
HAL Id: tel-03994777
https://theses.hal.science/tel-03994777

Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unearthing the Impact of Structure in Data and in
Topology for Caching and Computing Networks

Federico Brunero

To cite this version:
Federico Brunero. Unearthing the Impact of Structure in Data and in Topology for Caching and Com-
puting Networks. Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2022. English.
�NNT : 2022SORUS368�. �tel-03994777�

https://theses.hal.science/tel-03994777
https://hal.archives-ouvertes.fr

Unearthing the Impact of Structure in
Data and in Topology for Caching and

Computing Networks

Dissertation
submitted to

Sorbonne Université
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Federico Brunero

Publicly defended on December 9, 2022, before a committee composed of:

Examiner/Reviewer Prof. Giuseppe Caire Technical University of Berlin, DE
Examiner/Reviewer Prof. Daniela Tuninetti University of Illinois Chicago, US
Examiner Prof. Mingyue Ji University of Utah, US
Examiner Prof. Derya Malak EURECOM, FR
Examiner Prof. B. Sundar Rajan Indian Institute of Science, IN
Examiner Prof. Kai Wan HUST, CN
Thesis Advisor Prof. Petros Elia EURECOM, FR

The research has been conducted in the Communication Systems Departement
at EURECOM (Sophia Antipolis, FR) from July 2019 to December 2022.

Manuscript compiled with pdfLATEX on January 30, 2023.

To the people I love

Tho’ much is taken, much abides; and tho’
We are not now that strength which in old days
Moved earth and heaven, that which we are, we are;
One equal temper of heroic hearts,
Made weak by time and fate, but strong in will
To strive, to seek, to find, and not to yield.

Alfred, Lord Tennyson, Ulysses

Acknowledgements

When it comes to writing this specific part of a PhD thesis, it really means
that the PhD journey reached the end. Nevertheless, the countless feelings
and emotions I experienced during my doctoral studies left such a deep mark
on my soul that the PhD is probably something that will never end in my
mind. Hence, because of the incredible impact that the last three and a half
years had on my life, I feel the need to thank all the people who shared this
journey with me, in one way or another.

I thank my advisor Prof. Petros Elia, who gave me this opportunity and
supported me throughout these years. Thanks to his determined efforts at
understanding the underlying meaning of each research topic we encountered
together, I realized how important it is to question our beliefs and ourselves.
Our different ways of working made me understand the value that lies in
the art of tuning the delicate balance between diverging personalities. These
instructive lessons let me mature greatly and I thank him for this.

I thank my committee members Prof. Giuseppe Caire, Prof. Daniela
Tuninetti, Prof. Mingyue Ji, Prof. Derya Malak, Prof. B. Sundar Rajan, and
Prof. Kai Wan for their valuable comments. Special thanks to Prof. Daniela
Tuninetti, whose comforting words really helped me during a difficult moment
in my PhD, and Prof. Kai Wan, with whom I deeply enjoyed our research
discussions both online and in real life.

I thank all my friends. When I came back from the US, my wish was
to stay in touch with all my close friends and I think that I managed to do
so. Hence, many thanks to all the people in Italy who, despite the distance
and the pandemic that had a dramatic impact on our lives, were always
ready to meet me whenever I came back to Torino. I also thank all my
friends and colleagues with whom I have spent wonderful moments here in
the sunny Côte d’Azur, and so many thanks to Ali, Andrea, Elisa, Eugenio,
Neli, Nik — who left his mark although his stay with us was brief — and
Nino. Thanks to Emanuele, who was always available to chat when things
were not so bright. Special thanks to my friend Francesco, for the many deep
philosophical discussions on the beach after work and for his invaluable help

v

vi Acknowledgements

towards the end of this emotional journey. Thank you also to Lamis, a very
special person who not only made me look at Nice through a different lens,
but also — and most importantly — represented a genuine breath of fresh
air at a very difficult time in my existence.

I thank my whole family. I thank my parents, Paola and Roberto, and my
sister, Chiara, because their unconditional love and support represent a real
safety net, which I often take for granted, whereas I probably should never
do so. I also thank my grandmother Didi, whom I am always glad to make
proud of me whenever I visit her, and my grandmother Lina, who deserves
my deepest gratitude because, although she is no longer with us, I feel that
every academic success I achieved is mainly thanks to her, this PhD included.

Finally, I thank Ludovica, my love, immensely. The discomfort and the
frustration that I had to face were sometimes so intrusive, overwhelming and
oppressive that I just owe her thousands of apologies for all the times that I
dragged her — very unjustly — into a bad mood together with me. At the
same time, she deserves from me the most heartfelt thanks because, although
my company was often anything but joyful over these years, she never lost her
clarity of thought, and she always found the unceasing strength to provide me
with those lovely and comforting words that played a key role in getting me
to the end of this troubled adventure. She always pushed me so far beyond
my own limits that I am simply grateful to her for the better person that
I am, and for the even better individual that I have yet to become. I am
sure that one day I will have the chance to pay her back with all the love she
offered me day after day. Now, it only remains for me to wish us both some
well-deserved peace of mind, so as to live our present with lightheartedness,
no matter what the future holds for us.

Nice, January 30, 2023 Federico Brunero

Abstract

Caching has shown to be an excellent expedient for the purposes of reducing
the traffic load in data networks. An information-theoretic study of caching,
known as coded caching, represented a key breakthrough in understanding
how memory can be effectively transformed into data rates, where such trans-
formation relies on carefully designed caching policies that can be employed
not only to lower the volume of flowing data, but also to change the structure
of the communication problem itself. Besides sparking a flurry of brilliant
research works, coded caching also revealed the deep connection between
caching and computing networks, which similarly show the same need for
novel algorithmic solutions to reduce the traffic load.

Despite the vast literature within the aforementioned caching framework,
there remain some fundamental limitations, whose resolution is critical. For
instance, it is well-known that the coding gain ensured by coded caching not
only is merely linear in the overall caching resources, but also turns out to be
severely constrained in most practical settings. These same challenges also
affect the computing counterpart, for which the speedup factor brought about
by coding is severely hindered in realistic scenarios.

The goal of this thesis is that of exploring, from an information-theoretic
point of view, different solutions to possibly surpass the aforementioned
constrained linear coding gain, which represents a limiting linear barrier to
the actual benefits of coded multicasting. In particular, this manuscript aims
at improving and deepening the understanding of the key role that structure
plays either in data or in topology for caching and computing networks.

In the first part of the thesis, we explore the fundamental limits of caching
under some information-theoretic models that impose structure in data, where
by this we mean that we assume to know in advance what data are of interest
to whom. We begin with the problem of selfish caching, which can be seen as
an extreme way to exploit data structure. Under a relatively broad symmetric
system model, we show by means of an information-theoretic converse that
selfish caching not only is an ineffective way to capitalize on file preferences,
but also implies unbounded damages with respect to non-selfish policies.

vii

viii Abstract

Hence, as such selfish approach can fail, we wonder whether there is anything
else that we can do to harness any preexisting structure in user profiles. To
address this question, we propose an extremely broad (albeit symmetric)
system model for the file preferences and we identify the fundamental limits
of the so-called coded caching problem with tactical user profiles under
uncoded prefetching. For such setting, we prove that our proposed achievable
scheme, which basically corresponds to the classical coded caching scheme, is
within a constant multiplicative factor of 4 from the optimal. This relevant
outcome allows us to conclude that, under the considered broad model,
exploiting data structure may provide just a marginal improvement, which is
quantifiable by a factor of 4 even considering non-selfish caching strategies.
Subsequently, further results are provided for an additional system model for
the file preferences, under which we identify, again with the help of a novel
converse bound, the optimal worst-case load under uncoded prefetching within
a constant multiplicative factor. Finally, we investigate how data structure
can be exploited also in the pertinent context of distributed computing. Under
the coded distributed computing setting with structured support, which is
highly inspired by the caching problem with tactical user profiles and where
each output function only depends on a subset of the input files, we identify
the optimal communication load within a constant multiplicative gap.

As the neat conclusion above is that structure in data does not allow for
a significant improvement over the state of the art, we proceed to show in
the second part of the thesis how things radically change when the structure
exploited is in network topology. First, we consider the multi-access caching
problem with an extremely powerful combinatorial topology, which provides
astounding gains that greatly surpass the constrained linear coding gain
under modest caching resources. For such system model, we identify the exact
optimal worst-case load under uncoded prefetching by extending an existing
achievable scheme, and by developing a novel converse bound. Afterward, we
explore the topology-agnostic multi-access setting, and we provide two novel
converse bounds on the optimal average worst-case load across ensembles
of connectivities and under fixed uncoded prefetching, which allow us to
certify the goodness of the aforementioned combinatorial topology. Finally,
we conclude with the in-depth analysis of a novel multi-access computing
model, which is of great interest for real-case applications. For such setting,
besides identifying the optimal worst-case load and the optimal max-link
load within a constant gap from the optimal, we show how a proper topology
shaping yields a concurrent decrease of the communication load and increase
of the speedup factor in distributing computations. This is further evidence
of the impressive ramifications brought about by structure in topology, which
ultimately represents a crucial ingredient to exploit in multi-access networks.

Contents

Acknowledgements v

Abstract vii

List of Figures xvi

List of Tables xvii

Notations xix

1 Introduction 1
1.1 Motivation for Caching . 2

1.1.1 Caching as a Promising Solution 2
1.1.2 The Major Breakthrough of Coded Caching 3

1.2 Main Contributions . 7
1.2.1 Exploring the Impact of Structure in Data 8
1.2.2 The Ramifications of Structure in Topology 13
1.2.3 List of Publications . 20

I Exploring the Impact of Structure in Data 21

2 A Negative Result on Selfish Caching Policies 23
2.1 Introduction . 23

2.1.1 Past Works on Heterogeneous User Profiles and Selfish
Coded Caching . 24

2.1.2 An Adversarial Interplay Between Coded Caching and
Selfish Caching . 24

2.1.3 Main Contributions . 25
2.1.4 Chapter Outline . 26

2.2 System Model . 27
2.2.1 The Symmetric (K,α, F) FDS Structure 27

ix

x Contents

2.2.2 Understanding the Dynamics of Selfish Coded Caching
With an Example for the (K,α, F) = (5, 4, 1) Structure 30

2.3 Main Results . 35
2.3.1 Theorem Statement . 36
2.3.2 Comments on the Converse Bound 36

2.4 Proof of Theorem 2.1 . 40
2.4.1 Main Proof . 41
2.4.2 A Detailed Example for the Converse Bound 46

2.5 The Exact Memory-Load Trade-Off for the α-Demands 48
2.5.1 Cache Placement . 49
2.5.2 Delivery Scheme for the Set of α-Demands 50
2.5.3 Achievability Proof of Proposition 2.1 51
2.5.4 Example of the Achievable Scheme 51

2.6 Additional Optimal Schemes for Circular Demands 53
2.6.1 Circular Demands and the (5, 4, F) FDS Structure . . . 53
2.6.2 Circular Demands and the (6, 5, F) FDS Structure . . . 57

3 Coded Caching With Tactical User Profiles 61
3.1 System Model . 61

3.1.1 Description of the System Model 61
3.1.2 A Genie-Aided Converse Bound 63

3.2 Main Results . 64
3.3 Collection of Proofs . 66

3.3.1 Proof of Theorem 3.2 66
3.3.2 Proof of Theorem 3.3 70

4 A Converse for Caching With Heterogeneous Preferences 73
4.1 System Model and Related Results 73

4.1.1 Description of the System Model 73
4.1.2 An Existing Achievable Scheme 74
4.1.3 A Genie-Aided Converse Bound 75

4.2 Main Results . 76
4.3 Collection of Proofs . 77

4.3.1 Proof of Theorem 4.1 77
4.3.2 Proof of Theorem 4.2 82

5 Coded Distributed Computing With Structured Support 85
5.1 System Model and Main Results 85

5.1.1 The General Formulation 85
5.1.2 The Symmetric Case 86
5.1.3 Main Results . 86

Contents xi

5.2 Proof of Theorem 5.1 . 87
5.2.1 Map Phase . 87
5.2.2 Shuffle Phase and Reduce Phase 88
5.2.3 Communication Load 88

5.3 Proof of Theorem 5.2 . 89
5.3.1 Preliminaries . 89
5.3.2 Lower Bound on the Communication Load 90

5.4 Proof of Theorem 5.3 . 92

II The Ramifications of Structure in Topology 95

6 Combinatorial Multi-Access Caching 97
6.1 Introduction . 97

6.1.1 Past Works on Multi-Access Coded Caching 98
6.1.2 Main Contributions . 99
6.1.3 Chapter Outline . 100

6.2 System Model . 100
6.2.1 Description of Connectivity 101
6.2.2 Generalized Combinatorial Topology 104
6.2.3 Worst-Case Load and Average Worst-Case Load 106

6.3 Main Results . 107
6.3.1 Multi-Access Coded Caching With Generalized Combi-

natorial Topology . 107
6.3.2 Analysis of Topology Ensembles 108

6.4 Achievability Proof of Theorem 6.1 111
6.4.1 Description of the General Scheme 111
6.4.2 Performance Calculation 114

6.5 Converse Proof of Theorem 6.1 115
6.6 Proof of Theorem 6.2 . 121

6.6.1 Constructing the Index Coding Bound 122
6.6.2 Counting the Connectivities 122
6.6.3 Constructing the Optimization Problem 123
6.6.4 Lower Bounding the Solution to the Optimization Prob-

lem . 127
6.7 Proof of Theorem 6.3 . 129

6.7.1 Constructing the Index Coding Bound 130
6.7.2 Counting the Connectivities 130
6.7.3 Constructing the Optimization Problem 131
6.7.4 Lower Bounding the Solution to the Optimization Prob-

lem . 134

xii Contents

7 Multi-Access Distributed Computing 137
7.1 Introduction . 137

7.1.1 Coded Distributed Computing 138
7.1.2 Main Contributions . 139
7.1.3 Chapter Outline . 141

7.2 System Model . 141
7.3 Main Results . 144

7.3.1 Characterizing the Communication Load 145
7.3.2 Characterizing the Max-Link Load 148

7.4 Illustrative Example of the Coded Scheme 150
7.4.1 Map Phase . 151
7.4.2 Shuffle Phase . 152
7.4.3 Reduce Phase . 153
7.4.4 Communication Load 154

7.5 Proof of Achievable Bound in Theorem 7.1 155
7.5.1 Map Phase . 155
7.5.2 Shuffle Phase . 156
7.5.3 Reduce Phase . 156
7.5.4 Communication Load 157

7.6 Proof of Converse Bound in Theorem 7.2 158
7.6.1 Lower Bound for a Given File Assignment 158
7.6.2 Lower Bound Over All Possible File Assignments . . . 161

7.7 Proof of Achievable Bound in Theorem 7.4 162
7.7.1 Communication Load 162
7.7.2 Download Cost . 163
7.7.3 Max-Link Communication Load 164

7.8 Proof of Converse Bound in Theorem 7.5 165
7.8.1 Lower Bound for a Given File Assignment 165
7.8.2 Lower Bound Over All Possible File Assignments . . . 166

III Conclusions and Appendices 169

8 Conclusions and Future Directions 171
8.1 Exploring the Impact of Structure in Data 171

8.1.1 A Negative Result on Selfish Caching Policies 171
8.1.2 Coded Caching With Tactical User Profiles 172
8.1.3 A Converse for Caching With Heterogeneous Preferences173
8.1.4 Coded Distributed Computing With Structured Support174

8.2 The Ramifications of Structure in Topology 174
8.2.1 Combinatorial Multi-Access Caching 174

Contents xiii

8.2.2 Multi-Access Distributed Computing 176

A Appendices to Chapter 2 179
A.1 Proof of Corollary 2.1.1 . 179
A.2 Proof of Corollary 2.1.2 . 179
A.3 Proof of Lemma 2.2 . 180
A.4 Proof of Lemma 2.3 . 180
A.5 Converse Proof of Proposition 2.1 181

B Appendices to Chapter 6 183
B.1 Proof of Lemma 6.1 . 183
B.2 Proof of Lemma 6.2 . 184

C Appendices to Chapter 7 187
C.1 Proof of Corollary 7.1.1 . 187
C.2 Proof of Theorem 7.3 . 188
C.3 Proof of Theorem 7.6 . 189
C.4 Proof of Lemma 7.1 . 191
C.5 Proof of Lemma 7.2 . 192

Bibliography 203

List of Figures

1.1 A server with access to a library of N files is connected through
a shared error-free broadcast link to K users, each having a
cache of size equal to M files. 3

1.2 MACC model where there are Λ = 4 caches and each user
is connected to α = 2 consecutive caches following a cyclic
wrap-around topology. 14

1.3 Multi-access distributed computing problem with Λ = 4 map-
pers and K = 6 reducers, where each reducer is connected
exactly and uniquely to a subset of α = 2 map nodes. 17

1.4 Comparison between the coding gain for different values of α
as a function of the computation load r. We recall that α = 1
corresponds to the original CDC framework. 19

2.1 FDS request graph for the (K,α, F) = (5, 4, 1) FDS structure
and the demand d1 = (1234, 2345, 1345, 1245, 1235). 32

2.2 FDS request graph for the (K,α, F) = (5, 4, 1) FDS structure
and the demand d2 = (1234, 2345, 1235, 1245, 1345). 34

2.3 FDS request graph for any demand in the standard (unselfish)
MAN scenario with K = 5 users and N = 5 files labeled as
Wf with f ∈ [5]. In this case the demand is identified by the
vector f = (f1, f2, f3, f4, f5), where user k ∈ [5] requests file
Wfk

. This graph is complete. Hence, here the ability to create
cliques of subfiles is only limited by t, and is not affected at
all by the specific demand. 35

2.4 Comparison between selfish caching and unselfish caching for
the (20, 12, F) FDS structure. 37

2.5 Plot of different coding gains G for varying values of K and α
for the (K,α, F) FDS structure when γ = 1/20. 39

2.6 FDS request graph for a generic circular demand identified by
the vector û = (û1, û2, û3, û4, û5) ∈ H5 and the (K,α, F) =
(5, 4, F) FDS structure. 54

xv

xvi List of Figures

2.7 FDS request graph for a generic circular demand identified by
the vector û = (û1, û2, û3, û4, û5, û6) ∈ H6 and the (K,α, F) =
(6, 5, F) FDS structure. 57

5.1 Comparison between the original CDC performance and the
new scheme when there are K = 10 output functions and
G = 10 groups of files, and each group of files is needed by
K ′ = 5 output functions, whereas each output function depends
on G′ = 5 groups of files. The achievable scheme is in red,
whereas the converse bound is in blue. 92

6.1 Example of connectivity for the MACC model with Λ = 4. . . 102

7.1 Comparison between original CDC, where there are Λ = 10
pairs of mappers and reducers, and MADC with combinatorial
topology, Λ = 10 mappers and K = 45 reducers, where each of
them is uniquely associated to α = 2 mappers. 147

7.2 Comparison between the coding gain for different values of α
as a function of the computation load r. We recall that α = 1
corresponds to the original CDC framework. 148

List of Tables

2.1 Important parameters for the symmetric (K,α, F) FDS structure 28

7.1 Parameters for the MADC system with combinatorial topology 142

xvii

Notations

For sets we use calligraphic symbols, whereas for vectors we use bold symbols.
In each chapter, we may introduce additional notation that will remain
confined to the chapter in question.

B number of bits of each file in the library of a caching problem

H(·) entropy of a random variable

Hn group of circular permutations of [n] for some n ∈ N+

J download cost in distributed computing

K number of users in a caching problem

L communication load in distributed computing

Lmax-link max-link load in distributed computing

M memory (in number of files) available at each user in a caching
problem

N number of files in a caching problem

R worst-case communication load

r computation load in distributed computing

Ru,s worst-case communication load under uncoded and selfish place-
ment

Ru worst-case communication load under uncoded placement

Sn group of all permutations of [n] for some n ∈ N+. The elements of
Sn are represented either by permutation functions or by permuta-
tion vectors depending on the context. Hence, for a permutation
function π ∈ Sn, we denote by πn := (π(1), . . . , π(n)) the vector

xix

xx Notations

of elements from [n] permuted according to the permutation
function π and we let π−1 denote the inverse function of π. Alter-
natively, we may also write a permutation of the set [n] directly
as u = (u1, . . . , un) ∈ Sn, where it is implied u = πn for some
permutation function π ∈ Sn

Z generic cache content

[a : b] set {a, a+ 1, . . . , b− 1, b} for a, b ∈ N+ with a < b

[a : b]q set {a mod q, (a+1) mod q, . . . , (b−1) mod q, b mod q} for some
a, b, q ∈ N+

[a] set {1, . . . , a} for a ∈ N+

[n]m set {A : A ⊆ [n], |A| = m} for some n,m ∈ N+ with m ∈ [0 : n]

α | β denotes that the integer α divides integer β for some α, β ∈ N+

(︂
n
k

)︂
binomial coefficient, where

(︂
n
k

)︂
= 0 whenever n < 0, k < 0 or

n < k for some n, k ∈ N+

⌊ · ⌋ denotes the floor function

| · | size or cardinality of the taken argument

Fn
2m denotes the n-dimensional vector space over the finite field with

cardinality 2m for some n,m ∈ N+

N set of non-negative integers

N+ set of positive integers

SN N -ary Cartesian product, i.e., SN = S1 ×· · ·×SN = ∏︁
n∈[N] Sn =

{(s1, . . . , sN) : sn ∈ Sn, n ∈ [N]} given N sets {Sn : n ∈ [N]}

⊕ bitwise XOR operation

m mod n modulo operation on m with integer divisor n, letting m mod n =
n when n divides m

Chapter 1

Introduction

Our lives strongly depend on our ability to communicate with each other.
Even though we always take it for granted, communication is essential.

It is fundamental when we teach our children a language, when we argue with
our friends about politics, or when we need to express our own feelings to the
people we love. Whether we realize it or not, every little facet of our lives
involves the aspect of conveying our emotions, thoughts, and beliefs. After
all, even Aristotle said1 that human beings are by nature social animals, who
are inherently inclined at socializing, at creating communities and, ultimately,
at communicating.

Nevertheless, we do not express ourselves always in the same manner.
Depending on the context in which we find ourselves, we often modify the
way we interact with each other. For instance, when we talk to a kid who
is still learning our mother tongue, it is crucial to use very simple and often
redundant words; when we go to a concert with our friends, we often need
to speak louder because of the background music, which interferes with our
voice. Clearly, there are several factors that might change the way we relate
to other people. Since each of us has their own sensitivity, we do not always
want to say or hear the same things; at the same time, we often interact with
the surrounding context in different ways. What we always do, though, is
to adapt our communication style — maybe even unconsciously — to the
circumstances, so as to communicate in the most suitable and efficient way.

Now, it is reasonable to assume that the experienced reader who is reading
this manuscript is extremely familiar with the technical content that will
follow this brief introduction. Hence, the two small paragraphs above are
intended for the more inexperienced reader, who certainly deserves to grasp at
least, at a high level, the content of this thesis. Broadly speaking, as human

1See Politics, 1253a.

1

2 1.1. Motivation for Caching

beings always adapt to and sometimes mold the surrounding environment
in order to convey their thoughts and words more efficiently, we can say
in short that this manuscript studies how efficiently we can communicate
under some well-defined circumstances. More formally, and for the more
experienced reader, this thesis studies the fundamental limits of some powerful
cache-aided communication models, and since such study greatly relies on the
mathematical tools provided by information theory, we can safely conclude
that this thesis naturally fits within the research context of information-
theoretic caching.

1.1 Motivation for Caching
Novel data-hungry applications are expected to put great pressure on current
and future communication networks, whether this will be due to improved
video streaming platforms, to the introduction of novel cloud computing
services, or to the emergence of innovative applications that will play a key
role in future networking standards [1]. As the traffic growth seems inevitable
in the upcoming future, one can understand at this point why there has been
constant interest into looking for new efficient communication techniques.

1.1.1 Caching as a Promising Solution
Although the continuous improvement of physical devices is certainly going
to provide a better infrastructure to support higher data rates, future com-
munication systems cannot solely rely on the development of faster and more
resilient electronic equipment. Hence, looking for novel algorithmic solutions
becomes an urgent need to the purpose of increasing the speed of communica-
tions under the limiting constraints dictated by the physical medium. In this
regard, considering that a large portion of data traffic consists of cacheable
content, the idea of caching seems definitely a promising solution.

When we think of communicating data through a communication network,
the first things that come to mind are network resources, such as spectrum
frequencies to be allocated in a wireless setting, switches to be configured in a
data center, or time slots to be carefully assigned in shared-medium networks.
Typically, such network resources are often both expensive and very limited.
Nevertheless, one thing we often forget is the concept of memory. On the one
hand, memories are cheap and abundant; on the other hand, memories can
be efficiently used with the purpose of reducing the amount of data flowing
through highly saturated communication networks. Indeed, if storage devices
are properly used to proactively cache data, then we can effectively take

Chapter 1. Introduction 3

advantage of storage capabilities to transform memory into data rates. This
is exactly what coded caching achieves.

1.1.2 The Major Breakthrough of Coded Caching
Now, after pointing out the importance of taking advantage of storage capabil-
ities, it comes natural to wonder whether there are specific caching strategies
which are more effective than others, and how we can study analytically the
improvements brought about by the use of memories in communication net-
works. In this regard, Maddah-Ali and Niesen (MAN) approached the caching
problem from an information-theoretic perspective, and proposed in [2] the
so-called coded caching framework. The seminal work in [2] represented a
major breakthrough, since it revealed that carefully designed caching policies
can be employed not only to lower the volume of flowing data, but also to
change the structure of the communication problem itself.

Server

N files

M files

K users

Shared link

Figure 1.1: A server with access to a library of N files is connected through
a shared error-free broadcast link to K users, each having a cache of size
equal to M files.

The caching model considered by Maddah-Ali and Niesen in [2] consists of a
central server, which has access to a library containing N files {Wn : n ∈ [N]}
of B bits each. The server is connected to K users through a shared error-free
broadcast channel, and each user is equipped with a cache of size MB bits,
or, equivalently, M files. A schematic of the system model is represented in
Figure 1.1.

The caching problem consists of two sequential phases. During the first
phase, which is referred to as the placement phase, the central server fills

4 1.1. Motivation for Caching

the caches without any knowledge of the future requests from the users.
Typically, this phase takes place during off-peak hours, when the network
is not overloaded. During the second phase, which is called delivery phase,
and which typically happens when the network is saturated and interference-
limited, the requests of the users are simultaneously revealed to the central
server. During delivery, the server prepares the broadcast message X, which
is then sent over the error-free broadcast link, so that each user can retrieve
the missing information from the received transmission. The users cancel the
interference terms that appear in the broadcast transmission, and do so by
means of the cached contents they have access to, eventually decoding their
own messages.

In the aforementioned caching problem, the task is to design the placement-
and-delivery scheme that minimizes the worst-case communication load R,
which is defined as the number of bits — normalized by the file size B —
transmitted during the delivery phase in the worst-case scenario. More in
general, the goal is to characterize the optimal worst-case communication
load R⋆, which is formally defined as

R⋆(M) := inf{R : (M,R) is achievable} (1.1)

where the tuple (M,R) is said to be achievable if there exists a caching-
and-delivery scheme which guarantees, for any possible demand and a given
memory M , a load R.

Before we describe the coded caching scheme in its general form, we first
present in the following a small toy example, so as to show the key ideas
behind coded caching.

A Toy Example

Consider the following simple caching network, where we have N = 2 files in
the main library and there are K = 2 users connected to the central server.
We assume that each user is equipped with a cache of size M = 1 file. As we
mentioned above, the caching problem is split into the placement phase and
the delivery phase.

Placement phase This phase takes place much before the users reveal their
requests to the server. Each file in the main library is evenly divided in two
parts, so that we have

W1 = {W1,1,W1,2} (1.2)
W2 = {W2,1,W2,2} (1.3)

Chapter 1. Introduction 5

where |Wn,1| = |Wn,2| = B/2 for n ∈ {1, 2}. Then, if we denote by Zk the
content of the cache of user k with k ∈ {1, 2}, the server fills the caches Z1
and Z2 as follows

Z1 = {W1,1,W2,1} (1.4)
Z2 = {W1,2,W2,2}. (1.5)

We can verify that this placement scheme does not exceed the available
memory at the users. For example, if we focus on the cache of user 1, we can
see that it contains two subfiles, i.e., subfile W1,1 and subfile W2,1, where each
of them has size B/2 bits. This means that Z1 contains a total of B bits or,
equivalently, M = 1 file. The same holds for the cache of user 2.

Delivery phase This phase commences after the users reveal their requested
files. If we assume in this example that user 1 requests W1 and user 2 requests
W2, we can see from the content of Z1 and Z2 that: user 1 misses W1,2 to
correctly reconstruct W1; user 2 misses W2,1 to correctly reconstruct W2. At
this point, the server transmits the coded message X = W1,2 ⊕W2,1 over the
broadcast channel. It is relatively straightforward to check that each user can
correctly decode the missing piece of the requested file from the transmission
X.

• User 1 has in its cache Z1 the term W2,1, which can be removed from
the coded message X by calculating X ⊕W2,1 = W1,2, decoding in this
manner the missing term W1,2.

• Similarly, user 2 has in its cache Z2 the term W1,2, which can be removed
from the coded message X by calculating X ⊕W1,2 = W2,1, decoding in
this manner the missing term W2,1.

In conclusion, each user receives the missing piece of the requested file.

For the scheme above, we can see that the achieved communication load
is equal to RMAN = 1/2, where RMAN denotes the communication load
guaranteed by the MAN coded caching scheme. First, we recall that the load
is defined as the number of transmitted bits, normalized by the file size B.
Then, we observe that the transmitted message X is given by the bitwise
XOR of two subfiles with size B/2, which implies that the size of X is equal
to B/2. This means that RMAN = |X|/B = 1/2.

Notice that, if we had decided to let the server deliver first W1,2 to user 1,
and then W2,1 to user 2, the total number of transmitted bits would have
been equal to the size of W1,2 plus the size of W2,1, i.e., B bits in total. Hence,
this simple yet instructive example shows how the use of coding during the

6 1.1. Motivation for Caching

delivery procedure allowed to halve the total number of (normalized) bits
delivered by the central server to the users.

The Coded Caching Scheme

We can proceed now to the description of the MAN coded caching scheme in
its general form. We recall that in the coded caching framework we consider
a main library containing N files {Wn : n ∈ [N]} of B bits each and K users
that are equipped with a cache of MB bits. The users are connected to the
central server through an error-free broadcast channel.

Placement phase Let M = tN/K, where t ∈ [0 : K]. Each file is split into(︂
K
t

)︂
non-overlapping subfiles as

Wn = {Wn,T : T ⊆ [K], |T | = t} (1.6)

for each n ∈ [N]. The cache of user k is then filled as

Zk = {Wn,T : T ⊆ [K], |T | = t, k ∈ T } (1.7)

for each k ∈ [K]. We can check that the total number of subfiles cached by
each user is equal to

(︂
K−1
t−1

)︂
for each of the N files in total. Hence, considering

that each subfile has size B/
(︂

K
t

)︂
, we have

|Zk| = N

(︂
K−1
t−1

)︂
(︂

K
t

)︂ B = MB (1.8)

for each k ∈ [K]. Consequently, the cache memory constraint is satisfied.

Delivery phase After the demand vector d = (d1, . . . , dK) is revealed, where
we denote by Wdk

the file requested by user k ∈ [K], the server prepares the
transmission X, which is given by

X =
⎛⎝⨁︂

k∈S
Wdk,S\{k} : S ⊆ [K], |S| = t+ 1

⎞⎠ . (1.9)

We recall that dk ∈ [N] for each k ∈ [K].

Since the broadcast message X contains a total of
(︂

K
t+1

)︂
bitwise XORs,

the worst-case load RMAN is given by

RMAN(t) = |X|
B

=

(︂
K

t+1

)︂
(︂

K
t

)︂ (1.10)

Chapter 1. Introduction 7

for each t ∈ [0 : K]. For non-integer values of t, a memory-sharing scheme
can be employed, as described in [2]. In general, the worst-case load RMAN is
a piece-wise linear curve with corner points

(M,RMAN) =
⎛⎝tN
K
,

(︂
K

t+1

)︂
(︂

K
t

)︂
⎞⎠ , ∀t ∈ [0 : K]. (1.11)

This achievable performance in (1.11) was shown to be exactly optimal
in [3], [4] under the assumption of uncoded cache placement.

Definition 1.1 (Uncoded Cache Placement). A cache placement is uncoded
if the bits of the files are simply copied within the caches of the users.

1.2 Main Contributions
Since its original information-theoretic formulation, coded caching has been
rightfully credited with being able to transform memory into data rates,
and has so sparked a flurry of research on a variety of topics, such as on
information-theoretic converses [3], [4], the interplay between caching and
PHY [5]–[15], caching and privacy [16]–[18], and the critical bottleneck of
subpacketization [19]–[25]. More recently, we saw interesting findings on
coded caching under file popularity considerations [26]–[30] or in scenarios
with heterogeneous user preferences [31]–[36], as well as on a variety of other
scenarios [37]–[46], including the recent finding that coded caching can provide
astounding gains over realistic downlink systems [47].

Nevertheless, despite the several variations of coded caching that have been
explored since its original formulation, there are still many open questions to
address and several limitations to overcome. For instance, it is well-known
that the coding gain2 guaranteed by coded caching not only is merely linear in
the overall caching resources, but also turns out to be quite modest in practice
due to several reasons3. This phenomenon holds also in the computing setting,
which is closely related to the coded caching framework and which similarly
shows that the speedup factor brought about by coding is severely hindered in
realistic scenarios. Hence, our goal here is that of exploring different solutions
to possibly surpass such constrained linear coding gain, which represents a
limiting linear barrier that dramatically hinders the actual benefits of coded

2With coding gain we refer to the multiplicative reduction in the volume of data brought
about by the use of coding. In the single-stream scenario, this effectively coincides with
the number of users served at a time by each coded packet in the broadcast message X.

3For example, the subpacketization, which is a direct consequence of the combinatorial
nature of the MAN scheme, represents a relevant bottleneck in practical settings.

8 1.2. Main Contributions

multicasting in practical settings. In particular, the goal of this thesis is to
improve and deepen the understanding of the key role that structure plays
either in data or in topology for caching and computing networks, where the
underlying structure — whether in data or in topology — will be defined
by similar combinatorial abstractions. When the structure is imposed in
data, we will show that this does not help significantly toward breaking the
aforementioned linear barrier — in fact, we will show that structure can
even hurt, if it is exploited in the wrong way. Instead, when the structure
is imposed in the topology, we will demonstrate how we can cleverly take
advantage of it, providing for both the caching and the computing setting
stunning gains. In the following, we outline the main contributions that will
be presented in this manuscript.

1.2.1 Exploring the Impact of Structure in Data
In the first part of the thesis, we investigate the benefits that we can possibly
obtain from exploiting the structure in data. As data can reveal some
underlying structure in several ways, we point out that in our context what
really matters is what data is desired by whom. For this reason, we will
explore user preferences, where by this we imply that each user is assumed to
have a file demand set (FDS) of desired files. We organize this first part of
the manuscript in four distinct chapters, where the first three chapters will
regard coded caching with file preferences, and the last chapter will show
how some of the results developed in the context of caching can be employed
in computing networks. We provide a brief summary of each chapter in the
following.

A Negative Result on Selfish Caching Policies

As we mentioned above, our aim of exploiting some preexisting structure in
data is equivalent to taking advantage of the fact that we know what data
are desired by whom. Hence, since in a realistic scenario the users may have
diverging interests which may intersect to various degrees, what happens for
example if each file is of potential interest to, say, 40 % of the users and each
user has potential interest in 40 % of the library? In this regard, one approach
that is worthy of exploring in caching is the so-called selfish caching approach,
which can be seen as the most aggressive way to capitalize on some previous
knowledge on the user preferences.

A key ingredient in using caches has commonly been the exploitation of the
fact that some contents/files are more popular than others, and so are generally
to be allocated more cache space [48], [49]. This inevitably introduces the

Chapter 1. Introduction 9

consideration that different users may have different file preferences, which in
turn brings to the fore the concept of selfish caching where simply users cache
independently and selfishly only contents that they are interested in potentially
consuming themselves [32]–[36]. In the traditional prefetching scenario, where
emphasis is based heavily on bringing relevant content closer to each user,
this idea of selfish caching brought about performance improvements [50],
[51] in the form of higher local caching gains for each user.

Nevertheless, we have to be careful, as this selfish idea can have some
serious ramifications (as it will be proved). Indeed, we recall that the main idea
of coded caching is that it multicasts at any given time a linear combination of
different contents desired by different users. This implies that any one receiver
associated to a multicast message must be able to find in its cache all the
undesired contents (subfiles) of that multicast message. This is achieved in [2]
by means of a highly structured and coordinated content placement phase,
where each user caches a small fraction of every file of a common library. This
relationship between undesired and cached contents deteriorates when using
selfish caching, simply because each receiver selfishly opts — based on its own
preferences — to not cache some of these undesired files. However, these same
undesired files may eventually appear as interference at that selfish receiver
who will now not be able to “cache-out” this interference. At the same time,
though, such selfish caching allows for a much more targeted placement of
files such that each user can cache more of what it actually wants.

In this thesis, Chapter 2 provides novel and unified results in the context
of selfish coded caching. First, we propose the symmetric (K,α, F) FDS
structure, which assumes an N -file library {WS : S ⊆ [K], |S| = α} to be a
collection of disjoint file classes WS = {Wf,S : f ∈ [F]}, with each class WS
consisting of F different files. For such setting, we then consider that each
user k ∈ [K] has an FDS given by

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} (1.12)

which describes the files this user is potentially interested in. After proposing
a new selfish system model, which aims to calibrate the selfishness effect by
calibrating the degree of separation between the interests of the different
users, we employ index coding arguments to derive an information-theoretic
converse (lower bound) on the optimal worst-case communication load R⋆

u,s
under the assumption of uncoded and selfish placement. Such converse bound
is shown to be a piecewise linear curve with corner points

(M,RLB) =
⎛⎝tN
K
,

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂
⎞⎠ , ∀t ∈ [0 : α]. (1.13)

10 1.2. Main Contributions

In the above, we recall that the parameter α denotes the number of users
which each class of files is of interest to. The case α = K trivially corresponds
to the standard MAN system model, where every file is of interest to every
user; instead, the case α = 1 corresponds to the other extreme case, where
each user has its own set of files that is not of interest to any other user.

The main contribution of Chapter 2 is the information-theoretic converse
above, which not only represents a novelty in terms of the combinatorial
arguments exploited for its construction, but also allows us to draw the
powerful conclusion that selfish coded caching can be, under some assumptions,
rather detrimental. Indeed, as it will be shown in Corollary 2.1.1, we have
that

R⋆
u,s(t)

RMAN(t) ≥ 1, ∀t ∈ [0 : α− 1] (1.14)

R⋆
u,s(t)

RMAN(t) > 1, ∀t ∈ [α− 2] (1.15)

where this implies that unselfish coded caching strictly outperforms — in the
non-trivial memory regime t ∈ [α − 2] — any conceivable implementation
of selfish coded caching under the proposed symmetric FDS structure. In
addition, as it will be shown in Corollary 2.1.2, the coding gain (CG) of selfish
caching does not scale as the number of users K increases, but it is instead
bounded as

CG <
1

1 − α/K
(1.16)

for any fixed ratio α/K. Recalling the original premise of unbounded linear
coding gain, the above implies that indeed selfish caching can be unboundedly
detrimental and so one must be careful before considering selfish caching
policies, as these can yield unbounded losses over non-selfish coded caching.
Further details and comments will be provided in Chapter 2.

Coded Caching With Tactical User Profiles

From the results in Chapter 2, we can definitively conclude that selfish
caching can fail, as it turns out to be a too extreme approach. Nevertheless,
we still wonder whether there is anything else that we can do to harness some
preexisting structure in user preferences. In particular, we ask ourselves again
what we can do if each user is interested in the same fraction of files N ′/N
and each file is of interest to the fraction of users K ′/K for some N ′ ∈ [N]
and K ′ ∈ [K]. While in Chapter 2 we investigated such setting under a
very strict caching policy and under a very strict combinatorial structure,
in Chapter 3 we take one step further and we address the aforementioned

Chapter 1. Introduction 11

question under the most general (albeit symmetric) structure for the user
interests, for which we allow any caching policy (as long as it is uncoded) and
we do not impose any specific pattern in the way the user profiles overlap.
These two aspects represent a massive difference with respect to the setting
previously considered in Chapter 2.

First, we propose an extremely broad system model for the user profiles,
where such model follows the combinatorial structure of the so-called tactical
configurations, a symmetric and balanced block design in combinatorial math-
ematics. In such setting, we assume that the N files in the system are split
in G groups containing N/G files each, where this implies that the library
can be partitioned as

{W1, . . . ,WN} = {WK1 , . . . ,WKG
} (1.17)

where Kg ⊆ [K] is the subset of users which are interested in the set of
files given by WKg for some g ∈ [G]. Then, we assume that each user is
interested into G′ distinct groups of files, whereas each file is of interest to
exactly K ′ users, namely, we assume that |{g : g ∈ [G], k ∈ Kg}| = G′ for each
k ∈ [K] and that |Kg| = K ′ for each g ∈ [G]. This implies that the equation
GK ′ = KG′ holds, where it is assumed that G,G′, K ′, K ∈ N+. Further, the
above implies that the FDS Fk of user k ∈ [K] is given by

Fk = {WKg : g ∈ [G], k ∈ Kg}. (1.18)

Then, referring to such problem as coded caching with tactical user profiles,
we characterize the fundamental limits of caching under the proposed broad
structure for the user interests. Interestingly, our proposed achievable scheme
consists of the standard MAN coded scheme for any t ≤ t̄, whereas we employ
a memory-sharing scheme for any t > t̄. We show that the optimal worst-case
load R⋆

u is upper bounded by the lower convex envelope of the following
memory-load corner points

(M,RUB) =
(︃
t
N

K
, g(t)

)︃
, ∀t ∈ [0 : K ′] (1.19)

where g(t) is defined as

g(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(︂
K

t+1

)︂
(︂

K
t

)︂ , if t ∈ [0 : t̄]
(︂

K
t̄+1

)︂
(︂

K
t̄

)︂ K ′ − t

K ′ − t̄
, if t ∈ [t̄+ 1 : K ′]

(1.20)

12 1.2. Main Contributions

and t̄ := ⌊K ′/2⌋. Our converse bound shows instead that the optimal worst-
case load R⋆

u is lower bounded by the lower convex envelope of the following
memory-load corner points

(M,RLB) =
⎛⎝tN
K
,
G

G′

(︂
K′

t+1

)︂
(︂

K′

t

)︂
⎞⎠ , ∀t ∈ [0 : K ′]. (1.21)

The interesting outcomes of Chapter 3 are several. First, the techniques
employed for the construction of the converse represent a novelty in the way we
capture the essential structural aspects of the system model considered here.
Then, as it will be proved in Corollary 3.3.1, we identify one specific instance
of the coded caching problem with tactical user profiles whose performance
cannot be surpassed irrespective of the symmetric structure for the user
profiles, as the converse bound is shown to be exactly optimal. At the same
time, we prove that, despite the nature of the interests of the users, our
proposed achievable scheme — which, we recall, coincides with the MAN
coded scheme for t ≤ t̄ — is within a constant multiplicative factor of at most
4 from the optimal. This result is significant, we believe, because it shows,
further again, the power of the combinatorial MAN coded caching scheme
under a well-defined system model for the user profiles. It is worth noting
that the proposed system model under tactical configurations includes some
other well-known structures, such as the symmetric (K,α, F) FDS structure.
Hence, this implies that the result in Chapter 3 holds also for the system
model investigated in Chapter 2.

On the Optimality of Coded Caching With Heterogeneous User
Profiles

This first part of the manuscript continues with Chapter 4, which focuses
on a system model for the user profiles that is different from — and, so, not
captured by — the generic model studied in Chapter 3. More specifically, in
Chapter 4 we further explore the system model proposed in [34], where the
files in the library are divided in two categories, i.e., common files and unique
files. We consider that there are Nc common files {W c

n : n ∈ [Nc]}, where
each of them is of interest to every user in the system; then, for each group
g ∈ [G], we assume that there are Nu unique files {W u,g

n : n ∈ [Nu]}, where
each of them is of interest to the users belonging to the group g ∈ [G] only.

Under the aforementioned system model, and taking advantage of the
genie-aided converse bound idea from [4] — similarly adopted also in Chapter 3

— we provide an information-theoretic lower bound on the optimal worst-case

Chapter 1. Introduction 13

communication load under uncoded prefetching, which is given by

R⋆
u ≥ min

β

1
2

⎛⎝
(︂

K
tc+1

)︂
(︂

K
tc

)︂ +G

(︂
K/G
tu+1

)︂
(︂

K/G
tu

)︂
⎞⎠ (1.22)

where tc = KβM/Nc and tu = K(1 − β)M/GNu. In addition, the derived
converse, together with an already existing achievable scheme from [34], allows
us to characterize the memory-load tradeoff under uncoded placement within
a constant multiplicative factor of 2.

Coded Distributed Computing With Structured Support

Finally, the first part of the manuscript is concluded by Chapter 5, where we
present how the information-theoretic system model proposed in Chapter 3
can be employed in the context of distributed computing. In such case, we
show how structure in data can be employed to improve the coded distributed
computing (CDC) scheme proposed originally in [52].

More specifically, we consider the distributed computing problem with K
computing nodes and N input files of F bits each. The goal of node k ∈ [K]
is to compute the output function ϕk : F|Nk|

2F → F2B which maps the files in
Nk ⊆ {w1, . . . , wN} to a bit stream uk = ϕk(wn : wn ∈ Nk) ∈ F2B of length B
bits. We assume that each output function ϕk with k ∈ [K] is decomposable,
which implies ϕk(wn : wn ∈ Nk) = hk(gk,n(wn) : wn ∈ Nk). Simply, for each
k ∈ [K] we have a map function gk,n : F2F → F2T , which maps the input file
wn ∈ Nk into an intermediate value (IV) vk,n = gk,n(wn) ∈ F2T of T bits, and
a reduce function hk : F|Nk|

2T → F2B , which maps the IVs vk,n = gk,n(wn) for
each wn ∈ Nk into the output value uk = hk(vk,n : wn ∈ Nk) ∈ F2B of B bits.

In Chapter 5, we focus on a specific structure for what concerns the sets
Nk for each k ∈ [K], where such structure follows the broad model from
Chapter 3 based on tactical configurations. In other words, we investigate
the symmetric setting where the only constraint is that each reduce function
depends on the same number of intermediate values N ′, and each intermediate
value is needed by the same number of reduce functions K ′. Under such
extensive system model, we characterize the communication load proposing
both an achievable scheme and a converse bound, which are shown to be
within a constant multiplicative factor of 6.

1.2.2 The Ramifications of Structure in Topology
After showing that structure in data, if exploited, provides marginal improve-
ments under a relatively broad setting, we will proceed to show how things

14 1.2. Main Contributions

radically change if the structure to exploit is in the topology. In particular,
we will investigate the key role of network topology in multi-access networks
and the related remarkable gains across two chapters. In the first chapter, we
will study in depth a novel network topology in the context of multi-access
coded caching. Subsequently, the second and last chapter of this second part
will provide new results in the context of distributed computing, proposing a
novel multi-access distributed computing model. We provide a brief summary
of each chapter in the following.

Combinatorial Multi-Access Caching

The original coded caching model in [2] considered that each user has access to
its own single dedicated cache. However, in several scenarios it is conceivable
and perhaps more realistic that each cache serves more than one user, and
that each user can connect to more than one cache. This motivated the work
in [29] that introduced the so-called multi-access coded caching (MACC)
model, which involved Λ users and Λ caches, and involved a topology where
each user is connected to4 α > 1 consecutive caches in a cyclic wrap-around
fashion as in Figure 1.2, such that each cache serves exactly α users.

Server

1 2 3 4Users

Shared link

1 2 3 4Caches

Figure 1.2: MACC model where there are Λ = 4 caches and each user
is connected to α = 2 consecutive caches following a cyclic wrap-around
topology.

For various reasons, most of the works in the literature focused on the
MACC model with cyclic wrap-around topology. Such topology, though,

4We urge the reader to note that now the parameter α means something different than
what it meant in the first part of the manuscript.

Chapter 1. Introduction 15

never showed to be of real impact due to the modest improvement over the
single dedicated cache setting. A substantial breakthrough came with the
very recent work in [53], which proposed a MACC model enjoying the same
amount of resources α and Λ, but where now the users and the caches are
connected following the well-known combinatorial topology of combination
networks [54]–[57]. Having as a starting point the combinatorial multi-access
system model introduced in [53], we first propose in Chapter 6 a model
extension which allows for a denser range of possible number of users K and
for the coexistence of users that are connected to different numbers of caches.
In particular, in our system model we assume that any one set of α caches
is uniquely assigned to Kα users, and this holds for every α ∈ [0 : Λ]. This
further implies that the total number of users is given by

K =
Λ∑︂

α=0
Kα

(︄
Λ
α

)︄
. (1.23)

Then, in addition to extending the delivery scheme presented in [53] to
our generalized combinatorial system model, we prove our coded scheme to be
exactly optimal under the assumption of uncoded placement by means of an
information-theoretic converse that is based on index coding arguments. We
show that the optimal worst-case communication load R⋆

comb under uncoded
prefetching is a piecewise linear curve with corner points

(M,R⋆
comb) =

⎛⎝tNΛ ,
Λ−t∑︂
α=0

Kα

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂
⎞⎠ , ∀t ∈ [0 : Λ]. (1.24)

As a side-product of identifying the fundamental limits of performance in
this broad topology, our result shows that, when there are users connected
to a different number of caches α with α ∈ [0 : Λ] in accordance to the
combinatorial topology, then a MAN cache placement and a simple TDMA-
like application of the scheme in [53] is enough to achieve the minimum
possible load in the worst-case scenario. This implies that treating each
α-setting separately is optimal and so there would not be any advantage in
encoding across users connected to a different number of caches.

Subsequently, we consider a topology-agnostic scenario, which — to the
best of our knowledge — has not been considered so far in the literature
of multi-access caching. For such agnostic scenario, we investigate various
ensembles of connectivities, including the ensemble B of all possible connec-
tivities, as well as the smaller ensemble Bα of those connectivities that simply
abide by the constraint that each user is connected to the same number of α
caches, without any additional structural constraint on the connectivity or

16 1.2. Main Contributions

on the number of users that each cache has to treat. For such settings, we
develop novel information-theoretic converse bounds on the optimal average
worst-case load, where the average is taken over the ensemble of interest,
and where the optimal is over an optimized fixed placement. In particular,
when we consider the ensemble Bα of multi-access coded caching problems
with Λ caches and K = K ′

α users each connected to exactly α ∈ [Λ] caches,
we show that the optimal average worst-case communication load R⋆

avg,Bα
is

lower bounded — under the assumption of fixed uncoded cache placement
and equiprobable connectivities — by Ravg,Bα,LB which is a piecewise linear
curve with corner points

(M,Ravg,Bα,LB) =
⎛⎝tNΛ ,

K ′
α

(︂
Λ

t+α

)︂
(︂

Λ
α

)︂(︂
Λ
t

)︂ + At

⎞⎠ , ∀t ∈ [0 : Λ − α + 1] (1.25)

where At is defined as

At := K ′
α

|Bα|

(︄
Λ − t

α

)︄⎛⎝1 − 1(︂
t+α

α

)︂
⎞⎠ . (1.26)

Then, when we consider the ensemble B of multi-access coded caching problems
with Λ caches and K users, where any set of caches can arbitrarily serve any
number of users without any constraint or structure, we show that the optimal
average worst-case communication load R⋆

avg,B is lower bounded — under the
assumption of fixed uncoded prefetching and equiprobable connectivities —
by Ravg,B,LB which is a piecewise linear curve with corner points

(M,Ravg,B,LB) =
⎛⎝tNΛ ,

Λ∑︂
α=0

K
(︂

Λ
t+α

)︂
2Λ
(︂

Λ
t

)︂ + At,α

⎞⎠ , ∀t ∈ [0 : Λ] (1.27)

where At,α is defined as

At,α := K

|B|

(︄
Λ − t

α

)︄⎛⎝1 − 1(︂
t+α

α

)︂
⎞⎠ . (1.28)

We wish to point out that the meaning of the converses above is twofold.
Indeed, under the assumption that the cache placement procedure is performed
only once regardless of the connectivity, the results above are of interest not
only because they lower bound the optimal average worst-case load in the
agnostic scenario, but also because a careful comparison between the bounds
above and the optimal performance in (1.24) allows to draw the insightful

Chapter 1. Introduction 17

12 13 14 23 24 34Reducers

Broadcast Channel

1 2 3 4Mappers

Figure 1.3: Multi-access distributed computing problem with Λ = 4 mappers
and K = 6 reducers, where each reducer is connected exactly and uniquely
to a subset of α = 2 map nodes.

conclusion that the generalized combinatorial topology is among the good
connectivities under the standard MAN cache placement. This leaves open
the possibility that there might exist other good connectivities and so this
brings to the fore the open question of whether, under the assumption of
a MAN placement, the combinatorial topology is indeed the best possible
topology. Further details will be provided in Chapter 6.

Multi-Access Distributed Computing

With the development of large-scale machine learning algorithms and appli-
cations relying heavily on large volumes of data, we are now experiencing
an ever-growing need to distribute large computations across multiple com-
puting nodes. Under the well-known MapReduce [58] framework, the overall
computing process is typically split in three distinct phases, starting with the
map phase, the shuffle phase and then the reduce phase. Nevertheless, several
studies have shown that the aforementioned distributed map-shuffle-reduce
approach comes with bottlenecks that may severely hinder the parallelization
of computationally-intensive operations, one for all the communication bottle-
neck in the shuffle phase. This is why the authors in [52] introduced CDC as
a novel information-theoretic framework that can yield lower communication
loads during data shuffling, where this gain could be attributed to a careful
and joint design of the map and the shuffle phases.

Nevertheless, the approach in [52] suffers from the already mentioned linear
barrier given by the linear coding gain, which is inevitably further constrained
in practical settings. Hence, we propose in Chapter 7 the new multi-access
distributed computing (MADC) model, which can be considered as a non-
trivial generalization of the original setting introduced in [52], and which
entails mappers (map nodes) being connected to various reducers (reduce

18 1.2. Main Contributions

nodes), and where these mappers and reducers are now distinct entities.
More specifically, we study the MADC setting with combinatorial topology,
where now mappers are connected to the reducers according to the multi-
access topology already considered in Chapter 6 in the caching context (see
Figure 1.3). We start our analysis of the problem by first neglecting the
communication cost between mappers and reducers, and we propose a novel
coded scheme that allows for efficient communication among reducers over the
broadcast communication channel. In particular, we show that the optimal
communication load L⋆ is upper bounded by LUB which is a piecewise linear
curve with corner points

(r, LUB) =
⎛⎝r,

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂
⎞⎠ , ∀r ∈ [Λ − α + 1]. (1.29)

Then, we also provide for such setting an information-theoretic lower bound
on the communication load, which reveals its novelty in the way we employ
combinatorial arguments to build an entropy-based bound. We show that the
converse is a piecewise linear curve with corner points

(r, LLB) =
⎛⎝r,

(︂
Λ

r+α

)︂
(︂

Λ
α

)︂(︂
Λ
r

)︂
⎞⎠ , ∀r ∈ [Λ − α + 1] (1.30)

and that it is within a constant multiplicative gap of 1.5 from the achievable
communication load guaranteed by the proposed coded scheme. We then pro-
ceed to also account for the download cost from mappers to reducers, and for
such setting we introduce an additional mappers-to-reducers communication
scheme which, together with the previous inter-reducer scheme, allows us to
upper bound the optimal max-link communication load as

Lmax-link,UB = max
⎛⎝∑︂

j∈[Λ]

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
,
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
⋆

N

⎞⎠ (1.31)

where the vector ã⋆ = (ã1
⋆, . . . , ã

Λ
⋆) is the optimal solution to the linear

program

min
ãM

1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

M
N

(1.32a)

subject to ãj
M ≥ 0, ∀j ∈ [Λ] (1.32b)∑︂

j∈[Λ]

ãj
M
N

= 1 (1.32c)

Chapter 1. Introduction 19

∑︂
j∈[Λ]

j
ãj

M
N

≤ r (1.32d)

and where ãM = (ã1
M, . . . , ãΛ

M) is the control variable. In addition, we also
propose a novel converse bound which is given by

Lmax-link,LB = 1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

⋆

N
(1.33)

where the vector ã⋆ = (ã1
⋆, . . . , ã

Λ
⋆) is the optimal solution to the linear

program in (1.32). As it will be shown in Chapter 7, the achievable scheme
and the converse bound above allow us to characterize the optimal max-link
communication load within a constant multiplicative gap of 4.

1 2 3 4 5 6 7

20

40

60

80

Computation Load r

C
od

in
g

G
ai

n

Gain with α = 1
Gain with α = 2
Gain with α = 3

Figure 1.4: Comparison between the coding gain for different values of α as
a function of the computation load r. We recall that α = 1 corresponds to
the original CDC framework.

We wish to point out that all the results above come with the realization
that not only the coding gain guaranteed by the novel intra-reducer coded
scheme is equal to (︄

r + α

r

)︄
− 1 (1.34)

20 1.2. Main Contributions

which is much larger than the gain originally provided by the scheme in [52]
(see Figure 1.4), but also that the number of reducers K is dramatically
increased under fixed computational resources, where this naturally implies
a massive parallelization and increased speedup factor in computing reduce
functions. These observations further validate the fact that properly exploiting
the structure in topology allows to provide stunning gains with respect to
traditional solutions.

1.2.3 List of Publications
The work behind this thesis resulted in some publications. Concerning the first
part of this manuscript, Chapter 2 is based on [J1], [C1], whereas Chapter 3
is based on unpublished results, Chapter 4 is based on [C2] and Chapter 5
is based also on unpublished results. For what concerns the second part of
the thesis, Chapter 6 is based on [J2], [C3], while Chapter 7 is based on [J3].
The list of publications is provided in the following.

Journals

[J1] F. Brunero and P. Elia, “Unselfish coded caching can yield unbounded
gains over selfish caching,” IEEE Trans. Inf. Theory, Aug. 2022, early
access. doi: 10/gqrs9z, pre-published.

[J2] F. Brunero and P. Elia, “Fundamental limits of combinatorial multi-
access caching,” IEEE Trans. Inf. Theory, Jul. 2022, early access. doi:
10/jbgr, pre-published.

[J3] F. Brunero and P. Elia, “Multi-access distributed computing,” IEEE
Trans. Inf. Theory, Jun. 2022, arXiv: 2206.12851 [cs.IT], submitted.

Conferences

[C1] F. Brunero and P. Elia, “Coded caching does not generally benefit
from selfish caching,” in 2022 IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2022, pp. 1139–1144.

[C2] F. Brunero and P. Elia, “On the optimality of coded caching with
heterogeneous user profiles,” in 2022 IEEE Inf. Theory Workshop
(ITW), 2022, forthcoming.

[C3] F. Brunero and P. Elia, “The exact load-memory tradeoff of multi-
access coded caching with combinatorial topology,” in 2022 IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2022, pp. 1701–1706.

https://doi.org/10/gqrs9z
https://doi.org/10/jbgr
https://doi.org/10/gqrtdg

Part I

Exploring the Impact of
Structure in Data

21

Chapter 2

A Negative Result on Selfish
Caching Policies

In this chapter, we explore the interplay between coded caching and selfish
caching. First, we propose a new selfish model which aims to calibrate the
degree of separation between the interests of the different users. Then, we
develop an information-theoretic converse bound on the optimal worst-case
communication load under uncoded and selfish placement, where the bound
proves that unselfish coded caching can far outperform selfish coded caching.
As the converse offers some interesting insights on coding designs for selfish
coded caching, we conclude the chapter by providing, for a class of demands,
achievable schemes whose performance matches the expression of the converse.

2.1 Introduction

One key ingredient in using caches has commonly been the exploitation of
the fact that some contents/files are more popular than others, and so are

generally to be allocated more cache space [48], [49]. This inevitably introduces
the consideration that different users may have different file preferences, which
in turn brings to the fore the concept of selfish caching where simply users
cache independently and selfishly only contents that they are interested in
potentially consuming themselves [32]–[36].

In the traditional prefetching scenario, where emphasis is based heavily
on bringing relevant content closer to each user, this idea of selfish caching
brought about performance improvements [50], [51] in the form of higher local
caching gains for each user. Nevertheless, only few works investigated the
concept of selfishness in the context of coded caching.

23

24 2.1. Introduction

2.1.1 Past Works on Heterogeneous User Profiles and
Selfish Coded Caching

If on one hand a key ingredient in standard prefetching systems has com-
monly been the exploitation of the fact that some contents are more popular
than others, and so are generally to be allocated more cache space, on the
other we are just beginning to explore the interplay between coded caching,
heterogeneous preferences and selfish caching, where by selfish caching we
refer to caching policies where each user caches only contents from its own
set of individual preferences.

Recent works have sought to explore this interplay. For example, in the
context of coded caching with users having heterogeneous content preferences,
the work in [32] analyzed the peak load of three different coded caching schemes
that account for the user preferences, revealing occasional performance gains
that are similarly dependent on the structure of these preferences. Related
analysis appears in [33], now for the average load of the same schemes in [32].
On the other hand, the work in [35] focused on finding instances where unselfish
coded caching outperforms selfish designs. This work nicely considered the
performance of selfish coded caching in the context of heterogeneous file
demand sets (FDSs), cleverly employing bounds to show that, for the case
of K = 2 users and N = 3 files, unselfish designs strictly outperform selfish
designs in terms of communication load, albeit only by a factor of up to 14 %.
In addition, the notable work in [36] established, under the assumption of
selfish and uncoded prefetching, the optimal average load for the case of K = 2
users and a variety of overlaps between the two users’ profiles, also providing
explicit prefetching schemes of a selfish nature. In a similar vein, the recent
work in [31] considered the scenario where users are interested in a limited
set of contents depending on their location. To the best of our knowledge,
the above constitutes the majority of works on selfish coded caching.

2.1.2 An Adversarial Interplay Between Coded Caching
and Selfish Caching

Our motivation to understand the interplay between coded caching and selfish
caching comes not only from the fact that coded caching systems may indeed
need to operate under some selfish legacy constraints1, but also mainly from

1Here, we can think of a scenario where a server delivers via a bottleneck link content to
caches, whose purpose is to bring content closer to the end user via dedicated non-interfering
links. In such scenario, the delivery to the caches would benefit from a coded caching design,
while the subsequent delivery from the caches would benefit from a selfish placement since
the caches may target groups of users with potentially dissimilar interests.

Chapter 2. A Negative Result on Selfish Caching Policies 25

the fact that there exists an interesting “adversarial” interplay between coded
caching and selfish prefetching. To understand this a bit better, we recall that
the main idea of coded caching is that it multicasts at any given time a linear
combination of different contents desired by different users. This implies
that any one receiver associated to a multicast message must be able to find
in its cache all the undesired contents (subfiles) of that multicast message.
This is achieved in [2] by means of a highly structured and coordinated
content placement phase, where each user caches a small fraction of every
file of a common library. This relationship between undesired and cached
contents deteriorates when using selfish caching, simply because each receiver
selfishly opts — based on its own preferences — to not cache some of these
undesired files. However, these same undesired files may eventually appear as
interference at that selfish receiver who will now not be able to “cache-out”
this interference. At the same time, though, such selfish caching allows for a
much more targeted placement of files such that each user can cache more of
what it actually wants. Furthermore, such selfish scenario would correspond
to a substantially smaller set of possible demands, which could conceivably
be exploited to reduce the load.

To better understand the main challenge of the problem, let us consider
the following simple scenario with K = 3 users and a library {A,B,C} of
N = 3 files. Let us now assume that user 1 is only interested in files from
the file demand set F1 = {A,B}, user 2 only from the set F2 = {A,C}, and
user 3 only from F3 = {B,C}. We know from [3], [4] that the MAN scheme
in [2] guarantees the smallest worst-case load (under uncoded placement)
during the delivery phase if each user caches a proper fraction M/N of each
file, where M represents the memory (in number of files) that each user is
equipped with. However, if we know in advance the sets F1, F2 and F3, do
we need each user to cache also from files that are not of interest to minimize
the number of bits to be transmitted? Is it convenient or disadvantageous to
have each user k cache selfishly only from files in Fk? What are the effects of
selfish caching on coded caching?

2.1.3 Main Contributions
To understand this interplay between coded caching and selfish caching, we
first propose a new selfish model which aims to calibrate the selfishness effect,
by calibrating the degree of separation between the interests of the different
users. Our so-called symmetric FDS structure not only aims to encapsulate
this aspect of intersection of interests, but is also designed to reflect and
accentuate the aforementioned adversarial relationship between the selfish
placement and the ability to encode across users as one would expect in the

26 2.1. Introduction

coded caching setting.
Subsequently, for the aforementioned symmetric FDS structure, we employ

index coding arguments to derive an information-theoretic converse (lower
bound) on the optimal worst-case communication load under the assumption
of uncoded and selfish placement. This bound proves that unselfish coded
caching can far outperform selfish coded caching. Indeed, the bound
makes clear the fact that, while, as noted, selfish caching implies a much
smaller set of possible demands (see Definition 2.2) as well as allows for
a much more targeted placement of contents, these benefits will come, in
our symmetric setting, at a heavy cost of fewer multicasting opportunities
and a substantial loss in coding gain. The main contribution of our work
is this information-theoretic converse, which allows us to draw the powerful
conclusion that selfish coded caching can be, under some assumptions, rather
detrimental.

This same converse offers some interesting insights on coding designs for
selfish coded caching. While our converse now reveals that such designs,
even if they are optimally constructed, would essentially never be able to
provide good performance, these designs do pose an exceptionally interesting
and challenging coding problem, which we address partially by providing,
for a class of demands, achievable schemes whose performance matches the
expression of the converse.
Remark 2.1. We wish to highlight that the focus of the chapter — which is to
understand the effects of selfish caching policies — does not capture problems
that arise from having a mismatch between the set of cached files and the set
of demanded files2. Such problems remain, to date, open.

2.1.4 Chapter Outline
The rest of the chapter is organized as follows. The system model is pre-
sented in Section 2.2, where Section 2.2.2 offers a small motivating example
that can help the reader appreciate the dynamics of selfish coded caching.
Then, Section 2.3 presents the information-theoretic converse, whose proof in
Section 2.4 is followed by a clarifying example. The proposed selfish coded
caching placement is presented in Section 2.5 and so are the delivery designs
for some sets of demands. Additional optimal schemes are presented in Sec-
tion 2.6 for other sets of demands, whereas some of the proofs are relegated
in Appendix A.

2We can have such mismatch when, for example, each user caches only from a subset of
files, but then requests contents from the entire library, or when each user caches from the
entire library, but only requests files from a limited subset of this library.

Chapter 2. A Negative Result on Selfish Caching Policies 27

2.2 System Model
Similarly to the original scenario in [2], we consider the centralized caching
scenario (see Figure 1.1) where one central server has access to a library
containing N files of B bits each. This server is connected to K users through
a shared error-free broadcast channel, and each user is equipped with a cache
of size M files or, equivalently, MB bits.

2.2.1 The Symmetric (K,α, F) FDS Structure
To capture the interplay between coded caching and selfish caching, we propose
an FDS structure that allows us to calibrate the degree of separation between
the interests of the different users. To better understand this structure and
generally to better understand the concept of an FDS, let us briefly consider
a simplified toy example.

Example 2.1. Consider a downlink scenario with K = 3 users and a library
{A,B,C,D,E, F} of N = 6 files3. Let us now assume that user 1 is only
interested in potentially consuming files from the file demand set F1 =
{A,B,C,D}, user 2 only from the set F2 = {A,B,E, F}, and user 3 only
from F3 = {C,D,E, F}. In this setting, each user is interested in a fraction
2/3 of the library, so for example user 1 has no interest in ever consuming
the files in {A,B,C,D,E, F} \ F1 = {E,F}. Similarly, each file is of interest
to the same fraction 2/3 of users, so for example file A is only of interest to
user 1 and user 2.

For such a setting, we wish to understand the performance of selfish coded
caching where each user caches only contents from its own FDS. We proceed
with the formal definition of the FDS structure. We note that below an FDS
will be defined as a collection of file classes, rather than just a collection of
files. This allows for more generality and we believe it also better reflects how
user preferences are often categorized.

Definition 2.1 (The Symmetric (K,α, F) FDS Structure). For α ∈ [K]
and for F ∈ N+, the symmetric (K,α, F) FDS structure assumes an N -file
library {WS : S ⊆ [K], |S| = α} to be a collection of disjoint file classes
WS = {Wf,S : f ∈ [F]}, with each class WS consisting of F different files. In
this setting, each user k ∈ [K] has a file demand set

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} (2.1)

which describes the files this user is potentially interested in.
3Such files can be movies, different episodes of a TV show, YouTube videos, etc.

28 2.2. System Model

As the above says, the library is split into C =
(︂

K
α

)︂
disjoint classes of files,

corresponding to a total of N = FC = F
(︂

K
α

)︂
files. Then, there are K FDSs,

one for each user, and each file class is identified by an α-tuple S that tells
us which α users are interested in this class4. The above also says that each
user k is interested in its own FDS Fk of |F| = |Fk| = F

(︂
K−1
α−1

)︂
files, and this

nicely lets us calibrate the fraction

|F|
N

=
F
(︂

K−1
α−1

)︂
F
(︂

K
α

)︂ = α

K
(2.2)

of the total library that each user is interested in, where the imposed symmetry
also yields a fraction δ := α/K of users interested in any one specific file.
Finally, we note that α = 1 corresponds to the trivial scenario where there is
no intersection between the user interests, while α = K corresponds to the
traditional unselfish scenario where a common library of N = F files5 is of
interest to every user.

Table 2.1: Important parameters for the symmetric (K,α, F) FDS structure

Total FDSs K

Total File Classes
(︂

K
α

)︂
File Classes per FDS

(︂
K−1
α−1

)︂
Fraction of Users Interested in a File α/K

Files per Class F

Total Files F
(︂

K
α

)︂
Files per FDS F

(︂
K−1
α−1

)︂
Fraction of Files of Interest to a User |F|/N

The following two examples can help familiarize the reader with the
notation.
Example 2.2 (The Symmetric (4, 2, 1) FDS Structure). Consider the symmet-
ric (K,α, F) = (4, 2, 1) structure. There are C =

(︂
K
α

)︂
= 6 file classes, which

4In other words, each file belongs to α FDSs. In particular, each file in class WS is of
interest to the α users in S. Hence, if k ∈ S, then the F files in WS are in Fk and are thus
of interest to user k. Finally, under our simplifying assumption that each user has its own
FDS, α also describes the number of users interested in any one specific file.

5In this case we assume F ≥ K.

Chapter 2. A Negative Result on Selfish Caching Policies 29

are given by W12,W13,W14,W23,W24,W34, and where6 each class consists of
F = 1 file. This implies a library {W1,12,W1,13,W1,14,W1,23,W1,24,W1,34} of
N = 6 files. In the above, W1,12 simply represents the first (and, in this case,
the only) file in class W12. The K = 4 FDSs take the form

F1 = {W1,12,W1,13,W1,14} (2.3)
F2 = {W1,12,W1,23,W1,24} (2.4)
F3 = {W1,13,W1,23,W1,34} (2.5)
F4 = {W1,14,W1,24,W1,34} (2.6)

where we recall that, for each file W1,S , the label S represents the FDSs the
file belongs to. For example, file W1,23 belongs to F2 and F3, and is thus of
interest to user 2 and user 3. Finally we see that each user is interested in a
fraction |F|/N = 0.5 of the library, i.e., in 50 % of the library, and that each
file is of interest to a fraction δ = α/K = 0.5 of the users.

Example 2.3 (The Symmetric (4, 3, 2) FDS Structure). Consider the sym-
metric (K,α, F) = (4, 3, 2) structure. There is a total of C =

(︂
K
α

)︂
= 4 classes

W123,W124,W134,W234 and N = 8 files: W1,123 and W2,123 from class W123,
then W1,124 and W2,124 from class W124, and so on. The K FDSs take the
form

F1 = {W123,W124,W134} (2.7)
F2 = {W123,W124,W234} (2.8)
F3 = {W123,W134,W234} (2.9)
F4 = {W124,W134,W234} (2.10)

where we see that each FDS consists of 2 × 3 = 6 files. For example, user 1
is interested in the files contained in the FDS F1 = {Wf,S : S ⊆ [4], |S| =
3, 1 ∈ S, f ∈ [2]}, user 2 is interested in the files contained in the FDS
F2 = {Wf,S : S ⊆ [4], |S| = 3, 2 ∈ S, f ∈ [2]}, and so on. By calculating
|F|/N = α/K = 3/4, we can verify that each user is interested in 75 % of the
library, and each file is of interest to 75 % of the users.

Deviating from standard notation practices, we will use the double-
index notation Wfk,Dk

to denote the file requested by user k. Consequently,
to describe the entire demand set, we will now be needing two vectors
d = (D1, . . . ,DK) and f = (f1, . . . , fK). In addition, the FDS structure
automatically implies restrictions in the set of possible demand vectors. For

6We will often omit braces and commas when indicating sets, such that for example
W{1,2} may be written as W12.

30 2.2. System Model

instance, going back to Example 2.3, any demand with d = (234, 123, 123, 234)
is not valid, because {1} /∈ D1 = {2, 3, 4}, i.e., because file Wf1,234 is not in F1
and so would never be demanded by user 1. On the other hand, any demand
with d = (124, 123, 123, 234) is valid because k ∈ Dk for each k ∈ [K]. The
set of valid demands as well as placement constraints that define selfish coded
caching are now stated below.

Definition 2.2 (Selfish Coded Caching With Uncoded Placement). In selfish
coded caching, a demand defined by the vectors d = (D1, . . . ,DK) and
f = (f1, . . . , fK) is said to be valid if and only if

k ∈ Dk, ∀k ∈ [K]. (2.11)

Further, a cache placement is selfish when it guarantees that a subfile of Wf,S
can be cached at user k only if k ∈ S, whereas it is uncoded if it satisfies
Definition 1.1.

Remark 2.2. We acknowledge that the aforementioned symmetric FDS struc-
ture can be more restrictive than the (very few) existing FDS structures in the
literature. For instance, the works in [32]–[34] considered the FDS structure
where each file is of interest to either groups of users or all users in the system.
Nevertheless, our aim is to explore the effect of selfish caching, and what we
show is that an important and general instance of selfish caching, embodied
by the considered symmetric FDS structure, yields unbounded performance
deterioration compared to the unconstrained (unselfish) case. Hence, this
instance allows us to provide, in a unified manner, the main contribution of
our work, which is the clear conclusion that indeed selfish caching can be
unboundedly detrimental. The symmetric FDS structure serves as a proving
step toward deriving this conclusion. At the same time, this same chosen
FDS structure captures core principles of realistic file demand sets, like for
example the amount of intersection between different such sets, where this
intersection can be calibrated at will by the parameter α.

2.2.2 Understanding the Dynamics of Selfish Coded
Caching With an Example for the (K,α, F) =
(5, 4, 1) Structure

Let us consider a small motivating example that can help the reader appreciate
the dynamics of symmetrically selfish coded caching. We will first suggest
a selfish cache placement scheme that will be justified in Section 2.5, and
we will then present the delivery and decoding process for a class of valid
circular demands. The corresponding load that will be achieved here will in

Chapter 2. A Negative Result on Selfish Caching Policies 31

fact be matched by the converse of the next section, consequently proving
that in our example our delivery is optimal and the converse tight.

We here consider the (K,α, F) = (5, 4, 1) scenario, where each cache is
of size M = 2 corresponding to the case of t = 2. In our scenario there
are C =

(︂
K
α

)︂
= 5 file classes W1234,W1235,W1245,W1345,W2345, and a total of

N = FC = 5 library files. For simplicity, we will exploit the fact that F = 1
by slightly abusing notation such that, in this early example only, the library
of N = 5 files will be denoted as {W1234,W1235,W1245,W1345,W2345}. At this
point, the 5 FDSs take the form

F1 = {W1234,W1235,W1245,W1345} (2.12)
F2 = {W1234,W1235,W1245,W2345} (2.13)
F3 = {W1234,W1235,W1345,W2345} (2.14)
F4 = {W1234,W1245,W1345,W2345} (2.15)
F5 = {W1235,W1245,W1345,W2345}. (2.16)

Placement phase

The cache placement will follow a selfish adaptation of the MAN scheme.
First each file is split into

(︂
α
t

)︂
=
(︂

4
2

)︂
= 6 non-overlapping subfiles as

W1234 = {W1234,12,W1234,13,W1234,14,W1234,23,W1234,24,W1234,34} (2.17)
W1235 = {W1235,12,W1235,13,W1235,15,W1235,23,W1235,25,W1235,35} (2.18)
W1245 = {W1245,12,W1245,14,W1245,15,W1245,24,W1245,25,W1245,45} (2.19)
W1345 = {W1345,13,W1345,14,W1345,15,W1345,34,W1345,35,W1345,45} (2.20)
W2345 = {W2345,23,W2345,24,W2345,25,W2345,34,W2345,35,W2345,45} (2.21)

and then the cache Zk of each user k ∈ [5] is filled as

Zk = {WS,T : S ⊆ [5], |S| = 4, T ⊆ S, |T | = 2, k ∈ T }. (2.22)

For example, user 1 would have to cache parts only from the files in the
set {W1234,W1235,W1245,W1345} in order to abide by the selfish constraint,
and then, to abide by the cache size constraint, user 1 would cache subfiles
labeled by {12, 13, 14}. Similarly, user 2 would cache only from the files in the
set {W1234,W1235,W1245,W2345}, and only the subfiles labeled by {12, 23, 24},
and so on.

Delivery phase

The delivery takes place as soon as the requests of the users are revealed.
Consider the demand d1 = (1234, 2345, 1345, 1245, 1235). A schematic of this

32 2.2. System Model

demand is given by means of the graph in Figure 2.1. This graph, which
we refer to as the FDS request graph, is a directed graph where each vertex
is a user and where there is an edge from user k1 to user k2 if WDk1

∈ Fk2 .
This graph represents at a high level, for each given demand vector d, the
interplay between the users’ interests.

W1234

W1235

W1245 W1345

W2345

1

2

34

5

Figure 2.1: FDS request graph for the (K,α, F) = (5, 4, 1) FDS structure
and the demand d1 = (1234, 2345, 1345, 1245, 1235).

As a consequence of the aforementioned cache placement, each user does
not cache (and consequently desires) a total of

(︂
α−1

t

)︂
=
(︂

3
2

)︂
= 3 subfiles for

its demanded file. Hence, given the demand d1, the desired subfiles are given
as follows.

• User 1 desires the subfiles W1234,23, W1234,24 and W1234,34.

• User 2 desires the subfiles W2345,34, W2345,35 and W2345,45.

• User 3 desires the subfiles W1345,14, W1345,15 and W1345,45.

• User 4 desires the subfiles W1245,12, W1245,15 and W1245,25.

• User 5 desires the subfiles W1235,12, W1235,13 and W1235,23.

One key aspect for achieving optimality is the utilization of specifically
structured linear combinations of multicast messages, where this structure
accepts the following interesting interpretation. These linear combinations
effectively allow multicast messages to be used not only to deliver desired
content to users, but also to deliver undesired content that can be used as
side information to “bridge” the gaps left by the selfish placement. In essence,

Chapter 2. A Negative Result on Selfish Caching Policies 33

each transmission now delivers desired content while also disseminating side
information that can be used to create cliques. To see this, let us consider
the following sequence of XORs

X1 = W1345,14 ⊕W1234,24 ⊕W1245,12 (2.23)
X2 = W2345,35 ⊕W1235,13 ⊕W1345,15 (2.24)
X3 = W1345,14 ⊕W2345,35 ⊕W1234,23 (2.25)
X4 = W1234,34 ⊕W1245,15 (2.26)
X5 = W2345,45 ⊕W1235,12 (2.27)
X6 = W2345,34 ⊕W1245,25 (2.28)
X7 = W1345,45 ⊕W1235,23 (2.29)

transmitted one after the other. Recalling that each file is split into 6 non-
overlapping subfiles, we know that each XOR has size |Xi| = B/6 for each
i ∈ [7].

By using its own cache, each user can now decode its own desired content
as follows.

• User 1 can recover its desired subfiles from X1, X2 ⊕X3 and X4.

• User 2 can recover its desired subfiles from X1 ⊕X3, X5 and X6.

• User 3 can recover its desired subfiles from X2, X3 and X7.

• User 4 can recover its desired subfiles from X1, X4 and X6.

• User 5 can recover its desired subfiles from X2, X5 and X7.

For example, in the above, user 1 needs W2345,35 to correctly decode its desired
W1234,23 from X3, whereas user 2 needs W1345,14 to correctly decode W2345,35
always from X3. The act of “passing” subfiles W2345,35 and W1345,14 to user 1
and user 2 with X2 and X1, respectively, allows the creation of a clique between
user 1, user 2 and user 3. This clique is exploited by creating the XOR X3.
The corresponding communication load is equal to R(t = 2) = |X|/B = 7/6,
which will be met by the converse.

We wish to point out that, intuitively, the set of multicast messages above
is constructed around the idea that each transmission serves not only to
deliver desired content, but also, at the same time, to form cliques that will
be exploited in future transmissions. Indeed, in the above we chose t+ 1 = 3
pivotal users (i.e., user 1, user 2 and user 3) which represent an almost
complete clique in the side information graph of the induced index coding

34 2.2. System Model

problem. All the effort consisted then in trying to “deliver” side information7

to “bridge” the gaps left by the selfish placement, while delivering desired
content to users. This was done in X1 and X2, where the subfiles W1345,14 and
W2345,35 were carefully “delivered” to user 2 and user 1, respectively, without
interfering with users to which X1 and X2 are delivering desired information.
This interpretation related to the creation of cliques is a crucial part of the
dynamics of the problem that we are considering.

W1234

W1345

W1245 W1235

W2345

1

2

34

5

Figure 2.2: FDS request graph for the (K,α, F) = (5, 4, 1) FDS structure
and the demand d2 = (1234, 2345, 1235, 1245, 1345).

Now, let us consider the demand vector d2 = (1234, 2345, 1235, 1245, 1345)
with its corresponding FDS request graph that is shown in Figure 2.2. Since
the graphs in Figure 2.1 and in Figure 2.2 are non-isomorphic8, the demand
d2 accepts a different delivery solution9 than that for demand d1. Such
phenomenon does not happen in the standard coded caching scenario, where
indeed each demand would result in the same FDS request graph (see Fig-
ure 2.3), which is always complete10. In such unselfish scenario where each file

7Notice that we use “deliver” in quotes when referring to undesired subfiles because users
do not need to actually decode subfiles which are not desired. Indeed, as explained above, it
is more a matter of aligning interference, so that users can directly take linear combinations
of the multicast messages to cancel out interference terms. Still, the interpretation related
to the creation of cliques can give insights on how to construct multicast messages.

8This can be concluded by noticing that the graph in Figure 2.1 contains 5 bidirectional
edges, whereas the graph in Figure 2.2 has 6 bidirectional edges.

9Having two non-isomorphic problems here implies that the delivery for the second
problem cannot be derived from that of the first problem by a simple relabeling of the
users.

10A complete graph is a graph where every node is connected to every other node.

Chapter 2. A Negative Result on Selfish Caching Policies 35

is assumed to be of interest to all users, every user in the FDS request graph
is connected to every other user, independently of the requested files. Hence,
in the unselfish scenario, having a fixed FDS request graph for every demand
allows for an identical delivery procedure for any demand. This seems to be
a crucial differentiating aspect between selfish and unselfish coded caching.

Wf1

Wf5

Wf4 Wf3

Wf2

1

2

34

5

Figure 2.3: FDS request graph for any demand in the standard (unselfish)
MAN scenario with K = 5 users and N = 5 files labeled as Wf with f ∈ [5].
In this case the demand is identified by the vector f = (f1, f2, f3, f4, f5),
where user k ∈ [5] requests file Wfk

. This graph is complete. Hence, here the
ability to create cliques of subfiles is only limited by t, and is not affected at
all by the specific demand.

2.3 Main Results
Let us recall that each user is interested in its own FDS, and that each
FDS only represents a fraction |F|/N of the library. In the general unselfish
scenario, a portion (1−|F|/N) of each user’s cache would be filled with content
that would never be requested by that user. Such a non-selfish scheme would
relinquish local caching gain for the benefit of being able to encode across all
combinations of users. Under the basic clique-based approach in the MAN
scheme, we are presented with a trade-off between local caching gain and
coding gain, where the latter seems to be more desirable. Are there, though,
other coding techniques that manage to harvest an abundance of coding
opportunities, which are usually associated to the standard coded caching
approach, exploiting the existence of a more targeted set of demands, while
capitalizing on the increased local caching gain brought about by a selfish

36 2.3. Main Results

variant? If not, then what is the amount of coding gain that can be harvested
while maintaining selfish caching? These are the questions addressed by our
information-theoretic converse that lower bounds the optimal worst-case load
under uncoded and selfish cache placement, which will be denoted by R⋆

u,s.

2.3.1 Theorem Statement
The converse bound employs the index coding techniques of [3] that proved
the optimality of the MAN scheme under the constraint of uncoded cache
placement. Our main challenge will be to account for the presence of different
profiles of interest, adapting consequently the index coding approach to
reflect the (K,α, F) FDS structure proposed in the previous section. The
converse bound presented here shows that adding the selfish cache placement
constraint implies a higher optimal communication load compared to the
unselfish scenario. The result is stated in the following theorem.

Theorem 2.1 (Converse Bound for Selfish Coded Caching Under Uncoded
Prefetching). Under the assumption of uncoded and selfish cache placement,
and given the (K,α, F) FDS structure, the optimal worst-case communication
load R⋆

u,s is lower bounded by RLB which is a piecewise linear curve with corner
points

(M,RLB) =
⎛⎝tN
K
,

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂
⎞⎠ , ∀t ∈ [0 : α] (2.30)

corresponding to
RLB = K(1 − γα)

Kγ + 1

[︃
(K − α)γ + 1

]︃
(2.31)

where γ := M/N and γα := M/|F| = γK/α.

Proof. We provide the proof of the converse in Section 2.4.1. In Section 2.4.2
we also present an example that aims to help the reader better understand
the construction of the outer bound.

2.3.2 Comments on the Converse Bound
The bound reveals some interesting insights. Before discussing these insights,
let us quickly recall that, in our scenario, the integer value t is upper bounded
by α, since any t ≥ α would imply zero communication load.

Chapter 2. A Negative Result on Selfish Caching Policies 37

Comparison With MAN

The following compares, for any F , the optimal load R⋆
u,s(t) of selfish coded

caching with that of the unselfish (MAN) scenario11.

Corollary 2.1.1. Given the symmetric (K,α, F) FDS structure and α ∈
[K − 1], the converse reveals that

R⋆
u,s(t)

RMAN(t) ≥ 1, ∀t ∈ [0 : α− 1] (2.32)

R⋆
u,s(t)

RMAN(t) > 1, ∀t ∈ [α− 2] (2.33)

which says that, in the non-trivial range t ∈ [0 : α− 1], selfish coded caching
is not better than unselfish coded caching, which instead, in the non-extremal
points of t and under uncoded placement, strictly outperforms any imple-
mentation of selfish coded caching. When α = K and F ≥ K, the converse
expression naturally matches that of unselfish coded caching.

Proof. The proof can be found in Appendix A.1, while a graphical comparison
can be found in Figure 2.4.

0 2 4 6 8 10 12 14 16 18 20 22 240

10

20

t

R
(t

)

Unselfish Caching & Uncoded Delivery
Selfish Caching & Uncoded Delivery
Unselfish Coded Caching
Lower Bound for Selfish Coded Caching

Figure 2.4: Comparison between selfish caching and unselfish caching for
the (20, 12, F) FDS structure.

11The comparison between the selfish and unselfish scenarios is made easy by the fact that
the t values (i.e., the integer points corresponding to the memory-axis of the memory-load
trade-off) in the two scenarios coincide.

38 2.3. Main Results

Selfish Local Caching Gain and Coding Gain

Since selfish caching places the constraint that each user k can only cache
from its own FDS Fk, one key aspect of such selfish caching is that it brings
about an increase of the effective normalized cache size for each user. Indeed,
whereas in the unselfish scenario each user can cache a fraction

γ = M

N
= t

K
(2.34)

of each file of possible interest, in the selfish scenario this fraction is elevated
to a larger

γα = M

|F|
= t

α
= γ

K

α
(2.35)

which in turn implies a larger local caching gain. Hence, in the presence of a
relatively small α, selfish caching implies a sizeable increase in the effective
normalized cache size γα = γK/α, which in turn implies a much larger local
caching gain.

On the other hand, the converse reveals that a smaller α implies a sub-
stantial reduction in the coding gain offered by selfish coded caching. To
compare coding gains, we first recall that the coding gain in the original
unselfish scenario takes the form

Ru

RMAN
= Kγ + 1, (2.36)

where Ru = K(1 − γ) is the load for uncoded delivery. As previously stated,
this coding gain Kγ + 1 describes the speedup factor over the uncoded case.
To reflect this same speedup in the selfish scenario, we must consider that the
corresponding load in the uncoded scenario takes the form Ru

s = K(1 − γα).
With this in place, the converse reveals that the optimal coding gain of selfish
coded caching is upper bounded as

G⋆ ≤ Ru
s

RLB
= Kγ + 1

(K − α)γ + 1 (2.37)

where the value
D := (K − α)γ + 1 (2.38)

represents the guaranteed deterioration in the coding gain when we choose to
cache selfishly. Indeed, if we consider the non-trivial range α ∈ [2 : K− 1], we
have D > 1 and consequently G < Kγ + 1 for γ > 0. We can see that — for
fixed K and γ — this deterioration D increases with decreasing α, reflecting
the fact that the closer the (K,α, F) FDS structure is to the standard MAN
scenario, the smaller this deterioration D is.

Chapter 2. A Negative Result on Selfish Caching Policies 39

An important observation though is that the coding gain of selfish coded
caching does not scale with K. This is described in the following corollary.

Corollary 2.1.2. For any fixed ratio δ = α/K < 1 the coding gain of selfish
caching does not scale as K increases, and it is instead bounded as

G⋆ <
1

1 − δ
. (2.39)

Proof. The proof can be found in Appendix A.2.

0 50 100 150 200 250 300 350 400

5

10

15

20

K

C
od

in
g

G
ai

n

Kγ + 1
α = K/2
α = 4K/5
α = 19K/20

Figure 2.5: Plot of different coding gains G for varying values of K and α
for the (K,α, F) FDS structure when γ = 1/20.

We can see in Figure 2.5 the comparison between different coding gains
for varying values of K and α when the normalized cache size γ is fixed. As
mentioned, smaller values of α correspond to much smaller coding gains. As
stated in Corollary 2.1.2, each curve is upper bounded12 by 1/(1 − δ).
Remark 2.3. At this point, we ought to point out that our choice of having a
fully symmetric FDS structure may indeed be an overly penalizing condition.
However, this choice exemplifies the mechanisms and effects that come about
when selfishness is considered. This same choice nicely offers a crisp method
for calibrating the intersection between the interests of the different users,
taking us from a scenario where the intersection is minimal, to scenarios
ever closer to the original MAN setting where the interests are identical. As
suggested before, this FDS structure is a sufficient proving step for drawing,
in a unified manner, the conclusion that indeed selfish coded caching can be
quite detrimental.

12When α = 1, it holds that G⋆ = 1, since in such case uncoded delivery is optimal.

40 2.4. Proof of Theorem 2.1

2.4 Proof of Theorem 2.1
The derivation of the converse makes extensive use of the connection be-
tween caching and index coding. This connection was made in [2] and was
successfully used in [3] to derive the optimal performance of the unselfish
scenario.

We quickly recall that an index coding problem [59]–[62] consists of a server
wishing to deliver N ′ independent messages to K ′ users via a basic bottleneck
link. Each user k ∈ [K ′] has its own desired message set Mk ⊆ [N ′], and has
knowledge of its own side information set Ak ⊆ [N ′]. Let Mi be the message
i in the set [N ′]. Then, the index coding problem is typically described by
its side information graph in the form of a directed graph, where each vertex
is a message and where there is an edge from Mi to Mj if Mi is in the side
information set of the user requesting Mj . The derivation of our converse will
use the following well-known result from [63, Corollary 1].

Lemma 2.1 ([63, Corollary 1]). In an index coding problem with N ′ messages
Mi for i ∈ [N ′], the minimum number of transmitted bits ρ is bounded as

ρ ≥
∑︂
i∈J

|Mi| (2.40)

for any acyclic subgraph J of the problem’s side information graph.

Before proceeding with the main proof, we also recall that under the
(K,α, F) FDS structure we have {WS : S ⊆ [K], |S| = α}, where WS =
{Wf,S : f ∈ [F]} is a class of files. We further recall that there are C =

(︂
K
α

)︂
classes of files and N = FC = F

(︂
K
α

)︂
files. Additionally, we recall that the

FDS of each user k ∈ [K] is given by

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} (2.41)

that each file has size B bits, and that each user is equipped with a cache
of size MB bits. Finally, let us remember that we are interested in the
non-trivial range13 α ∈ [2 : K − 1] and in the range t ∈ [0 : α]. Indeed, for
t = α we have M = αN/K = F

(︂
K−1
α−1

)︂
, so the point (M,R) = (αN/K, 0)

is trivially achievable as a consequence of each user being able to store the
entirety of its FDS.

13When α = 1 the proof is trivial, since for such case we have only two integer points
corresponding to t ∈ {0, 1}: when t = 0 the load is equal to K, and when t = 1 each user
has enough memory to cache entirely its own FDS and the load is equal to 0. Then, the
case α = K and F ≥ K is equivalent to the standard (unselfish) MAN scenario, which was
already considered in [3].

Chapter 2. A Negative Result on Selfish Caching Policies 41

2.4.1 Main Proof
The first step toward the converse consists of splitting each file in a generic
manner into a maximum of 2|S| = 2α disjoint subfiles as

Wf,S = {Wf,S,T : T ⊆ S} (2.42)
for each S ⊆ [K] with |S| = α and for each f ∈ [F], where Wf,S,T is the
subfile of Wf,S cached exactly and only by users in T . As already mentioned
in Definition 2.2, splitting each file in this way satisfies the uncoded and
selfish cache placement constraint, since T ⊆ S and WS ∈ Fk for each k ∈ S.

Constructing the Index Coding Problem

We now proceed by making the connection to index coding. Hence, let us
consider the index coding problem with K ′ = K users and N ′ = K2α−1 mes-
sages, such that for any demand, identified by the vectors d = (D1, . . . ,DK)
and f = (f1, . . . , fK), the desired message set and the side information set
are respectively given by

Mk = {Wfk,Dk,T : T ⊆ Dk, k /∈ T } (2.43)
Ak = {Wf,S,T : f ∈ [F],S ⊆ [K], |S| = α, T ⊆ S, k ∈ T } (2.44)

for each user k ∈ [K]. For this setting the side information graph takes
the form of a directed graph where each subfile represents a vertex, and
where there is a connection from (the node corresponding to) Wfk1 ,Dk1 ,T1 to
Wfk2 ,Dk2 ,T2 if and only if Wfk1 ,Dk1 ,T1 ∈ Ak2 , i.e., if and only if k2 ∈ T1. To
apply Lemma 2.1, we are interested in acyclic sets of vertices J in such side
information graph. In the spirit of [3], we know that the set⋃︂

k∈[K]

⋃︂
T ⊆(([K]\{u1,...,uk})∩Duk

)

{︂
Wfuk

,Duk
,T
}︂

(2.45)

does not contain any directed cycle14 for any demand (d,f) and any vector
u, where u = (u1, . . . , uK) is a permutation of the users in [K], i.e., u = πK

for some π ∈ SK . Consequently, applying Lemma 2.1 yields the following
lower bound

R⋆
u,s ≥ R(d,f ,u) (2.46)

where R(d,f ,u) is defined as

R(d,f ,u) :=
∑︂

k∈[K]

∑︂
T ⊆(([K]\{u1,...,uk})∩Duk

)

⃓⃓⃓
Wfuk

,Duk
,T

⃓⃓⃓
B

. (2.47)

14Notice that [3, Lemma 1] considers in fact T ⊆ ([K] \ {u1, . . . , uk}) and not T ⊆
(([K] \ {u1, . . . , uk}) ∩ Duk

). However, the latter is a subset of the former, and thus the
lemma still holds.

42 2.4. Proof of Theorem 2.1

Selection of Distinct Demands

Our goal is to create several bounds as the one in (2.46) and eventually
average all of them to obtain a useful lower bound on the optimal worst-case
load. We aim to create a bound for a set C of properly selected demands and
for a set U(d,f) of properly selected permutations for each demand (d,f) ∈ C.
Hence, we aim to simplify the expression given by∑︂

(d,f)∈C

∑︂
u∈U(d,f)

BR⋆
u,s ≥

∑︂
(d,f)∈C

∑︂
u∈U(d,f)

R(d,f ,u). (2.48)

Notice that the goal of carefully selecting the demand set C and the
permutation set U(d,f) is twofold. The first is to provide the symmetry that
will allow us to simplify (2.48) into a meaningful expression, and the second
is to force the bound to be as tight as possible15.
Remark 2.4. The careful selection of the demand set C and permutation set
U(d,f) for each (d,f) ∈ C is a pivotal difference with respect to the procedure
in [3]. Indeed, if one develops a converse bound following the exact same
procedure in [3], then the resulting bound is looser than the one presented
in this paper. Finding the good set of demands and permutations becomes
the key to obtaining a tighter bound while keeping the problem analytically
tractable.

For a permutation function π ∈ HK , we consider the demands (d,f)
where d = (D1, . . . ,DK) is such that

Dk = {k, π((π−1(k) + 1) mod K), . . . , π((π−1(k) + α− 1) mod K)} (2.49)

and fk ∈ [F] for each k ∈ [K]. There is a total of FK such demands.
Considering that the order of HK is (K − 1)! and that we take FK demands
for each π ∈ HK , we consider (K−1)!FK distinct16 demands in total, denoting
by C the set of such demands and referring to the demands in C as circular
demands. Since the vector d depends on some circular permutation π ∈ HK ,
we will identify from now on each demand with (dπ,f) ∈ C to highlight such
dependency. For a demand (dπ,f) ∈ C, we let U(dπ ,f) be the set containing
the K circular shifts of πK .

The aforementioned sets C and U(dπ ,f) for each (dπ,f) ∈ C will generally
yield larger acyclic subgraphs17 in (2.45) that can be used to increase the

15We wish to stress that constructing the converse using the demand set C and the
permutation set U(d,f) for each (d, f) ∈ C does not mean that the converse is the tightest
nor that the demands C are part of the worst-case demand set.

16Letting π ∈ HK be a circular permutation ensures that no d vector is repeated for any
specific f vector.

17This is based on the following observation. Throughout various examples, such demands
generally yielded the largest bounds compared to other classes of demands.

Chapter 2. A Negative Result on Selfish Caching Policies 43

RHS in (2.46), and to provide a better lower bound on R⋆
u,s. We provide in

the following a clarifying example for a circular demand in (dπ,f) ∈ C and
the corresponding set U(dπ ,f).

Example 2.4. Consider the (4, 3, F) FDS structure and the permutation
π4 = (1, 2, 3, 4). For such permutation, we consider the demands (d,f) where
d = (123, 234, 134, 124) and f = (f1, f2, f3, f4) with fk ∈ [F] for each k ∈ [4].
In addition, U(dπ ,f) is the set containing the 4 circular shifts of π4, which in this
case corresponds to U(dπ ,f) = {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}.

Constructing the Optimization Problem

We will seek to simplify the expression in (2.48), and then to minimize the
new simplified expression, in order to lower bound the optimal worst-case
load R⋆

u,s. Toward simplifying the expression in (2.48), we count how many
times each subfile Wf,S,T — for any f ∈ [F], S ⊆ [K] with |S| = α, T ⊆ S
and |T | = t′ with t′ ∈ [0 : α] — appears in (2.48). To this end, we need the
following lemma.

Lemma 2.2. Let π ∈ SK be a permutation of the set [K]. Consider k1, k2 ∈
[K] such that k1 ̸= k2. Consider

ℓ = (π−1(k2) − π−1(k1)) mod K. (2.50)

Then, out of the K circular shifts of πK, there is a total of (K − ℓ) of them
such that k1 appears before k2.

Proof. The proof is reported in Appendix A.3.

The counting argument proceeds as follows. First, we focus on some
subfile Wf,S,T and we assume that the file Wf,S is requested by some user
k ∈ (S \ T). Next, we count the number of demands (dπ,f) ∈ C for which
k and right-most element included from T are at distance ℓ in πK . Then,
we evaluate how many times the subfile appears in the index coding bounds
associated to such demands. After that, noticing that ℓ ∈ [t′ : α−1], we repeat
the procedure for each value of ℓ. Finally, since the same procedure can be
repeated for each k ∈ (S \T), we multiply the end result by |S \T | = (α− t′).

Let us focus on the subfile Wf,S,T for some f ∈ [F], S ⊆ [K] with |S| = α,
T ⊆ S and |T | = t′ for some t′ ∈ [0 : α]. For some user k ∈ (S \ T) and for
ℓ ∈ [t′ : α − 1], there is a total of aℓ := t′!(α − 1 − t′)!(K − α)!

(︂
ℓ−1
t′−1

)︂
FK−1

demands (dπ,f) ∈ C such that the file Wf,S is requested by such user
k ∈ (S \ T) and there are exactly ℓ elements in πK between k and the
right-most element included from T . Let Ck,ℓ be the set of such demands.

44 2.4. Proof of Theorem 2.1

Considering how the acyclic set of vertices in (2.45) is built, the subfile
Wf,S,T appears in the index coding bound induced by each (dπ,f) ∈ Ck,ℓ

whenever all the elements in T appear after k in u ∈ U(dπ ,f). Since for each
demand (dπ,f) ∈ Ck,ℓ there are exactly ℓ elements in πK separating k and the
right-most element from T , we know from Lemma 2.2 that there are (K − ℓ)
vectors u ∈ U(dπ ,f) where all the elements in T appear after k. Observing
that ℓ ∈ [t′ : α − 1] and that such reasoning applies whenever the file Wf,S
is requested by any of the (α− t′) users in S \ T , the specific subfile Wf,S,T
appears (α − t′)∑︁α−1

ℓ=t′ aℓ(K − ℓ) times in (2.48). Since the same reasoning
applies to any other subfile, the expression in (2.48) can be rewritten as

R⋆
u,s ≥ 1

BK!FK

∑︂
(dπ ,f)∈C

∑︂
u∈U(dπ,f)

R(dπ,f ,u) (2.51)

=
α∑︂

t′=0
f(t′)xt′ (2.52)

where f(t′) and xt′ are defined as

f(t′) := N
(α− t′)
FKK!

α−1∑︂
ℓ=t′

aℓ(K − ℓ) (2.53)

0 ≤ xt′ :=
∑︂

S⊆[K]:|S|=α

∑︂
T ⊆S:|T |=t′

∑︂
f∈[F]

|Wf,S,T |
NB

. (2.54)

At this point, we seek to lower bound the minimum worst-case load R⋆
u,s

by lower bounding the solution to the following optimization problem

min
x

α∑︂
t′=0

f(t′)xt′ (2.55a)

subject to
α∑︂

t′=0
xt′ = 1 (2.55b)

α∑︂
t′=0

t′xt′ ≤ KM

N
(2.55c)

where (2.55b) and (2.55c) correspond to the file size constraint and the
cumulative cache size constraint, respectively.

Lower Bounding the Solution to the Optimization Problem

Before proceeding to lower bound the solution the optimization problem, we
wish to further simplify the function f(t′). Indeed, this function f(t′) can be

Chapter 2. A Negative Result on Selfish Caching Policies 45

rewritten as
f(t′) = 1(︂

α
t

)︂ α−1∑︂
ℓ=t′

(︄
ℓ− 1
t′ − 1

)︄
(K − ℓ). (2.56)

Then, we can write

f(t′) = 1(︂
α
t′

)︂ α−1∑︂
ℓ=t′

(︄
ℓ− 1
t′ − 1

)︄
(K − ℓ) (2.57)

= 1(︂
α
t′

)︂ (︄K α−1∑︂
ℓ=t′

(︄
ℓ− 1
t′ − 1

)︄
−

α−1∑︂
ℓ=t′

ℓ

(︄
ℓ− 1
t′ − 1

)︄)︄
(2.58)

= 1(︂
α
t′

)︂
⎛⎝K α−2∑︂

ℓ=t′−1

(︄
ℓ

t′ − 1

)︄
− t′

α−1∑︂
ℓ=t′

(︄
ℓ

t′

)︄⎞⎠ (2.59)

=
K
(︂

α−1
t′

)︂
− t′

(︂
α

t′+1

)︂
(︂

α
t′

)︂ (2.60)

=

(︂
α

t′+1

)︂
+ (K − α)

(︂
α−1

t′

)︂
(︂

α
t′

)︂ (2.61)

where (2.60) uses the well-known hockey-stick identity, which states that
n∑︂

i=k

(︄
i

k

)︄
=
(︄
n+ 1
k + 1

)︄
, ∀n, k ∈ N, n ≥ k. (2.62)

Now, since we can consider x = (x0, . . . , xα) as a probability mass function,
the optimization problem in (2.55) can be seen as the minimization of E[f(t′)].
Moreover, the following holds.

Lemma 2.3. The function f(t′) is convex and is strictly decreasing for
increasing values of t′.

Proof. The proof is reported in Appendix A.4.

Taking advantage of Lemma 2.3, we can write E[f(t′)] ≥ f(E[t′]) using
Jensen’s inequality. Then, since f(t′) is strictly decreasing with increasing
t′ ∈ [0 : α], we can further write f(E[t′]) ≥ f(KM/N) taking advantage of the
fact that E[t′] is upper bounded as in (2.55c). Consequently, E[f(t′)] ≥ f(t),
where t = KM/N . Now, when t is an integer, the bound is simply the
function f(t) evaluated at t ∈ [0 : α]. For non-integer values of t, we can
follow the reasoning in [4], [39], [52] to take the lower convex envelope of the

46 2.4. Proof of Theorem 2.1

sequence of points {(t, f(t)) : t ∈ [0 : α]}. To conclude, the converse bound is
a piecewise linear curve with corner points

(M,RLB) =
⎛⎝tN
K
,

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂
⎞⎠ , ∀t ∈ [0 : α]. (2.63)

Further, RLB takes the form

RLB =

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂ (2.64)

= α− t

1 + t
+ (K − α)

(︃
1 − t

α

)︃
(2.65)

= α(1 − γα)
1 +Kγ

+K(1 − γα) − α(1 − γα) (2.66)

= K(1 − γα)
[︄
1 + α

K(1 +Kγ) − α

K

]︄
(2.67)

= K(1 − γα)
1 +Kγ

[︃
1 +Kγ + α

K
− α

K
(1 +Kγ)

]︃
(2.68)

= K(1 − γα)
1 +Kγ

[︃
(K − α)γ + 1

]︃
(2.69)

which completes the proof.

2.4.2 A Detailed Example for the Converse Bound
We present here in detail an example that can help the reader better under-
stand the construction of the converse bound.

Consider the symmetric (4, 3, 1) FDS structure which involves a file library
{W1,S : S ⊆ [4], |S| = 3} consisting of C =

(︂
K
α

)︂
=
(︂

4
3

)︂
= 4 classes of files.

Since there is only F = 1 file per class, there is a total of N = FC = 4 files,
so in this example we make no distinction between files and classes of files.
For simplicity, we will here refer to file W1,S directly as WS , which means that
each file is entirely described by a 3-tuple S ⊆ [4], and each demand instance
is entirely defined by the d = (D1, . . . ,D4) vector only. The FDS of each user
k ∈ [4] is given by Fk = {WS : S ⊆ [4], |S| = 3, k ∈ S} and it consists of
F
(︂

K−1
α−1

)︂
= 3 files. This example considers t ∈ [0 : 3], simply because having

M = tN/K = 3 implies that the point (M,R) = (3, 0) is trivially achievable
being each user able to preemptively cache the entirety of its FDS.

Assuming the most general uncoded and selfish cache placement, each file
WS is split into a total of 2α = 8 disjoint subfiles as

WS = {WS,T : T ⊆ S}, ∀S ⊆ [4] : |S| = 3 (2.70)

Chapter 2. A Negative Result on Selfish Caching Policies 47

where again WS,T is the subfile of WS cached by users in T .

Constructing the Index Coding Bound

For any given demand d = (D1, . . . ,D4) where the k-th user asks for a
distinct file WDk

for each k ∈ [4], we consider the index coding problem
with K ′ = K = 4 users and N ′ = K2α−1 = 16 messages, where each user
k ∈ [4] has a desired message set Mk = {WDk,T : T ⊆ Dk, k /∈ T } and a side
information set Ak = {WS,T : S ⊆ [4], |S| = 3, T ⊆ S, k ∈ T }.

If we identify again in the side information graph of the problem the
acyclic set of vertices as in (2.45), applying Lemma 2.1 yields the following
lower bound

R⋆
u,s ≥ R(d,u) (2.71)

where now we define

R(d,u) :=
∑︂

k∈[4]

∑︂
T ⊆(([4]\{u1,...,uk})∩Duk

)

⃓⃓⃓
WDuk

,T

⃓⃓⃓
B

. (2.72)

Recall that (2.71) holds for any demand d and any u = π4 for some π ∈ S4.

Constructing the Optimization Problem and Bounding its Solution

As described in Section 2.4.1, we let C be the set of distinct demands where
we have a dπ vector for each circular permutation π ∈ H4. The number of
such permutations is (K − 1)! = 6. For simplicity, we denote by πi the i-th
circular permutation for i ∈ [6], where such circular permutations are given
by

π4
1 = (1, 2, 3, 4) π4

4 = (1, 3, 4, 2) (2.73)
π4

2 = (1, 2, 4, 3) π4
5 = (1, 4, 2, 3) (2.74)

π4
3 = (1, 3, 2, 4) π4

6 = (1, 4, 3, 2). (2.75)

None of the above permutations can be obtained as a rotation of any of the
others. Hence, this ensures to have in C the following distinct demand vectors

dπ1 = (123, 234, 134, 124) dπ4 = (134, 123, 234, 124) (2.76)
dπ2 = (124, 234, 123, 134) dπ5 = (124, 123, 134, 234) (2.77)
dπ3 = (123, 124, 234, 134) dπ6 = (134, 124, 123, 234) (2.78)

with Udπi
containing the 4 circular shifts of π4

i . For instance, it is Udπ1
=

{(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}.

48 2.5. The Exact Memory-Load Trade-Off for the α-Demands

Now, we create a bound as in (2.71) for each dπi
with i ∈ [6] and for

each u ∈ Udπi
for a given dπi

, we sum all such bounds and we obtain the
expression given by∑︂

i∈[6]

∑︂
u∈Udπi

BR⋆
u,s ≥

∑︂
i∈[6]

∑︂
u∈Udπi

R(dπi
,u). (2.79)

We simplify (2.79) by counting how many times each subfile WS,T — for
any S ⊆ [4] with |S| = 3, T ⊆ S and |T | = t′ with t′ ∈ [0 : 3] — appears
in (2.79).

For example, let us focus on the subfile W123,2. First of all, we notice that
such subfile may appear to the RHS of (2.71) whenever W123 is requested
by any user k ∈ (S \ T) = {1, 3}. Assume that W123 is requested by user 1,
which means we consider the bounds with demands dπ1 and dπ3 . Denoting
by ℓ the distance18 between user 1 and user 2 in π4

i for i ∈ {1, 3}, we notice
that ℓ ∈ {1, 2}. We see that there is only π4

1 for ℓ = 1, so W123,2 appears
(K − ℓ) = 3 times in the bounds with demand dπ1 and permutations in Udπ1

.
Similarly, there is only π4

3 for ℓ = 2, so W123,2 appears (K − ℓ) = 2 times
in the bounds with demand dπ3 and permutations in Udπ3

. Thus, summing
over the possible values of ℓ, the subfile W123,2 appears 3 + 2 = 5 times in
the bounds with demands dπ1 and dπ3 , and their relative permutations of
users. The same rationale follows for the bounds built with dπ2 , dπ6 and their
relative permutations, i.e., the bounds where file W123 is requested by user 3.
Hence, the subfile W123,2 appears in (2.79) a total of 2 × (3 + 2) = 10 times.

The same holds for any other subfile cached at only one user and a similar
counting argument can be made for arbitrary |T | = t′ with t′ ∈ [0 : 3], as
described in Section 2.4.1. Thus, we can formulate an optimization problem as
in (2.55), bounding its solution by means of Jensen’s inequality and convexity
of f(t′). The resulting bound is a piecewise linear curve with corner points
(M,RLB) = (t, (3 − t)/(1 + t) + 1 − t/3) for each t ∈ [0 : 3].

2.5 The Exact Memory-Load Trade-Off for
the α-Demands

We will here draw insights from the converse to establish a general cache
placement policy, and then a delivery scheme that applies to a specific set of
so-called α-Demands. For these demands and for the specific placement policy,
the scheme will be proven optimal with the use of an additional converse.

18We remind that such distance represents the number of elements which separate index
1 and index 2, including the latter.

Chapter 2. A Negative Result on Selfish Caching Policies 49

We start by noticing that the converse in Theorem 2.1 can be decomposed
as

RLB(t) =

(︂
α

t+1

)︂
(︂

α
t

)︂ +
(K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂ (2.80)

with the first term R1(t) :=
(︂

α
t+1

)︂
/
(︂

α
t

)︂
= α(1−γα)/(1+αγα) bringing to mind

a smaller MAN placement-and-delivery (unselfish) problem with α users, a
common library, and normalized cache size γα, and with the second term
R2(t) := (K − α)

(︂
α−1

t

)︂
/
(︂

α
t

)︂
= (K − α)(1 − γα) bringing to mind uncoded

delivery to (K − α) users. Let us exploit this observation to suggest a
placement.

2.5.1 Cache Placement
As noted, we can think of the R1(t) term as representing the optimal load in
a “smaller” α-MAN problem with α users that are known in advance to be
interested in a common class of files and thus benefit from the corresponding
α-user MAN placement. If each user — as is the case in our setting — can
allocate a fraction γα for each file of potential interest, then a MAN placement
implies that each user stores a total of Fγα files19. Here, in our effort to
provide a placement method, we must account for the fact that there is a
total of

(︂
K
α

)︂
such “smaller” MAN problems, because there are C =

(︂
K
α

)︂
file

classes. Let us now recall that each user appears in a total of
(︂

K−1
α−1

)︂
such

smaller problems, since there are
(︂

K−1
α−1

)︂
file classes that each user is interested

in. Our placement must account for the possibility of each user participating
in any such smaller problem. This requires each user to store Fγα files per
class of interest, and thus requires a total storage capacity of γαF

(︂
K−1
α−1

)︂
= M ,

which, as we see, nicely satisfies the cache size constraint. This reasoning
justifies the cache placement procedure that we present below.

In our proposed uncoded and selfish cache placement method, based on
the same combinatorial argument of the MAN scheme, each user k proceeds
to cache only from Fk. The placement begins by splitting each file into

(︂
α
t

)︂
non-overlapping subfiles as

Wf,S = {Wf,S,T : T ⊆ S, |T | = t} (2.81)
for each S ⊆ [K] such that |S| = α and for each f ∈ [F], and then is
completed by filling the cache Zk of each user k ∈ [K] as

Zk = {Wf,S,T : f ∈ [F],S ⊆ [K], |S| = α, T ⊆ S, |T | = t, k ∈ T }. (2.82)
19Recall that F is the total number of files in this common class of files.

50 2.5. The Exact Memory-Load Trade-Off for the α-Demands

Each cache stores
(︂

α−1
t−1

)︂
subfiles for each file in its FDS, so abiding by the

cache size constraint

|F|
(︄
α− 1
t− 1

)︄
B(︂
α
t

)︂ = F

(︄
K − 1
α− 1

)︄
t

α
B = MB. (2.83)

Remark 2.5. Unfortunately, the above reasoning does not immediately reflect
— at least not to us — a universal delivery solution for any set of demands.
To the best of our understanding, our cache placement introduces the need to
resolve a large number of non-isomorphic index coding problems. Nevertheless,
the careful interpretation of the converse allowed us to suggest a general selfish
cache placement policy. Similarly, it also allows us to identify a well-defined
class of demands, as we can see below.

2.5.2 Delivery Scheme for the Set of α-Demands
We now present the delivery method for the following class of demands.

Definition 2.3 (α-Demands). Considering the (K,α, F) FDS structure with
F ≥ α, the demand defined by the vectors d = (D1, . . . ,DK) and f =
(f1, . . . , fK) is an α-demand if and only if there exists at least one set of users
K ⊆ [K] such that |K| = α, fk1 ̸= fk2 for any k1 ̸= k2 with k1, k2 ∈ K and
Dk = K for all k ∈ K.

Such demands can exist only if F ≥ α. Indeed, if we have at least α files
per class, then we can have distinct demands where there exists at least one
set of α users requesting distinct files, all belonging to the same file class.

Let Rα,c denote the worst-case load when only α-demands are considered,
and when the cache placement in Section 2.5.1 is adopted. We are now ready
to provide the exact characterization of optimal such load R⋆

α,c.

Proposition 2.1 (The Exact Memory-Load Trade-Off for α-Demands Under
the Presented Symmetric Placement). Assuming the selfish and uncoded cache
placement presented in Section 2.5.1, the optimal worst-case communication
load R⋆

α,c for the (K,α, F) FDS structure and α-Demands is a piecewise linear
curve with corner points

(M,R⋆
α,c) =

⎛⎝tN
K
,

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂
⎞⎠ , ∀t ∈ [0 : α] (2.84)

again corresponding to

R⋆
α,c = K(1 − γα)

Kγ + 1

[︃
(K − α)γ + 1

]︃
. (2.85)

Chapter 2. A Negative Result on Selfish Caching Policies 51

Proof. The proof of the converse is reported in Appendix A.5, whereas the
proof of the achievability is reported below in Section 2.5.3.

2.5.3 Achievability Proof of Proposition 2.1
By definition, any α-demand has at least one set of α users requesting distinct
files from the same file class. If we denote by K one of such sets, it holds that
Dk = K for all k ∈ K and fk1 ≠ fk2 for all k1 ≠ k2 with k1, k2 ∈ K. Consider
user k ∈ K. According to the cache placement procedure in Section 2.5.1,
this user does not have in its cache any subfile Wfk,K,T where T ⊆ K, |T | = t
and k /∈ T . If we focus on this set K of α users only, we can automatically
construct the following sequence of multicast messages

XK =
⎛⎝⨁︂

k∈S
Wfk,K,S\{k} : S ⊆ K, |S| = t+ 1

⎞⎠ . (2.86)

For the remaining (K−α) users in [K]\K, we consider the following sequence

X[K]\K = (Wfk,Dk,T : k ∈ ([K] \ K), k /∈ T) (2.87)

of uncoded transmissions. Then, the transmitter delivers the concatenated
X = (XK, X[K]\K), inducing a load

|X|
B

= |XK| + |X[K]\K|
B

=

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂ (2.88)

which implies that R⋆
α,c(t) ≤ (α

t+1)+(K−α)(α−1
t)

(α
t)

for all t ∈ [0 : α].

Remark 2.6. As a testament to the additional usefulness of the converse
developed here, we point out that the above achievable scheme is developed
as a direct outcome of a meticulous inspection of the expression of the bound
itself.

2.5.4 Example of the Achievable Scheme
Consider the (K,α, F) = (5, 3, 3) FDS structure. We have C =

(︂
K
α

)︂
=
(︂

5
3

)︂
=

10 classes of files with a total of N = FC = 30 files. The FDS structure is
given by

F1 = {W123,W124,W125,W134,W135,W145} (2.89)
F2 = {W123,W124,W125,W234,W235,W245} (2.90)

52 2.5. The Exact Memory-Load Trade-Off for the α-Demands

F3 = {W123,W134,W135,W234,W235,W345} (2.91)
F4 = {W124,W134,W145,W234,W245,W345} (2.92)
F5 = {W125,W135,W145,W235,W245,W345} (2.93)

where WS = {W1,S ,W2,S ,W3,S} for each triplet S ⊆ [5]. Let us consider the
scenario of t = 2. In this case, each file is split as

Wf,123 = {Wf,123,12,Wf,123,13,Wf,123,23} (2.94)
Wf,124 = {Wf,124,12,Wf,124,14,Wf,124,24} (2.95)
Wf,125 = {Wf,125,12,Wf,125,15,Wf,125,25} (2.96)
Wf,134 = {Wf,134,13,Wf,134,14,Wf,134,34} (2.97)
Wf,135 = {Wf,135,13,Wf,135,15,Wf,135,35} (2.98)
Wf,145 = {Wf,145,14,Wf,145,15,Wf,145,45} (2.99)
Wf,234 = {Wf,234,23,Wf,234,24,Wf,234,34} (2.100)
Wf,235 = {Wf,235,23,Wf,235,25,Wf,235,35} (2.101)
Wf,245 = {Wf,245,24,Wf,245,25,Wf,245,45} (2.102)
Wf,345 = {Wf,345,34,Wf,345,35,Wf,345,45} (2.103)

for all f ∈ [3].
Consider the demand defined by the vectors f = (1, 2, 3, 1, 1) and d =

(123, 123, 123, 124, 125). This is an α-demand because there exists a set K of
α users all requesting distinct files belonging to the same file class K. Here,
this set is K = {1, 2, 3}.

In accordance to the described selfish and uncoded cache placement, each
user desires a total of

(︂
α−1

t

)︂
subfiles which are not in its cache. In this case,

each user simply desires
(︂

2
2

)︂
= 1 subfile. The delivery of these subfiles involves

the following MAN bitwise XOR

X123 =
⎛⎝⨁︂

k∈S
Wfk,K,S\{k} : S ⊆ K, |S| = t+ 1

⎞⎠ (2.104)

= (W1,123,23 ⊕W2,123,13 ⊕W3,123,12) (2.105)

and then the following two uncoded transmissions

X45 = (W1,124,12,W1,125,12) (2.106)

that serve the users outside K. Given that the subpacketization is
(︂

α
t

)︂
=(︂

3
2

)︂
= 3, the transmitted signal X = (X123, X45) induces a communication

load of Rα,c(2) = |X|/B = 1, which matches the corresponding optimal
R⋆

α,c(2) from Proposition 2.1.

Chapter 2. A Negative Result on Selfish Caching Policies 53

2.6 Additional Optimal Schemes for Circular
Demands

We here present schemes that optimally deliver circular demands. We will do
so for the (5, 4, F) FDS structure with t ∈ {2, 3}, and for the (6, 5, F) FDS
structure with t = 3. The optimal schemes assume the selfish and uncoded
cache placement described in Section 2.5.1. We prove optimality simply by
showing that the load provided by the proposed achievable schemes matches
the converse bound in Theorem 2.1. This suffices because, as we might recall,
the construction of the converse employed only circular demands20.

2.6.1 Circular Demands and the (5, 4, F) FDS Structure
The scheme presented here is a generalization, for any circular demand, of the
example in Section 2.2.2. For the considered (K,α, F) = (5, 4, F) structure, we
know that there are C =

(︂
K
α

)︂
= 5 file classes W1234,W1235,W1245,W1345,W2345,

corresponding to N = FC = 5F files. The 5 FDSs take the form

F1 = {W1234,W1235,W1245,W1345} (2.107)
F2 = {W1234,W1235,W1245,W2345} (2.108)
F3 = {W1234,W1235,W1345,W2345} (2.109)
F4 = {W1234,W1245,W1345,W2345} (2.110)
F5 = {W1235,W1245,W1345,W2345} (2.111)

where we recall that WS = {Wf,S : f ∈ [F]}. The scheme works for any value
of F ∈ N+, and for any circular demand, recalling that each circular demand
is identified by a permutation vector û = (û1, û2, û3, û4, û5) ∈ H5. The FDS
request graph of such generic circular demand is shown in Figure 2.6. Notice
that, as expected, this is not a complete graph.

Before presenting the schemes, we wish to point out the key novelty and
the general idea. As already mentioned in the example in Section 2.2.2, the
crucial aspect consists of designing multicast messages that not only deliver
messages themselves, but where also their linear combinations can be used by
the users to correctly decode requested subfiles. Hence, the idea here is to find
an efficient way to align interference, such that users can cache-out interference
terms by simply XORing some of the received messages. The pivotal aspect
of this approach is the ability of choosing the users that will have to take

20We wish to point out that the fact that the converse is matched when considering
some instances of circular demands does not necessarily imply that the converse is exactly
matched in general nor that circular demands are worst-case demands.

54 2.6. Additional Optimal Schemes for Circular Demands

Wfû1 ,Dû1

Wfû5 ,Dû5

Wfû4 ,Dû4
Wfû3 ,Dû3

Wfû2 ,Dû2

û1

û2

û3û4

û5

Figure 2.6: FDS request graph for a generic circular demand identified by
the vector û = (û1, û2, û3, û4, û5) ∈ H5 and the (K,α, F) = (5, 4, F) FDS
structure.

linear combinations of messages to cancel interference and correctly decode
the requested subfiles.

The case of t = 2

According to the cache placement in Section 2.5.1, each file is split into(︂
α
t

)︂
=
(︂

4
2

)︂
= 6 non-overlapping subfiles as

Wi,1234 = {Wi,1234,12,Wi,1234,13,Wi,1234,14,

Wi,1234,23,Wi,1234,24,Wi,1234,34} (2.112)
Wi,1235 = {Wi,1235,12,Wi,1235,13,Wi,1235,15,

Wi,1235,23,Wi,1235,25,Wi,1235,35} (2.113)
Wi,1245 = {Wi,1245,12,Wi,1245,14,Wi,1245,15,

Wi,1245,24,Wi,1245,25,Wi,1245,45} (2.114)
Wi,1345 = {Wi,1345,13,Wi,1345,14,Wi,1345,15,

Wi,1345,34,Wi,1345,35,Wi,1345,45} (2.115)
Wi,2345 = {Wi,2345,23,Wi,2345,24,Wi,2345,25,

Wi,2345,34,Wi,2345,35,Wi,2345,45} (2.116)

for each f ∈ [F]. Considering then that the cache content of each user k ∈ [5]
is filled as

Zk = {Wf,S,T : f ∈ [F],S ⊆ [5], |S| = 4, T ⊆ S, |T | = 2, k ∈ T } (2.117)

Chapter 2. A Negative Result on Selfish Caching Policies 55

it can be easily seen that each user desires a total of
(︂

α−1
t

)︂
=
(︂

3
2

)︂
= 3 subfiles,

each of size B/6 bits. Recalling that each circular demand is defined by a
permutation vector û = (û1, û2, û3, û4, û5) ∈ H5, we conclude that the subfiles
desired by each user are the following.

• User û1. The subfiles which are desired are given by Wfû1 ,Dû1 ,{û2,û3},
Wfû1 ,Dû1 ,{û2,û4} and Wfû1 ,Dû1 ,{û3,û4}.

• User û2. The subfiles which are desired are given by Wfû2 ,Dû2 ,{û3,û4},
Wfû2 ,Dû2 ,{û3,û5} and Wfû2 ,Dû2 ,{û4,û5}.

• User û3. The subfiles which are desired are given by Wfû3 ,Dû3 ,{û1,û4},
Wfû3 ,Dû3 ,{û1,û5} and Wfû3 ,Dû3 ,{û4,û5}.

• User û4. The subfiles which are desired are given by Wfû4 ,Dû4 ,{û1,û2},
Wfû4 ,Dû4 ,{û1,û5} and Wfû4 ,Dû4 ,{û2,û5}.

• User û5. The subfiles which are desired are given by Wfû5 ,Dû5 ,{û1,û2},
Wfû5 ,Dû5 ,{û1,û3} and Wfû5 ,Dû5 ,{û2,û3}.

These subfiles are delivered by the following sequence of XORs
X1 = Wfû1 ,Dû1 ,{û2,û3} ⊕Wfû2 ,Dû2 ,{û3,û5} ⊕Wfû3 ,Dû3 ,{û1,û4} (2.118)
X2 = Wfû3 ,Dû3 ,{û1,û4} ⊕Wfû1 ,Dû1 ,{û2,û4} ⊕Wfû4 ,Dû4 ,{û1,û2} (2.119)
X3 = Wfû2 ,Dû2 ,{û3,û5} ⊕Wfû5 ,Dû5 ,{û1,û3} ⊕Wfû3 ,Dû3 ,{û1,û5} (2.120)
X4 = Wfû1 ,Dû1 ,{û3,û4} ⊕Wfû4 ,Dû4 ,{û1,û5} (2.121)
X5 = Wfû2 ,Dû2 ,{û3,û4} ⊕Wfû4 ,Dû4 ,{û2,û5} (2.122)
X6 = Wfû2 ,Dû2 ,{û4,û5} ⊕Wfû5 ,Dû5 ,{û1,û2} (2.123)
X7 = Wfû3 ,Dû3 ,{û4,û5} ⊕Wfû5 ,Dû5 ,{û2,û3} (2.124)

after which each user k ∈ [5] can employ its own cache content Zk to decode
as follows.

• User û1 recovers its desired subfiles from X1 ⊕X3, X2 and X4.

• User û2 recovers its desired subfiles from X1 ⊕X2, X5 and X6.

• User û3 recovers its desired subfiles from X1, X3 and X7.

• User û4 recovers its desired subfiles from X2, X4 and X5.

• User û5 recovers its desired subfiles from X3, X6 and X7.
Given that |Xi| = B/6 for each i ∈ [7], and given that there are 7 transmis-
sions, we have a load of R(2) = |X|/B = 7/6. Since then RLB(2) = 7/6, we
can conclude that the converse is tight.

56 2.6. Additional Optimal Schemes for Circular Demands

The case of t = 3

In this case each file is split into
(︂

4
3

)︂
= 4 non-overlapping subfiles as

Wf,1234 = {Wf,1234,123,Wf,1234,124,Wf,1234,134,Wf,1234,234} (2.125)
Wf,1235 = {Wf,1235,123,Wf,1235,125,Wf,1235,135,Wf,1235,235} (2.126)
Wf,1245 = {Wf,1245,124,Wf,1245,125,Wf,1245,145,Wf,1245,245} (2.127)
Wf,1345 = {Wf,1345,134,Wf,1345,135,Wf,1345,145,Wf,1345,345} (2.128)
Wf,2345 = {Wf,2345,234,Wf,2345,235,Wf,2345,245,Wf,2345,345} (2.129)

for each f ∈ [F]. Each user then desires
(︂

3
3

)︂
= 1 subfile of size B/4. More

precisely, always considering the general circular demands identified by the
vector û ∈ H5, the desired subfiles are given as follows.

• User û1 desires Wfû1 ,Dû1 ,{û2,û3,û4}.

• User û2 desires Wfû2 ,Dû2 ,{û3,û4,û5}.

• User û3 desires Wfû3 ,Dû3 ,{û1,û4,û5}.

• User û4 desires Wfû4 ,Dû4 ,{û1,û2,û5}.

• User û5 desires Wfû5 ,Dû5 ,{û1,û2,û3}.

After transmitting the following two XORs

X1 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕Wfû2 ,Dû2 ,{û3,û4,û5} ⊕Wfû4 ,Dû4 ,{û1,û2,û5} (2.130)
X2 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕Wfû3 ,Dû3 ,{û1,û4,û5} ⊕Wfû5 ,Dû5 ,{û1,û2,û3} (2.131)

each user can decode as follows.

• User û1 and user û3 recover their desired subfiles from X2.

• User û2 and user û4 recover their desired subfiles from X1.

• User û5 recovers its desired subfile from X1 ⊕X2.

Recalling that |X1| = |X2| = B/4, the 2 transmissions correspond to a
communication load R(3) = |X|/B = 1/2 which matches the converse
RLB(3) = 1/2. This means that the scheme is optimal among all the caching-
and-delivery schemes that deliver circular demands.

Chapter 2. A Negative Result on Selfish Caching Policies 57

2.6.2 Circular Demands and the (6, 5, F) FDS Structure
In this setting, we consider the (K,α, F) = (6, 5, F) structure, where there is
a total of C = 6 classes of files W12345,W12346,W12356,W12456,W13456,W23456
and there are N = FC = 6F files. The 6 FDSs take the form

F1 = {W12345,W12346,W12356,W12456,W13456} (2.132)
F2 = {W12345,W12346,W12356,W12456,W23456} (2.133)
F3 = {W12345,W12346,W12356,W13456,W23456} (2.134)
F4 = {W12345,W12346,W12456,W13456,W23456} (2.135)
F5 = {W12345,W12356,W12456,W13456,W23456} (2.136)
F6 = {W12346,W12356,W12456,W13456,W23456} (2.137)

where WS = {Wf,S : f ∈ [F]}. As in the previous case, we here provide a
scheme for any F ∈ N+ and any circular demand. Each such circular demand
is identified by a vector û = (û1, û2, û3, û4, û5, û6) ∈ H6, and it induces the
FDS request graph in Figure 2.7. The optimal scheme is provided for the
case t = 3.

Wfû1 ,Dû1
Wfû6 ,Dû6

Wfû5 ,Dû5

Wfû4 ,Dû4
Wfû3 ,Dû3

Wfû2 ,Dû2

û1

û2

û3û4

û5

û6

Figure 2.7: FDS request graph for a generic circular demand identified by
the vector û = (û1, û2, û3, û4, û5, û6) ∈ H6 and the (K,α, F) = (6, 5, F) FDS
structure.

According to the cache placement in Section 2.5.1, each file is split into(︂
α
t

)︂
=
(︂

5
3

)︂
= 10 non-overlapping subfiles as

Wf,S = {Wf,S,T : T ⊆ S, |T | = 3} (2.138)

58 2.6. Additional Optimal Schemes for Circular Demands

for each S ⊆ [6] such that |S| = 5 and for each f ∈ [F], where each subfile
has size B/10. For example, the file Wf,12345 is split into 10 non-overlapping
subfiles Wf,12345,T for each T ∈ {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}.
We recall that the set T represents the users which the subfile Wf,12345,T is
exactly and uniquely cached at. If we consider a generic circular demand,
each user misses

(︂
α−1

t

)︂
=
(︂

4
3

)︂
= 4 subfiles given by the following.

• The subfiles Wfû1 ,Dû1 ,{û2,û3,û4}, Wfû1 ,Dû1 ,{û2,û3,û5}, Wfû1 ,Dû1 ,{û2,û4,û5} and
Wfû1 ,Dû1 ,{û3,û4,û5} are desired by user û1.

• The subfiles Wfû2 ,Dû2 ,{û3,û4,û5}, Wfû2 ,Dû2 ,{û3,û4,û6}, Wfû2 ,Dû2 ,{û3,û5,û6} and
Wfû2 ,Dû2 ,{û4,û5,û6} are desired by user û2

• The subfiles Wfû3 ,Dû3 ,{û1,û4,û5}, Wfû3 ,Dû3 ,{û1,û4,û6}, Wfû3 ,Dû3 ,{û1,û5,û6} and
Wfû3 ,Dû3 ,{û4,û5,û6} are desired by user û3.

• The subfiles Wfû4 ,Dû4 ,{û1,û2,û5}, Wfû4 ,Dû4 ,{û1,û2,û6}, Wfû4 ,Dû4 ,{û1,û5,û6} and
Wfû4 ,Dû4 ,{û2,û5,û6} are desired by user û4.

• The subfiles Wfû5 ,Dû5 ,{û1,û2,û3}, Wfû5 ,Dû5 ,{û1,û2,û6}, Wfû5 ,Dû5 ,{û1,û3,û6} and
Wfû5 ,Dû5 ,{û2,û3,û6} are desired by user û5.

• The subfiles Wfû6 ,Dû6 ,{û1,û2,û3}, Wfû6 ,Dû6 ,{û1,û2,û4}, Wfû6 ,Dû6 ,{û1,û3,û4} and
Wfû6 ,Dû6 ,{û2,û3,û4} are desired by user û6.

If we consider the following linear combinations of subfiles

X1 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕Wfû2 ,Dû2 ,{û4,û5,û6}

⊕Wfû4 ,Dû4 ,{û2,û5,û6} (2.139)
X2 = Wfû4 ,Dû4 ,{û1,û5,û6} ⊕Wfû1 ,Dû1 ,{û2,û3,û5}

⊕Wfû5 ,Dû5 ,{û1,û2,û3} (2.140)
X3 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕Wfû4 ,Dû4 ,{û1,û5,û6}

⊕Wfû6 ,Dû6 ,{û1,û3,û4} ⊕Wfû3 ,Dû3 ,{û1,û4,û6} (2.141)
X4 = Wfû2 ,Dû2 ,{û3,û4,û5} ⊕Wfû3 ,Dû3 ,{û1,û5,û6}

⊕Wfû5 ,Dû5 ,{û1,û3,û6} (2.142)
X5 = Wfû5 ,Dû5 ,{û1,û2,û6} ⊕Wfû2 ,Dû2 ,{û3,û4,û6}

⊕Wfû6 ,Dû6 ,{û2,û3,û4} (2.143)
X6 = Wfû2 ,Dû2 ,{û3,û4,û5} ⊕Wfû5 ,Dû5 ,{û1,û2,û6}

⊕Wfû1 ,Dû1 ,{û2,û4,û5} ⊕Wfû4 ,Dû4 ,{û1,û2,û5} (2.144)
X7 = Wfû3 ,Dû3 ,{û4,û5,û6} ⊕Wfû4 ,Dû4 ,{û1,û2,û6}

⊕Wfû6 ,Dû6 ,{û1,û2,û4} (2.145)

Chapter 2. A Negative Result on Selfish Caching Policies 59

X8 = Wfû6 ,Dû6 ,{û1,û2,û3} ⊕Wfû3 ,Dû3 ,{û1,û4,û5}

⊕Wfû1 ,Dû1 ,{û3,û4,û5} (2.146)
X9 = Wfû3 ,Dû3 ,{û4,û5,û6} ⊕Wfû6 ,Dû6 ,{û1,û2,û3}

⊕Wfû2 ,Dû2 ,{û3,û5,û6} ⊕Wfû5 ,Dû5 ,{û2,û3,û6} (2.147)

and we denote by X = (Xi : i ∈ [9]) the concatenated message sent by the
central server, then each user can correctly decode its desired subfiles as
follows.

• User û1 recovers its desired subfiles from X2, X3, X4 ⊕X6 and X8.

• User û2 recovers its desired subfiles from X1, X5, X6 and X7 ⊕X9.

• User û3 recovers its desired subfiles from X2 ⊕X3, X4, X8 and X9.

• User û4 recovers its desired subfiles from X1, X3, X5 ⊕X6 and X7.

• User û5 recovers its desired subfiles from X2, X4, X6 and X8 ⊕X9.

• User û6 recovers its desired subfiles from X1 ⊕X3, X5, X7 and X9.

The delivery procedure is slightly more involved with respect to the previ-
ous FDS structure, but is based as before on the idea of carefully aligning
interference. Indeed, the messages Xi are carefully designed in such a way
that also their linear combinations can be useful to some users. An equivalent
interpretation of this fact is related to the previously mentioned creation of
cliques. Consider for example the XOR X3. User 1 and user 4 can directly
cache-out interference to correctly decode their desired subfiles, while user 3
and user 6 miss in their cache — due to the selfish cache placement — some
interfering messages appearing in the XOR X3. Such interfering (and conse-
quently undesired) messages are “delivered” to21 both user 3 and user 6 by
means of XORs X2 and X1, so allowing them to decode the desired subfiles
from X3. We can see here that with X3 we are able serve the clique composed
by user 1, user 4, user 3 and user 6, by carefully “passing” some undesired
(and not cached) information to the last two users. A similar reasoning applies
to the XORs X6 and X9, both of which are useful to 4 users simultaneously.

The communication load is equal to R(3) = |X|/B = 9/10 and it matches
the converse RLB(3) = 9/10. Hence, the converse here is tight.

21We recall that we use “deliver” in quotes when referring to undesired subfiles because
users do not actually decode undesired subfiles, but rather they take linear combinations
of the multicast messages to cancel out interference terms.

Chapter 3

Coded Caching With Tactical
User Profiles

In this chapter, we first propose an extremely broad system model for the
user profiles, where such model follows the combinatorial structure of the
so-called tactical configurations, a symmetric and balanced block design in
combinatorial mathematics. Then, we characterize the fundamental limits of
coded caching under uncoded prefetching for the proposed broad structure of
user interests. The interesting outcome of the results presented in this chapter
is that, despite the diverging interests of the users, the MAN coded scheme is
still order optimal within a constant factor of 4. This result is significant not
only because it holds for a really generic structure of user profiles — indeed,
the proposed tactical configurations include some other well-known structures

— but also because it shows, further again, the power of the combinatorial MAN
coded caching scheme under a well-defined system model for the user profiles.

3.1 System Model

We consider the centralized caching scenario, where a central server is
connected to K users through an error-free broadcast channel and each

user is equipped with a cache of size MB bits. Further, the server has access
to a main catalogue of N files of B bits each.

3.1.1 Description of the System Model
We proceed now with the description of the structure for the user interests
that will be studied in this chapter. First, we assume that N ≥ K. Further,
we assume that the N files in the system are split in G groups containing

61

62 3.1. System Model

N/G files each, where we naturally assume that G | N . This implies that the
library can be partitioned as

{W1, . . . ,WN} = {WK1 , . . . ,WKG
} (3.1)

where Kg ⊆ [K] is the subset of users which are interested in the set of
files given by WKg for some g ∈ [G]. Then, we assume that each user is
interested into G′ distinct groups of files, whereas each file is of interest to
exactly K ′ users, namely, we assume that |{g : g ∈ [G], k ∈ Kg}| = G′ for each
k ∈ [K] and that |Kg| = K ′ for each g ∈ [G]. This implies that the equation
GK ′ = KG′ holds, where it is assumed that G,G′, K ′, K ∈ N+. Further, the
above implies that the FDS Fk of user k ∈ [K] is given by

Fk = {WKg : g ∈ [G], k ∈ Kg}. (3.2)

Notice that, since each user is interested into G′ distinct groups of N/G files
and each file is of interest to exactly K ′ users, also the equation KN ′ = NK ′

holds where N ′ = G′N/G. Hence, we have

K ′

K
= N ′

N
= G′

G
. (3.3)

Remark 3.1. The aforementioned structure for the interests of the users
corresponds to a configuration in geometry or to a t-design with t = 1 in
combinatorial mathematics1. Hence, we will refer in the following to such
FDS structure as tactical configuration with parameters (K,G,G′, N), where
K ′ = KG′/G. More in general, we will refer to such problem as coded caching
with tactical user profiles with parameters (K,G,G′, N). Finally, we trivially
have G′ ∈ [G] and K ′ ∈ [K].

In the following, we provide two clarifying examples that can help famil-
iarize the reader with the system model introduced above. Interestingly, the
examples will show how some other well-studied combinatorial structures can
be seen as tactical configurations.

Example 3.1. Consider the symmetric (K,α, F) FDS structure that we
analyzed in Chapter 2. For such structure, the library consists of a total
of C =

(︂
K
α

)︂
classes of files and N = FC = F

(︂
K
α

)︂
files in total. Each

file is of interest to α users and each user is interested into F
(︂

K−1
α−1

)︂
files.

This structure can be seen as a tactical configuration with parameters(︂
K,G =

(︂
K
α

)︂
, G′ =

(︂
K−1
α−1

)︂
, N = F

(︂
K
α

)︂)︂
, where K ′ = K

(︂
K−1
α−1

)︂
/
(︂

K
α

)︂
= α.

1Notice that any t-design with t ≥ 2 is also a 1-design. Hence, we are considering here
all symmetric FDS structures induced by t-designs. Please, also notice that the t variable
for t-designs does not coincide with the normalized cumulative cache size t = KM/N used
in the caching literature.

Chapter 3. Coded Caching With Tactical User Profiles 63

Example 3.2. Consider the setting where we have K users and G = K
groups of files. Then, assume that the library of N files is partitioned as

{W1, . . . ,WN} = {WK1 , . . . ,WKK
} (3.4)

where Kg = [g : g+K ′−1]K for each g ∈ [K] and for someK ′ ∈ [K−1]. We can
see that there are G = K groups of files, each file is of interest to K ′ users and
each user is interested into G′ = K ′ groups of files. This structure corresponds
to a tactical configuration with parameters (K,G = K,G′ = K ′, N), where
K ′ = KG′/G = G′.
Remark 3.2. We wish to point out that the aforementioned system model
based on tactical configurations is rather broad. Indeed, it encompasses both
the symmetric FDS structure already analyzed in Chapter 2, as well as other
structures commonly employed in the literature, as the cyclic structure in
Example 3.2.

Deviating from standard notation practices, we will use in this chapter
Wdk

to denote the file requested by user k ∈ [K]. Clearly, any user k ∈ [K]
will request a file Wdk

as long as Wdk
∈ Fk. In addition, we denote by D the

set of demand vectors with distinct requested files, i.e., Wdk1
̸= Wdk2

for each
k1, k2 ∈ [K] with k1 ̸= k2.

Denoting by X the set of caching schemes with uncoded placement, the
server transmits during the delivery phase a message X of R(d, χ,M)B bits
for a given demand d ∈ D, a given uncoded cache placement χ ∈ X and
some given memory M . Our goal is to characterize the optimal worst-case
communication load under uncoded cache placement, namely, we aim to
characterize the quantity given by

R⋆
u(M) = min

χ∈X
max
d∈D

R(d, χ,M). (3.5)

In the following, the dependency on M will be often implied for the sake of
simplicity.

3.1.2 A Genie-Aided Converse Bound
We will provide our converse bound on the optimal worst-case load under
uncoded prefetching using the genie-aided approach in [4]. Consider a demand
vector d ∈ D and let u = (u1, . . . , uK) ∈ SK be a permutation of the set
[K]. Denoting by Zk the cache content of user k ∈ [K], we can construct a
genie-aided user with the following cache content

Z ′ =
⎛⎝Zuk

\

⎛⎝ ⋃︂
i∈[k−1]

Zui
∪Wdui

⎞⎠ : k ∈ [K]
⎞⎠ (3.6)

64 3.2. Main Results

which is enough for such genie-aided user to inductively decode all the
requested files from (X,Z ′). Consequently, the following

R(d, χ)B ≥ H(X) (3.7)
≥ H(X | Z ′) (3.8)

≥ I
(︃{︂
Wduk

}︂
k∈[K]

;X | Z ′
)︃

(3.9)

= H
(︃{︂
Wduk

}︂
k∈[K]

| Z ′
)︃

(3.10)

=
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓
Wduk

,T

⃓⃓⃓
(3.11)

holds, which means that we have the following lower bound

R(d, χ) ≥
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓
Wduk

,T

⃓⃓⃓
B

(3.12)

on the communication load for a given2 d ∈ D and χ ∈ X . Since it will be of
use later, we define the following

RLB(d,u, χ) :=
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓
Wduk

,T

⃓⃓⃓
B

. (3.13)

For the sake of completeness, notice that the bound in (3.12) can be
equivalently obtained following the index coding approach in [3], already
largely employed in Chapter 2.

3.2 Main Results
In this section, we present the main results obtained for coded caching with
tactical user profiles. The first result is an achievable bound, which is described
in the following theorem.

Theorem 3.1 (Achievable Bound). Consider the coded caching problem with
tactical user profiles with parameters (K,G,G′, N). Then, the optimal worst-
case load R⋆

u is upper bounded by the lower convex envelope of the following
memory-load corner points

(M,RUB) =
(︃
t
N

K
, g(t)

)︃
, ∀t ∈ [0 : K ′] (3.14)

2We recall that the dependency on M is implied for the sake of simplicity.

Chapter 3. Coded Caching With Tactical User Profiles 65

where g(t) is defined as

g(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(︂
K

t+1

)︂
(︂

K
t

)︂ , if t ∈ [0 : t̄]
(︂

K
t̄+1

)︂
(︂

K
t̄

)︂ K ′ − t

K ′ − t̄
, if t ∈ [t̄+ 1 : K ′]

(3.15)

and t̄ := ⌊K ′/2⌋.

Proof. When t ≤ t̄, the achievable load is obtained by simply applying the
MAN placement-and-delivery scheme. Instead, when t > t̄, the achievable load
is obtained by means of memory sharing between the point (t̄, g(t̄)) and the
point (K ′N/K, 0). Indeed, when t = K ′, we have thatM = K ′N/K = G′N/G
recalling that GK ′ = KG′. Hence, further recalling that each user is interested
into G′ groups of files containing N/G files each, the memory-load point
(G′N/G, 0) is trivially achievable, as each user has enough memory to store
the entirety of their FDS. The proof is concluded.

The second result is a lower bound on the optimal worst-case load under
uncoded prefetching. The result is presented in the following theorem, whose
proof is presented in Section 3.3.1.

Theorem 3.2 (Converse Bound). Consider the coded caching problem with
tactical user profiles with parameters (K,G,G′, N). Then, the optimal worst-
case load R⋆

u is lower bounded by the lower convex envelope of the following
memory-load corner points

(M,RLB) =
⎛⎝tN
K
,
G

G′

(︂
K′

t+1

)︂
(︂

K′

t

)︂
⎞⎠ , ∀t ∈ [0 : K ′]. (3.16)

If compare the results in Theorem 3.1 and in Theorem 3.2, we obtain the
order optimality result in the following theorem, whose proof is presented in
Section 3.3.2.

Theorem 3.3 (Order Optimality). The achievable worst-case load in Theo-
rem 3.1 is order optimal within a constant multiplicative factor of 4 under
uncoded prefetching.

Finally, we can provide the following corollary for the case G′ = 1, which
implies each user to be interested in only one groups of files.

Corollary 3.3.1. When G′ = 1, a disjoint MAN placement-and-delivery
scheme is exactly optimal under uncoded prefetching.

66 3.3. Collection of Proofs

Proof. Recalling that the library can be partitioned as

{W1, . . . ,WN} = {WK1 , . . . ,WKG
} (3.17)

the condition G′ = 1 implies that Kg1 ∩ Kg2 = ∅ for each g1, g2 ∈ [G] with
g1 ̸= g2. Hence, we can treat each group of N ′ files and the associated K ′

users as an independent coded caching problem, for a total of G disjoint MAN
caching problems with memory M = tN ′/K ′ = tN/K. As a consequence, we
can guarantee an achievable load RUB given by the lower convex envelope of
the memory-load points

(M,RUB) =
⎛⎝tN
K
,G

(︂
K′

t+1

)︂
(︂

K′

t

)︂
⎞⎠ , ∀t ∈ [0 : K ′] (3.18)

which coincides with the result in Theorem 3.2 when G′ = 1. The proof is
concluded.

3.3 Collection of Proofs

3.3.1 Proof of Theorem 3.2
We recall that our goal is to lower bound the quantity

R⋆
u = min

χ∈X
max
d∈D

R(d, χ). (3.19)

where again the dependency on M is implied to simplify the notation. We
will use the following lemma to proceed.

Lemma 3.1. Consider the coded caching problem with tactical user profiles
with parameters (K,G,G′, N). There exists a subset of N ′ demands DN ′ ⊂ D
such that each user k ∈ [K] requests each file Wn ∈ Fk in their FDS exactly
once within the set DN ′.

Proof. The problem of coded caching with tactical user profiles can be repre-
sented as a bipartite graph G = (U ,V , E), where U = [K] is the set of users,
V = [N] is the set of file indices, and E = {(k, n) : k ∈ [K], n ∈ [N],Wn ∈ Fk}
is the set of edges. As we are considering a tactical configuration for the
user profiles, we have that the degree of each vertex k ∈ [K] is equal to N ′,
whereas the degree of each vertex n ∈ [N] is equal to K ′. Since we know
that N/N ′ = K/K ′ and we further assumed that N ≥ K, we know that the
largest vertex degree is equal to N ′ ≥ K ′.

Chapter 3. Coded Caching With Tactical User Profiles 67

Now, we want to prove that there exists a subset DN ′ ⊂ D of N ′ demands
such that any user k ∈ [K] requests each file in Fk exactly once. This is
equivalent to prove that the chromatic index of the bipartite graph G =
(U ,V , E) is equal to N ′, namely, we wish to prove that there exists a proper
edge coloring with N ′ colors C = {c1, . . . , cN ′}. Indeed, if such edge coloring
exists, then for each color c ∈ C we can construct the demand vector dc =
(dc

1, . . . , d
c
K), where for each k ∈ [K] we have dc

k ∈ [N] such that the edge
(k, dc

k) ∈ E is colored by c. Notice that, since we are considering an edge
coloring with N ′ colors, then for each k ∈ [K] we have dc1

k ̸= dc2
k for any

c1, c2 ∈ C with c1 ̸= c2; also, for each c ∈ C we have dc
k1 ≠ dc

k2 for any k1, k2 ∈
[K] with k1 ̸= k2. Hence, if we collect all such vectors in DN ′ = {dc : c ∈ C},
such construction guarantees that for each user k ∈ [K] we have exactly one
demand in DN ′ for which user k requests any one specific file in Fk.

Thanks to König’s theorem [64, Theorem 5.18], we know that the chromatic
index of any bipartite graph is equal to its largest vertex degree, and since
the largest vertex degree is equal to N ′ in our case, then there exists a proper
edge coloring of G with N ′ colors. Hence, we can construct a proper subset
DN ′ ⊂ D of N ′ demands — as we described above — such that any user
k ∈ [K] requests each file in Fk exactly once. This concludes the proof.

By means of Lemma 3.1, we proceed to lower bound the optimal worst-case
load as follows

R⋆
u = min

χ∈X
max
d∈D

R(d, χ) (3.20)

≥ min
χ∈X

max
d∈DN′

R(d, χ) (3.21)

≥ min
χ∈X

1
|DN ′|

∑︂
d∈DN′

R(d, χ) (3.22)

= min
χ∈X

1
N ′

∑︂
d∈DN′

R(d, χ) (3.23)

where (3.21) holds because DN ′ ⊂ D and (3.22) follows from the fact that
the maximum can be lower bounded by the average.

The Combinatorial Counting Argument

Now, as we observed in Section 3.1.2, the communication load can be lower
bounded, for a given demand d and a given caching scheme χ, as in (3.12).
Hence, if we construct the inequality in (3.12) for each demand d ∈ DN ′ and
for each permutation of users u ∈ SK , and then we sum together all such

68 3.3. Collection of Proofs

inequalities, we obtain

K!
∑︂

d∈DN′

R(d, χ) ≥
∑︂

(d,u)∈(DN′ ,SK)
RLB(d,u, χ) (3.24)

which can be further rewritten as
1
N ′

∑︂
d∈DN′

R(d, χ) ≥ 1
K!N ′

∑︂
(d,u)∈(DN′ ,SK)

RLB(d,u, χ). (3.25)

Now, towards simplifying the expression in (3.25), we proceed by counting
how many times each subfile Wn,T — for any given n ∈ [N] and T ⊆ [K] —
appears in the RHS of (3.25).

First, we focus on the subfile Wn,Ti
for a given n ∈ [N] and Ti ⊆ [K] with

|Ti| = t′ for some t′ ∈ [0 : K], where i denotes the number of users having Wn

in their FDS and appearing in the set Ti, namely, i = |{k : k ∈ Ti,Wn ∈ Fk}|.
Then, recalling that each file is of interest to K ′ users in our coded caching
problem with tactical user profiles, we let k be one of the (K ′ − i) users that
do not appear in Ti. From Lemma 3.1, we know that there exists exactly
one demand in DN ′ for which user k requests the file Wn. In addition, for
such demand all permutations u ∈ SK are considered. Nevertheless, we can
notice from the construction of (3.12) that the subfile Wn,Ti

appears in the
RHS of (3.25) only when k is located before the elements from Ti in the
permutation vector u. Since there is a total of (K − 1 − t′)!t′!

(︂
K

t′+1

)︂
such

vectors, the subfile Wn,Ti
appears (K − 1 − t′)!t′!

(︂
K

t′+1

)︂
times in the RHS

of (3.25) when we consider the demand for which the file Wn is requested
by such user k. The same reasoning holds for any of the (K ′ − i) users not
appearing in Ti, so the subfile Wn,Ti

appears (K ′ − i)(K − 1 − t′)!t′!
(︂

K
t′+1

)︂
in

the RHS of (3.25). In addition, since this reasoning holds for each n ∈ [N]
and Ti ⊆ [K] where i ∈ [max(0, |Ti| −K +K ′),min(|Ti|, K ′)], we can rewrite
the RHS of (3.25) as

N

K!N ′

∑︂
t′∈[0:K]

min(t′,K′)∑︂
i=max(0,t′−K+K′)

(K ′ − i)(K − 1 − t′)!t′!
(︄

K

t′ + 1

)︄
xt′,i (3.26)

=G

G′

∑︂
t′∈[0:K]

min(t′,K′)∑︂
i=max(0,t′−K+K′)

K ′ − i

t′ + 1 xt′,i (3.27)

where xt′,i is defined as

0 ≤ xt′,i :=
∑︂

n∈[N]

∑︂
Ti⊆[K]:|Ti|=t′,

|{k:k∈Ti,Wn∈Fk}|=i

|Wn,Ti
|

BN
. (3.28)

Chapter 3. Coded Caching With Tactical User Profiles 69

We can further lower bound the RHS of (3.25) as follows

G

G′

∑︂
t′∈[0:K]

min(t′,K′)∑︂
i=max(0,t′−K+K′)

K ′ − i

t′ + 1 xt′,i (3.29)

≥G

G′

∑︂
t′∈[0:K]

min(t′,K′)∑︂
i=max(0,t′−K+K′)

K ′ − min(t′, K ′)
t′ + 1 xt′,i (3.30)

=G

G′

∑︂
t′∈[0:K]

K ′ − min(t′, K ′)
t′ + 1

min(t′,K′)∑︂
i=max(0,t′−K+K′)

xt′,i (3.31)

=G

G′

∑︂
t′∈[0:K]

(︂
K′

t′+1

)︂
(︂

K′

t′

)︂ xt′ (3.32)

where xt′ is defined as

0 ≤ xt′ :=
min(t′,K′)∑︂

i=max(0,t′−K+K′)
xt′,i. (3.33)

Towards the Final Lower Bound

After the passages above, we can further lower bound the optimal worst-case
load as

R⋆
u ≥ min

χ∈X

1
N ′

∑︂
d∈DN′

R(d, χ) (3.34)

≥ min
χ∈X

∑︂
t′∈[0:K]

f(t′)xt′ (3.35)

where f(t′) is defined as

f(t′) := G

G′

(︂
K′

t′+1

)︂
(︂

K′

t′

)︂ . (3.36)

Moreover, for any uncoded cache placement χ ∈ X , the following∑︂
t′∈[0:K]

xt′ = 1 (3.37)

∑︂
t′∈[0:K]

t′xt′ ≤ KM

N
(3.38)

holds. This means that we can consider x = (x0, . . . , xK) as a probability
mass function with constraint in (3.38) on the first moment, where such

70 3.3. Collection of Proofs

constraint simply represents the maximum memory that is available across
the caches of all users. In light of the above, we can write

R⋆
u ≥ min

χ∈X

∑︂
t′∈[0:K]

f(t′)xt′ (3.39)

= min
x

Ex [f(t′)] (3.40)

≥ min
x
f(Ex[t′]) (3.41)

≥ min
x
f(KM/N) (3.42)

= f(t) (3.43)

where t = KM/N . Notice that, since f(t′) is convex and decreasing in t′, we
have (3.41) and (3.42) from Jensen’s inequality and the constraint on the first
moment, respectively.

Now, when t is an integer, the bound is simply the function f(t) evaluated3

at t ∈ [0 : K ′]. For non-integer values of t, we can follow again the reasoning
in [4], [39], [52] to take the lower convex envelope of the sequence of points
{(t, f(t)) : t ∈ [0 : K ′]}. To conclude, the optimal worst-case load R⋆

u is lower
bounded by the lower convex envelope of the following memory-load corner
points

(M,RLB) =
⎛⎝tN
K
,
G

G′

(︂
K′

t+1

)︂
(︂

K′

t

)︂
⎞⎠ , ∀t ∈ [0 : K ′]. (3.44)

The proof is complete.

3.3.2 Proof of Theorem 3.3
Consider the range t ∈ [0 : t̄]. Then, from Theorem 3.1 and Theorem 3.2 it
holds that

RUB

R⋆
u

≤ RUB

RLB
(3.45)

=

(︂
K

t+1

)︂
(︂

K
t

)︂
(︂

K′

t

)︂
(︂

K′

t+1

)︂G′

G
(3.46)

= K − t

K ′ − t

G′

G
(3.47)

≤ G′

G

K − t̄

K ′ − t̄
(3.48)

3Notice that f(t) = 0 whenever t ≥ K ′.

Chapter 3. Coded Caching With Tactical User Profiles 71

where the last inequality holds since the term (K − t)/(K ′ − t) is increasing4

with increasing t. Now, consider the range t ∈ [t̄+ 1 : K ′]. Then, it holds that

RUB

R⋆
u

≤ RUB

RLB
(3.49)

=

(︂
K

t̄+1

)︂
(︂

K
t̄

)︂ K ′ − t

K ′ − t̄

(︂
K′

t

)︂
(︂

K′

t+1

)︂G′

G
(3.50)

= G′

G

(K − t̄)(1 + t)
(1 + t̄)(K ′ − t̄) (3.51)

= G′

G

(K − t̄)(1 +K ′)
(1 + t̄)(K ′ − t̄) (3.52)

where the last inequality holds since also the term (1 + t) is increasing with
increasing t. Now, considering that

G′

G

K − t̄

K ′ − t̄
≤ G′

G

(K − t̄)(1 +K ′)
(1 + t̄)(K ′ − t̄) (3.53)

we can conclude that over the entire range t ∈ [0 : K ′] it holds that

RUB

R⋆
u

≤ G′

G

(K − t̄)(1 +K ′)
(1 + t̄)(K ′ − t̄) . (3.54)

If K ′ is even, we have t̄ = K ′/2, and so we can see that

RUB

R⋆
u

≤ G′

G

(K − t̄)(1 +K ′)
(1 + t̄)(K ′ − t̄) (3.55)

≤ G′K

G

1 +K ′

(1 +K ′/2)K ′/2 (3.56)

= 4G
′K

G

1 +K ′

(2 +K ′)K ′ (3.57)

≤ 4G
′K

GK ′ (3.58)

= 4. (3.59)

If K ′ is odd, we have t̄ = K ′/2 − 1/2, and so we can see that

RUB

R⋆
u

≤ G′

G

(K − t̄)(1 +K ′)
(1 + t̄)(K ′ − t̄) (3.60)

4This can be easily checked by showing that the first derivative is non-negative.

72 3.3. Collection of Proofs

≤ G′K

G

1 +K ′

(1/2 +K ′/2)K ′/2 (3.61)

= 4G
′K

GK ′ (3.62)

= 4. (3.63)

We can then conclude that RUB/R
⋆
u ≤ 4 for all t ∈ [0 : K ′]. This concludes

the proof.

Chapter 4

A Converse for Caching With
Heterogeneous Preferences

In this chapter, we consider the coded caching scenario heterogeneous user
profiles originally proposed in [32], for which the end-receiving users are
divided into groups according to their file preferences. Taking advantage of
the genie-aided converse bound idea from [4], we develop a novel information-
theoretic converse on the worst-case communication load under uncoded cache
placement. Interestingly, the developed converse bound, jointly with one of
the coded schemes proposed in [32], allows us to characterize the optimal
worst-case communication load under uncoded prefetching within a constant
multiplicative gap of 2. Although we restrict the caching policy to be uncoded,
this result improves the previously known order optimality results for the
considered caching problem.

4.1 System Model and Related Results

We always consider the coded caching setting where there is a single
server connected to K users through an error-free broadcast channel.

The server has access to a central library that contains N files of B bits each
and each user in the system is equipped with a cache of size MB bits.

4.1.1 Description of the System Model
According to the system model in [32], the K users are split in G groups, where
each group consists of K/G users sharing the same interests. Furthermore,
the files in the library are divided in two categories, i.e., common files and
unique files.

73

74 4.1. System Model and Related Results

• There are Nc common files {W c
n : n ∈ [Nc]}, where each of them is of

interest to every user in the system.

• Then, for each group g ∈ [G], there are Nu unique files {W u,g
n : n ∈ [Nu]},

where each of them is of interest to the users belonging to the group
g ∈ [G] only.

Assuming that {W c
n : n ∈ [Nc]} ∩ {W u,g

n : n ∈ [Nu]} = ∅ for each g ∈ [G], and
that {W u,g1

n : n ∈ [Nu]} ∩ {W u,g2
n : n ∈ [Nu]} = ∅ for each g1, g2 ∈ [G] with

g1 ̸= g2, we have N = Nc +GNu files in total.
Deviating from standard notation practices, we will use in this chapter

W
fk,g(k)
dk

to denote the file requested by user k ∈ [K], where fk ∈ {c, u},
dk ∈ [Nfk

] and g(k) is an abuse of notation to denote the group which user
k belongs to, i.e., g(k) ∈ [G] for each k ∈ [K]. We further assume that
W

c,g(k)
dk

= W c
dk

, since common files do not depend on the group g ∈ [G]. In
addition, we let d = ((d1, f1), . . . , (dK , fK)) be the demand vector and we
denote by D the set of all possible demand vectors with distinct requested
files, i.e., W fk1 ,g(k1)

dk1
̸= W

fk2 ,g(k2)
dk2

for each k1, k2 ∈ [K] with k1 ̸= k2. Finally,
we assume Nc ≥ K and Nu ≥ K/G.

Denoting by X the set of caching schemes with uncoded placement, the
server transmits during the delivery phase a message X of R(d, χ,M)B bits
for a given demand d ∈ D, a given uncoded cache placement χ ∈ X and
some given memory M . Our goal is to characterize the optimal worst-case
communication load under uncoded cache placement, namely, we aim to
characterize the quantity given by

R⋆
u(M) = min

χ∈X
max
d∈D

R(d, χ,M). (4.1)

In the following, the dependency on M will be implied for the sake of simplicity.

4.1.2 An Existing Achievable Scheme
The authors in [32] proposed for the aforementioned setting a coded scheme
— referred to as Scheme 2 in [32] — which treats separately the caching and
the delivery of common and unique files.

Placement phase First, the cache of each user is split in two parts for
some 0 ≤ β ≤ 1, so that βM is the part of cache that is devoted to store
common files and (1 − β)M is the part of cache that is devoted to store
unique files. Then, common files {W c

n : n ∈ [Nc]} are stored across the K
users using the MAN cache placement with memory βM . Similarly, unique
files {W u,g

n : n ∈ [Nu]} are stored across the K/G users in group g ∈ [G] using
the MAN algorithm with memory (1 − β)M .

Chapter 4. A Converse for Caching With Heterogeneous Preferences 75

Delivery phase It was shown in [32] that, when there are α users per group
requesting unique files, the optimal worst-case load can be upper bounded as

R⋆
u ≤ min

β
max

α
R(β, α) (4.2)

where R(β, α) is defined as

R(β, α) :=

(︂
K

tc+1

)︂
−
(︂

Gα
tc+1

)︂
(︂

K
tc

)︂ +G

(︂
K/G
tu+1

)︂
−
(︂

K/G−α
tu+1

)︂
(︂

K/G
tu

)︂ (4.3)

with tc := KβM/Nc and tu := K(1 − β)M/GNu.

Since the works in [32], [34] treated the variables K, G, Nc, Nu and
t = KM/N as continuous1, we do the same here for the sake of simplicity.
Further, we extend the Scheme 2 in [32] to the entire memory regime 0 ≤
M ≤ Nc +Nu, using the Gamma function whenever the binomial coefficients
in (4.3) have non-integer arguments.

4.1.3 A Genie-Aided Converse Bound
Similarly to what we did in Chapter 3, we will provide our converse bound on
the optimal worst-case load under uncoded prefetching using the genie-aided
approach in [4]. Consider a demand vector d ∈ D and let u = (u1, . . . , uK) ∈
SK be a permutation of the set [K]. Denoting by Zk the cache content of user
k ∈ [K], we can construct a genie-aided user with the following cache content

Z ′ =
⎛⎝Zuk

\

⎛⎝ ⋃︂
i∈[k−1]

Zui
∪W

fui ,g(ui)
dui

⎞⎠ : k ∈ [K]
⎞⎠ (4.4)

which is enough for such genie-aided user to inductively decode all the
requested files from (X,Z ′). Consequently, the following

R(d, χ)B ≥ H(X) (4.5)
≥ H(X | Z ′) (4.6)

≥ I

(︄{︃
W

fuk
,g(uk)

duk

}︃
k∈[K]

;X | Z ′
)︄

(4.7)

= H

(︄{︃
W

fuk
,g(uk)

duk

}︃
k∈[K]

| Z ′
)︄

(4.8)

1Indeed, if the quantities K, G, Nc and Nu are large enough, the rounding errors due
to integer effects during calculations can be neglected.

76 4.2. Main Results

=
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓⃓
W

fuk
,g(uk)

duk
,T

⃓⃓⃓⃓
(4.9)

holds, which means that we have the following lower bound

R(d, χ) ≥
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓⃓
W

fuk
,g(uk)

duk
,T

⃓⃓⃓⃓
B

(4.10)

on the communication load for a given2 d ∈ D and χ ∈ X . Since it will be of
use later, we define the following

RLB(d,u, χ) :=
∑︂

k∈[K]

∑︂
T ∈([K]\{u1,...,uk})

⃓⃓⃓⃓
W

fuk
,g(uk)

duk
,T

⃓⃓⃓⃓
B

. (4.11)

Once again, for the sake of completeness, notice that the bound in (4.10)
can be equivalently obtained following the index coding approach in [3],
already largely employed in Chapter 2.

4.2 Main Results
The first result provides a converse bound on the optimal worst-case load
under uncoded prefetching. The proof is presented in Section 4.3.1.

Theorem 4.1. For the coded caching problem with heterogeneous user profiles
presented in Section 4.1, the optimal worst-case load under uncoded cache
placement is lower bounded as

R⋆
u ≥ min

β

1
2

⎛⎝
(︂

K
tc+1

)︂
(︂

K
tc

)︂ +G

(︂
K/G
tu+1

)︂
(︂

K/G
tu

)︂
⎞⎠ (4.12)

where tc = KβM/Nc and tu = K(1 − β)M/GNu.

If we compare the achievable performance in (4.2) with the converse in
Theorem 4.1, we can provide the following optimality result, whose proof is
described in Section 4.3.2.

Theorem 4.2. The achievable load in (4.2) is order optimal within a multi-
plicative factor of 2.

2We recall that the dependency on M is implied for the sake of simplicity.

Chapter 4. A Converse for Caching With Heterogeneous Preferences 77

Remark 4.1. The result in Theorem 4.2 improves the previously known order
optimality results presented in [34]. Indeed, even though the work in [34]
provided a converse bound without constraining the placement to be uncoded,
the smallest gap to optimality therein was a constant factor 8 for the limited
memory regime N/K ≤ M ≤ N/2G. Moreover, the achievable performance
in (4.2) was shown to be within a multiplicative factor of 8 + 8K/G from
optimal for the memory regime G(Nc +Nu)/K ≤ M ≤ N/2G. Here, although
our converse holds under the assumption of uncoded placement, we provide a
gap to optimality which is a constant multiplicative factor of 2 for the entire3

memory regime 0 ≤ M ≤ Nc +Nu.

4.3 Collection of Proofs
In this section, we provide the proof for both Theorem 4.1 and Theorem 4.2.
For the former, we recall that our goal is to lower bound the quantity

R⋆
u = min

χ∈X
max
d∈D

R(d, χ). (4.13)

where again the dependency on M is implied to simplify the notation.

4.3.1 Proof of Theorem 4.1
Denote by Dc the subset of D that contains all demands for which users make
requests only from common files, which implies d = ((d1, c), . . . , (dK , c)) for
each d ∈ Dc. Similarly, denote by Du the subset of D for which users make
requests only from unique files, which implies d = ((d1, u), . . . , (dK , u)) for
each d ∈ Du. One can see that |Dc| =

(︂
Nc
K

)︂
K! and |Du| =

(︂(︂
Nu

K/G

)︂
(K/G)!

)︂G
.

Then, we proceed to lower bound the optimal worst-case load as follows

R⋆
u = min

χ∈X
max
d∈D

R(d, χ) (4.14)

≥ min
χ∈X

max
(︃

max
d∈Dc

R(d, χ),max
d∈Du

R(d, χ)
)︃

(4.15)

≥ min
χ∈X

1
2

(︃
max
d∈Dc

R(d, χ) + max
d∈Du

R(d, χ)
)︃

(4.16)

≥ min
χ∈X

1
2

⎛⎝ 1
|Dc|

∑︂
d∈Dc

R(d, χ) + 1
|Du|

∑︂
d∈Du

R(d, χ)
⎞⎠ (4.17)

3The bound in Theorem 4.1 becomes 0 only when it holds tc = K and tu = K/G
simultaneously. This happens when β = Nc/M and (1 − β) = Nu/M , which implies
0 ≤ M ≤ Nc + Nu. In addition, we recall that the Scheme 2 in [32] is extended to the
entire memory regime 0 ≤ M ≤ Nc + Nu.

78 4.3. Collection of Proofs

= min
χ∈X

1
2 (Rc(χ) +Ru(χ)) (4.18)

where Rc(χ) and Ru(χ) are defined as

Rc(χ) := 1
|Dc|

∑︂
d∈Dc

R(d, χ) (4.19)

Ru(χ) := 1
|Du|

∑︂
d∈Du

R(d, χ). (4.20)

Notice that (4.15) holds because (Dc∪Du) ⊂ D, whereas both (4.16) and (4.17)
follow from the fact that the maximum can be lower bounded by the average.

We proceed now to lower bound separately Rc(χ) and Ru(χ) by means of
the genie-aided approach in Section 4.1.3.

Lower Bounding Rc(χ)

As we observed in Section 4.1.3, the communication load can be lower bounded,
for a given demand d and a given caching scheme χ, as in (4.10). Hence, if
we construct the inequality in (4.10) for each demand d ∈ Dc and for each
permutation of users u ∈ SK , and then we sum together all such inequalities,
we obtain

K!
∑︂

d∈Dc

R(d, χ) ≥
∑︂

(d,u)∈(Dc,SK)
RLB(d,u, χ) (4.21)

which can be further rewritten as

Rc(χ) ≥ 1
K!|Dc|

∑︂
(d,u)∈(Dc,SK)

RLB(d,u, χ) (4.22)

recalling that d = ((d1, c), . . . , (dK , c)) for each d ∈ Dc and that W c,g
n = W c

n

for each n ∈ [Nc] and for each g ∈ [G]. Now, towards simplifying the
expression in (4.22), we proceed by counting how many times each subfile
W c

n,T — for any given n ∈ [Nc] and T ⊆ [K] — appears in the RHS of (4.22).
First, we focus on the subfile W c

n,T for some n ∈ [Nc] and T ⊆ [K]
such that |T | = t′ with t′ ∈ [0 : K]. Next, we denote by Dc,n,k the subset
of demands in Dc for which the file W c

n is requested by some specific user
k ∈ ([K] \ T). We can see that |Dc,n,k| =

(︂
Nc
K

)︂
K!/Nc = |Dc|/Nc. Then,

we observe that, for each d ∈ Dc,n,k, all permutations of users u ∈ SK are
considered. Nevertheless, we can notice from the construction of (4.10) that,
for each d ∈ Dc,n,k, the subfile W c

n,T appears in the RHS of (4.22) only for
those permutations of users where k appears before the elements from the set
T in the permutation vector u. Since there is a total of (K − 1 − t′)!t′!

(︂
K

t′+1

)︂

Chapter 4. A Converse for Caching With Heterogeneous Preferences 79

such vectors, we can conclude that the subfile W c
n,T appears in the RHS

of (4.22) a total of |Dc|(K − 1 − t′)!t′!
(︂

K
t′+1

)︂
/Nc times when we consider the

demands in Dc,n,k only. Then, since the reasoning above holds for each user
k ∈ ([K] \ T), we can conclude that the subfile W c

n,T appears in the RHS
of (4.22) a total of |Dc|(K − t′)!t′!

(︂
K

t′+1

)︂
/Nc times. Moreover, we considered a

generic subfile W c
n,T , so the above holds for any n ∈ [Nc] and for any T ⊆ [K].

Therefore, we can rewrite the RHS of (4.22) as

1
K!|Dc|

∑︂
t′∈[0:K]

|Dc|(K − t′)!t′!
(︄

K

t′ + 1

)︄
xc

t′ (4.23)

where xc
t′ is defined as

0 ≤ xc
t′ :=

∑︂
n∈[Nc]

∑︂
T ⊆[K]:|T |=t′

⃓⃓⃓
W c

n,T

⃓⃓⃓
BNc

. (4.24)

After some algebraic manipulations, we can rewrite (4.22) as

Rc(χ) ≥
∑︂

t′∈[0:K]
fc(t′)xc

t′ (4.25)

where fc(t′) is defined as

fc(t′) :=

(︂
K

t′+1

)︂
(︂

K
t′

)︂ . (4.26)

Lower Bounding Ru(χ)

Applying as before the genie-aided approach from Section 4.1.3, we obtain
the following inequality

Ru(χ) ≥ 1
K!|Du|

∑︂
(d,u)∈(Du,SK)

RLB(d,u, χ) (4.27)

recalling that now d = ((d1, u), . . . , (dK , u)) for each d ∈ Du. Once again,
towards simplifying the expression in (4.27), we proceed by counting how
many times each subfile W u,g

n,T — for any given n ∈ [Nu], g ∈ [G] and T ⊆ [K]
— appears in the RHS of (4.27).

First, we focus on the subfile W u,g
n,Ti

for a given g ∈ [G], n ∈ [Nu] and
Ti ⊆ [K] with |Ti| = t′ for some t′ ∈ [0 : K], where i denotes the number
of users from group g that appear in the set Ti, namely, i = |{k ∈ Ti :
g(k) = g}|. Then, we let k be one of the (K/G − i) users from group

80 4.3. Collection of Proofs

g that do not appear in Ti and we further assume that the file W u,g
n is

requested by such user k. If we denote by Dg
u,n,k the subset of demands

in Du for which the file W u,g
n is requested by this user k, we can see that

|Dg
u,n,k| =

(︂(︂
Nu

K/G

)︂
(K/G)!

)︂G
/Nu = |Du|/Nu. In addition, for each d ∈ Dg

u,n,k,
all permutations u ∈ SK are considered. Nevertheless, as already observed,
the subfile W u,g

n,Ti
appears in the RHS of (4.27), for each d ∈ Dg

u,n,k, only
when k is located before the elements from Ti in the permutation vector u.
Since there is a total of (K − 1 − t′)!t′!

(︂
K

t′+1

)︂
such vectors, the subfile W u,g

n,Ti

appears |Du|(K − 1 − t′)!t′!
(︂

K
t′+1

)︂
/Nu times in the RHS of (4.27) when only

the demands Dg
u,n,k are considered. The same reasoning holds for any of

the (K/G − i) users from group g not appearing in Ti, so the subfile W u,g
n,Ti

appears |Du|(K/G − i)(K − 1 − t′)!t′!
(︂

K
t′+1

)︂
/Nu in the RHS of (4.27). In

addition, since this reasoning holds for each g ∈ [G], n ∈ [Nu] and Ti ⊆ [K]
where i ∈ [max(0, |Ti| − K + K/G),min(|Ti|, K/G)], after some algebraic
manipulations we can rewrite the RHS of (4.27) as

∑︂
t′∈[0:K]

min(t′,K/G)∑︂
i=max(0,t′−K+K/G)

(K/G− i)
t′ + 1 xu

t′,i (4.28)

where xu
t′,i is defined as

0 ≤ xu
t′,i :=

∑︂
g∈[G]

∑︂
n∈[Nu]

∑︂
Ti⊆[K]:|Ti|=t′,

|{k∈Ti:g(k)=g}|=i

⃓⃓⃓
W u,g

n,Ti

⃓⃓⃓
BNu

. (4.29)

We can further lower bound the RHS of (4.27) as follows
∑︂

t′∈[0:K]

min(t′,K/G)∑︂
i=max(0,t′−K+K/G)

(K/G− i)
t′ + 1 xu

t′,i (4.30)

≥
∑︂

t′∈[0:K]

min(t′,K/G)∑︂
i=max(0,t′−K+K/G)

(K/G− min(t′, K/G))
t′ + 1 xu

t′,i (4.31)

=
∑︂

t′∈[0:K]

(K/G− min(t′, K/G))
t′ + 1

min(t′,K/G)∑︂
i=max(0,t′−K+K/G)

xu
t′,i (4.32)

=
∑︂

t′∈[0:K]
G

(︂
K/G
t′+1

)︂
(︂

K/G
t′

)︂xu
t′ (4.33)

where xu
t′ is defined as

0 ≤ xu
t′ :=

min(t′,K/G)∑︂
i=max(0,t′−K+K/G)

xu
t′,i

G
. (4.34)

Chapter 4. A Converse for Caching With Heterogeneous Preferences 81

After the passages above, we can rewrite (4.27) as

Ru(χ) ≥
∑︂

t′∈[0:K]
fu(t′)xu

t′ (4.35)

where fu(t′) is defined as

fu(t′) := G

(︂
K/G
t′+1

)︂
(︂

K/G
t′

)︂ . (4.36)

Lower Bounding R⋆
u

Finally, we can lower bound the optimal worst-case load R⋆
u. Indeed, we have

the following

R⋆
u ≥ min

χ∈X

1
2 (Rc(χ) +Ru(χ)) (4.37)

≥ min
χ∈X

1
2

⎛⎝ ∑︂
t′∈[0:K]

fc(t′)xc
t′ +

∑︂
t′∈[0:K]

fu(t′)xu
t′

⎞⎠ . (4.38)

Moreover, for any uncoded cache placement χ ∈ X and for some 0 ≤ β ≤ 1,
the following ∑︂

t′∈[0:K]
xc

t′ = 1 (4.39)

∑︂
t′∈[0:K]

t′xc
t′ ≤ KβM

Nc
(4.40)

holds for common files, whereas we have the following∑︂
t′∈[0:K]

xu
t′ = 1 (4.41)

∑︂
t′∈[0:K]

t′xu
t′ ≤ K(1 − β)M

GNu
(4.42)

for unique files. This means that we can consider xc = (xc
0, . . . , x

c
K) and

xu = (xu
0, . . . , x

u
K) as probability mass functions with constraints in (4.40)

and (4.42) on the first moment, where such constraints simply represent the
maximum memory that is available across the caches of all users for common
files and unique files, respectively. In light of the above, we can write

R⋆
u ≥ min

χ∈X

1
2

⎛⎝ ∑︂
t′∈[0:K]

fc(t′)xc
t′ +

∑︂
t′∈[0:K]

fu(t′)xu
t′

⎞⎠ (4.43)

82 4.3. Collection of Proofs

= min
β,xc,xu

1
2 (Exc [fc(t′)] + Exu [fu(t′)]) (4.44)

≥ min
β,xc,xu

1
2 (fc(Exc [t′]) + fu(Exu [t′])) (4.45)

≥ min
β

1
2 (fc(tc) + fu(tu)) (4.46)

= min
β

1
2

⎛⎝
(︂

K
tc+1

)︂
(︂

K
tc

)︂ +G

(︂
K/G
tu+1

)︂
(︂

K/G
tu

)︂
⎞⎠ . (4.47)

Notice that, since both fc(t′) and fu(t′) are convex and decreasing in t′, we
have (4.45) and (4.46) from Jensen’s inequality and the constraints on the
first moment, respectively. The proof is complete.

4.3.2 Proof of Theorem 4.2
From Theorem 4.1 we have

R⋆
u ≥ min

β

1
2

⎛⎝
(︂

K
tc+1

)︂
(︂

K
tc

)︂ +G

(︂
K/G
tu+1

)︂
(︂

K/G
tu

)︂
⎞⎠ (4.48)

= 1
2

⎛⎝
(︂

K
t⋆
c +1

)︂
(︂

K
t⋆
c

)︂ +G

(︂
K/G
t⋆
u+1

)︂
(︂

K/G
t⋆
u

)︂
⎞⎠ (4.49)

where t⋆c = Kβ⋆M/Nc and t⋆u = K(1 − β⋆)M/GNu for some optimal β⋆.
Further, from [32] we have

R⋆
u ≤ min

β
max

α
R(β, α) (4.50)

≤ max
α

R(β⋆, α) (4.51)

= max
α

(︂
K

t⋆
c +1

)︂
−
(︂

Gα
t⋆
c +1

)︂
(︂

K
t⋆
c

)︂ +G

(︂
K/G
t⋆
u+1

)︂
−
(︂

K/G−α
t⋆
u+1

)︂
(︂

K/G
t⋆
u

)︂ (4.52)

≤

(︂
K

t⋆
c +1

)︂
(︂

K
t⋆
c

)︂ +G

(︂
K/G
t⋆
u+1

)︂
(︂

K/G
t⋆
u

)︂ (4.53)

where the inequality in (4.51) holds since the optimal value β⋆, which mini-
mizes the lower bound in Theorem 4.1, is not necessarily the optimal memory
splitting for the scheme in Section 4.1.2. To conclude, we have

1
2

⎛⎝
(︂

K
t⋆
c +1

)︂
(︂

K
t⋆
c

)︂ +G

(︂
K/G
t⋆
u+1

)︂
(︂

K/G
t⋆
u

)︂
⎞⎠ ≤ R⋆

u ≤

(︂
K

t⋆
c +1

)︂
(︂

K
t⋆
c

)︂ +G

(︂
K/G
t⋆
u+1

)︂
(︂

K/G
t⋆
u

)︂ (4.54)

Chapter 4. A Converse for Caching With Heterogeneous Preferences 83

which implies that the coded scheme in Section 4.1.2 is order optimal within
a constant multiplicative factor of 2. The proof is complete.

Chapter 5

Coded Distributed Computing
With Structured Support

The purpose of this brief and coincise chapter is that of showing how the results
presented in Chapter 3 can be employed in the setting of coded distributed
computing. The results presented greatly benefited from fruitful discussions
with Prof. Kai Wan.

5.1 System Model and Main Results

In this section, we first start with the general formulation of the coded dis-
tributed computing problem with structured support. Then, we specialize

the general system model imposing a symmetric structure that takes inspi-
ration from the caching problem with tactical user profiles from Chapter 3.
Finally, we present the main results.

5.1.1 The General Formulation
Let us consider the distributed computing problem with K computing nodes
and N input files, where K,N ∈ N+. Each file wn ∈ F2F with n ∈ [N] has F
bits for some F ∈ N+. The goal of node k ∈ [K] is to compute the output
function ϕk given by

ϕk : F|Nk|
2F → F2B (5.1)

which maps the files in Nk ⊆ {w1, . . . , wN} to a bit stream uk = ϕk(wn : wn ∈
Nk) ∈ F2B of length B bits for some B ∈ N+. We assume that each output
function ϕk with k ∈ [K] is decomposable, which implies

ϕk(wn : wn ∈ Nk) = hk(gk,n(wn) : wn ∈ Nk). (5.2)

85

86 5.1. System Model and Main Results

Simply, for each k ∈ [K] we have a map function gk,n : F2F → F2T , which maps
the input file wn ∈ Nk into an intermediate value (IV) vk,n = gk,n(wn) ∈ F2T

of T bits, and a reduce function hk : F|Nk|
2T → F2B , which maps the IVs

vk,n = gk,n(wn) for each wn ∈ Nk into the output value uk = hk(vk,n : wn ∈
Nk) ∈ F2B of B bits.

We wish to point out that when Nk = {w1, . . . , wN} for each k ∈ [K], the
problem becomes the original distributed computing setting already studied
in [52]. Else, we refer to the problem as the distributed computing problem
with structured support.

5.1.2 The Symmetric Case
In the following, we will focus on a specific structure for what concerns the
sets Nk for each k ∈ [K]. In particular, we first assume that the N input files
are split in G groups containing N/G files each. This implies

{w1, . . . , wN} = {WK1 , . . . ,WKG
} (5.3)

where WKg represents the g-th group containing N/G files and Kg ⊆ [K] with
|Kg| = K ′ and g ∈ [G]. Then, we assume that the group of files WKg is needed
by the K ′ < K output functions in Kg for each g ∈ [G], and that each function
k ∈ [K] depends on G′ < G groups of files, i.e., |{Kg : g ∈ [G], k ∈ Kg}| = G′

for each k ∈ [K]. This means that we have
KG′ = GK ′. (5.4)

The above implies Nk = {WKg : g ∈ [G], k ∈ Kg} for each k ∈ [K].

5.1.3 Main Results
In the following, we present the theorems for the achievable bound, the
converse bound and the order optimality. The proofs of the theorems are
provided in Section 5.2, Section 5.3 and Section 5.4, respectively.
Theorem 5.1 (Achievable Bound). Consider the problem of coded distributed
computing with structured support. Then, the optimal communication load L⋆

is upper bounded by the lower convex envelope of the following corner points
(r, LUB) = (r, g(r)) , ∀r ∈ [K ′] (5.5)

where g(r) is defined as

g(r) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G′

G

1
r

(︃
1 − r

K

)︃
, if r ∈ [r̄]

G′

G

1
r̄

(︃
1 − r̄

K

)︃
K ′ − r

K ′ − r̄
, if r ∈ [r̄ + 1 : K ′]

(5.6)

Chapter 5. Coded Distributed Computing With Structured Support 87

and r̄ := ⌊K ′/2⌋.
Theorem 5.2 (Converse Bound). Consider the problem of coded distributed
computing with structured support. Then, the optimal communication load L⋆

is lower bounded by the lower convex envelope of the following corner points

(r, LLB) =
(︄
r,

1
K

K ′ − r

r + 1

)︄
, ∀r ∈ [K ′]. (5.7)

Theorem 5.3 (Order Optimality). Consider the problem of coded distributed
computing with structured support. Then, the achievable performance in
Theorem 5.1 is order optimal within a constant multiplicative factor of 6.

5.2 Proof of Theorem 5.1
We present in the following a coded scheme achieving a communication
load which is strictly better than the one guaranteed by the original coded
distributed computing scheme with equal storage cost r. For the sake of
simplicity, we assume uniform function assignment, i.e., we assume that each
server computes one distinct output function. Further, we simply let server
k ∈ [K] compute the k-th output function without loss of generality.

5.2.1 Map Phase
The map phase remains essentially the same as the one presented in [52].
Assuming that WKg contains enough files for each g ∈ [G], we partition each
group of files in

(︂
K
r

)︂
batches containing η ∈ N+ files. Consequently, for each

g ∈ [G] we have
WKg =

⋃︂
T ⊆[K]:|T |=r

{BKg ,T } (5.8)

where we have a batch BKg ,T , which contains η files from the g-th group of
files, for each T ⊆ [K] with |T | = r. The above implies that the total number
of files is given by N = Gη

(︂
K
r

)︂
. Then, we assign server k ∈ [K] the set of

files Mk given by

Mk = {BKg ,T : g ∈ [G], T ⊆ [K], |T | = r, k ∈ T }. (5.9)

Consequently, recalling that the storage load is defined as the normalized
number of files that are stored across the K servers, we can verify that the
storage load is given by∑︁

k∈[K] |Mk|
N

=
KGη

(︂
K−1
r−1

)︂
N

= r. (5.10)

88 5.2. Proof of Theorem 5.1

Given the file assignment described above, server k can compute the
map functions for all the files in Mk. However, we know from the system
model that each output function does not depend on all the N input files.
More precisely, we know that the files in WKg are useful only to the K ′

functions in Kg. Hence, each server can compute the IVs that are really
needed. Consequently, the set of IVs computed by server k ∈ [K] is given by

Vk = {vq,n : g ∈ [G], T ⊆ [K], |T | = r, k ∈ T , wn ∈ BKg ,T , q ∈ Kg}. (5.11)

The computation load is calculated as∑︁
k∈[K] |Vk|
NK

=
KK ′Gη

(︂
K−1
r−1

)︂
NK

= K ′

K
r (5.12)

and this is a factor K/K ′ better than the computation load of the original
CDC scheme.

5.2.2 Shuffle Phase and Reduce Phase
The shuffle phase proceeds exactly as described in [52]. The savings will come
from the fact that each server does not need IVs for all the files in the input
library.

Consider server k ∈ [K] and let S ⊆ [K] where k ∈ S and |S| = r + 1.
Then, for each s ∈ (S \ {k}), server k creates the symbol US\{s} = (vs,n : g ∈
[G], s ∈ Kg, wn ∈ BKg ,S\{s}), which is then split in r even segments as

US\{s} = (US\{s},j : j ∈ (S \ {s})). (5.13)

After, the following multicast message

Xk =
⎛⎝ ⨁︂

s∈(S\{k})
US\{s},k : S ⊆ [K], |S| = r + 1, k ∈ S

⎞⎠ (5.14)

is transmitted over the broadcast channel.
Since the shuffling scheme above follows the same coded scheme in [52],

we can immediately conclude that, for what concerns the reduce phase, each
server can correctly obtain the missing IVs from local data and broadcast
transmissions.

5.2.3 Communication Load
We can see that the communication load is given by

Lnew =
∑︁

k∈[K] |Xk|
KNT

(5.15)

Chapter 5. Coded Distributed Computing With Structured Support 89

=
K
(︂

K−1
r

)︂
ηTG′/r

KNT
(5.16)

=
G′
(︂

K−1
r

)︂
η

rGη
(︂

K
r

)︂ (5.17)

= G′

G

1
r

(︃
1 − r

K

)︃
. (5.18)

Interestingly, since G′ < G, the load above is strictly better than the commu-
nication load achieved by the original CDC scheme, which is given by

Lold = 1
r

(︃
1 − r

K

)︃
. (5.19)

However, Lnew is suboptimal. We can see that Lnew = 0 when r = K, even
though the storage-load point (r, L) = (K ′, 0) is achievable. Indeed, if we let
server k ∈ [K] store only the files which the output function ϕk depends on,
we can see that in such case the storage load is given by

KG′η
(︂

K
r

)︂
N

= KG′

G
= K ′. (5.20)

Hence, we propose the following scheme. Let r̄ ∈ [K ′]. When r ≤ r̄, we
use the scheme presented above. When r > r̄, we adopt a memory-sharing
approach between the storage space r̄ and K ′. More precisely, the piecewise
linear curve with corner points (r, g(r)) is achievable, where

g(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G′

G

1
r

(︃
1 − r

K

)︃
, if r ∈ [r̄]

G′

G

1
r̄

(︃
1 − r̄

K

)︃
K ′ − r

K ′ − r̄
, if r ∈ [r̄ + 1 : K ′]

(5.21)

and where we arbitrarily let r̄ = ⌊K ′/2⌋. Notice that the case K ′ = 1 is
trivial, because we have zero load when r = 1. This concludes the proof.

5.3 Proof of Theorem 5.2

5.3.1 Preliminaries
We begin the proof by introducing some useful notation. For q ∈ [K] and
wn ∈ {w1, . . . , wN}, we let Vq,n be an i.i.d. random variable and we let vq,n

be the realization of Vq,n. Then, we define

Dk := {Vk,n : g ∈ [G], k ∈ Kg, wn ∈ WKg} (5.22)

90 5.3. Proof of Theorem 5.2

Ck := {Vq,n : T ⊆ [K], |T | = r, k ∈ T , g ∈ [G], q ∈ Kq, wn ∈ BKg ,T } (5.23)
Yk := (Dk, Ck) (5.24)

for each k ∈ [K]. Recalling that we denote by Xk the multicast message
transmitted by node k ∈ [K], the equation

H(Xk | Ck) = 0 (5.25)

holds, since Xk is a deterministic function of the intermediate values computed
by node k. Moreover, for any map-shuffle-reduce scheme, each node k ∈ [K]
has to be able to correctly recover all the intermediate values Dk given
the transmissions of all nodes X[K] := (X1, . . . , XK) and given the IVs Ck

computed by the node k itself. Thus, the equation

H(Dk | X[K], Ck) = 0 (5.26)

holds for each k ∈ [K].

5.3.2 Lower Bound on the Communication Load
For a given file assignment denoted by M := (M1, . . . ,MK), we let LM
be the corresponding communication load under this assignment M. Then,
from [65, Lemma 2] we can provide the following lower bound

LM ≥ 1
KNT

∑︂
k∈[K]

H(Duk
| Cuk

, Yu1,...,uk−1) (5.27)

for a given permutation u = (u1, . . . , uK) ∈ SK , where we define Yu1,...,uk−1 :=
(Yu1 , . . . , Yuk−1). The inequality above can be written as

LM ≥ 1
KNT

∑︂
k∈[K]

H(Duk
| Cuk

, Yu1,...,uk−1) (5.28)

= 1
KNT

∑︂
k∈[K]

∑︂
T ⊆([K]\{u1,...,uk})

∑︂
g∈[G]:uk∈Kg

TaT
Kg

(5.29)

where aT
Kg

denotes the number of files from WKg which are mapped exactly
by the nodes in T . If we build the above inequality for each u ∈ SK and we
sum them up, we get

LM ≥ 1
KNK!

∑︂
u∈SK

∑︂
k∈[K]

∑︂
T ⊆([K]\{u1,...,uk})

∑︂
g∈[G]:uk∈Kg

aT
Kg
. (5.30)

Chapter 5. Coded Distributed Computing With Structured Support 91

Following a combinatorial argument similar to the one used in Chapter 3 and
recalling that any file is needed by K ′ output functions, we can simplify the
above as

LM ≥ 1
KNK!

∑︂
u∈SK

∑︂
k∈[K]

∑︂
T ⊆([K]\{u1,...,uk})

∑︂
g∈[G]:uk∈Kg

aT
Kg

(5.31)

=
∑︂

j∈[K]

min(j,K′)∑︂
i=max(0,j−(K−K′))

∑︂
g∈[G]

∑︂
T ⊆[K]:|T |=j,

|T ∩Kg |=i

(K ′ − i)j!(K − j − 1)!
(︂

K
j+1

)︂
KNK! aT

Kg

(5.32)

≥ 1
KN

∑︂
j∈[K′]

K ′ − j

j + 1

j∑︂
i=max(0,j−(K−K′))

∑︂
g∈[G]

∑︂
T ⊆[K]:|T |=j,

|T ∩Kg |=i

aT
Kg

⏞ ⏟⏟ ⏞
:=ãj

M

(5.33)

= 1
K

∑︂
j∈[K′]

K ′ − j

j + 1
ãj

M
N

(5.34)

where ãj
M is defined as the total number of files which are mapped by exactly

j map nodes under this particular file assignment M.
For any given file assignment M and for any given storage load r ∈ [K],

the fact that |M1| + · · · + |MK | ≤ rN also implies that ãj
M ≥ 0 for each

j ∈ [K], as well as implies that ∑︁j∈[K] ã
j
M = N and that ∑︁j∈[K] jã

j
M ≤ rN .

Thus, we can further lower bound the above using Jensen’s inequality and the
fact that (K ′ − j)/(j + 1) is convex and decreasing in j. Hence, we can write

LM ≥ 1
K

∑︂
j∈[K′]

K ′ − j

j + 1
ãj

M
N

(5.35)

≥ 1
K

K ′ − r

r + 1 (5.36)

= LLB (5.37)

where (5.36) holds due to the storage constraint ∑︁j∈[K] jã
j
M ≤ rN . Since

the bound above does not depend on the file assignment M, it holds for any
possible file assignment. However, the actual bound can be further tightened
using the same techniques as in [52] for non-integer values of r, and so we can
finally state that the lower bound is the lower convex envelope of the points
{(r, LLB) : r ∈ [K ′]}. This concludes the proof.

92 5.4. Proof of Theorem 5.3

1 2 3 4 5 6 7 8 9 10 110

0.2

0.4

0.6

0.8

1

Storage Space r

C
om

m
un

ic
at

io
n

Lo
ad

L
(r

)

Original CDC performance
LUB
LLB

Figure 5.1: Comparison between the original CDC performance and the new
scheme when there are K = 10 output functions and G = 10 groups of files,
and each group of files is needed by K ′ = 5 output functions, whereas each
output function depends on G′ = 5 groups of files. The achievable scheme is
in red, whereas the converse bound is in blue.

5.4 Proof of Theorem 5.3
When r ∈ [r̄], we have

LUB

LLB
= G′

G

1
r

(︃
1 − r

K

)︃
K(r + 1)
K ′ − r

(5.38)

≤ G′

G

1
r

(︃
1 − r

K

)︃
K(r + 1)
K ′ − r̄

(5.39)

≤ KG′

G

r + 1
r

1
K ′ − r̄

(5.40)

≤ 2K ′

K ′ − r̄
. (5.41)

When K ′ is even, we recall that we have r̄ = K ′/2. Hence, we have

LUB

LLB
≤ 2K ′

K ′ − r̄
(5.42)

= 2K ′

K ′ −K ′/2 (5.43)

Chapter 5. Coded Distributed Computing With Structured Support 93

= 4. (5.44)
Instead, when K ′ is odd, we recall that we have r̄ = (K ′ − 1)/2. Hence, we
have

LUB

LLB
≤ 2K ′

K ′ − r̄
(5.45)

= 2K ′

K ′ −K ′/2 + 1/2 (5.46)

< 4. (5.47)
Now, when r ∈ [r̄ + 1 : K ′], we have

LUB

LLB
= G′

G

1
r̄

(︃
1 − r̄

K

)︃
����K ′ − r

K ′ − r̄

K(r + 1)
����K ′ − r

(5.48)

≤ KG′

G

1
r̄

(K ′ + 1)
K ′ − r̄

(5.49)

= K ′(K ′ + 1)
r̄(K ′ − r̄) . (5.50)

When K ′ is even, we have
LUB

LLB
≤ K ′(K ′ + 1)

r̄(K ′ − r̄) (5.51)

= 4(K ′ + 1)
K ′ (5.52)

= 6 (5.53)
as the smallest even K ′ is K ′ = 2. Instead, when K ′ is odd, we have

LUB

LLB
≤ K ′(K ′ + 1)

r̄(K ′ − r̄) (5.54)

= K ′(K ′ + 1)
(K ′/2 − 1/2)(K ′/2 + 1/2) (5.55)

= 4 K ′

K ′ − 1 . (5.56)

The last inequality above is maximized when K ′ is minimized. Since we are
considering K ′ odd and we exclude the trivial case K ′ = 1, the smallest odd
K ′ is K ′ = 3. Hence, the above is upper bounded as

LUB

LLB
≤ 4 K ′

K ′ − 1 (5.57)

≤ 6. (5.58)
In conclusion, the proposed scheme is order optimal within a factor 6 over

the entire range r ∈ [K ′]. The proof is concluded.

Part II

The Ramifications of Structure
in Topology

95

Chapter 6

Combinatorial Multi-Access
Caching

In this chapter, we identify the fundamental limits of multi-access coded
caching (MACC) where each user is connected to multiple caches in a manner
that follows a generalized combinatorial topology. First, we extend the setting
and the scheme presented in [53] to a much more general topology that supports
both a much denser range of users and the coexistence of users connected to
different numbers of caches. For this generalized topology, we then propose a
novel information-theoretic converse that establishes, together with the scheme,
the exact optimal performance under uncoded placement. Subsequently, we
consider different connectivity ensembles, including the very general scenario of
the entire ensemble of all possible network connectivities/topologies, where any
subset of caches can serve any arbitrary number of users. For these settings,
we develop novel converse bounds on the optimal performance averaged over
the ensemble’s different connectivities. This novel analysis of topological
ensembles leaves open the possibility that currently unknown topologies may
yield even higher gains, a hypothesis that is part of the bigger question of
which network topology yields the most caching gains.

6.1 Introduction

The original coded caching model in [2] considered that each user has
access to its own single dedicated cache. However, in several scenarios it

is conceivable and perhaps more realistic that each cache serves more than one
user, and that each user can connect to more than one cache. For instance,
in dense cellular networks, the cache-aided access points (APs) could have
overlapping coverage areas, allowing so each user to connect to more than one

97

98 6.1. Introduction

AP. Even more realistically, in a wired setting where a central server wishes
to communicate to multiple workers via a shared control channel, each worker
could be assisted by multiple memory devices shared among the workers.

Such scenarios motivated the work in [29] that introduced the extra
dimension of having users that can now have access to multiple caches. In
this setting — in addition to the number of users K, the number of library
files N and the cache size of M files — a new parameter α describes the
number of caches that each user can access. This so-called multi-access coded
caching (MACC) model introduced in [29] involved Λ users and Λ caches,
and involved a topology where each user is connected to α > 1 consecutive
caches in a cyclic wrap-around fashion as in Figure 1.2, such that each cache
serves exactly α users. In the same work, the authors provided a caching-and-
delivery procedure which guarantees in its centralized variant1 a worst-case
load of

Λ(1 − αγ)
Λγ + 1 = K(1 − αγ)

Kγ + 1 (6.1)

where we recall γ = M/N is the fraction of the library that each cache is
able to store. Such scheme takes advantage of the multi-access nature of the
network and allows for an increase of the local caching gain from γ to αγ,
without though being able to increase the coding gain, which remains fixed
at the gain Λγ + 1 that only corresponds to the gain in the dedicated cache
scenario where α = 1.

6.1.1 Past Works on Multi-Access Coded Caching
Since the introduction of the aforementioned multi-access cyclic model, various
works focused on the design of coding schemes that leverage the fact that
each user has access to more cache space. The challenge is always to be able
to achieve higher coding gains in a setting where the cache volume seen by a
user must be shared among several users.

One of such works can be found in [67], which proposed a scheme that
not only preserves the full local caching gain as in [29], but also achieves the
topology’s optimal coding gain of Λαγ+ 1, albeit for the rather unrealistically
demanding scenario2 where α = (Λ − 1)/Λγ. For the same cyclic topology,
the work in [66] designed a novel scheme for any α ≥ 1, which was — for the
similarly demanding regime of α ≥ Λ/2 and Λγ ≤ 2 — proved to be at a

1The original work in [29] proposed the coding scheme with decentralized (stochastic)
cache placement. The centralized version can be easily obtained as also mentioned in [66].

2Indeed, thinking about either the wired server-and-workers setting or the dense cellular
network scenario previously mentioned, it is more realistic for a user to be connected to
very few cache-aided devices.

Chapter 6. Combinatorial Multi-Access Caching 99

factor of at most 2 from the optimal under uncoded placement. Other works
include the extension of the MACC model to support privacy and secrecy
constraints [68]–[70], the connection between MACC and structured index
coding problems [71], the study of two-dimensional multi-access networks [72],
and the application of PDA designs to the multi-access setting [73], [74].

Recently, a new MACC paradigm was presented in [75], [76], which
involves previously unexplored powerful topologies that deviate from the
cyclic topology originally proposed in [29]. These two works in [75], [76] drew
a clever connection between coding for the MACC problem and employing
a topology that is inspired by cross resolvable designs (CRDs), where these
CRDs constitute a special class of designs in combinatorics. The authors
provided novel placement-and-delivery schemes from CRDs achieving a coding
gain equal to (q + 1)z, where q and z are two integer parameters such that
each user is connected to α = qz distinct caches via a network topology that
is implied by the chosen CRD. While though this gain nicely increases with
α, it does not increase with the cumulative cache redundancy Λγ and so can
remain relatively small as it does not capitalize on this redundancy.

A substantial breakthrough came with the very recent work in [53], which
proposed a MACC model enjoying the same amount of resources α and Λγ,
but where now the users and the caches are connected following the well-
known combinatorial topology of combination networks [54]–[57]. This was a
breakthrough because it allowed for the deployment of a subsequent scheme —
presented in [53] as a generalization of the original MAN scheme in [2] — that
achieves an astounding coding gain

(︂
Λγ+α

α

)︂
far exceeding Λγ+1 even for small

values of α and Λγ, which is the regime that really matters. A noticeable
drawback of this new approach is that its performance is guaranteed only for
a rather sparse range3 of K ≫ Λ, where we recall K is the number of users
and Λ is the number of caches, and that it only captures the scenario where
the users must all connect to an identical number of caches.

6.1.2 Main Contributions
Having as a starting point the combinatorial multi-access system model
introduced in [53], we propose a model extension which allows for a denser
range of possible number of users K and for the coexistence of users that are
connected to different numbers of caches. For this generalized combinatorial

3As it will become more clear later, the work in [53] requires exactly K =
(︁Λ

α

)︁
users

for a specific value of α ∈ {0, . . . , Λ}. Instead, our generalized model allows for a number
of users that is equal to K =

∑︁Λ
α=0 Kα

(︁Λ
α

)︁
with Kα ∈ {0, 1, . . . } for each α ∈ {0, . . . , Λ},

which consequently makes denser the range of users K with respect to the model in [53].

100 6.2. System Model

system model, we extend the delivery scheme presented in [53] to support
the very large coding gains. We then proceed to prove this general scheme to
be exactly optimal under the assumption of uncoded placement by means of
an information-theoretic converse that is based on index coding arguments.
As a practical consequence of identifying the exact fundamental limits of the
setting, we now know that a basic and fixed MAN placement can optimally
handle any generalized combinatorial network irrespective of having unknown
numbers of users connected to different numbers of caches.

Subsequently, we consider a more general scenario that involves various
ensembles of connectivities, including the ensemble of all possible connec-
tivities as well as the smaller ensemble of those connectivities that simply
abide by the constraint that each user is connected to the same number of
α caches, without any additional structural constraint on the connectivity
or on the number of users that each cache has to treat. For these settings,
we develop information-theoretic converse bounds on the optimal average
worst-case load, where the average is taken over the ensemble of interest,
and where the optimal is over an optimized fixed placement. In particular,
this converse on the average performance assumes optimal delivery for each
connectivity and assumes an optimized uncoded placement that is fixed across
all connectivities. These converse bounds are then used to provide meaningful
insights on the strength of the generalized combinatorial model with respect
to other connectivities.

6.1.3 Chapter Outline
The rest of the chapter is organized as follows. Section 6.2 presents the
system model together with some clarifying examples on the setting. Then,
Section 6.3 presents the main results. Subsequently, Section 6.4 presents
the coding scheme for the generalized combinatorial topology, whereas Sec-
tion 6.5 presents the new matching converse bound. After this, Section 6.6
and Section 6.7 provide the proof of the converse on the optimal average worst-
case load under uniformly random connectivity for the different considered
ensembles. The appendices Appendix B hold all additional proofs.

6.2 System Model
We consider the centralized coded caching scenario where one single server
has access to a library {Wn : n ∈ [N]} containing N files of B bits each. The
server is connected to K users through an error-free broadcast link. In the
system there are Λ caches, each of size MB bits. Each user is associated (i.e.,

Chapter 6. Combinatorial Multi-Access Caching 101

has full access) to a subset of these caches. We assume that the link between
the server and the users is the main bottleneck, whereas we assume that each
user can access its assigned caches at zero cost. As is common, we assume
that N ≥ K.

6.2.1 Description of Connectivity
Each of the K users is connected to a subset of the Λ caches. The way these
connections are set up defines the network topology or connectivity. In the
general case, different users are connected to a different number α ∈ [0 : Λ]
of caches, where this value α, depending on the user, can range from α = 0
(corresponding to users that are not assisted by any cache) up to α = Λ
(corresponding to the users that happen to be connected to all caches). What
we will refer to as connectivity will be here defined by the number of users
that each α-tuple U of caches is exactly and uniquely connected to, where
again some of these sets U of caches can have size α = 1 (sets consisting of a
single cache), α = 2 (where each set is a pair of caches), and so on. Notice
that, since a connectivity is defined irrespective of any permutation of users,
the definition of connectivity captures the concept of the MACC problem
“type”. For instance, for the model in Figure 1.2 the sets of 2 caches {1, 2},
{2, 3}, {3, 4} and {1, 4} serve one user each. For the same model, we consider
the set of 2 caches {1, 3}, {2, 4} to be serving no user, since there is no user
connected exactly and uniquely to the caches in the set {1, 3} (i.e., there is
no user connected to only cache 1 and to cache 3) as well as there is no user
associated exactly and uniquely to the caches in the set {2, 4} (i.e., there is
no user connected to only cache 2 and to cache 4). Similarly, we consider also
the sets {1}, {2}, {3} and {4} to be serving no user, since there is no user
connected exactly and uniquely to one cache only. On the other hand, for the
model in Figure 6.1 we can see that there are two users connected exactly
and uniquely to cache {1}, there is one user associated exactly and uniquely
to caches {1, 2, 3} and there is one user connected exactly and uniquely to
caches {2, 3, 4}. Hence, for such example the connectivity is defined by the
number of users connected to the set of caches {1}, {1, 2, 3} and {2, 3, 4}.

Let B be the set of all possible connectivites corresponding to the most
general scenario, where any set of caches can arbitrarily serve any number of
users without any constraint or structure. Each connectivity b ∈ B will be
defined by the vector Kb = (KU ,b : U ⊆ [Λ]), where we denote by KU ,b ∈ N
the number of users associated exactly and uniquely to the caches in the set
U . Naturally, it holds that

K =
∑︂

α∈[0:Λ]

∑︂
U⊆[Λ]:|U|=α

KU ,b. (6.2)

102 6.2. System Model

Server

1 2 3 4Users

Shared link

1 2 3 4Caches

Figure 6.1: Example of connectivity for the MACC model with Λ = 4.

For a given connectivity b ∈ B, and for any set U ⊆ [Λ], we denote by Uk the
k-th user connected4 to the |U| caches in U , where naturally k ∈ [KU ,b]. If we
let Kα be the set of users which are each connected to exactly and uniquely
α caches, it holds that

K =
⋃︂

α∈[0:Λ]
{Kα} (6.3)

Kα =
⋃︂

U⊆[Λ]:|U|=α

⋃︂
k∈[KU,b]

{Uk} (6.4)

where K denotes the entire set of K users in the system. This all holds
for the most general setting corresponding to the ensemble B, where this
ensemble represents the set of all connectivities irrespective of how different
these connectivities are from one another. We will revisit this general scenario
later, when we will calculate the converse bound on the optimal average
performance over all connectivities in B.

A more restricted class of connectivities can be found in the ensemble Bα,
which consists of all those connectivities for which each user is connected to
exactly α caches for some fixed number α ∈ [0 : Λ]. Any connectivity that

4Note that this reflects, as already mentioned, the fact that a connectivity is defined
irrespective of any permutation of users. For example, consider Λ = 2 caches and K = 3
users. Then, if we have K{1},b = 2 and K{2},b = 1 for some connectivity b ∈ B, it does not
make any difference whether it is user 1 to be assigned to cache 2, and user 2 and user 3
to be assigned to cache 1; whether it is user 2 to be assigned to cache 2, and user 1 and
user 3 to be assigned to cache 1; or whether it is user 3 to be assigned to cache 2, and
user 1 and user 2 to be assigned to cache 1. All these scenarios correspond in fact to the
same connectivity.

Chapter 6. Combinatorial Multi-Access Caching 103

satisfies this constraint belongs to Bα. For example, a connectivity b belongs
to B2 if and only if this connectivity guarantees that every user is connected
to exactly α = 2 caches. The well-known cyclic wrap-around connectivity
depicted in Figure 1.2 is one of the connectivities in this class B2, since it
guarantees that each user is connected to exactly α = 2 caches. There exist
many additional connectivities that belong to B2. We will revisit this class
Bα when we will calculate the average optimal performance, averaged across
all its connectivities.

A broader class of connectivities is simply the (Λ + 1)-ary Cartesian
product

BΛ+1 =
Λ∏︂

α=0
Bα = {(b0, . . . , bΛ) : bα ∈ Bα, α ∈ [0 : Λ]} (6.5)

which consists of all connectivities that guarantee that some K ′
α users — from

the K = ∑︁
α∈[0:Λ] K

′
α users in total — are each connected to exactly α caches

for each α ∈ [0 : Λ] and for a fixed set of integers K ′
0, K

′
1, . . . , K

′
Λ. For example,

a connectivity b belongs to B2 × B3 if and only if this connectivity guarantees
that K ′

2 users are connected to 2 caches, and the rest K ′
3 = K −K ′

2 users are
connected to 3 caches, for any fixed pair K ′

2, K
′
3 such that K ′

2 +K ′
3 = K. This

class is important because it captures the generalization of the aforementioned
combinatorial5 topology, for which we will calculate the optimal performance
under uncoded prefetching.

To avoid heavy notation, the dependence on the connectivity b will always
be suppressed and left implied. For example, while Kb is a function of the
specific connectivity, this dependence will be implied when we henceforth use
the notation K instead of Kb. An exception to this rule will be allowed when
considering the number of users KU ,b associated to the caches in U for some
U ⊆ [Λ].

In terms of file requests, we use the notation WdUk
to denote the file

requested by the user identified by Uk, which we remind the reader is simply
the k-th user connected exactly and uniquely to the caches in the set U . For
the sake of simplicity, we denote by d = (d0, . . . ,dΛ) the demand vector
containing the indices of the files requested by the users in the system, where

dα :=
(︂
dU ,[KU,b] : U ⊆ [Λ], |U| = α

)︂
(6.6)

represents the vector containing the indices of the files requested by all the
users connected to exactly α caches and where dU ,[KU,b] := (dU1 , . . . , dUKU,b

)
5The topology introduced in [53] follows the well-known combinatorial nature of combi-

nation networks. To avoid any confusion with the well-defined term combination-network
topology which is prevalent in the literature of network coding, we will use the simplified
term combinatorial topology to refer to the topology in [53].

104 6.2. System Model

represents the vector containing the indices of the files requested by the KU ,b

users connected to the caches in the set U for a given connectivity b ∈ B.
To account for the possibility that this notation is hard to follow, we offer
clarifying examples later on.

6.2.2 Generalized Combinatorial Topology
Directly from the aforementioned Cartesian product class, there is a particular
connectivity (topology) b ∈ BΛ+1 that is of special interest to us. This topology,
which we refer to as the generalized combinatorial topology, guarantees that
any one set of α caches is uniquely assigned to Kα users, and this holds
for every α ∈ [0 : Λ]. Given the nature of the connectivity, we have that6

KU ,b = Kα = K ′
α/
(︂

Λ
α

)︂
for each U ⊆ [Λ] with |U| = α and α ∈ [0 : Λ]. We also

have that
K =

Λ∑︂
α=0

Kα

(︄
Λ
α

)︄
. (6.7)

To clarify, the term K ′
α again describes the total number of users each of which

is associated to exactly α caches, while the term Kα is the normalization of
K ′

α and it describes the total number of users uniquely served by any one set
of α caches. For this generalized combinatorial topology, we collect all the
Kα terms in the vector Kcomb = (K0, . . . , KΛ).

Example 6.1 (Λ = 4,Kcomb = (0, 0, 1, 0, 0)). Consider the MACC problem
with the original combinatorial topology in [53] and Λ = 4 caches. Since
Kcomb = (0, 0, 1, 0, 0), each set of α = 2 caches is uniquely assigned to K2 = 1
user, so there are K = ∑︁Λ

α=0 Kα

(︂
Λ
α

)︂
=
(︂

4
2

)︂
= 6 users in total. Recalling that

each user is identified by the set of the α = 2 caches it is connected to as well
as by its index k ∈ [K2], we write the set of users K as

K =
⋃︂

α∈[0:Λ]

⋃︂
U⊆[Λ]:|U|=α

⋃︂
k∈[Kα]

{Uk} (6.8)

=
⋃︂

U⊆[Λ]:|U|=2

⋃︂
k∈[K2]

{Uk} (6.9)

= {{1, 2}1, {1, 3}1, {1, 4}1, {2, 3}1, {2, 4}1, {3, 4}1} . (6.10)

Notice that for ease of notation we will often omit braces and commas
when indicating sets, so we can also write K = {121, 131, 141, 231, 241, 341}.

6As one would expect, we assume for such combinatorial connectivity that
(︁Λ

α

)︁
| K ′

α for
each α ∈ [0 : Λ].

Chapter 6. Combinatorial Multi-Access Caching 105

These are the 6 users in the system. The demand vector is given by d =
(d0,d1,d2,d3,d4) = (0, . . . , 0,d2, 0, . . . , 0), where

d2 =
(︂
dU ,[K2] : U ⊆ [Λ], |U| = 2

)︂
(6.11)

= (d121 , d131 , d141 , d231 , d241 , d341) (6.12)

recalling that dU ,[K2] = (dU1 , . . . , dUK2
). The setting described in this example

corresponds to the model introduced in [53], as it will be pointed out also
later.

Example 6.2 (Λ = 4,Kcomb = (0, 0, 2, 2, 0)). Let us consider now the
following more involved MACC problem with a generalized combinatorial
topology and again Λ = 4 caches. Since Kcomb = (0, 0, 2, 2, 0), each set of
2 caches is uniquely connected to K2 = 2 users and each set of 3 caches
is uniquely connected to K3 = 2 users, which tells us that there are K =∑︁Λ

α=0 Kα

(︂
Λ
α

)︂
= 2

(︂
4
2

)︂
+ 2

(︂
4
3

)︂
= 20 users in total. The set of users K is given by

K =
⋃︂

α∈[0:Λ]

⋃︂
U⊆[Λ]:|U|=α

⋃︂
k∈[Kα]

{Uk} (6.13)

=
⋃︂

α∈[2:3]

⋃︂
U⊆[Λ]:|U|=α

⋃︂
k∈[Kα]

{Uk} (6.14)

= {121, 122, 131, 132, 141, 142,

231, 232, 241, 242, 341, 342,

1231, 1232, 1241, 1242, 1341, 1342, 2341, 2342}. (6.15)

As a small reminder, users 121, 122 are the first and second users connected to
the pair of caches {1, 2}, while user 2342 is the second of two users connected
to the caches in the triplet {2, 3, 4} and to no other cache. In this case, the
demand vector is given by d = (d0,d1,d2,d3,d4) = (0, . . . , 0,d2,d3, 0, . . . , 0),
where

d2 =
(︂
dU ,[K2] : U ⊆ [Λ], |U| = 2

)︂
(6.16)

= (d121 , d122 , d131 , d132 , d141 , d142 ,

d231 , d232 , d241 , d242 , d341 , d342) (6.17)
d3 =

(︂
dU ,[K3] : U ⊆ [Λ], |U| = 3

)︂
(6.18)

= (d1231 , d1232 , d1241 , d1242 ,

d1341 , d1342 , d2341 , d2342) (6.19)

recalling that dU ,[K2] = (dU1 , . . . , dUK2
) and dU ,[K3] = (dU1 , . . . , dUK3

).

106 6.2. System Model

6.2.3 Worst-Case Load and Average Worst-Case Load
As in the original coded caching scenario, the communication procedure is
split into the placement phase and the delivery phase. Nevertheless, the
placement phase may or may not be aware of the given topology b ∈ B that
will be encountered during delivery. Both these scenarios of topology-aware
and topology-agnostic cache placement will be addressed.

In the topology-aware scenario, given a unique topology b ∈ B that is
known throughout placement and delivery, the worst-case communication
load Rb is defined as the total number of transmitted bits, normalized by
the file size B, that can guarantee the correct delivery of any K-tuple of
requested files in the worst-case scenario. The optimal communication load
R⋆

b is consequently defined as

R⋆
b(M) := inf{Rb : (M,Rb) is achievable} (6.20)

where the tuple (M,Rb) is said to be achievable if there exists a caching-
and-delivery procedure for which, for any possible demand, a load Rb can be
guaranteed. This metric captures the optimal performance, optimized over
all topology-aware placement-and-delivery schemes. For the particular case of
the generalized combinatorial topology, this worst-case communication load
will be denoted by R⋆

comb.
On the other hand, to capture the fact that topologies may vary in time

often much faster than the rate with which caches can be updated, we will also
consider the scenario where a fixed placement must be designed to handle an
ensemble of possible topologies7, where the ensemble of focus is known during
placement. In this topology-agnostic scenario, we will employ an average
metric that captures the average performance of coded caching over the
ensemble of topologies. In particular, we will consider the average worst-case
communication load Ravg = Eb[Rb], which is defined as the expected number
of transmitted bits (averaged over a specified ensemble of connectivities, and
normalized by the file size B) that can guarantee the correct delivery of all
requested files irrespective of the request. When the averaging is done over the
entire connectivity ensemble B of connectivities, the corresponding optimal
average worst-case load R⋆

avg,B is defined and denoted as

R⋆
avg,B(M) := inf{Ravg,B : (M,Ravg,B) is achievable} (6.21)

where the tuple (M,Ravg,B) is said to be achievable if there exists a joint
7This means that the connectivity is not known a priori and the cache placement cannot

be modified whenever a new connectivity is presented.

Chapter 6. Combinatorial Multi-Access Caching 107

placement-and-delivery method with an optimized fixed placement phase8 for
which an average load Ravg,B can be guaranteed, where the averaging is over
the connectivity ensemble of focus. Similarly, when the averaging is done over
the smaller symmetric ensemble Bα, the optimal average performance will be
denoted by R⋆

avg,Bα
.

6.3 Main Results
We present in this section the main results. Firstly, we identify the funda-
mental limits of the system model described in Section 6.2.2 corresponding to
the unique generalized combinatorial topology. This will identify the optimal
performance of the generalized combinatorial connectivity, optimized over all
coded caching schemes under the assumption of uncoded prefetching. We
will then proceed to study the performance over ensembles of connectivities.
Taking into account the scenario where there are K = K ′

α users and each of
them is connected to a set of exactly α caches, we develop a converse bound
on the optimal average worst-case load assuming the connectivities in Bα to
be equiprobable for a fixed α ∈ [Λ]. Finally, such bound is further extended
to consider the most general ensemble B of all possible connectivities.

6.3.1 Multi-Access Coded Caching With Generalized
Combinatorial Topology

Our first result is obtained by extending the achievable scheme proposed
in [53] and by developing a matching converse bound based on the well-known
acyclic subgraph index coding method. The result is formally stated in the
following theorem.

Theorem 6.1. Consider the multi-access coded caching problem with Λ
caches and the generalized combinatorial topology described in Section 6.2.2.
Under the assumption of uncoded cache placement, the optimal worst-case

8Here, the optimal performance is over the class of all schemes that employ a cache
placement which can be chosen and optimized, but which must remain fixed for all
connectivities in the ensemble. The scheme is free to employ delivery methods that are
fully aware of the current topology and can adapt to it. For every choice of fixed placement,
and then for every connectivity, there is a minimum amount of bits to be sent. We are
interested in minimizing the average of these amounts of bits to be transmitted, averaged
over all the connectivities in the ensemble of focus.

108 6.3. Main Results

communication load R⋆
comb is a piecewise linear curve with corner points

(M,R⋆
comb) =

⎛⎝tNΛ ,
Λ−t∑︂
α=0

Kα

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂
⎞⎠ , ∀t ∈ [0 : Λ]. (6.22)

Proof. The coded caching scheme is described in Section 6.4, whereas the
information-theoretic converse is presented in Section 6.5.

Directly from the converse in Theorem 6.1, and from the application as
in Section 6.4 of the scheme in [53], we now have the following corollary. To
place the corollary in context, we note that typically (see for example [66])
cache placements are specifically calibrated to reflect the cache-connectivity
capability of each user.
Corollary 6.1.1. The basic Λ-cache MAN placement allows for the optimal
performance for any instance of the generalized combinatorial topology. This
means that, as long as the connectivity is from the generalized combinatorial
topology, then the single MAN placement yields a uniformly optimal per-
formance irrespective of the cache-connectivity capability of each user, i.e.,
irrespective of how many users are connected to how many caches.
Remark 6.1. A further comment relates the memory point at which the load
becomes 0. As one can observe from the expression in Theorem 6.1, such
point varies depending on the problem instance. For example, if we consider
the generalized combinatorial topology where each user is uniquely associated
to a distinct cache (this corresponds to the standard MAN setting), the load
becomes 0 only when each user has enough memory to store entirely the
library, i.e., when t = Λ. On the other hand, for the generalized combinatorial
topology where each user is connected to all caches, the load becomes 0 when
t = 1, i.e., when the entire library is stored at least once across the caches. In
general, if there is no user connected to any cache, we have t ∈ [0 : Λ−αmin+1],
where αmin := min{α : Kα > 0}, i.e., where αmin is the minimum value of
α such that Kα > 0. Clearly, if there is even just one user connected to no
cache, there will be no memory point such that the load will be equal to 0.

6.3.2 Analysis of Topology Ensembles
Our second contribution is the development of a converse bound on the
optimal average worst-case load for a fixed value9 of α ∈ [Λ], corresponding to
the ensemble Bα, where each connectivity in Bα is assumed to be equiprobable.
The result is stated in the following theorem.

9Clearly, the scenario α = 0 is trivial. Indeed, if all users K are connected to no cache,
there is only one connectivity which is optimally served with load equal to K.

Chapter 6. Combinatorial Multi-Access Caching 109

Theorem 6.2. Consider the ensemble Bα of multi-access coded caching
problems with Λ caches and K = K ′

α users each connected to exactly α ∈
[Λ] caches. Under the assumption of fixed uncoded cache placement and
equiprobable connectivities, the optimal average worst-case communication
load R⋆

avg,Bα
is lower bounded by Ravg,Bα,LB which is a piecewise linear curve

with corner points

(M,Ravg,Bα,LB) =
⎛⎝tNΛ ,

K ′
α

(︂
Λ

t+α

)︂
(︂

Λ
α

)︂(︂
Λ
t

)︂ + At

⎞⎠ , ∀t ∈ [0 : Λ − α + 1] (6.23)

where we define

At := K ′
α

|Bα|

(︄
Λ − t

α

)︄⎛⎝1 − 1(︂
t+α

α

)︂
⎞⎠ . (6.24)

Proof. The proof is reported in Section 6.6.

In the following we offer an interesting comparison between the results
in Theorem 6.1 and in Theorem 6.2, after setting K = K ′

α = Kα

(︂
Λ
α

)︂
to be

the same in both cases.

Corollary 6.2.1. For a fixed unique α and a fixed K = K ′
α such that

(︂
Λ
α

)︂
| K ′

α,
then

Ravg,Bα,LB > R⋆
comb, ∀t ∈ [Λ − α]. (6.25)

Proof. The proof follows immediately after observing that At > 0 for each
t ∈ [Λ − α].

The above result simply says that, for non-trivial values of t, the optimal
average worst-case communication load in Theorem 6.2 is strictly larger than
the optimal worst-case communication load of the combinatorial connectivity
in Theorem 6.1. At this point, we can make two observations. The first is that
a closer inspection reveals that the converse in Theorem 6.2 holds also when
the fixed uncoded placement is restricted to be the MAN cache placement.
The second observation is that — as a consequence of the assumption of
equiprobable connectivities — the converse in Theorem 6.2 can be interpreted
as a lower bound on the optimal arithmetic mean worst-case load of different10

“types” of MACC problems. With these two observations in place, we can
conclude that the combinatorial topology is, roughly speaking, among the

10As we mentioned in the introduction, since each connectivity is defined irrespective of
any permutation of users, the definition of connectivity reflects somehow the notion of the
“type” of a multi-access coded caching problem.

110 6.3. Main Results

better connectivities in Bα under the MAN cache placement assumption, in
the sense that it does better than the average.

We now transition to the most general scenario where any possible con-
nectivity is allowed, namely, where any set of caches can arbitrarily serve any
number of users without any constraint or structure. This corresponds to the
ensemble B. Our third contribution is the development of a converse bound
on the optimal average worst-case load assuming the connectivities in the set
B to be equiprobable.

Theorem 6.3. Consider the ensemble B of multi-access coded caching prob-
lems with Λ caches and K users, where any set of caches can arbitrarily
serve any number of users without any constraint or structure. Under the
assumption of fixed uncoded cache placement and equiprobable connectivities,
the optimal average worst-case communication load R⋆

avg,B is lower bounded
by Ravg,B,LB which is a piecewise linear curve with corner points

(M,Ravg,B,LB) =
⎛⎝tNΛ ,

Λ∑︂
α=0

K
(︂

Λ
t+α

)︂
2Λ
(︂

Λ
t

)︂ + At,α

⎞⎠ , ∀t ∈ [0 : Λ] (6.26)

where we define

At,α := K

|B|

(︄
Λ − t

α

)︄⎛⎝1 − 1(︂
t+α

α

)︂
⎞⎠ . (6.27)

Proof. The proof is reported in Section 6.7.

As before, we offer the following interesting comparison between the
results in Theorem 6.1 and in Theorem 6.3, after setting Kα = K/2Λ for each
α ∈ [0 : Λ]. The following corollary serves as an indication that, under fixed
MAN uncoded placement, the generalized combinatorial topology is among
the better connectivities in B.

Corollary 6.3.1. For a fixed K such that 2Λ | K and for Kα = K/2Λ for
each α ∈ [0 : Λ], then

Ravg,B,LB > R⋆
comb, ∀t ∈ [Λ]. (6.28)

Proof. The proof follows again immediately after observing that, for a given
α ∈ [0 : Λ − 1], then Aα,t > 0 for each t ∈ [Λ − α].

Remark 6.2. The results in Corollary 6.2.1 and Corollary 6.3.1 shed light on
the purpose and utility of the developed converse bounds in Theorem 6.2 and
in Theorem 6.3, whose relevance appears when they are put in perspective

Chapter 6. Combinatorial Multi-Access Caching 111

with the optimal performance of the MACC problem with (generalized)
combinatorial topology in Theorem 6.1. As suggested above, the meaningful
conclusion here is that the (generalized) combinatorial topology is a good
(better than average) connectivity under the standard MAN cache placement.
Nevertheless, whether it is uniformly — in the non-trivial memory regime —
the best topology or not still remains a wide-open question.

6.4 Achievability Proof of Theorem 6.1
We devote this section to presenting the general placement-and-delivery
scheme, which will allow us to prove that the load performance in Theorem 6.1
is indeed achievable. Recall that this is for the case of the generalized
combinatorial topology presented in Section 6.2.2. As a quick reminder, under
this topology, out of the total of K = ∑︁Λ

α=0 K
′
α users, there exist K ′

α users
each of which is associated to exactly α caches. Similarly, the normalized
Kα simply describes the total number of users uniquely served by any one
set of α caches. As it will be clear in a short while, we point out that the
general delivery scheme here proposed is a properly calibrated orthogonal
concatenation of the transmitted sequences in [53] for different values of
α ∈ [0 : Λ].

6.4.1 Description of the General Scheme
The communication process is split into the placement phase and the delivery
phase. Both phases are designed with full knowledge11 of the topology, i.e.,
with knowledge of the fact that during delivery the users are connected
to the caches according to the unique generalized combinatorial topology
in Section 6.2.2.

Placement phase This procedure is performed by the central server without
knowing the future requests of each user. Let M = tN/Λ be the volume of
data, in units of file, that each of the Λ caches can store, where t ∈ [0 : Λ]
is an integer value. Each file is split into

(︂
Λ
t

)︂
equal-sized non-overlapping

subfiles as follows

Wn = {Wn,T : T ⊆ [Λ], |T | = t}, ∀n ∈ [N] (6.29)
11Indeed, there is generally some flexibility and the placement can be designed for a

specific topology, when such topology is known. In fact, for the generalized combinatorial
topology the basic Λ-cache MAN placement is enough to achieve the optimal performance,
as mentioned in Corollary 6.1.1.

112 6.4. Achievability Proof of Theorem 6.1

and the memory of the λ-th cache is filled as

Zλ = {Wn,T : n ∈ [N], T ⊆ [Λ], |T | = t, λ ∈ T } (6.30)

for each λ ∈ [Λ]. A quick calculation allows us to verify that each cache
λ ∈ [Λ] stores a total of

|Zλ| = N

(︄
Λ − 1
t− 1

)︄
B(︂
Λ
t

)︂ = t
N

ΛB = MB (6.31)

bits, which guarantees that the memory size constraint is satisfied.

Delivery phase The delivery phase takes place once the file requests of the
users are revealed. Let d = (d0, . . . ,dΛ) be the demand vector containing the
indices of the files demanded by the K users in K. Then, the server transmits
Xd = (X0, . . . , XΛ−t), where Xα = (Xα,1, . . . , Xα,Kα) and where

Xα,k =
⎛⎝ ⨁︂

U⊆S:|U|=α

WdUk
,S\U : S ⊆ [Λ], |S| = t+ α

⎞⎠ (6.32)

for each k ∈ [Kα] and for each α ∈ [0 : Λ]. Simply, Xα,k corresponds to the
broadcast transmission which successfully delivers all the missing information
to all the k-th users connected to any α caches. Notice that users connected
to more than Λ − t caches have access to the entire library, so no transmission
is needed for them.

Remark 6.3. We point out that for any one fixed value of α ∈ [0 : Λ] and
k ∈ [Kα], the sequence of multicast messages in (6.32) matches the scheme
in [53]. However, whereas the work in [53] considers Kα = 1 and only
one single value of α ∈ [0 : Λ] at a time (i.e., considers that every user is
connected to exactly α caches), the scheme here considers any Kα ∈ N and
most importantly considers all possible values of α ∈ [0 : Λ] at the same
time, so capturing a rather general scenario where the set of K users involves
users with unequal cache-connectivity capabilities (i.e., users that have access
to an unequal number of caches). The most interesting outcome of our
generalization is the rather surprising fact that a basic TDMA-like approach
of treating groups of users with different cache-connectivity capabilities is in
fact optimal, as we will see soon. This is indeed surprising, because users
with different cache-connectivity capabilities still maintain an abundance
of common side information, which could have conceivably been exploited
using joint encoding across the groups. The optimality of our scheme reveals
that there is no need to encode across users with different cache-connectivity

Chapter 6. Combinatorial Multi-Access Caching 113

capabilities, and that a TDMA-like approach is optimal, even though there is
abundant additional opportunities to encode across different groups of users
that are now treated separately.
Remark 6.4. An additional interesting consideration regards the adopted
cache placement. To the best of our knowledge, the cache placement in the
multi-access scenario usually changes substantially as α changes, e.g., this
is what happens for the cyclic wrap-around topology (see [66]). However, as
described in Corollary 6.1.1, for the combinatorial topology in [53] the same
MAN cache placement holds for any value of α ∈ [0 : Λ]. And such MAN
placement not only works for any distinct value of α, but even allows to handle
optimally all the α-instances when all such instances appear simultaneously
at the same time. In other words, the MAN cache placement — which is
independent of the number of caches each user is connected to, and is a
function of the number of caches Λ and of the cache redundancy Λγ only —
can be considered a single unified cache placement approach for which the
least possible worst-case communication load is achieved under uncoded cache
placement, even when each of the α-settings in [53] is taken into account
simultaneously. At the same time, the MAN cache placement together with
the TDMA-like delivery scheme also allows to maintain the astounding coding
gain of each α-instance, since indeed each α-instance still enjoys12 the coding
gain of

(︂
Λγ+α

α

)︂
.

Even though the proof of correctness of the delivery in (6.32), for a specific
α, was reported in [53], we briefly describe for completeness how decoding is
achieved in (6.32). Consider a user U ′

k for some U ′ ⊆ [Λ] with |U ′| = α, for
some k ∈ [Kα] and for some α ∈ [0 : Λ]. Consider a specific S ⊆ [Λ] for which
|S| = t+ α and U ′ ⊆ S. For such set S, the coded transmission⨁︂

U⊆S:|U|=α

WdUk
,S\U (6.33)

is sent. Since U ′ ⊆ S, we can rewrite the coded transmission as⨁︂
U⊆S:|U|=α

WdUk
,S\U = WdU′

k
,S\U ′ ⊕

⨁︂
U⊆S:|U|=α,

U ̸=U ′

WdUk
,S\U

⏞ ⏟⏟ ⏞
interference

. (6.34)

Notice that user U ′
k can correctly decode the subfile WdU′

k
,S\U ′ . Indeed, this

user has access to all subfiles in the interference term, considering that
(S \ U) ∩ U ′ ̸= ∅ since U ̸= U ′. User U ′

k can consequently decode a distinct
12This comes from the observation that each message in Xα,k is useful to

(︁Λγ+α
α

)︁
users.

114 6.4. Achievability Proof of Theorem 6.1

subfile for each S ⊆ [Λ] with |S| = t+ α and U ′ ⊆ S. Since there is a total
of
(︂

Λ−α
t

)︂
such sets S and user U ′

k misses a total of
(︂

Λ−α
t

)︂
subfiles, we can

conclude that user U ′
k correctly decodes all missing subfiles from the coded

transmission in (6.32). Clearly, the same holds also for any other user, so
showing the decodability of the scheme.

6.4.2 Performance Calculation
To evaluate the performance of the scheme proposed in Section 6.4.1, it is
enough to calculate |Xd|/B. Since it can be easily checked that

|Xα,k|
B

=

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂ (6.35)

the achievable load performance is equal to

Rcomb,UB = |Xd|
B

(6.36)

=
Λ−t∑︂
α=0

|Xα|
B

(6.37)

=
Λ−t∑︂
α=0

Kα∑︂
k=1

|Xα,k|
B

(6.38)

=
Λ−t∑︂
α=0

Kα

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂ (6.39)

and so it holds that R⋆
comb ≤ Rcomb,UB, where this upper bound is a piecewise

linear curve with corner points

(M,Rcomb,UB) =
⎛⎝tNΛ ,

Λ−t∑︂
α=0

Kα

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂
⎞⎠ , ∀t ∈ [0 : Λ] (6.40)

and where memory sharing is used between any two consecutive integer values
of t. In Section 6.5 this performance will be shown to be optimal under the
assumption of uncoded placement.
Remark 6.5. The coding scheme and its performance fully incorporate the
following known scenarios.

1. Case Kcomb = (K0, 0, . . . , 0). This scenario corresponds to the case
where there are K0 users and none of them is connected to any of

Chapter 6. Combinatorial Multi-Access Caching 115

the Λ caches. In this case, uncoded delivery is optimal and the load
performance is equal to K0, independently of the memory value, as
expected.

2. Case Kcomb = (0, 1, 0, . . . , 0). This scenario corresponds to the well-
known dedicated-caches case where there is only one user connected to
any one of the Λ caches. This implies that there are K = Λ users in
total and this case corresponds to the standard MAN setting, for which
the MAN scheme was shown in [3] (see also [4]) to be optimal under
uncoded cache placement.

3. Case Kcomb = (0, K1, 0, . . . , 0) with K1 > 1. This scenario corresponds
to the shared-caches setting with uniform user-to-cache association
profile, where the corresponding achievable load was also shown to be
optimal (see [39]).

4. Case Kcomb = (0, . . . , 0, Kα, 0, . . . , 0) with Kα = 1 for some α ∈ [2 : Λ].
As already mentioned, this scenario corresponds to the setting considered
in [53]. No optimality result was stated.

6.5 Converse Proof of Theorem 6.1
The converse relies on the well-known acyclic subgraph index coding bound,
which has been extensively used in Chapter 2 and various other settings (see
for example [3], [39] to name a few) in order to derive lower bounds on the
optimal worst-case load in caching under uncoded prefetching.

Proceeding along the lines of the converse derivation in Chapter 2, the first
step in our converse proof consists of dividing, in the most generic manner,
each file into a maximum of 2Λ disjoint subfiles as

Wn = {Wn,T : T ⊆ [Λ]} , ∀n ∈ [N] (6.41)

where we identify with Wn,T the subfile which is exclusively stored by the
caches in T . Such placement is designated as uncoded because the bits of the
library files are simply copied within the caches, according to Definition 1.1.

Constructing the Index Coding Bound

Assuming that each user requests a distinct13 file, we consider the index coding
problem with K ′ = K = ∑︁Λ

α=0 Kα

(︂
Λ
α

)︂
users and N ′ = ∑︁Λ

α=0 Kα

(︂
Λ
α

)︂
2Λ−α

13Notice that the set of worst-case demands may not include the set of demand vectors
d with all distinct entries. However, this is not a problem, since our goal is to derive a

116 6.5. Converse Proof of Theorem 6.1

independent messages, where each such message represents a subfile requested
by some user (who naturally does not have access to it via a cache). Recalling
that WdUk

denotes the file requested by the user identified by Uk, the desired
message set and the side information set are respectively given, in their most
generic form, by

MUk
= {WdUk

,T : T ⊆ ([Λ] \ U)} (6.42)
AUk

= {Wn,T : n ∈ [N], T ⊆ [Λ], T ∩ U ≠ ∅} (6.43)

for each user Uk with k ∈ [K|U|] and U ⊆ [Λ]. Here, the side information
graph consists of a directed graph where each vertex is a subfile, and where
there is an edge from the subfile WdPk1

to the subfile WdQk2
if and only if

WdPk1
∈ AQk2

with P ⊆ [Λ], Q ⊆ [Λ], k1 ∈ [K|P|], k2 ∈ [K|Q|] and Pk1 ̸= Qk2 .
Since our aim is to apply Lemma 2.1, we need to consider acyclic sets of
vertices J in the side information graph. Toward this, we take advantage of
the following lemma, which holds for any connectivity b ∈ B.

Lemma 6.1. Let d = (d0, . . . ,dΛ) be a demand vector and let c = (c1, . . . , cΛ)
be a permutation of the Λ caches. The following set of vertices⋃︂

k∈[K∅,b]

⋃︂
T ⊆[Λ]

{︂
Wd∅k

,T
}︂

∪
⋃︂

α∈[Λ]

⋃︂
i∈[α:Λ]

⋃︂
Ui⊆{c1,...,ci}:
|U i|=α,ci∈U i⋃︂

k∈[KUi,b]

⋃︂
Ti⊆([Λ]\{c1,...,ci})

{︃
WdUi

k
,Ti

}︃ (6.44)

is acyclic for any connectivity b ∈ B.

Proof. The proof is reported in Appendix B.1.

To illustrate the main idea in Lemma 6.1, we provide in the following a
simple example where we provide explicitly the acyclic set of vertices for two
different permutations of caches.

Example 6.3. Consider the setting where there are Λ = 4 caches and
Kcomb = (0, 0, 1, 1, 0), which implies K = 10 users and which further implies
that each set of 2 caches is connected to K2 = 1 user as well as each set
of 3 caches is connected to K3 = 1 user. Consider the demand vector
d = (0, . . . , 0,d2,d3, 0, . . . , 0), where it is d2 = (d121 , d131 , d141 , d231 , d241 , d341)

converse bound on the worst-case load. Indeed, our choice of treating distinct demands
yields a converse bound, which — while it does not need to be, a priori, the tightest bound
— is a valid bound. In our case, the bound proves to be tight.

Chapter 6. Combinatorial Multi-Access Caching 117

and d3 = (d1231 , d1241 , d1341 , d2341). Further, assume the cache permutation
c = (1, 4, 3, 2). The acyclic set of vertices from Lemma 6.1 is given by the
union of the set {︃

Wd141 ,∅,Wd141 ,2,Wd141 ,3,Wd141 ,23,

Wd131 ,∅,Wd131 ,2,Wd341 ,∅,Wd341 ,2,

Wd121 ,∅,Wd241 ,∅,Wd231 ,∅

}︃ (6.45)

with the set {︂
Wd1341 ,∅,Wd1341 ,2,Wd1241 ,∅,Wd1231 ,∅,Wd2341 ,∅

}︂
. (6.46)

Consider now the cache permutation c = (2, 3, 1, 4). In this case, the acyclic
set of vertices is given by the union of the set{︃

Wd231 ,∅,Wd231 ,1,Wd231 ,4,Wd231 ,14,

Wd121 ,∅,Wd121 ,4,Wd131 ,∅,Wd131 ,4,

Wd241 ,∅,Wd341 ,∅,Wd141 ,∅

}︃ (6.47)

with the set {︂
Wd1231 ,∅,Wd1231 ,4,Wd2341 ,∅,Wd1241 ,∅,Wd1341 ,∅

}︂
. (6.48)

Consider a demand vector d = (d0, . . . ,dΛ) and a permutation c =
(c1, . . . , cΛ) of the set [Λ]. If we specialize the acyclic set in Lemma 6.1 to
the generalized combinatorial topology, then applying Lemma 2.1 yields the
following lower bound

BR⋆
comb ≥

∑︂
k∈[K0]

∑︂
T ⊆[Λ]

⃓⃓⃓
Wd∅k

,T

⃓⃓⃓
+
∑︂

α∈[Λ]

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|U i|=α,

ci∈U i∑︂
k∈[Kα]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓
.

(6.49)

Constructing the Optimization Problem

Now our goal is to create several bounds as the one in (6.49) considering
any vector d ∈ D and any vector c ∈ C, where we denote by D and C the

118 6.5. Converse Proof of Theorem 6.1

set of possible demand vectors with distinct entries and the set of possible
permutation vectors of the set [Λ], respectively. Our aim is then to average
all these bounds to obtain in the end a useful lower bound on the optimal
worst-case load. Considering that |D| =

(︂
N
K

)︂
K! and |C| = Λ!, we aim to

simplify the expression given by(︄
N

K

)︄
K!Λ!BR⋆

comb ≥
∑︂
d∈D

∑︂
c∈C

⎛⎝ ∑︂
k∈[K0]

∑︂
T ⊆[Λ]

⃓⃓⃓
Wd∅k

,T

⃓⃓⃓
+
∑︂

α∈[Λ]

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|Ui|=α,

ci∈U i

∑︂
k∈[Kα]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓ ⎞⎠.
(6.50)

The next step consists of simplifying the expression in (6.50). Toward simpli-
fying, we count how many times each subfile Wn,T — for any given n ∈ [N],
T ⊆ [Λ] and |T | = t′ for some t′ ∈ [0 : Λ] — appears in (6.50).

Assume that the file Wn is demanded by user ∅k for some k ∈ [K0]. Out of
the entire set D of all possible distinct demands, we find a total of

(︂
N
K

)︂
K!/N

distinct demands for which a file is requested by the same user. Hence, since
there are

(︂
N
K

)︂
K!/N distinct demands for which the file Wn is requested by

user ∅k, the subfile Wn,T is counted a total of Λ!
(︂

N
K

)︂
K!/N times within the

set of demands for which such file is requested by user ∅k. The Λ! term comes
from the fact that the set ⋃︂

k∈[K0]

⋃︂
T ⊆[Λ]

{Wd∅k
,T } (6.51)

does not depend on the permutation vector c, so the subfile Wn,T appears in
such set independently of the vector c. Since there are Λ! such vectors, the
subfile Wn,T is counted Λ! times any time it is requested by the user ∅k. The
same reasoning follows for each k ∈ [K0], so we can conclude that the subfile
Wn,T is counted

K0Λ!

(︂
N
K

)︂
K!

N
(6.52)

times when we span all cases of distinct demand vectors for which the file
Wn is requested by the set of users connected to 0 caches.

Assume now that the file Wn is demanded by user Uk for some k ∈ [K1]
and for some U ⊆ ([Λ]\T) with |U| = 1. Recall also that such file is requested
by user Uk a total of

(︂
N
K

)︂
K!/N times. Then, within the set of demands for

Chapter 6. Combinatorial Multi-Access Caching 119

which such user requests the file Wn, the subfile Wn,T is counted only when
the elements in the set U appear in the vector c before14 the elements in the
set T . Since there is a total of t′!(Λ − 1 − t′)!

(︂
Λ

t′+1

)︂
such vectors c in the set

C, the subfile Wn,T is counted a total of t′!(Λ − 1 − t′)!
(︂

Λ
t′+1

)︂(︂
N
K

)︂
K!/N times

within the set of demands for which user Uk requests the file Wn. The same
reasoning follows for each k ∈ [K1] and for each U ⊆ ([Λ] \ T) with |U| = 1,
so the subfile Wn,T is counted a total of

K1(Λ − t′)t′!(Λ − 1 − t′)!
(︄

Λ
t′ + 1

)︄(︂N
K

)︂
K!

N
(6.53)

times across all the demands for which the file Wn is requested by the set of
users connected to 1 cache.

Let us consider now that the file Wn is demanded by user Uk for some
k ∈ [Kα] and for some U ⊆ ([Λ] \ T) with |U| = α. Recall also that such file
is requested by user Uk a total of

(︂
N
K

)︂
K!/N times. Then, within the set of

demands for which such user requests the file Wn, the subfile Wn,T is counted
only when the elements in the set U appear in the vector c before the elements
in the set T . Since there is a total of α!t′!(Λ − α− t′)!

(︂
Λ

t′+α

)︂
such vectors c,

the subfile Wn,T is counted a total of α!t′!(Λ − α− t′)!
(︂

Λ
t′+α

)︂(︂
N
K

)︂
K!/N times

within the set of demands for which user Uk requests the file Wn. The same
reasoning follows for each k ∈ [Kα] and for each U ⊆ ([Λ] \ T) with |U| = α,
so the subfile Wn,T is counted a total of

Kα

(︄
Λ − t′

α

)︄
α!t′!(Λ − α− t′)!

(︄
Λ

t′ + α

)︄(︂N
K

)︂
K!

N
(6.54)

times within the set of demands for which the file Wn is requested by the set
of users connected to α caches.

Consequently, if we consider all distinct demands in the set D, the subfile
Wn,T is counted a total of

Λ−t′∑︂
α=0

Kα

(︄
Λ − t′

α

)︄
α!t′!(Λ − α− t′)!

(︄
Λ

t′ + α

)︄(︂N
K

)︂
K!

N
(6.55)

times, which gives us the number of times this same subfile appears in (6.50).
The same reasoning follows for any n ∈ [N] and for any T ⊆ [Λ] with |T | = t′.

14Indeed, the subfile Wn,T appears in the acyclic graph chosen as in Lemma 6.1 for all
those permutations c = (c1, . . . , cΛ) for which U ⊆ {c1, . . . , ci} and T ⊆ {ci+1, . . . , cΛ}, i.e.,
this happens whenever the elements in T are after the elements in U in the permutation
vector c.

120 6.5. Converse Proof of Theorem 6.1

Thus, the expression in (6.50) can be rewritten as

R⋆
comb ≥ 1(︂

N
K

)︂
K!Λ!

Λ∑︂
t′=0

Λ−t′∑︂
α=0

⎛⎝Kα

(︄
Λ − t′

α

)︄
α!t′!(Λ − α− t′)!

×
(︄

Λ
t′ + α

)︄(︄
N

K

)︄
K!xt′

⎞⎠ (6.56)

=
Λ∑︂

t′=0

Λ−t′∑︂
α=0

Kα

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ xt′ (6.57)

=
Λ∑︂

t′=0
f(t′)xt′ (6.58)

where we define

f(t′) :=
Λ−t′∑︂
α=0

Kα

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ (6.59)

0 ≤ xt′ :=
∑︂

n∈[N]

∑︂
T ⊆[Λ]:|T |=t′

|Wn,T |
NB

. (6.60)

At this point, we seek to lower bound the minimum worst-case load R⋆
comb

by lower bounding the solution to the following optimization problem

min
x

Λ∑︂
t′=0

f(t′)xt′ (6.61a)

subject to
Λ∑︂

t′=0
xt′ = 1 (6.61b)

Λ∑︂
t′=0

t′xt′ ≤ ΛM
N

(6.61c)

where (6.61b) and (6.61c) correspond to the file size constraint and the
cumulative cache-size constraint, respectively.

Lower Bounding the Solution to the Optimization Problem

Since the auxiliary variable xt′ can be considered as a probability mass
function, the optimization problem in (6.61) can be seen as the minimization
of E[f(t′)]. Moreover, the following holds.

Lemma 6.2. The function f(t′) is convex and decreasing in t′.

Chapter 6. Combinatorial Multi-Access Caching 121

Proof. The proof is reported in Appendix B.2.

Taking advantage of Lemma 6.2, we can write E[f(t′)] ≥ f(E[t′]) using
Jensen’s inequality. Then, since f(t′) is decreasing with increasing t′ ∈ [0 : Λ],
we can further write f(E[t′]) ≥ f(ΛM/N) taking advantage of the fact that
E[t′] is upper bounded as in (6.61c). Consequently, E[f(t′)] ≥ f(ΛM/N),
where t = ΛM/N . Now, when t is an integer, the bound is simply the function
f(t) evaluated at t ∈ [0 : Λ]. For non-integer values of t, we can follow again
the reasoning in [4], [39], [52] as in Section 2.4.1 to take the lower convex
envelope of the sequence of points {(t, f(t)) : t ∈ [0 : Λ]}. To conclude,
the converse bound the optimal worst-case load R⋆

comb is lower bounded by
Rcomb,LB which is a piecewise linear curve with corner points

(M,Rcomb,LB) =
⎛⎝tNΛ ,

Λ−t∑︂
α=0

Kα

(︂
Λ

t+α

)︂
(︂

Λ
t

)︂
⎞⎠ , ∀t ∈ [0 : Λ]. (6.62)

Since Rcomb,LB = Rcomb,UB, we can state that the optimal worst-case load
R⋆

comb under uncoded placement is a piecewise linear curve with the same
corner points as in (6.62). This concludes the proof.

6.6 Proof of Theorem 6.2
The proof follows along the lines of the index coding approach presented
in Section 6.5. However, the main difference here is that we will have
to develop a bound for an ensemble of connectivities, whereas the entire
procedure in Section 6.5 assumed a specific connectivity. Hence, we remind
that we are considering now the scenario where there are K users and each
of them is connected to exactly α caches for a fixed value of α ∈ [Λ], where
the connectivity is not constrained by further restrictions and where the
connectivity is not known in advance (i.e., it is not known during placement).
We remind the reader that we are interested in the connectivity ensemble
Bα as a whole, and that we want to develop a converse on the optimal
average worst-case load R⋆

avg,Bα
under uncoded and fixed cache placement.

Furthermore, we recall that we assume each of these connectivities to be
equiprobable and that for any b ∈ Bα the number of users takes the form

K = K ′
α =

∑︂
U⊆[Λ]:|U|=α

KU ,b. (6.63)

122 6.6. Proof of Theorem 6.2

6.6.1 Constructing the Index Coding Bound
The first step of the proof consists of dividing generically — and independently
of the connectivity b ∈ Bα — each file into a maximum of 2Λ non-overlapping
subfiles as in (6.41), recalling that Wn,T represents the subfile which is cached
uniquely and exactly by the caches in T . Then, similarly to how we proceeded
in Section 6.5, we always assume the demand vector d = (0, . . . , 0,dα, 0, . . . , 0)
to have distinct entries. Given a connectivity b ∈ Bα, we consider the index
coding problem with K ′ = K users and N ′ = K2Λ−α independent messages.
Notice that, since each user is connected to exactly α caches, the number of
desired subfiles is exactly equal to 2Λ−α, so N ′ is the total number of subfiles
requested by the K users. Recalling that WdUk

denotes the file requested by
the user identified by Uk, the desired message set and the side information
set are respectively given by

MUk
= {WdUk

,T : T ⊆ ([Λ] \ U)} (6.64)
AUk

= {Wn,T : n ∈ [N], T ⊆ [Λ], T ∩ U ≠ ∅} (6.65)
for each user Uk with U ⊆ [Λ], |U| = α and k ∈ [KU ,b]. The side information
graph consists again of a directed graph where each vertex is a subfile, and
where there is a connection from the subfile WdPk1

to the subfile WdQk2
if and

only if WdPk1
∈ AQk2

with P ⊆ [Λ], Q ⊆ [Λ], |P| = |Q| = α, k1 ∈ [KP,b],
k2 ∈ [KQ,b] and Pk1 ̸= Qk2 . Since our aim is to apply Lemma 2.1, we need to
consider acyclic sets of vertices J in the side information graph. In the spirit
of Lemma 6.1, we know that now the set⋃︂

i∈[α:Λ]

⋃︂
Ui⊆{c1,...,ci}:|Ui|=α,

ci∈U i

⋃︂
k∈[KUi,b]

⋃︂
Ti⊆([Λ]\{c1,...,ci})

{︃
WdUi

k
,Ti

}︃
(6.66)

is acyclic for any demand vector d and for any permutation of the Λ caches
represented by the vector c = (c1, . . . , cΛ). Applying Lemma 2.1 yields the
following lower bound

BRb ≥
∑︂

i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|U i|=α,

ci∈U i

∑︂
k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓
(6.67)

where the term Rb represents the worst-case load given the connectivity
b ∈ Bα.

6.6.2 Counting the Connectivities
As it will be of use later, we proceed to count how many possible connectivities
exist in Bα, recalling that such ensemble includes connectivities for which each

Chapter 6. Combinatorial Multi-Access Caching 123

user connects to exactly α caches. Toward this, if we let yU be a non-negative
integer value that represents the total number of users connected to the
caches in U , the number of connectivities in Bα is equal to the number of
non-negative integer solutions of the equation∑︂

U⊆[Λ]:|U|=α

yU = K. (6.68)

This is simply equal to the number of ways we can express the integer K
as the sum of a sequence of

(︂
Λ
α

)︂
non-negative integers. Hence, such number

corresponds to the number of
(︂

Λ
α

)︂
-weak compositions [77] of the integer K

and is given by

|Bα| =
(︄
K +

(︂
Λ
α

)︂
− 1

K

)︄
. (6.69)

This highlights the fact that a connectivity b ∈ Bα is nothing but a specific
way to distribute K users among

(︂
Λ
α

)︂
possible states, where a state represents

a set of α caches which a user can be connected to.

6.6.3 Constructing the Optimization Problem
Our goal is to develop an information-theoretic converse on the optimal
average worst-case load R⋆

avg,Bα
over the ensemble of connectivities Bα. Hence,

assuming equiprobable connectivities implies that

R⋆
avg,Bα

= 1
|Bα|

∑︂
b∈Bα

Rb. (6.70)

To proceed, we split the ensemble of interest as Bα = Bα,a ∪ Bα,b, where
Bα,a is the set of connectivities for which all the K users are connected to the
same α caches and where Bα,b = Bα \ Bα,a. For each connectivity b ∈ Bα,a,
we will create several bounds as the one in (6.67). To do so, we consider any
vector d ∈ D and for each such vector we employ Λ! times the permutation
vector cb whose first α positions describe the indices of the caches to which
the K users are connected15 according to the connectivity b ∈ Bα,a. We
assume that the first α elements in cb are put in ascending order and then,
similarly, the remaining Λ − α elements of the vector cb are also placed in

15For example, let Λ = 7 and α = 2. If we consider the connectivity b1 ∈ Bα,a for
which all K users are connected to the caches {3, 5}, then we consider the permutation
vector cb1 = (3, 5, 1, 2, 4, 6, 7). Similarly, if we consider the connectivity b2 ∈ Bα,a for which
all K users are connected to the caches {4, 7}, then we consider the permutation vector
cb2 = (4, 7, 1, 2, 3, 5, 6). For each connectivity b ∈ Bα,a, the vector cb is employed Λ! times
for each demand vector d ∈ D.

124 6.6. Proof of Theorem 6.2

ascending order. Instead, for each connectivity b ∈ Bα,b, we will create several
bounds as the one in (6.67) by considering any demand vector d ∈ D and
any permutation vector c ∈ C. Our aim is then to average all these bounds
to eventually obtain a useful lower bound on the optimal average worst-case
load. Considering that we have |D| =

(︂
N
K

)︂
K! and |C| = Λ!, we aim to simplify

the expression given by(︄
N

K

)︄
K!Λ!B

∑︂
b∈Bα

Rb ≥
∑︂

b∈Bα,a

∑︂
d∈D

Λ!
∑︂

k∈[K]∑︂
Ti⊆([Λ]\{cb,1,...,cb,α})

⃓⃓⃓
Wd{cb,1,...,cb,α}k

,Ti

⃓⃓⃓
+

∑︂
b∈Bα,b

∑︂
d∈D

∑︂
c∈C

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:
|U i|=α,ci∈U i∑︂

k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓
(6.71)

which can be rewritten by means of (6.70) as

R⋆
avg,Bα

≥ 1(︂
N
K

)︂
K!Λ! |Bα|B

⎛⎝ ∑︂
b∈Bα,a

∑︂
d∈D

Λ!
∑︂

k∈[K]∑︂
Ti⊆([Λ]\{cb,1,...,cb,α})

⃓⃓⃓
Wd{cb,1,...,cb,α}k

,Ti

⃓⃓⃓
+

∑︂
b∈Bα,b

∑︂
d∈D

∑︂
c∈C

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈U i

∑︂
k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓ ⎞⎠.

(6.72)

Our next step is to simplify the expression in (6.72) and part of doing so
involves counting how many times each subfile Wn,T — for any n ∈ [N],
T ⊆ [Λ] and |T | = t′ for some t′ ∈ [0 : Λ] — appears in (6.72).

Consider the connectivities in Bα,a. Assume that the file Wn is demanded
by the user Uk for some k ∈ [K] and for some U ⊆ ([Λ] \ T) with |U| = α.
Since this corresponds to the connectivity b ∈ Bα,a for which all the users are
associated to the caches in U , we employ Λ! consecutive times the permutation
vector cb having in the first α positions the elements in U . Consequently,
since here the elements in T are by construction after the elements in U in the
vector cb, we can deduce that the subfile Wn,T is counted Λ! times — namely,

Chapter 6. Combinatorial Multi-Access Caching 125

once for each of the Λ! times that the vector cb is employed — whenever
the file Wn is requested by user Uk. Recalling that any file is requested by
user Uk a total of

(︂
N
K

)︂
K!/N times, the subfile Wn,T is counted Λ!

(︂
N
K

)︂
K!/N

within the set of demands for which user Uk requests the file Wn. The same
reasoning follows for each k ∈ [K] and for each U ⊆ ([Λ] \ T) with |U| = α,
so the subfile Wn,T is counted

K

(︄
Λ − t

α

)︄
Λ!

(︂
N
K

)︂
K!

N
(6.73)

times when we focus on connectivities in Bα,a.
Consider now a specific connectivity b ∈ Bα,b. Assume that the file Wn

is demanded by the user Uk for some k ∈ [KU ,b] and for some U ⊆ ([Λ] \ T)
with |U| = α, and recall once more that such file is requested by user Uk

a total of
(︂

N
K

)︂
K!/N times. Within the set of demand vectors for which

user Uk requests the file Wn, the subfile Wn,T is counted only when the
elements in the set U appear in the vector c before the elements in the set
T . Since there is a total of α!t′!(Λ − α− t′)!

(︂
Λ

t′+α

)︂
such vectors c, the subfile

Wn,T is counted a total of α!t′!(Λ − α− t′)!
(︂

Λ
t′+α

)︂(︂
N
K

)︂
K!/N times within the

set of distinct demands for which user Uk requests the file Wn. The same
reasoning follows for each k ∈ [KU ,b], so the subfile Wn,T is counted a total of
KU ,bα!t′!(Λ −α− t′)!

(︂
Λ

t′+α

)︂(︂
N
K

)︂
K!/N times within the set of distinct demands

for which the file Wn is requested by the users connected to the caches in
U for a given connectivity b ∈ Bα,b. Now, considering that Bα,b = B \ Bα,a,
it holds that KU ,b ∈ [0 : K − 1]. Moreover, we can easily count how many
connectivities b ∈ Bα,b exist for which KU ,b = K − i where i ∈ [K]. Indeed,
this number of connectivities is equal to the number of non-negative integer
solutions of the equation ∑︂

U ′⊆[Λ]:|U ′|=α,U ′ ̸=U
yU ′ = i (6.74)

which is equal to the number of
(︂(︂

Λ
α

)︂
− 1

)︂
-weak compositions of the integer i.

Such number is given by (︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
. (6.75)

At this point, when we consider all connectivities in Bα,b, there are
(︂(Λ

α)−1
1

)︂
connectivities with yU = K−1, there are

(︂(Λ
α)
2

)︂
connectivities with yU = K−2,

there are
(︂(Λ

α)+1
3

)︂
connectivities with yU = K − 3, and so on. In the end, if

126 6.6. Proof of Theorem 6.2

we go over all possible connectivities in Bα,b, the subfile Wn,T is counted a
total of

α!t′!(Λ − α− t′)!
(︄

Λ
t′ + α

)︄(︂N
K

)︂
K!

N

K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.76)

times within the set of demands for which the file Wn is requested by users
connected to the caches in U . The same reasoning applies for each U ⊆ ([Λ]\T)
with |U| = α, so the subfile Wn,T is counted a total of

α!t′!(Λ − α− t′)!
(︄

Λ
t′ + α

)︄(︄
Λ − t′

α

)︄(︂N
K

)︂
K!

N

K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.77)

times when we focus on connectivities in Bα,b.
Now, if we focus on all connectivities in Bα = Bα,a ∪ Bα,b, we can see that

subfile Wn,T appears in (6.72) a total of

K

(︄
Λ − t′

α

)︄
Λ!

(︂
N
K

)︂
K!

N
+ Λ!

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
(︂

N
K

)︂
K!

N

K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.78)

times. The same reasoning follows for any n ∈ [N] and for any T ⊆ [Λ]
with |T | = t′. Thus, the expression in (6.72) can be rewritten after some
simplifications as

R⋆
avg,Bα

≥
Λ−α+1∑︂

t′=0

1
|Bα|

⎛⎝K(︄Λ − t′

α

)︄

+

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄⎞⎠xt′ (6.79)

=
Λ−α+1∑︂

t′=0
f(t′)xt′ (6.80)

where we define

f(t′) := 1
|Bα|

⎛⎝K(︄Λ − t′

α

)︄

+

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄⎞⎠ (6.81)

0 ≤ xt′ :=
∑︂

n∈[N]

∑︂
T ⊆[Λ]:|T |=t′

|Wn,T |
NB

. (6.82)

Chapter 6. Combinatorial Multi-Access Caching 127

At this point, we seek to lower bound the minimum worst-case load R⋆
avg,Bα

by lower bounding the solution to the following optimization problem

min
x

Λ−α+1∑︂
t′=0

f(t′)xt′ (6.83a)

subject to
Λ∑︂

t′=0
xt′ = 1 (6.83b)

Λ∑︂
t′=0

t′xt′ ≤ ΛM
N

(6.83c)

where (6.83b) and (6.83c) correspond to the file size constraint and the
cumulative cache-size constraint, respectively.

6.6.4 Lower Bounding the Solution to the Optimization
Problem

Before proceeding to lower bound the solution to the optimization problem,
we simplify the expression f(t) as follows

f(t′) = K

|Bα|

(︄
Λ − t′

α

)︄

+ 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.84)

= K

|Bα|

(︄
Λ − t′

α

)︄
− K

|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
+ 1

|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=0

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.85)

= K

|Bα|

(︄
Λ − t′

α

)︄⎛⎝1 −

(︂
Λ

t′+α

)︂
(︂

Λ−t′

α

)︂(︂
Λ
t′

)︂
⎞⎠

+ 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=0

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.86)

= K

|Bα|

(︄
Λ − t′

α

)︄⎛⎝1 − 1(︂
t′+α

α

)︂
⎞⎠

+ 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=0

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.87)

128 6.6. Proof of Theorem 6.2

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=0

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.88)

where we define

At′ := K

|Bα|

(︄
Λ − t′

α

)︄⎛⎝1 − 1(︂
t′+α

α

)︂
⎞⎠ . (6.89)

Now we can further simplify f(t′) as follows

f(t′) = At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=0

(K − i)
(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄
(6.90)

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
⎛⎝K K−1∑︂

i=0

(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄

−
K−1∑︂
i=0

i

(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄⎞⎠ (6.91)

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
⎛⎝K(︄K +

(︂
Λ
α

)︂
− 2

K − 1

)︄

−
(︄(︄

Λ
α

)︄
− 1

)︄
K−2∑︂
i=0

(︄
i+

(︂
Λ
α

)︂
− 2

i

)︄⎞⎠ (6.92)

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
⎛⎝ K2(︂

Λ
α

)︂
− 1

(︄
K +

(︂
Λ
α

)︂
− 2

K

)︄

−
(︄(︄

Λ
α

)︄
− 1

)︄(︄
K +

(︂
Λ
α

)︂
− 2

K − 2

)︄⎞⎠ (6.93)

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
⎛⎝ K2(︂

Λ
α

)︂
− 1

(︄
K +

(︂
Λ
α

)︂
− 2

K

)︄

−K(K − 1)(︂
Λ
α

)︂ (︄
K +

(︂
Λ
α

)︂
− 2

K

)︄⎞⎠ (6.94)

= At′ + 1
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K(︂
Λ
α

)︂(︄K +
(︂

Λ
α

)︂
− 1

K

)︄
(6.95)

=
K
(︂

Λ
t′+α

)︂
(︂

Λ
α

)︂(︂
Λ
t′

)︂ + At′ (6.96)

Chapter 6. Combinatorial Multi-Access Caching 129

where we used in (6.92) and in (6.93) the well-known hockey-stick identity
in (2.62). At this point, we can rewrite f(t′) as

f(t′) =
K
(︂

Λ
t′+α

)︂
(︂

Λ
α

)︂(︂
Λ
t′

)︂ + At′ . (6.97)

Now, since the auxiliary variable xt′ can be considered once again as a
probability mass function, the optimization problem in (6.83) can be seen as
the minimization of E[f(t′)]. Moreover, the function f(t′) can be rewritten
also as

f(t′) = K
|Bα| −

(︂
Λ
α

)︂
(︂

Λ
α

)︂
|Bα|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ + K

|Bα|

(︄
Λ − t′

α

)︄
. (6.98)

Now, from Lemma 6.2 it follows that the term
(︂

Λ
t′+α

)︂
/
(︂

Λ
t′

)︂
is convex and

decreasing in t′; then, it can be easily checked16 that the term
(︂

Λ−t′

α

)︂
is convex

and decreasing as well; and finally, it holds that |Bα| ≥
(︂

Λ
α

)︂
. Hence, f(t′) is

a non-negative linear combination of convex and decreasing functions and
so it is convex and strictly decreasing for increasing t′. Consequently, by
applying Jensen’s inequality we can write E[f(t′)] ≥ f(E[t′]) ≥ f(ΛM/N)
after also considering that E[t′] is upper bounded as in (6.83c). Thus, for
t = ΛM/N and since K = K ′

α, the optimal average worst-case load R⋆
avg,Bα

is lower bounded by Ravg,Bα,LB which is a piecewise linear curve with corner
points

(M,Ravg,Bα,LB) =
⎛⎝tNΛ ,

K ′
α

(︂
Λ

t+α

)︂
(︂

Λ
α

)︂(︂
Λ
t

)︂ + At

⎞⎠ , ∀t ∈ [0 : Λ − α + 1]. (6.99)

This concludes the proof.

6.7 Proof of Theorem 6.3
Since the proof follows the structure of the proof in Section 6.6, we will make
an effort to avoid repetitions when possible. In this setting, we focus on the
ensemble B, which captures all possible connectivities. Here, each of the
K users can connect to any set of caches without any specific constraint or
structure. Our interest is treating the ensemble as a whole.

16This can be done following the same reasoning presented in Appendix B.2, after writing
down the combinatorial coefficient as a finite product and using the general Leibniz rule to
show that its second derivative is non-negative.

130 6.7. Proof of Theorem 6.3

6.7.1 Constructing the Index Coding Bound
The mapping of the caching problem to the index coding problem is iden-
tical to what we presented in Section 6.5 and in Section 6.6, so we directly
apply Lemma 2.1 using the acyclic set presented in Lemma 6.1, obtaining the
bound

BRb ≥
∑︂

k∈[K∅,b]

∑︂
T ⊆[Λ]

⃓⃓⃓
Wd∅k

,T

⃓⃓⃓
+
∑︂

α∈[Λ]

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:
|U i|=α,ci∈U i

∑︂
k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓ (6.100)

for a given connectivity b ∈ B.

6.7.2 Counting the Connectivities
Considering the set of connectivities B and recalling that there are K users,
where K is naturally fixed throughout the connectivites, it consequently holds
that ∑︂

U⊆[Λ]
KU ,b = K (6.101)

for each b ∈ B. Toward evaluating the cardinality of the set B, if we let yU
be a non-negative integer value counting the total number of users connected
to the caches in U , then the number of connectitivites in B is equal to the
number of non-negative integer solutions of the equation∑︂

U⊆[Λ]
yU = K. (6.102)

In this case, this is simply equal to the number of 2Λ-weak compositions [77]
of the integer K, which is given by

|B| =
(︄
K + 2Λ − 1

K

)︄
. (6.103)

Similarly to what we already observed when counting the connectivities in
Bα for the proof of Theorem 6.2 in Section 6.6, now a connectivity b ∈ B can
be seen as a way to distribute K users among 2Λ possible states, where each
state is an element of the power set of [Λ], i.e., a set of α caches — for some
α ∈ [0 : Λ] — which a user can be connected to.

Chapter 6. Combinatorial Multi-Access Caching 131

6.7.3 Constructing the Optimization Problem
Toward building a converse bound on the optimal average worst-case load
R⋆

avg,B over the connectivities in B, we recall that as before we have

R⋆
avg,B = 1

|B|
∑︂
b∈B

Rb. (6.104)

Let us split again the ensemble of interest as B = Ba ∪ Bb, where Ba is
the set of connectivities for which all the K users are connected to the same
set of caches and where Bb = B \ Ba.

For each connectivity b ∈ Ba, we will create several bounds as the one
in (6.100). Toward this, we consider any vector d ∈ D and for each such
vector we employ Λ! times the permutation vector cb whose first α positions
hold the indices of the caches to which the K users are connected according
to the connectivity b ∈ Ba. Also in this case, we assume that these first α
positions in cb are put in ascending order and that the same holds, separately,
for the remaining Λ − α elements. Notice that, differently from the proof in
Theorem 6.2, here it is the case that α ∈ [0 : Λ], since we are considering the
most general ensemble of connectivities.

On the other hand, for each connectivity b ∈ Bb we will create several
lower bounds as the one in (6.100) by considering any demand vector d ∈ D
and any permutation vector c ∈ C. Our aim is then to take the average of
all such bounds to eventually obtain a useful lower bound on the optimal
average worst-case load across connectivities in B. Noticing that it holds that
Ba = ⋃︁Λ

α=0 Bα,a and recalling that we have |D| =
(︂

N
K

)︂
K! and |C| = Λ!, we aim

to simplify the expression given by(︄
N

K

)︄
K!Λ!B

∑︂
b∈B

Rb ≥
Λ∑︂

α=0

∑︂
b∈Bα,a

∑︂
d∈D

Λ!
∑︂

k∈[K]∑︂
Ti⊆([Λ]\{cb,1,...,cb,α})

⃓⃓⃓
Wd{cb,1,...,cb,α}k

,Ti

⃓⃓⃓

+
∑︂

b∈Bb

∑︂
d∈D

∑︂
c∈C

(︄ ∑︂
k∈[K∅,b]

∑︂
T ⊆[Λ]

⃓⃓⃓
Wd∅k

,T

⃓⃓⃓
+
∑︂

α∈[Λ]

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:
|Ui|=α,ci∈Ui∑︂

k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓)︄

(6.105)

132 6.7. Proof of Theorem 6.3

which can be rewritten by means of (6.104) as

R⋆
avg,B ≥ 1(︂

N
K

)︂
K!Λ! |B|B

⎡⎣ Λ∑︂
α=0

∑︂
b∈Bα,a

∑︂
d∈D

Λ!
∑︂

k∈[K]∑︂
Ti⊆([Λ]\{cb,1,...,cb,α})

⃓⃓⃓
Wd{cb,1,...,cb,α}k

,Ti

⃓⃓⃓

+
∑︂

b∈Bb

∑︂
d∈D

∑︂
c∈C

⎛⎝ ∑︂
k∈[K∅,b]

∑︂
T ⊆[Λ]

⃓⃓⃓
Wd∅k

,T

⃓⃓⃓

+
∑︂

α∈[Λ]

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:
|U i|=α,ci∈U i

∑︂
k∈[KUi,b]

∑︂
Ti⊆([Λ]\{c1,...,ci})

⃓⃓⃓⃓
WdUi

k
,Ti

⃓⃓⃓⃓ ⎞⎠⎤⎦.

(6.106)

The next step is to simplify the expression in (6.106). Toward this, we proceed
to count how many times each subfile Wn,T — for any given n ∈ [N], T ⊆ [Λ]
and |T | = t′ for some t′ ∈ [0 : Λ] — appears in (6.106).

Consider the connectivities in Ba. Assume that the file Wn is demanded
by the user Uk for some k ∈ [K], for some U ⊆ ([Λ] \ T) with |U| = α and for
some α ∈ [0 : Λ − t′]. If we follow the same reasoning as in Section 6.6 and
we further consider that α ∈ [0 : Λ − t′], we can find that the subfile Wn,T is
counted

Λ−t′∑︂
α=0

K

(︄
Λ − t′

α

)︄
Λ!

(︂
N
K

)︂
K!

N
(6.107)

times across the set of connectivities in Ba.
Let us now consider a specific connectivity b ∈ Bb. Assume that the file

Wn is demanded by the user Uk for some k ∈ [KU ,b], for some U ⊆ ([Λ] \ T)
with |U| = α and for some α ∈ [0 : Λ− t′], recalling once again that such file is
requested by user Uk a total of

(︂
N
K

)︂
K!/N times. Once again, the procedure to

follow is the same described in Section 6.6. The difference here is to count how
many connectivities b ∈ Bb exist with KU ,b = K − i where i ∈ [K]. Indeed,
this number of connectivities is now equal to the number of non-negative
integer solutions of the equation ∑︂

U ′⊆[Λ]:U ′ ̸=U
yU ′ = i (6.108)

which is equal to the number of
(︂
2Λ − 1

)︂
-weak compositions of the integer i.

Such number is given by (︄
i+ 2Λ − 2

i

)︄
. (6.109)

Chapter 6. Combinatorial Multi-Access Caching 133

Thus, going over all connectivities in Bb, the subfile Wn,T is counted a total
of

α!t′!(Λ − α− t′)!
(︄

Λ
t′ + α

)︄(︂N
K

)︂
K!

N

K−1∑︂
i=1

(K − i)
(︄
i+ 2Λ − 2

i

)︄
(6.110)

times within the set of distinct demands for which the file Wn is requested by
users connected to the α caches in U . The same reasoning applies for each
U ⊆ ([Λ] \ T) with |U| = α and for each α ∈ [0 : Λ − t′], and so the subfile
Wn,T is counted a total of

Λ−t′∑︂
α=0

α!t′!(Λ−α−t′)!
(︄

Λ
t′ + α

)︄(︄
Λ − t′

α

)︄(︂N
K

)︂
K!

N

K−1∑︂
i=1

(K−i)
(︄
i+ 2Λ − 2

i

)︄
(6.111)

times when we span across connectivities in Bb.
Now, going through all connectivities in B = Ba ∪ Bb, we can see that the

subfile Wn,T appears in (6.106) a total of

Λ−t′∑︂
α=0

⎛⎝K(︄Λ − t′

α

)︄
Λ!

(︂
N
K

)︂
K!

N

+ Λ!

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂
(︂

N
K

)︂
K!

N

K−1∑︂
i=1

(K − i)
(︄
i+ 2Λ − 2

i

)︄⎞⎠ (6.112)

times. The same reasoning follows for any n ∈ [N] and for any T ⊆ [Λ] with
|T | = t′. Thus, we can rewrite (6.106) after some simplifications as

R⋆
avg,B ≥

Λ∑︂
t′=0

Λ−t′∑︂
α=0

1
|B|

⎛⎝K(︄Λ − t′

α

)︄

+

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+ 2Λ − 2

i

)︄⎞⎠xt′ (6.113)

=
Λ∑︂

t′=0
f(t′)xt′ (6.114)

where we define

f(t′) :=
Λ−t′∑︂
α=0

1
|B|

⎛⎝K(︄Λ − t′

α

)︄
+

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+ 2Λ − 2

i

)︄⎞⎠ (6.115)

0 ≤ xt′ :=
∑︂

n∈[N]

∑︂
T ⊆[Λ]:|T |=t′

|Wn,T |
NB

. (6.116)

134 6.7. Proof of Theorem 6.3

At this point, formulating the optimization problem as in (6.61) and as
in (6.83), we seek to lower bound the solution to the following

min
x

Λ∑︂
t′=0

f(t′)xt′ (6.117a)

subject to
Λ∑︂

t′=0
xt′ = 1 (6.117b)

Λ∑︂
t′=0

t′xt′ ≤ ΛM
N

. (6.117c)

6.7.4 Lower Bounding the Solution to the Optimization
Problem

Before proceeding to lower bound the solution to the optimization problem,
we aim to simplify the expression f(t′). Toward this, we notice that the only
difference between the expression in (6.81) and the expression in (6.115) is
that the latter is a summation over α of Λ − t′ + 1 terms, where each of
these terms is the same as the expression in (6.81) except for the considered
ensemble B and for the term 2Λ in place of

(︂
Λ
α

)︂
in the binomial coefficient

which appears in the summation over i. This latter difference does not change
the simplification steps presented in the previous proof for what concerns each
summand in (6.115), so we can directly conclude that f(t′) can be simplified
as

f(t′) =
Λ−t′∑︂
α=0

K

|B|

⎛⎝(︄Λ − t′

α

)︄

+ 1
|B|

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ K−1∑︂
i=1

(K − i)
(︄
i+ 2Λ − 2

i

)︄⎞⎠ (6.118)

=
Λ−t′∑︂
α=0

⎛⎝K
(︂

Λ
t′+α

)︂
2Λ
(︂

Λ
t′

)︂ + At′,α

⎞⎠ (6.119)

where we define

At′,α := K

|B|

(︄
Λ − t′

α

)︄⎛⎝1 − 1(︂
t′+α

α

)︂
⎞⎠ . (6.120)

Now, it can be shown that each summand

K
(︂

Λ
t′+α

)︂
2Λ
(︂

Λ
t′

)︂ + At′,α (6.121)

Chapter 6. Combinatorial Multi-Access Caching 135

is convex and decrasing for fixed value of α, as we did previously in Section 6.6.
Hence, we can conclude also in this case that the function f(t′) is a non-
negative linear combination of convex and decreasing functions, and so we
can lower bound the solution to the optimization problem again applying
Jensen’s inequality and using the memory size constraint. Consequently, for
t = ΛM/N , following the same steps as in the proof of Section 6.6, we can
now conclude that the optimal average worst-case load B is lower bounded
by Ravg,B,LB which is a piecewise linear curve with corner points

(M,Ravg,B,LB) =
⎛⎝tNΛ ,

Λ−t∑︂
α=0

K
(︂

Λ
t+α

)︂
2Λ
(︂

Λ
t

)︂ + At,α

⎞⎠ , ∀t ∈ [0 : Λ] (6.122)

This concludes the proof.

Chapter 7

Multi-Access Distributed
Computing

In this chapter, we propose multi-access distributed computing (MADC) as a
novel generalization of the original coded distributed computing (CDC) model,
where now mappers (nodes in charge of the map functions) and reducers
(nodes in charge of the reduce functions) are distinct computing nodes that are
connected through a multi-access network topology. Focusing on the MADC
setting with combinatorial topology, which implies Λ mappers and K reducers
such that there is a unique reducer connected to any α mappers, we propose a
novel coded scheme and a novel information-theoretic converse, which jointly
identify the optimal inter-reducer communication load, as a function of the
computation load, to within a constant gap of 1.5. Additionally, a modified
coded scheme and converse identify the optimal max-link communication
load across all existing links to within a gap of 4. The unparalleled coding
gains reported here should not be simply credited to having access to more
mapped data, but rather to the powerful role of topology in effectively aligning
mapping outputs. This realization raises the open question of which multi-
access network topology guarantees the best possible performance in distributed
computing.

7.1 Introduction

With the development of large-scale machine learning algorithms and
applications relying heavily on large volumes of data, we are now

experiencing an ever-growing need to distribute large computations across
multiple computing nodes. Different computing frameworks, such as MapRe-
duce [58] and Spark [78], have been proposed to address these needs, based

137

138 7.1. Introduction

on the aforementioned simple yet powerful concept of distributing large-scale
algorithms — to be executed over a set of input data files — across multiple
computing machines. Under the well-known MapReduce framework, the
overall process is typically split in three distinct phases, starting with the map
phase, the shuffle phase and then the reduce phase. During the map phase,
each computing node is assigned a subset of the input data files, and proceeds
to apply to each locally available file certain designated map functions. The
outputs of such map functions, referred to as intermediate values (IVs), are
then exchanged among the computing nodes during the shuffle phase, so
that each computing node can retrieve any missing, required IVs it did not
compute locally. Finally, during the reduce phase, each computing node
computes one (or more) output functions depending on its assigned reduce
functions, each of which takes as input the IVs computed for each input file.

7.1.1 Coded Distributed Computing
Several studies have shown that the aforementioned distributed map-shuffle-
reduce approach comes with bottlenecks that may severely hinder the par-
allelization of computationally-intensive operations. While some works [79],
[80] focused on the impact of straggler nodes, other works have pointed out
that the total execution time of a distributed computing application is often
dominated by the shuffling process. For instance, the work in [81], having
explored the behavior of several algorithms on the Amazon EC2 cluster,
revealed that the communication load in the shuffle phase was in fact the
dominant bottleneck in computing the above tasks in a distributed manner.
Similarly, the authors in [52] observed that, for the execution of a conventional
TeraSort application, more than 95 % of the overall execution time was spent
for inter-node communication.

Motivated by this communication bottleneck in the shuffle phase, the
authors in [52] introduced coded distributed computing (CDC) as a novel
framework that can yield lower communication loads during data shuffling.
This gain could be attributed to a careful and joint design of the map and
the shuffle phases. Approaching the distributed computing problem from an
information-theoretic perspective, the authors brought to light the interesting
relationship between the computation load during the mapping phase, and
the communication load of the shuffling step. In particular, the work in [52]
revealed that if the computation load of the mapping phase is carefully
increased by a factor r — which means that each input file is mapped on
average by r carefully chosen computing nodes — then the communication load
can be reduced by the same factor r by employing coding techniques during

Chapter 7. Multi-Access Distributed Computing 139

the shuffle phase1. Building on the coding-based results in cache networks [2],
[82], the work in [52] characterized the exact information-theoretic tradeoff
between this computation and communication loads under any map-shuffle-
reduce scheme with uniform mapping capabilities and uniform assignment of
reduce functions.

Since its original information-theoretic inception in [52], coded distributed
computing has been explored with several variations. Such variations include
heterogeneity aspects where, for example, each computing node may be as-
signed different numbers of files to be mapped and functions to be reduced.
For such settings, novel schemes, based on hypercube and hypercuboid geo-
metric structures, were developed in [65], [83], which managed not only to
compensate for the heterogeneous nature of the considered scenarios, but
to also exploit these asymmetries in order to require a smaller number of
input files2, compared to the initial scheme in [52]. Regarding this problem of
requiring a large number of input files, it is worth also mentioning the work
in [84], where the authors proposed a system model for distributed computing,
where the required number of input files was lowered dramatically under an
assumption of a multi-rank wireless network.

Some additional works explored the scenario where the computing servers
communicate with each other through switch networks [85] or in the presence of
a randomized connectivity [86], whereas some other works further investigated
distributed computing over wireless channels [87], as well as explored the
interesting scenario where each computing node might have limited storage
and computational resources [88], [89]. A comprehensive survey on CDC is
nicely presented in [90].

7.1.2 Main Contributions
In this chapter, we propose the new multi-access distributed computing
(MADC) model, which can be considered as an extension of the original
setting introduced in [52], and which entails mappers (map nodes) being
connected to various reducers (reduce nodes), and where these mappers and

1This speedup factor r is often referred to as the coding gain, and it reflects the number
of computing servers that simultaneously benefit from a single transmission.

2It is worth noting here the importance of designing schemes that can work with a
smaller number of input files. The coded scheme in [52], albeit achieving the information-
theoretic optimal, requires a number of input files that increases exponentially with the
number of computing nodes. This may entail some limitations when finite-sized data sets
are considered. Finding schemes with good performance and low file-number requirements
is a research direction of significant importance.

140 7.1. Introduction

reducers are now distinct entities3. As is common, mappers are in charge
of mapping subsets of the input files, whereas the reducers are in charge of
collecting the IVs in order to compute the reduce functions. We will here focus
on the so-called combinatorial topology which will define how the mappers
are connected to the reducers. This is a widely studied topology in other
settings outside of distributed computing (see the previous Chapter 6), and
it will — as we will discover later on — allow for stunning gains. Under such
combinatorial topology, we consider Λ map nodes and K ≥ Λ reduce nodes,
where each map node maps a subset of the input files, where each reduce
node is connected to α map nodes, and where there is exactly one reducer
for each subset of α map nodes. Each reducer can retrieve intermediate
values only from the mappers it is connected to, whereas these same reducers
can exchange via an error-free shared-link broadcast channel the remaining
required intermediate values. A simple schematic of the model is shown in
Figure 1.3 for the case Λ = 4, α = 2 and K = 6.

As discussed before, the communication load in the shuffle phase can
represent a significant bottleneck of distributed computing. As a consequence,
our objective is to minimize the volume of data exchanged by the reducers over
the common-bus link during the shuffle phase, as well as the communication
load between the mappers and the reducers. We start our analysis by first
neglecting the communication cost between mappers and reducers, and we
propose — for the aforementioned MADC model with combinatorial topology

— a novel coded scheme that allows for efficient communication over the
broadcast communication channel. For such setting, we also provide an
information-theoretic lower bound on the communication load, and we show
this to be within a constant multiplicative gap of 1.5 from the achievable
communication load guaranteed by the proposed coded scheme. We then
proceed to also account for the download cost from mappers to reducers.
For such setting, our goal is to minimize the maximal (normalized) number
of bits across all links in the system. To this purpose, we introduce an
additional mappers-to-reducers communication scheme and a novel converse
bound which, together with the previous inter-reducer scheme, allow us to
characterize the optimal max-link communication load within a constant
multiplicative gap of 4.

As suggested above, the newly derived fundamental limits suggest out-
standing performance. While for any given computation load r the original
setting in [52] accepts a maximal coding gain of r, we here show that the new

3This choice is reasonable if we think of mappers as computing nodes that are specialized
in evaluating the map functions, and of reducers as computing nodes that are specialized
in evaluating the reduce functions [91], [92].

Chapter 7. Multi-Access Distributed Computing 141

MADC model with combinatorial topology allows for a coding gain equal to(︂(︂
r+α

r

)︂
− 1

)︂
, again for the same mapping cost r. This we believe is the first

time that topology is shown to have such powerful impact in the setting of
coded distributed computing.

7.1.3 Chapter Outline
The rest of the chapter is organized as follows. First, the system model is
presented in Section 7.2. Next, Section 7.3 provides the main contributions.
An illustrative example of the novel coded scheme for multi-access distributed
computing is then described in Section 7.4. After that, the general proofs of
the achievable schemes and the converse bounds are presented from Section 7.5
to Section 7.8. Some additional proofs are provided in Appendix C.

7.2 System Model
The general distributed computing problem [52] consists of computing Q
output functions from N input files with Q,N ∈ N+. Each file wn ∈ F2F with
n ∈ [N] consists of F bits for some F ∈ N+, and the q-th function is defined
as

ϕq : FN
2F → F2B (7.1)

for each q ∈ [Q], i.e., each function maps all the N input files into a stream
uq = ϕq(w1, . . . , wN) ∈ F2B of B bits. The main assumption is that each
function ϕq is decomposable and so can be written as

ϕq(w1, . . . , wN) = hq(gq,1(w1), . . . , gq,N(wN)), ∀q ∈ [Q] (7.2)

where there is a map function gq,n : F2F → F2T for each n ∈ [N], which maps
the input file wn into an intermediate value (IV) vq,n = gq,n(wn) ∈ F2T of T
bits, and a reduce function hq : FN

2T → F2B , which maps all the IVs (one per
input file) into the output value uq = hq(vq,1, . . . , vq,N) ∈ F2B of B bits.

In this chapter, we assume to have machines that are devoted to computing
map functions, and machines that are devoted to computing reduce functions.
Thus, a node assigned map functions is not assigned reduce functions, and
vice versa. In our setting, we consider Λ mappers and K =

(︂
Λ
α

)︂
reducers,

where — in accordance with the combinatorial topology of choice — there is a
unique reducer connected to each subset of α mappers. Denoting by U ∈ [Λ]α
the reducer connected to the α mappers in the set U , before the computation
begins, each reducer U ∈ [Λ]α is assigned a subset WU ⊆ [Q] of the output
functions, where here WU contains the indices of the functions assigned to

142 7.2. System Model

reducer U . For simplicity, we assume in our setting a symmetric and uniform
task assignment, which implies |WU | = Q/K = η2 for some η2 ∈ N+ and for
each U ∈ [Λ]α, and WU1 ∩ WU2 = ∅ for all U1,U2 ∈ [Λ]α such that U1 ̸= U2.
Afterwards, the computation is performed across the set of mappers and
reducers in a distributed manner following the map-shuffle-reduce paradigm.

Table 7.1: Parameters for the MADC system with combinatorial topology

Number of Mappers Λ

Multi-Access Degree α

Number of Reducers K =
(︂

Λ
α

)︂
Number of Input Files N

Computation Load r

Communication Load L

Download Cost J

Max-Link Load Lmax-link = max(L, J)

During the map phase, a set of files Mλ ⊆ {w1, . . . , wN} is assigned
to the mapper λ for each λ ∈ [Λ]. Each mapper λ ∈ [Λ] computes the
intermediate values Vλ = {vq,n : q ∈ [Q], wn ∈ Mλ} for all the Q reduce
functions using the files in Mλ which it has been assigned. Since reducer
U ∈ [Λ]α is connected to the mappers in U , it can access the intermediate
values in the set VU = {vq,n : q ∈ [Q], wn ∈ MU}, where MU = ⋃︁

λ∈U Mλ

is simply the union set of files assigned to and mapped by the map nodes
in U . When the communication cost between mappers and reducers is not
neglected, we can define the download cost as follows.

Definition 7.1 (Download Cost). The download cost, denoted by J , is defined
as the maximal normalized number of bits transmitted across the links from
the mappers to the reducers, and is given by

J := max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(7.3)

where RU
λ denotes the number of bits that are transmitted by mapper λ ∈ [Λ]

to reducer U ∈ [Λ]α where λ ∈ U .

Chapter 7. Multi-Access Distributed Computing 143

Assuming that each mapper computes all possible IVs from locally available
files4, we define the computation load as follows.

Definition 7.2 (Computation Load). The computation load, denoted by r,
is defined as the total number of files mapped across the Λ map nodes and
normalized by the total number of files N , and it takes the form

r :=
∑︁

λ∈[Λ] |Mλ|
N

. (7.4)

Remark 7.1. We wish to point out that the definition of computation load
above reflects the overall mapping cost across the Λ map nodes. As it will
become clear later, our novel system model will allow for a massive computa-
tional amelioration (in the reduce phase) — with a bounded communication
overhead — at the cost of a modest mapping cost across the Λ mappers.

During the shuffle phase, each reducer U ∈ [Λ]α retrieves the IVs from the
mappers in U and creates a signal XU ∈ F2ℓU for some ℓU ∈ N+ and for some
encoding function ψU : FQ|MU |

2T → F2ℓU , where XU takes the form

XU = ψU(VU). (7.5)

Then, the signal XU is multicasted to all other reducers via the broadcast link
which connects the reducers. Since such link is assumed to be error-free, each
reducer receives all the multicast transmissions without errors. The amount of
information exchanged during this phase is referred to as the communication
load, which is formally defined in the following.

Definition 7.3 (Communication Load). The communication load, denoted by
L, is defined as the total number of bits transmitted by the K reducers over
the broadcast channel during the shuffle phase, and — after normalization by
the number of bits of all intermediate values — this load is given by

L :=
∑︁

U∈[Λ]α ℓU

QNT
. (7.6)

Recalling that reducer U ∈ [Λ]α is assigned a subset of output functions
whose indices are in WU , each reducer U ∈ [Λ]α wishes to recover the IVs
{vq,n : q ∈ WU , n ∈ [N]} to correctly compute uq for each q ∈ WU . Thus,
during the reduce phase, each reducer U ∈ [Λ]α reconstructs all the needed
intermediate values for each q ∈ WU using the messages communicated in the

4This means that each mapper λ ∈ [Λ] computes the intermediate value vq,n for each
q ∈ [Q] and for each wn ∈ Mλ.

144 7.3. Main Results

shuffle phase and the intermediate values VU retrieved from the mappers in
U , i.e., each reducer U ∈ [Λ]α computes

(vq,1, . . . , vq,N) = χq
U(XS : S ∈ [Λ]α,VU) (7.7)

for each q ∈ WU and for some decoding function χq
U : ∏︁S∈[Λ]α F2ℓS ×FQ|MU |

2T →
FN

2T . In the end, each reducer U ∈ [Λ]α computes the output function
uq = hq(vq,1, . . . , vq,N) for each assigned q ∈ WU .

When the download cost is neglected, our goal is to characterize the opti-
mal tradeoff between computation and communication L⋆(r). This optimal
tradeoff is simply defined as

L⋆(r) := inf{L : (r, L) is achievable} (7.8)
where the tuple (r, L) is said to be achievable if there exists a map-shuffle-
reduce procedure such that a communication load L can be guaranteed
for a given computation load r. On the other hand, when we indeed jointly
consider both the inter-reducer communication cost and the mapper-to-reducer
download cost, then our aim will be to characterize the optimal max-link
communication load L⋆

max-link(r), which is defined as
L⋆

max-link(r) := inf{Lmax-link : (r, Lmax-link) is achievable} (7.9)
where Lmax-link := max(L, J) represents the maximum between the commu-
nication load and the download cost for a given computation load r. In
simple words, Lmax-link represents the maximal normalized number of bits
flowing across any link in the considered system model. Notice that we will
assume, throughout the chapter, uniform computational capabilities across
the mappers and uniform assignment of reduce functions across the reducers,
as is commonly assumed (see for example the original work in [52]).
Remark 7.2. When α = 1, there are K = Λ mapper-reducer pairs. If we
consider each pair to be a single computing server (which can automatically
imply a zero download cost), the proposed system model trivially coincides
with the original setting in [52]. Hence, since the results in this chapter will
hold for any α ∈ [Λ], the proposed model can in fact be considered as a proper
extension of the original coded distributed computing model.

7.3 Main Results
In this section, we will provide our main contributions. As we have already
mentioned, we will first consider a setting where the download cost is neglected.
Subsequently, we will provide some additional results for the more realistic
scenario where the cost of delivering data from the mappers to the reducers
is non-zero.

Chapter 7. Multi-Access Distributed Computing 145

7.3.1 Characterizing the Communication Load
The first result that we provide is the achievable computation-communication
tradeoff provided by the novel coded scheme that will be presented in its
general form in Section 7.5. The result is formally stated in the following
theorem.

Theorem 7.1 (Achievable Bound). Consider the MADC setting with com-
binatorial topology, where there are Λ mappers and K =

(︂
Λ
α

)︂
reducers for a

fixed value of α ∈ [Λ]. Then, the optimal communication load L⋆ is upper
bounded by LUB which is a piecewise linear curve with corner points

(r, LUB) =
⎛⎝r,

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂
⎞⎠ , ∀r ∈ [Λ − α + 1]. (7.10)

Proof. The detailed proof of the scheme is reported in Section 7.5, whereas
an illustrative example is instead described in Section 7.4.

As we already mentioned in Remark 7.2, if we set α = 1 and we consider
each mapper-reducer pair as a unique computing machine, we obtain the
same system model in [52]. Interestingly, we can see that, if we specialize the
result in Theorem 7.1 to the case α = 1, we obtain the same computation-
communication tradeoff as in [52, Theorem 1].

Another noteworthy aspect is the following. If we fix the number of map-
pers Λ and the computation load r, then adding more reducers by increasing5

the multi-access degree α will in fact entail a smaller communication load.
This (perhaps surprising) outcome is most certainly not the result of each
reducer requiring fewer intermediate values during the shuffle phase. Such
decrease could not have compensated for the increasing K. Instead, this de-
crease in the communication load stems from the nature of the combinatorial
topology, which allows each reducer to more efficiently use its side information
to cancel interference in an accelerated manner. This is achieved because
these reducers are connected to the mappers in a manner that effectively
aligns the interference patterns. As one can imagine, if we increase the number
of reducers and we properly connect each of them to multiple mappers, the
achievable scheme in Theorem 7.1 outperforms the coded scheme in [52]. This
is formally stated in the following corollary.

Corollary 7.1.1. For fixed computation load r, the achievable communication
load in Theorem 7.1 decreases for increasing α, even though K — and so

5Notice that the number K =
(︁Λ

α

)︁
of reducers is actually increased as long as α ≤ Λ/2.

The scenario where α > Λ/2 is unrealistic and is not considered here.

146 7.3. Main Results

the corresponding speedup factor in computing reduce functions — increases
substantially.

Proof. The proof is described in Appendix C.1.

We proceed to construct an information-theoretic converse on the com-
munication load of the MADC setting. As it will be pointed out in the
general proof in Section 7.6, the construction of the converse takes inspiration
from [65, Lemma 2] as well as from ideas in Chapter 6. Essentially, the bound
here manages to merge the approach in [65, Lemma 2], where a converse
bound is built using key properties of the entropy function, with the index
coding techniques in Chapter 6, where the nodes of a side information graph
are iteratively selected in a proper way to systematically identify large acyclic
subgraphs that are used to develop a tight converse. The result is formally
stated in the following.

Theorem 7.2 (Converse Bound). Consider the MADC setting with combina-
torial topology, where there are Λ mappers and K =

(︂
Λ
α

)︂
reducers for a fixed

value of α ∈ [Λ]. Then, the optimal communication load L⋆ is lower bounded
by LLB which is a piecewise linear curve with corner points

(r, LLB) =
⎛⎝r,

(︂
Λ

r+α

)︂
(︂

Λ
α

)︂(︂
Λ
r

)︂
⎞⎠ , ∀r ∈ [Λ − α + 1]. (7.11)

Proof. The proof is described in Section 7.6.

Finally, from the results in Theorem 7.1 and Theorem 7.2, we can provide
an order optimality guarantee for the MADC model. Indeed, comparing the
achievable performance and the converse bound, we conclude that the two are
within a constant multiplicative gap. We see this in the following theorem6.

Theorem 7.3 (Order Optimality). For the MADC system with combinatorial
topology, Λ mappers and K =

(︂
Λ
α

)︂
reducers for a fixed value of α ∈ [2 : Λ],

the achievable performance in Theorem 7.1 is within a factor of at most 1.5
from the optimal.

Proof. The proof is described in Appendix C.2.

6Notice that the order optimality result in Theorem 7.3 excludes the value α = 1.
Indeed, it can be verified that for such case the achievable performance in Theorem 7.1
and the converse in Theorem 7.2 are within a factor of at most 2. However, we already
know that the coded scheme in [52] is exactly optimal when α = 1. Hence, such value is
neglected when comparing the aforementioned results.

Chapter 7. Multi-Access Distributed Computing 147

1 2 3 4 5 6 7 8 9 10 110

0.2

0.4

0.6

0.8

1

Computation Load r

C
om

m
un

ic
at

io
n

Lo
ad

L
(r

)
CDC with Λ = 10 and α = 1
Achievable MADC with Λ = 10 and α = 2
Converse MADC with Λ = 10 and α = 2

Figure 7.1: Comparison between original CDC, where there are Λ = 10 pairs
of mappers and reducers, and MADC with combinatorial topology, Λ = 10
mappers and K = 45 reducers, where each of them is uniquely associated to
α = 2 mappers.

In Figure 7.1 we can see a comparison between the original CDC framework
and the proposed MADC model. More specifically, for the first setting we
consider Λ = 10 pairs of mappers and reducers, where each pair λ ∈ [10] can be
considered as a unique computing server having its own subset Mλ of assigned
files. For the second setting we consider Λ = 10 mappers and K =

(︂
10
2

)︂
= 45

reducers, where there is a reducer connected to any α = 2 mappers. According
to Corollary 7.1.1, the achievable load in Theorem 7.1 decreases for increasing
α and fixed computation load, as indicated by the diamond blue curve in
Figure 7.1 which is well below the dot black counterpart corresponding to the
original achievable scheme of coded distributed computing. Notice that the
comparison in Figure 7.1 between the CDC setting with α = 1 and the MADC
setting with α > 1 is fair for what concerns the computation-communication
tradeoff: indeed, not only the computation load r remains the same as long
as the number of mappers Λ stays the same, but also the number of reducers
that need to communicate with each other is much larger than Λ when α > 1.
Remark 7.3. We point out that comparing a setting where α = 1 with a
setting where α > 1 offers noteworthy insights. Indeed, even though one
could expect the communication load to be reduced when α > 1 — as in

148 7.3. Main Results

such case each reducer accesses more than one mapper and consequently
misses less intermediate values — it is also true that the number of reducers
itself increases as α increases. Consequently, there is an undeniable tension
between the higher multi-access degree α > 1 for each reducer, which implies
less data needed by each reducer, but also implies a larger number of reducers
in the system. For these reasons, it is interesting to notice how the network
topology plays a fundamental role in resolving such tension by appropriately
shaping the interference patterns. As a consequence, the communication load
ultimately decreases as the number of reducers K =

(︂
Λ
α

)︂
increases as long as

each of them is properly connected to α mappers.

1 2 3 4 5 6 7

20

40

60

80

Computation Load r

C
od

in
g

G
ai

n

Gain with α = 1
Gain with α = 2
Gain with α = 3

Figure 7.2: Comparison between the coding gain for different values of α as
a function of the computation load r. We recall that α = 1 corresponds to
the original CDC framework.

A further comparison is provided in Figure 7.2 which focuses on the coding
gains. As we can see, the gains brought about by the multi-access setting are
impressive even when the computation load is small, which is the regime of
interest in practical settings.

7.3.2 Characterizing the Max-Link Load
We now consider a distributed computing scenario where the download cost is
not negligible. The following describes the achievable max-link communication

Chapter 7. Multi-Access Distributed Computing 149

load that captures both communication and download costs.

Theorem 7.4 (Achievable Bound). Consider the MADC setting with combi-
natorial topology, where there are Λ mappers and K =

(︂
Λ
α

)︂
reducers for a fixed

value of α ∈ [Λ]. Then, the optimal max-link communication load L⋆
max-link is

upper bounded by Lmax-link,UB which is given by

Lmax-link,UB = max
⎛⎝∑︂

j∈[Λ]

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
,
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
⋆

N

⎞⎠ (7.12)

where the vector ã⋆ = (ã1
⋆, . . . , ã

Λ
⋆) is the optimal solution to the linear program

min
ãM

1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

M
N

(7.13a)

subject to ãj
M ≥ 0, ∀j ∈ [Λ] (7.13b)∑︂

j∈[Λ]

ãj
M
N

= 1 (7.13c)

∑︂
j∈[Λ]

j
ãj

M
N

≤ r (7.13d)

and where ãM = (ã1
M, . . . , ãΛ

M) is the control variable.

Proof. The detailed proof of the scheme is reported in Section 7.7.

We proceed by proposing an information-theoretic converse on the max-
link communication load. The result is presented in the following theorem.

Theorem 7.5 (Converse Bound). Consider the MADC setting with combina-
torial topology, where there are Λ mappers and K =

(︂
Λ
α

)︂
reducers for a fixed

value of α ∈ [Λ]. Then, the optimal max-link communication load L⋆
max-link is

lower bounded by Lmax-link,LB which is given by

Lmax-link,LB = 1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

⋆

N
(7.14)

where the vector ã⋆ = (ã1
⋆, . . . , ã

Λ
⋆) is the optimal solution to the linear program

in (7.13).

Proof. The proof is described in Section 7.8.

150 7.4. Illustrative Example of the Coded Scheme

Finally, we can compare the results in Theorem 7.4 and Theorem 7.5 to
establish the gap to optimality of the achievable performance in Theorem 7.4.
Notice that now we do not exclude the value α = 1 for such comparison, since
for such case there is no previously known optimality result to the best of
our knowledge.

Theorem 7.6 (Order Optimality). For the MADC system with combinatorial
topology, Λ mappers and K =

(︂
Λ
α

)︂
reducers for a fixed value of α ∈ [Λ], the

achievable performance in Theorem 7.4 is within a factor of at most 4 from
the optimal.

Proof. The proof is described in Appendix C.3.

Remark 7.4. Interestingly, the results in this section can also be derived —
while keeping the same constant factor of at most 4 from the optimal — for
a weighted max-link load defined as Lmax-link,β := max(L, βJ) for some β ≥ 0.
Notice that such metric is of particular interest whenever we want to account
for a weighted download cost βJ , in which case the cost of communicating
data from mappers to reducers is proportional to the maximal number of
normalized bits flowing from any one mapper to any one reducer. The
extreme case β = 0 corresponds to the communication load Lmax-link,0 = L
characterized in Section 7.3.1, whereas the case β = 1 implies the max-link
load Lmax-link,1 = Lmax-link investigated in the current section.

7.4 Illustrative Example of the Coded Scheme
In this section, we propose an illustrative example of the coded scheme which
will be later presented in its general form in Section 7.5. The example refers
to the schematic in Figure 1.3. Notice that this section aims to provide an
example for the achievable scheme in Theorem 7.1, consequently the download
cost will be neglected.

We consider Λ = 4 mappers and K =
(︂

Λ
α

)︂
= 6 reducers where α = 2.

We assume to have Q = 12 output functions to be computed across the
ensemble of mappers and reducers, N = 8 input files {wn : n ∈ [8]} and
computation load r = 1. Recalling that the computation load is defined as
the normalized number of files which are mapped across the Λ map nodes,
having computation load equal to r = 1 implies that the number of files
mapped across all mappers is equal to the size of the input data set, i.e., N
files. Under the uniform function assignment assumption, we assign Q/K = 2

Chapter 7. Multi-Access Distributed Computing 151

output functions to each reducer7 U ∈ [4]2 = {12, 13, 14, 23, 24, 34}. Thus,
recalling that WU represents the indices of the reduce functions assigned to
reducer U ∈ [4]2, we arbitrarily let

W12 = {1, 2} (7.15)
W13 = {3, 4} (7.16)
W14 = {5, 6} (7.17)
W23 = {7, 8} (7.18)
W24 = {9, 10} (7.19)
W34 = {11, 12}. (7.20)

7.4.1 Map Phase
This phase requires the input files to be split among mappers and so we
proceed by grouping the N = 8 files into 4 batches Bλ for each λ ∈ [4] as

B1 = {w1, w2} (7.21)
B2 = {w3, w4} (7.22)
B3 = {w5, w6} (7.23)
B4 = {w7, w8}. (7.24)

Then, recalling that Mλ represents the set of files mapped by the mapper
λ ∈ [Λ], we set here Mλ = {BT1 : T1 ⊆ [4], |T1| = 1, λ ∈ T1} = {Bλ}.

Since each mapper is assigned 2 input files, we have that |Mλ| = |Bλ| = 2
for each λ ∈ [4]. Hence, we can check that such file assignment satisfies the
computation load constraint r = 1, as indeed we have∑︁

λ∈[4] |Mλ|
N

= |M1| + |M2| + |M3| + |M4|
8 = 1. (7.25)

Each mapper computes Q = 12 intermediate values for each assigned
input file. In particular, recalling that Vλ is the set of IVs computed by the
mapper λ ∈ [4], we have

V1 = {vq,n : q ∈ [12], wn ∈ M1} (7.26)
V2 = {vq,n : q ∈ [12], wn ∈ M2} (7.27)
V3 = {vq,n : q ∈ [12], wn ∈ M3} (7.28)

7For the sake of simplicity, we will often omit braces and commas when indicating sets,
e.g., the reducer {1, 2}, which is connected to mappers 1 and 2, can be simply denoted as
12.

152 7.4. Illustrative Example of the Coded Scheme

V4 = {vq,n : q ∈ [12], wn ∈ M4}. (7.29)

For example, since mapper 1 is assigned the files in M1 = {w1, w2}, it
will compute the intermediate values vq,1 and vq,2 for all q ∈ [12]. Then,
mapper 2 will compute the intermediate values vq,3 and vq,4 for all q ∈ [12]
since M2 = {w3, w4}. Similarly, mapper 3 and mapper 4 will compute the
intermediate values vq,5 and vq,6, and vq,7 and vq,8, respectively, for all q ∈ [12]
since M3 = {w5, w6} and M4 = {w7, w8}.

Now, considering that there is a reducer connected to any α = 2 mappers,
we know that each reducer U ∈ [4]2 can retrieve the IVs computed by the 2
mappers in U . Recalling that VU denotes the union set of IVs computed by
the mappers in U , we have

V12 = {vq,n : q ∈ [12], wn ∈ M12} (7.30)
V13 = {vq,n : q ∈ [12], wn ∈ M13} (7.31)
V14 = {vq,n : q ∈ [12], wn ∈ M14} (7.32)
V23 = {vq,n : q ∈ [12], wn ∈ M23} (7.33)
V24 = {vq,n : q ∈ [12], wn ∈ M24} (7.34)
V34 = {vq,n : q ∈ [12], wn ∈ M34}. (7.35)

7.4.2 Shuffle Phase
We describe now how each reducer U ∈ [4]2 constructs its multicast message
XU . Since the procedure is the same for each reducer, we continue our example
by focusing for simplicity on reducer {1, 2} only.

First of all, we let S ⊆ ([4] \ {1, 2}) with |S| = 1. Then, for each
R ⊆ (S∪{1, 2}) such that |R| = 2 and R ≠ {1, 2}, and for T1 = (S∪{1, 2})\R,
reducer {1, 2} concatenates the intermediate values {vq,n : q ∈ WR, wn ∈ BT1}
into the symbol UWR,T1 = (vq,n : q ∈ WR, wn ∈ BT1). Notice that having
R ̸= {1, 2} implies that T1 ∩ {1, 2} ̸= ∅, so reducer {1, 2} can retrieve BT1

from the mappers it is connected to and can construct the symbol UWR,T1 .
Subsequently, such symbol is evenly split as

UWR,T1 = (UWR,T1,T2 : T2 ⊆ (R ∪ T1), |T2| = 2, T2 ̸= R) . (7.36)

This means that when, say, S = {3}, reducer {1, 2} creates the symbols

UW13,2 = (vq,n : q ∈ W13, wn ∈ B2) (7.37)
UW23,1 = (vq,n : q ∈ W23, wn ∈ B1) (7.38)

and when S = {4}, the same reducer {1, 2} creates the symbols

UW14,2 = (vq,n : q ∈ W14, wn ∈ B2) (7.39)

Chapter 7. Multi-Access Distributed Computing 153

UW24,1 = (vq,n : q ∈ W24, wn ∈ B1). (7.40)

Each of the symbols above is then evenly split in two segments as

UW13,2 = (UW13,2,12, UW13,2,23) (7.41)
UW23,1 = (UW23,1,12, UW23,1,13) (7.42)
UW14,2 = (UW14,2,12, UW14,2,24) (7.43)
UW24,1 = (UW24,1,12, UW24,1,14). (7.44)

Next, reducer {1, 2} constructs the coded message⨁︂
R⊆(S∪{1,2}):|R|=2,R≠{1,2}

UWR,(S∪{1,2})\R,12 (7.45)

for each S ⊆ ([4] \ {1, 2}) with |S| = 1, and concatenates all of them to form
X12, which is given by

X12 =
⎛⎝ ⨁︂

R⊆(S∪{1,2}):
|R|=2,R≠{1,2}

UWR,(S∪{1,2})\R,12 : S ⊆ ([Λ] \ {1, 2}), |S| = 1
⎞⎠ (7.46)

= (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12). (7.47)

Similarly, each other reducer prepares and multicasts its message following
the procedure described above. In the end, the following messages

X12 = (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12) (7.48)
X13 = (UW12,3,13 ⊕ UW23,1,13, UW14,3,13 ⊕ UW34,1,13) (7.49)
X14 = (UW12,4,14 ⊕ UW24,1,14, UW13,4,14 ⊕ UW34,1,14) (7.50)
X23 = (UW12,3,23 ⊕ UW13,2,23, UW24,3,23 ⊕ UW34,2,23) (7.51)
X24 = (UW12,4,24 ⊕ UW14,2,24, UW23,4,24 ⊕ UW34,2,24) (7.52)
X34 = (UW13,4,34 ⊕ UW14,3,34, UW23,4,34 ⊕ UW24,3,34) (7.53)

are exchanged among the reducers on the common-bus link during the shuffle
phase.

7.4.3 Reduce Phase
As when describing the shuffle phase, we can again focus on reducer {1, 2}
and observe how it correctly computes the reduce functions in W12 by using
the set of multicast messages {XU : U ∈ [4]2} and the set V12 of IVs which
the reducer {1, 2} can access. Indeed, a similar procedure can be shown for
all other reducers.

154 7.4. Illustrative Example of the Coded Scheme

First of all, reducer {1, 2} needs the IVs {vq,n : q ∈ W12, n ∈ [8]} to
compute the reduce functions in W12. Since such reducer has already access
to the IVs in V12, it can obtain the symbols UW12,1 and UW12,2. However, it
misses the intermediate values {vq,n : q ∈ W12, wn /∈ M12} or, similarly, it
misses the symbols UW12,3 = (vq,n : q ∈ W12, wn ∈ B3) and UW12,4 = (vq,n :
q ∈ W12, wn ∈ B4). We see now how these symbols can be obtained from the
set of multicast messages.

During the shuffle procedure, each symbol is split in two even segments,
so, consequently, symbols UW12,3 and UW12,4 are split as

UW12,3 = (UW12,3,13, UW12,3,23) (7.54)
UW12,4 = (UW12,4,14, UW12,4,24). (7.55)

Now, reducer {1, 2} can decode UW12,3,13 from the message X13. Indeed, the
term UW12,3,13 ⊕UW23,1,13 appears in X13 and reducer {1, 2} can use the IVs in
V12 to cancel the interference term UW23,1,13. Similarly, the term UW12,3,23 ⊕
UW13,2,23 appears in X23, where again the interference UW13,2,23 can be canceled
by means of the IVs retrieved by the mappers 1 and 2. Hence, reducer {1, 2}
successfully decodes UW12,3,13 and UW12,3,23 from the multicasted messages
X13 and X23, reconstructing then the symbol UW12,3 = (UW12,3,13, UW12,3,23).
A similar procedure holds for reducer {1, 2} to successfully reconstruct the
symbol UW12,4, whose two segments are decoded from messages X14 and X24.
Further, a similar procedure holds for any other reducer. Thus, we can
conclude that every reducer is able to compute the assigned reduce functions
after recovering the missing intermediate values from the messages multicasted
by all reducers during the shuffle phase.

7.4.4 Communication Load
Recalling that the communication load is defined as the total number of
bits transmitted by the K reducers during the shuffle phase (normalized by
the number of bits of all intermediate values), we wish to compute for this
example this load, which takes the form

LUB(r = 1) =
∑︁

U∈[Λ]α |XU |
QNT

=
∑︁

U∈[4]2 |XU |
96T . (7.56)

Since |XU | is the same for each U ∈ [4]2, we focus again on reducer {1, 2} and
its multicast transmission X12 = (UW13,2,12 ⊕ UW23,1,12, UW24,1,12 ⊕ UW14,2,12),
which contains two XOR messages. Focusing on the first message UW13,2,12 ⊕
UW23,1,12, we can see that it is a XOR composed of two segments, i.e., one
segment for the symbol UW13,2 and one segment for the symbol UW23,1. Since

Chapter 7. Multi-Access Distributed Computing 155

the size of each symbol is 4T bits, the resulting XOR message has size 2T
bits. Hence, given that X12 contains two XOR messages, we can conclude
that |X12| = 4T bits. Consequently, the resulting achievable communication
load is given by

LUB(r = 1) =
∑︁

U∈[4]2 |XU |
96T = 24T

96T = 1
4 . (7.57)

Using the converse in Theorem 7.2, we can see that the achievable performance
above is within a factor 1.5 from the optimal.

7.5 Proof of Achievable Bound in Theorem 7.1
We assume that there are Λ mappers and K =

(︂
Λ
α

)︂
reducers, and we assume

the aforementioned combinatorial topology where each reducer is exactly
and uniquely connected to α mappers. We then consider some arbitrary
computation load r ∈ [Λ − α+ 1] and we consider Q = η2K output functions
with η2 ∈ N+, allowing us to separate the Q functions into K disjoint
groups WU for each U ∈ [Λ]α, so that each reducer is assigned η2 functions,
corresponding to |WU | = η2 for each U ∈ [Λ]α.

7.5.1 Map Phase
First, the input database is split in

(︂
Λ
r

)︂
disjoint batches, each containing

η1 = N/
(︂

Λ
r

)︂
files, where we assume that N is large enough such that η1 ∈ N+.

Consequently, we have a batch of files for each T1 ⊆ [Λ] such that |T1| = r,
which implies

{w1, . . . , wN} =
⋃︂

T1⊆[Λ]:|T1|=r

BT1 (7.58)

where we denote by BT1 the batch of η1 files associated with the label T1.
Then, mapper λ ∈ [Λ] is assigned all batches BT1 having λ ∈ T1, which means
that

Mλ = {BT1 : T1 ⊆ [Λ], |T1| = r, λ ∈ T1}. (7.59)
We can see that the computation load constraint is satisfied, since we have

∑︁
λ∈[Λ] |Mλ|
N

=
Λη1

(︂
Λ−1
r−1

)︂
η1
(︂

Λ
r

)︂ = r (7.60)

Then, each mapper computes Q intermediate values for each assigned
input file, so for each λ ∈ [Λ] we have Vλ = {vq,n : q ∈ [Q], wn ∈ Mλ}. Since

156 7.5. Proof of Achievable Bound in Theorem 7.1

then each reducer has access to α mappers, reducer U ∈ [Λ]α can retrieve8

the intermediate values in VU = {vq,n : q ∈ [Q], wn ∈ MU} recalling that
MU = ∪λ∈UMλ. Since |VU | = Qη1

(︂(︂
Λ
r

)︂
−
(︂

Λ−α
r

)︂)︂
for each U ∈ [Λ]α, we can

conclude that each computing node has access to all the intermediate values
when r ≥ Λ −α+ 1. Hence, we focus on the non-trivial regime r ∈ [Λ −α+ 1]
for any given Λ and α.

7.5.2 Shuffle Phase
Consider reducer U ∈ [Λ]α. Let S ⊆ ([Λ] \ U) with |S| = r. First, for each
R ⊆ (S ∪ U) such that |R| = α and R ̸= U , and for T1 = (S ∪ U) \ R,
reducer U concatenates the intermediate values {vq,n : q ∈ WR, wn ∈ BT1}
into the symbol UWR,T1 = (vq,n : q ∈ WR, wn ∈ BT1) ∈ F2η2η1T . Subsequently,
such symbol is evenly split in

(︂(︂
r+α

r

)︂
− 1

)︂
segments as

UWR,T1 = (UWR,T1,T2 : T2 ⊆ (R ∪ T1), |T2| = α, T2 ̸= R) . (7.61)

Then, reducer U constructs the coded message⨁︂
R⊆(S∪U):|R|=α,R≠U

UWR,(S∪U)\R,U (7.62)

for each S ⊆ ([Λ] \ U) with |S| = r, and finally concatenates all of them into
the following message

XU =
⎛⎝ ⨁︂

R⊆(S∪U):|R|=α,R≠U
UWR,(S∪U)\R,U : S ⊆ ([Λ] \ U), |S| = r

⎞⎠ (7.63)

which is multicasted to all other reducers via the error-free broadcast channel.

7.5.3 Reduce Phase
Consider reducer U ∈ [Λ]α. Since such reducer is connected to α mappers, it
misses a total of η2η1

(︂
Λ−α

r

)︂
intermediate values, i.e, it misses η2 intermediate

values for each of the η1 files in each batch that is not assigned to the
mappers in U . More precisely, reducer U misses the symbol UWU ,T1 for each
T1 ⊆ ([Λ] \ U) with |T1| = r. We know that during the shuffle phase such
symbol is evenly split in

(︂(︂
r+α

r

)︂
− 1

)︂
segments as

UWU ,T1 = (UWU ,T1,T2 : T2 ⊆ (U ∪ T1), |T2| = α, T2 ̸= U) . (7.64)
8Since we are presenting here the proof of the achievable bound in Theorem 7.1, we will

neglect the download cost, assuming consequently that each reducer can access the IVs
without any additional communication cost.

Chapter 7. Multi-Access Distributed Computing 157

For each T2 ⊆ (U ∪ T1) with |T2| = α and T2 ̸= U , we can verify that reducer
U can decode UWU ,T1,T2 from XT2 . Indeed, there exists an S ⊆ ([Λ] \ T2) with
|S| = r such that S = (U ∪ T1) \ T2. For such S, the corresponding coded
message in XT2 is⨁︂

R⊆(S∪T2):
|R|=α,R≠T2

UWR,(S∪T2)\R,T2 =
⨁︂

R⊆(U∪T1):
|R|=α,R≠T2

UWR,(U∪T1)\R,T2 (7.65)

= UWU ,T1,T2 ⊕
⨁︂

R⊆(U∪T1):
|R|=α,R≠T2,R≠U

UWR,(U∪T1)\R,T2

⏞ ⏟⏟ ⏞
interference

.

(7.66)

Notice that reducer U can cancel the interference term by using the interme-
diate values retrieved from mappers in U , so it can correctly decode UWU ,T1,T2 .
By following the same rationale for each T2 ⊆ (U ∪ T1) with |T2| = α and
T2 ̸= U , we can conclude that reducer U can correctly recover UWU ,T1 and can
do so for each T1 ⊆ ([Λ] \ U), completely recovering all the η2η1

(︂
Λ−α

r

)︂
missing

intermediate values. The same holds for any other U ∈ [Λ]α, and so we can
conclude that each reducer is able to recover from the multicast messages of
other reducers all the missing intermediate values.

7.5.4 Communication Load
The communication load guaranteed by the coded scheme described above is
given by

LUB =
∑︁

U∈[Λ]α |XU |
QNT

(7.67)

=

(︂
Λ
α

)︂
η2η1

(︂
Λ−α

r

)︂
T/

(︂(︂
r+α

r

)︂
− 1

)︂
Qη1

(︂
Λ
r

)︂
T

(7.68)

=

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂ (7.69)

for each r ∈ [Λ − α + 1]. Notice that the lower convex envelope of the
achievable points {(r, LLB) : r ∈ [Λ − α + 1]} is achievable by adopting the
memory-sharing strategy presented in [52]. The proof is concluded.

158 7.6. Proof of Converse Bound in Theorem 7.2

7.6 Proof of Converse Bound in Theorem 7.2
We begin the proof by introducing some useful notation. For q ∈ [Q] and
n ∈ [N], we let Vq,n be an i.i.d. random variable and we let vq,n be the
realization of Vq,n. Then, we define

DU := {Vq,n : q ∈ WU , n ∈ [N]} (7.70)
CU := {Vq,n : q ∈ [Q], wn ∈ MU} (7.71)
YU := (DU , CU). (7.72)

Recalling that we denote by XU the multicast message transmitted by reducer
U ∈ [Λ]α, the equation

H(XU | CU) = 0 (7.73)
holds, since XU is a function of the intermediate values retrieved by reducer
U . Moreover, for any map-shuffle-reduce scheme, each reducer U ∈ [Λ]α
has to be able to correctly recover all the intermediate values DU given the
transmissions of all reducers X[Λ]α := (XU : U ∈ [Λ]α) and given the IVs CU
computed by the mappers in U . Thus, the equation

H(DU | X[Λ]α , CU) = 0 (7.74)

holds for each U ∈ [Λ]α.

7.6.1 Lower Bound for a Given File Assignment
For a given file assignment denoted by M := (M1, . . . ,MΛ), we let LM be
the corresponding communication load under this assignment M. Then, we
provide a lower bound on LM for any given file assignment in the following
lemma.

Lemma 7.1. Consider a specific file assignment M = (M1, . . . ,MΛ). Let
c = (c1, . . . , cΛ) be a permutation of the set [Λ] and define

Di := (DUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (7.75)
Ci := (CUi : U i ⊆ {c1, . . . , ci}, |U i| = α, ci ∈ U i) (7.76)

Yi−1 := (YUj : j ∈ [α : i− 1],U j ⊆ {c1, . . . , cj}, |U j| = α, cj ∈ U j) (7.77)

for each i ∈ [α : Λ]. Then, the communication load is lower bounded by

LM ≥ 1
QNT

∑︂
i∈[α:Λ]

H(Di | Ci,Yi−1). (7.78)

Chapter 7. Multi-Access Distributed Computing 159

Proof. The proof is described in Appendix C.4.

It is perhaps interesting to highlight that the lemma above manages to
combine relatively divergent ideas from [65, Lemma 2] and Lemma 6.1. On
one hand, the proof of Lemma 7.1 is based on the iterative argument from
the proof of [65, Lemma 2], where the authors built a sequence of entropy-
based bounds by iteratively picking computing nodes without ordering them
according to some specific permutations. On the other hand, since in our case
we wish to keep into account the multi-access nature of our MADC system, the
proof of Lemma 7.1 adapts the entropy-based approach from [65] by iteratively
selecting the reducers according to some properly chosen permutations. The
purpose of selecting reducers according to some proper permutations is that
of constructing a tighter sequence of entropy-based bounds. The properly
chosen permutations are inspired by Lemma 6.1, which was used to successfully
develop a tight converse bound for the multi-access coded caching problem
with combinatorial topology.

Now, we proceed with the proof. Denote by ãT the number of files which
are mapped exclusively by the mappers in T for some T ⊆ [Λ]. As each
reducer U ∈ [Λ]α does not have access to the intermediate values of all those
files that are not mapped by the mappers in U , the term ãT represents
the number of files whose intermediate values are required by each reducer
U ∈ [Λ]α that does not have access to the mappers in T , i.e., each reducer
U ∈ [Λ]α such that U ∩ T = 0 or, equivalently, each reducer U ⊆ ([Λ] \ T)
such that |U| = α. Taking advantage of the independence of the intermediate
values and recalling that each reducer computes η2 disjoint output functions,
from Lemma 7.1 and for a given permutation c = (c1, . . . , cΛ) of the set [Λ],
we can further write

LM ≥ 1
QNT

∑︂
i∈[α:Λ]

H(Di | Ci,Yi−1) (7.79)

= 1
QNT

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|Ui|=α,ci∈U i

H(DUi | Ci,Yi−1) (7.80)

= 1
QNT

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|Ui|=α,ci∈U i

∑︂
T ⊆[Λ]\{c1,...,ci}

ãT η2T (7.81)

= 1
KN

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|Ui|=α,ci∈Ui

∑︂
T ⊆[Λ]\{c1,...,ci}

ãT . (7.82)

If we build a bound as the one in Lemma 7.1 for each permutation of the set
[Λ] and we sum up all these bounds together, we obtain the expression

LM ≥ 1
KNΛ!

∑︂
c∈SΛ

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|U i|=α,ci∈U i

∑︂
T ⊆[Λ]\{c1,...,ci}

ãT (7.83)

160 7.6. Proof of Converse Bound in Theorem 7.2

where we recall that SΛ represents the group of all permutations of [Λ]. Our
goal now is to simplify this expression and we start doing so by counting how
many times each term ãT appears in the RHS of (7.83) for any fixed T ⊆ [Λ]
with |T | = j and j ∈ [Λ].

First, we focus on some reducer U ⊆ ([Λ] \ T) with |U| = α. We can see
that ãT appears in the RHS of (7.83) for all those permutations in SΛ for
which U = U i for some i ∈ [α : Λ] such that U i ⊆ {c1, . . . , ci} with |U i| = α
and ci ∈ U i, and such that T ⊆ ([Λ] \ {c1, . . . , ci}). Denoting by PU ,T the set
of such permutations, we can see that

|PU ,T | = α!j!(Λ − α− j)!
(︄

Λ
α + j

)︄
. (7.84)

The same reasoning applies to any reducer U ∈ [Λ]α for which U ∩ T = ∅. As
a consequence, the term ãT appears in the RHS of (7.83) a total of

∑︂
U∈[Λ]α:U∩T =∅

|PU ,T | =
(︄

Λ − j

α

)︄
α!j!(Λ − α− j)!

(︄
Λ

α + j

)︄
(7.85)

times. The same rationale holds for any ãT where T ⊆ [Λ] and |T | = j with
j ∈ [Λ]. Consequently, we can rewrite the expression in (7.83) as

LM ≥ 1
KNΛ!

∑︂
c∈SΛ

∑︂
i∈[α:Λ]

∑︂
Ui⊆{c1,...,ci}:|Ui|=α,ci∈U i

∑︂
T ⊆[Λ]\{c1,...,ci}

ãT (7.86)

= 1
KNΛ!

∑︂
j∈[Λ]

∑︂
T ⊆[Λ]:|T |=j

(︄
Λ − j

α

)︄
α!j!(Λ − α− j)!

(︄
Λ

α + j

)︄
ãT (7.87)

= 1
KN

∑︂
j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
j

)︂ ∑︂
T ⊆[Λ]:|T |=j

ãT (7.88)

= 1
K

∑︂
j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
j

)︂ ãj
M
N

(7.89)

where ãj
M := ∑︁

T ⊆[Λ]:|T |=j ã
T is defined as the total number of files which are

mapped by exactly j map nodes under this particular file assignment M.
For any given file assignment M and for any given computation load

r ∈ [K], the fact that |M1| + · · · + |MΛ| ≤ rN also implies that ãj
M ≥ 0 for

each j ∈ [Λ], as well as implies that ∑︁j∈[Λ] ã
j
M = N and that ∑︁j∈[Λ] jã

j
M ≤ rN .

Thus, we can further lower bound the above using Jensen’s inequality and

Chapter 7. Multi-Access Distributed Computing 161

the fact that
(︂

Λ
α+j

)︂
/
(︂

Λ
j

)︂
is convex and decreasing9 in j. Hence, we can write

LM ≥ 1
K

∑︂
j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
j

)︂ ãj
M
N

(7.90)

≥ 1
K

(︂
Λ

α+r

)︂
(︂

Λ
r

)︂ (7.91)

=

(︂
Λ

α+r

)︂
(︂

Λ
α

)︂(︂
Λ
r

)︂ (7.92)

where (7.91) holds due to the storage constraint ∑︁j∈[Λ] jã
j
M ≤ rN .

7.6.2 Lower Bound Over All Possible File Assignments
To obtain the bound in Theorem 7.2, we are looking for the smallest LM
across all file assignments M such that |M1| + · · · + |MΛ| ≤ rN , that is we
are looking for

L⋆ ≥ inf
M:|M1|+···+|MΛ|≤rN

LM. (7.93)

Given that (7.92) is independent of the file assignment M and lower bounds
LM for any M such that |M1| + · · · + |MΛ| ≤ rN , we can further write

L⋆ ≥ inf
M:|M1|+···+|MΛ|≤rN

LM (7.94)

≥ inf
M:|M1|+···+|MΛ|≤rN

(︂
Λ

α+r

)︂
(︂

Λ
α

)︂(︂
Λ
r

)︂ (7.95)

=

(︂
Λ

α+r

)︂
(︂

Λ
α

)︂(︂
Λ
r

)︂ (7.96)

= LLB. (7.97)

Notice that the bound LLB can be extended to include also the non-integer
values of r as described in [52]. This concludes the proof.

9This was already proved in the proof of Lemma 6.2 by writing down each combinatorial
coefficient in

(︁ Λ
α+j

)︁
/
(︁Λ

j

)︁
as a finite product and using then the general Leibniz rule to show

that its second derivative is non-negative.

162 7.7. Proof of Achievable Bound in Theorem 7.4

7.7 Proof of Achievable Bound in Theorem 7.4
As we mentioned in the statement of Theorem 7.4, the coded scheme depends
on the solution of the linear program in (7.13). Hence, the first step is to
evaluate the optimal solution10 ã⋆ = (ã1

⋆, . . . , ã
Λ
⋆). Next, we partition the

input database in Λ parts, where we denote by Lj the j-th part, which
contains |Lj| = ãj

⋆ files for each j ∈ [Λ]. Then, each part j ∈ [Λ] of the
database is split in

(︂
Λ
j

)︂
batches containing ηj files each for some ηj ∈ N, so

that ãj
⋆ = ηj

(︂
Λ
j

)︂
for each j ∈ [Λ]. This implies

{w1, . . . , wN} =
⋃︂

j∈[Λ]
Lj (7.98)

=
⋃︂

j∈[Λ]

⋃︂
T1⊆[Λ]:|T1|=j

Bj,T1 (7.99)

where we denote by Bj,T1 the batch containing ηj files associated with the
label T1. Then, mapper λ ∈ [Λ] is assigned all batches Bj,T1 having λ ∈ T1 for
each j ∈ [Λ], which implies

Mλ = {Bj,T1 : j ∈ [Λ], T1 ⊆ [Λ], |T1| = j, λ ∈ T1}. (7.100)

The computation load constraint is satisfied, since we have∑︁
λ∈[Λ] |Mλ|
N

=
Λ∑︁j∈[Λ] ηj

(︂
Λ−1
j−1

)︂
N

(7.101)

=
∑︁

j∈[Λ] jηj

(︂
Λ
j

)︂
N

(7.102)

=
∑︁

j∈[Λ] jã
j
⋆

N
≤ r (7.103)

where the last inequality holds under the constraint in (7.13d).
Our goal is to provide an achievable scheme for the max-link communica-

tion load. Recalling that we denote by L and J the communication load and
the download cost, respectively, we will have

L⋆
max-link ≤ Lmax-link,UB = max (L,D) . (7.104)

7.7.1 Communication Load
For what concerns the communication load, we can take advantage of the
achievable scheme described in Section 7.5. Simply, the scheme in Section 7.5

10The linear program in (7.13) is not infeasible nor unbounded. Hence, it admits an
optimal solution.

Chapter 7. Multi-Access Distributed Computing 163

is applied Λ times, one time per partition Lj which is considered as an
independent input database. If we denote by Lj the communication load
when we focus on the part Lj, we have that Lj is given by

Lj =

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
(7.105)

for each j ∈ [Λ]. Hence, the overall communication load L is given by

L =
∑︂

j∈[Λ]
Lj =

∑︂
j∈[Λ]

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
. (7.106)

7.7.2 Download Cost
We remind that the download cost is defined as

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(7.107)

where RU
λ represents the number of bits which are sent from mapper λ to

reducer U . This quantity is minimized if the number of bits transmitted
over each link connecting a mapper to a reducer is the same. This can be
accomplished as follows.

Consider a reducer U ∈ [Λ]α and a mapper λ ∈ U . According to the file
assignment above, mapper λ computes the IVs in the set Vλ = {vq,n : q ∈
[Q], wn ∈ Mλ}. The set Vλ can equivalently be written as follows

Vλ = {Vλ,S : i ∈ [α],S ⊆ (U \ {λ}), |S| = i− 1} (7.108)

where Vλ,S is defined as

Vλ,S :=
{︂
vq,n : q ∈ [Q], wn ∈ Mλ∪S

}︂
(7.109)

and where Mλ∪S := ⋂︁
s∈(λ∪S) Ms. This simply says that the set Vλ,S contains

the IVs which are mapped by mapper λ and the (i− 1) mappers in S. Hence,
if we evenly split Vλ,S in i segments as follows

Vλ,S = (Vλ,S,s : s ∈ (λ ∪ S)) (7.110)

we simply let mapper λ send Vλ,S,λ. This implies

RU
λ =

∑︂
i∈[α]

∑︂
S⊆(U\{λ}):|S|=i−1

|Vλ,S,λ| (7.111)

164 7.7. Proof of Achievable Bound in Theorem 7.4

=
∑︂
i∈[α]

∑︂
S⊆(U\{λ}):|S|=i−1

|Vλ,S |
i

(7.112)

=
∑︂
i∈[α]

∑︂
S⊆(U\{λ}):|S|=i−1

∑︂
j∈[Λ]

ηj

(︂
Λ−α
j−i

)︂
QT

i
(7.113)

=
∑︂

j∈[Λ]

∑︂
i∈[α]

ηj

(︂
Λ−α
j−i

)︂
QT

i

(︄
α− 1
i− 1

)︄
(7.114)

for each λ ∈ [Λ] and U ∈ [Λ]α with λ ∈ U . Hence, we can further write

J = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(7.115)

= 1
QNT

∑︂
j∈[Λ]

∑︂
i∈[α]

ηj

(︂
Λ−α
j−i

)︂
QT

i

(︄
α− 1
i− 1

)︄
(7.116)

=
∑︂

j∈[Λ]

∑︂
i∈[α]

(︂
Λ−α
j−i

)︂(︂
α−1
i−1

)︂
i
(︂

Λ
j

)︂ ãj
⋆

N
(7.117)

recalling that ãj
⋆ = ηj

(︂
Λ
j

)︂
for each j ∈ [Λ]. Further, the following lemma

holds.

Lemma 7.2. For any non-negative integers Λ, α and j, we have

∑︂
i∈[α]

(︂
Λ−α
j−i

)︂(︂
α−1
i−1

)︂
i
(︂

Λ
j

)︂ =

(︂
Λ
j

)︂
−
(︂

Λ−α
j

)︂
α
(︂

Λ
j

)︂ . (7.118)

Proof. The proof is described in Appendix C.5.

As a consequence, the download cost J is equivalently given by

J =
∑︂

j∈[Λ]

(︂
Λ
j

)︂
−
(︂

Λ−α
j

)︂
α
(︂

Λ
j

)︂ ãj
⋆

N
(7.119)

=
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
⋆

N
. (7.120)

7.7.3 Max-Link Communication Load
Since we have now the expressions for both L and J , we can write explicitly
the achievable max-link communication load as follows

Lmax-link,UB = max (L,D) (7.121)

Chapter 7. Multi-Access Distributed Computing 165

= max
⎛⎝∑︂

j∈[Λ]

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
,
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
⋆

N

⎞⎠ . (7.122)

The expression above coincides with the achievable expression in Theorem 7.4.
The proof is concluded.

7.8 Proof of Converse Bound in Theorem 7.5
We quickly recall that LM denotes the communication load under the file
assignment M = (M1, . . . ,MΛ). Then, we let JM and Lmax-link,M =
max{LM, JM} be the download cost and the max-link communication load,
respectively, under file assignment M.

7.8.1 Lower Bound for a Given File Assignment
From Section 7.6 we know that the inequality

LM ≥
∑︂

j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ ãj
M
N

(7.123)

holds. Thus, we can write

Lmax-link,M = max{LM, JM} (7.124)

≥ max
⎧⎨⎩∑︂

j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ ãj
M
N
, JM

⎫⎬⎭ . (7.125)

In the following, we wish to develop a lower bound on JM. Starting from the
definition of the download cost, we have

JM = max
λ∈[Λ]

max
U∈[Λ]α:λ∈U

RU
λ

QNT
(7.126a)

≥ max
λ∈[Λ]

1(︂
Λ−1
α−1

)︂
QNT

∑︂
U∈[Λ]α:λ∈U

RU
λ (7.126b)

≥ 1
Λ
(︂

Λ−1
α−1

)︂
QNT

∑︂
λ∈[Λ]

∑︂
U∈[Λ]α:λ∈U

RU
λ (7.126c)

= 1
α
(︂

Λ
α

)︂
QNT

∑︂
U∈[Λ]α

∑︂
λ∈U

RU
λ (7.126d)

= 1
α
(︂

Λ
α

)︂
QNT

∑︂
U∈[Λ]α

RU (7.126e)

166 7.8. Proof of Converse Bound in Theorem 7.5

where RU is defined as
RU :=

∑︂
λ∈U

RU
λ (7.127)

to represent the overall number of bits received by reducer U ∈ [Λ]α. Now,
since each reducer U is expected to receive all the IVs mapped by the mappers
in U , we have

RU ≥ H(CU) (7.128)
where we recall that CU = {Vq,n : q ∈ [Q], wn ∈ MU} from Section 7.6. This
means that we can further write

JM ≥ 1
α
(︂

Λ
α

)︂
QNT

∑︂
U∈[Λ]α

RU (7.129a)

≥ 1
α
(︂

Λ
α

)︂
QNT

∑︂
U∈[Λ]α

H(CU) (7.129b)

= 1
α
(︂

Λ
α

)︂
QNT

∑︂
U∈[Λ]α

∑︂
T ⊆[Λ]:T ∩U≠∅

ãT QT (7.129c)

= 1
α
(︂

Λ
α

)︂
N

∑︂
j∈[Λ]

∑︂
T ⊆[Λ]:|T |=j

(︄(︄
Λ
α

)︄
−
(︄

Λ − j

α

)︄)︄
ãT (7.129d)

=
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
M
N

(7.129e)

recalling that ãj
M = ∑︁

T ⊆[Λ]:|T |=j ã
T . To conclude, for a given file assignment

M, the max-link communication load is lower bounded as

Lmax-link,M ≥ max
⎧⎨⎩∑︂

j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ ãj
M
N
, JM

⎫⎬⎭ (7.130)

≥ max
⎧⎨⎩∑︂

j∈[Λ]

(︂
Λ

α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ ãj
M
N
,
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
M
N

⎫⎬⎭ (7.131)

≥ 1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

M
N
. (7.132)

7.8.2 Lower Bound Over All Possible File Assignments
Our aim is to develop a bound on the max-link communication load under any
possible file assignment, namely, we are looking for the smallest Lmax-link,M
across all file assignments M such that |M1| + · · · + |MΛ| ≤ rN for a

Chapter 7. Multi-Access Distributed Computing 167

given computation load r ∈ [K]. Since each file assignment M such that
|M1| + · · · + |MΛ| ≤ rN also implies that ãj

M ≥ 0 for each j ∈ [Λ], as well
as implies that ∑︁j∈[Λ] ã

j
M = N and that ∑︁j∈[Λ] jã

j
M ≤ rN , the max-link load

L⋆
max-link is lower bounded by the solution to the following linear program

min
ãM

1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

M
N

(7.133a)

subject to ãj
M ≥ 0, ∀j ∈ [Λ] (7.133b)∑︂

j∈[Λ]

ãj
M
N

= 1 (7.133c)

∑︂
j∈[Λ]

j
ãj

M
N

≤ r (7.133d)

where ãM = (ã1
M, . . . , ãΛ

M) is the control variable. The proof is concluded.

Part III

Conclusions and Appendices

169

Chapter 8

Conclusions and Future
Directions

This chapter concludes the thesis. We will briefly summarize, chapter-by-
chapter, the major contributions of the thesis, also presenting some possible
future directions.

8.1 Exploring the Impact of Structure in Data

8.1.1 A Negative Result on Selfish Caching Policies

In Chapter 2, we investigated the effects that selfish caching can have on the
optimal worst-case communication load in the coded caching framework.

The proposed FDS structure seeks to capture the degree of intersection
between the interests of the different users. While somewhat restrictive, the
proposed structure was designed to bring to the fore and accentuate the
adversarial relationship between coded caching and selfish caching, and by
doing so, to allow us to provide insight on the nature of this adversarial
relationship.

This insight is provided with the introduction of a new information-
theoretic converse on the minimum worst-case communication load by means
of index coding arguments. For the specific proposed broad FDS structure, the
converse bound definitively resolves the question of whether selfish caching is
beneficial or not. Indeed, the converse reveals that any non-zero load brought
about by symmetrically selfish caching is always (with the exception of the
extreme points of t) strictly worse than the optimal load guaranteed in the
unselfish scenario. The rationale behind this is that, despite the sizeable
increase of local caching gain brought about by the very targeted placement

171

172 8.1. Exploring the Impact of Structure in Data

of selfish caching, and despite a very restricted set of demands, the loss in
multicasting opportunities is too severe. In fact, what the converse shows
is that this damage is so prominent that — for any fixed (or decreasing)
ratio δ = α/K < 1 — the coding gain does not scale with K, and is in fact
bounded above by 1/(1 − δ). In other words, even if there is, for example,
a 99 % symmetric intersection between the interests of the users (meaning,
even if the users have interest in almost the same content), the coding gain
will not scale as K increases. The above solidifies our conclusion that, for
some powerful instances of FDS structures, selfish caching can be indeed very
detrimental for the overall performance. While our FDS structure may be
somewhat restrictive, the fact that this structure captures crucial elements
of the selfish problem allows us to draw the conclusion that one must be
cautious when considering selfish policies.

In light of the above, there are several interesting research directions. One
first possibility is to explore the performance effect of FDS symmetry in selfish
approaches, as indeed one of the biggest limitations of the FDS structure
proposed in Chapter 2 seems its symmetric nature. Subsequently, it would be
interesting to search for FDS structures that benefit well1 from selfish coded
schemes, as indeed, we recall, coded caching systems may need to operate
under some selfish legacy constraints. This brings about the natural question
of understanding when FDS structures can gain the most from selfish schemes.
Clearly, a remaining challenge is to provide optimal schemes for any set of
demands, either for the proposed or for another FDS structure.

8.1.2 Coded Caching With Tactical User Profiles
In Chapter 3, we focused on the problem of caching with hetereogeneous user
profiles under the constraint of uncoded placement only. First, we proposed
an extremely broad system model for the user profiles, where such model
follows the combinatorial structure of the so-called tactical configurations, a

1Considering for example the work in [32], the authors proposed therein a more lenient
FDS structure, where each file is of interest to either groups of users or all users in the
system. First of all, such setting represents an example of how the degree of separation
among the users’ interests is not concentrated in one single α value, since the model in [32]
considers somehow two values α1 and α2, where α1 = K relates to the part of library
which is of interest to all users, while α2 = 1 relates to the subset of files which are of
interest to disjoint (groups of) users. Second, for the FDS structure in [32] the authors
proposed a selfish coded scheme (there referred to as Scheme 2) which can outperform the
standard MAN scheme for some non-trivial memory points under some system parameters.
Similarly, selfish policies were shown to be quite effective also for some instances of the
system model in [31]. Hence, there exist FDS structures which can benefit from selfish
policies when coded caching is adopted.

Chapter 8. Conclusions and Future Directions 173

symmetric and balanced block design in combinatorial mathematics. Then,
we characterized the fundamental limits of coded caching under uncoded
prefetching for the proposed broad structure of user interests. The pro-
posed achievable scheme is a simple application of the already existing MAN
placement-and-delivery scheme up to an arbitrary memory value t̄, whereas
for t ≥ t̄ memory sharing is adopted. Instead, the information-theoretic
converse bound is based on the genie-aided approach from [32], which we also
adopted in the subsequent Chapter 4. The interesting outcome of the results
presented in Chapter 3 is that, albeit the diverging interests of the users, the
MAN coded scheme is still order optimal within a constant factor of 4. This
result is significant not only because it holds for a really generic structure
of user profiles, including the symmetric (K,α, F) FDS structure studied in
Chapter 2, but also because it proves the effectiveness of the combinatorial
MAN coded caching scheme under a well-defined system model for the user
profiles.

There are several interesting future directions. Along the lines of what we
suggested as future directions for Chapter 2, one first possibility is to study
the performance effect of FDS symmetry in non-selfish approaches. Secondly,
it would be interesting to understand what non-trivial FDS structures, if
any, might lead to a significant performance improvement over the MAN
coded caching scheme. Indeed, being the MAN scheme order optimal within
a constant multiplicative factor of 4 for such a broad structure of user profiles
poses a question about the effective coding gains that one can achieve if users
have diverging interests. In other words, it would be interesting to understand
how much one can further lower the worst-case communication load by taking
advantage in general of user interests, if these are known in advance.

8.1.3 A Converse for Caching With Heterogeneous
Preferences

In Chapter 4, we considered an addittional coded caching setting with hetero-
geneous user profiles. Under the system model originally proposed in [32], we
constructed a novel information-theoretic converse on the worst-case commu-
nication load under uncoded prefetching. We developed the lower bound by
taking advantage of the genie-aided approach introduced in [4]. Interestingly,
the proposed converse bound, jointly with the Scheme 2 from [32], allows us
to characterize the optimal worst-case load under uncoded prefetching within
a constant multiplicative factor of 2. Although the converse in Theorem 4.1
holds under the constraint of uncoded placement, the result in Theorem 4.2,
which provides a constant order optimality factor independent of all system

174 8.2. The Ramifications of Structure in Topology

parameters, improves the previously known order optimality results in [34].
Possible extensions could include applying the converse techniques de-

veloped in Chapter 4 to other (maybe more complex) caching settings with
heterogeneous user profiles, as well as establishing the exact fundamental
limits of the setting considered in Chapter 4.

8.1.4 Coded Distributed Computing With Structured
Support

In Chapter 5, we considered the problem of coded distributed computing with
structured support. Briefly, we assumed that each computing node k ∈ [K]
has to compute a reduce function which, differently from the original CDC
setting in [52], does not depend on the whole input database, rather just on
a subset Nk of the input files. In particular, we studied the setting where
the structure for the sets {Nk : k ∈ [K]} follows the combinatorial design of
tactical configurations, already employed in Chapter 3 in the context of coded
caching. For such setting, we then proposed an achievable coded scheme
and a converse bound, where the two are shown to be within a constant
multiplicative factor of 6.

Possible extensions could include the setting where the total number
of reduce functions is equal to Q > K, and where each reduce function is
computed by s > 1 computing nodes. Indeed, we believe that for such setting
novel solutions would be required for what concerns the achievability, as well
as we believe that the techniques employed to develop the converse bound
should be modified to account for the parameters s > 1 and Q > K.

8.2 The Ramifications of Structure in Topol-
ogy

8.2.1 Combinatorial Multi-Access Caching
In Chapter 6, we identified the exact fundamental limits of multi-access caching
for important general topologies as well as have derived information-theoretic
converses that bound the performance across ensembles of connectivities.

Our first contribution was to derive the fundamental limits of multi-access
caching for the generalized combinatorial topology that stands out for the
unprecedented coding gains that it allows. These gains — first recorded in [53]
for a specific instance of this generalized topology — are proven in Chapter 6
to be optimal, and to hold not only for a much denser range of users, but also
in the presence of a coexistence of users connected to different numbers of

Chapter 8. Conclusions and Future Directions 175

caches. As a direct consequence of identifying the exact fundamental limits of
the generalized combinatorial topology, we now know that a basic and fixed
MAN cache placement can optimally handle any generalized combinatorial
network regardless of having unknown numbers of users with unequal cache-
connectivity capabilities.

Subsequently, we considered the optimal performance of different ensembles
of connectivities, deriving a lower bound on the average performance for a
large ensemble of interest as well as for the entire ensemble of all possible
topologies. To the best of our knowledge, Chapter 6 is the first work that
explores the fundamental limits of the average performance across ensembles of
connectivities as well as the first work to consider the topology-agnostic multi-
access setting. We hope this contribution applies toward better understanding
the role of topology in defining the performance as well as the corresponding
role of topology-awareness.

• Practical Pertinence and Optimality of the Generalized Combinatorial
Topology. As the subpacketization constraint is one of the main bottle-
necks limiting the actual use of coded caching in various real applications,
the combinatorial topology is undoubtedly a promising expedient to
overcome this bottleneck. Indeed, this multi-access approach allows
to serve many users at a time while controlling the subpacketization
parameter by carefully calibrating the number of caches Λ. This partic-
ular topology breaks the barrier of having coding gains that are close
to Λγ + 1, and it goes one step further by allowing the unprecedented
gains that are now a polynomial power of the cache redundancy, to
be achieved with a modest subpacketization, a reasonable amount of
cache resources and a very modest connectivity investment. Indeed,
the gains explode even when α is as small as α = 2 and this increase

— we re-emphasize — is without any increase in the caching resources
Λγ. Our generalized model extends even further the benefits of this
topology, allowing for a denser range of users K and supporting the
coexistence of users connected to different numbers of caches. As a
side-product of identifying the fundamental limits of performance in this
broad topology, our result shows that, when there are users connected
to a different number of caches α with α ∈ [0 : Λ] in accordance to
the combinatorial topology, then a MAN cache placement and a simple
TDMA-like application of the scheme in [53] is enough to achieve the
minimum possible load in the worst-case scenario. This implies that
treating each α-setting separately is optimal and so there would not be
any advantage in encoding across users connected to a different number
of caches.

176 8.2. The Ramifications of Structure in Topology

• An Agnostic Perspective and the Search for the Best Topology. In real
scenarios the actual connectivity could change over time. In this context,
under the assumption that the cache placement procedure is performed
only once regardless of the connectivity, the results in Theorem 6.2
and in Theorem 6.3 are of interest not only because they lower bound
the optimal average worst-case load in the agnostic scenario, but also
because a careful comparison between such bounds and the optimal
performance in Theorem 6.1 allows to draw the insightful conclusion that
the generalized combinatorial topology is among the good connectivities
under the standard MAN cache placement. This brings to the fore the
open question of whether, under the assumption of a MAN placement,
the combinatorial topology is indeed the best possible topology. This
question is supported by the just-now mentioned specific optimization
solution that leads to Theorem 6.2, as well as by the large gains that
the MAN placement achieves over this topology, irrespective of the fact
that different users may be connected to a different number of caches.

The results in Chapter 6 are part of a sequence of works that suggest
the importance of the multi-access caching paradigm not only for its role
in boosting the gains in coded caching, which had remained relatively low
due to the severe subpacketization bottleneck, but also for its role in several
distributed communication paradigms where communication complexity is
traded off with computational complexity2 as a function of how servers are
connected to data sources. Finally, while most works on the MACC focused
mainly on the cyclic wrap-around topology, our work further legitimizes the
effort of investigating connectivities different from the originally proposed
MACC model. The bounds on the average performance over the ensemble of
connectivities leave open the possibility that there may exist another topology
performing uniformly better than the powerful optimal performance of the
generalized combinatorial topology identified in Theorem 6.1. Finding such
a topology, if it exists, would be indeed an exciting proposition given the
already large gains that are associated to the combinatorial topology.

8.2.2 Multi-Access Distributed Computing
In Chapter 7, we introduced multi-access distributed computing, a novel
system model that generalizes the original CDC setting by considering map-
pers and reducers as distinct entities, and by considering each reducer to be
connected to multiple mappers through a network topology. We focused on
the MADC model with combinatorial topology, which implies Λ mappers

2For example, see [93] and other related works [94]–[96].

Chapter 8. Conclusions and Future Directions 177

and K =
(︂

Λ
α

)︂
reducers, so that there is a reducer for any set of α mappers.

Neglecting at first the download cost from mappers to reducers and so focusing
only on the inter-reducer communication load, we proposed a novel coded
scheme which, together with an information-theoretic converse, characterizes
the optimal communication load within a constant multiplicative gap of 1.5.
Subsequently, we jointly considered the setting which keeps into account the
download cost and for such scenario we characterized the optimal max-link
communication load within a multiplicative factor of 4. We point out that the
proposed achievable shuffling scheme — which generalizes the original coded
scheme in [52] (corresponding to the case α = 1) — offers also unparalleled
coding gains. As an outcome of this gain, we have the interesting occurrence
that our scheme guarantees a smaller communication load when α > 1, cap-
italizing on the multi-access nature of the MADC model, even though the
number of reducers is increased.

Interesting future directions could include the study of the proposed
MADC setting when mappers and reducers have heterogeneous computational
resources. A careful study of other multi-access network topologies is also
another challenging research direction. Reflecting a design freedom, the search
for the best possible topology, for a given computation load, remains a very
pertinent open problem in distributed computing.

Appendix A

Appendices to Chapter 2

A.1 Proof of Corollary 2.1.1
Recalling both the expression for RMAN(t) in (1.11) and the expression for
RLB(t) in Theorem 2.1, we have that

R⋆
u,s(t)

RMAN(t) ≥ RLB(t)
RMAN(t) (A.1)

=

(︂
α

t+1

)︂
+ (K − α)

(︂
α−1

t

)︂
(︂

α
t

)︂
(︂

K
t

)︂
(︂

K
t+1

)︂ (A.2)

=

(︂
α

t+1

)︂
(︂

α
t

)︂ (︃
1 + (K − α)t+ 1

α

)︃ (︂
K
t

)︂
(︂

K
t+1

)︂ (A.3)

= α− t

K − t

(︄
K(1 + t) − αt

α

)︄
(A.4)

= 1 + t(K − α)(α− 1 − t)
α(K − t)⏞ ⏟⏟ ⏞

≥0

(A.5)

where the second term in the last expression is equal to 0 either when
α ∈ [K − 1] for t ∈ {0, α − 1}, or when α = K and f ≥ K for any t. This
concludes the proof.

A.2 Proof of Corollary 2.1.2
We know that the optimal coding gain is upper bounded as

G⋆ ≤ t+ 1
1 + t(K − α)/K = Ḡ(t). (A.6)

179

180 A.3. Proof of Lemma 2.2

It can be easily verified that Ḡ′′(t) < 0 for t ≥ 0, which means that Ḡ(t) is
concave for positive values of t. Then, we can see that Ḡ(0) = 1, whereas

lim
t→∞

Ḡ(t) = K

K − α
> 1 (A.7)

for any α ∈ [K − 1]. Consequently, Ḡ(t) < K/(K − α), which means that
G⋆ < 1/(1 − δ) for any δ = α/K. This concludes the proof.

A.3 Proof of Lemma 2.2
Let π ∈ SK and consider the permutation vector πK = (π(1), . . . , π(K)).
Consider k1, k2 ∈ [K] such that k1 ̸= k2. Assume without loss of generality
that π−1(k1) < π−1(k2) ≤ K, in which case ℓ = π−1(k2) − π−1(k1). Denoting
by U the set containing the K circular shifts of the vector πK , we see that
there are ℓ vectors u ∈ U such that k2 appears before k1 in u. These cases
correspond to the vectors u ∈ U where we have in the first position of u
either the element k2, or any one of the (ℓ − 1) elements between π−1(k1)
and π−1(k2) in the vector π. As a consequence, the total number of vectors
u ∈ U such that k1 appears before k2 is equal to (K − ℓ). This concludes the
proof.

A.4 Proof of Lemma 2.3
The convexity of f(t′) can be easily shown by verifying that the second
derivative f ′′(t′) with respect to t′ is strictly positive for t′ ≥ 0. Indeed, we
have

f(t′) =

(︂
α

t′+1

)︂
+ (K − α)

(︂
α−1

t′

)︂
(︂

α
t′

)︂ (A.8)

= α− t′

1 + t′
+ (K − α)

(︄
1 − t′

α

)︄
(A.9)

f ′(t′) = − 1 + α

(1 + t′)2 − (K − α)
α

(A.10)

f ′′(t′) = 2(1 + α)
(1 + t′)3 > 0 (A.11)

where f ′(t′) denotes the first derivative. Then, since t′ ∈ [0 : α], we can
evaluate f(0) = K and f(α) = 0, showing that f(0) > f(α). Hence, since
f(t′) is convex, it has to be also strictly decreasing for t′ ∈ [0 : α], otherwise
the convexity property would be violated. This concludes the proof.

Appendix A. Appendices to Chapter 2 181

A.5 Converse Proof of Proposition 2.1
While the achievable expression matches exactly the converse expression RLB,
this latter converse cannot be used to prove the optimality of R⋆

α,c, because
RLB bounds the optimal worst-case communication load. As there is no a
priori guarantee that the α-demands are part of the worst-case demands, we
will here derive another bound that focuses on α-demands to prove that the
achievable performance is indeed optimal.

Following the same line of reasoning as in Section 2.4.1, we apply again the
index coding lower bound in Lemma 2.1, with the only difference being that
now the cache placement is fixed. The corresponding index coding problem
has K ′ = K users and N ′ = K

(︂
α−1

t

)︂
messages, where

(︂
α−1

t

)︂
is the total

number of subfiles desired by each user for a fixed value of t ∈ [0 : α]. The
desired message set and the side information set are respectively given by

Mk = {Wfk,Dk,T : T ⊆ Dk, |T | = t, k /∈ T } (A.12)
Ak = {Wi,S,T : i ∈ [f],S ⊆ [K], |S| = α, T ⊆ S, |T | = t, k ∈ T } (A.13)

for all k ∈ [K]. In the corresponding side information graph, an edge exists
from Wfk1 ,Dk1 ,T1 to Wfk2 ,Dk2 ,T2 if and only if Wfk1 ,Dk1 ,T1 ∈ Ak2 .

Since we are considering a converse bound on the optimal communication
load under a specific cache placement and under a specific set of demands,
it suffices to find a single α-demand such that R⋆

α,c(t) ≥
(︂

α
t+1

)︂
/
(︂

α
t

)︂
+ (K −

α)
(︂

α−1
t

)︂
/
(︂

α
t

)︂
. Toward this, consider the α-demand where K is a set of α users

that request distinct files from the file class K, and where the remaining users
in [K] \ K request distinct files so that the set of vertices

J1 =
⋃︂

k∈([K]\K)

⋃︂
T ⊆(Dk\{k}):|T |=t

{Wfk,Dk,T } (A.14)

is acyclic. Then, such set contains a total of (K − α)
(︂

α−1
t

)︂
subfiles, which

means that |J1| = (K − α)
(︂

α−1
t

)︂
B/
(︂

α
t

)︂
. Indeed, we can see that there exist

α-demands for which J1 is acyclic. For instance, if we assume Dk = S ∪ {k}
for every k ∈ ([K] \ K) for some S ⊆ K such that |S| = α − 1, then the set
J1 is acyclic.

Consider now the set of users in K. Take any permutation of users
u = (u1, . . . , uα) with uk ∈ K for all k ∈ [α]. Then, since Dk = K for all
k ∈ K, the set of vertices

J2 =
⋃︂

k∈[α]

⋃︂
T ⊆(K\{u1,...,uk}):|T |=t

{Wfuk
,K,T } (A.15)

182 A.5. Converse Proof of Proposition 2.1

is acyclic for any permutation u (see [3, Lemma 1]). It can be easily seen
that such set contains a total of

(︂
α−1

t

)︂
+
(︂

α−2
t

)︂
+ · · · +

(︂
t
t

)︂
=
(︂

α
t+1

)︂
subfiles, so

|J2| =
(︂

α
t+1

)︂
B/
(︂

α
t

)︂
.

Due to the fact that Dk = K for all k ∈ K, there is no edge connecting
any vertex in J2 to any vertex in J1, and thus also the set J1 ∪ J2 is acyclic.
At this point, applying Lemma 2.1 with respect to the acyclic set J1 ∪ J2,
we get

BR⋆
α,c ≥

∑︂
k∈([K]\K)

∑︂
T ⊆(Dk\{k}):|T |=t

|Wfk,Dk,T |

+
∑︂

k∈[α]

∑︂
T ⊆(K\{u1,...,uk}):|T |=t

⃓⃓⃓
Wfuk

,K,T

⃓⃓⃓
(A.16)

= |J1| + |J2| (A.17)

= (K − α)
(︄
α− 1
t

)︄
B(︂
α
t

)︂ +
(︄

α

t+ 1

)︄
B(︂
α
t

)︂ (A.18)

which means that R⋆
α,c(t) ≥

(︂
α

t+1

)︂
/
(︂

α
t

)︂
+ (K − α)

(︂
α−1

t

)︂
/
(︂

α
t

)︂
. This concludes

the proof.

Appendix B

Appendices to Chapter 6

B.1 Proof of Lemma 6.1
We show how the set described in Lemma 6.1 is guaranteed to be acyclic.
Given any connectivity b ∈ B, let us start by considering the set⋃︂

k∈[K∅,b]

⋃︂
T ⊆[Λ]

{︂
Wd∅k

,T
}︂
. (B.1)

Since each user ∅k with k ∈ [K∅,b] is not connected to any cache, we can
conclude that there is no connection among the vertices corresponding to the
subfiles Wd∅k

,T for each k ∈ [K∅,b] and T ⊆ [Λ]. This directly means that the
set in (B.1) is acyclic. Now consider the set of vertices⋃︂

α∈[Λ]

⋃︂
i∈[α:Λ]

⋃︂
Ui⊆{c1,...,ci}:|U i|=α,

ci∈U i⋃︂
k∈[KUi,b]

⋃︂
Ti⊆([Λ]\{c1,...,ci})

{︃
WdUi

k
,Ti

}︃
.

(B.2)

Following the same reasoning as in the proof of [3, Lemma 1], for a specific
permutation of caches c = (c1, . . . , cΛ) we will say that the subfile WdUi

k
,Ti

belongs to the i-th level1, which will mean that U i ⊆ {c1, . . . , ci} with |U i| = α
and ci ∈ U i, and that Ti ⊆ ([Λ] \ {c1, . . . , ci}) with i ∈ [α : Λ]. As one may
see, no user in the i-th level has access to the subfiles in its level, since
U i ∩ Ti = ∅ for each U i ⊆ {c1, . . . , ci} with |U i| = α and ci ∈ U i, and for each
Ti ⊆ ([Λ] \ {c1, . . . , ci}). Moreover, no user in the i-th level has access to the

1The term level carries the same meaning as in the proof of [3, Lemma 1], and its impact
here is described mathematically in compliance with our setting.

183

184 B.2. Proof of Lemma 6.2

subfiles in higher levels, since U i ∩ Tj = ∅ for each U i ⊆ {c1, . . . , ci} with
|U i| = α and ci ∈ U i, and for each Tj ⊆ ([Λ] \ {c1, . . . , cj}) with j ∈ [i+ 1 : Λ].
Consequently, we can conclude that the set in (B.2) is acyclic. Moreover,
since by definition no user ∅k with k ∈ [K∅,b] is connected to any cache, there
cannot be any cycle between the set in (B.1) and the set in (B.2), and so the
union set ⋃︂

k∈[K∅,b]

⋃︂
T ⊆[Λ]

{︂
Wd∅k

,T
}︂

∪
⋃︂

α∈[Λ]

⋃︂
i∈[α:Λ]

⋃︂
Ui⊆{c1,...,ci}:
|U i|=α,ci∈U i⋃︂

k∈[KUi,b]

⋃︂
Ti⊆([Λ]\{c1,...,ci})

{︃
WdUi

k
,Ti

}︃ (B.3)

is also acyclic. This concludes the proof.

B.2 Proof of Lemma 6.2
Let us write f(t′) = ∑︁Λ−t′

α=0 fα(t′) = K0 +∑︁Λ
α=1 fα(t′), where we define

fα(t′) := Kα

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ (B.4)

with fα(t′) = 0 if t′ > Λ − α. Regarding convexity, we will prove each fα(t′)
to be convex for t′ ∈ [0 : Λ], which will then tell us that f(t′) is also convex,
since a non-negative linear combination of functions that are convex on the
same interval is also convex. Notice that, since any linear function is both
convex and concave, the constant term K0 is convex with respect to t′.

When showing the convexity of fα(t′), we can focus on the range t ≤
Λ − α + 1 since we know that fα(t′) = 0 for any t ≥ Λ − α + 1. Doing so
will automatically allow us to conclude that this same function fα(t′) is also
convex over the entire2 interval t′ ∈ [0 : Λ]. The convexity of fα(t′) can be
easily shown by verifying that the second derivative f (2)

α (t′) with respect to t′
is non-negative for t′ ∈ [0 : Λ − α + 1]. To see this, let us first note that

fα(t′) = Kα

(︂
Λ

t′+α

)︂
(︂

Λ
t′

)︂ (B.5)

2Indeed, if the function fα(t′) is convex in the interval t′ ∈ [0 : Λ − α + 1] and fα(t′) = 0
for t′ ∈ [Λ − α + 1 : Λ] — which implies also convexity in the interval t′ ∈ [Λ − α + 1 : Λ]
since any linear function is both convex and concave — then fα(t′) is convex also over the
entire interval t′ ∈ [0 : Λ], since it should be self-evident that the line segment between
any two points t′

1, t′
2 with t′

1 ∈ [0 : Λ − α + 1] and t′
2 ∈ [Λ − α + 1 : Λ] lies above the graph

between such two points.

Appendix B. Appendices to Chapter 6 185

= Kα

α−1∏︂
i=0

Λ − t′ − i

t′ + α− i
(B.6)

= Kα

α−1∏︂
i=0

fα,i(t′) (B.7)

where fα,i(t′) := (Λ − t − i)/(t + α − i). Applying the general Leibniz rule
allows us to rewrite the second derivative f (2)

α (t′) as

f (2)
α (t′) =

(︄
Kα

α−1∏︂
i=0

fα,i(t′)
)︄(2)

(B.8)

= Kα

∑︂
k0+···+kα−1=2

(︄
2

k0, . . . , kα−1

)︄
α−1∏︂
i=0

f
(ki)
α,i (t′) (B.9)

where kℓ ∈ Z+
0 for each ℓ ∈ [0 : α− 1]. Now we will prove that f (2)

α (t′) ≥ 0 by
showing that ∏︁α−1

i=0 f
(ki)
α,i (t′) ≥ 0 for any summand in (B.9), noticing that we

have a summand for every α-weak composition of 2. Such weak compositions
can be divided into two classes.

• The first class includes weak compositions where km = 2 for some
m ∈ [0 : α − 1] and kn = 0 for each n ∈ ([0 : α − 1] \ {m}). In this
case, the term ∏︁α−1

i=0 f
(ki)
α,i (t′) is given by the product of α− 1 functions

f (0)
α,n(t′) for n ∈ ([0 : α − 1] \ {m}) with 1 additional function f (2)

α,m(t′),
where f (0)

α,n(t′) is simply the function fα,n(t′) and where f (2)
α,m(t′) is the

second derivative of fα,m(t′). Hence, if f (0)
α,n(t′) ≥ 0 and f (2)

α,m(t′) > 0,
then ∏︁α−1

i=0 f
(ki)
α,i (t′) ≥ 0.

• The second class includes weak compositions where km1 = km2 = 1
for some m1,m2 ∈ [0 : α − 1] with m1 ̸= m2 and kn = 0 for each
n ∈ ([0 : α− 1] \ {m1,m2}). In this case, the term ∏︁α−1

i=0 f
(ki)
α,i (t′) is given

by the product of α− 2 functions f (0)
α,n(t′) for n ∈ ([0 : α− 1] \ {m1,m2})

with 2 additional functions f (1)
α,m1(t′) and f (1)

α,m2(t′), where now f (1)
α,n(t′) is

the first derivative of fα,n(t′). Hence, if f (0)
α,n(t′) ≥ 0, f (1)

α,m1(t′) < 0 and
f (1)

α,m2(t′) < 0, then ∏︁α−1
i=0 f

(ki)
α,i (t′) ≥ 0.

At this point, in order to prove that ∏︁α−1
i=0 f

(ki)
α,i (t′) ≥ 0 for any α-weak

composition of 2, we have to prove that the following inequalities

f
(0)
α,i (t′) ≥ 0 (B.10)
f

(1)
α,i (t′) < 0 (B.11)

186 B.2. Proof of Lemma 6.2

f
(2)
α,i (t′) > 0 (B.12)

hold for each i ∈ [0 : α− 1], taking into account that

f
(1)
α,i (t′) = 2i− Λ − α

(t′ + α− i)2 (B.13)

f
(2)
α,i (t′) = − 2

t′ + α− i
f

(1)
α,i (t′). (B.14)

Since i ≤ α − 1 and α ≤ Λ − t′ + 1, it holds that f (0)
α,i (t′) ≥ 0. Moreover, it

holds that

2i− Λ − α ≤ 2(α− 1) − Λ − α (B.15)
= α− 2 − Λ (B.16)
≤ −2 (B.17)
< 0. (B.18)

Consequently, we can conclude that f (1)
α,i (t′) < 0, since the numerator is always

negative and the denominator is always positive. We can also conclude that
f

(2)
α,i (t′) > 0, since f (2)

α,i (t′) is equal to the first derivative f (1)
α,i (t′) < 0 multiplied

by a strictly negative term −2/(t′ + α − i). Thus, given that the second
derivative f (2)

α (t′) equals the sum of non-negative terms, we can conclude that
f (2)

α (t′) ≥ 0 and that fα(t′) is convex for each α ∈ [Λ] and t′ ∈ [0 : Λ − α + 1].
As a consequence, f(t′) is convex over the entire range of interest.

The fact that f(t′) is decreasing in t′ ∈ [0 : Λ] follows from the fact that
f(0) = K ≥ f(Λ) = K0 and from the aforementioned convexity of f(t′). This
concludes the proof.

Appendix C

Appendices to Chapter 7

C.1 Proof of Corollary 7.1.1
We wish to prove that, for fixed computation load r, the achievable perfor-
mance in Theorem 7.1 decreases for increasing α. To do so, it is enough to
prove that

sα > sα+1 (C.1)
where sα is defined as

sα :=

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂ . (C.2)

Toward this, we can see that

sα+1 =

(︂
Λ−α−1

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α+1

r

)︂
− 1

)︂ (C.3)

=
Λ−α−r

Λ−α

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂
r+α+1

α+1

(︂
r+α

r

)︂
− 1

)︂ (C.4)

=

(︂
1 − r

Λ−α

)︂ (︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
1 + r

α+1

)︂ (︂
r+α

r

)︂
− 1

)︂ . (C.5)

Since r/(Λ − α) > 0 and r/(α + 1) > 0, it holds that 1 − r/(Λ − α) < 1 and
1 + r/(α + 1) > 1. Consequently, we can write

sα+1 =

(︂
1 − r

Λ−α

)︂ (︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
1 + r

α+1

)︂ (︂
r+α

r

)︂
− 1

)︂ (C.6)

187

188 C.2. Proof of Theorem 7.3

<

(︂
Λ−α

r

)︂
(︂

Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂ (C.7)

= sα (C.8)
showing in this way that sα+1 < sα. This concludes the proof.

C.2 Proof of Theorem 7.3
To prove the order optimality result in Theorem 7.3, we need to upper bound
the ratio LUB(r)/L⋆(r) for each r ∈ [Λ − α + 1]. We start by noting that the
following

LUB(r)
L⋆(r) ≤ LUB(r)

LLB(r) (C.9)

=

(︂
Λ−α

r

)︂
�
��

(︂
Λ
r

)︂ (︂(︂
r+α

r

)︂
− 1

)︂���
(︂

Λ
r

)︂(︂
Λ
α

)︂
(︂

Λ
r+α

)︂ (C.10)

=

(︂
Λ−α

r

)︂
(︂(︂

r+α
r

)︂
− 1

)︂
(︂

Λ
α

)︂
(︂

Λ
r+α

)︂ (C.11)

=

(︂
r+α

r

)︂
(︂

r+α
r

)︂
− 1

=: br (C.12)

holds. Further, we notice that br is decreasing in r, since

br+1 =

(︂
r+1+α

r+1

)︂
(︂

r+1+α
r+1

)︂
− 1

(C.13)

= 1
1 − 1

(r+1+α
r+1)

(C.14)

= 1
1 − r+1

r+1+α
1

(r+α
r)

(C.15)

<
1

1 − 1
(r+α

r)
(C.16)

= br (C.17)
for each r ∈ N+. Thus, considering that r ∈ [Λ − α+ 1], we can further write

LUB(r)
L⋆(r) ≤

(︂
r+α

r

)︂
(︂

r+α
r

)︂
− 1

(C.18)

Appendix C. Appendices to Chapter 7 189

≤ α + 1
α

(C.19)

where the last term is upper bounded when α is set to its minimum value.
Now, after neglecting the value α = 1 — in which case the corresponding
achievable performance in Theorem 7.1 was already proved to be exactly
optimal in [52] — we focus on the case where α ∈ [2 : Λ], which implies that

LUB(r)
L⋆(r) ≤ α + 1

α
(C.20)

≤ 3
2 . (C.21)

The proof is concluded.

C.3 Proof of Theorem 7.6
From Theorem 7.4 we know that L⋆

max-link(r) is upper bounded as

L⋆
max-link(r) ≤ Lmax-link,UB(r) (C.22)

= max
⎛⎝∑︂

j∈[Λ]

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ ãj
⋆

N
,
∑︂

j∈[Λ]

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ ãj
⋆

N

⎞⎠ (C.23)

≤
∑︂

j∈[Λ]

⎛⎝
(︂

Λ−α
j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

⋆

N
(C.24)

=
∑︂

j∈[Λ]
cj
ãj

⋆

N
(C.25)

where the coefficient cj is defined as

cj :=

(︂
Λ−α

j

)︂
(︂

Λ
j

)︂ (︂(︂
j+α

j

)︂
− 1

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ . (C.26)

At the same time, we know from Theorem 7.5 that L⋆
max-link(r) is lower

bounded as

L⋆
max-link(r) ≥ Lmax-link,LB(r) (C.27)

= 1
2
∑︂

j∈[Λ]

⎛⎝
(︂

Λ
α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂
⎞⎠ ãj

⋆

N
(C.28)

190 C.3. Proof of Theorem 7.6

= 1
2
∑︂

j∈[Λ]
dj
ãj

⋆

N
(C.29)

where the coefficient dj is defined as

dj :=

(︂
Λ

α+j

)︂
(︂

Λ
α

)︂(︂
Λ
j

)︂ +

(︂
Λ
α

)︂
−
(︂

Λ−j
α

)︂
α
(︂

Λ
α

)︂ . (C.30)

Hence, from the ratio Lmax-link,UB(r)/Lmax-link,LB(r) we can evaluate the gap
to optimality. In particular, we have

Lmax-link,UB(r)
Lmax-link,LB(r) ≤ 2

∑︁
j∈[Λ] cj ã

j
⋆/N∑︁

j∈[Λ] dj ã
j
⋆/N

(C.31)

= 2
∑︁

j∈[Λ]:ãj
⋆>0 cj ã

j
⋆/N∑︁

j∈[Λ]:ãj
⋆>0 dj ã

j
⋆/N

(C.32)

≤ 2 max
j∈[Λ]:ãj

⋆>0

cj ã
j
⋆/N

dj ã
j
⋆/N

(C.33)

= 2 max
j∈[Λ]:ãj

⋆>0

cj

dj

(C.34)

≤ 2 max
j∈[Λ]

cj

dj

(C.35)

= 2 max
(︄

max
j∈[Λ−α]

cj

dj

, max
j∈[Λ−α+1:Λ]

cj

dj

)︄
. (C.36)

Now, we can see that cj = dj when j > Λ − α. Else, when j ∈ [Λ − α], we
have

cj

dj

=

(Λ−α
j)

(Λ
j)((j+α

j)−1) + (Λ
α)−(Λ−j

α)
α(Λ

α)
(Λ

α+j)
(Λ

α)(Λ
j)

+ (Λ
α)−(Λ−j

α)
α(Λ

α)
(C.37)

≤ max

⎛⎜⎜⎜⎝
(Λ−α

j)
(Λ

j)((j+α
j)−1)

(Λ
α+j)

(Λ
α)(Λ

j)
,

(Λ
α)−(Λ−j

α)
α(Λ

α)
(Λ

α)−(Λ−j
α)

α(Λ
α)

⎞⎟⎟⎟⎠ (C.38)

= max
⎛⎝

(︂
Λ−α

j

)︂
(︂(︂

j+α
j

)︂
− 1

)︂
(︂

Λ
α

)︂
(︂

Λ
α+j

)︂ , 1
⎞⎠ . (C.39)

Since we know from Appendix C.2 that(︂
Λ−α

j

)︂
(︂(︂

j+α
j

)︂
− 1

)︂
(︂

Λ
α

)︂
(︂

Λ
α+j

)︂ ≤ α + 1
α

(C.40)

Appendix C. Appendices to Chapter 7 191

we can further write

max
j∈[Λ−α]

cj

dj

≤ max
j∈[Λ−α]

max
⎛⎝

(︂
Λ−α

j

)︂
(︂(︂

j+α
j

)︂
− 1

)︂
(︂

Λ
α

)︂
(︂

Λ
α+j

)︂ , 1
⎞⎠ (C.41)

≤ max
(︃
α + 1
α

, 1
)︃
. (C.42)

Hence, we can conclude that

Lmax-link,UB(r)
Lmax-link,LB(r) ≤ 2 max

(︄
max

j∈[Λ−α]

cj

dj

, max
j∈[Λ−α+1:Λ]

cj

dj

)︄
(C.43)

≤ 2 max
(︃

max
(︃
α + 1
α

, 1
)︃
, 1
)︃

(C.44)

≤ 2 max (max (2, 1) , 1) (C.45)
= 4. (C.46)

The proof is concluded.

C.4 Proof of Lemma 7.1
Consider a permutation c = (c1, . . . , cΛ) of the set [Λ]. We know that
H(DU | X[Λ]α , CU) = 0 holds for any valid shuffle scheme and for each
U ∈ [Λ]α. Given this, for Uα = {c1, . . . , cα} we can write

H(X[Λ]α) ≥ H(X[Λ]α | CUα) (C.47)
= H(X[Λ]α , DUα | CUα) −H(DUα | X[Λ]α , CUα) (C.48)
= H(X[Λ]α , DUα | CUα) (C.49)
= H(DUα | CUα) +H(X[Λ]α | CUα , DUα) (C.50)
= H(DUα | CUα) +H(X[Λ]α | Yα) (C.51)

where (C.47) follows from the fact that conditioning does not increase en-
tropy, and where (C.49) holds because of the decodability condition H(DU |
X[Λ]α , CU) = 0 for each U ∈ [Λ]α. Similarly, for each i ∈ [α + 1 : Λ] we can
write

H(X[Λ]α | Yi−1) ≥ H(X[Λ]α | Ci,Yi−1) (C.52)
= H(X[Λ]α ,Di | Ci,Yi−1) −H(Di | X[Λ]α , Ci,Yi−1) (C.53)
= H(X[Λ]α ,Di | Ci,Yi−1) (C.54)
= H(Di | Ci,Yi−1) +H(X[Λ]α | Di, Ci,Yi−1) (C.55)
= H(Di | Ci,Yi−1) +H(X[Λ]α | Yi) (C.56)

192 C.5. Proof of Lemma 7.2

where again (C.52) is true as conditioning does not increase entropy, and
where (C.54) follows because

H(Di | X[Λ]α , Ci,Yi−1) ≤ H(Di | X[Λ]α , Ci) (C.57)
≤

∑︂
Ui⊆{c1,...,ci}:|U i|=α,ci∈U i

H(DUi | X[Λ]α , CUi) (C.58)

= 0 (C.59)

due to the independence of intermediate values and the decodability condition.
Considering that H(X[Λ]α | YΛ) = 0, we can use iteratively the above to obtain

H(X[Λ]α) ≥
∑︂

i∈[α:Λ]
H(Di | Ci,Yi−1). (C.60)

Further, we notice that LM ≥ H(X[Λ]α)/QNT . This concludes the proof.

C.5 Proof of Lemma 7.2
First, we rewrite the equality in Lemma 7.2 as

∑︂
i∈[α]

(︂
Λ−α
j−i

)︂(︂
α−1
i−1

)︂
i
(︂

Λ
j

)︂ =

(︂
Λ
j

)︂
−
(︂

Λ−α
j

)︂
α
(︂

Λ
j

)︂ (C.61)

∑︂
i∈[α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=
(︄

Λ
j

)︄
−
(︄

Λ − α

j

)︄
(C.62)

∑︂
i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=
(︄

Λ
j

)︄
. (C.63)

Thus, proving the equality in Lemma 7.2 is equivalent to showing that the
following equality ∑︂

i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=
(︄

Λ
j

)︄
(C.64)

holds. From Vandermonde’s identity, we know that

∑︂
i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=
(︄

Λ
j

)︄
(C.65)

and so it suffices to show that
∑︂

i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=

∑︂
i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
. (C.66)

Appendix C. Appendices to Chapter 7 193

Consider first the case j ≤ α. This means that we can write

∑︂
i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=

∑︂
i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
+

∑︂
i∈[j+1:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
⏞ ⏟⏟ ⏞

=0

(C.67)

=
∑︂

i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
(C.68)

where ∑︁i∈[j+1:α]

(︂
Λ−α
j−i

)︂(︂
α
i

)︂
= 0 since we have

(︂
Λ−α
j−i

)︂
= 0 for i ∈ [j + 1 : α].

Similarly, if we consider j ≥ α, we have

∑︂
i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=

∑︂
i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
+

∑︂
i∈[α+1:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
⏞ ⏟⏟ ⏞

=0

(C.69)

=
∑︂

i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
(C.70)

where ∑︁i∈[α+1:j]

(︂
Λ−α
j−i

)︂(︂
α
i

)︂
= 0 since we have

(︂
α
i

)︂
= 0 for i ∈ [α+ 1 : j]. Hence,

for any value of j ∈ [0 : Λ], we can conclude that

∑︂
i∈[0:α]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=

∑︂
i∈[0:j]

(︄
Λ − α

j − i

)︄(︄
α

i

)︄
=
(︄

Λ
j

)︄
. (C.71)

The proof is concluded.

Bibliography

[1] Cisco, “Cisco annual internet report (2018–2023),” White Paper, 2020.
[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.
[3] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach

to caching with uncoded cache placement,” IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1318–1332, Mar. 2020.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018.

[5] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7253–7271,
Dec. 2016.

[6] S. P. Shariatpanahi, G. Caire, and B. H. Khalaj, “Physical-layer schemes
for wireless coded caching,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 2792–2807, May 2019.

[7] Y. Cao and M. Tao, “Degrees of freedom of cache-aided wireless cellular
networks,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2777–2792, May
2020.

[8] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-
antenna interference management for coded caching,” IEEE Trans.
Wireless Commun., vol. 19, no. 3, pp. 2091–2106, Mar. 2020.

[9] S. P. Shariatpanahi and B. H. Khalaj, On multi-server coded caching
in the low memory regime, arXiv: 1803.07655 [cs.IT], Mar. 2018.

[10] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless
BC: Interplay of coded-caching and CSIT feedback,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, pp. 3142–3160, May 2017.

195

https://doi.org/10/gqrtbj

196 Bibliography

[11] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with
no CSIT,” in 2017 IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2960–2964.

[12] M. M. Amiri and D. Gündüz, “Cache-aided content delivery over
erasure broadcast channels,” IEEE Trans. Commun., vol. 66, no. 1,
pp. 370–381, Jan. 2018.

[13] S. Mohajer and I. Bergel, “MISO cache-aided communication with re-
duced subpacketization,” in ICC 2020 - 2020 IEEE Inf. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[14] I. Bergel and S. Mohajer, “Cache-aided communications with multiple
antennas at finite SNR,” IEEE J. Sel. Areas Commun., vol. 36, no. 8,
pp. 1682–1691, Aug. 2018.

[15] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Trans.
Inf. Theory, vol. 63, no. 5, pp. 3092–3107, May 2017.

[16] F. Engelmann and P. Elia, “A content-delivery protocol, exploiting the
privacy benefits of coded caching,” in 2017 15th Int. Symp. Modeling
Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), May 2017, pp. 1–6.

[17] Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand
privacy against colluding users,” IEEE J. Sel. Areas Inf. Theory, vol. 2,
no. 1, pp. 192–207, Mar. 2021.

[18] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Trans. Inf. Theory, vol. 67, no. 1, pp. 358–372, Jan. 2021.

[19] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[20] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[21] P. Krishnan, “Coded caching via line graphs of bipartite graphs,” in
2018 IEEE Inf. Theory Workshop (ITW), Nov. 2018, pp. 1–5.

[22] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5755–5766, Aug. 2018.

[23] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts
coded-caching gains for finite file sizes,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 6, pp. 1176–1188, Jun. 2018.

Bibliography 197

[24] H. H. S. Chittoor, P. Krishnan, K. V. S. Sree, and B. Mamillapalli,
“Subexponential and linear subpacketization coded caching via projec-
tive geometry,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 6193–6222,
Sep. 2021.

[25] M. Cheng, J. Li, X. Tang, and R. Wei, “Linear coded caching scheme
for centralized networks,” IEEE Trans. Inf. Theory, vol. 67, no. 3,
pp. 1732–1742, Mar. 2021.

[26] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158, Feb.
2017.

[27] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popu-
larity distributions,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 349–
366, Jan. 2018.

[28] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of
caching and coded multicasting with random demands,” IEEE Trans.
Inf. Theory, vol. 63, no. 6, pp. 3923–3949, Jun. 2017.

[29] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,
no. 5, pp. 3108–3141, May 2017.

[30] S. A. Saberali, L. Lampe, and I. F. Blake, “Full characterization of
optimal uncoded placement for the structured clique cover delivery
of nonuniform demands,” IEEE Trans. Inf. Theory, vol. 66, no. 1,
pp. 633–648, Jan. 2020.

[31] K. Wan, M. Cheng, M. Kobayashi, and G. Caire, “On the optimal
memory-load tradeoff of coded caching for location-based content,”
IEEE Trans. Commun., vol. 70, no. 5, pp. 3047–3062, Mar. 2022.

[32] S. Wang and B. Peleato, “Coded caching with heterogeneous user
profiles,” in 2019 IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 2619–2623.

[33] C. Zhang and B. Peleato, “On the average rate for coded caching
with heterogeneous user profiles,” in ICC 2020 - 2020 IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–6.

[34] C. Zhang, S. Wang, V. Aggarwal, and B. Peleato, “Coded caching with
heterogeneous user profiles,” IEEE Trans. Inf. Theory, Jun. 2022, early
access. doi: 10/gqrtb2.

https://doi.org/10/gqrtb2

198 Bibliography

[35] C.-H. Chang and C.-C. Wang, “Coded caching with heterogeneous
file demand sets — the insufficiency of selfish coded caching,” in 2019
IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 1–5.

[36] C.-H. Chang, C.-C. Wang, and B. Peleato, “On coded caching for two
users with overlapping demand sets,” in ICC 2020 - 2020 IEEE Int.
Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[37] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Device-to-device coded-
caching with distinct cache sizes,” IEEE Trans. Commun., vol. 68,
no. 5, pp. 2748–2762, May 2020.

[38] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feedback
bottleneck of multi-antenna coded caching,” IEEE Trans. Inf. Theory,
vol. 68, no. 4, pp. 2331–2348, Apr. 2022.

[39] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of coded
caching with multiple antennas, shared caches and uncoded prefetch-
ing,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2252–2268, Apr.
2020.

[40] E. Lampiris and P. Elia, “Full coded caching gains for cache-less users,”
IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7635–7651, Dec. 2020.

[41] Y.-P. Wei and S. Ulukus, “Novel decentralized coded caching through
coded prefetching,” in 2017 IEEE Inf. Theory Workshop (ITW), Nov.
2017, pp. 1–5.

[42] H. Joudeh, E. Lampiris, P. Elia, and G. Caire, “Fundamental limits of
wireless caching under mixed cacheable and uncacheable traffic,” IEEE
Trans. Inf. Theory, vol. 67, no. 7, pp. 4747–4767, Jul. 2021.

[43] G. J. O. Veld and M. Gastpar, “Caching (bivariate) gaussians,” IEEE
Trans. Inf. Theory, vol. 66, no. 10, pp. 6150–6168, Oct. 2020.

[44] A. M. Daniel and W. Yu, “Optimization of heterogeneous coded
caching,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1893–1919,
Mar. 2020.

[45] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Rate-memory
trade-off for caching and delivery of correlated sources,” IEEE Trans.
Inf. Theory, vol. 66, no. 4, pp. 2219–2251, Apr. 2020.

[46] Z. Zhang and M. Tao, “Deep learning for wireless coded caching with
unknown and time-variant content popularity,” IEEE Trans. Wireless
Commun., vol. 20, no. 2, pp. 1152–1163, Feb. 2021.

Bibliography 199

[47] H. Zhao, A. Bazco-Nogueras, and P. Elia, Vector coded caching multi-
plicatively boosts the throughput of realistic downlink systems, arXiv:
2202.07047 [cs.IT], Feb. 2022.

[48] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128–3141, Nov.
2013.

[49] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G.
Caire, “FemtoCaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, Dec. 2013.

[50] D. Karamshuk, N. Sastry, M. Al-Bassam, A. Secker, and J. Chandaria,
“Take-away TV: Recharging work commutes with predictive preloading
of catch-up TV content,” IEEE J. Sel. Areas Commun., vol. 34, no. 8,
pp. 2091–2101, Aug. 2016.

[51] M.-C. Lee and A. F. Molisch, “Individual preference aware caching pol-
icy design in wireless D2D networks,” IEEE Trans. Wireless Commun.,
vol. 19, no. 8, pp. 5589–5604, Aug. 2020.

[52] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamen-
tal tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan.
2018.

[53] P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Maddah-Ali-Niesen
scheme for multi-access coded caching,” in 2021 IEEE Inf. Theory
Workshop (ITW), Oct. 2021, pp. 1–6.

[54] K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “A novel asymmetric
coded placement in combination networks with end-user caches,” in
2018 Inf. Theory App. Workshop (ITA), Feb. 2018, pp. 1–5.

[55] M. Ji, M. F. Wong, A. M. Tulino, et al., “On the fundamental limits of
caching in combination networks,” in 2015 IEEE 16th Int. Workshop
Signal Proc. Advances Wireless Commun. (SPAWC), Jun. 2015, pp. 695–
699.

[56] C. K. Ngai and R. Yeung, “Network coding gain of combination net-
works,” in Inf. Theory Workshop, Oct. 2004, pp. 283–287.

[57] M. Xiao, M. Medard, and T. Aulin, “A binary coding approach for
combination networks and general erasure networks,” in 2007 IEEE
Int. Symp. Inf. Theory, Jun. 2007, pp. 786–790.

https://doi.org/10/gqrtdc

200 Bibliography

[58] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[59] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with
side information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–
1494, Mar. 2011.

[60] F. Arbabjolfaei and Y.-H. Kim, “Fundamentals of index coding,” Foun-
dations and Trends® in Commun. and Inf. Theory, vol. 14, no. 3-4,
pp. 163–346, 2018.

[61] C. Thapa, L. Ong, and S. J. Johnson, “Interlinked cycles for index
coding: Generalizing cycles and cliques,” IEEE Trans. Inf. Theory,
vol. 63, no. 6, pp. 3692–3711, Jun. 2017.

[62] M. B. Vaddi and B. S. Rajan, “Optimal index codes for a new class
of interlinked cycle structure,” IEEE Commun. Lett., vol. 22, no. 4,
pp. 684–687, Apr. 2018.

[63] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Şaşoğlu, and L. Wang,
“On the capacity region for index coding,” in 2013 IEEE Int. Symp.
Inf. Theory, Jul. 2013, pp. 962–966.

[64] R. J. Wilson, Introduction to graph theory. Longman, 2010, isbn:
9780273728894.

[65] N. Woolsey, R.-R. Chen, and M. Ji, “A combinatorial design for cas-
caded coded distributed computing on general networks,” IEEE Trans.
Commun., vol. 69, no. 9, pp. 5686–5700, Sep. 2021.

[66] K. S. Reddy and N. Karamchandani, “Rate-memory trade-off for multi-
access coded caching with uncoded placement,” IEEE Trans. Commun.,
vol. 68, no. 6, pp. 3261–3274, Jun. 2020.

[67] B. Serbetci, E. Parrinello, and P. Elia, “Multi-access coded caching:
Gains beyond cache-redundancy,” in 2019 IEEE Inf. Theory Workshop
(ITW), Aug. 2019, pp. 1–5.

[68] K. K. K. Namboodiri and B. S. Rajan, “Multi-access coded caching
with secure delivery,” in 2021 IEEE Inf. Theory Workshop (ITW), Oct.
2021, pp. 1–6.

[69] D. Liang, K. Wan, M. Cheng, and G. Caire, Multiaccess coded caching
with private demands, arXiv: 2105.06282 [cs.IT], May 2021.

[70] K. K. K. Namboodiri and B. S. Rajan, “Multi-access coded caching
with demand privacy,” in 2022 IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2022.

https://doi.org/10/gqrtbm

Bibliography 201

[71] K. S. Reddy and N. Karamchandani, “Structured index coding problem
and multi-access coded caching,” IEEE J. Sel. Areas Inf. Theory, vol. 2,
no. 4, pp. 1266–1281, Dec. 2021.

[72] M. Zhang, K. Wan, M. Cheng, and G. Caire, Coded caching for two-
dimensional multi-access networks, arXiv: 2201.11465 [cs.IT], Jan. 2022.

[73] S. Sasi and B. S. Rajan, “Multi-access coded caching scheme with linear
sub-packetization using PDAs,” IEEE Trans. Commun., vol. 69, no. 12,
pp. 7974–7985, Dec. 2021.

[74] M. Cheng, D. Liang, K. Wan, M. Zhang, and G. Caire, “A novel
transformation approach of shared-link coded caching schemes for
multiaccess networks,” in 2021 IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2021, pp. 849–854.

[75] D. Katyal, P. N. Muralidhar, and B. S. Rajan, “Multi-access coded
caching schemes from cross resolvable designs,” IEEE Trans. Commun.,
vol. 69, no. 5, pp. 2997–3010, May 2021.

[76] P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Improved multi-access
coded caching schemes from cross resolvable designs,” in 2021 IEEE
Inf. Theory Workshop (ITW), Oct. 2021, pp. 1–6.

[77] R. P. Stanley, Enumerative Combinatorics, Second. Cambridge: Cam-
bridge University Press, 2011, vol. 1.

[78] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conf. Hot Topics Cloud Computing, 2010.

[79] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[80] U. Kumar and J. Kumar, “A comprehensive review of straggler handling
algorithms for MapReduce framework,” Int. J. Grid Distrib. Comput.,
vol. 7, no. 4, pp. 139–148, Aug. 2014.

[81] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance modeling of
MapReduce jobs in heterogeneous cloud environments,” in 2013 IEEE
6th Int. Conf. Cloud Computing, Jun. 2013, pp. 839–846.

[82] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 849–869, Feb. 2016.

https://doi.org/10/gqrtdd

202 Bibliography

[83] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial coded design
for heterogeneous distributed computing,” IEEE Trans. Commun.,
vol. 69, no. 9, pp. 5672–5685, Sep. 2021.

[84] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing
with node cooperation substantially increases speedup factors,” in 2018
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 1291–1295.

[85] K. Wan, M. Ji, and G. Caire, “Topological coded distributed comput-
ing,” in GLOBECOM 2020 - 2020 IEEE Global Commun. Conf., Dec.
2020, pp. 1–6.

[86] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in 2018 IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1281–1285.

[87] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 2643–2654, Oct. 2017.

[88] Q. Yan, S. Yang, and M. Wigger, “A storage-computation-communi-
cation tradeoff for distributed computing,” in 2018 15th Int. Symp.
Wireless Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5.

[89] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and commu-
nication: A fundamental tradeoff in distributed computing,” in 2018
IEEE Inf. Theory Workshop (ITW), Nov. 2018, pp. 1–5.

[90] J. S. Ng, W. Y. B. Lim, N. C. Luong, et al., “A comprehensive survey on
coded distributed computing: Fundamentals, challenges, and networking
applications,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1800–
1837, 2021.

[91] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “FPMR:
MapReduce framework on FPGA,” in Proc. 18th Annu. ACM/SIGDA
Int. Symp. Field Programmable Gate Arrays - FPGA ’10, Feb. 2010,
pp. 93–102.

[92] Y.-M. Choi and H. K.-H. So, “Map-reduce processing of k-means
algorithm with FPGA-accelerated computer cluster,” in 2014 IEEE 25th
Int. Conf. Application-Specific Systems, Architectures and Processors,
Jun. 2014.

[93] K. Wan, H. Sun, M. Ji, and G. Caire, “On the tradeoff between
computation and communication costs for distributed linearly separable
computation,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7390–7405,
Nov. 2021.

Bibliography 203

[94] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” Proc. 35th Int. Conf. Mach. Learn., vol. 80, pp. 5610–5619,
Jul. 2018.

[95] S. Dutta, V. Cadambe, and P. Grover, ““Short-dot”: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

[96] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data
shuffling for distributed machine learning,” IEEE Trans. Inf. Theory,
vol. 66, no. 5, pp. 3098–3131, May 2020.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Notations
	Introduction
	Motivation for Caching
	Caching as a Promising Solution
	The Major Breakthrough of Coded Caching

	Main Contributions
	Exploring the Impact of Structure in Data
	The Ramifications of Structure in Topology
	List of Publications

	I Exploring the Impact of Structure in Data
	A Negative Result on Selfish Caching Policies
	Introduction
	Past Works on Heterogeneous User Profiles and Selfish Coded Caching
	An Adversarial Interplay Between Coded Caching and Selfish Caching
	Main Contributions
	Chapter Outline

	System Model
	The Symmetric (K, alpha, F) FDS Structure
	Understanding the Dynamics of Selfish Coded Caching With an Example for the (K, alpha, F) = (5, 4, 1) Structure

	Main Results
	Theorem Statement
	Comments on the Converse Bound

	Proof of Theorem 2.1
	Main Proof
	A Detailed Example for the Converse Bound

	The Exact Memory-Load Trade-Off for the alpha-Demands
	Cache Placement
	Delivery Scheme for the Set of alpha-Demands
	Achievability Proof of Proposition 2.1
	Example of the Achievable Scheme

	Additional Optimal Schemes for Circular Demands
	Circular Demands and the (5, 4, F) FDS Structure
	Circular Demands and the (6, 5, F) FDS Structure

	Coded Caching With Tactical User Profiles
	System Model
	Description of the System Model
	A Genie-Aided Converse Bound

	Main Results
	Collection of Proofs
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	A Converse for Caching With Heterogeneous Preferences
	System Model and Related Results
	Description of the System Model
	An Existing Achievable Scheme
	A Genie-Aided Converse Bound

	Main Results
	Collection of Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Coded Distributed Computing With Structured Support
	System Model and Main Results
	The General Formulation
	The Symmetric Case
	Main Results

	Proof of Theorem 5.1
	Map Phase
	Shuffle Phase and Reduce Phase
	Communication Load

	Proof of Theorem 5.2
	Preliminaries
	Lower Bound on the Communication Load

	Proof of Theorem 5.3

	II The Ramifications of Structure in Topology
	Combinatorial Multi-Access Caching
	Introduction
	Past Works on Multi-Access Coded Caching
	Main Contributions
	Chapter Outline

	System Model
	Description of Connectivity
	Generalized Combinatorial Topology
	Worst-Case Load and Average Worst-Case Load

	Main Results
	Multi-Access Coded Caching With Generalized Combinatorial Topology
	Analysis of Topology Ensembles

	Achievability Proof of Theorem 6.1
	Description of the General Scheme
	Performance Calculation

	Converse Proof of Theorem 6.1
	Proof of Theorem 6.2
	Constructing the Index Coding Bound
	Counting the Connectivities
	Constructing the Optimization Problem
	Lower Bounding the Solution to the Optimization Problem

	Proof of Theorem 6.3
	Constructing the Index Coding Bound
	Counting the Connectivities
	Constructing the Optimization Problem
	Lower Bounding the Solution to the Optimization Problem

	Multi-Access Distributed Computing
	Introduction
	Coded Distributed Computing
	Main Contributions
	Chapter Outline

	System Model
	Main Results
	Characterizing the Communication Load
	Characterizing the Max-Link Load

	Illustrative Example of the Coded Scheme
	Map Phase
	Shuffle Phase
	Reduce Phase
	Communication Load

	Proof of Achievable Bound in Theorem 7.1
	Map Phase
	Shuffle Phase
	Reduce Phase
	Communication Load

	Proof of Converse Bound in Theorem 7.2
	Lower Bound for a Given File Assignment
	Lower Bound Over All Possible File Assignments

	Proof of Achievable Bound in Theorem 7.4
	Communication Load
	Download Cost
	Max-Link Communication Load

	Proof of Converse Bound in Theorem 7.5
	Lower Bound for a Given File Assignment
	Lower Bound Over All Possible File Assignments

	III Conclusions and Appendices
	Conclusions and Future Directions
	Exploring the Impact of Structure in Data
	A Negative Result on Selfish Caching Policies
	Coded Caching With Tactical User Profiles
	A Converse for Caching With Heterogeneous Preferences
	Coded Distributed Computing With Structured Support

	The Ramifications of Structure in Topology
	Combinatorial Multi-Access Caching
	Multi-Access Distributed Computing

	Appendices to Chapter 2
	Proof of Corollary 2.1.1
	Proof of Corollary 2.1.2
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Converse Proof of Proposition 2.1

	Appendices to Chapter 6
	Proof of Lemma 6.1
	Proof of Lemma 6.2

	Appendices to Chapter 7
	Proof of Corollary 7.1.1
	Proof of Theorem 7.3
	Proof of Theorem 7.6
	Proof of Lemma 7.1
	Proof of Lemma 7.2

	Bibliography

