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Abstract 
This thesis deals with the development of a 3D vision system integrated into an 

industrial robot for contactless 3D scanning of mechanical parts in the aeronautic domain. 

Unlike tactile probing coordinate measurement machines (CMMs), 3D vision systems 

integrated with industrial robot leads to scan large mechanical parts in a short time, in quite 

harsh environments. All scanning operations, initially performed on canonical parts, have 

recently been extended to complex surfaces while catching the new industrial needs in terms of 

in-line measurement, as specified in the roadmap dedicated to industry of future (or Industry 

4.0).  Therefore, the quality assurance of multi-camera scanning systems and their traceability 

to the SI meter definition represents a challenging objective of the European project 17IND03-

LaVA. The full measurement system combining one camera-projector system and one 

industrial robot allows in-line 3D scanning of mechanical large volume parts with complex 

shapes. 

One 3D vision system based on the principle of structured light has been developed and 

calibrated in-house. The calibration of 3D vision systems is a crucial step prior to any 3D 

scanning operations. It enables to identify the requested internal, external and distortion 

parameters used for collecting a dense and accurate measured datasets of a mechanical part. 

In this context, calibration techniques of 3D vision systems have been studied and one novel 

optimisation method is proposed to improve the calibration accuracy. A synthetic and 

experimental evaluation was conducted to prove the efficiency of the optimisation method 

where the convergence has been proven to be faster.  The calibration of the developed 3D vision 

system is carried out with a traceable ceramic checkerboard measured with a traceable optical 

CMM (Micro-Vu Excel) at LNE. 

Finally, a specific large volume part (quite similar to that of aeronautics) with a complex 

shape is developed, measured by the traceable CMM machine, and used for the evaluation of 

the developed 3D vision system. A local scanning strategy is adopted to cover the whole surface 

of the large volume part. It consists of independently scanning several areas of the part and then 

aligning the measurement in one coordinate system using a validated registration technique. 

Afterwards, a reliable and accurate measurement results, 3D data processing and fusion 

algorithms were investigated and applied. The returned results have shown a maximum fitting 

residual of 150 µm. 

Keywords: 3D Metrology; Point cloud; Calibration; Large volume parts; Complex surface; 

Machine Learning; Optimisation;  Registration; Vision systems; Robotic
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Résumé 
Ce travail de thèse est destiné à contribuer au développement d’un système de vision 3D, couplé 

à un système de déplacement, pour la mesure sans contact de pièces mécaniques complexes. 

Contrairement aux machines de mesures 3D tactiles, les systèmes de vision 3D permettent de 

fournir un nuage de point dense en un temps quasi réel. Les opérations de mesure 3D, 

initialement réalisées sur des pièces simples, ont été étendues à des surfaces complexes pour 

répondre aux nouveaux besoins industriels en matière d'automatisation de la mesure en ligne, 

selon les besoins de l'industrie du futur (ou Industrie 4.0). Dans le cadre du projet EMPIR 

17IND03-LaVA avec cette thèse, le LNE a contribué à la mise en œuvre d'un système de mesure 

multi-caméras (de photogrammétrie/lumière structurée) traçable à la définition SI du mètre. La 

combinaison du système de cameras-projecteur avec un robot industriel constitue le système de 

mesure complet destiné à des opérations de scanning 3D en ligne sur des pièces mécaniques 

complexes de grands volumes. 

L'étalonnage des systèmes de vision 3D basé sur le principe de lumière structurée, réalisé dans 

le cadre de mon projet de thèse, représente une étape cruciale pour aboutir à des mesures 

traçables. Il permet aussi d'obtenir des informations nécessaires à la triangulation. Dans ce 

contexte, les techniques d'étalonnage ont été étudiées, et une nouvelle méthode d'optimisation 

permettant d'améliorer l'exactitude de l'étalonnage a été proposée. Ensuite, l'étalonnage du 

système de vision 3D est réalisé par l’intermédiaire d’un étalon matériel mesuré avec une 

machine optique traçable (Micro-Vu Excel), permettant de raccorder notre système de vision à 

la chaine de traçabilité SI du mètre. 

Enfin, une pièce mécanique complexe de grand volume, similaire à celles utilisées dans 

l'aéronautique, a été développée et étalonnée sur une machine de mesure traçable. Cette étalon 

est utilisé pour l’évaluation des performances métrologiques du système de vision 3D. Une 

stratégie de scan a également été proposée pour couvrir toute la surface de la pièce. Cela 

implique de numériser plusieurs zones de la pièce individuellement et de fusionner les mesures 

dans un même référentiel à l'aide de techniques d’alignement. Des algorithmes de traitement et 

de fusion de données 3D ont été implémentés. Le résultat de mesure obtenu en terme de résidus 

(150 µm) est très encourageant. 

Mots clés : Métrologie 3D; Nuage de points; Etalonnage; Pièces de grand volume; Surface 

complexe; Apprentissage automatique; Robotique 
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Introduction  

In a permanent concern of quality control, the need for 3D scanning of mechanical parts has 

been growing during the last twenty years. Although many 3D scanners are marketed, 

improvements must be made, particularly regarding the metrological traceability and the 

estimation of measurement uncertainties. According to the VIM (International Vocabulary of 

Metrology), traceability is defined as the "property of a measurement result whereby the result 

can be related to a reference through a documented unbroken chain of calibrations, each 

contributing to the measurement uncertainty" [Inte12]. Currently, the traceability of industrial 

vision systems is not ensured enough and there are still some challenges and issues to be solved 

in Large Volume Metrology (LVM). LVM is defined as the ability to measure size, location, 

orientation and form of large dimension objects, assemblies or large working-volume machines. 

LVM is a critical requirement in industries such as aerospace, automotive, shipbuilding, civil 

engineering and energy, especially in the quality control of mechanical parts. 

This thesis deals with the 3D scanning of large volume parts with complex shapes, located in 

the large-scale metrology as shown in Figure 1. 

  
Figure 1 Measurement machine classification according to [Elha14] 
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Context 

The LCM (LNE-CNAM) is developing a research axis on 3D scanning by machine vision as 

well as the associated data processing methods. It takes part of the European project LaVA-

17IND03 (Large Volume Metrology Applications), launched in 2018 under the coordination of 

the National Physical Laboratory (NPL). A number of partners are involved in this project 

funded by the EMPIR-EURAMET program: NPL (UK), CNAM (FR), LNE (FR), GUM (PO), 

INRIM (IT), VTT (FI), IK4TEKNIKER (SP), SAAB (SW), FIDIA (IT), ISI-CAS (CZ), FIDIA 

(IT), WZL (GE), AACHEN UNIVERSITY (GE), MAPVISION (FI), and RI-SE (SE). 

The LaVA project aims to develop measurement systems to scan large complex parts with a 

measurement uncertainty below 200 µm. LNE-CNAM, project partner, is focusing on the 

development of a low-cost three-dimensional measurement system for the characterization of 

large-volume complex parts. The most common examples of large volume parts are from the 

aeronautical, railway and shipbuilding fields (Figure 2). 

 

Figure 2 Example of large volume parts from automotive and aeronautical industries [Elha14] 

The inspection of mechanical sub-assemblies such as airframes or aircraft sections requires the 

use of flexible, accurate, real-time and traceable measurement systems located close to the 

production line to improve the manufacturing cycle process. For example, aircraft parts, such 

as airplane wings, require the use of non-contact 3D scanners, because the measurement time 

with contact sensors is often very important due to their large dimensions, and consequently the 

manufacturing cycle is not optimal [Whee19]. 

Traditionally, the inspection of mechanical parts relied on the use of tactile probes integrated 

into CMMs. The advantage of tactile CMMs lies mainly in their low measurement uncertainty. 

However, there are two disadvantages: (1) the measurement cycle is very long to scan large 

volume parts, (2) the measurement volume is limited by the structure of CMMs. Recently, 

several studies on optical 3D measurement techniques have been launched in order to overcome 

this issue. These studies have often led to the development of new contactless 3D scanning 
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techniques (photogrammetry, laser triangulation, stereoscopic vision)  [AMRA19, HuFF20, 

ONTD18]. This type of technologies allows to acquire large cloud of points in short time. To 

scan large dimensions objects, a local scanning approach is usually adopted. Thanks to 

industrial robots, several scans can be performed on elementary zones of a large volume part 

and the collected datasets are merged into one coordinate system. Therefore, the thesis topic is 

focused on the development of a traceable and contactless 3D scanning system for large volume 

mechanical parts, which can be used for online metrology. 

Organization of the thesis manuscript 

This document is organised as the following:  

 Chapter 1 presents the state of the art of contactless 3D scanners focusing on 

camera-based reconstruction techniques and their advantages compared to other 

methods. The concept of the developed structured lighting based on cameras and 

projector is also detailed. The 3D scanning strategy that includes the use of an 

industrial robot is introduced and techniques for aligning the collected datasets are 

discussed. 

 Chapter 2 deals with the modelling and calibration methodology of a camera as 

well as a stereo system (camera-camera / camera-projector). The geometrical 

model of cameras, also called “pinhole model”, is detailed. Existing camera 

calibration and stereo cameras calibration techniques are discussed while Zhang 

calibration is well emphasised due to its accuracy and robustness. 

 Chapter 3 presents a novel optimisation approach of the Zhang’s calibration 

method. The optimisation aims to improve the quality of the calibration for both 

single camera and stereo systems. The theory models are presented, then evaluated 

on synthetic data (by simulating a virtual scene) and successfully tested/applied on 

experimental data collected on a traceable ceramic checkerboard. 

 In chapter 4, a designed large volume mechanical part and eight secondary 

artefacts, that have been used to assess the performance of the SL (structured light) 

scanner, are presented. Form errors are identified and a repeatability test for some 

secondary artefacts such as plan, sphere and cylinder are performed and evaluated. 

Both pairwise and groupwise point-clouds registration techniques are applied and 

the returned results are compared. A registration pipeline is proposed for the SL 

point-clouds and evaluated through a synthetic and experimental validation. 
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 Finally, a general conclusion of the thesis is given and a number of perspectives 

are suggested in order to improve the developed 3D scanning system. 

Contributions 

The thesis topic deals with the development of a traceable 3D scanner and associated data 

processing algorithms. Since tactile probes are limited in term of applications, measurement 

speed and density of data, one contactless system is proposed to guarantee the best compromise 

between scanning speed, accuracy and density. In this context, camera-based systems are best 

suited to reach the objective. 

Therefore, the main contributions are: 

- Study of camera-based 3D scanning systems (choice of technology and calibration 

methods): 

 camera calibration methods, 

 identification of the internal, external and distortion parameters,  

 exploitation of the identified parameters, 

 estimation of calibration uncertainties. 

- Development of a 3D traceable scanner combining industrial cameras, industrial robot 

and tracking sensors (telemeters). 

- Development, design and manufacturing of one large volume material standard with a 

geometry similar to parts in aeronautics. The traceability of the large volume material 

standards to the SI definition of the metre was established through measurements on 

the traceable Zeiss CMM at LNE. 

- Development of a robust post-acquisition algorithm for data post-processing by 

exploiting intrinsic surface parameters such as shape variation and/or data from 

tracking sensors. Data fusion is an essential step to generate a global point cloud 

representative of the part. 
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C H A P T E R . I Overview, design 

and development of a 3D scanning system 

 

 

This chapter deals with 3D scanning methods proposed in the literature. A comparison between 

camera-based scanners is detailed in section I.2. In section I.3, a focus on structured lighting 

techniques and the 3D reconstruction using coded structured lights is given. Finally, section 

I.4 details the developed 3D vision system for scanning large volume and complex mechanical 

parts. 
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I.1. Introduction 

Contactless 3D scanning methods have recently grown in popularity and are increasingly 

adopted in almost all industries, especially in projects involving R&D. The process of 

recovering 3D information of objects through camera recording is called photogrammetry. 

There are two categories of photogrammetry techniques [BGBM13, ElBB95]: passive 

photogrammetry techniques such as SfM (structure from motion) and stereovision as well as 

active photogrammetry technique such as laser scanners and structured light (SL). There are 

several brands and models in each category that all fulfil 3D scanning demands [BBPP21, 

DHAN18, ReBF10, SZPY12]. The capabilities, uses, and prices of 3D scanners vary greatly.  

According to [BeBa14, Cara20, ChZh95, HeLe21, JHPS21], it seems critical to choose the 

appropriate 3D scanning method with respect to the target application. For example in quality 

control of mechanical parts, usually laser scanner and SL systems are used [BiJa04, PLMG20]. 

The selection of one contactless scanning technique depends on a number of criteria as shown 

in  Figure I.1: (1) the accuracy of the 3D scan; (2) the real-time aspect to scan moving or static 

objects for example; (3) the scanning speed which is the ability to generate a point cloud within 

few seconds; (4) the density of the point-cloud; (5) the effect of environment condition such as 

lighting; (6) safety constraints as an important factor; and finally (7) the cost. 

 

Figure I.1 Selection criteria of scanning methods 

Selection 

criteria

Accuracy

Density

Cost

SafetyEnvironment

Scanning 

speed

Real-time



Chap I: Overview, design and development of large volume scanning system 

 

7 
 

I.2. Choice of the scanning method 

I.2.1. State of the art on the advantages and drawbacks of the existing 

methods 

The choice of the scanning method depends on the target application. Here, the objective is to 

perform a 3D reconstruction by collecting a dense and accurate point-cloud resulting from the 

scan of a given large volume part (LVP). This conceivably could be done by scanning the fixed 

surface elementary zones (SEZ) and merging all the collected point-clouds into a single one 

leading to a global 3D representation of the LVP.  

Table I.1 summarizes the advantages and drawbacks of each optical scanning method with 

regard to the developed application. The mainly focused points are related to the use simplicity 

(the implementation requires a less complex mechanical configuration), the scanning time 

required to fully scan a LVP without compromising the scanning accuracy and the density of 

the 3D reconstruction. 

Table I.1 Comparison between 3D scanning methods 

Technologies Advantages Drawbacks 

Photogrammetry 

[HuFF20, Luhm10, 

NBSR20] 

- Simple mechanical 

configuration  

- low-cost (200 €) 

- Spatial resolution > 1 mm for 

aerial mapping 

- Medium and large range 

measurement 

- Accurate up to 1 – 5 mm for 

aerial photogrammetry 

- Can only be adapted for 

surfaces that contain 

features or physical markers 

- High time consuming due to 

algorithm complexity 

- Highly dependent on the 

areal surface texture 

- Highly affected by ambient 

lighting 

Passive stereovision 

[Naou06, USAN05] 

- Simple mechanical 

configuration 

- Low-cost (200 €) 

- Spatial resolution > 1 mm 

- Accuracy of about 1 – 2 mm for 

mapping 

- Medium range measurement 

- Useless for uniform surfaces 

and objects without targets 

- Highly affected by ambient 

lighting 

- Low accuracy compared to 

laser triangulation and SL 
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Shape-from-X 

[ChBK04, NaNa94, 

OVBS17] 

- Low-cost  

- Adopted in many 3D scanning 

applications such as archaeology 

and cartography 

- Depend on ambient lighting 

- Highly depends on scene 

characteristics 

- Low accuracy > 1 mm 

Time of flight 

[AmHS09, CSCT10] 

- Medium and large range 

measurement 

- High acquisition frequency 

- Independent of ambient light 

- Lower measurement 

accuracy compared to 

triangulation technique for 

close-range (few mm)  

Laser triangulation  

[ScSa00, SMMR19] 

- Simple mechanical 

configuration 

- Close-range measurement 

- Submillimetre spatial resolution  

- Allow 3D reconstruction of an 

object regardless of the texture 

- Accurate up to few µm for 

moving objects 

- Security constraints related 

to the use of the laser source 

- Limited range measurement 

and volumes (few cm3) 

- Scanning time 

Structured lighting 

(SL) 

[Geng11, SaPB04, 

Vill00] 

- Simple mechanical 

configuration 

- Accuracy to the micrometre 

level 

- Could operate in real-time 

- Close-range measurement  

- Spatial resolution of pixel size 

(few micrometres) 

- 3D scanning of an object 

regardless of the texture 

- High scanning speed 

- High density 

 

 

 

- Noise due to the process of 

encoding-decoding 

- Less accurate for moving 

objects 
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I.2.2. Analysis of the state of art 

Both photogrammetry and passive stereovision techniques [AMRA19, NBSR20, USAN05] are 

used for images that contain feature points. Feature points (also called key points) in image 

processing, are defined as the elements of information about the pixels in an image [LiXW21]. 

These elements of information could be an edge, texture, colour variation, curvature, area with 

certain properties, or physical markers [GMRD20, LiXW21, Roud04, Weij05]. Usually, the 

manufactured LVP has a uniform aspect of the surface. Therefore, photogrammetry and passive 

stereovision scanning methods are unusable since there are no feature points to be identified in 

the images. In addition, shape-from-X [OVBS17] and time of flight [CSCT10] cannot be used 

because they provide low accuracy 3D reconstructions (>1 mm). Alternatively, the laser 

triangulation technique is based on the projection of a laser beam aimed at the surface of the 

LVP and collected from the camera perspective. The latter technique uses the projection of a 

laser point or line to scan the object. This principle represents the main drawback, as the 

scanning time is quite high. Since the scanning time represents one fundamental criterion to be 

considered when scanning LVP, the SL technique could be the appropriate solution in terms of 

scanning speed, but also in terms of robustness, density and accuracy. 

SL system is an active technique based on the projection of well-known patterns on the surface. 

The projection patterns would be deformed according to the shape of the object and then used 

to recover the 3D information. The simplest example is the projection of a line (fringe) on a 

sphere, which will deform the projection due to its rounded shape. On this topic, several 

projection patterns are presented in the literature [HuMa89, KiRL08, SaPB04, ZDKS17] such 

as phase-shifting, Gray-code, Segmented stripes, De Brujin sequences ...etc.  

I.3. Structured lighting (SL) techniques 

I.3.1. SL: general concept 

The SL method is based on the analysis of the deformation of well-known patterns projected 

on the object. The principle is similar to laser triangulation, except that a projector replaces the 

laser source as shown in Figure I.2. The baseline is defined as the distance D between the 

camera frame and the projector. 3D scanning using SL technique is based on triangulation 

principle, performed between the pixel point of the projector (up, vp) and its projection (uc, vc) 

on the image plane. Here, the transformation Tp-c (camera to projector) and internal parameters 

of the scanner elements are considered known. 
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Figure I.2 configuration of structured light system inspired by [LiLi14] 

The process of identification of the projected pixels on the image sensor is called a codification 

strategy [SaPB04]. Thus, codification consists of generating a well-known pattern through the 

projector and finding the correspondences between projector pixels and camera pixels 

[SaPB04]. 

I.3.2. SL: codification strategies 

I.3.2.1. Existing codification strategies 

In the literature [HKJK13, MRGO14, WiBP12], several codification strategies are proposed 

and classified into two main categories according to [Geng11]. The classification depends on 

the static or dynamic aspect of the scanned object: 

(1) Multi-shot techniques (Figure I.3) based on the projection of different patterns 

respectively while taking images. This is used to scan static objects, and usually leads 

to more accurate results [Geng11].  

(2) Single-shot techniques (Figure I.3) are rather based on the projection of a single pattern 

and mainly used to scan dynamic objects. Single-shot has been proposed with the main 

objective of scanning objects in real-time without the need for high accuracy. There are 

3 types of single-shot techniques: (i) continuous patterns that consist of projecting 

endlessly coloured pattern; (ii) stripe indexing based on the codification of each singular 

projected stripe; (iii) grid indexing that consists of projecting a specific shape such as a 

grid or makers [TTAM18].  
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Figure I.3 Classification of coding strategies for structured light scanners [Geng11] 

One of the most used single-shot techniques is strip indexing. It is based on the recognition of 

each projected pattern on the image plan by associating an index to each stripe, because the 

projected set of stripes does not necessarily correspond to the viewed ones. Coloured stripe 

indexing proposed by Chen [CZLF07] consists of the analyse of both the colour and the 

intensity of the projected pattern composed in the HSV colour space (Hue, Saturation, and 

Value). HSV is a model presented by [Smit78] such a non-linear transformation of RGB colour 

space from discrete values of colour to continuous is considered. Here, not only the colour is 

considered, but also the saturation and the brightness values are taken into account. This method 
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is used for 3D scanning in real time with the millimetre accuracy. Additional existing SL 

techniques have been proposed to achieve higher accuracy; however, they cannot perform real-

time scanning. Phase-shifting [Kauf16] is a method based on the projection of a sinusoidal 

pattern with a varying intensity in the range of [0, 255]. The pattern is then shifted by one phase. 

For a three-step phase shifting projection, the shift is done by π/3 phase. This method uses the 

phase information calculated for each pixel, rather than the intensity values [YMMY21]. Each 

pixel of the projection pattern is identified using its own phase code, and can be located on the 

image plane. 

I.3.2.2. Choice of codification strategy 

In the context of this project, the LVP is considered physically fixed with respect to the 

developed 3D scanner. Hence, multi-shot techniques are selected in order to achieve the 

targeted accuracy. According to [ZDKS17], the multi-shot class could be split into two 

categories: spatial and temporal. Phase shifting is a temporal category that has been proposed 

to perform accurate 3D scanning in a short time. However, it fails when the scanned surface 

presents complex shapes and/or right angles. Those shapes complexity result of a phase shifting 

of more than 2𝜋 which causes errors in the estimation of the 3D coordinates [Kauf16]. On the 

other hand, Gray-code is a spatial category that relies on the analysis of pixel neighbourhood 

to provide 3D estimation of point coordinate. The spatial category is not optimised for real-

time scanning, but mainly chosen to scan complex shapes [QCVG06]. 

For encoding binary patterns, the selection of Gray-codes is related to its robustness to image 

noise and interference between neighbouring pixels [Matt18]. The Gray-code [IYDT07] 

[KiRL08] uses two intensity values : black (intensity 0) and white (intensity 1) to form a 

sequence of projection patterns, so that each point of the object surface has a unique binary 

code. In general, 𝑛 patterns can encode 2𝑛 fringes. Figure I.4 shows an example of a simplified 

projection pattern of 4 𝑏𝑖𝑡𝑠. Once this pattern sequence is projected onto a static scene, there 

are 16 (24) unique areas encoded with unique bands. The 3D coordinates (𝑋, 𝑌, 𝑍) could be 

calculated for the 16 points along each horizontal band, forming a complete 3D image frame. 

 

Figure I.4 Example of 4 bits binary coding [TaML14] 
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The choice of Gray-code is motivated by its capacity to scan inter-reflections [XuAl09]. Let’s 

consider the following examples: if a point on the scene is in shadow, then it has zero intensity 

under any illumination pattern. However, due to inter-reflections from other surfaces, the pixel 

might store a large intensity value and thus be incorrectly decoded. The Gray-code is robust 

against those problems compared to phase-shifting. 

I.4. Design and conception of an optical 3D measurement system 

I.4.1. Introduction 

Most commercial scanners (EINScan Pro [Eins00], HandySCAN 3D [Crea00], David Starter-

kit [Davi00], Gocator [Lmig00], GOM Atos inspect [Atos00]) provide limited use for specific 

applications, and they are usually unusable for other use-cases and/or environments (Figure 

I.5). For example, some recent solutions integrate both a fixed 3D scanner and a rotating table 

for the repositioning of the scanned part [Davi00]. These systems are frequently used for small 

size parts and lead to a better registration result since multiple point of views are recorded 

[SeDP17]. For LVP scanning, the use of a rotating table requires complex mechanical 

configurations due to its large dimensions and its weight. In addition, the LVP could be 

deformed or damaged during the movement. 

 

Figure I.5 Portable 3D scanners: (a) Gocator SL scanner (costs around 15k €), (b) 

EINScan pro 2X (~6k €), Fixed 3D scanners: (c) GOM Atos core (>33k €), (d) David 

scanner retails (~4k €) 

Several studies have been conducted on the compactness and portability of 3D scanners, as they 

could be integrated in manufacturing processes to detect anomalies in real time. They are 

designed with specific mechanical configurations (camera/projector positions and orientations) 

and factory calibration strategies [VBRF21]. The principle of those 3D scanners is based on the 

exploitation of some predefined intrinsic and extrinsic parameters used to convert a set of 

(a) 

(b) 

(c) 

(d) 
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images to a 3D point-cloud. Those parameters are inaccessible and difficult to evaluate because 

the 3D scanners are factory calibrated. Therefore, the calibration traceability cannot be 

established, and, the requested high precision cannot be guaranteed and achieved. 

Consequently, a prototype of SL scanning system has been developed while providing a full 

traceable chain for LVP quality control to the SI metre definition.  

The workflow of the 3D scanner development is described as following:  

(1) the developed system is composed of industrial optical components useful in industrial 

environment;  

(2) the 3D scanning of LVP with high accuracy; 

(3) the aimed scanning speed of ms;  

(4) the spatial resolution of 100 µm to collect dense scanning (high density point-cloud);  

(5) the system should be compact to be used in any displacement.  

I.4.2. Design of the traceable 3D scanner 

The designed 3D scanner integrates two industrial cameras (a) and one pattern projector (b) 

(Figure I.6). The use of two industrial cameras could guarantee better spatial redundancy 

[IfAw12] and more accurate results. Furthermore, the term ‘industrial’ is formally used for 

optical components that have been customized to endure severe conditions such as temperature 

variation and/or dust. One additional constraint regarding the selection of the proper optical 

components is related to the expected spatial resolution that depends on both the projector and 

the camera pixel resolutions. Cameras have typically a higher pixel resolution than projectors, 

which is a limiting factor for such SL systems [WSRK11]. Therefore, the pixel resolutions must 

be comparable to the used camera. 

Several angular configurations can be adopted for the developed system illustrated in Figure I.6: 

the camera rotational frame (c) along the x-axis allows to match both cameras field of views 

(FoVs) such as the same scene is observed twice. Here, the two industrial cameras FoVs overlap 

can vary between 40 % (for parallel configuration) and 100% (when an angular configuration 

is adopted). One additional projector rotational frame (d) along the vertical z-axis allows to 

project the fringe in the cameras FoVs.  

The selected cameras are XIMEA MQ013rg-e2 equipped with a digital lens LM8JCM_V of 8.5 

mm focal length. This camera has a pixel resolution of 1280×1024 pixels, and each pixel has a 

dimension of 5×5 µm² with a frame rate of 60 per second (fps). The choice of the camera is 

motivated by its performance in several applications and environments [Xime00]. The chosen 
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projector is a DLP Lightcrafter 4500 for which the native pixel resolution is about 912×1140 

pixels with a projection rate of 120 Hz [Dlpl00]. The projector has been selected with respect 

to two constrains: (1) the dimensions of the projector allows it to be included in a compact and 

portable 3D scanner; (2) the pixel resolution of the projector is comparable to that of the camera 

to avoid interferences due to the difference between the resolutions. The cameras-projector 

assembly (cf. Figure I.6) is supported by a rigid supporting frame made of aluminium (e) to 

avoid mechanical deformation of the system during the scanning process. The system is set up 

on the end effector of an industrial robot using the fixing part (f). Additionally, 6 optical spheres 

(g) have been fixed on the supporting frame while tracking the poses of the 3D scanner in the 

measurement volume by the mean of four laser rangefinders. 

 

 

Figure I.6 Design of the 3D scanner: (a) industrial cameras; (b) projector; (c) Camera 

rotational frame; (d) Projector rotational frame; (e) aluminium mounting frame; (f) Scanner-

robot fixing part; (g) Laser rangefinder targets 
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I.4.3. Resolution of the traceable 3D scanner 

I.4.3.1. Spatial resolution of imaging sensors 

A flat surface located at two scanning distances d1 and d2 from the camera perspective are 

considered as illustrated in Figure I.7. For the selected XIMEA MQ013rg-e2 camera, the pixel 

dimensions are 5×5 µm² and the focal length is f = 8 mm. If the flat surface is placed at a 

distance d1 = f, each pixel of the sensor covers a 5×5 µm² from the flat surface. When the object 

is moved away by a distance d2 (eq.I.1) from the XIMEA MQ013rg-e2 (where k is a positive 

integer), the pixel covers a surface of 5k×5k µm². 

 𝑑2 =  𝑓 × 𝑘 (𝑚𝑚)    I.1 

 

 

Figure I.7 Effect of the distance d2 on the spatial resolution 

The fixed distances between the components of the 3D scanner are selected as to have a compact 

system that could be easily integrate on the end-effector of an industrial robot. As the spatial 

resolution of the scanner is highly affected by the scanning distance (Figure I.7), the distance 

between both the 3D scanner and the flat surface is set to 170 mm, based on eq. I.1, where k = 

10, as to ensure a maximum spatial resolution of 100 µm. 

I.4.3.2. Conceptual schematisation of the 3D scanner 

Based on [Prin00], it seems well known that a large focal length value f leads to a high spatial 

resolution of the 3D scanner as shown in Figure I.8 where θ is the angle between the optical 

axis of the projector and that of the camera. In this figure, two orientations θ and θ’ of the 

projector with respect to the camera are shown. The higher the angle θ, the nearer the camera 

is to the flat surface, resulting in low or high spatial resolution. 
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Figure I.8 Effect of projector orientation on the spatial resolution 

 

 

Each camera is fixed on an angular positioning component (Figure I.9-a), to allow the study of 

the influence of the overlapping area on the performance of the 3D scanner. Furthermore, the 

projector is fixed on one supplementary rotational component (Figure I.9-b). Based on those 

rotational components, the multiple configurations that can be adopted by the elements of the 

3D scanner are classified as parallel and angular configurations (also known as toed-in 

configuration) [Yama00, ZaPr97].  

- The parallel configuration consists of placing both the cameras and the projector so that 

their optical axes are all parallel as shown in Figure I.10-a. The main goal of this 

configuration is to simplify the transformation from the projector to each camera since 

only translations are applied. However, the overlapping area between the projection 

zone and the camera FoV is rather small, and the scanning of a LVP could take several 

poses to generate the whole point-cloud of the surface. 

- The angular configuration allows to change the overlapping area up to 100%. Thus, each 

camera is oriented to the projection zone so that a maximum of this projection is seen 

as shown in Figure I.10-b. In this configuration, the transformations between the scanner 

elements must all be estimated while performing an accurate 3D scanning. 
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Figure I.9 (a) Camera fixing frame for rotation along the vertical axis (b) Projector fixing 

frames for rotation along the horizontal axis 

 

Figure I.10 (a) parallel configuration of the 3D scanner elements (b) angular configuration 

of the cameras with respect to the projection surface 
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The developed 3D scanner allows obtaining a 3D point-cloud for a surface size with an effective 

scanning area of 100 × 70 𝑚𝑚. The scanning process of LVP requires to move the 3D scanner 

in the measurement space. In order to scan LVP over wide range, the portability of the 3D 

scanner should be considered. This could be achieved either manually or using a motion system 

such as an industrial robot, widely used in industry 4.0, especially for manufacturing and quality 

control applications [Cisz18]. 

I.4.4. Protocol for 3D scanning of large volume parts (LVPs) 

The combination of multiple scans at different positions and orientations is necessary for 

covering the whole surface of a LVP. Therefore, a 6-axis industrial robot KAWASAKI RS003N 

is selected and equipped with the 3D scanner on the end-effector. 

The adopted scanning procedure consists of subdividing the LVP into elementary surfaces to 

be scanned individually in static mode. Each elementary surface corresponds to a position and 

an orientation of the 3D scanner generated by the industrial KAWASAKI robot (Figure I.11). 

RS03N 

 

Maximum load 3 kg 

Horizontal range 620 mm 

Vertical range 967 mm 

Repeatability ±0.02 mm 

Maximum speed 6,000 mm/s 

Figure I.11 Specification of the selected industrial robot KAWASAKI RS03N  

 

The Kawasaki robot range is 967×620×620 mm3. It has been enlarged by adding one 7𝑡ℎ  

unidirectional motion axis of 1500 mm range allowing to scan LVP up to 2000×600×100 mm3 

(Figure I.12). 
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Figure I.12 Addition of a 7th axis to the robot 

 

The suggested 3D scanning procedure to scan a LVP is illustrated in Figure I.13. The 

elementary surfaces are scanned in a successive way by the 3D scanner, and then the collected 

scans are merged together in one unique coordinate frame. One additional scanning condition 

with respect to [Liu06, Thom00, WYDL21] is the overlapping. It is fixed to approximately 

60%, leading to an accurate estimation of the transformation between two scanner poses. 
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Figure I.13 Scanning procedure of large volume part 

The knowledge of the 3D scanner poses allow to merge the point-clouds, when applying the 

point-cloud registration method. 

 

I.4.4.1. Point-cloud registration 

Registration is the process of overlaying multiple scans taken at different positions from 

different view angles for covering the fully scene [Bosc12, WYDL21]. Since the scans are 

initially generated in the camera frame, the knowledge of relative positions and orientations 

between views can be used for merging the 3D scans in the same frame. 

The transformation between two scanner’s poses should be estimated as to align two scans 

with a common overlapping area. There are two ways to register point clouds: (1) by tracking 

the poses of the scanner in the measurement space (2) or by using feature based registration. 

(1) Tracking-base systems such as industrial robots and displacement sensors including 

rangefinders, are usually used for an initial estimation of the transformation between 

two poses [JŠŠŠ15]. 

(2) Feature based registration can be performed by manual matching, target-based 

matching, or feature-based matching [Bosc12]. 

o The manual registration requires the user to manually select the features in both 

point-clouds and to match them. This method is time consuming and the 

registration accuracy is strongly affected by the user. If the points are 

inaccurately selected, the alignment result is highly affected [MTLP12]. 
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o The target-based method consists of adding identifiable targets on the 

mechanical part, which can be easily recognizable in both point-clouds and 

aligned. This method requires at least three targets visible in the overlapping 

area from the perspective of the camera, and the physical targets need to be 

placed (usually glued) on the mechanical part which might affect the surface 

quality [LLSK06]. 

o The feature-based method is an automatic alignment performed by detecting and 

extracting 3D features from different datasets that can be used for alignment 

[RDHV07]. This method does not require any manual operation nor the use of 

physical markers to register the scans. 

Since an industrial robot is used for the positioning of the 3D scanner, the tracking-based 

method is selected for point-clouds registration. 

I.4.4.2. Proposed tracking-based registration 

Tracking the poses of the 3D scanner can be carried out through the returned coordinates of 

the end-effector. The estimation of the transformation from the camera to the end-effector and 

from the end-effector to the robot base could be used to transform the 3D scans to the robot 

base. Let RB be robot base coordinates frame, RE the robot end-effector frames and RC1 and RC2 

both cameras frames (Figure I.14). 

1- From camera to end-effector: since the point-cloud is generated in the camera frame, 

the estimation of the transformation from the cameras to the end-effector noted TC1E and 

TC2E allows to transform the point-clouds from the camera frame to the robot end-

effector. This transformation could be estimated using the CAD model of the 3D 

scanner. However, some geometric and non-geometric errors such as manufacturing and 

assembly errors, might cause a deviation from the CAD transformation. 

2- From end-effector to robot base: once the transformations TC1E and TC2E are estimated, 

the initial alignment of the point-cloud could be performed using the coordinates of the 

robot end-effector. The selected KAWASAKI robot returns the Euler angles and 

translations of the transformation TEB from the end-effector coordinates RE to the robot 

base RB. The estimated transformation TEB is inaccurate due to positioning errors. 

Industrial robots are known to have a sub-millimetre repeatability (20 µm for the 

selected robot in this experience), but their accuracy is rather large (few millimetres) 

[DaGD04, PłPi18a]. According to [CaAn90, RaPR20, WCWM19], documents 

published by the International Federation of Robotics (IFR) and the IEEE Robotics and 
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Automation Society (IEEE/RAS) [DGLL20, JuKn90], geometric and non-geometric 

sources of error (thermal gradient, mechanical behaviour, vibration, etc.) are all causes 

of accuracy degradation. 

The transformations TC1E, TC2E and TEB could be used to register the returned scans with an error 

up to few millimetres (corresponding to the robot positioning error).  

 

Figure I.14 Illustration of the transformation from the robot end-effector to the robot base 

As robots are used in industries due to their good repeatability (0.02 𝑚𝑚), they are rather 

inaccurate when estimating the positions and orientation of the end-effector (2 𝑚𝑚) [DaGD04, 

PłPi18b]. Hence, an external tracking system can be used to accurately track the 3D scanner. 

 

I.4.4.3. Scanner tracking using laser rangefinders 

Laser rangefinders works on the principle of Time of Flight (ToF) technique [HaDu14]. The 

distance is determined by measuring the phase accumulated by a Radio Frequency (RF) wave 

that propagates in the air through a laser beam. This propagation in free space is performed by 

means of an optical beam then gets reflected on a target before converting it to an electric signal 
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by a photodetector. Thus, the position and orientation of the targets in the space of the 

rangefinders is determined thanks to the principle of multilateration [GuTW20a]. 

The laser rangefinder accuracy outperforms the robot accuracy, thus it could be used as an 

external tracking device. A spherical retro-reflective glass target has been added to the scanner 

to track the position of the 3D scanner using laser rangefinders. The laser rangefinders have an 

uncertainty of 4.3 µm for a distance of 7 m. Figure I.15 shows the CAD of the laser rangefinder 

developed at CNAM-LCM. 

 

 

Figure I.15 (a) Design of laser rangefinder, (b) spherical glass target [GuTW20a] 

 

Four laser rangefinders have been used to track the pose of the 3D scanner. Each laser 

rangefinder is fixed on a rigid mechanical structure (also called fixing plot (Figure I.16-a)). The 

tracker needs to be initially aligned with the optical spheres on the robot at each pose. 

Afterwards, the poses of the 3D scanner are estimated using the triangulation principle 

[WuHC06]. 
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Figure I.16 General overview of the developed 3D scanning system 

In order to estimate the 6 degrees of freedom (DoF) (3 rotations and 3 translations), at least 3 

spheres need to be fixed on the 3D scanner. Nevertheless, at certain poses, a sphere could be 

hidden in the field of view of one of the rangefinders. Therefore, a 4th sphere was added in order 

to solve this issue. In addition, a supplementary fixing structure of the calibration board has 

been added on the optical table to perform the calibration of the 3D scanner without having to 

disassemble the system (Figure I.16-b). 
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I.5. Conclusion  

This section provides an overview on camera scanning systems. A classification of structured 

light techniques is presented and investigated as to select the most appropriate scanning method 

for mechanical quality control. For the scanning of large volume mechanical parts, the active 

scanners category is considered due to its accuracy compared to the passive one. Active 

photogrammetry groups includes several methods such as interferometry, time of flight and SL. 

The accuracy of each method depends on the technology and the complexity of the post-

processing software. A compromise between cost, accuracy and speed of scanning leads to the 

choice of structured light-based 3D scanning. Structured light is an active technique used to 

provide 3D information of close-range scenes by projecting a well-known pattern (such as 

vertical fringe or circle pattern) and analysing its deformation caused by the shape of the 

mechanical part. 

One objective of this work concerns the development of an accurate scanning system for the 

scanning of large volume part. Two cameras and one fringe projector supported by rigid 

aluminium elements have been designed so that the system could be equipped on the end-

effector of an industrial robot. The industrial robot serves as a positioning system to place the 

3D scanner in the measurement space. For large volume parts, multiple areas are scanned 

individually, a registration is then applied to merge the scans into one coordinate system. The 

registration consists of estimating the transformations between successive 3D scans. Therefore, 

the tracking of the scanner pose during the measurement is required and could be performed 

using an external system. This step could be achieved with the returned robot data or by using 

an external tracking system. Since industrial robots have low accuracy, they can be used as 

manipulators while the tracking is accomplished using a laser rangefinder. Spherical targets 

have been setup on the 3D scanner so that it could be tracked by four laser rangefinders. The 

estimated uncertainty of these tracking systems is around 5 µ𝑚 for close-range applications, 

which improves the process of alignment/registration. 

The 3D scanning of any mechanical part is based on the triangulation principle. Therefore, it 

requires the exploitation of a number of parameters: the internal configuration of the cameras 

and the projector as well as the rigid transformations between the scanner elements. The process 

involved in the estimation of cameras and projector parameters, called geometric calibration, 

will be detailled and discussed in the next chapter.  
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C H A P T E R . II  Camera model 

and sensor calibration 

 

 

Calibration represents the process that lead to estimate the parameters required for accurate 

use of the 3D scanner with respect to the  geometrical model of the imaging sensor. Therefore 

the calibration allows to establish the relationship between a point from the scene and its 

projection on the image plane. This chapter contains mainly two sections: (1) modelling and 

calibration of a single camera, (2) modelling and calibration of an active and passive stereo 

system. 
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II.1. Introduction 

During the past decades, the imaging technologies have gone further regarding the 

improvement of picture quality and acquisition frequency. In this chapter, a focus on the 

geometric aspect of optics is pointed as to understand the principle of 3D scanning. 

The selected stereovision system involves the use of two optical devices (camera-camera or 

camera-projector) to 3D scan a LVP. The 3D scanning of LVP requires the knowledge about 

the relationship between points in the world coordinates frame and the pixels in the image plane. 

The relationship could be established through the geometric modelling of the imaging sensor. 

Several camera models have been proposed in the literature. In this chapter, both the selection 

of the appropriate model and the calibration procedure are detailed.  

II.2. Modelling and calibration of a single camera 

II.2.1. How does a camera work?  

In computer vision, the two main categories of digital imaging sensors are: Charge Coupled 

Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS) [Shug20]. Both 

technologies are based on the same acquisition principle, which consists of storing the light 

intensity on an element of the sensor called “pixel”. The difference between the technologies is 

the light intensity recording process. For CCD, the charge on each pixel is read out and later 

converted to intensity. For CMOS sensors, each pixel has its own analog-digital converter. 

CMOS are the most commonly used in industrial applications. This is due to their low power 

consumption, better integration on electronic systems and higher acquisition speed compared 

to CCD [Shug20]. 

Cameras apply the principle of light detection [Howc01, IhRM16]. It contains two main 

components: the camera body and the camera lenses (Figure II.1). Some of the light rays 

generated by the light source is absorbed by the LVP and the rest is reflected. Part of the 

reflected rays pass thought the camera lenses. The camera lenses are used to converge lights to 

the imaging sensor. It is composed of an assembly of lenses and systems such as the diaphragm 

and the focal length adjusting system. Then, an image is produced at the imaging sensor. The 

imaging sensor is composed of multiple small elements called pixels structured in a 2D grid. 

Each pixel records light information such as the intensity, the colour, etc. The imaging sensor 

records 3D world object reflections in the form of light intensity. 
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In order to recover the 3D information (coordinates of the scanned points in the LVP) from an 

image, the knowledge of the geometrical transformation of light rays from its reflection on a 

surface to its arrival on the pixel is indispensable. In this context, the geometrical aspect of the 

optical system, named geometrical optics, is analysed. Geometrical optics is defined as the 

model of optics that describes the propagation of light without taking into account other 

phenomena such as interference, diffraction, etc. effects [Pedr08]. The closest model that 

defines these geometric properties of a camera is known as the perspective projection model 

(or perspective model). 

 
Figure II.1 Light recoding using an industrial camera Ximea [Xime00] 

 

II.2.2. Perspective projection fundamentals 

Considering the perspective model shown in Figure II.2, the projected point 𝑀𝑖(𝑋, 𝑌, 𝑍) from 

the real-world coordinates system on the image plane is 𝑚𝑖(𝑢, 𝑣) through the optical centre 𝑂 

(also named perspective centre). In geometrical optics, the optical axis is defined as the 

perpendicular line to the image plane passing through the optical centre O. It is considered as 

the unique axis of rotational symmetry for an imaging system [Stur14]. The orthogonal 

projection of O onto the image plane is called principal point C. The distance between O and 

the point C is defined as the focal length f. 

The relationship between point 𝑀𝑖(𝑋, 𝑌, 𝑍) and its projection 𝑚𝑖(𝑢, 𝑣) is expressed by eq. II.1: 
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𝑣

𝑌
=  
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=  

𝑓

𝑍
        =>          𝑢 =  

𝑓𝑋

𝑍
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𝑓𝑌

𝑍
 II.1 

In homogenous coordinates, the relation that defines the projection from the world frame to the 

image plane is expressed by eq. II.2: 
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𝑌
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) II.2 

The defined model corresponds to an ideal camera where the optical axis is assumed to crosses 

the image plane in the centre of the image. Practically, imaging sensors have mechanical 

imperfections that cause geometrical deviations between the intersection of the optical axis, the 

image plane and the actual image centre. This geometrical deviation is called “principal point 

offset”. 

 

 
Figure II.2 Perspective projection modelling inspired form [MCHD07] 
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II.2.2.1. Model refinement: Principal point offset 

The principal point is defined as the pixel coordinates of the point of intersection between the 

optical axis and the image plane [ClWF98]. Let (𝑐𝑢, 𝑐𝑣) be the pixel coordinates of the principal 

point. The pinhole model is expressed in homogenous coordinates as (eq. II.3): 

 (
𝑢
𝑣
1
) = [

𝑓𝑢
0
0

0
𝑓𝑣
0

𝑐𝑢

𝑐𝑣
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0
0
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](

𝑋
𝑌
𝑍
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𝑋
𝑌
𝑍
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) II.3 

- 𝑐𝑢, 𝑐𝑣: Pixel coordinates of the principal point  

- 𝑓𝑢, 𝑓𝑣: Focal length in pixel  

- A: the camera matrix which contains the parameters of the camera 

The pinhole model is given by (eq. II.4) when decomposing the A matrix as following: 

(
𝑢
𝑣
1
) = [

𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

] [𝐼 0] (

𝑋
𝑌
𝑍
1

) 

II.4 

 = 𝐾[𝐼 0]𝑃 

where 𝐾 is referred to as the intrinsic matrix. 

The obtained model assumes that the camera coordinates frame is a right-handed Cartesian 

coordinate system, meaning that the axis 𝑥𝑐 , 𝑦𝑐 and 𝑧𝑐 are orthoganal. In practice, the angles 

between the axes might slightly diverge from 90°.  

II.2.2.2. Model refinement: image skewness 

The so-called image skewness allows to model the pixel layout that occurs from skewed image 

axes (theoretically supposed to be 90°) [Jori00][HaSa00]. Depending on the aimed accuracy, 

the skewness is mainly caused by the manufacturing errors of the imaging sensors. Let 𝑠 be the 

skewness between the image axes, then the intrinsic matrix becomes: 

𝐾 = [
𝑓𝑢 𝑠 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

] II.5 

II.2.2.3. Model refinement: camera rotation and translation 

Practically, a motion matrix from world coordinates to camera coordinates system must be 

defined in order to make the camera system coincide with the world system as [𝑅 𝑇], where R 
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is the rotation matrix and 𝑇 is the translation vector. The full camera matrix is then expressed 

in eq. II.6 [HaSa00]: 

(
𝑢
𝑣
1
) = 𝐾[𝑅  𝑇](

𝑋
𝑌
𝑍
1

) II.6 

where:   𝑅 = (

𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

)   𝑇 = (

𝑡𝑥
𝑡𝑦
𝑡𝑧

)  𝐾 = [
𝑓𝑢 𝑠 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

] 

 

𝑟𝑖, 𝑖 ∈ [1,9] are the elements of the rotation matrix function of the Euler rotational angles 

(α, 𝛽, 𝛾) along 𝑥, 𝑦 and 𝑧 axes respectively, and (𝑡𝑥, 𝑡𝑦 , 𝑡𝑧) are the translations from the world 

frame to the image coordinates frame. 

 

II.2.3. Lens distortion model 

The pinhole model describes a camera for which all the light pass though a single point and no 

lens. In practice, the optical lenses are used to converge light to the pixels on the imaging sensor. 

Those lenses have geometrical errors causing deviation of the reflected light called lens 

distortions [KZBŠ17, NiAg12, StLD18, TGMM17]. The lens distortion models were proposed 

by Conrady in 1919 [Conr19] and re-studied then re-modelled by Brown in 1971 [Brow00]. 

This model is widely adopted by the computer vision and photogrammetry communities. 

Two types of distortion can be distinguished as specified in [PeKo02, Stew21]: the radial 

distortion related to the symmetry of the lens, and the tangential distortion related to the 

imaging sensor and parallelism of the optical lens’s axes. Thus, the radial distortion is caused 

by the spherical shape errors of each lens [YMYW14], while the tangential distortion is caused 

by the decentring and non-orthogonality of the lenses with respect to the optical axis [DrLe16] 

[SwNa00]. The effect of both radial and tangential distortion on a projected point in the imaging 

sensor is illustrated in Figure II.3, where 𝑑𝑡 is the tangential error and 𝑑𝑟 is the radial error. 
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Figure II.3 Tangential and radial distortion effect on an ideal position of a pixel [LZHT13] 

 

II.2.3.1. Radial distortion 

In optics, the radial distortion can be classified in two different categories: the barrel distortion 

and the pin-cushion distortion (Figure II.4) [Mour16]. The barrel distortion corresponds to 

negative distortion values (Figure II.4.a). They are commonly seen in wide-angle lenses 

because the FoV is wider compared to the size of the imaging sensor. The more the points move 

away from the centre C of the image, the more the inward curvature of the lines becomes 

significant. However, unlike the first type of distortion, pincushion corresponds to positive 

values and lines are curved outward the image centre (Figure II.4.b). 

   

Figure II.4 Radial distortion: positive distortion called "pincushion", negative 

distortion called "barrel" (inspired from [Unde20]) 

The radial distortions are modelled by eq. II.7 [Unde20]: 
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4 + 𝑘2𝑟

6) 

𝑣𝑑  = 𝑣(1 + 𝑘0𝑟
2 + 𝑘1𝑟

4 + 𝑘2𝑟
6) 

II.7 

Where: 

𝑑𝑟 𝑑𝑡 

𝑥 

𝑦 
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- 𝑢𝑑 , 𝑣𝑑: distorted point 

- 𝑢 , 𝑣 : undistorted pixel location 

- 𝑘0, 𝑘1and 𝑘2 : coefficients of radial distortion 

- 𝑟2 = 𝑢2 + 𝑣2  

Usually, the two coefficients of k0 and k1 are sufficient to correct the effects of radial distortion 

[WSZL08]. However, for the most distorted cases such as fisheye lenses (lenses with a very 

short focal length and therefore a large angle of view, up to 180 °), the third coefficient 𝑘2 could 

be considered for a better correction of the image. 

II.2.3.2. Tangential distortion 

Tangential distortion occurs when the lens is not parallel to the imaging sensor [Brow00] 

[What00] (Figure II.5). They are also called decentring errors because the primary error source 

comes from the assembly of the camera and the lens. 

  

Figure II.5 Illustration of tangential distortions: (a) decentring and non-parallelism error 

of the camera assembly (b) effect of tangential distortion of the image [Sinh00] 

The tangential distortions model is described in eq. II.8. 

 
𝑢𝑑  = 𝑢 + [2𝑝1𝑢𝑣 + 𝑝2(𝑟

2 + 2𝑢2)] 

𝑣𝑑  = 𝑣 + [𝑝1(𝑟
2 + 2𝑣2) + 2𝑝2𝑢𝑣] 

II.8 

- 𝑢𝑑 , 𝑣𝑑: distorted point 

- 𝑢, 𝑣: undistorted pixel location 

- 𝑝1 and 𝑝2 : coefficients of tangential distortion 

- 𝑟2 = 𝑢2 + 𝑣2  

From both radial and tangential model, the global distortion model can be written as following 

(eq. II.9): 

Ideal plane 

Ideal optical 

axis 

Imaging 

sensor 
Ideal lens 

(𝑎) (𝑏) 
Decentered lens 
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(
𝑢𝑑

𝑢𝑑
) = (1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) (
𝑢 

𝑣 
) + (

2𝑝1𝑢𝑣 + 𝑝2(𝑟
2 + 2𝑢2)

𝑝1(𝑟
2 + 2𝑣2) + 2𝑝2𝑢𝑣

) II.9 

II.2.4. Camera calibration 

In machine vision, the used camera system requires a geometric calibration before performing 

any 3D scanning of a mechanical part. A geometric camera calibration is the process of 

estimating the camera parameters that are useful to generate an accurate image of the scene on 

the imaging sensor [HaZi04]. Those parameters are categorised into: (1) intrinsic camera 

parameters that describe the internal geometry of the camera such as the focal length 𝑓𝑢, 𝑓𝑣, the 

principal point pixel coordinates (𝑐𝑢, 𝑐𝑣) and lens distortions coefficients 𝑘0, 𝑘1, and (2) the 

extrinsic parameters that define the position and orientation of the camera with respect to the 

LVP coordinate frame [Burg16]. 

Fraser [Fras97] proposed a self-calibration method adopted for medium and large range 

applications such as city mapping and drone photogrammetry. The estimation of the internal 

parameters of the camera uses unstructured images of the scene instead of using a calibration 

target. The self-calibration is practical for applications that require a large FoV, since there is 

no need of calibration targets, however it is less accurate compared to Tsai and Zhang methods 

(Zh-method) [Tsai87a, Zhan00a]. Tsai and Zh-method proposed a geometric camera calibration 

method for close-range photogrammetry based on target observation. Using a known artefact 

named calibration grid, the perspective model parameters (also called pinhole parameters) could 

be estimated.  

Tsai method [Tsai87a] is based on the observation of a 3D calibration grid printed with a pattern 

easily detectible from the camera perspective. Zhang [Zhan00a] simplifies this process by 

employing a 2D calibration grid instead. The camera parameters can be identified through 

multiple pictures taken on the 2D calibration grid. 

The choice of the appropriate calibration method is fundamental when achieving accurate 3D 

scanning. Few comparative studies have been made to compare Zh-method and Tsai calibration 

[FCWC08, TiAS19]. Those comparative studies have shown a better convergence for the 

estimation of intrinsic parameters when using the Zh-method. Accordingly, this method is 

selected to calibrate the developed 3D scanner.  
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II.2.4.1. Zhang calibration method 

The Zh-method, based on the pinhole model, is the commonly used method to calibrate cameras 

due to its flexibility and accuracy in estimating the intrinsic parameters [FCWC08, LWYC19, 

RiSa07]. The original Zh-method, based on the observation of a 2D calibration grid, includes 

six steps as shown in Figure II.6: (1) acquisition of a number of images on the 2D calibration 

grid under several poses, (2) feature points detection [Jian12, SáMS18a], (3) homography 

estimation using the Direct Linear Transform [Dubr09], (4) identification of the pinhole 

parameters using the Singular Value Decomposition [KlLa80], (5) global refinement [Mitt00], 

and finally (6) calculation of the reprojection error. Those six steps are classified into three 

main stages: (1) pre-processing, (2) calibration and (3) verification. 

 

Figure II.6 Flowchart of the suggested calibration protocol based on Zh-method 
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(a) Pre-processing 

The pre-processing stage involves the definition of the environment to calibrate the camera. 

First, the choice of the pattern impacts the accuracy since some patterns are more suitable for 

an accurate calibration. In literature, there are mainly two types of calibration grid patterns 

usually selected because of their detection simplicity in an image and their manufacturing 

easiness: checkerboard and circle board [BGTV14, MaWh00]. 

- Step 1: calibration poses 

This step consists of selecting the calibration grid pattern and its positioning in the camera FoV. 

Hence, multiple positions and orientations of the calibration grid are set, and an image is taken 

at each pose. One condition is the number of the required control points and number of views 

that could be at least equal to 4, and 3 respectively according to Zhang. However, the more 

images taken, the better the calibration. The first step could be either manual or automated. 

Manual positioning is subjective and strongly depends on the operator, which affects the 

calibration quality. Automated calibration on the other hand is more precise and leads to a better 

calibration accuracy [FiSh05].  

In this context, robots are widely used to calibrate cameras [Chec00, TaAh15, TaAh17], that 

allows to effectively compare the calibration result in terms of accuracy. This strategy is 

motivated by the positions of the artefact to the camera that are no longer random but rather 

controlled by the uncertainty of the robot. An illustration of the calibration process using a robot 

arm is shown in Figure II.7.  

 

Figure II.7 Example of robot-based camera calibration 
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- Step 2: feature point detection 

Feature points detection is the second step in the algorithm, implying the identification of 

control points, referred as the points of interest. It allows to relate the 2D calibration grid in the 

world coordinates to its projection into the image plane. Patterns such as square grid [Zhan00b] 

[WeCH92], checkerboard [LuMi02] and circle-board [Heik00][KaBr06], are used for camera 

calibration as they can be manufactured at high precision with laser and chrome printing 

machines. However, the feature points detection algorithm is different for each pattern. For the 

checkerboard and the square grid, the points of interest are the corners of each pattern, whereas 

for the circle-board, they are defined as circle centres (Figure II.8). 

 

Figure II.8 Example of the used calibration grids (a) Square grid 8x10 (b) Checkerboard 6x8 

(c) Circle grid 5x7 (where × are the points of interest)  

According to Malhon [MaWh00], a circle pattern can provide an inaccurate estimation of the 

distortion parameters caused by of the perspective bias and distortion bias. If the angle between 

the optical axis and the perpendicular axis to the surface are not perfectly parallel, the observed 

circle shape is elliptical, which influences the detection of the centre. Based on this observation, 

the checkerboard is favoured as the calibration pattern. 

In computer vision systems, a method based on corner detection allows to extract specific 

features in images. A corner detection is defined in [MeNR90] as the intersection of two lines, 

thus, two different edge directions are distinguished in a local neighbourhood of the point. It is 

used in many fields such as video tracking, object recognition and camera calibration. In this 

context, Chris Harris and Mike Stephens [HaSt88] improved the algorithm of corners detector 

initially proposed in 1977 by Moravec's [Mora00]. The Harris corner detector is based on the 

calculation of variations produced by a window when moved in any direction. This method was 

(a)     (b)    (c) 
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investigated in several comparative studies ([DNBD12] [WPXW17] [BaLu12]), which 

confirms both its robustness and accuracy. It applies the 2D grayscale image I, considered as a 

scalar function depending on the intensity variation in the local neighbourhood [SáMS18b]. 

One example is the high intensity variation in the pixels neighbourhood [SáMS18b] that could 

be modelled by an autocorrelation function (eq. II.10). Let (u, v) be the displacement around 

the position (x, y), a corner is defined as the maximum variation of max[𝐸(𝑢, 𝑣)] regardless of 

the direction.  

 max[𝐸(𝑢, 𝑣)] = max [∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

] II.10 

- E: difference between the original and the moved windows 

- u: window displacement in 𝑥 direction 

- v: window displacement in 𝑦 direction 

- w (x, y): mask that ensures the use of the selected window at position (𝑥, 𝑦) defined as 

rectangular or Gaussian function 

- I: intensity of the image at the position (𝑥, 𝑦) 

- I (x+u, y+v): intensity of displaced windows 

Applying the Taylor series (representation of a function as infinite sum of the function’s 

derivatives at a single point [Tayl20], the difference between the original and the moved 

windows E(u, v) is approximated by eqs. II.11–13: 

 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) ≈  𝐼(𝑥, 𝑦) + 𝑢𝐼𝑥 + 𝑣𝐼𝑦 II.11 

 𝐸(𝑢, 𝑣) ≈ ∑𝑤(𝑥, 𝑦)[𝐼(𝑥, 𝑦) + 𝑢𝐼𝑥 + 𝑣𝐼𝑦 − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 II.12 

 𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣]∑𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

[
𝑢
𝑣
] II.13 

Let M be the summed matrix, so that (eq. II.14): 

 𝑀 = ∑𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

 𝐸(𝑢, 𝑣) ≈ [𝑢 𝑣]𝑀 [
𝑢
𝑣
] II.14 

A score R associated to each window leads to determine the corner (eq. II.15). 

 𝑅 = det𝑀 − 𝑘(𝑡𝑟𝑎𝑐𝑒 𝑀)2 II.15 
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Even if the Harris corner detector is usually employed in machine vision, this method presents 

a number of limitations related to the location of patterns, the number of pixels and the defects 

of the lenses [HaCM15, SáMS18b]. 

(b) Calibration  

According to Zhang [FCWC08, LWYC19, RiSa07], the calibration stage can be carried out in 

steps (3) and (4): (3) Homography estimation using Direct Linear Transformation (DLT) 

[Sigh22] and (4) identification of the camera parameters. 

- Step 3: Homography estimation using DLT 

Homography meaning is “similar drawing” (assuming a pinhole camera model), used to study 

the projection and perspective in Euclidean geometry [RaOl14, RaST14]. Homography is a 

bijective projective transformation allowing to map pairs of points that belong to two different 

planes, and to rectify an image to front-on view [Open00]. 

The estimation of the homography is independent from the previous steps described in the 

Figure II.6. The knowledge on camera poses or internal parameters is not required for the 

estimation of the homography matrix. However, at least 3 camera poses in the 3D world scene 

and their corresponding pixels on the image plane are compulsory while computing the 

homography between the 3D world and the image coordinate systems, [BeCG05]. Let K be the 

intrinsic matrix and [R T] the extrinsic matrix. The Zh-method exploits flat surfaces where the 

points of interest are assumed to lie on XY-plane (Figure II.9) since all the points have very 

small Z coordinates (up to 100 nm thickness for ceramic chrome coating [Cust00]) (eq. II.16). 

 

Figure II.9 Ceramic chrome coating with a checkerboard pattern 
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 (
𝑢𝑖

𝑣𝑖

1
) = 𝐾 [

⋮
𝑟𝑖,0
⋮

⋮
𝑟𝑖,1
⋮

⋮
𝑟𝑖,2
⋮

⋮
𝑡𝑖
⋮
] (

𝑋𝑖

𝑌𝑖

0
1

) = 𝐾 [
⋮

𝑟𝑖,0
⋮

⋮
𝑟𝑖,1
⋮

⋮
𝑡𝑖
⋮
] (

𝑋𝑖

𝑌𝑖

1
) II.16 

𝑟𝑖,0, 𝑟𝑖,1 and 𝑟𝑖,2 define the column vector of the rotation matrix Ri, and ti is the translation vector 

for each image i. The 2D homography matrix H that relates pixels in the imaging sensor to the 

points of interest in the calibration grid is modelled as in eq. II.17. 

(

𝑢𝑗

𝑣𝑗

1
) = 𝐻 (

𝑋𝑖

𝑌𝑖

1
)  with:   𝐻 =  𝐾 [

⋮
𝑟𝑖,0
⋮

⋮
𝑟𝑖,1
⋮

⋮
𝑡𝑖
⋮
] 

= [

ℎ0,0

ℎ1,0

ℎ2,0

ℎ0,1

ℎ1,1

ℎ2,1

ℎ0,2

ℎ1,2

ℎ2,2

] 

II.17 

The homography matrix H estimated through Direct Linear Transformation (DLT) can be 

rearranged as follows (eq. II.18): 

{
𝑢𝑗(ℎ2,0𝑋𝑗 + ℎ2,1𝑌𝑗 + ℎ2,2) − ℎ0,0𝑋𝑗 − ℎ0,1𝑌𝑗 − ℎ0,2 = 0

 
𝑣𝑗(ℎ2,0𝑋𝑗 + ℎ2,1𝑌𝑗 + ℎ2,2) − ℎ1,0𝑋𝑗 − ℎ1,1𝑌𝑗 − ℎ1,2 = 0

 II.18 

By collecting the 9 elements of the homography into a vector 

𝒉 =  (ℎ0,0, ℎ0,1, ℎ0,2, ℎ1,0, ℎ1,1, ℎ1,2, ℎ2,0, ℎ2,1, ℎ2,2)
𝑇, eq. II.18 can be rewritten as (eq. II.19): 

(
−𝑋𝑗 −𝑌𝑗 −1

0 0 0
     

0 0 0
−𝑋𝑗 −𝑌𝑗 −𝑌𝑗

     
𝑢𝑗𝑋𝑗 𝑢𝑗𝑌𝑗 𝑢𝑗

𝑣𝑗𝑋𝑗 𝑣𝑗𝑌𝑗 𝑣𝑗
) . 𝒉 = (

0
0
) II.19 

For an image with N points assumed to be related with the same homography vector, the system 

of linear equations becomes (eq. II.20): 

(

 
 
 
 
 

−𝑋0 −𝑌0 −1
0 0 0

0 0 0
−𝑋0 −𝑌0 −1

𝑢0𝑋0 𝑢0𝑌0 𝑢0

𝑣0𝑋0 𝑣0𝑌0 𝑣0

−𝑋1 −𝑌1 −1
0 0 0

0 0 0
−𝑋1 −𝑌1 −𝑌1

𝑢1𝑋1 𝑢1𝑌1 𝑢1

𝑣1𝑋1 𝑣1𝑌1 𝑣1

⋮
⋮

−𝑋𝑁−1 −𝑌𝑁−1 −1
0 0 0

 
0 0 0

−𝑋𝑁−1 −𝑌𝑁−1 −𝑌𝑁−1
 
𝑢𝑁−1𝑋𝑁−1 𝑢𝑁−1𝑌𝑁−1 𝑢𝑁−1

𝑣𝑁−1𝑋𝑁−1 𝑣𝑁−1𝑌𝑁−1 𝑣𝑁−1)

 
 
 
 
 

.

(

 
 
 
 
 
 
 

ℎ0,0

ℎ0,1

ℎ0,2

ℎ1,0

ℎ1,1

ℎ1,2

ℎ2,0

ℎ2,1

ℎ2,2)

 
 
 
 
 
 
 

= (
0
0
) II.20 

Afterwards, the singular-value decomposition (SVD) [YaTT11] is applied to solve a 

homogenous system of linear equations 𝑀.𝒉 =  0, 𝑀 =  𝑈. 𝑆. 𝑉𝑇 where 𝑈 is the unitary 2N × 
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2N matrix, S is a rectangular diagonal 2N ×9 matrix and V is an unitary 9×9 matrix. The matrix 

S contains the singular values, each value is associated with a left singular vector from matrix 

U and a right singular vector from matrix V. The solution of the matrix system is the right 

singular vector h = vk associated with the smallest singular value 𝑠𝑘 = min(𝑠0, … , 𝑠8). 

- Step 4: Identification of the camera parameters 

 Identification of intrinsic parameters 

The homography, estimated for each view, contains both intrinsic and extrinsic parameters of 

the camera. To extract the intrinsic parameters from the homography, the orthonormality 

constraint between rotation vectors r0 and r1 can be written as (eq. II.21): 

𝑟0
𝑇 . 𝑟1 = 𝑟1

𝑇 . 𝑟0 = 0  and 𝑟0
𝑇 . 𝑟0 = 𝑟1

𝑇 . 𝑟1 = 1 II.21 

Let ℎ̅𝑙 be the vectors of the homography matrix (eq. II.22) with 𝑙 = {0, 1, 2} 

𝐻 = (ℎ̅0 ℎ̅1 ℎ̅2) = 𝐾(𝑟0 𝑟1 𝑡) 

{

ℎ̅0 = 𝐾𝑟0
ℎ̅1 = 𝐾𝑟1
ℎ̅2 = 𝐾𝑡

=>  {

ℎ̅0
𝑇 (𝐾−1)𝑇 = 𝑟0

𝑇

ℎ̅1
𝑇 (𝐾−1)𝑇 = 𝑟1

𝑇

ℎ̅2
𝑇 (𝐾−1)𝑇 = 𝑡𝑇

 
II.22 

By replacing 𝑟0 and 𝑟1 in eq. II.21, the following equations can be deduced (eq. II.23): 

ℎ̅0
𝑇 (𝐾−1)𝑇𝐾−1ℎ̅0 = 0 => ℎ̅0

𝑇 (𝐾−1)𝑇𝐾−1ℎ̅0 = ℎ̅1
𝑇(𝐾−1)𝑇𝐾−1ℎ̅1 II.23 

Let’s consider 𝐵 a 3 × 3 symmetric matrix with six elements 𝑏𝑖,   𝑖={0,..,5} such as  

𝐵 = (𝐾−1)𝑇 . 𝐾−1,  𝑏𝑖 could be expressed as follows: 

𝑏0 =
1

𝑓𝑢
2 𝑏1 = −

𝑠𝑥

𝑓𝑢
2𝑓𝑣

 𝑏2 =
𝑠2

𝑓𝑢
2𝑓𝑣

2 +
1

𝑓𝑣
2 

𝑏3 =
𝑐𝑣𝑠 − 𝑐𝑢𝑓𝑣

𝑓𝑢
2𝑓𝑣

 𝑏4 = −
𝑠(𝑐𝑣𝑠 − 𝑐𝑣𝑓𝑣)

𝑓𝑢
2𝑓𝑣

2 −
𝑣𝑐

𝑓𝑣
2 𝑏5 =

(𝑐𝑣𝑠 − 𝑐𝑣𝑓𝑣)
2

𝑓𝑢
2𝑓𝑣

2 +
𝑐𝑣

2

𝑓𝑣
2 + 1 

Vector �̂� = (𝐵0, 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5)
𝑇 could be applied such as ℎ̅𝑝

𝑇𝐵ℎ𝑞 = 𝑣𝑝,𝑞(𝐻)�̂� where 

vp, q is a 6-dimensional row vector obtained from a single homography H (eq. II.24).  
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𝑣𝑝,𝑞(𝐻) =

(

 
 
 
 
 

ℎ̅0,𝑝 ℎ̅0,𝑞

ℎ̅0,𝑝 ℎ̅1,𝑞 + ℎ̅1,𝑝 ℎ̅0,𝑞

ℎ̅1,𝑝 ℎ̅1,𝑞

ℎ̅2,𝑝 ℎ̅0,𝑞 + ℎ̅0,𝑝 ℎ̅2,𝑞

ℎ̅2,𝑝 ℎ̅1,𝑞 + ℎ1,𝑝 ℎ̅2,𝑞

ℎ̅2,𝑝 ℎ̅2,𝑞 )

 
 
 
 
 

 II.24 

For a single view with a homography H, the constraints expressed in eq. II.21 can be 

reformulated into a pair of linear equation (eq. II.25): 

 where   (
𝑣0,1(𝐻)

𝑣0,0(𝐻) − 𝑣1,1(𝐻)
) . �̂� = (

0
0
) II.25 

The Zh-method requires more than a single view. Thence, for M homographies estimated with 

M views, the linear equations system of pairs can be written as (eq. II.26): 

 where   

(

 
 
 
 
 
 
 
 

𝑣0,1(𝐻0)

𝑣0,0(𝐻0) − 𝑣1,1(𝐻0)

𝑣0,1(𝐻1)

𝑣0,0(𝐻1) − 𝑣1,1(𝐻1)

⋮
𝑣0,1(𝐻𝑖)

𝑣0,0(𝐻𝑖) − 𝑣1,1(𝐻𝑖)
⋮

𝑣0,1(𝐻𝑀−1)

𝑣0,0(𝐻𝑀−1) − 𝑣1,1(𝐻𝑀−1))

 
 
 
 
 
 
 
 

. �̂� =

(

 
 
 
 
 
 
 

0
0
0
0
⋮
0
0
⋮
0
0)

 
 
 
 
 
 
 

 II.26 

The homogenous linear equations system in eq. II.26 is solved through SVD calculation. The 

calculated parameters 𝑏𝑖, 𝑖={0,..,5} leads to identify matrix K when applying 𝐵 = (𝐾−1)𝑇. 𝐾−1. 

Zhang [Zhan00b] proposed a closed form calculation of matrix K so that (eq. II.27):  

𝑓𝑢 = √
𝑤

𝑑𝑏0
 𝑓𝑣 = √

𝑤

𝑑²
. 𝑏0 𝑠𝑥 = √

𝑤

𝑑²𝐵0

. 𝑏1 

 

II.27 

𝑐𝑢 =
𝑏1𝑏4 − 𝑏2𝑏3

𝑑
 𝑐𝑣 =

𝑏1𝑏3 − 𝑏0𝑏4

𝑑
 

 

where  𝑤 = 𝑏0𝑏2𝑏5 − 𝑏1
2𝑏5 − 𝑏0𝑏4

2 + 2𝑏1𝑏3𝑏4 − 𝑏2𝑏3
2  and 𝑑 = 𝑏0𝑏2 − 𝑏1

2 

 Identification of extrinsic parameters 

The extrinsic matrix is the rotation and translation vectors which define the camera pose in 3D 

world. Since homography depends on both intrinsic and extrinsic matrices, the extrinsic vectors 

can be calculated from the system of equation as follows (eq. II.28): 
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{
 

 
𝑟0 = 𝐾−1ℎ0

𝑟1 = 𝐾−1ℎ1

𝑟2 = 𝑟0𝑟1
𝑡 = 𝐾−1ℎ2

 II.28 

The extrinsic parameters represent the position and the orientation of the camera with respect 

to the calibration grid. Unlike the intrinsic parameters which are fixed regardless of the pose, 

those extrinsic parameters are unique for each image. 

 Estimation of distortion coefficients 

Until this step, the parameters have been estimated without taking into consideration any 

distortion. Thus, a non-linear lens distortion model is added to the projection pipeline and its 

parameters are estimated from the taken images. To calculate the deviation between the 

projected points (𝑢𝑖,𝑗, 𝑣𝑖,𝑗) and the observed ones (�̇�𝑖,𝑗, �̇�𝑖,𝑗) (where i is the image index and j 

is the feature point index), the distance 𝑑𝑖,𝑗 = √(�̇�𝑖,𝑗 − 𝑢𝑖,𝑗)² + (�̇�𝑖,𝑗 − 𝑣𝑖,𝑗)²  known as the 

observed distortion vector is calculated. The two main distortion components are: tangential 

errors caused by lenses displacement from the optical axis, and radial distortion caused by light 

refractions variation inside the camera scope (Figure II.10). 

 

Figure II.10 Projection of the incoming light (reflected on the 3D scene) on the image sensor 

 

The radial distortion is expressed in eq. II.29 where �̈�𝑖,𝑗 is the radial distance of the pixel point 

and the centre of the image, and k0, k1 the distortion coefficients: 

𝐷(𝑟𝑖,𝑗 , 𝑘) = 𝑘0�̈�𝑖,𝑗
2 + 𝑘1�̈�𝑖,𝑗

4  II.29 

Sensor plane Lens plane 

Optical axis 

Lens-to-sensor 

transformation 
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 = (𝑘0, 𝑘1). (
�̈�𝑖,𝑗

2

�̈�𝑖,𝑗
4 ) 

Based on the estimated projected centre uc and the non-linear function 𝐷(�̈�𝑖,𝑗 , 𝑘), the parameters 

k0 and k1 are estimated using the resulting distortion vector 𝑑𝑖,𝑗 expressed in the following 

equation (eq. II.30) where 𝑢𝑖,𝑗 is the projected sensor point.  

𝑑𝑖,𝑗 = (𝑢𝑖,𝑗 − 𝑢𝑐). 𝐷(�̈�𝑖,𝑗, 𝑘) II.30 

The pin-cushion distortions are caused by a positive value of the function  

𝐷(�̈�𝑖,𝑗 , 𝑘), while the barrel distortions result from a negative value of this function. A 

minimization based on least square solution min∑ ‖𝑑𝑖,𝑗 − �̇�𝑖,𝑗‖𝑖,𝑗  of the variation between the 

distortion model 𝑑𝑖,𝑗 and the associated observed distortion �̇�𝑖,𝑗 leads to estimate the 

coefficients 𝑘0 and 𝑘1. The distortion function 𝐷(�̈�𝑖,𝑗 , 𝑘) becomes (eq. II.31): 

{
(�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗

2 𝑘0 + (�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗
4 𝑘1 = (�̇�𝑖,𝑗 − 𝑢𝑖,𝑗)

(�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗
2 𝑘0 + (�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗

4 𝑘1 = (�̇�𝑖,𝑗 − 𝑣𝑖,𝑗)
 II.31 

eq. II.31 can also be written in a matrix form (eq. II.32) and solved using standard methods of 

linear algebra for each point 𝑁 in a view: 

(
(�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗

2 (�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗
4

(�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗
2 (�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗

4
) (

𝑘0

𝑘1
) = (

�̇�𝑖,𝑗 − 𝑢𝑖,𝑗

�̇�𝑖,𝑗 − 𝑣𝑖,𝑗
) II.32 

The system of equations when considering M views is formulated with 2×M×N linear equations 

as expressed in eq. II.33.  

(

 
 
 
 
 
 
 
 
 

(�̇�0,0 − 𝑢𝑐)�̈�0,0
2 (�̇�0,0 − 𝑢𝑐)�̈�0,0

4

(�̇�0,0 − 𝑣𝑐)�̈�0,0
2 (�̇�0,0 − 𝑣𝑐)�̈�0,0

4

(�̇�0,1 − 𝑢𝑐)�̈�0,1
2 (�̇�0,0 − 𝑢𝑐)�̈�0,1

4

(�̇�0,1 − 𝑣𝑐)�̈�0,1
2 (�̇�0,0 − 𝑣𝑐)�̈�0,1

4

⋮

(�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗
2 (�̇�𝑖,𝑗 − 𝑢𝑐)�̈�𝑖,𝑗

4

(�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗
2 (�̇�𝑖,𝑗 − 𝑣𝑐)�̈�𝑖,𝑗

4

⋮

(�̇�𝑀−1,𝑁−1 − 𝑢𝑐)�̈�𝑀−1,𝑁−1
2 (�̇�𝑀−1,𝑁−1 − 𝑢𝑐)�̈�𝑀−1,𝑁−1

4

(�̇�𝑀−1,𝑁−1 − 𝑣𝑐)�̈�𝑀−1,𝑁−1
2 (�̇�𝑀−1,𝑁−1 − 𝑣𝑐)�̈�𝑀−1,𝑁−1

4
)

 
 
 
 
 
 
 
 
 

(
𝑘0

𝑘1
) =

(

 
 
 
 
 
 
 
 

�̇�0,0 − 𝑢0,0

�̇�0,0 − 𝑣0,0

�̇�0,1 − 𝑢0,1

�̇�0,1 − 𝑣0,1

⋮
�̇�𝑖,𝑗 − 𝑢𝑖,𝑗

�̇�𝑖,𝑗 − 𝑣𝑖,𝑗

⋮
�̇�𝑀−1,𝑁−1 − 𝑢𝑀−1,𝑁−1

�̇�𝑀−1,𝑁−1 − 𝑣𝑀−1,𝑁−1)

 
 
 
 
 
 
 
 

 II.33 

This latter can be solved using SVD [Till13] or QR-decomposition [NuBa12]. 
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(c) Verification 

The last verification stage (figure II.6) includes two steps (5) and (6): (5) refinement based non-

linear optimisation using Levenberg-Marquardt (LM) and (6) threshold verification.  

- Step 5: LM-based refinement method 

The refinement step mainly targets the optimisation of the intrinsic and extrinsic calibration 

parameters as well as the lens distortion for N observed points in M views. A first vector 𝐼 

including both the intrinsic parameters and the distortion coefficients is defined as  

𝐼 = (𝑓𝑢, 𝑓𝑣, 𝑠, 𝑐𝑢, 𝑐𝑣, 𝑘0, 𝑘1)
𝑇 , and a second vector Ei for the extrinsic parameters 

𝐸𝑖 = (𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝑡𝑖,𝑥, 𝑡𝑖,𝑦, 𝑡𝑖,𝑧)
𝑇 is defined for each image i.  

The non-linear least square minimization Levenberg–Marquardt (LM) method (appendix B) of 

the reprojection error 𝑅𝐸 (eq. II.34) is applied as to estimate the camera parameters at each 

iteration. Here, the values of the projected sensor points (𝑢𝑖,𝑗, 𝑣𝑖,𝑗) are calculated with the 

implemented Harris corner detector and the values of the observed point 

(𝑝𝑢(𝐼, 𝐸𝑖), 𝑝𝑣(𝐼, 𝐸𝑖)) estimated in the previous step. 

min
𝐼,{𝐸𝑖}

𝑅𝐸 = min
𝐼,{𝐸𝑖}

(∑ ∑|𝑢𝑖,𝑗 − 𝑝𝑢(𝐼, 𝐸𝑖)|
2

𝑁−1

𝑗=0

+ |𝑣𝑖,𝑗 − 𝑝𝑣(𝐼, 𝐸𝑖)|
2

𝑀−1

𝑖=0

) II.34 

The rotation matrix has 3 degrees of freedom and consists of nine coefficients, which makes it 

subject to strong constraints due to the dependence between the matrix elements. Therefore the 

Euler-to-Rodrigues method [Mebi07] is applied while obtaining the 3D rotation vectors ρx, ρy, 

ρz (appendix C). 

- Step 6: Reprojection error threshold 

Depending on the aimed accuracy, the obtained reprojection error could be optimised by adding 

more images or by changing the stopping criteria of the LM optimisation until reaching a 

predefined threshold value. Usually, the number of images required to achieve a stable 

calibration needs to be in the range of [10, 20] according to Jin [JLGF22]. 

II.3. Modelling and calibration of stereo vision systems 

A computer stereo vision is a measurement process that consists of using images taken from 

different points of view, to estimate the 3D information such as the dimension, shape errors, 

areal surface texture parameters, positions of objects, etc.) [LiAg05]. By analysing the images 



Chap II: Camera model and sensor calibration 

 

47 
 

taken at two different angles, the real-world dimensions can be recovered. Two types of stereo 

vision scanners exist [BeBa14, BGBM13, ChZh95], both based on the same model: (1) passive 

stereo vision that consists of two cameras and (2) active stereo systems involving cameras 

and projectors. Stereo cameras and camera-projector systems modelling are similar, while 

considering the projector as an inverse camera since the light is sent rather than received 

[MaKL11]. 

II.3.1. Stereo vision model 

One of the limits of a single camera is the depth recovering. In fact, multiple 3D points 

[𝑃 (𝑋𝑝, 𝑌𝑝, 𝑍𝑝), 𝐺 (𝑋𝐺 , 𝑌𝐺 , 𝑍𝐺), 𝑁 (𝑋𝑁, 𝑌𝑁 , 𝑍𝑁)…] (Figure II.11-a) could correspond to the same 

pixel point 𝑝 (𝑢, 𝑣) on the image. A stereo vision is conventionally defined by the use of two 

cameras mounted on a rig. It can provide the same images as a single camera, and the depth 

parameter could be estimated using the triangulation principle [HaSt97].  

 
Figure II.11 (a) single camera capture, (b) advantage of using stereo vision inspired from [FSLY20] 

Let’s consider K1 and K2 respectively the intrinsic matrices of each of the camera 1 and the 

camera 2. Let’s also note E the essential matrix that defines the rigid transformation between 

the two cameras. The relationship between the points p and p’ in the image plane of each camera 

is called the epipolar constraint, expressed as (eq. II.35): 

𝑝′ = 𝐸 × 𝑝        <=>     𝑝′ 𝑇 × 𝐸 × 𝑝 = 𝐼 II.35 

The essential matrix E can be written as follows (eq. II.36): 

𝑃 (
𝑋𝑃

𝑌𝑃

𝑍𝑃

) 

𝐺 (

𝑋𝐺

𝑌𝐺

𝑍𝐺

) 

𝑃 

𝐺 

𝑝 (
𝑢
𝑣
) 𝑝 

𝑝′ 

𝑔′ 

(𝑎) (𝑏) 

Camera frame 
Camera 1 

frame Camera 2 

frame 

(
𝑋𝑁

𝑌𝑁

𝑍𝑁

)𝑁 
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𝐸 = (

0 −𝑡12_𝑍 𝑡12_𝑌

𝑡12_𝑍 0 −𝑡12_𝑋

−𝑡12_𝑌 𝑡12_𝑋 0
) × 𝑅12 II.36 

The fundamental matrix F could be calculated using eqs. II.37 and II.38. 

𝐹 = 𝐾2
−𝑇 × 𝐸12 × 𝐾1

−1 II.37 

𝑚2
𝑇 × 𝐹 × 𝑚1

 = 𝐼 II.38 

Both E and F matrices describe the geometric relationship between the corresponding points in 

two cameras. The difference is that E deals with calibrated cameras since intrinsic parameters 

are supposed to be known, whereas F is for uncalibrated ones [Stan16]. 

The 3D coordinates (Xp, Yp, Zp) of point P in the scene can be recovered from its projection 

perspective on the image planes of both cameras, if the relative position and orientation of the 

two cameras are known. The estimation of 3D coordinates depends on the selected 

configuration of the stereo system. Two configurations of the system could exist with parallel 

or non-parallel optical axes of the cameras. 

For the parallel configuration, illustrated in Figure II.12-a, the distance between the two 

cameras coordinates frames centres C1 and C2 noted b is called baseline. Moreover, x1 and x2, 

are the distances in pixel with respect to the principal point. The coordinates of P (Xp, Yp, Zp) 

can be recovered using eq. II.39. 

𝑋𝑝 =
𝑍𝑝𝑥1

𝑓
 𝑌𝑝 =

𝑍𝑝𝑦1

𝑓
 𝑍𝑝 =

𝑏𝑓

𝑥1 − 𝑥2
 II.39 

 

Figure II.12 Triangulation configuration : (a) Cameras separated by a distance 𝑏 called 

baseline and located such as the optical axes 1 and 2 are parallel (b) [R T] transformation 

between C1 and C2 [Yama00]. 

(b) 

𝑃 

𝑝1 

𝑝2 

𝑓 

𝐶2 

𝐶1 

𝐶2 

𝐶1 

𝑃 

𝑥1 

𝑥2 
𝑦1 

(a) 
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In general, the optical axes of the two cameras are not parallel, either because of the errors due 

to the manufacturing process and assembly of the elements, or because of the adopted non-

parallel configuration (Figure II.12-𝑏). Consequently, the transformation between cameras can 

be formulated as in eq. II.40. 

𝑝1 = 𝑅𝑇(𝑝 − 𝑇) II.40 

II.3.2. Calibration of stereo systems 

The calibration of a stereo vision system is quite similar to a single camera calibration. The 

only difference consists in estimating the essential matrix E that represents the rigid 

transformation between the two cameras. The implemented Zh-method for stereo system 

calibration respects the following steps: 

1- Acquisition: the calibration grid is positioned at different positions and orientations in 

both cameras FoVs. A constraint on pattern visibility should be respected, which 

consists in keeping the calibration grid pattern visible from both camera perspectives. 

2- Feature points extraction: on each pair of images, feature point detection algorithms are 

applied to extract the corners of the checkerboard. 

3- Homography estimation: it leads to identify the transformation from the calibration grid 

coordinates frame to each camera coordinate frame. 

4- Intrinsic, extrinsic and distortion parameters estimation: the SVD is applied on the 

estimated homography matrix to extract the pinhole parameters in addition to the radial 

and tangential distortions of each optical element. 

5- Refinement: the estimated pinhole parameters are refined by minimizing the 

reprojection error function 𝑅𝐸 using LM optimisation for each camera. 

6- Essential matrix E estimation: Finally, the rigid transformation between the cameras or 

camera-projector is deduced from the extrinsic matrices estimated at the 4th step. 

As the projector is considered as an inverse camera, structured light systems are calibrated in 

similar way as stereo cameras, with an additional step called correspondence identification.  

II.3.3. Inverse camera/projector calibration 

Considering the inverse modelling for a projector, the correspondences between the 3D world 

points and the image plane are identified through the estimation of the pinhole parameters when 

using the same checkerboard. The main challenge is the identification of the projector view 

since projectors cannot observe the scene. 
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To identify the projector view, the correspondences between the projector pixel and the 

checkerboard are established through a calibration strategy that involves the projection of a 

known pattern [MaKL11]. Using this approach, the points of interest can be identified from the 

camera perspective. Based on the projected pattern, their locations in the projector pixel plane 

are also recovered. This process is known as the codification strategy. Many codification 

strategies have been proposed to calibrate projectors. Some are manual and require the 

adaptation of the projector view, while the others are automated. 

A projector can only be calibrated within a camera-projector pair. Sadlo et al. [SWPG05] 

propose a calibration procedure in 7 steps:  

(1) the camera is first calibrated using the Zh-method and its parameters are estimated,  

(2) the projector illumination is set such that a uniform colour is distributed along the 

calibration grid,  

(3) the projector calibration is performed by projecting an image of the calibration grid with 

known geometry at multiple poses, 

(4) the calibration grid pose is manually set such as to align the projected and the physical 

calibration grid. The estimated camera parameters are used to extract the transformation 

between the projected plane and the camera, 

(5) this procedure is repeated for the other poses of the projected calibration grid images,  

(6) the estimated coordinates of the projected calibration grid images are extracted using the 

Harris corner detector and the Zh-method is applied to estimate the projector intrinsic 

parameters,  

(7) a single pose is used to estimate the rigid transformation between camera and projector. 

Audet et al. [AuOk09] proposed an enhanced calibration technique for manual positioning of 

the physical calibration grid on the projected one. The enhanced technique uses ArUco markers 

instead of standard checkerboards. An ArUco marker is a binary square marker formed of a 

wide dark boundary and a specific white shape used as an identifier. To calibrate the camera-

projector system, a physical grid with ArUco markers is printed on a white board and an image 

with inverted colours of ArUco grid is generated and projected with the projector. Then, the 

calibration grids are aligned to merge both into a single grid. 

The methods presented above lack in terms of accuracy because the distortion coefficients of 

the projector are not deemed. In addition, the manual positioning is subjective and leads to 

inaccurate estimation of pinhole parameters. Some progresses have been made recently on the 
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calibration of camera-projector systems based on structured light pattern projections. Those 

methods are more automated and does not necessarily necessitate a pre-calibrated camera. They 

also provide a better estimation of the intrinsic and extrinsic parameters of both camera and 

projector. Such methods [JoGr10, LiZh14, LSWW08, LuSo12] rely on the same projection used 

to perform 3D reconstruction of the scene. Instead of manually positioning the physical 

calibration grids on projected ones, a set of projections is programmed while observing several 

poses of the calibration grid and recovering the correspondence between the projector pixels 

and the physical calibration grid. 

One popular calibration methods is the Gray-code based calibration. The Gray-code consists of 

projecting several horizontal and vertical patterns that can be distinguished by the black-to-

white transition. A binary code is associated to each pixel of the projector plane (Figure II.13). 

 

Figure II.13 Example of pixel coding using Gray-code pattern. Where black is identified by 

0 and white by 1. The green point can be identified by the string [1000111101] [JoGr10] 

First, a uniform projection is applied to acquire the image used to calibrate the camera. 

Afterwards, the patterns are successively projected in multiple levels, where each level is 

associated to a unique Gray-code frequency. The total number of Gray-code patterns pd required 

to encode N pixels in a given dimension d is formulated as following (eq. II.41): 

𝑝𝑑 = log2(𝑁) II.41 

Let’s take the example of a projector with a native resolution of 1024×768, The pu and pv are 

the number of Gray-code patterns to encode the pixels in u and v dimensions so that (eq. II.42) 

𝑝𝑢 = log2(1024) = 10 and  𝑝𝑣 = log2(768)~10 II.42 
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Figure II.14 Illustration of Gray-code steps for the calibration of camera-projector systems 

Therefore, 20 total patterns are required to fully encode the projector pixels: 10 horizontal and 

10 vertical. Once the number of patterns is defined, it is projected onto a calibration grid already 

observed by a fixed camera. Using this strategy, the positions of the calibration grid feature 

points can be identified on the camera pixels plane and, with the help of the Gray-code pattern 

(Figure II.14), their locations in the projector pixels can also be identified. Finally, using the 

identified correspondence between the projector and the calibration grid, the Zh-method can be 

applied to estimate the pinhole parameters and the projector distortion coefficients. 

II.4. Conclusion  

In this chapter, a literature review on camera/projector modelling has been conducted and 

detailed. The model allows to perform a triangulation to collect a 3D point-cloud of a scanned 

surface. However, some parameters relevant to the triangulation are prerequisite in a post-

processing step called calibration. The process of calibration consists of estimating the 

parameters of the optical elements (camera and projector) defined as the intrinsic and extrinsic 

parameters.  

The state of the art of the proposed techniques have been presented. In the case of close-range 

photogrammetry, the most suitable technique is the one proposed by Zhang (Zh-method). The 

Zh-method is based on the exploitation of a flat surface printed with a known pattern called 

calibration grid. The calibration grid is placed at different positions and orientations in the 

camera FoV to estimate the parameters of the camera. This method is also extended to stereo 
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systems including SL scanners. For stereo systems, additional parameters need to be estimated, 

like the rigid transformation between the optical elements (camera-camera or camera-

projector). For SL systems, a codification strategy is used to identify the projector view in order 

to perform the Zh-method. The Gray-code have been selected as a codification strategy due to 

its performance compared to other methods. 

The Zh-method involves six steps: acquisition, feature detection, homography 

estimation, intrinsic and extrinsic parameter estimation, global refinement, and finally a 

verification step. Many optimisation methods have been proposed to improve the Zh-method 

steps. The optimisation concerns the feature detection (by proposing an improved algorithm of 

feature detection) and the global refinement (such as using advanced optimisation methods to 

minimize reprojection error). However, the most influencing component is the calibration grid 

positioning at the acquisition step, because singular poses lead to inaccurate estimation of 

intrinsic parameters, regardless of the next steps. 

Subsequently, the following chapter focuses on the acquisition step where a novel optimisation 

method for the calibration of close-range photogrammetry systems is proposed. The method is 

based on the optimal positioning of the camera with respect to the calibration grid and could be 

used for single camera systems and easily adapted to stereo systems.
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C H A P T E R . III Optimised 

calibration of camera-based systems  
A panel of optimisation methods have been proposed in literature for the improvement of the 

calibration accuracy of machine vision systems. In this chapter, a novel optimisation method 

of camera-based system is proposed such as to increase the accuracy of the calibration process. 

Therefore, the chapter III is presented as following: section III.1 is an overview of the recently 

proposed approaches in literature. Section III.2 describes the mathematical model of a novel 

approach based on Zhang’s calibration. Section III.3 discusses the adaptation of this method 

to stereo systems. Section III.4 presents a synthetic evaluation of the proposed approach on 

single camera. Finally, section III.5 and III.6 details the experimental validation. 
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III.1. Introduction 

The adopted calibration strategy usually influences the performance of used optical scanners. 

Consequently, the need for an optimal calibration approach results in accurate 3D scans. 

A number of studies have been proposed to improve and automatise the calibration process 

[DKKP08], in particular the Zh-method, including the optimisation of feature point detection 

[GhVN20, HEBA17, LWWP17] and the optimisation of the checkerboard views per image 

[GAPK19]. Rojtberg [RoKu18] investigated the influence of the number of poses of the 

calibration grid in the camera FoV and established a correlation between the selected poses and 

the calibration uncertainty. Furthermore, Rojtberg [RoKu18] proposed one interactive 

calibration method (R-method) based on the selection of efficient poses with respect to a next-

pose generation protocol, while performing a stable calibration. The next-pose generation 

protocol considers some predefined constraints to avoid pinhole model singularities. Pinhole 

singularities are defined as the poses for which a number of intrinsic parameters are estimated 

inaccurately. The key constraints of the R-method are:  

  (1) selection of multiple calibration grid poses along the optical axis while 

estimating an accurate focal length, 

  (2) covering the entire camera FoV when taking images of the calibration grid, 

while improving the distortion coefficients estimation.  

Even if those constraints lead to improve the calibration process, they are not sufficient to 

optimise all the pinhole parameters. 

Peng [PeSt19] proposed an iterative optimisation technique of the Zh-method called the 

calibration Wizard (CW). The CW procedure starts by initializing the Zh-method with three 

random views, then updated at each iteration with one new identified optimal pose based on the 

Jacobian estimation of the reprojection error. The CW technique returns a better estimation of 

the intrinsic parameters of the camera (focal length, principal point and distortion coefficients) 

and performs well in uncontrolled environments. Nevertheless, the main noticeable drawback 

is the processing time. In addition, the given CW results depend on the initialization step based 

on a random selection of three poses/images, which downgrades the estimated uncertainty of 

the intrinsic parameters. 
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III.2. Novel optimisation method for a camera-based system 

The calibration of a machine vision system allows once to estimate the pinhole parameters that 

are essential for the 3D scanning of the scene. The proposed approach based on ML aims to 

optimise the camera poses with respect to the calibration grid in order to minimize the 

reprojection error and consequently enhance the accuracy of the estimated pinhole parameters. 

The Figure III.1 illustrates the evolution of reprojection error as function of two extrinsic 

parameters when the shape could be approximated as a polynomial. 

 
Figure III.1 Evolution of the reprojection error 𝑹𝑬𝒊

 vs. the orientations α and β for the case 

of a single camera system 

III.2.1. Polynomial approximation 

A regression-based ML function of the extrinsic vector Wi (eq. III.1) or poses was selected for 

modelling the evolution of the reprojection error (eq. III.2).  

𝑊𝑖 = [𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝑡𝑋𝑖
 , 𝑡𝑌𝑖

 , 𝑡𝑍𝑖
 ] III.1 

𝑅𝐸𝑖
= 𝑓(𝑊𝑖) III.2 

where (αi, βi, γi) are the orientations and (tXi, tYi, tZi) are the translations of the calibration grid 

along the x-, y- and z-axis, respectively, and 𝑓 is the polynomial regression. 

For a multivariate polynomial regression of degree D with six variables Wi, defined for a pose 

i the polynomial model is formulated as in eqs. III.3 and III.4. 
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𝑓(𝑊𝑖) = 𝑓(𝑊𝑖) + 휀(𝑊𝑖) III.3 

𝑓(𝑊𝑖) = 𝑝0 + 𝑝1𝛼𝑖 
+ 𝑝2𝛽𝑖 

+ ⋯+ 𝑝7𝛼𝑖  
𝛽𝑖 

+ 𝑝8𝛼𝑖𝛾𝑖 
+

⋯+ 𝑝22𝛼𝑖
2 + 𝑝23𝛽𝑖

2 + ⋯+ 𝑝27𝑡𝑧𝑖
2 + ⋯  

III.4 

where 𝑓 is the predicted polynomial function and 휀 the polynomial regression residuals. 

Therefore, a large set of calibration grid images needs to be collected with respect to the 

multiple poses. Afterwards, the Zh-method is applied while identifying both the extrinsic 

parameters and the associated reprojection errors 𝑅𝐸𝑖
 to build the learning base of the ML-

algorithm. Based on [Lu10], the learning base is splited into two data sets: 70% of the images 

are used as a training set whereas the remaining 30% of the images are the testing set. Since the 

learning base contains a limited number of inputs and outputs, the application of a single 

stratified splitting strategy is not appropriate to reach an accurate estimation of the algorithm’s 

performance. In this context, Xu [XuGo18] underlines the benefit of multiplying the train/test 

sets rather than using a single split. Consequently, the reliability of the stratified train/test 

partitioning was reinforced by adopting the cross-validation method described in [Berr18]. It 

often involves a randomly stratified resampling of the dataset to assess the ability of the 

predictive model and to prevent over fitting. In k-fold cross-validation, the learning base is 

partitioned into k disjoint subsets of approximately equal size and without overlap as illustrated 

in Figure III.2. The polynomial regression model is trained using k - 1 subsets, then applied to 

the remaining subset (or validation/testing set), and the performance is measured. This 

procedure is repeated until each of the k disjoint subsets has been served as a validation set. 

 

Figure III.2 Illustration of the k-fold cross-validation principle 

The implemented cross-validation method is applied so as to optimise the degree D of the 

polynomial regression (1 ≤ D ≤ 13). The selected criterion is the mean absolute error (MAE) 
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It 2         
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expressed in eq. III.5 where T is the test set. The evolutions of both training and testing MAE 

lead to select the appropriate degree of the polynomial model. 

𝑀𝐴𝐸 =
1

|𝑇|
∑|𝑅𝐸𝑖

 

 
− 𝑓(𝑊𝑖) |

 

𝑖∈𝑇

 III.5 

 

Figure III.3 Evolution of the MAE vs. the polynomial degree when applying the k-fold cross-

validation method (CI is the confidence interval) 

According to Figure III.3, the train curve decreases when the polynomial order increases. The 

test curve also decreases until the polynomial degree reaches D = 10 to increase again. This is 

due to the overfitting [Ragh21] defined as the polynomial model describing the noise in the data 

rather than the underlying model. 

III.2.2. Particle swarm optimisation 

The extraction of the optimal poses associated to the polynomial minimums and the 

identification of the appropriated extrinsic parameters can be accomplished by solving a 

constrained minimization problem, with respect to the following linear and nonlinear conditions 

identified from Rojberg study: 

- visibility of the calibration grid: this criterion is defined by the inequality expressed in 

(eq. III.6), where (Umax, Vmax) is the pixel resolution of the imaging sensor: 

{
𝑢𝑖,𝑗 − 𝑃𝑢(∅,𝚷𝑖 , 𝑋𝑗) < 𝑈𝑚𝑎𝑥

𝑣𝑖,𝑗 − 𝑃𝑣(∅,𝚷𝑖 , 𝑋𝑗) < 𝑉𝑚𝑎𝑥

 III.6 

P 



Chap III: Optimised calibration of camera-based systems 

 

59 
 

- FoV coverage: criteria on the translations tX and tY are defined in order to split the space 

into several searching areas to fully cover the camera FoV 

- angular positioning: the maximum angle between the calibration grid normal 𝑁𝐺
⃗⃗⃗⃗  ⃗ and the 

camera optical axis 𝑁𝐶
⃗⃗ ⃗⃗   should be below 60° (eq. III.7). 

||𝑁𝐺
⃗⃗⃗⃗  ⃗|| × ||𝑁𝐶

⃗⃗ ⃗⃗  || × cos (𝑁𝐺
⃗⃗⃗⃗  ⃗, 𝑁𝐶

⃗⃗ ⃗⃗  ̂ ) < cos(60°) III.7 

where ||… || is the vector norm. 

To find the minima of the polynomial, many techniques are proposed in literature, all adapted 

for concave, convex and unimodal functions. Some of those techniques are: gradient descent, 

LM, BFGS, etc. [Osbo76, Rude17, XiWW08]. Nonetheless, they are not efficient for 

optimisation problems under linear and nonlinear constraints. Based on [CoHa03, YiAM20], 

the particle swarm optimisation (PSO) seems to be an appropriate method for such an 

optimisation problem. It aims to minimize a fitness function by undertaking a population search 

in a D-dimensional search space [Tamb19]. The swarm is composed of multiple particles, each 

is characterized by its position in the model and its velocity (appendix D). 

Let k be an iteration index in the optimisation context, the position of a particle in the swarm, 

at iteration k in a six-dimensional space (3 translations and 3 rotations) is defined by a 

homogeneous vector 𝑋𝑖
𝑘.  

The velocity parameter (eq. III.8) depends on three components: (1) the inertia is a parameter 

affecting the convergence, (2) the cognitive component is the individual behaviour that defines 

the best value obtained by each particle l at each iteration k, (3) the global component is the 

optimum found by the whole swarm, updated at each new global optimum.  

𝑉𝑖
𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤𝑉𝑖

𝑘⃗⃗ ⃗⃗  + 𝑐1𝑟1 (𝑃𝑖
𝑘⃗⃗ ⃗⃗  − 𝑋𝑖

𝑘⃗⃗ ⃗⃗  ) + 𝑐2𝑟2 (𝐺𝑘⃗⃗ ⃗⃗  − 𝑋𝑖
𝑘⃗⃗ ⃗⃗  ) III.8 

Where: - 𝑉𝑖
𝑡⃗⃗⃗⃗  : velocity vector of the particle at iteration k 

- w: inertia weight 

- c1, c2: cognitive and social acceleration (positive constants) 

- r1, r2: random values in the interval [0,1], sampled from a uniform 

distribution 

- 𝑃𝑖
𝑘⃗⃗ ⃗⃗    : best individual position associated with particle 𝑙 

- 𝐺𝑘⃗⃗ ⃗⃗   : best position associated with the set of particles in the swarm 
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The PSO apply a limited number of parameters. The number of particles in any swarm is often 

selected with respect to the complexity of the problem, usually in the range [20, 50] [PiNP20]. 

Bansal et al [BSSV11] and Maurya [MBPB19] reveal that the best inertia weight (w) range 

[0.4, 0.9] could guarantee a convergence to the minimum. The cognitive and social accelaration 

coefficients 𝑐1,  𝑐2 are usualy set to 0.7 [ALMC19]. 

III.2.3. Full implemented calibration flowchart 

The implemented calibration flowchart is illustrated in Figure III.4, where three main steps 

could be distinguished: (1) acquisition step where a set of images of the calibration grid are 

taken so as to build the learning base, (2) the ML-approach is applied to extract the input/output 

data needed to perform the polynomial regression. It includes the reprojection errors 𝑅𝐸𝑖
 and 

the associated extrinsic parameters, (3) the application of the polynomial regression to estimate 

the polynomial degree D, combined with the PSO to extract the associated optimal poses. 

 

Figure III.4 Full flowchart of the proposed methodology for machine vision calibration. 𝑅𝐸 is 

the average reprojection error and 𝜖 is the threshold 
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III.3. Optimisation for stereo systems 

One of the major drawbacks of the pose-based optimisation methods proposed in the literature 

is their adaptation to stereo systems and more specifically to SL scanners. The ML-approach is 

effective for single camera but can also be adapted to SL scanner through some modifications. 

Let’s consider a pair of camera-projector system. In addition to the intrinsic parameters, the 

stereo calibration includes the rigid transformation between the two optical components. Let’s 

also remind that SL systems are based on the projector of a pattern to establish the 

correspondence between the projector pixels and the calibration grid feature points. 

Figure III.5 illustrates the calibration process of an active stereo system using a single pose of 

the calibration grid, where [R1 T1] is the transformation from the projector to the calibration 

grid called projector extrinsic matrix and [R2 T2] is the camera extrinsic matrix. For each 

calibration grid pose, a reprojection error can be associated to each element. 

 

Figure III.5 Illustration of plane-based calibration of an active stereo system  
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III.3.1. Polynomial regression of the extrinsic parameters 

As described for single camera, the learning base of the ML algorithm needs to be built. Hence, 

𝑁 poses of the calibration grids are adopted and images are taken using the 3D scanner. For 

each pose, the SL pattern is projected, and images are taken using the camera. At least 1000 

poses need to be generated to obtain a good estimation of the polynomial model. Using the Zh-

method, the extrinsic parameters and the reprojection error of each image of the calibration grid 

are extracted. Table III.2 illustrates the process used to build the learning base of the ML 

algorithm. 

Table III.2 : Building process of the learning base 

Image index 𝑾𝒊 Projector Camera 

1 𝛼1,  𝛽1, 𝛾1, 𝑡𝑥1
, 𝑡𝑦1

, 𝑡𝑧1
 𝑅𝐸1

𝑃  𝑅𝐸1

𝐶  

⋮ ⋮ ⋮ ⋮ 

𝑀 𝛼𝑀,  𝛽𝑀, 𝛾𝑀, 𝑡𝑥𝑀
, 𝑡𝑦𝑀

, 𝑡𝑧𝑀
 𝑅𝐸𝑀

𝑃  𝑅𝐸𝑀

𝐶  

 

Once the data set is created, the polynomial regression is applied to estimate the polynomial 

function that models the relationship between the extrinsic parameters 𝑊𝑖 and the reprojection 

errors 𝑅𝐸𝑖
. Here, two functions are estimated as expressed in eq. III.9, where 𝑅𝐸

�̂�(𝑊𝑖) and 

𝑅𝐸
�̂�(𝑊𝑖) are respectively the camera and projector polynomials. 

{
𝑅𝐸𝑖

𝐶 = 𝑅𝐸
�̂�(𝑊𝑖) + 휀𝐶(𝑊𝑖)

𝑅𝐸𝑖

𝑃 = 𝑅𝐸
�̂�(𝑊𝑖) + 휀𝑃(𝑊𝑖)

 III.9 

Where: - 𝑅𝐸𝑖

𝐶 and 𝑅𝐸𝑖

𝑃 : camera and projector reprojection errors in the data set 

- 휀𝐶 and 휀𝑃 : camera and projector polynomial residuals 

The polynomial degree (for both camera and projector) has been set to 10 according to the cross 

validation applied in the case of a single camera calibration as to avoid the overfitting. 

III.3.2. Weighted sum of the estimated polynomials 

The optimisation of SL scanner poses usually leads to obtain some outstanding poses that might 

be optimal for the camera, but are not optimal for the projector or vice versa. In order to optimise 

the positioning for both elements, the SL scanner can be modelled as a linear combination of 

two polynomials, 𝑅𝐸
�̂�(𝑊𝑖)  and 𝑅𝐸

�̂�(𝑊𝑖). 



Chap III: Optimised calibration of camera-based systems 

 

63 
 

Afterwards, a weighted sum is proposed to combine the two polynomials and create a fully 

integrated analysis. The function that models the camera-projector pair can be defined using 

multiobjective optimisation methods. The weighted sum method transforms multiple objective 

functions into a scalar single-objective function by associating a weight to each polynomial 

[Coel18]. 

Weights 𝑤𝑖 are positive integers such as: ∑ 𝑤𝑖
𝑘
𝑖=0 = 1,𝑤𝑖 ∈ [0,1]. Therefore, the subsequent 

minimization results depend on the values of the chosen weights. For SL scanner, the projector 

reprojection error is usually higher than the one of the camera [WiOL14]. It is due to the use of 

the camera for the identification of the projector parameters, which introduces errors in the 

projector calibration process, and leads to selected weights such as 𝑤𝑝𝑟𝑜𝑗 > 𝑤𝑐𝑎𝑚. The 

resulting multivariate polynomial that models the SL scanner is expressed in eq. III.10. 

𝑅�̂�(𝑊𝑖) = 𝑤𝑐𝑎𝑚𝑅𝐸
�̂�(𝑊𝑖) + 𝑤𝑝𝑟𝑜𝑗𝑅𝐸

�̂�(𝑊𝑖) III.10  

III.3.3. Multiobjective function minimization 

Extracting the minima of the multivariate polynomial �̂�(𝑊𝑖) can be done by solving a 

constrained minimization problem, involving linear and non-linear constraints defined by 

Rojtberg for single camera [RoKu18]. An adaptation of those constraints for SL scanners is 

required since both optical components are simultaneously calibrated. Therefore, those 

constraints could be defined as follows:  

(1) the calibration pattern must be visible from both the camera and the projector 

perspectives, 

(2) both the camera and the projector FoVs must be fully covered while taking images of 

the calibration pattern, 

(3) the angle between the normal of the calibration grid 𝑁𝐺
⃗⃗⃗⃗  ⃗ and the camera optical axis 𝑁𝐶

⃗⃗ ⃗⃗   

should be below 60°, 

(4) the angle between the normal of the calibration grid 𝑁𝐺
⃗⃗⃗⃗  ⃗ and the projector optical axis 

𝑁𝑃
⃗⃗⃗⃗  ⃗ should also be below 60°. 

The PSO could be applied to minimise �̂�(𝑊𝑖) while considering the previous constraints. The 

suggested full flowchart is illustrated in Figure III.6, where two steps are involved: (1) the 

parallel calibration of the camera and the projector, (2) the proposed optimisation that consists 

of a multivariate polynomial regression followed by a weigthed sum and the PSO minimization. 



Chap III: Optimised calibration of camera-based systems 

 

64 
 

 

Figure III.6 Flowchart of the proposed positioning optimisation method [EGVL22] 
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III.4. Synthetic evaluation of the proposed optimisation 

III.4.1. Simulation of the calibration process 

To evaluate the effectiveness of the ML-approach, a simulation of the calibration process is 

performed, while considering predefined intrinsic parameters. Afterwards, the residuals 

between the estimated and the predefined parameters are evaluated. The predefined intrinsic 

parameters are presented in Table III.3. 

Table III.3 Predefined intrinsic parameters of the virtual camera 

Parameter Value 

Focal length 𝑓𝑢 8 𝑚𝑚 

Focal length 𝑓𝑣 8 𝑚𝑚 

Principal point (𝑐𝑢, 𝑐𝑣) (640, 512) pixels 

Sensor size 1280 × 1024 (pixels) 

Radial dist. Coeff. 𝑘1 = −0.05 and 𝑘2 = 0.05 

 

The simulation consists of creating one virtual camera and one virtual checkerboard through a 

very simplified graphics engine. Pixels effect were taken into consideration as shown in Figure 

III.7.a, for which the anti-aliasing (Figure III.7.b) and the depth of field effect (Figure III.7.c) 

were considered. The anti-aliasing is defined by Jiang et al. [JSLL14] as the property in digital 

imaging used to smooth out irregular edges (or "Jaggies") to avoid displaying rectangular 

pixels. Hence, the Harris feature points detection [SáMS18a] was applied while estimating the 

coordinates of the points of interest in the imaging sensor. 

 

Figure III.7 Illustration of the proposed virtual checkerboard simulation: (a) without effect, 

(b) using anti-aliasing, (c) adding the depth of field effect. 

(a) (b) (c) 
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The virtual checkerboard contains 10×9 points of interest, considered as reference points, with 

a distance of 6 mm between the intersections. The origin of the coordinates frame for the 

checkerboard is defined at its centre and its normal vector selected along the z-axis. The 

simulated camera is initially located 400 mm away from the virtual checkerboard along the z-

axis, and oriented so that its optical axis passes through the checkerboard centre. 1000 poses of 

the virtual camera were generated along the x-axis in the range [0, 60] ° and the z-axis in the 

range [0, 360] ° (see Figure III.8). Translations of the camera were also applied along the x- and 

y-axis to cover the entire FoV. 

 

Figure III.8 Simulated views for image acquisition in the checkerboard coordinate frame 

(only rotations are applied and presented in this figure) 

The implemented ML-approach was applied to estimate both the extrinsic parameters and the 

reprojection error at each generated pose. Afterwards, the polynomial regressions were 

calculated, and the optimal polynomial degree D was identified through the implemented PSO. 

Here, a partitioning of the camera FoV in 30 zones was carried out and the PSO was applied to 

extract the optimal poses associated with the lowest reprojection errors. The results returned by 

the ML-approach [EVLB22] were compared to those given by the recently published CW-

method [PeSt19] and the R-method [RoKu18], when considering reprojection errors, intrinsic 

parameters (fu, fv, cu, cv), radial distortion coefficients (k1, k2) and extrinsic parameters (R, t). 

III.4.2. Simulation results and analysis 

A uniform distribution of about 1000 poses of the synthetic camera is defined with respect to 

the calibration grid. Then, the ML-approach is applied while identifying the most appropriate 
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poses. Finally, the estimated intrinsic and extrinsic parameters are compared to the ground truth. 

Figure III.9 shows the feature points in the checkerboard visualized by the camera. 

 

Figure III.9 Visualization of selected feature points in the checkerboard seen by to the camera 

with regard of the set of optimal poses returned by the ML-approach 

The evolution of the camera reprojection errors estimated at each resulting optimal pose 

returned by the implemented ML-approach, CW-method and R-method is illustrated in Figure 

III.10. The identified optimal poses given by the ML-approach present lower reprojection errors 

compared to CW and R-method. Furthermore, the retuned optimal poses by the CW-method 

depends on the initial random poses of the calibration grid. This constraint is appropriated for 

the case of dynamic environments, such as variable brightness, nonetheless the returned 

reprojection errors are not certainly optimal. In contrast, the proposed ML-approach is 

deterministic and the same poses are used for consecutive calibrations. Unlike the CW-method, 

the ML-approach performs better in controlled environments.  

 

Figure III.10 Comparison of reprojection errors estimated using ML-approach CW and R-

method 
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The evolution of the errors between the predefined and estimated intrinsic parameters 

(𝑓𝑢, 𝑓𝑣 , 𝑐𝑢, 𝑐𝑣), radial distortion coefficients (𝑘1, 𝑘2) and extrinsic parameters (R,t) when 

applying the proposed ML-approach and both the recent published CW- and R-method are 

illustrated in Figure III.11. Therefore, it is noticeable that the estimated parameters reach a 

horizontal asymptote within a limited number of images (about 15 images), even if the 

distortion coefficients present instability. This instability could be explained by the space 

partitioning constraint adopted at the minimum identification step. Nonetheless, the proposed 

ML-approach estimates more accurate intrinsic, distortion and extrinsic parameters in 

comparison to CW and R-method. 

 

  

  

(a) (b) 

(c) (d) 
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Figure III.11 Evolution of the pinhole camera parameters returned by ML-approach, CW- 

(Calibration Wizard) and R-method (R: Rojtberg): (a) & (b) is the focal length, (c) & (d) 

are the principal point coordinates, (e) & (f) are the coefficients of radial distortion and (g) 

& (h) are the extrinsic parameter. Note : the initial points for k1 and k2 are not illustrated 

since they present high values of errors 

 

The performances of the investigated ML-approach, CW- and R-method, are detailed in Table 

III.4, when considering images index between 20 and 30 (Figure III.11). All pinhole parameters 

(fu, fv, cu, cv, k1, k2, R and t) and additional percentage parameters EML/Ro and EML/CW (errors 

between the predefined and estimated parameters returned by the ML-approach divided by 

Rojtberg (EML/Ro) and CW (EML/CW) errors, respectively) are illustrated in Table III.4. 

For focal length parameters (fu, fv), the percentages of the ML-approach errors are about 80% 

of the Rojtberg errors and 30% of the CW errors. The ML-approach returns a highly accurate 

estimation of all other pinhole parameters, including the extrinsic parameters, as shown in 

(e) (f) 

(g) (h) 
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Table 1, and therefore validates the superiority of the proposed ML-approach over the CW- and 

R-method. Furthermore, the CW-method returns more accurate results than R-method, except 

for cu, k1 and T. 

Table III.4 : Pinhole (intrinsic and extrinsic) parameters errors estimated on image index 

between 20 and 30 when applying the investigated R-method, CW-method and ML-approach 

 R-method CW-method ML-approach EML/Ro (%) E ML/CW (%) 

fu (mm) 0.0010 0.0027 0.0008 80 29.63 

fv (mm) 0.0011 0.0027 0.0009 81.82 33.33 

cu (pixels) 1.3667 0.3787 0.0173 1.26 4.57 

cv (pixels) 0.2892 0.3253 0.0782 27.04 24.04 

k1 0.0015 0.0007 0.0001 6.67 14.28 

k2 0.0019 0.0020 0.0005 26.31 25 

R (°) 0.1304 0.1625 0.0191 14.65 11.75 

t (mm) 0.1050 0.0256 0.0062 5.90 24.22 

 

III.5. Experimental validation of a single camera 

In this section, an experimental evaluation is proposed as to demonstrate the effectiveness of 

the ML-approach. Thus, the performed experiment leads to compare the feature points 

intersections measured by a camera (calibrated using the ML-approach) to those measured by 

a traceable optical CMM. 

III.5.1. Experimental setup 

The experimental calibration is performed with the developed 3D scanner, illustrated in Figure 

III.12. The scanner is rigidly attached to the robot end-effector through a fixing part. Only one 

camera is considered for this study. To acquire the data, 1000 end-effector poses have been 

defined using the robot software. At each pose, a picture of the calibration grid is acquired using 

the camera to be calibrated. The used camera is a monochrome Ximea MQ013rg-e2 equipped 

with digital lens LM8JCM-V of 8.5 mm focal length. The camera rotational structure is 
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configured so that the 𝑧-axis end-effector and the optical axis camera are as parallel as possible 

in order to have a uniform distribution of poses around the calibration grid. 

The 3D scanner is mounted on the end-effector of the KAWASAKI industrial robot (d), with a 

maximum reach of 620 mm and a positioning repeatability of 20 µm.  

 

Figure III.12 Calibration process of a single camera using the ML-approach: (𝑎) 3D 

scanning system; (𝑏) Connection cables to the terminal computer; (𝑐) Checkerboard 

calibration grid; (𝑑) Industrial 6-axis KAWASAKI robot; (𝑒) 7𝑡ℎ motion axis. 

III.5.2. Traceability establishment through CMM measurements 

To perform the experimental calibration using the implemented ML-approach, one thermo-

invariant (low coefficient of thermal expansion) ceramic calibration grid printed with chrome 

is used. The nominal distance between each neighbour points of interest is about 6 mm.  

A traceable optical Micro-Vu Excel CMM (Figure III.13-a), accurate at the sub-micrometre 

level (< 1 µm), was selected for the identification of the 2D coordinate of each point of interest. 

The Micro-Vu Excel CMM is a gantry stage system equipped with a high-resolution camera-

based measuring system to get fast and accurate measurements on a wide variety of mechanical 

parts. Figure III.13-b illustrates a zoom of the ceramic calibration grid printed with a 

checkerboard pattern. 
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Figure III.13 (a) Traceable optical Micro-Vu Excel CMM, (b) Ceramic calibration grid 

printed with checkerboard pattern 

Since the Micro-Vu Excel CMM is traceable to the definition of the International System (SI) 

metre [ScYK20, SDMM19], the traceability of the ceramic calibration grid becomes guaranteed 

with respect to the full traceability pyramid shown in Figure III.14. Therefore, the measurement 

uncertainty tends towards zero at the top of the traceability pyramid and deteriorates at the 

bottom, to reach a value of some 10-5 m. 

 

Figure III.14 Detailed full traceability pyramid adopted for the calibration of cameras 

The calibration of the ceramic calibration grid has been carried inside the LNE cleanroom where 

both the temperature and hygrometry are controlled to 20±0.3 °C and 50%±5 respectively. The 

used Micro-Vu Excel is an optical CMM with a measurement capacity up to 

(a) (b) 
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400×500×250 mm3. The scale resolution of the CMM is about 0.4 µm and a measurement 

accuracy in the XY plane is measured by 2.8 +
𝐿

200
 (µm), where 𝐿 is the length of the object. 

Here, a calibration grid with 11×10 square of 6 mm length has been used. The dimensions of 

the calibration grid are about 660× 600 mm². 

The calibration grid was positioned in the middle of the optical Micro-Vu Excel CMM table. 

The origin of the checkerboard frame is set at the point of intersection between the first 

horizontal and vertical lines H1 and V1 (Figure III.15-a and b). The x- and y- axes of the 

calibration grid and the CMM were roughly aligned. Then, a scan of the full surface of the 

calibration grid was performed with uniform sampling of 100 µm, aiming to extract the 

checkerboard vertical (with blue colour) and horizontal (with green colour) lines (Figure III.15-

a and b). Afterwards, all black-to-white transitions corresponding to a fixed threshold grey 

value of 125 were identified as mentioned in Figure III.16. 

  

(a) (b) 

  
(c) (d) 

Figure III.15 (a) CMM 2D reconstruction of the checkerboard where 𝐻1 is the first horizontal 

line and 𝑉1 the first vertical line; (b) the checkerboard to be calibrated; (c) Least-square 

fitting of the line 𝐻1; (c) Least-square fitting of the line 𝑉1 

 

𝐇𝟏 

𝐕𝟏 
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Figure III.16 Example of the process of extracting points for vertical line using black-to-

white threshold of 125 

The identified points were structured as in Figure III.15-c and d, as well as each group of points 

was fitted with a least squares (L2) model. The intersection of all vertical and horizontal least 

square models Vi and Hi leads to extract the full number of points of interest which in this case 

equals 90. Furthermore, this procedure including the scanning of the calibration grid and the 

identification of the points of interests was repeated five times as to upgrade the measurement 

accuracy. 

III.5.3. Calibration of an industrial camera 

The monochrome industrial camera, Ximea MQ013rg-e2 equipped with a digital lens 

LM8JCM-V of 8.5 mm focal length, is calibrated. Here, the camera resolution is set to 

1280×1024 pixels. The initial distance between the monochrome industrial camera and the 

ceramic calibration grid is fixed to about 310 mm. The following criteria, detailed by Rojtberg 

[RoKu18] for the minimum identification of a stable calibration were also respected: 

 variation of the distance between the camera and the calibration grid to have an 

appropriate estimation of the focal [300, 320] mm, 

 full covering of the camera FoV to estimate accurately the distortion coefficients, 

 variation of the maximum angular up to 60° between the camera optical axis and the 

calibration grid normal axis to maximize the angular spread. 

About 1000 poses of the monochrome industrial camera were set in order to build the learning 

base of the ML-approach. The evolution of the reprojection errors versus poses was modelled 

by a quadratic polynomial regression and the number of requested poses was optimised thanks 

to the implemented PSO. The adopted objective function is formulated in eq. III.11, where the 
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error 𝜖′ is fixed to 10-5. A second stop criterion of maximum 500 iterations is considered. The 

evolution of the objective function is reported in Figure III.17 versus the PSO iterations. 

{
𝜖′ = 𝑅𝐸𝑖(𝑘 + 1) − 𝑅𝐸𝑖(𝑘)

𝑘 ≤ 500
     𝑠𝑡𝑜𝑝 𝑖𝑓 {

𝜖′ ≤ 10−5 𝑝𝑖𝑥𝑒𝑙𝑠

𝑅𝐸𝑖(𝑘 + 1) − 𝑅𝐸𝑖(𝑘) ≠ 0
 &      𝑘:  iteration III.11 

 

Figure III.17 Minimal objective function's particle value vs. the PSO iterations 

Therefore, a set of 18 best calibration poses of the traceable ceramic calibration grid is identified 

while reaching an optimal calibration of the industrial camera. The estimated optimal poses 

from the camera perspective are presented in Figure III.18. 

The implemented Zh-method is applied to estimate the reprojection error of each optimal pose, 

as illustrated in Figure III.19, and the global distribution is illustrated in Figure III.20 with red 

colour. The calculated average reprojection error RE is about RE   0.05 pixel with a standard 

deviation of 0.015 pixel. Furthermore, the Zh-method is applied on 10 calibration tests to extract 

the reprojection errors, where each calibration test contains 18 random poses of the traceable 

ceramic calibration grid. The average reprojection errors are calculated as detailed in Table 

III.5, and compared to the returned results when applying the ML-approach. Even if the number 

 

Figure III.18 Estimated optimal extrinsic parameters from camera perspective  
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of poses is similar for all calibration tests, the proposed ML-approach returns considerably 

smaller average reprojection error (about RE = 0.05 pixel) with comparison to random selected 

poses. This result could validate the robustness of the implemented ML-approach. 

        

    

Figure III.19 Samples of resulting optimal poses returned by the ML-approach. 

 

 

Figure III.20 Bar chart of reprojection errors estimated for each identified best pose using the 

ML-approach. Each bar represents the average reprojection error calculated for the image of 

the ceramic calibration grid. 
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Table III.5 Average reprojection errors (in pixel) estimated for each calibration test (each test 

contains the 18 optimal poses identified) 

Calibration tests 1 2 3 4 5 6 7 8 9 10 ML 

min
𝑖

𝑅𝐸𝑖
  0.20 0.15 0.08 0.18 0.22 0.10 0.15 0.22 0.17 0.11 0.043 

𝑅𝐸   0.37 0.27 0.23 0.40 0.29 0.21 0.24 0.38 0.25 0.18 0.049 

max
𝑖

𝑅𝐸𝑖
 0.77 0.47 0.51 0.62 0.43 0.56 0.60 0.54 0.41 0.36 0.059 

 

III.5.4. Time complexity analysis 

The time complexity of the proposed optimisation method could be evaluated for each 

individual operation. Two phases of the algorithm are considered: (1) multivariate polynomial 

regression and (2) PSO minimization. 

For cross-validation (phase (1)), the multivariate polynomial regression is repeated 14 times to 

estimate the optimal polynomial degree 𝐷 = {1,14}. This operation can be parallelized, 

therefore time complexity of only one single polynomial regression is considered. The 

computation time of cross-validation has been estimated to about 14.5 min using 8 CPU 

workers of a 2 GHz Intel core i7. 

The theoretical time complexity of the polynomial regression is formulated as 𝑂(𝑝2𝑁𝑝 + 𝑝3) 

where Np is the training sample and p is the number of coefficients of the polynomial. In 

practice, the time complexity depends on the used solver. Here the Scikit-learn (python) is 

selected to perform a multivariate polynomial regression using the gradient descent solver. 

Np = 1000 images is considered for the ML-approach training, leading to a computation time of 

about 1.98 s for a multivariate polynomial regression with a degree of 10. 

The time complexity of the PSO minimization (phase 2) depends on the stopping criteria. Let 

the total number of iterations be It and M the swarm size, the fitness is estimated for a particle 

with a time complexity of O(1) at each iteration. Therefore, the PSO complexity is expressed 

by O (It. M), and evaluated to about 11.03 s per minimum identification. 

The global time complexity of the proposed ML-approach is formulated in eq. III.12. 

𝑻 = 𝑂(𝐼𝑡.𝑀 + 𝑝2𝑁𝑝 + 𝑝3) III.12 
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III.5.5. Comparison of results and discussion 

The ML-approach assessment is fulfilled by calculating the error defined as the distance 

between the coordinates of the points of interest given by the traceable optical Micro-Vu Excel 

CMM and the reconstructed calibration grid using the inverse pinhole model expressed in eq. 

III.13. 

𝚷−1. ∅−1 (
𝑢
𝑣
1
)   = (

𝑋
𝑌
1
) III.13 

The 90 errors Δi, formulated in eq. III.14, corresponding to the distance between the points of 

interest coordinates returned by both the optical Micro-Vu Excel CMM 𝑿  and the monochrome 

industrial camera 𝒀 are evaluated (where 𝑃 = 90 is the number of points of interest). The 

evaluation was carried out on one validation image of the checkerboard collected in the middle 

of the camera FoV and parallel to the imaging sensor. The new estimated extrinsic parameters 

lead to extract the coordinates of the points of interest. 

𝛥𝑖 =
1

𝑃
∑‖𝑿𝑘 − 𝒀𝑘‖

𝑃

𝑘=1

 III.14 

The distribution of errors, scaled by 300, along the checkerboard's x- and y-axis is reported in 

Figure III.21 where each arrow indicates the direction and magnitude of the error and ‘×’ 

indicates the coordinates of the points of interest measured by the traceable optical Micro-Vu 

 

Figure III.21 Error distribution of the estimated 2D coordinates of the traceable ceramic 

calibration grid.  



Chap III: Optimised calibration of camera-based systems 

 

79 
 

Excel CMM. The obtained average error Δ (mean of errors Δi) is about 11.68 µm. In addition, 

the calibration process is repeated 20 times to evaluate the repeatability of the average error Δ. 

Each test contains 18 optimal poses extracted when applying the ML-approach. Figure III.22 

illustrates the repeatability of the vector distribution across the 20 tests (each repeated measure 

is represented by a colour in the figure). It is noticeable that the resulting vectors follow almost 

the same path and the magnitude of the vector is quite the same for each point. 

The mean error value Δ and the standard deviation are equal to 11.9 µm and 0.04 µm, 

respectively (Table III.6). The estimated mean error value is small in comparison to the 

accepted target tolerances in manufactured large volume parts in the aeronautic domain, 

according to the ISO 2768-1 standard [Iso89]. 

Table III.6 Evolution of the average errors (Δ) using 20 validation images 

Test index Δ (µm) Min Max Mean Standard deviation 

1 11.68 

11.66 12.0 11.87 ≈0.04 ⋮ ⋮ 

20 11.91 

 

The returned results of the intrinsic parameters are presented in Table III.7. The estimated focal 

length of the calibrated camera is 7.87 mm with a standard deviation of 8 µm. The values of 

both fu and fv are approximately the same, this is due to the use of a CMOS sensor whose pixel 

 

Figure III.22 Repeatability test of the norm vector across 20 tests 
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form is square. It is observable that the estimation of the intrinsic parameters is repeatable, as 

the relative standard deviations are estimated to 0.1% for the focal length 𝑓𝑢 and 𝑓𝑣, 0.09% 

for cu and 0.11% for cv. 

Table III.7 Evaluation of the repeatability test for the estimation of camera internal parameters 

Calibration 

index 
𝒇𝒖 (µ𝒎) 𝒇𝒗 (µ𝒎) 𝒄𝒖 (𝒑𝒊𝒙𝒆𝒍) 𝒄𝒗 (𝒑𝒊𝒙𝒆𝒍) 𝒌𝟏 𝒌𝟐 

1 7863.0 7863.1 627.0 526.4 -0.063 0.059 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

20 7863.0 7863.2 627.0 526.3 -0.059 0.062 

Mean 7868.7 7868.6 627.2 526.5 -0.063 0.052 

Standard 

deviation 
8.6 8.6 0.6 0.6 0.005 0.009 

 

Let (640, 512) be the nominal value of the image centre. According to Table III.7, the estimated 

coordinates of the principal point (𝑐𝑢, 𝑐𝑣) are about (627.2, 526.5) pixels. The observed shift 

between both the nominal and the estimated values seem to be caused by the imperfections of 

the industrial monochrome camera including geometry errors of the optical aspherical lenses, 

assembly errors of the mechanical components, misalignment of optical lenses, etc. 

III.6. Experimental validation of the SL scanner 

Since SL scanner is composed of two optical components, only the extrinsic calibration will be 

evaluated. The extrinsic parameters estimated using the proposed optimisation will be 

compared to the robot and the laser rangefinders. 

III.6.1. Pose optimisation 

A set of 1000 poses are adopted using the robot so as to cover the area around the calibration 

pattern. For each pose of the SL system, a sequence of 10 Gray-code is projected on the 

calibration pattern in the horizontal and vertical directions while taking images (Figure III.23). 
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Figure III.23 Visualisation of the calibration process using a single pose 

Afterwards, the camera-projector system is calibrated using the Zh-method to estimate the six 

extrinsic parameters Wi and the associated reprojection errors 𝑅𝐶𝑖
 and 𝑅𝑃𝑖

 for the camera and 

the projector respectively. Finally, PSO is applied under the linear and non-linear constraints to 

extract the 20 minimum reprojection errors associated to the optimal poses (Figure III.24). 20 

optimal poses have been extracted due to the space partitioning which differs from the 

configuration of the single camera system. Table III.6 details the estimated intrinsic parameters 

of the camera and the projector components. 

 

Figure III.24 Estimated camera and projector reprojection errors when applying the ML-

approach [EGVL22] 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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Table III.8 Estimated intrinsic parameters of the camera and projector based on the proposed 

method 
 

fu (pixel) fv (pixel) cu (pixel) cv (pixel) k1 k2 

Camera 1463.29 1463.24 628.18 519.92 -0.0277 0.0047 

projector 393.43 787.16 392.74 853.85 0.0385 -0.1171 

 

To evaluate the optimisation method, the relative transformations between the optimal poses 

are calculated and compared to those estimated by the external coordinate measuring system. 

III.6.2. Coordinate measuring system based on multilateration 

The coordinate measuring system, developed at the LCM [GuTW20b], is composed of a 

common absolute distance meter and of four measurement heads named A, B, C and D, as 

shown in Figure III.25. The positions in space of optical retroreflectors, i.e. the targets, are 

determined from the knowledge of the multiple distances measured between these targets and 

the four heads. This technique is called multilateration with self-calibration as the coordinates 

of the measurement heads and the targets are determined simultaneously. 

In practice, the four measurement heads form a tetrahedron close to an isosceles, which is one 

of the optimal arrangements to minimize the uncertainty on the measured positions. The targets 

are retroreflecting spheres of glass index n = 2 [GTWA22]. Such targets are lightweight and 

visible from all angle; however, they induce high optical losses due to bad reflectivity and beam 

deflection at their output, which leads to a limited range of operation. 

 

Figure III.25 Photograph of the experimental setup 
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First, on the table where the robot and the checkerboard were installed, a sphere of 14.2 mm in 

diameter has been moved into three different points to define the plane xOy of the table, and so 

the orientation of our Cartesian coordinate system. Then, three spheres of 14.0 mm in diameter 

have been mounted around the checkerboard as shown at the top left in Figure III.25. Their 

number are 3, 2 and 7. The latter have been measured 3 times during the day to verify the 

stability of the checkerboard pattern with respect to the 4 measurement heads, at 8:30 am, at 

12:40 pm and at 4:30 pm. Lastly, three other spheres of 14.0 mm in diameter have been mounted 

on the SL system to determine its poses, i.e. both its positions in space and its orientations. 

Their number are 4, 1 and 5. The developed multilateration system has measured only 11 poses 

over the 20 performed by the robot due to time constraints. Our objective was to perform all 

the measurements in a single day to limit the risk of drifts from the different systems, for 

instance mechanical changes due to the thermal expansion. 

At the end of the 45 measurements of sphere position (3 on the table + 3×3 on the checkerboard 

+ 11×3 on the SL system), 38 of the sphere positions, the ones visible by the 4 measurement 

heads simultaneously, have been used in the multilateration algorithm with self-calibration to 

determine the coordinates of the four measurement heads. The remaining 7 sphere positions, 

visible by only three measuring heads due to beam occlusions, have been estimated by a classic 

trilateration technique. This represents a total of 173 distance measurements (38×4 + 7×3) 

performed in 8 hours. These distances range from 0.98 m to 2.54 m. At such distances the 

received radiofrequency (RF) power was sufficient to obtain a high signal, and thus an 

uncertainty on the distance measurements better than 4.3 µm (coverage factor k equals to 1) as 

demonstrated in [LiZh03]. However, in this experiment, the instrument offsets have not been 

determined by self-calibration, but rather measured before the multilateration. Taking the 

instrument offsets into account, the uncertainty on the distance measurement is equal to 4.9 µm 

(𝑘 = 1). 

The multilateration algorithm with self-calibration has determined the coordinates of both the 

targets and the measurement heads. The differences between the distances calculated from these 

coordinates and the ones measured by each head, named error in Figure III.26, are lower than 

22 µm with a global standard deviation of only 5.4 µm. The multilateration algorithm has 

therefore perfectly converged. 
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Figure III.26 Experimental results of the multilateration with self-calibration 

Moreover, the covariance matrix of each target position has been calculated [GuTW22]. Thus, 

the uncertainty values, expressed as the trace of the covariance matrices, are provided in Figure 

III.27. The uncertainty on the target positions measured by multilateration is around 16 µm 

(confidence interval of 68%). 

 

Figure III.27 Uncertainties on position of both the heads and the targets 

When a target is not visible from a head, the uncertainty on its position is higher. This is true 

for the sphere 3 mounted on the checkerboard, with an uncertainty of 52 µm. This limits our 

knowledge of the checkerboard’s position and orientation. Lastly, the heads present higher 

uncertainties than the spheres because for a given sphere, the heads are well spread around it 

(especially along the x- and z- axes), while for a given head, the spheres are almost all located 

in the same area. 

The spheres set up around the checkerboard have been measured three times during the day. 

From the beginning to the end of the day, the relative displacement of the checkerboard 

(reduced to a single point, the centroid of the triangle formed by these spheres) was below 
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30 µm. Therefore, the experimental setup has been considered stable during the day since the 

measured displacement can be included within the uncertainties of the checkerboard position. 

Besides, the relative distances between the 3 spheres mounted on the SL scanner, named 

interpoint distances, should be the same for different robot poses. In practice, the measured 

interpoint distances display a reproducibility with a standard deviation of around 20 µm, which 

is consistent with the combined uncertainty of the two sphere positions (Figure III.28). The SL 

system is therefore also considered stable during the day. 

 

 

Figure III.28 Reproducibly of the interpoint distances of the targets mounted on the SL system 

Lastly, it can be noted that the comparison of the positions measured by the multilateration 

system with the ones that have been returned by the Kawasaki RS003N robot shows errors on 

the positions with a standard deviation of 1.9 mm. There is a need for an external coordinate 

measuring system. Such a value was anticipated since the robot is uncalibrated, and the SL 

system exceeds the maximum allowed payload (4.3 kg for 3.0 kg max). 

The motion of the robot can be described by a rotation around a fixed point in space as shown 

in Figure III.29. This point, named Protation, is at fixed distances from the three spheres mounted 

on the SL system. Its value was determined by a least-squares method by minimizing its 

displacement (i.e. the interpoint distance) between two robot poses among the 11 poses 

measured by the multilateration system (55 possible combinations). At the end, this point is 

located at 292.841 mm from sphere 4, at 326.424 mm from sphere 1 and at 370.134 mm from 

sphere 5. The standard deviation of its coordinates over all robot poses is around 3 mm. 

 

Std = 20.3 µm  
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Figure III.29 Illustration of the motion of targets on the SL scanner 

III.6.3. Comparison of the transformations between robot poses 

The transformation matrix between two poses of the robot can be deduced in two different 

ways, using the extrinsic parameters estimated by the calibration of the SL scanner or using the 

measurements of the external coordinate measuring system. Thus, the multilateration system, 

with an uncertainty of about 16 µm determined with a consistent metrological approach and 

traceable to the SI definition of the metre (International System of units), has been used as a 

reference for validation of the extrinsic parameters estimated by the calibration of the SL 

scanner. 

To summarise, the transformation from pose P1 to pose P6 is composed of a rotation matrix 

R1→6 and of a translation vector t1→6 (Eq.  III.16). 

𝑃6 = 𝑅1→6 × 𝑃1 + 𝑡1→6 III.15 

In practice, the transformations calculated from the multilateration measurements were 

determined using a Horn's quaternion-based method [Abso00]: the latter finds the rotation and 

the translation that best match the sphere coordinates of one pose to those of another pose. 

However, to obtain the same results as the SL scanner, the coordinate system has been adapted. 

The origin and the orientation of the multilateration coordinate frame were modified so as to 

minimize the difference between the transformations of the multilateration system and the ones 

of the SL scanner, in a least-squares sense. 

The results are depicted in Figure III.30, where the rotation matrices are converted into rotation 

vectors following the Z-Y-Z Euler angle convention. The difference between the translations is 

lower than 200 µm with a standard deviation of 88 µm, while the difference between the 

rotations is lower than 0.3° with a standard deviation of 0.15°. 

Checkerboard 

Spheres mounted 

on the structured 

light system 
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rotation
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Figure III.30 Difference between the transformations obtained by the calibration of the SL 

scanner and the ones obtained by the external coordinate measuring system. 

 

The estimated rotation and translation errors between the laser rangefinder and both the SL 

scanner and the robot systems are summarized in Table III.8. The SL scanner provides accurate 

estimations of the translations and rotations compared to the robot. The obtained mean values 

for the translation errors have been estimated to about ~71 µm for the SL scanner and ~2.28 

mm for the robot, and the rotation errors is in average ~0.12 ° for SL scanner compared 

to ~2.10 ° for the robot. 

 

  

Std = 88 µm  

Std = 0.15° 
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Table III.9 Comparison between the multilateration system, the robot, and the SL scanner 

calibrated using the proposed optimisation (with t the translation vector, α, β and γ the angles 

following the Z-Y-Z Euler convention) 

Transform 
Multilateration system vs. robot  Multilateration system vs. SL scanner 

      

|Δtx| (mm) |Δty| (mm) |Δtz| (mm) |Δtx| (mm) |Δty| (mm) |Δtz| (mm) 

1 → 2 0.488 0.978 0.618 0.063 0.040 0.134 

2 → 3 0.603 3.286 2.905 0.026 0.132 0.100 

3 → 4 0.574 4.009 1.176 0.076 0.017 0.033 

4 → 5 2.022 3.047 0.664 0.085 0.120 0.046 

5 → 6 3.351 1.579 4.464 0.127 0.041 0.029 

6 → 7 1.276 3.230 1.261 0.062 0.053 0.190 

7 → 8 0.904 4.828 0.526 0.114 0.026 0.012 

8 → 9 1.866 3.583 6.884 0.153 0.108 0.030 

9 → 10 0.172 4.175 0.011 -0.072 0.029 0.028 

10 → 11 4.131 3.146 2.707 -0.135 0.029 0.094 

Mean 1.539 3.186 2.122 0.091 0.059 0.069 

Min 0.172 0.978 0.011 0.026 0.017 0.012 

Max 4.131 4.828 6.884 0.153 0.132 0.19 

       
 

|Δα| (°) |Δβ| (°) |Δγ| (°) |Δα| (°) |Δβ| (°) |Δγ| (°) 

1 → 2 1.829 0.577 1.449 0.113 0.042 0.086 

2 → 3 0.134 0.231 3.545 0.150 0.047 0.188 

3 → 4 4.196 2.341 3.413 0.052 0.046 0.098 

4 → 5 1.191 2.067 1.638 0.077 0.001 0.069 

5 → 6 2.466 2.028 0.589 0.235 0.070 0.158 

6 → 7 1.168 1.634 2.839 0.173 0.065 0.232 

7 → 8 1.021 0.884 0.335 0.293 0.099 0.232 

8 → 9 4.366 1.232 3.238 0.240 0.063 0.159 

9 → 10 2.333 1.669 4.306 0.121 0.032 0.141 

10 → 11 4.771 0.439 5.030 0.264 0.001 0.243 

Mean 2.347 1.310 2.638 0.172 0.047 0.161 

Min 0.134 0.231 0.335 0.052 0.001 0.069 

Max 4.771 2.341 5.030 0.293 0.099 0.243 

 

III.7. Conclusion 

In this chapter, the camera calibration process is detailed and a literature review of the existing 

techniques have been briefly presented. The calibration of a single camera requires the 
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observation of a 2D pattern printed on a flat surface called calibration grid. By using multiple 

images of the calibration grid positioned differently (at least 3 poses), the pinhole parameters 

can be recovered as well as the distortion coefficients. 

Since the 3D scanner is based on the SL technique, the calibration needs additional steps. The 

coding strategy is deployed as to establish a correspondence between the pixels from the 

projector and the calibration grid. Once the calibration grid points of interest are identified, the 

calibration of the projector can be performed when following a similar strategy for a camera 

calibration. 

Optimisation methods of the Zh-method are proposed in literature and discussed. The Zh-

method can be thus optimised including the feature point detection, the homography and the 

global refinement. However, the most influencing component is the calibration grid positioning 

with respect to the camera. This observation was studied by Rojtberg (R-method) and by Peng 

(CW-method). The common drawback between those methods is the difficulty of adaptation to 

stereo systems and more specifically to SL scanners. 

Subsequently, the novel ML-approach is developed which is an optimisation of the Zh-method 

based on the choice of ideal poses of the calibration grid with respect to the camera. The ML-

approach can be performed on single cameras and also stereo systems such as SL scanners. For 

single cameras, the ML-approach involves two steps: polynomial approximation and 

polynomial minimization. An additional step is needed for SL scanners, which consists of 

merging both polynomials in a single objective function using weighted sum. 

The ML-approach aims to provide an accurate estimation of the internal and external 

parameters of the camera in order to improve the accuracy of the 3D scanning. The input of the 

ML-approach is a data set built from extrinsic parameters and reprojection errors acquired from 

multiple images of the calibration grid. The output is a set of ideal poses that can be adopted to 

calibrate the camera. 

A simulation was proposed and the returned result shows a better performance than the existing 

methods (R-method and CW-method). Indeed, the convergence to the real values predefined 

for the virtual camera for both intrinsic and extrinsic parameters is faster. An experimental 

evaluation has also been carried out and demonstrated a trueness value of 11.9 µ𝑚. 

A repeatability test has shown that the obtained standard deviation of the trueness across 20 

tests is at the nanometre level. Intrinsic parameters have also been analysed for the 20 tests: the 
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standard deviation of focal length and the principal point coordinates are respectively 8.6 µ𝑚 

and 0.6 pixels. Hence, the ML-approach is efficient for the calibration of single cameras. The 

proposed method could also be extended to the calibration of fisheye cameras by taking into 

account complex distortion models. 

The proposed ML-method can also be adapted to SL system where a camera and projector are 

involved. It is done by the mean of a weighted sum of the polynomials after the regression. The 

objective is to model the SL scanner as a whole instead of optimising individual components. 

The methods have been implemented and evaluated experimentally by comparing the result of 

the extrinsic calibration to a reference system. Since the scanner is equipped on the end-effector 

of a robot, four laser rangefinders are used to track the pose of the SL scanner. The relative 

transformations between the optimal poses could be estimated with each of the three systems 

(SL scanner, robot and laser rangefinders). The result of the comparison shows an accurate 

estimation of the extrinsic parameters with a mean error of 

71 µm translation and 0.12° rotation for the SL scanner compared to 2.28 mm and 2.10° for the 

robot when compared to the reference laser rangefinders.  

Once the system is calibrated, the next step is to perform a triangulation in order to collect a 

dense point cloud. The next chapter focuses on the 3D scanning of a large volume mechanical 

part using the intrinsic and extrinsic parameters estimated using the ML-approach. 
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C H A P T E R . IV Quality control 

of large and complex parts 
Both the experiment and the assessment strategy are described. First, the scanning principle 

using the developed SL scanner is briefly reminded in section IV.1. Then, the evaluation method 

is detailed in section IV.2. The measurement protocol of the designed LVP is given in section 

IV.3. The evaluation of the single view scanning is described in section IV.4 and the multiple 

views scanning in IV.5. Finally, a point-cloud registration pipeline is proposed and evaluated 

synthetically and experimentally in section IV.6. 
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IV.1. Approach for data acquisition using the calibrated scanner 

IV.1.1. Single view: triangulation 

The calibration parameters are taken into account when performing 3D scanning on LVP with 

the SL scanner. Those parameters are estimated using the proposed optimisation approach 

discussed in chapter III (section III.3).  

Therefore, the SL scanner is used first for the scanning of elementary surfaces. The elementary 

surfaces scanning is the process of the point-cloud generation for a limited area of the 

mechanical part using only a fixed position of the scanner in the measurement space, which 

will be referred to as the single view scanning. 

To generate the point-cloud of the surface, a Gray-code in horizontal and vertical directions is 

projected onto the mechanical part then decoded from the camera perspective. Thus, allowing 

to detect all the projector pixels that are visible to the camera. Once the projector pixels are 

detected, a triangulation between the camera pixels and the projector pixels can be performed 

using the estimated intrinsic and extrinsic parameters resulting from the calibration. Finally, the 

recorded point-cloud data is post-processed and the visualized (Figure IV.1). 

 

Figure IV.1 Steps of 3D reconstruction of an elementary surface 

Horizontal projection 

Decode 

pattern 

Vertical projection 

Triangulate 
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IV.1.2. Multiple views: point-cloud registration 

The assessment of the SL scanner performance is achieved with regard to the elementary 

surfaces and the large volume part evaluations. LVP are characterised by their dimensions that 

exceeds the 3D scanner FoV. Thus, multiple scans are required at multiple views to fully 

reconstruct the object. The multiple views scanning is evaluated by calculating the residual 

errors between the scanned data, when using the SL scanner and the traceable CMM, and the 

nominal shape (CAD model). Therefore, the residual errors are obtained by aligning the point-

cloud to the CAD model.  

IV.2. Evaluation method of the 3D scanner 

IV.2.1. Single view: repeatability and trueness 

The SL scanner is fixed with respect to the elementary mechanical part and the visible zone is 

scanned. Afterwards, the form parameters are calculated and the repeatability is evaluated. 

Some example of parameters that could be evaluated in dimensional metrology are flatness, 

cylindricity and sphericity, as they are widely used in large volume industries according to 

[Feng00, PrPo10]. 

According to the VIM [Inte12], the trueness is defined as the “closeness of agreement between 

the average of an infinite number of replicate measured quantity values and a reference 

quantity value”, and the repeatability is defined as “measurement precision under a set of 

repeatability conditions of measurement”. Therefore, the repeatability is obtained by repeating 

the process of single view scanning and by calculating the standard deviation of the obtained 

form error. Then, the mean value is compared to the form error given by a reference 

measurement machine to obtain the trueness. 

IV.2.2. Multiple views: point-cloud registration 

The SL scanner motion in the measurement space is defined so that the LVP is fully scanned 

by generating multiple scans at different poses. The alignment of the recorded point-clouds is 

studied with two registration methods: the pairwise registration where a maximum of two 

point-clouds are aligned and the groupwise registration that involves more than three point-

clouds. The registered dataset is fitted to the CAD and also compared to the traceable CMM 

results Figure IV.2. 

 



Chap IV: Quality control of large and complex parts 

 

 

94 
 

 

Figure IV.2 Evaluation method of a fully reconstructed mechanical part 

The metric used when analysing the scanned dataset is the residuals between the scanned points 

and the CAD model, leading to calculate the following parameters: RMSE (Root mean square 

error) [URKG19], MAE (Mean absolute error) [BABB18] and PV (Peak to valley) [GoSe17]. 

IV.3. Measurement protocol on proposed material standard 

IV.3.1. Suggested material standard 

IV.3.1.1. Large volume standard (LVS) 

The LVS is a designed mechanical part with large dimensions and complex shape to be scanned 

using the developed 3D scanner. Figure IV.3 shows the CAD of the LVS. The LVS is made of 

aluminium material with dimensions L = 1000 mm, l = 400 mm, H = 60 mm. The LVS contains 

ribs and shape variations, such as depth variations and holes. 

 

Figure IV.3 Design and conception of a large volume standard 
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The designed LVS is quite similar to aeronautical parts such as propellers, aircraft wing edges 

and ailerons.  

IV.3.1.2. Secondary artefacts 

Eight secondary artefacts have been designed Figure IV.4. The objective is to simulate other 

shapes including complex that might be used in the aeronautical and automotive fields. Those 

shapes are described by an analytical model such as cylinder, aspherical shape, etc. 
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Figure IV.4 CAD of the designed secondary artefacts 
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IV.3.1.3. Large volume standard with the secondary artefacts 

The secondary artefacts could be deposed in the LVS on three spheres as to guarantee an 

isostatic link and avoid any clumping deformation (Figure IV.5-1). One additional isostatic 

lying system (Figure IV.5-2) is designed to prevent the deformation of the designed LVS. The 

LVS is equipped with optical spherical targets (Figure IV.5-2) useful for the identification if its 

absolute position in the rangefinder frame. Furthermore, it allows to track the position of the 

SL scanner. Here, only rigid transformation is considered, and non-rigid transformations of the 

LVS are neglected.  

 

 

Figure IV.5 3D model of the LVS equipped with secondary artefacts 
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IV.3.1.4. Reflectivity effect on 3D scanning 

The selected aluminium material for the LVS presents generate high reflectivity. This 

reflectivity downgraded the decoding of the projected SL pattern from the camera perspective. 

Therefore, two possibilities are considered as to solve the observed issue: (1) to use a mattifying 

spray usually adopted by industrials to reduce the reflectivity of the surface, or (2) to limit the 

shiny aspect by a colourless anodization. Aluminium anodizing is an electrochemical process 

that converts the metal surface into a durable, corrosion-resistant and less reflective surface 

finish. The second anodization solution is selected and the LVS has been anodized. However, 

the secondary artefacts still presents a high reflectivity due to the selected complex shapes. 

Then, the mattifying spray has been used as a backup solution. 

IV.3.2. SL scanning protocol 

IV.3.2.1. SL scanner 

The measurement protocol of the SL scanner consists of generating point-clouds with single 

views and multiple views. The single view allows to assess the performance of the SL scanner 

in static where both the position and orientation of the SL scanner are fixed with respect to the 

part. The analysis of the recorded scan is carried out by applying validated least squares fitting 

algorithms. The output is the form error. In practice, large dimensions objects require more than 

one scanning. Therefore, multiple scans are acquired and merged together.  

IV.3.2.2. Probe-contact CMM 

A traceable tactile CMM (Zeiss UPMC carat) is used for the scanning of the manufactured LVS 

and secondary artefacts. The tactile Zeiss CMM measurements represent the reference datasets. 

The measurement of each individual mechanical part has been carried out inside the LNE 

cleanroom. The temperature is controlled to about 20±0.1 °C and the hygrometry to 50%±5. 

The thermal expansion coefficient of the aluminium is 23.1 µm/°/m. Since this value is high, 

the mechanical part is placed at the LNE cleanroom 2 days before the scanning for stabilisation. 

The measurement range of the CMM is 1200×850×600 mm, and the measurement uncertainty 

is estimated to 0.7 +
𝐿

1200
 µm, where 𝐿 is the length of the object. The scale resolution of the 

CMM is about 100 nm. 
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The LVS and each of the secondary artefacts is individually placed on the rotary table of the 

Zeiss CMM, then three plans are scanned to establish the mechanical part coordinate system 

(Figure IV.6-b). Afterwards, the paths are defined with the ZEISS CALYPSO software for each 

surface, with regular step of 100 µm along X-, Y- and Z- axis (Figure IV.6-c). The measured 

datasets are illustrated in Figure IV.7, where the colours correspond to the Z- value of the points 

in the 3D scan (blue at Z = 0 mm and yellow at Z = 60 mm). 

 

 

Figure IV.6 Point-cloud generation process using Zeiss probe-contact CMM (a) process of 

probe scanning (b) definition of the coordinates frame of the mechanical part, (c) definition 

of the scanning points and the path 
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IV.4. Evaluation: single view scanning 

IV.4.1. Flatness 

Given a set of points with the coordinates (xi, yi, zi) generated for the scanned flat surface. A 

plane could be described by its normal vector N= [A, B, C] T and a distance 𝐷, such that a point  

P (xp, yp, zp) from the surface can be expressed as (eq.IV.1):  

𝑁. 𝑃 +  𝐷 =  0 IV.1 

From eq. IV.1, the equation of a plane can be written as (eq. IV.2): 

𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 +  𝐷 =  0 IV.2 

 

Figure IV.7 Measured datasets with the traceable tactile Zeiss CMM: the LVS and the semi 

sphere, semi-cylinder and stepped pyramidal shapes.  



Chap IV: Quality control of large and complex parts 

 

 

100 
 

It is an overdetermined system since the plane is in three dimensions and four values must be 

estimated. To solve the overdetermined system, a value of C = 1 is assigned to express zi as 

function of xi and yi (knowing that for a flat surface, all the points are assumed to have the same 

zi value). Thus, the new problem can be written as in (eq. IV.3) or in matrix form (eq. IV.4):  

𝐴𝑥𝑖 + 𝐵𝑦𝑖 +  𝐷 =  −𝑧𝑖 IV.3 

(

𝑥0 𝑦0 1
𝑥1 𝑦1 1
 …  

𝑥𝑛 𝑦𝑛 1

)(
𝐴
𝐵
𝐷
) = (

−𝑧0

−𝑧1

…
−𝑧1

) IV.4 

By multiplying by the transpose of the first matrix, eq. IV.5 can be obtained (where n is the 

number of points in the data set). 

 

(
𝑥0 𝑥1  𝑥𝑛

𝑦0 𝑦1 … 𝑦𝑛

1 1  1
)(

𝑥0 𝑦0 1
𝑥1 𝑦1 1
 …  

𝑥𝑛 𝑦𝑛 1

)(
𝐴
𝐵
𝐷
) = (

𝑥0 𝑥1  𝑥𝑛

𝑦0 𝑦1 … 𝑦𝑛

1 1  1
)(

−𝑧0

−𝑧1

…
−𝑧1

) 

(

Σ𝑥𝑖𝑥𝑖 Σ𝑥𝑖𝑦𝑖 Σ𝑥𝑖

Σ𝑦𝑖𝑥𝑖 Σ𝑦𝑖𝑦𝑖 Σ𝑦𝑖

Σ𝑥𝑖 Σ𝑦𝑖 𝑛
)(

𝐴
𝐵
𝐷
) = −(

Σ𝑥𝑖𝑧𝑖

Σ𝑥𝑖𝑧𝑖

Σ𝑧𝑖

) 

IV.5 

For points that are in the centroid of the point-cloud Σ𝑥𝑖 = Σ𝑦𝑖 = Σ𝑧𝑖 = 0, the system can be 

expressed in eq. IV.6. Therefore, the dimension 𝐷 could be set to 0 since n D = 0. 

 

(
Σ𝑥𝑖𝑥𝑖 Σ𝑥𝑖𝑦𝑖 0
Σ𝑦𝑖𝑥𝑖 Σ𝑦𝑖𝑦𝑖 0

0 0 𝑛
)(

𝐴
𝐵
𝐷
) = −(

Σ𝑥𝑖𝑧𝑖

Σ𝑥𝑖𝑧𝑖

0
) 

(
Σ𝑥𝑖𝑥𝑖 Σ𝑥𝑖𝑦𝑖

Σ𝑦𝑖𝑥𝑖 Σ𝑦𝑖𝑦𝑖
) (

𝐴
𝐵
) = −(

Σ𝑥𝑖𝑧𝑖

Σ𝑥𝑖𝑧𝑖
) 

IV.6 

Finally, the system can be solved using Cramer’s rule [Leiv15] for linear systems to obtain the 

parameters of the plane equation so that (eq. IV.7): 

{
 
 

 
 

𝜏 = Σ𝑥𝑖𝑥𝑖 . Σ𝑦𝑖𝑦𝑖 − Σ𝑥𝑖𝑦𝑖 . Σ𝑥𝑖𝑦𝑖

𝐴 =
 Σ𝑦𝑖𝑥𝑖 . Σ𝑥𝑖𝑦𝑖 − Σ𝑥𝑖𝑧𝑖. Σ𝑦𝑖𝑦𝑖

𝜏

𝐵 =
Σ𝑥𝑖𝑦𝑖. Σ𝑥𝑖𝑧𝑖 − Σ𝑥𝑖𝑥𝑖. Σ𝑥𝑖𝑧𝑖

𝜏

 IV.7 

One flat surface of the LVS is scanned with the SL scanner 70 times and the recorded datasets 

are fitted to a nominal plane. Figure IV.8 illustrates the obtained least square fitting. The outliers 
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are the points that have not been used to estimate the flatness. The scanned surface has a flatness 

of about 88 µm. 

 

IV.4.1.1. Repeatability evaluation 

To evaluate the performance of the developed SL scanner, a repeatability test is performed 70 

times on the same elementary flat surface. The recorded scans are fitted with a least square 

plane and the flatness is calculated (Figure IV.9). 

The returned results (form errors) have a standard deviation less than 2 µm with a confidence 

level k 95% and the average flatness is equals to 89 µm. 

IV.4.1.2. Trueness evaluation 

The fitting has also been applied on the reference measurements carried out with the traceable 

tactile CMM. The calculated flatness has been is equals to 77 µm, and the difference between 

both the CMM flatness and the SL scanner flatness is equals to 12 µm.  

 

Figure IV.8 Visualization of the least square fitting of a point-cloud to a plane 

 

Figure IV.9 Repeatability test of flatness across 70 tests 
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IV.4.2. Semi-sphere 

For sphericity evaluation, the point-cloud needs to be fitted to a nominal sphere. Considering a 

sphere for which the centre coordinates are (a, b, c) and a radius �̅�. The mathematical expression 

of the sphere can be expressed in eq. IV.8, which also can be rearranged as expressed in eq. 

IV.9: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2 = �̅�2 IV.8 

𝑥2 + 𝑦2 + 𝑧2 = 2𝑎𝑥 + 2𝑏𝑦 + 2𝑐𝑧 + �̅�2 − 𝑎2 − 𝑏2 − 𝑐2 IV.9 

Sphere fitting aims to find the centre coordinates (a, b, c) and the radius 𝑟. For a point-cloud 

with 𝑛 points (xi, yi, zi), eq.IV.9 becomes a system of linear equations as expressed in eq. IV.10 

and IV.11.  

𝑓 = 𝐴𝐶′⃗⃗  ⃗ IV.10 

𝑓 =

(

 
 

𝑥0
2 + 𝑦0

2 + 𝑧0
2

⋮
𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2

⋮
𝑥𝑛

2 + 𝑦𝑛
2 + 𝑧𝑛

2)

 
 

 𝐴 =

(

 
 

2𝑥0 2𝑦0 2𝑧0 1
⋮ ⋮ ⋮ ⋮

2𝑥𝑖 2𝑦𝑖 2𝑧𝑖 1
⋮ ⋮ ⋮ ⋮

2𝑥𝑛 2𝑦𝑛 2𝑧𝑛 1)

 
 

 𝐶′⃗⃗  ⃗ = (

𝑎
𝑏
𝑐

�̅�2 − 𝑎2 − 𝑏2 − 𝑐2

) IV.11 

Thus, an overdetermined system suitable for least square optimisation could be obtained. The 

objective is to determine the vector 𝐶′⃗⃗  ⃗ that best minimizes the function 𝐸(𝐶′⃗⃗  ⃗) =  𝑓 − 𝐴𝐶′⃗⃗  ⃗. 

Figure IV.10 illustrates the result of least square fitting on a semi-sphere mounted on its base. 

The obtained sphere fitting error is estimated to 116 µm where the fitting error is defined as the 

projection of the points from the point-cloud on the nominal sphere.  

 

Figure IV.10 Visualization of the least square fitting of a point-cloud to a sphere 
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IV.4.2.1. Repeatability evaluation 

To evaluate the repeatability of the sphericity parameter, the scanning tests were repeated 70 

times. The obtained distribution is shown in Figure IV.11. The calculated mean value is about 

113 µm with a standard deviation of 4 µm. 

IV.4.2.2. Trueness evaluation 

The comparison of the sphericity calculated on the measurement data with the traceable Zeiss 

CMM (17.19 µm) and the sphericity calculated on the scan recorded with the SL scanner 

(116 µm) leads to have the trueness estimated to about 115.97 µm. The form errors are mainly 

observed on the top of the sphere for the SL scan. This is due to the high reflectivity of the 

surface which gives a biased estimation of the point coordinates. 

IV.4.3. Semi-cylinder 

Cylinders are one of the most commonly used shapes in the industry [Togu22, S.]. Unlike plane 

fitting, cylindrical fitting is given in the form of a computational algorithm using iteration 

approximations [Niev13, NuSL17, Sher00]. A cylinder could be defined by its radius r > 0 and 

its axis. Assuming that the point C belongs to the cylinder, and that {U, V, W} are the unit-

length vector of orthonormal basis, a point X can be written as (eq. IV.12), where 𝜔𝑖 is the 

weight associated to each unit-length vector. 

𝑋 = 𝐶 + 𝜔1𝑈 + 𝜔2𝑉 + 𝜔3𝑊 IV.12 

Let’s consider the matrix R = (U V W) and the column vector 𝝎 = (𝜔1 𝜔2 𝜔3)𝑇. Then, 

eq. IV.12 is reformulated in eq. IV.13: 

𝑋 = 𝐶 + 𝑅𝝎 IV.13 

 

Figure IV.11 Repeatability test of the sphericity parameter across 70 tests 
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If point X belongs to the cylinder surface, then eq. IV.14 can be deduced, so that the identity 

matrix I = UUT +VVT +WWT 

𝑟 = 𝜔1
2 + 𝜔2

2 IV.14 

 = (𝑈. (𝑋 − 𝐶))2 + (𝑉. (𝑋 − 𝐶))2  

 = (𝑋 − 𝐶)𝑇(𝑈𝑈𝑇 + 𝑉𝑉𝑇)(𝑋 − 𝐶)  

 = (𝑋 − 𝐶)𝑇(𝐼 − 𝑊𝑊𝑇)(𝑋 − 𝐶)  

Therefore, the parameter ω3, defining the height of the cylinder can be obtained using eq. IV.15. 

|𝜔3| = |𝑊. (𝑋 − 𝐶)| IV.15 

Let’s suppose a set of points 𝑋𝑖, 𝑖 ∈ [1, 𝑁𝑝]. The least square error function that needs to be 

minimized to fit the point-cloud to a cylinder, based on eq. IV.15 is expressed as (eq. IV.16). 

𝐸(𝑟2, 𝐶,𝑊) = ∑[(𝑋𝑖 − 𝐶)𝑇(𝐼 − 𝑊𝑊𝑇)(𝑋𝑖 − 𝐶) − 𝑟2]2

𝑁𝑝

𝑖=1

 IV.16 

Figure IV.12 illustrates the fitting result of the scanned cylindrical artefact to a nominal cylinder 

using the least squares algorithm. 

 

In order to obtain the repeatability and the trueness, the scanning is repeated also 70 times. The 

trueness is deduced by comparing the average form error to the one calculated on the tactile 

CMM measurements. 

 

Figure IV.12 Visualization of the least squares fitting of a point-cloud to a cylinder 
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IV.4.3.1. Repeatability evaluation 

The repeatability test of cylindricity scanning across 70 tests shows a standard deviation of 

6 µm (Figure IV.13). 

IV.4.3.2. Trueness evaluation 

The fitting of the CMM measurement data to the analytical model gives an error of 19.25 µm. 

Whereas, for the 3D scanner, the average error is estimated to 142.41 µm leading to a trueness 

of about 123.16 µm. The form errors for the 3D scanner are observed on the top of the cylinder, 

this is due to the same reason described for the sphere related to reflectivity. 

IV.5. Evaluation: multiple view scanning 

One of the limitations of the SL scanner is the occlusions and the scanner FoV, since several 

areas of the object might be hidden due to its shape or due to the dimensions of the object. Thus, 

point-clouds needs to be generated along the scanned surface by partially scanning multiple 

areas and fusing them into a single coordinate system (Figure IV.14). Each scan generates a 

point-cloud in the camera coordinate system. Knowing the camera poses, it becomes possible 

to merge all the point-clouds into a single coordinate system by identifying the relative 

transformations between the views through the process of point-cloud registration [Brow92]. 

Point-cloud registration is needed in many applications of machine vision such as 3D mapping 

and 3D reconstruction of objects. Two types of registration can be distinguished: coarse and 

fine registration [RNAM15, Zhu19]. Coarse registration consists of finding the initial 

transformation between point-clouds without necessarily imposing high tolerances for the 

rotations and translations (usually few degrees for rotations and few millimetres for 

 

Figure IV.13 Repeatability test of the cylindricity across 70 tests 
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translations). Whereas fine registration is applied as to have an accurate 3D alignment of 

datasets. 

In literature, a number of methods have been proposed. All can be classified in tracking-based 

registration and feature-based registration [Bosc12]. For, tracking-based registration, an 

external tracking device is used to estimate the poses of the 3D scanner in the measurement 

space. The scanner can be for example fixed to a robot end-effector or equipped with 

displacement sensors such as wire-draw displacement sensors or laser rangefinder targets. It 

allows to estimate the relative transformations between the scanner poses. Nevertheless, the 

feature-based registration aims to use the intrinsic characteristic of the surface to perform the 

alignment. There are three categories of feature registration: 

- The manual registration is performed on feature manually detected. This method is 

usually avoided because it’s time consuming and the registration accuracy depends on 

the operator. 

- The target-based registration aims to align point-clouds when exploiting physical 

markers placed on the surface, which can be easily detected. The registration is 

performed so that at least 3 targets can be detected in two successive point-clouds. The 

detected targets in point-clouds are called pair of correspondence [Pan19]. The distances 

between the detected 3 pair of correspondence can then be minimized to obtain a full 

reconstruction of the object. This method is more accurate. However, it is also time 

consuming because it requires a preparation using step that consists of placing the 

targets on the mechanical part. 

- The feature-detection based registration is an automated method that relies on the local 

or global information from the point-cloud. It works similarly to the target-based 

 

Figure IV.14 Example of a point-cloud registration for a complex part 
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registration without the need of adding physical targets to the mechanical part. 

Information such as local neighbourhoods, form parameters and texture can be used to 

register point-clouds [GMDD13, RNAM15, RNAM16]. Feature-based methods are 

usually used due to their accuracy and simplicity, since they are fully automated. 

All those techniques can be used to register two point-clouds. However, for larger objects, the 

reconstruction usually requires more than two point-clouds. This distinction has been studied 

in the literature and presented as pairwise registration and groupwise registration [ZGZL19]. 

IV.5.1. Pairwise registration 

Let’s consider two sets of points where the pairs of correspondences are defined as the points 

{𝑿𝒊, 𝑖 ∈ [1, 𝑁𝑝]} from point-cloud 1 and {𝒀𝒊 𝑖 ∈ [1, 𝑁𝑝]} from point-cloud 2 (𝑁𝑝 is the number 

of points in the set). An example of pairwise registration is given in Figure IV.15. Pairwise 

registration involves two steps. The first one is to find the correspondence between pair in the 

point-clouds. The second step is to minimize that distance using optimisation techniques such 

as gradient descent. 

The Iterative Closest Point (ICP) is one of the most used algorithms for fine registration. ICP 

performs a 𝐿2 minimization through several iterations to find the rotation and translation 

parameters that minimize the error function expressed in eq. IV.17. 

𝐸(𝑅, 𝑇) =
1

𝑁𝑝
∑‖𝑋𝑖 − 𝑅 𝑌𝑖 − 𝑡‖2

𝑁𝑝

𝑖=1

 IV.17 

The main drawback of the ICP is that the minimization is very likely to become stuck in a 

nearby local minimum, thus leading to misalignment of point-clouds. Subsequently, advanced 

ICP variants have been proposed to solve this problem [DXWH17, LHZA22, YLCJ16, 

 

Figure IV.15 illustration of pairwise registration process 

Point-cloud  
𝒀𝒊 

Point-cloud 

𝑿𝒊 

Pairwise 

registration 

Global point-

cloud 



Chap IV: Quality control of large and complex parts 

 

 

108 
 

ZhYD21]. Additional methods based on the estimation of the probability density are also widely 

used due to their fast convergence or accuracy, such as Normal Distribution Transform (NDT). 

NDT, introduced by Biber [BiSt03], is based on the modelling of the point-cloud by a linear 

combination of normal distribution. The main key of NDT is the representation of the 3D data, 

as the point-cloud is discretized into regular cells called voxels. If the number of points in the 

voxel is more than 3, the voxel can be modelled as a Gaussian probability distribution (GPD) 

of mean 𝑞 =
1

𝑁𝑝
∑ 𝑿𝒊𝑖  and a covariance matrix Σ =

1

𝑁𝑝−1
∑ (𝑿𝒊 − 𝑞)(𝑿𝒊 − 𝑞)𝑻

𝑖 . Normal 

distributions give a smooth representation of the scanned surface with continuous first and 

second order derivatives. Then, numerical optimisation methods are used for the registration. 

The probability distribution function is expressed in eq. IV.18 where µ is the mean value of the 

distribution and 𝛿 is the covariance of the distribution. 

𝐷𝑖𝑠𝑡𝑟 =
1

√(2𝜋)𝑘|Σ|
𝑒−

1
2
(𝑋−𝑞)Σ−1(𝑋−𝑞)𝑇

 IV.18 

In practice, the generated point-clouds present noises, thus all the points cannot have their 

correspondence in the other point-cloud. Therefore, instead of matching the points, the normal 

distribution is analysed for several voxels and used as a feature as illustrated in the example 

shown in Figure IV.16 (where the voxels volume is about 20×20×20 mm3 and the distribution 

of points is calculated at each voxel). The distribution at each voxel is projected on XY- XZ- 

and ZY- plane to improve the readability. 

 

Figure IV.16 Estimation of normal distributions at each voxel of SL point-cloud 
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A recently proposed algorithm also based on probability namely Coherent Point Drift (CPD) 

[MySo10] have been widely used for point-cloud registration. CPD fits the Gaussian mixture 

model (GMM) [Reyn09] centroids to the target point-clouds and considers the registration as a 

histogram distance minimization problem. GMM, expressed in eq. IV.19, is a category of 

probabilistic models that assumes that all data derive from a mixture of finite Gaussian 

distributions. 

𝑝(𝑿) = ∑𝑃(𝑖)𝑝(𝑿|𝑖)

𝑁𝑝

𝑖=1

 IV.19 

Where: 
𝑝(𝑿|𝑖) =

1

(2𝜋𝜎2)
𝐷
2

𝑒
−‖𝑿−𝒀𝒊‖

2

2𝜎2  𝑃(𝑖) =
1

𝑁𝑝
 

Thus, CPD aims to move a point set coherently as a group to preserve the structure of the whole 

point-cloud. 

IV.5.1.1. Comparative study between ICP, NDT and CPD 

To evaluate the effectiveness of each algorithm to align the SL point-clouds, the RMSE value 

and the computation time are estimated and compared. First, two point clouds are generated 

with an overlapping of 100%, taken at two different poses, then ICP, NDT and CPD are applied 

to estimate the transformation that aligns both point-clouds. For each algorithm, two parameters 

are evaluated: RMSE which is a distance defined as the root mean square error of the 

registration and time complexity describing the required time to perform the registration.  

Denoising is applied to each set of point-cloud using a segmentation algorithm. Points are 

usually generated with noises, called outliers that comes from inaccurate estimation of point 

coordinates due to the reflectance of the object or from the triangulation. The outliers must be 

eliminated before performing the registration. One of the most popular outlier’s removal 

methods is the morphological filtering, which is a statistical method that relies on the density 

of the point set. A volume is defined so that a required minimum number of points is considered 

as inliers (point set without noise).  

For the NDT algorithm, the volume is subdivided into voxels with a step size of 20 mm. Thus, 

each voxel volume is 20×20×20 mm3 for which the points density is calculated. It is noticeable 

from Table IV.10 that the overall performances of ICP exceeds NDT and CPD, apart from the 

elliptical paraboloid where the estimated RMSECPD is slightly less than RMSEICP. 

Three stopping criteria are set for NDT, ICP and CPD: 
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- Max iterations   : i = 500  

- Tolerance on rotation  : rot(i+1)-rot(i) < 10-5 (°) 

- Tolerance on translation : Trans(i+1)-Trans(i) < 10-5  µm 

Table IV.10 Convergence comparison between ICP, NDT and CPD 

  NDT ICP CPD 

Semi-sphere 
RMSE (mm) 0.5411 0.1887 0.7217 

Time (s) 51.34 0.58 193.68 

Semi-cylinder 
RMSE (mm) 1.1205 0.1486 0.3673 

Time (s) 40.45 0.63 460.85 

Circular 

pyramid 

RMSE (mm) 0.5212 0.0868 0.4125 

Time (s) 20.09 0.39 708.38 

Rectangular 

pyramid 

RMSE (mm) 2.8969 0.1577 0.2483 

Time (s) 30.91 2.51 403.59 

Elliptical 

paraboloid 

RMSE (mm) 4.59 0.1813 0.1311 

Time (s) 6.18 0.37 181.06 

Parabolic 

cylinder 

RMSE (mm) 0.8254 0.2431 0.5593 

Time (s) 37.08 0.49 322.90 

Cylindrical 

paraboloid 

RMSE (mm) 1.8520 0.9659 1.7868 

Time (s) 16.64 0.74 371.53 

Hyperbolic 

paraboloid 

RMSE (mm) 1.0518 0.5272 0.6972 

Time (s) 26.80 0.44 151.71 

 

IV.5.1.2. Selection of pairwise registration method 

The CPD and NDT computation times are very high in comparison to the studied ICP algorithm 

for registration. Therefore, the ICP is considered as a reference algorithm, and it allows having 

more accurate results within very low computation time. Figure IV.17 presents a visualization 

of the resulting point-clouds after registration when NDT, ICP and CPD are applied for the 

semi-spherical and semi-cylindrical shapes. The pairwise registration considers a maximum of 

two point sets. In practice, many scans are needed to reconstruct large volume objects, which 

justify the application of the groupwise registration method. 
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Figure IV.17 Visualization of point-clouds registration using NDT, ICP and CPD for semi-sphere 

and semi-cylinder 
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IV.5.2. Groupwise registration 

Traditionally, one strategy involves registering of successive scans using pairwise registration 

algorithms. Those algorithms could be classified into sequential strategy [BlLe95, EKHP14, 

IKHM11, MaYo94] and one-to-all strategy [BSGL96, CaFM02, HuHe03]. They consist of 

aligning the point-clouds with an overlap constraint. However, systematic errors such as 

distortion can propagate through the process of regression from the first point-cloud to the last 

one [EKHP14, EvHo18]. An additional constraint is set for one-to-all strategies, which involves 

choosing a reference point-cloud that needs to be related to the surrounding ones. Thus, to 

simultaneously perform the registration when several point-clouds are available, methods of 

groupwise registration are used. 

Let 𝑴𝑗 = {𝑀1, 𝑀2, … ,𝑀𝑁} be a set of point-clouds and 𝑴 = {𝑀𝑗 , 𝑗𝜖[1, 𝑁]} the union of all the 

data sets where 𝑁 is the number of point-clouds. The groupwise optimisation was introduced 

by Lu & Milios [LuMi97] and is yet still widely used in robotics [CuNe08, GKSB10, KaRD08]. 

The common drawback of this method is the propagation error ,because of the use of successive 

pairwise registrations as demonstrated in [BlLe95, ChMe91, GSBL94, Neug97, SHIR98]. 

Recently, Choi [ChZK15] proposed a robust graph pose method that does not rely only on 

pairwise registration, but additionally uses line process optimisation [BlRa96]. The line process 

has been introduced for automatic detection of edges and discontinuities in image processing. 

 

 

One advantage of the line process is the formulation since it is presented in a least-squares form, 

which can be solved using least squares optimisation solvers. The graph pose effectiveness has 

been demonstrated and the results are significantly better in comparison to other methods for 

 

 

Figure IV.18 Visualization of pose graph optimisation of multiple point-clouds 
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dense reconstruction of indoor scenes. Figure IV.18 illustrates an example of pose graph 

optimisation using 8-point-clouds 𝑀𝑖 , 𝑖 = {1,… ,8}. 

For the aimed application, a pipeline of point-cloud registration that makes use of the robot, 

pairwise and groupwise techniques needs to be defined. 

IV.6. Proposed pipeline for point-cloud registration 

IV.6.1. Tracking-based registration using industrial robot 

First, the acquisition consists of manually defining the scanning poses of the KAWASAKI robot 

so that the surface is globally scanned. KAWASAKI software provides an estimation of the 

end-effector transformation to the robot base. Thus, the objective is to find the rigid 

transformation TCE  (Figure IV.19) between the camera coordinate system and the end-effector, 

as to perform a coarse registration of the recorded point-clouds in the robot base. Hence, 

𝑇𝐶𝐸  could be estimated using the eq. IV.20. 

𝑇𝐶1𝐸1
× 𝑇𝐸1𝐵 × 𝑇𝐸2𝐵

−1 × 𝑇𝐶2𝐸2

−1 × 𝑇𝐶2𝐶1
= 𝐼 IV.20 

Since the camera is rigidly fixed to the end-effector, then 𝑇𝐶1𝐸1
= 𝑇𝐶2𝐸2

= 𝑇𝐶𝐸. In addition, the 

transformations 𝑇𝐸1𝐵 and 𝑇𝐸2𝐵
  are retuned by the KAWASAKI soft, therefore, 𝑇𝐶1𝐶2

 could be 

estimated with the ICP fine registration. The transformation TCE is unknown. Thus, eq.IV.20 

can be rearranged in eq. IV.21 for a pair of poses. 

𝑇𝐶𝐸 × 𝑇𝐸1𝐵 = 𝑇𝐶1𝐶2

−1 × 𝑇𝐶𝐸
 × 𝑇𝐸2𝐵

  IV.21 

For 𝑘 pair of poses, the following system (eq. IV.22) can be solved using a least squares 

optimisation (eq. IV.23).  

{

𝑇𝐶𝐸 × 𝑇𝐸1𝐵 − 𝑇𝐶1𝐶2

−1 × 𝑇𝐶𝐸
 × 𝑇𝐸2𝐵

 = 0

⋮
𝑇𝐶𝐸 × 𝑇𝐸𝑘𝐵 − 𝑇𝐶𝑘𝐶𝑘+1

−1 × 𝑇𝐶𝐸
 × 𝑇𝐸𝑘+1𝐵

 = 0
 IV.22 

𝑇𝐶�̂� = argmin
𝑇𝐶𝐸

(∑𝑇𝐶𝐸 × 𝑇𝐸𝑖𝐵
− 𝑇𝐶𝑖𝐶𝑖+1

−1 × 𝑇𝐶𝐸
 × 𝑇𝐸𝑖+1𝐵

 

𝑘

𝑖=1

) IV.23 
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Figure IV.19 Illustration of the transformations between the different coordinate frames 

 

Once the transformation 𝑇𝐸𝐶 is estimated, the acquired point-clouds 𝑴𝑗
𝐶  can then be 

transformed to 𝑴𝑗
𝐵 in the robot base using eq. IV.24. Afterwards, the point-clouds can be 

cropped along the Z- dimension to eliminate the outliers, usually caused by the surface 

reflectivity, by applying a morphological filtering. The morphological filtering eliminates 

points that does not satisfy the constraints of 𝑁 points in a sphere of radius r. Those parameters 

have been set to r = 0.8 mm and N = 3 pts for point-clouds generated from the SL scanner. 

𝑴𝑗
𝐶 × 𝑇𝐶𝐸𝑗

× 𝑇𝐸𝑗𝐵
= 𝑴𝑗

𝐵 IV.24 

IV.6.2. Global registration pipeline 

Using the estimated transformation between the scanner and the robot end-effector, the 

collected point-clouds could be transformed to a single coordinate system, resulting in a 
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registration with an error of about 2 mm (which corresponds to the robot uncertainty). 

Afterwards, the pairwise and groupwise registration algorithms could be applied to affine the 

registration of the point-clouds leading to a lower registration uncertainty. 

The selected algorithms for fine registration are ICP for pairwise registration between 

successive overlapped 3D scans, followed by graph pose optimisation. Hence, the obtained 

point-cloud can be fitted to the nominal model to analyse the surface of the LVS. The flowchart 

of the point-clouds registration pipeline is shown in Figure IV.20. 

 

Figure IV.20 Flowchart of the proposed point-cloud registration pipeline 

IV.6.3. Synthetic evaluation of the proposed pipeline 

The scanning process of the LVS is simulated while evaluating the accuracy of the proposed 

registration pipeline. A mesh of the CAD model is generated. In computer graphics and 3D 

modelling, the mesh could be used to define the shape of an object as a composition of vertices, 

edges and faces. To simplify the rendering, the most suitable faces are triangles, quadrilaterals, 
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or other simple convex polygons, but may also be more generally composed of concave 

polygons [BLPP12, Scra00, VaCP08]. In the following case, the triangular meshing has been 

selected and points are generated across each surface from the mesh. 

In practice, the camera can only cover, within a single position, some zones of the surface 

depending on the FoV, which prevents the optical triangulation in some areas of the surface. 

Thus, only the visible parts from the camera's perspective will be reconstructed in 3D. To 

simulate the FoV and the point density, points are sampled along the CAD model in a limited 

region as illustrated in Figure IV.21. 

 

 

Figure IV.21 Illustration of view sampling on a complex part 

Once the points are generated on the visible surface, a Gaussian noise is added with an 

amplitude of 10 µm per point in the x-, y- and z- directions. To simulate the robot displacement 

error, each point-cloud is transformed using a ground truth transformation namely TGT so it can 

be used later to evaluate the accuracy of the registration. Then, the proposed registration 

pipeline is applied to estimate the mutual transformations Test between all point-clouds. 

The used metrics to evaluate the registration pipeline are RMSE, MAE and PV, respectively 

formulated in eq. IV.25, IV.26 and IV.27. 

RMSE = √
1

𝑁𝑝
∑‖𝑋𝑗 − 𝑌𝑗‖

2

𝑁𝑝

𝑗=1

 IV.25 
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MAE =
1

𝑁𝑝
∑‖𝑋𝑗 − 𝑌𝑗‖

𝑁𝑝

𝑗=1

  

IV.26 

PV = max
𝑗

(‖𝑋𝑗 − 𝑌𝑗‖𝑠
)−min

𝑗
(‖𝑋𝑗 − 𝑌𝑗‖𝑠

) IV.27 

 

Where:  

 

- Np is the number of points 

- ‖…‖ is the Euclidian distance 

- ‖…‖𝑠 is the signed Euclidian distance 

For each metric, three outputs are considered as shown in Figure IV.22: RMSE, MAE and PV. 

 

Figure IV.22 Flowchart of the synthetic evaluation of the registration pipeline. Where TGT ground 

truth transformation, Test is the estimated one and view is the simulated position of the scanner with 

respect to the CAD 

 

- RMSE0 describes the fitting errors between the CAD sampling without noise and the 

CAD. This error allows to estimate the computational error which should be very low 

compared to other metrics.  
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- RMSEN describes the fitting of noisy point-clouds to the CAD model before applying 

transformations. This metric allows to verify the accuracy of the least squares fitting 

since it should be equal to the amplitude of the added noise. 

- RMSENT is finally the fitting error of the registration for noisy and transformed point-

clouds and the CAD model. This metric allows to evaluate the effectiveness of the 

registration by comparing the obtained registrations to the ground truth (RMSEN). 

Figure IV.23 shows the obtained values for the metrics RMSE, MAE and PV as well as their 

associated uncertainties. To obtain the uncertainties with a 95% confidence interval, the process 

has been repeated 10 times. The result of the registration simulation shows a negligible value 

of RMSE0 (about 3×10-12 mm) compared to the other metrics RMSENT and RMSEN, 

respectively estimated to 166 µm and 97 µm. 

 

Figure IV.23 Obtained RMSE, MAE and PV values (in mm) and their associated uncertainties 

IV.6.4. Experimental evaluation of the proposed pipeline (3D scanning of 

the LVS) and analysis of the returned results 

First, elementary surfaces of the LVS are scanned using the SL scanner. Multiple poses of the 

robot end-effector are set to cover the whole surface of the LVS, while ensuring approximately 

60% of overlap between successive 3D scans. In total, 45 poses of the robot end-effector have 

been set, and at each pose, the point-cloud of the observed surface is reconstructed in the camera 

frame. Figure IV.24 shows an example of the SL scanner positioning in the measurement space 

using the industrial robot. 
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Figure IV.24 End-effector positioning of the industrial robot to scan an edge of the large 

volume part 

To perform the coarse registration, the coordinates of the end-effector are recovered and used 

to transform the point-cloud from the camera frame to the robot-base coordinate frame. Then, 

the proposed registration pipeline is applied to align the set of point-clouds. Finally, a 

resampling is used to obtain a uniform number of points, since the overlap areas between 

successive acquisitions contain higher number of points. Figure IV.25 shows the result of point-

clouds registration using the proposed pipeline, where each colour defines a single 3D 

reconstruction at a specific pose. 

 

Figure IV.25 Obtained 3D reconstruction of the large volume part using the proposed 

registration pipeline. Each colour defines a point-cloud generated from a specific pose of the 

SL scanner 

The ICP registration is performed in two steps: step (1) involves aligning the pairwise with a 

corresponding distance of 2 mm to eliminate outliers and keep only the inliers to find the point-
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to-point correspondences, step (2) where the corresponding distance is minimized as to refine 

the pairwise registration. 

The RMSE reaches the convergence stage (of about 0.05 mm) after less than 10 iterations for 

the first step. For the second step, the convergence requires more iterations, but the RMSE of 

inlier correspondence decreases to about 10 µm for the large volume point-clouds registration 

(Figure IV.26). The term inliers refer to the subset of the point-cloud used to find the 

correspondence between two scans. 

 

Figure IV.26 RMSE evolution of the ICP registration (a) ICP with correspondence distance 

of 2 mm, (b) ICP with correspondence distance set to 1 mm 

If the corresponding distance is minimized even more, local minimums prevent ICP from 

converging. This could be explained as an over estimation of the point-to-point distances, 

because the ICP would adapt the noise rather than the underlying model. 

A registration of the tactile Zeiss CMM measurements to the CAD model is also carried out, 

which leads to the evaluation of the manufacturing process of the LVS. 

The difference in point density between the tactile Zeiss CMM measurements of the LVS and 

the SL scans is noticeable in the Figure IV.27. The tactile Zeiss CMM provide 5.103 points 

where the SL density is about 3.106 points. Additionally, a deformation tendency is observed 

on the CMM measured data, where the fitting errors are grouped in the edges and in the middle 

of the LVS (Figure IV.27-b). This tendency can be explained either by the manufacturing errors 

or by the mechanical deformation of the LVS due to its weight (20 kg). 

Furthermore, the fitting error of the SL scan is higher than the fitting error of the CMM 

measurement. The RMSE value calculated on CMM measured data equals to 65.92 µm while 

RMSE is equals to 165.94 µm for the SL scanner (Table IV.11). The errors can be categorized 

for each measurement instrument. For SL scanner, the errors are mainly grouped in the edges 
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of the top plane (Figure IV.27). The reflectivity on the edges is significant in close relation to 

the curved shape, thus it prevents the triangulation to accurately estimate the coordinates of the 

points on the edges. However, the distribution across the point-clouds is globally uniform as it 

is noticeable on the bottom plan (Figure IV.27-a).  

Table IV.11 Comparison between the CMM and SL reconstruction 

 RMSE (µm) MAE (µm) PV (mm) 

CMM 65.92 56.08 0.29 

SL 165.94 120.03 3.47 

 

Figure IV.27 Comparison of CMM and SL fitting of the large volume part. (a) SL point-cloud, 

(b) Distance error distribution of SL point-cloud to the CAD model, (c) CMM point-cloud, 

(d) Distance error distribution of CMM point-cloud to the CAD model. 

 

The difference in accuracy between the CMM measures and the developed SL scanner is 

obvious. This was expected as CMMs have better accuracy despite their low density and high 

measurement time. However, for large volume quality control SL scanners are the best choice 

(b) 

(d) 

(a) 

(c) 
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due to their measurement speed and the high density of the data. Although the accuracy is lower 

than that of the CMM, it is still within the ISO standards for geometric tolerances [Iso100]. 

IV.7. Conclusion 

The performance of the developed SL scanner has been studied in static and dynamic. First, a 

complex and large volume standard (LVS) as well as eight secondary artefacts have been 

designed and manufactured. For the static evaluation, the pose of the scanner in the 

measurement space has been fixed, and point-clouds are generated successively. Then form 

errors such as sphericity, cylindricity and flatness have been evaluated. The results of the tests 

show a repeatability about 4 µm. 

For the 3D scanning of LVS, a motion of the SL scanner in the measurement space is required, 

as the dimensions of the object are significant in comparison to the SL scanner FoV. Thus, 

point-cloud registration methods are also requested. Registration is the process of aligning 

multiple point-cloud in a single frame. Two categories of registration are distinguished in the 

literature: coarse registration, and fine registration. Coarse registration allows to align point-

clouds without necessarily searching for high tolerances. For fine registration, the distance 

between the correspondence points is minimized. Here, the end-effectors are used for coarse 

registration. Multiple poses are set using the robot software so that approximately 60% overlap 

between successive scans is satisfied. This constraint allows to perform fine registration using 

ICP. ICP is a pairwise registration usually used to align two point-clouds. However, it is not 

sufficient for multiple views registration because successive point-clouds could propagate the 

error in the registration process. Thus, the graph pose optimisation is adopted to optimise the 

registration process.  

The proposed pipeline has been evaluated both synthetically and experimentally. In the 

synthetic evaluation, the process of point-cloud generation has been simulated on the LVS. 

First, the view sampling is used to recover the visible surfaces from a simulated pose of the SL 

scanner. Then, it is applied over the LVS while adding noise to simulate the SL errors. The 

point-clouds are aligned using the proposed registration pipeline and compared to the ground 

truth. The resulting RMSE was estimated to 166 µm for simulated data. 

An experimental evaluation has also been presented, where the LVS and the secondary artefacts 

have been scanned using the SL scanner and compared to the results of the tactile Zeiss CMM 

measurement data. The obtained RMSE value is quite similar to the one obtained with the 

simulated data as the RMSE has been estimated to about 150 µm.
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Conclusion and perspectives  

This thesis highlights the investigation of 3D scanning methods for the quality control of 

mechanical parts. As part of the European project LaVA, a focus is specifically made on large 

volume parts from the aeronautical field, where traditional measurement techniques, such as 

CMMs, are not efficient. The degradation in performance is due to the dimensions of the 

mechanical part and also to its complex shape. Therefore, more robust methods must be 

adopted. Robustness could be defined as the possibility to generate a dense 3D scan of an object 

in real time with acceptable accuracy. One efficient solution consists of using optical methods, 

and more specifically camera-based techniques known as photogrammetry techniques. 

In literature, there are two photogrammetry categories: passive photogrammetry and active 

photogrammetry. Passive photogrammetry uses ambient light to reconstruct the scene. Usually, 

the 3D scanning is based on the identification of feature points in two different images, then the 

triangulation is applied to generate the point-cloud. This technique is not suitable for 

mechanical investigation because scanned parts present uniformity in their colour distribution. 

Therefore, the feature points are difficult to identify on two images. On the other hand, active 

photogrammetry uses a controlled light source to perform the triangulation. Active 

photogrammetry is similar to the stereovision system, but instead of using two cameras, one is 

replaced by a lighting source. Those techniques are more accurate and often used to scan objects 

for which feature points cannot be easily identified. 

The solution offered in the present work uses the SL projection to solve the triangulation 

problem of large volume surfaces. SL is an active photogrammetry technique similar to laser 

triangulation. Rather than projecting a single laser dot or line, multiple horizontal and vertical 

lines called fringes are projected, leading to a more dense reconstruction of larger areas within 

only few seconds. 

The thesis starts by a general literature review of the 3D scanning techniques. A focus is pointed 

on SL techniques and their classifications. Different methods of 3D scanning, based on the 

coding of SL, are presented including those mainly used for quality control of mechanical part. 

The classification of these techniques with respect to their accuracy, density and real-time 
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aspect brings valuable guidelines for the choice of the 3D scanning technique in the case of 

mechanical quality control. Another contribution in this chapter is related to the design and 

development of the SL scanner, that is able to provide 3D information on large volume 

mechanical part. The 3D scanner consists of two industrial cameras placed above the projector. 

The three components are rigidly fixed to an aluminium structure that is placed on the end-

effector of an industrial KAWASAKI 6-axis robot. The robot is used to move the SL scanner 

in the 3D space in order to scan different areas of the mechanical part. In some cases, the object 

dimensions might exceed the robot range, thus a 7th motion axis is added to the robot to improve 

the scanning range, leading to a complete measurement system of large and complex parts. 

To perform triangulation, it is important to identify the internal parameters of the used cameras 

and projector as well as the rigid transformation between these components. The identification 

of these parameters is called camera calibration. This step is critical when performing 3D 

scanning. Camera calibration is the process of estimating extrinsic and intrinsic parameters of 

the camera and the projector. Different techniques have been studied and proposed; however, a 

focus is made on the Zhang method (Zh-method), due to its accuracy compared to other 

methods. Zhang uses a 2D flat surface printed with an easily detectible pattern (called 

calibration grid) to calibrate cameras. By taking pictures of the calibration grid placed at 

different poses, intrinsic and extrinsic parameters can be identified. The Zh-method includes 5 

steps: image acquisition, feature point detection, homography estimation, intrinsic and extrinsic 

identification, global refinement. An additional verification step could be added to satisfy a 

predefined error threshold. This method is more robust compared to the others, but still not 

accurate enough. Therefore, some optimisation methods have been advanced to overcome some 

inaccuracies in the original Zh-method, such as the use of more robust feature point detection 

algorithm or the optimisation of global refinement. However, the most influencing component 

is the camera positioning with respect to the calibration grid, according to the literature. In this 

context, we proposed a novel optimisation method based on ML, which provides a set of 

optimal poses. The method has been evaluated synthetically and experimentally, and the 

assessment shows a better performance. The ML-approach is ideal for camera calibration in 

controlled environments. Nevertheless, if the brightness changes the accuracy is degraded. This 

aspect can be further optimised by adding to the ML model a parameter that defines the 

brightness. 

Once the SL scanner is calibrated, triangulation between camera and projector pixels can be 

performed, leading to the generation of a point-cloud. To evaluate the performance of the 3D 
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scanner, designed mechanical parts have been scanned and their form errors evaluated. The 

form parameters that have been evaluated are flatness, sphericity and cylindricity. The test 

shows an overall repeatability of about 6 µ𝑚 and form errors of about 90 µ𝑚. This test was 

performed by fixing the position and orientation of the scanner in the measurement space. In 

practice, large volume objects require more than a single scan. Subsequently, we proposed a 

complete pipeline adapted to the SL scanner in order to align the point-clouds and to have a 

global scan of large volume parts. This step is called registration. The pipeline is divided into 

two phases: (1) the end-effector coordinates are used for coarse alignment, so that all the point-

clouds are transformed to the robot-base, (2) the fine registration is performed with the ICP, 

followed by a graph pose optimisation. The accuracy of the proposed registration pipeline has 

been evaluated both synthetically and experimentally. The synthetic evaluation is based on the 

CAD model of the large volume part, on which point-clouds have been generated with noise. 

Three metrics were used to evaluate registration error: RMSE, MAE and PV. The application 

of the pipeline on the simulated data shows a registration error of the respective metrics of 

166 µm, 107 µm and 5 mm. As for the experimental validation, the large volume part and the 

secondary standards were reconstructed in 3D and the pipeline was applied. The registration 

errors obtained are similar to those previously obtained in the simulation, except that some 

additional errors caused by the surface reflectivity could be observed within the registration. 

The respective metrics have been evaluated to 165.94 µm, 120.03 µm and 3.47 mm. 

The future research could be the optimisation of the triangulation and the registration process 

as to perform operations in real time. For example, surface reflectivity is a highly limiting 

parameter for SL scanners, because it prevents accurate estimation of coordinates. Two 

solutions can be studied: to use devices operating in the non-visible spectrum such as IR 

cameras and projectors, or a post-processing solution that eliminates outliers more effectively. 

Some denoising algorithms in ML and DL have already been proposed. Their adaptation to the 

SL scanner could optimise the 3D measurement. 
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Résumé substantiel en français 

1. Introduction générale 

Dans un souci permanent de contrôle qualité, le besoin en numérisation 3D de pièces 

mécaniques est en croissance depuis une vingtaine d’années. Bien que de nombreux scanners 

3D commercialisés soient fonctionnels, leurs traçabilités ainsi que l’estimation des incertitudes 

de mesure sont souvent négligées, et représentent un verrous important à lever [Inte12]. 

Actuellement, la traçabilité des systèmes de vision n’est pas garantie par les laboratoires 

nationaux de métrologie. 

Dans ce contexte, le LCM (LNE-CNAM) a participé au projet européen LaVA-17IND03 dont 

l’objectif consiste à développer des systèmes de mesures pour le contrôle de pièces complexes 

de grandes dimensions avec une incertitude de mesure inférieure à 100 μ𝑚. Le LNE-CNAM, 

partenaire du projet, s’est focalisé sur le développement d’un système de mesure 

tridimensionnel pour la caractérisation de pièces complexes de grands volumes, destinées 

principalement à des applications dans l’aéronautique. Ce type de pièces est généralement 

difficile à contrôler en raison de leurs dimensions et de la complexité des formes qui les 

constituent. Le contrôle des sous‐ensembles, comme les cellules ou les sections d’avion, 

nécessite l’utilisation de systèmes de mesures flexibles, exacts et traçables, qui peuvent être 

installés à proximité de la chaîne de production, pour améliorer le cycle de fabrication. 

Le contrôle classique des pièces mécaniques se fait généralement avec des machines de mesure 

tridimensionnelle (MMT) tactiles. Ces MMTs tactiles offrent la possibilité de réaliser des 

mesures dimensionnelles avec des incertitudes micrométriques. Cependant deux inconvénients 

se présentent : (1) le cycle de mesure est très long en particulier quand il s’agit d’une pièce de 

grand volume et (2) le volume de mesure est limité. Pour pallier cette problématique, plusieurs 

études sur les techniques de mesure 3D ont été initiées pour développer des solutions 

alternatives. Ces études ont abouti aux développements de nouvelles techniques de 

numérisation 3D sans contact (photogrammétrie, triangulation laser, vision stéréoscopique) 

[AMRA19, HuFF20, ONTD18]. Ce type de technologies, utilisées pour du contrôle non-

destructif, permet d’acquérir un grand nombre de points en un temps très court avec une 

résolution élevée comparé aux scanners tactiles. 

Compte tenu des limitations observées dans les domaines académique et industriel, j’ai effectué 

mes travaux de thèse sur le développement d’un nouveau scanner 3D traçable à la définition du 

mètre et à l’implémentation des algorithmes associés de traitement de données. Le scanner 3D 

est constitué de deux caméras industrielles et d’un projecteur de lumière structurée, l’ensemble 

est intégré sur un robot industriel. Des télémètres sont utilisés pour identifier les positions et les 

orientations du scanner dans l’espace de travail. Les étapes de ce travail de recherche sont les 

suivantes : (1) étude des systèmes de numérisation 3D (choix de la technologie et de la méthode 

d’étalonnage) et des méthodes d'étalonnage de scanners optiques, identification des paramètres 

requis pour numériser une pièce en 3D, et enfin estimation des incertitudes d'étalonnage ; (2) 

développement du scanner 3D traçable combinant les caméras industrielles, le projecteur de 

lumière structurée, le robot industriel et les capteurs de tracking (télémètres) ; (3) 
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développement, conception et fabrication d’un étalon matériel avec une géométrie similaire aux 

pièces utilisées dans l’aéronautique. L’étalon est raccordé à la définition SI du mètre par 

l’intermédiaire de mesures sur une MMT traçable ; (4) sélection et adaptation d’un algorithme 

pour le traitement et la fusion des données en exploitant des paramètres intrinsèques à la surface, 

telle que la variation de forme et/ou des données issues des capteurs de tracking. 

2. Etat de l’art : Numérisation 3D & étalonnage des capteurs d’imagerie 

2.1. Utilité des systèmes de mesure sans contact 

Les systèmes de numérisation 3D sans contact sont largement adoptés dans l’industrie. Plus 

spécifiquement, il s’agit de la numérisation 3D des objets par le biais de l’imagerie qui est 

appelé “photogrammétrie”. Les techniques de photogrammétrie font l’objet de plusieurs études 

de recherche en raison des avantages qu’elles offrent. Aujourd’hui, la photogrammétrie est 

employée dans divers domaines comme l’industrie militaire, l’aéronautique, l’automobile, 

l’horlogerie, le médical, etc. Les recherches dans ce domaine s’orientent principalement vers 

l’automatisation et l’optimisation des algorithmes de scanning 3D avec des méthodes de 

détection et de suivi (tracking) d’objets en utilisant une ou plusieurs caméras et projecteurs. 

Il existe principalement deux catégories de techniques de photogrammétrie [BGBM13, 

ElBB95] : passive et active. Plusieurs systèmes dans chacune des catégories répondent aux 

exigences de la numérisation 3D [BBPP21, DHAN18, ReBF10, SZPY12]. Pour le contrôle 

qualité des pièces mécaniques les techniques actives sont majoritairement adoptées [BiJa04, 

PLMG20] car elles offrent le meilleur compromis entre l’exactitude, la vitesse de numérisation 

et la densité du nuage de points. 

2.2. Avantages/inconvénients des méthodes existantes  

Les techniques de numérisation 3D ont été proposées pour répondre à des enjeux et besoins 

spécifiques. Certaines techniques par exemple ont pour objectif le repérage dans l’espace, en 

temps réel, avec des applications directes dans le domaine de la robotique principalement 

[GhTZ00, InTI92]. 

Dans le cadre de mon projet de recherche, l'objectif est d'effectuer une reconstruction 3D en 

collectant un nuage de points dense et exact résultant de la numérisation d'une pièce de grand 

volume. Dans ce cas, les méthodes actives sont les plus appropriées car elles permettent la 

numérisation 3D quelle que soit la texture de l’objet. A titre d’exemple, la technique de 

triangulation laser est basée sur la projection d'un faisceau laser sur la surface, puis collecté par 

une caméra. Néanmoins, le principal inconvénient de cette technique réside dans le temps de 

scanning. 

Comme le temps de scanning représente un critère fondamental, la technique de lumière 

structurée (SL – structured light) constitue une solution appropriée en termes de vitesse de 

scanning, mais aussi en termes de robustesse, de densité du nuage de points et d’exactitude. La 

SL est une technique active dont le principe est basé sur la projection d'un motif bien connu sur 

la surface à mesurer. Les motifs projetés sont déformés selon la forme de l'objet, puis exploités 

pour récupérer des données 3D. L'exemple le plus simple est la projection d'une ligne (frange) 

sur une sphère, qui déformera la projection en raison de sa forme arrondie. 
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2.3. Lumière structurée 

Le principe de la SL est similaire à celui de la triangulation laser. La seule différence réside 

dans l’utilisation d’un projecteur plutôt que d’une source laser. La numérisation 3D est basée 

sur le principe de triangulation, effectué entre chaque pixel du projecteur (up, vp) et sa projection 

(uc, vc) sur le plan image. 

Le processus d'identification des pixels projetés sur le capteur d'image est appelé stratégie de 

codification [SaPB04]. Une classification des systèmes de scanning 3D en fonction du nombre 

et de la séquence de prises (multi-shots pour des prises multiples d’images / single-shot pour 

une prise unique d’image) a été proposée par Geng [Geng11] : 

(1) Technique multi-shot : elle est basée sur la projection de motifs différents lors de la 

prise d'images. Cette technique est utilisée pour numériser des objets statiques et permet 

d’obtenir des résultats plus exacts que ceux obtenus avec la technique single-shot 

[Geng11]. 

(2) Technique single-shot : elle est basée sur la projection d'un seul type de motif. Cette 

technique est principalement utilisée pour le scan d’objets en dynamique et en temps 

réel avec une exactitude moindre [TTAM18]. 

En métrologie dimensionnelle, l’étalon est souvent fixe par rapport au scanner. Par conséquent, 

les techniques multi-shots sont sélectionnées afin d'atteindre une meilleure exactitude. D'après 

[ZDKS17], les techniques multi-shots peuvent être catégorisées en spatiale et temporelle. La 

projection par décalage de phase est une technique temporelle proposée pour numériser des 

objets 3D en temps-réel sans compromettre l’exactitude. Cependant, la performance de celle-ci 

est dégradée lorsque la surface scannée présente des formes complexes et/ou des angles droits. 

D'autre part, le code Gray est une méthode spatiale qui repose sur l'analyse du voisinage des 

pixels pour fournir une estimation 3D des coordonnées des points. Celle-ci n'est pas optimisée 

pour la numérisation en temps réel, mais principalement choisie pour numériser des formes 

complexes [QCVG06]. 

Pour le codage de motifs binaires, le choix du code Gray est lié à sa robustesse au bruit et aux 

interférences entre pixels voisins [Matt18]. Le code Gray [IYDT07] [KiRL08] utilise deux 

valeurs d'intensité : le noir (intensité 0) et le blanc (intensité 1) pour former une séquence de 

motifs de projection, de sorte que chaque point de la surface de l'objet possède un code unique. 

En général, n motifs peuvent coder 2𝑛 franges. Le choix du code Gray est motivé par sa capacité 

à scanner des objets avec des formes complexes [XuAl09]. 

2.4. Etalonnage des capteurs d’imagerie  

Dans le domaine de vision par ordinateur, l’utilisation d’un système d’imagerie est étroitement 

liée à l’étalonnage géométrique. Il s’agit d’un processus d'estimation des paramètres de la 

caméra qui sont utiles pour générer une image correcte de la scène [HaZi04]. Ces paramètres 

sont classés en deux catégories : (1) les paramètres intrinsèques qui décrivent la géométrie 

interne de la caméra, tels que la distance focale 𝑓𝑢, 𝑓𝑣, les coordonnées du pixel du point 

principal (𝑐𝑢, 𝑐𝑣) et les coefficients de distorsion de l'objectif 𝑘0, 𝑘1, (2) les paramètres 

extrinsèques qui définissent la position et l'orientation de la caméra par rapport au système de 

coordonnées de la pièce [Burg16]. 
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Deux méthodologies d’étalonnage co-existent : (I) l’auto-étalonnage est pratiqué quand les 

applications nécessitent un grand champ de vue. Cela ne nécessite pas l’utilisation d’une cible 

physique. L’exactitude de l’auto-étalonnage est relativement médiocre comparée aux méthodes 

utilisant des cibles [Tsai87a, Zhan00a] ; (II) une deuxième méthodologie proposée par Zhang, 

reposant sur le modèle du sténopé, est la méthode la plus couramment utilisée pour étalonner 

les caméras en raison de sa flexibilité et de sa justesse [FCWC08, LWYC19, RiSa07]. La 

méthode originale de Zhang, basée sur l'observation d'une grille d'étalonnage 2D, comprend six 

étapes : (1) acquisition de plusieurs images sur la grille 2D sous plusieurs poses, (2) détection 

des points caractéristiques  [Jian12, SáMS18a], (3) estimation de l'homographie à l'aide de la 

Transformée Linéaire Directe [Dubr09], (4) identification des paramètres du sténopé à l'aide de 

la décomposition en valeurs singulières [KlLa80], (5) raffinement global [Mitt00], et enfin (6) 

calcul de l'erreur de reprojection. Ces six étapes sont classées en trois principales phases : (A) 

prétraitement, (B) étalonnage et (C) vérification. 

Initialement, Zhang a proposé cette méthode pour étalonner les systèmes à camera unique pour 

les applications de balayage 3D à courte portée. La méthode a par la suite été adaptée aux 

systèmes stéréos passifs [HaSt97] puis aux systèmes à base de lumière structurée [HOTL18], 

ce qui représente la base de ce travail de recherche. Le défi consiste à identifier ce que voit le 

projecteur, puisque ce dernier ne peut pas réellement observer la scène. Pour identifier ce que 

voit le projecteur, les correspondances entre les pixels du projecteur et la grille d’étalonnage 

sont établies par une stratégie d’étalonnage qui implique la projection d'un motif connu 

[MaKL11]. Cette procédure est connue sous le nom de stratégie de codification.  

De nombreuses stratégies ont été proposées dans la littérature. Certaines sont manuelles et 

nécessitent une adaptation de la grille d’étalonnage à la zone de projection, tandis que les autres 

sont automatisées. Un inconvénient majeur des méthodes manuelles réside dans leurs fortes 

incertitudes pour l’estimation des paramètres intrinsèques du projecteur, plus spécifiquement 

les coefficients de distorsions. En outre, le positionnement manuel est subjectif et conduit 

souvent à une estimation inexacte. Les méthodes automatisées permettent une meilleure 

estimation des paramètres du projecteur et ne nécessitent pas obligatoirement une caméra pré-

étalonnée [JoGr10, LiZh14, LSWW08, LuSo12]. Ces méthodes s'appuient sur la même 

projection utilisée pour effectuer une numérisation 3D. Au lieu de positionner manuellement 

les grilles d’étalonnage, un ensemble de motifs est projeté en l’observant à plusieurs poses et 

en récupérant la correspondance entre les pixels du projecteur et la grille d’étalonnage. Une 

méthode d’étalonnage populaire est celle basée sur le code Gray permettant d'identifier un code 

binaire à chaque pixel du projecteur (Figure II.131). 

 
Figure 1 Exemple de code Gray. Le point vert est représenté par [1000111101] [JoGr10] 
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Tout d'abord, une projection uniforme est appliquée pour acquérir l'image utilisée pour 

étalonner la caméra. Ensuite, les motifs sont successivement projetés en plusieurs niveaux, où 

chaque niveau est associé à une fréquence unique de code Gray. Le nombre total de motifs du 

code Gray 𝑝𝑑 nécessaire pour coder N pixels dans une dimension d donnée est formulé par 

𝑝𝑑 = log2(𝑁). 

Grâce à cette stratégie, les positions des points de la grille d'étalonnage peuvent être identifiées 

et, à l'aide du motif de code Gray, leurs emplacements dans les pixels du projecteur peuvent 

également être récupérés. Enfin, en utilisant la correspondance identifiée entre le projecteur et 

la grille d'étalonnage, la méthode de Zhang peut être appliquée pour estimer les paramètres de 

projection et ses coefficients de distorsion.  

2.5. Conception du scanner 3D 

Un scanner 3D constitué de deux caméras industrielles et d’un projecteur de lumière structurée 

a été conçu (Figure 2). Les caméras sélectionnées sont des Ximea MQ013rg-e2 (Figure 2-a), de 

résolution 1280 × 1024 pixels, équipées d’un objectif numérique de type 𝐿𝑀8𝐽𝐶𝑀 𝑉 avec une 

focale de 8 mm. Le projecteur est un DLP Lightcrafter 4500 (b) de résolution native 912 × 1140 

pixels. Les distances entre les différents éléments (caméras et projecteur) sont choisies de façon 

à obtenir un système compact regroupé en une pièce (c) pouvant être équipée sur l’effecteur 

d’un robot industriel. 

 
Figure 2 CAO du scanner 3D développé 

Le robot industriel utilisé est un Kawasaki RS003N, dont l’espace opérationnel est de 

967×620×620 mm3. De plus, nous avons rajouté un 7è𝑚𝑒 axe de déplacement afin d’effectuer 

des translations pour augmenter le volume de travail du robot dans l’optique de scanner des 

pièces avec un volume allant jusqu’à 2000×600×100 mm3. Des sphères optiques peuvent être 

fixées sur la structure du scanner 3D pour pouvoir le suivre dans l’espace de mesure grâce aux 

4 télémètres. Cela permet d’améliorer la connaissance du positionnement de l’effecteur dans 

l’espace de mesure (la répétabilité du Kawasaki est de 0,02 mm et l’incertitude sur la position 

et l'orientation de l'effecteur est de 2 mm [DaGD04, PłPi18b]).  

d 
a 

b 

c 
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Les télémètres laser appliquent le principe de la technique de temps de vol (ToF – Time of 

Flight) [HaDu14]. La distance est déterminée en mesurant la phase accumulée par une onde de 

radiofréquence qui se propage dans l'air à travers un faisceau laser. Cette propagation dans 

l'espace libre s'effectue au moyen d'un faisceau optique et se réfléchit ensuite sur une cible avant 

d'être convertie en signal électrique par un photodétecteur. Ainsi, la position et l'orientation des 

cibles dans l'espace des télémètres sont déterminées grâce au principe de multilatération 

[GuTW20a]. Les télémètres laser présentent une incertitude de 4,3 µm pour une distance de 7 

m (figure 3). 

 

Figure 3 Vue générale du système de mesure 3D 

3. Une nouvelle méthode d’optimisation de l’étalonnage 

3.1. Vue d’ensemble sur les méthodes d’optimisation  

De nombreuses études ont été proposées dans la littérature pour améliorer et automatiser le 

processus d’étalonnage [DKKP08], en particulier la méthode de Zhang, y compris 

l'optimisation de la détection des points caractéristiques [GhVN20, HEBA17, LWWP17] et 

l'optimisation du positionnement [GAPK19]. Rojtberg [RoKu18] a proposé une méthode 

d’optimisation [RoKu18] basée sur la sélection de poses, suite à une étude de l'influence du 

Fixing 

plots 



Appendix 

 

 

158 
 

nombre de poses de la grille d'étalonnage dans le champ de vue de la caméra. Il a aussi établi 

une corrélation entre les poses sélectionnées et l'incertitude d'étalonnage. 

Peng et Strum [PeSt19] ont proposé une méthode d’étalonnage interactive, permettant de guider 

l’utilisateur dans le positionnement du motif appelée « Calibration Wizard » (CW). 

L’initialisation de cette méthode est basée sur une sélection de trois vues aléatoires. Une 

actualisation des vues est réalisée à chaque itération. Le calcul de la Jacobienne de l’erreur de 

reprojection lui permet d’identifier la nouvelle pose optimale à atteindre. Cette technique CW 

permet une meilleure estimation des paramètres intrinsèques de la caméra et donne des résultats 

plus exacts surtout dans des environnements non contrôlés. Néanmoins, l’inconvénient 

principal est le temps de traitement relativement élevé. De plus, les résultats obtenus par la 

technique CW dépendent de l'étape d'initialisation à 3 poses/images aléatoires, ce qui influence 

l'incertitude associée aux paramètres intrinsèques. 

3.2. Principe de la nouvelle méthode d’étalonnage d’une camera  

L'approche proposée est basée sur l’apprentissage automatique (ML – machine learning) des 

poses caméra par rapport à la grille d’étalonnage afin de minimiser l'erreur de reprojection. La 

Figure III.14 illustre l'évolution de l'erreur de reprojection en fonction de deux paramètres 

extrinsèques. Celle-ci peut être approchée par une fonction polynomiale.  

 
Figure 4 Evolution de l'erreur de reprojection 𝑅𝐸𝑖

 en fonction des orientations α et β 

La relation entre le vecteur des paramètres extrinsèques  𝑊𝑖 = [𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝑡𝑋𝑖 , 𝑡𝑌𝑖 , 𝑡𝑍𝑖] et l’erreur 

de reprojection peut être modélisée par une régression polynomiale. Pour estimer les 

coefficients du polynôme, un grand nombre d'images de la grille d'étalonnage est collecté pour 

différentes poses. Ensuite, la méthode Zhang est appliquée tout en identifiant les vecteurs des 

paramètres extrinsèques 𝑊𝑖 et les erreurs de reprojection associées 𝑅𝐸𝑖
 pour construire la base 

d'apprentissage de l'algorithme ML (Figure III.13). D’après Lu [Lu10], la base de données 

d'apprentissage est divisée en deux ensembles de données : 70 % des images sont utilisées 

comme ensemble d'entraînement, tandis que les 30 % restants constituent l'ensemble de test. 
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Cette étape est appelée découpage stratifié apprentissage/test (data split train/test). Il s’agit 

d’une technique utilisée dans les problèmes de régression et de classification afin d’évaluer les 

performances de l’algorithme. Comme la base d'apprentissage contient un nombre limité 

d'entrées et de sorties, l'application d'une seule stratégie de division stratifiée n'est pas 

appropriée pour obtenir une estimation exacte de la performance de l'algorithme. Dans ce 

contexte, Xu [XuGo18] souligne l'avantage de multiplier les ensembles d'entraînement et de 

test plutôt que d'utiliser une seule division. Par conséquent, la fiabilité du partitionnement 

stratifié apprentissage/test a été renforcée en adoptant la méthode de validation croisée décrite 

dans [Berr18]. Elle permet d’optimiser le degré D de la régression polynomiale entre 

1 ≤ D ≤ 13. Le critère sélectionné est l'erreur absolue moyenne (MAE). Selon la Figure III.35, 

les courbes d’entrainement et de test diminuent lorsque D augmente jusqu’à la valeur 10, puis 

la MAE test remonte à nouveau. Ceci est dû au sur-apprentissage (overfitting) [Ragh21] défini 

comme le modèle polynomial décrivant le bruit des données plutôt que le modèle sous-jacent. 

 
Figure 5 Évolution de MAE suivant le degré polynomial avec la validation croisée  

Une fois le polynôme estimé, les poses optimales associées aux erreurs de reprojections 

minimales sont extraites. La recherche des minimums requiert des contraintes linéaires et non 

linéaires, identifiées à partir de l’étude analytique proposée par Rojtberg [RoKu18]. D'après 

[CoHa03, YiAM20], l'optimisation par essaims de particules (PSO – Particule Swarm 

Optimization) représente une méthode appropriée pour ce problème d'optimisation. Elle vise à 

minimiser une fonction en effectuant une recherche de population dans un espace de recherche 

à D dimensions [Tamb19]. L'essaim est composé de plusieurs particules, et chaque particule est 

caractérisée par sa position dans le polynôme et par sa vitesse. 

Pour résumer, 3 étapes peuvent être distinguées pour cette méthode : (1) l'étape d'acquisition 

où un ensemble d'images de la grille d’étalonnage est sélectionné pour construire la base 

d'apprentissage, (2) l'approche ML est appliquée pour extraire les données nécessaires pour 

effectuer la régression polynomiale. Cela inclut les erreurs de reprojection 𝑅𝐸𝑖
 et les paramètres 

extrinsèques associés, (3) l'application de la régression polynomiale sur ces données, combinée 

à l’optimisation PSO pour extraire les poses optimales associées. 

P 
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3.3. Adaptation de la méthode d’optimisation aux systèmes stéréo actifs  

D’après les simulations, l'approche ML semble être appropriée pour l’étalonnage d’une caméra. 

Cette méthode a été étendue pour le cas d’un scanner SL. En plus des paramètres intrinsèques, 

l’étalonnage stéréo inclut la transformation rigide entre la caméra et le projecteur. Rappelons 

qu’un scanner SL est basé sur la projection d'un motif pour établir la correspondance entre les 

pixels du projecteur et la grille d’étalonnage. La Figure III.56 illustre le processus d’étalonnage 

d'un système stéréo actif pour une pose donnée, où [𝑅1𝑇1] est la transformation du projecteur 

vers la grille d’étalonnage appelée matrice extrinsèque du projecteur et [𝑅2 𝑇2] est la matrice 

extrinsèque de la caméra. Pour chaque pose de la grille d'étalonnage, une erreur de reprojection 

peut être associée à chaque élément du scanner. 

 
Figure 6 Illustration de l’étalonnage d’un système SL 

N poses de la grille d'étalonnage sont adoptées et des images sont prises à l'aide du scanner 3D. 

Pour chaque pose, le code Gray est projeté et des images sont prises à l'aide de la caméra. Au 

moins 1000 poses sont adoptées puis la méthode de Zhang est appliquée pour extraire les 

paramètres extrinsèques et les erreurs de reprojection. Une fois l'ensemble de données créé, la 

régression polynomiale est appliquée pour estimer la fonction polynomiale qui modélise la 

relation entre les paramètres extrinsèques et les erreurs de reprojection. 

Afin d'optimiser les poses du scanner SL, ce dernier est modélisé par une combinaison linéaire 

pondérée de deux polynômes 𝑅𝐸
�̂�(𝑊𝑖) (polynôme caméra) et 𝑅𝐸

�̂�(𝑊𝑖) (polynôme projecteur). 

Les poids 𝑤𝑖 sélectionnés sont des entiers positifs tels que : ∑ 𝑤𝑖
𝑘
𝑖=0 = 1,𝑤𝑖 ∈ [0,1]. Etant 

donné que l'erreur de reprojection du projecteur est plus grande que celle de la caméra 

[WiOL14] (la caméra est un élément à part entière de la chaine d’étalonnage du projeteur), les 
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poids sont répartis selon l’inégalité suivante : 𝑤𝑝𝑟𝑜𝑗 > 𝑤𝑐𝑎𝑚. Par la suite, le PSO est appliqué 

pour extraire les poses associées aux minimums du polynôme. 

4. Stratégie de recalage et évaluation des performances du scanner SL 

4.1. Fabrication d’un  étalon de mesure 

Un étalon constitué par une pièce principale de grand volume a été conçu en s’inspirant des 

pièces utilisées dans l’aéronautique. Il s’agit d’une pièce en aluminium dont les dimensions 

sont L = 1000 mm, l = 400 mm, H = 60 mm et contenant des poches et des nervures. L’étalon 

principal peut être associé à 8 étalons secondaires, tels que le paraboloïde et l’hyperboloïde. Il 

est conçu pour tester les performances du scanner SL sur diverses formes (Figure IV.37). 

 

 

  

Figure 7 CAO de la pièce grand volume de forme complexe 

4.2. Evaluation des performances du scanner 

L’évaluation du scanner s’effectue en deux étapes : (i) single shot : le scanner est fixé par 

rapport à la pièce et seule la zone visible est numérisée. Ensuite, les écarts de forme sont calculés 

et la répétabilité est évaluée [Feng00, PrPo10] ; (ii) multi shots : le scanner balaye toute la 

surface de l’étalon. L'alignement des nuages de points enregistrés est étudié à l'aide de deux 

méthodes de recalage : (a) le recalage par paires où un maximum de deux nuages de points sont 

alignés et (b) le recalage par groupe qui implique plus de trois nuages de points. La métrique 

utilisée lors de l'analyse de l'ensemble des données scannées est le résidu entre les points 

scannés et le modèle CAO, ce qui permet de calculer les paramètres suivants : RMSE (Root 

mean square error) [URKG19], MAE (Mean absolute error) [BABB18] and PV (Peak to valley) 

[GoSe17]. 

4.2.1. Evaluation par single shot 

La position et l'orientation du scanner sont fixés dans l’espace de mesure de telle sorte qu'une 

surface de 150×120 mm² est scannée. Le nuage de points de chaque surface scannée est généré 

par la projection d’un code Gray de 10 bits horizontalement et verticalement. La triangulation 

est réalisée en utilisant les paramètres résultant de la méthode Zhang optimisée. Les résidus 

obtenus sont estimés à 89 µm, 142 µm et 116 µm pour les surfaces scannées (planéité, 

cylindricité et sphéricité). Afin d'évaluer la répétabilité du scanner SL, un test supplémentaire 

a été réalisé. Plusieurs nuages de points sont enregistrés pour chacune des pièces sélectionnées 

L 

l 

H 
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puis un « fitting » par moindres carrés est appliqué à nouveau. Les répétabilités sont estimées à 

2 µm, 5 µm et 8 µm respectivement pour la planéité, la cylindricité et la sphéricité. 

4.2.2. Evaluation par multi-shots 

La présence d'occlusions représente une limitation d’utilisation du scanner SL. Ainsi, les nuages 

de points doivent être générés le long de la surface scannée en numérisant partiellement 

plusieurs zones et en les fusionnant dans un système de coordonnées unique. Chaque scan 

génère un nuage de points dans le système de coordonnées de la caméra. En connaissant les 

positions et orientations du scanner, les nuages de points peuvent être transformés dans un 

système de coordonnées en identifiant les transformations relatives [Brow92]. 

Le recalage des nuages de points est nécessaire dans de nombreuses applications de vision 

industrielle, telles que la cartographie 3D et la reconstruction 3D d'objets. On distingue deux 

types de recalage : le recalage grossier et le recalage fin [RNAM15, Zhu19]. Le recalage 

grossier consiste à trouver la transformation initiale entre les nuages de points, sans 

nécessairement imposer des tolérances élevées pour les rotations et les translations 

(généralement quelques degrés pour les rotations et quelques millimètres pour les translations). 

Le recalage fin est appliqué afin d'obtenir un alignement 3D exact des données. 

Selon la littérature, un nombre élevé de méthodes de recalage est proposé, toutes peuvent être 

classées en deux catégories: recalage basé sur le suivi d’un marqueur (tracking) et recalage basé 

sur l’exploitation d’éléments intrinsèques de la surface (features) [Bosc12]. Cette dernière est 

priorisée en raison de son exactitude, sa robustesse et son automatisation. Trois méthodes de 

recalage grossier ont été investiguées : ICP [DXWH17, LHZA22, YLCJ16, ZhYD21], CPD 

[MySo10] et NDT [BiSt03], puis comparées afin de sélectionner le meilleur algorithme en 

terme de performance. L’ICP semble être le meilleur en termes de temps de calcul et d’erreurs 

de recalage. Par ailleurs, l’ICP est un algorithme de recalage dit « pairewise » (ne permet de 

recaler que deux nuages de points). La succession de plusieurs recalages ICP peut propager des 

erreurs systématiques entre la première et la dernière mesure [EKHP14, EvHo18]. Afin de 

diminuer cette erreur, les algorithmes de recalage dit « groupwise » peuvent être utilisés. Choi 

[ChZK15] a proposé une méthode de pose de graphe “graph pose optimization” robuste qui ne 

repose pas sur le recalage pairewise, mais utilise plutôt l'optimisation ‘‘line process’’ [BlRa96]. 

Pour le recalage fin, l’ICP a été sélectionné pour le pairwise afin de recaler des scans 3D 

successifs avec une zone de chevauchement, suivi d'une optimisation pose de graphe. Ainsi, le 

nuage de points obtenu peut être recalé à la CAO pour analyser les résidus (Figure IV.207). 

La traçabilité de la pièce étalon a été assurée par une MMT Zeiss UPMC carat traçable dont 

l’incertitude est estimée suivant l’expression « 0.7 +
𝐿

1200
 µm », où L est la longueur maximale 

de la pièce à mesurer. La résolution spatiale de la MMT est de 100 nm et le volume de mesure 

est de 1200×850×600 mm. La mesure de chaque pièce mécanique a été effectuée à l'intérieur 

de la salle blanche du LNE où la température est contrôlée à 20±0.1 °C et l'hygrométrie à 50%±5. 

La comparaison de la mesure MMT, considérée comme la mesure de référence, et le scanner 

SL permet d’obtenir une information sur la performance du scanner SL. 
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Figure 7 Organigramme stratégie de recalage proposée 

4.2.3. Evaluation par simulation 

Pour réaliser une simulation de la mesure par scanner, un nuage de points est construit à partir 

du modèle CAO. Les points sont échantillonnés le long du modèle CAO avec le pas 

correspondant à la résolution du scanner. Seules les zones accessibles de la pièce sont 

considérées dans la simulation (par exemple le dessous de la pièce ne sera pas traité). 

La Figure IV.238 montre les valeurs obtenues pour les métriques RMSE, MAE et PV et les 

incertitudes associées. Pour obtenir les incertitudes avec un intervalle de confiance de 95 %, le 

processus a été répété 10 fois. Le résultat de la simulation montre une valeur négligeable de 

RMSE0 (environ 3×10-12 mm) par rapport aux autres métriques RMSENT et RMSEN, 

respectivement estimées à 166 µm et 97 µm, où RMSE0 est l’erreur numérique obtenue en 

appliquant un recalage entre la CAO et le nuage de points extrait de la CAO ; RMSEN est 

l’erreur de recalage entre la CAO et les nuages de points bruités ; enfin, RMSENT est l’erreur 

entre la CAO et les nuages de points bruités et transformés.  

              

Figure 8 RMSE, MAE et PV obtenues (en mm) pour la simulation et leurs incertitudes  
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4.2.4. Evaluation expérimentale 

Tout d'abord, les surfaces élémentaires de l’étalon sont scannées à l'aide du scanner SL. 

Plusieurs poses de l'effecteur du robot sont définies pour couvrir toute la surface, tout en 

assurant un chevauchement d'environ 60% entre les scans 3D successifs. Au total, 45 poses de 

l'effecteur du robot ont été définies, et à chaque pose, le nuage de points de la surface observée 

est reconstruit en 3D. 

Pour effectuer le recalage grossier, les coordonnées de l'effecteur sont récupérées et utilisées 

pour passer du repère caméra (repère mobile dans lequel les nuages de points sont initialement 

enregistrés) au repère associé au robot (repère fixe correspondant à la base du robot). Cette 

stratégie est répétée autant de fois que le nombre de scans. Enfin, un ré-échantillonnage est 

utilisé pour obtenir une répartition uniforme de points, puisque les zones de chevauchement 

entre les acquisitions successives contiennent un plus grand nombre de points. La Figure IV.259 

montre le résultat du recalage des nuages de points à l'aide de la stratégie proposée, où chaque 

couleur définit une reconstruction 3D unique à une pose spécifique. 

 

Figure 9 Reconstruction 3D de la pièce de grand volume 

La RMSE converge à environ 0,05 mm après moins de 10 itérations pour l’étape de recalage 

avec ICP. Cependant, les minimums locaux limitent la convergence de l’ICP. Cela pourrait 

s'expliquer par une surestimation des distances point à point, car l'ICP adapterait le bruit plutôt 

que le modèle sous-jacent. Un recalage des mesures tactiles de la MMT Zeiss sur le modèle 

CAO est également effectué, ce qui permet d'évaluer le défaut de forme de l’étalon. 

La MMT Zeiss tactile fournit 5×103 points alors que la densité de la SL est d'environ 3×106 

points. En outre, l'erreur de recalage de la mesure par scanner SL est plus élevée que celle de la 

MMT. La valeur RMSE calculée sur les données mesurées par la MMT est égale à 65,92 µm 

alors que la RMSE est égale à 165,94 µm pour le scanner SL (Table IV.11au 1). Pour le scanner 

SL, les erreurs sont principalement regroupées sur les bords du plan supérieur ou la réflectivité 

est trop élevée, ce qui limite l’exactitude de la triangulation. Cependant, la distribution sur les 

nuages de points est globalement uniforme. 

 

Tableau 1 Comparaison entre la MMT et SL 

 RMSE (µm) MAE (µm) PV (mm) 

MMT 65,92 56,08 0,29 

SL 165,94 120,03 3,47 
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La différence d’exactitude entre les mesures MMT et le scanner SL est évidente. Cela était 

attendu car la MMT a une meilleure exactitude malgré la faible densité de points et le temps de 

mesure plus élevé. Cependant, pour le contrôle de qualité de pièces de grand volume, les 

scanners SL représentent le meilleur choix en raison du temps de mesure (quasiment en temps 

réel) et de la densité des données. 

5. Conclusion 

Les pièces de grand volume constituent un défi quant à leurs fabrications, assemblages et 

mesures. L’objectif de cette thèse est de contribuer au développement d’un système de scanning 

3D permettant de contrôler la qualité des pièces mécaniques de grand volume et de formes 

complexes. Pour cela, les systèmes de numérisation 3D optiques ont été étudiés dans un premier 

temps afin de concevoir un scanner permettant de répondre aux besoins industriels en termes 

d’optimisation du cycle de fabrication. Plusieurs méthodes sont proposées dans la littérature, 

chacune répond à un besoin spécifique. Pour le contrôle-qualité des pièces, la méthode la plus 

appropriée est la lumière structurée car elle offre le meilleur compromis entre le temps de scan, 

l’exactitude et la densité de la numérisation. La lumière structurée est une technique active qui 

utilise le principe de triangulation entre une caméra et un projecteur. Un scanner 3D, basé sur 

le principe de la lumière structurée, a été conçu, développé, assemblé et étalonné afin de 

maîtriser la chaîne de traçabilité. 

Pour effectuer la triangulation, un certain nombre de paramètres sont requis : les paramètres 

internes des caméras et du projecteur utilisé ainsi que la transformation rigide entre ces 

composants. L'identification de ces paramètres est appelée étalonnage. Différentes techniques 

ont été étudiées et proposées ; toutefois, la méthode de Zhang a été sélectionnée en raison de 

l’exactitude de cette méthode par rapport aux autres méthodes. La méthode de Zhang exploite 

une surface plane en 2D sur laquelle est imprimé un motif facilement détectable (appelé grille 

d'étalonnage). Elle comprend 5 étapes : acquisition d'images, détection de points 

caractéristiques, estimation de l'homographie, identification des paramètres intrinsèques et 

extrinsèques, raffinement global. Une étape supplémentaire de vérification peut être ajoutée 

pour satisfaire un seuil d'erreur prédéfini. Cette méthode est robuste mais présente encore 

quelques faiblesses. Des méthodes d'optimisation ont été mises au point pour réduire certaines 

sources d’incertitude, comme l'utilisation d'un algorithme de détection de points 

caractéristiques plus robuste ou l'optimisation du raffinement global. Dans la littérature, le 

composant le plus influent est le positionnement de la caméra par rapport à la grille 

d'étalonnage. Dans ce contexte, nous avons proposé une nouvelle méthode d'optimisation basée 

sur la régression polynomiale suivie d’une optimisation non linéaire par PSO. Celle-ci fournit 

un ensemble de poses optimales à adopter afin d’améliorer l’estimation des paramètres internes 

et externes. La méthode a été évaluée synthétiquement et expérimentalement et montre de 

meilleures performances comparées aux autres méthodes récemment publiées. 

Ensuite, un étalon de grand volume ainsi que des étalons secondaires ont été conçus afin 

d’évaluer le scanner SL après l’avoir étalonné avec la méthode proposée. Dans un premier 

temps, le scanner SL a été évalué pour une prise de mesure unique sur des paramètres de forme 

simple (planéité, sphéricité et cylindricité). Le test montre une répétabilité globale d'environ 

6 µm et des erreurs de forme d'environ 90 µm. Ce test a été réalisé en fixant la position et 

l'orientation du scanner dans l'espace de mesure. En pratique, les objets de grand volume 
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nécessitent plus qu'un seul scan. Nous avons donc proposé une stratégie de recalage adaptée au 

scanner SL afin d'aligner les nuages de points et d'avoir un scan global des pièces de grand 

volume. La stratégie est divisée en deux phases : (1) les coordonnées de l'effecteur du robot 

sont utilisées pour un alignement grossier, de sorte que tous les nuages de points sont exprimés 

dans un repère lié à la base du robot. Puis (2) un recalage fin est effectué avec l'ICP, suivi d'une 

optimisation de la pose. Le résultat du recalage proposé a été évalué à la fois synthétiquement 

et expérimentalement. L'évaluation synthétique est basée sur le modèle CAO de la pièce de 

grand volume, sur lequel des nuages de points ont été générés avec du bruit. La simulation 

montre une erreur de recalage de l’ordre de 166 µm, 107 µm et 5 mm respectivement pour la 

RMSE, MAE et PV. Pour la validation expérimentale, les erreurs sont similaires à celles 

obtenues avec la simulation. Les métriques respectives ont été évaluées à 165,94 µm, 120,03 

µm et 3,47 mm. 

Ce travail de thèse traite à la fois la partie mécanique, optique et métrologique du scanner SL 

ainsi que les algorithmes et traitements d’image et de nuage de points associés, pour obtenir un 

résultat de numérisation 3D global dense et exact. 
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Appendix A: Overview of camera-based 3D scanners 

 

Passive and active photogrammetry 

A.1. Passive 3D scanning 

A.1.1. Photogrammetry 

Photogrammetry is based on projective geometry. It allows the digitization of large objects 

such as buildings and warehouses (Figure A.1). The principle of photogrammetry is to take 

multiple images of the object and manually or automatically locate common points (called 

features) in each image. The points allow a 3D digital reconstruction of the object by a 

triangulation [Rodi06]. Photogrammetric systems are capable of reconstructing scenes, in 

which the objects studied have simple geometries. This technique is less efficient for the 3D 

digitization of complex surfaces [Goul99]. 

 

 

Figure A.1 3D reconstruction using drone photogrammetry [Dron00] 

Photogrammetry have been used to scan large objects such as building. However, it requires 

the detection of features to reconstruct a scene. Therefore, photogrammetry is useless for 

objects with uniform colour distribution and flat scenes. 

A.1.2. Passive stereo vision 

Passive stereovision is based on the acquisition of two images of the same scene [Hawi11]. In 

this case, a point 𝑀(𝑋, 𝑌, 𝑍) can be observed on the two images (left and right) with two 

different coordinates. The difference between the two coordinates is then used to compute the 
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3D coordinates of point 𝑀 by triangulation [Rodi06]. Consequently, one of the essential phases 

of this method is the search for the stereo-corresponding points, which can be simplified if the 

shooting systems are separated only by translations. The principle of passive stereovision is to 

imitate human perception to the stereo disparity, which is the difference between the locations 

of the points in both cameras. It is used for example in the automotive field for smart car 

guidance or depth perception. 

A.1.3. Shape-from-X 

The Shape-from-X method uses 2D features of the surface to reconstruct the 3D shape. There 

are several 3D scanning techniques based on this method: “shape from silhouettes”  [ChBK04], 

“shape from motion” [Alis11], “shape from texture” [BlAh89], “shape from focus / 

defocus”  [NaNa94]. 

A.2. Active 3D scanning 

A.2.1. Time-of-flight 

The time-of-flight (ToF) technique uses a laser rangefinder to measure the time required to 

complete a round trip of a reflected laser beam pulse. Knowing the speed of light 𝐶, the return 

time 𝑡 determines the distance 𝐷 traveled by the light by solving the equation 𝐷 = 
𝐶.𝑡

2
. 

The accuracy of 3D scanning depends on the accuracy of the return time measurement. This 

technique is fast, but it provides a highly noised 3D reconstructions, which requires a post-

processing step as proposed by Cui et al. [CSCT10]. 

A.2.2. Laser triangulation 

Laser triangulation is a technique based on the principle of telemetry. A light is projected on 

the object. Part of the light reflected by the object is focused on the imaging sensor through a 

lens of focal length 𝑓. The optical system is adjusted to locate the surface to be analysed in the 

middle of the measurement field (Figure A.2).  
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Figure A.2 Principal of laser triangulation [MSTM15] 

The detector and the light source are separated by a distance b called baseline [MSTM15]. The 

projection of a point of coordinates (𝒙, 𝒚, 𝒛) on the detector gives the point of coordinates 

(𝒖, 𝒗), according to the properties of geometric optics. 

A.2.3. Structured lighting: Single-shot 

Stripe indexing 

Strip indexing is a single shot 3D reconstruction based on the recognition of each projected 

stripe on the image plan by associating an index to the stripe, because the projected set of stripe 

does not necessarily correspond to the viewed ones. There are some encoding techniques based 

on stripe indexing that have been proposed in literature. Coloured stripe indexing proposed by 

Chen [CZLF07] consists of the analyse both the colour and the intensity of the projected fringes. 

The encoded pattern is composed in HSV colour space (Hue, Saturation, and Value). HSV is a 

model presented by [Smit78] such a non-linear transformation of RGB colour space from 

discrete values of colour to continuous. Not only is the colour considered but also the saturation 

and the brightness values. The objective of using HSV colour space is to provide enough colours 

on the projected pattern so they can be easily decoded later. To covert the RGB colour to HSV, 

Chen propose to separate the colour using the eq. A.1 [CZLF07]. 

(𝑥, 𝑦, 𝑧) 

(𝑢, 𝑣) 

Plan image 



Appendix 

 

 

170 
 

𝐻 =

{
  
 

  
 

𝐺 − 𝐵

max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)
2 + (𝐵 − 𝑅)

max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)
4 + (𝐺 − 𝐵)

max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)

 A.1 

𝐻 = {
𝐻𝑡/6 ,           𝐻𝑡 > 0
𝐻𝑡/6 + 2 ,   𝐻𝑡 < 0

 𝑆 =
(max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵))

max(𝑅, 𝐺, 𝐵)
 𝑉 =  max(𝑅, 𝐺, 𝐵) 

 

where 𝑅, 𝐺, 𝐵 are red green and blue values in a range of [0,1] and 𝐻, 𝑆, 𝑉 are the hue, saturation, 

and brightness values also in range of [0,1], 𝑚𝑎𝑥(𝑅, 𝐺, 𝐵) and 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) represent the 

maximum and minimum values in R, G and B channels, respectively, and 𝐻𝑡 is a temporary 

variable in the algorithm. An example of the projected pattern is given in Figure A.3. 

 

Figure A.3 Coloured stripe coding for 3D reconstruction using structured light systems 

De Bruijn Sequences 

De Brujin sequences, used for one-shot 3D reconstruction, is based on colour stripe projection. 

The most effective way of encoding colour-based projections is by analysing the local 

neighbourhood of each pixels element. So the choice of colour combination must be well 

defined in order to have an accurate encoding strategy, such that the combinations of different 

colours is not repeated somewhere in the pattern. De Bruijn sequences are mathematical 

resources able to achieve this purpose. 

To give an example of encoding strategy, let’s consider a De Bruijn sequence of order 𝑚 on an 

alphabet of 𝑛 symbols. De Brujin sequence is a string of 𝑛𝑚 length that contains all 𝑚 sub-

strings of length 𝑚 known as window properties. For a De Bruijn sequence with 𝑛 = 2 (binary 
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De Bruijn sequence) and a window property of length 𝑚 = 4, the form of De Bruijn equation 

is given in eq.A.2. 

 1000010111101001 A.2 

 

The De Brujin sequences have been widely adopted of dynamic scene reconstruction. One of 

the first developed techniques based on this encoding was proposed by Zhang [ZhCS02]. Zhang 

proposed an 8 colours fringe pattern composed by 125 adjacent fringes. To generate the pattern, 

Zhang added a constraint such that two consecutive fringes in the De Bruijn sequence cannot 

have the same colour [HuMa89]. Figure A.4 shows the generated De Bruijn sequence and the 

result of its projection on a surface. 

 

Figure A.4 Example of De Brujin sequence projected on a freeform 

A.2.4. Structured lighting: Multi-shot 

Grid Indexing: 2D Spatial Grid Patterns 

The principle of 2D grid pattern techniques is to provide a unique label for every sub window 

in the projected 2D pattern, such that the pattern in each area of the window is unique and can 

be easily identifiable with respect to its 2D position in the pattern. One grid indexing strategy 

consists of using pseudorandom binary array such that each part of the grid is marked by dots. 

The pseudorandom is defined by 𝑛1 × 𝑛2 array encoded using pseudo random sequence. Figure 

shows the example of a pseudo-random grid. 
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Figure A.5 Grid indexing codification strategy [Geng11] 

Let’s consider a sub window of 𝑘1 × 𝑘2 size. It is noticeable that each position of the 

subwindow in the pseudo random grid is unique and fully defines the sub-window’s absolute 

coordinate (𝑖, 𝑗) [LeWS85, PaDe09]. To encode the pseudo-random array, the polynomial 

modulo 2𝑛 method is used as described in the eq. A.3. 

2𝑛 − 1 = 2𝑘1𝑘2 − 1 𝑛1 = 2𝑘1 − 1 , 𝑛2 = 2𝑛 −
1

𝑛1
 A.3 

Gray-code Patterns 

Binary coding [IYDT07] uses two intensity values : black (intensity 0) and white (intensity 1) 

fringes to form a sequence of projection patterns, so that each point on the surface of the object 

has a unique binary code. In general, 𝑛 patterns can encode 2𝑛 bands. Figure A.6 shows an 

example of a simplified projection pattern of 4 𝑏𝑖𝑡𝑠. Once this pattern sequence is projected 

onto a static scene, there are 16 (24) unique areas encoded with unique bands. The 3D 

coordinates (𝑋, 𝑌, 𝑍) can be calculated (based on a triangulation principle) for the 16 points 

along each horizontal line, forming a complete 3D image frame. 

 

Figure A.6 Example of 4 bits binary coding [KiRL08] 
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Gray-Level Patterns 

To reduce the number of patterns, Gray-level patterns are used. For example, it is possible to 

use 𝑀 distinct levels of intensity, instead of two levels as applied in binary code (black and 

white), to produce a unique coding at each pixel. In this case, 𝑁 patterns can encode 𝑀𝑁 bands. 

Each fringe code can be visualized as a point in a 𝑁-dimensional space [CaKS98]. For example, 

for three 𝑁 = 3 patterns, and 𝑀 = 4 gray levels, the total number of unique code bands is 

64 (43). Figure 1.7 shows an example of grayscale coding patterns.  

 

Figure A.7 3D reconstruction using Gray-coding strategy [Geng11] 

Phase Shift 

This technique has been studied in various 3D scanning applications due to its ability to achieve 

spatial resolution at the pixel level [BeLZ16]. The phase shift projection method consists of 

projecting bangs with sinusoidal variation of light intensity, between 0 (black) and 255 (white), 

onto the part to be scanned. The pattern is then shifted by one phase. For a three-step phase 

shifting projection, the shift is done by 
𝜋

3
  phase. Figure A.8 shows an example of phase shifting 

projection technique.  

 

Figure A.8 3D reconstruction using phase shifting encoding strategy [BeLZ16] 

Phase 1 Phase 2 Phase 

3 
Single pixel 

    | 

    | . . . 
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This method uses the phase information calculated for each pixel, rather than the intensity 

values [YMMY21]. Each pixel of the projection pattern has its own phase, and can be located 

on the image plane. 

Phase shift-based: calibration 

This method works on the same principle as the Gray-code, the objective is to provide a 

sequence of projection that will allow identifying each single pixel of the projector. Then 

finding the correspondence between the pixels from the projector and the calibration grid. 

However, rather than using a binary code, a sinusoidal pattern is projected on the surface while 

shifting it, this allow obtaining unique identifiers of each pixel of the projector. 

 

Figure A.9 Example of three-phase-shifting of a sinusoidal pattern for a projector with a 

resolution of 1024×768 pixels 

Recently, Wilm [WiOL14] proposed an accurate and simple calibration of SL systems based 

on this method. Wilm projects a sinusoidal pattern as shown in Figure A.9. The projector pixels 

can be encoded by the mean of Phase-shifting profilometry to find the correspondence between 

the projector and the calibration grid. The major difference between the Gray-code and phase 

shifting is in the encoding of single pixel. The Gray-code results of only binary codes because 

only two colours are used (black and white). Whereas phase-shifting is based on gray-level to 

identify pixels. To encode projector pixels in both 𝑢𝑝 and 𝑣𝑝 direction, eq. A.4 is used. 
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{
𝐼𝑛
𝑝(𝒖𝒑) =

1

2
+

1

2
cos (

2𝜋𝑛

3
−

2𝜋. 𝒖𝒑

3
)

𝐼𝑛
𝑝(𝒗𝒑) =

1

2
+

1

2
cos (

2𝜋𝑛

3
−

2𝜋. 𝒗𝒑

3
)

 A.4 

Where 𝐼𝑝
𝑛 is the projector normalized pattern intensity and 𝑛 is the pattern index. 

At the level of camera, the observed intensity can be expressed in eq. A.5, such that 𝐼𝑛
𝑐 is the 

camera observed 𝑛’𝑡ℎ pattern intensity. 

{𝐼𝑛
𝑐(𝒖𝒑, 𝒗𝒑) = 𝐴 + 𝐵 cos (

2𝜋𝑛

3
− 𝜃) A.5 

Where 𝐴 is the intensity of the scene that includes ambient lighting, 𝐵 is the projector intensity. 

By applying Fourier analysis, 𝐴 can be considered as the magnitude of the constant components, 

𝐵 the magnitude of the principle frequency and 𝜃 the phase (Figure A.10).  

 

Figure A.10 Step of camera-projector calibration using phase-shifting projection 
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Appendix B: Non-linear optimisation using 

Levenberg-Marquardt 
 

Levenberg-marquart (LM) is one of the most used technique of minimization problems, usually 

non-linear problems [BeGR18]. The LM optimisation is based on Gauss-Newton and the 

gradient-descent algorithm. LM is more stable than the Gauss-Newton algorithm, it finds a 

solution even the initialisation is far from the global minimum.  

 

B.1. Model establishing 

Given a set of empirical data {𝑥𝑖 , 𝑦𝑖}, each composed of inputs 𝑥𝑖 ∈ 𝑅𝑃 (is the dimensionality 

of the inputs) and their associated outputs �̃�𝑖 ∈ 𝑅. We assume that 𝑥𝑖 and 𝑦𝑖 are related by a 

single function 𝑓 as expressed in eq. B.1. The predicted output values when applying the 

model 𝑓() is denoted 𝑦𝑖 (eq. B.2).  

�̃�𝑖 ≈ 𝑓(𝑥𝑖, 𝑝) B.1 

𝑦𝑖 = 𝑓(𝑥𝑖, 𝑝) B.2 

Usually, the observations �̃�𝑖 are different from 𝑦𝑖 due to the empirical and computational errors. 

For a number of dimensions 𝑝, the error between the observations and the model is written as 

(eq. B.3). 

𝑒𝑖(𝑝) = |�̃�𝑖 − 𝑦𝑖|²  
B.3 

 = |�̃�𝑖 − 𝑓(𝑥𝑖, 𝑝)|2 

The objective is to find the vector 𝑝 that minimize the least square error 𝐸(𝑝) (eq. B.4). 

𝐸(𝑝) = ∑ 𝑒𝑖(𝑝)

𝑚−1

𝑖=0

 

B.4 
 

= ∑|�̃�𝑖 − 𝑓(𝑥𝑖 , 𝑝)|²

𝑚−1

𝑖=0

 

Let’s denote the vector �̃� = (�̃�0, … , �̃�𝑚−1)
𝑇, 𝑌 = (𝑦0, … , 𝑦𝑚−1) and 𝑋 = (𝑥0, … , 𝑥𝑚−1) 

respectively the observed values, the predicted values and the sample data. The least square 

error is written as (eq. B.5 where F is called the value function): 

𝐸(𝑝) = |�̃� − 𝑌|
2
 

B.5 
 = |𝑌 − 𝐹(𝑋, 𝑝)|2 
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B.2. Jacobian function 

LM method requires the calculation of the Jacobian of the model. Let’s define 𝐽(𝑋, 𝑝) as 

the 𝑚 × 𝑛 Jacobian matrix [Prof19] of the value function 𝐹 for a specific input X (eq. B.6). 

𝐽(𝑋, 𝑝) =

(

 
 
 
 
 

𝜕𝑓0(𝑥0, 𝑝)

𝜕𝑝0

𝜕𝑓0(𝑥0, 𝑝)

𝜕𝑝1
…

𝜕𝑓0(𝑥0, 𝑝)

𝜕𝑝𝑛−1

𝜕𝑓1(𝑥1, 𝑝)

𝜕𝑝0

𝜕𝑓1(𝑥1, 𝑝)

𝜕𝑝1
…

𝜕𝑓1(𝑥1, 𝑝)

𝜕𝑝𝑛−1

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚−1(𝑥𝑚−1, 𝑝)

𝜕𝑝0

𝜕𝑓𝑚−1(𝑥𝑚−1, 𝑝)

𝜕𝑝1
…

𝜕𝑓𝑚−1(𝑥𝑚−1, 𝑝)

𝜕𝑝𝑛−1 )

 
 
 
 
 

 B.6 

Each element of the matrix defined the partial derivative of the component of function 𝑓𝑖(𝑥, 𝑝) 

with respect to the parameter 𝑝𝑗. This derivative indicates the evolution of the output value at a 

specific position 𝑥𝑖. LM uses these parameters to optimise the exploration of the space. 

Therefore, with the parameters 𝑋, �̃� and 𝐽(𝑋, 𝑝), the LM optimisation takes the following form 

(eq. B.7) 

𝑝𝑜𝑝𝑡 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝐹, 𝐽(𝑋, 𝑝), 𝑋, �̃�, 𝑝0) B.7 

With 𝑝0 the initialization called also starting point. The result 𝑝𝑜𝑝𝑡 is a parameter vector that 

minimizes the least square deviation between the observations and the model 𝐹. 
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Appendix C: Representations of rotations 
 

C.1. Euler rotation angles 

In mechanic, the motion of an object in a reference could be expressed by six parameters: 3 

translations (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) and 3 rotations (𝛼, 𝛽, 𝛾) called Euler angles. Euler angles were 

introduced to describe the orientation of an object or a coordinate frame with respect to a 

reference frame Figure C.1. 

 

Figure C.1 rotation angles 

C.2. Rotation matrix  

The rotation of a rigid body around each axis could be expressed in eq. C.1. relation between 

Euler angles and rotation matrix is: 

𝑅𝑥 = [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos𝛼

] 

C.1 𝑅𝑦 = [
cos 𝛽 0 sin 𝛽

0 1 0
− sin 𝛽 0 cos 𝛽

] 

𝑅𝑧 = [
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

] 

When 3 rotations are applied, the global rotation matrix is expressed as 𝑅 =  𝑅𝑥 × 𝑅𝑦 × 𝑅𝑧, 

also written in (eq. C.2) 

𝑅 = [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1
] × [

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] × [

1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

] C.2 

𝑧 

𝑥 

𝑦 

𝛼 

𝛽 

𝛾 
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 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]  

Where: 

𝑟11 = cos(𝛽) cos(𝛾) 

𝑟21 = sin(𝛼) sin(𝛽) cos(𝛾) + cos(𝛼) sin(𝛾) 

𝑟31 = sin(𝛼) sin(𝛾) − cos(𝛼) sin(𝛽) cos(𝛾) 

𝑟12 = −cos(𝛽) sin(𝛾) 

𝑟22 = cos(𝛼) cos(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾) 

𝑟32 = cos(𝛾) sin(𝛼) + cos(𝛼) sin(𝛽) sin(𝛾) 

𝑟13 = sin(𝛽) 

𝑟23 = −cos(𝛽) sin(𝛼) 

𝑟33 = cos(𝛼) cos(𝛽) 

 

C.3. Rodriguez rotations  

Rodrigues is a vector representation of the rotations that assumes each rotation of a frame 

coordinate could be described as an angle of rotation around an axis with a unitary direction 

vector. In general, a rotation could be represented by four parameters 𝑎, 𝑏, 𝑐 and 𝑑 named Euler-

Rodrigues parameters such that (eq. C.3): 

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 1 

C.3 
𝑅𝑜𝑡 = [

𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 2(𝑏𝑐 − 𝑎𝑑) 2(𝑏𝑑 + 𝑎𝑐)

2(𝑏𝑐 + 𝑎𝑑) 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 2(𝑐𝑑 − 𝑎𝑏)

2(𝑏𝑑 − 𝑎𝑐) 2(𝑐𝑑 + 𝑎𝑏) 𝑎2 − 𝑏2 − 𝑐2 + 𝑑2

] 

Let’s consider the vector �⃗� 
′
on which a rotation is applied and �⃗⃗� = (𝑏, 𝑐, 𝑑) is the vector 

parameter. The Rodrigues formulae used to transform a rotation angle to a vector is expressed 

in eq. C.4. 

�⃗� 
′
= �⃗� +2𝑎(�⃗⃗� ×�⃗� ) + 2 (�⃗⃗� × (�⃗⃗� × �⃗� )) C.4 
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Appendix D: Particle Swarm Optimisation (PSO) 
 

Particle swarm optimisation (PSO) is a non-linear heuristic method based on the collective 

behaviour of several particles to converge to a solution [Part00]. PSO is inspired by the 

behaviour of bird flocks or the socio-psychology where individuals could influence each other’s 

decisions. 

In PSO, a particle is a single individual that moves in the space and memorizes its current 

position to share it with the other individuals. Thanks to simple motion rules in the space of 

solutions, the particles progressively converge towards a global minimum as all the particles 

positions are known (Figure D.1). 

 

Figure D.1 Visualization of particles motion in PSO 

Where 𝑂𝑝 is the optimality and 𝑃𝑖 , 𝑖 = {1, … , 𝑛} is the ith particle. 

D.1. Application of PSO on multivariate polynomial 

Considering a multivariate polynomial of 6 dimensions, each particle 𝑝𝑖 is expressed by its 

vector of position (𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝑡𝑥𝑖, 𝑡𝑦𝑖, 𝑡𝑧𝑖) in the 6-dimentional space. Let’s define the velocity 

(given in eq. D.1) as the speed of each particle in a specific direction. At each iteration, the 

particle 𝑝𝑖 moves with respect to its velocity 𝑉𝑖
𝑘⃗⃗ ⃗⃗  . 

𝑉𝑖
𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤𝑉𝑖

𝑘⃗⃗ ⃗⃗  + 𝑐1𝑟1 (𝑃𝑖
𝑘⃗⃗ ⃗⃗  − 𝑋𝑖

𝑘⃗⃗ ⃗⃗  ) + 𝑐2𝑟2 (𝐺𝑘⃗⃗ ⃗⃗  − 𝑋𝑖
𝑘⃗⃗ ⃗⃗  ) D.1 

Where: - 𝑉𝑖
𝑡⃗⃗⃗⃗  : velocity vector of the particle at iteration k 

𝑃1 

𝑃4 
𝑃𝑛 

Space of solutions 
𝑂𝑝 
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- 𝑤 : inertia weight 

- 𝑐1,  𝑐2: cognitive and social acceleration (positive constants) 

- 𝑟1,  𝑟2 : random values in the interval [0,1], sampled from a uniform 

distribution 

- 𝑃𝑖
𝑘⃗⃗ ⃗⃗    : best individual position associated with particle 𝑖 

- 𝐺𝑘⃗⃗ ⃗⃗   : best position associated with the set of particles in the swarm 

 

Given the dimensional complexity of our problem, the number of the particles in selected in the 

range [20, 50] [PiNP20], this number doesn’t influence the convergence time and efficient 

enough to find the optimality. 

The particle’s step is defined with a value that corresponds to the resolution of the robot used, 

because the optimal values define the camera-grid transformation. Therefore: 𝑠𝑡𝑒𝑝 = 20 µ𝑚. 

To ensure the convergence to the minimum, the inertia-weight value is chosen based of Bansal 

et al [BSSV11] and Maurya [MBPB19] where 𝑤 ∈ [0.4, 0.9]. After testing empirically several 

values, the best one is 𝑤 = 0.7. 
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Appendix E: Tsai calibration method 
 

One of the most common camera calibration method is Tsai approach which is a two steps 

algorithm that allows to estimate separately intrinsic and extrinsic parameters [Tsai87b]. The 

calibration requires a known 3D calibration object that has a good accuracy. The Tsai model is 

based on pinhole perspective projection and the estimated parameters are as follow: 

- 𝑓: Focal length of camera, 

- 𝑘 : Radial lens distortion coefficient, 

- 𝑐𝑢, 𝑐𝑣: Coordinates of centre of radial lens distortion, 

- 𝑠𝑥: Scale factor to account for any uncertainty due to imperfections in hardware 

timing for scanning and digitization, 

- 𝛼 , 𝛽 , 𝛾 : Rotation angles between the world and camera coordinates respectively around 

x-, y-, and z- axis 

- 𝑡𝑥, 𝑡𝑦, 𝑡𝑧: Translation components between the world and camera coordinates. 

An object point in the world is projected into a pixel in the image coordinate system. However, 

it is not possible to recover the information of a real distance using the distance between two 

pixels, this is the reason why an equation that allows to link the two systems is established in 

order to evaluate the relationship between a real point and its projection in the image plane 

[SSBM11]. Tsai calibration method does not determine this relation directly, and thus an 

intermediate reference system is required. 

Tsai method is based on perspective projection model. The transformation of the world 

coordinates system (𝑋, 𝑌, 𝑍) to the image coordinates systems (𝑢, 𝑣) is achieved following 

those steps [MaCM03]: 

  Identification on camera coordinate system (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) using the eq. D.1. 

 (
𝑋𝑐

𝑌𝑐

𝑍𝑐

) = (

𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

) ∗ (
𝑋 

𝑌 

𝑍 

) + (

𝑡𝑥
𝑡𝑦
𝑡𝑧

) D.1 

The parameters to be determined in this first step are 𝑟𝑖 and 𝑇𝑖 rotation and translation 

matrices. 
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 Estimation of focal distance 𝑓 using the projection of the image plane onto the camera 

frame without considering lens distortions using eq. D.2: 

 
𝑥𝑝 = 𝑓

𝑋𝑐

𝑍𝑐
& 𝑦𝑝 = 𝑓

𝑌𝑐

𝑍𝑐
 

 

D.2 

 Estimation of distortion coefficients caused by camera lenses. Let’s consider 𝐷𝑥 and 𝐷𝑦 

the radial distortion function previously described, and (𝑥𝑑 , 𝑦𝑑) the distorted point, eq. 

D.3 allows to determine 𝐷𝑥 and 𝐷𝑦 [Tsai87b]: 

 {
𝑥𝑑 + 𝐷𝑥 = 𝑥𝑝

𝑦𝑑 + 𝐷𝑦 = 𝑦𝑝
𝑤ℎ𝑒𝑟𝑒 {

𝐷𝑥 = 𝑥𝑑 
(1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4 + 𝑘3 ∗ 𝑟6)

𝐷𝑦 = 𝑦𝑑 
(1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4 + 𝑘3 ∗ 𝑟6)

 D.3 

 

Where 𝑟  = √𝑥2 + 𝑦2 is the distance from a point (𝑥, 𝑦) to the optical centre (𝐶𝑢, 𝐶𝑣). 

 The goal of this last step is to define the transition from distorted image coordinates 

(𝑥𝑑, 𝑦𝑑) to the sensor coordinates (𝑢, 𝑣) expressed in pixel. Eq. D.4 describes the 

relation between image system and the sensor: 

 {
𝑢 =  

𝑠𝑥

𝑑′
𝑥
∗ 𝑥𝑑 + 𝐶𝑢

𝑣 =  
𝑠𝑦

𝑑′
𝑦
∗ 𝑦𝑑 + 𝐶𝑣

 with  𝑑′
𝑥 = 𝑑𝑥

𝑁𝑐𝑥

𝑁𝑓𝑥
 D.4 

Where (𝑑𝑥, 𝑑𝑦) is known as the pixel pitch. The pixel pitch refers to the density of pixels, it 

describes the physical distance between pixels on screen [Svil18], the smaller pixel pitch the 

higher pixel density and resolution. 𝑁𝑐𝑥 is the number of sensor elements in 𝑥 direction and 𝑁𝑓𝑥 

is the number of pixels of the computed image (or of the frame grabber) in x direction. The 

calculation of 𝑆𝑥 parameter and the optical centre coordinates (𝐶𝑢, 𝐶𝑣) are the objectives of this 

step, 𝑆𝑥 is referred as the image scale uncertainty factor. 

To establish the relationship between the world coordinate system and the image, eq. D.5 are 

used while taking account the first distortion coefficient 𝑘1: 

 

𝑑′𝑥
𝑠𝑥

𝑥 +
𝑑′

𝑥

𝑠𝑥
𝑥𝑘1𝑟

2 = 𝑓
𝑟1𝑋 + 𝑟2𝑌 + 𝑟3𝑍 + 𝑇𝑥

𝑟7𝑋 + 𝑟8𝑌 + 𝑟9𝑍 + 𝑇𝑧
 

𝑑𝑦𝑦 + 𝑑𝑦𝑦𝑘1𝑟
2 = 𝑓

𝑟4𝑋 + 𝑟5𝑌 + 𝑟6𝑍 + 𝑇𝑦

𝑟7𝑋 + 𝑟8𝑌 + 𝑟9𝑍 + 𝑇𝑧
 

D.5 

With 𝑟 = √(
𝑑′𝑥

𝑠𝑥
𝑥)

2

+ (𝑑𝑦𝑦)2 
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The calibration method proposed by Tsai can estimate intrinsic parameters such as focal length, 

the coordinates of the optical centre (𝐶𝑢, 𝐶𝑣) and the image scale factor 𝑠𝑥, also the extrinsic 

parameters which defined the position of the camera in the world coordinate system (𝑟𝑖, 𝑇𝑗). 

These parameters minimize the error between the points of the calibration artefact and its 

projection in the image plane. Two stages allow the estimation of camera parameters: first is 

estimating of initial values for some parameters, and second is the estimation of all parameters 

with iterative non-linear simultaneous optimisation [Horn00][Will94]. 

 


