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B number of bits of each file in the library of a caching problem [a : b] q set {a mod q, (a + 1) mod q, . . . , (b -1) mod q, b mod q} for some a, b, q ∈ N + O ur lives strongly depend on our ability to communicate with each other.

H( • ) entropy of a random variable
Even though we always take it for granted, communication is essential. It is fundamental when we teach our children a language, when we argue with our friends about politics, or when we need to express our own feelings to the people we love. Whether we realize it or not, every little facet of our lives involves the aspect of conveying our emotions, thoughts, and beliefs. After all, even Aristotle said 1 that human beings are by nature social animals, who are inherently inclined at socializing, at creating communities and, ultimately, at communicating. Nevertheless, we do not express ourselves always in the same manner. Depending on the context in which we find ourselves, we often modify the way we interact with each other. For instance, when we talk to a kid who is still learning our mother tongue, it is crucial to use very simple and often redundant words; when we go to a concert with our friends, we often need to speak louder because of the background music, which interferes with our voice. Clearly, there are several factors that might change the way we relate to other people. Since each of us has their own sensitivity, we do not always want to say or hear the same things; at the same time, we often interact with the surrounding context in different ways. What we always do, though, is to adapt our communication style -maybe even unconsciously -to the circumstances, so as to communicate in the most suitable and efficient way. Now, it is reasonable to assume that the experienced reader who is reading this manuscript is extremely familiar with the technical content that will follow this brief introduction. Hence, the two small paragraphs above are intended for the more inexperienced reader, who certainly deserves to grasp at least, at a high level, the content of this thesis. Broadly speaking, as human

Caching as a Promising Solution

Although the continuous improvement of physical devices is certainly going to provide a better infrastructure to support higher data rates, future communication systems cannot solely rely on the development of faster and more resilient electronic equipment. Hence, looking for novel algorithmic solutions becomes an urgent need to the purpose of increasing the speed of communications under the limiting constraints dictated by the physical medium. In this regard, considering that a large portion of data traffic consists of cacheable content, the idea of caching seems definitely a promising solution.

When we think of communicating data through a communication network, the first things that come to mind are network resources, such as spectrum frequencies to be allocated in a wireless setting, switches to be configured in a data center, or time slots to be carefully assigned in shared-medium networks. Typically, such network resources are often both expensive and very limited. Nevertheless, one thing we often forget is the concept of memory. On the one hand, memories are cheap and abundant; on the other hand, memories can be efficiently used with the purpose of reducing the amount of data flowing through highly saturated communication networks. Indeed, if storage devices are properly used to proactively cache data, then we can effectively take advantage of storage capabilities to transform memory into data rates. This is exactly what coded caching achieves.

The Major Breakthrough of Coded Caching

Now, after pointing out the importance of taking advantage of storage capabilities, it comes natural to wonder whether there are specific caching strategies which are more effective than others, and how we can study analytically the improvements brought about by the use of memories in communication networks. In this regard, Maddah-Ali and Niesen (MAN) approached the caching problem from an information-theoretic perspective, and proposed in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] the so-called coded caching framework. The seminal work in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] represented a major breakthrough, since it revealed that carefully designed caching policies can be employed not only to lower the volume of flowing data, but also to change the structure of the communication problem itself. The caching model considered by Maddah-Ali and Niesen in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] consists of a central server, which has access to a library containing N files {W n : n ∈ [N ]} of B bits each. The server is connected to K users through a shared error-free broadcast channel, and each user is equipped with a cache of size M B bits, or, equivalently, M files. A schematic of the system model is represented in Figure 1.1.

The caching problem consists of two sequential phases. During the first phase, which is referred to as the placement phase, the central server fills 1.1. Motivation for Caching the caches without any knowledge of the future requests from the users. Typically, this phase takes place during off-peak hours, when the network is not overloaded. During the second phase, which is called delivery phase, and which typically happens when the network is saturated and interferencelimited, the requests of the users are simultaneously revealed to the central server. During delivery, the server prepares the broadcast message X, which is then sent over the error-free broadcast link, so that each user can retrieve the missing information from the received transmission. The users cancel the interference terms that appear in the broadcast transmission, and do so by means of the cached contents they have access to, eventually decoding their own messages.

In the aforementioned caching problem, the task is to design the placementand-delivery scheme that minimizes the worst-case communication load R, which is defined as the number of bits -normalized by the file size Btransmitted during the delivery phase in the worst-case scenario. More in general, the goal is to characterize the optimal worst-case communication load R ⋆ , which is formally defined as R ⋆ (M ) := inf{R : (M, R) is achievable} (1.1) where the tuple (M, R) is said to be achievable if there exists a cachingand-delivery scheme which guarantees, for any possible demand and a given memory M , a load R.

Before we describe the coded caching scheme in its general form, we first present in the following a small toy example, so as to show the key ideas behind coded caching.

A Toy Example

Consider the following simple caching network, where we have N = 2 files in the main library and there are K = 2 users connected to the central server. We assume that each user is equipped with a cache of size M = 1 file. As we mentioned above, the caching problem is split into the placement phase and the delivery phase.

Placement phase This phase takes place much before the users reveal their requests to the server. Each file in the main library is evenly divided in two parts, so that we have

W 1 = {W 1,1 , W 1,2 }
(1.2)

W 2 = {W 2,1 , W 2,2 } (1.3)
where |W n,1 | = |W n,2 | = B/2 for n ∈ {1, 2}. Then, if we denote by Z k the content of the cache of user k with k ∈ {1, 2}, the server fills the caches Z 1 and Z 2 as follows

Z 1 = {W 1,1 , W 2,1 } (1.4) Z 2 = {W 1,2 , W 2,2 }. (1.5) 
We can verify that this placement scheme does not exceed the available memory at the users. For example, if we focus on the cache of user 1, we can see that it contains two subfiles, i.e., subfile W 1,1 and subfile W 2,1 , where each of them has size B/2 bits. This means that Z 1 contains a total of B bits or, equivalently, M = 1 file. The same holds for the cache of user 2.

Delivery phase This phase commences after the users reveal their requested files. If we assume in this example that user 1 requests W 1 and user 2 requests W 2 , we can see from the content of Z 1 and Z 2 that: user 1 misses W 1,2 to correctly reconstruct W 1 ; user 2 misses W 2,1 to correctly reconstruct W 2 . At this point, the server transmits the coded message X = W 1,2 ⊕ W 2,1 over the broadcast channel. It is relatively straightforward to check that each user can correctly decode the missing piece of the requested file from the transmission X.

• User 1 has in its cache Z 1 the term W 2,1 , which can be removed from the coded message X by calculating X ⊕ W 2,1 = W 1,2 , decoding in this manner the missing term W 1,2 .

• Similarly, user 2 has in its cache Z 2 the term W 1,2 , which can be removed from the coded message X by calculating X ⊕ W 1,2 = W 2,1 , decoding in this manner the missing term W 2,1 .

In conclusion, each user receives the missing piece of the requested file.

For the scheme above, we can see that the achieved communication load is equal to R MAN = 1/2, where R MAN denotes the communication load guaranteed by the MAN coded caching scheme. First, we recall that the load is defined as the number of transmitted bits, normalized by the file size B. Then, we observe that the transmitted message X is given by the bitwise XOR of two subfiles with size B/2, which implies that the size of X is equal to B/2. This means that R MAN = |X|/B = 1/2.

Notice that, if we had decided to let the server deliver first W 1,2 to user 1, and then W 2,1 to user 2, the total number of transmitted bits would have been equal to the size of W 1,2 plus the size of W 2,1 , i.e., B bits in total. Hence, this simple yet instructive example shows how the use of coding during the delivery procedure allowed to halve the total number of (normalized) bits delivered by the central server to the users.

The Coded Caching Scheme

We can proceed now to the description of the MAN coded caching scheme in its general form. We recall that in the coded caching framework we consider a main library containing N files {W n : n ∈ [N ]} of B bits each and K users that are equipped with a cache of M B bits. The users are connected to the central server through an error-free broadcast channel.

Placement phase Let M = tN/K, where t ∈ [0 : K]. Each file is split into

(︂ K t )︂
non-overlapping subfiles as

W n = {W n,T : T ⊆ [K], |T | = t} (1.6)
for each n ∈ [N ]. The cache of user k is then filled as

Z k = {W n,T : T ⊆ [K], |T | = t, k ∈ T } (1.7) 
for each k ∈ [K]. We can check that the total number of subfiles cached by each user is equal to

(︂ K-1 t-1
)︂

for each of the N files in total. Hence, considering that each subfile has size B/

(︂ K t
)︂

, we have

|Z k | = N (︂ K-1 t-1 )︂ (︂ K t )︂ B = M B (1.8)
for each k ∈ [K]. Consequently, the cache memory constraint is satisfied.

Delivery phase After the demand vector d = (d 1 , . . . , d K ) is revealed, where we denote by W d k the file requested by user k ∈ [K], the server prepares the transmission X, which is given by

X = ⎛ ⎝ ⨁︂ k∈S W d k ,S\{k} : S ⊆ [K], |S| = t + 1 ⎞ ⎠ .
(1.9)

We recall that

d k ∈ [N ] for each k ∈ [K].
Since the broadcast message X contains a total of

(︂ K t+1
)︂

bitwise XORs, the worst-case load R MAN is given by

R MAN (t) = |X| B = (︂ K t+1 )︂ (︂ K t
)︂

(1.10) for each t ∈ [0 : K]. For non-integer values of t, a memory-sharing scheme can be employed, as described in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF]. In general, the worst-case load R MAN is a piece-wise linear curve with corner points .11) This achievable performance in (1.11) was shown to be exactly optimal in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] under the assumption of uncoded cache placement. Definition 1.1 (Uncoded Cache Placement). A cache placement is uncoded if the bits of the files are simply copied within the caches of the users.

(M, R MAN ) = ⎛ ⎝ t N K , (︂ K t+1 )︂ (︂ K t )︂ ⎞ ⎠ , ∀t ∈ [0 : K]. ( 1 

Main Contributions

Since its original information-theoretic formulation, coded caching has been rightfully credited with being able to transform memory into data rates, and has so sparked a flurry of research on a variety of topics, such as on information-theoretic converses [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], the interplay between caching and PHY [START_REF] Shariatpanahi | Multi-server coded caching[END_REF]- [START_REF] Naderializadeh | Fundamental limits of cache-aided interference management[END_REF], caching and privacy [START_REF] Engelmann | A content-delivery protocol, exploiting the privacy benefits of coded caching[END_REF]- [START_REF] Wan | On coded caching with private demands[END_REF], and the critical bottleneck of subpacketization [START_REF] Yan | On the placement delivery array design for centralized coded caching scheme[END_REF]- [START_REF] Cheng | Linear coded caching scheme for centralized networks[END_REF]. More recently, we saw interesting findings on coded caching under file popularity considerations [START_REF] Niesen | Coded caching with nonuniform demands[END_REF]- [START_REF] Saberali | Full characterization of optimal uncoded placement for the structured clique cover delivery of nonuniform demands[END_REF] or in scenarios with heterogeneous user preferences [START_REF] Wan | On the optimal memory-load tradeoff of coded caching for location-based content[END_REF]- [START_REF] Chang | On coded caching for two users with overlapping demand sets[END_REF], as well as on a variety of other scenarios [START_REF] Ibrahim | Device-to-device codedcaching with distinct cache sizes[END_REF]- [START_REF] Zhang | Deep learning for wireless coded caching with unknown and time-variant content popularity[END_REF], including the recent finding that coded caching can provide astounding gains over realistic downlink systems [START_REF] Zhao | Vector coded caching multiplicatively boosts the throughput of realistic downlink systems[END_REF].

Nevertheless, despite the several variations of coded caching that have been explored since its original formulation, there are still many open questions to address and several limitations to overcome. For instance, it is well-known that the coding gain 2 guaranteed by coded caching not only is merely linear in the overall caching resources, but also turns out to be quite modest in practice due to several reasons 3 . This phenomenon holds also in the computing setting, which is closely related to the coded caching framework and which similarly shows that the speedup factor brought about by coding is severely hindered in realistic scenarios. Hence, our goal here is that of exploring different solutions to possibly surpass such constrained linear coding gain, which represents a limiting linear barrier that dramatically hinders the actual benefits of coded 2

With coding gain we refer to the multiplicative reduction in the volume of data brought about by the use of coding. In the single-stream scenario, this effectively coincides with the number of users served at a time by each coded packet in the broadcast message X. 3 For example, the subpacketization, which is a direct consequence of the combinatorial nature of the MAN scheme, represents a relevant bottleneck in practical settings.

Main Contributions

multicasting in practical settings. In particular, the goal of this thesis is to improve and deepen the understanding of the key role that structure plays either in data or in topology for caching and computing networks, where the underlying structure -whether in data or in topology -will be defined by similar combinatorial abstractions. When the structure is imposed in data, we will show that this does not help significantly toward breaking the aforementioned linear barrier -in fact, we will show that structure can even hurt, if it is exploited in the wrong way. Instead, when the structure is imposed in the topology, we will demonstrate how we can cleverly take advantage of it, providing for both the caching and the computing setting stunning gains. In the following, we outline the main contributions that will be presented in this manuscript.

Exploring the Impact of Structure in Data

In the first part of the thesis, we investigate the benefits that we can possibly obtain from exploiting the structure in data. As data can reveal some underlying structure in several ways, we point out that in our context what really matters is what data is desired by whom. For this reason, we will explore user preferences, where by this we imply that each user is assumed to have a file demand set (FDS) of desired files. We organize this first part of the manuscript in four distinct chapters, where the first three chapters will regard coded caching with file preferences, and the last chapter will show how some of the results developed in the context of caching can be employed in computing networks. We provide a brief summary of each chapter in the following.

A Negative Result on Selfish Caching Policies

As we mentioned above, our aim of exploiting some preexisting structure in data is equivalent to taking advantage of the fact that we know what data are desired by whom. Hence, since in a realistic scenario the users may have diverging interests which may intersect to various degrees, what happens for example if each file is of potential interest to, say, 40 % of the users and each user has potential interest in 40 % of the library? In this regard, one approach that is worthy of exploring in caching is the so-called selfish caching approach, which can be seen as the most aggressive way to capitalize on some previous knowledge on the user preferences.

A key ingredient in using caches has commonly been the exploitation of the fact that some contents/files are more popular than others, and so are generally to be allocated more cache space [START_REF] Zhang | Caching in information centric networking: A survey[END_REF], [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF]. This inevitably introduces the consideration that different users may have different file preferences, which in turn brings to the fore the concept of selfish caching where simply users cache independently and selfishly only contents that they are interested in potentially consuming themselves [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF]- [START_REF] Chang | On coded caching for two users with overlapping demand sets[END_REF]. In the traditional prefetching scenario, where emphasis is based heavily on bringing relevant content closer to each user, this idea of selfish caching brought about performance improvements [START_REF] Karamshuk | Take-away TV: Recharging work commutes with predictive preloading of catch-up TV content[END_REF], [START_REF] Lee | Individual preference aware caching policy design in wireless D2D networks[END_REF] in the form of higher local caching gains for each user.

Nevertheless, we have to be careful, as this selfish idea can have some serious ramifications (as it will be proved). Indeed, we recall that the main idea of coded caching is that it multicasts at any given time a linear combination of different contents desired by different users. This implies that any one receiver associated to a multicast message must be able to find in its cache all the undesired contents (subfiles) of that multicast message. This is achieved in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] by means of a highly structured and coordinated content placement phase, where each user caches a small fraction of every file of a common library. This relationship between undesired and cached contents deteriorates when using selfish caching, simply because each receiver selfishly opts -based on its own preferences -to not cache some of these undesired files. However, these same undesired files may eventually appear as interference at that selfish receiver who will now not be able to "cache-out" this interference. At the same time, though, such selfish caching allows for a much more targeted placement of files such that each user can cache more of what it actually wants.

In this thesis, Chapter 2 provides novel and unified results in the context of selfish coded caching. First, we propose the symmetric (K, α, F ) FDS structure, which assumes an N -file library {W S : S ⊆ [K], |S| = α} to be a collection of disjoint file classes W S = {W f,S : f ∈ [F ]}, with each class W S consisting of F different files. For such setting, we then consider that each user k ∈ [K] has an FDS given by

F k = {W S : S ⊆ [K], |S| = α, k ∈ S} (1.12)
which describes the files this user is potentially interested in. After proposing a new selfish system model, which aims to calibrate the selfishness effect by calibrating the degree of separation between the interests of the different users, we employ index coding arguments to derive an information-theoretic converse (lower bound) on the optimal worst-case communication load R ⋆ u,s under the assumption of uncoded and selfish placement. Such converse bound is shown to be a piecewise linear curve with corner points

(M, R LB ) = ⎛ ⎝ t N K , (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ ⎞ ⎠ , ∀t ∈ [0 : α].
(1. [START_REF] Mohajer | MISO cache-aided communication with reduced subpacketization[END_REF] In the above, we recall that the parameter α denotes the number of users which each class of files is of interest to. The case α = K trivially corresponds to the standard MAN system model, where every file is of interest to every user; instead, the case α = 1 corresponds to the other extreme case, where each user has its own set of files that is not of interest to any other user.

The main contribution of Chapter 2 is the information-theoretic converse above, which not only represents a novelty in terms of the combinatorial arguments exploited for its construction, but also allows us to draw the powerful conclusion that selfish coded caching can be, under some assumptions, rather detrimental. Indeed, as it will be shown in Corollary 2.1.1, we have that

R ⋆ u,s (t) R MAN (t) ≥ 1, ∀t ∈ [0 : α -1] (1.14) R ⋆ u,s (t) R MAN (t) > 1, ∀t ∈ [α -2] (1.15) 
where this implies that unselfish coded caching strictly outperforms -in the non-trivial memory regime t ∈ [α -2] -any conceivable implementation of selfish coded caching under the proposed symmetric FDS structure. In addition, as it will be shown in Corollary 2.1.2, the coding gain (CG) of selfish caching does not scale as the number of users K increases, but it is instead bounded as CG < 1 1 -α/K (1.16) for any fixed ratio α/K. Recalling the original premise of unbounded linear coding gain, the above implies that indeed selfish caching can be unboundedly detrimental and so one must be careful before considering selfish caching policies, as these can yield unbounded losses over non-selfish coded caching. Further details and comments will be provided in Chapter 2.

Coded Caching With Tactical User Profiles

From the results in Chapter 2, we can definitively conclude that selfish caching can fail, as it turns out to be a too extreme approach. Nevertheless, we still wonder whether there is anything else that we can do to harness some preexisting structure in user preferences. In particular, we ask ourselves again what we can do if each user is interested in the same fraction of files N ′ /N and each file is of interest to the fraction of users K ′ /K for some

N ′ ∈ [N ] and K ′ ∈ [K].
While in Chapter 2 we investigated such setting under a very strict caching policy and under a very strict combinatorial structure, in Chapter 3 we take one step further and we address the aforementioned question under the most general (albeit symmetric) structure for the user interests, for which we allow any caching policy (as long as it is uncoded) and we do not impose any specific pattern in the way the user profiles overlap. These two aspects represent a massive difference with respect to the setting previously considered in Chapter 2. First, we propose an extremely broad system model for the user profiles, where such model follows the combinatorial structure of the so-called tactical configurations, a symmetric and balanced block design in combinatorial mathematics. In such setting, we assume that the N files in the system are split in G groups containing N/G files each, where this implies that the library can be partitioned as

{W 1 , . . . , W N } = {W K 1 , . . . , W K G } (1.17)
where K g ⊆ [K] is the subset of users which are interested in the set of files given by W Kg for some g ∈ [G]. Then, we assume that each user is interested into G ′ distinct groups of files, whereas each file is of interest to exactly K ′ users, namely, we assume that |{g

: g ∈ [G], k ∈ K g }| = G ′ for each k ∈ [K] and that |K g | = K ′ for each g ∈ [G]
. This implies that the equation GK ′ = KG ′ holds, where it is assumed that G, G ′ , K ′ , K ∈ N + . Further, the above implies that the FDS F k of user k ∈ [K] is given by

F k = {W Kg : g ∈ [G], k ∈ K g }. (1.18)
Then, referring to such problem as coded caching with tactical user profiles, we characterize the fundamental limits of caching under the proposed broad structure for the user interests. Interestingly, our proposed achievable scheme consists of the standard MAN coded scheme for any t ≤ t ¯, whereas we employ a memory-sharing scheme for any t > t ¯. We show that the optimal worst-case load R ⋆ u is upper bounded by the lower convex envelope of the following memory-load corner points

(M, R UB ) = (︃ t N K , g(t) )︃ , ∀t ∈ [0 : K ′ ] (1.19)
where g(t) is defined as

g(t) := ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (︂ K t+1 )︂ (︂ K t )︂ , if t ∈ [0 : t ¯] (︂ K t ¯+1 )︂ (︂ K t ¯)︂ K ′ -t K ′ -t ¯, if t ∈ [t ¯+ 1 : K ′ ] (1.20)
and t ¯:= ⌊K ′ /2⌋. Our converse bound shows instead that the optimal worstcase load R ⋆ u is lower bounded by the lower convex envelope of the following memory-load corner points

(M, R LB ) = ⎛ ⎝ t N K , G G ′ (︂ K ′ t+1 )︂ (︂ K ′ t )︂ ⎞ ⎠ , ∀t ∈ [0 : K ′ ]. (1.21)
The interesting outcomes of Chapter 3 are several. First, the techniques employed for the construction of the converse represent a novelty in the way we capture the essential structural aspects of the system model considered here. Then, as it will be proved in Corollary 3.3.1, we identify one specific instance of the coded caching problem with tactical user profiles whose performance cannot be surpassed irrespective of the symmetric structure for the user profiles, as the converse bound is shown to be exactly optimal. At the same time, we prove that, despite the nature of the interests of the users, our proposed achievable scheme -which, we recall, coincides with the MAN coded scheme for t ≤ t ¯is within a constant multiplicative factor of at most 4 from the optimal. This result is significant, we believe, because it shows, further again, the power of the combinatorial MAN coded caching scheme under a well-defined system model for the user profiles. It is worth noting that the proposed system model under tactical configurations includes some other well-known structures, such as the symmetric (K, α, F ) FDS structure. Hence, this implies that the result in Chapter 3 holds also for the system model investigated in Chapter 2.

On the Optimality of Coded Caching With Heterogeneous User Profiles

This first part of the manuscript continues with Chapter 4, which focuses on a system model for the user profiles that is different from -and, so, not captured by -the generic model studied in Chapter 3. More specifically, in Chapter 4 we further explore the system model proposed in [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF], where the files in the library are divided in two categories, i.e., common files and unique files. We consider that there are N c common files {W c n : n ∈ [N c ]}, where each of them is of interest to every user in the system; then, for each group g ∈ [G], we assume that there are N u unique files {W u,g n : n ∈ [N u ]}, where each of them is of interest to the users belonging to the group g ∈ [G] only.

Under the aforementioned system model, and taking advantage of the genie-aided converse bound idea from [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] -similarly adopted also in Chapter 3 -we provide an information-theoretic lower bound on the optimal worst-case communication load under uncoded prefetching, which is given by

R ⋆ u ≥ min β 1 2 ⎛ ⎝ (︂ K tc+1 )︂ (︂ K tc )︂ + G (︂ K/G tu+1 )︂ (︂ K/G tu )︂ ⎞ ⎠ (1.22)
where t c = KβM/N c and t u = K(1 -β)M/GN u . In addition, the derived converse, together with an already existing achievable scheme from [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF], allows us to characterize the memory-load tradeoff under uncoded placement within a constant multiplicative factor of 2.

Coded Distributed Computing With Structured Support

Finally, the first part of the manuscript is concluded by Chapter 5, where we present how the information-theoretic system model proposed in Chapter 3 can be employed in the context of distributed computing. In such case, we show how structure in data can be employed to improve the coded distributed computing (CDC) scheme proposed originally in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF].

More specifically, we consider the distributed computing problem with K computing nodes and N input files of F bits each. The goal of node k ∈ [K] is to compute the output function ϕ k :

F |N k | 2 F → F 2 B which maps the files in N k ⊆ {w 1 , . . . , w N } to a bit stream u k = ϕ k (w n : w n ∈ N k ) ∈ F 2 B of length B bits. We assume that each output function ϕ k with k ∈ [K] is decomposable, which implies ϕ k (w n : w n ∈ N k ) = h k (g k,n (w n ) : w n ∈ N k ). Simply, for each k ∈ [K] we have a map function g k,n : F 2 F → F 2 T , which maps the input file w n ∈ N k into an intermediate value (IV) v k,n = g k,n (w n ) ∈ F 2 T of T bits,

and a reduce function h

k : F |N k | 2 T → F 2 B , which maps the IVs v k,n = g k,n (w n ) for each w n ∈ N k into the output value u k = h k (v k,n : w n ∈ N k ) ∈ F 2 B of B bits.
In Chapter 5, we focus on a specific structure for what concerns the sets N k for each k ∈ [K], where such structure follows the broad model from Chapter 3 based on tactical configurations. In other words, we investigate the symmetric setting where the only constraint is that each reduce function depends on the same number of intermediate values N ′ , and each intermediate value is needed by the same number of reduce functions K ′ . Under such extensive system model, we characterize the communication load proposing both an achievable scheme and a converse bound, which are shown to be within a constant multiplicative factor of 6.

The Ramifications of Structure in Topology

After showing that structure in data, if exploited, provides marginal improvements under a relatively broad setting, we will proceed to show how things
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radically change if the structure to exploit is in the topology. In particular, we will investigate the key role of network topology in multi-access networks and the related remarkable gains across two chapters. In the first chapter, we will study in depth a novel network topology in the context of multi-access coded caching. Subsequently, the second and last chapter of this second part will provide new results in the context of distributed computing, proposing a novel multi-access distributed computing model. We provide a brief summary of each chapter in the following.

Combinatorial Multi-Access Caching

The original coded caching model in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] considered that each user has access to its own single dedicated cache. However, in several scenarios it is conceivable and perhaps more realistic that each cache serves more than one user, and that each user can connect to more than one cache. This motivated the work in [START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF] that introduced the so-called multi-access coded caching (MACC) model, which involved Λ users and Λ caches, and involved a topology where each user is connected to 4 α > 1 consecutive caches in a cyclic wrap-around fashion as in Figure 1.2, such that each cache serves exactly α users. For various reasons, most of the works in the literature focused on the MACC model with cyclic wrap-around topology. Such topology, though, never showed to be of real impact due to the modest improvement over the single dedicated cache setting. A substantial breakthrough came with the very recent work in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], which proposed a MACC model enjoying the same amount of resources α and Λ, but where now the users and the caches are connected following the well-known combinatorial topology of combination networks [START_REF] Wan | A novel asymmetric coded placement in combination networks with end-user caches[END_REF]- [START_REF] Xiao | A binary coding approach for combination networks and general erasure networks[END_REF]. Having as a starting point the combinatorial multi-access system model introduced in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], we first propose in Chapter 6 a model extension which allows for a denser range of possible number of users K and for the coexistence of users that are connected to different numbers of caches. In particular, in our system model we assume that any one set of α caches is uniquely assigned to K α users, and this holds for every α ∈ [0 : Λ]. This further implies that the total number of users is given by

K = Λ ∑︂ α=0 K α (︄ Λ α )︄
.

(1.23)

Then, in addition to extending the delivery scheme presented in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] to our generalized combinatorial system model, we prove our coded scheme to be exactly optimal under the assumption of uncoded placement by means of an information-theoretic converse that is based on index coding arguments. We show that the optimal worst-case communication load R ⋆ comb under uncoded prefetching is a piecewise linear curve with corner points

(M, R ⋆ comb ) = ⎛ ⎝ t N Λ , Λ-t ∑︂ α=0 K α (︂ Λ t+α )︂ (︂ Λ t )︂ ⎞ ⎠ , ∀t ∈ [0 : Λ]. (1.24)
As a side-product of identifying the fundamental limits of performance in this broad topology, our result shows that, when there are users connected to a different number of caches α with α ∈ [0 : Λ] in accordance to the combinatorial topology, then a MAN cache placement and a simple TDMAlike application of the scheme in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] is enough to achieve the minimum possible load in the worst-case scenario. This implies that treating each α-setting separately is optimal and so there would not be any advantage in encoding across users connected to a different number of caches. Subsequently, we consider a topology-agnostic scenario, which -to the best of our knowledge -has not been considered so far in the literature of multi-access caching. For such agnostic scenario, we investigate various ensembles of connectivities, including the ensemble B of all possible connectivities, as well as the smaller ensemble B α of those connectivities that simply abide by the constraint that each user is connected to the same number of α caches, without any additional structural constraint on the connectivity or
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on the number of users that each cache has to treat. For such settings, we develop novel information-theoretic converse bounds on the optimal average worst-case load, where the average is taken over the ensemble of interest, and where the optimal is over an optimized fixed placement. In particular, when we consider the ensemble B α of multi-access coded caching problems with Λ caches and K = K ′ α users each connected to exactly α ∈ [Λ] caches, we show that the optimal average worst-case communication load R ⋆ avg,Bα is lower bounded -under the assumption of fixed uncoded cache placement and equiprobable connectivities -by R avg,Bα,LB which is a piecewise linear curve with corner points

(M, R avg,Bα,LB ) = ⎛ ⎝ t N Λ , K ′ α (︂ Λ t+α )︂ (︂ Λ α )︂(︂ Λ t )︂ + A t ⎞ ⎠ , ∀t ∈ [0 : Λ -α + 1] (1.25)
where A t is defined as

A t := K ′ α |B α | (︄ Λ -t α )︄ ⎛ ⎝ 1 - 1 (︂ t+α α )︂ ⎞ ⎠ . (1.26)
Then, when we consider the ensemble B of multi-access coded caching problems with Λ caches and K users, where any set of caches can arbitrarily serve any number of users without any constraint or structure, we show that the optimal average worst-case communication load R ⋆ avg,B is lower bounded -under the assumption of fixed uncoded prefetching and equiprobable connectivitiesby R avg,B,LB which is a piecewise linear curve with corner points

(M, R avg,B,LB ) = ⎛ ⎝ t N Λ , Λ ∑︂ α=0 K (︂ Λ t+α )︂ 2 Λ (︂ Λ t )︂ + A t,α ⎞ ⎠ , ∀t ∈ [0 : Λ] (1.27)
where A t,α is defined as

A t,α := K |B| (︄ Λ -t α )︄ ⎛ ⎝ 1 - 1 (︂ t+α α )︂ ⎞ ⎠ . (1.28)
We wish to point out that the meaning of the converses above is twofold. Indeed, under the assumption that the cache placement procedure is performed only once regardless of the connectivity, the results above are of interest not only because they lower bound the optimal average worst-case load in the agnostic scenario, but also because a careful comparison between the bounds above and the optimal performance in (1.24) allows to draw the insightful conclusion that the generalized combinatorial topology is among the good connectivities under the standard MAN cache placement. This leaves open the possibility that there might exist other good connectivities and so this brings to the fore the open question of whether, under the assumption of a MAN placement, the combinatorial topology is indeed the best possible topology. Further details will be provided in Chapter 6.

Multi-Access Distributed Computing

With the development of large-scale machine learning algorithms and applications relying heavily on large volumes of data, we are now experiencing an ever-growing need to distribute large computations across multiple computing nodes. Under the well-known MapReduce [START_REF] Dean | MapReduce: Simplified data processing on large clusters[END_REF] framework, the overall computing process is typically split in three distinct phases, starting with the map phase, the shuffle phase and then the reduce phase. Nevertheless, several studies have shown that the aforementioned distributed map-shuffle-reduce approach comes with bottlenecks that may severely hinder the parallelization of computationally-intensive operations, one for all the communication bottleneck in the shuffle phase. This is why the authors in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] introduced CDC as a novel information-theoretic framework that can yield lower communication loads during data shuffling, where this gain could be attributed to a careful and joint design of the map and the shuffle phases.

Nevertheless, the approach in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] suffers from the already mentioned linear barrier given by the linear coding gain, which is inevitably further constrained in practical settings. Hence, we propose in Chapter 7 the new multi-access distributed computing (MADC) model, which can be considered as a nontrivial generalization of the original setting introduced in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], and which entails mappers (map nodes) being connected to various reducers (reduce 1.2. Main Contributions nodes), and where these mappers and reducers are now distinct entities. More specifically, we study the MADC setting with combinatorial topology, where now mappers are connected to the reducers according to the multiaccess topology already considered in Chapter 6 in the caching context (see Figure 1.3). We start our analysis of the problem by first neglecting the communication cost between mappers and reducers, and we propose a novel coded scheme that allows for efficient communication among reducers over the broadcast communication channel. In particular, we show that the optimal communication load L ⋆ is upper bounded by L UB which is a piecewise linear curve with corner points

(r, L UB ) = ⎛ ⎝ r, (︂ Λ-α r )︂ (︂ Λ r )︂ (︂(︂ r+α r )︂ -1 )︂ ⎞ ⎠ , ∀r ∈ [Λ -α + 1]. (1.29)
Then, we also provide for such setting an information-theoretic lower bound on the communication load, which reveals its novelty in the way we employ combinatorial arguments to build an entropy-based bound. We show that the converse is a piecewise linear curve with corner points (r,

L LB ) = ⎛ ⎝ r, (︂ Λ r+α )︂ (︂ Λ α )︂(︂ Λ r )︂ ⎞ ⎠ , ∀r ∈ [Λ -α + 1] (1.30)
and that it is within a constant multiplicative gap of 1.5 from the achievable communication load guaranteed by the proposed coded scheme. We then proceed to also account for the download cost from mappers to reducers, and for such setting we introduce an additional mappers-to-reducers communication scheme which, together with the previous inter-reducer scheme, allows us to upper bound the optimal max-link communication load as

L max-link,UB = max ⎛ ⎝ ∑︂ j∈[Λ] (︂ Λ-α j )︂ (︂ Λ j )︂ (︂(︂ j+α j )︂ -1 )︂ a ˜j ⋆ N , ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j ⋆ N ⎞ ⎠ (1.31)
where the vector a ˜⋆ = (a ˜1 ⋆ , . . . , a ˜Λ ⋆ ) is the optimal solution to the linear program

min a ˜M 1 2 ∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j M N (1.32a) subject to a ˜j M ≥ 0, ∀j ∈ [Λ] (1.32b) ∑︂ j∈[Λ] a ˜j M N = 1 (1.32c) ∑︂ j∈[Λ] j a ˜j M N ≤ r (1.32d)
and where a ˜M = (a ˜1 M , . . . , a ˜Λ M ) is the control variable. In addition, we also propose a novel converse bound which is given by

L max-link,LB = 1 2 ∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j ⋆ N (1.33)
where the vector a ˜⋆ = (a ˜1 ⋆ , . . . , a ˜Λ ⋆ ) is the optimal solution to the linear program in (1.32). As it will be shown in Chapter 7, the achievable scheme and the converse bound above allow us to characterize the optimal max-link communication load within a constant multiplicative gap of 4. We wish to point out that all the results above come with the realization that not only the coding gain guaranteed by the novel intra-reducer coded scheme is equal to

(︄ r + α r )︄ -1 (1.34)
which is much larger than the gain originally provided by the scheme in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] (see Figure 1.4), but also that the number of reducers K is dramatically increased under fixed computational resources, where this naturally implies a massive parallelization and increased speedup factor in computing reduce functions. These observations further validate the fact that properly exploiting the structure in topology allows to provide stunning gains with respect to traditional solutions.
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Part I

Exploring the Impact of Structure in Data

Introduction

O ne key ingredient in using caches has commonly been the exploitation of the fact that some contents/files are more popular than others, and so are generally to be allocated more cache space [START_REF] Zhang | Caching in information centric networking: A survey[END_REF], [START_REF] Shanmugam | FemtoCaching: Wireless content delivery through distributed caching helpers[END_REF]. This inevitably introduces the consideration that different users may have different file preferences, which in turn brings to the fore the concept of selfish caching where simply users cache independently and selfishly only contents that they are interested in potentially consuming themselves [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF]- [START_REF] Chang | On coded caching for two users with overlapping demand sets[END_REF].

In the traditional prefetching scenario, where emphasis is based heavily on bringing relevant content closer to each user, this idea of selfish caching brought about performance improvements [START_REF] Karamshuk | Take-away TV: Recharging work commutes with predictive preloading of catch-up TV content[END_REF], [START_REF] Lee | Individual preference aware caching policy design in wireless D2D networks[END_REF] in the form of higher local caching gains for each user. Nevertheless, only few works investigated the concept of selfishness in the context of coded caching.

Past Works on Heterogeneous User Profiles and Selfish Coded Caching

If on one hand a key ingredient in standard prefetching systems has commonly been the exploitation of the fact that some contents are more popular than others, and so are generally to be allocated more cache space, on the other we are just beginning to explore the interplay between coded caching, heterogeneous preferences and selfish caching, where by selfish caching we refer to caching policies where each user caches only contents from its own set of individual preferences.

Recent works have sought to explore this interplay. For example, in the context of coded caching with users having heterogeneous content preferences, the work in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] analyzed the peak load of three different coded caching schemes that account for the user preferences, revealing occasional performance gains that are similarly dependent on the structure of these preferences. Related analysis appears in [START_REF] Zhang | On the average rate for coded caching with heterogeneous user profiles[END_REF], now for the average load of the same schemes in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF]. On the other hand, the work in [START_REF] Chang | Coded caching with heterogeneous file demand sets -the insufficiency of selfish coded caching[END_REF] focused on finding instances where unselfish coded caching outperforms selfish designs. This work nicely considered the performance of selfish coded caching in the context of heterogeneous file demand sets (FDSs), cleverly employing bounds to show that, for the case of K = 2 users and N = 3 files, unselfish designs strictly outperform selfish designs in terms of communication load, albeit only by a factor of up to 14 %. In addition, the notable work in [START_REF] Chang | On coded caching for two users with overlapping demand sets[END_REF] established, under the assumption of selfish and uncoded prefetching, the optimal average load for the case of K = 2 users and a variety of overlaps between the two users' profiles, also providing explicit prefetching schemes of a selfish nature. In a similar vein, the recent work in [START_REF] Wan | On the optimal memory-load tradeoff of coded caching for location-based content[END_REF] considered the scenario where users are interested in a limited set of contents depending on their location. To the best of our knowledge, the above constitutes the majority of works on selfish coded caching.

An Adversarial Interplay Between Coded Caching and Selfish Caching

Our motivation to understand the interplay between coded caching and selfish caching comes not only from the fact that coded caching systems may indeed need to operate under some selfish legacy constraints 1 , but also mainly from the fact that there exists an interesting "adversarial" interplay between coded caching and selfish prefetching. To understand this a bit better, we recall that the main idea of coded caching is that it multicasts at any given time a linear combination of different contents desired by different users. This implies that any one receiver associated to a multicast message must be able to find in its cache all the undesired contents (subfiles) of that multicast message. This is achieved in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] by means of a highly structured and coordinated content placement phase, where each user caches a small fraction of every file of a common library. This relationship between undesired and cached contents deteriorates when using selfish caching, simply because each receiver selfishly opts -based on its own preferences -to not cache some of these undesired files. However, these same undesired files may eventually appear as interference at that selfish receiver who will now not be able to "cache-out" this interference. At the same time, though, such selfish caching allows for a much more targeted placement of files such that each user can cache more of what it actually wants. Furthermore, such selfish scenario would correspond to a substantially smaller set of possible demands, which could conceivably be exploited to reduce the load.

To better understand the main challenge of the problem, let us consider the following simple scenario with K = 3 users and a library {A, B, C} of N = 3 files. Let us now assume that user 1 is only interested in files from the file demand set F 1 = {A, B}, user 2 only from the set F 2 = {A, C}, and user 3 only from F 3 = {B, C}. We know from [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] that the MAN scheme in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] guarantees the smallest worst-case load (under uncoded placement) during the delivery phase if each user caches a proper fraction M/N of each file, where M represents the memory (in number of files) that each user is equipped with. However, if we know in advance the sets F 1 , F 2 and F 3 , do we need each user to cache also from files that are not of interest to minimize the number of bits to be transmitted? Is it convenient or disadvantageous to have each user k cache selfishly only from files in F k ? What are the effects of selfish caching on coded caching?
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To understand this interplay between coded caching and selfish caching, we first propose a new selfish model which aims to calibrate the selfishness effect, by calibrating the degree of separation between the interests of the different users. Our so-called symmetric FDS structure not only aims to encapsulate this aspect of intersection of interests, but is also designed to reflect and accentuate the aforementioned adversarial relationship between the selfish placement and the ability to encode across users as one would expect in the coded caching setting.

Subsequently, for the aforementioned symmetric FDS structure, we employ index coding arguments to derive an information-theoretic converse (lower bound) on the optimal worst-case communication load under the assumption of uncoded and selfish placement. This bound proves that unselfish coded caching can far outperform selfish coded caching. Indeed, the bound makes clear the fact that, while, as noted, selfish caching implies a much smaller set of possible demands (see Definition 2.2) as well as allows for a much more targeted placement of contents, these benefits will come, in our symmetric setting, at a heavy cost of fewer multicasting opportunities and a substantial loss in coding gain. The main contribution of our work is this information-theoretic converse, which allows us to draw the powerful conclusion that selfish coded caching can be, under some assumptions, rather detrimental.

This same converse offers some interesting insights on coding designs for selfish coded caching. While our converse now reveals that such designs, even if they are optimally constructed, would essentially never be able to provide good performance, these designs do pose an exceptionally interesting and challenging coding problem, which we address partially by providing, for a class of demands, achievable schemes whose performance matches the expression of the converse.

Remark 2.1. We wish to highlight that the focus of the chapter -which is to understand the effects of selfish caching policies -does not capture problems that arise from having a mismatch between the set of cached files and the set of demanded files 2 . Such problems remain, to date, open.

Chapter Outline

The rest of the chapter is organized as follows. The system model is presented in Section 2.2, where Section 2.2.2 offers a small motivating example that can help the reader appreciate the dynamics of selfish coded caching. Then, Section 2.3 presents the information-theoretic converse, whose proof in Section 2.4 is followed by a clarifying example. The proposed selfish coded caching placement is presented in Section 2.5 and so are the delivery designs for some sets of demands. Additional optimal schemes are presented in Section 2.6 for other sets of demands, whereas some of the proofs are relegated in Appendix A.
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We can have such mismatch when, for example, each user caches only from a subset of files, but then requests contents from the entire library, or when each user caches from the entire library, but only requests files from a limited subset of this library.

System Model

Similarly to the original scenario in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF], we consider the centralized caching scenario (see Figure 1.1) where one central server has access to a library containing N files of B bits each. This server is connected to K users through a shared error-free broadcast channel, and each user is equipped with a cache of size M files or, equivalently, M B bits.

The Symmetric (K, α, F ) FDS Structure

To capture the interplay between coded caching and selfish caching, we propose an FDS structure that allows us to calibrate the degree of separation between the interests of the different users. To better understand this structure and generally to better understand the concept of an FDS, let us briefly consider a simplified toy example.

Example 2.1. Consider a downlink scenario with K = 3 users and a library {A, B, C, D, E, F } of N = 6 files3 . Let us now assume that user 1 is only interested in potentially consuming files from the file demand set F 1 = {A, B, C, D}, user 2 only from the set F 2 = {A, B, E, F }, and user 3 only from F 3 = {C, D, E, F }. In this setting, each user is interested in a fraction 2/3 of the library, so for example user 1 has no interest in ever consuming the files in {A, B, C, D, E, F } \ F 1 = {E, F }. Similarly, each file is of interest to the same fraction 2/3 of users, so for example file A is only of interest to user 1 and user 2.

For such a setting, we wish to understand the performance of selfish coded caching where each user caches only contents from its own FDS. We proceed with the formal definition of the FDS structure. We note that below an FDS will be defined as a collection of file classes, rather than just a collection of files. This allows for more generality and we believe it also better reflects how user preferences are often categorized. 

F k = {W S : S ⊆ [K], |S| = α, k ∈ S} (2.1)
which describes the files this user is potentially interested in.

As the above says, the library is split into C =

(︂ K α )︂ disjoint classes of files, corresponding to a total of N = F C = F (︂ K α )︂
files. Then, there are K FDSs, one for each user, and each file class is identified by an α-tuple S that tells us which α users are interested in this class 4 . The above also says that each user k is interested in its own FDS

F k of |F| = |F k | = F (︂ K-1 α-1
)︂ files, and this nicely lets us calibrate the fraction

|F| N = F (︂ K-1 α-1 )︂ F (︂ K α )︂ = α K (2.2)
of the total library that each user is interested in, where the imposed symmetry also yields a fraction δ := α/K of users interested in any one specific file. Finally, we note that α = 1 corresponds to the trivial scenario where there is no intersection between the user interests, while α = K corresponds to the traditional unselfish scenario where a common library of N = F files 5 is of interest to every user. )︂

File Classes per FDS

(︂ K-1 α-1
)︂

Fraction of Users Interested in a File α/K

Files per Class F Total Files F (︂ K α )︂ Files per FDS F (︂ K-1 α-1
)︂

Fraction of Files of Interest to a User |F|/N

The following two examples can help familiarize the reader with the notation. )︂ = 6 file classes, which 4 In other words, each file belongs to α FDSs. In particular, each file in class W S is of interest to the α users in S. Hence, if k ∈ S, then the F files in W S are in F k and are thus of interest to user k. Finally, under our simplifying assumption that each user has its own FDS, α also describes the number of users interested in any one specific file. 5 In this case we assume F ≥ K.

are given by W 12 , W 13 , W 14 , W 23 , W 24 , W 34 , and where6 each class consists of F = 1 file. This implies a library {W 1,12 , W 1,13 , W 1,14 , W 1,23 , W 1,24 , W 1,34 } of N = 6 files. In the above, W 1,12 simply represents the first (and, in this case, the only) file in class W 12 . The K = 4 FDSs take the form

F 1 = {W 1,12 , W 1,13 , W 1,14 } (2.
3)

F 2 = {W 1,12 , W 1,23 , W 1,24 } (2.4 
) where we see that each FDS consists of 2 × 3 = 6 files. For example, user 1 is interested in the files contained in the FDS

F 3 = {W 1,13 , W
F 1 = {W f,S : S ⊆ [4], |S| = 3, 1 ∈ S, f ∈ [2]}, user 2 is interested in the files contained in the FDS F 2 = {W f,S : S ⊆ [4], |S| = 3, 2 ∈ S, f ∈ [2]
}, and so on. By calculating |F|/N = α/K = 3/4, we can verify that each user is interested in 75 % of the library, and each file is of interest to 75 % of the users.

Deviating from standard notation practices, we will use the doubleindex notation W f k ,D k to denote the file requested by user k. Consequently, to describe the entire demand set, we will now be needing two vectors d = (D 1 , . . . , D K ) and f = (f 1 , . . . , f K ). In addition, the FDS structure automatically implies restrictions in the set of possible demand vectors. For Remark 2.2. We acknowledge that the aforementioned symmetric FDS structure can be more restrictive than the (very few) existing FDS structures in the literature. For instance, the works in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF]- [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF] considered the FDS structure where each file is of interest to either groups of users or all users in the system. Nevertheless, our aim is to explore the effect of selfish caching, and what we show is that an important and general instance of selfish caching, embodied by the considered symmetric FDS structure, yields unbounded performance deterioration compared to the unconstrained (unselfish) case. Hence, this instance allows us to provide, in a unified manner, the main contribution of our work, which is the clear conclusion that indeed selfish caching can be unboundedly detrimental. The symmetric FDS structure serves as a proving step toward deriving this conclusion. At the same time, this same chosen FDS structure captures core principles of realistic file demand sets, like for example the amount of intersection between different such sets, where this intersection can be calibrated at will by the parameter α.

Understanding the Dynamics of Selfish Coded

Caching With an Example for the (K, α, F ) = (5, 4, 1) Structure

Let us consider a small motivating example that can help the reader appreciate the dynamics of symmetrically selfish coded caching. We will first suggest a selfish cache placement scheme that will be justified in Section 2.5, and we will then present the delivery and decoding process for a class of valid circular demands. The corresponding load that will be achieved here will in fact be matched by the converse of the next section, consequently proving that in our example our delivery is optimal and the converse tight. We here consider the (K, α, F ) = (5, 4, 1) scenario, where each cache is of size M = 2 corresponding to the case of t = 2. In our scenario there are C =

(︂ K α )︂
= 5 file classes W 1234 , W 1235 , W 1245 , W 1345 , W 2345 , and a total of N = F C = 5 library files. For simplicity, we will exploit the fact that F = 1 by slightly abusing notation such that, in this early example only, the library of N = 5 files will be denoted as {W 1234 , W 1235 , W 1245 , W 1345 , W 2345 }. At this point, the 5 FDSs take the form 

F 1 =

Placement phase

The cache placement will follow a selfish adaptation of the MAN scheme. First each file is split into

(︂ α t )︂ = (︂ 4 2 
)︂ = 6 non-overlapping subfiles as 

W 1234 =
Z k = {W S,T : S ⊆ [5], |S| = 4, T ⊆ S, |T | = 2, k ∈ T }. ( 2 

Delivery phase

The delivery takes place as soon as the requests of the users are revealed. Consider the demand d 1 = (1234, 2345, 1345, 1245, 1235). A schematic of this demand is given by means of the graph in Figure 2.1. This graph, which we refer to as the FDS request graph, is a directed graph where each vertex is a user and where there is an edge from user k 1 to user

k 2 if W D k 1 ∈ F k 2 .
This graph represents at a high level, for each given demand vector d, the interplay between the users' interests. As a consequence of the aforementioned cache placement, each user does not cache (and consequently desires) a total of

(︂ α-1 t )︂ = (︂ 3 2 
)︂ = 3 subfiles for its demanded file. Hence, given the demand d 1 , the desired subfiles are given as follows.

• One key aspect for achieving optimality is the utilization of specifically structured linear combinations of multicast messages, where this structure accepts the following interesting interpretation. These linear combinations effectively allow multicast messages to be used not only to deliver desired content to users, but also to deliver undesired content that can be used as side information to "bridge" the gaps left by the selfish placement. In essence, each transmission now delivers desired content while also disseminating side information that can be used to create cliques. To see this, let us consider the following sequence of XORs . By using its own cache, each user can now decode its own desired content as follows.

X 1 = W 1345,
• User 1 can recover its desired subfiles from X 1 , X 2 ⊕ X 3 and X 4 .

• User 2 can recover its desired subfiles from X 1 ⊕ X 3 , X 5 and X 6 .

• User 3 can recover its desired subfiles from X 2 , X 3 and X 7 .

• User 4 can recover its desired subfiles from X 1 , X 4 and X 6 .

• User 5 can recover its desired subfiles from X 2 , X 5 and X 7 .

For example, in the above, user 1 needs W 2345,35 to correctly decode its desired W 1234,23 from X 3 , whereas user 2 needs W 1345,14 to correctly decode W 2345,35 always from X 3 . The act of "passing" subfiles W 2345,35 and W 1345,14 to user 1 and user 2 with X 2 and X 1 , respectively, allows the creation of a clique between user 1, user 2 and user 3. This clique is exploited by creating the XOR X 3 . The corresponding communication load is equal to R(t = 2) = |X|/B = 7/6, which will be met by the converse.

We wish to point out that, intuitively, the set of multicast messages above is constructed around the idea that each transmission serves not only to deliver desired content, but also, at the same time, to form cliques that will be exploited in future transmissions. Indeed, in the above we chose t + 1 = 3 pivotal users (i.e., user 1, user 2 and user 3) which represent an almost complete clique in the side information graph of the induced index coding problem. All the effort consisted then in trying to "deliver" side information 7 to "bridge" the gaps left by the selfish placement, while delivering desired content to users. This was done in X 1 and X 2 , where the subfiles W 1345,14 and W 2345,35 were carefully "delivered" to user 2 and user 1, respectively, without interfering with users to which X 1 and X 2 are delivering desired information. This interpretation related to the creation of cliques is a crucial part of the dynamics of the problem that we are considering. 3), which is always complete 10 . In such unselfish scenario where each file 7 Notice that we use "deliver" in quotes when referring to undesired subfiles because users do not need to actually decode subfiles which are not desired. Indeed, as explained above, it is more a matter of aligning interference, so that users can directly take linear combinations of the multicast messages to cancel out interference terms. Still, the interpretation related to the creation of cliques can give insights on how to construct multicast messages. 8 This can be concluded by noticing that the graph in Figure 2.1 contains 5 bidirectional edges, whereas the graph in Figure 2.2 has 6 bidirectional edges. 9 Having two non-isomorphic problems here implies that the delivery for the second problem cannot be derived from that of the first problem by a simple relabeling of the users. 10 A complete graph is a graph where every node is connected to every other node.

is assumed to be of interest to all users, every user in the FDS request graph is connected to every other user, independently of the requested files. Hence, in the unselfish scenario, having a fixed FDS request graph for every demand allows for an identical delivery procedure for any demand. This seems to be a crucial differentiating aspect between selfish and unselfish coded caching. In this case the demand is identified by the vector f = (f 1 , f 2 , f 3 , f 4 , f 5 ), where user k ∈ [START_REF] Shariatpanahi | Multi-server coded caching[END_REF] requests file W f k . This graph is complete. Hence, here the ability to create cliques of subfiles is only limited by t, and is not affected at all by the specific demand.

W f 1 W f 5 W f 4 W f 3 W f 2

Main Results

Let us recall that each user is interested in its own FDS, and that each FDS only represents a fraction |F|/N of the library. In the general unselfish scenario, a portion (1-|F|/N ) of each user's cache would be filled with content that would never be requested by that user. Such a non-selfish scheme would relinquish local caching gain for the benefit of being able to encode across all combinations of users. Under the basic clique-based approach in the MAN scheme, we are presented with a trade-off between local caching gain and coding gain, where the latter seems to be more desirable. Are there, though, other coding techniques that manage to harvest an abundance of coding opportunities, which are usually associated to the standard coded caching approach, exploiting the existence of a more targeted set of demands, while capitalizing on the increased local caching gain brought about by a selfish variant? If not, then what is the amount of coding gain that can be harvested while maintaining selfish caching? These are the questions addressed by our information-theoretic converse that lower bounds the optimal worst-case load under uncoded and selfish cache placement, which will be denoted by R ⋆ u,s .

Theorem Statement

The converse bound employs the index coding techniques of [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF] that proved the optimality of the MAN scheme under the constraint of uncoded cache placement. Our main challenge will be to account for the presence of different profiles of interest, adapting consequently the index coding approach to reflect the (K, α, F ) FDS structure proposed in the previous section. The converse bound presented here shows that adding the selfish cache placement constraint implies a higher optimal communication load compared to the unselfish scenario. The result is stated in the following theorem.

Theorem 2.1 (Converse Bound for Selfish Coded Caching Under Uncoded Prefetching). Under the assumption of uncoded and selfish cache placement, and given the (K, α, F ) FDS structure, the optimal worst-case communication load R ⋆ u,s is lower bounded by R LB which is a piecewise linear curve with corner points

(M, R LB ) = ⎛ ⎝ t N K , (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ ⎞ ⎠ , ∀t ∈ [0 : α] (2.30)
corresponding to

R LB = K(1 -γ α ) Kγ + 1 [︃ (K -α)γ + 1 ]︃ (2.31)
where γ := M/N and γ α := M/|F| = γK/α.

Proof. We provide the proof of the converse in Section 2.4.1. In Section 2.4.2 we also present an example that aims to help the reader better understand the construction of the outer bound.

Comments on the Converse Bound

The bound reveals some interesting insights. Before discussing these insights, let us quickly recall that, in our scenario, the integer value t is upper bounded by α, since any t ≥ α would imply zero communication load.

Comparison With MAN

The following compares, for any F , the optimal load R ⋆ u,s (t) of selfish coded caching with that of the unselfish (MAN) scenario11 .

Corollary 2.1.1. Given the symmetric (K, α, F ) FDS structure and α ∈ [K -1], the converse reveals that

R ⋆ u,s (t) R MAN (t) ≥ 1, ∀t ∈ [0 : α -1] (2.32) R ⋆ u,s (t) R MAN (t) > 1, ∀t ∈ [α -2] (2.33)
which says that, in the non-trivial range t ∈ [0 : α -1], selfish coded caching is not better than unselfish coded caching, which instead, in the non-extremal points of t and under uncoded placement, strictly outperforms any implementation of selfish coded caching. When α = K and F ≥ K, the converse expression naturally matches that of unselfish coded caching.

Proof. The proof can be found in Appendix A. 

Selfish Local Caching Gain and Coding Gain

Since selfish caching places the constraint that each user k can only cache from its own FDS F k , one key aspect of such selfish caching is that it brings about an increase of the effective normalized cache size for each user. Indeed, whereas in the unselfish scenario each user can cache a fraction

γ = M N = t K (2.34)
of each file of possible interest, in the selfish scenario this fraction is elevated to a larger

γ α = M |F| = t α = γ K α (2.35)
which in turn implies a larger local caching gain. Hence, in the presence of a relatively small α, selfish caching implies a sizeable increase in the effective normalized cache size γ α = γK/α, which in turn implies a much larger local caching gain.

On the other hand, the converse reveals that a smaller α implies a substantial reduction in the coding gain offered by selfish coded caching. To compare coding gains, we first recall that the coding gain in the original unselfish scenario takes the form

R u R MAN = Kγ + 1, (2.36) 
where R u = K(1 -γ) is the load for uncoded delivery. As previously stated, this coding gain Kγ + 1 describes the speedup factor over the uncoded case.

To reflect this same speedup in the selfish scenario, we must consider that the corresponding load in the uncoded scenario takes the form R u s = K(1 -γ α ). With this in place, the converse reveals that the optimal coding gain of selfish coded caching is upper bounded as

G ⋆ ≤ R u s R LB = Kγ + 1 (K -α)γ + 1 (2.37)
where the value

D := (K -α)γ + 1 (2.38)
represents the guaranteed deterioration in the coding gain when we choose to cache selfishly. Indeed, if we consider the non-trivial range α ∈ [2 : K -1], we have D > 1 and consequently G < Kγ + 1 for γ > 0. We can see that -for fixed K and γ -this deterioration D increases with decreasing α, reflecting the fact that the closer the (K, α, F ) FDS structure is to the standard MAN scenario, the smaller this deterioration D is.

An important observation though is that the coding gain of selfish coded caching does not scale with K. This is described in the following corollary.

Corollary 2.1.2. For any fixed ratio δ = α/K < 1 the coding gain of selfish caching does not scale as K increases, and it is instead bounded as

G ⋆ < 1 1 -δ . (2.39)
Proof. The proof can be found in Appendix A.2. We can see in Figure 2.5 the comparison between different coding gains for varying values of K and α when the normalized cache size γ is fixed. As mentioned, smaller values of α correspond to much smaller coding gains. As stated in Corollary 2.1.2, each curve is upper bounded12 by 1/(1 -δ).

Remark 2.3. At this point, we ought to point out that our choice of having a fully symmetric FDS structure may indeed be an overly penalizing condition. However, this choice exemplifies the mechanisms and effects that come about when selfishness is considered. This same choice nicely offers a crisp method for calibrating the intersection between the interests of the different users, taking us from a scenario where the intersection is minimal, to scenarios ever closer to the original MAN setting where the interests are identical. As suggested before, this FDS structure is a sufficient proving step for drawing, in a unified manner, the conclusion that indeed selfish coded caching can be quite detrimental.

Proof of Theorem 2.1

The derivation of the converse makes extensive use of the connection between caching and index coding. This connection was made in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] and was successfully used in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF] to derive the optimal performance of the unselfish scenario.

We quickly recall that an index coding problem [START_REF] Bar-Yossef | Index coding with side information[END_REF]- [START_REF] Vaddi | Optimal index codes for a new class of interlinked cycle structure[END_REF] consists of a server wishing to deliver N ′ independent messages to K ′ users via a basic bottleneck link. Each user k ∈ [K ′ ] has its own desired message set M k ⊆ [N ′ ], and has knowledge of its own side information set

A k ⊆ [N ′ ]. Let M i be the message i in the set [N ′ ].
Then, the index coding problem is typically described by its side information graph in the form of a directed graph, where each vertex is a message and where there is an edge from M i to M j if M i is in the side information set of the user requesting M j . The derivation of our converse will use the following well-known result from [63, Corollary 1].

Lemma 2.1 ([63, Corollary 1]). In an index coding problem with

N ′ messages M i for i ∈ [N ′ ], the minimum number of transmitted bits ρ is bounded as ρ ≥ ∑︂ i∈J |M i | (2.40)
for any acyclic subgraph J of the problem's side information graph.

Before proceeding with the main proof, we also recall that under the (K, α, F ) FDS structure we have {W S : S ⊆ [K], |S| = α}, where W S = {W f,S : f ∈ [F ]} is a class of files. We further recall that there are C =

(︂ K α )︂ classes of files and N = F C = F (︂ K α )︂
files. Additionally, we recall that the FDS of each user k ∈ [K] is given by

F k = {W S : S ⊆ [K], |S| = α, k ∈ S} (2.41)
that each file has size B bits, and that each user is equipped with a cache of size M B bits. Finally, let us remember that we are interested in the non-trivial range 13 α ∈ [2 :

K -1] and in the range t ∈ [0 : α]. Indeed, for t = α we have M = αN/K = F (︂ K-1 α-1
)︂

, so the point (M, R) = (αN/K, 0) is trivially achievable as a consequence of each user being able to store the entirety of its FDS.

13

When α = 1 the proof is trivial, since for such case we have only two integer points corresponding to t ∈ {0, 1}: when t = 0 the load is equal to K, and when t = 1 each user has enough memory to cache entirely its own FDS and the load is equal to 0. Then, the case α = K and F ≥ K is equivalent to the standard (unselfish) MAN scenario, which was already considered in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF].

Main Proof

The first step toward the converse consists of splitting each file in a generic manner into a maximum of 2 |S| = 2 α disjoint subfiles as 

W f,S = {W f,S

Constructing the Index Coding Problem

We now proceed by making the connection to index coding. Hence, let us consider the index coding problem with K ′ = K users and N ′ = K2 α-1 messages, such that for any demand, identified by the vectors d = (D 1 , . . . , D K ) and f = (f 1 , . . . , f K ), the desired message set and the side information set are respectively given by

M k = {W f k ,D k ,T : T ⊆ D k , k / ∈ T } (2.43) 
A k = {W f,S,T : f ∈ [F ], S ⊆ [K], |S| = α, T ⊆ S, k ∈ T } (2.44) 
for each user k ∈ [K]. For this setting the side information graph takes the form of a directed graph where each subfile represents a vertex, and where there is a connection from (the node corresponding to)

W f k 1 ,D k 1 ,T 1 to W f k 2 ,D k 2 ,T 2 if and only if W f k 1 ,D k 1 ,T 1 ∈ A k 2 , i.e., if and only if k 2 ∈ T 1 .
To apply Lemma 2.1, we are interested in acyclic sets of vertices J in such side information graph. In the spirit of [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], we know that the set

⋃︂ k∈[K] ⋃︂ T ⊆(([K]\{u 1 ,...,u k })∩Du k ) {︂ W fu k ,Du k ,T }︂ (2.45) 
does not contain any directed cycle 14 for any demand (d, f ) and any vector u, where u = (u 1 , . . . , u K ) is a permutation of the users in [K], i.e., u = π K for some π ∈ S K . Consequently, applying Lemma 2.1 yields the following lower bound

R ⋆ u,s ≥ R(d, f , u) (2.46) where R(d, f , u) is defined as R(d, f , u) := ∑︂ k∈[K] ∑︂ T ⊆(([K]\{u 1 ,...,u k })∩Du k ) ⃓ ⃓ ⃓W fu k ,Du k ,T ⃓ ⃓ ⃓ B .
(2.47)

Selection of Distinct Demands

Our goal is to create several bounds as the one in (2.46) and eventually average all of them to obtain a useful lower bound on the optimal worst-case load. We aim to create a bound for a set C of properly selected demands and for a set U (d,f ) of properly selected permutations for each demand (d, f ) ∈ C. Hence, we aim to simplify the expression given by

∑︂ (d,f )∈C ∑︂ u∈U (d,f ) BR ⋆ u,s ≥ ∑︂ (d,f )∈C ∑︂ u∈U (d,f ) R(d, f , u). (2.48)
Notice that the goal of carefully selecting the demand set C and the permutation set U (d,f ) is twofold. The first is to provide the symmetry that will allow us to simplify (2.48) into a meaningful expression, and the second is to force the bound to be as tight as possible 15 . Remark 2.4. The careful selection of the demand set C and permutation set U (d,f ) for each (d, f ) ∈ C is a pivotal difference with respect to the procedure in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF]. Indeed, if one develops a converse bound following the exact same procedure in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], then the resulting bound is looser than the one presented in this paper. Finding the good set of demands and permutations becomes the key to obtaining a tighter bound while keeping the problem analytically tractable.

For a permutation function π ∈ H K , we consider the demands (d, f ) where d = (D 1 , . . . , D K ) is such that

D k = {k, π((π -1 (k) + 1) mod K), . . . , π((π -1 (k) + α -1) mod K)} (2.49) and f k ∈ [F ] for each k ∈ [K].
There is a total of F K such demands. Considering that the order of H K is (K -1)! and that we take F K demands for each π ∈ H K , we consider (K -1)!F K distinct16 demands in total, denoting by C the set of such demands and referring to the demands in C as circular demands. Since the vector d depends on some circular permutation π ∈ H K , we will identify from now on each demand with (d π , f ) ∈ C to highlight such dependency. For a demand (d π , f ) ∈ C, we let U (dπ,f ) be the set containing the K circular shifts of π K .

The aforementioned sets C and U (dπ,f ) for each (d π , f ) ∈ C will generally yield larger acyclic subgraphs 17 in (2.45) that can be used to increase the RHS in (2.46), and to provide a better lower bound on R ⋆ u,s . We provide in the following a clarifying example for a circular demand in (d π , f ) ∈ C and the corresponding set U (dπ,f ) . 

= (f 1 , f 2 , f 3 , f 4 ) with f k ∈ [F ] for each k ∈ [4].
In addition, U (dπ,f ) is the set containing the 4 circular shifts of π 4 , which in this case corresponds to U (dπ,f ) = {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}.

Constructing the Optimization Problem

We will seek to simplify the expression in (2.48), and then to minimize the new simplified expression, in order to lower bound the optimal worst-case load R ⋆ u,s . Toward simplifying the expression in (2.48), we count how many times each subfile (2.48). To this end, we need the following lemma.

W f,S,T -for any f ∈ [F ], S ⊆ [K] with |S| = α, T ⊆ S and |T | = t ′ with t ′ ∈ [0 : α] -appears in
Lemma 2.2. Let π ∈ S K be a permutation of the set [K]. Consider k 1 , k 2 ∈ [K] such that k 1 ̸ = k 2 . Consider ℓ = (π -1 (k 2 ) -π -1 (k 1 )) mod K.
(2.50)

Then, out of the K circular shifts of π K , there is a total of (K -ℓ) of them such that k 1 appears before k 2 .

Proof. The proof is reported in Appendix A.3.

The counting argument proceeds as follows. First, we focus on some subfile W f,S,T and we assume that the file W f,S is requested by some user k ∈ (S \ T ). Next, we count the number of demands (d π , f ) ∈ C for which k and right-most element included from T are at distance ℓ in π K . Then, we evaluate how many times the subfile appears in the index coding bounds associated to such demands. After that, noticing that ℓ ∈ [t ′ : α-1], we repeat the procedure for each value of ℓ. Finally, since the same procedure can be repeated for each k ∈ (S \ T ), we multiply the end result by

|S \ T | = (α -t ′ ).
Let us focus on the subfile W f,S,T for some f ∈

[F ], S ⊆ [K] with |S| = α, T ⊆ S and |T | = t ′ for some t ′ ∈ [0 : α]. For some user k ∈ (S \ T ) and for ℓ ∈ [t ′ : α -1], there is a total of a ℓ := t ′ !(α -1 -t ′ )!(K -α)! (︂ ℓ-1 t ′ -1 )︂ F K-1 demands (d π , f ) ∈ C such that the file W f,S
is requested by such user k ∈ (S \ T ) and there are exactly ℓ elements in π K between k and the right-most element included from T . Let C k,ℓ be the set of such demands.

Considering how the acyclic set of vertices in (2.45) is built, the subfile W f,S,T appears in the index coding bound induced by each (d π , f ) ∈ C k,ℓ whenever all the elements in T appear after k in u ∈ U (dπ,f ) . Since for each demand (d π , f ) ∈ C k,ℓ there are exactly ℓ elements in π K separating k and the right-most element from T , we know from Lemma 2.2 that there are (K -ℓ) vectors u ∈ U (dπ,f ) where all the elements in T appear after k. Observing that ℓ ∈ [t ′ : α -1] and that such reasoning applies whenever the file W f,S is requested by any of the (α (2.48). Since the same reasoning applies to any other subfile, the expression in (2.48) can be rewritten as

-t ′ ) users in S \ T , the specific subfile W f,S,T appears (α -t ′ ) ∑︁ α-1 ℓ=t ′ a ℓ (K -ℓ) times in
R ⋆ u,s ≥ 1 BK!F K ∑︂ (dπ,f )∈C ∑︂ u∈U (dπ ,f ) R(d π , f , u) (2.51) = α ∑︂ t ′ =0 f (t ′ )x t ′ (2.52)
where f (t ′ ) and x t ′ are defined as

f (t ′ ) := N (α -t ′ ) F K K! α-1 ∑︂ ℓ=t ′ a ℓ (K -ℓ) (2.53) 0 ≤ x t ′ := ∑︂ S⊆[K]:|S|=α ∑︂ T ⊆S:|T |=t ′ ∑︂ f ∈[F ] |W f,S,T | N B . (2.54)
At this point, we seek to lower bound the minimum worst-case load R ⋆ u,s by lower bounding the solution to the following optimization problem min

x α ∑︂ t ′ =0 f (t ′ )x t ′ (2.55a) subject to α ∑︂ t ′ =0 x t ′ = 1 (2.55b) α ∑︂ t ′ =0 t ′ x t ′ ≤ KM N (2.55c)
where (2.55b) and (2.55c) correspond to the file size constraint and the cumulative cache size constraint, respectively.

Lower Bounding the Solution to the Optimization Problem

Before proceeding to lower bound the solution the optimization problem, we wish to further simplify the function f (t ′ ). Indeed, this function f (t ′ ) can be rewritten as

f (t ′ ) = 1 (︂ α t )︂ α-1 ∑︂ ℓ=t ′ (︄ ℓ -1 t ′ -1 )︄ (K -ℓ). (2.56)
Then, we can write

f (t ′ ) = 1 (︂ α t ′ )︂ α-1 ∑︂ ℓ=t ′ (︄ ℓ -1 t ′ -1 )︄ (K -ℓ) (2.57) = 1 (︂ α t ′ )︂ (︄ K α-1 ∑︂ ℓ=t ′ (︄ ℓ -1 t ′ -1 )︄ - α-1 ∑︂ ℓ=t ′ ℓ (︄ ℓ -1 t ′ -1 )︄)︄ (2.58) = 1 (︂ α t ′ )︂ ⎛ ⎝ K α-2 ∑︂ ℓ=t ′ -1 (︄ ℓ t ′ -1 )︄ -t ′ α-1 ∑︂ ℓ=t ′ (︄ ℓ t ′ )︄ ⎞ ⎠ (2.59) = K (︂ α-1 t ′ )︂ -t ′ (︂ α t ′ +1 )︂ (︂ α t ′ )︂ (2.60) = (︂ α t ′ +1 )︂ + (K -α) (︂ α-1 t ′ )︂ (︂ α t ′ )︂ (2.61) 
where (2.60) uses the well-known hockey-stick identity, which states that

n ∑︂ i=k (︄ i k )︄ = (︄ n + 1 k + 1 )︄ , ∀n, k ∈ N, n ≥ k. (2.62)
Now, since we can consider x = (x 0 , . . . , x α ) as a probability mass function, the optimization problem in (2.55) can be seen as the minimization of E[f (t ′ )]. Moreover, the following holds.

Lemma 2.3. The function f (t ′ ) is convex and is strictly decreasing for increasing values of t ′ .

Proof. The proof is reported in Appendix A.4.

Taking advantage of Lemma 2.3, we can write

E[f (t ′ )] ≥ f (E[t ′ ]) using Jensen's inequality. Then, since f (t ′ ) is strictly decreasing with increasing t ′ ∈ [0 : α], we can further write f (E[t ′ ]) ≥ f (KM/N ) taking advantage of the fact that E[t ′ ] is upper bounded as in (2.55c). Consequently, E[f (t ′ )] ≥ f (t),
where t = KM/N . Now, when t is an integer, the bound is simply the function f (t) evaluated at t ∈ [0 : α]. For non-integer values of t, we can follow the reasoning in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], [START_REF] Parrinello | Fundamental limits of coded caching with multiple antennas, shared caches and uncoded prefetching[END_REF], [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] to take the lower convex envelope of the sequence of points {(t, f (t)) : t ∈ [0 : α]}. To conclude, the converse bound is a piecewise linear curve with corner points

(M, R LB ) = ⎛ ⎝ t N K , (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ ⎞ ⎠ , ∀t ∈ [0 : α]. (2.63)
Further, R LB takes the form

R LB = (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ (2.64) = α -t 1 + t + (K -α) (︃ 1 - t α )︃ (2.65) = α(1 -γ α ) 1 + Kγ + K(1 -γ α ) -α(1 -γ α ) (2.66) = K(1 -γ α ) [︄ 1 + α K(1 + Kγ) - α K ]︄ (2.67) = K(1 -γ α ) 1 + Kγ [︃ 1 + Kγ + α K - α K (1 + Kγ) ]︃ (2.68) = K(1 -γ α ) 1 + Kγ [︃ (K -α)γ + 1 ]︃ (2.69) 
which completes the proof.

A Detailed Example for the Converse Bound

We present here in detail an example that can help the reader better understand the construction of the converse bound. Consider the symmetric (4, 3, 1) FDS structure which involves a file library

{W 1,S : S ⊆ [4], |S| = 3} consisting of C = (︂ K α )︂ = (︂ 4 3 
)︂ = 4 classes of files. Since there is only F = 1 file per class, there is a total of N = F C = 4 files, so in this example we make no distinction between files and classes of files. For simplicity, we will here refer to file W 1,S directly as W S , which means that each file is entirely described by a 3-tuple S ⊆ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], and each demand instance is entirely defined by the d = (D 1 , . . . , D 4 ) vector only. The FDS of each user k ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] is given by

F k = {W S : S ⊆ [4], |S| = 3, k ∈ S} and it consists of F (︂ K-1 α-1
)︂ = 3 files. This example considers t ∈ [0 : 3], simply because having M = tN/K = 3 implies that the point (M, R) = (3, 0) is trivially achievable being each user able to preemptively cache the entirety of its FDS.

Assuming the most general uncoded and selfish cache placement, each file W S is split into a total of 2 α = 8 disjoint subfiles as

W S = {W S,T : T ⊆ S}, ∀S ⊆ [4] : |S| = 3 (2.70)
where again W S,T is the subfile of W S cached by users in T .

Constructing the Index Coding Bound

For any given demand d = (D 1 , . . . , D 4 ) where the k-th user asks for a distinct file

W D k for each k ∈ [4]
, we consider the index coding problem with

K ′ = K = 4 users and N ′ = K2 α-1 = 16 messages, where each user k ∈ [4] has a desired message set M k = {W D k ,T : T ⊆ D k , k / ∈ T } and a side information set A k = {W S,T : S ⊆ [4], |S| = 3, T ⊆ S, k ∈ T }.
If we identify again in the side information graph of the problem the acyclic set of vertices as in (2.45), applying Lemma 2.1 yields the following lower bound

R ⋆ u,s ≥ R(d, u) (2.71)
where now we define

R(d, u) := ∑︂ k∈[4] ∑︂ T ⊆(([4]\{u 1 ,...,u k })∩Du k ) ⃓ ⃓ ⃓W Du k ,T ⃓ ⃓ ⃓ B . ( 2.72) 
Recall that (2.71) holds for any demand d and any u = π 4 for some π ∈ S 4 .

Constructing the Optimization Problem and Bounding its Solution

As described in Section 2.4.1, we let C be the set of distinct demands where we have a d π vector for each circular permutation π ∈ H 4 . The number of such permutations is (K -1)! = 6. For simplicity, we denote by π i the i-th circular permutation for i ∈ [START_REF] Shariatpanahi | Physical-layer schemes for wireless coded caching[END_REF], where such circular permutations are given by

π 4 1 = (1, 2, 3, 4) π 4 4 = (1, 3, 4, 2) (2.73) π 4 2 = (1, 2, 4, 3) π 4 5 = (1, 4, 2, 3) (2.74) π 4 3 = (1, 3, 2, 4) π 4 6 = (1, 4, 3, 2). (2.75)
None of the above permutations can be obtained as a rotation of any of the others. Hence, this ensures to have in C the following distinct demand vectors [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF][START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF][START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF][START_REF]Cisco annual internet report[END_REF], (3, 4, 1, 2), (4, 1, 2, 3)}. Now, we create a bound as in (2.71) for each d π i with i ∈ [START_REF] Shariatpanahi | Physical-layer schemes for wireless coded caching[END_REF] and for each u ∈ U dπ i for a given d π i , we sum all such bounds and we obtain the expression given by ∑︂ i∈ [START_REF] Shariatpanahi | Physical-layer schemes for wireless coded caching[END_REF] ∑︂

d π 1 = (123,
= {(1, 2, 3, 4),
u∈U dπ i BR ⋆ u,s ≥ ∑︂ i∈[6]
∑︂

u∈U dπ i R(d π i , u). (2.79)
We simplify (2.79) by counting how many times each subfile W S,T -for any S ⊆ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] with

|S| = 3, T ⊆ S and |T | = t ′ with t ′ ∈ [0 : 3] -appears in (2.79).
For example, let us focus on the subfile W 123,2 . First of all, we notice that such subfile may appear to the RHS of (2.71) whenever W 123 is requested by any user k ∈ (S \ T ) = {1, 3}. Assume that W 123 is requested by user 1, which means we consider the bounds with demands d π 1 and d π 3 . Denoting by ℓ the distance 18 between user 1 and user 2 in π 4 i for i ∈ {1, 3}, we notice that ℓ ∈ {1, 2}. We see that there is only π 4 1 for ℓ = 1, so W 123,2 appears (K -ℓ) = 3 times in the bounds with demand d π 1 and permutations in U dπ 1 . Similarly, there is only π 4 3 for ℓ = 2, so W 123,2 appears (K -ℓ) = 2 times in the bounds with demand d π 3 and permutations in U dπ 3 . Thus, summing over the possible values of ℓ, the subfile W 123,2 appears 3 + 2 = 5 times in the bounds with demands d π 1 and d π 3 , and their relative permutations of users. The same rationale follows for the bounds built with d π 2 , d π 6 and their relative permutations, i.e., the bounds where file W 123 is requested by user 3. Hence, the subfile W 123,2 appears in (2.79) a total of 2 × (3 + 2) = 10 times.

The same holds for any other subfile cached at only one user and a similar counting argument can be made for arbitrary |T | = t ′ with t ′ ∈ [0 : 3], as described in Section 2.4.1. Thus, we can formulate an optimization problem as in (2.55), bounding its solution by means of Jensen's inequality and convexity of f (t ′ ). The resulting bound is a piecewise linear curve with corner points

(M, R LB ) = (t, (3 -t)/(1 + t) + 1 -t/3) for each t ∈ [0 : 3].

The Exact Memory-Load Trade-Off for the α-Demands

We will here draw insights from the converse to establish a general cache placement policy, and then a delivery scheme that applies to a specific set of so-called α-Demands. For these demands and for the specific placement policy, the scheme will be proven optimal with the use of an additional converse.

18

We remind that such distance represents the number of elements which separate index 1 and index 2, including the latter.

We start by noticing that the converse in Theorem 2.1 can be decomposed as

R LB (t) = (︂ α t+1 )︂ (︂ α t )︂ + (K -α) (︂ α-1 t )︂ (︂ α t
)︂

(2.80)

with the first term R 1 (t) := (︂ α t+1 )︂ / (︂ α t )︂ = α(1 -γ α )/(1 + αγ α )
bringing to mind a smaller MAN placement-and-delivery (unselfish) problem with α users, a common library, and normalized cache size γ α , and with the second term

R 2 (t) := (K -α) (︂ α-1 t )︂ / (︂ α t )︂ = (K -α)(1 -γ α )
bringing to mind uncoded delivery to (K -α) users. Let us exploit this observation to suggest a placement.

Cache Placement

As noted, we can think of the R 1 (t) term as representing the optimal load in a "smaller" α-MAN problem with α users that are known in advance to be interested in a common class of files and thus benefit from the corresponding α-user MAN placement. If each user -as is the case in our setting -can allocate a fraction γ α for each file of potential interest, then a MAN placement implies that each user stores a total of F γ α files 19 . Here, in our effort to provide a placement method, we must account for the fact that there is a total of

(︂ K α )︂
such "smaller" MAN problems, because there are C =

(︂ K α
)︂ file classes. Let us now recall that each user appears in a total of

(︂ K-1 α-1
)︂ such smaller problems, since there are

(︂ K-1 α-1
)︂ file classes that each user is interested in. Our placement must account for the possibility of each user participating in any such smaller problem. This requires each user to store F γ α files per class of interest, and thus requires a total storage capacity of γ α F

(︂ K-1 α-1 )︂
= M , which, as we see, nicely satisfies the cache size constraint. This reasoning justifies the cache placement procedure that we present below.

In our proposed uncoded and selfish cache placement method, based on the same combinatorial argument of the MAN scheme, each user k proceeds to cache only from F k . The placement begins by splitting each file into

(︂ α t )︂
non-overlapping subfiles as

W f,S = {W f,S,T : T ⊆ S, |T | = t} (2.81)
for each S ⊆ [K] such that |S| = α and for each f ∈ [F ], and then is completed by filling the cache Z k of each user k ∈ [K] as

Z k = {W f,S,T : f ∈ [F ], S ⊆ [K], |S| = α, T ⊆ S, |T | = t, k ∈ T }. (2.82)
19 Recall that F is the total number of files in this common class of files.

Each cache stores

(︂ α-1 t-1
)︂

subfiles for each file in its FDS, so abiding by the cache size constraint

|F| (︄ α -1 t -1 )︄ B (︂ α t )︂ = F (︄ K -1 α -1 )︄ t α B = M B.
(2.83)

Remark 2.5. Unfortunately, the above reasoning does not immediately reflect -at least not to us -a universal delivery solution for any set of demands.

To the best of our understanding, our cache placement introduces the need to resolve a large number of non-isomorphic index coding problems. Nevertheless, the careful interpretation of the converse allowed us to suggest a general selfish cache placement policy. Similarly, it also allows us to identify a well-defined class of demands, as we can see below.

Delivery Scheme for the Set of α-Demands

We now present the delivery method for the following class of demands.

Definition 2.3 (α-Demands

). Considering the (K, α, F ) FDS structure with F ≥ α, the demand defined by the vectors d = (D 1 , . . . , D K ) and f = (f 1 , . . . , f K ) is an α-demand if and only if there exists at least one set of users

K ⊆ [K] such that |K| = α, f k 1 ̸ = f k 2 for any k 1 ̸ = k 2 with k 1 , k 2 ∈ K and D k = K for all k ∈ K.
Such demands can exist only if F ≥ α. Indeed, if we have at least α files per class, then we can have distinct demands where there exists at least one set of α users requesting distinct files, all belonging to the same file class.

Let R α,c denote the worst-case load when only α-demands are considered, and when the cache placement in Section 2.5.1 is adopted. We are now ready to provide the exact characterization of optimal such load R ⋆ α,c . Proposition 2.1 (The Exact Memory-Load Trade-Off for α-Demands Under the Presented Symmetric Placement). Assuming the selfish and uncoded cache placement presented in Section 2.5.1, the optimal worst-case communication load R ⋆ α,c for the (K, α, F ) FDS structure and α-Demands is a piecewise linear curve with corner points

(M, R ⋆ α,c ) = ⎛ ⎝ t N K , (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ ⎞ ⎠ , ∀t ∈ [0 : α] (2.84) again corresponding to R ⋆ α,c = K(1 -γ α ) Kγ + 1 [︃ (K -α)γ + 1 ]︃ . (2.85)
Proof. The proof of the converse is reported in Appendix A.5, whereas the proof of the achievability is reported below in Section 2.5.3.

Achievability Proof of Proposition 2.1

By definition, any α-demand has at least one set of α users requesting distinct files from the same file class. If we denote by K one of such sets, it holds that

D k = K for all k ∈ K and f k 1 ̸ = f k 2 for all k 1 ̸ = k 2 with k 1 , k 2 ∈ K. Consider user k ∈ K.
According to the cache placement procedure in Section 2.5.1, this user does not have in its cache any subfile W f k ,K,T where T ⊆ K, |T | = t and k / ∈ T . If we focus on this set K of α users only, we can automatically construct the following sequence of multicast messages

X K = ⎛ ⎝ ⨁︂ k∈S W f k ,K,S\{k} : S ⊆ K, |S| = t + 1 ⎞ ⎠ .
(2.86)

For the remaining (K -α) users in [K] \ K, we consider the following sequence

X [K]\K = (W f k ,D k ,T : k ∈ ([K] \ K), k / ∈ T ) (2.87)
of uncoded transmissions. Then, the transmitter delivers the concatenated

X = (X K , X [K]\K ), inducing a load |X| B = |X K | + |X [K]\K | B = (︂ α t+1 )︂ + (K -α) (︂ α-1 t )︂ (︂ α t )︂ (2.88) which implies that R ⋆ α,c (t) ≤ ( α t+1 )+(K-α)( α-1 t ) ( α t ) for all t ∈ [0 : α].
Remark 2.6. As a testament to the additional usefulness of the converse developed here, we point out that the above achievable scheme is developed as a direct outcome of a meticulous inspection of the expression of the bound itself.

Example of the Achievable Scheme

Consider the (K, α, F ) = (5, 3, 3) FDS structure. We have C =

(︂ K α )︂ = (︂ 5 3 
)︂ = 10 classes of files with a total of N = F C = 30 files. The FDS structure is given by

F 1 = {W 123 , W 124 , W 125 , W 134 , W 135 , W 145 } (2.89) F 2 = {W 123 , W 124 , W 125 , W 234 , W 235 , W 245 } (2.90) F 3 = {W 123 , W 134 , W 135 , W 234 , W 235 , W 345 } (2.91) F 4 = {W 124 , W 134 , W 145 , W 234 , W 245 , W 345 } (2.92) F 5 = {W 125 , W 135 , W 145 , W 235 , W 245 , W 345 } (2.93)
where W S = {W 1,S , W 2,S , W 3,S } for each triplet S ⊆ [START_REF] Shariatpanahi | Multi-server coded caching[END_REF]. Let us consider the scenario of t = 2. In this case, each file is split as 

W f,123 = {W f,
W f,235 = {W f,235,23 , W f,235,25 , W f,235,35 } (2.101) W f,245 = {W f,245,24 , W f,245,25 , W f,245,45 } (2.102) W f,345 = {W f,345,34 , W f,345,35 , W f,345,45 } (2.103) for all f ∈ [3].
Consider the demand defined by the vectors f = (1, 2, 3, 1, 1) and d = (123, 123, 123, 124, 125). This is an α-demand because there exists a set K of α users all requesting distinct files belonging to the same file class K. Here, this set is K = {1, 2, 3}.

In accordance to the described selfish and uncoded cache placement, each user desires a total of

(︂ α-1 t )︂
subfiles which are not in its cache. In this case, each user simply desires

(︂ 2 2 
)︂ = 1 subfile. The delivery of these subfiles involves the following MAN bitwise XOR

X 123 = ⎛ ⎝ ⨁︂ k∈S W f k ,K,S\{k} : S ⊆ K, |S| = t + 1 ⎞ ⎠ (2.104) = (W 1,123,23 ⊕ W 2,123,13 ⊕ W 3,123,12 ) (2.105)
and then the following two uncoded transmissions

X 45 = (W 1,124,12 , W 1,125,12 ) (2.106)
that serve the users outside K. Given that the subpacketization is

(︂ α t )︂ = (︂ 3 2 
)︂ = 3, the transmitted signal X = (X 123 , X 45 ) induces a communication load of R α,c (2) = |X|/B = 1, which matches the corresponding optimal R ⋆ α,c (2) from Proposition 2.1.

Additional Optimal Schemes for Circular Demands

We here present schemes that optimally deliver circular demands. We will do so for the (5, 4, F ) FDS structure with t ∈ {2, 3}, and for the (6, 5, F ) FDS structure with t = 3. The optimal schemes assume the selfish and uncoded cache placement described in Section 2.5.1. We prove optimality simply by showing that the load provided by the proposed achievable schemes matches the converse bound in Theorem 2.1. This suffices because, as we might recall, the construction of the converse employed only circular demands 20 .

Circular Demands and the (5, 4, F ) FDS Structure

The scheme presented here is a generalization, for any circular demand, of the example in Section 2.2.2. For the considered (K, α, F ) = (5, 4, F ) structure, we know that there are C =

(︂ K α )︂ = 5 file classes W 1234 , W 1235 , W 1245 , W 1345 , W 2345 , corresponding to N = F C = 5F files. The 5 FDSs take the form F 1 = {W 1234 , W 1235 , W 1245 , W 1345 } (2.107) F 2 = {W 1234 , W 1235 , W 1245 , W 2345 } (2.108) F 3 = {W 1234 , W 1235 , W 1345 , W 2345 } (2.109) F 4 = {W 1234 , W 1245 , W 1345 , W 2345 } (2.110) F 5 = {W 1235 , W 1245 , W 1345 , W 2345 } (2.111)
where we recall that W S = {W f,S : f ∈ [F ]}. The scheme works for any value of F ∈ N + , and for any circular demand, recalling that each circular demand is identified by a permutation vector u ˆ= (u ˆ1, u ˆ2, u ˆ3, u ˆ4, u ˆ5) ∈ H 5 . The FDS request graph of such generic circular demand is shown in Figure 2.6. Notice that, as expected, this is not a complete graph. Before presenting the schemes, we wish to point out the key novelty and the general idea. As already mentioned in the example in Section 2.2.2, the crucial aspect consists of designing multicast messages that not only deliver messages themselves, but where also their linear combinations can be used by the users to correctly decode requested subfiles. Hence, the idea here is to find an efficient way to align interference, such that users can cache-out interference terms by simply XORing some of the received messages. The pivotal aspect of this approach is the ability of choosing the users that will have to take [START_REF] Tang | Coded caching schemes with reduced subpacketization from linear block codes[END_REF] We wish to point out that the fact that the converse is matched when considering some instances of circular demands does not necessarily imply that the converse is exactly matched in general nor that circular demands are worst-case demands. 

W f u ˆ1 ,D u ˆ1 W f u ˆ5 ,D u ˆ5 W f u ˆ4 ,D u ˆ4 W f u ˆ3 ,D u ˆ3 W f u ˆ2 ,D u ˆ2 u ˆ1 u ˆ2 u ˆ3 u ˆ4 u ˆ5
(u ˆ1, u ˆ2, u ˆ3, u ˆ4, u ˆ5) ∈ H 5 and the (K, α, F ) = (5, 4, F ) FDS structure.
linear combinations of messages to cancel interference and correctly decode the requested subfiles.

The case of t = 2

According to the cache placement in Section 2.5.1, each file is split into

(︂ α t )︂ = (︂ 4 2 
)︂ = 6 non-overlapping subfiles as 

W i,1234 = {W i,
Z k = {W f,S,T : f ∈ [F ], S ⊆ [5], |S| = 4, T ⊆ S, |T | = 2, k ∈ T } (2.117)
it can be easily seen that each user desires a total of

(︂ α-1 t )︂ = (︂ 3 2 
)︂ = 3 subfiles, each of size B/6 bits. Recalling that each circular demand is defined by a permutation vector u ˆ= (u ˆ1, u ˆ2, u ˆ3, u ˆ4, u ˆ5) ∈ H 5 , we conclude that the subfiles desired by each user are the following.

• User u ˆ1. The subfiles which are desired are given by

W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3} , W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ4} and W f u ˆ1 ,D u ˆ1 ,{u ˆ3,u ˆ4} .
• User u ˆ2. The subfiles which are desired are given by

W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4} , W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ5} and W f u ˆ2 ,D u ˆ2 ,{u ˆ4,u ˆ5} .
• User u ˆ3. The subfiles which are desired are given by

W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4} , W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ5} and W f u ˆ3 ,D u ˆ3 ,{u ˆ4,u ˆ5} .
• User u ˆ4. The subfiles which are desired are given by

W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2} , W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ5} and W f u ˆ4 ,D u ˆ4 ,{u ˆ2,u ˆ5} .
• User u ˆ5. The subfiles which are desired are given by

W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2} , W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ3} and W f u ˆ5 ,D u ˆ5 ,{u ˆ2,u ˆ3} .
These subfiles are delivered by the following sequence of XORs

X 1 = W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3} ⊕ W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ5} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4} (2.118) X 2 = W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4} ⊕ W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ4} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2}
(2.119)

X 3 = W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ3} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ5}
(2.120)

X 4 = W f u ˆ1 ,D u ˆ1 ,{u ˆ3,u ˆ4} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ5}
(2.121)

X 5 = W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ2,u ˆ5} (2.122) X 6 = W f u ˆ2 ,D u ˆ2 ,{u ˆ4,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2} (2.123) X 7 = W f u ˆ3 ,D u ˆ3 ,{u ˆ4,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ2,u ˆ3} (2.124)
after which each user k ∈ [START_REF] Shariatpanahi | Multi-server coded caching[END_REF] can employ its own cache content Z k to decode as follows.

• User u ˆ1 recovers its desired subfiles from X 1 ⊕ X 3 , X 2 and X 4 .

• User u ˆ2 recovers its desired subfiles from X 1 ⊕ X 2 , X 5 and X 6 .

• User u ˆ3 recovers its desired subfiles from X 1 , X 3 and X 7 .

• User u ˆ4 recovers its desired subfiles from X 2 , X 4 and X 5 .

• User u ˆ5 recovers its desired subfiles from X 3 , X 6 and X 7 .

Given that |X i | = B/6 for each i ∈ [START_REF] Cao | Degrees of freedom of cache-aided wireless cellular networks[END_REF], and given that there are 7 transmissions, we have a load of R(2) = |X|/B = 7/6. Since then R LB (2) = 7/6, we can conclude that the converse is tight.

The case of t = 3

In this case each file is split into

(︂ 4 3 
)︂

= 4 non-overlapping subfiles as 

W f,1234 = {W f,
(︂ 3 3 
)︂

= 1 subfile of size B/4. More precisely, always considering the general circular demands identified by the vector u ˆ∈ H 5 , the desired subfiles are given as follows.

• User u ˆ1 desires W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} . • User u ˆ2 desires W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ5} . • User u ˆ3 desires W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ5} . • User u ˆ4 desires W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ5} . • User u ˆ5 desires W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ3} .
After transmitting the following two XORs

X 1 = W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} ⊕ W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ5} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ5}
(2.130)

X 2 = W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ3} (2.131)
each user can decode as follows.

• User u ˆ1 and user u ˆ3 recover their desired subfiles from X 2 .

• User u ˆ2 and user u ˆ4 recover their desired subfiles from X 1 .

• User u ˆ5 recovers its desired subfile from X 1 ⊕ X 2 .

Recalling that

|X 1 | = |X 2 | = B/4, the 2 transmissions correspond to a communication load R(3) = |X|/B = 1/2 which matches the converse R LB (3) = 1/2
. This means that the scheme is optimal among all the cachingand-delivery schemes that deliver circular demands. where

W S = {W f,S : f ∈ [F ]}.
As in the previous case, we here provide a scheme for any F ∈ N + and any circular demand. Each such circular demand is identified by a vector u ˆ= (u ˆ1, u ˆ2, u ˆ3, u ˆ4, u ˆ5, u ˆ6) ∈ H 6 , and it induces the FDS request graph in Figure 2.7. The optimal scheme is provided for the case t = 3. According to the cache placement in Section 2.5.1, each file is split into

W f u ˆ1 ,D u ˆ1 W f u ˆ6 ,D u ˆ6 W f u ˆ5 ,D u ˆ5W f u ˆ4 ,D u ˆ4 W f u ˆ3 ,D u ˆ3W f u ˆ2 ,D u ˆ2 u ˆ1 u ˆ2 u ˆ3 u ˆ4 u ˆ5 u ˆ6
(︂ α t )︂ = (︂ 5 3 
)︂ = 10 non-overlapping subfiles as 

W f,S = {W f,S,T : T ⊆ S, |T | = 3} (2.
(︂ α-1 t )︂ = (︂ 4 3 
)︂

= 4 subfiles given by the following.

• The subfiles

W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} , W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ5} , W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ4,u ˆ5} and W f u ˆ1 ,D u ˆ1 ,{u ˆ3,u ˆ4,u ˆ5} are desired by user u ˆ1. • The subfiles W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ5} , W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ6} , W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ5,u ˆ6} and W f u ˆ2 ,D u ˆ2 ,{u ˆ4,u ˆ5,u ˆ6} are desired by user u ˆ2 • The subfiles W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ5} , W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ6} , W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ5,u ˆ6} and W f u ˆ3 ,D u ˆ3 ,{u ˆ4,u ˆ5,u ˆ6} are desired by user u ˆ3. • The subfiles W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ5} , W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ6} , W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ5,u ˆ6} and W f u ˆ4 ,D u ˆ4 ,{u ˆ2,u ˆ5,u ˆ6} are desired by user u ˆ4. • The subfiles W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ3} , W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ6} , W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ3,u ˆ6} and W f u ˆ5 ,D u ˆ5 ,{u ˆ2,u ˆ3,u ˆ6} are desired by user u ˆ5. • The subfiles W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ2,u ˆ3} , W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ2,u ˆ4} , W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ3,u ˆ4} and W f u ˆ6 ,D u ˆ6
,{u ˆ2,u ˆ3,u ˆ4} are desired by user u ˆ6.

If we consider the following linear combinations of subfiles

X 1 = W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} ⊕ W f u ˆ2 ,D u ˆ2 ,{u ˆ4,u ˆ5,u ˆ6} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ2,u ˆ5,u ˆ6} (2.139) X 2 = W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ5,u ˆ6} ⊕ W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ3} (2.140) X 3 = W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ3,u ˆ4} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ5,u ˆ6} ⊕ W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ3,u ˆ4} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ6} (2.141) X 4 = W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ5} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ5,u ˆ6} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ3,u ˆ6} (2.142) X 5 = W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ6} ⊕ W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ6} ⊕ W f u ˆ6 ,D u ˆ6 ,{u ˆ2,u ˆ3,u ˆ4} (2.143) X 6 = W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ4,u ˆ5} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ1,u ˆ2,u ˆ6} ⊕ W f u ˆ1 ,D u ˆ1 ,{u ˆ2,u ˆ4,u ˆ5} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ5}
(2.144)

X 7 = W f u ˆ3 ,D u ˆ3 ,{u ˆ4,u ˆ5,u ˆ6} ⊕ W f u ˆ4 ,D u ˆ4 ,{u ˆ1,u ˆ2,u ˆ6} ⊕ W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ2,u ˆ4} (2.145) X 8 = W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ2,u ˆ3} ⊕ W f u ˆ3 ,D u ˆ3 ,{u ˆ1,u ˆ4,u ˆ5} ⊕ W f u ˆ1 ,D u ˆ1 ,{u ˆ3,u ˆ4,u ˆ5} (2.146) X 9 = W f u ˆ3 ,D u ˆ3 ,{u ˆ4,u ˆ5,u ˆ6} ⊕ W f u ˆ6 ,D u ˆ6 ,{u ˆ1,u ˆ2,u ˆ3} ⊕ W f u ˆ2 ,D u ˆ2 ,{u ˆ3,u ˆ5,u ˆ6} ⊕ W f u ˆ5 ,D u ˆ5 ,{u ˆ2,u ˆ3,u ˆ6} (2.147)
and we denote by X = (X i : i ∈ [START_REF] Shariatpanahi | On multi-server coded caching in the low memory regime[END_REF]) the concatenated message sent by the central server, then each user can correctly decode its desired subfiles as follows.

• User u ˆ1 recovers its desired subfiles from X 2 , X 3 , X 4 ⊕ X 6 and X 8 .

• User u ˆ2 recovers its desired subfiles from X 1 , X 5 , X 6 and X 7 ⊕ X 9 .

• User u ˆ3 recovers its desired subfiles from X 2 ⊕ X 3 , X 4 , X 8 and X 9 .

• User u ˆ4 recovers its desired subfiles from X 1 , X 3 , X 5 ⊕ X 6 and X 7 .

• User u ˆ5 recovers its desired subfiles from X 2 , X 4 , X 6 and X 8 ⊕ X 9 .

• User u ˆ6 recovers its desired subfiles from X 1 ⊕ X 3 , X 5 , X 7 and X 9 .

The delivery procedure is slightly more involved with respect to the previous FDS structure, but is based as before on the idea of carefully aligning interference. Indeed, the messages X i are carefully designed in such a way that also their linear combinations can be useful to some users. An equivalent interpretation of this fact is related to the previously mentioned creation of cliques. Consider for example the XOR X 3 . User 1 and user 4 can directly cache-out interference to correctly decode their desired subfiles, while user 3 and user 6 miss in their cache -due to the selfish cache placement -some interfering messages appearing in the XOR X 3 . Such interfering (and consequently undesired) messages are "delivered" to 21 both user 3 and user 6 by means of XORs X 2 and X 1 , so allowing them to decode the desired subfiles from X 3 . We can see here that with X 3 we are able serve the clique composed by user 1, user 4, user 3 and user 6, by carefully "passing" some undesired (and not cached) information to the last two users. A similar reasoning applies to the XORs X 6 and X 9 , both of which are useful to 4 users simultaneously.

The communication load is equal to R(3) = |X|/B = 9/10 and it matches the converse R LB (3) = 9/10. Hence, the converse here is tight.
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We recall that we use "deliver" in quotes when referring to undesired subfiles because users do not actually decode undesired subfiles, but rather they take linear combinations of the multicast messages to cancel out interference terms.

Chapter 3 Coded Caching With Tactical User Profiles

In this chapter, we first propose an extremely broad system model for the user profiles, where such model follows the combinatorial structure of the so-called tactical configurations, a symmetric and balanced block design in combinatorial mathematics. Then, we characterize the fundamental limits of coded caching under uncoded prefetching for the proposed broad structure of user interests. The interesting outcome of the results presented in this chapter is that, despite the diverging interests of the users, the MAN coded scheme is still order optimal within a constant factor of 4. This result is significant not only because it holds for a really generic structure of user profiles -indeed, the proposed tactical configurations include some other well-known structures -but also because it shows, further again, the power of the combinatorial MAN coded caching scheme under a well-defined system model for the user profiles.

System Model

W e consider the centralized caching scenario, where a central server is connected to K users through an error-free broadcast channel and each user is equipped with a cache of size M B bits. Further, the server has access to a main catalogue of N files of B bits each.

Description of the System Model

We proceed now with the description of the structure for the user interests that will be studied in this chapter. First, we assume that N ≥ K. Further, we assume that the N files in the system are split in G groups containing N/G files each, where we naturally assume that G | N . This implies that the library can be partitioned as

{W 1 , . . . , W N } = {W K 1 , . . . , W K G } (3.1)
where K g ⊆ [K] is the subset of users which are interested in the set of files given by W Kg for some g ∈ [G]. Then, we assume that each user is interested into G ′ distinct groups of files, whereas each file is of interest to exactly K ′ users, namely, we assume that |{g

: g ∈ [G], k ∈ K g }| = G ′ for each k ∈ [K] and that |K g | = K ′ for each g ∈ [G]
. This implies that the equation GK ′ = KG ′ holds, where it is assumed that G, G ′ , K ′ , K ∈ N + . Further, the above implies that the FDS F k of user k ∈ [K] is given by

F k = {W Kg : g ∈ [G], k ∈ K g }. (3.2)
Notice that, since each user is interested into G ′ distinct groups of N/G files and each file is of interest to exactly K ′ users, also the equation KN ′ = N K ′ holds where N ′ = G ′ N/G. Hence, we have

K ′ K = N ′ N = G ′ G . ( 3.3) 
Remark 3.1. The aforementioned structure for the interests of the users corresponds to a configuration in geometry or to a t-design with t = 1 in combinatorial mathematics 1 . Hence, we will refer in the following to such FDS structure as tactical configuration with parameters (K, G, G ′ , N ), where K ′ = KG ′ /G. More in general, we will refer to such problem as coded caching with tactical user profiles with parameters (K, G, G ′ , N ). Finally, we trivially have

G ′ ∈ [G] and K ′ ∈ [K].
In the following, we provide two clarifying examples that can help familiarize the reader with the system model introduced above. Interestingly, the examples will show how some other well-studied combinatorial structures can be seen as tactical configurations.

Example 3.1. Consider the symmetric (K, α, F ) FDS structure that we analyzed in Chapter 2. For such structure, the library consists of a total of C =

(︂ K α )︂ classes of files and N = F C = F (︂ K α )︂
files in total. Each file is of interest to α users and each user is interested into

F (︂ K-1 α-1 )︂
files. This structure can be seen as a tactical configuration with parameters

(︂ K, G = (︂ K α )︂ , G ′ = (︂ K-1 α-1 )︂ , N = F (︂ K α )︂)︂
, where

K ′ = K (︂ K-1 α-1 )︂ / (︂ K α )︂ = α.
Example 3.2. Consider the setting where we have K users and G = K groups of files. Then, assume that the library of N files is partitioned as

{W 1 , . . . , W N } = {W K 1 , . . . , W K K } (3.4)
where

K g = [g : g+K ′ -1] K for each g ∈ [K] and for some K ′ ∈ [K-1]
. We can see that there are G = K groups of files, each file is of interest to K ′ users and each user is interested into G ′ = K ′ groups of files. This structure corresponds to a tactical configuration with parameters (K, G = K, G ′ = K ′ , N ), where

K ′ = KG ′ /G = G ′ .
Remark 3.2. We wish to point out that the aforementioned system model based on tactical configurations is rather broad. Indeed, it encompasses both the symmetric FDS structure already analyzed in Chapter 2, as well as other structures commonly employed in the literature, as the cyclic structure in Example 3.2. Deviating from standard notation practices, we will use in this chapter

W d k to denote the file requested by user k ∈ [K]. Clearly, any user k ∈ [K] will request a file W d k as long as W d k ∈ F k .
In addition, we denote by D the set of demand vectors with distinct requested files, i.e., W

d k 1 ̸ = W d k 2 for each k 1 , k 2 ∈ [K] with k 1 ̸ = k 2 .
Denoting by X the set of caching schemes with uncoded placement, the server transmits during the delivery phase a message X of R(d, χ, M )B bits for a given demand d ∈ D, a given uncoded cache placement χ ∈ X and some given memory M . Our goal is to characterize the optimal worst-case communication load under uncoded cache placement, namely, we aim to characterize the quantity given by

R ⋆ u (M ) = min χ∈X max d∈D R(d, χ, M ). (3.5)
In the following, the dependency on M will be often implied for the sake of simplicity.

A Genie-Aided Converse Bound

We will provide our converse bound on the optimal worst-case load under uncoded prefetching using the genie-aided approach in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF]. Consider a demand vector d ∈ D and let u = (u 1 , . . . , u K ) ∈ S K be a permutation of the set [K]. Denoting by Z k the cache content of user k ∈ [K], we can construct a genie-aided user with the following cache content

Z ′ = ⎛ ⎝ Z u k \ ⎛ ⎝ ⋃︂ i∈[k-1] Z u i ∪ W du i ⎞ ⎠ : k ∈ [K] ⎞ ⎠ (3.6)
which is enough for such genie-aided user to inductively decode all the requested files from (X, Z ′ ). Consequently, the following

R(d, χ)B ≥ H(X) (3.7) ≥ H(X | Z ′ ) (3.8) ≥ I (︃ {︂ W du k }︂ k∈[K] ; X | Z ′ )︃ (3.9) = H (︃ {︂ W du k }︂ k∈[K] | Z ′ )︃ (3.10) = ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓W du k ,T ⃓ ⃓ ⃓ (3.11)
holds, which means that we have the following lower bound

R(d, χ) ≥ ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓W du k ,T ⃓ ⃓ ⃓ B (3.12)
on the communication load for a given2 d ∈ D and χ ∈ X . Since it will be of use later, we define the following

R LB (d, u, χ) := ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓W du k ,T ⃓ ⃓ ⃓ B . (3.13)
For the sake of completeness, notice that the bound in (3.12) can be equivalently obtained following the index coding approach in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], already largely employed in Chapter 2.

Main Results

In this section, we present the main results obtained for coded caching with tactical user profiles. The first result is an achievable bound, which is described in the following theorem. Theorem 3.1 (Achievable Bound). Consider the coded caching problem with tactical user profiles with parameters (K, G, G ′ , N ). Then, the optimal worstcase load R ⋆ u is upper bounded by the lower convex envelope of the following memory-load corner points

(M, R UB ) = (︃ t N K , g(t) )︃ , ∀t ∈ [0 : K ′ ] (3.14)
where g(t) is defined as

g(t) := ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (︂ K t+1 )︂ (︂ K t )︂ , if t ∈ [0 : t ¯] (︂ K t ¯+1 )︂ (︂ K t ¯)︂ K ′ -t K ′ -t ¯, if t ∈ [t ¯+ 1 : K ′ ] (3.15)
and t ¯:= ⌊K ′ /2⌋.

Proof. When t ≤ t ¯, the achievable load is obtained by simply applying the MAN placement-and-delivery scheme. Instead, when t > t ¯, the achievable load is obtained by means of memory sharing between the point (t ¯, g(t ¯)) and the point (K ′ N/K, 0). Indeed, when t = K ′ , we have that

M = K ′ N/K = G ′ N/G recalling that GK ′ = KG ′ .
Hence, further recalling that each user is interested into G ′ groups of files containing N/G files each, the memory-load point (G ′ N/G, 0) is trivially achievable, as each user has enough memory to store the entirety of their FDS. The proof is concluded.

The second result is a lower bound on the optimal worst-case load under uncoded prefetching. The result is presented in the following theorem, whose proof is presented in Section 3.3.1.

Theorem 3.2 (Converse Bound). Consider the coded caching problem with tactical user profiles with parameters (K, G, G ′ , N ). Then, the optimal worstcase load R ⋆

u is lower bounded by the lower convex envelope of the following memory-load corner points

(M, R LB ) = ⎛ ⎝ t N K , G G ′ (︂ K ′ t+1 )︂ (︂ K ′ t )︂ ⎞ ⎠ , ∀t ∈ [0 : K ′ ]. (3.16)
If compare the results in Theorem 3.1 and in Theorem 3.2, we obtain the order optimality result in the following theorem, whose proof is presented in Section 3.3.2.

Theorem 3.3 (Order Optimality

). The achievable worst-case load in Theorem 3.1 is order optimal within a constant multiplicative factor of 4 under uncoded prefetching.

Finally, we can provide the following corollary for the case G ′ = 1, which implies each user to be interested in only one groups of files. Corollary 3.3.1. When G ′ = 1, a disjoint MAN placement-and-delivery scheme is exactly optimal under uncoded prefetching.

Proof. Recalling that the library can be partitioned as

{W 1 , . . . , W N } = {W K 1 , . . . , W K G } (3.17) the condition G ′ = 1 implies that K g 1 ∩ K g 2 = ∅ for each g 1 , g 2 ∈ [G] with g 1 ̸ = g 2 .
Hence, we can treat each group of N ′ files and the associated K ′ users as an independent coded caching problem, for a total of G disjoint MAN caching problems with memory M = tN ′ /K ′ = tN/K. As a consequence, we can guarantee an achievable load R UB given by the lower convex envelope of the memory-load points

(M, R UB ) = ⎛ ⎝ t N K , G (︂ K ′ t+1 )︂ (︂ K ′ t )︂ ⎞ ⎠ , ∀t ∈ [0 : K ′ ] (3.18)
which coincides with the result in Theorem 3.2 when G ′ = 1. The proof is concluded.

Collection of Proofs

Proof of Theorem 3.2

We recall that our goal is to lower bound the quantity

R ⋆ u = min χ∈X max d∈D R(d, χ). (3.19)
where again the dependency on M is implied to simplify the notation. We will use the following lemma to proceed.

Lemma 3.1. Consider the coded caching problem with tactical user profiles with parameters (K, G, G ′ , N

). There exists a subset of

N ′ demands D N ′ ⊂ D such that each user k ∈ [K] requests each file W n ∈ F k in their FDS exactly once within the set D N ′ .
Proof. The problem of coded caching with tactical user profiles can be represented as a bipartite graph G = (U, V, E), where U = [K] is the set of users, V = [N ] is the set of file indices, and

E = {(k, n) : k ∈ [K], n ∈ [N ], W n ∈ F k }
is the set of edges. As we are considering a tactical configuration for the user profiles, we have that the degree of each vertex k ∈ [K] is equal to N ′ , whereas the degree of each vertex n ∈ [N ] is equal to K ′ . Since we know that N/N ′ = K/K ′ and we further assumed that N ≥ K, we know that the largest vertex degree is equal to N ′ ≥ K ′ . Now, we want to prove that there exists a subset D N ′ ⊂ D of N ′ demands such that any user k ∈ [K] requests each file in F k exactly once. This is equivalent to prove that the chromatic index of the bipartite graph G = (U, V, E) is equal to N ′ , namely, we wish to prove that there exists a proper edge coloring with N ′ colors C = {c 1 , . . . , c N ′ }. Indeed, if such edge coloring exists, then for each color c ∈ C we can construct the demand vector

d c = (d c 1 , . . . , d c K ), where for each k ∈ [K] we have d c k ∈ [N ] such that the edge (k, d c k ) ∈ E is colored by c.
Notice that, since we are considering an edge coloring with N ′ colors, then for each k ∈

[K] we have d c 1 k ̸ = d c 2 k for any c 1 , c 2 ∈ C with c 1 ̸ = c 2 ; also, for each c ∈ C we have d c k 1 ̸ = d c k 2 for any k 1 , k 2 ∈ [K] with k 1 ̸ = k 2 .
Hence, if we collect all such vectors in D N ′ = {d c : c ∈ C}, such construction guarantees that for each user k ∈ [K] we have exactly one demand in D N ′ for which user k requests any one specific file in F k .

Thanks to König's theorem [64, Theorem 5.18], we know that the chromatic index of any bipartite graph is equal to its largest vertex degree, and since the largest vertex degree is equal to N ′ in our case, then there exists a proper edge coloring of G with N ′ colors. Hence, we can construct a proper subset D N ′ ⊂ D of N ′ demands -as we described above -such that any user k ∈ [K] requests each file in F k exactly once. This concludes the proof. By means of Lemma 3.1, we proceed to lower bound the optimal worst-case load as follows

R ⋆ u = min χ∈X max d∈D R(d, χ) (3.20) ≥ min χ∈X max d∈D N ′ R(d, χ) (3.21) ≥ min χ∈X 1 |D N ′ | ∑︂ d∈D N ′ R(d, χ) (3.22) = min χ∈X 1 N ′ ∑︂ d∈D N ′ R(d, χ) (3.23)
where (3.21) holds because D N ′ ⊂ D and (3.22) follows from the fact that the maximum can be lower bounded by the average.

The Combinatorial Counting Argument

Now, as we observed in Section 3.1.2, the communication load can be lower bounded, for a given demand d and a given caching scheme χ, as in (3.12). Hence, if we construct the inequality in (3.12) for each demand d ∈ D N ′ and for each permutation of users u ∈ S K , and then we sum together all such inequalities, we obtain

K! ∑︂ d∈D N ′ R(d, χ) ≥ ∑︂ (d,u)∈(D N ′ ,S K ) R LB (d, u, χ) (3.24)
which can be further rewritten as 1

N ′ ∑︂ d∈D N ′ R(d, χ) ≥ 1 K!N ′ ∑︂ (d,u)∈(D N ′ ,S K ) R LB (d, u, χ). (3.25)
Now, towards simplifying the expression in (3.25), we proceed by counting how many times each subfile W n,T -for any given n ∈ [N ] and T ⊆ [K]appears in the RHS of (3.25). First, we focus on the subfile W n,T i for a given n ∈ [N ] and

T i ⊆ [K] with |T i | = t ′ for some t ′ ∈ [0 : K],
where i denotes the number of users having W n in their FDS and appearing in the set

T i , namely, i = |{k : k ∈ T i , W n ∈ F k }|.
Then, recalling that each file is of interest to K ′ users in our coded caching problem with tactical user profiles, we let k be one of the (K ′ -i) users that do not appear in T i . From Lemma 3.1, we know that there exists exactly one demand in D N ′ for which user k requests the file W n . In addition, for such demand all permutations u ∈ S K are considered. Nevertheless, we can notice from the construction of (3.12) that the subfile W n,T i appears in the RHS of (3.25) only when k is located before the elements from T i in the permutation vector u. Since there is a total of (K -

1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂ such vectors, the subfile W n,T i appears (K -1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂
times in the RHS of (3.25) when we consider the demand for which the file W n is requested by such user k. The same reasoning holds for any of the (K ′ -i) users not appearing in T i , so the subfile

W n,T i appears (K ′ -i)(K -1 -t ′ )!t ′ ! (︂ K t ′ +1
)︂ in the RHS of (3.25). In addition, since this reasoning holds for each n ∈ [N ] and

T i ⊆ [K] where i ∈ [max(0, |T i | -K + K ′ ), min(|T i |, K ′ )], we can rewrite the RHS of (3.25) as N K!N ′ ∑︂ t ′ ∈[0:K] min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) (K ′ -i)(K -1 -t ′ )!t ′ ! (︄ K t ′ + 1 )︄ x t ′ ,i (3.26) = G G ′ ∑︂ t ′ ∈[0:K] min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) K ′ -i t ′ + 1 x t ′ ,i (3.27) where x t ′ ,i is defined as 0 ≤ x t ′ ,i := ∑︂ n∈[N ] ∑︂ T i ⊆[K]:|T i |=t ′ , |{k:k∈T i ,Wn∈F k }|=i |W n,T i | BN . (3.28)
We can further lower bound the RHS of (3.25) as follows

G G ′ ∑︂ t ′ ∈[0:K] min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) K ′ -i t ′ + 1 x t ′ ,i (3.29) ≥ G G ′ ∑︂ t ′ ∈[0:K] min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) K ′ -min(t ′ , K ′ ) t ′ + 1 x t ′ ,i (3.30) = G G ′ ∑︂ t ′ ∈[0:K] K ′ -min(t ′ , K ′ ) t ′ + 1 min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) x t ′ ,i (3.31) = G G ′ ∑︂ t ′ ∈[0:K] (︂ K ′ t ′ +1 )︂ (︂ K ′ t ′ )︂ x t ′ (3.32)
where

x t ′ is defined as 0 ≤ x t ′ := min(t ′ ,K ′ ) ∑︂ i=max(0,t ′ -K+K ′ ) x t ′ ,i . (3.33)

Towards the Final Lower Bound

After the passages above, we can further lower bound the optimal worst-case load as

R ⋆ u ≥ min χ∈X 1 N ′ ∑︂ d∈D N ′ R(d, χ) (3.34) ≥ min χ∈X ∑︂ t ′ ∈[0:K] f (t ′ )x t ′ (3.35)
where f (t ′ ) is defined as

f (t ′ ) := G G ′ (︂ K ′ t ′ +1 )︂ (︂ K ′ t ′ )︂ . (3.36)
Moreover, for any uncoded cache placement χ ∈ X , the following

∑︂ t ′ ∈[0:K] x t ′ = 1 (3.37) ∑︂ t ′ ∈[0:K] t ′ x t ′ ≤ KM N (3.38)
holds. This means that we can consider x = (x 0 , . . . , x K ) as a probability mass function with constraint in (3.38) on the first moment, where such constraint simply represents the maximum memory that is available across the caches of all users. In light of the above, we can write

R ⋆ u ≥ min χ∈X ∑︂ t ′ ∈[0:K] f (t ′ )x t ′ (3.39) = min x E x [f (t ′ )] (3.40) ≥ min x f (E x [t ′ ]) (3.41) ≥ min x f (KM/N ) (3.42) = f (t) (3. 43 
)
where t = KM/N . Notice that, since f (t ′ ) is convex and decreasing in t ′ , we have (3.41) and (3.42) from Jensen's inequality and the constraint on the first moment, respectively. Now, when t is an integer, the bound is simply the function f (t) evaluated 3 at t ∈ [0 : K ′ ]. For non-integer values of t, we can follow again the reasoning in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], [START_REF] Parrinello | Fundamental limits of coded caching with multiple antennas, shared caches and uncoded prefetching[END_REF], [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] to take the lower convex envelope of the sequence of points {(t, f (t)) : t ∈ [0 : K ′ ]}. To conclude, the optimal worst-case load R ⋆ u is lower bounded by the lower convex envelope of the following memory-load corner points

(M, R LB ) = ⎛ ⎝ t N K , G G ′ (︂ K ′ t+1 )︂ (︂ K ′ t )︂ ⎞ ⎠ , ∀t ∈ [0 : K ′ ]. (3.44)
The proof is complete.

Proof of Theorem 3.3

Consider the range t ∈ [0 : t ¯]. Then, from Theorem 3.1 and Theorem 3.2 it holds that

R UB R ⋆ u ≤ R UB R LB (3.45) = (︂ K t+1 )︂ (︂ K t )︂ (︂ K ′ t )︂ (︂ K ′ t+1 )︂ G ′ G (3.46) = K -t K ′ -t G ′ G (3.47) ≤ G ′ G K -t K′ -t ¯(3.48)
where the last inequality holds since the term (K -t)/(K ′ -t) is increasing4 with increasing t. Now, consider the range t ∈ [t ¯+ 1 :

K ′ ]. Then, it holds that R UB R ⋆ u ≤ R UB R LB (3.49) = (︂ K t ¯+1 )︂ (︂ K t ¯)︂ K ′ -t K ′ -t ¯(︂K ′ t )︂ (︂ K ′ t+1 )︂ G ′ G (3.50) = G ′ G (K -t ¯)(1 + t) (1 + t ¯)(K ′ -t ¯) (3.51) = G ′ G (K -t ¯)(1 + K ′ ) (1 + t ¯)(K ′ -t ¯) (3.52)
where the last inequality holds since also the term (1 + t) is increasing with increasing t. Now, considering that

G ′ G K -t K′ -t ¯≤ G ′ G (K -t ¯)(1 + K ′ ) (1 + t ¯)(K ′ -t ¯) (3.53) 
we can conclude that over the entire range t ∈ [0 :

K ′ ] it holds that R UB R ⋆ u ≤ G ′ G (K -t ¯)(1 + K ′ ) (1 + t ¯)(K ′ -t ¯) . (3.54)
If K ′ is even, we have t ¯= K ′ /2, and so we can see that

R UB R ⋆ u ≤ G ′ G (K -t ¯)(1 + K ′ ) (1 + t ¯)(K ′ -t ¯) (3.55) ≤ G ′ K G 1 + K ′ (1 + K ′ /2)K ′ /2 (3.56) = 4 G ′ K G 1 + K ′ (2 + K ′ )K ′ (3.57) ≤ 4 G ′ K GK ′ (3.58) = 4. (3.59) If K ′ is odd, we have t ¯= K ′ /2 -1/2
, and so we can see that

R UB R ⋆ u ≤ G ′ G (K -t ¯)(1 + K ′ ) (1 + t ¯)(K ′ -t ¯) (3.60) ≤ G ′ K G 1 + K ′ (1/2 + K ′ /2)K ′ /2 (3.61) = 4 G ′ K GK ′ (3.62) = 4. (3.63)
We can then conclude that R UB /R ⋆ u ≤ 4 for all t ∈ [0 : K ′ ]. This concludes the proof.

Chapter 4 A Converse for Caching With Heterogeneous Preferences

In this chapter, we consider the coded caching scenario heterogeneous user profiles originally proposed in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], for which the end-receiving users are divided into groups according to their file preferences. Taking advantage of the genie-aided converse bound idea from [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], we develop a novel informationtheoretic converse on the worst-case communication load under uncoded cache placement. Interestingly, the developed converse bound, jointly with one of the coded schemes proposed in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], allows us to characterize the optimal worst-case communication load under uncoded prefetching within a constant multiplicative gap of 2. Although we restrict the caching policy to be uncoded, this result improves the previously known order optimality results for the considered caching problem.

System Model and Related Results

W e always consider the coded caching setting where there is a single server connected to K users through an error-free broadcast channel. The server has access to a central library that contains N files of B bits each and each user in the system is equipped with a cache of size M B bits.

Description of the System Model

According to the system model in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], the K users are split in G groups, where each group consists of K/G users sharing the same interests. Furthermore, the files in the library are divided in two categories, i.e., common files and unique files. 

System Model and Related Results

• There are N c common files {W c n : n ∈ [N c ]}, where each of them is of interest to every user in the system.

• Then, for each group g ∈ [G], there are N u unique files {W u,g n : n ∈ [N u ]}, where each of them is of interest to the users belonging to the group g ∈ [G] only.

Assuming that {W c n : n ∈ [N c ]} ∩ {W u,g n : n ∈ [N u ]} = ∅ for each g ∈ [G], and that {W u,g 1 n : n ∈ [N u ]} ∩ {W u,g 2 n : n ∈ [N u ]} = ∅ for each g 1 , g 2 ∈ [G] with g 1 ̸ = g 2 , we have N = N c + GN u files in total.
Deviating from standard notation practices, we will use in this chapter W (d K ,f K )) be the demand vector and we denote by D the set of all possible demand vectors with distinct requested files, i.e., W

f k 1 ,g(k 1 ) d k 1 ̸ = W f k 2 ,g(k 2 ) d k 2 for each k 1 , k 2 ∈ [K] with k 1 ̸ = k 2 . Finally, we assume N c ≥ K and N u ≥ K/G.
Denoting by X the set of caching schemes with uncoded placement, the server transmits during the delivery phase a message X of R(d, χ, M )B bits for a given demand d ∈ D, a given uncoded cache placement χ ∈ X and some given memory M . Our goal is to characterize the optimal worst-case communication load under uncoded cache placement, namely, we aim to characterize the quantity given by

R ⋆ u (M ) = min χ∈X max d∈D R(d, χ, M ). ( 4.1) 
In the following, the dependency on M will be implied for the sake of simplicity.

An Existing Achievable Scheme

The authors in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] proposed for the aforementioned setting a coded scheme -referred to as Scheme 2 in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] -which treats separately the caching and the delivery of common and unique files.

Placement phase First, the cache of each user is split in two parts for some 0 ≤ β ≤ 1, so that βM is the part of cache that is devoted to store common files and (1 -β)M is the part of cache that is devoted to store unique files. Then, common files {W c n : n ∈ [N c ]} are stored across the K users using the MAN cache placement with memory βM . Similarly, unique files {W u,g n : n ∈ [N u ]} are stored across the K/G users in group g ∈ [G] using the MAN algorithm with memory (1 -β)M .

Delivery phase

It was shown in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] that, when there are α users per group requesting unique files, the optimal worst-case load can be upper bounded as

R ⋆ u ≤ min β max α R(β, α) (4.2)
where R(β, α) is defined as

R(β, α) := (︂ K tc+1 )︂ - (︂ Gα tc+1 )︂ (︂ K tc )︂ + G (︂ K/G tu+1 )︂ - (︂ K/G-α tu+1 )︂ (︂ K/G tu )︂ (4.3) with t c := KβM/N c and t u := K(1 -β)M/GN u .
Since the works in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF] treated the variables K, G, N c , N u and t = KM/N as continuous 1 , we do the same here for the sake of simplicity. Further, we extend the Scheme 2 in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] to the entire memory regime 0 ≤ M ≤ N c + N u , using the Gamma function whenever the binomial coefficients in (4.3) have non-integer arguments.

A Genie-Aided Converse Bound

Similarly to what we did in Chapter 3, we will provide our converse bound on the optimal worst-case load under uncoded prefetching using the genie-aided approach in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF]. Consider a demand vector d ∈ D and let u = (u 1 , . . . , u K ) ∈ S K be a permutation of the set [K]. Denoting by Z k the cache content of user k ∈ [K], we can construct a genie-aided user with the following cache content

Z ′ = ⎛ ⎝ Z u k \ ⎛ ⎝ ⋃︂ i∈[k-1] Z u i ∪ W fu i ,g(u i ) du i ⎞ ⎠ : k ∈ [K] ⎞ ⎠ (4.4)
which is enough for such genie-aided user to inductively decode all the requested files from (X, Z ′ ). Consequently, the following

R(d, χ)B ≥ H(X) (4.5) ≥ H(X | Z ′ ) (4.6) ≥ I (︄ {︃ W fu k ,g(u k ) du k }︃ k∈[K] ; X | Z ′ )︄ (4.7) = H (︄ {︃ W fu k ,g(u k ) du k }︃ k∈[K] | Z ′ )︄ (4.8)
1 Indeed, if the quantities K, G, N c and N u are large enough, the rounding errors due to integer effects during calculations can be neglected.

= ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓ ⃓ W fu k ,g(u k ) du k ,T ⃓ ⃓ ⃓ ⃓ (4.9)
holds, which means that we have the following lower bound

R(d, χ) ≥ ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓ ⃓ W fu k ,g(u k ) du k ,T ⃓ ⃓ ⃓ ⃓ B (4.10)
on the communication load for a given 2 d ∈ D and χ ∈ X . Since it will be of use later, we define the following

R LB (d, u, χ) := ∑︂ k∈[K] ∑︂ T ∈([K]\{u 1 ,...,u k }) ⃓ ⃓ ⃓ ⃓ W fu k ,g(u k ) du k ,T ⃓ ⃓ ⃓ ⃓ B . (4.11)
Once again, for the sake of completeness, notice that the bound in (4.10) can be equivalently obtained following the index coding approach in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], already largely employed in Chapter 2.

Main Results

The first result provides a converse bound on the optimal worst-case load under uncoded prefetching. The proof is presented in Section 4.3.1.

Theorem 4.1. For the coded caching problem with heterogeneous user profiles presented in Section 4.1, the optimal worst-case load under uncoded cache placement is lower bounded as

R ⋆ u ≥ min β 1 2 ⎛ ⎝ (︂ K tc+1 )︂ (︂ K tc )︂ + G (︂ K/G tu+1 )︂ (︂ K/G tu )︂ ⎞ ⎠ (4. 12 
)
where t c = KβM/N c and

t u = K(1 -β)M/GN u .
If we compare the achievable performance in (4.2) with the converse in Theorem 4.1, we can provide the following optimality result, whose proof is described in Section 4.3.2.

Theorem 4.2. The achievable load in (4.2) is order optimal within a multiplicative factor of 2.

Remark 4.1. The result in Theorem 4.2 improves the previously known order optimality results presented in [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF]. Indeed, even though the work in [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF] provided a converse bound without constraining the placement to be uncoded, the smallest gap to optimality therein was a constant factor 8 for the limited memory regime N/K ≤ M ≤ N/2G. Moreover, the achievable performance in (4.2) was shown to be within a multiplicative factor of 8 + 8K/G from optimal for the memory regime G(N c +N u )/K ≤ M ≤ N/2G. Here, although our converse holds under the assumption of uncoded placement, we provide a gap to optimality which is a constant multiplicative factor of 2 for the entire 3 memory regime 0 ≤ M ≤ N c + N u .

Collection of Proofs

In this section, we provide the proof for both Theorem 4.1 and Theorem 4.2. For the former, we recall that our goal is to lower bound the quantity

R ⋆ u = min χ∈X max d∈D R(d, χ). ( 4.13) 
where again the dependency on M is implied to simplify the notation. (K/G)! )︂ G . Then, we proceed to lower bound the optimal worst-case load as follows 3 The bound in Theorem 4.1 becomes 0 only when it holds t c = K and t u = K/G simultaneously. This happens when β = N c /M and (1 -β) = N u /M , which implies 0 ≤ M ≤ N c + N u . In addition, we recall that the Scheme 2 in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] is extended to the entire memory regime 0

R ⋆ u = min χ∈X max d∈D R(d, χ) (4.14) ≥ min χ∈X max (︃ max d∈Dc R(d, χ), max d∈Du R(d, χ) )︃ (4.15) ≥ min χ∈X 1 2 (︃ max d∈Dc R(d, χ) + max d∈Du R(d, χ) )︃ (4.16) ≥ min χ∈X 1 2 ⎛ ⎝ 1 |D c | ∑︂ d∈Dc R(d, χ) + 1 |D u | ∑︂ d∈Du R(d, χ) ⎞ ⎠ (4.
≤ M ≤ N c + N u . = min χ∈X 1 2 (R c (χ) + R u (χ)) (4.18)
where R c (χ) and R u (χ) are defined as

R c (χ) := 1 |D c | ∑︂ d∈Dc R(d, χ) (4.19) R u (χ) := 1 |D u | ∑︂ d∈Du R(d, χ). (4.20)
Notice that (4.15) holds because (D c ∪D u ) ⊂ D, whereas both (4.16) and (4.17) follow from the fact that the maximum can be lower bounded by the average. We proceed now to lower bound separately R c (χ) and R u (χ) by means of the genie-aided approach in Section 4.1.3.

Lower Bounding R c (χ)

As we observed in Section 4.1.3, the communication load can be lower bounded, for a given demand d and a given caching scheme χ, as in (4.10). Hence, if we construct the inequality in (4.10) for each demand d ∈ D c and for each permutation of users u ∈ S K , and then we sum together all such inequalities, we obtain

K! ∑︂ d∈Dc R(d, χ) ≥ ∑︂ (d,u)∈(Dc,S K ) R LB (d, u, χ) (4.21)
which can be further rewritten as n,T appears in the RHS of (4.22) only for those permutations of users where k appears before the elements from the set T in the permutation vector u. Since there is a total of (K -

R c (χ) ≥ 1 K!|D c | ∑︂ (d,u)∈(Dc,S K ) R LB (d, u, χ) (4.
1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂
such vectors, we can conclude that the subfile W c n,T appears in the RHS of (4.22) a total of

|D c |(K -1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂
/N c times when we consider the demands in D c,n,k only. Then, since the reasoning above holds for each user k ∈ ([K] \ T ), we can conclude that the subfile W c n,T appears in the RHS of (4.22) a total of

|D c |(K -t ′ )!t ′ ! (︂ K t ′ +1
)︂ /N c times. Moreover, we considered a generic subfile W c n,T , so the above holds for any n ∈ [N c ] and for any T ⊆ [K]. Therefore, we can rewrite the RHS of (4.22) as

1 K!|D c | ∑︂ t ′ ∈[0:K] |D c |(K -t ′ )!t ′ ! (︄ K t ′ + 1 )︄ x c t ′ (4.23) where x c t ′ is defined as 0 ≤ x c t ′ := ∑︂ n∈[Nc] ∑︂ T ⊆[K]:|T |=t ′ ⃓ ⃓ ⃓W c n,T ⃓ ⃓ ⃓ BN c . (4.24)
After some algebraic manipulations, we can rewrite (4.22) as

R c (χ) ≥ ∑︂ t ′ ∈[0:K] f c (t ′ )x c t ′ (4.25) 
where f c (t ′ ) is defined as

f c (t ′ ) := (︂ K t ′ +1 )︂ (︂ K t ′ )︂ .
(4.26)

Lower Bounding R u (χ)
Applying as before the genie-aided approach from Section 4.1.3, we obtain the following inequality First, we focus on the subfile W u,g n,T i for a given g ∈

R u (χ) ≥ 1 K!|D u | ∑︂ (d,u)∈(Du,S K ) R LB (d, u, χ) (4.
[G], n ∈ [N u ] and T i ⊆ [K] with |T i | = t ′ for some t ′ ∈ [0 : K],
where i denotes the number of users from group g that appear in the set T i , namely, i = |{k ∈ T i : g(k) = g}|. Then, we let k be one of the (K/G -i) users from group 4.3. Collection of Proofs g that do not appear in T i and we further assume that the file W u,g n is requested by such user k. If we denote by D g u,n,k the subset of demands in D u for which the file W u,g n is requested by this user k, we can see that

|D g u,n,k | = (︂(︂ Nu K/G )︂ (K/G)! )︂ G /N u = |D u |/N u .
In addition, for each d ∈ D g u,n,k , all permutations u ∈ S K are considered. Nevertheless, as already observed, the subfile W u,g n,T i appears in the RHS of (4.27), for each d ∈ D g u,n,k , only when k is located before the elements from T i in the permutation vector u. Since there is a total of (K -

1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂ such vectors, the subfile W u,g n,T i appears |D u |(K -1 -t ′ )!t ′ ! (︂ K t ′ +1 )︂
/N u times in the RHS of (4.27) when only the demands D g u,n,k are considered. The same reasoning holds for any of the (K/G -i) users from group g not appearing in T i , so the subfile W u,g

n,T i appears |D u |(K/G -i)(K -1 -t ′ )!t ′ ! (︂ K t ′ +1
)︂ /N u in the RHS of (4.27). In addition, since this reasoning holds for each g ∈

[G], n ∈ [N u ] and T i ⊆ [K] where i ∈ [max(0, |T i | -K + K/G), min(|T i |, K/G)],
after some algebraic manipulations we can rewrite the RHS of (4.27) as

∑︂ t ′ ∈[0:K] min(t ′ ,K/G) ∑︂ i=max(0,t ′ -K+K/G) (K/G -i) t ′ + 1 x u t ′ ,i (4.28) 
where x u t ′ ,i is defined as

0 ≤ x u t ′ ,i := ∑︂ g∈[G] ∑︂ n∈[Nu] ∑︂ T i ⊆[K]:|T i |=t ′ , |{k∈T i :g(k)=g}|=i ⃓ ⃓ ⃓W u,g n,T i ⃓ ⃓ ⃓ BN u . (4.29)
We can further lower bound the RHS of (4.27) as follows

∑︂ t ′ ∈[0:K] min(t ′ ,K/G) ∑︂ i=max(0,t ′ -K+K/G) (K/G -i) t ′ + 1 x u t ′ ,i (4.30) 
≥ ∑︂ t ′ ∈[0:K] min(t ′ ,K/G) ∑︂ i=max(0,t ′ -K+K/G) (K/G -min(t ′ , K/G)) t ′ + 1 x u t ′ ,i (4.31) = ∑︂ t ′ ∈[0:K] (K/G -min(t ′ , K/G)) t ′ + 1 min(t ′ ,K/G) ∑︂ i=max(0,t ′ -K+K/G) x u t ′ ,i (4.32) = ∑︂ t ′ ∈[0:K] G (︂ K/G t ′ +1 )︂ (︂ K/G t ′ )︂ x u t ′ (4.33)
where x u t ′ is defined as

0 ≤ x u t ′ := min(t ′ ,K/G) ∑︂ i=max(0,t ′ -K+K/G) x u t ′ ,i G . (4.34)
After the passages above, we can rewrite (4.27) as

R u (χ) ≥ ∑︂ t ′ ∈[0:K] f u (t ′ )x u t ′ (4.35)
where f u (t ′ ) is defined as

f u (t ′ ) := G (︂ K/G t ′ +1 )︂ (︂ K/G t ′ )︂ . (4.36)
Lower Bounding R ⋆ u Finally, we can lower bound the optimal worst-case load R ⋆ u . Indeed, we have the following

R ⋆ u ≥ min χ∈X 1 2 (R c (χ) + R u (χ)) (4.37) ≥ min χ∈X 1 2 ⎛ ⎝ ∑︂ t ′ ∈[0:K] f c (t ′ )x c t ′ + ∑︂ t ′ ∈[0:K] f u (t ′ )x u t ′ ⎞ ⎠ . ( 4.38) 
Moreover, for any uncoded cache placement χ ∈ X and for some 0 ≤ β ≤ 1, the following

∑︂ t ′ ∈[0:K] x c t ′ = 1 (4.39) ∑︂ t ′ ∈[0:K] t ′ x c t ′ ≤ KβM N c (4.40)
holds for common files, whereas we have the following

∑︂ t ′ ∈[0:K] x u t ′ = 1 (4.41) ∑︂ t ′ ∈[0:K] t ′ x u t ′ ≤ K(1 -β)M GN u (4.42)
for unique files. This means that we can consider x c = (x c 0 , . . . , x c K ) and x u = (x u 0 , . . . , x u K ) as probability mass functions with constraints in (4.40) and (4.42) on the first moment, where such constraints simply represent the maximum memory that is available across the caches of all users for common files and unique files, respectively. In light of the above, we can write

R ⋆ u ≥ min χ∈X 1 2 ⎛ ⎝ ∑︂ t ′ ∈[0:K] f c (t ′ )x c t ′ + ∑︂ t ′ ∈[0:K] f u (t ′ )x u t ′ ⎞ ⎠ (4.43) = min β,x c ,x u 1 2 (E x c [f c (t ′ )] + E x u [f u (t ′ )]) (4.44) ≥ min β,x c ,x u 1 2 (f c (E x c [t ′ ]) + f u (E x u [t ′ ])) (4.45) ≥ min β 1 2 (f c (t c ) + f u (t u )) (4.46) = min β 1 2 ⎛ ⎝ (︂ K tc+1 )︂ (︂ K tc )︂ + G (︂ K/G tu+1 )︂ (︂ K/G tu )︂ ⎞ ⎠ . (4.47)
Notice that, since both f c (t ′ ) and f u (t ′ ) are convex and decreasing in t ′ , we have (4.45) and (4.46) from Jensen's inequality and the constraints on the first moment, respectively. The proof is complete.

Proof of Theorem 4.2

From Theorem 4.1 we have

R ⋆ u ≥ min β 1 2 ⎛ ⎝ (︂ K tc+1 )︂ (︂ K tc )︂ + G (︂ K/G tu+1 )︂ (︂ K/G tu )︂ ⎞ ⎠ (4.48) = 1 2 ⎛ ⎝ (︂ K t ⋆ c +1 )︂ (︂ K t ⋆ c )︂ + G (︂ K/G t ⋆ u +1 )︂ (︂ K/G t ⋆ u )︂ ⎞ ⎠ (4.49)
where t ⋆ c = Kβ ⋆ M/N c and t ⋆ u = K(1 -β ⋆ )M/GN u for some optimal β ⋆ . Further, from [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] we have

R ⋆ u ≤ min β max α R(β, α) (4.50) ≤ max α R(β ⋆ , α) (4.51) = max α (︂ K t ⋆ c +1 )︂ - (︂ Gα t ⋆ c +1 )︂ (︂ K t ⋆ c )︂ + G (︂ K/G t ⋆ u +1 )︂ - (︂ K/G-α t ⋆ u +1 )︂ (︂ K/G t ⋆ u )︂ (4.52) ≤ (︂ K t ⋆ c +1 )︂ (︂ K t ⋆ c )︂ + G (︂ K/G t ⋆ u +1 )︂ (︂ K/G t ⋆ u )︂ (4.53)
where the inequality in (4.51) holds since the optimal value β ⋆ , which minimizes the lower bound in Theorem 4.1, is not necessarily the optimal memory splitting for the scheme in Section 4.1.2. To conclude, we have

1 2 ⎛ ⎝ (︂ K t ⋆ c +1 )︂ (︂ K t ⋆ c )︂ + G (︂ K/G t ⋆ u +1 )︂ (︂ K/G t ⋆ u )︂ ⎞ ⎠ ≤ R ⋆ u ≤ (︂ K t ⋆ c +1 )︂ (︂ K t ⋆ c )︂ + G (︂ K/G t ⋆ u +1 )︂ (︂ K/G t ⋆ u )︂ (4.54)
which implies that the coded scheme in Section 4.1.2 is order optimal within a constant multiplicative factor of 2. The proof is complete.

Chapter 5 Coded Distributed Computing With Structured Support

The purpose of this brief and coincise chapter is that of showing how the results presented in Chapter 3 can be employed in the setting of coded distributed computing. The results presented greatly benefited from fruitful discussions with Prof. Kai Wan.

System Model and Main Results

I n this section, we first start with the general formulation of the coded dis- tributed computing problem with structured support. Then, we specialize the general system model imposing a symmetric structure that takes inspiration from the caching problem with tactical user profiles from Chapter 3. Finally, we present the main results.

The General Formulation

Let us consider the distributed computing problem with K computing nodes and N input files, where

K, N ∈ N + . Each file w n ∈ F 2 F with n ∈ [N ] has F bits for some F ∈ N + . The goal of node k ∈ [K] is to compute the output function ϕ k given by ϕ k : F |N k | 2 F → F 2 B (5.1)
which maps the files in

N k ⊆ {w 1 , . . . , w N } to a bit stream u k = ϕ k (w n : w n ∈ N k ) ∈ F 2 B
of length B bits for some B ∈ N + . We assume that each output function

ϕ k with k ∈ [K] is decomposable, which implies ϕ k (w n : w n ∈ N k ) = h k (g k,n (w n ) : w n ∈ N k ).
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Simply, for each k ∈ [K] we have a map function g k,n :

F 2 F → F 2 T , which maps the input file w n ∈ N k into an intermediate value (IV) v k,n = g k,n (w n ) ∈ F 2 T
of T bits, and a reduce function h k :

F |N k | 2 T → F 2 B , which maps the IVs v k,n = g k,n (w n ) for each w n ∈ N k into the output value u k = h k (v k,n : w n ∈ N k ) ∈ F 2 B of B bits.
We wish to point out that when

N k = {w 1 , . . . , w N } for each k ∈ [K]
, the problem becomes the original distributed computing setting already studied in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. Else, we refer to the problem as the distributed computing problem with structured support.

The Symmetric Case

In the following, we will focus on a specific structure for what concerns the sets N k for each k ∈ [K]. In particular, we first assume that the N input files are split in G groups containing N/G files each. This implies

{w 1 , . . . , w N } = {W K 1 , . . . , W K G } (5.3) 
where W Kg represents the g-th group containing N/G files and

K g ⊆ [K] with |K g | = K ′ and g ∈ [G]
. Then, we assume that the group of files W Kg is needed by the K ′ < K output functions in K g for each g ∈ [G], and that each function

k ∈ [K] depends on G ′ < G groups of files, i.e., |{K g : g ∈ [G], k ∈ K g }| = G ′ for each k ∈ [K]
. This means that we have

KG ′ = GK ′ .
(5.4)

The above implies

N k = {W Kg : g ∈ [G], k ∈ K g } for each k ∈ [K].

Main Results

In the following, we present the theorems for the achievable bound, the converse bound and the order optimality. The proofs of the theorems are provided in Section 5.2, Section 5.3 and Section 5.4, respectively.

Theorem 5.1 (Achievable Bound). Consider the problem of coded distributed computing with structured support. Then, the optimal communication load L ⋆ is upper bounded by the lower convex envelope of the following corner points

(r, L UB ) = (r, g(r)) , ∀r ∈ [K ′ ] (5.5)
where g(r) is defined as

g(r) := ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ G ′ G 1 r (︃ 1 - r K )︃ , if r ∈ [r ¯] G ′ G 1 r ¯(︃1 - r K )︃ K ′ -r K ′ -r ¯, if r ∈ [r ¯+ 1 : K ′ ] (5.6)
and r ¯:= ⌊K ′ /2⌋. Theorem 5.2 (Converse Bound). Consider the problem of coded distributed computing with structured support. Then, the optimal communication load L ⋆ is lower bounded by the lower convex envelope of the following corner points

(r, L LB ) = (︄ r, 1 K K ′ -r r + 1 )︄ , ∀r ∈ [K ′ ].
(5.7)

Theorem 5.3 (Order Optimality). Consider the problem of coded distributed computing with structured support. Then, the achievable performance in Theorem 5.1 is order optimal within a constant multiplicative factor of 6.

Proof of Theorem 5.1

We present in the following a coded scheme achieving a communication load which is strictly better than the one guaranteed by the original coded distributed computing scheme with equal storage cost r. For the sake of simplicity, we assume uniform function assignment, i.e., we assume that each server computes one distinct output function. Further, we simply let server k ∈ [K] compute the k-th output function without loss of generality.

Map Phase

The map phase remains essentially the same as the one presented in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF].

Assuming that W Kg contains enough files for each g ∈ [G], we partition each group of files in

(︂ K r )︂ batches containing η ∈ N + files. Consequently, for each g ∈ [G] we have W Kg = ⋃︂ T ⊆[K]:|T |=r {B Kg,T } (5.8) 
where we have a batch B Kg,T , which contains η files from the g-th group of files, for each T ⊆ [K] with |T | = r. The above implies that the total number of files is given by N = Gη

(︂ K r )︂
. Then, we assign server k ∈ [K] the set of files M k given by

M k = {B Kg,T : g ∈ [G], T ⊆ [K], |T | = r, k ∈ T }.
(5.9)

Consequently, recalling that the storage load is defined as the normalized number of files that are stored across the K servers, we can verify that the storage load is given by

∑︁ k∈[K] |M k | N = KGη (︂ K-1 r-1 )︂ N = r.
(5.10) Given the file assignment described above, server k can compute the map functions for all the files in M k . However, we know from the system model that each output function does not depend on all the N input files. More precisely, we know that the files in W Kg are useful only to the K ′ functions in K g . Hence, each server can compute the IVs that are really needed. Consequently, the set of IVs computed by server k ∈ [K] is given by

V k = {v q,n : g ∈ [G], T ⊆ [K], |T | = r, k ∈ T , w n ∈ B Kg,T , q ∈ K g }. (5.11)
The computation load is calculated as

∑︁ k∈[K] |V k | N K = KK ′ Gη (︂ K-1 r-1 )︂ N K = K ′ K r (5.12)
and this is a factor K/K ′ better than the computation load of the original CDC scheme.

Shuffle Phase and Reduce Phase

The shuffle phase proceeds exactly as described in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. The savings will come from the fact that each server does not need IVs for all the files in the input library.

Consider server k ∈ [K] and let S ⊆ [K] where k ∈ S and |S| = r + 1. Then, for each s ∈ (S \ {k}), server k creates the symbol U S\{s} = (v s,n : g ∈ [G], s ∈ K g , w n ∈ B Kg,S\{s} ), which is then split in r even segments as U S\{s} = (U S\{s},j : j ∈ (S \ {s})).

(5.13)

After, the following multicast message

X k = ⎛ ⎝ ⨁︂ s∈(S\{k}) U S\{s},k : S ⊆ [K], |S| = r + 1, k ∈ S ⎞ ⎠ (5.14)
is transmitted over the broadcast channel.

Since the shuffling scheme above follows the same coded scheme in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], we can immediately conclude that, for what concerns the reduce phase, each server can correctly obtain the missing IVs from local data and broadcast transmissions.

Communication Load

We can see that the communication load is given by

L new = ∑︁ k∈[K] |X k | KN T (5.15) = K (︂ K-1 r )︂ ηT G ′ /r KN T (5.16) = G ′ (︂ K-1 r )︂ η rGη (︂ K r
)︂

(5.17

) = G ′ G 1 r (︃ 1 - r K )︃
.

(5.18)

Interestingly, since G ′ < G, the load above is strictly better than the communication load achieved by the original CDC scheme, which is given by

L old = 1 r (︃ 1 - r K )︃ . (5.19)
However, L new is suboptimal. We can see that L new = 0 when r = K, even though the storage-load point (r, L) = (K ′ , 0) is achievable. Indeed, if we let server k ∈ [K] store only the files which the output function ϕ k depends on, we can see that in such case the storage load is given by

KG ′ η (︂ K r )︂ N = KG ′ G = K ′ . ( 5.20) 
Hence, we propose the following scheme. Let r ¯∈ [K ′ ]. When r ≤ r ¯, we use the scheme presented above. When r > r ¯, we adopt a memory-sharing approach between the storage space r ¯and K ′ . More precisely, the piecewise linear curve with corner points (r, g(r)) is achievable, where

g(r) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ G ′ G 1 r (︃ 1 - r K )︃ , if r ∈ [r ¯] G ′ G 1 r ¯(︃1 - r K )︃ K ′ -r K ′ -r ¯, if r ∈ [r ¯+ 1 : K ′ ] (5.21)
and where we arbitrarily let r ¯= ⌊K ′ /2⌋. Notice that the case K ′ = 1 is trivial, because we have zero load when r = 1. This concludes the proof.

Proof of Theorem 5.2 5.3.1 Preliminaries

We begin the proof by introducing some useful notation. For q ∈ [K] and w n ∈ {w 1 , . . . , w N }, we let V q,n be an i.i.d. random variable and we let v q,n be the realization of V q,n . Then, we define

D k := {V k,n : g ∈ [G], k ∈ K g , w n ∈ W Kg } (5.22) C k := {V q,n : T ⊆ [K], |T | = r, k ∈ T , g ∈ [G], q ∈ K q , w n ∈ B Kg,T } (5.23) Y k := (D k , C k ) (5.24)
for each k ∈ [K]. Recalling that we denote by X k the multicast message transmitted by node k ∈ [K], the equation 

H(X k | C k ) = 0 (5.
H(D k | X [K] , C k ) = 0 (5.26) holds for each k ∈ [K].

Lower Bound on the Communication Load

For a given file assignment denoted by M := (M 1 , . . . , M K ), we let L M be the corresponding communication load under this assignment M. Then, from [65, Lemma 2] we can provide the following lower bound

L M ≥ 1 KN T ∑︂ k∈[K] H(D u k | C u k , Y u 1 ,...,u k-1 )
(5.27)

for a given permutation u = (u 1 , . . . , u K ) ∈ S K , where we define

Y u 1 ,...,u k-1 := (Y u 1 , . . . , Y u k-1
). The inequality above can be written as

L M ≥ 1 KN T ∑︂ k∈[K] H(D u k | C u k , Y u 1 ,...,u k-1 ) (5.28) = 1 KN T ∑︂ k∈[K] ∑︂ T ⊆([K]\{u 1 ,...,u k }) ∑︂ g∈[G]:u k ∈Kg T a T Kg (5.29)
where a T Kg denotes the number of files from W Kg which are mapped exactly by the nodes in T . If we build the above inequality for each u ∈ S K and we sum them up, we get

L M ≥ 1 KN K! ∑︂ u∈S K ∑︂ k∈[K] ∑︂ T ⊆([K]\{u 1 ,...,u k }) ∑︂ g∈[G]:u k ∈Kg a T Kg .
(5.30)

Following a combinatorial argument similar to the one used in Chapter 3 and recalling that any file is needed by K ′ output functions, we can simplify the above as

L M ≥ 1 KN K! ∑︂ u∈S K ∑︂ k∈[K] ∑︂ T ⊆([K]\{u 1 ,...,u k }) ∑︂ g∈[G]:u k ∈Kg a T Kg (5.31) = ∑︂ j∈[K] min(j,K ′ ) ∑︂ i=max(0,j-(K-K ′ )) ∑︂ g∈[G] ∑︂ T ⊆[K]:|T |=j, |T ∩Kg|=i (K ′ -i)j!(K -j -1)! (︂ K j+1 )︂ KN K! a T Kg (5.32) ≥ 1 KN ∑︂ j∈[K ′ ] K ′ -j j + 1 j ∑︂ i=max(0,j-(K-K ′ )) ∑︂ g∈[G] ∑︂ T ⊆[K]:|T |=j, |T ∩Kg|=i a T Kg ⏞ ⏟⏟ ⏞ :=a ˜j M (5.33) = 1 K ∑︂ j∈[K ′ ] K ′ -j j + 1 a ˜j M N (5.34)
where a ˜j M is defined as the total number of files which are mapped by exactly j map nodes under this particular file assignment M.

For any given file assignment M and for any given storage load r ∈ [K], the fact that

|M 1 | + • • • + |M K | ≤ rN
also implies that a ˜j M ≥ 0 for each j ∈ [K], as well as implies that ∑︁ j∈[K] a ˜j M = N and that ∑︁ j∈[K] ja ˜j M ≤ rN . Thus, we can further lower bound the above using Jensen's inequality and the fact that (K ′ -j)/(j + 1) is convex and decreasing in j. Hence, we can write

L M ≥ 1 K ∑︂ j∈[K ′ ] K ′ -j j + 1 a ˜j M N (5.35) ≥ 1 K K ′ -r r + 1 (5.36) = L LB (5.37)
where (5.36) holds due to the storage constraint ∑︁ j∈[K] ja ˜j M ≤ rN . Since the bound above does not depend on the file assignment M, it holds for any possible file assignment. However, the actual bound can be further tightened using the same techniques as in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] for non-integer values of r, and so we can finally state that the lower bound is the lower convex envelope of the points {(r, L LB ) : r ∈ [K ′ ]}. This concludes the proof. Comparison between the original CDC performance and the new scheme when there are K = 10 output functions and G = 10 groups of files, and each group of files is needed by K ′ = 5 output functions, whereas each output function depends on G ′ = 5 groups of files. The achievable scheme is in red, whereas the converse bound is in blue.

Proof of Theorem 5.3

When r ∈ [r ¯], we have

L UB L LB = G ′ G 1 r (︃ 1 - r K )︃ K(r + 1) K ′ -r (5.38) ≤ G ′ G 1 r (︃ 1 - r K )︃ K(r + 1) K ′ -r ¯(5.39) ≤ KG ′ G r + 1 r 1 K ′ -r ¯(5.40) ≤ 2K ′ K ′ -r ¯.
(5.41)

When K ′ is even, we recall that we have r ¯= K ′ /2. Hence, we have

L UB L LB ≤ 2K ′ K ′ -r ¯(5.42) = 2K ′ K ′ -K ′ /2
(5.43) = 4.

(5.44)

Instead, when K ′ is odd, we recall that we have r ¯= (K ′ -1)/2. Hence, we have

L UB L LB ≤ 2K ′ K ′ -r ¯(5.45) = 2K ′ K ′ -K ′ /2 + 1/2
(5.46) < 4.

(5.47)

Now, when r ∈ [r ¯+ 1 : K ′ ], we have

L UB L LB = G ′ G 1 r ¯(︃1 - r K )︃ $ $ $ $ K ′ -r K ′ -r ¯K(r + 1) $ $ $ $ K ′ -r (5.48) ≤ KG ′ G 1 r ¯(K ′ + 1) K ′ -r ¯(5.49) = K ′ (K ′ + 1) r ¯(K ′ -r ¯) . ( 5.50) 
When K ′ is even, we have

L UB L LB ≤ K ′ (K ′ + 1) r ¯(K ′ -r ¯) (5.51) = 4(K ′ + 1) K ′ (5.52) = 6 (5.53)
as the smallest even K ′ is K ′ = 2. Instead, when K ′ is odd, we have

L UB L LB ≤ K ′ (K ′ + 1) r ¯(K ′ -r ¯) (5.54) = K ′ (K ′ + 1) (K ′ /2 -1/2)(K ′ /2 + 1/2) (5.55) = 4 K ′ K ′ -1 . (5.56)
The last inequality above is maximized when K ′ is minimized. Since we are considering K ′ odd and we exclude the trivial case K ′ = 1, the smallest odd K ′ is K ′ = 3. Hence, the above is upper bounded as

L UB L LB ≤ 4 K ′ K ′ -1
(5.57) ≤ 6.

(5.58)

In conclusion, the proposed scheme is order optimal within a factor 6 over the entire range r ∈ [K ′ ]. The proof is concluded.

Chapter 6 Combinatorial Multi-Access Caching

In this chapter, we identify the fundamental limits of multi-access coded caching (MACC) where each user is connected to multiple caches in a manner that follows a generalized combinatorial topology. First, we extend the setting and the scheme presented in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] to a much more general topology that supports both a much denser range of users and the coexistence of users connected to different numbers of caches. For this generalized topology, we then propose a novel information-theoretic converse that establishes, together with the scheme, the exact optimal performance under uncoded placement. Subsequently, we consider different connectivity ensembles, including the very general scenario of the entire ensemble of all possible network connectivities/topologies, where any subset of caches can serve any arbitrary number of users. For these settings, we develop novel converse bounds on the optimal performance averaged over the ensemble's different connectivities. This novel analysis of topological ensembles leaves open the possibility that currently unknown topologies may yield even higher gains, a hypothesis that is part of the bigger question of which network topology yields the most caching gains.

Introduction

T he original coded caching model in [2] considered that each user has access to its own single dedicated cache. However, in several scenarios it is conceivable and perhaps more realistic that each cache serves more than one user, and that each user can connect to more than one cache. For instance, in dense cellular networks, the cache-aided access points (APs) could have overlapping coverage areas, allowing so each user to connect to more than one 97 AP. Even more realistically, in a wired setting where a central server wishes to communicate to multiple workers via a shared control channel, each worker could be assisted by multiple memory devices shared among the workers.

Such scenarios motivated the work in [START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF] that introduced the extra dimension of having users that can now have access to multiple caches. In this setting -in addition to the number of users K, the number of library files N and the cache size of M files -a new parameter α describes the number of caches that each user can access. This so-called multi-access coded caching (MACC) model introduced in [START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF] involved Λ users and Λ caches, and involved a topology where each user is connected to α > 1 consecutive caches in a cyclic wrap-around fashion as in Figure 1.2, such that each cache serves exactly α users. In the same work, the authors provided a caching-anddelivery procedure which guarantees in its centralized variant1 a worst-case load of Λ(1 -αγ)

Λγ + 1 = K(1 -αγ) Kγ + 1 (6.1)
where we recall γ = M/N is the fraction of the library that each cache is able to store. Such scheme takes advantage of the multi-access nature of the network and allows for an increase of the local caching gain from γ to αγ, without though being able to increase the coding gain, which remains fixed at the gain Λγ + 1 that only corresponds to the gain in the dedicated cache scenario where α = 1.

Past Works on Multi-Access Coded Caching

Since the introduction of the aforementioned multi-access cyclic model, various works focused on the design of coding schemes that leverage the fact that each user has access to more cache space. The challenge is always to be able to achieve higher coding gains in a setting where the cache volume seen by a user must be shared among several users. One of such works can be found in [START_REF] Serbetci | Multi-access coded caching: Gains beyond cache-redundancy[END_REF], which proposed a scheme that not only preserves the full local caching gain as in [START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF], but also achieves the topology's optimal coding gain of Λαγ + 1, albeit for the rather unrealistically demanding scenario2 where α = (Λ -1)/Λγ. For the same cyclic topology, the work in [START_REF] Reddy | Rate-memory trade-off for multiaccess coded caching with uncoded placement[END_REF] designed a novel scheme for any α ≥ 1, which was -for the similarly demanding regime of α ≥ Λ/2 and Λγ ≤ 2 -proved to be at a factor of at most 2 from the optimal under uncoded placement. Other works include the extension of the MACC model to support privacy and secrecy constraints [START_REF] Namboodiri | Multi-access coded caching with secure delivery[END_REF]- [START_REF] Namboodiri | Multi-access coded caching with demand privacy[END_REF], the connection between MACC and structured index coding problems [START_REF] Reddy | Structured index coding problem and multi-access coded caching[END_REF], the study of two-dimensional multi-access networks [START_REF] Zhang | Coded caching for twodimensional multi-access networks[END_REF], and the application of PDA designs to the multi-access setting [START_REF] Sasi | Multi-access coded caching scheme with linear sub-packetization using PDAs[END_REF], [START_REF] Cheng | A novel transformation approach of shared-link coded caching schemes for multiaccess networks[END_REF].

Recently, a new MACC paradigm was presented in [START_REF] Katyal | Multi-access coded caching schemes from cross resolvable designs[END_REF], [START_REF] Muralidhar | Improved multi-access coded caching schemes from cross resolvable designs[END_REF], which involves previously unexplored powerful topologies that deviate from the cyclic topology originally proposed in [START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF]. These two works in [START_REF] Katyal | Multi-access coded caching schemes from cross resolvable designs[END_REF], [START_REF] Muralidhar | Improved multi-access coded caching schemes from cross resolvable designs[END_REF] drew a clever connection between coding for the MACC problem and employing a topology that is inspired by cross resolvable designs (CRDs), where these CRDs constitute a special class of designs in combinatorics. The authors provided novel placement-and-delivery schemes from CRDs achieving a coding gain equal to (q + 1) z , where q and z are two integer parameters such that each user is connected to α = qz distinct caches via a network topology that is implied by the chosen CRD. While though this gain nicely increases with α, it does not increase with the cumulative cache redundancy Λγ and so can remain relatively small as it does not capitalize on this redundancy.

A substantial breakthrough came with the very recent work in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], which proposed a MACC model enjoying the same amount of resources α and Λγ, but where now the users and the caches are connected following the wellknown combinatorial topology of combination networks [START_REF] Wan | A novel asymmetric coded placement in combination networks with end-user caches[END_REF]- [START_REF] Xiao | A binary coding approach for combination networks and general erasure networks[END_REF]. This was a breakthrough because it allowed for the deployment of a subsequent schemepresented in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] as a generalization of the original MAN scheme in [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF] -that achieves an astounding coding gain

(︂ Λγ+α α )︂
far exceeding Λγ + 1 even for small values of α and Λγ, which is the regime that really matters. A noticeable drawback of this new approach is that its performance is guaranteed only for a rather sparse range 3 of K ≫ Λ, where we recall K is the number of users and Λ is the number of caches, and that it only captures the scenario where the users must all connect to an identical number of caches.

Main Contributions

Having as a starting point the combinatorial multi-access system model introduced in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], we propose a model extension which allows for a denser range of possible number of users K and for the coexistence of users that are connected to different numbers of caches. For this generalized combinatorial 3 As it will become more clear later, the work in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] requires exactly K = (︁ Λ α )︁ users for a specific value of α ∈ {0, . . . , Λ}. Instead, our generalized model allows for a number of users that is equal to

K = ∑︁ Λ α=0 K α (︁ Λ α )︁
with K α ∈ {0, 1, . . . } for each α ∈ {0, . . . , Λ}, which consequently makes denser the range of users K with respect to the model in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF].

system model, we extend the delivery scheme presented in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] to support the very large coding gains. We then proceed to prove this general scheme to be exactly optimal under the assumption of uncoded placement by means of an information-theoretic converse that is based on index coding arguments. As a practical consequence of identifying the exact fundamental limits of the setting, we now know that a basic and fixed MAN placement can optimally handle any generalized combinatorial network irrespective of having unknown numbers of users connected to different numbers of caches.

Subsequently, we consider a more general scenario that involves various ensembles of connectivities, including the ensemble of all possible connectivities as well as the smaller ensemble of those connectivities that simply abide by the constraint that each user is connected to the same number of α caches, without any additional structural constraint on the connectivity or on the number of users that each cache has to treat. For these settings, we develop information-theoretic converse bounds on the optimal average worst-case load, where the average is taken over the ensemble of interest, and where the optimal is over an optimized fixed placement. In particular, this converse on the average performance assumes optimal delivery for each connectivity and assumes an optimized uncoded placement that is fixed across all connectivities. These converse bounds are then used to provide meaningful insights on the strength of the generalized combinatorial model with respect to other connectivities.

Chapter Outline

The rest of the chapter is organized as follows. Section 6.2 presents the system model together with some clarifying examples on the setting. Then, Section 6.3 presents the main results. Subsequently, Section 6.4 presents the coding scheme for the generalized combinatorial topology, whereas Section 6.5 presents the new matching converse bound. After this, Section 6.6 and Section 6.7 provide the proof of the converse on the optimal average worstcase load under uniformly random connectivity for the different considered ensembles. The appendices Appendix B hold all additional proofs.

System Model

We consider the centralized coded caching scenario where one single server has access to a library {W n : n ∈ [N ]} containing N files of B bits each. The server is connected to K users through an error-free broadcast link. In the system there are Λ caches, each of size M B bits. Each user is associated (i.e., has full access) to a subset of these caches. We assume that the link between the server and the users is the main bottleneck, whereas we assume that each user can access its assigned caches at zero cost. As is common, we assume that N ≥ K.

Description of Connectivity

Each of the K users is connected to a subset of the Λ caches. The way these connections are set up defines the network topology or connectivity. In the general case, different users are connected to a different number α ∈ [0 : Λ] of caches, where this value α, depending on the user, can range from α = 0 (corresponding to users that are not assisted by any cache) up to α = Λ (corresponding to the users that happen to be connected to all caches). What we will refer to as connectivity will be here defined by the number of users that each α-tuple U of caches is exactly and uniquely connected to, where again some of these sets U of caches can have size α = 1 (sets consisting of a single cache), α = 2 (where each set is a pair of caches), and so on. Notice that, since a connectivity is defined irrespective of any permutation of users, the definition of connectivity captures the concept of the MACC problem "type". For instance, for the model in Figure 1.2 the sets of 2 caches {1, 2}, {2, 3}, {3, 4} and {1, 4} serve one user each. For the same model, we consider the set of 2 caches {1, 3}, {2, 4} to be serving no user, since there is no user connected exactly and uniquely to the caches in the set {1, 3} (i.e., there is no user connected to only cache 1 and to cache 3) as well as there is no user associated exactly and uniquely to the caches in the set {2, 4} (i.e., there is no user connected to only cache 2 and to cache 4). Similarly, we consider also the sets {1}, {2}, {3} and {4} to be serving no user, since there is no user connected exactly and uniquely to one cache only. On the other hand, for the model in Figure 6.1 we can see that there are two users connected exactly and uniquely to cache {1}, there is one user associated exactly and uniquely to caches {1, 2, 3} and there is one user connected exactly and uniquely to caches {2, 3, 4}. Hence, for such example the connectivity is defined by the number of users connected to the set of caches {1}, {1, 2, 3} and {2, 3, 4}.

Let B be the set of all possible connectivites corresponding to the most general scenario, where any set of caches can arbitrarily serve any number of users without any constraint or structure. Each connectivity b ∈ B will be defined by the vector 

K b = (K U ,b : U ⊆ [Λ]),
K α = ⋃︂ U ⊆[Λ]:|U |=α ⋃︂ k∈[K U ,b ] {U k } (6.4)
where K denotes the entire set of K users in the system. This all holds for the most general setting corresponding to the ensemble B, where this ensemble represents the set of all connectivities irrespective of how different these connectivities are from one another. We will revisit this general scenario later, when we will calculate the converse bound on the optimal average performance over all connectivities in B.

A more restricted class of connectivities can be found in the ensemble B α , which consists of all those connectivities for which each user is connected to exactly α caches for some fixed number α ∈ [0 : Λ]. Any connectivity that satisfies this constraint belongs to B α . For example, a connectivity b belongs to B 2 if and only if this connectivity guarantees that every user is connected to exactly α = 2 caches. The well-known cyclic wrap-around connectivity depicted in Figure 1.2 is one of the connectivities in this class B 2 , since it guarantees that each user is connected to exactly α = 2 caches. There exist many additional connectivities that belong to B 2 . We will revisit this class B α when we will calculate the average optimal performance, averaged across all its connectivities.

A broader class of connectivities is simply the (Λ + 1)-ary Cartesian product

B Λ+1 = Λ ∏︂ α=0 B α = {(b 0 , . . . , b Λ ) : b α ∈ B α , α ∈ [0 : Λ]} (6.5)
which consists of all connectivities that guarantee that some K ′ α users -from the K = ∑︁ α∈[0:Λ] K ′ α users in total -are each connected to exactly α caches for each α ∈ [0 : Λ] and for a fixed set of integers K ′ 0 , K ′ 1 , . . . , K ′ Λ . For example, a connectivity b belongs to B 2 × B 3 if and only if this connectivity guarantees that K ′ 2 users are connected to 2 caches, and the rest

K ′ 3 = K -K ′ 2 users are connected to 3 caches, for any fixed pair K ′ 2 , K ′ 3 such that K ′ 2 + K ′ 3 = K.
This class is important because it captures the generalization of the aforementioned combinatorial 5 topology, for which we will calculate the optimal performance under uncoded prefetching.

To avoid heavy notation, the dependence on the connectivity b will always be suppressed and left implied. For example, while K b is a function of the specific connectivity, this dependence will be implied when we henceforth use the notation K instead of K b . An exception to this rule will be allowed when considering the number of users K U ,b associated to the caches in U for some

U ⊆ [Λ].
In terms of file requests, we use the notation W d U k to denote the file requested by the user identified by U k , which we remind the reader is simply the k-th user connected exactly and uniquely to the caches in the set U. For the sake of simplicity, we denote by d = (d 0 , . . . , d Λ ) the demand vector containing the indices of the files requested by the users in the system, where To account for the possibility that this notation is hard to follow, we offer clarifying examples later on.

d α := (︂ d U ,[K U ,b ] : U ⊆ [Λ], |U| = α )︂ (6.

Generalized Combinatorial Topology

Directly from the aforementioned Cartesian product class, there is a particular connectivity (topology) b ∈ B Λ+1 that is of special interest to us. This topology, which we refer to as the generalized combinatorial topology, guarantees that any one set of α caches is uniquely assigned to K α users, and this holds for every α ∈ [0 : Λ]. Given the nature of the connectivity, we have that 6

K U ,b = K α = K ′ α / (︂ Λ α )︂
for each U ⊆ [Λ] with |U| = α and α ∈ [0 : Λ]. We also have that

K = Λ ∑︂ α=0 K α (︄ Λ α )︄ . ( 6.7) 
To clarify, the term K ′ α again describes the total number of users each of which is associated to exactly α caches, while the term K α is the normalization of K ′ α and it describes the total number of users uniquely served by any one set of α caches. For this generalized combinatorial topology, we collect all the K α terms in the vector K comb = (K 0 , . . . , K Λ ). Example 6.1 (Λ = 4, K comb = (0, 0, 1, 0, 0)). Consider the MACC problem with the original combinatorial topology in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] and Λ = 4 caches. Since K comb = (0, 0, 1, 0, 0), each set of α = 2 caches is uniquely assigned to K 2 = 1 user, so there are K =

∑︁ Λ α=0 K α (︂ Λ α )︂ = (︂ 4 2 
)︂ = 6 users in total. Recalling that each user is identified by the set of the α = 2 caches it is connected to as well as by its index k ∈ [K 2 ], we write the set of users K as

K = ⋃︂ α∈[0:Λ] ⋃︂ U ⊆[Λ]:|U |=α ⋃︂ k∈[Kα] {U k } (6.8) = ⋃︂ U ⊆[Λ]:|U |=2 ⋃︂ k∈[K 2 ] {U k } (6.9) = {{1, 2} 1 , {1, 3} 1 , {1, 4} 1 , {2, 3} 1 , {2, 4} 1 , {3, 4} 1 } . (6.10)
Notice that for ease of notation we will often omit braces and commas when indicating sets, so we can also write K = {12 1 , 13 1 , 14 1 , 23 1 , 24 1 , 34 1 }. 6 As one would expect, we assume for such combinatorial connectivity that

(︁ Λ α )︁ | K ′ α for each α ∈ [0 : Λ].
These are the 6 users in the system. The demand vector is given by d = (d 0 , d 1 , d 2 , d 3 , d 4 ) = (0, . . . , 0, d 2 , 0, . . . , 0), where

d 2 = (︂ d U ,[K 2 ] : U ⊆ [Λ], |U| = 2 )︂ (6.11) = (d 12 1 , d 13 1 , d 14 1 , d 23 1 , d 24 1 , d 34 1 ) (6.12) recalling that d U ,[K 2 ] = (d U 1 , . . . , d U K 2 )
. The setting described in this example corresponds to the model introduced in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], as it will be pointed out also later.

Example 6.2 (Λ = 4, K comb = (0, 0, 2, 2, 0)). Let us consider now the following more involved MACC problem with a generalized combinatorial topology and again Λ = 4 caches. Since K comb = (0, 0, 2, 2, 0), each set of 2 caches is uniquely connected to K 2 = 2 users and each set of 3 caches is uniquely connected to K 3 = 2 users, which tells us that there are K =

∑︁ Λ α=0 K α (︂ Λ α )︂ = 2 (︂ 4 2 
)︂

+ 2

(︂ 4 3 
)︂ = 20 users in total. The set of users K is given by As a small reminder, users 12 1 , 12 2 are the first and second users connected to the pair of caches {1, 2}, while user 234 2 is the second of two users connected to the caches in the triplet {2, 3, 4} and to no other cache. In this case, the demand vector is given by d = (d 0 , d 1 , d 2 , d 3 , d 4 ) = (0, . . . , 0, d 2 , d 3 , 0, . . . , 0), where 

K = ⋃︂ α∈[0:Λ] ⋃︂ U ⊆[Λ]:|U |=α ⋃︂ k∈[Kα] {U k } (6.13) 
d 2 = (︂ d U ,[K 2 ] : U ⊆ [Λ], |U| = 2 )︂ ( 
d 3 = (︂ d U ,[K 3 ] : U ⊆ [Λ], |U| = 3 )︂ ( 
recalling that d U ,[K 2 ] = (d U 1 , . . . , d U K 2 ) and d U ,[K 3 ] = (d U 1 , . . . , d U K 3 ).

Worst-Case Load and Average Worst-Case Load

As in the original coded caching scenario, the communication procedure is split into the placement phase and the delivery phase. Nevertheless, the placement phase may or may not be aware of the given topology b ∈ B that will be encountered during delivery. Both these scenarios of topology-aware and topology-agnostic cache placement will be addressed.

In the topology-aware scenario, given a unique topology b ∈ B that is known throughout placement and delivery, the worst-case communication load R b is defined as the total number of transmitted bits, normalized by the file size B, that can guarantee the correct delivery of any K-tuple of requested files in the worst-case scenario. The optimal communication load R ⋆ b is consequently defined as

R ⋆ b (M ) := inf{R b : (M, R b ) is achievable} (6.20)
where the tuple (M, R b ) is said to be achievable if there exists a cachingand-delivery procedure for which, for any possible demand, a load R b can be guaranteed. This metric captures the optimal performance, optimized over all topology-aware placement-and-delivery schemes. For the particular case of the generalized combinatorial topology, this worst-case communication load will be denoted by R ⋆ comb . On the other hand, to capture the fact that topologies may vary in time often much faster than the rate with which caches can be updated, we will also consider the scenario where a fixed placement must be designed to handle an ensemble of possible topologies 7 , where the ensemble of focus is known during placement. In this topology-agnostic scenario, we will employ an average metric that captures the average performance of coded caching over the ensemble of topologies. In particular, we will consider the average worst-case communication load R avg = E b [R b ], which is defined as the expected number of transmitted bits (averaged over a specified ensemble of connectivities, and normalized by the file size B) that can guarantee the correct delivery of all requested files irrespective of the request. When the averaging is done over the entire connectivity ensemble B of connectivities, the corresponding optimal average worst-case load R ⋆ avg,B is defined and denoted as

R ⋆ avg,B (M ) := inf{R avg,B : (M, R avg,B ) is achievable} (6.21)
where the tuple (M, R avg,B ) is said to be achievable if there exists a joint placement-and-delivery method with an optimized fixed placement phase 8 for which an average load R avg,B can be guaranteed, where the averaging is over the connectivity ensemble of focus. Similarly, when the averaging is done over the smaller symmetric ensemble B α , the optimal average performance will be denoted by R ⋆ avg,Bα .

Main Results

We present in this section the main results. Firstly, we identify the fundamental limits of the system model described in Section 6.2.2 corresponding to the unique generalized combinatorial topology. This will identify the optimal performance of the generalized combinatorial connectivity, optimized over all coded caching schemes under the assumption of uncoded prefetching. We will then proceed to study the performance over ensembles of connectivities.

Taking into account the scenario where there are K = K ′ α users and each of them is connected to a set of exactly α caches, we develop a converse bound on the optimal average worst-case load assuming the connectivities in B α to be equiprobable for a fixed α ∈ [Λ]. Finally, such bound is further extended to consider the most general ensemble B of all possible connectivities.

Multi-Access Coded Caching With Generalized Combinatorial Topology

Our first result is obtained by extending the achievable scheme proposed in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] and by developing a matching converse bound based on the well-known acyclic subgraph index coding method. The result is formally stated in the following theorem.

Theorem 6.1. Consider the multi-access coded caching problem with Λ caches and the generalized combinatorial topology described in Section 6.2.2. Under the assumption of uncoded cache placement, the optimal worst-case communication load R ⋆ comb is a piecewise linear curve with corner points

(M, R ⋆ comb ) = ⎛ ⎝ t N Λ , Λ-t ∑︂ α=0 K α (︂ Λ t+α )︂ (︂ Λ t )︂ ⎞ ⎠ , ∀t ∈ [0 : Λ]. (6.22)
Proof. The coded caching scheme is described in Section 6.4, whereas the information-theoretic converse is presented in Section 6.5.

Directly from the converse in Theorem 6.1, and from the application as in Section 6.4 of the scheme in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], we now have the following corollary. To place the corollary in context, we note that typically (see for example [START_REF] Reddy | Rate-memory trade-off for multiaccess coded caching with uncoded placement[END_REF]) cache placements are specifically calibrated to reflect the cache-connectivity capability of each user. Corollary 6.1.1. The basic Λ-cache MAN placement allows for the optimal performance for any instance of the generalized combinatorial topology. This means that, as long as the connectivity is from the generalized combinatorial topology, then the single MAN placement yields a uniformly optimal performance irrespective of the cache-connectivity capability of each user, i.e., irrespective of how many users are connected to how many caches. Remark 6.1. A further comment relates the memory point at which the load becomes 0. As one can observe from the expression in Theorem 6.1, such point varies depending on the problem instance. For example, if we consider the generalized combinatorial topology where each user is uniquely associated to a distinct cache (this corresponds to the standard MAN setting), the load becomes 0 only when each user has enough memory to store entirely the library, i.e., when t = Λ. On the other hand, for the generalized combinatorial topology where each user is connected to all caches, the load becomes 0 when t = 1, i.e., when the entire library is stored at least once across the caches. In general, if there is no user connected to any cache, we have t ∈ [0 : Λ-α min +1], where α min := min{α : K α > 0}, i.e., where α min is the minimum value of α such that K α > 0. Clearly, if there is even just one user connected to no cache, there will be no memory point such that the load will be equal to 0.

Analysis of Topology Ensembles

Our second contribution is the development of a converse bound on the optimal average worst-case load for a fixed value 9 of α ∈ [Λ], corresponding to the ensemble B α , where each connectivity in B α is assumed to be equiprobable. The result is stated in the following theorem. Theorem 6.2. Consider the ensemble B α of multi-access coded caching problems with Λ caches and K = K ′ α users each connected to exactly α ∈ [Λ] caches. Under the assumption of fixed uncoded cache placement and equiprobable connectivities, the optimal average worst-case communication load R ⋆ avg,Bα is lower bounded by R avg,Bα,LB which is a piecewise linear curve with corner points

(M, R avg,Bα,LB ) = ⎛ ⎝ t N Λ , K ′ α (︂ Λ t+α )︂ (︂ Λ α )︂(︂ Λ t )︂ + A t ⎞ ⎠ , ∀t ∈ [0 : Λ -α + 1] (6.23)
where we define

A t := K ′ α |B α | (︄ Λ -t α )︄ ⎛ ⎝ 1 - 1 (︂ t+α α )︂ ⎞ ⎠ . (6.24)
Proof. The proof is reported in Section 6.6.

In the following we offer an interesting comparison between the results in Theorem 6.1 and in Theorem 6.2, after setting

K = K ′ α = K α (︂ Λ α )︂
to be the same in both cases. Corollary 6.2.1. For a fixed unique α and a fixed K = K ′ α such that

(︂ Λ α )︂ | K ′ α , then R avg,Bα,LB > R ⋆ comb , ∀t ∈ [Λ -α]. (6.25)
Proof. The proof follows immediately after observing that

A t > 0 for each t ∈ [Λ -α].
The above result simply says that, for non-trivial values of t, the optimal average worst-case communication load in Theorem 6.2 is strictly larger than the optimal worst-case communication load of the combinatorial connectivity in Theorem 6.1. At this point, we can make two observations. The first is that a closer inspection reveals that the converse in Theorem 6.2 holds also when the fixed uncoded placement is restricted to be the MAN cache placement. The second observation is that -as a consequence of the assumption of equiprobable connectivities -the converse in Theorem 6.2 can be interpreted as a lower bound on the optimal arithmetic mean worst-case load of different 10 "types" of MACC problems. With these two observations in place, we can conclude that the combinatorial topology is, roughly speaking, among the better connectivities in B α under the MAN cache placement assumption, in the sense that it does better than the average.

We now transition to the most general scenario where any possible connectivity is allowed, namely, where any set of caches can arbitrarily serve any number of users without any constraint or structure. This corresponds to the ensemble B. Our third contribution is the development of a converse bound on the optimal average worst-case load assuming the connectivities in the set B to be equiprobable.

Theorem 6.3. Consider the ensemble B of multi-access coded caching problems with Λ caches and K users, where any set of caches can arbitrarily serve any number of users without any constraint or structure. Under the assumption of fixed uncoded cache placement and equiprobable connectivities, the optimal average worst-case communication load R ⋆

avg,B is lower bounded by R avg,B,LB which is a piecewise linear curve with corner points

(M, R avg,B,LB ) = ⎛ ⎝ t N Λ , Λ ∑︂ α=0 K (︂ Λ t+α )︂ 2 Λ (︂ Λ t )︂ + A t,α ⎞ ⎠ , ∀t ∈ [0 : Λ] (6.26)
where we define

A t,α := K |B| (︄ Λ -t α )︄ ⎛ ⎝ 1 - 1 (︂ t+α α )︂ ⎞ ⎠ . (6.27)
Proof. The proof is reported in Section 6.7.

As before, we offer the following interesting comparison between the results in Theorem 6.1 and in Theorem 6.3, after setting K α = K/2 Λ for each α ∈ [0 : Λ]. The following corollary serves as an indication that, under fixed MAN uncoded placement, the generalized combinatorial topology is among the better connectivities in B.

Corollary 6.3.1. For a fixed K such that 2 Λ | K and for K α = K/2 Λ for each α ∈ [0 : Λ], then R avg,B,LB > R ⋆ comb , ∀t ∈ [Λ]. (6.28)
Proof. The proof follows again immediately after observing that, for a given

α ∈ [0 : Λ -1], then A α,t > 0 for each t ∈ [Λ -α].
Remark 6.2. The results in Corollary 6.2.1 and Corollary 6.3.1 shed light on the purpose and utility of the developed converse bounds in Theorem 6.2 and in Theorem 6.3, whose relevance appears when they are put in perspective with the optimal performance of the MACC problem with (generalized) combinatorial topology in Theorem 6.1. As suggested above, the meaningful conclusion here is that the (generalized) combinatorial topology is a good (better than average) connectivity under the standard MAN cache placement. Nevertheless, whether it is uniformly -in the non-trivial memory regimethe best topology or not still remains a wide-open question.

Achievability Proof of Theorem 6.1

We devote this section to presenting the general placement-and-delivery scheme, which will allow us to prove that the load performance in Theorem 6.1 is indeed achievable. Recall that this is for the case of the generalized combinatorial topology presented in Section 6.2.2. As a quick reminder, under this topology, out of the total of K = ∑︁ Λ α=0 K ′ α users, there exist K ′ α users each of which is associated to exactly α caches. Similarly, the normalized K α simply describes the total number of users uniquely served by any one set of α caches. As it will be clear in a short while, we point out that the general delivery scheme here proposed is a properly calibrated orthogonal concatenation of the transmitted sequences in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] for different values of α ∈ [0 : Λ].

Description of the General Scheme

The communication process is split into the placement phase and the delivery phase. Both phases are designed with full knowledge11 of the topology, i.e., with knowledge of the fact that during delivery the users are connected to the caches according to the unique generalized combinatorial topology in Section 6.2.2.

Placement phase

This procedure is performed by the central server without knowing the future requests of each user. Let M = tN/Λ be the volume of data, in units of file, that each of the Λ caches can store, where t ∈ [0 : Λ] is an integer value. Each file is split into

(︂ Λ t )︂
equal-sized non-overlapping subfiles as follows

W n = {W n,T : T ⊆ [Λ], |T | = t}, ∀n ∈ [N ] (6.29)
and the memory of the λ-th cache is filled as

Z λ = {W n,T : n ∈ [N ], T ⊆ [Λ], |T | = t, λ ∈ T } (6.30)
for each λ ∈ [Λ]. A quick calculation allows us to verify that each cache λ ∈ [Λ] stores a total of

|Z λ | = N (︄ Λ -1 t -1 )︄ B (︂ Λ t )︂ = t N Λ B = M B (6.31)
bits, which guarantees that the memory size constraint is satisfied.

Delivery phase

The delivery phase takes place once the file requests of the users are revealed. Let d = (d 0 , . . . , d Λ ) be the demand vector containing the indices of the files demanded by the K users in K. Then, the server transmits X d = (X 0 , . . . , X Λ-t ), where X α = (X α,1 , . . . , X α,Kα ) and where

X α,k = ⎛ ⎝ ⨁︂ U ⊆S:|U |=α W d U k ,S\U : S ⊆ [Λ], |S| = t + α ⎞ ⎠ (6.32)
for each k ∈ [K α ] and for each α ∈ [0 : Λ]. Simply, X α,k corresponds to the broadcast transmission which successfully delivers all the missing information to all the k-th users connected to any α caches. Notice that users connected to more than Λ -t caches have access to the entire library, so no transmission is needed for them.

Remark 6.3. We point out that for any one fixed value of α ∈ [0 : Λ] and k ∈ [K α ], the sequence of multicast messages in (6.32) matches the scheme in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF]. However, whereas the work in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] considers K α = 1 and only one single value of α ∈ [0 : Λ] at a time (i.e., considers that every user is connected to exactly α caches), the scheme here considers any K α ∈ N and most importantly considers all possible values of α ∈ [0 : Λ] at the same time, so capturing a rather general scenario where the set of K users involves users with unequal cache-connectivity capabilities (i.e., users that have access to an unequal number of caches). The most interesting outcome of our generalization is the rather surprising fact that a basic TDMA-like approach of treating groups of users with different cache-connectivity capabilities is in fact optimal, as we will see soon. This is indeed surprising, because users with different cache-connectivity capabilities still maintain an abundance of common side information, which could have conceivably been exploited using joint encoding across the groups. The optimality of our scheme reveals that there is no need to encode across users with different cache-connectivity capabilities, and that a TDMA-like approach is optimal, even though there is abundant additional opportunities to encode across different groups of users that are now treated separately.

Remark 6.4. An additional interesting consideration regards the adopted cache placement. To the best of our knowledge, the cache placement in the multi-access scenario usually changes substantially as α changes, e.g., this is what happens for the cyclic wrap-around topology (see [START_REF] Reddy | Rate-memory trade-off for multiaccess coded caching with uncoded placement[END_REF]). However, as described in Corollary 6.1.1, for the combinatorial topology in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] the same MAN cache placement holds for any value of α ∈ [0 : Λ]. And such MAN placement not only works for any distinct value of α, but even allows to handle optimally all the α-instances when all such instances appear simultaneously at the same time. In other words, the MAN cache placement -which is independent of the number of caches each user is connected to, and is a function of the number of caches Λ and of the cache redundancy Λγ onlycan be considered a single unified cache placement approach for which the least possible worst-case communication load is achieved under uncoded cache placement, even when each of the α-settings in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] is taken into account simultaneously. At the same time, the MAN cache placement together with the TDMA-like delivery scheme also allows to maintain the astounding coding gain of each α-instance, since indeed each α-instance still enjoys 12 the coding gain of

(︂ Λγ+α α )︂
.

Even though the proof of correctness of the delivery in (6.32), for a specific α, was reported in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF], we briefly describe for completeness how decoding is achieved in (6.32). Consider a user U ′ k for some U ′ ⊆ [Λ] with |U ′ | = α, for some k ∈ [K α ] and for some α ∈ [0 : Λ]. Consider a specific S ⊆ [Λ] for which |S| = t + α and U ′ ⊆ S. For such set S, the coded transmission (6.33) is sent. Since U ′ ⊆ S, we can rewrite the coded transmission as 

⨁︂ U ⊆S:|U |=α W d U k ,S\U
⨁︂ U ⊆S:|U |=α W d U k ,S\U = W d U ′ k ,S\U ′ ⊕ ⨁︂ U ⊆S:|U |=α, U ̸ =U ′ W d U k ,S\U ⏞ ⏟⏟ ⏞ interference . ( 6 
(︂ Λ-α t )︂
such sets S and user U ′ k misses a total of

(︂ Λ-α t )︂
subfiles, we can conclude that user U ′ k correctly decodes all missing subfiles from the coded transmission in (6.32). Clearly, the same holds also for any other user, so showing the decodability of the scheme.

Performance Calculation

To evaluate the performance of the scheme proposed in Section 6.4.1, it is enough to calculate |X d |/B. Since it can be easily checked that

|X α,k | B = (︂ Λ t+α )︂ (︂ Λ t )︂ (6.35)
the achievable load performance is equal to

R comb,UB = |X d | B (6.36) = Λ-t ∑︂ α=0 |X α | B (6.37) = Λ-t ∑︂ α=0 Kα ∑︂ k=1 |X α,k | B (6.38) = Λ-t ∑︂ α=0 K α (︂ Λ t+α )︂ (︂ Λ t
)︂ (6.39) and so it holds that R ⋆ comb ≤ R comb,UB , where this upper bound is a piecewise linear curve with corner points

(M, R comb,UB ) = ⎛ ⎝ t N Λ , Λ-t ∑︂ α=0 K α (︂ Λ t+α )︂ (︂ Λ t )︂ ⎞ ⎠ , ∀t ∈ [0 : Λ] (6.40)
and where memory sharing is used between any two consecutive integer values of t. In Section 6.5 this performance will be shown to be optimal under the assumption of uncoded placement.

Remark 6.5. The coding scheme and its performance fully incorporate the following known scenarios.

1. Case K comb = (K 0 , 0, . . . , 0). This scenario corresponds to the case where there are K 0 users and none of them is connected to any of the Λ caches. In this case, uncoded delivery is optimal and the load performance is equal to K 0 , independently of the memory value, as expected.

2. Case K comb = (0, 1, 0, . . . , 0). This scenario corresponds to the wellknown dedicated-caches case where there is only one user connected to any one of the Λ caches. This implies that there are K = Λ users in total and this case corresponds to the standard MAN setting, for which the MAN scheme was shown in [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF] (see also [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF]) to be optimal under uncoded cache placement.

3. Case K comb = (0, K 1 , 0, . . . , 0) with K 1 > 1. This scenario corresponds to the shared-caches setting with uniform user-to-cache association profile, where the corresponding achievable load was also shown to be optimal (see [START_REF] Parrinello | Fundamental limits of coded caching with multiple antennas, shared caches and uncoded prefetching[END_REF]).

4. Case K comb = (0, . . . , 0, K α , 0, . . . , 0) with

K α = 1 for some α ∈ [2 : Λ].
As already mentioned, this scenario corresponds to the setting considered in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF]. No optimality result was stated.

Converse Proof of Theorem 6.1

The converse relies on the well-known acyclic subgraph index coding bound, which has been extensively used in Chapter 2 and various other settings (see for example [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF], [START_REF] Parrinello | Fundamental limits of coded caching with multiple antennas, shared caches and uncoded prefetching[END_REF] to name a few) in order to derive lower bounds on the optimal worst-case load in caching under uncoded prefetching.

Proceeding along the lines of the converse derivation in Chapter 2, the first step in our converse proof consists of dividing, in the most generic manner, each file into a maximum of 2 Λ disjoint subfiles as

W n = {W n,T : T ⊆ [Λ]} , ∀n ∈ [N ] (6.41)
where we identify with W n,T the subfile which is exclusively stored by the caches in T . Such placement is designated as uncoded because the bits of the library files are simply copied within the caches, according to Definition 1.1.

Constructing the Index Coding Bound

Assuming that each user requests a distinct13 file, we consider the index coding problem with

K ′ = K = ∑︁ Λ α=0 K α (︂ Λ α )︂ users and N ′ = ∑︁ Λ α=0 K α (︂ Λ α )︂ 2 Λ-α
independent messages, where each such message represents a subfile requested by some user (who naturally does not have access to it via a cache). Recalling that W d U k denotes the file requested by the user identified by U k , the desired message set and the side information set are respectively given, in their most generic form, by

M U k = {W d U k ,T : T ⊆ ([Λ] \ U)} (6.42) A U k = {W n,T : n ∈ [N ], T ⊆ [Λ], T ∩ U ̸ = ∅} (6.43)
for each user

U k with k ∈ [K |U | ] and U ⊆ [Λ].
Here, the side information graph consists of a directed graph where each vertex is a subfile, and where there is an edge from the subfile

W d P k 1 to the subfile W d Q k 2 if and only if W d P k 1 ∈ A Q k 2 with P ⊆ [Λ], Q ⊆ [Λ], k 1 ∈ [K |P| ], k 2 ∈ [K |Q| ] and P k 1 ̸ = Q k 2 .
Since our aim is to apply Lemma 2.1, we need to consider acyclic sets of vertices J in the side information graph. Toward this, we take advantage of the following lemma, which holds for any connectivity b ∈ B. 

⋃︂ k∈[K ∅,b ] ⋃︂ T ⊆[Λ] {︂ W d ∅ k ,T }︂ ∪ ⋃︂ α∈[Λ] ⋃︂ i∈[α:Λ] ⋃︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ⋃︂ k∈[K U i ,b ] ⋃︂ T i ⊆([Λ]\{c 1 ,...,c i }) {︃ W d U i k ,T i }︃ (6.44) is acyclic for any connectivity b ∈ B.
Proof. The proof is reported in Appendix B.1.

To illustrate the main idea in Lemma 6.1, we provide in the following a simple example where we provide explicitly the acyclic set of vertices for two different permutations of caches. Example 6.3. Consider the setting where there are Λ = 4 caches and K comb = (0, 0, 1, 1, 0), which implies K = 10 users and which further implies that each set of 2 caches is connected to K 2 = 1 user as well as each set of 3 caches is connected to K 3 = 1 user. Consider the demand vector d = (0, . . . , 0, d 2 , d 3 , 0, . . . , 0), where it is

d 2 = (d 12 1 , d 13 1 , d 14 1 , d 23 1 , d 24 1 , d 34 1 )
converse bound on the worst-case load. Indeed, our choice of treating distinct demands yields a converse bound, which -while it does not need to be, a priori, the tightest bound -is a valid bound. In our case, the bound proves to be tight. 

BR ⋆ comb ≥ ∑︂ k∈[K 0 ] ∑︂ T ⊆[Λ] ⃓ ⃓ ⃓W d ∅ k ,T ⃓ ⃓ ⃓ + ∑︂ α∈[Λ] ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α, c i ∈U i ∑︂ k∈[Kα] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ .
(6.49)

Constructing the Optimization Problem

Now our goal is to create several bounds as the one in (6.49) considering any vector d ∈ D and any vector c ∈ C, where we denote by D and C the set of possible demand vectors with distinct entries and the set of possible permutation vectors of the set [Λ], respectively. Our aim is then to average all these bounds to obtain in the end a useful lower bound on the optimal worst-case load. Considering that |D| =

(︂ N K )︂
K! and |C| = Λ!, we aim to simplify the expression given by

(︄ N K )︄ K!Λ!BR ⋆ comb ≥ ∑︂ d∈D ∑︂ c∈C ⎛ ⎝ ∑︂ k∈[K 0 ] ∑︂ T ⊆[Λ] ⃓ ⃓ ⃓W d ∅ k ,T ⃓ ⃓ ⃓ + ∑︂ α∈[Λ] ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α, c i ∈U i ∑︂ k∈[Kα] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ ⎞ ⎠ .
(6.50)

The next step consists of simplifying the expression in (6.50). Toward simplifying, we count how many times each subfile W n,T -for any given n ∈ [N ],

T ⊆ [Λ] and |T | = t ′ for some t ′ ∈ [0 : Λ] -appears in (6.50).

Assume that the file W n is demanded by user ∅ k for some k ∈ [K 0 ]. Out of the entire set D of all possible distinct demands, we find a total of

(︂ N K )︂
K!/N distinct demands for which a file is requested by the same user. Hence, since there are

(︂ N K )︂
K!/N distinct demands for which the file W n is requested by user ∅ k , the subfile W n,T is counted a total of Λ!

(︂ N K )︂
K!/N times within the set of demands for which such file is requested by user ∅ k . The Λ! term comes from the fact that the set

⋃︂ k∈[K 0 ] ⋃︂ T ⊆[Λ] {W d ∅ k ,T } (6.51)
does not depend on the permutation vector c, so the subfile W n,T appears in such set independently of the vector c. Since there are Λ! such vectors, the subfile W n,T is counted Λ! times any time it is requested by the user ∅ k . The same reasoning follows for each k ∈ [K 0 ], so we can conclude that the subfile W n,T is counted

K 0 Λ! (︂ N K )︂ K! N (6.52)
times when we span all cases of distinct demand vectors for which the file W n is requested by the set of users connected to 0 caches. Assume now that the file W n is demanded by user U k for some k ∈ [K 1 ] and for some U ⊆ ([Λ] \ T ) with |U| = 1. Recall also that such file is requested by user U k a total of

(︂ N K )︂
K!/N times. Then, within the set of demands for which such user requests the file W n , the subfile W n,T is counted only when the elements in the set U appear in the vector c before14 the elements in the set T . Since there is a total of t ′ !(Λ -

1 -t ′ )! (︂ Λ t ′ +1 )︂ such vectors c in the set C, the subfile W n,T is counted a total of t ′ !(Λ -1 -t ′ )! (︂ Λ t ′ +1 )︂(︂ N K )︂
K!/N times within the set of demands for which user U k requests the file W n . The same reasoning follows for each k ∈ [K 1 ] and for each U ⊆ ([Λ] \ T ) with |U| = 1, so the subfile W n,T is counted a total of

K 1 (Λ -t ′ )t ′ !(Λ -1 -t ′ )! (︄ Λ t ′ + 1 )︄ (︂ N K )︂ K! N (6.53)
times across all the demands for which the file W n is requested by the set of users connected to 1 cache. Let us consider now that the file W n is demanded by user U k for some k ∈ [K α ] and for some U ⊆ ([Λ] \ T ) with |U| = α. Recall also that such file is requested by user U k a total of

(︂ N K )︂
K!/N times. Then, within the set of demands for which such user requests the file W n , the subfile W n,T is counted only when the elements in the set U appear in the vector c before the elements in the set T . Since there is a total of

α!t ′ !(Λ -α -t ′ )! (︂ Λ t ′ +α )︂ such vectors c, the subfile W n,T is counted a total of α!t ′ !(Λ -α -t ′ )! (︂ Λ t ′ +α )︂(︂ N K )︂
K!/N times within the set of demands for which user U k requests the file W n . The same reasoning follows for each k ∈ [K α ] and for each U ⊆ ([Λ] \ T ) with |U| = α, so the subfile W n,T is counted a total of

K α (︄ Λ -t ′ α )︄ α!t ′ !(Λ -α -t ′ )! (︄ Λ t ′ + α )︄ (︂ N K )︂ K! N (6.54)
times within the set of demands for which the file W n is requested by the set of users connected to α caches. Consequently, if we consider all distinct demands in the set D, the subfile W n,T is counted a total of

Λ-t ′ ∑︂ α=0 K α (︄ Λ -t ′ α )︄ α!t ′ !(Λ -α -t ′ )! (︄ Λ t ′ + α )︄ (︂ N K )︂ K! N (6.55)
times, which gives us the number of times this same subfile appears in (6.50).

The same reasoning follows for any n ∈ [N ] and for any T ⊆

[Λ] with |T | = t ′ .
Thus, the expression in (6.50) can be rewritten as

R ⋆ comb ≥ 1 (︂ N K )︂ K!Λ! Λ ∑︂ t ′ =0 Λ-t ′ ∑︂ α=0 ⎛ ⎝ K α (︄ Λ -t ′ α )︄ α!t ′ !(Λ -α -t ′ )! × (︄ Λ t ′ + α )︄(︄ N K )︄ K!x t ′ ⎞ ⎠ (6.56) = Λ ∑︂ t ′ =0 Λ-t ′ ∑︂ α=0 K α (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ x t ′ (6.57) = Λ ∑︂ t ′ =0 f (t ′ )x t ′ (6.58)
where we define

f (t ′ ) := Λ-t ′ ∑︂ α=0 K α (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ (6.59) 0 ≤ x t ′ := ∑︂ n∈[N ] ∑︂ T ⊆[Λ]:|T |=t ′ |W n,T | N B . ( 6.60) 
At this point, we seek to lower bound the minimum worst-case load R ⋆ comb by lower bounding the solution to the following optimization problem

min x Λ ∑︂ t ′ =0 f (t ′ )x t ′ (6.61a) subject to Λ ∑︂ t ′ =0 x t ′ = 1 (6.61b) Λ ∑︂ t ′ =0 t ′ x t ′ ≤ ΛM N (6.61c)
where (6.61b) and (6.61c) correspond to the file size constraint and the cumulative cache-size constraint, respectively.

Lower Bounding the Solution to the Optimization Problem

Since the auxiliary variable x t ′ can be considered as a probability mass function, the optimization problem in (6.61) can be seen as the minimization of E[f (t ′ )]. Moreover, the following holds.

Lemma 6.2. The function f (t ′ ) is convex and decreasing in t ′ .

Proof. The proof is reported in Appendix B.2.

Taking advantage of Lemma 6.2, we can write

E[f (t ′ )] ≥ f (E[t ′ ]
) using Jensen's inequality. Then, since f (t ′ ) is decreasing with increasing t ′ ∈ [0 : Λ], we can further write f (E[t ′ ]) ≥ f (ΛM/N ) taking advantage of the fact that E[t ′ ] is upper bounded as in (6.61c). Consequently, E[f (t ′ )] ≥ f (ΛM/N ), where t = ΛM/N . Now, when t is an integer, the bound is simply the function f (t) evaluated at t ∈ [0 : Λ]. For non-integer values of t, we can follow again the reasoning in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF], [START_REF] Parrinello | Fundamental limits of coded caching with multiple antennas, shared caches and uncoded prefetching[END_REF], [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] as in Section 2.4.1 to take the lower convex envelope of the sequence of points {(t, f (t)) : t ∈ [0 : Λ]}. To conclude, the converse bound the optimal worst-case load R ⋆ comb is lower bounded by R comb,LB which is a piecewise linear curve with corner points

(M, R comb,LB ) = ⎛ ⎝ t N Λ , Λ-t ∑︂ α=0 K α (︂ Λ t+α )︂ (︂ Λ t )︂ ⎞ ⎠ , ∀t ∈ [0 : Λ]. (6.62)
Since R comb,LB = R comb,UB , we can state that the optimal worst-case load R ⋆ comb under uncoded placement is a piecewise linear curve with the same corner points as in (6.62). This concludes the proof.

Proof of Theorem 6.2

The proof follows along the lines of the index coding approach presented in Section 6.5. However, the main difference here is that we will have to develop a bound for an ensemble of connectivities, whereas the entire procedure in Section 6.5 assumed a specific connectivity. Hence, we remind that we are considering now the scenario where there are K users and each of them is connected to exactly α caches for a fixed value of α ∈ [Λ], where the connectivity is not constrained by further restrictions and where the connectivity is not known in advance (i.e., it is not known during placement). We remind the reader that we are interested in the connectivity ensemble B α as a whole, and that we want to develop a converse on the optimal average worst-case load R ⋆ avg,Bα under uncoded and fixed cache placement. Furthermore, we recall that we assume each of these connectivities to be equiprobable and that for any b ∈ B α the number of users takes the form

K = K ′ α = ∑︂ U ⊆[Λ]:|U |=α K U ,b .
(6.63)

Constructing the Index Coding Bound

The first step of the proof consists of dividing generically -and independently of the connectivity b ∈ B α -each file into a maximum of 2 Λ non-overlapping subfiles as in (6.41), recalling that W n,T represents the subfile which is cached uniquely and exactly by the caches in T . Then, similarly to how we proceeded in Section 6.5, we always assume the demand vector d = (0, . . . , 0, d α , 0, . . . , 0) to have distinct entries. Given a connectivity b ∈ B α , we consider the index coding problem with K ′ = K users and N ′ = K2 Λ-α independent messages. Notice that, since each user is connected to exactly α caches, the number of desired subfiles is exactly equal to 2 Λ-α , so N ′ is the total number of subfiles requested by the K users. Recalling that W d U k denotes the file requested by the user identified by U k , the desired message set and the side information set are respectively given by

M U k = {W d U k ,T : T ⊆ ([Λ] \ U)} (6.64) A U k = {W n,T : n ∈ [N ], T ⊆ [Λ], T ∩ U ̸ = ∅} (6.65) for each user U k with U ⊆ [Λ], |U| = α and k ∈ [K U ,b
]. The side information graph consists again of a directed graph where each vertex is a subfile, and where there is a connection from the subfile

W d P k 1 to the subfile W d Q k 2 if and only if W d P k 1 ∈ A Q k 2 with P ⊆ [Λ], Q ⊆ [Λ], |P| = |Q| = α, k 1 ∈ [K P,b ], k 2 ∈ [K Q,b ] and P k 1 ̸ = Q k 2 .
Since our aim is to apply Lemma 2.1, we need to consider acyclic sets of vertices J in the side information graph. In the spirit of Lemma 6.1, we know that now the set

⋃︂ i∈[α:Λ] ⋃︂ U i ⊆{c 1 ,...,c i }:|U i |=α, c i ∈U i ⋃︂ k∈[K U i ,b ] ⋃︂ T i ⊆([Λ]\{c 1 ,...,c i }) {︃ W d U i k ,T i }︃ (6.66) 
is acyclic for any demand vector d and for any permutation of the Λ caches represented by the vector c = (c 1 , . . . , c Λ ). Applying Lemma 2.1 yields the following lower bound

BR b ≥ ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α, c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ (6.67)
where the term R b represents the worst-case load given the connectivity b ∈ B α .

Counting the Connectivities

As it will be of use later, we proceed to count how many possible connectivities exist in B α , recalling that such ensemble includes connectivities for which each user connects to exactly α caches. Toward this, if we let y U be a non-negative integer value that represents the total number of users connected to the caches in U, the number of connectivities in B α is equal to the number of non-negative integer solutions of the equation

∑︂ U ⊆[Λ]:|U |=α y U = K. (6.68)
This is simply equal to the number of ways we can express the integer K as the sum of a sequence of

(︂ Λ α )︂
non-negative integers. Hence, such number corresponds to the number of

(︂ Λ α )︂
-weak compositions [START_REF] Stanley | Enumerative Combinatorics, Second[END_REF] of the integer K and is given by

|B α | = (︄ K + (︂ Λ α )︂ -1 K )︄ . ( 6.69) 
This highlights the fact that a connectivity b ∈ B α is nothing but a specific way to distribute K users among

(︂ Λ α )︂
possible states, where a state represents a set of α caches which a user can be connected to.

Constructing the Optimization Problem

Our goal is to develop an information-theoretic converse on the optimal average worst-case load R ⋆ avg,Bα over the ensemble of connectivities B α . Hence, assuming equiprobable connectivities implies that

R ⋆ avg,Bα = 1 |B α | ∑︂ b∈Bα R b . ( 6.70) 
To proceed, we split the ensemble of interest as B α = B α,a ∪ B α,b , where B α,a is the set of connectivities for which all the K users are connected to the same α caches and where B α,b = B α \ B α,a . For each connectivity b ∈ B α,a , we will create several bounds as the one in (6.67). To do so, we consider any vector d ∈ D and for each such vector we employ Λ! times the permutation vector c b whose first α positions describe the indices of the caches to which the K users are connected 15 according to the connectivity b ∈ B α,a . We assume that the first α elements in c b are put in ascending order and then, similarly, the remaining Λ -α elements of the vector c b are also placed in 15 For example, let Λ = 7 and α = 2. If we consider the connectivity b 1 ∈ B α,a for which all K users are connected to the caches {3, 5}, then we consider the permutation vector c b1 = (3, 5, 1, 2, 4, 6, 7). Similarly, if we consider the connectivity b 2 ∈ B α,a for which all K users are connected to the caches {4, 7}, then we consider the permutation vector c b2 = (4, 7, 1, 2, 3, 5, 6). For each connectivity b ∈ B α,a , the vector c b is employed Λ! times for each demand vector d ∈ D. ascending order. Instead, for each connectivity b ∈ B α,b , we will create several bounds as the one in (6.67) by considering any demand vector d ∈ D and any permutation vector c ∈ C. Our aim is then to average all these bounds to eventually obtain a useful lower bound on the optimal average worst-case load. Considering that we have |D| =

(︂ N K )︂
K! and |C| = Λ!, we aim to simplify the expression given by

(︄ N K )︄ K!Λ!B ∑︂ b∈Bα R b ≥ ∑︂ b∈Bα,a ∑︂ d∈D Λ! ∑︂ k∈[K] ∑︂ T i ⊆([Λ]\{c b,1 ,...,c b,α }) ⃓ ⃓ ⃓W d {c b,1 ,...,c b,α } k ,T i ⃓ ⃓ ⃓ + ∑︂ b∈B α,b ∑︂ d∈D ∑︂ c∈C ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ (6.71)
which can be rewritten by means of (6.70) as

R ⋆ avg,Bα ≥ 1 (︂ N K )︂ K!Λ! |B α | B ⎛ ⎝ ∑︂ b∈Bα,a ∑︂ d∈D Λ! ∑︂ k∈[K] ∑︂ T i ⊆([Λ]\{c b,1 ,...,c b,α }) ⃓ ⃓ ⃓W d {c b,1 ,...,c b,α } k ,T i ⃓ ⃓ ⃓ + ∑︂ b∈B α,b ∑︂ d∈D ∑︂ c∈C ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ ⎞ ⎠ . (6.72)
Our next step is to simplify the expression in (6.72) and part of doing so involves counting how many times each subfile W n,T -for any n ∈ [N ],

T ⊆ [Λ] and |T | = t ′ for some t ′ ∈ [0 : Λ] -appears in (6.72). Consider the connectivities in B α,a . Assume that the file W n is demanded by the user U k for some k ∈ [K] and for some U ⊆ ([Λ] \ T ) with |U| = α. Since this corresponds to the connectivity b ∈ B α,a for which all the users are associated to the caches in U, we employ Λ! consecutive times the permutation vector c b having in the first α positions the elements in U. Consequently, since here the elements in T are by construction after the elements in U in the vector c b , we can deduce that the subfile W n,T is counted Λ! times -namely, once for each of the Λ! times that the vector c b is employed -whenever the file W n is requested by user U k . Recalling that any file is requested by user U k a total of

(︂ N K )︂ K!/N times, the subfile W n,T is counted Λ! (︂ N K )︂ K!/N
within the set of demands for which user U k requests the file W n . The same reasoning follows for each k ∈ [K] and for each U ⊆ ([Λ] \ T ) with |U| = α, so the subfile W n,T is counted

K (︄ Λ -t α )︄ Λ! (︂ N K )︂ K! N (6.73)
times when we focus on connectivities in B α,a . Consider now a specific connectivity b ∈ B α,b . Assume that the file W n is demanded by the user U k for some k ∈ [K U ,b ] and for some U ⊆ ([Λ] \ T ) with |U| = α, and recall once more that such file is requested by user U k a total of

(︂ N K )︂
K!/N times. Within the set of demand vectors for which user U k requests the file W n , the subfile W n,T is counted only when the elements in the set U appear in the vector c before the elements in the set

T . Since there is a total of α!t ′ !(Λ -α -t ′ )! (︂ Λ t ′ +α )︂ such vectors c, the subfile W n,T is counted a total of α!t ′ !(Λ -α -t ′ )! (︂ Λ t ′ +α )︂(︂ N K )︂
K!/N times within the set of distinct demands for which user U k requests the file W n . The same reasoning follows for each k

∈ [K U ,b ], so the subfile W n,T is counted a total of K U ,b α!t ′ !(Λ -α -t ′ )! (︂ Λ t ′ +α )︂(︂ N K )︂
K!/N times within the set of distinct demands for which the file W n is requested by the users connected to the caches in

U for a given connectivity b ∈ B α,b . Now, considering that B α,b = B \ B α,a , it holds that K U ,b ∈ [0 : K -1]. Moreover, we can easily count how many connectivities b ∈ B α,b exist for which K U ,b = K -i where i ∈ [K].
Indeed, this number of connectivities is equal to the number of non-negative integer solutions of the equation

∑︂ U ′ ⊆[Λ]:|U ′ |=α,U ′ ̸ =U y U ′ = i (6.74)
which is equal to the number of

(︂(︂ Λ α )︂ -1 )︂ 
-weak compositions of the integer i. Such number is given by

(︄ i + (︂ Λ α )︂ -2 i )︄ . ( 6.75) 
At this point, when we consider all connectivities in B α,b , there are

(︂ ( Λ α )-1 1 )︂ connectivities with y U = K -1, there are (︂ ( Λ α ) 2 )︂ connectivities with y U = K -2,
there are

(︂ ( Λ α )+1 3 )︂
connectivities with y U = K -3, and so on. In the end, if

we go over all possible connectivities in B α,b , the subfile W n,T is counted a total of

α!t ′ !(Λ -α -t ′ )! (︄ Λ t ′ + α )︄ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.76)
times within the set of demands for which the file W n is requested by users connected to the caches in U. The same reasoning applies for each U ⊆ ([Λ]\T ) with |U| = α, so the subfile W n,T is counted a total of

α!t ′ !(Λ -α -t ′ )! (︄ Λ t ′ + α )︄(︄ Λ -t ′ α )︄ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.77)
times when we focus on connectivities in B α,b .

Now, if we focus on all connectivities in B α = B α,a ∪ B α,b , we can see that subfile W n,T appears in (6.72) a total of

K (︄ Λ -t ′ α )︄ Λ! (︂ N K )︂ K! N + Λ! (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.78)
times. The same reasoning follows for any n ∈ [N ] and for any T ⊆ [Λ] with |T | = t ′ . Thus, the expression in (6.72) can be rewritten after some simplifications as

R ⋆ avg,Bα ≥ Λ-α+1 ∑︂ t ′ =0 1 |B α | ⎛ ⎝ K (︄ Λ -t ′ α )︄ + (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ ⎞ ⎠ x t ′ (6.79) = Λ-α+1 ∑︂ t ′ =0 f (t ′ )x t ′ (6.80) 
where we define

f (t ′ ) := 1 |B α | ⎛ ⎝ K (︄ Λ -t ′ α )︄ + (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ ⎞ ⎠ (6.81) 0 ≤ x t ′ := ∑︂ n∈[N ] ∑︂ T ⊆[Λ]:|T |=t ′ |W n,T | N B . ( 6.82) 
At this point, we seek to lower bound the minimum worst-case load R ⋆ avg,Bα by lower bounding the solution to the following optimization problem

min x Λ-α+1 ∑︂ t ′ =0 f (t ′ )x t ′ (6.83a) subject to Λ ∑︂ t ′ =0 x t ′ = 1 (6.83b) Λ ∑︂ t ′ =0 t ′ x t ′ ≤ ΛM N (6.83c)
where (6.83b) and (6.83c) correspond to the file size constraint and the cumulative cache-size constraint, respectively.

Lower Bounding the Solution to the Optimization Problem

Before proceeding to lower bound the solution to the optimization problem, we simplify the expression f (t) as follows

f (t ′ ) = K |B α | (︄ Λ -t ′ α )︄ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.84) = K |B α | (︄ Λ -t ′ α )︄ - K |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=0 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.85) = K |B α | (︄ Λ -t ′ α )︄ ⎛ ⎝ 1 - (︂ Λ t ′ +α )︂ (︂ Λ-t ′ α )︂(︂ Λ t ′ )︂ ⎞ ⎠ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=0 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.86) = K |B α | (︄ Λ -t ′ α )︄ ⎛ ⎝ 1 - 1 (︂ t ′ +α α )︂ ⎞ ⎠ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=0 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.87) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=0 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.88)
where we define

A t ′ := K |B α | (︄ Λ -t ′ α )︄ ⎛ ⎝ 1 - 1 (︂ t ′ +α α )︂ ⎞ ⎠ . ( 6.89) 
Now we can further simplify f (t ′ ) as follows

f (t ′ ) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=0 (K -i) (︄ i + (︂ Λ α )︂ -2 i )︄ (6.90) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ ⎛ ⎝ K K-1 ∑︂ i=0 (︄ i + (︂ Λ α )︂ -2 i )︄ - K-1 ∑︂ i=0 i (︄ i + (︂ Λ α )︂ -2 i )︄ ⎞ ⎠ (6.91) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ ⎛ ⎝ K (︄ K + (︂ Λ α )︂ -2 K -1 )︄ - (︄(︄ Λ α )︄ -1 )︄ K-2 ∑︂ i=0 (︄ i + (︂ Λ α )︂ -2 i )︄ ⎞ ⎠ (6.92) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ ⎛ ⎝ K 2 (︂ Λ α )︂ -1 (︄ K + (︂ Λ α )︂ -2 K )︄ - (︄(︄ Λ α )︄ -1 )︄ (︄ K + (︂ Λ α )︂ -2 K -2 )︄ ⎞ ⎠ (6.93) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ ⎛ ⎝ K 2 (︂ Λ α )︂ -1 (︄ K + (︂ Λ α )︂ -2 K )︄ - K(K -1) (︂ Λ α )︂ (︄ K + (︂ Λ α )︂ -2 K )︄ ⎞ ⎠ (6.94) = A t ′ + 1 |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K (︂ Λ α )︂ (︄ K + (︂ Λ α )︂ -1 K )︄ (6.95) = K (︂ Λ t ′ +α )︂ (︂ Λ α )︂(︂ Λ t ′ )︂ + A t ′ (6.96)
where we used in (6.92) and in (6.93) the well-known hockey-stick identity in (2.62). At this point, we can rewrite f (t ′ ) as

f (t ′ ) = K (︂ Λ t ′ +α )︂ (︂ Λ α )︂(︂ Λ t ′ )︂ + A t ′ . (6.97)
Now, since the auxiliary variable x t ′ can be considered once again as a probability mass function, the optimization problem in (6.83) can be seen as the minimization of E[f (t ′ )]. Moreover, the function f (t ′ ) can be rewritten also as

f (t ′ ) = K |B α | - (︂ Λ α )︂ (︂ Λ α )︂ |B α | (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ + K |B α | (︄ Λ -t ′ α )︄ . ( 6.98) 
Now, from Lemma 6.2 it follows that the term

(︂ Λ t ′ +α )︂ / (︂ Λ t ′ )︂
is convex and decreasing in t ′ ; then, it can be easily checked 16 that the term

(︂ Λ-t ′ α )︂
is convex and decreasing as well; and finally, it holds that

|B α | ≥ (︂ Λ α )︂
. Hence, f (t ′ ) is a non-negative linear combination of convex and decreasing functions and so it is convex and strictly decreasing for increasing t ′ . Consequently, by applying Jensen's inequality we can write

E[f (t ′ )] ≥ f (E[t ′ ]) ≥ f (ΛM/N )
after also considering that E[t ′ ] is upper bounded as in (6.83c). Thus, for t = ΛM/N and since K = K ′ α , the optimal average worst-case load R ⋆ avg,Bα is lower bounded by R avg,Bα,LB which is a piecewise linear curve with corner points

(M, R avg,Bα,LB ) = ⎛ ⎝ t N Λ , K ′ α (︂ Λ t+α )︂ (︂ Λ α )︂(︂ Λ t )︂ + A t ⎞ ⎠ , ∀t ∈ [0 : Λ -α + 1]. (6.99)
This concludes the proof.

Proof of Theorem 6.3

Since the proof follows the structure of the proof in Section 6.6, we will make an effort to avoid repetitions when possible. In this setting, we focus on the ensemble B, which captures all possible connectivities. Here, each of the K users can connect to any set of caches without any specific constraint or structure. Our interest is treating the ensemble as a whole.

Constructing the Index Coding Bound

The mapping of the caching problem to the index coding problem is identical to what we presented in Section 6.5 and in Section 6.6, so we directly apply Lemma 2.1 using the acyclic set presented in Lemma 6.1, obtaining the bound

BR b ≥ ∑︂ k∈[K ∅,b ] ∑︂ T ⊆[Λ] ⃓ ⃓ ⃓W d ∅ k ,T ⃓ ⃓ ⃓ + ∑︂ α∈[Λ] ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ (6.100)
for a given connectivity b ∈ B.

Counting the Connectivities

Considering the set of connectivities B and recalling that there are K users, where K is naturally fixed throughout the connectivites, it consequently holds that

∑︂ U ⊆[Λ] K U ,b = K (6.101)
for each b ∈ B. Toward evaluating the cardinality of the set B, if we let y U be a non-negative integer value counting the total number of users connected to the caches in U, then the number of connectitivites in B is equal to the number of non-negative integer solutions of the equation

∑︂ U ⊆[Λ] y U = K. ( 6.102) 
In this case, this is simply equal to the number of 2 Λ -weak compositions [START_REF] Stanley | Enumerative Combinatorics, Second[END_REF] of the integer K, which is given by

|B| = (︄ K + 2 Λ -1 K )︄ . ( 6.103) 
Similarly to what we already observed when counting the connectivities in B α for the proof of Theorem 6.2 in Section 6.6, now a connectivity b ∈ B can be seen as a way to distribute K users among 2 Λ possible states, where each state is an element of the power set of [Λ], i.e., a set of α caches -for some α ∈ [0 : Λ] -which a user can be connected to.

Constructing the Optimization Problem

Toward building a converse bound on the optimal average worst-case load R ⋆ avg,B over the connectivities in B, we recall that as before we have

R ⋆ avg,B = 1 |B| ∑︂ b∈B R b . (6.104)
Let us split again the ensemble of interest as B = B a ∪ B b , where B a is the set of connectivities for which all the K users are connected to the same set of caches and where

B b = B \ B a .
For each connectivity b ∈ B a , we will create several bounds as the one in (6.100). Toward this, we consider any vector d ∈ D and for each such vector we employ Λ! times the permutation vector c b whose first α positions hold the indices of the caches to which the K users are connected according to the connectivity b ∈ B a . Also in this case, we assume that these first α positions in c b are put in ascending order and that the same holds, separately, for the remaining Λ -α elements. Notice that, differently from the proof in Theorem 6.2, here it is the case that α ∈ [0 : Λ], since we are considering the most general ensemble of connectivities.

On the other hand, for each connectivity b ∈ B b we will create several lower bounds as the one in (6.100) by considering any demand vector d ∈ D and any permutation vector c ∈ C. Our aim is then to take the average of all such bounds to eventually obtain a useful lower bound on the optimal average worst-case load across connectivities in B. Noticing that it holds that B a = ⋃︁ Λ α=0 B α,a and recalling that we have |D| =

(︂ N K )︂
K! and |C| = Λ!, we aim to simplify the expression given by

(︄ N K )︄ K!Λ!B ∑︂ b∈B R b ≥ Λ ∑︂ α=0 ∑︂ b∈Bα,a ∑︂ d∈D Λ! ∑︂ k∈[K] ∑︂ T i ⊆([Λ]\{c b,1 ,...,c b,α }) ⃓ ⃓ ⃓W d {c b,1 ,...,c b,α } k ,T i ⃓ ⃓ ⃓ + ∑︂ b∈B b ∑︂ d∈D ∑︂ c∈C (︄ ∑︂ k∈[K ∅,b ] ∑︂ T ⊆[Λ] ⃓ ⃓ ⃓W d ∅ k ,T ⃓ ⃓ ⃓ + ∑︂ α∈[Λ] ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ )︄ (6.105) 
which can be rewritten by means of (6.104) as

R ⋆ avg,B ≥ 1 (︂ N K )︂ K!Λ! |B| B ⎡ ⎣ Λ ∑︂ α=0 ∑︂ b∈Bα,a ∑︂ d∈D Λ! ∑︂ k∈[K] ∑︂ T i ⊆([Λ]\{c b,1 ,...,c b,α }) ⃓ ⃓ ⃓W d {c b,1 ,...,c b,α } k ,T i ⃓ ⃓ ⃓ + ∑︂ b∈B b ∑︂ d∈D ∑︂ c∈C ⎛ ⎝ ∑︂ k∈[K ∅,b ] ∑︂ T ⊆[Λ] ⃓ ⃓ ⃓W d ∅ k ,T ⃓ ⃓ ⃓ + ∑︂ α∈[Λ] ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ∑︂ k∈[K U i ,b ] ∑︂ T i ⊆([Λ]\{c 1 ,...,c i }) ⃓ ⃓ ⃓ ⃓ W d U i k ,T i ⃓ ⃓ ⃓ ⃓ ⎞ ⎠ ⎤ ⎦ . (6.106)
The next step is to simplify the expression in (6.106). Toward this, we proceed to count how many times each subfile W n,T -for any given n ∈

[N ], T ⊆ [Λ]
and |T | = t ′ for some t ′ ∈ [0 : Λ] -appears in (6.106). Consider the connectivities in B a . Assume that the file W n is demanded by the user U k for some k ∈ [K], for some U ⊆ ([Λ] \ T ) with |U| = α and for some α ∈ [0 : Λ -t ′ ]. If we follow the same reasoning as in Section 6.6 and we further consider that α ∈ [0 : Λ -t ′ ], we can find that the subfile W n,T is counted

Λ-t ′ ∑︂ α=0 K (︄ Λ -t ′ α )︄ Λ! (︂ N K )︂ K! N (6.107)
times across the set of connectivities in B a .

Let us now consider a specific connectivity b ∈ B b . Assume that the file W n is demanded by the user U k for some k ∈ [K U ,b ], for some U ⊆ ([Λ] \ T ) with |U| = α and for some α ∈ [0 : Λ -t ′ ], recalling once again that such file is requested by user U k a total of

(︂ N K )︂
K!/N times. Once again, the procedure to follow is the same described in Section 6.6. The difference here is to count how many connectivities b ∈ B b exist with K U ,b = K -i where i ∈ [K]. Indeed, this number of connectivities is now equal to the number of non-negative integer solutions of the equation

∑︂ U ′ ⊆[Λ]:U ′ ̸ =U y U ′ = i (6.108)
which is equal to the number of

(︂ 2 Λ -1 )︂
-weak compositions of the integer i. Such number is given by

(︄ i + 2 Λ -2 i )︄ . ( 6.109) 
Thus, going over all connectivities in B b , the subfile W n,T is counted a total of

α!t ′ !(Λ -α -t ′ )! (︄ Λ t ′ + α )︄ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K -i) (︄ i + 2 Λ -2 i )︄ (6.110)
times within the set of distinct demands for which the file W n is requested by users connected to the α caches in U. The same reasoning applies for each U ⊆ ([Λ] \ T ) with |U| = α and for each α ∈ [0 : Λ -t ′ ], and so the subfile W n,T is counted a total of

Λ-t ′ ∑︂ α=0 α!t ′ !(Λ-α-t ′ )! (︄ Λ t ′ + α )︄(︄ Λ -t ′ α )︄ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K-i) (︄ i + 2 Λ -2 i )︄ (6.111) 
times when we span across connectivities in B b . Now, going through all connectivities in B = B a ∪ B b , we can see that the subfile W n,T appears in (6.106) a total of

Λ-t ′ ∑︂ α=0 ⎛ ⎝ K (︄ Λ -t ′ α )︄ Λ! (︂ N K )︂ K! N + Λ! (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ (︂ N K )︂ K! N K-1 ∑︂ i=1 (K -i) (︄ i + 2 Λ -2 i )︄ ⎞ ⎠ (6.112)
times. The same reasoning follows for any n ∈ [N ] and for any T ⊆ [Λ] with |T | = t ′ . Thus, we can rewrite (6.106) after some simplifications as

R ⋆ avg,B ≥ Λ ∑︂ t ′ =0 Λ-t ′ ∑︂ α=0 1 |B| ⎛ ⎝ K (︄ Λ -t ′ α )︄ + (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + 2 Λ -2 i )︄ ⎞ ⎠ x t ′ (6.113) = Λ ∑︂ t ′ =0 f (t ′ )x t ′ (6.114)
where we define

f (t ′ ) := Λ-t ′ ∑︂ α=0 1 |B| ⎛ ⎝ K (︄ Λ -t ′ α )︄ + (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + 2 Λ -2 i )︄ ⎞ ⎠ (6.115) 0 ≤ x t ′ := ∑︂ n∈[N ] ∑︂ T ⊆[Λ]:|T |=t ′ |W n,T | N B . ( 6.116) 
At this point, formulating the optimization problem as in (6.61) and as in (6.83), we seek to lower bound the solution to the following

min x Λ ∑︂ t ′ =0 f (t ′ )x t ′ (6.117a) subject to Λ ∑︂ t ′ =0 x t ′ = 1 (6.117b) Λ ∑︂ t ′ =0 t ′ x t ′ ≤ ΛM N . ( 6 
.117c)

Lower Bounding the Solution to the Optimization Problem

Before proceeding to lower bound the solution to the optimization problem, we aim to simplify the expression f (t ′ ). Toward this, we notice that the only difference between the expression in (6.81) and the expression in (6.115) is that the latter is a summation over α of Λ -t ′ + 1 terms, where each of these terms is the same as the expression in (6.81) except for the considered ensemble B and for the term 2 Λ in place of

(︂ Λ α )︂
in the binomial coefficient which appears in the summation over i. This latter difference does not change the simplification steps presented in the previous proof for what concerns each summand in (6.115), so we can directly conclude that f (t ′ ) can be simplified as

f (t ′ ) = Λ-t ′ ∑︂ α=0 K |B| ⎛ ⎝ (︄ Λ -t ′ α )︄ + 1 |B| (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ K-1 ∑︂ i=1 (K -i) (︄ i + 2 Λ -2 i )︄ ⎞ ⎠ (6.118) = Λ-t ′ ∑︂ α=0 ⎛ ⎝ K (︂ Λ t ′ +α )︂ 2 Λ (︂ Λ t ′ )︂ + A t ′ ,α ⎞ ⎠ (6.119)
where we define

A t ′ ,α := K |B| (︄ Λ -t ′ α )︄ ⎛ ⎝ 1 - 1 (︂ t ′ +α α )︂ ⎞ ⎠ . (6.120)
Now, it can be shown that each summand

K (︂ Λ t ′ +α )︂ 2 Λ (︂ Λ t ′ )︂ + A t ′ ,α (6.121) 
is convex and decrasing for fixed value of α, as we did previously in Section 6.6. Hence, we can conclude also in this case that the function f (t ′ ) is a nonnegative linear combination of convex and decreasing functions, and so we can lower bound the solution to the optimization problem again applying Jensen's inequality and using the memory size constraint. Consequently, for t = ΛM/N , following the same steps as in the proof of Section 6.6, we can now conclude that the optimal average worst-case load B is lower bounded by R avg,B,LB which is a piecewise linear curve with corner points

(M, R avg,B,LB ) = ⎛ ⎝ t N Λ , Λ-t ∑︂ α=0 K (︂ Λ t+α )︂ 2 Λ (︂ Λ t )︂ + A t,α ⎞ ⎠ , ∀t ∈ [0 : Λ] (6.122)
This concludes the proof.

Chapter 7

Multi-Access Distributed Computing

In this chapter, we propose multi-access distributed computing (MADC) as a novel generalization of the original coded distributed computing (CDC) model, where now mappers (nodes in charge of the map functions) and reducers (nodes in charge of the reduce functions) are distinct computing nodes that are connected through a multi-access network topology. Focusing on the MADC setting with combinatorial topology, which implies Λ mappers and K reducers such that there is a unique reducer connected to any α mappers, we propose a novel coded scheme and a novel information-theoretic converse, which jointly identify the optimal inter-reducer communication load, as a function of the computation load, to within a constant gap of 1.5. Additionally, a modified coded scheme and converse identify the optimal max-link communication load across all existing links to within a gap of 4. The unparalleled coding gains reported here should not be simply credited to having access to more mapped data, but rather to the powerful role of topology in effectively aligning mapping outputs. This realization raises the open question of which multiaccess network topology guarantees the best possible performance in distributed computing.

Introduction

W ith the development of large-scale machine learning algorithms and applications relying heavily on large volumes of data, we are now experiencing an ever-growing need to distribute large computations across multiple computing nodes. Different computing frameworks, such as MapReduce [START_REF] Dean | MapReduce: Simplified data processing on large clusters[END_REF] and Spark [START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF], have been proposed to address these needs, based 137 on the aforementioned simple yet powerful concept of distributing large-scale algorithms -to be executed over a set of input data files -across multiple computing machines. Under the well-known MapReduce framework, the overall process is typically split in three distinct phases, starting with the map phase, the shuffle phase and then the reduce phase. During the map phase, each computing node is assigned a subset of the input data files, and proceeds to apply to each locally available file certain designated map functions. The outputs of such map functions, referred to as intermediate values (IVs), are then exchanged among the computing nodes during the shuffle phase, so that each computing node can retrieve any missing, required IVs it did not compute locally. Finally, during the reduce phase, each computing node computes one (or more) output functions depending on its assigned reduce functions, each of which takes as input the IVs computed for each input file.

Coded Distributed Computing

Several studies have shown that the aforementioned distributed map-shufflereduce approach comes with bottlenecks that may severely hinder the parallelization of computationally-intensive operations. While some works [START_REF] Lee | Speeding up distributed machine learning using codes[END_REF], [START_REF] Kumar | A comprehensive review of straggler handling algorithms for MapReduce framework[END_REF] focused on the impact of straggler nodes, other works have pointed out that the total execution time of a distributed computing application is often dominated by the shuffling process. For instance, the work in [START_REF] Zhang | Performance modeling of MapReduce jobs in heterogeneous cloud environments[END_REF], having explored the behavior of several algorithms on the Amazon EC2 cluster, revealed that the communication load in the shuffle phase was in fact the dominant bottleneck in computing the above tasks in a distributed manner. Similarly, the authors in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] observed that, for the execution of a conventional TeraSort application, more than 95 % of the overall execution time was spent for inter-node communication.

Motivated by this communication bottleneck in the shuffle phase, the authors in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] introduced coded distributed computing (CDC) as a novel framework that can yield lower communication loads during data shuffling. This gain could be attributed to a careful and joint design of the map and the shuffle phases. Approaching the distributed computing problem from an information-theoretic perspective, the authors brought to light the interesting relationship between the computation load during the mapping phase, and the communication load of the shuffling step. In particular, the work in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] revealed that if the computation load of the mapping phase is carefully increased by a factor r -which means that each input file is mapped on average by r carefully chosen computing nodes -then the communication load can be reduced by the same factor r by employing coding techniques during the shuffle phase1 . Building on the coding-based results in cache networks [START_REF] Maddah-Ali | Fundamental limits of caching[END_REF], [START_REF] Ji | Fundamental limits of caching in wireless D2D networks[END_REF], the work in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] characterized the exact information-theoretic tradeoff between this computation and communication loads under any map-shufflereduce scheme with uniform mapping capabilities and uniform assignment of reduce functions.

Since its original information-theoretic inception in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], coded distributed computing has been explored with several variations. Such variations include heterogeneity aspects where, for example, each computing node may be assigned different numbers of files to be mapped and functions to be reduced. For such settings, novel schemes, based on hypercube and hypercuboid geometric structures, were developed in [START_REF] Woolsey | A combinatorial design for cascaded coded distributed computing on general networks[END_REF], [START_REF] Woolsey | A new combinatorial coded design for heterogeneous distributed computing[END_REF], which managed not only to compensate for the heterogeneous nature of the considered scenarios, but to also exploit these asymmetries in order to require a smaller number of input files2 , compared to the initial scheme in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. Regarding this problem of requiring a large number of input files, it is worth also mentioning the work in [START_REF] Parrinello | Coded distributed computing with node cooperation substantially increases speedup factors[END_REF], where the authors proposed a system model for distributed computing, where the required number of input files was lowered dramatically under an assumption of a multi-rank wireless network. Some additional works explored the scenario where the computing servers communicate with each other through switch networks [START_REF] Wan | Topological coded distributed computing[END_REF] or in the presence of a randomized connectivity [START_REF] Srinivasavaradhan | Distributed computing trade-offs with random connectivity[END_REF], whereas some other works further investigated distributed computing over wireless channels [START_REF] Li | A scalable framework for wireless distributed computing[END_REF], as well as explored the interesting scenario where each computing node might have limited storage and computational resources [START_REF] Yan | A storage-computation-communication tradeoff for distributed computing[END_REF], [START_REF] Yan | Storage, computation, and communication: A fundamental tradeoff in distributed computing[END_REF]. A comprehensive survey on CDC is nicely presented in [START_REF] Ng | A comprehensive survey on coded distributed computing: Fundamentals, challenges, and networking applications[END_REF].

Main Contributions

In this chapter, we propose the new multi-access distributed computing (MADC) model, which can be considered as an extension of the original setting introduced in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], and which entails mappers (map nodes) being connected to various reducers (reduce nodes), and where these mappers and reducers are now distinct entities3 . As is common, mappers are in charge of mapping subsets of the input files, whereas the reducers are in charge of collecting the IVs in order to compute the reduce functions. We will here focus on the so-called combinatorial topology which will define how the mappers are connected to the reducers. This is a widely studied topology in other settings outside of distributed computing (see the previous Chapter 6), and it will -as we will discover later on -allow for stunning gains. Under such combinatorial topology, we consider Λ map nodes and K ≥ Λ reduce nodes, where each map node maps a subset of the input files, where each reduce node is connected to α map nodes, and where there is exactly one reducer for each subset of α map nodes. Each reducer can retrieve intermediate values only from the mappers it is connected to, whereas these same reducers can exchange via an error-free shared-link broadcast channel the remaining required intermediate values. A simple schematic of the model is shown in Figure 1.3 for the case Λ = 4, α = 2 and K = 6.

As discussed before, the communication load in the shuffle phase can represent a significant bottleneck of distributed computing. As a consequence, our objective is to minimize the volume of data exchanged by the reducers over the common-bus link during the shuffle phase, as well as the communication load between the mappers and the reducers. We start our analysis by first neglecting the communication cost between mappers and reducers, and we propose -for the aforementioned MADC model with combinatorial topology -a novel coded scheme that allows for efficient communication over the broadcast communication channel. For such setting, we also provide an information-theoretic lower bound on the communication load, and we show this to be within a constant multiplicative gap of 1.5 from the achievable communication load guaranteed by the proposed coded scheme. We then proceed to also account for the download cost from mappers to reducers. For such setting, our goal is to minimize the maximal (normalized) number of bits across all links in the system. To this purpose, we introduce an additional mappers-to-reducers communication scheme and a novel converse bound which, together with the previous inter-reducer scheme, allow us to characterize the optimal max-link communication load within a constant multiplicative gap of 4.

As suggested above, the newly derived fundamental limits suggest outstanding performance. While for any given computation load r the original setting in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] accepts a maximal coding gain of r, we here show that the new MADC model with combinatorial topology allows for a coding gain equal to

(︂(︂ r+α r )︂ -1
)︂

, again for the same mapping cost r. This we believe is the first time that topology is shown to have such powerful impact in the setting of coded distributed computing.

Chapter Outline

The rest of the chapter is organized as follows. First, the system model is presented in Section 7.2. Next, Section 7.3 provides the main contributions. An illustrative example of the novel coded scheme for multi-access distributed computing is then described in Section 7.4. After that, the general proofs of the achievable schemes and the converse bounds are presented from Section 7.5 to Section 7.8. Some additional proofs are provided in Appendix C.

System Model

The general distributed computing problem [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] consists of computing Q output functions from N input files with Q, N ∈ N + . Each file w n ∈ F 2 F with n ∈ [N ] consists of F bits for some F ∈ N + , and the q-th function is defined as

ϕ q : F N 2 F → F 2 B (7.1)
for each q ∈ [Q], i.e., each function maps all the N input files into a stream u q = ϕ q (w 1 , . . . , w N ) ∈ F 2 B of B bits. The main assumption is that each function ϕ q is decomposable and so can be written as ϕ q (w 1 , . . . , w N ) = h q (g q,1 (w 1 ), . . . , g q,N (w N )), ∀q ∈

[Q] (7.2)
where there is a map function g q,n : F 2 F → F 2 T for each n ∈ [N ], which maps the input file w n into an intermediate value (IV) v q,n = g q,n (w n ) ∈ F 2 T of T bits, and a reduce function h q : F N 2 T → F 2 B , which maps all the IVs (one per input file) into the output value u q = h q (v q,1 , . . . , v q,N ) ∈ F 2 B of B bits.

In this chapter, we assume to have machines that are devoted to computing map functions, and machines that are devoted to computing reduce functions. Thus, a node assigned map functions is not assigned reduce functions, and vice versa. In our setting, we consider Λ mappers and K =

(︂ Λ α )︂
reducers, where -in accordance with the combinatorial topology of choice -there is a unique reducer connected to each subset of α mappers. Denoting by U ∈ [Λ] α the reducer connected to the α mappers in the set U, before the computation begins, each reducer U ∈ [Λ] α is assigned a subset W U ⊆ [Q] of the output functions, where here W U contains the indices of the functions assigned to reducer U. For simplicity, we assume in our setting a symmetric and uniform task assignment, which implies |W U | = Q/K = η 2 for some η 2 ∈ N + and for each U ∈ [Λ] α , and

W U 1 ∩ W U 2 = ∅ for all U 1 , U 2 ∈ [Λ] α such that U 1 ̸ = U 2 .
Afterwards, the computation is performed across the set of mappers and reducers in a distributed manner following the map-shuffle-reduce paradigm. 

V λ = {v q,n : q ∈ [Q],
w n ∈ M λ } for all the Q reduce functions using the files in M λ which it has been assigned. Since reducer U ∈ [Λ] α is connected to the mappers in U, it can access the intermediate values in the set V U = {v q,n : q ∈ [Q], w n ∈ M U }, where M U = ⋃︁ λ∈U M λ is simply the union set of files assigned to and mapped by the map nodes in U. When the communication cost between mappers and reducers is not neglected, we can define the download cost as follows.

Definition 7.1 (Download Cost). The download cost, denoted by J, is defined as the maximal normalized number of bits transmitted across the links from the mappers to the reducers, and is given by

J := max λ∈[Λ] max U ∈[Λ]α:λ∈U R U λ QN T (7.3)
where R U λ denotes the number of bits that are transmitted by mapper λ ∈ [Λ] to reducer U ∈ [Λ] α where λ ∈ U.

Assuming that each mapper computes all possible IVs from locally available files 4 , we define the computation load as follows.

Definition 7.2 (Computation Load). The computation load, denoted by r, is defined as the total number of files mapped across the Λ map nodes and normalized by the total number of files N , and it takes the form

r := ∑︁ λ∈[Λ] |M λ | N . (7.4)
Remark 7.1. We wish to point out that the definition of computation load above reflects the overall mapping cost across the Λ map nodes. As it will become clear later, our novel system model will allow for a massive computational amelioration (in the reduce phase) -with a bounded communication overhead -at the cost of a modest mapping cost across the Λ mappers.

During the shuffle phase, each reducer U ∈ [Λ] α retrieves the IVs from the mappers in U and creates a signal X U ∈ F 2 ℓ U for some ℓ U ∈ N + and for some encoding function ψ U :

F Q|M U | 2 T → F 2 ℓ U , where X U takes the form X U = ψ U (V U ). (7.5) 
Then, the signal X U is multicasted to all other reducers via the broadcast link which connects the reducers. Since such link is assumed to be error-free, each reducer receives all the multicast transmissions without errors. The amount of information exchanged during this phase is referred to as the communication load, which is formally defined in the following.

Definition 7.3 (Communication Load

). The communication load, denoted by L, is defined as the total number of bits transmitted by the K reducers over the broadcast channel during the shuffle phase, and -after normalization by the number of bits of all intermediate values -this load is given by

L := ∑︁ U ∈[Λ]α ℓ U QN T . ( 7.6) 
Recalling that reducer U ∈ [Λ] α is assigned a subset of output functions whose indices are in W U , each reducer U ∈ [Λ] α wishes to recover the IVs {v q,n : q ∈ W U , n ∈ [N ]} to correctly compute u q for each q ∈ W U . Thus, during the reduce phase, each reducer U ∈ [Λ] α reconstructs all the needed intermediate values for each q ∈ W U using the messages communicated in the shuffle phase and the intermediate values V U retrieved from the mappers in U, i.e., each reducer U ∈ [Λ] α computes (v q,1 , . . . , v q,N ) = χ q U (X S : S ∈ [Λ] α , V U ) (7.7)

for each q ∈ W U and for some decoding function χ q U :

∏︁ S∈[Λ]α F 2 ℓ S ×F Q|M U | 2 T → F N 2 T .
In the end, each reducer U ∈ [Λ] α computes the output function u q = h q (v q,1 , . . . , v q,N ) for each assigned q ∈ W U .

When the download cost is neglected, our goal is to characterize the optimal tradeoff between computation and communication L ⋆ (r). This optimal tradeoff is simply defined as L ⋆ (r) := inf{L : (r, L) is achievable} (7.8) where the tuple (r, L) is said to be achievable if there exists a map-shufflereduce procedure such that a communication load L can be guaranteed for a given computation load r. On the other hand, when we indeed jointly consider both the inter-reducer communication cost and the mapper-to-reducer download cost, then our aim will be to characterize the optimal max-link communication load L ⋆ max-link (r), which is defined as L ⋆ max-link (r) := inf{L max-link : (r, L max-link ) is achievable} (7.9) where L max-link := max(L, J) represents the maximum between the communication load and the download cost for a given computation load r. In simple words, L max-link represents the maximal normalized number of bits flowing across any link in the considered system model. Notice that we will assume, throughout the chapter, uniform computational capabilities across the mappers and uniform assignment of reduce functions across the reducers, as is commonly assumed (see for example the original work in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]). Remark 7.2. When α = 1, there are K = Λ mapper-reducer pairs. If we consider each pair to be a single computing server (which can automatically imply a zero download cost), the proposed system model trivially coincides with the original setting in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. Hence, since the results in this chapter will hold for any α ∈ [Λ], the proposed model can in fact be considered as a proper extension of the original coded distributed computing model.

Main Results

In this section, we will provide our main contributions. As we have already mentioned, we will first consider a setting where the download cost is neglected. Subsequently, we will provide some additional results for the more realistic scenario where the cost of delivering data from the mappers to the reducers is non-zero.

Characterizing the Communication Load

The first result that we provide is the achievable computation-communication tradeoff provided by the novel coded scheme that will be presented in its general form in Section 7.5. The result is formally stated in the following theorem.

Theorem 7.1 (Achievable Bound). Consider the MADC setting with combinatorial topology, where there are Λ mappers and K =

(︂ Λ α )︂
reducers for a fixed value of α ∈ [Λ]. Then, the optimal communication load L ⋆ is upper bounded by L UB which is a piecewise linear curve with corner points

(r, L UB ) = ⎛ ⎝ r, (︂ Λ-α r )︂ (︂ Λ r )︂ (︂(︂ r+α r )︂ -1 )︂ ⎞ ⎠ , ∀r ∈ [Λ -α + 1]. (7.10)
Proof. The detailed proof of the scheme is reported in Section 7.5, whereas an illustrative example is instead described in Section 7.4.

As we already mentioned in Remark 7.2, if we set α = 1 and we consider each mapper-reducer pair as a unique computing machine, we obtain the same system model in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. Interestingly, we can see that, if we specialize the result in Theorem 7.1 to the case α = 1, we obtain the same computationcommunication tradeoff as in [52, Theorem 1].

Another noteworthy aspect is the following. If we fix the number of mappers Λ and the computation load r, then adding more reducers by increasing 5 the multi-access degree α will in fact entail a smaller communication load. This (perhaps surprising) outcome is most certainly not the result of each reducer requiring fewer intermediate values during the shuffle phase. Such decrease could not have compensated for the increasing K. Instead, this decrease in the communication load stems from the nature of the combinatorial topology, which allows each reducer to more efficiently use its side information to cancel interference in an accelerated manner. This is achieved because these reducers are connected to the mappers in a manner that effectively aligns the interference patterns. As one can imagine, if we increase the number of reducers and we properly connect each of them to multiple mappers, the achievable scheme in Theorem 7.1 outperforms the coded scheme in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. This is formally stated in the following corollary.

Corollary 7.1.1. For fixed computation load r, the achievable communication load in Theorem 7.1 decreases for increasing α, even though K -and so 5 Notice that the number K = (︁ Λ α )︁ of reducers is actually increased as long as α ≤ Λ/2. The scenario where α > Λ/2 is unrealistic and is not considered here.

the corresponding speedup factor in computing reduce functions -increases substantially.

Proof. The proof is described in Appendix C.1.

We proceed to construct an information-theoretic converse on the communication load of the MADC setting. As it will be pointed out in the general proof in Section 7.6, the construction of the converse takes inspiration from [65, Lemma 2] as well as from ideas in Chapter 6. Essentially, the bound here manages to merge the approach in [65, Lemma 2], where a converse bound is built using key properties of the entropy function, with the index coding techniques in Chapter 6, where the nodes of a side information graph are iteratively selected in a proper way to systematically identify large acyclic subgraphs that are used to develop a tight converse. The result is formally stated in the following. Proof. The proof is described in Section 7.6.

Finally, from the results in Theorem 7.1 and Theorem 7.2, we can provide an order optimality guarantee for the MADC model. Indeed, comparing the achievable performance and the converse bound, we conclude that the two are within a constant multiplicative gap. We see this in the following theorem6 . Theorem 7.3 (Order Optimality). For the MADC system with combinatorial topology, Λ mappers and K =

(︂ Λ α )︂
reducers for a fixed value of α ∈ [2 : Λ], the achievable performance in Theorem 7.1 is within a factor of at most 1.5 from the optimal.

Proof. The proof is described in Appendix C.2. )︂ = 45 reducers, where there is a reducer connected to any α = 2 mappers. According to Corollary 7.1.1, the achievable load in Theorem 7.1 decreases for increasing α and fixed computation load, as indicated by the diamond blue curve in Figure 7.1 which is well below the dot black counterpart corresponding to the original achievable scheme of coded distributed computing. Notice that the comparison in Figure 7.1 between the CDC setting with α = 1 and the MADC setting with α > 1 is fair for what concerns the computation-communication tradeoff: indeed, not only the computation load r remains the same as long as the number of mappers Λ stays the same, but also the number of reducers that need to communicate with each other is much larger than Λ when α > 1.

Remark 7.3. We point out that comparing a setting where α = 1 with a setting where α > 1 offers noteworthy insights. Indeed, even though one could expect the communication load to be reduced when α > 1 -as in such case each reducer accesses more than one mapper and consequently misses less intermediate values -it is also true that the number of reducers itself increases as α increases. Consequently, there is an undeniable tension between the higher multi-access degree α > 1 for each reducer, which implies less data needed by each reducer, but also implies a larger number of reducers in the system. For these reasons, it is interesting to notice how the network topology plays a fundamental role in resolving such tension by appropriately shaping the interference patterns. As a consequence, the communication load ultimately decreases as the number of reducers K =

(︂ Λ α )︂
increases as long as each of them is properly connected to α mappers. A further comparison is provided in Figure 7.2 which focuses on the coding gains. As we can see, the gains brought about by the multi-access setting are impressive even when the computation load is small, which is the regime of interest in practical settings.

Characterizing the Max-Link Load

We now consider a distributed computing scenario where the download cost is not negligible. The following describes the achievable max-link communication load that captures both communication and download costs. 

L max-link,UB = max ⎛ ⎝ ∑︂ j∈[Λ] (︂ Λ-α j )︂ (︂ Λ j )︂ (︂(︂ j+α j )︂ -1 )︂ a ˜j ⋆ N , ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j ⋆ N ⎞ ⎠ (7.12)
where the vector a ˜⋆ = (a ˜1 ⋆ , . . . , a ˜Λ ⋆ ) is the optimal solution to the linear program

min a ˜M 1 2 ∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j M N (7.13a) subject to a ˜j M ≥ 0, ∀j ∈ [Λ] (7.13b) ∑︂ j∈[Λ] a ˜j M N = 1 (7.13c) ∑︂ j∈[Λ] j a ˜j M N ≤ r (7.13d)
and where a ˜M = (a ˜1 M , . . . , a ˜Λ M ) is the control variable.

Proof. The detailed proof of the scheme is reported in Section 7.7.

We proceed by proposing an information-theoretic converse on the maxlink communication load. The result is presented in the following theorem. 

L max-link,LB = 1 2 ∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j ⋆ N (7.14)
where the vector a ˜⋆ = (a ˜1 ⋆ , . . . , a ˜Λ ⋆ ) is the optimal solution to the linear program in (7.13).

Proof. The proof is described in Section 7.8.

Finally, we can compare the results in Theorem 7.4 and Theorem 7.5 to establish the gap to optimality of the achievable performance in Theorem 7.4. Notice that now we do not exclude the value α = 1 for such comparison, since for such case there is no previously known optimality result to the best of our knowledge. Proof. The proof is described in Appendix C.3. Remark 7.4. Interestingly, the results in this section can also be derivedwhile keeping the same constant factor of at most 4 from the optimal -for a weighted max-link load defined as L max-link,β := max(L, βJ) for some β ≥ 0. Notice that such metric is of particular interest whenever we want to account for a weighted download cost βJ, in which case the cost of communicating data from mappers to reducers is proportional to the maximal number of normalized bits flowing from any one mapper to any one reducer. The extreme case β = 0 corresponds to the communication load L max-link,0 = L characterized in Section 7.3.1, whereas the case β = 1 implies the max-link load L max-link,1 = L max-link investigated in the current section.

Illustrative Example of the Coded Scheme

In this section, we propose an illustrative example of the coded scheme which will be later presented in its general form in Section 7.5. The example refers to the schematic in Figure 1.3. Notice that this section aims to provide an example for the achievable scheme in Theorem 7.1, consequently the download cost will be neglected.

We consider Λ = 4 mappers and K =

(︂ Λ α )︂
= 6 reducers where α = 2. We assume to have Q = 12 output functions to be computed across the ensemble of mappers and reducers, N = 8 input files {w n : n ∈ [8]} and computation load r = 1. Recalling that the computation load is defined as the normalized number of files which are mapped across the Λ map nodes, having computation load equal to r = 1 implies that the number of files mapped across all mappers is equal to the size of the input data set, i.e., N files. Under the uniform function assignment assumption, we assign Q/K = 2 output functions to each reducer7 U ∈ [4] 2 = {12, 13, 14, 23, 24, 34}. Thus, recalling that W U represents the indices of the reduce functions assigned to reducer U ∈ [4] 2 , we arbitrarily let

W 12 = {1, 2} (7.15) 
W 13 = {3, 4} (7.16 
)

W 14 = {5, 6} (7.17) 
W 23 = {7, 8} (7.18) 
W 24 = {9, 10} (7.19) 
W 34 = {11, 12}. (7.20)

Map Phase

This phase requires the input files to be split among mappers and so we proceed by grouping the N = 8 files into 4 batches B λ for each λ ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] as Then, recalling that M λ represents the set of files mapped by the mapper λ ∈ [Λ], we set here

B 1 = {w 1 , w 2 } (7.
M λ = {B T 1 : T 1 ⊆ [4], |T 1 | = 1, λ ∈ T 1 } = {B λ }.
Since each mapper is assigned 2 input files, we have that |M λ | = |B λ | = 2 for each λ ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF]. Hence, we can check that such file assignment satisfies the computation load constraint r = 1, as indeed we have ∑︁ λ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] 

|M λ | N = |M 1 | + |M 2 | + |M 3 | + |M 4 | 8 = 1. (7.25) 
Each mapper computes Q = 12 intermediate values for each assigned input file. In particular, recalling that V λ is the set of IVs computed by the mapper λ ∈ [4], we have

V 1 = {v q,n : q ∈ [12], w n ∈ M 1 } (7.26) V 2 = {v q,n : q ∈ [12], w n ∈ M 2 } (7.27) V 3 = {v q,n : q ∈ [12], w n ∈ M 3 } (7.28) V 4 = {v q,n : q ∈ [12], w n ∈ M 4 }. (7.29) 
For example, since mapper 1 is assigned the files in M 1 = {w 1 , w 2 }, it will compute the intermediate values v q,1 and v q,2 for all q ∈ [START_REF] Amiri | Cache-aided content delivery over erasure broadcast channels[END_REF]. Then, mapper 2 will compute the intermediate values v q,3 and v q,4 for all q ∈ [12] since M 2 = {w 3 , w 4 }. Similarly, mapper 3 and mapper 4 will compute the intermediate values v q,5 and v q,6 , and v q,7 and v q,8 , respectively, for all q ∈ [START_REF] Amiri | Cache-aided content delivery over erasure broadcast channels[END_REF] since M 3 = {w 5 , w 6 } and M 4 = {w 7 , w 8 }. Now, considering that there is a reducer connected to any α = 2 mappers, we know that each reducer U ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] 2 can retrieve the IVs computed by the 2 mappers in U. Recalling that V U denotes the union set of IVs computed by the mappers in U, we have

V 12 = {v q,n : q ∈ [12], w n ∈ M 12 }
(7.30)

V 13 = {v q,n : q ∈ [12], w n ∈ M 13 } (7.31)

V 14 = {v q,n : q ∈ [12], w n ∈ M 14 } (7.32) 
V 23 = {v q,n : q ∈ [12], w n ∈ M 23 } (7.33) 
V 24 = {v q,n : q ∈ [12], w n ∈ M 24 } (7.34)

V 34 = {v q,n : q ∈ [12], w n ∈ M 34 }. (7.35) 

Shuffle Phase

We describe now how each reducer U ∈ [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] 2 constructs its multicast message X U . Since the procedure is the same for each reducer, we continue our example by focusing for simplicity on reducer {1, 2} only. First of all, we let S ⊆ ([4] \ {1, 2}) with |S| = 1. Then, for each R ⊆ (S∪{1, 2}) such that |R| = 2 and R ̸ = {1, 2}, and for T 1 = (S∪{1, 2})\R, reducer {1, 2} concatenates the intermediate values {v q,n : q ∈ W R , w n ∈ B T 1 } into the symbol U W R ,T 1 = (v q,n : q ∈ W R , w n ∈ B T 1 ). Notice that having R ̸ = {1, 2} implies that T 1 ∩ {1, 2} ̸ = ∅, so reducer {1, 2} can retrieve B T 1 from the mappers it is connected to and can construct the symbol U W R ,T 1 . Subsequently, such symbol is evenly split as .36) This means that when, say, S = {3}, reducer {1, 2} creates the symbols U W 13 ,2 = (v q,n : q ∈ W 13 , w n ∈ B 2 ) (7.37)

U W R ,T 1 = (U W R ,T 1 ,T 2 : T 2 ⊆ (R ∪ T 1 ), |T 2 | = 2, T 2 ̸ = R) . ( 7 
U W 23 ,1 = (v q,n : q ∈ W 23 , w n ∈ B 1 ) (7.38)
and when S = {4}, the same reducer {1, 2} creates the symbols U W 14 ,2 = (v q,n : q ∈ W 14 , w n ∈ B 2 ) (7.39) U W 24 ,1 = (v q,n : q ∈ W 24 , w n ∈ B 1 ). (7.40) Each of the symbols above is then evenly split in two segments as Similarly, each other reducer prepares and multicasts its message following the procedure described above. In the end, the following messages are exchanged among the reducers on the common-bus link during the shuffle phase.

U W 13 ,2 = (U W 13 ,
X 12 = (U W 13 ,

Reduce Phase

As when describing the shuffle phase, we can again focus on reducer {1, 2} and observe how it correctly computes the reduce functions in W 12 by using the set of multicast messages {X U : U ∈ [4] 2 } and the set V 12 of IVs which the reducer {1, 2} can access. Indeed, a similar procedure can be shown for all other reducers.

First of all, reducer {1, 2} needs the IVs {v q,n : q ∈ W 12 , n ∈ [8]} to compute the reduce functions in W 12 . Since such reducer has already access to the IVs in V 12 , it can obtain the symbols U W 12 ,1 and U W 12 ,2 . However, it misses the intermediate values {v q,n : q ∈ W 12 , w n / ∈ M 12 } or, similarly, it misses the symbols U W 12 ,3 = (v q,n : q ∈ W 12 , w n ∈ B 3 ) and U W 12 ,4 = (v q,n : q ∈ W 12 , w n ∈ B 4 ). We see now how these symbols can be obtained from the set of multicast messages.

During the shuffle procedure, each symbol is split in two even segments, so, consequently, symbols U W 12 ,3 and U W 12 ,4 are split as Further, a similar procedure holds for any other reducer. Thus, we can conclude that every reducer is able to compute the assigned reduce functions after recovering the missing intermediate values from the messages multicasted by all reducers during the shuffle phase.

U W 12 ,3 = (U W 12 ,

Communication Load

Recalling that the communication load is defined as the total number of bits transmitted by the K reducers during the shuffle phase (normalized by the number of bits of all intermediate values), we wish to compute for this example this load, which takes the form 

L UB (r = 1) = ∑︁ U ∈[Λ]α |X U | QN T = ∑︁ U ∈[4] 2 |X U | 96T . ( 7 
L UB (r = 1) = ∑︁ U ∈[4] 2 |X U | 96T = 24T 96T = 1 4 . (7.57)
Using the converse in Theorem 7.2, we can see that the achievable performance above is within a factor 1.5 from the optimal.

Proof of Achievable Bound in Theorem 7.1

We assume that there are Λ mappers and K =

(︂ Λ α )︂
reducers, and we assume the aforementioned combinatorial topology where each reducer is exactly and uniquely connected to α mappers. We then consider some arbitrary computation load r ∈ [Λ -α + 1] and we consider Q = η 2 K output functions with η 2 ∈ N + , allowing us to separate the Q functions into K disjoint groups W U for each U ∈ [Λ] α , so that each reducer is assigned η 2 functions, corresponding to |W U | = η 2 for each U ∈ [Λ] α .

Map Phase

First, the input database is split in

(︂ Λ r )︂ disjoint batches, each containing η 1 = N/ (︂ Λ r )︂
files, where we assume that N is large enough such that η 1 ∈ N + . Consequently, we have a batch of files for each T

1 ⊆ [Λ] such that |T 1 | = r, which implies {w 1 , . . . , w N } = ⋃︂ T 1 ⊆[Λ]:|T 1 |=r B T 1 (7.58)
where we denote by B T 1 the batch of η 1 files associated with the label

T 1 . Then, mapper λ ∈ [Λ] is assigned all batches B T 1 having λ ∈ T 1 , which means that M λ = {B T 1 : T 1 ⊆ [Λ], |T 1 | = r, λ ∈ T 1 }. (7.59)
We can see that the computation load constraint is satisfied, since we have

∑︁ λ∈[Λ] |M λ | N = Λη 1 (︂ Λ-1 r-1 )︂ η 1 (︂ Λ r )︂ = r (7.60)
Then, each mapper computes Q intermediate values for each assigned input file, so for each λ ∈ [Λ] we have V λ = {v q,n : q ∈ [Q], w n ∈ M λ }. Since then each reducer has access to α mappers, reducer U ∈ [Λ] α can retrieve8 the intermediate values in

V U = {v q,n : q ∈ [Q], w n ∈ M U } recalling that M U = ∪ λ∈U M λ . Since |V U | = Qη 1 (︂(︂ Λ r )︂ - (︂ Λ-α r )︂)︂
for each U ∈ [Λ] α , we can conclude that each computing node has access to all the intermediate values when r ≥ Λ -α + 1. Hence, we focus on the non-trivial regime r ∈ [Λ -α + 1] for any given Λ and α.

Shuffle Phase

Consider reducer U ∈ [Λ] α . Let S ⊆ ([Λ] \ U) with |S| = r. First, for each R ⊆ (S ∪ U) such that |R| = α and R ̸ = U, and for T 1 = (S ∪ U) \ R, reducer U concatenates the intermediate values {v q,n : q ∈ W R , w n ∈ B T 1 } into the symbol U W R ,T 1 = (v q,n : q ∈ W R , w n ∈ B T 1 ) ∈ F 2 η 2 η 1 T . Subsequently, such symbol is evenly split in (︂(︂ r+α r )︂ - 1 
)︂ segments as

U W R ,T 1 = (U W R ,T 1 ,T 2 : T 2 ⊆ (R ∪ T 1 ), |T 2 | = α, T 2 ̸ = R) . ( 7.61) 
Then, reducer U constructs the coded message

⨁︂ R⊆(S∪U ):|R|=α,R̸ =U U W R ,(S∪U )\R,U (7.62) 
for each S ⊆ ([Λ] \ U) with |S| = r, and finally concatenates all of them into the following message

X U = ⎛ ⎝ ⨁︂ R⊆(S∪U ):|R|=α,R̸ =U U W R ,(S∪U )\R,U : S ⊆ ([Λ] \ U), |S| = r ⎞ ⎠ (7.63)
which is multicasted to all other reducers via the error-free broadcast channel.

Reduce Phase

Consider reducer U ∈ [Λ] α . Since such reducer is connected to α mappers, it misses a total of η 2 η 1

(︂ Λ-α r )︂
intermediate values, i.e, it misses η 2 intermediate values for each of the η 1 files in each batch that is not assigned to the mappers in U. More precisely, reducer U misses the symbol U W U ,T 1 for each

T 1 ⊆ ([Λ] \ U) with |T 1 | = r.
We know that during the shuffle phase such symbol is evenly split in

(︂(︂ r+α r )︂ - 1 
)︂ segments as 

U W U ,T 1 = (U W U ,T 1 ,T 2 : T 2 ⊆ (U ∪ T 1 ), |T 2 | = α, T 2 ̸ = U) . ( 7 
U W R ,(S∪T 2 )\R,T 2 = ⨁︂ R⊆(U ∪T 1 ): |R|=α,R̸ =T 2 U W R ,(U ∪T 1 )\R,T 2 (7.65) = U W U ,T 1 ,T 2 ⊕ ⨁︂ R⊆(U ∪T 1 ): |R|=α,R̸ =T 2 ,R̸ =U U W R ,(U ∪T 1 )\R,T 2 ⏞ ⏟⏟ ⏞ interference . ( 7 

Communication Load

The communication load guaranteed by the coded scheme described above is given by

L UB = ∑︁ U ∈[Λ]α |X U | QN T (7.67) = (︂ Λ α )︂ η 2 η 1 (︂ Λ-α r )︂ T / (︂(︂ r+α r )︂ -1 )︂ Qη 1 (︂ Λ r )︂ T (7.68) = (︂ Λ-α r )︂ (︂ Λ r )︂ (︂(︂ r+α r )︂ -1 )︂ (7.69) for each r ∈ [Λ -α + 1]
. Notice that the lower convex envelope of the achievable points {(r, L LB ) : r ∈ [Λ -α + 1]} is achievable by adopting the memory-sharing strategy presented in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. The proof is concluded.

Proof of Converse Bound in Theorem 7.2

We begin the proof by introducing some useful notation. For q ∈ [Q] and n ∈ [N ], we let V q,n be an i.i.d. random variable and we let v q,n be the realization of V q,n . Then, we define 

D U := {V q,n : q ∈ W U , n ∈ [N ]} (7.70) C U := {V q,n : q ∈ [Q], w n ∈ M U } (7.71) Y U := (D U , C U ). ( 7 

Lower Bound for a Given File Assignment

For a given file assignment denoted by M := (M 1 , . . . , M Λ ), we let L M be the corresponding communication load under this assignment M. Then, we provide a lower bound on L M for any given file assignment in the following lemma. 

D i := (D U i : U i ⊆ {c 1 , . . . , c i }, |U i | = α, c i ∈ U i ) (7.75) C i := (C U i : U i ⊆ {c 1 , . . . , c i }, |U i | = α, c i ∈ U i ) (7.76) Y i-1 := (Y U j : j ∈ [α : i -1], U j ⊆ {c 1 , . . . , c j }, |U j | = α, c j ∈ U j ) (7.77)
for each i ∈ [α : Λ]. Then, the communication load is lower bounded by

L M ≥ 1 QN T ∑︂ i∈[α:Λ] H(D i | C i , Y i-1 ). (7.78)
Proof. The proof is described in Appendix C.4.

It is perhaps interesting to highlight that the lemma above manages to combine relatively divergent ideas from [65, Lemma 2] and Lemma 6.1. On one hand, the proof of Lemma 7.1 is based on the iterative argument from the proof of [65, Lemma 2], where the authors built a sequence of entropybased bounds by iteratively picking computing nodes without ordering them according to some specific permutations. On the other hand, since in our case we wish to keep into account the multi-access nature of our MADC system, the proof of Lemma 7.1 adapts the entropy-based approach from [START_REF] Woolsey | A combinatorial design for cascaded coded distributed computing on general networks[END_REF] by iteratively selecting the reducers according to some properly chosen permutations. The purpose of selecting reducers according to some proper permutations is that of constructing a tighter sequence of entropy-based bounds. The properly chosen permutations are inspired by Lemma 6.1, which was used to successfully develop a tight converse bound for the multi-access coded caching problem with combinatorial topology. Now, we proceed with the proof. Denote by a ˜T the number of files which are mapped exclusively by the mappers in T for some T ⊆ 

L M ≥ 1 QN T ∑︂ i∈[α:Λ] H(D i | C i , Y i-1 ) (7.79) = 1 QN T ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i H(D U i | C i , Y i-1 ) (7.80) = 1 QN T ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i ∑︂ T ⊆[Λ]\{c 1 ,...,c i } a ˜T η 2 T (7.81) = 1 KN ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i ∑︂ T ⊆[Λ]\{c 1 ,...,c i } a ˜T . (7.82)
If we build a bound as the one in Lemma 7.1 for each permutation of the set [Λ] and we sum up all these bounds together, we obtain the expression

L M ≥ 1 KN Λ! ∑︂ c∈S Λ ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i ∑︂ T ⊆[Λ]\{c 1 ,...,c i } a ˜T (7.83)
where we recall that S Λ represents the group of all permutations of [Λ]. Our goal now is to simplify this expression and we start doing so by counting how many times each term a ˜T appears in the RHS of (7.83) for any fixed T ⊆ [Λ] with |T | = j and j ∈ [Λ].

First, we focus on some reducer U ⊆ ([Λ] \ T ) with |U| = α. We can see that a ˜T appears in the RHS of (7.83) for all those permutations in S Λ for which U = U i for some i ∈ [α : Λ] such that U i ⊆ {c 1 , . . . , c i } with |U i | = α and c i ∈ U i , and such that T ⊆ ([Λ] \ {c 1 , . . . , c i }). Denoting by P U ,T the set of such permutations, we can see that

|P U ,T | = α!j!(Λ -α -j)! (︄ Λ α + j )︄ . ( 7.84) 
The same reasoning applies to any reducer U ∈ [Λ] α for which U ∩ T = ∅. As a consequence, the term a ˜T appears in the RHS of (7.83) a total of 

∑︂ U ∈[Λ]α:U ∩T =∅ |P U ,T | = (︄ Λ -j α )︄ α!j!(Λ -α -j)! (︄ Λ α + j )︄ (7.
L M ≥ 1 KN Λ! ∑︂ c∈S Λ ∑︂ i∈[α:Λ] ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i ∑︂ T ⊆[Λ]\{c 1 ,...,c i } a ˜T (7.86) = 1 KN Λ! ∑︂ j∈[Λ] ∑︂ T ⊆[Λ]:|T |=j (︄ Λ -j α )︄ α!j!(Λ -α -j)! (︄ Λ α + j )︄ a ˜T (7.87) = 1 KN ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ j )︂ ∑︂ T ⊆[Λ]:|T |=j a ˜T (7.88) = 1 K ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ j )︂ a ˜j M N (7.89)
where a ˜j M := ∑︁ T ⊆[Λ]:|T |=j a ˜T is defined as the total number of files which are mapped by exactly j map nodes under this particular file assignment M.

For any given file assignment M and for any given computation load r ∈

[K], the fact that |M 1 | + • • • + |M Λ | ≤ rN also implies that a ˜j M ≥ 0 for each j ∈ [Λ], as well as implies that ∑︁ j∈[Λ] a ˜j M = N and that ∑︁ j∈[Λ] ja ˜j M ≤ rN .
Thus, we can further lower bound the above using Jensen's inequality and the fact that

(︂ Λ α+j )︂ / (︂ Λ j )︂
is convex and decreasing 9 in j. Hence, we can write 

L M ≥ 1 K ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ j )︂ a ˜j M N (7.90) ≥ 1 K (︂ Λ α+r )︂ (︂ Λ r )︂ (7.91) = (︂ Λ α+r )︂ (︂ Λ α )︂(︂ Λ r )︂ ( 

Lower Bound Over All Possible File Assignments

To obtain the bound in Theorem 7.2, we are looking for the smallest L M across all file assignments M such that

|M 1 | + • • • + |M Λ | ≤ rN , that is we are looking for L ⋆ ≥ inf M:|M 1 |+•••+|M Λ |≤rN L M . ( 7.93) 
Given that (7.92) is independent of the file assignment M and lower bounds L M for any M such that

|M 1 | + • • • + |M Λ | ≤ rN , we can further write L ⋆ ≥ inf M:|M 1 |+•••+|M Λ |≤rN L M (7.94) ≥ inf M:|M 1 |+•••+|M Λ |≤rN (︂ Λ α+r )︂ (︂ Λ α )︂(︂ Λ r )︂ (7.95) = (︂ Λ α+r )︂ (︂ Λ α )︂(︂ Λ r )︂ (7.96) = L LB . ( 7 

.97)

Notice that the bound L LB can be extended to include also the non-integer values of r as described in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]. This concludes the proof. 9 This was already proved in the proof of Lemma 6.2 by writing down each combinatorial coefficient in

(︁ Λ α+j )︁ / (︁ Λ j
)︁ as a finite product and using then the general Leibniz rule to show that its second derivative is non-negative.

Proof of Achievable Bound in Theorem 7.4

As we mentioned in the statement of Theorem 7.4, the coded scheme depends on the solution of the linear program in (7.13). Hence, the first step is to evaluate the optimal solution10 a ˜⋆ = (a ˜1 ⋆ , . . . , a ˜Λ ⋆ ). Next, we partition the input database in Λ parts, where we denote by L j the j-th part, which contains

|L j | = a ˜j ⋆ files for each j ∈ [Λ]. Then, each part j ∈ [Λ] of the database is split in (︂ Λ j )︂
batches containing η j files each for some η j ∈ N, so

that a ˜j ⋆ = η j (︂ Λ j )︂ for each j ∈ [Λ]. This implies {w 1 , . . . , w N } = ⋃︂ j∈[Λ] L j (7.98) = ⋃︂ j∈[Λ] ⋃︂ T 1 ⊆[Λ]:|T 1 |=j B j,T 1 (7.99)
where we denote by B j,T 1 the batch containing η j files associated with the label T 1 . Then, mapper λ ∈ [Λ] is assigned all batches B j,T 1 having λ ∈ T 1 for each j ∈ [Λ], which implies

M λ = {B j,T 1 : j ∈ [Λ], T 1 ⊆ [Λ], |T 1 | = j, λ ∈ T 1 }. (7.100) 
The computation load constraint is satisfied, since we have

∑︁ λ∈[Λ] |M λ | N = Λ ∑︁ j∈[Λ] η j (︂ Λ-1 j-1 )︂ N (7.101) = ∑︁ j∈[Λ] jη j (︂ Λ j )︂ N (7.102) = ∑︁ j∈[Λ] ja ˜j ⋆ N ≤ r (7.103)
where the last inequality holds under the constraint in (7.13d).

Our goal is to provide an achievable scheme for the max-link communication load. Recalling that we denote by L and J the communication load and the download cost, respectively, we will have

L ⋆ max-link ≤ L max-link,UB = max (L, D) . ( 7 
.104)

Communication Load

For what concerns the communication load, we can take advantage of the achievable scheme described in Section 7.5. Simply, the scheme in Section 7.5 is applied Λ times, one time per partition L j which is considered as an independent input database. If we denote by L j the communication load when we focus on the part L j , we have that L j is given by

L j = (︂ Λ-α j )︂ (︂ Λ j )︂ (︂(︂ j+α j )︂ -1 )︂ a ˜j ⋆ N (7.105) for each j ∈ [Λ].
Hence, the overall communication load L is given by

L = ∑︂ j∈[Λ] L j = ∑︂ j∈[Λ] (︂ Λ-α j )︂ (︂ Λ j )︂ (︂(︂ j+α j )︂ -1 )︂ a ˜j ⋆ N . ( 7 
.106)

Download Cost

We remind that the download cost is defined as

J = max λ∈[Λ] max U ∈[Λ]α:λ∈U R U λ QN T (7.107)
where R U λ represents the number of bits which are sent from mapper λ to reducer U. This quantity is minimized if the number of bits transmitted over each link connecting a mapper to a reducer is the same. This can be accomplished as follows.

Consider a reducer U ∈ [Λ] α and a mapper λ ∈ U. According to the file assignment above, mapper λ computes the IVs in the set V λ = {v q,n : q ∈ [Q], w n ∈ M λ }. The set V λ can equivalently be written as follows

V λ = {V λ,S : i ∈ [α], S ⊆ (U \ {λ}), |S| = i -1} (7.108)
where V λ,S is defined as

V λ,S := {︂ v q,n : q ∈ [Q], w n ∈ M λ∪S }︂ (7.109)
and where M λ∪S := ⋂︁ s∈(λ∪S) M s . This simply says that the set V λ,S contains the IVs which are mapped by mapper λ and the (i -1) mappers in S. Hence, if we evenly split V λ,S in i segments as follows

V λ,S = (V λ,S,s : s ∈ (λ ∪ S)) (7.110)
we simply let mapper λ send V λ,S,λ . This implies

R U λ = ∑︂ i∈[α] ∑︂ S⊆(U \{λ}):|S|=i-1 |V λ,S,λ | (7.111) = ∑︂ i∈[α] ∑︂ S⊆(U \{λ}):|S|=i-1 |V λ,S | i (7.112) = ∑︂ i∈[α] ∑︂ S⊆(U \{λ}):|S|=i-1 ∑︂ j∈[Λ] η j (︂ Λ-α j-i )︂ QT i (7.113) = ∑︂ j∈[Λ] ∑︂ i∈[α] η j (︂ Λ-α j-i )︂ QT i (︄ α -1 i -1 )︄ (7.114)
for each λ ∈ [Λ] and U ∈ [Λ] α with λ ∈ U. Hence, we can further write

J = max λ∈[Λ] max U ∈[Λ]α:λ∈U R U λ QN T (7.115) = 1 QN T ∑︂ j∈[Λ] ∑︂ i∈[α] η j (︂ Λ-α j-i )︂ QT i (︄ α -1 i -1 )︄ (7.116) = ∑︂ j∈[Λ] ∑︂ i∈[α] (︂ Λ-α j-i )︂(︂ α-1 i-1 )︂ i (︂ Λ j )︂ a ˜j ⋆ N (7.117) recalling that a ˜j ⋆ = η j (︂ Λ j )︂
for each j ∈ [Λ]. Further, the following lemma holds. Lemma 7.2. For any non-negative integers Λ, α and j, we have

∑︂ i∈[α] (︂ Λ-α j-i )︂(︂ α-1 i-1 )︂ i (︂ Λ j )︂ = (︂ Λ j )︂ - (︂ Λ-α j )︂ α (︂ Λ j )︂ . ( 7 

.118)

Proof. The proof is described in Appendix C.5.

As a consequence, the download cost J is equivalently given by

J = ∑︂ j∈[Λ] (︂ Λ j )︂ - (︂ Λ-α j )︂ α (︂ Λ j )︂ a ˜j ⋆ N (7.119) = ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j ⋆ N . ( 7 
.120)

Max-Link Communication Load

Since we have now the expressions for both L and J, we can write explicitly the achievable max-link communication load as follows

L max-link,UB = max (L, D) (7.121) = max ⎛ ⎝ ∑︂ j∈[Λ] (︂ Λ-α j )︂ (︂ Λ j )︂ (︂(︂ j+α j )︂ -1 )︂ a ˜j ⋆ N , ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j ⋆ N ⎞ ⎠ . (7.122)
The expression above coincides with the achievable expression in Theorem 7.4. The proof is concluded.

Proof of Converse Bound in Theorem 7.5

We quickly recall that L M denotes the communication load under the file assignment M = (M 1 , . . . , M Λ ). Then, we let J M and L max-link,M = max{L M , J M } be the download cost and the max-link communication load, respectively, under file assignment M.

Lower Bound for a Given File Assignment

From Section 7.6 we know that the inequality

L M ≥ ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ a ˜j M N (7.123)
holds. Thus, we can write

L max-link,M = max{L M , J M } (7.124) ≥ max ⎧ ⎨ ⎩ ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ a ˜j M N , J M ⎫ ⎬ ⎭ . ( 7 

.125)

In the following, we wish to develop a lower bound on J M . Starting from the definition of the download cost, we have

J M = max λ∈[Λ] max U ∈[Λ]α:λ∈U R U λ QN T (7.126a) ≥ max λ∈[Λ] 1 (︂ Λ-1 α-1 )︂ QN T ∑︂ U ∈[Λ]α:λ∈U R U λ (7.126b) ≥ 1 Λ (︂ Λ-1 α-1 )︂ QN T ∑︂ λ∈[Λ] ∑︂ U ∈[Λ]α:λ∈U R U λ (7.126c) = 1 α (︂ Λ α )︂ QN T ∑︂ U ∈[Λ]α ∑︂ λ∈U R U λ (7.126d) = 1 α (︂ Λ α )︂ QN T ∑︂ U ∈[Λ]α R U (7.126e)
where R U is defined as

R U := ∑︂ λ∈U R U λ (7.127)
to represent the overall number of bits received by reducer U ∈ [Λ] α . Now, since each reducer U is expected to receive all the IVs mapped by the mappers in U, we have

R U ≥ H(C U ) (7.128)
where we recall that C U = {V q,n : q ∈ [Q], w n ∈ M U } from Section 7.6. This means that we can further write

J M ≥ 1 α (︂ Λ α )︂ QN T ∑︂ U ∈[Λ]α R U (7.129a) ≥ 1 α (︂ Λ α )︂ QN T ∑︂ U ∈[Λ]α H(C U ) (7.129b) = 1 α (︂ Λ α )︂ QN T ∑︂ U ∈[Λ]α ∑︂ T ⊆[Λ]:T ∩U ̸ =∅ a ˜T QT (7.129c) = 1 α (︂ Λ α )︂ N ∑︂ j∈[Λ] ∑︂ T ⊆[Λ]:|T |=j (︄(︄ Λ α )︄ - (︄ Λ -j α )︄)︄ a ˜T (7.129d) = ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j M N (7.129e) recalling that a ˜j M = ∑︁ T ⊆[Λ]:|T |=j a ˜T .
To conclude, for a given file assignment M, the max-link communication load is lower bounded as 

L max-link,M ≥ max ⎧ ⎨ ⎩ ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ a ˜j M N , J M ⎫ ⎬ ⎭ (7.130) ≥ max ⎧ ⎨ ⎩ ∑︂ j∈[Λ] (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ a ˜j M N , ∑︂ j∈[Λ] (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ a ˜j M N ⎫ ⎬ ⎭ (7.131) ≥ 1 2 ∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j M N . ( 7 
∑︂ j∈[Λ] ⎛ ⎝ (︂ Λ α+j )︂ (︂ Λ α )︂(︂ Λ j )︂ + (︂ Λ α )︂ - (︂ Λ-j α )︂ α (︂ Λ α )︂ ⎞ ⎠ a ˜j M N (7.133a) subject to a ˜j M ≥ 0, ∀j ∈ [Λ] (7.133b) ∑︂ j∈[Λ] a ˜j M N = 1 (7.133c) ∑︂ j∈[Λ] j a ˜j M N ≤ r (7.133d)
where a ˜M = (a ˜1 M , . . . , a ˜Λ M ) is the control variable. The proof is concluded.

Part III

Conclusions and Appendices

Chapter 8

Conclusions and Future Directions

This chapter concludes the thesis. We will briefly summarize, chapter-bychapter, the major contributions of the thesis, also presenting some possible future directions.

Exploring the Impact of Structure in Data

A Negative Result on Selfish Caching Policies

I n Chapter 2, we investigated the effects that selfish caching can have on the optimal worst-case communication load in the coded caching framework. The proposed FDS structure seeks to capture the degree of intersection between the interests of the different users. While somewhat restrictive, the proposed structure was designed to bring to the fore and accentuate the adversarial relationship between coded caching and selfish caching, and by doing so, to allow us to provide insight on the nature of this adversarial relationship.

This insight is provided with the introduction of a new informationtheoretic converse on the minimum worst-case communication load by means of index coding arguments. For the specific proposed broad FDS structure, the converse bound definitively resolves the question of whether selfish caching is beneficial or not. Indeed, the converse reveals that any non-zero load brought about by symmetrically selfish caching is always (with the exception of the extreme points of t) strictly worse than the optimal load guaranteed in the unselfish scenario. The rationale behind this is that, despite the sizeable increase of local caching gain brought about by the very targeted placement 8.1. Exploring the Impact of Structure in Data of selfish caching, and despite a very restricted set of demands, the loss in multicasting opportunities is too severe. In fact, what the converse shows is that this damage is so prominent that -for any fixed (or decreasing) ratio δ = α/K < 1 -the coding gain does not scale with K, and is in fact bounded above by 1/(1 -δ). In other words, even if there is, for example, a 99 % symmetric intersection between the interests of the users (meaning, even if the users have interest in almost the same content), the coding gain will not scale as K increases. The above solidifies our conclusion that, for some powerful instances of FDS structures, selfish caching can be indeed very detrimental for the overall performance. While our FDS structure may be somewhat restrictive, the fact that this structure captures crucial elements of the selfish problem allows us to draw the conclusion that one must be cautious when considering selfish policies.

In light of the above, there are several interesting research directions. One first possibility is to explore the performance effect of FDS symmetry in selfish approaches, as indeed one of the biggest limitations of the FDS structure proposed in Chapter 2 seems its symmetric nature. Subsequently, it would be interesting to search for FDS structures that benefit well1 from selfish coded schemes, as indeed, we recall, coded caching systems may need to operate under some selfish legacy constraints. This brings about the natural question of understanding when FDS structures can gain the most from selfish schemes. Clearly, a remaining challenge is to provide optimal schemes for any set of demands, either for the proposed or for another FDS structure.

Coded Caching With Tactical User Profiles

In Chapter 3, we focused on the problem of caching with hetereogeneous user profiles under the constraint of uncoded placement only. First, we proposed an extremely broad system model for the user profiles, where such model follows the combinatorial structure of the so-called tactical configurations, a symmetric and balanced block design in combinatorial mathematics. Then, we characterized the fundamental limits of coded caching under uncoded prefetching for the proposed broad structure of user interests. The proposed achievable scheme is a simple application of the already existing MAN placement-and-delivery scheme up to an arbitrary memory value t ¯, whereas for t ≥ t ¯memory sharing is adopted. Instead, the information-theoretic converse bound is based on the genie-aided approach from [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], which we also adopted in the subsequent Chapter 4. The interesting outcome of the results presented in Chapter 3 is that, albeit the diverging interests of the users, the MAN coded scheme is still order optimal within a constant factor of 4. This result is significant not only because it holds for a really generic structure of user profiles, including the symmetric (K, α, F ) FDS structure studied in Chapter 2, but also because it proves the effectiveness of the combinatorial MAN coded caching scheme under a well-defined system model for the user profiles.

There are several interesting future directions. Along the lines of what we suggested as future directions for Chapter 2, one first possibility is to study the performance effect of FDS symmetry in non-selfish approaches. Secondly, it would be interesting to understand what non-trivial FDS structures, if any, might lead to a significant performance improvement over the MAN coded caching scheme. Indeed, being the MAN scheme order optimal within a constant multiplicative factor of 4 for such a broad structure of user profiles poses a question about the effective coding gains that one can achieve if users have diverging interests. In other words, it would be interesting to understand how much one can further lower the worst-case communication load by taking advantage in general of user interests, if these are known in advance.

A Converse for Caching With Heterogeneous Preferences

In Chapter 4, we considered an addittional coded caching setting with heterogeneous user profiles. Under the system model originally proposed in [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], we constructed a novel information-theoretic converse on the worst-case communication load under uncoded prefetching. We developed the lower bound by taking advantage of the genie-aided approach introduced in [START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF]. Interestingly, the proposed converse bound, jointly with the Scheme 2 from [START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], allows us to characterize the optimal worst-case load under uncoded prefetching within a constant multiplicative factor of 2. Although the converse in Theorem 4.1 holds under the constraint of uncoded placement, the result in Theorem 4.2, which provides a constant order optimality factor independent of all system parameters, improves the previously known order optimality results in [START_REF] Zhang | Coded caching with heterogeneous user profiles[END_REF].

Possible extensions could include applying the converse techniques developed in Chapter 4 to other (maybe more complex) caching settings with heterogeneous user profiles, as well as establishing the exact fundamental limits of the setting considered in Chapter 4.

Coded Distributed Computing With Structured Support

In Chapter 5, we considered the problem of coded distributed computing with structured support. Briefly, we assumed that each computing node k ∈ [K] has to compute a reduce function which, differently from the original CDC setting in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], does not depend on the whole input database, rather just on a subset N k of the input files. In particular, we studied the setting where the structure for the sets {N k : k ∈ [K]} follows the combinatorial design of tactical configurations, already employed in Chapter 3 in the context of coded caching. For such setting, we then proposed an achievable coded scheme and a converse bound, where the two are shown to be within a constant multiplicative factor of 6.

Possible extensions could include the setting where the total number of reduce functions is equal to Q > K, and where each reduce function is computed by s > 1 computing nodes. Indeed, we believe that for such setting novel solutions would be required for what concerns the achievability, as well as we believe that the techniques employed to develop the converse bound should be modified to account for the parameters s > 1 and Q > K.

The Ramifications of Structure in Topology 8.2.1 Combinatorial Multi-Access Caching

In Chapter 6, we identified the exact fundamental limits of multi-access caching for important general topologies as well as have derived information-theoretic converses that bound the performance across ensembles of connectivities. Our first contribution was to derive the fundamental limits of multi-access caching for the generalized combinatorial topology that stands out for the unprecedented coding gains that it allows. These gains -first recorded in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] for a specific instance of this generalized topology -are proven in Chapter 6 to be optimal, and to hold not only for a much denser range of users, but also in the presence of a coexistence of users connected to different numbers of caches. As a direct consequence of identifying the exact fundamental limits of the generalized combinatorial topology, we now know that a basic and fixed MAN cache placement can optimally handle any generalized combinatorial network regardless of having unknown numbers of users with unequal cacheconnectivity capabilities.

Subsequently, we considered the optimal performance of different ensembles of connectivities, deriving a lower bound on the average performance for a large ensemble of interest as well as for the entire ensemble of all possible topologies. To the best of our knowledge, Chapter 6 is the first work that explores the fundamental limits of the average performance across ensembles of connectivities as well as the first work to consider the topology-agnostic multiaccess setting. We hope this contribution applies toward better understanding the role of topology in defining the performance as well as the corresponding role of topology-awareness.

• Practical Pertinence and Optimality of the Generalized Combinatorial

Topology. As the subpacketization constraint is one of the main bottlenecks limiting the actual use of coded caching in various real applications, the combinatorial topology is undoubtedly a promising expedient to overcome this bottleneck. Indeed, this multi-access approach allows to serve many users at a time while controlling the subpacketization parameter by carefully calibrating the number of caches Λ. This particular topology breaks the barrier of having coding gains that are close to Λγ + 1, and it goes one step further by allowing the unprecedented gains that are now a polynomial power of the cache redundancy, to be achieved with a modest subpacketization, a reasonable amount of cache resources and a very modest connectivity investment. Indeed, the gains explode even when α is as small as α = 2 and this increase -we re-emphasize -is without any increase in the caching resources Λγ. Our generalized model extends even further the benefits of this topology, allowing for a denser range of users K and supporting the coexistence of users connected to different numbers of caches. As a side-product of identifying the fundamental limits of performance in this broad topology, our result shows that, when there are users connected to a different number of caches α with α ∈ [0 : Λ] in accordance to the combinatorial topology, then a MAN cache placement and a simple TDMA-like application of the scheme in [START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] is enough to achieve the minimum possible load in the worst-case scenario. This implies that treating each α-setting separately is optimal and so there would not be any advantage in encoding across users connected to a different number of caches.

• An Agnostic Perspective and the Search for the Best Topology. In real scenarios the actual connectivity could change over time. In this context, under the assumption that the cache placement procedure is performed only once regardless of the connectivity, the results in Theorem 6.2 and in Theorem 6.3 are of interest not only because they lower bound the optimal average worst-case load in the agnostic scenario, but also because a careful comparison between such bounds and the optimal performance in Theorem 6.1 allows to draw the insightful conclusion that the generalized combinatorial topology is among the good connectivities under the standard MAN cache placement. This brings to the fore the open question of whether, under the assumption of a MAN placement, the combinatorial topology is indeed the best possible topology. This question is supported by the just-now mentioned specific optimization solution that leads to Theorem 6.2, as well as by the large gains that the MAN placement achieves over this topology, irrespective of the fact that different users may be connected to a different number of caches.

The results in Chapter 6 are part of a sequence of works that suggest the importance of the multi-access caching paradigm not only for its role in boosting the gains in coded caching, which had remained relatively low due to the severe subpacketization bottleneck, but also for its role in several distributed communication paradigms where communication complexity is traded off with computational complexity2 as a function of how servers are connected to data sources. Finally, while most works on the MACC focused mainly on the cyclic wrap-around topology, our work further legitimizes the effort of investigating connectivities different from the originally proposed MACC model. The bounds on the average performance over the ensemble of connectivities leave open the possibility that there may exist another topology performing uniformly better than the powerful optimal performance of the generalized combinatorial topology identified in Theorem 6.1. Finding such a topology, if it exists, would be indeed an exciting proposition given the already large gains that are associated to the combinatorial topology.

Multi-Access Distributed Computing

In Chapter 7, we introduced multi-access distributed computing, a novel system model that generalizes the original CDC setting by considering mappers and reducers as distinct entities, and by considering each reducer to be connected to multiple mappers through a network topology. We focused on the MADC model with combinatorial topology, which implies Λ mappers and K = (︂ Λ α )︂ reducers, so that there is a reducer for any set of α mappers. Neglecting at first the download cost from mappers to reducers and so focusing only on the inter-reducer communication load, we proposed a novel coded scheme which, together with an information-theoretic converse, characterizes the optimal communication load within a constant multiplicative gap of 1.5. Subsequently, we jointly considered the setting which keeps into account the download cost and for such scenario we characterized the optimal max-link communication load within a multiplicative factor of 4. We point out that the proposed achievable shuffling scheme -which generalizes the original coded scheme in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] (corresponding to the case α = 1) -offers also unparalleled coding gains. As an outcome of this gain, we have the interesting occurrence that our scheme guarantees a smaller communication load when α > 1, capitalizing on the multi-access nature of the MADC model, even though the number of reducers is increased.

Interesting future directions could include the study of the proposed MADC setting when mappers and reducers have heterogeneous computational resources. A careful study of other multi-access network topologies is also another challenging research direction. Reflecting a design freedom, the search for the best possible topology, for a given computation load, remains a very pertinent open problem in distributed computing.

A.5 Converse Proof of Proposition 2.1

While the achievable expression matches exactly the converse expression R LB , this latter converse cannot be used to prove the optimality of R ⋆ α,c , because R LB bounds the optimal worst-case communication load. As there is no a priori guarantee that the α-demands are part of the worst-case demands, we will here derive another bound that focuses on α-demands to prove that the achievable performance is indeed optimal.

Following the same line of reasoning as in Section 2.4.1, we apply again the index coding lower bound in Lemma 2.1, with the only difference being that now the cache placement is fixed. The corresponding index coding problem has K ′ = K users and

N ′ = K (︂ α-1 t )︂
messages, where

(︂ α-1 t )︂
is the total number of subfiles desired by each user for a fixed value of t ∈ [0 : α]. The desired message set and the side information set are respectively given by . Toward this, consider the α-demand where K is a set of α users that request distinct files from the file class K, and where the remaining users in [K] \ K request distinct files so that the set of vertices is acyclic. Then, such set contains a total of (K -α)

M k = {W f k ,D k ,T : T ⊆ D k , |T | = t, k / ∈ T } (A.
(︂ α-1 t )︂
subfiles, which

means that |J 1 | = (K -α) (︂ α-1 t )︂ B/ (︂ α t )︂
. Indeed, we can see that there exist α-demands for which J 1 is acyclic. For instance, if we assume D k = S ∪ {k} for every k ∈ ([K] \ K) for some S ⊆ K such that |S| = α -1, then the set J 1 is acyclic.

Consider now the set of users in K. Take any permutation of users u = (u 1 , . . . , u α ) with u k ∈ K for all k ∈ [α]. Then, since D k = K for all k ∈ K, the set of vertices is acyclic for any permutation u (see [START_REF] Wan | An index coding approach to caching with uncoded cache placement[END_REF]Lemma 1]). It can be easily seen that such set contains a total of

(︂ α-1 t )︂ + (︂ α-2 t )︂ + • • • + (︂ t t )︂ = (︂ α t+1
)︂

subfiles, so

|J 2 | = (︂ α t+1 )︂ B/ (︂ α t )︂
. Due to the fact that D k = K for all k ∈ K, there is no edge connecting any vertex in J 2 to any vertex in J 1 , and thus also the set J 1 ∪ J 2 is acyclic. At this point, applying Lemma 2.1 with respect to the acyclic set J 1 ∪ J . This concludes the proof. 

B.2 Proof of Lemma 6.2

Let us write f (t ′ ) =

∑︁ Λ-t ′ α=0 f α (t ′ ) = K 0 + ∑︁ Λ α=1 f α (t ′
), where we define

f α (t ′ ) := K α (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ (B.4)
with f α (t ′ ) = 0 if t ′ > Λ -α. Regarding convexity, we will prove each f α (t ′ ) to be convex for t ′ ∈ [0 : Λ], which will then tell us that f (t ′ ) is also convex, since a non-negative linear combination of functions that are convex on the same interval is also convex. Notice that, since any linear function is both convex and concave, the constant term K 0 is convex with respect to t ′ .

When showing the convexity of f α (t ′ ), we can focus on the range t ≤ Λ -α + 1 since we know that f α (t ′ ) = 0 for any t ≥ Λ -α + 1. Doing so will automatically allow us to conclude that this same function f α (t ′ ) is also convex over the entire 2 interval t ′ ∈ [0 : Λ]. The convexity of f α (t ′ ) can be easily shown by verifying that the second derivative f (2) α (t ′ ) with respect to t ′ is non-negative for t ′ ∈ [0 : Λ -α + 1]. To see this, let us first note that

f α (t ′ ) = K α (︂ Λ t ′ +α )︂ (︂ Λ t ′ )︂ (B.5)
2 Indeed, if the function f α (t ′ ) is convex in the interval t ′ ∈ [0 : Λ -α + 1] and f α (t ′ ) = 0 for t ′ ∈ [Λ -α + 1 : Λ] -which implies also convexity in the interval t ′ ∈ [Λ -α + 1 : Λ] since any linear function is both convex and concave -then f α (t ′ ) is convex also over the entire interval t ′ ∈ [0 : Λ], since it should be self-evident that the line segment between any two points t ′ 1 , t ′ 2 with t ′ 1 ∈ [0 : Λ -α + 1] and t ′ 2 ∈ [Λ -α + 1 : Λ] lies above the graph between such two points.

= K α α-1 ∏︂ i=0 Λ -t ′ -i t ′ + α -i (B.6) = K α α-1 ∏︂ i=0 f α,i (t ′ ) (B.7)
where f α,i (t ′ ) := (Λ -t -i)/(t + α -i). Applying the general Leibniz rule allows us to rewrite the second derivative f (2) α (t ′ ) as

f (2) α (t ′ ) = (︄ K α α-1 ∏︂ i=0 f α,i (t ′ ) )︄ (2) (B.8) = K α ∑︂ k 0 +•••+k α-1 =2 (︄ 2 k 0 , . . . , k α-1 )︄ α-1 ∏︂ i=0 f (k i ) α,i (t ′ ) (B.9)
where k ℓ ∈ Z + 0 for each ℓ ∈ [0 : α -1]. Now we will prove that f (2) α (t ′ ) ≥ 0 by showing that

∏︁ α-1 i=0 f (k i )
α,i (t ′ ) ≥ 0 for any summand in (B.9), noticing that we have a summand for every α-weak composition of 2. Such weak compositions can be divided into two classes.

• The first class includes weak compositions where k m = 2 for some m ∈ [0 : α -1] and k n = 0 for each n ∈ ([0 : α -1] \ {m}). In this case, the term

∏︁ α-1 i=0 f (k i )
α,i (t ′ ) is given by the product of α -1 functions f (0) α,n (t ′ ) for n ∈ ([0 : α -1] \ {m}) with 1 additional function f (2) α,m (t ′ ), where f (0) α,n (t ′ ) is simply the function f α,n (t ′ ) and where f (2) α,m (t ′ ) is the second derivative of f α,m (t ′ ). Hence, if f (0) α,n (t ′ ) ≥ 0 and f (2) α,m (t ′ ) > 0, then

∏︁ α-1 i=0 f (k i ) α,i (t ′ ) ≥ 0.
• The second class includes weak compositions where k m 1 = k m 2 = 1 for some m 1 , m 2 ∈ [0 : α -1] with m 1 ̸ = m 2 and k n = 0 for each n ∈ ([0 : α -1] \ {m 1 , m 2 }). In this case, the term

∏︁ α-1 i=0 f (k i )
α,i (t ′ ) is given by the product of α -2 functions f (0) α,n (t ′ ) for n ∈ ([0 : α -1] \ {m 1 , m 2 }) with 2 additional functions f (1) α,m 1 (t ′ ) and f (1) α,m 2 (t ′ ), where now f (1) α,n (t ′ ) is the first derivative of f α,n (t ′ ). Hence, if f (0) α,n (t ′ ) ≥ 0, f (1) α,m 1 (t ′ ) < 0 and f (1) α,m 2 (t ′ ) < 0, then

∏︁ α-1 i=0 f (k i ) α,i (t ′ ) ≥ 0.
At this point, in order to prove that

∏︁ α-1 i=0 f (k i )
α,i (t ′ ) ≥ 0 for any α-weak composition of 2, we have to prove that the following inequalities f Consequently, we can conclude that f

(1)
α,i (t ′ ) < 0, since the numerator is always negative and the denominator is always positive. We can also conclude that f α,i (t ′ ) < 0 multiplied by a strictly negative term -2/(t ′ + α -i). Thus, given that the second derivative f (2) α (t ′ ) equals the sum of non-negative terms, we can conclude that f (2) α (t ′ ) ≥ 0 and that f α (t ′ ) is convex for each α ∈ [Λ] and t ′ ∈ [0 : Λ -α + 1]. As a consequence, f (t ′ ) is convex over the entire range of interest. The fact that f (t ′ ) is decreasing in t ′ ∈ [0 : Λ] follows from the fact that f (0) = K ≥ f (Λ) = K 0 and from the aforementioned convexity of f (t ′ ). This concludes the proof. We wish to prove that, for fixed computation load r, the achievable performance in Theorem 7.1 decreases for increasing α. To do so, it is enough to prove that

s α > s α+1 (C.1)
where s α is defined as showing in this way that s α+1 < s α . This concludes the proof.

C.2 Proof of Theorem 7.3

To prove the order optimality result in Theorem 7. where the last term is upper bounded when α is set to its minimum value. Now, after neglecting the value α = 1 -in which case the corresponding achievable performance in Theorem 7.1 was already proved to be exactly optimal in [START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] -we focus on the case where α ∈ [2 : Λ], which implies that

L UB (r) L ⋆ (r) ≤ α + 1 α (C.20) ≤ 3 2 . (C.21)
The proof is concluded.

C.3 Proof of Theorem 7.6

From Theorem 7.4 we know that L ⋆ max-link (r) is upper bounded as Now, we can see that c j = d j when j > Λ -α. Else, when j ∈ [Λ -α], we have

L ⋆ max-link (r) ≤ L max-link,UB (r) 
c j d j = ( Λ-α j ) ( Λ j )(( j+α j )-1) + ( Λ α )-( Λ-j α ) α( Λ α ) ( Λ α+j ) ( Λ α )( Λ j ) + ( Λ α )-( Λ-j α ) α( Λ α ) (C.37) ≤ max ⎛ ⎜ ⎜ ⎜ ⎝ ( Λ-α j ) ( Λ j )(( j+α j )-1) ( Λ α+j ) ( Λ α )( Λ j )
, (C.71)

( Λ α )-( Λ-j α ) α( Λ α ) ( Λ α )-( Λ-j α ) α( Λ α ) ⎞ ⎟ ⎟ ⎟ ⎠ (C.
H(X [Λ]α ) ≥ H(X [Λ]α | C U α ) (C.47) = H(X [Λ]α , D U α | C U α ) -H(D U α | X [Λ]α , C U α ) (C.48) = H(X [Λ]α , D U α | C U α ) (C.49) = H(D U α | C U α ) + H(X [Λ]α | C U α , D U α ) (C.50) = H(D U α | C U α ) + H(X [Λ]α | Y α ) (C.
H(X [Λ]α | Y i-1 ) ≥ H(X [Λ]α | C i , Y i-1 ) (C.52) = H(X [Λ]α , D i | C i , Y i-1 ) -H(D i | X [Λ]α , C i , Y i-1 ) (C.53) = H(X [Λ]α , D i | C i , Y i-1 ) (C.54) = H(D i | C i , Y i-1 ) + H(X [Λ]α | D i , C i , Y i-1 ) (C.55) = H(D i | C i , Y i-1 ) + H(X [Λ]α | Y i ) (C.
The proof is concluded.
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  f k ,g(k) d k to denote the file requested by user k ∈ [K], where f k ∈ {c, u}, d k ∈ [N f k ] and g(k) is an abuse of notation to denote the group which user k belongs to, i.e., g(k) ∈ [G] for each k ∈ [K]. We further assume that W c,g(k) d k = W c d k , since common files do not depend on the group g ∈ [G]. In addition, we let d = ((d 1 , f 1 ), . . . ,

4. 3 . 1 1

 311 Proof of Theorem 4.Denote by D c the subset of D that contains all demands for which users make requests only from common files, which implies d = ((d 1 , c), . . . , (d K , c)) for each d ∈ D c . Similarly, denote by D u the subset of D for which users make requests only from unique files, which implies d = ((d 1 , u), . . . , (d K , u)) for each d ∈ D u . One can see that |D c | =

17

 17 

  )

  22) recalling that d = ((d 1 , c), . . . , (d K , c)) for each d ∈ D c and that W c,g n = W c n for each n ∈ [N c ] and for each g ∈ [G]. Now, towards simplifying the expression in (4.22), we proceed by counting how many times each subfile W c n,T -for any given n ∈ [N c ] and T ⊆ [K] -appears in the RHS of (4.22). First, we focus on the subfile W c n,T for some n ∈ [N c ] and T ⊆ [K] such that |T | = t ′ with t ′ ∈ [0 : K]. Next, we denote by D c,n,k the subset of demands in D c for which the file W c n is requested by some specific user k ∈ ([K] \ T ). We can see that |D c,n,k | = N c = |D c |/N c . Then, we observe that, for each d ∈ D c,n,k , all permutations of users u ∈ S K are considered. Nevertheless, we can notice from the construction of (4.10) that, for each d ∈ D c,n,k , the subfile W c

  [START_REF] Zhang | Coded caching under arbitrary popularity distributions[END_REF] recalling that now d = ((d 1 , u), . . . , (d K , u)) for each d ∈ D u . Once again, towards simplifying the expression in (4.27), we proceed by counting how many times each subfile W u,g n,T -for any given n ∈ [N u ], g ∈ [G] and T ⊆ [K] -appears in the RHS of (4.27).

5. 4 . 3 1

 43 Figure 5.1:Comparison between the original CDC performance and the new scheme when there are K = 10 output functions and G = 10 groups of files, and each group of files is needed by K ′ = 5 output functions, whereas each output function depends on G ′ = 5 groups of files. The achievable scheme is in red, whereas the converse bound is in blue.

Figure 6 . 1 :

 61 Figure 6.1: Example of connectivity for the MACC model with Λ = 4.

6 )

 6 represents the vector containing the indices of the files requested by all the users connected to exactly α caches and where d U ,[K U ,b ] := (d U 1 , . . . , d U K U ,b ) represents the vector containing the indices of the files requested by the K U ,b users connected to the caches in the set U for a given connectivity b ∈ B.

. 34 )

 34 Notice that user U ′ k can correctly decode the subfile W d U ′ k ,S\U ′ . Indeed, this user has access to all subfiles in the interference term, considering that (S \ U) ∩ U ′ ̸ = ∅ since U ̸ = U ′ . User U ′ k can consequently decode a distinct subfile for each S ⊆ [Λ] with |S| = t + α and U ′ ⊆ S. Since there is a total of

Lemma 6 . 1 .

 61 Let d = (d 0 , . . . , d Λ ) be a demand vector and let c = (c 1 , . . . , c Λ ) be a permutation of the Λ caches. The following set of vertices

and d 3

 3 = (d 123 1 , d 124 1 , d 134 1 , d 234 1 ). Further, assume the cache permutation c = (1, 4, 3, 2). The acyclic set of vertices from Lemma 6.1 is given by the union of the set {︃ W d 14 1 ,∅ , W d 14 1 ,2

Table 7 . 1 :

 71 Parameters for the MADC system with combinatorial topology Load L max-link = max(L, J) During the map phase, a set of files M λ ⊆ {w 1 , . . . , w N } is assigned to the mapper λ for each λ ∈ [Λ]. Each mapper λ ∈ [Λ] computes the intermediate values

Theorem 7 . 2 (⎠

 72 Converse Bound). Consider the MADC setting with combinatorial topology, where there are Λ mappers and K = value of α ∈ [Λ]. Then, the optimal communication load L ⋆ is lower bounded by L LB which is a piecewise linear curve with corner points (r, L LB ) = , ∀r ∈ [Λ -α + 1]. (7.11)

  Communication Load L(r) CDC with Λ = 10 and α = 1 Achievable MADC with Λ = 10 and α = 2 Converse MADC with Λ = 10 and α = 2

Figure 7 . 1 :

 71 Figure 7.1: Comparison between original CDC, where there are Λ = 10 pairs of mappers and reducers, and MADC with combinatorial topology, Λ = 10 mappers and K = 45 reducers, where each of them is uniquely associated to α = 2 mappers.

3 Figure 7 . 2 :

 372 Figure 7.2: Comparison between the coding gain for different values of α as a function of the computation load r. We recall that α = 1 corresponds to the original CDC framework.

Theorem 7 . 4 (

 74 Achievable Bound). Consider the MADC setting with combinatorial topology, where there are Λ mappers and K = value of α ∈ [Λ]. Then, the optimal max-link communication load L ⋆ max-link is upper bounded by L max-link,UB which is given by

Theorem 7 . 5 (

 75 Converse Bound). Consider the MADC setting with combinatorial topology, where there are Λ mappers and K = value of α ∈ [Λ]. Then, the optimal max-link communication load L ⋆ max-link is lower bounded by L max-link,LB which is given by

Theorem 7 . 6 (

 76 Order Optimality). For the MADC system with combinatorial topology, Λ mappers and K = for a fixed value of α ∈ [Λ], the achievable performance in Theorem 7.4 is within a factor of at most 4 from the optimal.

21 )B 2 =B 3 =B 4 =

 21234 {w 3 , w 4 } (7.22) {w 5 , w 6 } (7.23) {w 7 , w 8 }. (7.24)

Lemma 7 . 1 .

 71 Consider a specific file assignment M = (M 1 , . . . , M Λ ). Let c = (c 1 , . . . , c Λ ) be a permutation of the set [Λ] and define

  [Λ]. As each reducer U ∈ [Λ] α does not have access to the intermediate values of all those files that are not mapped by the mappers in U, the term a ˜T represents the number of files whose intermediate values are required by each reducer U ∈ [Λ] α that does not have access to the mappers in T , i.e., each reducer U ∈ [Λ] α such that U ∩ T = 0 or, equivalently, each reducer U ⊆ ([Λ] \ T ) such that |U| = α. Taking advantage of the independence of the intermediate values and recalling that each reducer computes η 2 disjoint output functions, from Lemma 7.1 and for a given permutation c = (c 1 , . . . , c Λ ) of the set [Λ], we can further write

  [START_REF] Wan | Topological coded distributed computing[END_REF] times. The same rationale holds for any a ˜T where T ⊆ [Λ] and |T | = j with j ∈ [Λ]. Consequently, we can rewrite the expression in (7.83) as

12 )

 12 A k = {W i,S,T : i ∈ [f ], S ⊆ [K], |S| = α, T ⊆ S, |T | = t, k ∈ T } (A.13) for all k ∈ [K].In the corresponding side information graph, an edge exists fromW f k 1 ,D k 1 ,T 1 to W f k 2 ,D k 2 ,T 2 if and only if W f k 1 ,D k 1 ,T 1 ∈ A k 2 .Since we are considering a converse bound on the optimal communication load under a specific cache placement and under a specific set of demands, it suffices to find a single α-demand such that R ⋆ α,c (t) ≥

J 1 =

 1 ⋃︂ k∈([K]\K) ⋃︂ T ⊆(D k \{k}):|T |=t {W f k ,D k ,T } (A.14)

J 2 =

 2 ⋃︂ k∈[α] ⋃︂ T ⊆(K\{u 1 ,...,u k }):|T |=t {W fu k ,K,T } (A.15) A.5. Converse Proof of Proposition 2.1

U

  subfiles in higher levels, since U i ∩ T j = ∅ for each U i ⊆ {c 1 , . . . , c i } with |U i | = α and c i ∈ U i , and for eachT j ⊆ ([Λ] \ {c 1 , . . . , c j }) with j ∈ [i + 1 : Λ].Consequently, we can conclude that the set in (B.2) is acyclic. Moreover, since by definition no user ∅ k with k ∈ [K ∅,b ] is connected to any cache, there cannot be any cycle between the set in (B.1) and the set in (B.2), and so the union set⋃︂ k∈[K ∅,b ] i ⊆{c 1 ,...,c i }: |U i |=α,c i ∈U i ⋃︂ k∈[K U i ,b ] ⋃︂ T i ⊆([Λ]\{c 1 ,...,c i }) {︃ W d U i k ,T i }︃ (B.3)is also acyclic. This concludes the proof.

2 ( 14 )

 214 α,i (t ′ ) ≥ 0 (B.10)f (1) α,i (t ′ ) < 0 (B.11) f (2) α,i (t ′ ) > 0 (B.12) hold for each i ∈ [0 : α -1], taking into account that f (1) α,i (t ′ ) = 2i -Λ -α (t ′ + α -i) Since i ≤ α -1 and α ≤ Λ -t ′ + 1, it holds that f (0) α,i (t ′ ) ≥ 0. Moreover, it holds that 2i -Λ -α ≤ 2(α -1) -Λ -α (B.15) = α -2 -Λ (B.16)

( 2 )

 2 α,i (t ′ ) > 0, since f (2) α,i (t ′ ) is equal to the first derivative f (1)

5 )

 5 Since r/(Λ -α) > 0 and r/(α + 1) > 0, it holds that 1 -r/(Λ -α) < 1 and 1 + r/(α + 1) > 1. Consequently, we can writes α+1 =

3 ,

 3 we need to upper bound the ratio L UB (r)/L ⋆ (r) for each r ∈ [Λ -α + 1]. We start by noting that the followingL UB (r) L ⋆ (r) ≤ L UB (r) L LB (r) (,we notice that b r is decreasing in r, since b r+1 = r ∈ N + . Thus, considering that r ∈ [Λ -α + 1], we can further write L UB (r) L ⋆ (r) ≤

2 ∑︁

 2 time, we know from Theorem 7.5 that L ⋆ max-link (r) is lower bounded as L ⋆ max-link (r) ≥ L max-link,LB (rthe ratio L max-link,UB (r)/L max-link,LB (r) we can evaluate the gap to optimality. In particular, we haveL max-link,UB (r) L max-link,LB (r) ≤ 2 ∑︁ j∈[Λ] c j a ˜j ⋆ /N ∑︁ j∈[Λ] d j a ˜j ⋆ /N (C.31) = j∈[Λ]:a ˜j ⋆ >0 c j a ˜j ⋆ /N ∑︁ j∈[Λ]:a ˜j ⋆ >0 d j a ˜j ⋆ /N (C.32) ≤ 2 max j∈[Λ]:a ˜j ⋆ >0c j a ˜j ⋆ /N d j a ˜j ⋆ /N (

1

 1 can conclude that L max-link,UB (r) L max-link,LB (r) Consider a permutation c = (c 1 , . . . , c Λ ) of the set [Λ]. We know that H(D U | X [Λ]α , C U ) = 0 holds for any valid shuffle scheme and for each U ∈ [Λ] α . Given this, for U α = {c 1 , . . . , c α } we can write

  [START_REF] Lee | Individual preference aware caching policy design in wireless D2D networks[END_REF] where (C.47) follows from the fact that conditioning does not increase entropy, and where (C.49) holds because of the decodability condition H(D U | X [Λ]α , C U ) = 0 for each U ∈ [Λ] α . Similarly, for each i ∈ [α + 1 : Λ] we can write

66 )

 66 the equality in Lemma 7.2 is equivalent to showing that the following equality Consider first the case j ≤ α. This means that we can write∑︂ i∈[0:α] i ∈ [j + 1 : α].Similarly, if we consider j ≥ α, we have∑︂ i∈[0:j] i ∈ [α + 1 : j].Hence, for any value of j ∈ [0 : Λ], we can conclude that ∑︂ i∈[0:α]

Table 2 .1: Important

 2 

	parameters for the symmetric (K, α, F ) FDS structure
	Total FDSs	K
	Total File Classes	(︂	K α

  W 124 , W 134 , W 234 and N = 8 files: W 1,123 and W 2,123 from class W 123 , then W 1,124 and W 2,124 from class W 124 , and so on. The K FDSs take the form

	1,23 , W 1,34 }				(2.5)
	F 4 = {W 1,14 , W 1,24 , W 1,34 }				(2.6)
	where we recall that, for each file W 1,S , the label S represents the FDSs the
	file belongs to. For example, file W 1,23 belongs to F 2 and F 3 , and is thus of
	interest to user 2 and user 3. Finally we see that each user is interested in a
	fraction |F|/N = 0.5 of the library, i.e., in 50 % of the library, and that each
	file is of interest to a fraction δ = α/K = 0.5 of the users.				
	Example 2.3 (The Symmetric (4, 3, 2) FDS Structure). Consider the sym-
	metric (K, α, F ) = (4, 3, 2) structure. There is a total of C =	(︂	K α	)︂	= 4 classes
	W 123 , F 1 = {W 123 , W 124 , W 134 }				(2.7)
	F 2 = {W 123 , W 124 , W 234 }				(2.8)
	F 3 = {W 123 , W 134 , W 234 }				(2.9)
	F 4 = {W 124 , W 134 , W 234 }				(2.10)

  {W 1234 , W 1235 , W 1245 , W 1345 }

		(2.12)
	F 2 = {W 1234 , W 1235 , W 1245 , W 2345 }	(2.13)
	F 3 = {W 1234 , W 1235 , W 1345 , W 2345 }	(2.14)
	F 4 = {W 1234 , W 1245 , W 1345 , W 2345 }	(2.15)
	F 5 = {W 1235 , W 1245 , W 1345 , W 2345 }.	(2.16)

User 1 desires the subfiles W 1234,23 , W 1234,24 and W 1234,34 . • User 2 desires the subfiles W 2345,34 , W 2345,35 and W 2345,45 . • User

  3 desires the subfiles W 1345,14 , W 1345,15 and W 1345,45 . • User 4 desires the subfiles W 1245,12 , W 1245,15 and W 1245,25 . • User 5 desires the subfiles W 1235,12 , W 1235,13 and W 1235,23 .

  In this setting, we consider the (K, α, F ) = (6, 5, F ) structure, where there is a total of C = 6 classes of files W 12345 , W 12346 , W 12356 , W 12456 , W 13456 , W 23456 and there are N = F C = 6F files. The 6 FDSs take the formF 1 = {W 12345 ,W 12346 , W 12356 , W 12456 , W 13456 } (2.132) F 2 = {W 12345 , W 12346 , W 12356 , W 12456 , W 23456 } (2.133) F 3 = {W 12345 , W 12346 , W 12356 , W 13456 , W 23456 } (2.134) F 4 = {W 12345 , W 12346 , W 12456 , W 13456 , W 23456 } (2.135)

2.6.2 Circular Demands and the (6, 5, F ) FDS Structure F 5 = {W 12345 , W 12356 , W 12456 , W 13456 , W 23456 } (2.136) F 6 = {W 12346 , W 12356 , W 12456 , W 13456 , W 23456 } (2.137)

  138) for each S ⊆[START_REF] Shariatpanahi | Physical-layer schemes for wireless coded caching[END_REF] such that |S| = 5 and for each f ∈ [F ], where each subfile has size B/10. For example, the file W f,12345 is split into 10 non-overlapping subfiles W f,12345,T for each T ∈ {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}. We recall that the set T represents the users which the subfile W f,12345,T is exactly and uniquely cached at. If we consider a generic circular demand, each user misses

  [START_REF] Cheng | Linear coded caching scheme for centralized networks[END_REF] holds, since X k is a deterministic function of the intermediate values computed by node k. Moreover, for any map-shuffle-reduce scheme, each node k ∈ [K] has to be able to correctly recover all the intermediate values D k given the transmissions of all nodes X [K] := (X 1 , . . . , X K ) and given the IVs C k computed by the node k itself. Thus, the equation

  6.16) = (d 12 1 , d 12 2 , d 13 1 , d 13 2 , d 14 1 , d 14 2 , d 23 1 , d 23 2 , d 24 1 , d 24 2 , d 34 1 , d 34 2 ) (6.17)

  , W d 14 1 ,3 , W d 14 1 ,23 , W d 13 1 ,∅ , W d 13 1 ,2 , W d 34 1 ,∅ , W d 34 1 ,2 , W d 12 1 ,∅ , W d 24 1 ,∅ , W d 23 1 ,∅ ,∅ , W d 134 1 ,2 , W d 124 1 ,∅ , W d 123 1 ,∅ , W d 234 1 ,∅ = (c 1 , . . . , c Λ ) of the set [Λ].If we specialize the acyclic set in Lemma 6.1 to the generalized combinatorial topology, then applying Lemma 2.1 yields the following lower bound

	(6.45)
	}︃
	with the set

{︂ W d 134 1 }︂ . (6.46) Consider now the cache permutation c = (2, 3, 1, 4

). In this case, the acyclic set of vertices is given by the union of the set {︃ W d 23 1 ,∅ , W d 23 1 ,1 , W d 23 1 ,4 , W d 23 1 ,14 , W d 12 1 ,∅ , W d 12 1 ,4 , W d 13 1 ,∅ , W d 13 1 ,4 , W d 24 1 ,∅ , W d 34 1 ,∅ , W d 14 1 ,∅ }︃ (6.47) with the set {︂ W d 123 1 ,∅ , W d 123 1 ,4 , W d 234 1 ,∅ , W d 124 1 ,∅ , W d 134 1 ,∅ }︂ . (6.48) Consider a demand vector d = (d 0 , . . . , d Λ ) and a permutation c

  W 13 ,2,12 ⊕ U W 23 ,1,12 , U W 24 ,1,12 ⊕ U W 14 ,2,[START_REF] Amiri | Cache-aided content delivery over erasure broadcast channels[END_REF] ).(7.47) 

				2,12 , U W 13 ,2,23 )	(7.41)
				U W 23 ,1 = (U W 23 ,1,12 , U W 23 ,1,13 )	(7.42)
				U W 14 ,2 = (U W 14 ,2,12 , U W 14 ,2,24 )	(7.43)
				U W 24 ,1 = (U W 24 ,1,12 , U W 24 ,1,14 ).	(7.44)
	Next, reducer {1, 2} constructs the coded message
				⨁︂	U W R ,(S∪{1,2})\R,12	(7.45)
			R⊆(S∪{1,2}):|R|=2,R̸ ={1,2}
	for each S ⊆ ([4] \ {1, 2}) with |S| = 1, and concatenates all of them to form
	X 12 , which is given by	
		⎛			⎞
	X 12 =	⎝	⨁︂	U W R ,(S∪{1,2})\R,12 : S ⊆ ([Λ] \ {1, 2}), |S| = 1 ⎠ (7.46)
			R⊆(S∪{1,2}):	
		|R|=2,R̸ ={1,2}	
	= (U		

  2,12 ⊕ U W 23 ,1,12 , U W 24 ,1,12 ⊕ U W 14 ,2,12 ) (7.48) X 13 = (U W 12 ,3,13 ⊕ U W 23 ,1,13 , U W 14 ,3,13 ⊕ U W 34 ,1,13 ) (7.49) X 14 = (U W 12 ,4,14 ⊕ U W 24 ,1,14 , U W 13 ,4,14 ⊕ U W 34 ,1,14 ) (7.50) X 23 = (U W 12 ,3,23 ⊕ U W 13 ,2,23 , U W 24 ,3,23 ⊕ U W 34 ,2,23 ) (7.51) X 24 = (U W 12 ,4,24 ⊕ U W 14 ,2,24 , U W 23 ,4,24 ⊕ U W 34 ,2,24 ) (7.52) X 34 = (U W 13 ,4,34 ⊕ U W 14 ,3,34 , U W 23 ,4,34 ⊕ U W 24 ,3,34 ) (7.53)

  3,13 , U W 12 ,3,23 ) (7.54) U W 12 ,4 = (U W 12 ,4,14 , U W 12 ,4,24 ). (7.55) Now, reducer {1, 2} can decode U W 12 ,3,13 from the message X 13 . Indeed, the term U W 12 ,3,13 ⊕ U W 23 ,1,13 appears in X 13 and reducer {1, 2} can use the IVs in V 12 to cancel the interference term U W 23 ,1,13 . Similarly, the term U W 12 ,3,23 ⊕ U W 13 ,2,23 appears in X 23 , where again the interference U W 13 ,2,23 can be canceled by means of the IVs retrieved by the mappers 1 and 2. Hence, reducer {1, 2} successfully decodes U W 12 ,3,13 and U W 12 ,3,23 from the multicasted messages X 13 and X 23 , reconstructing then the symbol U W 12 ,3 = (U W 12 ,3,13 , U W 12 ,3,23 ). A similar procedure holds for reducer {1, 2} to successfully reconstruct the symbol U W 12 ,4 , whose two segments are decoded from messages X 14 and X 24 .

  .56) Since |X U | is the same for each U ∈[START_REF] Yu | The exact ratememory tradeoff for caching with uncoded prefetching[END_REF] 2 , we focus again on reducer {1, 2} and its multicast transmission X 12 = (U W 13 ,2,12 ⊕ U W 23 ,1,12 , U W 24 ,1,12 ⊕ U W 14 ,2,12 ), which contains two XOR messages. Focusing on the first message U W 13 ,2,12 ⊕ U W 23 ,1,[START_REF] Amiri | Cache-aided content delivery over erasure broadcast channels[END_REF] , we can see that it is a XOR composed of two segments, i.e., one segment for the symbol U W 13 ,2 and one segment for the symbol U W 23 ,1 . Since the size of each symbol is 4T bits, the resulting XOR message has size 2T bits. Hence, given that X 12 contains two XOR messages, we can conclude that |X 12 | = 4T bits. Consequently, the resulting achievable communication load is given by

  .64)For each T 2 ⊆ (U ∪ T 1 ) with |T 2 | = α and T 2 ̸ = U, we can verify that reducer U can decode U W U ,T 1 ,T 2 from X T 2 . Indeed, there exists an S ⊆ ([Λ] \ T 2 ) with |S| = r such that S = (U ∪ T 1 ) \ T 2 . For such S, the corresponding coded message in X T 2 is

	⨁︂
	R⊆(S∪T 2 ):
	|R|=α,R̸ =T 2

  .66) Notice that reducer U can cancel the interference term by using the intermediate values retrieved from mappers in U, so it can correctly decode U W U ,T 1 ,T 2 . By following the same rationale for eachT 2 ⊆ (U ∪ T 1 ) with |T 2 | = α and T 2 ̸= U, we can conclude that reducer U can correctly recover U W U ,T 1 and can do so for each T 1 ⊆ ([Λ] \ U), completely recovering all the η 2 η 1 The same holds for any other U ∈ [Λ] α , and so we can conclude that each reducer is able to recover from the multicast messages of other reducers all the missing intermediate values.

	(︂	Λ-α r	)︂	missing
	intermediate values.			

2 Lower Bound Over All Possible File Assignments Our

  aim is to develop a bound on the max-link communication load under any possible file assignment, namely, we are looking for the smallest L max-link,M across all file assignments M such that|M 1 | + • • • + |M Λ | ≤ rN for a given computation load r ∈ [K]. Since each file assignment M such that |M 1 | + • • • + |M Λ | ≤ rNalso implies that a ˜j M ≥ 0 for each j ∈ [Λ], as well as implies that

	j∈[Λ] a ˜j M = N and that max-link is lower bounded by the solution to the following linear program ∑︁ j∈[Λ] ja ˜j M ≤ rN , the max-link load L ⋆ 7.8.∑︁ 1 min a ˜M 2	.132)

  [START_REF] Ngai | Network coding gain of combination networks[END_REF] where again (C.[START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF]) is true as conditioning does not increase entropy, and where (C.54) follows becauseH(D i | X [Λ]α , C i , Y i-1 ) ≤ H(D i | X [Λ]α , C i ) (C.57) ≤ ∑︂ U i ⊆{c 1 ,...,c i }:|U i |=α,c i ∈U i H(D U i | X [Λ]α , C U i ) (C.58)due to the independence of intermediate values and the decodability condition.Considering that H(X [Λ]α | Y Λ ) = 0, we can use iteratively the above to obtainH(X [Λ]α ) ≥First, we rewrite the equality in Lemma 7.2 as

	= 0	(C.59)
	∑︂	
	i∈[α:Λ]	
	∑︂	
	i∈[α]	

H(D

i | C i , Y i-1

). (C.60) Further, we notice that L M ≥ H(X [Λ]α )/QN T . This concludes the proof. C.5 Proof of Lemma 7.2

Here, we can think of a scenario where a server delivers via a bottleneck link content to caches, whose purpose is to bring content closer to the end user via dedicated non-interfering links. In such scenario, the delivery to the caches would benefit from a coded caching design, while the subsequent delivery from the caches would benefit from a selfish placement since the caches may target groups of users with potentially dissimilar interests.

Such files can be movies, different episodes of a TV show, YouTube videos, etc.

We will often omit braces and commas when indicating sets, such that for example W {1,2} may be written as W 12 .

The comparison between the selfish and unselfish scenarios is made easy by the fact that the t values (i.e., the integer points corresponding to the memory-axis of the memory-load trade-off) in the two scenarios coincide.

When α = 1, it holds that G ⋆ = 1, since in such case uncoded delivery is optimal.

Notice that [3,Lemma 1] considers in fact T ⊆ ([K] \ {u 1 , . . . , u k }) and not T ⊆ (([K] \ {u 1 , . . . , u k }) ∩ D u k ).However, the latter is a subset of the former, and thus the lemma still holds.

We wish to stress that constructing the converse using the demand set C and the permutation set U (d,f ) for each (d, f ) ∈ C does not mean that the converse is the tightest nor that the demands C are part of the worst-case demand set.

Letting π ∈ H K be a circular permutation ensures that no d vector is repeated for any specific f vector.

This is based on the following observation. Throughout various examples, such demands generally yielded the largest bounds compared to other classes of demands.

Notice that any t-design with t ≥

is also a 1-design. Hence, we are considering here all symmetric FDS structures induced by t-designs. Please, also notice that the t variable for t-designs does not coincide with the normalized cumulative cache size t = KM/N used in the caching literature.

We recall that the dependency on M is implied for the sake of simplicity.

This can be easily checked by showing that the first derivative is non-negative.

The original work in[START_REF] Hachem | Coded caching for multi-level popularity and access[END_REF] proposed the coding scheme with decentralized (stochastic) cache placement. The centralized version can be easily obtained as also mentioned in[START_REF] Reddy | Rate-memory trade-off for multiaccess coded caching with uncoded placement[END_REF].

Indeed, thinking about either the wired server-and-workers setting or the dense cellular network scenario previously mentioned, it is more realistic for a user to be connected to very few cache-aided devices.

Note that this reflects, as already mentioned, the fact that a connectivity is defined irrespective of any permutation of users. For example, consider Λ = 2 caches and K = 3 users. Then, if we have K {1},b = 2 and K {2},b = 1 for some connectivity b ∈ B, it does not make any difference whether it is user 1 to be assigned to cache 2, and user 2 and user 3 to be assigned to cache 1; whether it is user 2 to be assigned to cache 2, and user 1 and user 3 to be assigned to cache 1; or whether it is user 3 to be assigned to cache 2, and user 1 and user 2 to be assigned to cache 1. All these scenarios correspond in fact to the same connectivity.

The topology introduced in[START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF] follows the well-known combinatorial nature of combination networks. To avoid any confusion with the well-defined term combination-network topology which is prevalent in the literature of network coding, we will use the simplified term combinatorial topology to refer to the topology in[START_REF] Muralidhar | Maddah-Ali-Niesen scheme for multi-access coded caching[END_REF].

This means that the connectivity is not known a priori and the cache placement cannot be modified whenever a new connectivity is presented.

Here, the optimal performance is over the class of all schemes that employ a cache placement which can be chosen and optimized, but which must remain fixed for all connectivities in the ensemble. The scheme is free to employ delivery methods that are fully aware of the current topology and can adapt to it. For every choice of fixed placement, and then for every connectivity, there is a minimum amount of bits to be sent. We are interested in minimizing the average of these amounts of bits to be transmitted, averaged over all the connectivities in the ensemble of focus.

Clearly, the scenario α = 0 is trivial. Indeed, if all users K are connected to no cache, there is only one connectivity which is optimally served with load equal to K.

As we mentioned in the introduction, since each connectivity is defined irrespective of any permutation of users, the definition of connectivity reflects somehow the notion of the "type" of a multi-access coded caching problem.

Indeed, there is generally some flexibility and the placement can be designed for a specific topology, when such topology is known. In fact, for the generalized combinatorial topology the basic Λ-cache MAN placement is enough to achieve the optimal performance, as mentioned in Corollary 6.1.1.

This comes from the observation that each message in X α,k is useful to(︁ Λγ+α α )︁users.

Notice that the set of worst-case demands may not include the set of demand vectors d with all distinct entries. However, this is not a problem, since our goal is to derive a

Indeed, the subfile W n,T appears in the acyclic graph chosen as in Lemma 6.1 for all those permutations c = (c 1 , . . . , c Λ ) for which U ⊆ {c 1 , . . . , c i } and T ⊆ {c i+1 , . . . , c Λ }, i.e., this happens whenever the elements in T are after the elements in U in the permutation vector c.

This can be done following the same reasoning presented in Appendix B.2, after writing down the combinatorial coefficient as a finite product and using the general Leibniz rule to show that its second derivative is non-negative.

This speedup factor r is often referred to as the coding gain, and it reflects the number of computing servers that simultaneously benefit from a single transmission.

It is worth noting here the importance of designing schemes that can work with a smaller number of input files. The coded scheme in[START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF], albeit achieving the informationtheoretic optimal, requires a number of input files that increases exponentially with the number of computing nodes. This may entail some limitations when finite-sized data sets are considered. Finding schemes with good performance and low file-number requirements is a research direction of significant importance.

This choice is reasonable if we think of mappers as computing nodes that are specialized in evaluating the map functions, and of reducers as computing nodes that are specialized in evaluating the reduce functions[START_REF] Shan | FPMR: MapReduce framework on FPGA[END_REF],[START_REF] Choi | Map-reduce processing of k-means algorithm with FPGA-accelerated computer cluster[END_REF].

This means that each mapper λ ∈ [Λ] computes the intermediate value v q,n for each q ∈ [Q] and for each w n ∈ M λ .

Notice that the order optimality result in Theorem

7.3 excludes the value α = 1. Indeed, it can be verified that for such case the achievable performance in Theorem 7.1 and the converse in Theorem 7.2 are within a factor of at most 2. However, we already know that the coded scheme in[START_REF] Li | A fundamental tradeoff between computation and communication in distributed computing[END_REF] is exactly optimal when α = 1. Hence, such value is neglected when comparing the aforementioned results.

For the sake of simplicity, we will often omit braces and commas when indicating sets, e.g., the reducer {1, 2}, which is connected to mappers 1 and 2, can be simply denoted as 12.

Since we are presenting here the proof of the achievable bound in Theorem 7.1, we will neglect the download cost, assuming consequently that each reducer can access the IVs without any additional communication cost.

The linear program in (7.13) is not infeasible nor unbounded. Hence, it admits an optimal solution.

Considering for example the work in[START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF], the authors proposed therein a more lenient FDS structure, where each file is of interest to either groups of users or all users in the system. First of all, such setting represents an example of how the degree of separation among the users' interests is not concentrated in one single α value, since the model in[START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] considers somehow two values α 1 and α

, where α 1 = K relates to the part of library which is of interest to all users, while α 2 = 1 relates to the subset of files which are of interest to disjoint (groups of) users. Second, for the FDS structure in[START_REF] Wang | Coded caching with heterogeneous user profiles[END_REF] the authors proposed a selfish coded scheme (there referred to as Scheme 2) which can outperform the standard MAN scheme for some non-trivial memory points under some system parameters. Similarly, selfish policies were shown to be quite effective also for some instances of the system model in[START_REF] Wan | On the optimal memory-load tradeoff of coded caching for location-based content[END_REF]. Hence, there exist FDS structures which can benefit from selfish policies when coded caching is adopted.

For example, see[START_REF] Wan | On the tradeoff between computation and communication costs for distributed linearly separable computation[END_REF] and other related works[START_REF] Ye | Communication-computation efficient gradient coding[END_REF]-[START_REF] Elmahdy | On the fundamental limits of coded data shuffling for distributed machine learning[END_REF].

The term level carries the same meaning as in the proof of [3, Lemma 1], and its impact here is described mathematically in compliance with our setting.
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Recalling both the expression for R MAN (t) in (1.11) and the expression for R LB (t) in Theorem 2.1, we have that

where the second term in the last expression is equal to 0 either when α ∈ [K -1] for t ∈ {0, α -1}, or when α = K and f ≥ K for any t. This concludes the proof.

A.2 Proof of Corollary 2.1.2

We know that the optimal coding gain is upper bounded as

It can be easily verified that G ¯′′ (t) < 0 for t ≥ 0, which means that G ¯(t) is concave for positive values of t. Then, we can see that G ¯(0) = 1, whereas

for any δ = α/K. This concludes the proof.

A.3 Proof of Lemma 2.2

Let π ∈ S K and consider the permutation vector

. Denoting by U the set containing the K circular shifts of the vector π K , we see that there are ℓ vectors u ∈ U such that k 2 appears before k 1 in u. These cases correspond to the vectors u ∈ U where we have in the first position of u either the element k 2 , or any one of the (ℓ -1) elements between π -1 (k 1 ) and π -1 (k 2 ) in the vector π. As a consequence, the total number of vectors u ∈ U such that k 1 appears before k 2 is equal to (K -ℓ). This concludes the proof.

A.4 Proof of Lemma 2.3

The convexity of f (t ′ ) can be easily shown by verifying that the second derivative f ′′ (t ′ ) with respect to t ′ is strictly positive for t ′ ≥ 0. Indeed, we have

where f ′ (t ′ ) denotes the first derivative. Then, since t ′ ∈ [0 : α], we can evaluate f (0) = K and f (α) = 0, showing that f (0) > f (α). Hence, since f (t ′ ) is convex, it has to be also strictly decreasing for t ′ ∈ [0 : α], otherwise the convexity property would be violated. This concludes the proof.

Appendices to Chapter 6

B.1 Proof of Lemma 6.1

We show how the set described in Lemma 6.1 is guaranteed to be acyclic. Given any connectivity b ∈ B, let us start by considering the set 

Following the same reasoning as in the proof of [