Optimization of chiral microswimmers at low Reynolds number
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With the advent of miniaturization processes and the advances in micro-robotics domain, the possibility of considering miniaturized structures for performing different medical interventions is becoming each time more realistic. Among the different micro-machines conceived up to now, helical micro-swimmers or artificial bacteria flagella have demonstrated to stand out because of their ease to actuate with low strength rotating magnetic fields of few milliteslas, that meet the international standards established by FDA. On the other hand, helical micro-swimmers are just a sub-type of what we call chiral structures. In fact, chiral micro-swimmers are structures capable of converting their rotation through certain axis into a linear motion similarly as helical swimmers do. Besides, chiral micro-swimmers can perform different functionalities in low Reynolds number environments, such as swimming and pumping. Due to that, studying their optimal configurations to perform different tasks as well as unravelling their behaviour in complex biological fluids is of relevant interest. Through this thesis, we search different features of optimal chiral structures under different criteria, including the task to be optimized and the nature of the torque source. The ambition of this thesis is to provide different criteria for optimizing chiral structures for performing different biomedical tasks. In that sense, we aim at:

• Developing a simulation environment for carrying out the swimming optimization of chiral structures.

• Optimizing the swimming and pumping abilities of a special kind of chiral structures known as helical swimmer structures (HSs) widely found in the literature. This includes establishing the key geometrical and rheological factors that improve their respective performance in Newtonian and non-Newtonian fluids.

• Optimizing the swimming and pumping abilities of chiral swimmer structures (CSs) in Newtonian and mainly in non-Newtonian complex biological fluids, those latter presenting a shear-thinning behaviour.

Both analytical, numerical and experimental analysis are provided throughout this document.
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for tenacity ring in my ears. My brothers Jordan and Josue have never left my side and are very special. Thanks again to my brothers for their help during these last times, without you I would not be able to do it. I also dedicate this dissertation to my beloved fiancee Jenny. Thank you for being there for me throughout the entire doctorate program. No matter what distance separates us, you will always be in my heart. Then, I would like to thank Emir Vela, who has been my academic father and a good example of life and of being a human being. Thank you for all the good you have done for me and for all the support you gave me during the years we worked in Lima. Thanks again for believing in me. I want to thank also my academic advisers Aude, Pierre and Stéphane who guided me through this process and kept me on track. Thank you again Stéphane, I am very grateful for your help and the opportunity you gave me to pursuit my PhD. in your research group. Thank you for also believing in me. Finally, I want to make a special mention to all my Colleagues at the Institut des Systèmes Intelligents et Robotique (ISIR): Sinan, Mokrane, Olivier, Ali, Justine, Shuai, Basil, Jonathan, Edison, Quentin, Reyhaneh, Sophia, Élodie, George, Huong, Thomas, Benoît, Flavien, Karina, Freddy, Pierre, Inès, Baptiste, Sarah, Gizem, Jenna, Arthur, Ayméric, Paul. Thank you for all the moments we shared together! Optimisation des structures chirales à bas nombre de Reynolds Résumé : Avec l'avènement des procédés de miniaturisation et les avancées dans le domaine de la micro-robotique, la possibilité d'envisager des structures miniaturisées pour réaliser différentes interventions médicales devient chaque jour plus réaliste. Parmi les différentes micro-machines conçues jusqu'à présent, les micronageurs hélicoïdaux ou à flagelles artificielles se sont démarqués. En effet, ces mécanismes peuvent être aisément actionnés en utilisant des champs magnétiques tournants de faible intensité, limités à quelques milliteslas, répondant aux normes internationales établies par la FDA. Les micro-nageurs hélicoïdaux ne sont qu'un sous-type de ce que nous appelons les structures chirales. Les micro-nageurs chiraux sont des structures capables de convertir leur rotation selon un certain axe en un mouvement linéaire de la même manière que les nageurs hélicoïdaux. En outre, les micro-nageurs chiraux peuvent exécuter différentes fonctionnalités dans des environnements à faible nombre de Reynolds. Ils peuvent nager ou pomper du fluide. Pour cette raison, étudier leurs configurations optimales pour effectuer différentes tâches ainsi que comprendre leur comportement dans des biofluides complexes est d'un intérêt certain. A travers cette thèse, nous recherchons différentes caractéristiques de structures chirales optimales selon plusieurs critères, dont la tâche à optimiser et la nature de la source de couple. L'ambition de cette thèse est de fournir des critères d'optimisation des structures chirales pour effectuer différentes tâches biomédicales. En ce sens, nous visons à:

• Développer un environnement de simulation pour réaliser l'optimisation de la nage des structures chirales.

• Optimiser les capacités de nage et de pompage de structures chirales spécifiques appelées nageurs hélicoïdaux (NH) largement étudiés dans la littérature. Cela inclut l'établissement des facteurs géométriques et rhéologiques clés qui améliorent leurs performances respectives dans les fluides Newtoniens et non Newtoniens.

• Optimiser les capacités de nage et de pompage de structures de nageurs chirales (NC) en fluides Newtonien et principalement dans les fluides biologiques complexes non Newtoniens, ces derniers présentant un comportement d'amincissement par cisaillement.

Des analyses analytiques, numériques et expérimentales sont développées tout au long de ce document.

Mots-clés : Optimization ; Nageurs Hélicoïdaux ; Nageurs Chirales ; Micromanipulation.

1.1 Examples of living micro-objects with their associated scales: organelles (<1 µm), single cells (1-100 µm), and small organisms (< 1 mm). electric particles immersed in a fluid medium pushed by the electric field force (Image adapted from [START_REF] Zhang | Dep-on-a-chip: Dielectrophoresis applied to microfluidic platforms[END_REF]). (b) Colloidal particles in a fluid medium dragged by a focused laser beam (optical tweezers) [START_REF] David | A revolution in optical manipulation[END_REF]. Category 2: (c) Micro bio-robot formed by a motile spermatozoon and a magnetized head tube for guiding, the displacement is generated by the spermatozoon through propagation of undulating waves with its appendage [START_REF] Magdanz | Development of a sperm-flagella driven micro-bio-robot[END_REF]. (d) Sperm-bot which is a helical swimmer capable of transporting sperm cells for in-vitro fertilization. Its displacement is generated by the rotation of its helical body in viscous media [START_REF] Medina-Sánchez | Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors[END_REF]. . [START_REF]Sperm cell figure[END_REF]). (b) Spermatozoon motion based on the propagation of undulating waves provoked by its appendage (figure taken from [START_REF] Petkov | Lvq acrosome integrity assessment of boar sperm cells[END_REF]). . . . . . . . . . 9 1.6 Bundle formation of E. coli bacterium. (Image adapted from [START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF]) . (g) Artificial Cilia array of flexible beams. (h) Artificial Cilia arrays of self-assembled magnetic micro-beads. (Image taken from [START_REF] Peyer | Bio-inspired magnetic swimming microrobots for biomedical applications[END_REF]) . . 12 1.9 Different Chiral structures: (a) The footprint. (b) Helical structures. 14 1.10 Classification of rotating magnetic swimmers. Achiral swimmers: (a) magnetic aggregates [START_REF] Morozov | Dynamics of arbitrary shaped propellers driven by a rotating magnetic field[END_REF], (b) planar swimmers [START_REF] Chen | Propulsion of magnetically actuated achiral planar microswimmers in newtonian and non-newtonian fluids[END_REF]. Chiral swimmers: (c) δ * -optimal propeller [START_REF] Mirzae | Geometric constraints and optimization in externally driven propulsion[END_REF], (d) chiral 3D-structure considered in this work, (e-f ) helical swimmers [START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF][START_REF] Quispe | Enhancing swimming and pumping performance of helical swimmers at low reynolds numbers[END_REF]. . . . . . . . . . . . . . . . 14 1.11 Basic shapes that can transform rotary motion into translation at milli(1-3) and micro-scale (4)[START_REF] Morozov | Dynamics of arbitrary shaped propellers driven by a rotating magnetic field[END_REF][START_REF] Zhang | Dep-on-a-chip: Dielectrophoresis applied to microfluidic platforms[END_REF]. ( 1) Prototype for gravity compensation [START_REF] Mahoney | Velocity control with gravity compensation for magnetic helical microswimmers[END_REF]. [START_REF] Chaillet | Microrobotics for micromanipulation[END_REF] Prototype for inside the intestines [START_REF] Sendoh | Fabrication of magnetic actuator for use in a capsule endoscope[END_REF]. (3) Prototype for intravascular drilling [START_REF] Jeong | Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field[END_REF]. (4) Polymer ABF presented by S. Tottori [START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF]. [START_REF] Morozov | Dynamics of arbitrary shaped propellers driven by a rotating magnetic field[END_REF] Prototype for tissue drilling [START_REF] Ishiyama | Magnetic micromachines for medical applications[END_REF]. [START_REF] Zhang | Dep-on-a-chip: Dielectrophoresis applied to microfluidic platforms[END_REF] Prototype for microfluidic pumping [START_REF] Kobayashi | 3d magnetic microactuator made of newly developed magnetically modified photocurable polymer and application to swimming micromachine and microscrewpump[END_REF]. (Image taken from [START_REF] Peyer | Magnetic helical micromachines[END_REF]) . . . . . . . . . [START_REF] Bray | Cell movements: From molecules to motility (garland science, new york)[END_REF] 1.12 3D lithography with a direct laser writing tool. (a) Polymerization of the photoresist at the focal point of the laser. (b) development and subsequent rinsing and (c) magnetic metal coating. [START_REF] Peyer | Bio-inspired magnetic swimming microrobots for biomedical applications[END_REF] . . . . . 17

1.13 Self-scrolling fabrication process (a-g): initial planar bilayer patterned through conventional microfabrication techniques, assembles itself into 3-D structures during wet etch release because of the internal strain. Metal pads and support bars are created through negative photolithography and lift-off. [START_REF] Hwang | Piezoresistive ingaas/gaas nanosprings with metal connectors[END_REF] . . . . . . . . . . . . . . . . . . . 17

1.14 (a) InGaAs/GaAs bilayer is patterned by photolithography in a ribbonlike shape for the helical tail. (b) The ribbon-like structure self-forms a helix tethered at one end by releasing the internal stress after wet etching of the sacrificial layer. The red arrow indicates the scrolling direction of the ribbon, i.e. , <100> on a (001) GaAs wafer. [START_REF] Zhang | Artificial bacterial flagella for micromanipulation[END_REF] . . [START_REF] Turner | Real-time imaging of fluorescent flagellar filaments[END_REF] 1.15 GLAD fabricated helical swimmers. Pillars are deposited at an angle and under constant rotation of the stage, resulting in helices on the spherical seeds. [START_REF] Peyer | Bio-inspired magnetic swimming microrobots for biomedical applications[END_REF] . . . . . . . . . . . . . . . . . . . . . . . . . . . . [START_REF] Lowe | Rapid rotation of flagellar bundles in swimming bacteria[END_REF] 1. [START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF] Targeted cargo delivery applications of helical swimmers. (a) Calcein deliver to cells by direct contact with lipoplex functionalized helical microrobots [START_REF] Qiu | Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery[END_REF]. (b) Helical swimmers as a niche for stem-cells delivery [START_REF] Immihan Ceren Yasa | 3d-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery[END_REF]. (c) Drug delivery by microrobot swelling for theranostic applications [START_REF] Ceylan | 3d-printed biodegradable microswimmer for theranostic cargo delivery and release[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [START_REF] Judith | Bacterial chemotaxis: Rhodobacter sphaeroides and sinorhizobium meliloti-variations on a theme?[END_REF] 1.17 Microrobot-aided surgery. (a) Proposal of helical actuator for guiding endoscopy capsules. (b) Helical actuator for trailing wires in narrow waterways. These actuator can be used to steer common endoscopes. (Images adapted from [START_REF] Sendoh | Fabrication of magnetic actuator for use in a capsule endoscope[END_REF][START_REF] Kikuchi | Fabrication of a spiral type magnetic micromachine for trailing a wire[END_REF]) . . . . . . . . . . . . . . [START_REF] Shaevitz | Spiroplasma swim by a processive change in body helicity[END_REF] 1.18 Remote sensing application. (a) Magnetically driven drill for pH sensing. (b) Microrobot (green dot) for oxygen concentration measurements. (Images adapted from [START_REF] Howard Mcnaughton | Magnetic microdrill as a modulated fluorescent ph sensor[END_REF][START_REF] Olgac Ergeneman | Magnetically controlled wireless optical oxygen sensor for intraocular measurements[END_REF]) . . . . . . . . . . . . . . [START_REF] Howard | How spiroplasma might swim[END_REF] 1.19 Helical swimmers as diverse micro tools. (a) They could take part in mixing processes [START_REF] Jun | Enhanced diffusion due to motile bacteria[END_REF]. (b) Helical swimmers for controlled particle releasing [START_REF] Huang | 3d printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents[END_REF]. (c) They are able to indirectly manipulate microobjects with the flow pattern generated by their rotation [START_REF] Paris | On-chip multimodal vortex trap micro-manipulator with multistage bi-helical micro-swimmer[END_REF]. . . . . . [START_REF] Werner | Insect sperm motility[END_REF] 2.1 Geometrical parameters of HSs. (a) A general HS structure with elliptic cross-section showing the relevant parameters in our study namely, the helical angle θ, the tangent to the helix centerline t, the pitch λ, the flagellum length L, the helical radius R, and the parameter s which indicates a point in the helix parametrization. There is a region that is not even considered for thicker or small aspect ratio flagella. Image taken and adapted from [START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF]. . 2.6 Percentile total error for swimming (a) and pumping (b) using slenderbody theory approach. The bigger the circle size, the larger error value. Figure adapted from [START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF]. . . . . . . . . . . . . . . . . . . . . 2.7 Percentile total error for swimming (a) and pumping (b) using a centerline distribution of regularized stokeslets approach. The bigger the circle size, the larger error value. Figure adapted from [START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF]. . . 2.8 Assembly and meshing Process. (a) The geometry of our FSI problem is basically composed of two Assemblies, namely 1 and 2. The Assembly 1 is the outer part of the internal cylinder (external part of the dashed-blue line), otherwise it will be the Assembly 2. (b) Mesh forward displacement. The red arrow (on the left) depicting the position of red-dashed cylinder containing the robot will increase after the robot advancement (on the right), conversely to the blue arrows. It can be seen the mesh elongation after this operation. 2.13 Global architecture of the manipulation magnetic system. The desired tension for the amplifiers are sent through the computer in order to generate the magnetic field flux B. The amplifiers are alimented by a current source, thus, converting the tensions into electric current for the coils. The prototype stands for the Helmholtz coil system which generates the desired magnetic field flux B. Finally, thanks to the two cameras, the position and orientation of the swimmer are obtained by using algorithms of visual tracking (ViSP, [START_REF] Marchand | Visp for visual servoing: a generic software platform with a wide class of robot control skills[END_REF]). . . . 53 
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General Introduction

Microorganisms with chiral structures such as prokaryotic bacteria or Spiroplasma are ubiquitous in nature because of an evolutionary process that made them develop efficient locomotion mechanisms to survive under extreme conditions in searching for nutrients. Nowadays, great interest to manufacture bacteria-inspired micro-structures capable of mimicking their locomotion mechanism has emerged as an innovating solution to develop new medical techniques, rendering them less invasive.

To develop such a kind of tiny structures, the utilization of low-strength magnetic fields stood out from other actuation methods mainly for two factors: the ease for manufacturing thousands of micro/nano structures swarms with magnetic features using the current methodologies, and, the use of a transparent magnetic field for the human being, according to the Food Drug Administration (FDA) regulations, because their actuation only requires of few milliteslas.

Another key point for using such micro-structures for future in-vivo applications relies on the deployment of various functionalities such as: a precise navigation within constrained environments, and their ability of generating a pumping action when they are stagnant.

In this thesis, we paid especial attention to those tasks, namely swimming and pumping. Those tasks might be of vital importance in future medical interventions. Swimming because our body is mostly composed of water and micro-robotic structures with swimming functionality could navigate through the human conduits.

Pumping due to the importance of manipulating the fluid environment around the chiral structure, e.g. to apply pumping action for re-establishing blood flow, dispensing micro/nano-particles in targeted sites, among others.

In that regard, the optimization of such tasks in different scenarios would be of high interest for the scientific community toward newly in-vivo and in-vitro applications. However, just a little number of studies have reviewed that concern with numerical approaches that just apply in the limit of the slender body theory. Therefore, this thesis subscribes to the field of micro-robotics and provides a solution to this problematic. Three distinct contributions are enumerated as follows:

• The building of a simulation environment based on finite elements for optimizing the swimming and pumping capabilities of non-slender chiral structures. The simulator brought a wide range of options for customizing the geometry and also considered two fluidic cases, namely Newtonian and non-Newtonian fluids (cf. chapter 2).

• The optimization of swimming and pumping capabilities of the well-known helical swimmer structures (HSs), a sub-type of chiral structures. We imple-mented a parametric study to analyse through different metrics the swimming, pumping and/or both tasks at the same time in Newtonian and non-Newtonian fluids for the first time in the literature (cf. chapter 3).

• The optimization of more general structures called chiral swimmer structures (CSs), whose geometrical features are described in chapter 2. We implemented the same methodology as we did for HSs to optimize their swimming and pumping capabilities in Newtonian and non-Newtonian fluids (cf. chapter 4).

Chapter 1

Swimming at low Reynolds numbers

During the last decades, several questions about the swimming of microorganisms have been formulated, from optimal navigation patterns to how bacteria micromotor works. However, till now, there are remaining questions respecting to the evolutionary process of such microspecies to achieve such mysterious locomotion mechanisms. In nature, microorganisms perform different patterns such as the propelling through undulating waves, or the rotation of helically-shaped structures, among others. Nonetheless, all these patterns have something in common, they break the temporal reversibility. In that regard, identifying the design rules that govern the swimming and other mechanisms in the micro-world will allow the conception of optimal microrobots that could serve for various envisioned applications including medical procedures, micromanipulation, water remediation and so on.

In that context, we intend with this chapter to introduce in the first instance the physical concepts involving micro-scale swimming to then analyse the conception of swimmer microrobots including the existent fabrication methods and the swimmer's classification. Later on, we provide a wide-range of future applications where such tiny entities could play an important role. From this, we set the objectives of this thesis manuscript. 

Swimming at the Micro-Scale

Swimming is the ability of objects at moving through liquid media. Swimming at micro-scale deals with the motion of micro-objects which are entities that range from 1 µm to 1 mm (Fig. 1.1). That definition also applies for micro-robots [START_REF] Chaillet | Microrobotics for micromanipulation[END_REF]. At micro-scale, there are phenomena that change our conventional understanding of swimming at scales we are confronted to in everyday context. At micro-scale, dynamics of objects is dominated by the instantaneous effects of forces. In other words, if we have to push a micro-scale animal to move it, and suddenly we stop pushing, it coasts only for about 0.1 Å and 0.6 µs to slow down [START_REF] Edward | Life at low reynolds number[END_REF]. Inertia plays no role whatsoever. In that regard, micro-scale swimming involves specific microobjects and also swimming types that we now describe.

Organelle

Swimmer types

Under the aforementioned definition, we have different types of micro-swimmers and swimming approaches. Among the types of swimmers, two categories can be identified: the ones that can not generate motion by themselves, and, the others that exploit their geometrical features for propelling.

In the first group of micro-swimmers that can not generate motion by themselves (Category 1) , we find all micro-objects given of certain features namely, magnetic, dielectric, or chemical characteristics that allow them to be remotely controlled through magnetic fields, electric fields, or chemical reactions, respectively.

In the second group of micro-swimmers that make use of their geometrical features for moving (Category 2), we find different bio-inspired entities capable of producing a net displacement within fluid media exploiting different elements such as helically-shaped bundles of tails, flexible oscillating appendages, surface deformations, among others. Nonetheless, there are other theoretical micro-swimmers such as the N-link Purcell's swimmer [4] based on the well-known scallop theorem that we will review later on.

For swimmers in Category 1, there are different manipulation methods in liquid media such as the magnetophoresis, (di-)electrophoresis, optical tweezers manipulation, and so on. In the case of magnetophoresis and (di-)electrophoresis (Fig. 1.2(a)), both methods take advantage of the field asymmetry, namely magnetic or electric fields respectively, that may provoke a field gradient and subsequently a net displacement of the characterized particles immersed in such asymmetric fields. Besides, in the case of the optical tweezers manipulation, objects are pulled within liquid media by a highly focalized laser beam. Spherical micro-particles with dielectric features are trapped inside the laser beam due to the radiation pressure, thus following the laser beam when moved (Fig. 1.2(b)).

On the other hand, for swimmers in Category 2, most of the manipulation methods are mainly based on the use of low-strength magnetic fields that generate a torque on the micro-structures which provokes either a rotation, or a bending. In that sense, such methods are classified by the effect that triggers the rotation or the bending.

In the first case, among the torque-based swimmers that move through a rotation, we find the well-known artificial bacterial flagella or helical micro-swimmers (Fig. 1.2(d)). These micro-swimmers exploit their magnetized chiral-shaped structures to take advantage of the low strength rotating magnetic field and lead a well-defined thrust orientation that depends on their handedness. Other nonchiral structures (conglomerate of colloids) have been demonstrated to be propelled through the rotating magnetic fields, however, their displacements are attributed to the random distribution of their geometries [START_REF] Morozov | Dynamics of arbitrary shaped propellers driven by a rotating magnetic field[END_REF].

In the second case, the torque-based swimmers that move because of the bending of their flexible appendages, we find the flexible flagella microswimmers. In figure 1.2(c) is represented a hybrid micro-swimmer that is formed by a motile spermatozoon, which moves through the propagation of oscillating waves, and a magnetic head tube for guiding its orientation. These swimming approaches are just available for micro-scale species. To better understand their kinematics, the scaling effects at play need to be described. . Category 2: (c) Micro bio-robot formed by a motile spermatozoon and a magnetized head tube for guiding, the displacement is generated by the spermatozoon through propagation of undulating waves with its appendage [START_REF] Magdanz | Development of a sperm-flagella driven micro-bio-robot[END_REF]. (d) Sperm-bot which is a helical swimmer capable of transporting sperm cells for in-vitro fertilization. Its displacement is generated by the rotation of its helical body in viscous media [START_REF] Medina-Sánchez | Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors[END_REF].

Scaling Effects

The scaling effects are a natural consequence of scaling down the size of objects and/or working with structures in the (sub-) micrometer scale. All entities, regardless of size, experience the same interactions that are governed by the physical laws. However, as magnitudes of such interactions are size dependent, their relative values could change dramatically with scale [START_REF] Diller | Micro-scale mobile robotics[END_REF]. Let us suppose an isometric object with length scale factor of L. Then its surface area and volume are scaled with L 2 and L 3 . If we scale down their size, the surface area-to-volume ratio would increase at micro-and nano-scales dimensions, and surface area-related forces dynamics would dominate at micro/nano-scale. Physical quantities can depend upon the length, surface and volume as presented in table 1.1.

Length dependent Surface tension (∝ L)

Area dependent Surface forces, fluid drag, friction, electrostatic forces (∝ L 2 ) Volume dependent Mass, inertia, buoyancy (∝ L 3 ) Table 1.1: Scaling of some physical quantities dependent on the length, surface area, and volume.

The scaling laws lead to some trends in the abilities and limitations of small animals in nature. For example, some insects can jump very high in proportion to their size [START_REF] Gregory | Biomechanics of jumping in the flea[END_REF]. On the other hand, microorganisms exploit the fluid drag to propel since inertia is negligible. In that sense, there exists a dimensionless quantity that describes such effect, the Reynolds number (Re). 

Reynolds Number (Re)

Regarding the size of an object and the fluid features, the swimming regime can be assessed through a dimensionless ratio called Reynolds number Re. This quantity is defined as the ratio between the inertial force and the viscous force, where L is the object's characteristic length, U the object's speed in the fluid media, ρ the fluid density, and µ the fluid viscosity.

Re = LU ρ µ (1.1)
In figure 1 1.5. The first swimming pattern is the one used by most of the prokariotic bacteria that consists in the rotation of a helically-shaped bundle of tails (a). The second swimming pattern is the one performed by spermatozoa which is based on the propagation of waves generated by an oscillating appendage (b). Because of the various swimming strategies existing in the nature, and their efficiency, a natural way to design microswimmers is to have a bio-inspired approach. We thus now review the conception of micro-swimmers based on the inspiration drawn from nature as well as the different existent methods for their manufacturing.
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Bio-Inspired Conception

Swimming of Microorganisms

Microorganisms have evolved propulsion strategies that successfully overcome and exploit drag. For example, E. coli bacteria made use of multiple appendages that are deformed into a helix with relative stiffness for propelling [START_REF] Howard | Bacteria swim by rotating their flagellar filaments[END_REF]. Those appendages, that we will call a bundle (figure. 1.6) , are rotated by a motor embedded in the cell wall. In the subsequent, we will call this type of swimming as helical swimming. In the case of sperm, there is one flexible filament undergoing whip-like motions due to the action of molecular motors distributed along the length of the filament [START_REF] Bray | Cell movements: From molecules to motility (garland science, new york)[END_REF]. Among the structures that develop helical swimming, E. coli (figure 1.7(a)) and Salmonella typhimurium consist of a rotary motor, a helical filament and a hook which connects both [START_REF] Berg | Motile behavior of bacteria[END_REF][START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF]. The filament has a diameter of ≈ 20 nm that generates a helix with a contour length ≈ 10 µm. In absence of external forces and moments, the helix is left-handed with a pitch ≈ 2.5 µm and a helical diameter ≈ 0.5 µm [START_REF] Turner | Real-time imaging of fluorescent flagellar filaments[END_REF]. When motor turns counter clockwise, the filaments wrap into a bundle that pushes the cell body at speeds ≈ 25 -35 µm • s -1 [START_REF] Lowe | Rapid rotation of flagellar bundles in swimming bacteria[END_REF]. When one or more of the motors reverse, the corresponding filaments leave the bundle provoking polymorphic transformations in which the handedness of the helix changes, thus changing the swimming direction. On the other hand, a variation of these features is presented in Caulobacter crescentus (figure 1.7(b)), that has a single right-handed helical filament, driven by a rotary motor that can turn in either direction. The motor preferentially turns clockwise, bending the filament in the sense to push the body forward. Pending of the counter-clockwise rotation the filament pulls the cell body instead of pushing [START_REF] Koyasu | Caulobacter crescentus flagellar filament has a right-handed helical form[END_REF]. The motor of the bacterium Rhodobacter sphaeroides (figure 1.7(c)) turns in only one direction but stops from time to time [START_REF] Judith | Bacterial chemotaxis: Rhodobacter sphaeroides and sinorhizobium meliloti-variations on a theme?[END_REF]. The flagellar filament forms a coil when the motor is stopped, and extends into a helical shape when the motor turns. There are also bacteria that swim with no external flagellar filaments, that is the case of Spiroplasma (figure 1.7(d)), helically-shaped bacteria with no flagella, these cells swim via the propagation of pairs kinks along the length of the body [START_REF] Shaevitz | Spiroplasma swim by a processive change in body helicity[END_REF]. Instead of periplasmic flagella, the kinks are thought to be generated by contraction of the cytoskeleton [START_REF] Howard | How spiroplasma might swim[END_REF]. On the other hand, Eukaryote flagella and cilia are much larger than bacterial flagella, with a typical diameter of ≈ 200 nm, and with an intricate internal structure [START_REF] Bray | Cell movements: From molecules to motility (garland science, new york)[END_REF]. Typically, their structure has nine micro-tubule doublets spaced around the circumference and running along the length of a flagellum or cilium, with two micro-tubules along the center. Molecular motors (dynein) between the doublets slide them back and forth, leading to bending deformations that propagate along the flagellum. There is a vast diversity in the beat pattern and length of eukaryotic flagella and cilia. For example, the sperm of many organisms consists of a head containing the genetic material propelled by a filament with a planar or even helical beat pattern, depending on the species [START_REF] Werner | Insect sperm motility[END_REF]. The length of the flagellum is 12 µm in some Hymenoptera [START_REF] Donald | Sperm structure and ultrastructure in the hymenoptera (insecta)[END_REF], ≈ 20 µm for hippos, ≈ 40 µm for humans [START_REF] Susan | Sperm transport in the female reproductive tract[END_REF] (figure 1.7(e)), ≈ 80 µm for mice (figure 1.7(f )), and can be ≈ 1 mm [START_REF] Hatsumi | The sperm length and the testis length in drosophila nasuta subgroup[END_REF] or even several centimeters long in some fruit flies [START_REF] Joly | Disentangling giant sperm[END_REF]. Many other organisms have multiple flagella, Chlamydomonas reinhardtii is an alga with two flagella that can exhibit both ciliary and flagellar beat patterns. In the ciliary case, each flagellum has an asymmetric beat pattern [START_REF] Bray | Cell movements: From molecules to motility (garland science, new york)[END_REF]. In the power stroke, each flagellum extends and bends at the base, sweeping back like the arms of a person doing the breaststroke. On the recovery stroke, the flagellum folds, leading as we shall see below to less drag. Paramecium is another classic example of a ciliated microorganism. Its surface is covered by thousands of cilia that beat in a coordinated manner [START_REF] Gibbons | Cilia and flagella of eukaryotes[END_REF], propelling the cell at speeds of ≈ 500 µm • s -1 (figure 1.7(h)).

Unbundled E.Coli Bundle E. Coli
Arrays of beating cilia are also found lining the airway where they sweep mucus and foreign particles up toward the nasal passage [START_REF] Sleigh | Liron n. The propulsion of mucus by cilia[END_REF]. Various microorganisms have swimming capabilities with different locomotion methods such as the helical swimming, generating undulating waves, or coordinating hundred of cilia. In the following subsection, we will review how these swimmers have influenced the design of artificial micro-swimmers. 

Bio-Inspired Microrobots

Review of microrobot architectures

During the last decade, different micro-robotic designs harnessing these latter strategies have been conceived. The easiest mechanism to reproduce is the one developed by spermatozoa, since it can be considered a one-dimensional structure (cf. Fig. 1.8(a)). A flexible beam can be actuated magnetically when attached to a magnetic head as demonstrated in [START_REF] Guo | Development of a novel type of microrobot for biomedical application[END_REF] (cf. Fig. 1.8(d)). In [START_REF] Dreyfus | Microscopic artificial swimmers[END_REF] (cf. Fig. 1.8(e)), they conceived the first microscopic flexible structure using another approach that consisted in forming flexible chain with self-assembled magnetic beads. The magnetic force between the beads is limited, and fast rotation of these beads can yield in the chain disassembly due to the fluid drag forces. Therefore, Dreyfus et al. found a protocol to connect the magnetic particles with DNA strands. It was shown that this assembly actuated with an oscillating magnetic field generate a reciprocal motion. Nonetheless, attaching a payload to one end of the chain breaks the motion symmetry of the travelling wave along the bead chain. In this way, propulsion, and transport of a single blood cell was demonstrated. This idea of breaking the symmetry chain was used for a nano-bead chain swimmer developed by Benkosky et al. in [START_REF] Benkoski | Dipolar assembly of ferromagnetic nanoparticles into magnetically driven artificial cilia[END_REF][START_REF] Benkoski | Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies[END_REF]. Some of their swimmers were 5-µm in length which is smaller than Dreyfus's swimmers, that have an overall length of 24 µm. The first helical micro-robot, called artificial bacterial flagella (ABF), mimicking bacterial propulsion (cf. Fig. 1.8(b)) was developed by Bell et al. in 2007 [START_REF] Dominik | Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field[END_REF] (cf. Fig. 1.8(f )) and further characterized by Zhang et al. in 2009 [38]. This helical micro-robot consisted of a rigid helical tail attached to a soft magnetic metal head, also referred as body, for actuation. The size of this prototype is about 2.8 µm in diameter, and 30-100 µm in length. The head consists of a thin square plate, with a thickness of 200 nm and variable length of 2.5 -4.5 µm. The past decade the conception of this tiny structures was challenging. However, with the advent of numerous fabrication methods, their conception and customization is becoming more feasible. The magnetic material is not anymore restricted to the head part of this micro-robots, currently, it's been used magnetic material onto the helical surface through physical vaporization techniques or via functionalization [START_REF] Medina-Sánchez | Micro-and nano-motors: the new generation of drug carriers[END_REF].

Besides, cilia were one of the earliest studied filaments in nature [START_REF] Ludwig | Zur theorie der flimmerbewegung (dynamik, nutzeffekt, energiebilanz)[END_REF] (cf. Fig. 1.8(c)). They are not only a means to propel microorganisms such as the Paramecium, but they also function as a stationary fluid transporters, i.e. to move mucus in our airways [START_REF] Alok | Motile cilia of human airway epithelia are chemosensory[END_REF]. Cilia commonly cover the whole surface and move in coordination with each other, similar to a travelling wave seen in the feet motion of centipedes. If cilia motion was to be mimicked in this way, an independent actuation for each flagellum would be required. In [START_REF] Sanchez | Cilialike beating of active microtubule bundles[END_REF] is reproduced this behaviour using micro-tubules, by contrast, this cilia move simultaneously. Recently, in 2020, coordination of this cilia was being studied in [START_REF] Dong | Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination[END_REF] considering independent flagella with different harmonic magnetic distributions that will be exposed under the same magnetic field. Flagella are prepared with ferromagnetic-elastic sheets. All of them have identical geometries but different internal magnetization profiles. When they are exposed to the same external magnetic field their body geometry changes depending upon the magnetization profile, and thus, achieving an artificial ciliary system with coordinated patterns.

Having reviewed the different bio-inspired micro-swimmers, we outline in the next paragraph special importance, in our opinion, of chirality property for these structures.

Chiral structures

A chiral geometry, said to have chirality, is a structure that is not identical to its mirror image, or, more precisely, a structure that cannot be mapped to its mirror image by rotations and translations alone. Some chiral three-dimensional structures such as the helix, can be assigned a right or left handedness, according to the right-hand rule. Other examples of chiral geometries are: the footprint, the hand, helices, etc. An object that does not demonstrate a chiral behaviour is said to be achiral. They are important due to different factors that makes them to stand out with respect to other swimmers. In physics, at subatomic scales, the helicity of a particle is positive ("right-handed") if the direction of its spin is the same as the direction of its motion. In the microscopic world, we can associate the spin with the angular velocity of a given structure. Then, if the propulsion velocity is parallel to the angular velocity, the structure is said to be "right-handed" otherwise it will be "left-handed". In figure 1.9 are depicted two chiral structures, namely a footprint and helical structures. In Fig. 1.10 is depicted a classification of rotating magnetic swimmers based on their chirality. There are two groups, namely achiral and chiral swimmers. Among the achiral swimmers, we found the magnetic random aggregates [START_REF] Chen | Propulsion of magnetically actuated achiral planar microswimmers in newtonian and non-newtonian fluids[END_REF][START_REF] Peter | Fast magnetic micropropellers with random shapes[END_REF], the planar magnetized objects [START_REF] Chen | Propulsion of magnetically actuated achiral planar microswimmers in newtonian and non-newtonian fluids[END_REF], etc. Meanwhile, in the chiral swimmers group, we made distinction of the well-known helical swimmer structures (HSs) [START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF][START_REF] Quispe | Enhancing swimming and pumping performance of helical swimmers at low reynolds numbers[END_REF]. Other chiral swimmers such as the skew-symmetric shaped optimal propeller of Y. Mirzae et al. [START_REF] Mirzae | Geometric constraints and optimization in externally driven propulsion[END_REF] demonstrate a good swimming performance. 

Achiral Chiral

Helical swimmers

Helical swimmer structures (HSs) are sub-types of chiral structures that transform a rotation around their helical axis into a translation along the helical axis. HSs are of particular interest for different factors: 1) The first factor is the mastering level reached up to now for their fabrication. There are plenty of works that has treated that thematic since 2007 in comparison with flexible micro-swimmers.

2) Helical micro-swimmers are actuated with low strength rotating magnetic fields of few milli-teslas which meet international standards given by FDA for their use in animals and human beings. And 3) their compactness and ease to be actuated method which provides a promising framework toward less invasive medical interventions. These micro-machines can be propelled in various environments and types of fluids, even in granular media [START_REF] Thoesen | Granular scaling laws for helically driven dynamics[END_REF]. It is remarkable to note the physics behind propulsion of a screw in solid matter, along the walls of intestines, or in viscous fluid envi-ronments are different. However, they will be referred as screw-type motion. In figure 1.11 are depicted three basic shapes that are considered on helical devices. They are referred to as normal helix, screw-type and twist-type swimmers. A helix is characterized by a slender filament with a void center. A screw-type swimmer has a helical filament wound around a solid center. The third shape can be understood as a ribbon being twisted around its long axis. Also in figure 1.11, two different prototypes at millimeter and micrometer scale for each swimmer-type are stood for.

Summary on bio-inspired conception

We have reviewed different bio-inspired prototypes and outlined the importance of chirality for the design of helical swimmers. Nonetheless, it is required to establish design rules taking into account the manufacturing constraints to try to optimize structures. In that regard, there are two important aspects that we have to consider for chiral swimmer fabrication: 1) to look for chiral shapes which maximize the swimming propulsion and thrust and 2) to consider the current magnetization methods for providing the chiral structure with magnetic features. Therefore, we review those aspects in detail considering the current constraints that imply their manufacturing in the next section.

Fabrication of Micro-Swimmers

In this section, some of the existent fabrication methods are treated. We consider for that two aspects involving chiral micro-swimmers manufacturing: fabrication of the structure, and the magnetization method. Firstly, we present techniques to fabricate the chiral structures, and then we discuss their magnetization.

Direct Laser Writing (DLW)

One solution to control the fabrication of microrobots is through direct laser writing method, which is based on 3D lithography. A laser beam is focused into the photoresist and a two-photon polymerization (TPP) occurs at the focal point of the laser (see figure 1.12). A piezoeletric stage moves the glass substrate with the photoresist in 3D following a pre-programmed trajectory. In this manner, polymer structures of arbitrary shapes can be written. With this method, various design features can be added to the basic structures, such as, for example a claw for micro-object transport [START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF]. Arrays of thousands of micro-structures can be fabricated within a few hours. They can be detached manually or by sonification to create suspensions of microrobots. The main advantage of this technique is its versatility, as various designs can be easily fabricated. However, it is not compatible with batch fabrication methods developed specifically for helical shapes. 

Self-Scrolling

The first functional helical micro-swimmer with 38-µm in length was fabricated in 2006, using the self-scrolling technique of Indium-Gallium arsenide InGaAs/GaAs bilayer [START_REF] Dominik | Fabrication and characterization of threedimensional ingaas/gaas nanosprings[END_REF]. Lots of HSs were fabricated based on this method [START_REF] Zhang | Characterizing the swimming properties of artificial bacterial flagella[END_REF][START_REF] Zhang | Artificial bacterial flagella for micromanipulation[END_REF][START_REF] Hwang | Piezoresistive ingaas/gaas nanosprings with metal connectors[END_REF]. The During this wet etching, the patterned bilayer curled up releases the internal strain and forms 3-D structures. After the wet etch release, the chips are rinsed in deionized water and subsequently in isopropyl alcohol. They are dried with a supercritical CO 2 dryer so that the structures would not be damaged from surface tension. The direction of the scrolling is determined by the anisotropy in stiffness of the InGaAs/GaAs bilayer. Figure 1.14 illustrates that the scrolling direction of the ribbon is <100> on a (001) GaAs wafer. The radius of the helix is adjusted by tuning the thickness of the ribbon. A square plate nickel head is mounted on the helical filament for magnetic actuation. The square width and thickness of the nickel head can be adjusted with the lithography step and metal deposition step, respectively. 

Other techniques for the fabrication of helical micro-swimmers

While the fabrication of helical structures at the micro/nanometer scale is difficult for lithography-based techniques because of lithography's inherent 2-D patterning [START_REF] Korgel | Nanosprings take shape[END_REF], a number of nanohelix fabrication methods have been developed based on bottom-up approaches, including coiled carbon nanotubes [START_REF] Amelinckx | A formation mechanism for catalytically grown helix-shaped graphite nanotubes[END_REF], semiconductive ZnO and CdS nanohelices [START_REF] Pu | Conversion of zinc oxide nanobelts into superlatticestructured nanohelices[END_REF][START_REF] Eli D Sone | Semiconductor nanohelices templated by supramolecular ribbons[END_REF], superconducting MgB 2 nanohelices [START_REF] Nath | Superconducting mgb2 nanohelices grown on various substrates[END_REF], insulating Si 3 N 4 microcoils [START_REF] Cao | Superelastic and spring properties of si3n4 microcoils[END_REF] and helical shaped polymer fibers. In 2009, even smaller helical micro-swimmers with 2-µm in length were fabricated by the GLAD method, which was presented in [START_REF] Ghosh | Controlled propulsion of artificial magnetic nanostructured propellers[END_REF]. This method uses spherical seeds on which helical pillars are grown through the rotation of a tilted stage during evaporation. The process is shown in Figure 1.15(a), then, the helical structures are freed by sonification. 

Magnetization

Chiral structures are commonly actuated by low-strength uniform rotating magnetic fields. For that purpose, their composition include magnetic elements. They experience a magnetic force f m , and a magnetic torque τ m given by the following expressions [START_REF] Wang | Dynamic modeling of magnetic helical microrobots[END_REF]:

f m = V m (m • ∇)b τ m = V m m × b (1.2)
where V m is the volume of the magnetic material, m is the volumic density of the magnetic moment, and b the magnetic field in which microrobots are exposed.

As the magnetic field is considered quasi-uniform [START_REF] Wang | Dynamic modeling of magnetic helical microrobots[END_REF], the magnetic force f m is negligible. Then, the microrobots only experience a magnetic torque τ m having a maximum value when m ⊥ b.

Regarding different methods to provide a magnetization to microscopic chiral structures we have in [START_REF] Ghosh | Controlled propulsion of artificial magnetic nanostructured propellers[END_REF], the magnetic material is deposited on the robot surface along the whole body length. Then, magnetic torque τ m for such cases depend on the surface of each structure. On the other hand, in [START_REF] Dominik | Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field[END_REF][START_REF] Zhang | Artificial bacterial flagella: Fabrication and magnetic control[END_REF], authors made use of a soft-magnetic head prepared by e-beam evaporation. Hence, all structures experienced the same τ m under the same b but not the same fluidic torque τ f since they could have different geometries. Other methods combine the use of superparamagnetic polymer composites with two photon polymerization for the fabrication of the chiral structures [START_REF] Peters | Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[END_REF]. Through the application of an external magnetic field during the composite soft baking, the single-domain is magnetized parallel to the external magnetic field, achieving shape-independent magnetic properties.

Summary on the fabrication methods

In this section we treated the different manufacturing methods for producing the helical shapes as well as the magnetization methods for providing the chiral structures of magnetic features. The knowledge of these current manufacturing constraints is of high importance to set up a guide toward the conception of optimal structures capable of performing different tasks. Nonetheless, it is very important to have knowledge of the functionalities that chiral swimmers will have to display in different fields, especial the medical one. Therefore, in the next section we will discuss the wide range of applications where such swimmers could play an important role.

Envisioned Applications

Microrobots have the potential to revolutionize a vast number of fields, including medicine [START_REF] Wang | A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy[END_REF], micro-engineering tools, environmental science [START_REF] Zarei | Self-propelled micro/nanomotors for sensing and environmental remediation[END_REF], and so on. Their small size and wireless actuation can facilitate access and navigation in constrained, small, and hard-to-reach sites, where they can perform different tasks. In medicine, they can provide different ways for minimally invasive interventions, targeted diagnosis, and therapy down to cellular scale with high precision and repeatability [START_REF] Ceylan | Translational prospects of untethered medical microrobots[END_REF].

In engineering, they have presented good sensing capabilities [START_REF] Howard Mcnaughton | Magnetic microdrill as a modulated fluorescent ph sensor[END_REF] as well as being potential tools such as pumps for various applications. Regardless the application, similar requirements in terms of functionality are expected. In the following we outline them, namely swimming and pumping, obviously as needed formation for developing effectively the aforementioned applications.

Swimming

The swimming capacity is of vital importance since navigation is required to reach the targeted site and perform the assigned application. Among the different applications, the bio-medical ones are very promising.

Targeted Cargo Delivery

The first application that microrobots could boost, is targeted cargo delivery. Their ability to navigate with highly concentrated therapeutic agents (via surface functionalization) in hard-to-reach sites can improve cargo delivery, thus, minimizing side effects and reducing dose administration. Current studies have demonstrated the ability of chiral swimmers such as the artificial bacterial flagella (ABFs), functionalized with lipoplexes, to deliver calcein (a model water soluble drug) into cell by direct contact [START_REF] Qiu | Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery[END_REF] (cf. Fig. 1.16(a)) in in-vitro experiments. In [START_REF] Immihan Ceren Yasa | 3d-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery[END_REF] is demonstrated the usage of ABFs acting as a cage of stem cells for active cells delivery (cf. Fig. 1.16(b)) in in-vitro applications. In future biomedical applications, these tiny robots might deliver a niche of stem cells to a target tissue for an effective regeneration. Furthermore, a degradable, hydrogel-based ABF is proposed in [START_REF] Ceylan | 3d-printed biodegradable microswimmer for theranostic cargo delivery and release[END_REF] to accomplish theranostic1 functions in a precise and effective fashion. The microswimmer rapidly responds to the pathological concentrations of matrix metalloproteinase-2 by swelling and thereby boosting the release of the embedded cargo molecules (cf. Fig. 1.16(c)). Nonetheless, these practises have not been implemented up to now in in-vivo tests. On the other hand, not only therapeutic can be delivered by these micromachines. In [START_REF] Medina-Sánchez | Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors[END_REF] is presented a novel in-vitro application for chiral swimmers where they acted as spermatozoon microcarriers for the fertilization of a oocyte by inmotile but healthy spermatozoon. The viability of using this technique was tested by measuring the ratio of spermatozoa which achieved a good fertilization without being pierced by the swimmer, achieving a 30% of good tests. Even if this topic is till now an on-going research, it promises to revolutionize the medicine field.

Microrobot-Aided Surgery

The second application, where a correct navigation through fluidic environments is important, is related to microrobot-aided surgery, endoscopy and robot-assisted surgery. The use of microrobots in surgery may have great impact in medicine, allowing to reduce the incision size of current operations to the millimeter scale. Thus, permitting to shorten recoveries time and lowered post-operative patient morbidity [START_REF] Peters | Review of emerging surgical robotic technology[END_REF]. In [START_REF] Sendoh | Fabrication of magnetic actuator for use in a capsule endoscope[END_REF], authors extended the utilization of chiral artificial swimmers for Gastrointestinal (GI) endoscopy. A millimetric magnetic helical actuator was assessed on a phantom capsule which emulates a capsule endoscope (cf. Fig. 1.17(a)).

The limitation of 3D positioning the endoscope was overcome by changing the magnetic rotational plane of the actuator.

Remote Sensing and Healthcare

Another application where swimmers could be involved is in remote sensing and healthcare. They can function as implantable mobile sensors having desired biochemical markers and transmit this spatio-temporal information to the outside world wirelessly. This information can be evaluated using medical imaging tools or in the form of biochemical cues. Among the applications of these mobile sensors, some eye diseases are related to the high concentrations of oxygen into the eye. Therefore, a microrobot capable of performing oxygen concentrations measurements could be required in the near future [START_REF] Bradley J Nelson | Microrobots for minimally invasive medicine[END_REF]. In [START_REF] Olgaç Ergeneman | A magnetically controlled wireless optical oxygen sensor for intraocular measurements[END_REF][START_REF] Olgac Ergeneman | Magnetically controlled wireless optical oxygen sensor for intraocular measurements[END_REF], a magnetically controlled wireless sensor device for minimally invasive intra-ocular oxygen concentration measurements was proposed. This device makes measurements at locations that are currently too invasive for human intervention by integrating a luminescence optical sensor and a magnetic steering system. The sensor works based on quenching of luminescence in the presence of oxygen (cf. Fig. 1.18(b)).

Microrobots as Diverse Tools

We reviewed some of the medical applications where chiral swimmers could have a great impact. Among these tasks, sensing capabilities are included. Helical swimmers can be used as Oxygen concentration and pH sensors (cf. These actuator can be used to steer common endoscopes. (Images adapted from [START_REF] Sendoh | Fabrication of magnetic actuator for use in a capsule endoscope[END_REF][START_REF] Kikuchi | Fabrication of a spiral type magnetic micromachine for trailing a wire[END_REF])

they can be exploited in other range of applications. In general, a helical swimmer could be functionalized with certain chemical compounds that respond to the environment changes, namely, pH, oxygen concentration, temperature, among others [START_REF] Dahman | Nanotechnology and functional materials for engineers[END_REF]. The response can be a color change of the environment or a generated cue that could be measured. Therefore, in this way helical micro-machines are promising candidates for being used as chemical portable sensors for in-vitro and in-vivo applications. On the other hand, another approach to give sensing capabilities to helical swimmers is by characterizing the rheology of the fluidic medium around them. Once known the robot behavior within the medium, it is possible to determine small changes on the rheological features e.g. viscosity, density, elasticity, and so on. In [START_REF] Ghosh | Helical nanomachines as mobile viscometers[END_REF], the authors gave artificial micromachines a new functionality as mobile viscosity sensors. The principle of this application relies on measuring the change of the precession angle2 as a function of the magnetic field rotation frequency. Therefore, by having its characteristic curve, frequency vs. precession angle, within a fluid where its viscosity is known, it is possible to know locally the viscosity value of other fluids.

Pumping

The pumping capacity is another function of interest. Chiral swimmers could produce a flow displacement opposite to their thrust direction. Then, when they are stacked within viscoelastic fluids while being actuated with a rotating magnetic field, they may produce a counterflow that could serve for open up internal cavities in the human body, and so on. In that sense, we review some of the applications where this task could play an important role. In 2004, the authors demonstrated that planar arrays of bacteria flagella organisms improve mixing at low Reynolds number, thus opening up a new door for the future artificial swimmers in mixing processes [START_REF] Jun | Enhanced diffusion due to motile bacteria[END_REF][START_REF] Kim | Use of Bacterial Carpets to Enhance Mixing in Microfluidic Systems[END_REF] (cf. Fig. 1.19(a)). In 2009, it was added a new functionality to helical swimmers as micro-pumping machines [START_REF] Kobayashi | 3d magnetic microactuator made of newly developed magnetically modified photocurable polymer and application to swimming micromachine and microscrewpump[END_REF]. Continuing with this development, in 2015, it was conceived a syringe like helical robot consisted of an internal Arquimedian pump for microparticles delivery [START_REF] Huang | 3d printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents[END_REF] (cf. Fig. 1.19(b)). The authors demonstrated the controlled delivery of microspheres by magnetically actuating the internal Arquimedian pump. On the other hand, the generated flow and/or vortex around helical swimmers can harnessed for microobjects indirect manipulation [START_REF] Paris | On-chip multimodal vortex trap micro-manipulator with multistage bi-helical micro-swimmer[END_REF][START_REF] Barbot | On-chip microfluidic multimodal swimmer toward 3d navigation[END_REF][START_REF] Huang | Cooperative manipulation and transport of microobjects using multiple helical microcarriers[END_REF] (cf. Fig. 1.19(c)). Moreover, swarms of coordinated helical robots with different step-out frequencies can be used for in-vitro pick-and-place tasks [START_REF] Huang | Cooperative manipulation and transport of microobjects using multiple helical microcarriers[END_REF], being promising shortly for micro assembling processes.

Objectives

From the analysis of nature, we highlighted the fact that swimming at small scales requires original strategies, with unconventional designs. Various solutions have been proposed for artificial micro-swimmers. However, it lacks design rules for building structures that perform pumping, swimming or a combinations of both tasks at the same time. In such a context, providing of guidelines for the design of such structures is the main objective of this thesis. The optimization problem will be to find solutions to optimize the shape of helical swimmer structures (HSs) and/or the chiral swimmer structures (CSs) for classical operations: swimming and pumping while taking into account the existent fabrication constraints. To accomplish so, we structure the chapters of this thesis as follows:

• Methodology for the optimization: in this chapter we lay the foundation of the optimization problem and the methodology by introducing two approaches, namely numerical and experimental.

• Optimization of helical swimmer structures: in this chapter we optimize the geometrical parameters of helical swimmer structures immersed in low Reynolds environments to obtain an effective swimming propulsion and pumping characteristics in two fluid scenarios: Newtonian and non-Newtonian fluids.

• Optimization of chiral swimmer structures: we study chiral swimmer structures which are different to the previously seen helical swimmer structures. The geometries of these particular chiral structures are well defined in chapter 2. In this chapter, we cover the optimization of such structures to achieve an effective performance at swimming and pumping in low Reynolds number. Moreover, we also cover two fluid scenarios: Newtonian and non-Newtonian fluids.

Chapter 2

Methodology for the optimization

In this chapter, the general methodology used in this work for optimizing swimmer geometries is explained. The organization of the chapter is divided as follows: the optimization problem is defined, then the numerical methodology and finally the experimental methodology. In the first part, we cover the different aspects related to the optimization problem, from the specific tasks entrusted to chiral swimmers, to the different constraints related to the fabrication and the geometry. In the second part, the different numerical approaches are compared to then discern which one is the most suitable for our concerns. Then, the chosen numerical approach for this work is detailed, namely, finite element analysis. In the third section, the experimental set-up is detailed with the fabrication of the scaled-up micro-swimmers and their actuation. 

Contents

Formulation of the Optimization Problem

General Overview

In the first chapter, we analysed design aspects concerning the conception and fabrication of helical micro-swimmers and/or chiral micro-swimmers. Moreover, we also saw the wide range of applications that such microrobots could boost, and thus, the importance of optimizing their capacities for swimming and pumping. In that sense, the key idea in the optimization problem we deal with is to find design laws that maximizes those capacities. To accomplish so, we divide this first section into: 1) setting geometrical constraints for the optimization problem. 2) setting the different physical constraints that involves the fluidic model (Newtonian and non-Newtonian), and the magnetic considerations. In the "Geometrical Constraints" section, we provide different geometrical variable spaces that will serve to map the response of various helical swimmer structures (HSs) and/or chiral swimmer structures (CSs). The response is expressed in terms of a coefficient that will reflect the relative capacity to perform either swimming or pumping. Afterwards, we provide the different aspects on modelling the structure dynamics in low Reynolds number fluids for performing swimming and pumping tasks in the "Physical Modelling" section. We also describe there our choices of the magnetic constraints for the optimization problem. And finally, we establish the metrics for measuring the performance of the structures at swimming and pumping in the "Optimization Criteria" section.

Geometrical Constraints

We divide the geometrical constraint into two case studies. The first one is related to the optimization of the well-known Helical Swimmer structures (HSs) and the second one for a more general classification of HSs that we called Chiral Swimmer structures (CSs). HSs are already proved to effectively swim and pump at low Reynolds numbers and finding the optimal geometrical parameters for performing the named tasks is of high interest. We therefore pay a special attention considering it as our first case study. In contrast, CSs have not been widely studied in the literature. We then consider appropriate to establish a starting framework for the analysis of one special kind of chiral structures whose features will be described afterwards. And then, we assigned a second case study for CSs. Here, we provide all the formulation for both cases, and later on, results will be presented in chapters 3 and 4 for each of them.

Helical Swimmer structures (HSs)

Here, we consider a sub-type of chiral swimmers, the well-known helical swimmer structures (HSs). To do so, the following parametric equation ψ is used to represent the helical centerline of HS structure (Fig. 2.1):

ψ(s) = R cos(s)x + R sin(s)ŷ + λs 2π ẑ (2.1)
with ψ : R → R 3 , s ∈ [0, 2πN ], R the helical radius, λ the pitch value, N the number of turns, and {x, ŷ, ẑ} the base of unit vectors in R 3 . The HSs are considered initially to have a circular cross-section with radius r. Note that upper-case 'R' and lower-case 'r' have different geometrical meanings. To compare structures during the optimization, we will keep the total volume constant, V = Lπr 2 , with L the total flagellum length. By doing that, we can reduce the number of possible geometrical configurations in Eq. (2.1). For that purpose, we introduce a dimensionless set of parameters {β, θ, R r } with the aspect ratio β = L 2r , the helical angle θ = arcsin( t • ẑ), and the normalized helical radius R r . Note that the helical angle here is the complement of the pitch angle that is commonly defined as arccos( t •ẑ) being t the tangent vector of the helix equation and ẑ the propulsion direction of the swimmer. With those variables, Eq. (2.1) turns into:

Λ(β, θ, R r , s) = R r ( V 2πβ ) 1 3 cos(s)x+ R r ( V 2πβ ) 1 3 sin(s)ŷ+ R r ( V 2πβ ) 1 3 tan(θ)sẑ (2.2) with θ ∈ [0, π 2 ], R r and β in R + , s ∈ [0, 2πN ],
and N being defined as follows:

N = β cos(θ) π R r (2.3)
The cross-section is also parametrized for the optimization. We consider the general case of an elliptic geometry with major radius a, minor radius b, and orientation φ (Fig. 2.1(b) and (c)). Major and minor radius are computed considering the cross-section area as constant for each configuration with the same aspect ratio β, so, ab = r 2 . By utilizing the vector base perpendicular to the helix centerline {n, b} formed by the normal and binormal vectors, and the base associated to the minor and major axis respectively {n p , bp }, the orientation is defined as φ = arccos(n•n p ). Thus, we use the ratio between major and minor radius a b and orientation φ as control parameters to tune the cross-section shape. The parameter φ has been already used in the literature for the building of twist-type HSs [START_REF] Peters | Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[END_REF]. Then, its implementation in the design of future micromachines for medical purposes has been demonstrated to be practical and feasible.

Chiral Swimmer structures (CSs)

We wish to optimize Chiral Swimmer structures (CSs) for two specific tasks namely, swimming and pumping. The chiral structures are build by considering a general parametrization of the helical curve, called ζ(t), by using functions that replace the common constant values of the helical radius R and the linear function of the pitch increment λt/2π where λ is the helical pitch value. Those functions are f (t) and g(t) respectively, to be defined during the optimization. Let us define the helical parametrization ζ(t), with ζ: R → R 3 and t ∈ [0, T i ]. The general form of this function is:

ζ(t) = f (t) cos(t)x + f (t) sin(t)ŷ + g(t)ẑ (2.4)
with f (t) and g(t) being functions of R → R, and {x, ŷ, ẑ} the base of unit vectors in R 3 . Then, let us consider the unit tangent function t of this curve, computed as:

t = (f cos(t) -f sin(t))x + (f sin(t) + f cos(t))ŷ + g ẑ f 2 + f 2 + g 2 (2.5) 
Let suppose that this function is continuous and smooth, C 2 class. Let us define the scalar function pitch angle, α, as cos(α) = t • ẑ, being ẑ the unit vector in z-direction. Therefore, cos(α) can be expressed as:

cos(α) = g f 2 + f 2 + g 2 (2.6)
Now, let us compute the length s of ζ as a function of parameter t.

s(t) = t 0 f 2 + f 2 + g 2 dτ (2.7)
Then, let set constant the total length of this curve equal to L, so we obtain:

L = T i 0 f 2 + f 2 + g 2 dτ (2.8)
with the integration interval t ∈ [0, T i ]. For ζ we will start by adding the following constraint: the starting point (t = 0) will be situated at the origin of the 3D space.

In other words, f (0) = 0 and g(0) = 0. Moreover, other consideration to make straightforward the calculation is to set constant the pitch angle α. We will use this assumption in the following. By doing so, and recalling α m that constant pitch angle, the expression in 2.6 can be rewritten as: Then, by developing this expression, we can come up with the following non-linear differential equation:

cos(α m ) = g f 2 + f 2 + g 2 (2.9) α m =70 α m =50 α m =30 T i =130π/180 T i =110π/180 T i =90π/180
γg 2 = f 2 + f 2 (2.10) with γ = 1-cos(αm) 2 cos(αm) 2 .
Thereafter, if we derive the precedent differential equation, we can obtain:

γg g -f (f + f ) = 0 (2.11)
For this differential equation there exist infinite solutions for f and g. However, let us take some considerations in order to limit these solutions. Let us consider the particular case where, g = 0, it means that it varies linearly according to the parameter t, such as in the case of the cylindrical helices. From equation 2.9, we can integrate g as:

t 0 g dτ = cos(α m ) t 0 f 2 + f 2 + g 2 dτ (2.12) g(t) = g(0) + cos(α m ) t 0 f 2 + f 2 + g 2 dτ (2.13)
Since g(0) = 0, we can deduce the following expression for g(t):

g(t) = cos(α m )L t T i (2.14)
Then, retaking the expression 2.11, and using the previous expression 2.14, we obtain:

f (f + f ) = 0 (2.15)
Thus, f = 0 or f + f = 0. If f = 0, then f is constant. However, as f (0) = 0 then f (t) = 0, and that is contradictory. Therefore, f + f = 0, which corresponds to the harmonic oscillator equation. The general form of the solution is A sin(t + γ), being A and γ constants to be found with the initial conditions. The first condition is that f (0) = 0, then γ = 0. In order to find A, we can replace f expression on equation 2.8, as follows:

L = T i 0 (A cos(t)) 2 + (A sin(t)) 2 + (cos(α m ) L T i ) 2 dτ (2.16)
Finally we can obtain the following expression for the amplitude A and the upper bound of t:

sin(α m ) L = AT i (2.17)
Then, we have to choose proper values of T i and A. Considering sin(α m ) > 0, the parametrisation in general is given by:

ζ(t) = L T i (sin(α m ) sin(t) cos(t), sin(α m ) sin(t) 2 , cos(α m )t) (2.18)
Different chiral shapes are depicted with this parametrisation in Fig. 2.2.

Physical Modelling

Fluid Dynamics Considerations

HSs and more in general CSs develop a rotary motion for swimming and pumping under low Reynolds number Re conditions. In that case, we separate into two cases the fluid environment where HSs and/or CSs might be immersed. The first case is when HSs and/or CSs are immersed in a Newtonian fluid environment. The second subsection refers to non-Newtonian fluid.

Newtonian Fluids

The fluid flow generated by chiral structures is then governed by Navier-Stokes (N-S) equations in the creeping flow regime given as follows:

∇ • Γ = 0 in Ω f × [0, t 0 ] (2.19) Γ = -pI + µ(∇u + (∇u) T ) (2.20) ∇ • u = 0 in Ω f × [0, t 0 ] (2.21)
with u the fluid velocity field, p the pressure and µ its dynamic viscosity. Γ represents the stress on an infinitesimal fluid volume, Ω f depicts the fluid domain (Fig. 2.1(d)), and [0, t 0 ] the temporal domain. The second term of Eq. (2. [START_REF] Lowe | Rapid rotation of flagellar bundles in swimming bacteria[END_REF]) is zero since inertial effects are negligible in the Stokes flow regime. The boundary condition in the fluid-structure domain ∂Ω f s are given by: 

u = v in ∂Ω f s × [0, t 0 ] (2.22) θ( ) (b) (b) ω ω U > 0 U = 0 u fluid (a) (b)
v = dr dt in ∂Ω f s × [0, t 0 ] (2.23) v = U + ω × (r -r 0 ) in ∂Ω f s × [0, t 0 ] (2.24)
where v is the chiral structure velocity in one point r situated on its surface. r 0 is the HS center of mass, U = Uẑ is the propulsion swimming speed (cf. Fig. 2.3(a)), which in the case of pumping is zero (cf. Fig. 2.3(b)). Finally, ω = ωẑ is the chiral angular velocity. The final boundary condition, defined for the limits of the container (∂Ω f c ), is:

u = 0 in ∂Ω f c × [0, t 0 ] (2.25)
which indicates a zero fluid speed in the fluid-container boundary. Then, the fluidic force f f on the chiral structure is computed by integrating the total stress (Γ) over all the chiral structure's surface.

f f = ∂Ω f s Γn f ds (2.26)
being nf the normal vector to the surface of each finite element on the robot surface, and ds the surface element. Analogously, we can compute the fluidic torque τ f as follows:

τ f = ∂Ω f s (r -r 0 ) × Γn f ds (2.27)
Finally, as chiral swimmers are immersed in a low Re fluid, getting the steady state is quasi-immediate as the sum of external forces and torques is null:

f m + f f = 0 (2.28) τ m + τ f = 0 (2.29)
where f m and τ m are the magnetic force and torque respectively.

Non-Newtonian fluids

The other case study is related to modelling the behaviour of HSs and/or CSs dynamics in non-Newtonian fluids. Non-Newtonian fluids are presented in most of our biological fluids, and, in future medical expeditions with such tiny micromachines, having prior knowledge of their dynamics behaviour in such challenging environments is of relevant interest. Typically, non-Newtonian fluids display complex rheological properties including viscoelasticity and shear-thinning behaviour [START_REF] Sznitman | Locomotion through complex fluids: an experimental view[END_REF][START_REF] Gwynn | Theory of locomotion through complex fluids[END_REF]. A viscoelastic fluid exhibits elastic features, whereas the viscosity of a shear-thinning fluid decreases with shear-rate or, on the contrary, increases in the case of a shearthickening fluid. On the other hand, to mathematically model such behaviours, we can find various models in the literature such as "the power law model" [START_REF] Molla | Non-newtonian natural convection along a vertical heated wavy surface using a modified power-law viscosity model[END_REF], "Bingham-Papanastasiou model" [START_REF] Khan | Numerical analysis for the bingham?papanastasiou fluid flow over a rotating disk[END_REF], among others. On the other hand, in this work we adopted the constitutive model of Carreau-Yasuda [START_REF] Boyd | Analysis of the casson and carreau-yasuda non-newtonian blood models in steady and oscillatory flows using the lattice boltzmann method[END_REF], which provides reliable results when modelling the shear-thinning behaviour presented in most of our biological fluids [START_REF] Hayat | Peristaltic transport of carreau-yasuda fluid in a curved channel with slip effects[END_REF]. This model is depicted by a non-linear expression between the viscosity and the shear-rate given by:

µ = µ ∞ + (µ 0 -µ ∞ )[1 + (λ C | γ|) 2 ] n-1 2 (2.30) 
with γ = ∇u + (∇u) T the strain rate tensor with its magnitude

| γ| = ( γ ij γ ij /2) 1/2 .
The power law index n < 1 characterizes the degree of shear thinning, and 1/λ C characterizes the critical shear rate at which the non-Newtonian behaviour becomes significant. µ 0 and µ ∞ stand for the zero and the infinite shear-rate viscosities, respectively. Then, we introduce a dimensionless number called "Carreau number" (Cu) which indicates the rheological behaviour and is defined as the product λ C ω and is proportional to λ C | γ|. And finally, to better visualize the viscosity behaviour with the stress, in Fig. 2.4 is plotted the viscosity µ as a function of the Carreau number Cu for blood with a concentration of 25% of hematocrits. The parameters that fit the Carreau-Yasuda model for such a fluid are: µ 0 = 0.178, µ ∞ = 0.0257, n = 0.330 and λ C = 12.448. Data were taken from [START_REF] Kwon | Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty[END_REF]. By considering the previous equation 2.30, the deviatronic stress (τ d ) is given by the following expression:

τ d = (µ ∞ + (µ 0 -µ ∞ )[1 + (λ C | γ|) 2 ] n-1 2 ) γ (2.31)
Then, the total stress tensor Γ for the non-Newtonian case is expressed as follows:

Γ = -pI + τ d (2.32)
with Γ for the non-Newtonian case is possible to compute the total fluidic force f f and the total fluidic torque τ f on the swimmer structure through the expressions provided in Eq. (2.26) and Eq. (2.27). 

Magnetic Considerations

Previously, we have reviewed the fluid dynamic considerations concerning the swimming navigation and the pumping capacities of HSs and/or CSs. However, in order to actuate them through an external magnetic field b, such structures must contain magnetic elements that provide them of a certain magnetization vector m. They experience a magnetic force f m , and a magnetic torque τ m given by the following expressions [START_REF] Wang | Dynamic modeling of magnetic helical microrobots[END_REF]:

f m = V m (m • ∇)b τ m = V m m × b (2.33)
where V m is the volume of the magnetic material. We previously reviewed in section 1.3.4 of chapter 1 the different existent techniques that are commonly used to get magnetized chiral structures.

In this work, we do consider that all HSs and CSs have the same quantity of magnetic material V m as well as the volumic density of the magnetic moment m.

In that regard, the method used in [START_REF] Peters | Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[END_REF] can apply for our subsequent evaluation. We consider structures with same volume that in average can keep the same quantity of magnetic material, if such particles are magnetized through the chiral structure easy axis, in average, the magnetization of such structures will be almost the same.

Other cases where this study could be applicable is when using magnetic heads [START_REF] Dominik | Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field[END_REF], nonetheless, in such a case, the head drag have to be negligible to not alter the helical contribution to the thrust.

Optimization Criteria

Swimming

Authors in [START_REF] Giuliani | Predicting and optimizing microswimmer performance from the hydrodynamics of its components: The relevance of interactions[END_REF] provide three different coefficients for evaluating the optimal swimming performance, namely, energetic efficiency, swimming efficiency, and propulsion efficiency. To compute those coefficients, they made use of the swimming speed U (Fig. 2.3), the motor torque τ and drag coefficients given by resistive coefficient considering a resistive force model of the swimmer. A helical flagellum was then considered with a head as a base structure. Then, using the dimensionless head drag coefficient A 0 , the energy efficiency was computed as the ratio A 0 U 2 τ ω . On the other hand, the drag effect was not considered for the definition of swimming efficiency, computed as the ratio U τ ω . In [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF] a dimensionless expression of swimming efficiency µL 2 U τ is proposed, with τ the fluidic torque magnitude and L the flagellum length of the HS. In this work, we consider structures without head or the case where the head drag can be negligible. Then, the latter expression is the most adapted. Swimming efficiency coefficient makes the optimization problem to be interpreted as to find the optimal structure that generates a greater speed consuming the least possible torque. On the other hand, the propulsion efficiency, defined as U ω , and can be regarded as a possible measurement of the linear distance covered per rotation. Previous expressions, µL 2 U τ and U ω , stand for two different ways of focusing on the optimization problem considering the nature of the power source. The former definition indicates that we have a limited magnetic source, and in order to find an optimum chiral structure, we have to search for structures that outperforms the others with the least possible torque. The latter definition refers to the fact that we have an infinite magnetic source, typically a few teslas, which always provides the necessary torque to rotate the chiral structure, thus, demonstrating no step-out frequencies or frequencies at which the magnetic torque τ m is not strong enough to rotate the chiral swimmer structures synchronously with b. Therefore, in such a case, evaluating the swimming speed per rotation indicates an optimum performance.

Pumping

To evaluate pumping, in [START_REF] Raz | Swimming, pumping and gliding at low reynolds numbers[END_REF][START_REF] Zhong | The flow field and axial thrust generated by a rotating rigid helix at low reynolds numbers[END_REF] the total thrust (T = f f • ẑ) generated by the HSs and/or CSs is used as a study variable. In [START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF], authors introduce the total flux I generated by HSs for studying pumping. They compute the flux I = Hm u • nH ds in a plane H m perpendicular to the axis of the HSs and/or CSs, with u the fluid velocity field and nH the normal vector of plane H m . In those cases, the pumping action is evaluated under the criterion of an infinite magnetic source. However, for future chiral structures that must accomplish pumping and swimming tasks for one mission, the evaluation under the limited magnetic source criterion is of high importance. Therefore, to treat the case of the finite source in the pumping case we propose in the following to use the dimensionless energetic efficiency at pumping expression, T L τ .

Overall performance

The criteria used in our study consists in evaluating separately the swimming and pumping, considering the two types of magnetic sources namely, an infinite and a limited one. Afterwards, we analyse the performance of both tasks at the same time.

For swimming, we will evaluate propulsion efficiency with the situation of infinite magnetic source by proposing the following expressions as study variables: the swimming speed U and the dimensionless speed U Lf with f = ω 2π . Then, to evaluate the case where we account with a limited magnetic source, we use the dimensionless swimming efficiency µL 2 U τ . For pumping, we treat the case of the infinite source through analysing directly the total thrust T generated by a chiral swimmer structure and the normalized flux

I ωR 3 c
at the middle plane of the structure (H m ) with R c the container radius. To treat the case of the finite source we use the dimensionless energetic efficiency at pumping expression, T L τ .

Numerical Methodology

In the previous section, we have reviewed the formulation for mathematically modelling and optimizing the swimming, and pumping capacities of HSs and/or CSs. Nonetheless, in this section we overview some the most common numerical methodologies that could be used for implementing our approach. We start with a summary of the fundamental singularities of Navier-Stokes equation in the creeping flow regime, which are needed to understand the pioneer studies, such as the resistive force theory (RFT) and the slender-body theory (SBT). We then recap the different numerical methods namely, boundary element method (BEM), resistive force theory (RFT), slender body theory (SBT), and computational fluid dynamics (CFD). Afterwards, we establish a comparison between those methods to choose adequately the numerical method for our purposes (CFD) and finally describe it in more details.

Fundamental Singularities

Analysis of the detailed hydrodynamics of low-Reynolds-number flows due to slender appendages has been aided widely by the development of methods to construct the flow fields by means of distributions of fundamental singularities [START_REF] Brennen | Fluid mechanics of propulsion by cilia and flagella[END_REF]. These fundamental singularities are obtained by considering a single point force f p in an unbounded inertialess fluid. Pioneering works solved Stokes equations with such a condition [START_REF] Wilhelm | Hydrodynamik[END_REF][START_REF] Martinus | On the motion of small particles of elongated form suspended in a viscous liquid[END_REF] obtaining what we know as stokeslets, the singular solution of Navier-Stokes equation in the Stokes flow regime. Now, considering the full system of flow equations in the low Reynolds number regime (Re << 1), the force point problem becomes:

-∇p(r) + µ∇ 2 u(r) = -f p δ(r) (2.34)

∇ • u = 0 (2.35)
with u(r) the fluid field, p(r) the fluid pressure, µ the fluid viscosity, f p the point force on the origin of the coordinate system, and δ(r) the dirac delta function. We demand the flow field vanishes at infinity, i.e. |u(r)| r→∞ -→ 0. Then, the solution is uniquely determined. By solving this problem we mean finding the form of the velocity and pressure fields in the fluid. Here, we show the solution following the procedure of Zapryanov and Tabakova [START_REF] Zapryanov | Dynamics of bubbles, drops and particles[END_REF]. It follows from the properties of Fourier transform and fundamental solutions of Laplace and biharmonic equations. In fact, one does not have to calculate any integral explicitly in this approach. Firstly, by taking the divergence of equations 2.35, we obtain a Poisson equation for pressure.

∇ 2 p(r) = ∇(f p δ(r)) (2.36)
Thereafter, by applying Fourier transform to the above equation, which gives

k 2 p(k) = -ik • f p =⇒ p = -i k • f p k 2 (2.37) 
Then, by applying the Fourier transform to Stokes equations and using the obtained expression to eliminate pressure from the equations and get a closed expression for the velocity field:

ik( k • f p k 2 ) + µk 2 û(k) = f p (2.38)
The expression in the k-space:

û(k) = 1 µk 2 f p -k( k • f p k 2 ) (2.39)
By using the definition of the inverse Fourier transform, the expressions for velocity and pressure fields can be straightforwardly written:

u(r) = 1 8µπ 3 R 3 dk e ik•r k 2 f p -k( k • f p k 2 ) (2.40) p(r) = i 8π 3 R 3 dk e ik•r k 2 (k • f p ) (2.41)
Based on the knowledge of the fundamental solutions of Laplace equation, we find useful expressions relating derivatives of 1/ r with their Fourier transforms. Then, we get a relation which describes the pressure field.

p(r) = -f p • ∇ 1 4π r = f p • r 4π r 3 (2.42)
Then, we use the identity kk

• f p = (f p • k)k,
where k is column vector. Note that the expression kk, which acts as an operator, is equivalent to write it in its matricial form kk t , thus, giving a matrix since k is a column vector. These previous relations imply that:

u(r) = f p 4πµ r - f p µ • ∇ ⊗ ∇ r 8π (2.43)
Due to the fact that ∇ r = r r , we get:

1 8π ∇ ⊗ ∇ ( r ) = 1 8π ∇ ⊗ r r = - 1 8π rr r 3 + I 8π r (2.44)
Finally, the expression for the velocity field is:

u(r) = f p 8πµ r • I + rr r 2 (2.45)
with I the identity tensor. It follows that a derivative of any order of this solution is also a solution to the basic equations. Thus, one can construct higher-order singularities such as Stokes doublet, Stokes quadrupole, etc. Those latter consist of equal and opposite Stokeslets orientated in opposite directions, in the case of Stokes doublets, or perpendicularly, in the case of Stokes quadrupoles, respectively.

In [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF] authors seem to have used for the first time a linear superposition of these singularities in order to construct the fluid mechanics of flagellated microorganisms.

Simplified Dynamic Model

In this subsection, we provide a general framework on modelling swimming and pumping dynamics of a HSs and/or CSs under some assumptions. The first case is the helical swimming with a single flagellum 2.3(b). The swimmer is force-free (f = f f + f m = 0) and is driven by setting a constant angular velocity ω. The outputs for evaluating this task are the forward structure velocity U and the generated torque τ = τ f + τ m . The second case is a pump created through a fixed helical structure U = 0 (cf. figure 2.3(a)). To drive the pump, it can be applied either a constant torque (τ ) or a constant angular velocity ω. Usually, to evaluate the pump, the flow rate and frequency are characterized. Moreover, there is another quantity called 'fluidic thrust' that serves for the evaluation of the pumping evaluation since it demonstrates linearity with the rotation frequency. Then, the outputs f and either ω or τ are analysed accordingly to the previous choice. Moreover, we analyse the caudal I generated by the structure about a transversal plane located at the middle of this.

In practice, methods such as the slender body theory (SBT), and other involving centerline distribution of regularized stokeslets (RS) have a similar procedure. Firstly, the flow is created by an unknown force distribution, either on a surface and/or centerline for the method of RS or on the filament centerline for SBT, RFT.

No-slip boundary conditions are imposed by setting the flow velocities at a set of collocation points equal to the velocity specified from the kinematics of the object.

That results in the formation of a linear system of equations which may be solved to find the force distribution and hence the velocity field everywhere. In the subsequent equations r 0 is the origin of the body frame, U is the translational velocity, and ω is the angular velocity about r 0 and a vector parallel to the axis of structure, then the velocity v at a point α is given by:

v(r α ) ≡ v α = U + ω × ∆r α (2.46)
where ∆r α = r αr 0 . The previous equation can take this form T . Being I the identity matrix and Sk the skew-symmetric matrix generated with a certain vector. Since this is a linear equation, that expression can be written in terms of the 3 × 6 matrix K α .

v α = IU - Sk(∆r α )ω = [I|Sk(-∆r α )] (U ω) T = K α (U ω)
v α = K α U ω =    1 0 0 0 ∆r α z -∆r α y 0 1 0 -∆r α z 0 ∆r α x 0 0 1 ∆r α y -∆r α x 0    U ω (2.47)
This allows us to represent the velocity at the collocation points of the system as:

V ≡     v 1 . . . v N     =     K 1 . . . K N     U ω = K U ω (2.48)
where K ∈ R 3N ×6 . We use capital letter V to represent the 3N ×1 vector containing the N velocities of all collocation points and similarly a capital letter K which is composed of all N K α . To satisfy the non-slip, the velocity specified by the kinematics is set equal to the fluid velocity at the collocation points. Thus, the fluid velocity vector V can also be written as:

V =       g 1,1 g 1,2 . . . g 1,N g 2,1 g 2,2 . . . g 2,N . . . . . . . . . . . . g N,1 g N,2 . . . g N,N           p 1 . . . p N     ≡ GP (2.49)
where G ∈ R 3N ×3N and P ∈ R 3N ×1 contains the 3 × 1 forces p α at each collocation point. we call the submatrices g α,β ∈ R 3×3 the kernel. The kernel represents the velocity at point α due to a force at point β. Each numerical method can be specified by choosing a different kernel.

Numerical Methods

Boundary Element Method (BEM)

For the case of the structure swimming and pumping we choose r 0 = 0 at the bottom point situated on the helical axis. The total force f and torque τ can be computed as:

f = N α=1 p α (2.50) τ = N α=1 ∆r α × p α (2.51)
Then, we can rewrite both equations in a matricial form:

f τ = K T P (2.52)
Enforcing the non-slip boundary condition on the surface of the helical structure lets us to form a relationship between the velocities U and ω, and the total force f and torque τ on the structure. Solving equation 2.49 for P = G -1 V and using equations 2.48 and 2.52 is obtained:

f τ = K T G -1 K U ω = R U ω = R T R C R C T R R U ω (2.53)
where R = K T G -1 K is the resistance matrix with 3 × 3 translational, rotational, and coupling components denoted by R T , R R , and R C , respectively. In the case of pumping as we consider the structure fixed U = 0. Then the system yields:

f τ = R C R R ω (2.54)
Then the solution can be solved depending on the input, either τ or ω. If having τ :

ω = R R -1 τ (2.55) f = R C R R -1 τ (2.56)
or else:

τ = R R ω (2.57) f = R C ω (2.58)
In the case of swimming, from equation 2.53 and considering that f = 0 and a constant angular velocity ω it can be obtained:

U = -R T -1 R C ω (2.59) τ = -R C T R T -1 R C ω + R R ω = (-R C T R T -1 R C + R R )ω (2.60)

Resistive Force Theory (RFT)

In resistive force theory, long-range hydrodynamic interactions are ignored, so the hydrodynamics is treated through the resistance matrix. Resistive force theory is used to calculate the resistance matrix of the helix as follows. The local force per unit of length (f l ) on the filament is:

f l = ε ⊥ v + (ε -ε ⊥ ) tt • v (2.61)
with v = U + ω × r, t is the local unit tangent vector, and the coefficients ε and ε ⊥ are the drag coefficients obtained by the slender body analysis. For the theories of Gray and Hancock [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF] and Ligthill [START_REF] Lighthill | Flagellar hydrodynamics[END_REF], these coefficients are: 

ε , ε ⊥ =    2πµ Ln(2λ/r)-1 2 , 4πµ Ln(2λ/r)+ 1 2

Gray and Hancock

Lighthill

(2.62)

being λ and r the pitch and the filament radius of the helical structure, and µ the fluid viscosity.

The Lighthill coefficients might be expected to be more applicable since in a comparison of RFT and SBT for planar thin filaments Johnson and Brokaw found that the Lighthill coefficients adequately predicted local forces and torques on the filament, while Gray and Hancock coefficients required ≈ 35% adjustments to produce a comparable accuracy. By integrating the force and torque r × f along the filament for various translational and rotational velocities, the resistance matrix R of the structure is obtained.

Slender Body Theory (SBT)

In the case of the slender body theory, the long-range hydrodynamic interactions are also ignored, and it is considered a linear density force (f l ) that includes a parameter κ which it is typically defined as the ratio between the large radius of curvature of the slender body (R in the case of helical structures), and its small diameter 2r.

Then the force can be obtained by integrating the following expression:

f l = 2πµ Ln(κ) ( t( t • v) -2v) (2.63)
with v being the velocity of the point, t being the local unit tangent vector, and κ = R 2r . This result may be interpreted as the statement that each line element has twice the resistance in the transverse direction than the resistance in the longitudinal direction, and that the motion of one line element does not affect the force on another element.

Computational Fluid Dynamics (CFD)

Computational fluid dynamics (CFD) is based on finite element method (FEM), a discretization method for solving partial differential equations (PDEs). This method approximates the solutions of these PDEs by subdividing a large system into smaller, simpler parts that are called finite elements. One of the advantage of using FEM relies on its flexibility to combine different physics if required by the problem. In the case of helical swimmers, they interact with the viscous medium deforming the fluid net with a cork-screw motion. Indeed, in order to solve the fluid dynamics and the swimmer motion, it is necessary to combine fluid dynamics physics with the solid mechanics of the swimmer. This kind of problems that involve structures in fluid media are well-known as fluid-structure interaction (FSI) problems. Helical swimming involves a FSI formulation since the swimming robot rotates around its axis generating a net displacements in a viscous fluid. Nevertheless, this FSI problem is just one-way coupled. It means that due to the rigid structure of the swimmer, the viscous fluid will not be able to deform it. Hence, only the fluid deformation caused by the rotation of the rigid structure is considered. This simplification significantly reduces the computation time. Related to CFD studies, A. Tabak et al. [START_REF] Fatih | Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers[END_REF] provided corrections to the resistance coefficients for the hydrodynamic interactions providing reliable results using RFT simulations. To do so, corrections were based on full three-dimensional CFD models. A. Acemoglu and S. Yesilyurt (2014) used a CFD model to study swimming of a model microorganism with a helical tail in cylindrical channels and reported effects of geometric parameters of the helical tail on the swimming velocity and efficiency [START_REF] Acemoglu | Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels[END_REF]. E. Demir and S. Yesilyurt investigated the swimming of helical rods, ribbons, screws and filaments, in circular channels under constant angular velocity or constant external torque [START_REF] Demir | Low reynolds number swimming of helical structures in circular channels[END_REF].

Difference between numerical approaches

Previously, we reviewed different methods for modelling HSs and/or CSs at low Reynolds numbers. Simplified methods such as the resistive force theory (RFT) and slender-body theory (SBT) are based on the partition of quasi-infinitesimally slim structures. This enormously reduces the computing time which can be exploited for real-time microswimmer dynamic evaluation in biomedical contexts [START_REF] Lauga | Swimming in circles: motion of bacteria near solid boundaries[END_REF][START_REF] Fatih | Improved kinematic models for twolink helical micro/nanoswimmers[END_REF]. On the other hand, RFT has been found to be not so accurate compared to SBT results [START_REF] Johnson | Flagellar hydrodynamics. a comparison between resistive-force theory and slender-body theory[END_REF] and also demonstrated misleading results when compared with in vitro experiments [START_REF] Rodenborn | Propulsion of microorganisms by a helical flagellum[END_REF]. Besides, SBT and boundary element method (BEM), have demonstrated good performance for simulating slender helical filaments [START_REF] Phan-Thien | A boundary-element analysis of flagellar propulsion[END_REF][START_REF] Ramia | The role of hydrodynamic interaction in the locomotion of microorganisms[END_REF]. Nevertheless, those simplified methods do not accurately perform for a big range of structures, namely the non-slender structures. There is little guidance available for choosing a reliable method for thicker HSs and/or CSs. Moreover, thicker filament or small aspect ratio structures can be found in microswimmers as well as in many motile helical bodies of bacteria. In figure 2.5 is shown the parameter range of HSs that has been studied. The current simplified methods for modeling them demonstrate a poor performance in the transition to the non-slender structure range, in other words, for larger values of r/R and λ/R parameters. The slender-body theory approach has been demonstrated to not be so accurate for computing the swimming and pumping of HSs as the ratio r/R increases as shown in Fig. 2.6 (partially in the non-slender region). Methods such as centerline distribution of regularized stokeslets (RS) also demonstrated slight improvement for some transitions in the space λ/R and 2r/R (cf. Fig. 2.7). However, it is not enough for computing highly precise HS and/or CS dynamic results. The percentile total error from previous figures is estimated considering the simulation results of surface distribution of reg- There is a region that is not even considered for thicker or small aspect ratio flagella. Image taken and adapted from [START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF]. ularized stokeslets (or any boundary element method) as reference values. In the case of swimming, the error metric is computed as the squared sum of the relative error of the speed and the torque. On the other hand, the pumping error metric is calculated as the squared sum of the relative error of the thrust force and the angular speed. More detailed discussion can be found in J.D. Martindale et al.
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(2016) [START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF]. Another disadvantage of simplified methods relies on the inability to study more complex geometries in 3 dimensions since they just use a centerline partition. For example, to consider non-circular cross-sections and cross-section orientations that could lead to complex structural changes. Few numerical-based works have studied those parameters using boundary element methods and computational fluid dynamics simulations [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF][START_REF] Demir | Low reynolds number swimming of helical structures in circular channels[END_REF], obtaining high accuracy results. Then, to exploit such numerical methods for the quasi no-explored thicker HSs and/or CSs range is not far-fetched.
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In this thesis, we make use of CFD for solving the fluid-structure interaction (FSI) simulation problem and, thus, computing the kinematics and dynamics parameters of a wide range of finite HSs in the non-slender range. In the "Numerical Formulation with CFD" section, we introduce a detailed description of the problem formulation with CFD.

Numerical Formulation with CFD

Fluid dynamics

The one-way coupled FSI problem groups Navier-Stokes (N-S) equations with the mesh treatment, that will be seen subsequently. N-S equations (Ω f fluid domain) solves the fluid dynamics, the rotating structure dynamic (Ω s structure domain) is solved by mesh equations that deal with mesh translation and deformation. The boundary condition (∂Ω f s fluid-structure boundary) on the structure-fluid interface relates mesh translation and fluid dynamics through all time evolution ([0, t 0 ] time interval). In figure 2.1(d) are depicted notations of the different domains. N-S equations are composed of the momentum conservation and the mass conservation equations. They are expressed as follows:

∂u ∂t + ρ(u.∇)u = ∇.Γ + f v in Ω f × [0, t 0 ] (2.64) ∂ρ ∂t + ∇(ρ.u) = 0 in Ω f × [0, t 0 ] (2.65) Γ = -pI + µ(∇u + (∇u) T ) (2.66)
with u as the fluid velocity, p pressure, ρ density, µ dynamic viscosity, Γ depicting the stress on an infinitesimal fluid volume (∇.Γ surface forces) and f v the volumic fluidic forces. The boundary condition in ∂Ω f s that stands for the coupling between N-S equations and the structure movement is given by:

u = v in ∂Ω f s × [0, t 0 ] (2.67) v = ∂r ∂t in ∂Ω f s × [0, t 0 ] (2.68)
where v is the solid structure velocity in one point situated on its surface. Another boundary condition in the limits of the container (∂Ω f c ) is:

u = 0 in ∂Ω f c × [0, t 0 ] (2.69)
Null fluid speed in the fluid-container boundary. In the opening boundary where the fluid is in contact with the air, it is used a symmetry condition. Thus, suppressing the fluid speed in this boundary as well as ensuring a non-tangent part in the normal component of viscous stress force (k n ).

u = 0 in ∂Ω f a × [0, t 0 ] (2.70) 
K = µ(∇u + (∇u) T ) (2.71) k n = Kn (2.72) k n -(k n .n)n = 0 (2.73)
Moreover, because of the use of the Form Assembly method (well explained in [117]) to generate the structure rotation in its respective mesh assembly (A2), a continuity condition between the identity pair (A2-A1) is used to ensure the same speed and pressure in this boundary.

u A1 = u A2 (2.74) p A1 = p A2 (2.75)
where A1 and A2 represents the identity pair or contact boundary of both assemblies (dashed blue line in Fig. 2.8(a)). Furthermore, it was imposed as initial condition zero fluid velocity field, and zero pressure in one node on the top boundary (∂Ω f a ) as a point of reference for starting measuring pressures in the whole fluid. Finally, force components are computed by integrating the total stress (Γ) over all the structure's surface.

F â = ∂Ωs Γn f .âds in ∂Ω f s × [0, t 0 ] (2.76)
being â = x or ŷ or ẑ for all different components, nf the normal vector to the surface of each finite element on the robot surface, and ds the surface element. 

Structural dynamics

Concerning the rigid robot structure, a rotation movement is set along the robot helix axis. It can be translated as a prescribed mesh motion (dx p ) since there is no structure deformation.

dx p = dx p ({ẑ, r 0 }, ω, t) in Ω m × [0, t 0 ] (2.77)
where {ẑ, r 0 } is the helix axis, ω is the angular frequency and t is time and Ω m ⊂ Ω s .

In order to compute the structure's mesh translation (cf. 

dx z dt = U (2.79)
where dx z is the displacement in the forward direction, U is the structure speed.

Note that this treatment is also applicable for the pumping case where it is not needed to compute U since it is zero. The term gV (ρ fluid -ρ struct ) (perturbation term) is the buoyancy force, where g is the gravity magnitude and V is the structure volume. These terms are computed empirically so this can allow errors when computing the simulation. For computations concerning the optimization of HSs and CSs we keep ρ struc = ρ fluid to delete the perturbation term. Forces in x and ŷ directions are not considered because of two factors, the symmetry of the swimmer robots, and because we are only interested in the propulsion direction to obtain the robot's forward speed as well as reduce the computation time. Regarding the movement of the two assemblies, Assembly 1 is kept without motion while the whole Assembly 2 is imposed a rotation at frequency ω (cf. ) contains the robot structure, this cylinder is imposed at the same translation movement of the structure. Hence, the other two cylinders of this Assembly have to be deformed according to the middle cylinder advancement. Indeed, in order to provide their deformations we have to solve first Laplace's equation for the concerning boundaries.

∇ 2 x m = 0 (2.80) with x m = [X help , Y help , Z help ] being the auxiliary variables to compute the mesh deformation of both cylinders. The boundary conditions for solving this Laplace's equation are the imposition of the mesh rotation and translation on the edges that keep contact with the middle cylinder, and the imposition of a rotation at frequency ω of the two edges on the top and bottom of the Assembly 2. By solving this equation we obtain the deformation (Z help ) in the translation axis that are imposed in both 2 deforming cylinder domains.

To implement our FSI problem, we treated the fluid and structure dynamics through a commercial software, COMSOL Multiphysics. For that purpose, we used the CFD-package with the Math package "arbitrary Lagrangian-Eulerian" method (ALE) for treating the structure mesh displacement. Simulations were generated using a Intel(R) Core(TM) processor with 28GB-RAM. The mesh resolution was extremely fine with typically 200000 elements on the HS and/or CS surface. The computation time for each simulation in the transitory regime is between 5 and 25 min depending on the geometry of the HSs and/or CSs.

Having implemented the numerical problem with CFD, the computation of the different criteria metrics for optimizing swimming and pumping is possible.

Experimental Methodology

In this section, firstly we introduce guidelines for the fabrication of the different swimmers used in this thesis. Then, we introduce the magnetic actuation method for actioning the HSs and/or CSs. Finally, we introduce the conceived magnetic system to actuate scaled-up prototypes of the HSs and/or CSs. 

Fabrication of Scaled-Up Microswimmers

In order to perform experiments in the magnetic platform, scaled-up version of the typical microswimmers were manufactured. The millimetric chiral swimmers were fabricated using stereo lithography (3D printed) with "VisiJet M3 Black" as a printing material (see figure 2.9). Then, a Neodymium, cylindrical magnet (1.5 mm in diameter and 0.5 mm in height) is attached on the swimmer's head in such a way of having a orthogonal magnetization to the swimmer's axis (see figure 2.10).

Magnetic Actuation

The chiral structures are actuated through low strength rotating magnetic fields thanks to the system presented in figure 2 arranged in Helmholtz disposition. This system is capable of generating a magnetic field around any axis in the 3D space. The design and fabrication of this system is then well detailed in the subsequent. A Helmholtz coil pair is made up of two, identical, circular coils aligned on the same axis by a distance h equal to the radius R b of the coil. Each coil carries an equal electrical current flowing in the same direction. This arrangement was invented by Herman Von Helmholtz over a century ago. These coils have been used in several applications in which quasi uniform magnetic fields are required. The magnetic field produced by this configuration is homogeneous at the center of the coils. The magnetic field density flux norm b at the center of the coils is defined as: b = 4 5 with n c the number of turns per coil, I is the current flux density running through the coils, R b is the radius of the coil, and µ 0 = 4π × 10 -7 T • m/A is the magnetic permeability in the empty space. The magnetic field flux is controlled by the intensity and direction of the current. By using this configuration, the intensity of the magnetic field gradient between both coils is null. The conception of this system is presented in [START_REF] Xu | Propulsion characteristics and visual servo control of scaled-up helical microswimmers[END_REF]. The maximum magnetic field flux attained by this system is 10 mT. Each coil pair is alimented by a servoamplifier (Maxon motor). The servoamplifier also controls the electric current sent to the coils. The analogue communication between the amplifiers and the computer is ensured by a PCI card (model Sensory 626).

3/2 µ 0 n c I R b (2.82)
The tracking system for detecting the robot is composed by two cameras. The first optic camera (Pike F032B) is placed above the system in order to have a top view of the horizontal plane. The second camera (Guppy Pro F032) coupled to a rigid endoscope (Bipol, 27 mm in diameter) provides a lateral view. With both cameras it is possible to reconstruct the position and orientation of the magnetic swimmer in the 3D space (Fig. 2.12). Figure 2.11 depicts the Helmholtz coil system with the tracking system. The global architecture of this system is represented in Fig. 2.13.

Conclusions

In this chapter, in first place, we introduced the framework to deal with the optimization problem. The tasks to be optimized are the swimming navigation, and the pumping action of chiral structures. We then introduced two studies for different geometrical structures, namely, a general chiral structure with a constant pitch angle (CSs), and the well-known case of helical swimmer structures (HSs). Through this formulation, we provided as well the different criteria that will be employed to stablish optimal structures. Then, we reviewed the different numerical methods analysing their limiting factors Finally, thanks to the two cameras, the position and orientation of the swimmer are obtained by using algorithms of visual tracking (ViSP, [START_REF] Marchand | Visp for visual servoing: a generic software platform with a wide class of robot control skills[END_REF]).

to then establish a suitable method that could apply for the different envisioned scenarios in Newtonian and non-Newtonian fluids. We deeply explained the implementation of such a finite element method. We consider the finite element method due to its accuracy and flexibility for modelling different structures dispensing with the slender body hypothesis. Finally, we introduced the experimental set-up, the fabrication method of the chiral structures and their magnetic actuation to perform the experiments and measure the swimming propulsion of the chiral structures.

Chapter 3

Optimization of helical swimmer structures

The importance of helical swimmer structures (HSs) relies on the different functionalities they can display for future in-vivo and in vitro tasks. The first is the swimming: HSs would be capable of navigating through low Reynolds fluids in the human conduits to transport attached payloads such as drugs, stem cells, sperm cells among others. The second functionality is related to the fact that they can displace fluid in the opposite direction of swimming or in other words they can serve for pumping fluids in obstructed conduits, for mixing fluids at low Reynolds number and even for dispensing microparticles. Therefore, studying how their morphological changes affect their performance when realizing certain of such tasks is of great interest. We intend in this chapter to provide guidelines for optimizing HSs for pumping, swimming and both tasks as it is desirable to have a single design of HS with efficient swimming and pumping capabilities to achieve a complete scenario.

In addition, we explore the impact of the fluid behaviour, going from Newtonian to non-Newtonian fluid assumptions. In the previous chapter, we analysed the formulation for the optimization study, the different numerical methodologies, and the experimental procedure that we use for validating our numerical results. Now, in this chapter, we provide simulation and experimental data for optimizing swimming and pumping capabilities of the well-known helical swimmer structures (HSs) in two fluid contexts, namely Newtonian fluids and non-Newtonian fluids. In the first section, "Optimization in Newtonian fluids", we cover the first context where HSs will develop swimming and pumping in Newtonian fluids. This section is divided into two subsections: numerical analysis and experimental analysis. The second section, "Optimization in non-Newtonian fluids", covers the shearthinning fluid case that is ubiquitous in most of our biological fluids. The impact of non-Newtonian behaviour is poorly covered in the literature. Thus, numerical results are obtained to bring new knowledge on "swimming" and "pumping" functions. Finally, we sum up the most interesting findings on the chapter conclusions.

Optimization in Newtonian fluids

Introduction

Previous works based on BEM have provided an important framework to find optimal helical structures at swimming. Several aspects such as helical shape variation [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF][START_REF] Miao | Enhancing swimming performance by optimizing structure of helical swimmers[END_REF], cross-section orientation [START_REF] Keaveny | Applying a second-kind boundary integral equation for surface tractions in stokes flow[END_REF], degree of confinement [START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF] were analysed. Furthermore, different works with a CFD-based correction to resistance coefficients were needed to enhance RFT simulation results [START_REF] Fatih | Computationally-validated surrogate models for optimal geometric design of bio-inspired swimming robots: Helical swimmers[END_REF]. Other works with CFD have studied the effect on the swimming of different helical shapes in circular channels [START_REF] Demir | Low reynolds number swimming of helical structures in circular channels[END_REF], and the impact of the helix geometrical parameters on propulsion speed was explored [START_REF] Acemoglu | Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels[END_REF]. Nonetheless, the effect of the cross-section elongation in HSs with the same volume has not been studied yet. In this section, we address this topic also including the orientation of the cross-section to analyse their combined effect on swimming. Moreover, we provide an interesting framework to study helical swimming through two criteria concerning the type of magnetic source. Regarding pumping, HSs produce a fluid displacement opposite to the swimming direction. Different aspects were studied such as the flux generation at constant torque [START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF], cross-section impact [START_REF] Li | Swimming and pumping of rigid helical bodies in viscous fluids[END_REF], viscoelastic media [START_REF] Li | Swimming and pumping by helical waves in viscous and viscoelastic fluids[END_REF], thrust production [START_REF] Zhong | The flow field and axial thrust generated by a rotating rigid helix at low reynolds numbers[END_REF], and mixing capabilities [START_REF] Buchmann | Mixing and pumping by pairs of helices in a viscous fluid[END_REF]. On the other hand, efficiency at pumping has not been totally covered. Much of the works have analyzed pumping just computing the generated thrust [START_REF] Raz | Swimming, pumping and gliding at low reynolds numbers[END_REF][START_REF] Zhong | The flow field and axial thrust generated by a rotating rigid helix at low reynolds numbers[END_REF]. Nonetheless, the flux generated by these structures is an important study variable for optimizing them. Then, numerical methods such as RFT and SBT would require additional implementation for computing flux since Navier-Stokes equations are needed for solving such a problem. Besides, the optimal operation of swimming and pumping at the same time has not been deeply covered in the literature. And, in the envisaged medical operations, swimmers might be required to perform both tasks in one mission e.g. to arrive at blood clots sites and apply a constant pumping action to re-establish the blood flow. Some numerical methods suffer from poor accuracy since they neglect boundary interactions, or consider geometrical approximations such as very thin or infinite structures. These are the cases of the RFT and SBT methods, which are based on the partition of large bodies where each segment is provided with normal and parallel resistance coefficients that contribute independently to the total propulsion of the structure. Even if those techniques are computationally less expensive compared to BEM and CFD, aspects such as the shape, roughness, cross-section geometry, i.a. , cannot be treated with those numerical methods. In this section, as we detailed in chapter 2, we exploit CFD to model helical swimming and pumping in Newtonian fluids. This enables us to compute the generated flux at pumping as well as to investigate geometrical aspects that RFT and SBT methods cannot deal with e.g. low aspect ratios, and the cross-section elongation and orientation. Finally, we provide a set of experimental data concerning the HSs geometrical features. They, as summed at the end of the section, re-enforce our numerical findings.

Numerical Analysis

Swimming Optimization

To address the optimization study, our approach consists in generating different cartographic maps of the respective metrics in different geometrical parameter spaces. In that sense, for the swimming optimization, we made use of the following parameters to characterize the different parameter spaces: the aspect ratio (L/2r), the helical angle (θ), and normalized helical helical radius (R/r); where R is the helical radius, r is the average cross-section radius, and L the total helical length. The swimming of HSs is studied considering an angular speed ω of 2π Hz, which is equivalent to 1 rotation per second. The choice of this value is appropriate since flux and thrust have linear behaviours with respect to ω. Afterwards, the choice of the constant volume V was based on the flagellum bundle volume of the E. coli bacteria considered in [START_REF] Koyasu | Caulobacter crescentus flagellar filament has a right-handed helical form[END_REF][START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF][START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF]. The values of L and r are the ones considered in [START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF][START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF]. Since L and R are 7.1 µm and 0.035 µm respectively, the computed volume is about 2.73 × 10 -20 m 3 . The structures characteristic length is thus in the microscale and Re, that can be computed as ρLU/µ, is about 7.1 × 10 -6 , as the structures speed U is about 1 µm/s, and the fluid properties density ρ and viscosity µ we consider are the ones of distilled water.
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Helical Shape Optimization

As a first step, we do consider the optimization of the helical shape, keeping the cross-section of constant circular shape ( a b = 1). We introduced in chapter 2 the variables of importance, which are then θ, β and R r (see section 2.1.2.1). The implementation of the optimization problem was made through COMSOL Multiphysics, 5.5. version. Figure 3.1 depicts the swimming speed U of the different structures in the space of variables {θ, R r } for aspect ratios β = {20, 50, 100} corresponding to total lengths L = {2.41, 4.43, 7.03} µm and flagellum radius {r 20 = 6.01, r 50 = 4.43, r 100 = 3.51}10 -8 m, respectively. Optimum propulsion efficiency is achieved for HSs with a helical angle θ ∈ [40 • , 60 • ] and a normalized helical radius R r with the largest possible value. Knowing that the scale R r is different in each color-map for each aspect ratio β depicted in Fig. 3.1, a fixed radial distance R d for each color-map will be situated differently. Here, we propose arbitrarily R d = 18r 100 (when R r = 18 in graph with β = 100) to observe the different positions that the same distance represents in all graphs. For the other color-map graphs, that distance represents other value in the scale R r e.g. R r ≈ 14.3 for graph with β = 50 and R r ≈ 10.5 for graph with β = 20 (Fig. 3.1, magenta line). R d can serve to establish a criterion for bounding the helical radius of HSs. Under that condition, HSs with β = 100 can achieve greater swimming speeds U compared to HSs with lower aspect ratios. From these results, structures with larger aspect ratios and a helical angle θ ≈ 50 • experience a better propulsion efficiency. In previous works [START_REF] Raz | Swimming, pumping and gliding at low reynolds numbers[END_REF][START_REF] Yang | Kinematics of the swimming of spiroplasma[END_REF][START_REF] Konstantin | The chiral magnetic nanomotors[END_REF], analytical models were implemented using RFT and SBT approximations. Those analytical models gave rise to a mathematical relation that links the propulsion speed with the drag coefficients and the geometrical parameters of the helix given by U = ωR (χ-1) sin(2θc) 2[1+(χ-1) sin 2 (θc)] , with χ ≈ 2 using the slender body approximation. Through this assumption, the maximum speed is attained for θ c = 1 2 arccos( χ-1 χ+1 ) = 35.26 • , which is with our nomenclature equivalent to θ = 54.74 • . Nonetheless, we found a maximum angle for θ ≈ 52.5 • . The difference could be due to the slender-body approximation, that is not needed with finite element method. Structures are then considered of quasi-zero filament width, and moreover, the force interaction with the neighbouring points is neglected. Additionally, we considered structures with a small helical normalized radius R/r, which makes the contribution from the neighbouring points much stronger. Regarding the torque, its value increases as R r increases (cf. Fig. 3.3(c)). On the other hand, regarding the normalized swimming efficiency, the maximum efficiency is found for θ = 55 • and R r = 2.3 (cf. Fig. 3.3(b)). Keaveny et al. in [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF] found the optimum swimmer under this criterion for θ = 57.2 • and R r = 2.2. The slight differences between these two results can be explained by the fact that in [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF] authors used BEM-based corrections for computing the traction and resistances coefficients of an RFT model, which provides a relationship of U τ where parallel and normal drag coefficients are intervening. Here, we compute the kinematic and dynamic parameters of the HS using CFD by integrating the traction through solving Navier-stokes equations with the boundary conditions using finite elements, thus, dispensing with drag coefficients.

Cross-Section Influence

As a second step, we made use of the cross-section orientation (φ) and the crosssection elongation (a/b) parameters for generating the cartographic maps of the If we compare the structures with the best and the one with the lowest performance, there is an increment on performance of 139%. On the other hand, if we compare structures of the best performance with the one which has a circular cross-section, it results in an increment of about 20% of propulsion efficiency. Using these observations we can think that HSs in the literature having a binormal-type structure such as the ones presented in [START_REF] Zhang | Artificial bacterial flagella: Fabrication and magnetic control[END_REF] at the micrometer scale, or in [START_REF] Xu | Influence of geometry on swimming performance of helical swimmers using doe[END_REF] at the millimeter scale could experience an increment of more than 100% in their propulsion speed if their cross-sections were twisted in φ = π 2 becoming normal-type swimmers. Therefore, the studied structure with fixed helical parameters (β = 20, θ = 50 

Pumping Optimization

In this section, the optimization of pumping using HSs is now investigated. Similarly to swimming optimization study, we first assess the helical shape influence on the pumping performance and then analyse the effect of the cross-section. Pumping performance is defined with the criteria introduced in chapter 2, section 2.1.4.2.

Helical Shape Optimization

Here, we study HSs with circular cross-sections with an arbitrary value of aspect ratio β = 20. Fig. 3.5(a) represents the thrust at pumping generated in the variable space defined by {θ, R r }. The helical angle θ that maximises thrust is function of 

Cross-Section Influence

For the analysis of the cross-section influence, we choose as we did in section 3.1.1.1.2, a HS structure with parameters β = 20, θ = 50 • and R r = 3. Fig. 3.6(a-b) represents the influence of the thrust at pumping. The maximum value is obtained for a b = 4 (the largest value) and φ = 90 • with T = 30.9×10 -15 N. The least performant one is achieved by the structure whose parameters are a b = 4 and φ = 0 with T = 12.1 × 10 -15 N. The best structure outperforms in 156% the least performant. Moreover, a structure with circular cross-section generates a thrust at pumping of about T = 18.0 × 10 -15 N. Then, the best structure with respect to this last one increases the thrust by 71.9%. Fig. 3.6(c-d) represents the energetic efficiency at pumping T L τ . Similarly to the previous results, the parameters that maximise the efficiency are found for a b = 4 and φ = 90 • with T L τ = 1.65, and the parameters for the least performant are a b = 4 and φ = 0 • with T L τ = 0.83. In this case, the relative increment is about 99% with respect to the least performant structure. With respect to the structures with a circular cross-section, T L τ = 1.38, this increment is about 20%. Analogously, it happens the same when analysing the normalized flux ( I 

Swimming and Pumping Optimization

The importance of having HSs with optimized swimming and pumping capabilities relies on the fact that these structures may require to perform both tasks for a single mission, i.e. to swim through the urinary tract to reach the kidney and destroy kidney stones applying a constant pumping action. To perform this study, firstly, we define a dimensionless function g(x, α) that links both efficiencies, at swimming and pumping, respectively. This function is defined as follows:

g(x, α) = α S(x) S 0 + (1 -α) P (x) P 0 (3.1)
where

S(x) = µL 2 U (x) τ (x)
is the efficiency at swimming and S 0 is the maximum reached value. Analogously, the efficiency at pumping is P (x) = T (x)L τ (x) and the maximum value reached P 0 . We consider HS so the vector x that defines the geometry is x = (β, θ, R r ). The balance between swimming and pumping importance is obviously dependent on the exact applicative context. To handle this, α is a parameter that will indicate which task is prioritized i.e. α = 0 just considers pumping task while α = 1 only considers swimming. As we used the precedent results of swimming and pumping to generate the results in Fig. 3.7, the boundaries of the problem are the same of the previous cases. Therefore θ ∈ [30 • , 70 • ], 0.9 < R r < 3.5, for β = 20. The optimization problem is thus defined as follows:

max x g(x, α) (3.2a) subject to V = const. & β = 20 (3.2b) 30 • ≤ θ ≤ 70 • (3.2c) 0.9 < R r < 3.5 (3.2d) 0 ≤ α ≤ 1 (3.2e)
Fig. 3.7 contains the darker region, which indicates the optimal zone, that evolves as a function of α. To better show the evolution of optimal configurations, we made distinction between 3 different regions, i.e. for g = 0.90, 0.95 and 0.98. Those are highlighted with thicker color lines in Fig. 3.7. It is interesting to see that a wide region exists (R/r ∈ 1.8-2.7, θ ∈ 48 • -58 • ) where swimming and pumping are possible with a high efficiency (g = 0.98). On the other hand, the optimum configuration is unmodified when considering swimming, pumping, or their combination. The global optimum parameters in all cases are found for θ = 55 • and R r = 2.3. Those results, which are novel to our knowledge, shows it is possible to have optimal performance for swimming and pumping using a single geometry of HS belonging to a wide region in the parameter space. This is very interesting for the design of versatile HS in future applicative contexts.

Conclusions

We investigated two geometrical features concerning the helical shape through the variable space defined by the aspect ratio, the helical angle and the normalized helical radius, {β, θ, R r }, and the cross-section shape via the elongation and the cross-section orientation { a b , φ}. We observed that structures with a certain elongation a b > 1 can achieve a relative high efficiency per rotation at swimming and pumping if their cross-sections are oriented with φ = 90 • . In the limited power source case, we found the existence of an optimum for a b ≈ 2.25 and φ ≈ 85 • . We identified an optimal structure for pumping and swimming, defined by θ = 55 • , R r = 2.3 under the definition of efficiency per torque, limited power source case. In addition, it was observed through the analysis of a criterion combining swimming and pumping performance that the same geometry is of interest for combined tasks. This study may serve as a guiding reference for building optimal HSs. Before that, as a complementary step, we achieved experimental evaluation as well.

Experimental Analysis

The experimental process is twofold. First we desire to verify how the geometrical factors that define the helical tail {β, R r , θ} and the elliptical cross-section {φ, a b } influences on HS behaviour. In the time frame of this thesis, we focused on the swimming task as the task to characterize. Second, we exploit experiments to assess the impact of other geometrical factors, not taken into account by the parametric model of HS we use. The basis to perform the experimental study is explained in chapter 2, section 2.4. To sump up, the experiments were carried out in pure glycerol, a well-studied Newtonian fluid, with scaled-up helical micro-swimmer prototypes. The scaled-up version of the helical swimmer prototypes were fabricated using 3D stereo lithography and provided of magnetic features through a disc micro-magnet. Finally, the magnetic actuation is provided through a 3D Helmholtz coil system that supplied a 10 mT rotating magnetic field to action the swimmer prototypes and thus, allowing their displacements.

Verification of the impact of the main geometrical factors

Helical Shape

Here, we analyse experimentally the influence on the swimming speed U of the helical angle θ (cf. Fig. 3.8). For that, we keep constants the aspect ratio β = 40 and the normalized helical radius R r = 2.3. We have to note that according to the experimental case, the helical swimmers include a head containing the magnetic disc with a considerable length size ∼ R. However, the inclusion of such additional feature does not seems to affect the overall result according to our simulation results. As reflected by our simulation results (cf. Fig. 3.1), the maximum speed is achieved for a helical angle ranging from 50 • to 60 • . Experimental results in [START_REF] Peters | Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[END_REF], with superparamagnetic HSs of regular composition and the same aspect ratio β and helical normalized radius R/r, demonstrates that for θ = 52.5 • , the swimmer structures achieve a better dimensionless speed U/Lf . Hence, our simulation results are in good agreement according to the experimental data in [START_REF] Peters | Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications[END_REF] and in this section. 

Cross-section

Going on with the experimental analysis, in this section we address the features related to the elliptical cross-section namely, the orientation and the elongation respectively {φ, a/b}. In figure 3.9 we depicted the influence on the swimming speed U of the cross-section elongation a b . The HSs for that experiment have the same helical shape parameters: θ = 50 • , β = 40 and R r = 2.3. Nonetheless, the cross-section elongation was modified by keeping constant the volume of the HS and φ = 0 • . We only considered a b = {2, 3, 4} and, as it can be seen in Fig. 3.9, the trend indicates the larger a b value the less swimming speed U . This result is in good agreement with our simulation results where the same trend is recognized (cf. Fig. 3.4(b) for φ = 0 • ). However if the experiments had been conducted with φ = 90 • the trend would have been reversed. Fig. 3.10 depicts the influence on swimming speed U of the cross-section orientation φ. We conducted the experiments considering the aforementioned helical shape parameters. However, we modified the cross-section orientation φ and kept the elongation a b = 4.0. The graph indicates that for φ = 90 • the swimming speed U is maximum and minimum for φ = 0 • . Likewise, the same trend is found in our simulation results (cf. 

Impact of other geometrical factors

Cross-Section Shape

In the previous section, we considered helical structures with same helical parameters {β, θ, R/r} and elliptic cross-section parameters {φ, a b }. In this section, we now consider different cross-section geometries composed of regular polygons namely, circle, square and triangle (cf. Fig. 3.11(a)) instead of the elliptic shapes previously considered. Those structures have the same volume in average and our interest is to know which cross-section polygon benefits more to the propulsion speed. In order to achieve the same weight for all robots, we have considered the same value of cross-section area before their sweeping over the helix spine. It means if we consider a circle with radius r, then a square with side 1.77r and an equilateral triangle with side 2.69r will have the same area. Moreover, the surface area that interacts with the surrounding fluid for each robot after sweeping will be proportional to its perimeter (table 3.1). In our case, the circular cross-section radius is r = 0.4 mm, the helical radius R = 0.6 mm, the pitch λ = 6 mm, the number of turns N = 2. Fig. 3.11(a) depicts the three printed swimmers and their respective CAD repre- sentations. Their weight and their volume were measured using a precision balance and the CAD, respectively. These results are depicted in Fig. 3.11(b). There is a slight difference of 1 mg because of different factors such as the voxel precision of the printing machine and some small modifications in the CAD because of wrong boundary errors when printing due to the printer software. However, despite these small differences, experimental results have shown better performances in terms of speed for the helical robot with a triangular cross-section (cf. Fig. 3.11(c)). For this experiment we analysed the frequential response of the propulsion speed for the different proposed designs. We observe a well-studied phenomenon called the "step-out" frequency or "cut-off" frequency. The cut-off frequency is the maximum frequency for which the provided magnetic torque begins to not be enough to overcome the fluidic drag and robot inertia of the helical structure, then, the swimming speed starts decreasing its value. We see in our experiments that the cut-off frequency is different for each helix because it only depends on the magnetic force and the helix inertia of each robot. Knowing that forces on the robots depend upon the interaction of the fluid with their surfaces. There exists a correlation between the surface area of the helical structures and the forces acting on them. Having a greater helical-shaped surface, the forces on the surface would increase according to the force expression. Then, a helical swimmer with an equilateral cross-section, which generates a greater surface than other cross-section geometries, interacts more with the fluid and achieves a higher value of propulsion force and speed.

Radial Pitch and Number of Turns

This second series of experiments consist in the analysis of a new potential prospect of the helical swimmer for delivery tasks due to its growing radial pitch that allows the robot to carry bigger objects inside its flagellum than the common helix design.

The conical helix equation is given in general by the following parameterization:

x = ( + σt)cos(t) (3.3) y = ( + σt)sin(t) (3.4) z = λt (3.5)
where σ, and t ∈ IR. In our particular case = 0, σ = 1/2π, λ = 4/2π and t = [0, 2N π] where N is the number of turns and all x, y, and z components are expressed in millimeters. The tested number of turns are 1,

. Fig. 3.12(a)).

The experiments are carried out considering an inclination angle defined between the helix axis and the z-axis of the global frame of 20 • . The total propulsion speed is measured and depicted in Fig. 3.12(b). Our results agree with the experimental data showing that the best performances are achieved by the 1-turn and 1.5-turns corroborating as well the previous results achieved in [START_REF] Hao | Shape optimisation of biocompatible/degradable helical micro/nano-structures for drug delivery[END_REF][START_REF] Walker | Optimal length of low reynolds number nanopropellers[END_REF][START_REF] Ghosh | Controlled propulsion of artificial magnetic nanostructured propellers[END_REF].

Conclusions

We have investigated the influence of different geometrical parameters on helical swimming propulsion. In the first subsection, "Verification of the impact of the main geometrical parameters", we made continuation of the previous simulation results concerning the optimization problem addressed in chapter 2. We experimentally validated the swimming optimization results by analysing the influence on propulsion speed of the parameters related to the helical shape {β, θ, R/r} and the elliptic cross-section {φ, a/b}. In the second subsection, "Impact of other geometrical parameters", we analysed the effect of the cross-section geometry on swimming performances of magnetic helical robots with the same volume. Experiments show that robots with equilateral triangle cross-sections generate better propulsion, in terms of propulsion speed, than circular ones with the same area. The speed reached experimentally for these improved robots is about 1.2 mm/s, which is practically twice the speed reached for helices with circular and quadrangular cross-sections. Furthermore, another study concerning the conical spiral was developed. The effect of the number of turns has been studied for this new kind of helix showing that 1.0 and 1.5-turns have better performances than the other helices. The speed achieved experimentally for these last improved robots is about 2.0 mm/s. Though this one-turn flagellum has reached the greatest speed value over all experiments, the multi-turn ones could serve in future applications for delivery tasks thanks to its growing radial pitch. They also could experience better propulsion if the magnetic force was incremented.

Optimization in non-Newtonian fluids

Analysis Conditions

The previous section analysed the performance of helical swimmer structures (HSs) on swimming and pumping in Newtonian fluids. This section aims at performing a similar analysis in non-Newtonian fluids, as they are relevant for future biomedical applications. The analysis is based on CFD simulation as it can capture the different geometrical constraints, and the shear-thinning effect [START_REF] Demir | Nonlocal shearthinning effects substantially enhance helical propulsion[END_REF] in comparison with the modified version of E. Riley & E. Lagua (2017) of the resistive force theory RFT [START_REF] Riley | Empirical resistive-force theory for slender biological filaments in shear-thinning fluids[END_REF].

To treat the shear-thinning behaviour of HSs, we considered the constitutive viscosity model proposed by Carreau-Yasuda, explained in chapter 2. This viscosity model is already implemented in COMSOL Multiphysics and available in version 5.5.

To perform the assessment, the geometrical parameters of HSs are set constant and equal to R/r = 2.3, θ = 50 • and β = 20 unless otherwise specified, for a constant volume V = 2.73 × 10 -20 m 3 chosen according to the value of the E. coli bacteria flagellum bundle volume [START_REF] Koyasu | Caulobacter crescentus flagellar filament has a right-handed helical form[END_REF][START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF][START_REF] Nicholas C Darnton | On torque and tumbling in swimming escherichia coli[END_REF]. The swimming and pumping of HSs are studied considering an angular speed ω of 2π Hz, which is equivalent to 1 rotation per second. The choice of this value is appropriate since either flux, thrust, and speed have linear behaviours with respect to ω. Both tasks are analysed by modifying the model parameters of Carreau-Yasuda constitutive equation:

τ d = (µ ∞ + (µ 0 -µ ∞ )[1 + (λ C | γ|) 2 ] n-1 2 ) γ (3.6) 
with τ d the deviatronic stress tensor, γ = ∇u + (∇u) T the strain rate tensor with its magnitude | γ| = ( γ ij γ ij /2) 1/2 . Among the model parameters we find:

• µ 0 and µ ∞ standing for the zero and the infinite shear-rate viscosities.

• n < 1 the power index characterizing the degree of shear-thinning.

• 1/λ C representing the critical shear-rate at which the non-Newtonian behaviour becomes significant.

• Cu the Carreau number is a dimensionless number defined as λ C ω ∼ λ C | γ| which compares the rotation rate of the HSs to the critical shear rate of the shear-thinning fluid.

The boundaries for the rheological parameters are chosen to cover a wide range of shear-thinning fluids [START_REF] César | A note on the elasticity of polymer melts described by primary normal stress difference (n1)[END_REF][START_REF] Frederick | A constitutive equation for whole human blood[END_REF][START_REF] Xue | Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: Modelling biofluids in a microchannel biochip separator[END_REF]. Therefore, n ∈ [0.4, 1.0], Cu which is proportional to λ C is ranging in [10 -2 , 10 5 ], and µ ∞ /µ 0 in [0.01, 1.0]. In table 3.2 is depicted the Carreau-Yasuda parameters for blood with different concentrations of hematocrit (Hct), a possible bio-fluid environment for applications with HSs. The normal physiologic Hct concentration range is 35-50% [START_REF] Frederick | A constitutive equation for whole human blood[END_REF]. In the following, the speed and the torque of the HSs in the Newtonian regime are denoted by U N and τ N , respectively.

Hct n λ C µ ∞ /µ 0 25% 0.

Swimming Performance

In figure 3.13(a) we analysed how the dimensionless speed U/Lf is affected for the helical angle θ considering fixed R/r = 2.3 and β = 20 at different degrees of shear-thinning behaviour provided by the power index n, for Cu = 30. Note that for n = 1 we have the dimensionless speed results for the Newtonian case. We observe that, the smaller "n" value, the larger the dimensionless speed increment. On the other hand, the maximum speed, achieved for θ = 52.5 • in the Newtonian case, is a bit shifted to reach 55 • as n is decreased. For results in figure 3. value, the larger speed ratio U/U N . However, differently to the previous graph, the peak values are found for the larger Carreau number values.

Recent studies with HSs have reported considerably faster propulsion speeds in fluids displaying a shear-thinning behaviour, for steady shear rates ranging from 0.1-100 s -1 , than in Newtonian fluids [START_REF] Gómez | Helical propulsion in shear-thinning fluids[END_REF]. Nonetheless, the speed enhancement, which was up to 50% faster than the Newtonian speed, has not been fully studied theoretically and the underlying mechanism remains unclear. Very recently, authors assigned this enhancement to the viscosity stratification generated by the nearby shear stress generated by the rotating HS [START_REF] Gómez | Helical propulsion in shear-thinning fluids[END_REF][START_REF] Demir | Nonlocal shearthinning effects substantially enhance helical propulsion[END_REF]. In that sense, according to our numerical observations in figure 3.16, we can distinguish three states about the viscosity stratification for Cu ≈ O(10 -1 ), Cu ≈ O( 102 ) and Cu ≈ O(10 4 ). In that first state Cu ≈ O(10 -1 ), the shear stress provided by the HS rotation is weak and just modify a bit the viscosity in the surrounding of the HS surface. In the second state Cu ≈ O( 102 ), the shear stress generated by the HS rotation is stronger and modify a region of approximately the HS length size ∼ L creating a kind of swimmer confinement in a region of lower viscosity value. In the third state Cu ≈ O(10 4 ), the shear stress produced by the HS rotation is much stronger and capable of modifying the viscosity of regions with a size much greater than L. In that last state, the viscosity around the robot is nearly µ ∞ . Then, considering that the swimming enhancement is precisely given for a certain range of Cu between O(10)-O( 102 ) for swimmers with a length size about L, it is not far-fetched to think that the swimming enhancement is provoked by the viscosity confinement since precedent works have demonstrated swimming enhancement of HSs in confined media [START_REF] David | On the propulsion of micro-organisms near solid boundaries[END_REF][START_REF] Liu | Propulsion by a helical flagellum in a capillary tube[END_REF].

Then, the mechanism that could be the main cause of the swimming enhancement is the viscosity gradient produced by the shear stress generated by the HS rotation. We observe in Fig. 3.16 for Cu = 10 2 that lower viscosity values encompass the HS while the regions with greater values actuate as a wall since the stress transfer is much weaker from regions of lower viscosity to regions with larger viscosity values. And therefore, no fluid motion is detected in regions of larger viscosity values provoking that confinement-like effect.

Another interesting aspect to be analysed is how the geometrical parameters combined with the rheological changes may affect the swimming response of the HSs. We investigate the effect on the swimming speed U , on the ratio of the non-Newtonian and Newtonian speed U/U N and on the swimming efficiency µL 2 U/τ of Cu for different helical angles θ, namely θ = 40 • , 55 • and 70 • (Fig. 3.17). In figure 3.17(a) it is observed that for the angle θ = 55 • the swimming speed is higher than for 40 • and 70 • . Besides, it is also observed that the peak value shift depends on the helical angle, i.e. , for θ = 40 • the peak is found for Cu ≈ 10, for θ = 55 • the peak value is about Cu ≈ 20 and for θ = 70 • it is about Cu ≈ 30. Figure 3.17(b) depicts U/U N for the same set of helical angles θ. We observe in that graph that HS with highest θ value (black line) reaches the highest peak value for Cu = 30. It means that the highest relative augmentation from Newtonian to non-Newtonian speeds is reached by the largest θ value of the angles set. Results concerning the swimming efficiency are stood for in figure 3.17(c). The peak values of efficiency are found for the largest values of Cu. That is due to the viscosity value reduction which allows a torque reduction and then a greater efficiency value regarding our definition. Besides, the steepest curves are for θ = 55 • , likewise in the Newtonian case, the efficiency is maximum for θ = 55 • . We also have η(θ = 55 

• ) ≥ η(θ = 40 • ) ≥ η(θ = 70 • ) where η = µL 2 U/τ . (a) (b) (c) 

Pumping Performance

Similarly as we did in "Swimming Performance", we study how some of the rheological parameters affect the pumping performance of HSs. In figure 3.18 it is represented how the torque at pumping is modified by changing the viscosity ratio µ ∞ /µ 0 . In Fig. 3.18(a), the ratio of the non-Newtonian and Newtonian torque is depicted for the geometrical parameters already established. For µ ∞ /µ 0 = 1 the constitutive model becomes the Newtonian model and the torque ratio has a constant value equal to 1 for all Carreau number values Cu. For the other values µ ∞ /µ 0 the torque ratio decreases as the Carreau number decreases. This result is consistent with our physical intuition, as the viscosity decreases, the torque invested to keep the HSs rotating also decreases. Moreover, when Cu =⇒ ∞, the τ /τ N =⇒ µ ∞ /µ 0 . where the thrust achieved is greater than in the Newtonian region (black-dashed line). However, outside that region the pumping thrust starts decreasing. The decreasing effect is reduced as the power index approximates 1, value for which the behaviour will be Newtonian.

A similar behaviour is presented in figure 3. 19(b) for the other studied metric called the normalized flow I/ωR 3 c . The inset of that figure shows a region where the normalized flow is greater than in the Newtonian case. Outside those boundaries the flow starts decreasing but with a slight difference, for the indices less than 1 there exists a turning point for which the flow begins increasing. For example, for n = 0.4 the turning point is found for Cu ≈ 10 3 . We hypothesize here that this effect could be due to the disappearance of the viscosity stratification, as higher values of Cu, it implies more uniform viscosity values. Thus, allowing a better fluidity. Figure 3. 19(c) shows the behaviour of the other metric called pumping efficiency F Z L/τ for different power index values n. The computations were done for a HS with the aforementioned geometric parameters. We observe that as smaller the n value gets, the better pumping efficiency. Moreover, the peak value is being shifted to the right as n increases. Then, for all n < 1 the pumping efficiency is much higher than in the Newtonian case. The peak values are found between Cu ≈ O(10 1 -10 2 ). Finally, Fig. 3. 19(d) represents the torque at pumping for different power index values n. From those results, the torque decreases as the power index value is small. Moreover, as the Carreau number increases, the torque gets smaller due to the viscosity reduction. 

Conclusions

We investigated the different rheological factors that alter the dynamic of helical swimmer structures (HSs) in non-Newtonian fluids, specifically in shear-thinning fluids which are ubiquitous in most of our biological fluids. The intention was to provide numerical data toward the optimization for performing swimming and pumping tasks. We studied the shear-thinning behaviour exploiting the Carreau Yasuda constitutive model that is widely accepted in the literature. To do so, we varied the rheological parameters as well as some geometrical features of HSs to analyse how it compromises the different proposed metrics for evaluating either swimming or pumping. Through this evaluation, we observed enhancement of swimming and pumping efficiencies (µL 2 U/τ , F Z L/τ ) in a certain interval of the Carreau number Cu comprised between O(10 1 -10 2 ). In the case of the swimming speed U , this enhancement reaches even 170% with respect to the Newtonian case for small values of the power index. In the case of swimming efficiency, it reaches its maximum value for larger values of Cu. On the other hand, in the case of pumping, the pumping efficiency reached more than 200% the one of the Newtonian case. However, in terms of thrust F Z and normalized flux I/ωR 3 c , the performance in non-Newtonian fluids is slightly better just in an interval of Cu ≈ O(10 0 -10 1 ). Then, the performance in Newtonian fluids outperforms shear-thinning fluids at least in our study interval. We covered here for the first time the implications of a shear-thinning behaviour in the established metrics for evaluating swimming and pumping performance. These studies are of high relevance in our opinion for microrobotic community toward the conception of HSs for in-vivo interventions.

Conclusions

In this chapter we analysed the performance of helical swimmer structures (HSs) at swimming navigation and pumping. We examined two scenarios namely in Newtonian and non-Newtonian fluids. In the first section we treated the case of Newtonian fluids, for which we prepared simulation data, and experimental results for the swimming case. In the second section we performed a purely numerical analysis of the behaviour of the HSs in non-Newtonian fluids, specifically in shear-thinning fluids that are present in most of the biological fluids, where such tiny machines may interact with in future medical interventions. The main contribution of this chapter was to identify either geometrical features or rheological conditions for which the HSs might perform effectively either swimming or pumping tasks. Thus, this study can serve as a guide reference for future conception of improved medical tools.

Chapter 4

Optimization of chiral swimmer structures

Chiral swimmer structures (CSs) constitute a quite general kind of microswimmers with cylindrical symmetry. They are of interest for achieving swimming and pumping in challenging environments. In that regard, we optimize here the capabilities of the proposed structures in two scenarios, namely Newtonian and non-Newtonian fluids. The main objective of this chapter is to provide a set of results concerning the main geometrical features and rheological parameters that affect the swimming and pumping performance, to establish a guide reference for their future manufacturing.

In the previous chapter, we performed an optimization study of helical swimmer structures (HSs) for enhancing their swimming and pumping capabilities. In this chapter, we also provide simulation and experimental data for optimizing the swimming and pumping capabilities of chiral swimmer structures (CSs) in two fluid contexts, namely Newtonian fluids and non-Newtonian fluids. In the first section, "Optimization in Newtonian fluids", we cover the first context where CSs will develop swimming and pumping in Newtonian fluids. The study of this particular structure is carried out for the first time in the literature, bringing with it new knowledge in the optimization of structures other than HSs. This section is divided into two subsections: numerical analysis and experimental analysis. The second section, "Optimization in non-Newtonian fluids", covers the shearthinning fluid case that is ubiquitous in most of our biological fluids. Similar to the case of HSs, the study of chiral structures in non-Newtonian fluids, in general, has been poorly covered in the literature, so we believe its treatment is needed toward a complete understanding of their behaviours in complex fluids. Therefore, in this section we cover numerical results, dividing the analysis into swimming performance and pumping performance respectively. The most interesting findings are summed up in the conclusion of the chapter.

Optimization in Newtonian fluids

Numerical Analysis

Swimming Optimization

In this section, we analyse the swimming characteristics of the proposed chiral swimmers. We introduced a parametrization in chapter 2 of CS (cf. Eq. (2.18)). Two parameters were used: a pitch angle α m , and a parameter that determines the extension of the polar angle T i (cf. Fig. 2.2). In the following, we will use α instead of α m for simplicity. To perform the optimization study we made use of COMSOL computed considering a structure with an aspect ratio β = 20 and a total length L = 2.4 µm unless otherwise stated. In figure 4.1 is depicted the fluidic torque behaviour τ . In Fig. 4.1(a) are depicted the iso-curves of τ in the parameter space {α, T i }. We observe that the torque increases in value as T i decreases and α increases. Then, the maximum value is given for T i = 0.1π (lower bound value of T i ) and α = π/2 (upper bound value of α). Fig. 4.1(b) stands for τ as a function of α for different values of T i . We see that the greater pitch angle value, the greater fluidic torque τ . This increase in torque could be due to the fact that the variable α is associated with a horizontal growth of the structure with respect to its axis of rotation (cf. Fig. 4.3(a)). In the case of T i , the increase of this variable reduces the horizontal growth of the whole structure (cf. Fig. 4.3(b)). It should be noted that the horizontal growth of the structure with respect to its axis will increase the torque because of its own definition. Fig. 4.2(a) represents different iso-curves of the propulsion speed U . We found the optimal parameters for α = 0.28π = 50 • and T i = π 2 . In Fig. 4.2(b) it is depicted U as a function of α for T i /π ∈ {0.111, 0.288, 0.466, 0.644, 0.822, 1.000}. Results demonstrate the existence of a peak value for each T i . However, those peaks are shifted from each other. The trend indicates that peaks move from the left to the right as T i /π increases. Peak positions are ranging from α = 0.22π to α = 0.31π. Besides, the maximum speed values are ranging for T i ∈ [0.466, 0.644]π (solid and dashed blue lines) being the exact position for T i = π/2. In Fig. 4.4 the swimming efficiency µU L 2 /τ is analysed. In Fig. 4.4(a), the iso-curves of µU L 2 /τ in the parameter space {α, T i } are depicted. The maximum efficiency value is found for T i = π and α ≈ 0.14π. In Fig. 4.4(b) it is depicted the swimming efficiency µU L 2 /τ as a function of α for different values of T i /π. We observe the existence of a peak for each T i /π value. However, those peaks are shifted from each other. Similar to the previous results in Fig. 4.2(b), the trend indicates the peaks move from the left to the right and increases in value as T i increases. Besides, all peaks are situated between 0.5 < α/π < 0.15. Then, we analysed the propulsion efficiency η = U/Lω. To obtain those results, we modulated the aspect ratio of the structure β by keeping the whole volume V constant. Therefore, the cross-section radius of the entire structure was variable cf. Fig. 4.3(c). Those results were computed considering the following chiral shape parameters: α = 50 • and T i = π/2. Fig. 4.5 depicts in (a) the increasing trend of the swimming speed U with the aspect ratio β, and in (b) the monotonic behaviour of the propulsion efficiency η that seems to have a limit as β increases. The growth trend of the propulsion speed U with the aspect ratio in structures with the same volume was also observed in our numerical analysis with HSs (see discussion with respect to the magenta line comparison in Fig. 3.1).

(a) (b) 

Offset Distance

We then studied how the chiral structures change their propulsion speed U as we move the rotation axis away with a certain offset distance δ (cf. Fig. 4.6 left). We considered for those computations the following variable space: { δ L , β}. The impact of this offset is represented in Fig. 4.6 (middle and right). In order to analyse the influence of δ L and β on the propulsion speed U and on the efficiency η, we considered the information from the corner points of the present results (cf. Fig. 4.6) to prepare a 2-factorial design.

First of all, δ/L and β were assigned of one variable, {x 1 , x 2 } respectively. Each variable is assigned two values: -1 and +1 for their respective upper and lower bounds. The response (U and η) for each combination of variables was analysed, thus obtaining the following distribution U ≈ 1.9174 + 1.0294 x 1 + 0.7893 x 2 + 0.4233 x 1 • x 2 . The influence of each variable is greater when its respective accompanying coefficient is greater. In the case of U , the coefficient related to β (x 1 ) is a bit greater than δ/L (x 2 ). However, both parameters are influential. Moreover, the cross-coupling effect (x 1 • x 2 ) has a bit less influence on speed but not negligible. Proceeding in the same way with η, we obtained the following expression η ≈ 0.6789 + 0.0929 x 1 + 0.2795 x 2 + 0.0380 x 1 • x 2 . We observe that the efficiency mostly depends on δ rather than on β, and on δ • β. Then, the expression can be straightforwardly reduced to η ≈ 0.6789 + 0.2795 x 2 being a single function of δ. In other words, for chiral tail structures with different aspect ratios, their propulsion efficiencies vary practically in the same proportion when changing to certain offset distance. In nature different microorganisms such as the Paramecium or even the E. coli bacterium made use of multiple cilia or tails to develop their locomotion. In the case of the Paramecium, it configures coordinated patterns with their multiple cilia while the E.coli bacterium made use of a single bundle of tails to then rotate it through chemical motors. In that sense, inspired by the use of multitailed microorganisms, we propose this study to analyse the influence on the speed of different symmetric configurations of multi-tailed swimmers that will rotate around certain axis. Additionally, those different symmetric tail configurations were built with the same quantity of matter (cf. Fig. 4.7). We set the variable space as {N t , β} being the number of tails and the aspect ratio respectively. These variables are depicted by the normalized variables {x 1 , x 2 }, respectively. We similarly proceeded as in the previous case, and obtained the following expression: U ≈ 2.0209 -0.2707 x 1 + 1.0724 x 2 -0.1764

Number of Chiral Tails

x 1 • x 2 .
In general, the effect of the number of tails is negative: the more tails, the smaller speed values. However, its coefficient is small, so it can not affect a lot the speed. On the other hand, the effect of the aspect ratio on the speed is positive and influences more than the number of tails and the coupling effect of both parameters. However, there is a small region where there is an increase of speed (cf. figure 4.7 inset). For N t ∈ [1, 2] and β ∈ [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF][START_REF] Amelinckx | A formation mechanism for catalytically grown helix-shaped graphite nanotubes[END_REF]. We performed a factorial design model for that small region achieving the following model U ≈ 1.2515+0.183 x 1 +0.1890 x 2 -0.0015

x 1 •x 2 .
In that small region the number of tails has a positive influence on the speed. Its contribution to the speed remains however small with respect to the effect of the aspect ratio. β is the parameter that influences more on U , while the interaction between both parameters is negative and small so it can be negligible.

(a) (b) 

Pumping Performance Improvement

In this section, we analyse the pumping performance of the chiral swimmers. To carry out this study, we proceeded similarly to the swimming case and varied the chiral shape through the variable space defined by {α, T i }.

Here, in order to assess the pumping action, we computed the thrust (T ), the fluidic torque (τ ), the flux generated in the middle plane of the structure (I). 

Conclusions

We investigated the swimming and pumping performance in Newtonian fluids of chiral swimmer structures (CSs). To do so, we exploited the different geometrical features namely, its chiral shape through the variable space {α, T i }, the aspect ratio β, an added distance from the rotation axis that we called the offset distance δ, and the number of symmetrical chiral tail structures N t .

In first instance, we analysed the swimming performance of CSs. We obtained different set of coefficients that maximizes the swimming propulsion U , the swimming efficiency µL 2 U/τ . Then we analysed the effect of the aspect ratio β on the swimming speed U and on the propulsion efficiency U/Lω. In the former case, the speed growth tends to infinity as β is increased. However, in the latter case the propulsion efficiency seems to have a limit value as β (or L) tends to infinity. In real applications, having chiral structures with slender bodies will compromise the structure stability and will be more prone to breaking. In such a case, finding a balance between propulsion efficiency, speed and the aspect ratio is an essential issue. Then, the effect of the offset distance δ and the aspect ratio β on the swimming speed U and on the propulsion efficiency η was studied. We observed that the increase of δ and β favours positively on the speed while for the propulsion efficiency η just δ has a real positive influence. Afterwards, the effect on U was studied by modifying the number of tails N t and the aspect ratio β given a fixed volume V . We found that the number of tails just influences on the structures with low aspect ratios. We found a local maximum for a 2-tailed chiral structure for β less than 60. Outside that bound, the number of tails has a negative effect on swimming speed. In future bio-applications, such as the ones in the blood vessels, the swimmer should overcome counter flows. Velocities in cerebral capillaries vary mainly from 0.5 -1.5 mm/s and they have luminal diameters in 2-5 µm. As the cartographic map results for U are given for a frequency of 1 Hz and L ∼ 2.4 µm, to reach the previous values the robot should be actuated at frequencies of about hundreds of hertz to be able to overcome the counter-flow in the capillaries. These values of frequencies have been demonstrated to be feasible to reach in the literature [START_REF] Ghosh | Controlled propulsion of artificial magnetic nanostructured propellers[END_REF]. Finally, in second instance, we analysed the effect of chiral shape parameters {α, T i } on the different pumping metrics established in chapter 2. We found different set of coefficients that maximize each of those metrics namely, the thrust T , the flux I, and the pumping efficiency T L/τ . Different to the helical swimmer structures case, the optimal structures at swimming efficiency and pumping efficiency are far from each other in the parameter space {α, T i }. Thrusts of about 10 -12 N, which can be obtained by increasing the rotation frequency in hundreds of hertz, will permit their use for applications such as ones concerning the application of a pumping action to unblock the different blood vessels. That can be achieved by reaching the gel point of the blood with viscoelastic behaviour, known as blood clots, through the pumping action.

Experimental Analysis

In this section, we present results related to the swimming of chiral swimmer prototypes. Here the general equation Eq. (2.4), given in chapter 2, is followed with a tail geometry defined by functions f (t) and g(t) that were modified. The intention of this analysis is to provide experimental data that are somehow complementary to the numerical analysis. Namely we analysed the impact of the chiral tails distribution, the cargo capacity, and the wall effect of nearby boundaries on the swimming propulsion.

Prototypes

The millimetric prototypes for this experiment are composed of spherical chiral tails conceived by 3D printing with Visijet M3 black as a UV curable plastic material. The magnetization is provided through a disc-shaped neodymium magnet ( 1.0 mm in diameter, and 0.5 mm in thickness) attached to a cylindrical head of 1.6 mm in diameter and 2.0 mm in height (cf. Fig. 2.11(b)). The tail geometry follows the next parameterization:

x = R 2 -(ct) 2 cos(t) (4.1a) y = R 2 -(ct) 2 sin(t) (4.1b) z = ct (4.1c)
where f (t) = R 2 -(ct) 2 and g(t) = ct. This parametric equation stands for a chiral flagellum drawn on a spherical surface with radius R. Parameters t and c determine the number of turns and the chiral curvature. In most of experiments we kept R = 3, except for those concerning the tail height. Variable ct is strongly correlated with R, and in order not to obtain a complex number in the parameterization, ct might range from 0 to R. Finally, by convenience we kept the parameter c equal to R in all experiments, thus maintaining chiral shape for the tail height experiments. The experiments were carried out in pure glycerol with the finality of reproducing a low Reynolds environment. The robots were guided harnessing magnetic fields generated by a 3D nested Helmholtz coil system presented in chapter 2.

The maximum magnetic field achieved by the system is 12 mT. However, the robots were just actuated by 8 mT rotating magnetic field to avoid high temperatures in the workspace.

Results

Optimal angular position for a second tail

The optimal angular position for a second tail was studied experimentally. Considering the proposed tail geometry, we fabricated different 2-tailed robots with different angular separations (cf. Fig. 4.13(b)). These robots were actuated under 8 mT rotating magnetic field at 4 Hz. The forward propulsion speed U was measured for each configuration 3 times (negligible error) and plotted in polar coordinates in Fig. 4.13(a). The radial axis depicts the forward speed in (mm • s -1 ) while the angular separation is represented by the angles in the graph. Figure 4.13(b) depicts a robot with an angular separation ϕ between tails. The tail on the left is kept while the other is rotated forming different angles ϕ. In the experiments were considered ϕ = 0 • , 30 , 180 • because of the robot symmetry. The in-phase configuration (ϕ = 0) demonstrates, in this case, to generate insufficient propulsion force to get off the ground, different from the result obtained in [START_REF] Danis | Thrust and hydrodynamic efficiency of the bundled flagella[END_REF]. Finally, in figure 4.13(c) stands for the optimal angular distribution of tails, which is 180 • the one with the best performance. It means that both tails have to be as far as possible distributed in order to avoid hydrodynamic interactions between each other and thus achieving high performance. A similar result was obtained recently in [START_REF] Shum | Microswimmer propulsion by two steadily rotating helical flagella[END_REF] for a 2-bundled robot with each bundle rotating independently.

Height effect

This study is devoted to analyse the effect on forward speed of the length. Initially, we started considering 3 robots with tail heights of: 2, 3 and 4 mm or more precisely with parameter R = 2, 3, and 4. However, the 2-mm robot tails were not able to provide enough thrust to displace the robot. Hence, Fig. 4.14 only includes results for the robots of 3-mm, and 4-mm tail heights. Experiments demonstrate that the tail length increased the forward speed. The robot in 4-mm tail height experienced an increment of practically 100% in forward speed with respect to its smaller counterpart just by increasing 1-mm the tail height. On the other hand, if we reduce by 1 mm the tail height to reach 2 mm, it will not be able to compensate the robot apparent weight and propulsion becomes non-achievable. Results show an increase of speed when tail height is increased. The error bars in experiments are calculated as the standard deviation of 3 trials for each frequency and robot.

Cargo influence

As part of the study, the feasibility for cargo transporting was assessed considering spheres with different weights attached inside flagella of a 2-tailed robot with 3-mm tail height. Experiments were performed in order to analyze the correlation between the cargo weight and the propulsion speed. The tested weights for this experiment were 25, 34, and 56 mg as can be seen in figure 4.15. Results confirm the intuition that the heavier cargo, the less propulsion speed. The interesting part of this is the robot capacity to transport even objects 3.5 times heavier than its weight (2-tailed robot's weight is 16 mg). 

Wall effect

Future applications in microrobotics involve drug delivery in tiny, constrained, and difficult-to-reach environments; where wall effect will change drastically the robot dynamics. Several studies have stated that wall effect benefit robot propulsion since speed increases [START_REF] Howard | Chemotaxis of bacteria in glass capillary arrays. escherichia coli, motility, microchannel plate, and light scattering[END_REF][START_REF] Biondi | Random motility of swimming bacteria in restricted geometries[END_REF]. In spite of this increment, the viscous drag increases as well as the viscous fluidic torque producing a decrease of cut-off frequency in case we set the magnetic torque constant. In other words, in order to avoid a cut-off frequency, we would need to increase the magnetic field value in order to increase as well the magnetic torque and overcome the fluidic torque.

To characterize this situation, the experiment we designed consisted of analysing wall effect of 3 different multi-flagella robots with 2, 3, and 4 tails arranged symmetrically (cf. Fig. 4.12). Each robot is placed in two containers with 20 and 50 mm in diameter respectively, then, actuated in 8 mT rotating magnetic field at frequencies ranging from 0 to 3.5 Hz. The obtained results for containers with 50-mm and 20-mm in diameter are depicted in Fig. 4.16(a) and Fig. 4.16(b) respectively. Comparing frequency by frequency for each robot in each container (before the respective cut-off frequency), speed is observed to increase considerably. Results show that the maximum speed increment is for a 3-tailed robot, achieving a 59% increase with respect to the speed when swimming in the 50-mm container.

Comparing the effectiveness of the multi-tailed robots, we could see that for the 50mm container the speeds of the 2 and 3-tailed were close. However, when analysing the results for a 20-mm container, the 2-tailed robot resulted the most effective.

The propulsion efficiency can be computed through the expression U/Rf , where U is the robot speed, R is the tail height and f is the respective rotation frequency. This propulsion efficiency can be interpreted as the percentage of tail height advancement per turn. From the experimental results, we have that the efficiency of a 2-tailed robot in the 50-mm and 20-mm container is equal to 0.39 and 0.55 respectively. In the same way, the efficiencies of the 3-tailed robot are 0.38 and 0.51. And for the 4-tailed robot, 0.32 and 0.33. This confirms that the 2-tailed distribution is the most effective among the proposed distributions. The efficiency decrement of the 3-tailed and 4-tailed robots, given a fixed container, could be attributed to a reduction of the total propulsion force due to the interaction of tails when they get closer.

Conclusions

Through this experimental analysis, we identified the optimal position for a second tail in a miniature robot, the tail height effect on propulsion, the influence of cargo on propulsion, and the wall effect with rigid chiral multi-flagella prototypes (2, 3 and 4 tails). We found that the optimal angular position for a second tail in a 2-tailed configuration is 180 • , as far as possible from each other. Furthermore, the influence of the tail height was demonstrated to be strongly correlated to the forward speed of the robot. The more tail height the larger speed value. On the other hand, the influence of the cargo is inversely proportional to the forward speed. The proposed prototype demonstrates to carry large amounts of cargo. However, the forward speed reduces drastically. Besides, the boundary effect was investigated using three chiral multi-flagella prototypes with a symmetric tail distribution. Experiments demonstrate an increment on propulsion speed at same frequencies when robots are immersed in the container of smaller width. Experimentally, we achieved a relative increment up to 59%. Nonetheless, the cut-off frequencies is reduced since the fluidic torque increases in the small container. Finally, the propulsion efficiency of the multi-tailed robots was discussed showing that the 2-tailed robot was the best one from our experiments (55% of efficiency).

Optimization in non-Newtonian fluids 4.2.1 Motivation

In the beginning of the thesis, we have outlined the wide range of applications where swimmer structures may play a substantial role. Especially, the envisioned medical treatments are very promising. Then, the behaviour of CSs in biological fluids needs to be analysed since rheological measures demonstrate that many of such fluids exhibit both viscoelastic and shear-dependent viscosity [START_REF] Klapper | Viscoelastic fluid description of bacterial biofilm material properties[END_REF][START_REF] Hwang | Rheological properties of mucus[END_REF] which can change CSs dynamics. Another reason for studying CSs dynamics in such environments is to provide a better understanding of biological swimmers. Spermatozoa swim for instance in fluids presenting a non-Newtonian behaviour such as the extracellular polymeric substances found in biofilms [START_REF] Hall-Stoodley | Bacterial biofilms: from the natural environment to infectious diseases[END_REF] and the cervical mucus in the mammalian female reproductive tract [START_REF] Susan | Sperm transport in the female reproductive tract[END_REF]. The dynamic behaviour of microorganisms will depend upon both the rheological properties of the biological fluid and the swimming strategy. For example, helical bacteria swim faster in a viscoelastic fluid than in a Newtonian fluid of the same viscosity [START_REF] Howard | Movement of microorganisms in viscous environments[END_REF]. And on the contrary, Caenorhabditis elegans, with a planar wave undulation, swim slower [START_REF] Xn Shen | Undulatory swimming in viscoelastic fluids[END_REF]. In recent years, the effects of fluid elasticity on different swimmers have been widely investigated, i.e. swimming sheets undergoing planar beating motion [START_REF] Lauga | Propulsion in a viscoelastic fluid[END_REF][START_REF] Teran | Viscoelastic fluid response can increase the speed and efficiency of a free swimmer[END_REF][START_REF] Riley | Enhanced active swimming in viscoelastic fluids[END_REF][START_REF] Thomases | Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids[END_REF] and rotating helical flagellum [START_REF] Liu | Force-free swimming of a model helical flagellum in viscoelastic fluids[END_REF][START_REF] Saverio E Spagnolie | Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes[END_REF]. However, the shear-thinning viscosity effect on swimming is less understood compared with viscoelasticity.

Initially, the non-Newtonian viscosity has been considered as the main reason behind the enhancement of bacteria speed in early studies [START_REF] William | Effect of viscosity on bacterial motility[END_REF][START_REF] Howard | Movement of microorganisms in viscous environments[END_REF]. In [START_REF] Vélez-Cordero | Waving transport and propulsion in a generalized newtonian fluid[END_REF], the authors, based on scaling arguments, suggested that the shear-dependent viscosity is likely to play a more important role than elastic effects. Shear-thinning rheology can impact locomotion in both local and non-local manners [START_REF] Li | Undulatory swimming in non-newtonian fluids[END_REF][START_REF] Riley | Empirical resistive-force theory for slender biological filaments in shear-thinning fluids[END_REF], e.g. while the local effect of viscosity reduction due to increased shear rates alters the local stress distribution on a swimmer, the modified stress balance also induces (nonlocal) overall changes to the flow around the swimmer. Swimming improvement is observed in simulations of a sperm cell in a shear-thinning fluid [START_REF] Thomas D Montenegro-Johnson | Modelling the fluid mechanics of cilia and flagella in reproduction and development[END_REF][START_REF] Thomas D Montenegro-Johnson | Physics of rheologically enhanced propulsion: different strokes in generalized stokes[END_REF]. However, analysing of CSs in shear-thinning fluids has been a non well-covered topic till these days.

Recently, in [START_REF] Demir | Nonlocal shearthinning effects substantially enhance helical propulsion[END_REF] presented a set of theoretical and computational analyses to show that shear-thinning viscosity alone can cause the substantial enhancement reported for helical propulsion in recent experiments. In that sense, in this section we cover the case chiral swimmer structures (CSs) performing in shear-thinning fluids, in a wide-range of rheological parameters, to analyse the impact in the swimmer dynamics. Moreover, to exploit better the following analyses we study the dynamics change for two previously considered tasks: swimming and pumping. In that sense, we used the defined metrics established in chapter 2 to continue with the analysis. Similar to previous chapter, where we performed the same analysis but with helical swimmer structures, we used the same ranges for the rheological parameters. Due to the complexity of performing experiments in a wide-range of non-Newtonian fluids, the analysis is mainly based on simulations.

Swimming performance

In Fig. 4.17 ] for all n values. However, we perceive a slight shift to the left as n decreases. For example, the peak value for n = 0.4 is found around α = 47.5 • while for the Newtonian case, n = 1, the peak is found around α = 50 • . In general, as the n value decreases, the speed increases. For n = 0.4, U reaches 138% with respect to the Newtonian case. Therefore, it confirms that the shear-thinning behaviour favours the swimming displacement of CSs. That result agrees with the one in [START_REF] Demir | Nonlocal shearthinning effects substantially enhance helical propulsion[END_REF]. As seen in chapter 3, we assign this enhancement to the viscosity stratification, which generates confinement-like environments that increases the initial propulsion force, and thus the swimming speed U (cf. Fig. 4.19). Then, Fig. 4.20 analyses the swimming efficiency metric µL 2 U/τ by considering the aforementioned geometric parameters. In Fig. 4.20(a) µL 2 U/τ is represented as a function of Cu for different n values. For n = 1 the efficiency value is not altered and remains constant. Nonetheless, for n < 1, the smaller n value, the higher efficiency value. Moreover, the peak values are found for the largest values of Cu. The efficiency µL 2 U/τ can even increase its value by 19 times with respect to the Newtonian case for Cu = 10 5 and n = 0.4. This increase is mainly generated by the reduction of the torque value as seen in Fig. 4.17 

Pumping performance

We now study the pumping performance of the CSs in non-Newtonian fluids. Finally, the proposed pumping efficiency F Z L/τ was analysed. In Fig. 4.24(a), we study F Z L/τ as a function of Cu for different n values. We considered the aforementioned geometric parameters used for computations involving Cu. For n = 1, F Z L/τ remains constant in the whole Cu interval. On the other hand, when n < 1, there exists a peak which is situated between Cu ∈ [10 1 , 10 2 ]. We also observe the smaller n, the higher pumping efficiency peak. Moreover, we can recognize that these results are very close to the ones in Fig. 4.18(a) for the swimming speed ratio of CSs. However, both metrics represents different actions, which makes it more interesting. Fig. 4.24(b) represents F Z L/τ as a function of α for different n values.

Results show the smaller n value, the better pumping efficiency. Besides, in the studied α range, the pumping efficiency decreases as the pitch angle increases.

Conclusions

We studied the behaviour of chiral swimmer structures (CSs) in non-Newtonian fluids, characterized specifically by their shear-thinning behaviour which is present in most of our biological fluids. The evolution of the swimming and pumping performance metrics were analysed for a wide range of shear-thinning fluids, finding the rheological and geometrical conditions for which CSs achieves a high performance.

We observed that the swimming speed U of CSs achieves a high performance for regimes with the Carreau number around Cu ≈ O(10 1 -10 2 ). Moreover, we verified the existence of a pitch angle α that maximizes U which slightly depends upon the n value. Then, the swimming efficiency µL 2 U/τ was demonstrated to be maximum for the highest values of Cu. However, its value decreased as the pitch angle was increased. Analogously, we analysed the pumping performance. The pumping thrust F Z was demonstrated to decrease with Cu and to increase with the increment of n. Geometrically, F Z demonstrates a peak performance for α = 55 • showing no dependence with n. The other metric used for measuring pumping performance is the normalized flux I/ωR 3 c , where we found a optimum Cu region comprised between O(10 -1 -10 0 ) where the flux surpasses the Newtonian case. Finally, the last metric, that we named the pumping efficiency F Z L/τ , demonstrated a peak performance in the same range than the case of the swimming speed for CSs, i.e. Cu ≈ O(10 1 -10 2 ). 

Conclusions

In this chapter we analysed the performance of chiral swimmer structures (CSs) at swimming navigation and pumping. We examined two scenarios namely in Newtonian and non-Newtonian fluids. In the first section we treated the case of Newtonian fluids, for which we prepared simulation data, and experimental results for the swimming case. In the second section we performed a purely numerical analysis of the behaviour of the CSs in non-Newtonian fluids, specifically in shear-thinning fluids that are present in most of the biological fluids, where such tiny machines may interact with in future medical interventions. The main contribution of this chapter was to identify either geometrical features or rheological conditions for which the CSs might perform effectively either swimming or pumping tasks. Thus, this study could serve as a guide reference for future conception of improved medical tools.

Conclusions and Perspectives

Conclusions

Magnetic rotating micro-swimmers are considered today a promising technology for different applications, especially the medical ones. Their ability to be wirelessly actuated through low-strength rotating magnetic fields in constrained environments makes them great candidates to carry out various tasks through the human body.

In that regard, in order to fully accomplish different medical missions, their abilities for developing swimming and pumping have to be optimized. Nonetheless, the current alternatives for modelling the swimming and pumping of rotating non-slender micro-swimmers lack good accuracy and do not provide alternatives for customizing their geometrical and physical features. For such reasons, the contributions developed in this thesis to cover that problematic are given as follows:

Building of a customizable simulation environment

In order to address the optimization problem, in the first instance, a simulation environment was built to reproduce the swimming and pumping behaviour of rotating micro structures in two fluidic regimes, namely Newtonian and non-Newtonian fluids. The simulator was based on finite elements and developed in the COMSOL Multiphysics software framework. Through this simulator, the kinematic and dynamic parameters of the micro structures and the surrounding fluid were computed, thus, allowing the development of the optimization study. The conception of the simulation platform considered the non-slender micro structures case, which is currently not a well-covered topic in the literature. Besides, other geometrical features such as roughness, non-homogeneous cross-sections, and so on, could be also implemented in our environment. Even if our simulation environment provides highly accurate results, its implementation its not intended for real time applications. Simplified models, with corrections based on computational fluid dynamics to consider a wide-range of geometric and physical features, will be a future work as mentioned in the perspectives.

Optimization of helical swimmer structures

Having implemented the simulation environment, a structural optimization was performed for non-slender helical swimmer structures (HSs) to achieve swimming and pumping.

Firstly, the swimming and pumping abilities were studied through different metrics discussed in chapter 2. With such indicators, the swimming, pumping, and combined tasks were optimized in a wide parameter space range. Geometrical features such as the helical shape, and the cross-section for non-slender structures were studied, thus, finding the optimum parameters which globally optimized swimming, pumping or a combination of both tasks in Newtonian fluids for the first time. Different works covered before each of these tasks separately. However, the novelty of this work relies on the given treatment to address this problem parametrically to deal with swimming, pumping, and a combination of both tasks. In addition, some of the swimming results were verified using scaled-up versions of HS. Secondly, having implemented this parametric study for Newtonian fluids, the treatment using the aforementioned metrics in non-Newtonian fluids, especially in shearthinning fluids which cover a wide spectrum of biological fluids, was covered for the first time in the literature. The novelty was to find different rheological and geometrical conditions that favour swimming and pumping abilities of the non-slender structures. Moreover, some of the geometrical features that maximize the structure capacities in Newtonian fluids were found to slightly change in the non-Newtonian case.

The implementation of simplified models for modeling the behaviour of non-slender HSs in non-Newtonian fluids has not been well-addressed till these days. Hence, research on those models that correctly model the structural behaviour with CFDbased corrections in non-Newtonian fluids is a hot topic for future works.

Optimization of chiral swimmer structures

Chiral swimmer structures (CSs), which constitute a quite general kind of rotating microswimmers, were studied and optimized for the first time. The definition of the parametrization for such structures was stated in chapter 2. Similarly as we did for HSs, we considered for CSs the same metrics to evaluate swimming and pumping but as morphologically speaking they are different, other geometrical features were considered such as the chiral shape, the offset distance, and the number of tail structures.

In the first instance, we optimized the swimming and pumping capacities of the novel CSs in Newtonian fluids. We mostly analysed the importance of the structure distribution around the rotating axis through the different metrics. Different optimum structures were found for each evaluated metric. Besides, different to the HSs case, the CSs optimal structures for swimming and pumping respectively were found to not stay near each other in the parameter space. In addition, swimming results were obtained using scaled-up versions of CS to complement the optimization study.

In the second instance, we performed for the first time the optimization of other rotating structures different to the HSs, namely CSs, in non-Newtonian fluids. The study of optimization of those structures in such kinds of fluids is of great importance to develop improved medical tools for in-vivo applications, and, to unravel the behaviour of microorganisms, which use the same rotational propulsion mechanism and exploit chiral flagellum distribution, in their natural environment such as cervical mucus and polymeric substances found in biofilms. Then, the different metrics for swimming and pumping were analysed under different rheological conditions.

Perspectives

Due to the great advances that have occurred in recent years in the field of microrobotics, different aspects such as manufacturing, actuation and characterization could be used together with the new knowledge to bring us closer to the longawaited in-vivo applications. In the following, we will analyse each of these points, dividing them into short and long term expectations for future research.

In the short-term, having computed the results for the non-slender helical and chiral structures, the next step for this research topic is to implement simplified models such as the ones presented in the resistive force theory (RFT) and/or slender body theory (SBT) but considering correction coefficients to obtain reliable approximations for such non-slender bodies. Moreover, other approaches for modelling the non-slender structures could include coefficients correlated to geometrical parameters that lead to complex structural transformations such as the cross-section orientation and elongation, studied in this thesis. Another interesting point is related to the dynamic modelling of the chiral and/or helical swimmer structures in non-Newtonian complex fluids. Nowadays, there doesn't exist a simplified model that could explain the speed increment in shear-thinning fluids. In this thesis we discussed that this factor could be due to the viscosity stratification around the chiralswimmer that leads to a kind of confinement, thus, possibly enhancing propulsion speed. Therefore, the next step for this research topic is to analyse the viscosity gradient stratification around the structure and then to assign it the respective confinement-size under different criteria. Then, another aspect that was not treated in this thesis is the optimization of the drilling action through viscoelastic solid tissue. The modelling of this task implies the analysis of shear-stress distribution to perform a correct penetration with the chiral structures.

In the long-term, the next step will concern some of the current fabrication issues for rendering the chiral structures suitable for in-vivo applications. It is a wellknown fact that most of the methods for providing micro-swimmers with magnetic features have not solved their wobbling motion. This could generate unstable swimming regimes depending on the actuation frequency. Magnetization methods such as the ones using superparamagnetic composites with two-photon polymerization reduced drastically this problem. Therefore, to use this method for the fabrication of chiral structures and the subsequent validation at the micro-scale of our results will be the next goal.

Other aspects related to the fabrication will concern the biocompatibility of the micro-swimmers, and therefore the choice of the material for their fabrication is of highly importance. Covering their surfaces with materials such as cobalt-chromium or titanium alloys demonstrated to help for their biocompatibility. Then, the idea for future research will consist in carrying out experiments with optimized structures having biocompatibility and/or biodegradability features to start with animal clinical trials.

Collateral to this research idea, the development of the actuation and detection elements of magnetic platforms compatible with medical applications remains an open challenge. First works have been carried out and demonstrate the feasibilty of the approach, but future directions of research include the developement of cheaper, less bulky, reconfigurable magnetic platforms including in-vivo detection of the swimmers.

Finally, once the method to accurately track micro-swimmers has been developed, another idea concerns the control of one or more micro-swimmers in uncertain environments. At the control level, there are already some works that have demonstrated the 3D path-following by using visual servoing information in steady environments. However, due to the abrupt dynamic changes in the bio-fluids that the micro swimmer will have to face, robust control techniques will need to be implemented to achieve in-vivo applications.

We hope this work serves as a guiding reference for building the next generation of magnetic rotating micro-swimmers.
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 11 Figure 1.1:Examples of living micro-objects with their associated scales: organelles (<1 µm), single cells (1-100 µm), and small organisms (< 1 mm).[START_REF] Gerena | 6-DoF Optical-driven Micro-robots with Force Feedback Capabilities for Interactive Bio-manipulation[END_REF] 
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 12 Figure 1.2: Examples illustrating the swimmer types. Category 1: (a) Dielectric particles immersed in a fluid medium pushed by the electric field force (Image adapted from[START_REF] Zhang | Dep-on-a-chip: Dielectrophoresis applied to microfluidic platforms[END_REF]). (b) Colloidal particles in a fluid medium dragged by a focused laser beam (optical tweezers)[START_REF] David | A revolution in optical manipulation[END_REF]. Category 2: (c) Micro bio-robot formed by a motile spermatozoon and a magnetized head tube for guiding, the displacement is generated by the spermatozoon through propagation of undulating waves with its appendage[START_REF] Magdanz | Development of a sperm-flagella driven micro-bio-robot[END_REF]. (d) Sperm-bot which is a helical swimmer capable of transporting sperm cells for in-vitro fertilization. Its displacement is generated by the rotation of its helical body in viscous media[START_REF] Medina-Sánchez | Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors[END_REF].
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 13 Figure 1.3: Reynolds number for some swimmers at different scales.
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 1415 Figure 1.4: Swimming approaches. (a) Reciprocal swimming sequence by a scallop shell. (b) Non-reciprocal swimming sequence performed by a theoretical swimmer proposed by Purcell in [3]. (Images adapted from [3]) (a) (b)
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 16 Figure 1.6: Bundle formation of E. coli bacterium. (Image adapted from [16])
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 17 Figure 1.7: Sketches of microscopic swimmers, to scale. (a) E. coli. (b) C. crescentus. (c) R. sphaeroides, with flagellar filament in the coiled state. (d) Spiroplasma, with a single kink separating regions of right-handed and left-handed coiling. (e) Human spermatozoon. (f ) Mouse spermatozoon. (g) Chlamydomonas. (h) A smallish Paramecium.[START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF] 
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 18 Figure 1.8: Propulsion mechanisms in nature and their analogous bio-inspired microdevices. (a) planar beating of flexible flagella, e.g. spermatozoa. (b) rotating rigid helical flagella actuated by a molecular motor (dyenin), e.g. E. coli bacteria. (c) Cilia, e.g. Paramecium (d) flexible beam actuated by a torque generated at the spherical head. (e) Magnetic micro-bead chain flexible swimmer conceived by Dreyfus et al. (f ) Rotating a rigid helical tail attached to a magnetic head. (g) Artificial Cilia array of flexible beams. (h) Artificial Cilia arrays of self-assembled magnetic micro-beads. (Image taken from [32])
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 19 Figure 1.9: Different Chiral structures: (a) The footprint. (b) Helical structures.
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 110 Figure 1.10: Classification of rotating magnetic swimmers. Achiral swimmers: (a) magnetic aggregates [5], (b) planar swimmers[START_REF] Chen | Propulsion of magnetically actuated achiral planar microswimmers in newtonian and non-newtonian fluids[END_REF]. Chiral swimmers: (c) δ * -optimal propeller[START_REF] Mirzae | Geometric constraints and optimization in externally driven propulsion[END_REF], (d) chiral 3D-structure considered in this work, (e-f ) helical swimmers[START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF][START_REF] Quispe | Enhancing swimming and pumping performance of helical swimmers at low reynolds numbers[END_REF].
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 111 Figure 1.11: Basic shapes that can transform rotary motion into translation at milli(1-3) and micro-scale(4-6). (1) Prototype for gravity compensation [49]. (2) Prototype for inside the intestines [50]. (3) Prototype for intravascular drilling [51].(4) Polymer ABF presented by S. Tottori[START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF]. (5) Prototype for tissue drilling[START_REF] Ishiyama | Magnetic micromachines for medical applications[END_REF].[START_REF] Zhang | Dep-on-a-chip: Dielectrophoresis applied to microfluidic platforms[END_REF] Prototype for microfluidic pumping[START_REF] Kobayashi | 3d magnetic microactuator made of newly developed magnetically modified photocurable polymer and application to swimming micromachine and microscrewpump[END_REF]. (Image taken from[START_REF] Peyer | Magnetic helical micromachines[END_REF])
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 112 Figure 1.12: 3D lithography with a direct laser writing tool. (a) Polymerization of the photoresist at the focal point of the laser. (b) development and subsequent rinsing and (c) magnetic metal coating.[START_REF] Peyer | Bio-inspired magnetic swimming microrobots for biomedical applications[END_REF] 
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 113 Figure 1.13: Self-scrolling fabrication process (a-g): initial planar bilayer patterned through conventional microfabrication techniques, assembles itself into 3-D structures during wet etch release because of the internal strain. Metal pads and support bars are created through negative photolithography and lift-off.[START_REF] Hwang | Piezoresistive ingaas/gaas nanosprings with metal connectors[END_REF] 

Figure 1 .

 1 Figure 1.14: (a) InGaAs/GaAs bilayer is patterned by photolithography in a ribbonlike shape for the helical tail. (b)The ribbon-like structure self-forms a helix tethered at one end by releasing the internal stress after wet etching of the sacrificial layer. The red arrow indicates the scrolling direction of the ribbon, i.e. , <100> on a (001) GaAs wafer.[START_REF] Zhang | Artificial bacterial flagella for micromanipulation[END_REF] 
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 115 Figure1.15: GLAD fabricated helical swimmers. Pillars are deposited at an angle and under constant rotation of the stage, resulting in helices on the spherical seeds.[START_REF] Peyer | Bio-inspired magnetic swimming microrobots for biomedical applications[END_REF] 
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 116 Figure1.16: Targeted cargo delivery applications of helical swimmers. (a) Calcein deliver to cells by direct contact with lipoplex functionalized helical microrobots[START_REF] Qiu | Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery[END_REF]. (b) Helical swimmers as a niche for stem-cells delivery[START_REF] Immihan Ceren Yasa | 3d-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery[END_REF]. (c) Drug delivery by microrobot swelling for theranostic applications[START_REF] Ceylan | 3d-printed biodegradable microswimmer for theranostic cargo delivery and release[END_REF].
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 1117 Figure 1.17: Microrobot-aided surgery. (a) Proposal of helical actuator for guiding endoscopy capsules. (b) Helical actuator for trailing wires in narrow waterways.These actuator can be used to steer common endoscopes. (Images adapted from[START_REF] Sendoh | Fabrication of magnetic actuator for use in a capsule endoscope[END_REF][START_REF] Kikuchi | Fabrication of a spiral type magnetic micromachine for trailing a wire[END_REF])
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 118 Photodiode
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 119 Figure 1.19: Helical swimmers as diverse micro tools. (a) They could take part in mixing processes [84]. (b) Helical swimmers for controlled particle releasing [86]. (c) They are able to indirectly manipulate microobjects with the flow pattern generated by their rotation [87].
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 21 Figure 2.1: Geometrical parameters of HSs. (a) A general HS structure with elliptic cross-section showing the relevant parameters in our study namely, the helical angle θ, the tangent to the helix centerline t, the pitch λ, the flagellum length L, the helical radius R, and the parameter s which indicates a point in the helix parametrization. (b) Elliptic cross-section with major radius a, and minor radius b. (c) Orientation of the cross-section φ. (d) Notations: Ω f is the fluid domain, ∂Ω f s depicts boundaries of the HS in contact with the fluid, and ∂Ω f c the container boundaries with radius R c .
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 22 Figure 2.2: Chiral shapes in the parameter space defined by {α m , T i }.
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 23 Figure 2.3: The two tasks of HSs. (a) Swimming. (b) pumping, in this task a tethered structure is considered (U = 0) and a flow is generated in the opposite direction of the thrust (T ).
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 24 Figure 2.4: Viscosity µ as a function of the Carreau number Cu for blood with 25 % of hematocrits.
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 25 Figure 2.5: (a) Geometry for helical filament in terms of filament radius r, helical pitch λ, helical radius R, and helical height H. (b) Shadow region represents the range of HSs and/or CSs already studied in the literature.There is a region that is not even considered for thicker or small aspect ratio flagella. Image taken and adapted from[START_REF] Jd Martindale | Choice of computational method for swimming and pumping with nonslender helical filaments at low reynolds number[END_REF].
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 26 Figure 2.6: Percentile total error for swimming (a) and pumping (b) using slenderbody theory approach. The bigger the circle size, the larger error value. Figure adapted from [116].
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 27 Figure 2.7: Percentile total error for swimming (a) and pumping (b) using a centerline distribution of regularized stokeslets approach. The bigger the circle size, the larger error value. Figure adapted from [116].
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 28 Figure 2.8: Assembly and meshing Process. (a) The geometry of our FSI problem is basically composed of two Assemblies, namely 1 and 2. The Assembly 1 is the outer part of the internal cylinder (external part of the dashed-blue line), otherwise it will be the Assembly 2. (b) Mesh forward displacement. The red arrow (on the left) depicting the position of red-dashed cylinder containing the robot will increase after the robot advancement (on the right), conversely to the blue arrows. It can be seen the mesh elongation after this operation. (c) Assembly 2 meshes rotation with respect to the static Assembly 1. It is depicted 2 frames in two different positions.
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 2 8(b)) we have to solve firstly the structure dynamics by solving the Newton's second law equation with initial condition U • = 0 and x z• = 0. m dU dt = F z + gV (ρ fluid -ρ struct ) (2.78)

  Fig 2.8(c)). The Assembly 2 is composed of 3 cylinders. The middle cylinder (dashed red line in Fig 2.8(b)
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 29 Figure 2.9: Manufacture process of helical swimmers. I) Deposit of the resin on a glass plate. II) Focused polymerization. III) Structure development. IV) Magnetization.

Figure 2 . 10 :

 210 Figure 2.10: Helical swimmer propulsion with a low strength rotating magnetic field. The magnetic moment of the swimmer is aligned with the field lines. The interaction between the swimmer and the viscous fluid allows to convert the rotation motion into a linear movement.

. 11 .Figure 2 . 11 :

 11211 Figure 2.11: Experimental set-up for magnetic manipulation composed by 3 pairs of Helmholtz coils, two cameras and a endoscope.

Figure 2 . 12 :

 212 Figure 2.12: (a) Representative scheme of a Helmholtz coils pair with radius R b . (b) Magnetic field between both coils is quasi-uniform, especially at the center (top view).

Figure 2 . 13 :

 213 Figure2.13: Global architecture of the manipulation magnetic system. The desired tension for the amplifiers are sent through the computer in order to generate the magnetic field flux B. The amplifiers are alimented by a current source, thus, converting the tensions into electric current for the coils. The prototype stands for the Helmholtz coil system which generates the desired magnetic field flux B. Finally, thanks to the two cameras, the position and orientation of the swimmer are obtained by using algorithms of visual tracking (ViSP,[START_REF] Marchand | Visp for visual servoing: a generic software platform with a wide class of robot control skills[END_REF]).

Figure 3 . 1 :

 31 Figure 3.1: Color-map depicting the swimming speed (in µm/s) of structures with the same volume V in the configuration space defined by {β, θ, R r }.

Figure 3 . 2 :

 32 Figure 3.2: Dependence of the swimming propulsion speed U on the configuration space set {β, R r , θ}. (a) θ vs. U for R r ∈ [6, 18] given β = 20. (b) R r vs. U for θ ∈ [10, 80] given β = 20. (c) θ vs. U for β ∈ {20, 50, 100} given R r = 18. (d) R r vs. U for β ∈ {20, 50, 100} given θ = 50 • .

Figure 3 . 3 :

 33 Figure 3.3: Optimization of HSs with aspect ratio β = 20. (a) Performance per rotation ( U Lf ). (b) Performance per torque ( µL 2 U τ ). (c) Fluidic torque τ . (d) θ vs. U Lf for different R r values.

Figure 3 . 4 :

 34 Figure 3.4: Cross-section influence of { a b , φ} on the swimming performance of a HS with β = 20, θ = 50 • and R r = 3. (a) U Lf . (b) φ vs. U Lf for different a b . (c) µL 2 U τ . (d) φ vs. µL 2 U τ for different a b . (e) Cross-section deformation with respect to the ratio a b given φ = 0. (f ) Change of the orientation φ given a b = 4, for φ = 0 and π 2

Figure 3 . 5 :

 35 Figure 3.5: Influence of the helical shape on pumping for HSs with β = 20. (a) Thrust at pumping fixed angular speed ω for a variable space defined by {θ, R r }. (b) Normalized thrust/torque T L τ (energetic efficiency). (c) Normalized flux I ωR 3 c .
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 33 (cf. Fig.3.5(d)). One can see for instance that θ max = 55.0 • for R r = 0.9, while θ max = 52.5 • for R r = 2.3, and θ max = 50.0 • for R r = 3.5. On the other hand, Fig.3.5(b) depicts the energetic efficiency at pumping T L τ . The optimal parameters are found for θ = 55 • and R r = 2.3. Figure 3.5(c) stands for the normalized flux I ωR generated at the middle cross-sectional plane H m of the HS structure. The maximum I ωR is generated by helical angles θ ranging in [45 • , 50 • ].
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 33 ) (cf. Fig. 3.6(e-f )). The parameters that maximises I ωR are found for large values of a b with φ ∼ 80 -90 • .

Figure 3 . 6 :

 36 Figure 3.6: Influence of the cross-section at pumping. (a-b) Thrust as a function of the variable space { a b , φ}. (c-d) Normalized thrust per torque ( T L τ ). (e-f ) Normalized flux ( I ωR 3 c ).

Figure 3 . 7 :

 37 Figure 3.7: Optimization of swimming and pumping at the same time. The solutions are depicted for α = 0 (just pumping), α = 0.50 (half relevance on swimming and half on pumping), and α = 1.00 (just swimming). The extreme graphics correspond to the energetic efficiency at pumping and the swimming efficiency but re-normalized with respect to their maximum values.
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 38 Figure 3.8: θ vs. U (mm/s) for prototypes with β = 40 but with a magnetic head with dimension R head = R. All prototypes are depicted in its respective θ column. The experiments were conducted at a HSs frequency rate of 3.5 rotation/s, and the errorbar is the standard deviation of three trials.

Figure 3 .

 3 Figure 3.9: a b vs. U (mm/s) for prototypes with β = 40 but with a magnetic head with dimension R head = R. All prototypes are depicted in their respective a b column. The experiments were conducted at a HSs frequency rate of 3.0 rotation/s, and the errorbar is the standard deviation of three trials.

  Fig. 3.4(b)).

Figure 3 .

 3 Figure 3.10: φ vs. U (mm/s) for prototypes with β = 40 but with a magnetic head with dimension R head = R. All prototypes are depicted in their respective φ column. The experiments were conducted at a HSs frequency rate of 3.0 rotation/s, and the errorbar is the standard deviation of three trials.
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 311 Figure 3.11: First experiment considering 3 helical swimmers with practically the same weight and different cross-section geometries. (a) Conceived robots and their respective CAD designs for different cross-sections, there exists some differences because of the 3D impression resolution. (b) A bar graph representing the weight and volume of each robot. (c) Experimental data, it depicts the total speed vs. rotation frequency. For each helical robot, the experiments were performed three times for each frequency, and the error bar is the standard deviation of those trials.

Figure 3 . 12 :

 312 Figure 3.12: Second experiment considering different number of turns for a conical helix. (a) It depicts the CAD representation and the respective conical helical robot next to it for 1.0, 1.5, 2.5, and 3.5-turns. (b) It shows the rotation frequency vs. the total speed for the conical helices obtained experimentally. As in the previous experiments, for each conical helix, the experiments were performed three times for each frequency, and the error bar is the standard deviation of those trials.

Figure 3 .

 3 Figure 3.13: (a) Dimensionless speed U/Lf as a function of the helical angle θ for different shear-thinning degrees n. The results were generated considering the following geometrical parameters, R/r = 2.3 and β = 20, and the rheological parameters, Cu = 30 and µ ∞ /µ 0 = 0.05. (b) Dimensionless speed U/Lf as a function of the Carreau number Cu for different n values. The graph is generated considering µ ∞ /µ 0 = 0.05 and the following geometrical parameters: R/r = 2.3, θ = 50 • and β = 20.

  13(b), we considered a HS with the following geometrical parameters: R/r = 2.3, θ = 50• and β = 20. The plot represents the behaviour of the ratio between the non-Newtonian speed and the Newtonian speed U/U N as a function of the Carreau number Cu for different power indexes n. Results show a peak performance at Cu ≈ O(10) for different n < 1. In consequence, it indicates the existence of an optimum actuation frequency ω which is independent of the well-known cut-off or step-out frequency, for a given Carreau fluid with λ C fixed. And therefore, choosing an adequate actuation frequency ω in shear-thinning fluids, or in general in non-Newtonian fluids, is of great importance since dynamics can suddenly decrease due to the rheological factors. Then, we analysed the behaviour of the swimming efficiency µ 0 L 2 U/τ varying different rheological factors. In figure3.14(a) the efficiency speed is studied as a function of θ for different power index values n, considering fixed R/r = 2.3 and β = 20, for Cu = 30. We can see that similarly to the dimensionless speed case, the swimming efficiency increases when the power index n of the Carreau fluid decreases. Moreover, we observe that the peak found at θ = 55 • in the Newtonian case is shifted to ≈ 50 • as n decreases. The swimming efficiency can be even about 10 times greater in the non-Newtonian case, for n = 0.4, than the swimming efficiency given in the Newtonian case. In figure3.14(b), the behaviour of the swimming efficiency is depicted as a function of the Carreau number Cu for different power indexes. The geometrical parameters

Figure 3 .Figure 3 .Figure 3 . 16 :

 33316 Figure 3.14: (a) Swimming efficiency µ 0 L 2 U/τ as a function of the helical angle θ for different shear-thinning degrees n. The results were generated considering the following geometrical parameters, R/r = 2.3 and β = 20, and the rheological parameters, Cu = 30 and µ ∞ /µ 0 = 0.05. (b) Swimming efficiency µ 0 L 2 U/τ as a function of the Carreau number Cu for different n values. The graph is generated considering µ ∞ /µ 0 = 0.05 and the following geometrical parameters: R/r = 2.3, θ = 50 • and β = 20.

Figure 3 .

 3 Figure 3.17: (a) Swimming speed U , (b) ratio of the non-Newtonian and Newtonian speed U/U N and (c) swimming efficiency µL 2 U/τ as functions of the Carreau number Cu for different values of helical angle θ. For such computations the viscosity ratio µ ∞ /µ 0 = 0.05 and the normalized radius R/r is 2.3.

Figure 3 .

 3 18(b) represents the non-Newtonian torque τ in N • m vs. Cu for different values of µ ∞ /µ 0 . The maximum invested torque, given in the quasi-Newtonian regime for little values of Cu < 10 -1 , is about 2.2×10 -21 N • m.

Figure 3 .

 3 Figure 3.18: (a) Ratio of the non-Newtonian and Newtonian torque τ /τ N vs. Carreau number Cu. (b) non Newtonian torque τ vs. Carreau number Cu. The geometrical parameters considered for these results are the ones stated in the previous subsection.

Figure 3 .

 3 19(a) depicts the pumping thrust F Z in the propulsion direction for the already specified HSs geometric parameters for different power indexes values n. There is a small region for 10 -2 ≤ Cu ≤ 10 1 (see the inset fig.3.19(a))

Figure 3 . 19 :

 319 Figure 3.19: Pumping metrics as a function of Carreau number Cu for different power index values n. (a) Thrust F Z . (b) Normalized flux I/ωR 3 c . (c) Pumping efficiency F Z L/τ . (d) Torque τ .
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 4141111 Figure 4.1: (a) Fluidic torque τ in (N • m). (b) τ vs. α for different values of T i /π.

Figure 4 . 2 :

 42 Figure 4.2: (a) Forward linear speed U (in µm • s -1 ) given by the color bar for the parameter space defined by T i /π and α/π given L = 2.4 µm. (b) Forward linear speed U (in µm • s -1 ) vs. α for different values of T i /π.

Figure 4 . 3 :

 43 Figure 4.3: (a) CSs with β = 20 and T i = π/2 but different α values. (b) CSs with β = 20 and α = 50 • but different T i values. (c) CSs with α = 50 • and T i = π/2 but different β values.

Figure 4 . 4 :

 44 Figure 4.4: (a) Swimming efficiency µU L 2 /τ . (b) µU L 2 /τ vs. α for different values of T i /π.

Figure 4 . 5 :

 45 Figure 4.5: (a) Aspect ratio β vs. forward speed U . (b) Aspect ratio β vs. propulsion efficiency η, for designs with α = 50 • .

Figure 4 . 6 :

 46 Figure 4.6: Influence of the offset radial position δ between the tail's end and the robot's axis on the propulsion speed U (color-map in µm/s) and the defined efficiency η = U Lf (color-map) for different tail's aspect ratios β.

Figure 4 . 7 :

 47 Figure 4.7: Influence of the number of tails and the aspect ratio on propulsion speed.

Figure 4 . 8 :

 48 Figure 4.8: (a) Fluidic torque τ in the space defined by {α/π, T i /π}. (b) τ vs. α/π for different values of T i /π.

Figure 4 .

 4 8 depicts τ as a function of the geometrical parameters {α, T i }. In (a) the iso-curves of τ are represented, and in (b) shows τ as a function of the pitch angle α for different values of T i . We observe from graph (a) that τ increases as we go to the right down corner in the parameter space while structures that experience less fluidic torque τ are situated in the upper left corner. Similar to the swimming case, the torque at pumping increases due to the horizontal growth with respect to the rotation axis.In figure4.9 the thrust T is represented in the variable space. Fig. 4.9(a) stands (a) (b)

Figure 4 . 9 :Figure 4 .

 494 Figure 4.9: (a) Thrust T (N) in the space defined by {α/π, T i /π}. (b) T vs. α/π for different values of T i /π.

Figure 4 .

 4 Figure 4.11: (a) Pumping efficiency T L/τ in the space defined by {α/π, T i /π}. (b) T L/τ vs. α/π for different T i /π.

Figure 4 . 12 :

 412 Figure 4.12: Robot designs with multiples tails 2 (top), 3 tails (middle) and 4 tails (bottom). The magnet is placed inside the cylindrical head. Each line corresponds to the printed prototypes which are flanked respectively to their CAD's.

Figure 4 . 13 :

 413 Figure 4.13: Looking for the optimal position for a second tail to enhance propulsion. (a) Polar plot depicting the forward speed (mm • s -1 ) in the radial axis vs. angular separation between tails ϕ ( • ). (b) A sample of a robot with an angular separation of ϕ. (c) The angle that maximizes propulsion speed is 180 • .

Figure 4 . 14 :

 414 Figure 4.14: Analysis of the height influence on the propulsion speed U . Blue and red lines depict results for the 3-mm and 4-mm tail length robots, respectively. Results show an increase of speed when tail height is increased. The error bars in experiments are calculated as the standard deviation of 3 trials for each frequency and robot.

Figure 4 . 15 :

 415 Figure 4.15: Cargo influence on propulsion speed. Blue, red and green color represents the cargo weight of 25, 34 and 56 mg respectively. The inset on the bottom right shows in the same frame different positions of the robot with the 25 mg cargo. The experimental error bars are calculated as the standard deviation of three trials for each frequency and robot.
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Figure 4 . 16 :

 416 Figure 4.16: Wall effect. (a) Robots with 2 (blue), 3 (red) and 4 (green) tails are assessed in a 50-mm in width container. The 2 and 3-tailed robots have close speed values. (b) The robots are tested in a 20-mm in width container experiencing cut-off frequencies because of the increase of the fluidic torque associated to the degree of confinement. The experimental error bars are calculated as the standard deviation of three trials for each frequency and robot.

  (a) it is depicted the invested torque τ as a function of the Carreau number Cu for the power indices n = {0.4, 0.6, 0.8, 1.0}. To compute these results we used the following geometric and rheological parameters: β = 20, T i = π/2, L = 2.41 µm, α = 50 • , µ ∞ /µ 0 = 0.05 and Cu = 30. Results for n = 1.0 represents the behaviour in the Newtonian case, for that regime the fluidic torque is constant and equal to 3.4×10 -20 N • m. For the other values (n < 1), the fluidic torque decreases as Cu increases. We observe that the smaller n value, the faster the torque decreases. Then, in Fig.4.17(b) is represented the torque behaviour as a function of the pitch angle α ranging in [30 • , 70 • ]. Results are obtained by fixing the structure aspect ratio β = 20 and the parameter T i = π/2. The trend of this graph indicates an increasing monotonic behaviour as α increases for all n values in the range. The maximum values of τ are found for n = 1, the Newtonian case. And likewise as in Fig. 4.17(a), the smaller the n values, the smaller the torque values. Fig. 4.18(a) depicts the ratio of the non-Newtonian speed to the Newtonian speed

Figure 4 .

 4 Figure 4.17: (a) τ vs. Cu. (b) τ vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.

Figure 4 .

 4 Figure 4.18: (a) U/U N vs. Cu. (b) U vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.

  (a). Fig.4.20(b) depicts the efficiency as a function of the pitch angle α for different n values. In this scenario, we observe the efficiency decreases as α increases in the proposed range. That is mainly caused by the torque increment. Geometrically, as α increases, the CS extents horizontally, and thus producing the torque increment. Furthermore, independently of α, µL 2 U/τ increases as n decreases similarly to Fig.4.20(a).

Fig. 4 .

 4 21(a) depicts the torque at pumping for a large range of Cu for different n values. The geometric features for these computations were set at: β = 20, α = 50 • , T i = π/2 and L = 2.41 µm. For n = 1, the torque remains constant and equal to 3.5×10 -20 N • m. Nevertheless, for n < 1 the torque decreases as Cu increases. The steepest drop in the tendency is given for n = 0.4, the smallest value of the range. Likewise, in Fig.4.21(b) this trend remains, independently of α. Beside, similar to the swimming case (cf. Fig.4.17(b)), the torque decreases when α increases. Fig.4.22(a) depicts the pumping thrust F Z as a function of Cu for different n values. For n = 1, F Z remains constant and equal to 6.41×10 -15 N. Meanwhile for n < 1, F Z decreases as n gets smaller. This result is expected since the viscosity value is reduced around the CSs and it is directly related to F Z . Fig.4.22(b) depicts F Z as a function of α for various n values. We observe that the greater values of F Z are found for n = 1, the Newtonian case, and those values decreases as n decreases. Besides, we found a peak value for α ≈ 55 • for any n in the range.

Figure 4 . 19 :

 419 Figure 4.19: Distribution of viscosity stratification around the CS for different magnitude orders of the Carreau number Cu. For the computations µ ∞ /µ 0 = 0.05 is considered with the previously stated geometrical features.

Figure 4 .

 4 Figure 4.20: (a) µU L 2 /τ vs. Cu. (b) µU L 2 /τ vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.

Figure 4 .

 4 Figure 4.21: (a) τ vs. Cu. (b) τ vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and for (b) Cu = 30.

Figure 4 .

 4 Figure 4.22: (a) F Z vs. Cu. (b) F Z vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.

Figure 4 .

 4 Figure 4.23: (a) I/ωR 3 c vs. Cu. (b) I/ωR 3 c vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.

Figure 4 .

 4 Figure 4.24: (a) F Z L/τ vs. Cu. (b) F Z L/τ vs. α. Both results were computed for n ∈ {0.4, 0.6, 0.8, 1.0} and the following common parameters: β = 20, T i = π/2, L = 2.41 µm and µ ∞ /µ 0 = 0.05. Additionally, (a) considers α = 50 • and (b) Cu = 30.
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1.1.4 Scallop Theorem

  

	.3 are depicted swimmers with different average Reynolds number. The
	Reynolds number for a man swimming in a water pool is about 10 4 , whereas for
	a goldfish or a little guppy it might get down to 10 2 [3]. On the other hand, for
	micro-species, the Reynolds number becomes almost null ≈ 10 -4 . In other words,
	if we apply a force on these tiny animals in order to move them, and, suddenly,
	we stop it, they immediately stop moving as viscous effects are predominant over
	gravity. That instantaneous effect on micro-objects dynamics cause that they have
	to perform certain swimming patterns to achieve propulsion, and at the same time,
	those patterns must respect the well-known "Scallop theorem".
	In the low Reynolds number regime, the kinematics of swimmers depend on the
	instantaneous applied force. Besides, there is a special kind of swimming patterns
	called reciprocal swimming. Those patterns consist in the changing of the swimmer
	body position into certain other shape and, then, the swimmer goes back to the
	original shape position by going through the sequence in reverse. Nonetheless, at
	low Reynolds number regimes, swimmers are not allowed to perform such patterns
	if they want to move. That is what we call the Scallop theorem. An example of a
	reciprocal pattern is shown in figure 1.4(a) with the scallop shell. The scallop motion
	consists into opening and closing the shell, since there is just two states (open and
	close) the pattern is reciprocal. For micro-objects, this sequence does not create any
	swimming motion. On the contrary, an example of non-reciprocal pattern is shown
	in figure 1.4(b), with the 3-link Purcell's swimmer that consists in 3 bars with 2
	joints. The swimming pattern sequence of such a theoretical swimmer is shown in
	the referred image. Besides, there exists other non-reciprocal swimming patterns
	presented in nature which can be exploited for the conception of future intelligent
	micro and nano-machines. Few examples are depicted in figure
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Table 3 .

 3 

	1: Different cross-section perimeters
		Perimeter	
	Circle Triangle Square
	6.28r	8.08r	7.08r

Table 3 .

 3 2: Carreau-Yasuda parameters for blood with different concentrations of Hct. (Adapted from [135])

	330 12.448	0.8
	45% 0.479 39.419	0.02
	65% 0.389 103.088 0.009

  • , 60• , 90 • , 120 • , 150

Theranostics is a new field of medicine which combines specific targeted therapy based on specific targeted diagnostic tests

It is the angle when the motion changes from wobbling to tumbling, and it changes according to the environment viscosity.