ κs)
,

with κs ≥ σ−1
i

∑m
j=1 Lij for all i.

In the end, we would like these two bounds to be equal, so we choose pcomp and pcomm
such that

pcomp = pcomm (m+ κs)
λ+

min(A>commD
−1
M Acomm)

λmax(A>commΣ−1
commAcomm) .

Yet, we also know that pcomm = 1− pcomp, so

pcomp =
(

1 + 1
m+ κs

λmax(A>commΣ−1
commAcomm)

λ+
min(A>commD

−1
M Acomm)

)−1

.

Equivalently, this corresponds to taking

pcomm =
(

1 + γ
m+ κs
κcomm

)−1
.

With this choice, one can verify that ηt verifies both ηtα ≤ 2pcomm and ηtα ≤ 2 minij pij,
so the rate is:

1− ηtα

2 = 1− pcomp

2(m+ κs)
.

The expected execution time to reach precision ε, denoted Tε, is equal to Tε = ρ−1(pcomp +
τpcomm)Kε with Kε such that C(1− ηtα/2)Kε < ε for some constant C, and so:

Tε = O

(
2(m+ κs) + τ

κcomm

γ

)
.

�
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4.B.2. Primal guarantees. The goal of this section is to recover primal guarantees
from dual guarantees. Although the initial setting is inspired from Lin et al. [2015b], the
proof is different, and in particular does not require smoothness of the f ∗ij or an extra proximal
step. We define for β ≥ 0 the Lagrangian function:

L(λ, θ) =
n∑
i=1

m∑
j=1

fij(θ(ij)) + σi
2 ‖θ

(i)‖2 + β

2 ‖θ
(i) − ω(i)‖2 − λ>A>θ. (4.B.5)

The dual problem D(λ) is defined as
D(λ) = min

θ
L(λ, θ).

Given an approximate dual solution λk, we can get an approximate primal solution θk =
arg minθ L(λk, θ), which is obtained as:

θ
(ij)
t = arg min

v

(
fij(v)− µijλ(ij)

t v
)
∈ ∂f ∗ij(µijλ

(ij)
t ), (4.B.6)

θ
(i)
t = 1

σi + β

(
(Aλt)(i) + βω(i)

)
. (4.B.7)

Note that θ(ij)
t corresponds to the z

(ij)
t from Algorithm 8. We chose to use a different

notation in the main text to emphasize on the fact that these are the parameters for the
virtual nodes, but z(ij)

t actually converge to the solution as well. Similarly, λt corresponds
to (xt, yt) the concatenation of the parameters for communication and virtual edges from
Section 4.2. The last difference is that the Lagrangian defined in Equation (4.B.5) actually
corresponds to a Lagrangian associated to a perturbed version of Problem (4.1.1) in which
f̃i(θ) = fi(θ) + β

2‖θ − ω
(i)‖2. The solution to the initial problem can be retrieved by taking

β = 0, but this more general formulation enables us to derive results that also holds for the
inner problems solved by the Catalyst accelerated version of DVR.

Lemma 21. Denote C0 = (β+σmax+Lmax)
2(σmin+β)2

(
pmin
ηt
Dφ(λ?, λ0) + (D(λ?)−D(λ0))

)
, then

n∑
i=1
‖θ(i)

t − θ?‖2 ≤ C0(1− ρ)t. (4.B.8)

Proof. Using the fact that θ(i)
t = 1

σi+β ((Aλt)(i) + ω
(i)
t ) (and similarly for θ?), where Σβ

is the block diagonal matrix such that (Σβ)ii = (σi + β)−1Id, we obtain:
n∑
i=1
‖θ(i)

t − θ?‖2 =
n∑
i=1

1
(σi + β)2‖(Aλt)

(i) − (Aλ?)(i)‖2

≤ 1
(σmin + β)2‖Aλt − Aλ

?‖2.

Using the min((σmax +β)−1, L−1
ij )-strong convexity of θ 7→ 1

2x
>Σβx+∑i,j f

∗
ij(x(ij)), we obtain:

n∑
i=1
‖θ(i)

t − θ?‖2 ≤ 2(β + σmax + Lmax)
(σmin + β)2 (D(λ?)−D(λt)) . (4.B.9)

Then, we add pminη
−1
t Dφ(λ?, λt) ≥ 0 and apply Theorem 23, which yields

n∑
i=1
‖θ(i)

t − θ?‖2 ≤ 2(β + σmax + Lmax)
(σmin + β)2 (1− ρ)t

(
pmin

ηt
Dφ(λ?, λ0) + (D(λ?)−D(λ0))

)
.
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Then, Theorem 20 is a direct consequence of Theorem 23 and Lemma 21.

4.C. Catalyst acceleration

We show in this Section how to apply Catalyst acceleration to DVR, and prove the
convergence speed in this case.

4.C.1. Derivation and rates. In the main text, we derived DVR to solve regularized
finite sum problems. Although not so different, the subproblem obtained with Catalyst is not
in the form of Problem (4.1.1), and some adjustments need to be made. More specifically,
we would like to solve problems of the form:

min
θ

Ft(θ) ,
n∑
i=1

σi
2 ‖θ‖

2 + β

2 ‖θ − ω
(i)
t ‖2 +

m∑
j=1

fij(θ)
 . (4.C.1)

An easy way to adapt the algorithm is to consider the extra (β/2)‖θ−ω(i)
t ‖2 as just another

component of the sum. Yet, the point of this extra term is to make the problem easier to
solve by adding strong convexity. This would not be the case if this term were is treated as
just another term in the sum. Therefore, we want to include it with the quadratic term. We
define:

h(x) = σi
2 ‖θ‖

2 + β

2 ‖θ − ω
(i)
t ‖2,

then h∗(x) = 1
2(β+σ)‖x+ βω

(i)
t ‖2 − β

2‖ω
(i)
t ‖2. Therefore, Problem (4.2.3) becomes:

min
λ∈R(E+mn)d

1
2λ
>A>ΣβAλ+ βω>t ΣβAλ+

n∑
i=1

m∑
j=1

f ∗ij((Aλ)ij), (4.C.2)

with (Σβ)ii = (σi + β)−1 for i ∈ {1, . . . , n}. The linear term does not affect the Hessians,
and thus the convergence rate is the same as before, with σ replaced by σ + β. In terms of
algorithms, we just need to modify the gradient term, and obtain Algorithm 9. The only
term that changes is ∇qA(x, y), to which an extra βΣβωt term is added. Therefore, the
updates to θt and zt remain unchanged, and only the initial expression of θt requires some
adjustments since we now have that (as written in Equation 4.B.7):

θ
(i)
t,k = 1

σi + β

(
(Aλt,k)(i) + βω(i)

)
.

If we only consider 1 inner loop then the only thing that changes is the initial condition.
If we consider several outer loops, then the we must choose the new parameter as θt+1

0 =
θtT +Σβ(ωt+1−ωt) in order to maintain the invariant, but a remarkable fact is that the inner
iterations remain the same, with the only exception that Σ is replaced by Σβ. Note that it
is possible to warm-start the zt+1,0 as well, but this requires updating θt,0 accordingly with
∇fij(z(ij)

t,0 ), which requires a full pass over the local dataset. We therefore choose not to do
it.

However, it is not obvious that Algorithm 9 corresponds to a genuine Catalyst accelera-
tion yet. Indeed, Catalyst acceleration requires having a feasible εt-approximations for the
primal problem, i.e., points θt ∈ Rd such that Ft(θt)−minθ F (θ) ≤ εt. In our case, we only
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Algorithm 9 Accelerated DVR(z0)

1: α = 2λ+
min(A>commD

−1
M Acomm), η = min

(
pcomm

λmax(A>commΣβ,commAcomm) ,
pij

α(1+σ−1
i Lij)

)
2: q = σmin

σmin+β // Initialization
3: ω(i)

0 = − 1
σi+β

∑m
j=1∇fij(z

(ij)
0 ), θ(i)

0 =
(
1 + β

σi+β

)
ω

(i)
0 . // z0 is arbitrary but not θ0.

4: for t = 0 to T − 1 do // T outer loops
5: for k = 0 to K − 1 do // Inner loop runs for K iterations
6: zt,k+1 = zt,k.
7: Sample ut uniformly in [0, 1]. // Randomly decide the kind of update
8: if ut ≤ pcomm then
9: θt,k+1 = θt,k − ηt

pcomm
ΣβWθt,k // Communication using W

10: else
11: for i = 1 to n do
12: Sample j ∈ {1, · · · ,m} with probability pij.
13: z

(ij)
t,k+1 =

(
1− αη

pcomp

)
z

(ij)
t,k + αη

pcomp
θ

(i)
t,k // Computing new virtual node parameter

14: θ
(i)
t,k+1 = θ

(i)
t,k − 1

σi+β

(
∇fij(z(ij)

t,k+1)−∇fij(z(ij)
t,k )

)
// Local update using fij

15: ωt+1 = θt,K + 1−√q
1+√q (θt,K − θt−1,K)

16: θt+1,0 = θt,K + β
β+σi (ωt+1 − ωt)

17: zt+1,0 = zt,K
18: return θT

have dual guarantees and approximate feasibility. We know that the parameters converge
to consensus, but they do not reach it at any time. This is a problem because it is then not
possible to adequately define Ft+1 based on the local approximations of the solutions of Ft.
Yet, following the approach of Li and Lin [2020], we note that

n∑
i=1
‖θ − ω(i)

t ‖2 = n‖θ − ω̄t‖2 +
n∑
i=1
‖ω(i)

t ‖2 − n‖ω̄t‖2,

where ω̄t = 1
n

∑n
i=1 ω

(i)
t . This means that although Ft is only defined with the local variables

ω
(i)
t , solving Ft is equivalent to solving a problem involving ω̄t only. Besides, the Catalyst

iterations are linear, meaning that performing the extrapolation step on θ̄t is equivalent to
performing it on each θ

(i)
t individually. Therefore, although Catalyst is implemented in a

fully decentralized manner (each node knowing only its own parameter), it is conceptually
applied to a mean parameter θ̄t (that is never explicitly computed). In the following, we
thus analyze the performances of the following algorithm:

θ̄t+1 ≈ arg min
θ
F (θ) + nβ

2 ‖θ − ω̄t‖
2

ω̄t = θ̄t+1 +
1−√q
1 +√q (θ̄t+1 − θ̄t),

(4.C.3)

where we recall that q = σmin/(σmin + β). Recall that the inner problem is approximated
using DVR and the means do not need to be computed explicitly. Let κβs = maxi 1 +
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(∑m
j=1 Lij)/(β + σi), and κβcomm be obtained similarly to κcomm but replacing Σ by Σβ. We

consider in this section that σi = σ for all i ∈ {1, . . . , n} in order to simplify exposition, but
the results hold more generally. Note that α and η have slightly different expressions than in
the main text since β is now involved in their definitions. We define the sequence εt which
is such that:

εt = 2
9 (F (θ0)− F (θ?)) (1− ρout)t with ρout <

√
q, and q = σ

σ + β
. (4.C.4)

We then prove the following theorem:

Theorem 24. Consider Algorithm 9 with pcomm =
(
1 +γm+κβs

κβcomm

)−1
, pij ∝ (1− pcomm)(1 +

Lij/(σi + β)). If K = Õ (1/(ηtα)) then for all t ≤ T , Ft(θ̄t)− Ft(θ?t ) ≤ εt and

F (θ̄t)− F (θ?) ≤ 8
(√q − ρout)2 (1− ρout)t+1(F (θ̄0)− F (θ?)). (4.C.5)

Note that the error is on the mean parameter, and we also want θ(i)
t to be close to θ̄t for

all i. This is ensured by Lemma 21. Before we start the proof of Theorem 24, we show that
Theorem 21 is a corollary of Theorem 24.

Proof of Theorem 21. Using the same argument as in Theorem 20, we obtain that
each inner loop takes time

Tinner = O

(
m+ Ls + σ

β + σ
+ τ

Lcomm + β

γ(β + σ)

)
in expectation, so the total number of inner iterations is of order:

Tε = Õ

d1/ρoute∑
k=0

Tinner

 = Õ

√1 + β

σ

(
m+ Ls + σ

β + σ
+ τ

Lcomm + β

γ(β + σ)

)
log 1

ε

 . (4.C.6)

Therefore, we see that if we choose β + σ = Lcomm then, taking into account the fact that
κs ≤ mκcomm, the algorithm takes time:

Tε = Õ

(
√
κcomm

(
m+ τc

γ

))
.

Therefore, using Chebyshev acceleration allows to recover the rate of optimal batch algo-
rithms (up to log factors). On the other hand, if we choose β = Ls/m − σ then if β ≥ 0
(i.e., κs ≥ m), the time to convergence is equal to:

Tε = Õ

(√
κs
m

(
m+ τ

mκcomm + κs
γκs

))
.

This can be rewritten as:

Tε = Õ

(
√
mκs + τ

√
κcomm

γ

√
mκcomm

κs

)
.

Therefore, we obtain the optimal √mκs computation complexity in this case, with a slightly
suboptimal communication complexity due to the

√
mκcomm/κs term. When this term is

equal to 1 then √mκs = m
√
κb and so nothing is gained from using a stochastic algorithm.

Otherwise, this allows to trade-off communications for computations. �
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The proof of Theorem 24 is obtained in several steps, that we emphasize below:
(1) Equivalent decentralized implementation of Catalyst.
(2) Bounding the primal suboptimality as Ft(θ̄t)−minθ Ft(θ) ≤ (1− (ηα)/2)kDt

0, with
k the number of inner iterations and Dt

0 a dual error. This quantifies how precisely
the inner problem is solved.

(3) Evaluating the initial dual suboptimality Dt
0, which depends on θt−1 (and its asso-

ciated dual parameter λt−1). This quantifies how good θ̄t−1 already is as a solution
to Ft.

In the end, this allows us to use the catalyst general results with primal criterion, and with
simple warm-start scheme (warm-start on the last iterate of the last outer iteration). The
first point is presented at the beginnning of this section and the second one is adressed by
Lemma 21. The following section deals the last point.

4.C.2. Proof of Theorem 24. We now show a bound on the initial error of an inner
loop when warm-starting on the last iterate of the previous inner loop. Indeed, the con-
vergence results for DVR depend on the initial dual error and so results from [Lin et al.,
2017] cannot be used directly. Yet, it can be adapted, as we show in this section. We note
Dt(λ) the dual function at outer step t (which should not be mistaken with the Bregman
divergence Dφ), and λt? its minimizer. Similarly, we note θt? = arg minθ Ft(θ), whereas θ?
is the global minimizer of F . The following theorem ensures convergence of θ̄t to the true
optimum, given that the subproblems are solved precisely enough.

Theorem 25. [Lin et al., 2017, Proposition 5]. If Fk(θ̄k) − Fk(θk?) ≤ εk for all k ≤ t
then

F (θ̄t)− F (θ?) ≤ 8
(√q − ρout)2 (1− ρout)t+1(F (θ̄0)− F (θ?)). (4.C.7)

Therefore, our goal is to prove that Ft(θ̄t+1) − Ft(θt?) ≤ εt for all t. The smoothness of
Ft ensures that this is achieved if

n∑
i=1
‖θ(i)

t+1 − θt?‖2 ≤ n

L
εt. (4.C.8)

Yet, using Lemma 21, we know that, since θ(i)
t+1 is obtained by applying K steps of DVR to

Ft starting from λt0.
n∑
i=1
‖θ(i)

t+1 − θt?‖2 ≤ (β + σmax + Lmax)
(σmin + β)2 (1− ρ)K

(
pmin

ηt
Dφ(λt?, λt0) +Dt(λt?)−Dt(λt0)

)
.

Unfortunately, we have no control over the dual error at this point. In the remainder of this
section, we prove by recursion that Equation (4.C.8) holds for all t. More specifically, we
start by assuming that:

1
2

n∑
i=1
‖θ(i)

t+1 − θt?‖2 ≤ n

L
εt, (4.C.9)

1
2

n∑
i=1

m∑
j=1
‖θ(ij)

t+1 − θt?‖2 ≤ C1εt, (4.C.10)

Dt(λt?)−Dt(λt+1) ≤ C2εt, (4.C.11)
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where C1 and C2 are such that the conditions are verified for t = −1, with D−1 = D0,
θ−1
? = θ0

?, and λ−1
? = λ0

?. Equation (4.C.9) may not hold for t = −1, but making it hold
at time t = 0 would only require a slightly longer first inner iteration, meaning at most an
extra log factor. Therefore we assume without loss of generality that it is the case, since the
final complexities are given up to logarithmic factors. The rest of this section is devoted to
showing that if K is chosen as in Theorem 24 then Equations (4.C.9), (4.C.10) and (4.C.11)
hold regardless of t. The first part focuses on assessing the initial error of outer iteration
t+1 when the conditions hold at the end of outer iteration t, and the second part on showing
how these errors shrink during outer iteration t+ 1.

Warm-start error. We know that DVR converges linearly, and so the error for each sub-
problem decreases exponentially fast. Yet, we need to know how big the error is when solving
a new problem in order to make sure that the progress from solving previous subproblems
is not lost. The point of this is to avoid an extra log(ε−1) factor in the rate, which would
come from having to solve each subproblem from a O(1) precision to an ε precision using
DVR. We show in this section that the initial error is actually much lower than O(1) and
decreases with the outer iterations. We first start by bounding the variations of ωt across
iterations, which we will need for the next proofs.

Lemma 22 (Distance between subproblems). It holds that

‖ωt − ωt−1‖2 ≤ Cωεt−1, with Cω = 1080n
1− ρout

(
8(1− ρout)

σmin(√q − ρout)2 + 4
9L

)
.

Proof. The form of the updates yields that (see Lin et al. [2017, Proposition 12] or Li
and Lin [2020, Proof of Lemma 10])

‖ω(i)
t − ω

(i)
t−1‖ ≤ 40 max{‖θ(i)

t − θ?‖, ‖θ
(i)
t−1 − θ?‖, ‖θ

(i)
t−2 − θ?‖}.

Note that here, θ? is the actual solution of the primal problem without the catalyst pertur-
bation. Then, the error can be decomposed as:

n∑
i=1
‖θ(i)

t − θ?‖2 ≤ 3
n∑
i=1

(
‖θ(i)

t − θt?‖2 + ‖θt? − θ̄t‖2 + ‖θ̄t − θ?‖2
)

≤ 3n‖θ̄t − θ?‖2 + 6
n∑
i=1
‖θ(i)

t − θt?‖2.

Finally, the strong convexity of F leads to
σmin

2 ‖θ̄t − θ
?‖2 ≤ F (θ̄t)− F (θ?) ≤ 8

(√q − ρout)2 (1− ρout)t+1(F (θ0)− F (θ?)) (4.C.12)

where in the last inequality we use [Lin et al., 2017, Proposition 5], which holds because
Fk(θ̄k)−Fk(θk?) ≤ εk for all k < t. Indeed, K is such that for all k ≤ t, 1

2
∑n
i=1 ‖θ

(i)
k − θk?‖2 ≤

n
L
εk, which yields:

Fk(θ̄k)− Fk(θk?) ≤
L

2 ‖θ̄k − θ
k
?‖2 ≤ L

2n

n∑
i=1
‖θ(i)

k − θk?‖2 ≤ εk.

Therefore,
n∑
i=1
‖θ(i)

t − θ?‖2 ≤ 6n
(
1− ρout

)t
(F (θ0)− F (θ?))

(
8(1− ρout)

σmin(√q − ρout)2 + 4
9L

)
,
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and a similar bound can be used for θ(i)
t−1 and θ(i)

t−2. Then, we finish proof by plugging in the
expression of εt−1. �

We then use Lemma 22 to bound the initial dual error. We denote θtk (and λtk) the
parameters at inner iteration k of outer iteration t.

Lemma 23 (Dual error warm-start). The warm-started dual error verifies:

Dt(λt?)−Dt(λt) ≤ CDεt−1, with CD =
(
C2 + Cω + 4βn

L

)
. (4.C.13)

Note that we simply warm-start the dual coordinates for an outer iteration using the
last iterate from the previous one. Yet, this leads to θt0 = θt−1

K + βΣ−1
β (ωt+1 − ωt), as in

Algorithm 9.

Proof. Equation (4.C.2) implies that Dt(λ) can be written as:

Dt(λ) = −
n∑
i=1

1
β + σi

[1
2(Aλ)(i) + βω

(i)
t

]>
(Aλ)(i) +Rcomp(λ), (4.C.14)

with Rcomp(λ) that only depends on λ(ij) and not on ω(i)
t for i ∈ {1, · · · , n}. Therefore,

Dt(λt?)−Dt(λt−1
K )

= Dt−1(λt?)−Dt−1(λt−1
K )− β

n∑
i=1

[
(Aλt?)(i) − (Aλt−1

K )(i)
]>

Σβ

[
ω

(i)
t − ω

(i)
t−1

]
.

Equation (4.B.7) writes (Aλt?)(i) = (β + σi)θt? − βω
(i)
t , and so:

Aλt?−Aλt−1
K = Aλt?−Aλt−1

? +Aλt−1
? −Aλt−1

K = Σ−1
β (θt?−θt−1

? )+Aλt−1
? −Aλt−1

K −β(ωt−ωt−1).

Then, we know from the equivalent reformulation of Equation (4.C.3) that θ?t = arg minF (θ)+
β
2‖θ − ω̄t‖

2, so using the 1-Lipschitzness of the proximal operator yields

‖θt? − θt−1
? ‖2 ≤ ‖ω̄t − ω̄t−1‖2 ≤ 1

n

n∑
k=1
‖ω(k)

t − ω
(k)
t−1‖2 = 1

n
‖ωt − ωt−1‖2. (4.C.15)

Similarly, Σβ(Aλt−1
? − Aλt−1

K ) = θt−1
? − (θt−1

K )(i), and so:
n∑
i=1

[
(Aλt?)(i) − (Aλt−1

K )(i)
]

Σβ

[
ω

(i)
t − ω

(i)
t−1

]
≤

n∑
i=1

∥∥∥∥∥(Aλt?)(i) − (Aλt−1
K )(i)

β + σi

∥∥∥∥∥ ∥∥∥ω(i)
t − ω

(i)
t−1

∥∥∥
n∑
i=1

2‖θt? − θt−1
? ‖2 + 2‖θt−1

? − (θt−1
K )(i)‖2 +

(
β

β + σi
+ 4

)
‖ω(i)

t − ω
(i)
t−1‖2.

Plugging in Equation (4.C.15) yields:

Dt(λt?)−Dt(λt−1
K ) ≤ Dt−1(λt?)−Dt−1(λt−1

K ) + 2β
n∑
i=1
‖(θt−1

K )(i) − θt−1
? ‖2 + 7β‖ωt − ωt−1‖2

Finally note that Dt−1(λt?) ≤ Dt−1(λt−1
? ) since λt−1

? is the maximizer of Dt−1, and (θt−1
K )(i) =

θ
(i)
t since it is the output of DVR after inner iteration t. The final expression is obtained
using 22 and the recursion assumptions given by Equations (4.C.9) and (4.C.11). �

136



Finally, the warm-start error on the nodes parameters is given by the two following
lemmas.

Lemma 24 (Virtual parameters warm-starts). Denote ‖θ1− θ2‖2
comp = ∑n

i=1
∑m
j=1 ‖θ

(ij)
1 −

θ
(ij)
2 ‖2. Then,

‖θt0 − θt?‖2
comp ≤ 2(Cω + 2mC1)εt−1. (4.C.16)

Proof. We use the fact that (θt)(ij) = (θt0)(ij) = (θt−1
K )(ij) to write:

‖θt0 − θt?‖2
comp = ‖θt−1

K − θt−1
? + θt−1

? − θt?‖2
comp ≤ 2‖θt − θt−1

? ‖2
comp + 2nm‖θt−1

? − θt?‖2.

Then, as before, the 1-Lipchitzness of the prox operator yields ‖θt−1
? −θt?‖ ≤ 1

n
‖ωt−ωt−1‖. �

Lemma 25 (Parameters warm-start). Denote ‖θ1 − θ2‖2
comp = ∑n

i=1
∑m
j=1 ‖θ

(ij)
1 − θ(ij)

2 ‖2.
Then,

n∑
i=1
‖(θt0)(i) − θt?‖2 ≤ 6

(
Cω + n

L

)
εt−1. (4.C.17)

Proof. We use the fact that since λt0 = λt−1
K then (θt0)(i) = (θt0)(i) + β

β+σi (ω
(i)
t − ω

(i)
t−1) to

write:
n∑
i=1
‖(θt0)(i) − θt?‖2 ≤

n∑
i=1
‖(θt−1

K )(i) − θt−1
? + θt−1

? − θt? + β

σi + β
(ω(i)

t − ω
(i)
t−1)‖2

≤ 3‖ωt − ωt−1‖2 + 3n‖θt−1
? − θt?‖2 + 3

n∑
i=1
‖(θt)(i) − θt−1

? ‖2.

�

We finish this part on warm starts by proving the following lemma, that links the initial
dual parameters error (computed with the Bregman divergence of φ), to the other parameters
which we already know how to control.

Lemma 26 (Dual parameters warm-start, as measured by the Bregman divergence).
Dφ(λt?, λt0) ≤ Cφεt−1, (4.C.18)

with Cφ = 6(Cω+n/L)+L2
max(2Cω+2mC1)

λ+
min(A>Σ2

β
A) + 2Lmax(Cω+2mC1)

α
.

Proof. We first decompose the Bregman divergence as:

Dφ(λt0, λt?) ≤
1
2‖(λ

t
0)comm − (λt?)comm‖A†commAcomm

+
n∑
i=1

m∑
j=1

Dφij((λt?)(ij), (λt0)(ij)). (4.C.19)

Then, we bound the communication term as:

‖(λt0)comm − (λt?)comm‖A†commAcomm
≤ ‖λt0 − λt?‖A†A ≤

1
λ+

min(A>Σ2
βA)‖ΣβA

(
λt0 − λt?

)
‖2

= 1
λ+

min(A>Σ2
βA)

 n∑
i=1
‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1

µ2
ij‖(λt0)(ij) − (λt?)(ij)‖2


= 1
λ+

min(A>Σ2
βA)

 n∑
i=1
‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1
‖∇fij((θt0)(ij))−∇fij((θt?)(ij))‖2


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= 1
λ+

min(A>Σ2
βA)

 n∑
i=1
‖(θt0)(i) − θt?‖2 +

n∑
i=1

m∑
j=1

L2
ij‖(θt0)(ij) − (θt?)(ij)‖2

 .
Using Lemmas 24 and 25, we obtain:

1
2‖(λ

t
0)comm − (λt?)comm‖A†commAcomm

≤

(
6
(
Cω + n

L

)
+ L2

max(2Cω + 2mC1)
)

λ+
min(A>Σ2

βA) εt−1. (4.C.20)

For the computation part, we use the duality property of the Bregman divergence, which
yields

Dφij((λt?)(ij), (λt0)(ij)) = Lij
µ2
ij

Df∗ij
(µij(λt?)(ij), µij(λt0)(ij))

= Lij
µ2
ij

Dfij(∇fij(µij(λt0)(ij)),∇fij(µij(λt?)(ij)))

= Lij
µ2
ij

Dfij((θt0)(ij), (θt?)(ij)) ≤
L2
ij

µ2
ij

‖(θt0)(ij) − (θt?)(ij)‖2

Therefore,
n∑
i=1

m∑
j=1

Dφij((λt0)(ij), (λt?)(ij)) ≤ 2Lmax(Cω + 2mC1)
α

εt−1. (4.C.21)

Substituting Equations (4.C.20) and (4.C.21) into Equation (4.C.19) finishes the proof. �

Inner iteration error decrease. Now that we have bounded the error at the beginning
of each outer iteration, we bound error at the end of each outer iteration by using the
convergence results for DVR. We first prove the following Lemma, which controls the distance
between the virtual parameters and the actual one:

Lemma 27 (Virtual error decrease). For all (i, j),

E[
∑
i,j

‖(θt+1)(ij) − θt?‖2] ≤ (1− ρ)K
[
‖θt0 − θt?‖2

comp + ρsumK

1− ρ C0(t)
]
. (4.C.22)

Proof. We cannot retrieve direct control over the θ(ij)
t+1 from control over the dual vari-

ables or the dual error, since this would require the f ∗ij functions to be smooth, which they
may not be. Yet, we leverage the fact that θ(ij)

t+1 is obtained by a convex combination between
θ

(ij)
t and θ(i)

t to obtain convergence of to θt?. We note jt,k(i) the virtual node that is updated
at time (t, k) for node i. We note Ek the expectation relative to the value of jt,k(i). We start
by remarking that:

Ek+1
[
‖(θtk+1)(ij) − θt?‖2

]
= (1− pij)‖(θtk)(ij) − θt?‖2 + pij‖(1− ρij)(θtk)(ij) + ρij(θtk)(i) − θt?‖2

≤ (1− pijρij)‖(θtk)(ij) − θt?‖2 + pijρij‖(θtk)(i) − θt?‖2,
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where in the last inequality we used the convexity of the squared norm. We use that pijρij ≥ ρ
(equal for the smallest one), and write that:

E[‖(θtK)(ij)− θt?‖2] ≤ (1−ρ)K‖(θt0)(ij)− θt?‖2 +pijρij
K∑
k=1

(1−ρ)k−1‖(θtK−k)(i)− θt?‖2. (4.C.23)

Noting ρsum = maxi
∑m
j=1 ρijpij and ‖θtk − θt?‖2

comp,i = ∑m
j=1 ‖(θtk)(ij) − θt?‖2, we obtain

E[‖θtK − θt?‖2
comp,i] ≤ (1− ρ)K‖θt0 − θt?‖2

comp,i + ρsum

K∑
k=1

(1− ρ)k−1‖(θtK−k)(i) − θt?‖2. (4.C.24)

Using Lemma 21, we know that ∑n
i=1 ‖(θtk)(i) − θt?‖2 ≤ C0(t)(1− ρ)k, with C0(t) a constant

that depends on the initial conditions of outer iteration t. Therefore,
n∑
i=1

K∑
k=1

(1− ρ)k−1‖(θtK−k)(i) − θt?‖2 ≤ K(1− ρ)K−1C0(t). (4.C.25)

In the end,

E[‖θtK − θt?‖2
comp] ≤ (1− ρ)K

[
‖θt0 − θt?‖2

comp + ρsumK

1− ρ C0(t)
]
. (4.C.26)

�

This lemma has the following corollary:

Corollary 9 (Warm-started virtual error decrease). For all (i, j),

E[
∑
i,j

‖(θt+1)(ij) − θt?‖2] ≤ (1− ρ)K
[
6
(
Cω + n

L

)
+K

ρsumCcomp

1− ρ

]
εt−1, (4.C.27)

with
Ccomp = (β + σmax + Lmax)

(σmin + β)2

(
pmin

ηt
Cφ + C2 + Cω + 4βn

L

)

Proof. Using Lemmas 21, 26 and 23, we write:

C0(t) = (β + σmax + Lmax)
(σmin + β)2

(
pmin

ηt
Dφ(λt?, λt0) +

(
D(λt?)−D(λt0)

))
≤ Ccompεt−1

We use Lemma 24 for the first term. �

Lemma 28 (Condition on K). If Equations (4.C.9), (4.C.10) and (4.C.11) hold at time
t, and K is such that:

(1− ρ)K ≤ min
(
C1(1− ρout)

12(Cω + n/L) ,
C1(1− ρout)(1− ρ)

KρsumCcomp
,
C2

CL
,

n(σmin + β)2

2LCL(β + σmax + Lmax)

)
,

then they also hold at time t+ 1.

Proof. Using Corollary 9, we obtain that if K is set such that

(1− ρ)K
[
6
(
Cω + n

L

)
+K

ρsumCcomp

1− ρ

]
≤ C1(1− ρout),
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then the recursion condition is respected for the virtual parameters. This yields the first and
second conditions on K. Now, we write CL =

(
pmin
ηt
Cφ + CD

)
, then using Lemmas 26 and 23

(where Cφ and CD are defined), we obtain using Theorem 23 that
Dt(λt?)−Dt(λt+1) ≤ CL(1− ρ)Kεt−1,

since λt+1 is obtained by performing K iterations of DVR to minimize Ft starting from
λt. This yields the third condition on K. Finally, the last condition on K is obtained by
leveraging Lemma 21.

�

4.D. Experiments

For the experiments, the following logistic regression problem is solved:

min
θ∈Rd

n∑
i=1

σ
2 ‖θ‖

2 +
m∑
j=1

1
m

log(1 + exp(−yijX>ij θ))
 , (4.D.1)

where the pairs (Xij, yij) ∈ Rd×{−1, 1} are taken from the RCV1 dataset, which we down-
loaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Figure 3 is the full version of Figure 1, in which we report the number of individual gradi-
ents and number of communications for each configuration. We see that accelerated EXTRA
actually outperforms EXTRA when the regularization is small, as already mentioned in the
main text. We also see that Accelerated EXTRA and Accelerated DVR have comparable
communication complexity on the grid graph, when γ is smaller. Yet, the computation com-
plexity of (accelerated) DVR is much smaller, so accelerated DVR is much faster overall as
long as τ is not too big.
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Figure 3. Experimental results for the RCV1 dataset with different graphs of
size n = 81, withm = 2430 samples per node, and with different regularization
parameters.
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CHAPTER 5

Statistically Preconditioned Accelerated Gradient Method

In this Chapter, we consider the setting of distributed empirical risk minimization where
multiple machines compute the gradients in parallel and a centralized server updates the
model parameters. In order to reduce the number of communications required to reach a
given accuracy, we propose a preconditioned accelerated gradient method where the precon-
ditioning is done by solving a local optimization problem over a subsampled dataset at the
server. The convergence rate of the method depends on the square root of the relative condi-
tion number between the global and local loss functions. We estimate the relative condition
number for linear prediction models by studying uniform concentration of the Hessians over
a bounded domain, which allows us to derive improved convergence rates for existing precon-
ditioned gradient methods and our accelerated method. Experiments on real-world datasets
illustrate the benefits of acceleration in the ill-conditioned regime.

This Chapter is based on the paper Statistically Preconditioned Accelerated Gradient
Method for Distributed Optimization [Hendrikx, Xiao, Bubeck, Bach, and Massoulie, 2020c],
published at ICML 2020. Other Bregman methods can be used for statistical preconditioning,
and we present in particular stochastic methods from the paper Fast Stochastic Bregman
Gradient Methods: Sharp Analysis and Variance Reduction [Dragomir, Even, and Hendrikx,
2021a] in Section 5.7.

5.1. Introduction

We consider empirical risk minimization problems of the form
minimize

x∈Rd
Φ(x) , F (x) + ψ(x), (5.1.1)

where F is the empirical risk over a dataset {z1, . . . , zN}:

F (x) = 1
N

N∑
i=1

`(x, zi), (5.1.2)

and ψ is a convex regularization function. We incorporate smooth regularizations such as
squared Euclidean norms (λ/2)‖x‖2 into the individual loss functions `(x, zi), and leave ψ
mainly for non-smooth regularizations such as the `1-norm or the indicator function of a
constraint set.

In modern machine learning applications, the dataset is often very large and has to be
stored at multiple machines. For simplicity of presentation, we assume N = mn, where m
is the number of machines and n is the number of samples stored at each machine. Let
Dj = {z(j)

1 , . . . , z(j)
n } denote the dataset at machine j and define the local empirical risk

fj(x) = 1
n

n∑
i=1

`
(
x, z

(j)
i

)
, j = 1, . . . ,m. (5.1.3)
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The overall empirical risk of Equation (5.1.2) can then be written as

F (x) = 1
m

m∑
j=1

fj(x) = 1
nm

m∑
j=1

n∑
i=1

`
(
x, z

(j)
i

)
.

We assume that F is LF -smooth and σF -strongly convex over domψ, in other words,
σF Id � ∇2F (x) � LF Id, ∀x ∈ domψ, (5.1.4)

where Id is the d× d identity matrix. The condition number of F is defined as κF = LF/σF .
We focus on a basic setting of distributed optimization where the m machines (workers)

compute the gradients in parallel and a centralized server updates the variable x. Specifically,
during each iteration t = 0, 1, 2, . . .,

(i) the server broadcasts xt to all m machines;
(ii) each machine j computes the gradient ∇fj(xt) and sends it back to the server;
(iii) the server forms ∇F (xt) = 1

m

∑m
j=1∇fj(xt) and uses it to compute the next iterate

xt+1.
A standard way for solving problem (5.1.1) in this setting is to implement the proximal
gradient method at the server:

xt+1 = argmin
x∈Rd

{
∇F (xt)>x+ ψ(x) + 1

2ηt
‖x− xt‖2

}
, (5.1.5)

where ‖ · ‖ denotes the Euclidean norm and ηt > 0 is the step size. Setting ηt = 1/LF leads
to linear convergence:

Φ(xt)− Φ(x∗) ≤
(
1− κ−1

F

)t LF
2 ‖x∗ − x0‖2, (5.1.6)

where x∗ = arg min Φ(x) [e.g., Beck, 2017, Section 10.6]. In other words, in order to reach
Φ(xt)−Φ(x∗) ≤ ε, we need O(κF log(1/ε)) iterations, which is also the number of communi-
cation rounds between the workers and the server. If we use accelerated proximal gradient
methods [e.g., Nesterov, 2004, Beck and Teboulle, 2009a, Nesterov, 2013b] at the server, then
the iteration/communication complexity can be improved to O(√κF log(1/ε)).

5.1.1. Statistical Preconditioning. In general, for minimizing F (x) = (1/m)∑m
j=1 fj(x)

with first-order methods, the communication complexity of O(√κF log(1/ε)) cannot be im-
proved [Arjevani and Shamir, 2015, Scaman et al., 2017a]. However, for distributed em-
pirical risk minimization (ERM), the additional finite-sum structure of each fj in (5.1.3)
allows further improvement. A key insight here is that if the datasets Dj at different workers
are i.i.d. samples from the same source distribution, then the local empirical losses fj are
statistically very similar to each other and to their average F , especially when n is large.
Statistical preconditioning is a technique to further reduce communication complexity based
on this insight.

An essential tool for preconditioning in first-order methods is the Bregman divergence.
The Bregman divergence of a strictly convex and differentiable function φ is defined as

Dφ(x, y) , φ(x)− φ(y)−∇φ(y)>(x− y). (5.1.7)
We also need the following concepts of relative smoothness and strong convexity Bauschke
et al. [2017], Lu et al. [2018].
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Definition 5. Suppose φ : Rd → R is convex and twice differentiable. The function F
is said to be LF/φ-smooth and σF/φ-strongly convex with respect to φ if for all x ∈ Rd,

σF/φ∇2φ(x) � ∇2F (x) � LF/φ∇2φ(x). (5.1.8)

The classical definition in (5.1.4) can be viewed as relative smoothness and strong con-
vexity where φ(x) = (1/2)‖x‖2. Moreover, it can be shown that (5.1.8) holds if and only if
for all x, y ∈ Rd

σF/φDφ(x, y) ≤ DF (x, y) ≤ LF/φDφ(x, y). (5.1.9)
Consequently, we define the relative condition number of F with respect to φ as κF/φ =
LF/φ/σF/φ.

Following the Distributed Approximate Newton (DANE) method by Shamir et al. [2014],
we construct the reference function φ by adding some extra regularization to one of the local
loss functions (say f1, without loss of generality):

φ(x) = f1(x) + µ

2‖x‖
2. (5.1.10)

Then we replace (1/2)‖x− xt‖2 in the proximal gradient method (5.1.5) with the Bregman
divergence of φ, i.e.,

xt+1 = argmin
x∈Rd

{
∇F (xt)>x+ ψ(x) + 1

ηt
Dφ(x, xt)

}
. (5.1.11)

In this case, worker 1 acts as the server to compute xt+1, which requires solving a nontrivial
optimization problem involving the local loss function f1.

According to Shamir et al. [2014] and Lu et al. [2018], with ηt = 1/LF/φ, the sequence
{xt} generated by (5.1.11) satisfies

Φ(xt)− Φ(x∗) ≤
(
1− κ−1

F/φ

)t
LF/φDφ(x∗, x0), (5.1.12)

which is a direct extension of (5.1.6). Therefore, the effectiveness of preconditioning hinges
on how much smaller κF/φ is compared to κF . Roughly speaking, the better f1 or φ approx-
imates F , the smaller κF/φ (≥ 1) is. In the extreme case of f1 ≡ F (with only one machine
m = 1), we can choose µ = 0 and thus φ ≡ F , which leads to κF/φ = 1, and we obtain the
solution within one step.

In general, we choose µ to be an upper bound on the spectral norm of the matrix difference
∇2f1−∇2F . Specifically, we assume that with high probability, for the operator norm between
matrices (i.e., the largest singular value),∥∥∥∇2f1(x)−∇2F (x)

∥∥∥ ≤ µ, ∀x ∈ domψ, (5.1.13)

which implies [Zhang and Xiao, 2018, Lemma 3],
σF

σF + 2µ∇
2φ(x) � ∇2F (x) � ∇2φ(x). (5.1.14)

Now we invoke a statistical argument based on the empirical average structure in (5.1.3).
Without loss of generality, we assume that D1 contains the first n samples of {z1, . . . , zN}
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and thus ∇2f1(x) = 1
n

∑n
i=1∇2`(x, zi). For any fixed x, we can use Hoeffding’s inequality for

matrices [Tropp, 2015] to obtain, with probability 1− δ,∥∥∥∥∥ 1
n

n∑
i=1
∇2`(x, zi)−∇2F (x)

∥∥∥∥∥ ≤
√

32L2
` log(d/δ)
n

, (5.1.15)

where L` is the uniform upper bound on ‖∇2`(x, zi)‖.
If the losses `(x, zi) are quadratic in x, then the Hessians are constant and (5.1.13) holds

with µ = Õ(L`/
√
n), hiding the factor log(d/δ). In this case, we derive from (5.1.14) that

κF/φ = 1 + 2µ
σF

= 1 + Õ

(
κ`√
n

)
, (5.1.16)

where we assume σF ≈ σ`, where ∇2`(x, zi) � σ`Id for all x. Therefore, for large n, whenever
we have κF/φ < κF , the communication complexity O(κF/φ log(1/ε)) is better than without
preconditioning.

For non-quadratic loss functions, we need to ensure that (5.1.13) holds uniformly over
a compact domain with high probability. Standard ball-packing arguments encounter an
additional factor of

√
d [e.g., Zhang and Xiao, 2018, Lemma 6]. In this case, we have

µ = Õ(L`
√
d/n) and

κF/φ = 1 + 2µ
σF

= 1 + Õ

(
κ`
√
d√
n

)
, (5.1.17)

which suggests that the benefit of preconditioning may degrade or disappear in high dimen-
sion.

5.1.2. Contributions and Outline. In this paper, we make the following two contri-
butions.

First, we propose a Statistically Preconditioned Accelerated Gradient (SPAG) method
that can further reduce the communication complexity. Accelerated methods with a com-
plexity of O(√κF/φ log(1/ε)) have been developed for quadratic loss functions (see related
works in Section 5.2). However, Dragomir et al. [2019] have shown that acceleration is not
possible in general in the relatively smooth and strongly convex setting, and that more as-
sumptions are needed. Here, by leveraging the fact the reference function φ itself is smooth
and strongly convex, we obtain

Φ(xt)− Φ(x∗) ≤
t∏

τ=1

(
1− 1√

κF/φGτ

)
LF/φDφ(x∗, x0),

where 1 ≤ Gt ≤ κφ and Gt → 1 geometrically. Moreover, Gt can be calculated at each
iteration and serve as numerical certificate of the actual convergence rate. In all of our
experiments, we observe Gt ≈ 1 even in early iterations, which results in O(√κF/φ log(1/ε))
iterations empirically.

Second, we derive refined bounds on the relative condition number for linear predic-
tion models. Linear models such as logistic regression have the form `(x, zi) = `i(a>i x) +
(λ/2)‖x‖2. Assume that `′′i (a>i x) ≤ 1 and ‖ai‖ ≤ R for all i, which implies L` = R2 and κ` =
R2/λ. Then the Hoeffding bounds in (5.1.16) for quadratics becomes κF/φ = 1+Õ

(
R2
√
nλ

)
, and
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for nonquadratics, the bound in (5.1.17) (from previous work) becomes κF/φ = 1+Õ
(
R2√d√
nλ

)
.

We show that:
• For quadratic losses, the bound on relative condition number can be improved by a factor
of
√
n, i.e.,

κF/φ = 3
2 +O

(
R2

nλ
log

(
d

δ

))
.

• For non-quadratic losses, we derive a uniform concentration bound to remove the depen-
dence of κF/φ on d,

κF/φ = 1 +O

(
R2
√
nλ

(
RD +

√
log(1/δ)

))
,

where D is the diameter of domφ (bounded domain). We also give a refined bound when
the inputs ai are sub-Gaussian.

These new bounds on κF/φ improve the convergence rates for all existing accelerated and
non-accelerated preconditioned gradient methods (see related work in Section 5.2).

We start by discussing related work in Section 5.2. In Section 5.3, we introduce SPAG
and give its convergence analysis. In Section 5.4, we derive sharp bounds on the relative
condition number, and discuss their implications on the convergence rates of SPAG and other
preconditioned gradient methods. We present experimental results in Section 5.5.

5.2. Related Work

Shamir et al. [2014] considered the case ψ ≡ 0 and introduced the statistical precondi-
tioner (5.1.10) in DANE. Yet, they define a separate φj(x) = fj(x) + (µ/2)‖x‖2 for each
worker j, compute m separate local updates using (5.1.11), and then use their average as
xt+1. For quadratic losses, they obtain the communication complexity Õ((κ2

`/n) log(1/ε)),
which is roughly O(κ2

F/φ log(1/ε)) in our notation, which is much worse than their result
without averaging of O(κF/φ log(1/ε)) given in Section 5.1.1. We further improve this to
O(√κF/φ log(1/ε)) using acceleration.

Zhang and Xiao [2015] proposed DiSCO, an inexact damped Newton method, where the
Newton steps are computed by a distributed conjugate gradient method with a similar pre-
conditioner as (5.1.10). They obtain a communication complexity of Õ((√κ`/n1/4) log(1/ε))
for quadratic losses and Õ(√κ`(d/n)1/4 log(1/ε)) for self-concordant losses. Comparing with
(5.1.16) and (5.1.17), in both cases they correspond to O(√κF/φ log(1/ε)) in our notation.
Reddi et al. [2016] use the Catalyst framework [Lin et al., 2015a] to accelerate DANE; their
method, called AIDE, achieves the same improved complexity for quadratic functions. We
obtain similar results for smooth convex functions using direct acceleration.

Yuan and Li [2019] revisited the analysis of DANE and found that the worse complexity
of Õ((κ2

`/n) log(1/ε)) is due to the lost statistical efficiency when averaging m different
updates computed by (5.1.11). They propose to use a single local preconditioner at the
server and obtain a communication complexity of Õ((1 + κ`/

√
n) log(1/ε)) for quadratic

functions. In addition, they propose a variant of DANE with heavy-ball momentum (DANE-
HB), and show that it has communication complexity Õ((√κ`/n1/4) log(1/ε)) for quadratic
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loss functions, matching that of DiSCO and AIDE. For non-quadratic functions, they show
DANE-HB has accelerated local convergence rate near the solution.

Wang et al. [2018b] proposed GIANT, an approximate Newton method that approxi-
mates the overall Hessian by the harmonic mean of the local Hessians. It is equivalent to
DANE in the quadratic case. They obtain a communication complexity that has logarith-
mic dependence on the condition number but requires local sample size n > d. Mahajan
et al. [2018] proposed a distributed algorithm based on local function approximation, which
is related to the preconditioning idea of DANE. Wang and Zhang [2019] apply statistical
preconditioning to speed up a mini-batch variant of SVRG [Johnson and Zhang, 2013a], but
they rely on generic Catalyst acceleration and their convergence results only hold for a very
small ball around the optimum.

Distributed optimization methods that use dual variables to coordinate solutions to local
subproblems include ADMM [Boyd et al., 2010] and CoCoA [Jaggi et al., 2014, Ma et al.,
2015, 2017]. Numerical experiments demonstrate that they benefit from statistical simi-
larities of local functions in the early iterations [Xiao et al., 2019a], but their established
communication complexity is no better than O(κF log(1/ε)).

5.3. The SPAG Algorithm

Although our main motivation in this paper is distributed optimization, the SPAG al-
gorithm works in the general setting of minimizing relatively smooth and strongly convex
functions. In this section, we first present SPAG in the more general setting (Algorithm 10),
then explain how to run it for distributed empirical risk minimization.

In the general setting, we consider convex optimization problems of the form (5.1.1),
where ψ is a closed convex function and F satisfies the following assumption.

Assumption 9. F is LF -smooth and σF -strongly convex. In addition, it is LF/φ-smooth
and σF/φ-strongly convex with respect to a differentiable convex function φ, and φ itself is
Lφ-smooth and σφ-strongly convex.

Algorithm 10 requires an initial point x0 ∈ domψ and two parameters LF/φ and σF/φ.
During each iteration, Line 6 finds at+1 > 0 by solving a quadratic equation, then Line 7
calculates three scalars αt, βt and ηt, which are used in the later updates for the three vectors
yt, vt+1 and xt+1. The function Vt(·) being minimized in Line 10 is defined as

Vt(x) = ηt
(
∇F (yt)>x+ ψ(x)

)
+ (1− βt)Dφ(x, vt) + βtDφ(x, yt). (5.3.1)

The inequality that needs to be satisfied in Line 12 is

Dφ(xt+1, yt) ≤ α2
tGt

(
(1− βt)Dφ(vt+1, vt) + βtDφ(vt+1, yt)

)
, (5.3.2)

where Gt is a scaling parameter depending on the properties of Dφ. It is a more flexible
version of the triangle scaling gain introduced by Hanzely et al. [2018].

As we will see in Theorem 26, smaller Gt’s correspond to faster convergence rate. Al-
gorithm 10 implements a gain-search procedure to automatically find a small Gt. At the
beginning of each iteration, the algorithm always trys to set Gt = Gt−1/2 as long as Gt−1 ≥ 2
(Gt−1 is divided by 4 in Line 3 since it is always multiplied by 2 in Line 5). Whenever (5.3.2)
is not satisfied, Gt is multiplied by 2. When the inequality (5.3.2) is satisfied, Gt is within a
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Algorithm 10 SPAG(LF/φ, σrel, x0)
1: v0 = x0, A0 = 0, B0 = 1, G−1 = 1
2: for t = 0, 1, 2, . . . do
3: Gt = max{1, Gt−1/2}/2
4: repeat
5: Gt ← 2Gt

6: Find at+1 such that a2
t+1LrelGt = At+1Bt+1 where At+1 = At + at+1, Bt+1 = Bt +

at+1σrel

7: αt = at+1
At+1

, βt = at+1
Bt+1

σrel, ηt = at+1
Bt+1

8: yt = 1
1−αtβt

(
(1− αt)xt + αt(1− βt)vt

)
9: Compute ∇F (yt) (requires communication)
10: vt+1 = arg minx Vt(x)
11: xt+1 = (1− αt)xt + αtvt+1

12: until Inequality (5.3.2) is satisfied

factor of 2 from its smallest possible value. The following lemma guarantees that the gain-
search loop always terminates within a small number of steps (see proof in Appendix 5.A).

Lemma 29. If Assumption 9 holds, then the inequality (5.3.2) holds with Gt = κφ =
Lφ/σφ.

Therefore, if φ = (1/2)‖ ·‖2, then we can set Gt = 1 and there is no need to check (5.3.2).
In general, Algorithm 10 always produces Gt < 2κφ for all t ≥ 0. Following the argu-
ment from Nesterov [2013b, Lemma 4], the total number of gain-searches performed up to
iteration t is bounded by

2(t+ 1) + log2(Gt),
which also bounds the total number of gradient evaluations. Thus the overhead is roughly
twice as if there were no gain-search. Next we present a convergence theorem for SPAG.

Theorem 26. Suppose Assumption 9 holds. Then the sequences generated by SPAG
satisfy for all t ≥ 0, (

Φ(xt)− Φ(x∗)
)

+ σrelDφ(x∗, vt) ≤
1
At
Dφ(x∗, v0),

where At = 1
4σrel

(∏t−1
τ=0 (1 + γτ )−

∏t−1
τ=0 (1− γτ )

)2
, and γt = 1

2
√
κrelGt

.

The proof of Theorem 26 relies on the techniques of Nesterov and Stich [2017], and the
details are given in Appendix 5.A. We can estimate the convergence rate as follows:

1
At

= O

(
t∏

τ=0

(
1− 1√

κF/φGτ

))
= O

((
1− 1√

κF/φG̃t

)t )
,

where G̃t is such that G̃−1/2
t = (1/t)∑t

τ=0G
−1/2
t , that is, G̃1/2

t is the harmonic mean of
G

1/2
0 , . . . , G

1/2
t−1. In addition, it can be shown that At ≥ t2/(4LF/φG̃t). Therefore, as σF/φ → 0,
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Theorem 26 gives an accelerated sublinear rate:

Φ(xt)− Φ(x∗) ≤
4LF/φG̃t

t2
Dφ(x∗, x0).

To estimate the worst case when σF/φ > 0, we replace Gt by κφ to obtain the iteration
complexity O

(√
κF/φκφ log(1/ε)

)
. Since κF/φκφ ≈ κF , this is roughly O

(√
κF log(1/ε)

)
,

the same as without preconditioning. However, the next lemma shows that under a mild
condition, we always have Gt → 1 geometrically.

Lemma 30. Suppose Assumption 9 holds and in addition, ∇2φ isM-Lipschitz-continuous,
i.e., for all x, y ∈ domψ, ∥∥∥∇2φ(x)−∇2φ(y)

∥∥∥ ≤M‖x− y‖.

Then the inequality (5.3.2) holds with

Gt = min
{
κφ, 1 + (M/σφ)dt

}
, (5.3.3)

where dt = ‖vt+1 − vt‖+ ‖vt+1 − yt‖+ ‖xt+1 − yt‖.

In particular, if φ is quadratic, then we have M = 0 and Gt = 1 always satisfies (5.3.2).
In this case, the convergence rate in Theorem 26 satisfies 1/At = O

((
1− 1/√κF/φ

)t )
.

In general, M 6= 0, but it can be shown that the sequences generated by Algorithm 10,
{xt}, {yt} and {vt} all converge to x∗ at the rate

(
1 − 1/√κF

)t
[see, e.g., Lin and Xiao,

2015, Theorem 1]. As a result, dt → 0 and thus Gt → 1 at the same rate. Consequently, the
convergence rate established in Theorem 26 quickly approaches O

((
1− 1/√κF/φ

)t )
.

5.3.1. Implementation for Distributed Optimization. In distributed optimiza-
tion, Algorithm 10 is implemented at the server. During each iteration, communication
between the server and the workers only happens when computing ∇F (yt). Checking if the
inequality (5.3.2) holds locally requires that the server has access to the preconditioner φ.

If the datasets on different workers are i.i.d. samples from the same source distribution,
then we can use any fj in the definition of φ in (5.1.10) and assign worker j as the server.
However, this is often not the case in practice and obtaining i.i.d. datasets on different
workers may involve expensive shuffling and exchanging large amount of data among the
workers. In this case, a better alternative is to randomly sample small portions of the data
on each worker and send them to a dedicated server. We call this sub-sampled dataset D0
and the local loss at the server f0, which is defined the same way as in (5.1.3). Then the
server implements Algorithm 10 with φ(x) = f0(x) + (µ/2)‖x‖2. Here we only need D0 be a
uniform sub-sample of ∪mj=1Dj, which is critical for effective preconditioning. On the other
hand, it is not a problem at all if the datasets at the workers, D1, . . . ,Dm, are not shuffled
to to be i.i.d., because it does not change the average gradients ∇F (yt). In the rest of the
paper, we omit the subscript to simply use f to represent the local empirical loss function.
As discussed in Section 5.1.1, if∥∥∥∇2f(x)−∇2F (x)

∥∥∥ ≤ µ, ∀x ∈ domψ (5.3.4)
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with high probability, then according to (5.1.14), we can choose

LF/φ = 1, σF/φ = σF
σF + 2µ

as the input to Algorithm 10. In the next section, we leverage matrix concentration bounds
to estimate how µ varies with the number of subsamples n. With sufficiently large n, we can
make µ small so that the relative condition number κF/φ = 1 + 2µ/σF is much smaller than
κF .

5.4. Bounding the Relative Condition Number

In this section, we derive refined matrix concentration bounds for linear prediction mod-
els. Suppose the overall dataset consists of N samples {z1, . . . , zN}, where each zi = (ai, bi)
with ai ∈ Rd being a feature vector and bi the corresponding label or regression target. Lin-
ear models (including logistic and ridge regression) have the form `(x, zi) = `i(a>i x)+ λ

2‖x‖
2,

where `i is twice differentiable and may depend on bi, and λ > 0. We further assume
that `′′i = `′′j for all i and j, which is valid for logistic and ridge regression as well. Since
f(x) = (1/n)∑n

i=1 `(x, zi), we have

∇2f(x) = 1
n

n∑
i=1

`′′i (a>i x)aia>i + λId. (5.4.1)

Here we omit the subscript j in fj since we only need one subsampled dataset at the server,
as explained in Section 5.3.1. For the overall loss function defined in (5.1.2), the Hessian
∇2F (x) is defined similarly by replacing n with N .

We assume for simplicity that the strong convexity of F mainly comes from regularization,
that is, σF = σ` = λ, but the results can be easily extended to account for the strong
convexity from data. We start by showing tight results for quadratics, and then provide
uniform concentration bounds of Hessians for more general loss functions. Finally, we give
a refined bound when the ai’s are sub-Gaussian.

5.4.1. Quadratic Case. We assume in this section that `i(a>i x) = (a>i x − bi)2/2, and
that there exists a constant R such that ‖ai‖ ≤ R for all i = 1, . . . , N . In this case we have
L` = R2 and κ` = R2/λ. Since the Hessians do not depend on x, we use the notation

HF = ∇2F (x), Hf = ∇2f(x).
Previous works [Shamir et al., 2014, Reddi et al., 2016, Yuan and Li, 2019] use the Hoeffding
bound (5.1.15) to obtain(

1 + 2µ
λ

)−1
(Hf + µId) � HF � Hf + µId, (5.4.2)

with µ = R2
√
n

√
32 log(d/δ). (5.4.3)

Our result is given in the following theorem.
Theorem 27. Suppose `i is quadratic and ‖ai‖ ≤ R for all i. For a fixed δ > 0, if

n > 28
3 log

(
2d
δ

)
, then the following inequality holds with probability at least 1− δ:(3

2 + 2µ
λ

)−1
(Hf + µId) � HF � 2 (Hf + µId) , (5.4.4)
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with µ = 1
2

(
28R2

3n log
(

2d
δ

)
− λ

)+

. (5.4.5)

Thus, for this choice of µ, σrel =
(

3
2 + 2µ

λ

)−1
, Lrel = 2 and so κrel = O

(
1 + κ`

n
log

(
d
δ

))
with

probability 1− δ.

Theorem 27 improves on the result in (5.4.3) by a factor of
√
n. The reason is that

matrix inequality (5.4.2) is derived from the additive bound ‖Hf − HF‖ ≤ µ [e.g., Shamir
et al., 2014, Yuan and Li, 2019]. We derive the matrix inequality (5.4.4) directly from a
multiplicative bound using the matrix Bernstein inequality (see proof in Appendix 5.B.1).
Note that by using matrix Bernstein instead of matrix Hoeffding inequality [Tropp, 2015],
one can refine the bound for µ in (5.4.2) from L`/

√
n to

√
L`LF/n, which can be as small as

L`/n in the extreme case when all the ai’s are orthogonal. Our bound in (5.4.5) states that
µ = Õ(L`/n) in general for quadratic problems, leading to κF/φ = Õ(1 + κ`/n).

Remark 1. Theorem 27 is proved by assuming random sampling with replacement. In
practice, we mostly use random sampling without replacement, which usually concentrates
even more than with replacement [Hoeffding, 1963].

Remark 2. In terms of reducing κF/φ, there is not much benefit to having µ < λ. Indeed,
higher values of µ regularize the inner problem of minimizing Vt(x) in (5.3.1), because the
condition number of Dφ(x, y) = Df (x, y)+(µ/2)‖x−y‖2 is (Lf+µ)/(λ+µ). Increasing µ can
thus lead to substantially easier subproblems when µ > λ, which reduces the computation
cost at the server, although this may sometimes affect the rate of convergence.

5.4.2. Non-quadratic Case. For non-quadratic loss functions, we need ∇2f(x) to be
a good approximation of ∇2F (x) for all iterations of the SPAG algorithm. It is tempting to
argue that concentration only needs to hold for the iterates of SPAG, and a union bound
would then give an extra log T factors for T iterations. Yet this only works for one step since
xt depends on the points chosen to build f for t > 0, so the `′′(a>i xt)aia>i are not independent
for different i (because of xt). Therefore, the concentration bounds need to be written at
points that do not depend on f . In order to achieve this, we restrict the optimization
variable within a bounded convex set and prove uniform concentration of Hessians over the
set. Without loss of generality, we consider optimization problems constrained in B(0, D),
the ball of radius D centered at 0. Correspondingly, we set the nonsmooth regularization
function as ψ(x) = 0 if x ∈ B(0, D) and infinity otherwise.

If the radius D is small, it is then possible to leverage the quadratic bound by using the
inequality

‖Hf (x)−HF (x)‖ ≤ ‖Hf (x)−Hf (y)‖
+ ‖Hf (y)−HF (y)‖+ ‖HF (x)−HF (y)‖.

Thus, under a Lipschitz-continuous Hessian assumption (which we have), only concentration
at point y matters. Yet, such bounding is only meaningful when x is close to y, thus leading
to the very small convergence radius of Wang and Zhang [2019, Theorem 13], in which
they use concentration at the optimal point x∗. Using this argument for several y’s that
pave B(0, D) leads to an extra

√
d multiplicative factor since concentration needs to hold at

exponentially (in d) many points, as discussed in Section 5.1.1. We take a different approach
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in this work, and proceed by directly bounding the supremum for all x ∈ B(0, D), thus
looking for the smallest µ that satisfies:

sup
x∈B(0,D)

‖Hf (x)−HF (x)‖op ≤ µ. (5.4.6)

Equation (5.4.2) can then be used with this specific µ. We now introduce Assumption 10,
which is for example verified for logistic regression with B` = 1/4 and M` = 1.

Assumption 10. There exist B` and M` such that `′′i is M`-Lipschitz continuous and
0 ≤ `′′i (a>x) ≤ B` almost surely for all x ∈ B(0, D).

Theorem 28. If `i satisfies Assumption 10, then Equation (5.4.6) is satisfied with prob-
ability at least 1− δ for

µ =
√

4π R
2
√
n

B`

2 +
√

1
2π log(δ−1)

+RM`D

 .
Sketch of proof. The high probability bound on the supremum is obtained using Mc

Diarmid inequality [Boucheron et al., 2013]. This requires a bound on its expectation, which
is obtained using symmetrization and the Sudakov-Fernique Lemma [Boucheron et al., 2013].
The complete proof can be found in Appendix 5.B.2. �

The bound of Theorem 28 is relatively tight as long as RM`D < B`

√
log(δ−1). In-

deed, using the matrix Bernstein inequality for a fixed x ∈ B(0, D) would yield µ =
O
(
R
√
LFB` log(d/δ)/

√
n
)
. Therefore, Theorem 28 is tight up to a factor R/

√
LF in this

case.

5.4.3. Sub-Gaussian Bound. We show in this section that the bound of Theorem 28
can be improved under a stronger sub-Gaussian assumption on a.

Definition 6. The random variable a ∈ Rd is sub-Gaussian with parameter ρ > 0 if
one has for all ε > 0, x ∈ B(0, D):

P(|a>i x)| ≥ ρε) ≤ 2e−
ε2

2‖x‖2 . (5.4.7)

Theorem 29. If `i satisfies Assumption 10 and the ai are sub-Gaussian with constant
ρ, then denoting B̃ = B`/(M`D), there exists C > 0 such that Equation (5.4.6) is satisfied
with probability 1− δ for

µ = C
ρ2M`D√

n
(d+ log(δ−1))

ρ+ B̃√
d

+ ρ+ (R2B̃) 1
3

√
n

 .
Sketch of proof. This bound is a specific instantiation of a more general result based

on chaining, which is a standard argument for proving results on suprema of empirical
processes [Boucheron et al., 2013]. The complete proof can be found in Appendix 5.B.3. �

The sub-Gaussian assumption (5.4.7) always holds with ρ = R, the almost sure bound
on ‖ai‖. However Theorem 29 improves over Theorem 28 only with a stronger sub-Gaussian
assumption, i.e., when ρ < R. In particular for ai uniform over B(0, R), one has ρ = R/

√
d.

Assuming further that the (R2B)1/3/
√
n term dominates yields µ = O(R2(R2B)1/3/n), a
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√
n improvement over Theorem 28. We expect tighter versions of Theorem 29, involving the

effective dimension deff of vectors ai instead of the full dimension d, to hold.

5.5. Experiments

We have seen in the previous section that preconditioned gradient methods can out-
perform gradient descent by a large margin in terms of communication rounds, which was
already observed empirically [Shamir et al., 2014, Reddi et al., 2016, Yuan and Li, 2019].
We compare in this section the performances of SPAG with those of DANE and its heavy-
ball acceleration, HB-DANE [Yuan and Li, 2019], as well as accelerated gradient descent
(AGD). For this, we use two datasets from LibSVM1, RCV1 Lewis et al. [2004] and the
preprocessed version of KDD2010 (algebra) Yu et al. [2010]. Due to its better convergence
guarantees [Shamir et al., 2014, Yuan and Li, 2019], DANE refers in this section to the
proximal gradient method with the Bregman divergence associated to φ = f1 + (µ/2)‖ · ‖2

(without averaging over m workers). We use SPAG with σrel = 1/(1 + 2µ/λ) and HB-DANE
with β = (1−(1+2µ/λ)−1/2)2. Fine tuning these parameters only leads to comparable small
improvements for both algorithms. We tune both the learning rate and the momentum of
AGD.

Note that, as mentioned in Section 5.3.1, the number of nodes used by SPAG does not
affect its iteration complexity (but change the parallelism of computing ∇F (xt)). Only the
size n of the dataset used for preconditioning matters. We initialize all algorithms at the
same point, which is the minimizer of the server’s entire local loss (regardless of how many
samples are used for preconditioning).

Tuning µ. Although µ can be estimated using concentrations results, as done in Sec-
tion 5.4, these bounds are too loose to be used in practice. Yet, they show that µ depends
very weakly on λ. This is verified experimentally, and we therefore use the same value for µ
regardless of λ. To test the impact of µ on the iteration complexity, we fix a step-size of 1
and plot the convergence speed of SPAG for several values of µ. We see on Figure 1(c) that
the value of µ drastically affects convergence, actually playing a role similar to the inverse
of a step-size. Indeed, the smaller the µ the faster the convergence, up to a point at which
the algorithm is not stable anymore. Convergence could be obtained for smaller values of µ
by taking a smaller step-size. Yet, the step-size needs to be tuned for each value of µ, and
we observed that this does not lead to significant improvements in practice. Thus, we stick
to the guidelines for DANE by Shamir et al. [2014], i.e., we choose Lrel = 1 and tune µ.

Line search for Gt. As explained in Section 5.3, the optimal Gt is obtained through
a line search. Yet, we observed in all our experiments that Gt = 1 most of the time. This
is due to the fact that we start at the minimizer of the local cost function, which can be
close to the global solution. In addition, Equation (5.3.3) can actually be verified for Gt < 1,
even in the quadratic. Therefore, the line search generally has no added cost (apart from
checking that Gt = 1 works) and the effective rate in our experiments is κ−1/2

rel . Experiments
displayed in Figure 1 use Gt = 1 for simplicity.

RCV1. Figures 1(b) and 1(a) present results for the RCV1 dataset with different reg-
ularizations. All algorithms are run with N = 677399 (split over 4 nodes) and d = 47236.
We see that in Figure 1(b), the curves can be clustered by values of n, meaning that when

1Accessible at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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(c) Effect of µ on the convergence speed of SPAG on
RCV1 with λ = 10−7 and n = 104.
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Figure 1. Experimental results

regularization is relatively high (λ = 10−5), increasing the preconditioning sample size has a
greater effect than acceleration since the problem is already well-conditioned. In particular,
acceleration does not improve the convergence rate when n = 105 and λ = 10−5. When
regularization is smaller (λ = 10−7), SPAG and HB-DANE outperform DANE even when
ten times less samples are used for preconditioning, as shown in Figure 1(a). Finer tuning
(without using the theoretical parameters) of the momentum marginally improves the per-
formances of SPAG and HB-DANE, at the cost of a grid search. SPAG generally outperforms
HB-DANE in our experiments, but both methods have comparable asymptotic rates.

KDD2010. Figure 1(d) presents the results of larger scale experiments on a random
subset of the KDD2010 dataset with N = 7557074 (split over 80 nodes), d = 20216830
and λ = 10−7. The conclusions are similar to the experiments on RCV1, i.e., acceleration
allows to use significantly less samples at the server for a given convergence speed. AGD
competes with DANE when λ and n are small, but it is outperformed by SPAG in all our
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experiments. More experiments investigating the impact of line search, tuning and inaccurate
local solutions are presented in Appendix 5.C.

5.6. Conclusion

We have introduced SPAG, an accelerated algorithm that performs statistical precondi-
tioning for large-scale optimization. Although our motivation in this paper is for distributed
empirical risk minimization, SPAG applies to much more general settings. We have given
tight bounds on the relative condition number, a crucial quantity to understand the con-
vergence rate of preconditioned algorithms. We have also shown, both in theory and in
experiments, that acceleration allows SPAG to efficiently leverage rough preconditioning
with limited number of local samples. Preliminary experiments suggest that SPAG is more
robust to inaccurate solution of the inner problems than HB-DANE. Characterizing the ef-
fects of inaccurate inner solutions in the preconditioning setting would be an interesting
extension of this work.

5.7. Statistical Preconditioning with other Bregman algorithms

In this Section, we study statistical preconditioning using an accelerated Bregman method
to improve the dependence on the relative condition number. Yet, other Bregman methods
can be considered, such as Bregman SGD. This section presents results from Dragomir,
Even, and Hendrikx [2021a], that can be applied in the context of distributed optimization
in the same way as it is done in Chapter 5. More specifically, we consider the same setting
as Theorem 5, but this time the iterations are the following:

∇h(xt+1) = ∇h(xt)− ηgt, (5.7.1)
Section 4.A introduces a Bregman coordinate gradient algorithm, in which gt = eie

>
i ∇f(xt),

that has a distributed interpretation. In this section, we consider a general Bregman SGD
algotithm, and we make the following assumptions on the stochastic gradients gt.

Assumption 11. The stochastic gradients gt are such that gt = ∇fξt(xt), with Eξt [fξt ] =
f and fξt is Lf/h-relatively smooth with respect to h for all ξt. Besides, there exists a constant
χ2 ≥ 0 such that:

χ2 ≥ 1
2η2Eξt [Dh∗(∇h(xt)− 2η∇fξt(x?),∇h(xt))]

= Eξt
[
‖∇fξt(x?)‖2

∇2h∗(zt)

]
,

for some zt ∈ [∇h(xt)− 2η∇fξt(x?),∇h(xt)].

The definition of the variance χ is a Bregman adaptation of the usual variance at the
optimum definition used for instance in Bach and Moulines [2011b]. Note that since h∗ is
1/σh-smooth, then the assumption is verified for instance when the variance is bounded in
Euclidean norm, as ‖∇fξt(x∗)‖2

∇2h∗(zt) ≤ σ−1
h ‖∇fξt(x∗)‖2. We can now prove the following

Theorem:

Theorem 30. If f is L-smooth and σ-strongly convex relative to h with σ > 0, and
Assumption 11 hold, then for η ≤ 1/(2Lrel), the iterates produced by Bregman stochastic
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gradient (5.7.1) satisfy

E[Dh(x?, xt)] ≤ (1− ηµ)tDh(x?, x0) + η
σ2

µ
. (5.7.2)

The proof is based on the two following lemmas. We omit the proofs in this thesis, and
refer the interested reader to Dragomir et al. [2021a]. Lemma 31 is a Bregman equivalent of
the celebrated inequality 2ab ≤ a2 + b2, and Lemma 32 is a generalization of the cocoercivity
of the gradients [Nesterov, 2013c, Eq. 2.1.7] to the relatively smooth case.

Lemma 31. Let x+ be such that ∇h(x+) = ∇h(x) − g, and similarly define x+
1 and x+

2
from g1 and g2. Then, if g = g1+g2

2 , we obtain:

Dh(x, x+) ≤ 1
2
[
Dh(x, x+

1 ) +Dh(x, x+
2 )
]
.

Lemma 32 (Bregman Cocoercivity). If a convex function f is relatively L-smooth w.r.t
to h, then for any η ≤ 1

L
,

Df (x, y) ≥ 1
η
Dh∗ (∇h(x)− η (∇f(x)−∇f(y)) ,∇h(x)) (5.7.3)

Proof of Theorem 30. Since the gradient is unbiased (E[gt] = ∇f(xt)), we obtain
similarly to Equation (1.1.44) that:

E[Dh(x?, xt+1)] = Dh(x?, xt)− ηDf (x?, xt)− ηDf (xt, x?) + E[Dh(xt, xt+1)]. (5.7.4)
Using Lemma 31, the last term can be bounded as Dh(xt, xt+1) ≤ 1

2 [D1 +D2]. We use
Lemma 32 (Bregman co-coercivity) to write:

D1 = Dh∗(∇h(xt)− 2η [∇fξt(xt)−∇fξt(x?)] ,∇h(xt)) ≤ 2ηDfξt
(xt, x?),

so that E[D1/2] ≤ ηDf (xt, x?). Similarly,
D2 = Dh∗(∇h(xt)− 2η∇fξ(x?),∇h(xt)), (5.7.5)

so that E[D2/2] ≤ η2χ2. Thus, using the relative strong convexity of f to bound the
Df (x?, xt) term, we obtain:

E[Dh(x?, xt+1)] ≤ (1− ησ)Dh(x?, xt) + η2χ2, (5.7.6)
which yields the desired result. �

Theorem 30 in particular states that in the interpolation setting (the variance at the
optimum χ = 0) then Bregman SGD is as fast as Bregman GD, just like in the Euclidean
case. Besides, a convex formulation of Theorem 30 can be stated (when σrel = 0), but we
refer the interested reader to Dragomir et al. [2021a] for more details.

In Dragomir et al. [2021a], we then present a variance-reduced version of the itera-
tions (5.7.1), with an asymptotic convergence rate that matches the stochastic speedup
discussed in Section 1.2, though at the cost of additional regularity assumptions. Since we
do not present distributed interpretation of this method in this thesis (although they can
be used in the context of distributed optimization in the same way as in Chapter 5), we
refer the reader to the corresponding paper for the specifics of variance-reduced Bregman
stochastic methods.

157



Appendix
5.A. Convergence Analysis of SPAG

This section provides proofs for Lemma 29, Theorem 26 and Lemma 30 presented in
Section 5.3. Before getting to the proofs, we first comment on the nature of the accelerated
convergence rate obtained in Theorem 26.

Note that SPAG (Algorithm 10) can be considered as an accelerated variant of the general
mirror descent method considered by Bauschke et al. [2017] and Lu et al. [2018]. Specifically,
we can replace Dφ by the Bregman divergence of any convex function of Legendre type
[Rockafellar, 1970, Section 26]. Recently, Dragomir et al. [2019] show that fully accelerated
convergence rates, as those for Euclidean mirror-maps achieved by Nesterov [2004], may not
be attainable in the general setting. However, this negative result does not prevent us from
obtaining better accelerated rates in the preconditioned setting. Indeed, we choose a smooth
and strongly convex mirror map and further assume Lipschitz continuity of its Hessian. For
smooth and strongly convex cost functions, the convergence rates of SPAG are almost always
better than those obtained by standard accelerated algorithms (without preconditioning) as
long as n is not too small, and can be much better with a good preconditioner.

5.A.1. Proof of Lemma 29. Using the second-order Taylor expansion (mean-value
theorem), we have

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉 = 1
2(x− y)>∇2φ

(
y + t(x− y)

)
(x− y),

for some scalar t ∈ [0, 1]. We define

H(x, y) = ∇2φ
(
y + t(x− y)

)
,

where the dependence on t ∈ [0, 1] is made implicit with the ordered pair (x, y). Then we
can write

Dφ(x, y) = 1
2‖x− y‖

2
H(x,y).

By Assumption 9, φ is Lφ-smooth and σφ-strongly convex, which implies that for all x, y ∈ Rd,
σφ‖x− y‖2 ≤ ‖x− y‖2

H(x,y) ≤ Lφ‖x− y‖2.

Let wt = (1− βt)vt + βtyt. Then we have xt+1 − yt = αt
(
vt+1 − wt

)
and

Dφ(xt+1, yt) = 1
2‖xt+1 − yt‖2

H(xt+1,yt)

≤ Lφ
2 ‖xt+1 − yt‖2 = α2

t

Lφ
2 ‖vt+1 − wt‖2.

Next we use vt+1 − wt = (1− βt)(vt+1 − vt) + βt(vt+1 − yt) and convexity of ‖ · ‖2 to obtain

Dφ(xt+1, yt) ≤ α2
t

Lφ
2
(
(1− βt)‖vt+1 − vt‖2 + βt‖vt+1 − yt‖2

)
≤ α2

t

Lφ
2σφ

(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)
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= α2
tκφ

(
(1− βt)Dφ(vt+1, vt) + βtDφ(vt+1, yt)

)
.

This finishes the proof of Lemma 29.

5.A.2. Proof of Theorem 26. Theorem 2 is a direct consequence of the following
result, which is adapted from Nesterov and Stich [2017].

Theorem 31 (Smooth and strongly convex mirror map φ). Suppose Assumption 9 holds.
Then the sequences generated by Algorithm 10 satisfy for all t ≥ 0,

At
(
Φ(xt)− Φ(x∗)

)
+BtD(x∗, vt) ≤ A0

(
F (x0)− F (x∗)

)
+B0D(x∗, v0).

Moreover, if we set A0 = 0 and B0 = 1 then for t ≥ 0,

At ≥
1

4σrel

[
π+
t − π−t

]2
, Bt = 1 + σrelAt ≥

1
4
[
π+
t + π−t

]2
,

where

π+
t =

t−1∏
i=0

(
1 +

√
σrel

LrelGt

)
, π−t =

t−1∏
i=0

(
1−

√
σrel

LrelGt

)
.

We first state an equivalent definition of relative smoothness and relative strong convexity
[Lu et al., 2018]. The function F is said to be LF/φ-smooth and σF/φ-strongly convex with
respect to φ if for all x, y ∈ Rd,
F (y) +∇F (y)>(x− y) + σL/φDφ(x, y) ≤ F (x) ≤ F (y) +∇F (y)>(x− y) + LL/φDφ(x, y).

(5.A.1)

Obviously this is the same as (5.1.9). We also need the following lemma, which is an extension
of a result from Chen and Teboulle [1993, Lemma 3.2], whose proof we omit.

Lemma 33 (Descent property of Bregman proximal point). Suppose g is a convex function
defined over domφ and

vt+1 = argmin
x

{
g(x) + (1− βt)Dφ(x, vt) + βtDφ(x, yt)

}
,

then for any x ∈ domh,
g(vt+1)+(1−βt)Dφ(vt+1, vt)+βtDφ(vt+1, yt) ≤ g(x)+(1−βt)Dφ(x, vt)+βtDφ(x, yt)−Dφ(x, vt+1).

Proof of Theorem 31. The proof follows the same lines as Nesterov and Stich [2017],
with adaptations to use general Bregman divergences. Applying Lemma 33 with g(x) =
ηt
(
∇f(yt)>x+ ψ(x)

)
, we have for any x ∈ domφ,

D(x, vt+1) + (1− βt)D(vt+1, vt) + βtD(vt+1, yt)− (1− βt)D(x, vt)− βtD(x, yt)

≤ ηt∇f(yt)>(x− vt+1) + ηt
(
ψ(x)− ψ(vt+1)

)
.

Since by definition ηt = at+1
Bt+1

, multiplying both sides of the above inequality by Bt+1 yields

Bt+1D(x, vt+1)+Bt+1
(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
−Bt+1(1− βt)D(x, vt)

−Bt+1βtD(x, yt) ≤ at+1∇f(yt)>(x− vt+1) + at+1
(
ψ(x)− ψ(vt+1)

)
.
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Using the scaling property (5.3.2) and the relationships αt = at+1
At+1

and a2
t+1Lf/φGt =

At+1Bt+1, we obtain

Bt+1
(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
≥ Bt+1

α2
tGt

D(xt+1, yt) = A2
t+1Bt+1

a2
t+1Gt

D(xt+1, yt)

= At+1Lf/φD(xt+1, yt).

Combining the last two inequalities and using the facts Bt+1(1 − βt) = Bt and Bt+1βt =
at+1σf/φ, we arrive at

Bt+1D(x, vt+1) + At+1Lf/φD(xt+1, yt)−BtD(x, vt)− at+1σf/φD(x, yt)

≤ at+1∇f(yt)>(x− vt+1) + at+1
(
ψ(x)− ψ(vt+1)

)
. (5.A.2)

We then expand the gradient term on the right-hand side of (5.A.2) into two parts:

at+1∇f(yt)>(x− vt+1) = at+1∇f(yt)>(x− wt) + at+1∇f(yt)>(wt − vt+1), (5.A.3)

where wt = (1− βt)vt + βtyt. For the first part,

at+1∇f(yt)>(x− wt) = at+1∇f(yt)>(x− yt) + at+1(1− αt)
αt

∇f(yt)>(xt − yt)

≤ at+1
(
f(x)− f(yt)− σf/φD(x, yt)

)
+ at+1(1− αt)

αt
(f(xt)− f(yt)) .

(5.A.4)

Notice that

at+1
1− αt
αt

= at+1

( 1
αt
− 1

)
= at+1

(
At+1

at+1
− 1

)
= At+1 − at+1 = At.

Therefore, Equation (5.A.4) becomes

at+1∇f(yt)>(x− wt) ≤ at+1f(x)− At+1f(yt) + Atf(xt)− at+1σf/φD(x, yt). (5.A.5)

For the second part on the right-hand side of (5.A.3),

at+1∇f(yt)>(wt − vt+1) = −at+1

αt
∇f(yt)>(xt+1 − yt) = −At+1∇f(yt)>(xt+1 − yt)

≤ − At+1
(
f(xt+1)− f(yt)− Lf/φD(xt+1, yt)

)
, (5.A.6)

where in the last inequality we used the relative smoothness assumption in (5.A.1).
Summing the inequalities (5.A.2), (5.A.4) and (5.A.6), we have

Bt+1D(x, vt+1)−BtD(x, vt) ≤ at+1f(x)− At+1f(xt+1) + Atf(xt) + at+1(ψ(vt+1)− ψ(x))

≤ −At+1
(
f(xt+1)− f(x)

)
+ At

(
f(xt)− f(x)

)
+ at+1

(
ψ(x)− ψ(vt+1)

)
,

which is the same as
At+1

(
f(xt+1)− f(x)

)
+Bt+1D(x, vt+1) ≤

At
(
f(xt)− f(x)

)
+BtD(x, vt) + at+1

(
ψ(x)− ψ(vt+1)

)
.

(5.A.7)
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Finally we consider the term at+1
(
ψ(x)−ψ(vt+1)

)
. Using xt+1 = (1−αt)xt +αtvt+1 and

convexity of ψ, we have

ψ(xt+1) ≤ (1− αt)ψ(xt) + αtψ(vt+1).

Since by definition αt = at+1
At+1

and (1− αt) = At
At+1

, the above inequality is equivalent to

At+1ψ(xt+1) ≤ Atψ(xt) + at+1ψ(vt+1),

which implies (using At+1 = At + at+1) that for any x ∈ domφ,

At+1
(
ψ(xt+1)− ψ(x)

)
≤ At

(
ψ(xt)− ψ(x)

)
+ at+1

(
ψ(vt+1)− ψ(x)

)
. (5.A.8)

Summing the inequalities (5.A.7) and (5.A.8) and using Φ = f + ψ, we have

At+1
(
Φ(xt+1)− Φ(x)

)
+Bt+1D(x, vt+1) ≤ At

(
Φ(xt)− Φ(x)

)
+BtD(x, vt).

This can then be unrolled, and we obtain the desired result by setting x = x∗.
Finally, the estimates of At and Bt follow from a direct adaptation of the techniques

in [Nesterov and Stich, 2017]. The only difference is the use of the time-varying parameter
γt =

√
σF/φ/(LF/φGt) instead of a constant γ =

√
σF/φ/LF/φ, which does not impact the

derivations. �

5.A.3. Proof of Lemma 30. The analysis in Lemma 29 is very pessimistic, since we
use uniform lower and upper bounds for the Hessian of φ, whereas what we actually want is
to bound is the differences between Hessians. If the Hessian is well-behaved (typically Lips-
chitz, or if φ is self-concordant), we can prove Lemma 30, which leads to a finer asymptotic
convergence rate.

We start with the local quadratic representation of Bregman divergence:

Dφ(xt+1, yt) = 1
2‖xt+1 − yt‖2

H(xt+1,yt) = α2
t

2 ‖vt+1 − wt‖2
H(xt+1,yt)

≤ α2
t

2
(
(1− βt)‖vt+1 − vt‖2

H(xt+1,yt) + βt‖vt+1 − yt‖2
H(xt+1,yt)

)
≤ α2

t

2
(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)
+ α2

t

2 (1− βt)‖H(xt+1, yt)−H(vt+1, vt)‖ · ‖vt+1 − vt‖2

+ α2
t

2 βt‖H(xt+1, yt)−H(vt+1, yt)‖ · ‖vt+1 − yt‖2.

Now we use the Lipschitz property of ∇2φ to bound the spectral norms of differences of
Hessians:

‖H(xt+1, yt)−H(vt+1, vt)‖ ≤M‖zxy− zvv‖, ‖H(xt+1, yt)−H(vt+1, yt)‖ ≤M‖zxy− zvy‖,

where zvv ∈ [vt+1, vt], zxy ∈ [yt, xt+1] and zvy ∈ [yt, vt+1]. Using the triangle inequality of
norms, we have

‖zxy − zvy‖ = ‖zxy − yt + yt − zvy‖ ≤ ‖zxy − yt‖+ ‖yt − zvy‖ ≤ ‖xt+1 − yt‖+ ‖yt − vt+1‖,
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and
‖zvv− zxy‖ ≤ ‖zvv− vt+1‖+ ‖vt+1− yt‖+ ‖yt− zxy‖ ≤ ‖vt− vt+1‖+ ‖vt+1− yt‖+ ‖yt−xt+1‖.
Therefore, we have

dt , max
{
‖zxy − zvv‖, ‖zxy − zvy‖

}
≤ ‖vt − vt+1‖+ ‖vt+1 − yt‖+ ‖yt − xt+1‖,

and consequently,

Dφ(xt+1, yt) ≤
α2
t

2
(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)
+ Mdtα

2
t

2

(
(1− βt)‖vt+1 − vt‖2 + βt‖vt+1 − yt‖2

)
≤ α2

t

2
(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)
+ Mdtα

2
t

2σφ

(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)

= α2
t

2

(
1 + Mdt

σφ

)(
(1− βt)‖vt+1 − vt‖2

H(vt+1,vt) + βt‖vt+1 − yt‖2
H(vt+1,yt)

)
= α2

t

(
1 + Mdt

σφ

)(
(1− βt)D(vt+1, vt) + βtD(vt+1, yt)

)
.

Combining with Lemma 29, we see that Gt = min{κσ, 1 + (M/σφ)dt} satisfies the inequal-
ity (5.3.2). This finishes the proof of Lemma 30.

Note that this condition is not directly useful. Indeed, xt+1 and vt+1 depend on Gt. Yet,
under the uniform choice of Gt ≤ κφ, it can be shown that dt → 0 at rate (1 − 1/√κφκrel)t
because the sequences vt, xt and yt all converge to x∗ at this rate in the strongly convex
case [Lin and Xiao, 2015, Theorem 1]. As a consequence, Algorithm 10 will eventually use
Gt ≤ 2, leading to an asymptotic rate of (1− 1/√κrel)t.

5.B. Concentration of Hessians

In practice, preconditioned gradient methods such as DANE are often used with a step-
size of 1. This implies the assumption of Lrel = 1, which holds if n is sufficiently large with a
given µ or if µ is sufficiently large for a given n (but µ ≤ LF always). Otherwise convergence
is not guaranteed (which is why it is sometimes considered as “rather unstable"). If µ is
such that ‖Hf (x)−HF (x)‖ ≤ µ for all x ∈ B(0, D) then Lrel = 1 can safely be chosen since
HF (x) − Hf (x) � µId. Note that this choice of µ is completely independent of λ. In this
case, we use that HF (x)−Hf (x) � −µI to write that

Hf (x) + µ � HF (x) + 2µ � (1 + 2µH−1
F (x))HF (x) �

(
1 + 2µ

λ

)
HF (x).

These derivations are similar to the ones of Zhang and Xiao [2018, Lemma 3], and so we
obtain σrel =

(
1 + 2µ

λ

)−1
and the corresponding relative condition number κrel = 1 + 2µ

λ
, as

explained in Section 5.1.1. We see that µ is independent of λ, but the problem is still very
ill-conditioned for small values of λ, meaning that acceleration makes a lot of sense. In the
quadratic case, tighter relative bounds can be derived.
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5.B.1. The quadratic case. This section is focusing on proving Theorem 27.

Proof of Theorem 27. We consider the random variable a, and (ai)i∈{1,...,n} are n
i.i.d. variables with the same law as a. We introduce matrices Ĥ and H such that Hf =
Ĥ + λId and HF = H + λId. In particular, H = E[aa>] = EĤ. We define for α ≥ 0, β > 0,
Hα,β = αH + βId, and

Si = 1
n
H
− 1

2
α,β (aia>i −H)H−

1
2

α,β ,

which is such that E[Si] = 0. This allows to have bounds of the form ‖∑i Si‖ ≤ t with
probability 1 − δ and a spectral bound µ that depends on α, β, δ (and other quantities
related to H and aia>i ). We note that

n∑
i=1

Si = H
− 1

2
α,β (Ĥ −H)H−

1
2

α,β ,

and write the concentration bounds on the Si as −tHα,β � Ĥ −H � tHα,β for some t > 0,
which can be rearranged as:

Ĥ + tβId � (1− tα)H
Ĥ − tβId � (1 + tα)H.

Using Hf = Ĥ + λId and HF = H + λId, the first equation can be rearranged as:

HF �
1

1− tα (Hf + t(β − αλ)Id) . (5.B.1)

The second equation can be written

Hf �
[
(1 + tα)Id + t(β − αλ)H−1

F

]
HF ,

which, by adding t(β − αλ)Id on both sides, leads to

Hf + t(β − αλ)Id �
[
(1 + tα)Id + 2t(β − αλ)H−1

F

]
HF .

We let µ = t(β − αλ) and use H−1
F � λ−1Id to write that:(

1 + αt+ 2µ
λ

)−1
(Hf + µId) � HF �

1
1− αt (Hf + µId) . (5.B.2)

We then use the fact that aia>i and H are positive semidefinite and upper bounded by R2I
to write that:

‖Si‖ ≤
1
n
‖H−1

α,β‖max
{
‖aa>‖, ‖H‖

}
≤ R2

βn
. (5.B.3)

Using the fact that H = E[aa>], we bound the variance as:∥∥∥∥∑
i

E[SiS>i ]
∥∥∥∥ = 1

n

∥∥∥∥E[H−
1
2

α,β (aa> −H)H−1
α,β(aa> −H)H−

1
2

α,β ]
∥∥∥∥

= 1
n

∥∥∥∥H− 1
2

α,β (E[aa>H−1
α,βaa

>]−HH−1
α,βH)H−

1
2

α,β

∥∥∥∥
≤ 1
n

max
{
R̃2
∥∥∥∥H− 1

2
α,βE[aa>]H−

1
2

α,β

∥∥∥∥ , ∥∥∥∥H− 1
2

α,βHH
−1
α,βHH

− 1
2

α,β

∥∥∥∥}
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≤ 1
n

∥∥∥∥H− 1
2

α,βHH
− 1

2
α,β

∥∥∥∥max
{
R̃2,

∥∥∥∥H− 1
2

α,βHH
− 1

2
α,β

∥∥∥∥} ,
with R̃2 ≥ a>H−1

α,βa almost surely. We first notice that a>i H−1
α,βai ≤ R2

β
. Then, we use the

positive definiteness of Hα,β and H and the fact that βH−1
α,β � Id to show that for α > 0:

∥∥∥∥H− 1
2

α,βHH
− 1

2
α,β

∥∥∥∥ =
∥∥∥∥∥H− 1

2
α,β

αH + β − β
α

H
− 1

2
α,β

∥∥∥∥∥ = 1
α

∥∥∥Id − βH−1
α,β

∥∥∥ ≤ 1
α

(
1− β

αL+ β

)
= L

αL+ β
,

where L is the spectral norm of H, i.e., L = ‖H‖. A quick calculation shows that this
formula is also true for α = 0. In the case α = 0 and β = 1 (absolute bounds), Hα,β = Id
and we recover that we can bound the variance by LR2

n
, leading to the usual additive bounds.

For α > 0, we use the simpler bound
∥∥∥H− 1

2
α,βHH

− 1
2

α,β

∥∥∥ ≤ α−1 and R̃2 ≤ β−1R2, leading to
∥∥∥∥∑

i

E[SiS>i ]
∥∥∥∥ ≤ max(β−1R2, α−1)

nα
.

For any 1 > δ > 0, we note cδ = 28
3 log

(
2d
δ

)
. We now set α = βn

cδR2 , and assume that n > cδ
(otherwise concentration bounds will be very loose anyway). In this case, β−1R2 ≥ α−1,
meaning that the bound on the variance becomes:∥∥∥∥∑

i

E[SiS>i ]
∥∥∥∥ ≤ 1

α2cδ
.

Similarly, according to (5.B.3), every Si is almost surely bounded as: ‖Si‖ ≤ 1
αcδ

. We
can now use Matrix Bernstein Inequality [Tropp, 2015, Theorem (6.1.1)] to get that with
probability 1− pδ and for t ≥ 0, ∥∥∥∥ n∑

i=1
Si

∥∥∥∥ ≤ t,

with

pδ = 2d · exp(− t2/2
(α2cδ)−1 + (αcδ)−1t/3).

We choose t = (2α)−1, which leads to pδ = δ. By substituting the expressions of αt = 1
2 and

βt = R2cδ
n
αt into Equation (5.B.2), we obtain:(3

2 + 2µ
λ

)−1
(Ĥλ + µId) � Hλ � 2

(
Ĥλ + µId

)
,

with

µ = t(β − αλ) = 1
2

(
28R2

3n log
(

2d
δ

)
− λ

)
.

In case β is very small so that µ < 0 then it is always possible to choose δ′ < δ so that
µ > 0. This means that the same bound on µ holds with probability 1− δ′ > 1− δ. �

164



5.B.2. Almost surely bounded a. We first introduce Theorem 32, which proves a
general concentration result that implies Theorem 28 as a special case.

Theorem 32. We consider functions ϕ1, ϕ2, which are respectively L1 and L2 Lipschitz-
continuous. We consider two sets X and Y which are contained in balls of center 0 and
radius D1 and D2. We assume that |ϕ1(a>i x)| ≤ B1 and |ϕ2(a>i y)| ≤ B2 almost surely for
all x ∈ X and y ∈ Y. We consider

Y = sup
x∈X , y∈Y

{ 1
n

n∑
i=1

ϕ1(a>i x)ϕ2(a>i y)− Eϕ1(a>x)ϕ2(a>y)
}
.

Then, for all 1 ≥ δ > 0, with probability greater than 1− δ:

Y ≤
√

4π (E[‖a‖2]) 1
2

√
n

(B2L1D1 +B1L2D2) + 2B1B2√
2n

√
log 1

δ
.

Theorem 28 is then a direct corollary of Theorem 32, as shown below:

Proof of Theorem 28. The result is obtained by applying Theorem 32 with ϕ1 = `′′

and ϕ2 = 1
2(·)2. This implies that with probability at least 1− δ,

sup
x∈B(0,D), y∈B(0,1)

y>
[ 1
n

n∑
i=1

`′′(a>i x)aia>i − E`′′(a>x)aa>
]
y ≤ µ,

where the value of µ can be obtained by letting B1 = B`, L1 = M`, D1 = D, D2 = 1,
B2 = supy:‖y‖≤1 y

>aia
>
i y ≤ R2 and L2 = supy:‖y‖≤1 2‖y>ai‖ = 2R. �

Proof of Theorem 32. If changing any ai to some a′i, then the deviation in Y is at
most (almost surely):

1
n

sup
x∈X , y∈Y

∣∣∣ϕ1(a>i x)ϕ2(a>i y)
∣∣∣+ sup

x∈X , y∈Y

∣∣∣ϕ1(a′>i x)ϕ2(a′>i y)
∣∣∣ ≤ 2

n
B1B2.

Mac-Diarmid’s inequality [see, e.g., Vershynin, 2019, Theorem 2.9.1] thus implies that
with probability greater than 1− δ,

Y ≤ EY + 2B1B2√
2n

√
log 1

δ
. (5.B.4)

In order to bound EY , we first use classical symmetrization property [see, e.g., Vershynin,
2019, Section 6.4]

EY ≤
√

2π · E sup
x∈X , y∈Y

1
n

n∑
i=1

εiϕ1(a>i x)ϕ2(a>i y),

where each εi is an independent standard normal variable.
Denoting Zx,y = 1

n

∑n
i=1 εiϕ1(a>i x)ϕ2(a>i y), we have, for any x, y, x′, y′, assuming the ai

are fixed,

E(Zx,y − Zx′,y′)2 = 1
n2

n∑
i=1

(
ϕ1(a>i x)ϕ2(a>i y)− ϕ1(a>i x′)ϕ2(a>i y′)

)2

= 1
n2

n∑
i=1

(
ϕ1(a>i x)

[
ϕ2(a>i y)− ϕ2(a>i y′)

]
+
[
ϕ1(a>i x)− ϕ1(a>i x′)

]
ϕ2(a>i y′)

)2
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≤ 1
n2

n∑
i=1

(
2ϕ1(a>i x)2

[
ϕ2(a>i y)− ϕ2(a>i y′)

]2
+ 2ϕ2(a>i y′)2

[
ϕ1(a>i x)− ϕ1(a>i x′)

]2)

≤ 1
n2

n∑
i=1

(
2B2

1

[
ϕ2(a>i y)− ϕ2(a>i y′)

]2
+ 2B2

2

[
ϕ1(a>i x)− ϕ1(a>i x′)

]2)
.

We then have, using Lipschitz-continuity:

E(Zx,y − Zx′,y′)2 ≤ 1
n2

n∑
i=1

(
2B2

1L
2
2

[
a>i y − a>i y′

]2
+ 2B2

2L
2
1

[
a>i x− a>i x′

]2)
= E(Z̃x,y − Z̃x′,y′)2,

for
Z̃x,y = 1

n

n∑
i=1

{√
2B2L1ε̃1ia

>
i x+

√
2B1L2ε̃2ia

>
i y
}
,

with all ε̃1i and ε̃2i independent standard random variables.
Using Sudakov-Fernique inequality [Vershynin, 2019, Theorem 7.2.11], we get

EY =
√

2πE sup
x∈X , y∈Y

Zx,y

≤
√

2πE sup
x∈X , y∈Y

Z̃x,y

=
√

4πB2L1E sup
x∈X

1
n

n∑
i=1

ε̃1ia
>
i x+

√
4πB1L2E sup

y∈Y

1
n

n∑
i=1

ε̃2ia
>
i y

≤
√

4πB2L1D1E
∥∥∥∥ 1
n

n∑
i=1

ε̃1iai

∥∥∥∥+
√

4πB1L2D2E
∥∥∥∥ 1
n

n∑
i=1

ε̃2iai

∥∥∥∥
≤
√

4πB2L1D1

√√√√E
∥∥∥∥ 1
n

n∑
i=1

ε̃1iai

∥∥∥∥2
+
√

4πB1L2D2

√√√√E
∥∥∥∥ 1
n

n∑
i=1

ε̃2iai

∥∥∥∥2

≤
√

4πB2L1D1
(E[‖a‖2]) 1

2
√
n

+
√

4πB1L2D2
(E[‖a‖2]) 1

2
√
n

.

Plugging this into Equation (5.B.4), we obtain that with probability greater than 1− δ,

Y ≤
√

4π (E[‖a‖2]) 1
2

√
n

(B2L1D1 +B1L2D2) + 2B1B2√
2n

√
log 1

δ
.

�

Remark 3 (Relative bounds). In the quadratic case, considering relative bounds allowed
to choose smaller values of µ and to tighten the bounds on the relative condition number by
a
√
n factor. Theorem 28 consists in bounding (using the definition of the operator norm)

sup
x∈B(0,D),y∈B(0,1)

{ 1
n

n∑
i=1

`′′(a>i x)(a>i y)2 − y>H(x)y
}
,

and heavily relies on the fact that (a>i y)2 is independent of x. The proof needs to be adapted
in the case of the relative bounds since this term becomes (a>i H

− 1
2

α,β (x)y)2, which now depends
on x as well, and thus requires a different control.
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5.B.3. Subgaussian a. We considered in the previous section a splitting of the sum-
mands of the Hessians as a product of 2 functions. We now present a different bound that is
designed for a product of an arbitrary number of functions ϕ1, . . . , ϕr : R→ R. This section
is devoted to proving Theorem 33, which is based on the chaining argument [Boucheron
et al., 2013, Chapter 13], and from which Theorem 29 can be derived directly.

Theorem 33. Assume that for all i, ϕi(0) = 0 and ϕi is 1-Lipschitz. Assume that a
is ρ-subgaussian, and that for all k, supx∈B(0,1) |ϕk(a>i x)| ≤ Bk. Denote B = ∏r

k=1Bk. For
suitable constant Cr, for all γ > 0, one has that

P

 sup
x1,...,xr∈B(0,1)

1
n

∑
i∈[n]

{
r∏

k=1
ϕk(a>i xk)− E

r∏
k=1

ϕk(a>xk)
}
≥ ρrCr(d+ γ)

[
1√
dn

+ (ρ−rB)1−2/r

n

]
≤ r

π2

6 e
−γ.

We are primarily interested in the case r = 3, ϕ1 = ϕ2 = id (the identity mapping) to
control distances between Hessians.

Proof. We look for bounds on

Y := sup
x1,...,xr∈S1

1
n

∑
i∈[n]

{
r∏

k=1
ϕk(a>i xk)− Ea

r∏
k=1

ϕk(a>xk)
}
. (5.B.5)

For all j ≥ 0, let Nj be an ε-net of S1 that approximates S1 to distance 2−j. Then, Nj
can be chosen as |Nj| ≤ (1+2j+1)d[see, e.g., Vershynin, 2019, Section 4.2]. For all x ∈ S1, let
Πj(x) be some point in Nj such that ‖x−Πj(x)‖ ≤ 2−j. By convention we take Π0(x) = 0.

Then for all (x1, . . . , xr) ∈ Sr, using the chaining approach [Boucheron et al., 2013], we
write

1
n

∑
i∈[n]

∏
k∈[r]

ϕk(a>i xk)

=
∑
j≥0

1
n

∑
i∈[n]

∏
k∈[r]

ϕk(a>i Πj+1(xk))−
∏
k∈[r]

ϕk(a>i Πj(xk))


=
∑
j≥0

∑
k∈[r]

1
n

∑
i∈[n]

k−1∏
`=1

ϕ`(a>i Πj+1(x`))
[
ϕk(a>i Πj+1(xk))− ϕk(a>i Πj(xk))

] r∏
`=k+1

ϕ`(a>i Πj(x`)).

Let j ≥ 0 and k ∈ [r] be fixed. Consider a term of the form Z = 1
n

∑
i∈[n] Zi, with

Zi =
k−1∏
`=1

ϕ`(a>i u`)
[
ϕk(a>i uk)− ϕk(a>i vk)

] r∏
`=k+1

ϕ`(a>i v`), (5.B.6)

where u` ∈ Nj, v` ∈ Nj+1, and ‖uk − vk‖ ≤ εj := 2−j+1. By the triangle inequality, for all
x` ∈ S1, letting u` = Πj(x`) and v` = Πj+1(x`), these assumptions are satisfied. For each Zi
and t > 0, we have:

P(Zi ≥ εjρ
rt) ≤ P

(
|ϕ`(a>i u`)| ≥ ρt1/r for some ` < r,

or |ϕk(a>i uk)− ϕk(a>i vk)| ≥ ρεjt
1/r,
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or |ϕ`(a>i v`)| ≥ ρt1/r for some ` > k
)
.

Therefore, we have
P(Zi ≥ εjρ

rt) ≤ 2re−t2/r/2 if t ≤ ρ−rPj,k and
P(Zi ≥ εjρ

rt) = 0 if t > ρ−rPj,k,

where we noted Pj,k := min
{

2B/εj, 2(B/Bk)R
}
. We will also make use of notation j∗(k) :=

dlog2(R/Bk)e, so that
j ≤ j∗(k)⇒ Pj,k = 2B/εj, j > j∗(k)⇒ Pj,k = 2(B/Bk)R.

Fixing j ≥ 0, k ∈ [r], we write for any θ > 0 (a specific θ will be chosen later):

E e(θ/n)ρ−r[Zi−EZi]/εj = 1 +
(
θ

n

)2

E
[
(ε−1
j ρ−r(Zi − EZi))2F ((θ/n)(ε−1

j ρ−r(Zi − EZi)))
]
,

where
F (x) := x−2[ex − x− 1] ≤ e|x|.

Thus using this bound and the inequality xy ≤ x2 + y2:

E e(θ/n)ρ−r[Zi−EZi]/εj ≤ 1 +
(
θ

n

)2 [
E((ε−1

j ρ−r(Zi − EZi))4 + Ee2(θ/n)ρ−r|Zi−EZi|/εj
]
. (5.B.7)

By the sub-gaussian tail assumption, E(ε−1
j ρ−r(Zi − EZi))4 is bounded by a constant κr

dependent on r. We now assume that θ is such that
θ

n
≤ min

(
(ρ−rPj,k)2/r−1

8 , 1
)
,

which is equivalent to having (θ/n)y ≤ y2/r/8 for y ∈ [0, ρ−rPj,k] and r ≥ 2. Then,
Ee2(θ/n)ρ−r|Zi−EZi|/εj is also bounded by another constant κ′r dependent on r. Indeed, by
the sub-gaussian tail assumption, |EZi| ≤ ρrεjsr for some r-dependent constant, and we can
then use the fact that:

EeαX =
∫ ∞

0
ekzp(z)dz

=
∫ ∞

0

(
1 + α

∫ z

0
eαy

)
p(z)dzdy

= 1 + α
∫ ∞

0

∫ ∞
y

eαydyp(z)dz

= 1 + α
∫ ∞

0
eαyp(X ≥ y)dy,

with α = 2θ/n and X = ρ−r|Zi|εj to get:

E e2(θ/n)ρ−r|Zi−EZi|/εj ≤ E e2(θ/n)ρ−r(|Zi|+|EZi|)/εj

≤ e2(θ/n)srEe2θ/nρ−r|Zi|/εj

≤ e2(θ/n)sr [1 + 2θ
n

∫ ∞
0

e2(θ/n)y[P(Zi ≥ yρrεj) + P(−Zi ≥ yρrεj)]dy]

≤ e2(θ/n)sr [1 + 2θ
n

2r
∫ ρ−rPj,k

0
e2(θ/n)y−y2/r/2dy],
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≤ e2(θ/n)sr [1 + 2θ
n

2r
∫ ∞

0
e−y

2/r/4dy]

= e2(θ/n)sr [1 + θ

n
cr].

We finally use the fact that θ/n ≤ 1 to write Ee2(θ/n)ρ−r|Zi−EZi|/εj ≤ κ′r, with κ′r = e2sr [1+cr].
We write κ′′r = κr + κ′r and use Equation (5.B.7) together with the independence of the Zi
to obtain:

E eθρ
−r[ 1

n

∑n

i=1 Zi−EZi]/εj ≤
1 +

(
θ

n

)2

κ′′r

n ≤ e
θ2
n
κ′′r .

Thus, using that P(X ≥ y) = P(eX ≥ ey) ≤ e−yEeX (Markov Inequality), we have that
for fixed vertices u`, v`, ` ∈ [r] in the suitable ε-nets, this probability is upper bounded for
all θ ∈ [0,min(n, n(ρ−rPj,k)2/r−1/8)] as:

P

 1
n

∑
i∈[n]

Zi − EZi ≥ ρrεjtj,k

 ≤ exp
(
(r + 1)d ln(1 + 2j+2)− θtj,k + κ′′rθ

2/n
)
. (5.B.8)

We see in Equation (5.B.6) that the variables Zi are built by fixing a specific either u`
for ` < k, v` for ` > k, and uk and vk, meaning that there are actually r + 1 variables to
be fixed in nets of resolution either 2−j or 2−j−1. Note that all Zi for i ∈ {1, · · · , n} are
constructed with the same choice of u` and v`. Therefore, the number of possible choices for
u` ∈ Nj and v` ∈ Nj+1 involved in the definition of Zi is upper-bounded by

|Nj+1|r+1 ≤ ed(r+1) ln(1+2j+2).

Combining this with Equation (5.B.8), we obtain using a union bound that:

P
(

sup
u`,v`

{
Z − EZ

}
≥ ρrεjtj,k

)
= P

(
∪u`,v`

{
Z − EZ ≥ ρrεjtj,k

})
≤
∑
u`,v`

P (Z − EZ ≥ ρrεjtj,k)

≤ exp
(
(r + 1)d ln(1 + 2j+2)− θtj,k + κ′′rθ

2/n
)
.

Let now θj,k = min(n, n(ρ−rPj,k)2/r−1/8,
√
nd), and

tj,k = κ′′r
θj,k
n

+ 1
θj,k

[d(r + 1) ln(1 + 2j+2) + γ + 2 ln(j + 1)],

where γ > 0 is a free parameter. We then use the chaining decomposition of

Y = sup
x

 ∑
j≥0,k∈[r]

Z − EZ

,
and another union bound on j and k to write that:

P

Y ≥ ρr
∑

j≥0,k∈[r]
εjtj,k

 = P

sup
x

{ ∑
j≥0,k∈[r]

Z − EZ
}
≥ ρr

∑
j≥0,k∈[r]

εjtj,k


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≤ P

 ∑
j≥0,k∈[r]

sup
x
{Z − EZ} ≥ ρr

∑
j≥0,k∈[r]

εjtj,k


≤

∑
j≥0,k∈[r]

P
(

sup
u`,v`
{Z − EZ} ≥ ρrεjtj,k

)

≤
∑

j≥0,k∈[r]
e−γ−2 ln(1+j).

In the end, using that ∑j≥1 j
−2 = π2/6, we obtain:

P

Y ≥ ρr
∑

j≥0,k∈[r]
εjtj,k

 ≤ r
π2

6 e
−γ.

Moreover, one has

εjtj,k ≤ εjAr(1 + j)(d+ γ)
[

(ρ−rPj,k)1−2/r

n
+ 1√

nd
+ 1
n

]
,

for some suitable constant Ar dependent only on r. Fix some k ∈ [r]. Write:

1
Ar

∑
j≥0

εjtj,k ≤ 4d+ γ√
nd

+ d+ γ

n

j∗(k)∑
j=0

εj(2ρ−rB/εj)1−2/r(1 + j)

+ d+ γ

n

∑
j>j∗(k)

εj(2ρ−rBR/Bk)1−2/r(1 + j)

≤ 4d+ γ√
nd

+ d+ γ

n
A′r(ρ−rB)1−2/r

{
1 + (Bk/R)2/r ln(R/Bk)

}
,

where A′r is another constant depending only on r. Since Bk ≤ R, then (Bk/R)2/r ln(R/Bk)
is bounded by a (r-dependent) constant. �

We know present Corollary 10, which is a consequence of Theorem 33. We consider again
i.i.d. ai, bounded by R, satisfying the subgaussian tail assumption with parameter ρ, and
some function ϕ that is 1-Lipschitz, and uniformly bounded by Bϕ. Writing

H(x) = 1
n

n∑
i=1

aia
>
i ϕ(a>i x), (5.B.9)

We have the following corollary.
Corollary 10. Thus for 1 > δ > 0, with probability at least 1 − δ, it holds for some

C > 0 that

sup
x∈S1

‖H(x)‖op ≤ Cρ3(d+ ln(1/δ) + ln(5π2/6))
[

1 + ρ−1Bϕ√
dn

+ 1 + {ρ−3R2Bϕ}1−2/3

n

]
.

(5.B.10)
Proof. Let us write ϕ3(u) = ϕ(u)−ϕ(0). Then ϕ3 satisfies our assumptions (1-Lipschitz,

ϕ3(0) = 0). Moreover, we can decompose matrix H(x)− EH(x) into M(x) +N , where

M(x) = 1
n

n∑
i=1

[
aia
>
i ϕ3(a>i x)− Ea1a

>
1 ϕ3(a>1 x)

]
, N = 1

n

n∑
i=1

[
aia
>
i ϕ(0)− Ea1a

>
1 ϕ(0)

]
.
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Taking r = 2, ϕ1 = ϕ2 = Id, the Theorem 33 gives us that

P
(
‖N‖op ≥ C2|ϕ(0)|ρ2(γ + d)

(
1/
√
dn+ 1/n

))
≤ 2π

2

6 e
−γ. (5.B.11)

Taking next r = 3, and B = R2Bϕ, we obtain

P
(

sup
x∈S1

‖M(x)‖op ≥ C3ρ
3(d+ γ)

(
1/
√
dn+ [ρ−3R2Bϕ]1−2/3/n

))
≤ 3π

2

6 e
−γ. (5.B.12)

Combined, these two bounds give us that for all γ > 0, with C = C2 + C3:

P
(

sup
x∈S1

‖H(x)‖op ≥ Cρ3(d+ γ)
[

1 + ρ−1Bϕ√
dn

+ 1 + {ρ−3R2Bϕ}1−2/3

n

])
≤ 5π

2

6 e
−γ. (5.B.13)

We finally take γ = − ln
(

6δ
5π2

)
. �

The last step required to prove Theorem 29 is to consider the supremum over B(0, D)
with an arbitrary M`-Lipschitz function, which can be done by direct reduction:

Proof of Theorem 29. To apply this to `′′, defined on B(0, D) and M` Lipschitz, we
apply Corollary 10 to ϕ(x) = 1

M`D
`′′(Dx) (which is 1-Lipschitz on B(0, 1)). Then, Bϕ =

B`/M`D and the right hand side must be multiplied by M`D. �

Remark 4. Note that there is a difference in the way Theorem 32 and Theorem 33
are applied to our linear models problem. In particular, Theorem 32 considers ϕ1 = ‖ · ‖2

and ϕ2 = `′′, whereas Theorem 33 uses ϕ1 = ϕ2 = Id and ϕ3 = `′′. Theorem 32 can be
adapted to work with r = 3, but the bound does not improve when splitting ‖ · ‖2 into
Id × Id. Similarly, Theorem 33 could be used with r = 2 and ϕ1 = ‖ · ‖2/(2R) (to respect
the 1-Lipschitz assumption), but in this case the bound can only be worse since the main
difference is that the ρ3 factor becomes Rρ2, and ρ is generally smaller than R.

5.B.4. Tightness of Theorem 33. Consider that the ai uniformly distributed on the
sphere with radius R =

√
d, and take for fk the identity. Such vectors can be constructed by

taking vectors Ai with coordinates i.i.d. standard gaussian, and setting ai =
√
d‖Ai‖−1Ai.

The subgaussianity parameter ρ can then be taken equal to 1.
Using known results about maximal correlation between variables with fixed marginals

[e.g., Vershynin, 2019, Section 3], the expectation E∏r
k=1 a

>
1 xk is maximized, over choices

xk ∈ S1, by taking x1 = · · · = xr. We may choose x1 = e1, the first unit vector, by rotational
invariance, and thus the expectation is upper-bounded as:

E
r∏

k=1
a>1 xk ≤ Edr/2E

[
|Ai(1)|r
‖Ai‖r

]
.

This is of order 1, as can be shown using concentration inequalities on the deviations of ‖Ai‖
from

√
d. Consider then the empirical sum 1

n

∑
i∈[n]

∏
k∈[r] a

>
i xk. Choose xk = d−1/2a1 for all

k ∈ [r]. Then this empirical sum evaluates to
1
n

∑
i∈[n]

∏
k∈[r]

a>i xk = 1
n
dr/2 + 1

n

n∑
i=2

∏
k∈[r]

a>i a1.
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The second sum can be shown to be of order 1 (conditioning on a1, and then using, e.g.,
Bienaymé-Tchebitchev inequality). Thus, one cannot hope to establish concentration with-
out extra assumptions on the data distribution unless dr/2 = O(n).

Contrast this with the result of Theorem 33: for R =
√
d, B = Rr and ρ = 1, it gives

that
Y ≤ O(d(r/2)(1−2/r)d/n) = O(dr/2/n).

Thus the result is sharp for the particular example we just considered.

5.C. Experiment Setting and Additional Results

Some implementation details are omitted in the main text. To ease the reader’s under-
standing, we provide these details here, along with some additional experimental results.

Optimization problem. We used the logistic loss with quadratic regularization, mean-
ing that the function at node i is:

fi : x 7→ 1
m

m∑
j=1

log
(
1 + exp(−yi,jx>a(i)

j )
)

+ λ

2‖x‖
2,

where yi,j ∈ {−1, 1} is the label associated with a(i)
j , the j-th sample of node i. The local

datasets are constructed by shuffling the LibSVM datasets, and then assigning a fixed portion
to each worker. Then, the server subsamples n points from its local dataset to construct the
preconditioning dataset. To assess the suboptimality, we let the best algorithm run for more
time in order to get a good approximation of the minimum error. Then, we subtract it to
the running error of an algorithm to get the suboptimality at each step.

Tuning µ. We tune the base value of µ by starting from 0.1/n and then decreasing it
as long as it is stable, or increasing it as long as it is unstable. We multiply or divide µ by
a factor of 1.2 at each time.

Adjusting αt and βt. We found that choosing A0 = 0 and B0 = 1 for SPAG is usually
not the best choice. Indeed, rates are asymptotic and sequences αt and βt converge very
slowly when σrel is small, whereas we typically rarely use more than about 100 iterations of
SPAG. Therefore, we start the algorithm with At0 and Bt0 with t0 > 0 instead. We used
t0 = 50, but SPAG is not very sensitive to this choice.

Tuning the momentum. Figure 2(a) evaluates the relevance of tuning the parameters
controlling the momentum of SPAG and HB-DANE. To do so, we compare the default values
of β = (1− (1 + 2µ/λ)−1/2)2 (for HB-DANE) and σrel = 1/(1 + 2µ/λ) (for SPAG) to values
obtained through a grid search on the KDD2010 dataset with λ = 10−7. We tune HB-
DANE by using a grid-search of resolution 0.05 to test the values between 0.5 and 1. For
n = 103, theory predicts a momentum of β = 0.86 and the grid search gives β = 0.85. For
n = 104, theory predicts β = 0.81 and the grid search gives β = 0.8. For SPAG, we test
σrel = 10−2, 3×10−3, 10−3 and so on until σrel = 10−5 (so roughly divided by 3 at each step).
For n = 103, theory predicts σrel = 0.005 and the tuning yields σrel = 0.006. For n = 104,
theory predicts σrel = 0.0099 and the grid-search leads to σrel = 0.01. We do not display
the curves in this case (n = 104) since they are nearly identical. Therefore, the grid-search
always obtains the value on the grid that is closest to the theoretical value of the parameter,
and the difference in practice is rather small, as can be seen in Figure 2(a). This is why we
use default values in the main text.
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Local subproblems. Local problems are solved using a sparse implementation of SDCA
[Shalev-Shwartz, 2016]. In practice, the ill-conditionned regime is very hard, especially when
µ is small. Indeed, the local subproblems are very hard to solve, and it should be beneficial
to use accelerated algorithms to solve the inner problems. In our experiments, we warm-
start the local problems (initializing on the solution of the previous one), and keep doing
passes over the preconditioning dataset until ‖∇Vt(xt)‖ ≤ 10−9 (checked at each epoch).
This threshold is important because it greatly affects the performances of preconditioned
gradient methods. Figure 2(b) compares the performances of SPAG, DANE and HB-DANE
for different number of passes on the inner problems for the RCV1 dataset for n = 104

and λ = 10−5. We use µ = 2 × 10−5 and a step-size of 1 for all algorithms. We first
see that increasing the number of passes significantly improves the convergence speed of all
algorithms. Besides, heavy-ball acceleration does not seem very efficient when local problems
are not solved accurately enough. On the contrary, SPAG seems to enjoy faster rates than
DANE nevertheless. It would be interesting to understand these different behaviours more
in details.

Gain far from the optimum. So far, we have presented experiments with good
initializations (solution for the local dataset), and argued why Gt was very small in this
case. Because of Lemma 30, one would expect that Gt could be large when xt is very far
from x∗. Yet, We see in the proof of Lemma 30 that the Lipschitz constant of the Hessian
only needs to be considered for any convex set that contains xt+1, vt+1, yt and vt. In the
case of logistic regression, the third derivative decreases very fast when far from 0, meaning
that the local Lipschitz constant of the Hessian is small when the iterates are far from 0.
In other words, the Hessian changes slowly when far from the optimum (at least for logistic
regression).

We believe that this is the reason why Gt can always be chosen of order 1 (smaller than
2) in our experiments, and that this holds regardless of the initialization. To support this
claim, we plot in Figure 2(c) the values of the gain for the RCV1 dataset with λ = 10−7 and
5 different x0 sampled from N (0, 103), the normal law centered at 0 with variance 103. We
use a step-size of 0.9 and µ = 2×10−5. We first see that for Gmin = 1, the gain is always very
low, and actually increases at some point instead of becoming lower and lower, so the fact
that we were able to choose Gt of order 1 in the other experiments is not linked to the good
initialization. We had to choose a slightly higher µ than in the other experiments in order to
satisfy the relative smoothness condition, which was not satisfied at each iteration otherwise.
Since Gt is small in practice and the smaller the Gt the better the rate, we test SPAG with
no minimum value for the gain Gt. The curve for the gain in this case is shown by Gmin = 0,
and we see that the true gain stabilizes to a higher value, since updates are more agressive.
We discuss the efficiency of this version in the next paragraph. Note that the oscillations
are not due to numerical instability or inaccurate solving of the inner problems, but rather
to the fact that the step-size is slightly too big so sometimes the smoothness inequality is
not verified. Yet, this does not affect the convergence of SPAG, as shown in Figure 2(d).

Line Search with no minimum value. Since the gain is almost always smaller than
1, the line-search in SPAG generally only consists in checking that Gt = 1 works, which can
be done locally. Therefore, there is no added communication cost. As discussed earlier, it
is possible to allow Gt < 1 when performing line search, which makes SPAG slightly more
adaptative at the cost of a few more line-search loops. Figure 2(d) presents the difference
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Figure 2. Impact of several implementation details.

between SPAG using a line search with Gmin = 0 and Gmin = 1. The curves show the
suboptimality for the runs used to generate Figure 2(c). Note that we omit the cost of line
search in the iteration cost (we still count in terms of number of iterations, even though more
communication rounds are actually needed when Gmin = 0). We see that setting Gmin = 0 is
initially slightly faster but that the rate is very similar, so that using Gmin = 0 may slightly
improve iteration complexity but is not worth doing in this case. Note that suboptimality
curves for different initializations are almost indistinguishable, which can be explained by
the fact that the quadratic penalty term dominates and that all initializations have roughly
the same norm (since d is high).
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CHAPTER 6

Quantifying the natural differential privacy guarantees of gossip
protocols.

Gossip protocols (also called rumor spreading or epidemic protocols) are widely used to
disseminate information in massive peer-to-peer networks. These protocols are often claimed
to guarantee privacy because of the uncertainty they introduce on the node that started the
dissemination. But is that claim really true? Can the source of a gossip safely hide in
the crowd? In this Chapter, we examine gossip protocols through a rigorous mathematical
framework based on differential privacy to determine the extent to which the source of a
gossip can be traceable. Considering the case of a complete graph in which a subset of
the nodes are curious, we study a family of gossip protocols parameterized by a “muting”
parameter s: nodes stop emitting after each communication with a fixed probability 1 − s.
We first prove that the standard push protocol, corresponding to the case s = 1, does not
satisfy differential privacy for large graphs. In contrast, the protocol with s = 0 (nodes
forward only once) achieves optimal privacy guarantees but at the cost of a drastic increase
in the spreading time compared to standard push, revealing an interesting tension between
privacy and spreading time. Yet, surprisingly, we show that some choices of the muting
parameter s lead to protocols that achieve an optimal order of magnitude in both privacy
and speed. Privacy guarantees are obtained by showing that only a small fraction of the
possible observations by curious nodes have different probabilities when two different nodes
start the gossip, since the source node rapidly stops emitting when s is small. The speed is
established by analyzing the mean dynamics of the protocol, and leveraging concentration
inequalities to bound the deviations from this mean behavior. We also confirm empirically
that, with appropriate choices of s, we indeed obtain protocols that are very robust against
concrete source location attacks (such as maximum a posteriori estimates) while spreading
the information almost as fast as the standard (and non-private) push protocol. This Chapter
is based on Who started this rumor? Quantifying the natural differential privacy of gossip
protocols [Bellet, Guerraoui, and Hendrikx, 2020], published at DISC 2020.

6.1. Introduction

Gossip protocols (also called rumor spreading or epidemic protocols), in which partici-
pants randomly choose a neighbor to communicate with, are both simple and efficient means
to exchange information in P2P networks Frieze and Grimmett [1985], Pittel [1987], Karp
et al. [2000], Berenbrink et al. [2010]. They are a basic building block to propagate and
aggregate information in distributed databases Demers et al. [1987], Boyd et al. [2006] and
social networks Doerr et al. [2011], Giakkoupis et al. [2015], to model the spread of infectious
diseases Hethcote [2000], as well as to train machine learning models on distributed datasets
Duchi et al. [2012a], Colin et al. [2016], Vanhaesebrouck et al. [2017], Koloskova et al. [2019b].
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Some of the information gossiped may be sensitive, and participants sharing it may not
want to be identified. This can for instance be the case of whistle-blowers or individuals that
would like to exercise their right to freedom of expression in totalitarian regimes. Conversely,
it may sometimes be important to locate the source of a (computer or biological) virus, or
fake news, in order to prevent it from spreading before too many participants get “infected”.

There is a folklore belief that gossip protocols inherently guarantee some form of source
anonymity because participants cannot know who issued the information in the first place
Ghaffari and Newport [2016]. Similarly, identifying “patient zero” for real-world epidemics
is known to be a very hard task. Intuitively indeed, random and local exchanges make
identification harder. But to what extent? Although some work has been devoted to the
design of source location strategies in specific settings Jiang et al. [2017], Pinto et al. [2012],
Shah and Zaman [2011], the general anonymity claim has never been studied from a pure
privacy perspective, that is, independently of the very choice of a source location technique.
Depending on the use-case, it may be desirable to have strong privacy guarantees (e.g., in
anonymous information dissemination) or, on the contrary, we may hope for weak guarantees,
e.g., when trying to identify the source of an epidemic. In both cases, it is crucial to precisely
quantify the anonymity level of gossip protocols and study its theoretical limits through a
principled approach. This is the challenge we take up in this paper for the classic case of
gossip dissemination in a complete network graph.

Our first contribution is an information-theoretic model of anonymity in gossip protocols
based on (ε, δ)-differential privacy (DP) Dwork [2006], Dwork et al. [2006]. Originally intro-
duced in the database community, DP is a precise mathematical framework recognized as the
gold standard for studying the privacy guarantees of information release protocols. In our
proposed model, the information to protect is the source of the gossip, and an adversary tries
to locate the source by monitoring the communications (and their relative order) received
by a subset of f curious nodes. In a computer network, these curious nodes may have been
compromised by a surveillance agency; in our biological example, they could correspond to
health professionals who are able to identify whether a given person is infected. Our notion
of DP then requires that the probability of any possible observation of the curious nodes is
almost the same no matter who is the source, thereby limiting the predictive power of the
adversary regardless of its actual source location strategy. A distinctive aspect of our model
is that the mechanism that seeks to ensure DP comes only from the natural randomness and
partial observability of gossip protocols, not from additional perturbation or noise which
affects the desired output as generally needed to guarantee DP Dwork and Roth [2014]. We
believe our adaptation of DP to the gossip context to be of independent interest. We also
complement it with a notion of prediction uncertainty which guarantees that even unlikely
events do not fully reveal the identity of the source under a uniform prior on the source.
This property directly upper bounds the probability of success of any source location attack,
including the maximum likelihood estimate.

We use our proposed model to study the privacy guarantees of a generic family of gossip
protocols parameterized by a muting parameter s: nodes have a fixed probability 1−s to stop
emitting after each communication (until they receive the rumor again). In our biological
parallel, this corresponds to the fact that a person stops infecting other people after some
time. The muting parameter captures the ability of the protocol to forget initial conditions,
thereby helping to conceal the identity of the source. In the extreme case where s = 1, we
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recover the standard “push” gossip protocol Pittel [1987], and show that it is inherently not
differentially private for large graphs. In contrast, we also show that, at the other end of the
spectrum, choosing s = 0 leads to optimal privacy guarantees among all gossip protocols.

More generally, we determine matching upper and lower bounds on the privacy guarantees
of gossip protocols. Essentially, our upper bounds on privacy are obtained by tightly lower
bounding the probability that the source node contacts a curious node before another node
does, and upper bounding the probability that this happens for a random node fixed in
advance, in a way that holds for all gossip algorithms. Remarkably, despite the fact that the
source node always has a non-negligible probability of telling the rumor to a curious node
first, our results highlight the fact that setting s = 0 leads to strong privacy guarantees in
several regimes, including the pure (ε, 0)-DP as well as prediction uncertainty.

It turns out that, although achieving optimal privacy guarantees, choosing s = 0 leads
to a very slow spreading time (log-linear in the number of nodes n). This highlights an
interesting tension between privacy and spreading time: the two extreme values for the
muting parameter s recover the two extreme points of this trade-off. We then show that
more balanced trade-offs can be achieved: appropriate choices of the muting parameter lead
to gossip protocols that are near-optimally private with a spreading time that is logarithmic
in the size of the graph. In particular, the trade-off between privacy and speed shows up
in the constants but, surprisingly, some choices of the parameter lead to protocols that
achieve an optimal order of magnitude for both aspects. Our results on this trade-off are
summarized in Table 1: for a proportion f/n of curious nodes, one can see that setting the
muting parameter s = f/n achieves almost optimal privacy (up to a factor 2) while being
substantially faster than s = 0 (optimal up to a factor f/n). Similarly, if one wants to
achieve (0, δ0)-differential privacy with δ0 > 2f/n, then it is possible to set s = δ0/2 and
obtain a protocol that respects the privacy constraint with spreading time O(log(n)/δ0).
From a technical perspective, these privacy results are obtained by showing that only a
small fraction of the possible observations by curious nodes have different probabilities when
two different nodes start with the gossip. This requires to precisely evaluate the probability
of well-chosen worst-case sequences, which is generally hard as randomness is involved both
when nodes decide to stop spreading the rumor (with probability 1−s) and when they choose
who to communicate with. Our parameterized gossip protocol can be seen as a population
protocol Angluin et al. [2008], and we prove its speed by analyzing its mean dynamics and
leveraging concentration inequalities to bound the deviations from the mean dynamics.

We support our theoretical findings by an empirical study of our parameterized gossip
protocols. The results show that appropriate choices of s lead to protocols that are very
robust against classical source location attacks (such as maximum a posteriori estimates)
while spreading the information almost as fast as the standard (and non-private) push pro-
tocol. Crucially, we observe that our differential privacy guarantees are very well aligned
with the ability to withstand attacks that leverage background information, e.g., targeting
known activists or people who have been to certain places.

The rest of the paper is organized as follows. We first discuss related work and formally
introduce our concept of differential privacy for gossip. Then, we study two extreme cases
of our parameterized gossip protocol: the standard push protocol, which we show is not
private, and a privacy-optimal but slow protocol. This leads us to investigate how to better
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Muting param. δ ensuring (0, δ)-DP Spreading time
Standard push

(minimal privacy, maximal speed) s = 1 1 O(log n)

Muting after infecting
(maximal privacy, minimal speed) s = 0 f

n
O (n log n)

Generic parameterized gossip
(privacy vs. speed trade-off) 0 < s < 1 s+ (1− s) f

n
O (log(n)/s)

Table 1. Summary of results to illustrate the tension between privacy and
speed. n is the total number of nodes and f/n is the fraction of curious nodes
in the graph. δ ∈ [0, 1] quantifies differential privacy guarantees (smaller is
better). Spreading time is asymptotic in n.

control the trade-off between speed and privacy. Finally, we present our empirical study and
conclude by discussing open questions.

For pedagogical reasons, we keep our model relatively simple to avoid unnecessary tech-
nicalities in the derivation and presentation of our results. For completeness, we discuss the
impact of possible extensions (e.g., information observed by the adversary, malicious behav-
ior, termination criterion) in Appendix 6.A. For space limitations, some detailed proofs are
also deferred to the appendix.

6.2. Background and Related Work

6.2.1. Gossiping. The idea of disseminating information in a distributed system by
having each node push messages to a randomly chosen neighbor, initially coined the random
phone-call model, dates back to even before the democratization of the Internet Pittel [1987].
Such protocols, later called gossip, epidemic or rumor spreading, were for instance applied
to ensure the consistency of a replicated database system Demers et al. [1987]. They have
gained even more importance when argued to model spreading of infectious diseases Hethcote
[2000] and information dissemination in social networks Doerr et al. [2011], Giakkoupis et al.
[2015]. Gossip protocols can also be used to compute aggregate queries on a database
distributed across the nodes of a network Kempe et al. [2003a], Boyd et al. [2006], and have
recently become popular in federated machine learning Kairouz et al. [2019] to optimize
cost functions over data distributed across a large set of peers Duchi et al. [2012a], Colin
et al. [2016], Vanhaesebrouck et al. [2017], Koloskova et al. [2019b]. Gossip protocols differ
according to their interaction schemes, i.e., pull or push, sometimes combining both Karp
et al. [2000], Kowalski and Caro [2013], Acan et al. [2017].

In this work, we focus on the classical push form in the standard case of a complete graph
with n nodes (labeled from 0 to n − 1). We now define its key communication primitive.
Denoting by I the set of informed nodes, tell_gossip(i, I) allows an informed node i ∈ I
to tell the information to another node j ∈ {0, ..., n − 1} chosen uniformly at random.
tell_gossip(i, I) returns j (the node that received the message) and the updated I (the
new set of informed nodes that includes j). Equipped with this primitive, we can now
formally define the class of gossip protocols that we consider in this paper.
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Definition 7 (Gossip protocols). A gossip protocol on a complete graph is one that (a)
terminates almost surely, (b) ensures that at the end of the execution the set of informed
nodes I is equal to {0, ..., n− 1}, and (c) can modify I only through calls to tell_gossip.

6.2.2. Locating the Source of the Gossip. Determining the source of a gossip is
an active research topic, especially given the potential applications to epidemics and social
networks, see Jiang et al. [2017] for a recent survey. Existing approaches have focused so far
on building source location attacks that compute or approximate the maximum likelihood
estimate of the source given some observed information. Each approach typically assumes
a specific kind of graphs (e.g., trees, small world, etc.), dissemination model and observed
information. In rumor centrality Shah and Zaman [2011], the gossip communication graph
is assumed to be fully observed and the goal is to determine the center of this graph to
deduce the node that started the gossip. Another line of work studies the setting in which
some nodes are curious sensors that inform a central entity when they receive a message
Pinto et al. [2012]. Gossiping is assumed to happen at random times and the source node is
estimated by comparing the different timings at which information reaches the sensors. The
proposed attack is natural in trees but does not generalize to highly connected graphs. The
work of Fanti et al. [2017] focuses on hiding the source instead of locating it. The observed
information is a snapshot of who has the rumor at a given time. A specific dissemination
protocol is proposed to hide the source but the privacy guarantees only hold for tree graphs.

We emphasize that the privacy guarantees (i.e., the probability not to be detected) that
can be derived from the above work only hold under the specific attacks considered therein.
Furthermore, all approaches rely on maximum likelihood and hence assume a uniform prior
on the probability of each node to be the source. The guarantees thus break if the adversary
knows that some of the nodes could not have started the rumor, or if he is aware that the
protocol is run twice from the same source.

We note that other problems at the intersection of gossip protocols and privacy have
been investigated in previous work, such as preventing unintended recipients from learning
the rumor Georgiou et al. [2011], and hiding the initial position of agents in a distributed
system Gotfryd et al. [2017].

6.2.3. Differential Privacy. While we borrow ideas from the approaches mentioned
above (e.g., we assume that a subset of nodes are curious sensors as in Pinto et al. [2012]),
we aim at studying the fundamental limits of any source location attack by measuring the
amount of information leaked by a gossip scheme about the identity of the source. For
this purpose, a general and robust notion of privacy is required. Differential privacy Dwork
[2006], Dwork and Roth [2014] has emerged as a gold standard for it holds independently of
any assumption on the model, the computational power, or the background knowledge that
the adversary may have. Differentially private protocols have been proposed for numerous
problems in the fields of databases, data mining and machine learning: examples include
computing aggregate and linear counting queries Dwork and Roth [2014], releasing and
estimating graph properties Lu and Miklau [2014], Sun et al. [2019a], clustering Huang and
Liu [2018], empirical risk minimization Chaudhuri et al. [2011] and deep learning Abadi et al.
[2016].

In this work, we consider the classic version of differential privacy which involves two
parameters ε, δ ≥ 0 that quantify the privacy guarantee Dwork et al. [2006]. More precisely,
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given any two databases D1 and D2 that differ in at most one record, a randomized infor-
mation release protocol P is said to guarantee (ε, δ)-differential privacy if for any possible
output S:

p(P(D1) ∈ S) ≤ eεp(P(D2) ∈ S) + δ, (6.2.1)
where p(E) denotes the probability of event E. Parameter ε places a bound on the ratio of
the probability of any output when changing one record of the database, while parameter δ
is assumed to be small and allows the bound to be violated with small probability. When
ε = 0, δ gives a bound on the total variation distance between the output distributions, while
δ = 0 is sometimes called “pure” ε-differential privacy. DP guarantees hold regardless of the
adversary and its background knowledge about the records in the database. In our context,
the background information could be the knowledge that the source is among a subset of all
nodes. Robustness against such background knowledge is crucial in some applications, for
instance when sharing secret information that few people could possibly know or when the
source of an epidemic is known to be among people who visited a certain place. Another key
feature of differential privacy is composability: if (ε, δ)-differential privacy holds for a release
protocol, then querying this protocol two times about the same dataset satisfies (2ε, 2δ)-
differential privacy. This is important for rumor spreading as it enables to quantify privacy
when the source propagates multiple rumors that the adversary can link to the same source
(e.g., due to the content of the message). We will see in Section 6.6 that these properties
are essential in practice to achieve robustness to concrete source location attacks.

Existing differentially private protocols typically introduce additional perturbation (also
called noise) to hide critical information Dwork and Roth [2014]. In contrast, an origi-
nal aspect of our work is that we will solely rely on the natural randomness and limited
observability brought by gossip protocols to guarantee differential privacy.

6.3. A Model of Differential Privacy for Gossip Protocols

Our first contribution is a precise mathematical framework for studying the fundamental
privacy guarantees of gossip protocols. We formally define the inputs of the gossip protocols
introduced in Definition 7, the outputs observed by the adversary during their execution,
and the privacy notions we investigate. To ease the exposition, we adopt the terminology of
information dissemination, but we sometimes illustrate the ideas in the context of epidemics.

6.3.1. Inputs and Outputs. As described in Section 6.2.3, differential privacy is a
probabilistic notion that measures the privacy guarantees of a protocol based on the varia-
tions of its output distribution for a change in its input. In this paper, we adapt it to our
gossip context. We first formalize the inputs and outputs of gossip protocols, in the case
of a single piece of information to disseminate (multiple pieces can be addressed through
composition, see Section 6.2.3). At the beginning of the protocol, a single node, the source,
has the information (the gossip, or rumor). This node defines the input of the gossip pro-
tocol, and it is the actual “database” that we want to protect. Therefore, in our context,
input databases in Equation (6.2.1) have only 1 record, which contains the identity of the
source (an integer between 0 and n− 1). Therefore, all possible input databases differ in at
most one record, and differential privacy aims at protecting the content of the database, i.e.,
which node started the rumor.
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We now turn to the outputs of a gossip protocol. The execution of a protocol generates an
ordered sequence Somni of pairs (i, j) of calls to tell_gossip where (Somni)t corresponds to
the t-th time the tell_gossip primitive has been called, i is the node on which tell_gossip
was used and j the node that was told the information. If several calls to tell_gossip hap-
pen simultaneously, ties are broken arbitrarily. We assume that the messages are received
in the same order that they are sent. This protocol can thus be seen as an epidemic popula-
tion protocol model Angluin et al. [2008] in which nodes interact using tell_gossip. The
sequence Somni corresponds to the output that would be observed by an omniscient entity
who could eavesdrop on all communications. It is easy to see that, for any execution, the
source can be identified exactly from Somni simply by retrieving (Somni)0.

In this work, we focus on adversaries that monitor a set of curious nodes C of size f , i.e.
they observe all communications involving a curious node. This model, previously introduced
in Pinto et al. [2012], is particularly meaningful in large distributed networks: while it is
unlikely that an adversary can observe the full state of the network at any given time,
compromising or impersonating a subset of the nodes appears more realistic. The number
of curious nodes is directly linked with the release mechanism of DP: while the final state of
the system is always the same (everyone knows the rumor), the information released depends
on which messages were received by the curious nodes during the execution. Formally, the
output disclosed to the adversary during the execution of the protocol, i.e., the information
he can use to try to identify the source, is a subsequence of Somni as defined below.

Assumption 12. The sequence S observed by the adversary through the (random) exe-
cution of the protocol is a (random) subsequence S = ((Somni)t|(Somni)t = (i, j) with j ∈ C),
that contains all messages sent to curious nodes. The adversary has access to the relative
order of tuples in S, which is the same as in Somni, but not to the index t in Somni.

It is important to note that the adversary does not know which messages were exchanged
between non-curious nodes. In particular, he does not know how many messages were sent in
total at a given time. As we focus on complete graphs, knowing which curious node received
the rumor gives no information on the source node. For a given output sequence S, we write
St = i to denote that the t-th tell_gossip call in S originates from node i. Omitting the
dependence on S, we also denote ti(j) the time at which node j first receives the message
(even for the source) and td(j) the time at which j first communicates with a curious node.

The ratio f/n of curious nodes determines the probability of the adversary to gather in-
formation (the more curious nodes, the more information leaks). For a fixed f , the adversary
only becomes weaker as the network grows bigger. Since we would like to study adversaries
with fixed power, unless otherwise noted we make the following assumption.

Assumption 13. The ratio of curious nodes f/n is constant.

Finally, we emphasize that we do not restrict the computational power of the adversary.

6.3.2. Privacy Definitions. We now formally introduce our privacy definitions. The
first one is a direct application of differential privacy (Equation 6.2.1) for the inputs and
outputs specified in the previous section. To ease notations, we denote by I0 the source of
the gossip (the set of informed nodes at time 0), and for any given i ∈ {0, ..., n − 1}, we
denote by pi(E) = p(E|I0 = {i}) the probability of event E if node i is the source of the

181



gossip. The protocol is therefore abstracted in this notation. Denoting by S the set of all
possible outputs, we say that a gossip protocol is (ε, δ)-differentially private if:

pi(S) ≤ eεpj(S) + δ, ∀S ⊂ S, ∀i, j ∈ {0, ..., n− 1}, (6.3.1)

where p(S) is the probability that the output belongs to the set S. This formalizes a notion
of source indistinguishability in the sense that any set of output which is likely enough to
happen if node i starts the gossip (say, pi(S) ≥ δ) is almost as likely (up to a eε multiplicative
factor) to be observed by the adversary regardless of the source. Note however that when
δ > 0, this definition can be satisfied for protocols that release the identity of the source
(this can happen with probability δ). To capture the behavior under unlikely events, we also
consider the complementary notion of c-prediction uncertainty for c > 0, which is satisfied if
for a uniform prior p(I0) on source nodes and any i ∈ {0, ..., n− 1}:

p(I0 6= {i}|S)/p(I0 = {i}|S) ≥ c, (6.3.2)

for any S ⊂ S such that pi(S) > 0. Prediction uncertainty guarantees that no observable
output S (however unlikely) can identify a node as the source with large enough probability:
it ensures that the probability of success of any source location attack is upper bounded by
1/(1 + c). This holds in particular for the maximum likelihood estimate. Prediction uncer-
tainty does not have the robustness of differential privacy against background knowledge,
as it assumes a uniform prior on the source. While it can be shown that (ε, 0)-DP with
ε > 0 implies prediction uncertainty, the converse is not true. Indeed, prediction uncer-
tainty is satisfied as soon as no output identifies any node with enough probability, without
necessarily making all pairs of nodes indistinguishable as required by DP. We will see that
prediction uncertainty allows to rule out some naive protocols that have nonzero probability
of generating sequences which reveal the source with certainty.

Thanks to the symmetry of our problem, we consider without loss of generality that node
0 starts the rumor (I0 = {0}) and therefore we will only need to verify Equations (6.3.1)
and (6.3.2) for i = 0 and j = 1.

6.4. Extreme Privacy Cases

In this section, we study the fundamental limits of gossip in terms of privacy. To do so, we
parameterize gossip protocols by a muting parameter s ∈ [0, 1], as depicted in Algorithm 11.
We thereby capture, within a generic framework, a large family of protocols that fit Defini-
tion 7 and work as follows. They maintain a set A of active nodes (initialized to the source
node) which spread the rumor asynchronously and in parallel: this is modeled by the fact
that at each step of the protocol, a randomly selected node i ∈ A invokes the tell_gossip
primitive to send the rumor to another node (which in turn becomes active), while i also
stays active with probability s. This is illustrated in Figure 1. The muting parameter s
can be viewed as a randomized version of fanout in Eugster et al. [2004].1 Algorithm 11
follows the population protocol model Angluin et al. [2008], and is also related to the SIS
epidemic model Hethcote [2000] but in which the rumor never dies regardless of the value of
s ∈ [0, 1] (there always remain some active nodes). Although we present it from a centralized

1Unlike in the classic fanout, nodes start to gossip again each time they receive a message instead of
deactivating permanently.
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Algorithm 11 Parameterized Gossip
Require: n // Number of nodes, k // Source

node, s // Probability for a node to
remain active

Ensure: I = {0, . . . , n− 1} // All nodes are
informed

1: I ← {k}, A← {k}
2: while |I| < n do
3: Sample i uniformly at random from A
4: A← A \ {i} with probability 1− s
5: j, I ← tell_gossip(i, I), A← A ∪ {j}

step 1 step 2

step 3

step 1

step 1

step 2

step 2

Figure 1. Left: Parameterized Gossip. Right: Illustration of the role of
muting parameter s. S indicates the source and C a curious node. Green
nodes know the rumor, and red circled nodes are active. When s = 0, there
is only one active node at a time, which always stops emitting after telling
the gossip. In the case s = 1, nodes always remain active once they know
the rumor (this is the standard push gossip protocol Pittel [1987]). When
0 < s < 1, each node remains active with probability s after each communica-
tion.

perspective, we emphasize that Algorithm 11 is asynchronous and can be implemented by
having active nodes wake up following a Poisson process.

In the rest of this section, we show that extreme privacy guarantees are obtained for
extreme values of the muting parameter s.

6.4.1. Standard Push has Minimal Privacy. The natural case to study first in
our framework is when the muting parameter is set to s = 1: this corresponds to the
standard push protocol Pittel [1987] in which nodes always keep emitting after they receive
the rumor. Theorem 34 shows that, surprisingly, the privacy guarantees of this protocol
become arbitrarily bad as the size of the graph increases (keeping the fraction of curious
nodes constant).

Theorem 34 (Standard push is not differentially private). If Algorithm 11 with s = 1
guarantees (ε, δ)-DP for all values of n and constant ε <∞, then δ = 1.

This result may seem counter-intuitive at first since one could expect that it would be
more and more difficult to locate the source when the size of the graph increases. Yet, since
the ratio of curious nodes is kept constant, this result comes from the fact that the event
{td(0) ≤ ti(1)} (node 0 communicates with a curious node before node 1 gets the message)
becomes more and more likely as n grows, hence preventing any meaningful differential
privacy guarantee when n is large enough. The proof is in Appendix 6.C.1. Theorem 34
clearly highlights the fact that the standard gossip protocol (s = 1) is not differentially
private in general. We now turn to the other extreme case, where the muting parameter
s = 0.
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6.4.2. Muting After Infecting has Maximal Privacy. We now study the privacy
guarantees of generic Algorithm 11 when s = 0. In this protocol, nodes forward the rumor
to exactly one random neighbor when they receive it and then stop emitting until they
receive the rumor again. Intuitively, this is good for privacy: the source changes and it is
quickly impossible to recover which node started the gossip (as initial conditions are quickly
forgotten). In fact, once the source tells the rumor once, the state of the system (the set of
active nodes, which in this case is only one node) is completely independent from the source.
A similar idea was used in the protocol introduced in Fanti et al. [2017].

The following result precisely quantifies the privacy guarantees of Algorithm 11 with
parameter s = 0 and shows that it is optimally private among all gossip protocols (in the
precise sense of Definition 7).

Theorem 35. Let ε ≥ 0. For muting parameter s = 0, Algorithm 11 satisfies (ε, δ)-
differential privacy with δ = f

n

(
1− eε−1

f

)
and c-prediction uncertainty with c = n

f+1 − 1.
Furthermore, these privacy guarantees are optimal among all gossip protocols.

Proof of Theorem 35. We start by proving the fundamental limits on the privacy of
any gossip protocol, and then prove matching guarantees for Algorithm 11 with s = 0.

(Fundamental limits in privacy) Proving a lower bound on the differential privacy
parameters can be achieved by finding a set of possible outputs S (here, a set of ordered
sequences) such that p0(S) ≥ p1(S). Indeed, a direct application of the definition of Equa-
tion (6.3.1) yields that given any gossip protocol, S ⊂ S and w0, w1 ∈ R such that w0 ≤ p0(S)
and p1(S) ≤ w1, if the protocol satisfies (ε, δ) differential privacy then δ ≥ w0 − eεw1. The
proofs need to consider all the messages sent and then distinguish between the ones that are
disclosed (sent to curious nodes) and the ones that are not.

Since I = {0} then tell_gossip is called for the first time by node 0 and it is called
at least once otherwise the protocol terminates with I = {0}, violating the conditions of
Definition 7. We denote by S(0) the set of output sequences such that S0 = 0 (i.e., 0 is the
first to communicate with a curious node). We also define the event T c0 = {td(0) 6= 0} (the
source does not send its first message to a curious node). For all i /∈ C ∪ {0}, we have that
p0(S0 = i|T c0 ) ≤ p0(S0 = 0|T c0 ) since p0(A1 = {0}) = p0(i ∈ A1), where A1 is the set of active
nodes at time 1. From this inequality we get∑

i/∈C p0(S0 = 0|T c0 ) ≥ ∑i/∈C p0(S0 = i|T c0 ) = 1 ≥ ∑i/∈C p0(S0 = 1|T c0 ),

where the equality comes from the fact that S0 = i for some i /∈ C. The second inequality
comes from the fact that pj(S0 = i|T c0 ) = pj(S0 = k|T c0 ) for all i, k 6= j. Therefore, we
have p0(S0 = 0|T c0 ) ≥ 1

n−f and p0(S0 = 1|T c0 ) ≤ 1
n−f . Combining the above expressions, we

derive the probability of S(0) when 0 started the gossip. We write p0(S(0)) = p0(S(0), td(0) =
0) + p0(S(0), T c0 ) and then, since p0

(
S(0)|td(0) = 0

)
= 1:

p0
(
S(0)

)
= p0

(
td(0) = 0

)
p0
(
S(0)|td(0) = 0

)
+ p0

(
S(0)|T c0

)
p0
(
T c0
)
≥ f

n
+ 1
n− f

(
1− f

n

)

In the end, p0(S(0)) ≥ f
n

+ 1
n
. If node 1 initially has the message, we do the same split and

obtain p1(S(0)|td(0) = 0) = 0 and so p1(S(0)) = p1(T c0 )p1(S(0)|T c0 ) ≤ 1
n
.
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The upper bound on prediction uncertainty is derived using the same quantities:
p(I0 6= 0|S(0))
p(I0 = 0|S(0)) =

∑
i/∈C∪{0}

pi(S(0))
p0(S(0)) ≤ (n− f − 1)p1(S(0))

p0(S(0)) ≤
n− f − 1
f + 1 = n

f + 1 − 1.

Note that we have never assumed that curious nodes knew how many messages were sent
at a given point in time. We have only bounded the probability that the source is the first
node that sends a message to curious nodes.

(Matching guarantees for Algorithm 11 with s = 0) For this protocol, the only
outputs S such that p0(S) 6= p1(S) are those in which td(0) = 0 or td(1) = 0. We write:

p0(S0 = 0) = p0(td(0) = 0)p0(S0 = 0|td(0) = 0) + p0(T c0 )p0(S0 = 0|T c0 ).
For any i /∈ C where C is the set of curious nodes, we have that p0(S0 = 0|T c0 ) = p0(S0 =
i|T c0 ) = 1

n−f . Indeed, given that td(0) 6= 0, the node that receives the first message is selected
uniformly at random among non-curious nodes, and has the same probability to disclose the
gossip at future rounds. Plugging into the previous equation, we obtain:

p0(S0 = 0) = f

n
+
(

1− f

n

) 1
n− f

= f + 1
n

.

For any other node i /∈ C ∪ {0}, p0(S0 = i) = p0(T c0 )p0(S0 = i|T c0 ) = 1
n
because p0(S0 =

i|td(0) = 0) = 0. Combining these results we get p0(S(0)) ≤ eεp1(S(0)) + δ for any ε > 0 and
δ = f

n
(1− eε−1

f
). By symmetry, we make a similar derivation for S(1).

To prove the prediction uncertainty result, we use the differential privacy result with
eε = f + 1 (and thus δ = 0) and write that for any S ∈ S:

p(I0 6= 0|S)
p(I0 = 0|S) =

∑
i/∈C∪{0}

pi(S)
p0(S) ≥ (n− f − 1)e−ε = n

f + 1 − 1. �

Theorem 35 establishes matching upper and lower bounds on the privacy guarantees of
gossip protocols. More specifically, it shows that setting the muting parameter to s = 0
provides strong privacy guarantees that are in fact optimal. Note that in the regime where
ε = 0 (where DP corresponds to the total variation distance), δ cannot be smaller than the
proportion of curious nodes. This is rather intuitive since the source node has probability
at least f/n to send its first message to a curious node. However, one can also achieve
differential privacy with δ much smaller than f/n by trading-off with ε > 0. In particular,
the pure version of differential privacy (δ = 0) is attained for ε ≈ log f , which provides good
privacy guarantees when the number of curious nodes is not too large. Furthermore, even
though the probability of disclosing some information is of order f/n, prediction uncertainty
guarantee shows that an adversary with uniform prior always has a high probability of
making a mistake when predicting the source. Crucially, these privacy guarantees are made
possible by the natural randomness and partial observability of gossip protocols.

Remark 5 (Special behavior of the source). A subtle but key property of Algorithm 11
is that the source follows the same behavior as other nodes. To illustrate how violating this
property may give away the source, consider this natural protocol: the source node transmits
the rumor to one random node and stops emitting, then standard push (Algorithm 11 with
s = 1) starts from the node that received the information. While this delayed start gossip
protocol achieves optimal differential privacy in some regimes, it is fundamentally flawed.
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In particular, it does not guarantee prediction uncertainty in the sense that c → 0 as the
graph grows. Indeed, the adversary can identify the source with high probability by detecting
that it communicated only once and then stopped emitting for many rounds. We refer to
Appendix 6.B for the formal proof.

6.5. Privacy vs. Speed Trade-offs

While choosing s = 0 achieves optimal privacy guarantees, an obvious drawback is that
it leads to a very slow protocol since only one node can transmit the rumor at any given
time. It is easy to see that the number of gossip operations needed to inform all nodes
can be reduced to the time needed for the classical coupon collection problem: it takes
O(n log n) communications to inform all nodes with probability at least 1− 1/n Erdős and
Rényi [1961]. As this protocol performs exactly one communication at any given time, it
needs time O(n log n) to inform all nodes with high probability. This is in stark contrast to
the standard push gossip protocol (s = 1) studied in Section 6.4.1 where all informed nodes
can transmit the rumor in parallel, requiring only time O(log n) Frieze and Grimmett [1985].

These observations motivate the exploration of the privacy-speed trade-off (with param-
eter 0 < s < 1). We first show below that nearly optimal privacy can be achieved for small
values of s. Then, we study the spreading time and show that the O(log n) time of the
standard gossip protocol also holds for s > 0, leading to a sweet spot in the privacy-speed
trade-off.

6.5.1. Privacy Guarantees. Theorem 36 conveys a (0, δ)-differential privacy result,
which means that apart from some unlikely outputs that may disclose the identity of the
source node, most of these outputs actually have the same probability regardless of which
node triggered the dissemination. We emphasize that the guarantee we obtain holds for any
graph size with fixed proportion f/n of curious nodes.

Theorem 36 (Privacy guarantees for s < 1). For 0 < s < 1 and any fixed r ∈ N∗,
Algorithm 11 with muting parameter s guarantees (0, δ)-differential privacy with:

δ = 1− (1− s)
∞∑
k=0

sk
(

1− f

n

)k+1

≤ 1− (1− sr)
(

1− f

n

)r
.

For example, choosing r = 1 leads to δ ≤ s+(1−s) f
n
, as reported in Table 1. Slightly tighter

bounds can be obtained, but this is enough already to recover optimal guarantees as s→ 0.

Proof. We first consider that S is such that td(0) ≥ td(1). Then, p0(S) ≤ p1(S) since
node 0 needs to receive the rumor before being able to communicate it to curious nodes, and
Equation (6.3.1) is verified. Suppose now that S is such that td(0) ≤ td(1). In this case, we
note tm the first time at which the source stops to emit (which happens with probability 1−s
each time it sends a message). Then, we denote F = {td(0) ≤ tm} (and F c its complement).
In this case, p0(S|F c) ≤ p1(S|F c). Indeed, conditioned on F c, td(0) ≥ ti(0) if node 0 is not
the source and td(0) ≥ max(tm, ti(0)) if it is. Then, we can write:

p0(S) = p0(S, F c) + p0(S, F ) ≤ p1(S, F c) + p0(F ) ≤ p1(S) + p0(F ).
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Denoting Tf the number of messages after which the source stops emitting, we write:

p0(F ) =
∞∑
k=1

p0(Tf = k)p0(F |Tf = k) =
∞∑
k=0

(1− s)sk
(

1−
(
1− f

n

)k+1
)
, for s > 0.

Note that we can also write for k ≥ 1 that p0(F ) = p0(F, Tf ≤ k) + p0(F, Tf > k), and so:

p0(F ) ≤ (1− sk)
(

1−
(
1− f

n

)k)
+ sk = 1− (1− sk)

(
1− f

n

)k
. �

The differential privacy guarantees given by Theorem 36 and the optimal guarantees of
Theorem 35 are of the same order of magnitude when s is of order f/n. Indeed, consider
ε = 0. Then, setting r = 1 in Theorem 36 leads to an additive gap of s(1 − f/n) between
the privacy of Algorithm 11 and the optimal guarantee, showing that one can be as close
as desired to the optimal privacy as long as s is chosen close enough to 0. In particular,
the ratio between the privacy of Algorithm 11 and the lower bound is less than 2 for all
s ≤ f/n. This indicates that the privacy guarantees are very tight in this regime. We also
recover exactly the optimal guarantee of Theorem 35 in the case s = 0 (without the ability
to control the trade-off between ε and δ). Importantly, we also show that Algorithm 11 with
s < 1 satisfies prediction uncertainty, unlike the case where s = 1.

Theorem 37. Algorithm 11 guarantees prediction uncertainty with c = (1− f+1
n

)(1− s).

This result is another evidence that picking s < 1 allows to derive meaningful privacy
guarantees. The proof can be found in Appendix 6.C.1.

6.5.2. Spreading time. We have shown that parameter s has a significant impact on
privacy, from optimal (s = 0) to very weak (s = 1) guarantees. Yet, s also impacts the
spreading time: the larger s, the more active nodes at each round. This is highlighted by the
two extreme cases, for which the spreading time is already known and exhibits a large gap:
O(log n) for s = 1 and O(n log n) for s = 0. To establish whether we can obtain a protocol
that is both private and fast, we need to characterize the spreading time for the cases where
0 < s < 1.

The key result of this section is to prove that the logarithmic speed of the standard push
gossip protocol holds more generally for all s > 0. This result is derived from the fact that
the ability to forget does not prevent an exponential growth phase. What changes is that
the population of active nodes takes approximately 1/s rounds to double instead of 1 for
standard gossip. For ease of presentation, we state below the result for the synchronous
version of Algorithm 11, in which the notion of round corresponds to iterating over the
full set A. A similar result (with an appropriate notion of rounds) can be obtained for the
asynchronous version given in Algorithm 11.

Theorem 38. For a given s > 0 and for all 1 > δ > 0 and C ≥ 1, there exists n large
enough such that the synchronous version of Algorithm 11 with parameter s sends at least
Cn log n messages in 6C log(n)/s rounds with probability at least 1− δ.

Proof sketch. The key argument of the proof is that the gossip process very closely
follows its mean dynamics. After a transition phase of a logarithmic number of rounds, a
constant fraction of the nodes (depending on s) remains active despite the probability to
stop emitting after each communication. This “determinism of gossip process" has been
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(a) Fraction of informed nodes (b) Fraction of active nodes

Figure 2. Effect of parameter s of Algorithm 11 on the spreading time for a
network of n = 216 nodes. The curves represent median values and the shaded
area represents the 10 and 90 percent confidence intervals over 100 runs. Each
curve stops when all nodes are informed (and so the protocol terminates),
except for s = 0 since the protocol is very slow in this case.

introduced in Sanghavi et al. [2007], but their analysis only deals with the case s = 1. Our
proof takes into account the nontrivial impact of nodes deactivation in the exponential and
linear growth phase. Besides, we need to introduce and analyze a last phase, showing that
with high probability the population never drops below a critical threshold of active nodes.
The full proof is in Appendix 6.C.2. �

Theorem 38 shows that generic gossip with s > 0 still achieves a logarithmic spreading
time even though nodes can stop transmitting the message. The 1/s dependence is intuitive
since 1/s rounds are needed in expectation to double the population of active nodes (without
taking collisions into account). Therefore, the exponential growth phase which usually takes
time O(log n) now takes time O(log(n)/s) for s < 1. To summarize, we have shown that one
can achieve both fast spreading and near-optimal privacy, leading to the values presented in
Table 1 of the introduction.

6.6. Empirical Evaluation

In this section, we evaluate the practical impact of s on the spreading time as well as on
the robustness to source location attacks run by adversaries with background knowledge.

6.6.1. Spreading Time. To complement Theorem 38, which proves logarithmic spread-
ing time (asymptotic in n), we run simulations on a network of size n = 216. The logarithmic
spreading time for s > 0 is clearly visible in Figure 2(a), where we see that the gossip spreads
almost as fast for s = 0.5 that it does for s = 1. We also observe that even when s is small,
the gossip remains much faster than for s = 0. The results in Figure 2(b) illustrate that the
fraction of active nodes grows exponentially fast for all values of s > 0 and then reaches a
plateau when the probability of creating a new active node is compensated by the probability
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(a) Attack precision under prior information on the
source

(b) Attack precision when the source spreads mul-
tiple rumors

Figure 3. Effect of parameter s of Algorithm 11 on the precision of source
location attacks for a network of n = 216 node with 10% of curious nodes.
Precision is estimated over 15,000 random runs.

of informing an already active node. Empirically, this happens when the fraction of active
nodes is of order s.

We note incidentally that gossip protocols are often praised for their robustness to lost
messages Alistarh et al. [2010], Georgiou et al. [2013]. While the protocol with s = 0 does
not tolerate a single lost message, setting s > 0 improve the resilience thanks to the linear
proportion of active nodes. The latter property makes it unlikely that the protocol stops
because of lost messages as long as s is larger than the probability of losing messages. Of
course, the protocol remains somewhat sensitive to messages lost during the first few steps.

6.6.2. Robustness Against Source Location Attacks. Getting an intuitive under-
standing of the privacy guarantees provided by Theorem 36 is not straightforward, as often
the case with differential privacy. Therefore, we illustrate the effect of the muting parame-
ter on the guarantees of our gossip protocol by simulating concrete source location attacks.
We consider two challenging scenarios where the adversary has some background knowl-
edge: either 1) prior knowledge that the source belongs to a subset of the nodes, or 2) side
information indicating that the same source disseminates multiple rumors.
Prior knowledge on the source. We first consider the case where the adversary is able
to narrow down the set of suspected nodes. In this case we can design a provably optimal
attack, as shown by the following theorem (see Appendix 6.C.3 for the proof).

Theorem 39. If the adversary has a uniform prior over a subset P of nodes, i.e., p(I0 =
i) = p(I0 = j) for all i, j ∈ P and p(I0 = i) = 0 for i /∈ P , and for some output sequence S,
tc is such that Stc ∈ P and St /∈ P if t < tc , then p(I0 = Stc |S) ≥ p(I0 = i|S) for all i.

Theorem 39 means that under a uniform prior over nodes in P , the attack in which
curious nodes predict the source to be the first node in P that communicates with them
corresponds to the Maximum A Posteriori (MAP) estimator. The set P represents the prior
knowledge of the adversary: he knows for sure that the source belongs to P .
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Figure 3(a) shows the precision of this attack as a function of s for varying degrees of prior
knowledge. We see that, when s is small, the prior knowledge does not improve the attack
precision significantly, and that the precision remains very close to the probability that the
source sends its first message to a curious node. This robustness to prior knowledge is con-
sistent with the properties of differential privacy (see Section 6.2.3). On the contrary, when
s is high (i.e., differential privacy guarantees are weak), the impact of the prior knowledge
on the precision of the attack is much stronger.
Multiple dissemination. We investigate another scenario in which differential privacy
guarantees can also provide robustness, namely when the adversary knows that the same
source node disseminates multiple rumors. In this setting, analytically deriving an optimal
attack is very difficult. Instead, we design an attack which leverages the fact that even
though the source is not always the first node to communicate with curious nodes, with high
probability it will be among the first to do so. More precisely, the curious nodes record the
10 first nodes that communicate with them in each instance (results are not very sensitive to
this choice), and they predict the source to be the node that appears in the largest number
of instances. In case of a tie, the curious nodes choose the node that first communicated
with them, with ties broken at random. Figure 3(b) shows that the precision of this attack
increases dramatically with the number of rumors when s is large, reaching almost sure
detection for 10 rumors. Remarkably, for small values of s, the attack precision increases
much more gracefully with the number of rumors, as expected from the composition property
of differential privacy discussed in Section 6.2.3. Meaningful privacy guarantees can still be
achieved as long as the source does not spread too many rumors.

6.7. Concluding Remarks

This paper initiates the formal study of privacy in gossip protocols to determine to which
extent the source of a gossip can be traceable. Essentially: (1) We propose a formal model
of anonymity in gossip protocols based on an adaptation of differential privacy; (2) We
establish tight bounds on the privacy of gossip protocols, highlighting their natural privacy
guarantees; (3) We precisely capture the trade-off between privacy and speed, showing in
particular that it is possible to design both fast and near-optimally private gossip protocols;
(4) We experimentally evaluate the speed of our protocols as well as their robustness to
source location attacks, validating the relevance of our formal differential privacy guarantees
in scenarios where the adversary has some background knowledge.

Our work opens several interesting perspectives. In particular, it paves the way to the
study of differential privacy for gossip protocols in general graphs, which is challenging and
requires relaxations of differential privacy in order to obtain nontrivial guarantees. We refer
to Appendix 6.D for a discussion of these questions. Another avenue for future research
is motivated by very recent work showing that hiding the source of a message can amplify
differential privacy guarantees for the content of the message Erlingsson et al. [2018], Cheu
et al. [2018], Balle et al. [2019]. Unfortunately, classic primitives to hide the source of
messages such as mixnets can be difficult and costly to deploy. Showing that gossip protocols
can naturally amplify differential privacy for the message contents would make them very
desirable for privacy-preserving distributed AI applications, such as those based on federated
Kairouz et al. [2019] and decentralized machine learning Bellet et al. [2018].
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6.A. Model Extensions

We kept our model relatively simple in the main paper to avoid unnecessary complexity in
the notations and additional technicalities in the derivation and presentation of our results.
In this appendix, we briefly discuss various possible extensions. Basically, we make here the
point that, although these generally lead to technical complications, they do not significantly
impact privacy guarantees.

6.A.1. Pull and Push-Pull Protocols. Our study focus on the classic push form of
gossip protocols. This can be justified by the fact that, for regular graphs, synchronous push
has asymptotic spreading time guarantees that are comparable with the push-pull variant
Giakkoupis et al. [2016]. Besides, the differential privacy guarantees of any gossip protocol
are limited by the probability that the first node informed by the source is a curious node,
and we show this bound can be matched with push protocols. Nevertheless, extensions of
our results to pull and push-pull variants of gossip protocols Karp et al. [2000] are possible.
Forgetting mechanisms similar to the ones in Algorithm 11 can be introduced for these
protocols, i.e. nodes would have a probability 1 − s to stop disclosing information after
each time they are pulled (if they do not pull someone with the information in between).
Although slightly different, the optimal privacy guarantees would remain of the same order
of magnitude. Yet, we expect pull guarantees to be even worse in the case s = 1 because
curious nodes could stop suspecting all nodes that they have pulled and that did not have the
rumor. Besides, the pull protocol for s = 0 would be even slower than its push counterpart.

6.A.2. Eavesdropping Adversary. Since we consider a complete graph, our formal-
ization of the adversary as a fraction f/n of curious nodes is closely related to an eavesdrop-
ping adversary who would observe each communication with probability f/n. Indeed, both
models consider that each communication has a probability f/n of being disclosed to the
adversary. Most of our results are thus easily transferable to this alternative setting. The
only difference would be that all nodes can be suspected in the eavesdropping model, thus
introducing a (1− f/n)−1 factor each time we consider the population of non-curious nodes.

6.A.3. Information Observed by the Adversary. We discuss three possible variants
of the output observed by the adversary.

Messages Sent by Curious Nodes. For simplicity of exposition, we considered that cu-
rious nodes only observe messages that are sent to them and not the messages that they
send. However, including the messages sent by curious nodes in their observed output would
not impact the bounds on privacy (i.e., the guarantees for the algorithms). For the optimal
algorithm, we only consider what happens during the first round, so including the messages
sent by curious nodes does not change the result. This in particular implies that the fun-
damental limits of Theorem 35 remain the same (since the adversary observes strictly more
information). Similarly, for the parameterized algorithm, Theorem 36 is obtained by bound-
ing the probability of a set Ŝ. Then, we have p(Ŝ, Sout) ≤ p(Ŝ) where Sout is the sequence of
messages sent by the curious nodes. In general, adding the messages sent by curious nodes
to the output sequences has little or no impact on our results.

Message Ordering. We assumed that the relative order of messages is preserved in the
output sequence observed by curious nodes. This could be relaxed, as in real-world networks
a message sent before another may well be received after it. One could for instance introduce
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a random swapping model to take this into account and investigate whether this weaker
output leads to an improvement in the privacy guarantees. However, we argue that this
improvement would be quite limited. First of all, it would not affect the privacy guarantees
of the optimal protocol: since there is a single active node able to send a message at any
given time, swapping is not possible. Therefore, the lower bound and the matching algorithm
would not be affected by this change. Since parameterized gossip is almost privacy-optimal
for small values of s and swapping would only increase privacy, then we argue that the
guarantees of parameterized gossip would be very similar in this case. Furthermore, even
when several nodes are active at the same time (e.g., in Algorithm 11 large s), the proofs
can be adapted to work with counting the messages received instead of the messages sent.
In this case, swapping is as likely to expose the source (making its messages arrive earlier)
than to hide it (delaying the messages it sends).

Global Timing. In our model, we assume that curious nodes only have access to the
relative ordering in which they received the messages but they have no information on the
global time at which it was sent. This is justified in practice by the asynchrony and locality of
the exchanges. We briefly discuss here how the privacy guarantees are affected if one considers
a stronger adversary that has access to the number of times the tell_gossip procedure has
been called. Formally, this adversary observes the set S = {(t, i, j)|(i, j) = (Somni)t, j ∈ C}.
This set can be turned into a sequence by ordering it by increasing values of t. Note that
this is not a realistic adversary as gossip protocols naturally enforce partial observability of
the events.

The following result quantifies the limits of privacy for this stronger adversary, which can
be compared to the results of Theorem 35 in the main text. We can see that in the regime
ε = 0 (total variation distance), the limits remain the same. However, achieving δ < f/n
and prediction uncertainty is not possible against this stronger adversary. Note also that
Algorithm 1 with s = 0 remains optimal.

Theorem 40. If a gossip protocol satisfies (ε, δ)-differential privacy and c-prediction
uncertainty then we have δ ≥ f

n
and c = 0 in the strong adversary setting. Furthermore,

these bounds are tight and matched by Algorithm 1 when its parameter is set to s = 0.

Proof. The fact that tell_gossip is called at least once and is first called on node 0
still holds. Sequence S(0) now denotes the fact that node 0 communicates with a curious
node at time 0. Since the protocol is run on the complete graph, the node selected by
tell_gossip is chosen uniformly within {0, ..., n − 1}, so a curious node is selected with
probability f

n
. We thus have p0(S(0)) = f

n
. Besides, node 0 cannot communicate with a

curious node at time 0 if node 1 starts the rumor so p1(S(0)) = 0. For prediction uncertainty,
using the same sequence S(0) yields pi(S(0))

p0(S(0)) = 0 for all i 6= 0 and therefore c = 0.
It remains to show that these bounds are matched by Algorithm 11 with s = 0. The

fact that the only outputs that have a different probability if node 0 starts (compared to
the case when 1 starts) are those in which 0 (or 1) communicates with a curious node for its
first communication is still true with the stronger adversary. Then, we write p0(S0 = 0) =
p1(S0 = 1) = f

n
and p0(S0 = 1) = p1(S0 = 0) = 0. This ensures that p0(S(0)) ≤ p1(S(0)) + f

n

(similarly for S(1)), and the result follows. �
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6.A.4. Malicious Behavior. We also assumed for simplicity that nodes are curious
but not malicious, i.e., they follow the protocol. This is motivated by a practical scenario
where a subset of nodes are simply being monitored by a curious entity. If curious nodes can
also act maliciously, they have three possible ways to affect the protocol (abstracting away
the content of the information): emitting more, emitting less, or not choosing neighbors
uniformly at random. If they emit more, they will inform more nodes, which makes it more
difficult for them to locate the source. If they emit less (potentially not at all), then in the
case s < 1, the protocol could stop before all nodes are informed. Yet, the privacy bounds
are derived from the fact that the source forgets the information before communicating to a
curious node. Choosing the neighbors they send the messages to reduces to the case in which
they emit less (for they do not send messages to uninformed nodes) but without affecting
protocol speed or termination (this does not reduce the number of active nodes). Thus, the
impact on the observed output and therefore on the privacy would be minimal. In the case
s = 1, malicious nodes have slightly more impact but remain quite small: this case only
makes the set of informed nodes grow slightly slower.

6.A.5. Termination Criterion. For simplicity, in all our gossip protocols we used a
global termination criterion (the protocol terminates when all nodes are informed). Termina-
tion without using global coordination is a problem in its own right that has been extensively
studied (see for instance Karp et al. [2000]). Although some termination criteria could have
a great impact on privacy, we argue that termination can be handled late in the execution so
as to reveal very little about the beginning, hence avoiding any significant impact on privacy.
For instance, it is possible to design a variant of Algorithm 11 in which nodes only flip a
coin with probability s for a fixed number of times, and then stop emitting completely. This
fixed number would have to depend on s, but then if it is large enough, it would guarantee
both termination and privacy. Indeed, nodes would not communicate with curious nodes
each time they are activated with high probability so this counter would actually provide
very little information to the curious nodes. Determining how large this number of iterations
should be, and the exact impact on privacy (which we argue is very small), is beyond the
scope of this paper.

6.B. Delayed Start Gossip

Consider the protocol described in Remark 5, which we call delayed start gossip:
1. The source calls tell_gossip once to forward to an arbitrary node, say node j.
2. Node j then starts a standard push protocol (Algorithm 11 with s = 1).

This simple protocol is clearly optimal from the point of view of differential privacy in
the regime ε = 0 (total variation distance). Indeed, if the first communication does not hit
a curious node then the probability of a given output when two different nodes start the
gossip is the same. It is also fast since it runs the standard gossip after the first round.

Yet, this naive protocol has a major flaw. Indeed, when the first communication hits
a curious node, the adversary can monitor whether the sender communicates with curious
nodes again in the next rounds. If it does not, they can guess that the node is the source,
and they will in fact make a correct guess with probability arbitrarily close to 1 for large
enough graphs. On the other hand, when the sender communicates again with a curious
node shortly after, they can be very confident that this node is not the source. Hence, it
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is possible to design a very simple attack with a very high precision (almost always right)
and almost optimal recall (identifying the source with certainty every time the information
is actually released, i.e. with probability f

n
).

Making sure that the adversary is uncertain about its prediction is therefore a desirable
property. This is captured by our notion of prediction uncertainty. The following proposition
formalizes the above claims.

Proposition 1. We call cds the prediction uncertainty constant of the delayed start
protocol and we assume the ratio of curious nodes f/n to be constant. Then cds → 0 when
n→∞.

More generally, it is in principle possible to prove similar results for any protocol in which
the source node does not behave like other nodes. Indeed, if the special behaviour can be
detected, then the adversary can know for sure the source of the rumor. This motivates the
need for more involved protocols such as those covered by Algorithm 11.

Proof of Proposition 1. The proof reuses some elements of the proof of Theorem 34.
We consider the sequence S(0)

r such that node 0 is the first node to communicate with a
curious node (S0 = 0) and then r other nodes communicate with curious nodes before 0 does
(Si 6= 0 for i ∈ {1, ..., r}). We denote by t0 the time at which node 0 gets the message and
becomes active again (we refer here to the global order, although of course the curious nodes
do not have access to it). Then, with the usual notations we have:

p0
(
S(0)
r

)
= p0(S0 = 0)p0

(
S(0)
r |S0 = 0

)
≥ f

n
p0 (∩ri=1Si 6= 0|S0 = 0)

≥ f

n
p0(t0 ≥ r)

≥ f

n
p0(nc(r) ≤ k∗)p0(t0 ≥ r|nc(r) ≤ k∗).

Then, we recall from the proof of Theorem 34 that

p0(nc(r) ≤ k) = p

(
Binom(k, f

n
) ≥ r

)

= p

(
Binom(k, 1− f

n
) < k − r

)

= 1− p
(
Binom(k, 1− f

n
) ≥ k − r

)
,

so if we set k = 2n
f
r and use tail bounds on the binomial law (Theorem 1 of Arratia and

Gordon [1989]) then there exists a constant H (only depending on f/n) such that p0(nc(r) ≤
r 2n
f

) ≥ 1− e−rH . Therefore, we have:

p0
(
S(0)
r

)
≥ f

n

(
1− e−rH

) (
1− 1

n

)r 2f
n

≥ C1(r, n). (6.B.1)

The last line comes from calculations done in the proof of Theorem 34. We now study
p1(S(0)

r ). Since node 1 started the protocol then it means that no other node (and in particular
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0) will stop emitting the message. Therefore, if node 0 is the first to communicate with a
curious node then it will remain active for the whole duration of the protocol. Consider that
the first disclosure happens after Tf communications. We can write:

p1
(
S(0)
r

)
≤ p1(S0 = 0)p1 (∩ri=1Si 6= 0|S0 = 0, Tf ≤ tf ) + p1(Tf > tf ).

Since the fraction of curious nodes is constant, we can choose tf independently of n or r
such that p(Tf > tf ) ≤ e−

f
n
tf ≤ ε

4(n−f) if tf = n
f

log
(

4(n−f)
ε

)
in order to control the second

term. Then,

p1 (∩ri=1Si 6= 0|S0 = 0, Tf ≤ tf ) ≤
tf+r∏
t=tf

(
1− f

n

1
t

)
≤ e

− f
n

∑tf+r
t=tf

1
t .

A series-integral comparison yields that if r = log2(n) then exp
(
− f
n

∑tf+r
t=tf

1
t

)
≤ ε

4 for n
large enough. Finally, we use the fact that p1(S0 = 0) ≤ 1

n−f to write that p1
(
S(0)
r

)
≤ ε

2(n−f) .
Finally, we observe that C1(log2 n, n) → f

n
when n → ∞ where C1 is defined in Equa-

tion 6.B.1. In particular, C1(log2 n, n) ≥ f
2n for n large enough, so we have

p(I0 6= 0|S(0)
r )

p(I0 = 0|S(0)
r )

=
∑

i/∈C∪{0}

pi(S(0)
r )

p0(S(0)
r )
≤ n

f
ε. (6.B.2)

Since ε can be picked arbitrarily small and n
f
is assumed to be constant then the previous

ratio can be made arbitrary small. �

6.C. Detailed Proofs

6.C.1. Privacy Guarantees.

Proof of Theorem 34. Intuitively, the proof relies on the fact that the event {td(0) ≤
ti(1)} (node 0 communicates with a curious node before node 1 gets the message) becomes
more and more likely as n grows, hence preventing any meaningful differential privacy guar-
antee when n is large enough. To formalize this, we study S(0)

r = {S, St = 0 for some t ≤ r},
the set of output sequences such that the rank of node 0 in the sequence is less than r. For a
specific sequence to not be in S(0)

r , there must have been at least r communications (because
r nodes must have communicated with curious nodes), and none of them involved 0 and
a curious node. Therefore, if we note nc(r) the number of communications that actually
happened before the output sequence reached size r, we have nc(r) ≥ r. Then, denoting by
C(t) the node that communicated with a curious node at time t (with C(t) = −1 when the
communication did not involve a curious node):

p0(S(0)
r ) = 1− p

(
∩nc(r)t=0 C(t) 6= 0

)
= 1−∏nc(r)

t=0 p (C(t) 6= 0) ≥ 1−∏r
t=0

(
1− f

n
1
t+1

)
,

where the last step comes from the fact that the probability of node 0 to be selected at time
t is 1

|It| ≥
1
t
because at most one node is informed at each step and the active node is selected

uniformly among informed nodes. We use the fact that log(1 + x) ≤ x for any x > −1 on
x = − f

n
1
t+1 to get:
∏r
t=0

(
1− f

n
1
t+1

)
= exp

(∑r
t=0 log

(
1− f

n
1
t+1

))
≤ exp

(
− f

n

∑r
t=0

1
t+1

)
. (6.C.1)
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Therefore, p0(S(0)
r ) goes to 1 as r goes to infinity. We emphasize that we do not need to fix

any network size for this result to hold since the ratio f/n is assumed to be constant.
Then, for a given r and for any k > 0, p(nc(r) ≤ k) is equal to p(Binom(k, f

n
) ≥ r) where

Binom(k, f
n
) is the binomial law of parameters k and f

n
. This is because it is the probability

of having exactly r successes with the sum of less than k Bernoullis of parameter f
n
, which

is equal to the probability of having more than r successes with the sum of k Bernoullis of
the same parameters. Therefore, p(nc(r) ≤ k) is independent of n and we can choose k∗
independently of n such that p(nc(r) > k∗) ≤ 1

n
. Then, we write that

p1(S(0)
r ) = p1(S(0)

r , nc(r) ≤ k∗) + p1(S(0)
r , nc(r) > k∗) ≤ p1(S(0)

r |nc(r) ≤ k∗) + 1/n.

This implies p1(S(0)
r |nc(r) ≤ k∗) ≤ p1(0 ∈ Ir|nc(r) ≤ k∗) ≤ 1 − p1(0 /∈ Ir|nc(r) ≤ k∗). We

know that only r communications have reached curious nodes but the others have reached a
random node in the graph, and there is at most k∗ of them, so finally:

p1(S(0)
r ) ≤ 1−

(
1− 1

n

)k∗
+ 1
n
.

We immediately see that p1(S(0)
r ) goes to 0 as n grows because k∗ is independent of n,

and we have shown above that p0(S(0)
r ) goes to 1 as n grows. Since we must have that

p0(S(0)
r ) ≤ eεp1(S(0)

r ) + δ, we must have δ = 1 if we want δ and ε to be independent of n. �
Proof of Theorem 37. For any set of sequences S ⊂ S such that p0(S) > 0:

p(I0 6= 0|S)
p(I0 = 0|S) =

∑
i/∈C∪{0}

pi(S)
p0(S) ≥

∑
i/∈C∪{0}

pi(A1 = {0})pi(S|A1 = {0})
p0(S) ,

where A1 is the set of active nodes at round 1. Because the state of the system (active nodes)
is the same in both cases we can write that pi(S|A1 = {0}) = p0(S). Besides, pi(A1 = {0})
corresponds to the probability that node i sends a message to node 0 and then stops emitting.
Therefore: p(I0 6=0|S)

p(I0=0|S) ≥
(
1− f+1

n

)
(1− s) > 0. �

6.C.2. Spreading time.
Proof of Theorem 38. The idea of this proof is to rely on the “determinism” of gossip

process, similarly to Sanghavi et al. [2007]. This means that the gossip process very closely
follows its mean dynamics. In our case, there is an added difficulty in the fact that extra
randomness is introduced by the deactivation of the nodes. Yet, we precisely quantify the
impact of this phenomenon on the results. We start by showing that if more than k(s)
nodes are informed at a given time, then with very high probability the number of informed
nodes never drops below this fraction once it is reached. Therefore, a number of messages
proportional to the size of the graph is sent at each round. The condition on s for this to
happen is written in Equation (6.C.6). More formally, we fix s ∈ (0, 1] and denote by At the
number of nodes that are active at round t, which is such that At = αtn. Then, we note

f : α→ 1− pu(α)(1− αs), (6.C.2)
where pu(α) = (1 − 1

n
)αn. Note that f(α) = 1

n
E[At+1|At = αn]. To see this, we count the

number of active nodes at time t+ 1. In total, At = αn messages are sent at the beginning
of the round. Therefore, for each node, the probability of having received a message at the
end of the round is exactly 1− pu(α) since each message has a 1/n probability to be sent to
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this specific node. In the end, n (1− pu(α)) nodes get the message in expectation. The rest
of the active nodes at time t + 1 is made of the nodes that were active, did not receive the
message and did not deactivate, which represents a portion nαpu(α)s of the nodes. Then,
one can see that the function f is simply the sum of these 2 terms. We show by using that
(1− x)y ≤ e−xy ≤ 1− xy + x2y2

2 that for α ≤ αs = s
1+2s , we have:

f(α) ≥
(

1 + s

2

)
α. (6.C.3)

Then, we follow the same steps as in Lemma 15 in Sanghavi et al. [2007]. We call At the
number of active nodes at round t, and At,m the number of active nodes at round t after
m messages have been sent (so during the round). Then, we can define Xi = At,i+1 − At,i.
At,i+1 only depends on At,i and so does Xi:

Xi =
{ 1 with proba s(1− |At,i|

n
)

−1 with proba (1− s) |At,i|−1
n

0 otherwise
Then, we define the martingale Zi = E[∑At

i=1Xi|X1, · · · , Xi, At]. This allows us to write
At+1 − nf(α) = Z0 − ZAt . If we call Sk,t = ∑At

i=kXi then for any d ∈ {−1, 0, 1}:
E[S1,t|X1, , Xi, Xi+1 = 1, At]
≥ E[S1,t|X1, · · · , Xi, Xi+1 = d,At]
≥ E[S1,t|X1, · · · , Xi, Xi+1 = −1, At],

because the distribution ofXi only depends on At,i. Therefore, |Zi+1−Zi| ≤ (1+E[Si+1,t|At+
1]) − (E[Si+1,t|At − 1] − 1)] ≤ 2. Azuma’s inequality Mitzenmacher and Upfal [2005] then
gives:

p
(
At+1 − nf(At

n
) ≤ −λAt|At = k

)
≤ e−

(λk)2
8k . (6.C.4)

We also have that p(At+1 < k|At ≥ k) ≤ p(At+1 ≤ k|At = k). Then, for any α ≤ αs,
Equation 6.C.3 yields that for all λ:

p
(
At+1 ≤ At

(
1 + s

2 − λ
)
|At
)
≤ e−

λ2
8 At . (6.C.5)

We can then bound this expression by using Equation 6.C.4 with λ = s
2 , leading to

p(At+1 < k|At ≥ k) ≤ e−
s2
32 k if α ≤ αs.

Denoting by Nk,j the number of messages sent between rounds k and j, we can decompose
over Cα−1 log n rounds so that if m is such that there are at least α active nodes at round
m then:

p(Nm,m+Cα−1 logn ≥ Cn log n) ≥ (1− e− s
2αn
32 )Cα−1 logn,

because it is equal to the probability that the fraction of active nodes never goes below α
for Cα−1 log n rounds. Therefore, if

s2 ≥ 32
αn

log C log n
α log(1− δ) , then p(Nm,m+Cα−1 logn ≥ Cn log n) ≥ 1− δ. (6.C.6)

Equation 6.C.6 gives a lower bound on the value of α. Note that for a fixed α, this lower
bound goes to 0 as n grows so in particular, Equation 6.C.6 is satisfied for α = αs if n is
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large enough. It now remains to show that such a fraction α of active nodes can be reached
in logarithmic time. Usual gossip analysis takes advantage of the exponential growth of the
informed nodes during early rounds for which no collision occur. We have to adapt the
analysis to the fact that nodes may stop communicating with some probability and split the
analysis into two phases.

In the rest of the proof, we prove that a constant fraction of the nodes (independent of
n) can be reached with a logarithmic number of rounds. We first analyze how long it takes
to go from O(log n) to O(n) active nodes and then from 1 to O(log n). Equation 6.C.3 along
with Equation 6.C.4 with λ = s

4 give that as long as At0(1 + s
4)t ≤ αsn then

p
(
At+t0+1 ≥ At0(1 + s

4)t+1|At = At0(1 + s

4)t
)
≥ 1− e−αns

2
128

for any t ≥ t0 such that At0
(
1 + c

2

)t
≤ nαs . Therefore, if we do this for all t ≤ tαs = log(αsn)

log(1+ s
4 )

rounds (so for a logarithmic number of rounds) then p
(
Atαs+t0 ≥ nα|At0

)
≥
(
1− e−

At0s
2

128
)tαs

because in this case, At ≥ At0 for t ≥ t0. Therefore, if

At0 ≥ −
128
s2 log

(
1− (1− δ)

1
tαs

)
, then p(Atαs+t0 ≥ nαs|At0) ≥ 1− δ. (6.C.7)

Using the fact that (1− x)y ≤ e−xy ≤ 1− xy + x2y2

2 along with the fact that δ < 1 ≤ tαs to
simplify Equation 6.C.7, we show that if At0 satisfies:

At0 ≥
128
s2 log

(2tαs
δ

)
, (6.C.8)

then it also satisfies Equation 6.C.7.
It only remains to prove that such an At0 can be reached with t0 logarithmic in n.

For this, use again Azuma inequality but on κ consecutive rounds this time. Therefore,
Equation 6.C.5 becomes, assuming that at least At messages are sent at each round:

p
(
At+κ ≤ At

(
1 + κs

2 − λ
)
|At
)
≤ e−

λ2
8κAt . (6.C.9)

We apply this inequality for κ = 2C log(n)/s and λ = C log(n)/2 (which is valid because at
least A0 = 1 node is active at each round), which yields:

p

(
Aκ ≤ 1 + C log(n)

2 |At
)
≤ e−

s log(n)
64 C . (6.C.10)

In particular, for a fixed values of C, s, and δ, then p
(
Aκ ≥ C log(n)

2 |At
)
≤ 1− δ for n large

enough. Finally, tαs is logarithmic in n so similarly, Equation (6.C.8) is satisfied for t0 = κ
if n is large enough.

We conclude the proof by noting that
p
(
N0,t0+tαs+Cα−1 logn ≥ Cn log n

)
≥ p

(
At0 ≥

128
s2 log

(2tαs
δ

))
p
(
Atαs+t0 ≥ nαs|At0 ≥

128
s2 log

(2tαs
δ

))
× p

(
Ntαs+t0,tαs+t0+Cα−1 logn ≥ Cn log n|At0+tαs ≥ nαs

)
≥ (1− δ)3 ≥ 1− 3δ.

198



Finally, we have that t0 ≤ 2C log(n)/s, tαs ≤ log(n)/s and 1/αs ≤ 3/s so in the end,
t0 + tαs + Cα−1 log n ≤ 6C log(n)/s. Without loss of generality, δ can also be replaced by
δ/3. �

Remark 6 (Extension to the Asynchronous Version). The first part of the proof directly
extends to the asynchronous algorithm by simply considering slices of time during which
a set of αn nodes send αn messages, which essentially means constant time. Then, we
consider a logarithmic number of slices. The phase from 1 to O(log n) active nodes requires
sending a logarithmic number of messages and can thus be done in logarithmic time. Finally,
phase 2 (going from O(log n) to O(n) active nodes) consists in evaluating a logarithmic
number of rounds during which a logarithmic number of nodes are active. Again, the only
important thing is the number of messages sent (and not which node sent them) so using
constant time intervals ensures that enough messages are sent between each pseudo-rounds
with high probability. To summarize, it is possible to prove a statement very similar to that of
Theorem 38 in the asynchronous setting, where the notion of rounds is replaced by constant
time intervals. We omit the exact details of this alternative formulation.

6.C.3. Maximum Likelihood Estimation.

Proof of Theorem 39. We recall that S is the output sequence observed by curious
nodes, so that S0, is the first node that communicates with a curious node. The source is
noted I0, as it is the first node informed of the rumor. The set P is such that p(I0 = i) = 0
if i /∈ P . Recall that tc is such that Stc ∈ P and St /∈ P for 0 ≤ t < tc. By a slight abuse
of notation, note At the set of active nodes at the time where St is disclosed (time of t-th
communication with a curious node), so St ∈ At for all t.

We know that for all i ∈ P then p((St)t<tc |Atc , I0 = i) = p((St)t<tc |Atc) since St /∈ P for
t < tc. Similarly, p((St)t≥tc |Atc , I0 = i, (St)t<tc) = p((St)t≥tc |Atc) since the output after some
time only depends on the active nodes at that time. Therefore, p(S|Atc , I0 = i) = p(S|Atc)
for all i ∈ P , which critically relies on the fact that tc is the time of first disclosure of a node
in P (the first inequality would not hold otherwise). We note [n] = {1, ..., n}. We then write
for i ∈ P :

p(I0 = i|S) =
∑
A⊂[n]

p(Atc = A|S)p(I0 = i|Atc = A, S)

=
∑
A⊂[n]

p(Atc = A|S)p(I0 = i|Atc = A)

=
∑

A⊂[n]:Stc∈A
p(Atc = A|S) p(I0 = i)

p(Atc = A)p(Atc = A|I0 = i).

Let j ∈ P ∩ Atc . If i ∈ Atc then p(Atc = A|I0 = i) = p(Atc = A|I0 = j). Otherwise,
let us denote Eij(A) = ∩k∈A\{j}{k active at time tc} ∩k/∈A∪{i} {k inactive at time tc}. This
event represents the realization of Atc for all nodes different from i and j. We then write:

p(Atc = A|I0 = i) = p(∩k∈A{k ∈ Atc} ∩k/∈A {k /∈ Atc}|I0 = i)
= p(Eij(A)|I0 = i)p(j ∈ Atc , i /∈ Atc|I0 = i, Eij(A))
= p(Eij(A)|I0 = j)p(j ∈ Atc , i /∈ Atc |I0 = i, Eij(A))
≤ p(Eij(A)|I0 = j)p(j ∈ Atc , i /∈ Atc|I0 = j, Eij(A)))
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= p(Atc = A|I0 = j).
The inequality comes from the fact that it is more likely that j is active and i is inactive

if j is the source than if i is (i.e., if it is already the case at the beginning). This means that
p(Atc = A|I0 = i) ≤ p(Atc = A|I0 = j) for all i ∈ [n] and j ∈ Atc . Since the summation is
over all A such that S0 ∈ A (by definition of Stc and Atc), and p(Atc = A|I0 = i) ≤ p(Atc =
A|I0 = Stc), we have for all considered A:

p(I0 = i|S) =
∑

A⊂[n]:Stc∈A
p(Atc = A|S) p(I0 = i)

p(Atc = A)p(Atc = A|I0 = i)

≤
∑

A⊂[n]:Stc∈A
p(Atc = A|S)p(I0 = Stc)

p(Atc = A)p(Atc = A|I0 = Stc)

= p(I0 = Stc |S).
This means that Stc is more likely to be the source than any other suspected node when

the adversary observes output S. Note that this requires uniform prior over nodes that can
be suspected since we used the fact that p(I0 = i) = p(I0 = Stc) for all i ∈ P . For i /∈ P ,
p(I0 = i|S) = 0 ≤ p(I0 = Stc |S). �

6.D. Challenges of Private Gossip for General Graphs

A natural extension of this work is to consider general graphs. We discuss in this section
several aspects related to the natural privacy of gossip protocols in arbitrary graphs. In
particular, we highlight the fact that problem-specific modeling choices are needed to go
beyond the complete graph, and that even defining a notion of privacy that is suitable for
all graphs is very challenging.

6.D.1. Average-Case versus Worst-Case Privacy. Unlike the case of complete graphs,
the location of curious nodes critically impacts the privacy guarantees in arbitrary graphs.
A naive way to deal with this issue is to randomize the location of curious nodes a posteriori.
Let us denote by Lfi,j the set containing all subsets of nodes of size f of the graph that do not
contain i and j. For fixed nodes i and j, the set of curious nodes C is drawn from U(Lfi,j),
the uniform distribution over Lfi,j. For some parameters ε, δ ≥ 0, privacy can be defined as
follows: ∀i, j ∈ {0, ..., n− 1}, ∀S ∈ S

EC∼U(Lfi,j)
[pi(S, C)− eεpj(S, C)] ≤ δ.

Note that pi(S, C) = 0 if the output sequence S is not compatible with the set of curious
nodes C, i.e. if (k, l) ∈ S and k, l /∈ C. To pick the curious nodes, it is possible to either pick
a set of f curious nodes at once or to pick each node (except for i and j) with probability
f/n. This randomized definition allows to prove a bound similar to that of Theorem 35 for
arbitrary graphs. Indeed, the first node that receives the rumor has probability f

n
of being

a curious node. However, such average-case notions of privacy are highly undesirable: in
this case, no protection is provided against a (much more realistic) adversary that controls
a fraction of nodes fixed in advance.

The worst-case approach consists in bounding the maximum difference instead of the
expectation. This is the approach taken in our work for the complete graph (the max
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operator is implicit because the location of curious nodes does not matter in a complete
graph). In the case of general graphs, the corresponding privacy definition is given by:
∀i, j ∈ {0, ..., n− 1}, ∀S ∈ S,

max
C∈Lfi,j

[pi(S, C)− eεpj(S, C)] ≤ δ.

We immediately observe that with this definition, it is impossible to have δ < 1 as soon
as there is a node in the graph with less than f neighbors. This modeling choice is quite
unrealistic as well because having a node surrounded by curious nodes means that the ad-
versary actually believes this specific node has a strong probability of being the source and
therefore put more sensors around it. A possible alternative would be to place curious nodes
so as to bound the maximum privacy for any pair of nodes, and then evaluate the minimum
privacy in this setting. This definition would mean that the adversary wants to be able to
distinguish any pair of nodes as best as possible.

We see that choosing the locations of the curious nodes in an arbitrary graph is a complex
problem that is heavily dependent on the topology of the graph and on the prior of the
adversary on the locations of the curious nodes. Indeed, the adversary may simply want to
isolate a sufficiently small group of nodes that have a high probability of being the source.

6.D.2. Relaxing the Differential Privacy Definition. Differential privacy is a very
strong notion that enforces indistinguishability between all pairs of nodes, in order to be
robust to any prior information about who might be the source. In particular, an adversary
should not be able to precisely identify the source even if it knows that only two nodes in the
graph can be the source. Although it was possible to obtain meaningful privacy guarantees
of this kind for the complete graph, this appears to be too strong of a requirement for some
graph topology and location of curious nodes. Consider for instance the extreme case of a
line graph. It is clear that any non-trivial adversary can always distinguish between two
segments of the line. This intuition directly extends to any graph which admits a cut with
only curious nodes in it.

A natural idea is to restrict the pairs of nodes that are required to be indistinguishable.
Several ways of doing this may be considered. For instance, one could require that each
node is indistinguishable from k other nodes in the graph. Such relaxed definition could be
obtained using the Pufferfish framework Kifer and Machanavajjhala [2014], which explicitly
provides a notion of secret to protect. But how to choose such k nodes based on the topology
and how to characterize the optimal locations of curious nodes is very challenging. Another
direction could be to adapt the notions of metric-based differential privacy Andrés et al.
[2013], Chatzikokolakis et al. [2013] to design a notion of privacy where the required indis-
tinguishability for a given node is a function of its distance to curious nodes in the graph,
or to require that pairs of nodes become less indistinguishable with distance in the graph.
Yet, it is not clear how to characterize the influence of the graph topology.

6.D.3. Optimality of Algorithm 11 with s=0. We have seen in this section that
the privacy guarantees for arbitrary graphs heavily rely on the particular privacy notion
and that some recent privacy frameworks may provide tools to relax the classic differential
privacy definition which is generally too strong for arbitrary graphs. We conjecture that for
some of these relaxed definitions, the optimal algorithm for general graphs will be the same
as in our case of the complete graph. Indeed, the strength of Algorithm 11 with s = 0 is
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to forget initial conditions quickly. In the complete graph, it does so in one step. In an
arbitrary graph, the information about the part of the graph the source belongs to is still
present after some steps, but the source should quickly be completely indistinguishable from
its direct neighbors. In particular, attacks based on centrality Shah and Zaman [2011] are
rather meaningless against this algorithm because spreading only occurs along a random
walk in the graph. As in the case of the complete graph, Algorithm 11 with s > 0 is then
likely to enjoy near-optimal privacy guarantees.
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Conclusion and Research Directions

Summary of the thesis

In this thesis, we have presented several algorithms that extend the recent advances in
convex optimization to the distributed setting, in particular in the case of decentralized
optimization.

In the introduction, we have presented the basic and more recent results in optimization
for machine learning, and in particular acceleration and variance-reduced methods for finite
sums. Then, we have given a brief overview of the distributed optimization models and
literature, with a focus on the dual approach for decentralized optimization.

Our first contribution can be split into 3 major parts, that are represented by Chap-
ters 2, 3 and 4. The first part builds on the results of Scaman et al. [2017b] and leverages
the dual approach to design an accelerated decentralized algorithm that uses randomized
pairwise communications instead of global synchronous ones. In particular, as a special case
of our algorithm, we obtain the first direct acceleration of randomized gossip that is not
tailored to specific graphs. The second part of this contribution focuses on the problem in
which local functions fi are finite sums as well. In this case, we show that using an alternative
dual formulation that has an augmented graph interpretation allows to have an accelerated
variance-reduced algorithm with separated communication and computation steps. We also
give a lower bound and prove that the synchronous version of this algorithm is optimal.
Finally, we show that the same framework can be used to obtain primal algorithms by using
a dual-free trick that relies on the use of Bregman divergences.

The second contribution of this thesis focuses on reducing the communication cost in
the centralized setting. To do so, we study a statistical preconditioning algorithm similar
to DANE [Shamir et al., 2014], in which the server uses a local dataset which is small
compared to the global one in order to make more efficient updates. Then, we leverage an
accelerated version of the Bregman gradients algorithm to show that the convergence rate of
this algorithm depends on the relative condition number between the objective function on
the server’s dataset and on the global one, and prove improved dependency on this quantity
thanks to acceleration. Finally, we analyze stochastic (variance-reduced) algorithms that
deal with the case in which all nodes cannot participate in every iteration, which is very
standard in federated learning.

In the last contribution, we do not study optimization directly, but the spreading of
sensitive information in a graph. In machine learning, this problem comes up if a one node
owns sensitive data that from which it is possible to infer whether a given model has been
trained on it or not. In our case, the node agrees to use for training, but would not like
curious nodes to be able to trace this data back to him. This happens for instance if only one
node has non-zero entries for some dimensions. In this case, we precisely define and quantify
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the privacy guarantees for the node that spreads the sensitive information, and give protocols
that have near-optimal privacy guarantees while also having order-optimal spreading speed.

Perspectives

As stated in the summary, this thesis extends several convex optimization result to the
distributed setting, and in particular in the decentralized case. This raises new questions,
and some of the natural extensions are:

(1) Scaman et al. [2017b] proved that the usual lower bounds for convex optimization
extended to the decentralized setting with an added term to account for commu-
nications, and give an optimal algorithm. In this thesis, we further extend these
results (lower bound and optimal algorithm) to the pairwise gossip and finite sum
cases. Yet, all these were obtained using a dual approach. Kovalev et al. [2020]
obtain an optimal algorithm that relies on primal oracles only, and Li et al. [2020c]
get the same result for the finite sum setting, although they rely on mini-batching
stochastic computations to achieve optimality. Obtaining primal optimal decen-
tralized algorithms that use randomized gossip communications and do not rely on
batching computations is an interesting problem that remains open.

(2) The accelerated randomized gossip algorithm obtained in Chapter 2 requires a global
counter of updates in order to perform the convex combinations required for accel-
eration, which implies some level of coordination between agents. It is actually
possible to bypass this limitation by studying the algorithm in continuous time,
and making continuous time contractions but discrete time updates, as shown in
Asynchrony and Acceleration in Gossip Algorithms [Even, Hendrikx, and Massoulié,
2020]. Leveraging this continuous framework to lift this coordination for finite sum
algorithms would allow to apply them using a synchronized clock only.

(3) Although many of the algorithms presented in this thesis rely on randomized gossip
updates and are thus not synchronous, their analysis does not extend to the case of
delayed updates, which is how asynchrony is often understood. It is actually possi-
ble to consider randomized gossip algorithms with delays, as shown in Decentralized
Optimization with Heterogeneous Delays: a Continuous-Time Approach [Even, Hen-
drikx, and Massoulie, 2021]. Considering (accelerated) variance-reduced algorithms
with delays (and possibly primal updates) would allow to design very realistic and
practical algorithms for modern peer-to-peer networks.

(4) Statistical preconditioning through the use of Bregman gradient algorithms allows to
drastically reduce the communication cost of training distributed machine learning
models, and shows great practical performance. Yet, and although it is not what is
observed in practice, our convergence Theorems only show asymptotic acceleration
(which is consistent with the impossibility result from Dragomir et al. [2021b]). A
better understanding of this discrepancy between the theory and the practice, and
when non-asymptotic acceleration can actually be achieved is a key open question
in the theory of statistical preconditionning and Bregman methods in general.

(5) Although there are interplays with statistics through preconditioning, this thesis
focuses mainly on optimizing the training error. It would be interesting to study
the test error in a distributed setting, for instance when each node samples data
from its own distribution, as in Richards and Rebeschini [2020].
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(6) Chapter 6 introduces a framework to analyze privacy issues when sharing informa-
tion (or when collaboratively training a model), and shows how to design algorithm
that achieve a good privacy-speed tradeoff (order-optimal in both). Yet, this anal-
ysis only applies to complete communication graphs, and extending the definitions
and results to more complex graphs is a very challenging question that we discuss,
but unfortunately leave open.
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