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General introduction

The use of light and magnetic fields to control the external degrees of freedom of atoms
(their position and speed) has revolutionized the field of atomic physics. Benefiting from the
development of lasers in the 1960s, techniques of laser trapping and cooling [1, 2, 3] have resulted
in unprecedented control abilities of atomic particles, to such an extent that, in 1997, S. Chu, C.
Cohen-Tannoudji and W. Phillips were awarded the Nobel Prize in Physics for their contributions
to the development of these experimental techniques. Using them, one is able to cool gases of
atoms near the absolute zero, at temperatures where the unusual laws of quantum physics begin
to prevail. An emblematic example of this is Bose-Einstein condensation. Through this quantum
phase transition first described by A. Einstein around 1925 [4, 5], a bosonic gas goes from an
ensemble of particles classically described by Maxwell-Boltzmann statistics to a macroscopically
populated matter wave whose evolution is governed by quantum mechanics: a Bose-Einstein
condensate (BEC).

Bose-Einstein condensation was achieved for the first time in 1995, 70 years later, in the
groups of E. Cornell and C. Wieman [6] and in that of W. Ketterle [7], from the combination
of laser and evaporative coolings. This experimental achievement, rewarded by the Nobel prize
in 2001, marked the birth of the field of quantum gases which has been constantly growing ever
since. Ultracold quantum gases, which may be bosonic or fermionic, constitute very versatile
platforms for the experimentalist to study and harness quantum mechanics:

e Using laser and magnetic fields, one is able to realize a wide variety of potentials [8, 9] in
which to study the evolution of quantum systems. It is for instance possible to manipulate
single atoms in optical tweezers [10, 11] and realize controllable periodic Bloch potential
using e.g. optical lattices [12] or spatial light modulators [13, 14].

¢ Effective Hamiltonians [15, 16] can be designed in Floquet systems, where one periodically
modulates the potentials in order to design specific energy level structures and dynamics.
Such Floquet engineering is for example an approach to create artificial magnetism for

neutral atoms [17, 18].

e A powerful tool provided by ultracold atoms is the ability to tune the strength and sign of
short-range interatomic interactions using magnetic fields and Feshbach resonances [19].
Also, a strong experimental effort has recently been devoted to the realization and control
of systems with longer-range interactions, such as dipolar gases [20, 21, 22] and Rydberg
atom ensembles [23, 24, 25].

This high degree of control offered by quantum gas setups is of particular interest in the fields

of quantum simulation and quantum metrology.



Quantum simulation [26, 27] consists in using a highly controllable quantum system to sim-
ulate the model Hamiltonian of another one, less controllable or more difficult to characterize.
This idea was first suggested by R. Feynman in 1982 [28], and, since then, quantum simulation
has been implemented on many platforms, such as superconducting circuits [29], photonic sys-
tems [30], trapped ions [31] and ultracold neutral atoms [32, 33, 34]. We are here interested in
this last platform, on which in the last twenty years, major experiments of quantum simulation
with ultracold atoms were realized. One can cite the three-dimensional implementation of the
Bose-Hubbard model, on which the phase transition between a superfluid and a Mott insulator
could be observed [35], the realization of the Anderson localization in one [36, 37], two [38, 39] and
three-dimensional [40, 41, 42] systems with simulated disorder, and the Berezinskii-Kosterlitz-
Thouless transition in two-dimensional gases [43, 44].

Another field of application that benefits from the great controllability offered by quantum
gases is quantum metrology. There, a key example of the advantage of manipulating fully
a quantum system is given by the use of squeezed states, which allow to reach sensitivities
closer to the fundamental limits intimately related to Heisenberg uncertainty principle [45, 46].
This is famously the case of squeezed photonic states, used to enhanced spectroscopy [47] and
interferometry experiments [48, 49], but there is also a long going theoretical and experimental
effort to take advantage of squeezing with matter for enhanced matter wave interferometry [50,
51, 52, 53, 54, 55].

All these applications call for the development of new optimization methods to control
and manipulate quantum states in cold atom systems. Several modern approaches have been
proposed for this purpose, among which we can cite quantum feedback [56], shortcut to adia-
baticity [57], machine learning [58] and optimal control theory [59, 60].

The Cold Atoms research group in which I did my PhD at Laboratoire Collisions, Agrégats
et Réactivité (LCAR, Toulouse) takes part in the effort to develop techniques to control ultracold
atom systems. My PhD work reported in this manuscript deals with both the development of
such methods and their application to quantum simulation studies in a Floquet-Bloch system
(periodic in space and time). The LCAR Cold Atoms group developed an ultracold atom
experiment producing BECs of 87Rb that are placed in a far-detuned one-dimensional optical
lattice. Along the axis of the lattice, the atoms experience a sine potential whose depth and
position can be arbitrarily controlled in time by the means of acousto-optic modulators. This
system constitutes a powerful and versatile platform to develop new methods for the control
of quantum states, as well as to experimentally study the dynamics of matter waves in a sine
potential with controllable time dependencies, in a regime of weakly interacting particles.

Summary of my work and outline of this manuscript

This manuscript presents the research work in which I participated from 2019 to 2022 in the
Cold Atoms group at LCAR. It is divided into three parts: a first part introducing theoretical,
numerical and experimental methods required for the studies presented in the thesis, a second



part featuring results about the control and transport of quantum states apprehended in the
one-body wave function formalism and a third part presenting a study beyond one-body physics
in our system. New results are presented in the parts two and three of this thesis. There, a
detailed introduction on the addressed subject is given in the beginning of the corresponding
chapter.

Part 1 - Methods for the study of wave function dynamics in a one-dimensional periodic
potential. The first part, made up of two chapters, is dedicated to the introduction of methods
to study the dynamics of wave functions in a one-dimensional periodic potential whose param-
eters can be periodically modulated in time. Chapter 1 consists in reminders of theoretical
concepts and numerical tools for the study of such one-dimensional Floquet-Bloch systems. 1
then present in Chapter 2 the BECs experiment and the controllable optical lattice used to
implement this system in the laboratory, and with which the results presented in the following

parts were obtained.

Part 2 - Control and transport of the BEC one-body wave function in the optical lattice.
The second part of this manuscript features two research works where the evolution of the
atomic state is described by the Schrédinger equation and the formalism introduced in Chap. 1.
In Chapter 3, I present the experimental implementation of a quantum-optimal control protocol
in our experiment: by continuously shifting the optical lattice in an optimal way, we demonstrate
our ability to prepare arbitrary momentum distributions and motional quantum states for the
BECs in the lattice. This allowed us to prepare squeezed Gaussian states up to more than four
times narrower in position than the ground state of the optical lattice, a state that would be
unattainable using standard adiabatical methods. To characterize the states that we prepare,
we implemented a quantum state tomography based on likelihood maximization which I then
detail. I conclude this chapter with the presentation of a concrete application of quantum-
optimal control to a simulation of dynamical tunneling in a Floquet system. Chapter 4 features
a study (both numerical and experimental) of the ratchet effect, which consists in the emergence
of a directed current of particles in a potential periodic in space and time. I begin with a classical
mechanics study in which I show how to design an integrable ratchet effect in a Hamiltonian
system by correlating the modulations of amplitude and phase of a symmetric sine potential.
I then consider quantum mechanics in this system, and detail how quantum transport along
the ratcheting classical trajectories depends, in a non-monotonous way, on the effective Planck
constant. Following these studies, we experimentally realized this system, and I report on the
observation of non-diffusive ratchet transport of matter waves in the optical lattice.

Part 3 - Beyond the one-body wave function. The last part of this manuscript is composed
of Chapter 5, featuring a study of the emergence of a supercrystalline order that results from
interatomic interactions in the modulated optical lattice. In the experiments presented in this
chapter, we load the atoms in the ground state of the lattice before modulating its phase at a
frequency that couples the ground band to an excited band, that coupling being not resonant for



the initial state. In this configuration, we show how two-body collisions occurring between atoms
of the ground state lead to the appearance of atomic population at symmetric quasi-momenta
through four-wave mixing, at a position in the Brillouin zone that can be tuned by Floquet
engineering the quasi-energy spectrum of the system. This produces a new periodicity in the
distribution of atoms in the lattice, larger and non-commensurable with the lattice spacing.

The work presented in Chap. 3 results from a collaboration with Prof. D. Sugny from the
Laboratoire Interdisciplinaire de Carnot Bourgogne (Dijon), and the work presented in Chap. 5
results from a collaboration with Prof. P. Schlagheck from the CESAM research unit at the
University of Liege.
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Chapter 1 - Elements of theory for the study of

a wave function in a
one-dimensional potential

Si vous me savez peu de gré de ce que je vous dis, sachez-m'en beaucoup de ce que je
ne vous dis pas.

Denis Diderot (Jacques le Fataliste et son maitre, ca. 1778)
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Introduction

The goal of this first chapter is to briefly recapitulate elements of theory, concepts and
numerical tools used to study one-body wave functions in one-dimensional periodic potentials
without interactions. The methods that we recall will then be used throughout this manuscript.

Some of the developments presented in this chapter are inspired from [69].

1.1 Classical particle in a one-dimensional periodic potential

In this first section, we present some reminders on analytical mechanics. The main objective
is to introduce the notion of phase space, and the construction of the stroboscopic phase portrait
of a one-dimensional system periodically modulated in time. In the end of this first chapter,
after discussing quantum dynamics in a one-dimensional sine potential, we revisit the notion of

phase space to introduce the phase space representation of a quantum state (Sec. 1.4).

1.1.1 Basics on analytical mechanics

Lagrangian mechanics. We consider a classical system with N degrees of freedom. In the La-
grangian formulation of analytical mechanics, the state of the system is completely described by
N independent generalized coordinates ¢ = (g1, ..., qn) and their time derivatives ¢ = (41, ..., 4n)-
The dynamics of the system is ruled by the Lagrangian

L(@.qt) =TV, (L1)

with T" and V being respectively the kinetic and potential energies. Given an initial condition
(q(to),q(to)), the classical trajectory q(t) that the system will follow over the time interval [to, ¢1]
is, among all the possible trajectories, the one that minimizes the action S, a functional of g(t)
that reads

Slat.to.0] = [ Dla.d 0t (1.2

to

The minimization of S leads to N Euler-Lagrange equations:

d [OL oL
— =) - = = 1.
dt (0q1> qu 07 ( 3)

which in turn gives N equations of motion.
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Hamiltonian mechanics. To introduce the phase space of the system, we switch to the Hamilto-
nian formulation of analytical mechanics by introducing the generalized momenta p = (py, ..., pn)
and the Hamiltonian H through the Legendre transformation:

oL ol
Pi= 50 H(q,p,t) =Y dipi— L. (1.4)
¢ i=0

From the Hamiltonian, the equations of motion are given by the Hamilton equations:

dt _apz' dt N 8qi'

(1.5)

For a particle of mass m, a Cartesian coordinate system, a kinetic energy T(q) = mq¢?/2 and a
potential V(g,t) that does not depend on the velocities ¢, the Hamiltonian is

H(q,p,t) =T(p) +V(q,t), (1.6)

where the generalized momenta are the usual momenta p = mgq.

Phase space. In the Hamiltonian formalism, the state of the system at a given time tg is
a point (g(tg),p(tp)) in the phase space of the system. In this space of dimension 2N, the
conservation of the mechanical energy constrains trajectories (g(t),p(t)) on a hypersurface of
dimension 2N — 1. For such a constant Hamiltonian system, the determinism of the dynamics
implies that there cannot be intersection of trajectories in the phase space, since then the state
at the hypothetical crossing would have multiple possible evolutions.

Integrability of a dynamical system. The dynamics of an Hamiltonian system is fully inte-
grable if there are as many conserved and independent constants of motion as there are degrees
of freedom [70, 71, 69]. As we will see for the time-independent sine-potential in one dimension,
the phase space of an integrable system only displays regular trajectories. On the other hand,
irregular chaotic trajectories can emerge in the phase space of systems with fewer constants of
motion than degrees of freedom. As for most of the dynamical systems studied in this thesis,
the majority of physical systems present a mixed dynamics, with the coexistence of integrable

and chaotic trajectories.

1.1.2 Phase space of the one-dimensional sine potential

The Hamiltonian that will interest us in most of this manuscript is the Hamiltonian for the
one-dimensional sine potential of spatial period d whose depth and position can be varied along
time:
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2 x
H(z,p,t) = p—m — A(t) x % cos (27T + go(t)) . (1.7)

with A(t) a dimensionless scaling function of order 1. In this section, we study the classical
dynamics in this system by successively considering the case where H is time-independent, the
case where it is time-dependent and the special case where H is periodic in time.

Time-independent sine potential. We first consider the time-independent Hamiltonian with
modulation functions A(t) =1 and ¢(¢) =0 in Eq. (1.7):

2
Vo (FE
H(m,p)—2m 5 cos( 7 ), (1.8)

which corresponds to the Hamiltonian of the simple pendulum. To represent the phase space of
the system, the general strategy is to compute! several trajectories (x(t), p(t)) for several initial
conditions (xg, pg) using the Hamilton equations (1.5). However, as the time-independent Hamil-
tonian (1.8) conserves the mechanical energy, we can circumvent the explicit numerical integra-
tion of individual trajectories, evaluate the Hamiltonian over the discretized two-dimensional
space (z,p) and display lines of iso-mechanical energy. These lines (also called orbits, which we
draw in Fig. 1.1) correspond to trajectories (x(t),p(t)) of a classical particle described by the
Hamiltonian (1.8). As the ordinate p of a point informs on the time evolution of its abscissa z,
orbits are followed in a given direction (clockwise in a (z,p) plot where x and p are defined as
increasing to the right and upwards respectively, as in Fig. 1.1).

We display the separatrix, the limit trajectory of infinite period that separates periodic
trajectories bounded within a site of the potential from unbounded trajectories that travel
between sites. We define the momentum pgep = V2mV, of the separatrix in = 0. We note
that, displaying the position in units of d and the momentum in units of psep, the phase space of
Fig. 1.1(b) describes the classical dynamics of the Hamiltonian (1.8) for all specific parameters
m, Vo and d. As we discuss in Sec. 1.4, this scaling invariance of the dynamics does not hold in
the quantum case.

In this manuscript, we use different sets of characteristic quantities to scale the dynamics.
In Fig. 1.1, the (x, p) phase space is plotted with respect to 2 /d and p/psep. In a following
paragraph concerning time-modulated potentials, the time scale in the scaling of the
momentum is proportional to the period of modulation. A summary on our two main

dynamical scalings is presented at the end of this chapter (p. 33).

Tn the work presented in this manuscript, we use the Runge-Kutta “RK4” method to integrate classical dynamics.
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Figure 1.1 | One-dimensional sine potential and corresponding phase space. (a) One dimen-
sional sine potential over three spatial cells (solid blue line). We draw a particle moving in the potential
(black marker and arrow). (b) (z,p) phase space over one spatial cell, with bounded trajectories (plain
black lines), unbounded trajectories (dashed black lines) and the separatrix (dotted red line). We mark
the phase space coordinate of the particle in panel (a) (black marker) with the direction of its evolution
(black arrow).

Time-dependent sine potential. The situation becomes more complicated for time-dependent
systems. First of all, the mechanical energy is not conserved anymore. Even in one dimension,
we have fewer constant(s) of motion than degree(s) of freedom, so we lose the certainty of
having integrable dynamics. Furthermore, in the general case of time-dependent Hamiltonians
H(z,p,t), one cannot simply adjoin integrated trajectories in the (z,p) plane in order to display
the phase space of the system. Indeed, as the states in (xg,po,t1) and (zg,po,t2) generally
experience different potentials V' (z,¢1) and V(xg,t2), they evolve along different trajectories.
A naive (z,p) plot of the trajectories would result in crossing trajectories artifacts. Therefore,
for a time-dependent system, one has to consider the (x,p,t) phase space, with an additional

effective dimension.

Periodically time-modulated sine potential. A specific type of time-dependent systems that
interests us in this manuscript is the case of the periodically modulated sine potential in one
dimension, with a Hamiltonian of the form H(z,p,t +T) = H(z,p,t) (with T the modulation
period). Here, the periodicity of the Hamiltonian allows for a valid and informative representa-
tion of the (x, p,t) phase space in the (z,p) plane. To compare trajectories when the potential is
identical, one only displays the states (x(t), p(t)) of the system at times t = to+nT. As depicted
in Fig. 1.2(a) for one trajectory, this amounts to only considering the trajectories when they
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Figure 1.2 | Construction of a stroboscopic phase portrait. (a) Intersections (blue dots) between

a trajectory (blue solid line) of the (z,p,t) phase space and the planes (x,p,t,) with ¢, = to + nT (see
text). (b) Resulting strobscopic phase portrait. Figure inspired from [69].

intersect the planes (z,p,tg + nT), with 0 < tg < T and n € N. The resulting plot (Fig. 1.2(b))
is called the stroboscopic phase portrait and is an example of Poincaré section, a method to
represent the phase space of a system in a subspace of lower dimensionality [69].

We now give examples of stroboscopic phase portraits. We consider the time-dependent

Hamiltonian (1.7) whose depth and position reference are modulated periodically: A(t +T) =
A(t) and p(t+T) = p(t). We define the dimensionless units

5 - 27 _di T - T?

From Egs. (1.7) and (1.9), the dimensionless Hamiltonian reads:

— A(t) x ycos (Z + ¢(1))

(1.10)
with the scaled potential amplitude v = VoT?/2md?. In Fig. 1.3, we consider two cases:
(a) The offset? modulation of amplitude with one harmonic:
A(t) =1+ ¢ggcos(t) (1.11)
p(t) =0

2In Chap. 2, we present the experimental realization of the systems discussed in this chapter. We then see how
experimental constraints require |A(#)| > 0, which explain the form of A(f) in Eq. (1.11), with 0 < &9 < 1 in the
experiment.
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Figure 1.3 | Examples of stroboscopic phase portraits. Top: periodically modulated potentials
over three spatial periods. Bottom: stroboscopic phase portraits. (a) Modulation of the depth of the
potential, i.e. Eq. (1.10) for the modulation functions (1.11), with v = 0.375, 9 = 0.24 and a subperiod
time of stroboscopic observation to = 0 (see text). (b) Modulation of the position reference of the
potential, i.e. Eq. (1.10) for the modulation functions (1.12), with v = 0.44, ¢y = 27/24 = 15° and a
subperiod time of stroboscopic observation g = 0.

(b) The phase modulation with one harmonic:

T

A(f) =1 (1.12)

o(f) = o cos(D)

In the stroboscopic phase portraits of Fig. 1.3(ag,bs), we see three kinds of trajectories:

e We first have trajectories that live on closed lines inscribed inside one another. These
regions of various shapes are called regular islands and consist of sections of inscribed
tori® made of surfaces of regular trajectories in the (x,p,t) phase space.

e At large dimensionless momentum (|p| 2 1 in Fig. 1.3), we see the unbounded trajectories
that we already encountered in the case of the static potential (Fig. 1.1(b)), with enough
mechanical energy to only be slightly perturbed by the modulation.

e Finally, inside the unbounded trajectories and surrounding the regular islands is the chaotic
sea, a region of irregular trajectories that ergodically span all the accessible region of the

phase space.

3They are also called KAM tori [71], for A. Kolmogorov [72], V. Arnold [73] and J. Moser [74]. A classical
trajectory cannot cross a KAM torus by virtue of determinism.
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Figure 1.4 | Subperiod evolution of a stroboscopic phase portrait. (a-e) Stroboscopic phase
portraits of the same Hamiltonian (1.10) in the amplitude modulation case of Eq. (1.11). The difference
between the panels is the reference time #, of the stroboscopic observations, with #y = 0,7 /2,7, 37/2 and
27 for (a) to (e) resp.

The phase portraits of Fig. 1.3 give examples of mixed dynamics, with the coexistence of regular
and chaotic trajectories. The degree of chaos (i.e. the ratio of phase space area between the
chaotic sea and the regular islands) depends on the strength of the modulations [75, 69].

The stroboscopic phase portraits of Fig. 1.3 correspond to the specific choice of subperiod
observation time #y = 0 (in accordance with our definitions of the modulation functions A(%)
and o(f) in Eqs (1.11) and (1.12) ; see Fig.1.2 and the explanation of the construction of a
stroboscopic phase portrait). This parameter can be varied to inform on the sub-stroboscopic
evolution of the system. We illustrate this procedure in Fig. 1.4, where we draw, for different
times 0 < ¢y < 2w, the stroboscopic phase portraits in the case of the amplitude modulation of
the sine potential (Fig. 1.3(a)). In Fig. 1.4, we can discriminate between two kinds of regular
islands: the islands that are linked to a given site of the potential (e.g. the three islands on
the p = 0 axis at £y = 0) and the islands that travel to neighboring sites between periods (e.g.
the two islands in (#,p) ~ (0,41.25) at f5 = 0). In the dimensionless units (1.9), the average

momentum of any trajectory from a given regular island is the same rational number?:

. . 1
(Preg) = lim_ -

nx2mw
/ Preg(t) df = w € Q, (1.13)
0

for ﬁreg(f) the scaled momentum of a trajectory in the regular island. The number w is the wind-
ing number [76, T1] of the regular island, which corresponds to the number of sites traveled per
modulation period. This observation is at the heart of Chap. 4, where, through the correlation
of the amplitude and phase modulations (Egs. (1.11) and (1.12)), we engineer a transporting
regular island (i.e. with a winding number w # 0) that passes by (z,p) = (0,0).

4In the evaluation of this average, the necessity of the limit comes from the quasi-periodicity of trajectories in
regular islands. With the exception of the trajectory at the center of a regular island, the result (preg) = w € Q
is in general only obtained asymptotically.

17



1.1.3 Symmetries of the phase space.

The symmetries of the phase space reflect the symmetries of the Hamiltonian. The two
relevant symmetries for our dynamical study are the spatial symmetry .S, and the time-reversal
symmetry Sg:

A —
Sy . “ , and St : e (1.14)
t—t t— —t

with each symmetry transformation implying p — —p. At time ¢, a given Hamiltonian H(x, p,t)
with trajectories (z(t),p(t)) has the symmetry S if the symmetric trajectories S(z(t),p(t)) are
solutions of the symmetric equations of motion deduced from S(H (x,p,t)).

For instance, the amplitude modulation of Eq. (1.11) never breaks the spatial symmetry Sz
of the Hamiltonian (1.10). Therefore, the stroboscopic phase portraits in Fig. 1.4 have the central
symmetry (&,p) — (—, —p) for all observation times ¢y. Moreover, the amplitude modulation
being a function of Cos(f), the Hamiltonian has the symmetry S; only at times {y = nm with
n € N, which corresponds to the instants when the stroboscopic phase portraits have the axial
symmetry (Z,p) — (,—p) (Fig. 1.4(a,c,e)). The same analysis for the phase modulation (1.12)
confirms the fact that the stroboscopic phase portrait of Fig. 1.3(b) displays the symmetry S;
but not S; at ty = 0.

This concludes our reminders on classical mechanics. We now turn to the quantum regime

for the study of a wave function in the sine-potential system.

1.2 Wave function in a time-independent sine potential
We first consider the case of a quantum particle in the static potential

2rx
Viz)=—— — . 1.15
(0) = g cos (27 (1.15)
We define characteristic quantities that we use throughout this manuscript:
e the wave number of the sine potential kr, = 27/d,
e the characteristic energy Eyr, = h%k /2m = h?/2md?,
e e the corresponding frequency vy, = Ep,/h = h/2md?,

with A the Planck constant. In the following, we express the depth V{ of the potential
in units of Ey, through the dimensionless parameter so = Vp/Er,. In Chap. 2, we discuss
the experimental implementation of the potential (1.15) and we give the numerical values
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of these quantities. In the experiment, realistic accessible values for sy are in the range
[0, 40].

When working with optical lattices, an energy scale commonly found in the literature
is the recoil energy E, = h?/8md? = E,/4, which is the kinetic energy acquired by an
initially resting atom of mass m when absorbing of a photon with wave number kg, /2. The
realistic range for experimental lattice depths given in the previous paragraph corresponds
to Vo < 160E;.

The quantum treatment of periodic potentials falls under the study of wave functions in
crystalline structures. A major result in this field is Bloch’s theorem, that we briefly present in

the one-dimensional case.

1.2.1 Bloch’s theorem in one dimension

We want to determine the eigenvectors of a generic one-dimensional Hamiltonian:

~opr .
H=_— 1.1
o TV (@) (1.16)

with p = —ihd/0z and a spatially periodic potential V(:C +d) = V(:U) We define the plane
waves |y, ), eigenstate of the momentum operator p with eigenvalue rhky:

ezrkL T

<x|Xr> = Xr(x) = \/& (1'17)

with a normalization over one site of the potential. Since H is left invariant by the discrete
spatial translation x — x — d, it commutes with the spatial translation operator Ty = e~tp/h,
Consequently, one can look for a basis of states in which H and T} are diagonal operators,
i.e. a common set of eigenstates for H and Tj. Bloch’s theorem [77, 78, 79] states that these
eigenstates are the product of a plane wave x, /i, (z) and a function with the periodicity of the

potential. They are functions of the form:

o) = ug ()6, (118)

where the wave number g will be referred to as the quasi-momentum®, and uy(z + d) = uy(z).
Considering smooth enough potentials V' (z), the functions uq(x) can be expressed as their

Fourier series: _
ezékLa:

uq(z) = Z Cq,t W = Z Cqe Xe(x), (1.19)

lezZ lezZ

5Even though the quantity associated to ¢ that is homogeneous to a momentum is rather Agq.
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with ¢, € C. From Egs. (1.18) and (1.19), the Bloch eigenstates can be written as

ctlkLt+q)z

= ¢ Cat Nz = Cat Xerq/i, (T), (1.20)

leZ leZ

as well as any state evolving in the potential at given quasi-momentum ¢, since the basis of
the Bloch eigenstates spans the Hilbert space for all g. We refer to the coefficients ¢, € C as
the plane wave coefficients of a state, with the normalization condition Y, |c,,|?> = 1. Within
a subspace of fixed ¢, a state in a Bloch system is fully defined by the infinite set of its plane
wave coefficients, and we see from Eq. (1.20) that it consists of a comb of plane waves with
momenta p = A(lky, + q) (with ¢ € Z). We see that a phenomenological interpretation for the
quasi-momentum is that it is the quantity that sets the momentum reference of the plane wave
comb in the rest frame of the potential. Furthermore, Eq. (1.20) implies that quantum states
at a given quasi-momentum in Bloch systems are periodic under the discrete quasi-momentum
translation ¢ — ¢ + ki, (with ¢gqmp, ¢ = ¢q¢ for m € Z in the plane wave expansion of a given
state 14(x)). This defines the first Brillouin zone, the relevant quasi-momentum cell in which
to study the dynamics of a system, that we define as —0.5 < ¢/kr, < 0.5.

In the following, we write |¢),) an arbitrary state at quasi-momentum ¢, and |¢,,) the
h Bloch eigenstate at quasi-momentum ¢ (where the index n sorts the states by increasing

eigenvalues ; see below).

1.2.2 The central equation for the sine potential and the band structure

The central equation. We now go back to the specific case of a wave function in a sine

potential:

V(z) = —sp % cos (kpz) . (1.21)

From Bloch’s theorem, we look for the eigenstates of this system in the form of Bloch waves
Pgn(x) =3, C((Jng) Xt+q/ky, () . Combining Eqs (1.16), (1.20) and (1.21), the time-independent
Schrodinger equation leads to the central equation:

Hﬁf)q,n(x) = Egndgn(z) (1.22)

(n) S0 [ (n) (n) _ Egn ()
(M_ k‘L) ‘ot Ty <Cq7571 + Cq,£+1) = B Cat:

with E, , the eigenenergy associated with the Bloch eigenstate |¢g,). We see that the Hamilto-
nian for the sine potential is tridiagonal in the basis of the plane waves, as it couples the plane
wave |x¢) to the plane waves |x,+1). For given parameters (s, q), its diagonalization gives the
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Bloch eigenstates and the associated eigenenergies. This is done numerically. As the Hilbert
space dimension of this continuous system is infinite, ¢ needs to be truncated to [¢| < lpax, an
upper bound for the plane waves of highest kinetic energy considered. For a given problem, £,
is determined by making sure that the plane waves with the highest kinetic energy contributing
to the dynamics are taken into account (i.e. by ensuring that the choice of a greater £,.x results
in the same dynamics). The resulting Hilbert space dimension is dg = 2/pax + 1. To model
realistic situations in the experimental optical lattice (see Chap. 2), our simulations are typically
done with dg ~ 30.

The band structure. For a given sg, the spectrum of the Hamiltonian as a function of the quasi-
momentum gives the band structure. In this thesis, we adopt the nomenclature (s, p, d, f ...)
for the bands of eigenenergy n = (0, 1, 2, 3 ...). In Fig. 1.5, we draw the band structures for
two non-zero potential depths, and we show examples of Bloch eigenstates by displaying their
‘2

plane wave coefficients ¢, and their spatial density of probability |¢q,(x)|”. We make a series

of remarks:

o We define the parity operator ]5, whose action on an arbitrary state in the position repre-
sentation is

Piy() = vg(~2). (1.23)

For a symmetric potential V(z) = V(—z), the Hamiltonian commutes with P. Therefore,

$—qn(T) = Pgn(—2). (1.24)
Consequently, we have cl(:z) =4 c(fq)’_ ¢» and moreover c((:g) =+ ct(:le for ¢ € {0,0.5}. This

is illustrated in Fig. 1.5(b,c,d,g,h).

e For a Bloch system left invariant by the time-reversal symmetry S; (1.14) (such as the
time-independent sine potential that we consider), the band structure is symmetric around
q =0, so we have E,,, = E_,,, [79] (see Fig. 1.5(a,e)).

e Comparing the two ground states in Fig. 1.5(d) and (h), we see that, as the depth of
the potential increases, the envelope of the ¢, gets wider and the probability dispersion of
the spatial density gets narrower. This illustrates the uncertainty principle AxzAp > h/2
between the two incompatible observables x and p. At the end of this chapter, we briefly
discuss the uncertainty principle when we consider the representation of a wave function
in the phase space (Sec. 1.4). This phenomenon is also highlighted in Chap. 3, where we
perform state squeezing in the optical lattice.

e Figure 1.5(f,g) shows two states at ¢ # 0. We see how the momentum reference of the

plane wave comb is translated accordingly. In Chap. 5, we study the emergence of states

21



a
2 -

G 3
w Q
b

14 C

0 -\.d/—

-0.5 0.0 0.5
qlki

0 -
_1 -
h
@
-0.5 0.0 0.5
qlky

b; b,
0.5
0.0 +
—0.5 A
Cq 0 C>
0.5
=
0.0 ‘E
o
I S
—0.5 A
1.0 d] 0 d,
0.5 - /\
00 - 0 T T
-2 0 2 -0.5 0
p/hk, x/d
f1 f2
0.5 +
0.0
—0.5 A
g1 0 92
0.5 +
=
0.0 _‘-_IJ_I_I_r <
o
hSs
—0.5 A
1.0 h] 0 h,
- O I I I O /\
00 = 0 T T
-2 0 2 -0.5 0
p/hk, x/d

Figure 1.5 | Band structures and Bloch eigenstates. (a,e) Band structures in the first Brillouin

zone obtained from Eq. (1.22) with s = 1 (a) and so = 5 (e).

The bands s, p, d and f are in blue,

orange, green and red. The grey shaded areas indicate the energies below the maximum potential energy
V(£d/2) = s9EL/2. (b,c,d,f,g,h); Plane wave coeflicients ¢, as a function of the plane waves momenta p
in the rest frame of the potential for the Bloch eigenstates identified on panels (a,e). (b,c,d,f,g,h)s Spatial
densities of probability for the Bloch eigenstates identified on panels (a,e).
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coexisting at different quasi-momenta in a modulated optical lattice. The signature of the

phenomenon is the population of plane waves on translated momentum comb.

The limit sy — 0. In the absence of potential (sy = 0), the Hamiltonian in Eq. (1.22) is diagonal
in the basis of the plane waves. This is expected since the plane waves are the eigenstates of the
momentum operator p. The band structure then simply becomes E,,, — E,¢/FErL, = ({+q/kL)?,
i.e. the parabolic relation of dispersion for the free particle. In this situation, we get pairs of
degenerate eigenstates at ¢/kr, = 0 and q/kr, = 0.5 as there then exist two relative integer values
of ¢ such that ¢ + q/kp, takes the same value (with the exception of £ = 0 at ¢ = 0). This has

experimental consequences when performing a band-mapping (see Sec. 2.4.3).

1.2.3 Quantum state evolution in a Bloch system

In the absence of interactions, the dynamics of a wave function is ruled by the time-

dependent Schrodinger equation:

L0 -
iy () = H(E (e, ). (1.25)

From time to to ¢, the evolution of a state 14(z, t) is given by

Yo, t) = U(t, to)iby(x, to). (1.26)

The evolution operator U (t,to) is a unitary operator that satisfies the Schrodinger equation

m%ﬁ(t,to) = H(t)U(t, to). (1.27)

The solution of this equation reads

t

Ult, to) = ?exp{ hz Fl(t’)dt’}. (1.28)
to

where T is the time-ordering operator. For a time-independent periodic potential, it simplifies
into

Ult, tg) = e Hx(t=to)/h (1.29)
= S e Eunt= 06 ) (b

neN

23



We see that it is straightforward to obtain the evolution of an arbitrary state in the time-
independent sine potential (1.21) from its expansion on the Bloch eigenstates:

Wq(to» = Z dq,n(tO) ‘¢q,n> (1.30)
neN
= U(t,to) [1hq(to)) = Y _ dgn(t) |6gn)
neN

with d,(t) = e"Fan(=t)/hq . (t).

In Chap. 2, we present a method to calibrate the depth of our optical lattice that con-
sists in probing the eigenenergies F, , by triggering an out-of-equilibrium evolution in the sine
potential.

1.3 Wave function in a time-dependent sine potential

1.3.1 Time-dependent sine potential: general case

Let us now consider the case of a sine potential whose depth and phase reference can be

arbitrarily varied in time:

V(z,t) = —A(t) X sp % cos (kLx + ¢(t)) . (1.31)

The diagonal and off-diagonal matrix elements of the Hamiltonian in the central equation (1.22)
become

Alt Fip(t)
<Xe+q/kLil| \Xé+q/k:L> = —()sof- (1.32)

We cannot develop further in the case of arbitrary functions A(¢) and ¢(t). We can however
make numerical simulations to study a given dynamics, for instance by iteratively constructing
the evolution operator from a series of Hamiltonians considered constant over a small enough

time intervals dt¢:

L(t—to)/dt] .
. ) —iH(t — ndt) x it
Ul(t,tg) = 61t1£>n0 | | exp{ ( - ) } (1.33)
n=0

with |-] denoting the integer part. In Chap. 3, we show how the optical lattice can be contin-
uously moved in space in order to bring an initial state to a given target state. The quantum
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optimal control algorithm used for the determination of the control field xy(¢) notably relies on
Eq. (1.33) to integrate the dynamics in the lattice.

In the next section, we address the specific case of time-periodic modulations of the sine
potential (1.31).

1.3.2 Time-periodic Hamiltonians : Floquet formalism

We consider a potential that is periodically modulated in time:
V(z,t) =V(x,t+T). (1.34)

Floquet operator, Floquet states and quasi-energies. In this system, a natural basis [80, 16]
over which to decompose a state to study its evolution is the set of Floquet states {]cp%())>},
the eigenstates of the evolution operator from ¢y to top + 7" (i.e. a one-period evolution). This
operator, called the Floquet operator, reads

(t0) S e B
UFO =U(to+T,ty) = TeXp{h / H(t)dt}, (1.35)
to
with the subperiod reference time 0 < ty < T'. As the evolution operator is unitary, its eigen-

values are complex numbers with norm one:

pito) <P7(ff)> — A ‘@%0)> — o—iemT/h ‘807(%0)>- (1.36)
where we have defined the quasi-energies €y, given by €, = —arg{\,,}i/T. We see that the

quasi-energies are periodic under the translation

21h
€m — €m + = 6m + hv, (1.37)
with hv the energy of one phonon at the frequency v = 1/T. Therefore, we only consider
the quasi-energies in the interval —hv/2 < €, < hv/2. This “quasi-energetic Floquet cell” is
the translation of the Brillouin zone in the time domain [16]. For a given Floquet potential

(Eq. (1.34)), two useful properties (see [16]) are that:

e the Floquet states for a different time reference ¢; can be determined from the Floquet
states y<p$Z°)> by propagating them from tg to t1, i.e.

o) = Ut t0) [o0) (1.38)

e the quasi-energies €, of Uéto) do not depend on the reference time tg.
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From the Floquet states and their associated quasi-energies, we rewrite the Floquet opera-
tor (1.35)

(O0)" = 37 emimxenT/i | (pfto) (1.39)

méeN

for n € N modulation periods. Comparing Eqs. (1.29) and (1.39), we see that, in the Flo-
quet formalism, the discrete, stroboscopic dynamics of a quantum system with a time periodic
Hamiltonian is analogous to the continuous dynamics with a time independent Hamiltonian ;
the quasi-energies and the Floquet states playing the role of the eigenenergies and the Bloch
eigenstates. A potential that is both periodic in space and time is called a Floguet-Bloch poten-
tial.

Quasi-energy spectrum. The analog of the band structure for a Floquet-Bloch Hamiltonian
is the quasi-energy spectrum (or Floquet spectrum) as a function of the quasi-momentum. As
examples, we draw in Fig. 1.6 two quasi-energy spectra (computed from Egs. (1.32) and (1.33))
for the amplitude modulated Floquet-Bloch potential

E
V(z,t) = —[1 + go cos(2mvt)] SO?L cos (krz), (1.40)

with parameters so = 4, v = 3.2 v, and the two amplitudes of modulation g = 0 and ¢y = 0.15.
For eg = 0 (Fig. 1.6(b)), we are actually in the situation of the static potential, so the Floquet
states are simply the Bloch eigenstates, with the eigenenergies correspondence

en = E, mod (hv) + Ae (1.41)

(the dependence on g is implicit, and Ae is an arbitrary offset of all the quasi-energies correspond-
ing on the arbitrary global phase in Eq. (1.36)). This equivalence modulo the phononic energy
hv (Eq. (1.37)) is well illustrated by the comparison between the band structure of the static
potential (Fig. 1.6(a)) and the quasi-energy spectrum in absence of modulation (Fig. 1.6(b)).
We see that the quasi-energy spectrum consists of superimposed slices of the band structure with
energy height hv. In the absence of modulation (Fig. 1.6(b)), the quasi-energy levels cross at the
quasi-momenta where the Bloch bands in the band structure are separated by kx hr with k € N*.
The integer k is directly the order of the phononic transition implied. For 9 > 0 (Fig. 1.6(c)),
the inter-band couplings induced by the modulation of the potential leads to Bloch eigenstates
hybridizations (see below), with quasi-energy bands displaying avoided crossings whose width
increases with the modulation amplitude.
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Figure 1.6 | Band structure and quasi-energy spectra. (a) Band structure (plain colored lines)
of the static sine potential for so = 4. The s, p, d, f and g bands are in blue, orange, green, red and
purple respectively. The arrows are placed at the quasi-momenta where the Bloch bands are separated
by an energy |E;q — E; 4| = k X hv (see text), with £ = 1 (plain back arrow) and k& = 2 (dotted grey
arrow). Arrows are only shown for ¢ < 0 for the figure to remain legible. The horizontal dashed lines
correspond to the energy period in the quasi-energy spectra (b,c) (see text). (b,c) Quasi-energy spectra
for the time-periodic potential (1.40) for two different amplitudes of modulation ¢ and other parameters
so =4 and v = 3.2y, The amplitudes of modulation are £g = 0 (b) and ¢ = 0.15 (c).

Identification of the relevant Floquet states. The static band structure of Fig. 1.6(a) has
been obtained numerically in a Hilbert space of truncated dimension dy (in this case dy = 30,
see Sec. 1.2.2). After the diagonalization of the Hamiltonian, one can directly identify the
n'™ Bloch eigenstate as it is the state corresponding to the n'™™ greatest eigenenergy. The
amplitude modulated sine potential (1.40) is also a continuous system with an infinite Hilbert
space dimension. As for the static case, the Floquet spectra of Fig. 1.6(b,c) have been obtained
working with a basis of the dy plane waves (from Egs. (1.32) and (1.33) with diy = 30). Therefore,
for each quasi-momentum considered in Fig. 1.6(b,c), we actually have dy states, with no obvious
ordering between the quasi-energies —hv/2 < €,, < hv/2 (which are moreover defined up to an
arbitrary offset). To identify relevant Floquet states, an efficient method is to sort them by
their overlap with known states. We use this method, in Fig. 1.6(b,c) where, for all the quasi-
momenta considered, we only display the quasi-energies of the N = 5 Floquet states maximally
alike the first five Bloch eigenstates. Furthermore, the color® C,(ff ) with which we draw the quasi-
energy e, of a given Floquet state |pq ) is the weighted average of the colors Cff) associated to
the first five Bloch bands |¢4,), with weights corresponding to the overlaps between the Bloch

eigenstates and the Floquet state considered:

SFor instance encoded in RGB: C; = [ri, gi, bi] with 0 < 7y, g;,b; < 1.
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N
Cr(rf) = Z C,(L(b) ’<¢q7n|90q7m>|2 (1.42)

n=1

Doing so, the above-mentioned hybridization of Bloch eigenstates induced by the modulation of
the potential can directly be observed at the avoided crossings of Fig. 1.6(c), through which the
color of a Floquet band smoothly transitions between the colors associated with the two static
Bloch bands.

1.4 Quantum states in the phase space

In Fig. 1.5, we have drawn band structures and represented typical Bloch eigenstates both in
the p and x representations. In this section, we discuss the endeavor of giving both informations
at once, i.e. representing the quantum state of a one-dimensional system in the (z,p) phase

space.

In the beginning of this chapter (Sec. 1.1), we recalled that the state of a classical system
at a given time is a point in the position-momentum phase space of the system. In the quantum
regime, the position and momentum of a particle are not defined point-wise. Instead, if the
state of a particle is defined by the ket |¢), the Born rule states that the probability of finding
the particle between x and z + dx is |(z[¥)|*dz = [1(x)|?dz, and the probability of finding the
particle with a momentum between p and p + dp is |(p[1)|>dp = |1 (p)|*dp. Moreover, the wave
function ¢ (z) and ¥ (p) for a particle in a given state are related by the Fourier transform:

—ixp/h

[T Y(@)e .
¥(p) —/Oo N d (1.43)

with the Heisenberg uncertainty relation between the standard deviation” Az of ¢(x) and the
standard deviation Ap of ¥(p):

AzxAp >

oSt

) (1.44)

This inequality implies that the minimal “area” AxzAp of a state in the phase space is typically
h, and corroborates that a wave function cannot be described by a vector in the phase space.

"For an observable A, we have AA = ,/(A?),, — (A)i,
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1.4.1 Wigner and Husimi representations and the effective Planck constant

Wigner representation. To represent a quantum state [¢) in the phase space, E. Wigner [81]
introduced the function Wy (z,p) : R* — R:

Wy (x,p) / P (x4 u)(x —u) exp{—zzgu} du. (1.45)

such that its integration along the = axis or the p axis (called the marginal distributions) yields
the density of probability:

/ Wy (. p)dp = () (1.46)

where 2, ;, are the intervals over which ¢ (z) and v(p) are normalized (in the case of our sine
potential, we work with Q, = [-d/2,d/2) and Q, = (—00,00)). However, it is known that the
Wigner function can take negative values [82], so one speaks of a quasiprobability distribution.
For a state 14(x) in the subspace of quasi-momentum ¢ written over the basis of the plane waves
in an infinite sine potential (Eq. (1.20)), the Wigner function reads [83]:

1 X m
o > tez CfCm—g e RmmkLe, p/h=q+ gkL

0, elsewhere

Wy, (z,p) = (1.47)

with m € Z. We note that Wy, (z,p) takes non-zero values for integer and half integer values of
p — hg, whereas [1,(p)|? is non-zero only for integer values of p — g (Sec. 1.2.1). In Fig. 1.7, we
plot the Wigner representations and marginal distributions of the first two Bloch eigenstates for
a lattice of depth so = 3 at quasi-momentum g = 0. We see that the contribution of Wy, (z,p)
for half integer values of p cancels out when integrating along x for the evaluation of the marginal

distribution |t,(p)|?, as could also be deduced from (1.47).

Husimi representation. The alternative to the Wigner representation that we choose to use in
this manuscript is the Husimi representation [84] commonly used for dynamical studies in the
semi-classical regime (see below). The Husimi function Qy(x,p) : R? = [0, 1] can be expressed
as

Qu(a,p) = 5 lg(z, p) ). (1.48)

2m

St‘
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Figure 1.7 | Wigner representation of Bloch eigenstates in the phase space of the static sine
potential (1.21) (a) Wigner representation Wy (x,p) (Eq. (1.45)) of the ground state |¢) = |¢g.n=0)
at depth sp = 3 and quasi-momentum ¢ = 0. For visibility, the resulting horizontal stripes are plotted
with width hkr,/2 but are in reality infinitesimally thin. (b) Densities of probability in the momentum
representation obtained either from the marginal distribution of Wy (x,p) (dark blue bars) or directly
from the known plane wave coefficients (light blue bars). (c) Densities of probability in the position
representation obtained either from the marginal distribution of Wy (z,p) (dark blue line) or directly
from the Fourier series of 1(x) (Eq. (1.20)) with the known plane wave coefficients (curve delimiting
the light blue area). (d,e,f) Same as (a,b,c) for the first excited state [¢)) = |¢g=0n=1). The classical
trajectories are plotted in black lines.

i.e. the evaluation of the overlap between |¢) and a Gaussian state |g(z,p)) centered in

({2)g(z,p)> (P)g(a,p)) = (7,p). In the position representation, this state can be written

_ 1 (x —x0)*  ap
(z|g(z0,p0)) = 427r(Aa;)26Xp{_4(A33)02 + Zho} (1.49)

The Gaussian state |g(xo,po)) is a state that minimizes the uncertainty inequality (1.44), with
Ap = h/2Axz. The evaluation of Qy(x,p) (1.48) informs on the probability of measuring the
particle described by the state [¢)) in a typical phase space area of ~ h around the point
(z,p), with normalization [[ Qy(z,p)dzdp = 1. There is however a somewhat arbitrary choice
that needs to be made on the standard deviation Ax of the Gaussian state in the Husimi
function (1.48). In the case of a harmonic oscillator of angular frequency w, one usually takes
the ground state of the system, i.e. a Gaussian state with standard deviation Az = \/m
In the case of the sine potential, we make a similar choice by taking the ground state of the
harmonic oscillator that approximates the bottom of each site of the potential. At depth sg, the
corresponding angular frequency is wy = /s x 2mvy, (see Sec. 1.2). The plane wave coefficients
of this periodic Gaussian state are [85]:
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2
/S0

(1.50)

1/4 Chky, + Tig — po)?
) exp{—i(ﬁkL—i-q)xo—( L.+ g — po) }

Cq,e\T0,P0) =
with standard deviations Az = s~/ ke Uand Ap = s'/*hky,/2, verifying the uncertainty rela-
tion (1.44). Such Husimi representations are shown in Fig. 1.8.

Equation (1.50) only yields normalized states |g4(70,p0)) = >_; Cq,¢(T0, P0)|Xe4q/ky,) When
the standard deviation Ap of the envelope of the plane wave coefficients is far greater

than the spacing hky, of the momentum comb:

Ap > hkp, & s> 1. (1.51)

o At depth sg > 5, one can compute that the error of normalization is at most

> leque(ro, po)|” — 1| < 3.25-107°. (1.52)
lez

As a precaution, we systematically renormalize the states obtained from the defini-
tion (1.50).

The effective Planck constant. In Fig. 1.8, we plot, alongside trajectories from classical dy-
namics, the Husimi functions of the first two Bloch eigenstates in the sine potential for the two
depths 59 = 3 and sy = 20. We see that, while the classical trajectories scaled by ki, L and Dsep
do not depend on the parameters of the potential, the effect of the variation of the depth of
the potential is well visible on the quantum states’ extent in the phase space. The difference in
behavior between the classical and quantum descriptions can be shown formally: we once again

consider the one-dimensional Hamiltonian

2 E
H(z,p) = 2% - 802 = cos(kyz) (1.53)
and the dimensionless units
~ t t
f=—, p=L and =20 -1 (1.54)
Zo Do mxg to

with the scalings

Ty = k‘gl and Do = Psep = V 2m soby, = hkL\/%. (1.55)

The scaled Hamiltonian is
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Figure 1.8 | Husimi representation of Bloch eigenstates in the phase space of the static sine
potential (1.21). (a-b) Husimi representation Q. (x,p) of the first two Bloch eigenstates [¢)) = |¢g n=0,1)
in a sine potential of depth sy = 3 at ¢ = 0. (c-d) Same as (a,b) in a sine potential of depth sg = 20.
The classical trajectories are plotted in black lines. Please note that two momentum axes are presented
on each side of the panels: the first one on the left is in absolute units of fky,, and the second one on
the right is relative to a given classical trajectory (in this case the separatrix, see Fig. 1.1). Having fixed
here the relative momentum axes, classical trajectories are invariant under variation of the depth of the
potential, whereas Husimi representations of the shown states display important differences, especially in
extent. These scaling behaviors are embedded in the notion of the effective Planck constant (see text).

HE,p) =2 — ~ cos(®) (1.56)
with H = Hm/p3 = H/(2s0EL). One can verify that the Hamilton equations (1.5) hold:
dz oH dp oH

—_— = — d —_ = ——. 1.57
i op ™ di 07 (1.57)

The resulting equations of motion describe the scaled classical dynamics for the Hamilto-
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nian (1.56) which now depends on zero parameter. This demonstrates the scaling invariance
of the classical dynamics (see Fig. 1.8). However, if we now consider the quantum dynamics,
the scaled Schrodinger equation reads:

i oW (132 - 1cos(a%)> ) (1.58)

xopo Ot 2 4

We see that the reduced Planck constant is scaled by an action parameter Sy = xopg. This leads

to define an effective Planck constant:

Boff = —, (1.59)

a tunable parameter that sets the typical extent of quantum states in the scaled phase space
(Fig. 1.8), as well as the prevalence and timescales of quantum phenomena in the system (such
as tunneling between the sites of the potential).

For the time-independent sine potential, we find in the end, with our choice of scaling,
fef = ——. (1.60)

Scaling of the time-independent sine potential

2
E
H(z,p) = 2p—m - SOTL cos(krx) (1.61)
)
oo P71 .
H ===
— H(Z,p) =3 cos(T)
with
- Y "
=k = = — t=4 t, d H= . 1.62
’ L P DPsep hk‘L\/So LV S0 an QSOEL ( )
e The scaled classical dynamics does not depend on any parameter.
e The scaled quantum dynamics depends on
1
hef = ——. (1.63)

e

The same procedure can be followed to scale the dynamics of the periodically modulated
sine potential (see p. 15). In this case, it is the frequency of modulation that tunes heg, and

thus the “quantumness” of the dynamics.
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Scaling of the sine potential periodically modulated in depth and position
p2 B At +T) = A(t)
H(x,p,t) = e A(t) x 05" cos(kLx + ¢(t)) e(t+T)=pt) (1.64)
T=v!
- - p? - -
— H(Z,p,t) = 5= A(2) x ycos(Z + o(1))
with
=k S P2y and = Lo (1.65)
xr = €T = — - — an = . .
e Le, = —p, = —
The classical dynamics depends on
= = I/L 2
A®, @)  and = s (7) . (1.66)
v
The quantum dynamics depends, in addition, on
B = 22E. (1.67)
v
One can vary fheg in a fixed scaled stroboscopic phase space (with a fixed v (1.66)) by
tuning v and adjusting so = 4/ hsz accordingly.

1.4.2 Floquet states representation in the phase space

In this final section, we combine the notions of stroboscopic phase portraits (Sec. 1.1.2),
Floquet states (Sec. 1.3.2) and Husimi function (Sec. 1.4.1) to give an example of phase space
representation of Floquet states. We define the semi-classical regime (fiog — 0), in which the
extent of the quantum states gets much smaller than the area of the regular islands in the
stroboscopic phase portrait. In this regime, the Floquet states can be divided between states
localized on regular islands and states spread over the chaotic sea [86, 87]. We illustrate this
phenomenon in Fig. 1.9, in the case of the amplitude-modulated potential (Eq. (1.11)) and for

a small value of Aeg.

For finite values of heg, coupling can occur between Floquet states, resulting in new states
that can span both regular and chaotic regions of the phase space. This mechanism is discussed
in Chap. 4, in which we determine optimal values of A.g for the transport of matter waves via
a transporting regular island in the phase space. The quantum coupling between regular and
chaotic regions of the phase space is also at the origin of chaos-assisted tunneling (CAT) [88, 89].
During my thesis, we made the first observations of CAT resonances [61] with matter wave. I do
not present this work in this manuscript, as it is already detailed in previous theses, focusing on
both the experimental [67, 68] and theoretical aspects [69] of the study. We however re-address
this subject at the end of Chap. 3, where we apply a state-control protocol to the study of
dynamical tunneling (of which CAT is a particular case).
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Figure 1.9 | Husimi representations of Floquet-Bloch states in the amplitude-modulated poten-
tial (1.11) with parameters v = 0.375, g = 0.24 and fieg = 0.2. (a) A Floquet state localized on regular
islands. (b) A Floquet state spread over the chaotic sea.

Conclusion

In this first chapter, I briefly introduced concepts and numerical tools for the study of wave
functions in a time-periodic potential. During my thesis, I have worked with Bose-Einstein
Condensates placed in a controllable one-dimensional optical lattice for the simulation of this
system. The next chapter is dedicated to the presentation of the experiment.
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Chapter 2 - Experimental setup

C'était I'époque des diodes, on en foutait sous tous les boutons, ¢ca s'vendait comme
des p'tits pains.

Karim Debbache (CROSSED - 11 - WarGames, 2013)
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Introduction

In the first chapter, we recalled elements of theory to study the dynamics of a wave function
in a sine potential. In this chapter, we describe the ultracold atom setup used at LCAR to
realize this system with Bose-Einstein condensates (BECs) of 8"Rb in a one-dimensional optical
lattice. We start with a brief introduction on Bose-Einstein condensation. We then present
our experimental sequence for the obtention of BECs and how we access the atomic momentum
distribution. We conclude with a description of the optical lattice, its control, and common
experimental techniques that are used in the experiments presented in the following chapters of

this manuscript.

2.1 Bose-Einstein condensation

In this section, we briefly introduce concepts and quantities relative to Bose-Einstein con-
densation. For details and derivations of these results, see e.g. [90, 91].

Bose-Einstein condensation is a quantum phase transition first predicted for massive parti-
cles in seminal works of A. Einstein in 1924 [4] and 1925 [5]. In an ideal gas of N bosons, there
exists a critical temperature T below which a macroscopic number Ny of particles condenses
into the ground state |1)y) of the trap in which they are confined. In the zero temperature limit
(see below), all the particles indexed by i are in the ground state [ig) of the system, and the
BEC state is

N .
2) =@ vl (2.1)
=1

In a gas of density n, the average distance between particles is | = n~'/3. Bose-Einstein con-
densation occurs when the typical extent of the particle wave functions becomes of the order of
[. For particles of mass m in a gas at temperature 7', this typical wave function size is given by

[ 21h?
Ar =/ —— 2.2
T mk:BT’ ( )

with kg the Boltzmann constant. The condition for Bose-Einstein condensation is thus At > [,

the thermal de Broglie wavelength

and T¢ is defined as the temperature under which this condition is met. In order to reach this
regime, one needs to cool the gas while keeping the atomic density high enough for AT to become
greater that .

For a dilute (see below) gas of N bosons in a three-dimensional harmonic trap with average
frequency Q = (€2,9,0.)/3, it can be shown [90] that, in the semi-classical limit where kgT >
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hQY; (with j = x,y, 2 ; i.e. when the level spacing in the harmonic potential is much smaller

than the thermal energy), T¢ is approximately given by:

kpTc ~ 0.94 RQN/3, (2.3)

with a number of condensed atoms

No(T) ~ N [1 - (1?0)3

The experimental setup presented in this chapter produces BECs of N ~ 5-10° atoms in

, for T <Tg. (2.4)

a three-dimensional harmonic trap with average angular frequency Q ~ 27 x 36 Hz (see
Sec. 2.2.4). From Eq. (2.3), the critical temperature is approximately

() Tc ~ 130nK. (2.5)

Working at temperatures T' < T, the above-mentioned semi-classical limit is valid, since
hQ/kg ~ 1 nK.

Experimentally, Bose-Einstein condensation was first achieved in 1995, more than 70 years
after its prediction, in the group of E. Cornell and C. Wieman with 8’Rb [6] and in the group
of W. Ketterle with ?*Na [7]. In 2001, they were awarded the Nobel Prize in Physics for this
experimental achievement. Since then, the number of research groups working with quantum

gases has exploded [92].

The version of the experimental setup used for the studies presented in this manuscript is
in operation at LCAR since 2016. Previous PhD students of the group have extensively detailed
in their thesis [93, 94, 67, 68] the construction of the experiment as well as the physics behind
the different cooling steps towards Bose-Einstein condensation. In this manuscript, I choose to
simply list the steps that compose the cooling sequence, with brief descriptions and updated key
figures. During my thesis, we modified the geometry of the dipole trap in which the BECs are
finally obtained. In the corresponding section (Sec. 2.2.3), I describe and characterize this new

configuration.

2.2 Experimental sequence for Bose-Einstein condensation

We start with a vapor of Rb atoms in a vacuum chamber [93]. Our atomic cooling sequence
for the obtention of BECs is composed of three main phases:

(2.2.1) - an initial cooling stage in magneto-optical traps,
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(2.2.2) - afirst step of forced evaporation, by selectively inducing micro-wave transitions in a strong

magnetic gradient,

(2.2.3) - a second step of forced evaporation in a dipole trap (with a remaining low magnetic

gradient).

In the section dedicated to each phase, we begin with general considerations about the cooling

process involved, followed by a paragraph with specific experimental details.

Note on evaporative cooling. The last two cooling steps are based on evaporative cooling [95,
96]: through elastic collisions in a trap of given depth, particles sometimes acquire enough
energy to leave the trap, so the total energy of the gas decreases. Further elastic collisions lead
to the thermalization of the ensemble at a lower temperature. In the experiment, we perform
forced evaporation, which consists in actively facilitating the loss of the most energetic atoms
(see Secs. 2.2.2 and 2.2.3). In our case, given the relatively low energy of the colliding bosons,
collisions occur in s-waves [90, 97, 68]. In this case, the cross section of collisions is ¢ = 87a?2,
where the s-wave scattering length a, describes the effective range of inter-particle interaction’.
Furthermore, we work in the regime of dilute Bose gases, meaning that the average distance

between particles is much larger than the s-wave scattering length (na? < 1).

2.2.1 Magneto-optical traps

A magneto-optical trap (MOT) combines Doppler cooling, with laser beams slightly red-
detuned from an atomic resonance, and Zeeman shifts induced by a magnetic field gradient
to create a non-conservative trap in which the atoms are cooled and confined [90, 100]. We
work with the Dy line? of 8" Rb, between the two atomic levels 52S; /2 and 52P, /2. The cooling
transition is between the states |F'=2) — |F’ =3) and this two-state cycle is closed by a
repumping beam tuned on the |F = 1) — |F’ = 2) transition.

Experimental details. Our MOT setup is composed of a two-dimensional MOT (made by
the SYRTE lab (Paris)) that feeds a home-made three-dimensional MOT at the center of a
rectangular glass cell. For the 3D MOT, the intensity of the six cooling beams is ~ 2 mW/ cm?,
and a magnetic field gradient of ¥ ~ 13 G/cm is created by two coils (located on the cell
sides [93], along the x axis of the cell shown in Fig. 2.1) in which current flows in opposite
directions. The 3D MOT is loaded during 5 s, and we get® a cloud of N ~ 4 -10° atoms at
T ~ 400 pK. After a dark MOT [101, 67] and an optical molasses [102, 90, 67], we shut down

'For the atomic state in which the atoms are when we perform evaporative cooling (see below), we have as ~
5.23 nm [98, 99].

2We present details of this line in App. A. For more information, see [99].

3The amount of atoms in the MOT saturates absorption images (see Sec. 2.3) and these numbers are estimates.
Reliable references are taken for a shortened 3D MOT loading time. After 1s (instead of 5), we have N = 1.9-10°
atoms at T' =~ 300 uK
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the magnetic gradient and the repumping beams for 5 ms. The atoms accumulate in the three
mp levels of the state |F = 1). At this stage, we have N ~ 4 -10° atoms at 7' < 100 pK.

2.2.2 Magnetic trapping and micro-wave evaporation

The second cooling step consists in capturing the atoms in a quadrupole magnetic trap
and selectively transfering the most energetic atoms toward a non-trapped state [95, 103]. In a
magnetic field B(r), an atom in the state |F, mp) experiences the potential

Umag(r) = gFmFMB|B(r)|7 (2'6)

where gp is the Landé g-factor (dependent on the state considered, see App. A) and up =
9.27 -1072* J/T is the Bohr magneton. We generate a magnetic quadrupole field (see below),
which near the field zero can be written as

x/2
B(z,y,z)=V | y/2 |. (2.7)

—Z

with gravity along —e,. The atoms that we capture are in the low-field-seeking state |F =
1,mp = —1) (with gr = —1/2 for F' = 1), and we work with the transition toward the non-
trapped high-field-seeking state |F' = 2,mp = —1) (with gr = 1/2 for F' = 2). In the absence of
magnetic field, the micro-wave frequency associated with this transition is vy =~ 6.835 GHz [99].
As in the MOT, the gradient of the quadrupole makes the energy levels of the different mpg
states spatially dependent. This allows us to tune the frequency of the micro-waves shone on
the atoms to only induce the transition at a controlled distance from the center of the trap,
in regions only explored by the most energetic atoms. This forced evaporation, followed by a
subsequent thermalization, causes the temperature of the atom cloud to decrease, as described
above (p. 41).

Experimental details. This second phase happens in a conservative quadrupole trap produced
by three pairs of water-cooled coils in the anti-Helmholtz configuration where current* flows in
opposite direction. They are located above and below the glass cell [93], along the z axis of the
cell (Fig. 2.1). The coils withstand 160 A of current, which corresponds to a total maximum
gradient of ~ 300 G/cm. Among the atoms falling from the 3D MOT, only the ones in the
low-field-seeking state |F' = 1,mp = —1) are captured®. To match the size of the expanding
cloud falling during 5 ms from the 3D MOT, the initial gradient of magnetic field is set to ~ 60
G/cm. A compensation coil allows to adjust the position of the magnetic field zero along the y

4The six coils are powered by six SM 15-200D supplies by Delta Elektronika.
®As Bose-Einstein condensation is achieved reliably on the experiment, increasing the number of atoms captured
in the quadrupole trap through spin polarization is not required.
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axis of the cell (Fig. 2.1). In 500 ms, we load 1.2-10% atoms at a temperature that has increased
to T = 170 uK. To increase the interatomic collision rate for the evaporation, we compress
adiabatically the cloud by ramping the gradient of magnetic field to ~ 250 G/cm in 200 ms.
The temperature rises to 7' =~ 220 pK. During 8.5 s, we then shine micro-waves on the atoms,
at a frequency swept from 6.720 to 6.818 GHz%. At this stage, we have N ~ 7-107 atoms at
T ~ 40 uK.

Majorana losses [90, 93] near the magnetic field zero at the center of the quadrupole (2.7)
prevent us from pushing the cooling further with this method. The final cooling step is then
performed in an optical dipole trap.

2.2.3 Dipole trapping and evaporation

For the third and final cooling stage, the atoms are loaded in an optical dipole trap. The
dipole force results from the interaction between an atom and a light beam of inhomogeneous
intensity, which is far-detuned from an atomic transition. Considering a light beam of intensity
I(r) and optical frequency v, the dipole potential [8, 79] experienced by the atom is proportional
to I(r) and inversely proportional to the frequency detuning A = v—uvy (where vy is the frequency
associated to the atomic transition considered):

I(r
Udgip (1) (A) (2.8)
Depending on the sign of A, the resulting dipole force F = —VV (r) is either attractive or

repulsive. In the experiment, we work with linearly polarized Gaussian beams (see below) of
wavelength A\ = 1064 nm, i.e. red-detuned from the Dj line of ’Rb (\g ~ 780.2 nm, see
App. A). This creates an attractive force towards the intensity maxima. In this situation,
Eq. (2.8) becomes Ugip(r) = ¢I(r), with ¢ &~ —2.1-10736 J/(W/m?) [104]. Finally, the intensity
of a Gaussian beam propagating along the z axis is:

2 .2
I(2,y,2) = 2P exp{_Q(yH}, (2.9)

mw?(x) w?(x)

where P is the power of the beam and w(z) is the distance to the x axis at which the intensity

7. The end of the evaporation takes place in a dipole trap

is 1/€? times its value on the axis
made of crossing red-detuned laser beams, whose powers are decreased in time to force the

evaporation [93].

SFor the generation of the micro-wave, see [93]. The final frequency vy = 6.818 GHz cuts the depth of the
quadrupole trap to hlvy — vo| &~ kg x 580 pK, with A the Planck constant and vy = 6.83 GHz the frequency
associated to the transition between the levels in the absence of magnetic field (i.e. in the center of the trap).

2
"This distance is w(z) = woy/1+ (%) , with wo the beam waist and zr = ng/)\ the Rayleigh length.
R
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Figure 2.1 | Sketch of the old and new dipole beam geometries. The dark red rectangles represent
the dipole beams and the pale blue rectangle represents the glass cell (neither the beam sizes nor their
divergence is to scale with the size of the cell). To prevent reflections, the incidence angle of the horizontal
beam H; on the uncoated cell is ~ 1° [93]. (a) Old geometry illustrated with an axial section of the
cell. The angle between the recycled vertical beam V; and the z axis was 6, ~ 30°. (b) New geometry
illustrated in the horizontal plane. The angle between the two independent horizontal beams H; and Hs
is 6 ~ 16°, so the principal axes 2’ and 3’ of the resulting trap make an angle 6’ ~ 8° with x and y.

Experimental details. After the micro-wave evaporation, we decompress the cloud by lowering
the magnetic gradient from & &~ 250 G/cm to V' ~ 22 G/cm in 1.1 s. This final gradient com-
pensates approximately 72% of gravity, and the atoms slowly fall into a dipole trap positionned
approximately 200 pm below the center of the quadrupole [17]. The dipole trap is made of two
crossed Gaussian beams® of wavelength A = 1064 nm. Figure 2.1 shows the previous and new
geometries of the dipole trap.

Previous configuration - An horizontal beam H; (with waist wp = 75 pm and initial
power Py = 10.3 W) went through the cell a first time. It was recycled into a vertical
beam Vi (wg = 35 pm, Py = 6 W) that went back through the cell in its (x, z) plane from
top to bottom. This recycled beam made an angle 6 ~ 30° with the vertical axis. In this
recycled configuration, only the intensity of H; was locked with a PIDY controller acting
on the power of the radio-frequency (RF) driving the acousto-optic modulator (AOM) of
this beam.

New configuration - Two independent beams H; o (wg = 45 um, Py = 4 W) intersect in
the horizontal plane with an angle 6 ~ 16°. The reasons for the change are an increased
volume for the dipole trap as well as the ability to independently diagnose the individual
effect of the two beams on the atoms (which was impossible in the recycled configuration).
In this configuration, both the intensities of H; and Hy are controlled with PIDs. To
minimize the reflection on the uncoated cell, the polarization of both beams is horizontal
(i.e. in the (z,y) plane of the cell). To prevent interferences between the beams, we
work with opposite AOM diffraction orders 4+ 1 to detune the beams frequencies by about
80 MHz (see App. B for details).

8See App. B for technical details and the optical diagram for the preparation of the dipole beams.
9PID: proportional-integral-derivative
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We load N ~ 1.2 - 107 atoms at T ~ 40 pK into the resulting hybrid trap (composed of the
dipole trap, the magnetic trap and gravity). We force the evaporation by lowering the power of
the dipole beams using the smooth power law [105]

Pt) = Py <1 + i) - (2.10)

with 7 = 1.75 s and o = 4. After 5.4 s of evaporation, the depth of the dipole trap is reduced
by a factor Py/P; ~ 275 and Bose-Einstein condensation is achieved. The experiment produces
BECs of N ~ 5-10° 8"Rb atoms'? in the lowest hyperfine level |F = 1,mp = —1) every 22 s.
Such a BEC is shown in Fig. 2.2(c).

2.2.4 Characterization of the hybrid trap at the end of the evaporative cooling

At the end of the evaporative cooling, the BEC is in a hybrid trap made of

e the two dipole beams with powers P ~ 20 mW,

e the quadrupole (2.7) with a magnetic gradient b’ ~ 22 G/cm and whose center is located
approximately 200 pm above the crossed dipole trap,

e the gravitational potential.

We locally approximate this hybrid trap with the three-dimensional harmonic potential

1
Ungb (2, ', 2) = —m [Q2,(2')? + 932/ (y')? + Q227 (2.11)

[\]

where (2,1, 2) = (0,0,0) is the center of the crossed dipole trap and the primed 2z’ and 3’ lie
along the principal axes of the trap, i.e. at an angle 6’ ~ 8° with = and y (see Fig. 2.1(b)). To
measure the angular frequencies €;, we trigger out-of-equilibrium evolutions'! and measure the
periods of oscillation in the corresponding directions (we present the method for the observation
of the system in the next section 2.3). We find

O, = 27 x (10.4 £ 0.2) Hz, (2.12)
Qy =27 x (68 £4) Hz,
Q. =27 x (66 £ 2) Hz,

with an average angular frequency Q = (Qach/QZ/)l/ 3 ~ 271 x 36 Hz.

0For information, we made BECs of up to N = 2-10° atoms every 30 s with the previous dipole trap geometry.

1We make three independent experiments where we trigger oscillations by pulsing current into coils approximately
placed along the right axis, i.e. one of the 3D MOT coils to measure 2./, the compensation coil for £2,, and
one of the magnetic trap coils for . (see Sec. 2.2).
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Life time in the hybrid trap and reduction of the number of atoms in the BECs. We measure
the life time in the hybrid trap by monitoring the number of atoms (see following section) in the
hybrid trap during a holding time at the end of the evaporation. During this holding time, we
observe a spontaneous evaporation leading to an exponential decrease of the number of atoms in
the BECs. We measure a characteristic time of 7 & 20 s for this exponential atomic loss. This
method can be used to artificially reduce the number of atoms in the BECs for experiments that
require a control on that parameter. This is the case in Sec. 3.4 and 5.

2.3 Observing the system

2.3.1 Absorption imaging

In this section, we explain how we access the atomic density distribution using absorption
imaging. Its principle is the following: in due time, we illuminate the atoms with a laser beam
that is resonant with an atomic transition and light is absorbed. From the shadow of the cloud,
we determine its position and size (Fig. 2.2). The number of atoms in the cloud is deduced from
the fraction of light absorbed.

As depicted in Fig. 2.2, we consider a resonant beam traveling along a fictitious z axis. In
the regime where the beam intensity is low compared to the atomic saturation intensity, the
intensity that remains after passing through the cloud is given by the Beer-Lambert law:

IOUt (l.? y) = Iin(x7 y) e_UOnC(xvy) (213>

where Iiy(x,y) is the initial intensity, o¢ is the cross section of absorption and n.(z,y) =
[ n(z,y,z)dz is the atomic column density traversed by the light. By taking pictures with
and without atoms, we respectively access Iout(z,y) ad Iin(z,y). From Eq. (2.13), the column
density simply reads

nc(xay) = crl()OD(x’y)’ (214)

with the optical density OD(x,y) = In{/in(x,y)/Iout(z,y)}. The number of atoms in a cloud is
N = [[ ne(z,y)dz dy. On the example of Fig. 2.2(c), we measure a BEC of N =5.11-10° +3 %
atoms over 10 realizations (where the uncertainty corresponds to one standard deviation of the
statistics).
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Figure 2.2 | Schematic of absorption imaging. (a) We illuminate the atom cloud (black disk) with a
resonant beam (red area), light is absorbed (white area) and I,y (z,y) is measured by taking an image on
the screen (thin white rectangle). (b) I (z,y) is measured by taking an image shortly after without the
cloud. (c) Experimental example of Ij, (2, y), Tout (2, y) and the resulting optical density when performing
the absorption image of a BEC after a 35 ms time-of-flight (see Sec. 2.3.2). The coordinate system (x,y, 2)
is that of the imagery axis and does not correspond to the coordinate system of the cell (see Fig. 2.3).
Figure inspired from [69].

Experimental details. The frequency of the imaging beam is tuned on the transition |F = 2) —
|F" = 3) (i.e. the cooling transition in the MOT, see Sec. 2.2.1 and App. A). We recall that, after
the MOT stage, the atoms are in the state |F' = 1). Before imaging the cloud, we repump the
atoms in the state |F' = 2) by shining the repumping beam for a few ms. For 8"Rb atoms equally
distributed in the five mp levels of this state and an imaging beam with linear polarization and
wavelength A\ ~ 780 nm, the cross section of absorption is o9 ~ 0.136 pm? [61]. To correct
imperfections (extraneous light, defaults on the optical path, etc.), we take three images'?: (i)
a first image with the atoms and the imaging beam (Zatoms), (ii) an image of the imaging beam
without the atoms ([peam) and (iii) a background image (Ibackground) Without the beam. We
compute the OD with Iiy = Iheam — Ibackground a0d Iout = Tatoms — Tbackground. Figure 2.2(c)
shows examples of Ii, oyt and the resulting OD when performing the absorption image of a
BEC after time-of-flight (see Sec. 2.3.2).

Three imaging setups (see Fig. 2.3) are installed on the experiment to observe the atoms

along different axes during the experimental sequence:

12Images are taken using a CCD camera A1o2f from Basler. The screen is made of 1392 x 1040 square pixels with
side 6.45 pm. The signal is a photoelectron count per pixel proportional to the imaging beam intensity at that
point.
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"horiz. BEC" "MOT"

ert. BEC" /6,

Figure 2.3 | Imaging axes in the horizontal plane (with a 90° rotation from Fig. 2.1(b)). The identified
angles are 07 ~ 16° and 65 ~ 30°. The “vert. BEC” imaging beam goes through the dipole cross from
the bottom to the top of the cell. The red lines and arrows indicate the crossed dipole trap with the
direction of propagation of the beams and the pale blue rectangle represents the cell (not to scale).

z

e the “MOT” axis, in the horizontal plane, with magnification M ~ 0.33,
e the “horizontal BEC” axis, in the horizontal plane, with magnification M ~ 2.5,

e the “vertical BEC” axis, with magnification M =~ 4.2. This axis was added during my

thesis to visualize the new crossed dipole trap.

Every experimental image presented in this manuscript is taken with the “horizontal BEC”

imaging axis.

2.3.2 Time-of-flight

The observation of the atoms in the experiment is generally performed after a time-of-flight
(TOF): after a sudden switch-off of all trapping potentials, the atom cloud starts to fall due to
gravity, with a constant expansion in the center of mass frame that carries information on the
in situ velocity distribution. We take an absorption image after a time t1oF.

For a thermal atomic ensemble (T > T¢, see Sec. 2.1) described by the Maxwell-Boltzmann
statistics, the standard deviation of the cloud size along a given axis x following a TOF is

Ax(tror) = \/ A} + (Avstror)?. (2.15)

with Azg and Awv, the in situ standard deviations of the position and velocity respectively.
By measuring the expansion of a thermal cloud as tpor increases, Eq. (2.15) allows to access
the cloud temperature T, as the slope of AwQ(t%OF) is proportional to T according to the

equipartition theorem:
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1 1
5mAva = knT. (2.16)

Moreover, after sufficiently long TOF (trop > Axg/Awv,), one can neglect the initial size of the
cloud, and the final density distribution reflects directly the velocity distribution of the cloud
before the TOF.

For quantum gases, TOF imagery allows to dilute the clouds whose observation is made
difficult by their small size and high optical density. In a similar way as for the thermal case, one
measures a momentum density of probability when observing the system after a sufficiently long
ballistic TOF. For a BEC composed of atoms condensed in the state |1}, one even statistically
samples |(p|)]? in a single TOF measurement of the system (see for instance next section 2.4).

2.4 The one-dimensional optical lattice

In this last section, we describe our one-dimensional optical lattice and introduce exper-
imental methods that we frequently use in the rest of this manuscript to study matter waves
dynamics in the optical lattice.

An optical lattice is a periodic dipole potential (Eq. (2.8)) resulting from a spatially periodic
variation of light intensity. Our one-dimensional optical lattice results from the interference of
two Gaussian beams (Eq. (2.9)) with the same wavelength and linear polarization, that are
counterpropagating along the x axis (see below). Neglecting the divergence of the beams'?,
their electric fields along the x axis are the real part of the phasors

Ei(x,t) = @ei(_kx_wt_‘pl)ej_ and  Ey(x,t) = @e“kx_m_“"z)ej_, (2.17)

where k = 27 /) is the wavenumber of the laser beams and e, is a constant unitary vector in
the (y, z) plane. The light intensity resulting from the interference of these fields is proportional
to the square modulus of the total field E = E; + Es:

I(z) x |[E(z,t)|* =4 ‘&‘20052 (/m + g) (2.18)
2 2rx
:2’&‘ COS </\/2+s0) —1-2}&

’2

with ¢ = 1 — o the phase difference between the beams. We see that the step of the periodic
variation of intensity is d = A/2. Dropping the constant term that stems from the linearization
of the quadratic cosine, we finally get the attractive dipole potential for the lattice

13¢.g. near the focal point, for values of z small compared to the Rayleigh length g of the beams (see below).
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V(z) = —% cos (kLx + ), (2.19)

where we used the wave number of the periodic potential kr, = 27/d defined in Chap. 1. Vj is
proportional to the maximum intensity of the lattice standing wave of Eq. (2.18). Controlling
the intensity and the relative phase ¢ of the interfering beams, we get the sine potential studied
in Chap. 1:

V(z,t) = —A(t) x 50% cos (krx + ¢()) . (2.20)

Experimental details. We here briefly present the experimental implementation of this con-
trolled one-dimensional optical lattice. Technical details and the optical diagram for the prepa-
ration of the beams can be found in App. C. The two beams for the lattice are obtained from
the same laser source with wavelength A = 1064 nm. They are counterpropagating along the z
axis of the cell and focused on the crossed dipole trap, with waist wy = 150 wm and a maximum
power P = 2.3 W. Using four synchronized arbitrary waveform generators and three AOMs (see
App. C), we are able to continuously control A(¢) and ¢(t) in Eq. (2.20).

We remark that, by only controlling the intensity of the lattice beams, we have 0 < A(t) <
Smax/ S0 in Eq. (2.20), where spax is the maximum lattice depth achievable (spax = 40 for our
setup).

Given the atomic mass m of 8’Rb and the lattice spacing d:

ma~1443-107% kg  and  d=\/2=532nm, (2.21)
) we evaluate the characteristic lattice quantities defined in the previous chapter (sec. 1.2):
o k =2m/d~11.81-10° m~!,
o B, =h%k2/2m ~ 5.375-107%0 J,

e v, = Fy,/h ~8111.3 Hz.

Our one-dimensional optical lattice constrains the dynamics along the x axis into lattice sites
associated with the harmonic oscillator frequency v = \/sqvr, (see Sec. 1.4.1). This frequency
is to be compared with the frequencies (2.12) of the three-dimensional hybrid trap in which
the atoms are held. We see that, regardless the lattice depth, the typical timescales for the
dynamics in the lattice (7" ~ 123 us/,/s0) are much smaller than the timescales in the hybrid
trap (1; = 2m/Q; > 15 ms). As the typical duration of the experiments presented in this
manuscript is ~ 1 ms, the dynamics along the z axis is uncoupled from the dynamics along
the perpendicular axes, which allows us to assume a one-dimensional system in our studies. In
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particular in the following, we consider along the x axis only the shared wave function (2.1) of
a BECs evolving in the time-dependent Bloch system (2.20), i.e. Bloch waves (see Chap. 1)

Y@, ) = Cqelt) |Xerqrmy ) » (2.22)

lez

with the plane waves defined in Sec. 1.2.1 as (z[xy, /i) = eillhuta)z / /4.

We now present a series of established experimental techniques when working with ultracold

atoms in optical lattices.

2.4.1 Adiabatic loading of the lattice ground state

The first technique we present is a protocol to load the ground state of the static lattice.

(s0)

4—0.n—0) associated to the lowest

For a given lattice depth sg, this state is the Bloch eigenstate |¢

eigenenergy F (s0)

4—=0.1—=0 (see Sec.1.2.1). Initially, the BEC state is the resting plane wave that

corresponds to the ground state of a lattice of null depth |xo) = |¢(()‘?’8:0)>, and we want to drive

this state to ]¢éf8)>. One can do so adiabatically'* by ramping up the lattice depth sq with a
timescale 7 much larger than the largest timescales of the system given its energy levels [106].
This smallest timescale is the period associated to the transition towards the plane waves of
second lowest kinetic energy |x+1), which have an energy difference Fp, with the BEC. The
timescale in comparison to which the lattice loading needs to be slow is h/Ey, = v, 1~ 123 ps.
To this end, we ramp up the lattice depth s(t) = A(t) x sp with the smooth amplitude function

Alt) = (k+1) (j) . <t)n+1 . (2.23)

T

Experimentally, we use the characteristic loading time 7 = 1 ms (sufficiently large in comparison
to h/FEy) and slope parameter k = 11. The lattice depth follows the loading curve (2.23) during
the interval 0 < ¢ < tjpaq = T, such that 0 < A(¢) < 1.

We show in Fig. 2.4 an experiment of adiabatic lattice loading. The matter wave diffraction
observed in Fig. 2.4(e) illustrates how the TOF measurement of BEC in an optical lattice (i.e. a
Bloch wave (2.22)) amounts to sampling its momentum distribution: during the TOF expansion,
the planes waves separate into spatially resolved momentum components'®, with a momentum
difference Ap = hky, = h/d. When we shine the imaging beam, an atom is measured in the plane
wave £ with probability ’Cq7g|2, which we access by measuring the fraction of atoms in the ¢*"
momentum component. In the specific case of Fig.2.4, we adiabatically load the ground state
of the lattice, and we see that the relative atomic populations in the momentum orders are in

1 The term “adiabatic” must be understood in the quantum sense of an eigenstate follow-up as a parameter of the
system is varied. On the other hand, a diabatic process projects the initial state onto several non-degenerate
eigenstates of the final system.

1511 the form of diffraction orders that we often refer to as “momentum orders”.
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Figure 2.4 | Adiabatic lattice loading and matter wave diffraction. (a) Lattice depth curve (2.23)
to adiabatically load the ground state of the lattice of depth sy (see text). (b) Numerical simulation
of the lattice loading showing the momentum distribution as a function of time. (c) Experimental
TOF absorption image of the BEC before loading the lattice. The grey rectangles delimit the regions
in which the plane wave populations are extracted (see (e), Sec. 2.3 and text for details). (d) Bar
diagram comparing the experimental (blue) and numerical (red) plane wave populations (i.e. momentum
distribution). (e) Experimental TOF absorption image at the end of the loading. (f) Experimental
(blue) and numerical (red) momentum distributions. The lattice depth, determined after the loading (see
Sec. 2.4.2), is 59 = 8.06 & 0.10. The duration of the TOF is tTor = 35 ms and the colormaps for the OD
on panels (c,e) are truncated to 0.8 of their respective maximum value in order to see details.

agreement with a numerical computation (see Sec. 1.2.2) of momentum distribution |<p\¢((fg))]2

of the ground state (where the experimental sg is determined in the next section).

The method of adiabatic lattice loading is limited to the preparation of the ground state
of the lattice. In the next chapter (Chap. 3), we apply quantum optimal control to extend the
range of quantum states reachable in an optical lattice.

Note on measurement of the momentum component population. Here, the plane wave pop-
ulation is exctracted from a count of the atoms in the rectangular regions shown in Fig. 2.4(c,e).
In Fig. 2.4(e), we see atomic signal between the diffraction orders 0 and 4 1. This signal comes
from scattering halos populated by pairs of atoms undergoing a two-body collision at the begin-
ning of the TOF [107, 62] (see also Fig. 2.5 where this phenomenon is more obvious). As the
momentum distribution of the atoms in the periodic lattice is quantized (see Chap. 1), these
halos (that also expand during the TOF) are seen in between the diffraction orders (mostly in
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between the most populated ones). During my thesis, we have studied these halos and developed
a protocol to observe them between given momentum orders. This method, which relies on a
sudden lattice shift followed by a precisely timed evolution in the lattice in order to populate
given momentum orders, is detailed in our publication [62] as well as in a previous thesis [68].
This study is at the root of our initiative to implement quantum-optimal control on the ex-
periment, which is the subject of the next chapter of this manuscript. Importantly, scattering
halos can make the extraction of momentum distributions more complicated as (i) momentum
orders are depopulated during the process [68] and (ii) the counting region associated to a given
order can be polluted by scattering atoms coming from adjacent orders. This latter effect can
be mitigated by subtracting to each order population the halo signal measured in the two lateral
regions between that order and its neighbors.

2.4.2 Optical lattice calibration

In Sec. 2.4 (with details in App. C), we presented the optical lattice with its amplitude and
phase control by the mean of three AOMs. The experiments of quantum state preparation and
transport in the optical lattice that we present in the next two chapters require to know the
depth sg of the optical lattice with great precision (typically a few percents). In this section, we
introduce two methods to measure the lattice depth.

Kapitza-Dirac diffraction. The first method that we use relies on pulsing the lattice of unknown
depth on the BEC [108]. For a sufficiently short pulse (see below), one can consider that the
atoms get their momentum affected by the potential without enough time to start accumulating
a displacement. This is the Raman-Nath approximation [109, 110], notably used for efficient
computation of the dynamics in the kicked-rotor [111], a simple yet powerful model to study
quantum chaos. Formally, one neglects the kinetic terms in the Hamiltonian when integrating
the time-dependent Schrédinger equation during the pulse. In the position representation, we
have

o t) = V()ole 1) = w<m,t>:exp{ZstJZLcos<ka>}w<x,o> (2.24)

with ¢(x,0) = xo(z) = 1/V/d the initial wave function just before pulsing the lattice. To

compute this phase impression, we use the Jacobi-Anger identity:

eizcos(@) _ Z ian(Z)eirﬁ’ (225)

n=—oo

where J,,(z) are the Bessel functions of the first kind. The evolution (2.24) becomes
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Figure 2.5 | Calibration of the optical lattice depth from Kapitza-Dirac diffraction. Horizontal
stack of experimental TOF absorption images as the duration of the Raman-Nath pulse increases.

eiZkLz

o~ it Jy (mvLs = c x .
Y(,1) —; Je (TvLsot) 7 eezz o(t)xe() (2.26)

with plane wave coefficients co(t) = i’Jy(mvys0t).

A quick method to estimate the lattice depth sg is to experimentally determine the first

pulse time 7 for which the zero'™ plane wave is totally depleted (i.e. a complete depletion of

h

the zero™™ momentum order). Once this time is found, and knowing the first zero 2o &~ 2.405 of

Jo(z), we get

lco(70)[> =0 < |Jo (mrnsemo)* =0 (2.27)
94.38
= S0 = =0 ~ HS
TVL,TO T0

Figure 2.5 shows experimental Kapitza-Dirac diffraction of matter wave in an optical lattice of

th

fixed depth for an increasing pulse duration. We see that the zero*™ momentum order is depleted

for 7 &~ 2.6 us, which gives a lattice depth sp ~ 36.3 according to Eq. (2.27).

In Eqs.(2.24), (2.26) and (2.27), we made the approximation that the lattice is pulsed for
a duration negligible compared to the time needed for the atoms to start moving in the
potential. In a semi-classical picture, a lower bound for this timescale is approximately
given by the period Ty of the harmonic oscillator that approximates the bottom of the
lattice sites. In the previous chapter (see Sec. 1.4.1), we found the frequency of this
harmonic oscillator to be vy = /so L.

We have Ty o s, 1/2 while 7 o sy " (Eq. (2.27)). These scalings are favorable for this first
lattice calibration, which works if sg is large enough for the Raman-Nath approximation
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to hold up to 79 [94]. We state the following condition for the validity of this calibration
method:

70 <0

To ~ 750

<le fso>1 (2.28)

This calibration technique is a fast way to estimate the depth of a sufficiently deep lat-
tice. For more precision (notably for sy < 10 where most of the experiments presented in this
manuscript are performed), we use a second method that relies on fitting an out-of-equilibrium
evolution of the atoms in the lattice.

Oscillation of the translated ground state. A second, longer but more precise method has
been proposed by our group and published before my thesis [112, 113]. It consists in loading
the ground state (Sec. 2.4.1) of the lattice of unknown depth sy before applying a sudden
phase translation ¢y such that the atoms are placed on the flank of the lattice wells and start
oscillating. In the quantum picture, the translated ground state'® is projected onto the Bloch
eigenstates of the lattice and its evolution is totally determined by this projection according
to Eq. (1.29). Using so as an adjustable parameter'”, we perform a least-square fit of the
experimental evolution of the atomic momentum distribution. In Fig. 2.6, we show an example
of lattice calibration with the experimental data and numerical fit. The lattice depth determined
with the experiment of Fig. 2.6 was used in Fig. 2.4 to compare the experimental loading of the
ground state with the numerical simulation. This lattice calibration method is used before and
after each experiment presented in the rest of this manuscript (to verify that the lattice depth,
which notably depends on the lattice beams alignment, has not shifted).

A strength of this method is that, given the adiabatic loading of the lattice, we can infer
with confidence that the initial state is the shifted ground state of the lattice of unknown depth.
In Chap. 3 about quantum-optimal control, in order to certify our quantum state preparation
protocol, we revisit this method of parameter determination through an evolution in the static
lattice. However, the point of view is there reversed, as the unknown parameter is the initial
quantum state that begins to evolve in a static lattice of previously calibrated depth.

2.4.3 Band-mapping

Band-mapping is a well established experimental technique for cold atoms in optical lat-
tices [107, 114, 79], by which the weights of a state on the different Bloch bands are mapped on

16We recall (see Sec. 1.2.1) the expression of the translation operator Ta, = e~ *A?/" with p|x,) = r hkw|x,). The
translation of a state |¢) in a Bloch system reads Ta.|9) = S, coe AL N G) with ¢p = (xe|Y)). According to
our expression of the lattice potential (2.19), a phase shift o translates the lattice by a distance Az = —pq/kr,
in the laboratory frame of reference which translates an arbitrary state |1)) by a distance —Axz = ¢o/kr, in the
lattice.

For each lattice depth considered, the Bloch eigenstates and eigenenergies are computed numerically as described
in Sec. 1.2.2.
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Figure 2.6 | Calibration of the optical lattice depth from a sudden lattice translation.
(a) Stack of experimental integrated TOF absorption images as a function of the holding time show-
ing the momentum evolution of the initial state (which was the ground state up until the sudden lattice
shift) in the translated lattice. (b) Numerical evolution at the lattice depth that fits (a). (c) Relative
plane wave populations (with panel (c;) featuring |c¢|?) as a function of time, with experimental data
of (a) (blue points) and fitting numerical simulation of (b) (solid red line). The known parameter was
the initial lattice phase translation ¢y = 30° and we measured sy = 8.06 = 0.10.

the plane wave populations. It consists in an adiabatic unloading of the lattice, during which a
state [1,) has the norm of its Bloch coefficients |{dq.n|1q)| conserved (with |¢,,) the n't Bloch
eigenstate at quasi-momentum ¢). For degenerate Bose gases resolved in quasi-momentum, this
methods allows to access the probability distribution of a state over the basis of the Bloch waves.
In q/k, = 0 and ¢/kr, = 0.5 however'®, the closings of the gaps lead to eigenstate degeneracies
that mix the information for two consecutive bands (with the exception of the ground state at
q/kr, = 0). In the end, an atom initially in the n*™ Bloch band at quasi-momentum ¢ ends up

in the plane wave(s) of reduced momentum

q nln+1
*L+sgn(Q)(—1) 5| ¢¢1{0,0.5}
p/hky, = i(q n+1

]€L+(—1)ﬂ ! J) ¢ €{0,05) (229

where the integer part [-] and the factors (—1)" and sgn(q) stem from the unfolding of the
band structure. We draw in Fig. 2.7 an example for three different states in ¢/k;, = 0 (blue),
q/k, = 0.5 (green) and g/kr, ¢ {0,0.5} (yellow) before and after a fictitious band-mapping

protocol.

This method is used in Chap. 5 where we study the emergence of unstable modes in the

18We recall that we express the quasi-momentum in the first Brillouin zone q/kL € (—0.5,0.5], see Sec. 1.2.1.
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Figure 2.7 | Sketch of the band-mapping technique. (a) Band structure of a static one-dimensional
optical lattice at depth so = 1 (solid lines). (b) Equivalent, unfolded representation of the same band
structure (solid and dotted lines). (c) Unfolded representation of the band structure of a lattice of depth
so = 0 (solid and dotted lines) i.e. relation of dispersion of the free particle (solid line). We draw three
hypothetical states resolved in quasi-momentum: the blue and yellow states are superpositions of the first
three Bloch states in ¢/k;, = 0 and g/kr, = 0.25 respectively, and the green state is a superposition of the
first two Bloch states in ¢ = 0.5. Between the three superpositions considered, only the yellow state in
q/k1, ¢ {0,0.5} has the norm of all its Bloch coefficients unambiguously accessible through band-mapping.

Brillouin zone of the phase-modulated optical lattice. These instabilities lead to the population

of states coexisting at different quasi-momenta, which we highlight through band-mapping.

Conclusion

This brief presentation of the experimental setup concludes this first part of methods. Once
again, I redirect an unfulfilled reader to the theses of my predecessors [93, 94, 115, 67, 68] where
the experimental setup has been more detailed. The next parts of this manuscript present
results obtained on the ultracold atom experiment described in this chapter and that will be
apprehended in the theoretical and numerical framework discussed in Chap. 1.
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Part 11

Control and transport of the BEC
one-body wave function in the optical
lattice
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Chapter 3 - Quantum optimal control of matter
waves in a one-dimensional optical
lattice
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Introduction

In the first part of this manuscript, we recalled basics of quantum mechanics to study wave
function dynamics in a one-dimensional Floquet-Bloch system (Chap. 1), and we presented our
experimental setup, in which we place BECs in a controllable one-dimensional optical lattice
(Chap. 2) to implement this system in the laboratory. This setup is simple and therefore
a powerful system on which to develop methods of quantum state manipulation, notably for
quantum simulation, as we will show in this chapter. To perform the simulation of a quantum
system [26, 27], one has to engineer the Hamiltonian to be studied, prepare the system in the
desired initial state and in due time measure the state of system. In this chapter, we present
research work that we undertook in 2021, which is part of the development and implementation
of techniques to face the last two of the above-mentioned requirements: initial state preparation

and final state measurement.

Quantum state control. The preparation of a desired quantum state generally calls for ma-
nipulating a quantum dynamical system by means of external time-dependent parameters. In
practice, it amounts to steering that system from a state easily provided by an experimental
setup to the desired one with high fidelity, and in a reasonable, or even minimum time, while
satisfying experimental constraints and limitations. Several approaches have been developed
for quantum state control, allowing to reach states unachievable by adiabatical means. We can
cite the use of composite pulses [116, 117], shortcuts to adiabaticity [57] or machine-learning
schemes [58]. Another approach, which we use in this chapter, is the application of optimal-
control theory to control quantum systems.

Optimal-control theory, of which we introduce the formalism in Sec. 3.1, arguably goes
back to the Brachistochrone problem, submitted by J. Bernouilli in 1696 to the mathematicians
of his time [118]. Considering a system that can, more generally, be controlled with external
parameters, optimal-control theory is a mathematical framework with which one can compute
the optimal variation of control parameters in order for the system to follow optimal trajectories
that minimize some cost functionnal. The evolution of this field is intertwined with the genesis
of analytical mechanics in the 18th century, before the crowning contributions of L. Pontrya-
gin [119] in the 1950s and later R. Bellman [120]. Applications of optimal control could hardly be
more diverse, with examples in aerospace with satellite maneuvering [121, 122], communication

protocols in computer science [123], finance [124] and biology [125].

Quantum optimal control (QOC) is the application of optimal-control theory to quan-
tum systems [126], with proposals and implementations e.g. in the fields of quantum chem-
istry, quantum information, magnetic resonance and NV-centers, (see [59, 60] and references
therein). QOC is well suited for quantum state control of cold and ultracold atoms for inter-
ferometry [127, 128, 129] and quantum simulation [130, 131]. We present in this chapter the
implementation of QOC in our experiment, where we use the time variation of the phase of
the optical lattice (Sec. 2.4) as our single control parameter in order to control the motional

state [1q.0) = Dy Cqu
distributions (targeting sets of real elements {|c,¢|?}, i.e. regardless the relative phases between

Xt+q/k;,) of BECs in the lattice. We prepare firstly momentum probability
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coeflicients ¢, ¢), before fully addressing specific quantum states in the Hilbert space of our Bloch
system (targeting sets of complex amplitudes {cq,}).

Observation of the system and certification of the preparation. When performing measure-
ment on a quantum system, one never accesses the wave function of the system, but rather a
possible outcome of the measurement of an observable with a probability distribution given by
the squared modulus of the wave function. This is well illustrated by our TOF measurement,
through which we access the momentum distribution of the BEC in the lattice, <.e. the set
{|cqe|?} of the squared moduli of the plane wave amplitude (see Sec. 2.4.1). Such a measure-
ment, based on a single observation of the system, is sufficient to evaluate a fidelity to a target
defined purely as a momentum probability distribution, but cannot ensure proper quantum state
preparation. Indeed, to certify our ability to prepare a given quantum state |1, ) associated
to a unique set {c,¢} of complex coefficients, we need to access all the information of these
measured coefficients ¢, ¢, that is both their norm |c, | and phase arg{c,¢}. Full quantum state
tomography [132] is a matter of great relevance to quantum simulation and computation. Several
methods to solve that problem have been put forward, using e.g. mappings from the motional
state to internal degrees of freedom [133, 134, 135], while recent proposals in the context of
many-body systems exploit randomized measurements [136] or neural networks [137]. In our
case, we reconstruct the motional state of the BECs in the lattice with a maximum likelihood
iterative method inspired by quantum optics [138, 139, 140, 141], using measurements of the
subsequent evolution of the prepared state in the static lattice potential.

This chapter is organized as follow: in the first section 3.1, we give an introduction to
the basics of optimal-control theory, we detail the application of QOC to our one-dimensional
Bloch system, and we present our numerical approach to compute the lattice phase curve for
the preparation of a given target. The second section features experimental results on the
preparation of readily-observable momentum distributions (Sec. 3.2). In the third section, we
target specific quantum states and detail the state reconstruction algorithm (Sec. 3.3). To
conclude, we present in the Sec. 3.4 an application of our QOC implementation to the quantum
simulation of dynamical tunneling [142, 89, 61] in the depth-modulated optical lattice. Some of
the developments in Sec. 3.1 are inspired from [68, 143].

The research work presented in this chapter results from a collaboration with Prof. Dominique
Sugny from the Laboratoire Interdisciplinaire de Carnot Bourgogne (Dijon), who specializes in

the application of optimal control to quantum systems. It has lead to the publications:

[63] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Sugny and
D. Guéry-Odelin, Quantum State Control of a Bose-Einstein Condensate in an Optical
Lattice, PRX Quantum, 2:040303, (2021)

[64] N. Dupont, F. Arrouas, L. Gabardos, N. Ombredane, J. Billy, B. Peaudecerf, D. Sugny
and D. Guéry-Odelin. Phase-space distributions of Bose-Finstein condensates in an optical
lattice: Optimal shaping and reconstruction, currently under review (2022)

64



3.1 Optimal-control formalism

3.1.1 Introduction to optimal control in the classical case

Optimal-control theory deals with systems described by parameterized equations of evolu-

tion:

w(t) = f (x(t), u(t), 1), (3.1)

with the initial condition &(0) = ¢ and a given scalar cost functional J[x(t), u(t),t] (see below).
In Eq. (3.1),

e x(t) € R" is the state vector of the system (for a classical system, it can for example be
phase space coordinates, with n = 2N if there are N degrees of freedom ; Sec. 1.1),

e f is a function encapsulating the evolution (e.g. the Hamilton equations for a dynamical
system),

e u(t) € R™ are m time-dependent control parameters used to drive the initial state x¢ to

a target state @ (with m # n in general).

The optimal-control problem is to determine the control w(t) over the time interval 0 < ¢t < ¢,
(with t. the control duration, a parameter let free for now) that drives xg into x(¢.) ~ @ while
minimizing the cost J. This cost can generally be written

le

(), u(t), 1] = p(x(te), tc) + [ fo(x(t), u(t),t) dt (3.2)

where the first term accounts for the cost in reaching the target, and in the time required, and
the second term is a cost functional dependent on the path x(t) and resource u(t) to reach the

final state (it can for example be a resource cost of the form fgc lu(t)|?dt).

Pontryagin maximum principle. To solve such optimal-control problems, L. Pontryagin intro-
duced in 1956 what is now refered to as the Pontryagin maximum principle (PMP). We here
state this principle without demonstration (for more information, see [119, 144, 143]). We start
by introducing a scalar, Hamiltonian-like function Hp, named Pontryagin Hamiltonian, that can

be written as

HP($(t)ap(t)’u(t)vt) = _fO(w(t)7u(t)7t) —l—p(t) : f(x(t)7u(t)7t)7 (33)
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where the adjoint momentum-like! vector p(t) € R™ is nothing but a time-dependent Lagrange
multiplier. This adjoint state has its evolution governed by Hamilton equations deduced from
the Pontryagin Hamiltonian:

. OHp
=

OHp

- (3.4)

and p=

The PMP states that optimal controls® w*(¢), that minimize the cost, maximize Hp along the

trajectory:

Hp (x(t),p(t),u(t),t) = IE(%?( {Hp(x(t),p(t),u(t),t)} for 0<t<t,, (3.5)

or, equivalently

OHp

T =0 for 0<¢t<t,. (3.6)

u=u*

Solving an optimal-control problem amounts to solving Eq. (3.6) for w*(¢). However, we so far do
not have enough information to evaluate Hp and p(t). One tackles a given problem depending
on the constraints that enter the definition of the cost function (3.2) [143, 68]. This leads to the
definition of a series of cases:

(i) If neither x(t.) nor t. are fixed, we set

p(te) = — W . and (%(cg(tt),t) . = Hp (z(t.), p(tc), u(te),tc) . (3.7)
(ii) If x(t.) is fixed and t. is free, we set
a¢(~'1;(;)7t) y = Hp (z(te), p(te), ulte), te) . (3.8)

(iii) If, on the contrary, t. is fixed and x(t.) is free, we set

O¢(x(t),1)

o (3.9)

p(tc) = -
t=tc

(iv) Finally if both x(t.) and ¢, are fixed, Egs. (3.3) and (3.4) contain enough information to
solve for u*(¢) in Eq. (3.6).

'We stress that p is a mathematical construction, adjoint vector to the state vector @. In the classical dynamics
example taken above, we have = (g1, ..., g, D1, ..., pN) ", comprising itself the true generalized momenta p;
(Sec. 1.1).

*We consider the case where there are no constraints on w(t).
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Our constraints. In our case, we will only require for the final state (t.) to reach & the most
accurately possible in a fixed amount of time ¢, and regardless of the path taken. This puts us
in the third case detailed above, with a cost function that becomes

Jx(t), u(t), t] = J(x(tc)) = ¢(x(tc)) = —F (@1, 2(tC)), (3.10)

where F(xT,x(t.)) is a fidelity to the target to be mazimized. Thus, we need to determine
u*(t) from the system composed of Egs. (3.4) and (3.6) with the boundary conditions x(0) = xo
(defined as our initial state) and p(t.) (Eq. (3.9)). However, this task is generally not easy.
We therefore proceed using an iterative algorithm. One can show that the transformation
u(t) — u(t) + ou(t) with du(t) = e 90Hp/O0u (with € a small positive parameter) increases the
fidelity [143], with w*(¢) a fixed point of the transformation (according to Eq. (3.6)). In our
implementation, we use a numerical iterative gradient-ascent method based on this property.
The procedure is detailed in Sec. (3.1.3).

3.1.2 Application to one-dimensional Bloch systems

In order to apply the previous discussion to the control of BECs in the optical lattice, we
need to get expressions for the state vector, adjoint vector (with its final condition) and dHp /0u

in our system. In the experiment, the atoms experience the controllable lattice potential

V(a,t) = —A(t)so% cos (kL + (1)) . (3.11)

In Sec. 1.2, we recalled Bloch’s theorem in one dimension, from which it follows that a quan-
tum state at a given quasi-momentum ¢ in a one-dimensional potential of period d is uniquely

expanded over the basis of the plane waves as

|1q(t)) = Zcq,z(t) Xt/ s (3.12)

ez

with (Z[Xetq/k,) = ehLta)z /\/d and ky, = 2w /d. We state the uniqueness of this expansion
with the isomorphism

[Vq(t)) <> Cy(t) = | cqu(t) |- (3.13)

In the following, we represent an arbitrary state |¢4(t)) using its associated coefficient vector
C,(t), and we drop the explicit dependence on g. In vector form, the time-dependent Schrédinger
equation reads
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iC(t) = M(u(t)C(t), (3.14)

with M (u(t)) = H(u(t))/EL (see Egs. (1.22) and (1.32)) and u(t) is a parameter of the controlled
lattice potential (3.11). In the experiments presented in Secs. 3.2, 3.3 and 3.4, the control
parameter u(t) is the lattice phase ¢(t), and the control is performed in a lattice of constant
depth (A(t) = 1). In what follows, we keep a general narrative with the parameter u(t) as long
as our development allows it.

The formalism of optimal-control theory is introduced for real-valued state vectors. We
connect our quantum state C(t) to the real vector X (t) defined as

X(t) = ( Re{c(t){ > = % : (3.15)

Imq  cp(t)

We get a real-valued vector X (t) € R?¥ | with dy the Hilbert space dimension (see Sec. 1.2.2).
The evolution equation for X (¢) in the form of (3.1) is obtained from the Schrédinger equa-
tion (3.14):

X = ( Im{M(u(t))})~ Re{M (u(t))}

- Re{M(u(t))) Im{mu(t))}) X(t) = F(X (), u(t)). (3.16)

Following optimal-control formalism, we define the Pontryagin Hamiltonian for this problem:

Hp = P(t) - f(X(t),u(t)) = P (t) x f(X(t),ult)), (3.17)

where we have denoted the matrix product with x. In a similar way as the relation (3.15)
between X (¢) and C(t), we associate a complex-valued vector D(t) to the adjoint state P(t):

_ [ Re{D(®)}
P(t) = ( 1 D)} ) . (3.18)

From Eqs (3.17) and (3.18), the Pontryagin Hamiltonian for the one-dimensional Bloch system
becomes
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Hp = Re{D} Re{C} + Im{D}Im{C} (3.19)

_ Re{(Re{DT} —ilm{D"}) x (RG{C} ”hn{c})}

= Re{DT X C’}.

where the time dependence is implicit. Using Eq. (3.14), we finally get for Hp:

Hp = Im{DT(t)M(u(t))C(t)}
o> OM (u(t)

u u

= Im{DT () C(t)} (3.20)

Finally, the boundary condition D(t.) is obtained from the evolution of P(t) given by the
Hamilton equations applied to Hp. Using Eqgs. (3.16) and (3.17):

T
s (0H\" [ (~Tn{Mu(®)} —Re{M(u(t))}
(%) [P (Re{Mw(t))} —Im{Mw(t))})] (821)

) ( I {M(u(t))} Re{M(u(t»}) P
—Re{M(u(t))} Im{M(u(t))}

where we have used the fact that M(u(t)) = H(u(t))/EL is Hermitian 3. We get that D(t)
evolves as C(t):

iD(t) = M(u(t))D(t), (3.22)

with a final condition obtained from Egs. (3.9) and (3.10):

oF
Pl =+ 5%
t=t¢
oF
= D(te) = 551| - (3.23)
t=tc

The adjoint state D(t) is evaluated for all time 0 < ¢t < t. by propagating its final state (3.23)
backward in time using Eq. (3.22). We also need to define the fidelity function F to the target

*Which implies for our development Re{M"} = Re{M} and Im{M"} = — Im{M}.
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|tT) <> Crp. This choice depends on the states targeted (see below). For most of our targets,
we will use the quantum fidelity between pure states

2

F () [o(0) = 1nlp @) 2 = [ x ()] (3.24)

With the expressions for the state C(t) and its adjoint D(t), their boundary condition

(a free choice for Cy and Eq. 3.23 for D(t.)), the knowledge that they both evolve according

to Schrodinger equation (Egs. (3.14) and (3.22)) and the expression for 0Hp/du along the
trajectory (Eq. (3.20)), we have all the ingredients to iteratively compute control fields.

3.1.3 Numerical method for control field computation

As discussed in the previous section, our control parameter in the studies presented there-
after is the lattice phase ¢(t). We now explicit this choice with u(t) — ¢(t). For numerical
computation, we discretize the time vector t — ¢, = to,t1,...ty during the state preparation,
with to = 0 and ¢ty = NAt = t. (with At a small time interval ; see below). The lattice phase
©(t) is defined constant by part over At (see Fig. 3.1 below), and we write ¢(t,) = ¢,. The
evolution operator from ¢, 1 to t, is

—iAtH,

Ultp,tn-1) =U, = exp{ -

} = exp{—i2mv,AtM,}, (3.25)

where we have used H (t,) = H, = Er,M,, = hvy M,,. We want to drive an initial state C'(0) to

a target C't. We start with the initialization of the control field go%o) (an initial guess), which

prepares a certain final state

cOt.) =vQv?  vuc0), (3.26)

that has a fidelity F(© to the target. If we vary of the control field ¢, — ¢, + 0y, the variation
of fidelity is

N
OF
SF=>)_ a—%&pn (3.27)
n=1

The heart of the gradient ascent method [145, 146, 147] that we use is to choose d¢p,, so that §F >
0 in order for F to increase. We see that if we modify the control field with the corrections

__oF
T Opn’

don (3.28)
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with € > 0, we make sure to have 0F > 0 since the right-hand-side of Eq. (3.27) becomes
>, e(0F/9pn)? where each term is greater than or equal to zero. As we will see below, the
corrections (3.28) correspond to the general control field corrections du(t) = e0Hp/Ju discussed
at the end of Sec. 3.1.1.

We now show how one can compute 0.F /d¢p,,. As the fidelity only depends on the final state
reached C(t.) (for a fixed target), the dependence of F on the control field ¢, is that of C(t.).
The resulting complex derivative reads*

OF _0Ci(t) OF  OF 0C(t)
dpn  Opn OCH(te)  OC(tc) Opn
oCt(t.) OF
= 2Re{ Do OO } (3.29)

The first factor in the argument of the real-part function is

aC" (t.) ouU;!

S :Cng...Ug_l&an;H...UL (3.30)
oM,
~ i2m AtCHUL.UT Tt LU

n—1 89071 n4+1-*

where we expanded U, >~ 14, — 2w, AtM,, (arguing that At is a small time interval) and used
M) = M,,. As the second factor in the argument of the real-part function in Eq. (3.29), we
recognize the boundary condition D(t.) = Dy (Eq. (3.23)). Equation (3.29) thus becomes®

OF _ oM,
S = 2Re{z2mLAthUlT...U,§l T, U:LH...U]TVDN}
M, M,
o~ —47rVLAtIm{CjL_1%(p Dn} = 47T1/LAtIm{DIL?9 C’n_l}, (3.31)

where we have propagated Cg forward up to Cjkl, and Dy backward up to D,. From
Egs. (3.27) and (3.28), we see that doing this operation for all n such that 0 <¢,, < t. gives the
corrections to be applied to each ¢, to increase the fidelity.

In Eq. (3.31), we recognize a discrete version of the derivative of the Pontryagin Hamiltonian
with respect to the control parameter (3.20). Our gradient ascent (3.28) is effectively performed
by iteratively modifying the control field with the corrections

“with z + 2* = 2Re{z} ; z € C.
Swith Re{iz} = —Im{z} and Im{z*} = —Im{z}.
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Figure 3.1 | Schematic of a gradient ascent iteration for the computation of a discretized
control field showing the field ¢,, at time ¢,, at the current step (gray line) and at the next step (black
line), after applying the corrections d¢p, (red arrows). Our discretization convention is such that the
evolution operator U(yp,,) transforms C,,_; into C,,.

oM, OHp
Sy = edmu,AtTm{ D —"C\_1 p ~ ¢’ 3.32
on = €4y, m{ " g " 1} 8&% ( )
as prescribed by optimal-control theory through the PMP (Sec. 3.1.1). The small positive
parameter ¢ is initialized to 1 and then slightly adjusted following a line-search method [147].
Our numerical approach is summarized in a list of concrete steps in the following box, and an
iteration of this algorithm is schematically depicted in Fig. 3.1.

Iterative gradient-ascent algorithm

0. Set a initial state Cj, a target C, a fidelity function and a control duration® ¢, (we
state typical values for this parameter in the next section 3.1.4). Set also a break
condition on the fidelity or the number of iterations.

(0)

1. Initialize a guess field ¢y, ”’.

2. Propagate Cj forward to obtain C,, for all n using the time dependent Schrédinger
equation (Egs. (3.26) and (3.25)).

° 3. Evaluate the adjoint state at final time Dy using Eq. (3.23) and propagate it back-
ward up to t = 0 using Schrodinger equation to obtain D, for all n.

4. Compute the corrections dyp,, for all n using Eq. (3.32) and the integration of C,
and D,,. Transform ¢, — @, + dpn.

5. Repeat from step 2 (with a possible adaptation of the correction amplitude €) until
reaching the desired fidelity or the maximum number of iterations.

“Which needs to be discretized into a number N of sufficiently small time steps At in order for the
approximation done in Eq. (3.30) to be valid, as well as for the time-discretized fidelity gradient (3.31)
to approximate the gradient of the Pontryagin Hamiltonian (3.20) in the continuous-time limit.
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3.1.4 Numerical results, local optima and control duration

We now present numerical results of control field computation using the algorithm presented
in the previous section. As an example, we target, in the subspace of quasi-momentum ¢ = 0,
the state

oz = \g (Ix—s) + Ixs)) (3.33)

i.e. the superposition of plane waves with momenta (—3, 3) kg, and a relative phase arg{c_3/c3} =
0. Our initial state for the control is the ground state of the lattice at depth sy = 5 (a parameter
that is fixed during the QOC preparation). We use the quantum fidelity (3.24), with a break
condition of F > 0.995 for the algorithm. Here, and in the following of this manuscript, we define
|Yqoc) as the theoretical state obtained from the numerical propagation of the initial state with
the optimized control field. Results are shown in Fig. 3.2 for two different resulting control fields
for the preparation of the state (3.33). The control fields have been obtained from two different
initial guesses, from which, in both cases, the gradient ascent algorithm has converged to an
optimal control (which means that we effectively get F > 0.995). This illustrates the general
fact in optical-control theory that if there exist multiple local optima for the control parameter
with respect to the cost function, a gradient-based approach may only converge towards one of
these optima depending on the initialization of the control field [126, 143]. In this case, both
optimal control fields ¢(t) give a satisfactory result, which mean that the local fidelity maxima

near our two initializations were such that F ~ 1.

Remark on the control duration. In our numerical approach of this optical-control problem,
we fix the control duration t.. This quantity has to be large enough for the target to be-
come reachable, and preferably from a vast region of control field initialization (see previous
paragraph). In our system, the evolution of the atoms in the lattice is governed by the band
structure (Sec. 1.2.2). As our initial state is the ground state of the optical lattice, we define as
the relevant timescale the period Ty associated to the transition between the two lowest bands
s and p at the center of the Brillouin zone (¢ = 0):

: (3.34)

with Eé,sﬁ) the n'® Bloch eigenenergy at quasi-momentum ¢ and lattice depth sg. For t. < Tp,
not enough time is given for the atomic state to eventually evolve toward the target. For t. > Ty,
it is easier for the numerical algorithm to converge. The problem then becomes an experimental
one, as experimental fluctuations have more time to accumulate and limit the fidelity of the
preparation. We present a brief study of the control duration effect on experimental preparations
in App. D. In our experiments, we typically use control durations of a few Ty (mainly 1.5 to
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Figure 3.2 | Non-unicity of the control fields for the preparation of a given target. (a;,b;) Ex-
amples of lattice phase evolutions as a function of time optimized by optimal-control theory (solid black
line) for the preparation of |[¢)1) (3.33), starting from two different initial guesses (dashed black line).
(a2,b2) Corresponding numerical evolutions of momentum distribution. (as,bs) Comparisons between
the momentum distribution of |¢qoc) (red bars) and the target (grey bars). Resulting numerical quan-
tum fidelities (Eq. (3.24)) are F 2 0.996 for (a,b). The lattice depth is s = 5 and time is given in units
of To(sg = 5) ~ 62 us (see text).

2Ty). Most of the results presented in this chapter are obtained with lattice depths around
so = b, for which Ty =~ 62 us.

3.2 Controlling momentum distributions

We now turn to experimental results. In first sets of experiments, we control the momentum
distribution |{p[s))|? of BECs in the optical lattice. We start by introducing two new fidelity
definitions, which are less restrictive than (3.24) given our targets.

3.2.1 Fidelities between momentum distributions

Our goal in this first section of results is to target given momentum distributions {|cs|?}
at quasi-momentum ¢ = 0. As our targets only depend on the norms {|cs|}, we note that it
is unnecessarily restrictive to require the preparation of a specific state whose ¢; coefficients
have imposed relative phases. Indeed, a given momentum distributions {|c,|?} is achieved if we
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drive our initial state to the Hilbert subspace composed of the infinitely large number of states
whose plane wave coefficient norms are {|c/|}. We define two fidelities, less restrictive than the
quantum fidelity (3.24), that allow to compute control fields towards this subspace:

FO ({lecl} Adel)) =1~ 5 3 (e — o] (3.3))

lezZ

2
FO {le}  {ldel}) = (Z el w) : (3.36)

leZ

with ¢y, dy the plane wave coefficients of the two states between which the fidelities are computed,
and 0 < F(@F) < 1 for normalized states 3, |c/|? = 3, |d¢|?> = 1. This duplicity of definition
for the fidelity between momentum distributions is fortuitous: for the results presented in the
following sections 3.2.2 and 3.2.3, control fields have been computed with the first definition
F(@) (3.35). For the treatment of the experimental data, we however use the second definition
FB) (3.36), as it corresponds to the quantum fidelity (3.24) in the specific case of complex
phase matching between the two states coefficients of the two states®. We have verified that
the results of momentum distribution presented in the following could have been obtained with
either definition, whether for the control field calculation or data treatment.

The choice for the fidelity function impacts steps 3 and 5 of our iterative gradient-ascent
algorithm (p. 72), namely the final condition for the adjoint state and the break condition.

Experimental results of momentum distribution control are shown in the next two sec-
tions. In Sec. 3.2.2, we present preparations of single momentum components. In Sec. 3.2.3, we
present equiprobable superpositions of two momentum components and an arbitrarily populated

momentum state.

3.2.2 Preparing single momentum components

We first target momentum distributions given by {|c¢|*} = {0}, with m the reduced
momentum p/hky, of the targeted plane waves. Results are shown in Fig. 3.3 for m = 0,2,4, 10
and quantitative details can be found in Table 3.1. The measured experimental fidelities are
very close to the numerical ones, and both show a similar trend, with slowly decreasing values as
we go from low momentum targets to high momentum targets (see Table 3.1). At the same time,
the control phase gets more complex, as seen in Fig.3.3(d). To reach high single momentum
states, such as p = 10 hkr, (Fig.3.3(d)) we increase the time of the control ramp to ensure the
convergence of the algorithm. We note that we reach momenta much higher than the separatrix
momentum peep = /S0 Akr, (Sec. 1.1.2), which corresponds to the classical limit with a sudden
lattice shift [62].

SGiven the coefficient norms of two states, F*) (3.36) is therefore an upper bound of F (3.24).
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Figure 3.3 | Controlling momentum distributions: single momentum components. Left: Con-
trol field as a function of time. Right: TOF absorption images, where the OD colormaps have been
truncated to 0.5 of their maximum respective value (which saturates the center of the mainly populated
orders) to reveal preparation defects. (a,b,c1,d) QOC preparations. (c3) Lattice acceleration (see text).
See Table 3.1 for details.

We stress that, as any image of atoms featured in this thesis, the ODs shown in panels
(a,b,c1,d) are TOF absorption images of BECs directly dropped from the optical lattice (in
this case, once the propagation procedurehas been applied). Strikingly, the usual momentum
quantization induced by the lattice periodicity imprinted in the wave function is suppressed.
While this is expected as we target single plane waves, these experiments interestingly amount
to the realization of a blazed grating for matter waves (in direct analogy with optics), as the
measured momentum distributions correspond to an in situ constant phase gradient A¢(x) =
mkrx across the lattice sites (see for instance [90]).

Preparing the single plane wave with momentum m x hkp, corresponds to accelerating all
the atoms of the BEC up to that momentum. We can compare our QOC method to the more
standard protocol of accelerating the lattice to impart momentum to the atoms. In Fig. 3.3(c2),
we illustrate this comparison in the case of m = 4, where we uniformly accelerate the lattice up to
a velocity of 4h/md for the same amount of time ¢, and lattice depth sy used for the corresponding
QOC experiment of Fig. 3.3(cy). After the acceleration, the fidelity to the target state, i.e. the
single momentum state p = 4 hky,, is only ]:C(f ) = 0.49 + 0.03, which is much lower than the one
obtained using the QOC method (]-'C(lﬁ ) = 0.89 + 0.01, see Table 3.1). This is clearly visible on
the experimental absorption image of Fig. 3.3(ca), with atomic population on the neighboring
momentum orders. One could argue that the fidelity to the target state using the acceleration
method can be increased by working adiabatically and performing Bloch oscillations [148, 149,
79]. Numerical simulations show however that reaching a fidelity F ) > 90 % to a given single
momentum state requires low lattice depths so < 1 and that the adiabaticity condition [79] then
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Fig. 3.3 a b c d
S0 5.1+0.2 5.240.2 5.2+0.2 5.1+0.2
te/To 1.5 1.5 1.5 4.25
m 0 2 4 10
A 0.99 0.99 0.89 0.87
]-“éfg) 0.94+0.01 0.94+0.01 0.89+0.01 0.74+0.05

Table 3.1 | Detail table related to the preparation of single momentum components. This
table refers to Fig. 3.3. sq is the lattice depth, t./T}, is the control duration rescaled by the period Tj
(Eq. (3.34), see text) and m is the momentum (rescaled by hiky,) of the targeted plane wave. The fidelity

FB) is defined in Eq. (3.36). F is evaluated between the target and |[¢Yqoc). ]:éfp), is evaluated between
the target and the state experimentally prepared by the application of optimal control fields (with an
average over 10 realizations, and an uncertainty corresponding to one standard-deviation).

leads to a generally much longer control time ¢. (see below). The control time will also grow
linearly with the momentum of the targeted state, reaching t. = 1.7 ms for the p = 4 hky, state
considered in our comparison (to be compared with ¢, = 1.5Tp ~ 92 us using QOC). Such long
control times also mean that the atoms move much further away from the center of the trap
(Sec. 2.2.4) during the lattice acceleration, with expected deleterious effects as this additional
potential is not taken into account by our model. In Table 3.2, we summarize the results of the
comparison between QOC and adiabatic acceleration for several momentum orders. We conclude
that the QOC method is both a fast and accurate procedure to populate single momentum states
with a high fidelity.

m 2 4 8 10
}"éfg) 0.94+0.01 0.89+0.01 0.76+0.04 0.74+0.05
so(io.z) 5.2 5.2 5.1 5.1
QOC te (ps) 91.7 91.7 260 260
Ace S0 0.75 1.1 2.1 2.3
tace (Ks) 1.7-103 1.7-103 1.2-103 1.4-103
Table 3.2 | QOC versus adiabatic lattice acceleration. Comparison of the control time ¢, required

to reach a given single momentum target (p = m x hkr) with the same fidelity using either our QOC

protocol or an adiabatical Bloch oscillation scheme with a uniformly accelerated lattice (“Acc”). fc(fg

refers to the experiments Fig. 3.3(b,c;,d) as well a preparation of the 8th plane wave not featured in
Fig. 3.3. We indicate the lattice depth sg at which the experiments were performed (for the QOC case),
or which would be required (for the accelerated case).

The comparison between the control fields ¢(t) in both methods (QOC and lattice accel-
eration) also sheds light on the way the optimal phase is designed: the artificially-made folded
quadratic growth pattern in the control phase for the acceleration method (Fig. 3.3(c2)) can
also be found in the QOC phases, for instance in Fig. 3.3(c1,d). In the case of panel (c;), the
optimal control field ¢(t) can be interpreted as a first acceleration stage towards the targeted
momentum state (for t/Tp < 0.75), and a second “correction” stage to reduce the population in
unwanted momentum states.
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Figure 3.4 | Controlling momentum distributions: two-components equiprobable and arbi-
trary momentum superpositions. Left: Control field as a function of time. Right: TOF absorption
images, where the OD colormaps have been truncated to 0.5 of their maximum respective value (which
saturates the center of the mainly populated orders) to reveal preparation defects. See Table 3.3 for
details.

3.2.3 Preparing arbitrary superpositions of momentum components

In this last section of results concerning momentum distribution control, we shape the lattice
phase ¢(t) to realize arbitrary momentum superpositions. Results are shown in Fig. 3.4, with
details in Table 3.3. We begin with equiprobable superpositions of two momentum states, varying
their relative momentum. We show the case of neighboring momentum states (Fig. 3.4(a)),
opposite momentum states (Fig. 3.4(b)) and an arbitrary pair of momentum states (Fig. 3.4(c)).
We also prepare an arbitrary momentum distribution corresponding to an “ascending staircase”
distribution (|c_2|?, |c_1/?, |col?, |c1]?, |e2|?) = (1,2,3,4,5)/15 (Fig. 3.4(d)). In each case shown,
we achieve good experimental fidelities to the ideal target (larger than 88 %, see Table 3.3),
slightly below the corresponding numerical fidelities.

To further demonstrate the robustness and versatility of our QOC method for the prepa-
ration of momentum distributions, we prepared all the 27 = 128 equal-weight superpositions of
momenta between p = —3 hky, and p = 3 Ak, in the lattice of depth sy ~ 5. As an amusing
way of presenting the results, we constructed an alphabet by concatenating the resulting TOF
absorption images, allowing us to write words and sentences. An example of such a printout is
shown in the beginning of this chapter (p. 61).

All experimental results of QOC featured in this chapter are obtained with the ground state
of the lattice as the initial state for the control. The arbitrariness of this choice is illustrated in
App. E, where we show an experiment of momentum distribution control with the resting BEC

(ce = do ) as the initial state.

We recall that the targets in this section were defined regardless the relative phases between

their ¢; coefficients. In the next section, we experimentally target specific quantum states, and
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Fig. 3.4 a b c d
S0 4.640.2 5.040.1 4.6+0.2 5.1+0.1
te/To 1.5 1.5 ~ 2 1.5
{m} {-3,-2} {—4,4} {-3,2} {-2,-1,0,1,2}
{lem|?} {0.5,0.5} {1,2,3,4,5}/15
A 0.95 0.92 0.98 0.99
}"é)@, 0.88+0.03 0.93+0.01 0.9340.02 0.94+0.01

Table 3.3 | Detail table related to the preparation of two-component equiprobable and ar-
bitrary momentum superpositions. This table refers to Fig. 3.4. sq is the lattice depth, ¢./Tp is the
control duration reduced by the period Ty (Eq. (3.34), see text), {m} is the set of momenta of the targeted
components (reduced by fiky,) and {|c,|?}t are the square moduli of the corresponding coefficients The

fidelity F(®) is defined in Eq. (3.36). FB) s evaluated between the target [Yqoc)- fé,@, is evaluated
between the target and the state experimentally prepared by the application of optimal control fields
(with an average over 10 realizations, and an uncertainty corresponding to one standard-deviation).

present how we manage to assess the prepared states.

3.3 Wave function control

In this second section of results, we tackle the preparation of specific quantum states [1)) =
> ¢ Cq.t|Xt4q/k ) To compute control fields, we therefore use the usual fidelity between pure
quantum states F = |(1|¢)|?>. The difficulty now lies in the measurement of the prepared
complex wave function in order to certify our preparation protocol. Our general procedure to
deduce the prepared quantum states is to hold them in the static lattice after the preparation.
We then use the data of their evolution in the optical lattice as information to identify the state.
In the following, we first show that we can prepare and identify superpositions of two momentum
components with an arbitrary relative phase (Sec.3.3.1) and specific eigenstates of the lattice
potential as well as eigenstate superpositions (Sec.3.3.2). We then turn to the more general
preparation of arbitrary states in the system, through the target of Gaussian states (for which
we develop a systematic reconstruction method) that we translate and superpose (Sec. 3.3.4) or
squeeze (Sec. 3.3.5) in the (z,p) phase space of each lattice site.

3.3.1 Control of the relative phases between two momentum components

To prepare a given quantum state in our Bloch system, we need to control the complex phase
of each” coefficient cqe. We first demonstrate this control by targeting the simple momentum

superposition

2 = ;5 () + €2 ). (3.37)

" Actually each coefficient minus one, since states are defined up to a global phase.

79



For several target values of the relative phase A¢ = j x 7/8 (with j € {0,1,...,15}) we compute
an optimal-control ramp that prepares the corresponding superposition 1/1&%¢C)}> with numerical
quantum fidelity Fnum > 0.995. With each ramp, we also evaluate the prepared relative phase
Aprep = arg{c_1/c1} from a simulation of the optimal control preparation. To measure the
relative phase A¢@meas Of the experimentally prepared superpositions, we use the subsequent
evolutions of the momentum distribution in the static lattice. These evolutions are measured
over an extra 110 us (=~ 1.757)). Results are shown in Fig. 3.5.

For each of the five evolutions presented, we see that the initial momentum distributions
(at t = 0) are the same, which is the expected superposition (—1,1) hky, given the addressed
state (3.37). The subsequent evolutions then strongly differ depending on the prepared relative
phase A¢prep. This allows us to measure relative phases A@neas With precision by fitting, on
the experimental data, numerical evolutions of the ideal state (3.37) with the relative phase A¢
as the adjustable parameter. This procedure is illustrated in Fig. 3.5(c_2-c2). In Fig. 3.5(f), we
compare the prepared and measured relative phases. The good agreement between the two (see
the caption of Fig. 3.5 for details) demonstrates our ability to engineer the phase of momentum
superpositions reliably. The residual mismatch may be attributed to at least two different effects:
on the first hand, lattice depth fluctuations has a double deleterious effect on this experimental
scheme, as they impact both the QOC preparations and the subsequent evolutions. On the other
hand, the adjustments of wave function dynamics performed here suffer from only having the
relative phase A¢ as adjustable parameter. Indeed, we here effectively assume that the prepared
states at the beginning of the evolution were always the ideal state (3.37), with an equal-weight
superposition of the sole momentum components (—1,1) iky. Even if the preparations were
ideal, we know for a fact that this is inaccurate, as the numerical fidelities to the targets only
are F 2 0.995. This necessarily limits the measurement potential of our fit. Later in this
chapter (Sec. 3.3.3), we overcome this limitation with a reconstruction method that only require

a constant lattice depth sg as an assumption.

We have also performed similar experiments with three-momentum superpositions and dif-
ferent relative phases. These experiments are presented in App. E.

3.3.2 Preparation of Bloch eigenstates and superpositions thereof

To further demonstrate our ability to prepare quantum states with specific relative phases
between their ¢, coefficients, we target two Bloch eigenstates of the static lattice and two given
superpositions of Bloch eigenstates. Our target are computed from the diagonalization of the
static lattice Hamiltonian in the basis of the plane waves (see Sec. 1.2.2). Writing \(b((f%)) the n'h
Bloch eigenstate (ranked by increasing eigenenergies) at quasi-momentum ¢ and lattice depth
s0, we target the states® (with indices corresponding to the panels of Fig. 3.6)

8The specific depth values indicated for these targets correspond to the depths calibrated before each experiment
(Sec. 2.4.2).
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Figure 3.5 | Control and measurement of the phase between two momentum components.
(a-e) Top: stacks of integrated experimental images (blue) showing the evolution of the momentum
distribution during a 110 us holding time in a static lattice after applying a control field ¢(t) preparing
the momentum superposition |1)a4) of momentum components (—1, 1) hkr, (Eq. (3.37)) with an expected
relative phases Agprep = 3°, 46°, 96°, 184° and 276°. Bottom: numerical propagation (red) in a static
lattice of the same momentum superposition with a relative phase adjusted by least-squares fitting of
the experimental data, yielding respectively A¢meas = (114£6)°, (48 4+ 7)°, (844 6)°, (1924 7)° and
(285 £6)°. (c_2-c2) Detail of the evolution of momentum populations in (c), with panel (c;) featuring
the £*" momentum component, and showing the experimental data (blue dots) and numerical propagation
of the superposition |ag,,...) With relative phase A¢peas determined by least-square fitting (continuous
red line). (f) Measured relative phase A@meas as a function of QOC prepared relative phase A¢pyep for
data (a-e) and more. All data shown were obtained for a calibrated lattice depth sg ~ 5. The error bars
represent the 95 % confidence interval for the fitted value of A¢peas. The grey dotted line is of slope one.

{wéb)> = ‘cbgi‘)(f fii?)> (3.38)
) - o)

o) = 75 (|eiman) + |oimans)

0 = 35 () + )

Expectations. In the case of the one-eigenstate targets \wr(rb’c)>, we expect to observe no evo-
lution of the momentum distributions as we target steady states of the system. For the two
eigenstate superpositions |¢(Te ’f)>, we are preparing the two-level superposition:

alt = 0 = —= (o) + o)) (3.39)
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whose evolution can be written as (Sec. 1.2.3)

(Jo) (52 ). (3.40)

—iESQt/n

7

e

[%q(2)) =

We therefore expect to detect only one frequency of evolution Vé n)m = |E¢gsﬁ1) - E((Ifﬁ)\ /h. We
compute v(e) = 33 ps and v ~ 59 ps.

For these expectations to hold, the eigenstates that go into our target definitions (3.38) need
indeed to be eigenstates (see below). While this is directly the case when targeting W(Tb ’e)) (as
we apply our QOC protocol in the subspace of quasi-momentum g = 0), we need, in the case of
|¢$2 ’f)>, to put our preparations in the subspace ¢ = kr,/4 after the QOC stage. A state associated
with a particle of mass m initially in the subspace of quasi-momentum ¢ is projected onto the
subspace of quasi-momentum ¢ by instantaneously giving it a speed v = h(¢’ — q)/m with
respect to the Bloch system in which it evolves. In the experiment, we induce this instantaneous
speed shift by putting the lattice at speed v = —h(q¢' — ¢)/m with a linear lattice phase curve
once the QOC preparation is done”.

We present the results of these experiments in Fig. 3.6. The control duration is t. = 1.57g
and we obtain control fields with numerical fidelities F 2 0.99. In Fig. 3.6(b,c,e,f), we compare
the evolutions of the states prepared experimentally and the theoretical states |[¢qoc) prepared
numerically. As expected, the plane wave populations for the one-eigenstate preparations do not
evolve in time (Fig. 3.6(b,c)), demonstrating that we have indeed generated eigenstates. For the
eigenstate superpositions (Fig. 3.6(e,f)), we strikingly observe the evolution of all momentum
orders with mainly one frequency in each case (one can contrast these with e.g. Fig. 3.5(c)).
The observed frequency are in agreement with our expectations (see above).

We point out that similar experiments of eigenstate preparations where performed in one,
two and three dimensions with control sequences of pulsed lattices [130].

We have so far demonstrated quantum state control with simple two-momentum component
superpositions (Sec. 3.3.1) and here with the preparation of lattice eigenstates. To prove our
ability to prepare arbitrary quantum states, we need a systematic state reconstruction method

to measure our preparations.

o In the rest of this chapter, we work in the subspace of quasi-momentum g = 0.

3.3.3 Quantum state reconstruction by likelihood maximization

We present in this section the implementation of an iterative likelihood maximization
method that allows us to systematically reconstruct prepared states from their evolution in
the static lattice after the preparation. As we will see, a strength of this method is that no

9For the targets |w & f)> the lattice is given a speed of v = —hkr,/4m =~ —2.158 mm/s after the QOC stage.
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Figure 3.6 | Preparations of Bloch eigenstates and superpositions thereof. (a,d) Lattice band
structures (color lines) for the two depths so = 8.2 (a) and sg = 5.6 (d) over one Brillouin zone, and iden-
tification of the eigenstates targeted in panels (b,c) and eigenstate superpositions targeted in panels (e,f)
(black annotations). The grey areas indicates the energies below the maximum potential energy of the
lattice. (b) Preparation of the eigenstate of the p band at quasi-momentum ¢ = 0 for sg = 8.15 £ 0.30.
(b1) Experimental data showing the evolution of the prepared state in the lattice. (bg) Numerical
evolution of |Yqoc). (bs) Time-averaged experimental (blue) and theoretical (red) momentum distri-
butions. The error bars represent the standard deviation along the evolution. (c) Same as (b) but for
the eigenstate on the d band at quasi-momentum ¢/k;, = 0.25 for sg = 8.26 + 0.10. (e) Same as (b)
but for the equal-weight superposition of eigenstates of the p and f bands at quasi-momentum ¢ = 0 for
so = 5.60 £ 0.15. (f) Same as (b) but for the equal-weight superposition of eigenstates of the s and p
bands at quasi-momentum ¢/kr, = 0.25 for so = 5.66 &= 0.15. This experimental figure can be compared
with the theoretical figure 1.5 p. 22.
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assumption is made about the state to be reconstructed (as opposed to the evolution fits shown
in Sec. 3.3.1). The only details needed by the algorithm are “contextual”, namely the lattice
depth sg and the data time stamps corresponding to the evolution data fed to the algorithm.
We start with reminders on measurement in quantum mechanics [150], and we then present the
reconstruction algorithm that we use in the following section. Let p be the density matrix!”
associated to the state of a system that we want to reconstruct from a set of measurements.

Projective measurement. We consider the projective measurement of the physical quantity a
associated with the observable operator A with eigenvalues and eigenvectors {a;, |a;)}. When
measuring A on p, one gets the result a; with probability

= tr{ﬁiﬁ} and the state becomes p—p = ', (3.41)

where P; = |a;){(a;| is the projector on the corresponding eigenstate, with > P; = 1. This ideal

projective measurement scheme is also refered to as von Neumann measurement [150].

Generalized measurement. We can describe a more general measurement that is not based on
projectors anymore. We consider a set of operator M; (named Kraus operators) acting on the
system, the only condition being ), M;Mi = 1. When measuring the state of the system, we
get the result ¢ with probability

= tr{ﬁMl-TMi} and the state becomes p—p = b (3.42)

™
Projective measurement is a special case of generalized measurement where the Kraus operators
M; are projectors. We define the positive operator-valued measure (POVM) formed by the set

of operators F; = MjMi (which are not necessarily projectors).

We now consider an unknown state p, prepared a large number of times, on which have
been performed a set of measurements of the POVM {E;}. We are given the frequencies f;
(with >, fi = 1) with which the results ¢ were obtained. Reconstructing p consists in finding
the theoretical state most likely to have produced these results. This state pyir, is the one that
maximizes the likelihood function £ defined as

ﬁ[ﬁ]ZHtr{ﬁEi}fi nd = g ma £} (3.43)

However, finding p is a tedious endeavor, as one needs to set all the matrix elements of py,.
Precisely, in a Hilbert space of dimension dy, symmetric density matrices have dy real numbers

%For a one-body pure state |}, one has p = [¢)(1)|. As will be explained below, we will however not restrict our
analysis to pure states. In general, one rather has p = ", pi[1:)(1:|, where p; is a classical probability for the
state defined by p to be measured in the state [1;), with Y. p; = 1.
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on the diagonal, and dg(dy — 1)/2 complex numbers as unique off-diagonal coefficients, which
amounts to (dy)? real number to determine. We therefore turn to a numerical iterative process

to reconstruct pmr.

Iterative maximum likelihood algorithm and application to our case. The algorithm that
we implement to reconstruct gy, is inspired from quantum optics [138, 140, 141] with recent
implementations on matter wave systems [151, 152]. We consider a POVM {E;}, with the
experimental frequency f; for the measure i, and a guess density matrix p. The algorithm is
based on the definition of an operator R[p]:

N fz A
R = —F;, 3.44
(] Z; - {ﬁEz} (3.44)
and the transformation
P RIPIpRIP (3.45)
annany

We remark that if p is the maximum likelihood density matrix pyr,, we have m; = tr{ ﬁMLEi} ~ fi,
implying that R[ﬁML] ~Y E; = 1. Thus pwr is left unchanged by the transformation (3.45),
with L[p'] > L[p] [140]. The iterative application of the transformation (3.45) thus yields a series
of density matrices that have increasing likelihood with respect to the experimental data.

Concretely, we measure in our case the relative plane wave atomic populations |cg(t)|? of the
prepared state evolving in the static lattice during a time interval ¢ € [tc, tc +trec] with a number
Ny of measurement times (unless specified otherwise, we use tyoc = 100 pus and Ny = 21 time
steps). Considering all the evolution data as our measurement ensemble, an atom is measured
at time t in the plane wave ¢ with frequency

1
fi=Jfer = N, leo(t)]. (3.46)

As we intend to use these measurements to reconstruct the state prepared at t., the elements of
the POVM are therefore

. 1 . .
E;=Fp; = EUT(t,tC) Ixe) (xe| Ut te), (3.47)

with U (t,tc) the evolution operator in the static lattice potential from ¢ to t.. This allows to
define the operator R (3.44) for a given density matrix. With these expressions, we implement

the algorithm summarized in the following box.
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Summary of the iterative maximum likelihood algorithm

1. Set an initial guess state p(=9).

e 2. At iteration i, construct R [ﬁ(i)] = Zj ijj/tr{ﬁ(i)Ej}.
3. Transform p(9 — p(H+D) = R [p0] pOR [p0] /tr {R [pO] pOR [pO)]}.

4. Iterate from step 2 until £ [ﬁ(“‘l)] - L [ﬁ(i)] ~ 0 < pltD converged to pyr.

As our initial guess for the one-body density matrix, we set p(®) = 1q,/du, with dy =
20 max + 3 chosen as the cut-off dimension of the Hilbert space in order to avoid boundary ef-
fects, ¢max being the highest diffraction order at which some signal is experimentally detected
(for the experiments presented in the following section, we have 2 < £y, < 6). Our choice for
ﬁ(o) is the state that maximizes the von Neumann entropy'!, which corresponds to the most
unbiased guess with no assumption on the state to be reconstructed. Finally, two indicators are
computed to certify the preparation: the fidelity of pyp, to the numerically propagated state
Fexp = (qoc|pmrlvgoc) and the purity v = tr{p3; } which is an indicator of our preparation
reproducibility over the realizations used for the reconstruction (see next paragraph). We illus-
trate the quantum state reconstruction process in Fig.3.7 with an experimental example taken

from the next section.

Note on the framework shift and the introduction of density matrices. Beside the reconstruc-
tion formalism, one can apprehend the shift from working with kets to working with one-body
density matrices as the need to introduce mixed states in order for the reconstructed evolution
to have a chance to match the experimental data. Indeed, we recall that our experimental data
along time are the preparation of several states [1);(t.)) identical to the extent of our experimental
abilities and evolved for increasing times (before being destructed for the momentum distribu-
tions measurement, see Sec. 2.3). Thus, one can expect the theoretical state whose evolution
maximizes the likelihood with the experimental data to be a state resulting of some statistical
mix of the states [¢;), with a purity v quantifying the reproducibility of the preparation.

In the following, we apply this state reconstruction scheme to evaluate the preparation
of translated Gaussian states, superpositions of Gaussian states and squeezed Gaussian states
using our QOC protocol.

3.3.4 Non-squeezed Gaussian states

In this section, we prepare and reconstruct non-squeezed Gaussian states centered at ar-
bitrary positions in phase space. As already introduced in Sec. 1.4.1 where we introduced the
Husimi representation of a state in the (x,p) phase space, we define non-squeezed Gaussian
states in our Bloch system as the Gaussian states that have the same (x,p) aspect ratio as the

"The von Neumann entropy reads S = — tr{pIn p}.
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Figure 3.7 | Quantum state reconstruction in a Bloch system by likelihood maximization.
(a-b) Density matrices p with arg{p; ;} color coded and |p; ;| size coded (not to scale between panels).
(a) Identity matrix 14, /dg (dg = 11) as the initial guess. (b) Density matrix of maximum likelihood
pumL- (c) Stack of experimental integrated absorption images taken during the evolution of the prepared
state in the static lattice at s = 5.5 + 0.5. (d) Diagonal terms of the numerical propagation of py,,
whose evolution maximizes the likelihood of results in (¢). These data correspond to the experiment of
Fig. 3.8(d) (see below).

ground state of the harmonic oscillator that approximates the bottom of each lattice well. We
here denote as |g(u, v)) this state displaced in phase space by (u,v) = (kL(Z) g(u,v)> (D) g(u,v)/ PEL)-
In this system of coordinates, Eq. (1.50) for the plane wave coefficients of this state becomes

2
/S0

1/4
> o0/ 2 =il —(1=)2/ /55 (3.48)

ce(u,v) = <

We write Azg and Apg the position and momentum standard deviation for this non-squeezed
state. We have k;,Azg = s1/4 and Apo/hky, = 31/4/2.

To present the results for the preparations of such phase space distributions, we compare
the Husimi function Q;(u,v) = (g(u,v)|p|lg(u,v))/2m (see Sec. 1.4.1) of the numerically pre-
pared states pgoc = |¥qoc) (¥ qoc| and corresponding density matrices pyy, reconstructed from
experimental data. We show results of non-squeezed state preparations in Fig. 3.8(a-c) with
quantitative details in Table 3.4. We see that we are able to prepare non-squeezed Gaussian
states with high fidelity to numerical simulations (Fexp > 0.86) and great purity (y > 0.93).
As discussed in the previous section, our experimental reconstruction data comes from several
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Figure 3.8 | Experimental preparation and measurement of non-squeezed Gaussian states.
(a-e) Husimi representations in the phase space of the static lattice. Top (red): states [¢)qoc) numerically
prepared by optimal control. Bottom (green): density matrices pyr, reconstructed from experimental data
by likelihood maximization. The relative phases in the superpositions (d,e) are respectively 0 and 7 (see
text). The colormap value for each Husimi function extends from 0 to its maximum value. See Table 3.4
for associated experimental parameters and figures of merit.

Fig. 3.8 a b C d e
u /2 0 /2 +m/2 +m/2
v 0 Vs Vs/2 /s Vs
Fexp 0.95 0.86 0.93 0.89 0.91
¥ 0.95 0.96 0.93 0.82 0.91
s 5.50+0.25 5.49+0.20 5.57+0.20 5.5+0.5 5.30+0.25

Table 3.4 | Parameters used for the preparation of non-squeezed Gaussian states and figures
of merit obtained from their reconstruction. For all experiments Fyum > 0.995 and t. = 1.75Tj.
This table refers to Fig. 3.8.

independent initial states evolved for different durations before measurement. We thus attribute
the eventual decrease in purity to experimental fluctuations. In Fig. 3.8(d,e), we realize even
and odd superpositions of non-squeezed Gaussian states, that is

02) = =5 (o) + 22 g(—u. ). (3.49)

with A¢ = 0,7 for (d,e) respectively. While very little difference is observed between the Husimi
functions!? of the two superpositions realized (both for [¢)qoc) and pur,), the differences between
their momentum evolutions (shown in Fig. 3.9) allow to unambiguously identify the prepared

states. This allows us to iteratively reconstruct density matrices [’)1(\;34 and :51(\(/3[)L with good purity

12The apparent similitude between the Husimi functions of the Gaussian state superpositions realized is a known
feature of the Husimi quasi-distribution of probability [153].
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Figure 3.9 | Evolution of the momentum distribution of superpositions of Gaussian states in
the static lattice.Top panels (a) correspond to the even superposition of Fig. 3.8(d). Bottom panels (b)
correspond to the odd superposition of Fig. 3.8(e). (a;-b1) Stacks of experimental integrated absorption
images taken during the evolution of the prepared states in the static lattice. (ag-bs) Numerical evolution
of the diagonal terms of the density matrices reconstructed from (a;-by). (ag-bs) Numerical evolution
of the numerically prepared states |[¢)qoc). See Table 3.4 for details.

(v > 0.82) and consistency with numerical simulations: fég% = 0.89 and ]-'e(g;)) = 0.91 (see
Table 3.4). This is further confirmed by the very low cross fidelities ]—'(|¢g%c>,ﬁl(\? ) = 0.026
and .7:(\1/1((52)0), ﬁl(\(/}) ) = 0.042 (as the targets for Fig. 3.8(d,e) are orthogonal). To our knowledge,
there is no adiabatic method for preparing such superpositions of translated Gaussian states in
the lattice.

3.3.5 Squeezed Gaussian states

In this last section of experimental results about wave function control, we apply our prepa-
ration and reconstruction procedures to the squeezing of Gaussian states. We define the a-
squeezing parameter as the ratio of standard deviations ¢ = Az/Azy = (Ap/Apy)~!, with
Az and Apg the non-squeezed standard deviations (see previous section). Including £ in the
definition of our Gaussian states, Eq. (3.48) becomes

2 1/4
Cég) (u,v) = <7T2\§?> giuv/2g—ilug—€2(1—v)*/v/50 (3.50)
0

For the squeezed Gaussian state |g(§>> at lattice depth sg, position and momentum standard
deviations are given by kL Az = fséﬁl/ Y and Ap/hky, = 5[1)/ 4 /2¢. In our periodic system, the
upper bound on £ is infinite and is reached when only a single diffraction order ¢ is populated
(we have shown results up to |[¢| = 10 in Sec. 3.2.2). Figure 3.10 and Table 3.5 display results
of squeezed Gaussian states positioned at the center of the phase space ((u,v) = (0,0)) for 1/
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Figure 3.10 | Experimental preparation and measurement of squeezed Gaussian states. (a-
e) Husimi representations in the phase space of the static lattice. Top (red): states |¢yqoc) numerically
prepared by optimal control. Bottom (green): density matrices gy, reconstructed from experimental
data by likelihood maximization. The colormap value for each Husimi function extends from 0 to its
maximum value. See Table 3.5 for details.

Fig. 3.10 a b c d e
1/¢ 0.44 0.62 1.65 2.75 4.34
Fhum > 0.995 0.980 0.965
Fexp 0.99 0.96 0.98 0.93 0.75
¥ 1.00 1.00 1.00 0.92 0.72
s 5.49+0.20 5.4940.20 5.45+0.40 5.5740.20 5.62+0.25
te/To 1.75 2
trec (U8) 100 125

Table 3.5 | Parameters used for the preparation of squeezed Gaussian states and figures of
merit obtained from their reconstruction. For all experiments (u,v) = (0,0).

ranging from 0.44 to 4.34. Up to 1/{ = 2.75, we prepare and reconstruct states with good
fidelities and purities (Fexp > 0.93 and v > 0.92, see Fig. 3.10(a-d)). For the highly squeezed
state 1/€ = 4.34 of Fig.3.10(e), we increase t. to 2T in order for the QOC algorithm to converge
to a control field giving a reasonable numerical fidelity Fpum. This is due to the complexity of
the target state which consists in the superposition of 13 significantly populated momentum
components (|cjg<7|? > 0.025) with as many complex coefficients to control. This large number
of populated momentum components also makes the reconstruction more challenging, requiring
a Hilbert space of dimension di = 15, with 152 = 225 real parameters to determine in order
to find pyr (Sec. 3.3.3). To help the algorithm set this many parameters, we increase the
amount of information we give it by increasing the duration of the evolution after the QOC
preparation to t... = 125 us with N; = 26 time steps. The simultaneous population of many
momentum components also affects the reconstruction in that it reduces the signal-to-noise
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Figure 3.11 | Evolution of the momentum distribution of a highly squeezed state in the
static lattice. (a) Stack of experimental integrated absorption images taken during the evolution of the
prepared state in the static lattice. (b) Numerical evolution of the diagonal terms of the density matrix
reconstructed from (a). (c) Numerical evolution of the state |)goc) obtained by optimal control. (b,c)
correspond to the evolutions of the states presented in Fig. 3.10(e). See Table 3.5 for details.

ratio due to the lower number of atoms per diffraction peak. We illustrate this by drawing
in Fig. 3.11 the momentum evolutions of the experimental, reconstructed and numerical states
during their evolution in the lattice, where one sees an important loss of signal-to-noise ratio in
experimental data as the magnitude of the considered momentum increases. Nevertheless, we
achieve a fidelity Fexp = 0.75 even in that extreme case, and all the Husimi functions of Fig. 3.10
show qualitatively very good agreement between pyr, and [qoc) for the squeezing of Gaussian
states.

Interestingly, one can consider the effective lattice depth s.g at which the ground state
matches the squeezed Gaussian state (3.50) generated at depth sp with squeezing parameter €.
Comparing Egs. (3.48) and (3.50), one finds seg = so/&*. In that sense, Fig.3.10(e) shows the
realization of the ground state of a lattice of effective depth seg = 2000 in our lattice of depth
sg = 5.62. This is, to our knowledge, the first realization of such a state, the production of which
is technically impossible with adiabatic methods. To give an idea, the laser for the lattice in our
experiment (see Sec. 2.4 and App. C) has a maximum power of 15 W, which corresponds for
our setup to a maximum lattice depth of sg ~ 40. With the same setup, we thus would require
a laser of about 750 W to produce a lattice depth of sg ~ 2000.

We also targeted Gaussian states both squeezed and rotated in the (z,p) plane. Target
state definition and results for those experiments are presented in App. E.

3.4 An application to quantum simulation

We conclude this chapter with an example of application of our QOC protocol to quantum
simulation, namely the production of the initial state for the study of dynamical tunneling in
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an amplitude-modulated one-dimensional optical lattice.

3.4.1 Introduction to dynamical tunneling

As we discussed in the first chapter of this manuscript (Sec. 1.1.2), the mixed stroboscopic
phase portrait of a periodically driven dynamical system features classical trajectories that are
either quasi-periodic (regular) or chaotic (resulting respectively in continuous lines or spread
points in the phase portrait, see e.g. Fig. 3.12(ag)). In such a system, quantum particles can
undergo dynamical tunneling, which consists in oscillating from one region of regular trajectories
to another, crossing classically impassable Kolmogorov-Arnold-Moser surfaces (see Sec. 1.1.2
and [89]). Dynamical tunneling occurs when two non-degenerate Floquet states (Sec. 1.3.2) span
the same regular regions of phase space, with an tunneling oscillation frequency proportional to
the quasi-energy difference between the two states in the quasi-energy spectrum [142, 89].

In previous experiments with cold atoms in optical lattices, dynamical tunneling was studied
with an initial sudden shift of the lattice to bring the ground state of the system in one of the
tunnel-coupled regular regions (a representation of this approach is shown in Fig. 3.12(a) for
the parameters of the dynamical tunneling experiment performed here ; see below). Although
this method provides evidence of the phenomenon [154, 155, 61], more than one frequency is
observed in the tunneling signal as the initial states are only partially projected in the subspace
of the two relevant Floquet states that carries the dynamical tunneling of interest. Moreover,
the visibility of the oscillations is limited by the unequal-weight projection onto these states.
We here apply QOC as a way to optimize the initial state for the observation of dynamical
tunneling. Our goal is to compare the tunneling signal between the two methods.

Following the dynamical scaling for periodically modulated potentials summarized p. 34,

the Hamiltonian that we study is that of the amplitude-modulated potential'3:

~2
H(z,p,1) = b v [1 + g cos(t)] cos(z), (3.51)

2
which generates the mixed phase space of Fig. 3.12(a;,b) for the parameters (v, e9) = (0.25,0.1).
We focus on the center of the stroboscopic phase portrait, where a classical particle, stroboscop-
ically observed every two periods of modulation, is bound to the lateral harmonic-oscillator-like
region it started in (see Fig. 3.13(a)). We fix heg = 0.355 (which corresponds to the experimental
parameters so = 7.93 and v = 45.697 kHz, see p. 34) for the dynamical tunneling timescale to be
compatible with the two-period stroboscopic sampling'*. Our optimal-control target is the state
that maximizes the visibility of the tunneling oscillation, that is the equal-weight superposition
of the two main Floquet states |pa) and |pp) in the central regular region of the stroboscopic
phase portrait. Once the Floquet states are obtained through diagonalization of the Floquet

3Note that v is the scaled depth of the potential, and no longer the purity of a density matrix.

MFor fes = 0.355, numerical simulations give a dynamical tunneling period of approximately 20 T where T = 1/v
is the period of modulation of the potential. As the system is observed every 2 periods, we thus expect to
sample the tunneling signal with approximately 10 measures per tunneling period, which is satisfactory.
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Figure 3.12 | Initial states for dynamical tunneling. Husimi representations and underlying clas-
sical phase spaces for (a) the states involved in the translation method and (b) the relevant Floquet
states (see text). (a;) Lattice ground state [¢n—o). (as) Translation of the ground state Tz, |¢n—o) just
after the start of the modulation. (by) One of the relevant Floquet state |@a). (bz) The other relevant
Floquet state |¢p). (bs) The ideal superposition of Floquet states |1)(6r)). See text for the definitions of
these states. The colormap for each Husimi function extends from 0 to its maximum value. Parameters
are (7, o, hefr) = (0.25,0.1,0.355).

operator (i.e. the evolution operator over one modulation period, see 1.3.2), we identify |pa B)
from their overlap with a non-squeezed Gaussian state (Eq. (3.48)) translated in the center of
one of the lateral harmonic-oscillator-like region of the stroboscopic phase portrait. We show
the Husimi functions of |pa ) in Fig. 3.12(by, bg). The theoretical state that maximizes the
visibility of the tunneling oscillation reads

9O =5 (lea) + on) (352)

where the relative phase 6 between the Floquet states |pa) and |pp) fixes the initial condition
for the oscillation between the two lateral regular regions. We arbitrarily fix a starting point in
the right region, so we set § = 0r defined as

fr = argma T 3.53
" ge X{< >w(9)} ( )

Our optimal-control target is thus [¢(fr)). We draw the Husimi distribution of this state in
Fig. 3.12(bg). Finally, in order to compare the QOC approach with the signal obtained from
the translated'® ground state TA:E|¢7Z:0>, we determine the optimal translation distance AZR as
the one that maximizes the overlap between Taz|¢n—=o) and the ideal state |¢)(R)):

AR = argAn;ax { ‘ (1h(0R)| Taz |¢n0>)2} . (3.54)

For our modulation parameters, we find a maximum overlap | (4)(0r)| Tazg |¢n=0) |* = 0.91 for
the translation method. The Husimi distributions of the states |¢,—¢) and TACCR |pn—0) are

15See Sec. 1.2.1 for an expression of the translation operator.
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shown in Fig. 3.12(a).

3.4.2 Experimental results

For the experiment without QOC, the ground state is translated by a distance AZgr by
applying a sudden phase shift ¢9 = AZgr (which spatially translates the lattice by a quantity
—AZg/kr, see Eq. (3.11)) right between the lattice loading and the beginning of the amplitude
modulation. For the QOC experiment, we choose the ground state of the static lattice as our
initial state for the QOC preparation. The amplitude modulation begins immediately after the
QOC stage. Our control parameter remains the phase of the lattice ¢(¢), with a control duration
set to t = 1.75Ty. The QOC algorithm (p. 72) converges to a control field reaching numerical
fidelity Frnum > 0.995.

In this dynamical tunneling experiment, the tunneling takes place between two region of
the = axis, separated by a fraction of the lattice step d = 532 nm. Our imagery setup (Sec. 2.3)
cannot spatially resolve the phenomenon in-situ. The trick is to transfer the spatial information
along the momentum axis using the sub-stroboscopic dynamics (see Fig. 1.4). To do so, after
evolution in the modulated potential, and before TOF measurement, we modulate the potential
during an additional half-period to perform a 7/2-rotation around the center of the phase space
and convert the population in the right (resp. left) regular region of the lattice well into negative
(resp. positive) momentum components accessible through TOF [61]. This phase portrait
rotation technique is illustrated in Fig. 3.13(a-b).

Figure 3.13(c-j) compares the results of dynamical tunneling experiments when the initial
state is either approximated by a translation of the ground state (Fig.3.13(c-f)) or targeted by
our optimal control method (Fig.3.13(g-j)). The spectral content of the oscillations is clearly
refined when the two-Floquet state superposition is prepared, resulting in a greater signal-to-

noise ratio for the measurement of the atomic tunneling frequency.

Chaos-assisted tunneling. Our application of QOC to dynamical tunneling is inspired from the
study [61] of chaos-assisted tunneling (CAT) [88, 89] that we performed in 2020 in collaboration
with M. Martinez, G. Lemarié and B. Georgeot from the Laboratoire de Physique Théorique
(Toulouse) and O. Giraud and D. Ullmo from the Laboratoire de Physique Théorique et Modéles
Statistiques (Paris). CAT is a type of dynamical tunneling where the tunneling between the
two regular region is carried by two Floquet states mainly located on these regions, as well as
by a third Floquet state delocalized over the chaotic sea (see Fig. 1.9 for an example of such
a state). Under the variation of an external parameter of the system (e.g. the frequency of
modulation), CAT resonances were predicted [88], associated with a non-monotonic variation of
the tunneling frequencies in that three-level system. In our publication [61], we were the first to
unambiguously observe such a resonance of CAT with matter wave. I recall that, while I chose
not to present in my manuscript this research axis in which I participated, details of this study
can be find in the thesis of M. Arnal [67], G. Chatelain [68] and M. Martinez [69].
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Figure 3.13 | Quantum-optimal control applied to dynamical tunneling experiments.
(a) Stroboscopic phase portrait for the amplitude-modulated potential (3.51) with the initially popu-
lated region (gray area with black solid line border) and the coupled regular region that gets populated
through dynamical tunneling (gray area with black dashed line border). (b) Same as (a) after the 7/2-
phase space rotation (see text). (c-f) Results for the initially translated ground state. (g-j) Results
with the initial state obtained from optimal control. (c,g) Numerical evolution of the momentum distri-
bution. (d,h) Corresponding stack of experimental integrated absorption images. (e,i) Numerical and
(f,j) experimental evolutions of the negative (solid line) and positive (dashed line) momentum popula-
tions, originating from the regions identified in (a,b) with the matching contouring line-style.

Importantly, in our experiments on CAT [61], we observed that a large number of atoms in
the BECs happens to have a deleterious effect on the time during which dynamical tunneling
signals could be observed!®. In [61], we indeed have had to measure signals over up to hundreds
of modulation periods of the potential, and reducing the number of atoms in the BECs by a
factor of 10 had a salutary effect on this experiment. Since then, the modification of the dipole
trap geometry on our experiment (Sec. 2.2.3) has lead to the setup regularly producing BECs
with up to five times more atoms. We thus point out that similar reduction of the number of
atoms in the BECs were performed for the experiment of this section, where we worked with
BECs of N ~ 5-10* atoms, i.e. 10 times less that what the experiment produces. The protocol
to reduce the number of atoms in the BECs in discussed in Sec. 2.2.4.

Conclusion

In this chapter, we discussed the successful implementation of quantum-optimal control

16WWe attribute this phenomenon to the interactions between atoms, but the exact mechanism is still unclear.
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(QOC) in our experiment to control the motional state of BECs in a one-dimensional optical
lattice. QOC allows us to target states either unreachable by adiabatical means or in compara-
tively much shorter time.

In a first set of experiments, we established our ability to prepare given momentum distri-
butions in the lattice. In a second step, we demonstrated full and reliable control of the external
quantum state in which we prepare the atoms. We applied this control for the preparation of
specific states in the phase space of the system. Such state control is a great tool for quantum
simulation, notably in the semi-classical regime (Sec. 1.4.2) where quantum dynamics is strongly
related to the underlying structures in the classical phase space. We concluded this chapter with
an example of application of QOC for quantum simulation in a study of dynamical tunneling in
the depth-modulated optical lattice. In this last example, we demonstrated our ability to target
Floquet states of a given time-periodic Hamiltonian.

Quantum state control raises the question: How does one certifies proper state preparation?
In our first experiments of momentum distribution preparation, the information was readily
accessible through TOF imaging. We however required dedicated protocols when we targeted
a broader range of quantum states (associated with sets of complex coefficients). Our general
approach was to use data from the subsequent evolution of the prepared state in the static lattice
as information to infer this prepared state. For simple momentum superposition targets, this
was achieved through least-square analysis. To reconstruct the quantum state in the general
case, we implemented a full quantum state tomography using a maximume-likelihood iterative
approach, which allowed us to characterize our experimental states and confirm the success of
the optimal-control preparation.
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Chapter 4 - Non-diffusive Hamiltonian ratchet

[...] because we pull up the shades and let the light out, because we cool off on the
earth and get heat from the sun, the ratchets and pawls that we make can turn one
way. This one-wayness is interrelated with the fact that the ratchet is part of the
universe. It is part of the universe not only in the sense that it obeys the physical laws
of the universe, but its one-way behavior is tied to the one-way behavior of the entire
universe. It cannot be completely understood until the mystery of the beginnings of
the history of the universe are reduced still further from speculation to scientific
understanding.

Richard Feynman (The Feynman Lectures on Physics, Vol. 1, Chap. 46, 1963)
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Introduction

A ratchet is a mechanical device that constrains the movement of a system in a defined
direction. Its mechanism is schematically depicted in its rotating configuration in Fig. 4.1: if
we apply torque on the gear, the combined effect of the pawl and the axial asymmetry of the
toothing prevents the gear from rotating counterclockwise. Ratchets are widespread mechanisms
that are part of many common devices, such as pendulum clocks, ratchet wrenches or bicycle

freewheels.

Figure 4.1 | Diagram of a mechanical rotating ratchet. Both the red pawl and the blue gear can
rotate around their fixed black pivots.

In physics, ratchet became a subject of interest with G. Lippmann around 1900 [156, 157].
In a thought experiment, he considers a molecular size device that produces work from thermal
noise using a ratchet mechanism to rectify the isotropy of Brownian motion. The first argu-
ments against this setup apparently violating the second law of thermodynamics came from M.
von Smoluchowski in 1912 [158], saying that as the ratchet part of the system also undergoes
Brownian motion, it cannot consistently direct movement. In 1962, R. Feynman revisits the
idea in the 46" chapter of his Lectures in Physics [159, 160], showing that for such a system to
work, the ratchet must be held at a lower temperature than the rest of the machine, with heat
flowing irreversibly between the parts (this ratchet system being in fine an intricate Carnot heat

engine).

More abstractly, one defines the ratchet effect as the emergence of a directed current!

T—o0

1t
J = lim T/o x(t)dt # 0, (4.1)

for a particle in a potential that is periodic in space and time:

Vie+dt)=V(et+T)=V(zt). (4.2)

'We restrict ourselves to the one dimensional case.
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The ratchet effect is an intriguing phenomenon?, as it directly follows from the spatial periodicity

of V(x,t) that no net force derives globally from such potentials:

(P, 1) g = diT //dT (91/;;:,75) dzdt =0, (4.3)

The operating mechanism of the ratchet effect is well understood, and relies minimally on the
fact that systems featuring this effect are out of equilibrium, with time-dependent potentials
that break specific space and time symmetries [161, 162, 163, 164]. Among such systems, we
can distinguish two families of ratchets:

(i) On one hand, Brownian ratchets [165, 166] consist in systems submitted to stochastic
forces with a potential that rectifies the isotropy of Brownian motion [167] into a di-
rected transport (in the fashion of the Lippmann-von Smoluchowski-Feynman ratchet).
Interestingly, Brownian ratchets are thought to be the principle of operation of molecular
motors [168, 169, 170, 171], as for instance for the kinesin [172], a motor protein found in
eukaryotic cells. They are usually studied in the overdamped regime to account for the
strong dissipation in biological media [166, 173]

(ii) On the other hand, one has deterministic ratchets, for which the classical dynamics is
captured by the phase space of the systems (Sec. 1.1.2). Deterministic ratchets are either
dissipative® or Hamiltonian [76, 182, 163].

We focus in this chapter on Hamiltonian ratchets.

As we have seen in Chap. 1, Hamiltonian systems under moderate temporal driving exhibit
a mixed dynamics, with a phase space displaying islands of regular trajectories embedded in a
chaotic sea of non-integrable ones. A fundamental property of chaotic systems briefly addressed
in Sec. 1.1.2 is ergodicity, which corresponds to the fact that a classical trajectory (qc(t), pc(t))
(Sec. 1.1.2) initialized in a chaotic region of phase space (index “c”) will eventually span all
this chaotic region uniformly [69]. Considering a physical quantity f(q,p), ergodicity formally

means

TIEEOT/ flae(t), pe( ))dt—vi Hcf(q ,p)dgdp (4.4)

(f(ge(t),pc(1)); = (f(a,P))n,

where I, stands for the considered chaotic region of phase space and Vi, its hyper-volume. Put
in words, ergodicity means that a trajectory from a given chaotic region of phase space is, in

We add that particles are usually considered starting at rest in the reference frame of the potential, and the
emerging asymptotic current J (Eq. (4.1)) is also measured with respect to that reference frame. In other words,
neither particles launched at high speed in unbounded phase space trajectories (Sec. 1.1.2) nor particles bound
to a potential of the form (4.2) that travels linearly at v = d/T" are experiencing ratchet effect.

3A few references on research about dissipative deterministic ratchet: [174, 175, 176, 177, 178, 179, 180, 181]
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time, representative of all trajectories from that chaotic region. Going back to one-dimensional
Hamiltonian ratchets, the physical quantity f(z(t),p(t)) that goes into the definition of the
asymptotic current J (Eq. (4.1)) is the speed &(t) = p(t)/m. From the ergodicity principle (4.4),
we have, for a trajectory initialized in a chaotic region I,

1

m

J (P11, - (4.5)

1
<pc(t)>t = m
From the right-hand side of this last equation, we see that the emergence of a non-zero asymp-
totic current (i.e. the ratchet effect) can result from the contribution of trajectories belonging
to chaotic regions having a non-zero momentum barycentre. As a matter of fact, studies on
Hamiltonian ratchets have so far mainly focused on so-called “diffusive Hamiltonian ratchets”,
where the directed transport results from trajectories ergodically diffusing® into such momentum-
asymmetric chaotic seas [76, 182, 163].

We here take a differente route, and study a system where the ratchet effect is based
on integrable trajectories. The integrable ratchet effect has only been studied in the kicked
rotor, where the ratchet effect occurs along the momentum axis (one speaks of accelerator
ratchet [183, 184, 185]). The system that we study is a sine potential modulated in amplitude
and phase in the fashion of the gating ratchet [186, 180]. In the simplest case of a single
frequency of modulation, we determine modulation parameters such that the phase space of the
system presents a regular island that travels between the sites of the periodic potential while
periodically stopping in each site. This is to our knowledge the first study of such a non-diffusive
ratchet effect along position space.

This chapter presents our study of this effect. The first section (Sec. 4.1) concerns the clas-
sical dynamics in this system. We then detail our method to determine modulations parameters
for the integrable ratchet effect to emerge, and we then characterize the system. In the second
section (Sec. 4.2), we consider quantum transport of wave functions in this Floquet system.
Finally, we present experiments where we observed this non-diffusive ratchet effect with BECs
in the modulated optical lattice.

The study presented in this chapter is the result of a quite personal work that I have been
doing on the ratchet effect since my pre-thesis internship at LCAR in 2019. A publication is in
preparation:

[65] N. Dupont, L. Gabardos, F. Arrouas, B. Peaudecerf, J. Billy and D. Guéry-Odelin, Matter

wave transport from non-diffusive Hamiltonian ratchet effect, In preparation, (2022)

4We stress that, for Hamiltonian systems, this chaotic diffusion is deterministic.
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4.1 Designing a non-diffusive Hamiltonian ratchet in classical
mechanics

In this section, we detail our method to determine, in a classical Hamiltonian system,
modulation parameters of the sine potential in order for the system to feature a non-diffusive

ratchet effect in position space.

4.1.1 Hamiltonian system considered and statement of the problem

Our system. We consider a classical particle of mass m in a one-dimensional sine potential
that is modulated in amplitude and phase with one harmonic at the same frequency. The

corresponding time-dependent Hamiltonian can be written

p? 2mx

v
H(z,p,t) = om [1 4 &g cos (2mvt)] ?0 cos | —- + pocos(2mvt + Ag) + Ap| (4.6)

with the fixed spatial periodicity d, and the adjustable modulation parameters,
e 1, the average amplitude of the potential,
e £o, the amplitude of amplitude modulation,
e g, the amplitude of phase modulation,
e 1, the frequency of modulation,
e and A¢, the relative phase between the phase and amplitude modulations.

The parameter Ay is a constant spatial phase that we set to

Ap = —pg cos(Ap), (4.7)

in order for the spatial origin £ = 0 to correspond to a minimum of the potential at time ¢t = 0.
As we have already seen in Chap. 1, one can look for a scaling of the Hamiltonian (4.6) such
that the classical dynamics depends on fewer parameters. Following the procedure summarized
Sec. 1.4.1 (p. 34), we get

=2

i

H(z,p,t) = 5 7 [1+egcos(t)] cos [ + @ocos(t + Ag) + Ayl , (4.8)
with
. 27 ~ _ dz 1 1
z=—z, t = 2wut, p—E— P and H_mdQVQH’ (4.9)
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and the scaled amplitude of the potential v = Vp/2md?v?. The scaled dynamics effectively
depends on the four modulation parameters {~, g, o, A¢} (with Ay still fixed by Eq. (4.7)).

Correspondence with the gating ratchet. Our Hamiltonian (4.8) is a known system from
the ratchet community, called the gating ratchet. To understand this designation, we perform
the Galilean transformation to switch from the inertial reference frame to the frame of the

phase-modulated potential:

i =7+ pocos(t+ Ag) + Ap. (4.10)

In this non-inertial frame, the lattice is stationary, and the particle experiences the pseudo

force

F'(t) = —mypg cos(t + Ag). (4.11)

In this system, the amplitude-modulated potential barriers between sites act as opening and
closing gates whose period can be correlated with the modulated pseudo force (4.11) to induce
ratchet transport. This system has been theoretically studied in the Brownian case [186], as well
as experimentally in the deterministic case with dissipation [180, 164]. We here consider this
system in the Hamiltonian regime as a candidate for the emergence of a non-diffusive ratchet
effect.

Statement of the problem. In order to design such a non-diffusive Hamiltonian ratchet (i.e.
with a transport based on quasi-periodic trajectories in the phase space), we ask the question:
Are there modulation parameters {~, &0, ¢o, Ap} such that a classical particle starting at rest
at the bottom of a site ends up in the bottom of the next site after one modulation period
(T = 1/v)? Mathematically put, we are looking for modulation parameters such that the

trajectory (Z(%),(f)) starting in

z0)\ (0 r2m) \ [ 2«
(]5(0)>_<0> goes to (;5(27r)>_< 0 ), (4.12)

where we arbitrarily aim for a positive ratchet displacement. From the periodicity of the poten-
tial, a direct consequence of this hypothetical trajectory is that #(f = 27n) = 27n with n € N,
resulting in a constant® ratchet current J =1 (Eq. (4.1)).

5At least stroboscopically constant, i.e. when evaluated after an integer number of modulation periods.
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4.1.2 Search for modulation parameters

We are looking for modulation parameters {v,eq, o, A¢} such that a classical particle
described by the Hamiltonian (4.8) follows a trajectory passing by the two phase space points
of Eq. (4.12).

From the correspondence with the gating ratchet discussed above, we simplify the problem
by reducing the set of parameters: we set the relative phase A¢ between the amplitude and
phase modulations to a value that optimizes the gating effect in this system. With the gating
potential (4.8), the most efficient way [180] to induce a positive ratchet current is to have
A¢ =m/2 (i.e. a phase quadrature between the amplitude and phase modulations). In this
case, the pseudo force becomes F” () = mepy sin(ﬂ, which is maximally positive (resp. negative)
a quarter of a period before the instant at which the potential barrier between neighboring sites
is minimum (resp. maximum), resulting in a configuration that globally favors a positive ratchet

transport. Our Hamiltonian becomes

B ~2

H(%,p,t) = % — 7 [14 e cos(t)] cos [& — posin(t+ Ad)], (4.13)

with a set of modulation parameters reduced to {7, po,e0}.

To determine values for these three parameters, we note that, for the periodic trajec-
tory (4.12) that we are looking to induce, the initial and final conditions have the same mechan-
ical energy (evaluated by the Hamiltonian (4.13)), which is the global minimum of mechanical
energy for this system:

H(2mn,0,2mn) = —y(1 + &9), (4.14)

with n € Z. Our search for modulation parameters can thus be expressed as a minimization
problem, where we want to minimize, as a function of {7, e, po}, the increase of mechanical

energy over one modulation period for a trajectory starting in (£(0),5(0)) = (0,0) and ending
in the neighboring site®. We define the function to minimize:

H. oo oo [2(27), p(27), 27 — Hey 2y oo [(0),5(0),0] if 7 < Z(27) < 3
97, €0, 00) = Yoo [B(27), P(27), 27] — Hy gy 00 [£(0),9(0), 0] if m < 2(27m) < 37 (4.15)

a large number otherwise,

where the condition is set to force the particle to change site. We proceed numerically to
minimize g(v, €0, o), with numerical integration” of the trajectories (Z(t),p(t)).

50ne must be careful with this condition for the restatement of our problem, as, for instance, an absence of
modulation (e, po) = (0,0) results in a constant trajectory (Z(t),p(t)) = (0,0) that also trivially minimizes the
variation of mechanical energy.

"We use the Runge-Kutta “RK4” method to integrate classical dynamics.
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Nelder-Mead algorithm. To tackle this minimization problem, we use Nelder-Mead [187]
method®?: given a function f(u) : RN + RT to be minimized and a guess u(?), this iterative
method consists in considering a polytope of N 4 1 vertices u; initialized in the neighborhood
of u(®). The function f is evaluated at each vertex, which are then iteratively moved from the
one that maximizes f to the one that minimizes f until they all converge toward the same local
minimum for f. The Nelder-Mead method is an efficient alternative to gradient-descent methods
when the gradient of the function to be minimized cannot be written explicitly, as it is the case
for us with f(u) = g(v,€0,%0) (Eq. (4.15)). As is generally the case when employing iterative
methods of optimization, we want our initial guess to be in the vicinity of a global optimum.

Initial guess. To be able to minimize Eq. (4.15), we minimally require an initial guess such that
the particle is located in the next site after one modulation period. To find such initial guesses, we
start by maximizing the energy transferred to the particle at the beginning of the modulation
by making our initial guess correspond to a modulation frequency that is resonant with the
harmonic frequency vy at the bottom of the potential wells. For the Hamiltonian (4.13), the
frequency of modulation is hidden in the scaled amplitude v = Vy/2md?v?. From the potential
of the unscaled Hamiltonian (4.6), we find vy = 1/Vo/2md?, and we see that v = 1 is the scaled
amplitude corresponding to a resonant modulation at the bottom of the wells. We therefore set
~ =1 as our initial guess for this parameter.

To determine initial guesses for the amplitudes of modulation (g, ), we compute maps
showing, after one modulation period, the position and the momentum of a particle starting at
in (2(0),p(0)) = (0,0) as a function of (¢, ¢p). Such maps are shown in Fig. 4.2, for £ € [0, 1]
(bounded so that the amplitude of the potential does not get negative, as required by the
optical lattice setup in our experiment ; Sec. 2.4) and ¢g € [0,7] (corresponding to a peak-to-
peak modulation of up to one spatial period). We use these maps to initialize (g9, ¢p) to values
such that Z(27) ~ 27 and p(27) ~ 0.

Figure 4.2 features an interesting behavior identified with a dashed black line. This linear!'"

region corresponds to values of (g9, o) such that #(27) ~ 7m and p(27) ~ 0. In words, they
are modulation parameters such that the particle starting in (z(0),p(0)) = (0,0) is brought to
the top of the potential barrier, at the border between two lattice sites, and finishes there at
rest. For our problem, we want to overcome this barrier of potential, and stop at the bottom
of the following well. In Fig. 4.2, we see that this can be achieved for amplitudes of phase
modulation ¢q larger than those bringing the particle to a stop at the top of the potential (i.e.
larger amplitudes for the pseudo force (4.11)). To the right of the dashed line, one sees a rather
vast region of (g, pg) values such that Z(27) ~ 27 and p(27) ~ 0. We identify with solid black
lines an example of good initialization (eq, @) for the algorithm.

8Using the open-source Python library SciPy.

9We note that this problem could have very well been addressed using the formalism of optimal-control theory
presented in Chap. 3. However, we ourselves were introduced to this field only after having found working
modulation parameters for our non-diffusive Hamiltonian ratchet.

10That is actually not trivial.

105



5 -

0.5

X(t=2m) p(t=2n)

Figure 4.2 | Parameter maps for initial guess determination in the search for ratchet mod-
ulation parameters. (a) Position & and (b) momentum p after one modulation period for a particle
starting in (Z(0),p(0)) = (0,0) and described by the Hamiltonian (4.13) with the scaled potential ampli-
tude v = 1 (see text). The solid black lines in (g¢, ¢o) = (0.3,1.9) mark a parameter pair for an initial
guess (see text), and the dashed black line marks a region of parameters for which the particle ends up
resting at the top of the potential barrier between the central well and the next one.

4.1.3 Results of classical mechanics

Using the method detailed in the previous section, we converge to the modulation parame-
ters

(7, €0, p0) = (1.2,0.3,1.7). (4.16)

This solution for the problem that we set ourselves in Sec. 4.1.1 (p. 103) is not unique, and others
can be found using the same method. In the rest of this chapter, we however focus on parame-
ters (4.16). For these modulation parameters, we draw in Fig. 4.3(a,b) the position Z(f) and the
momentum p(f) over three modulation periods for the particle starting in (2(0),5(0)) = (0,0).
As required, we get a periodic evolution, with a particle that travels one site per modulation
period: Z(2mn) = 27n (n € N). As explained in the introduction of this chapter, the general
ratchet effect is intriguing as no global net force derives from a periodic potential (Eq. (4.3)). In
the specific case of our periodic ratchet, we have the stronger fact that the average force exerted
per modulation by the potential on the ratcheting particle is zero along its trajectory:

27

(F@d.D), = % [ P, hai =0, (4.17)

This is illustrated numerically in Fig. 4.3(c) where we plot, as a function of time, the instanta-
neous force F(Z(f),1) exerted by the potential on the particle in Z(f), as well as the average of
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Figure 4.3 | Classical non-diffusive ratchet trajectory. (a) Position Z as a function of time ¢ for
the particle starting at rest at the bottom of the central well. (b) Momentum p as a function of time
for that same particle. (c) Instantaneous (dashed black line) and integrated average (solid black line)
force F(Z(t),1) as a function of time. We show three modulation periods, with modulation parameters
(7, €0,90) = (1.2,0.3,1.7).

this force from ¢ = 0 up to that time. We see that this accumulated average is zero for ¢ = 2mn
(n € N). This observation is also directly deduced from the conditions (4.12) that we imposed
on the generated trajectory. Indeed, having p(0) = p(27) implies, from Hamilton equations and
the fundamental theorem of calculus,

7 21 7
_%;I =p = / —%;Idf = p(2m) — p(0) (4.18)
027r .
N /0 F#(), )di = 0 (4.19)

11

This is a key difference between our periodic system and diffusive systems **, as well as between

our spatial ratchet and the accelerator ratchet, also based on periodic trajectories, but ratcheting

12

along the momentum axis'* in a kicked-rotor system.

"T¥or diffusive Hamiltonian ratchet based on a chaotic sea bounded in momentum, one has (F); only going to
zero asymptotically in time.
2With p(nT) — p((n — 1)T) # 0 = (F)r # 0.
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Figure 4.4 | Subperiod evolution of the stroboscopic phase portrait and ratcheting island.
(a-e) Stroboscopic phase portraits for the same Hamiltonian (4.13) with (v, €0, 90) = (1.2,0.3,1.7) and
the sub-stroboscopic observation times fy = 0,0.25,0.5,0.75 and 1. In each panel, we artificially draw in
continuous time the phase space trajectory at the center of the ratcheting island (dashed black line). See
Sec. 1.1.2 and Fig. 1.2 for details on the procedure.

We also compute the stroboscopic phase portrait (Sec. 1.1.2) for our ratchet modulation
parameters (4.16). In Fig. 4.4, we draw five portraits associated with the sub-stroboscopic'?
observation times ¢ = 0,0.25,0.5,0.75 and 1. We see that the determination of modulation
parameters such that the trajectory starting in (Z(0),p(0)) = (0,0) periodically ratchets to the
next site amounts to a “regularization” of the center of the phase space for this ratchet system.
Indeed, we see that we generated a regular island that goes through one site of the potential per
modulation period'*, with the highly non-trivial fact that this island finds itself resting at the
center of the sites periodically [188]. This is to our knowledge the first study of such a ratcheting
regular island along the x axis. We also note from Fig. 4.4 that the rest of the phase portrait
is greatly chaotic, which will later allows us to distinguish between evolutions carried by the
regular ratcheting island and diffusive behavior in the chaotic sea.

We have so far considered classical mechanics in this system. In the next section, we study
the transport of a wave function along this ratchet island.

4.2 Quantum ratchet transport along regular classical trajectories

4.2.1 A Floquet system

Given the modulation parameters (7,0, vo) = (1.2,0.3,1.7), the scaled classical dynamics
governed by the Hamiltonian (4.13) is completely determined, and represented by the phase
space depicted in Fig. 4.4. We now consider wave function transport in this ratchet system.
As introduced in Chap. 1, quantum dynamics in such scaled systems depends on an effective
reduced Planck constant A.g. For our scaling (p. 102), we have

13See Sec. 1.1.2 and Fig. 1.2 for details.
4.e. a regular island with a winding number w = 1 (Sec. 1.1.2).
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B = 225 (4.20)
1%

with v the unscaled modulation frequency and v, = h/2md? a characteristic quantum frequency
in Bloch systems (Sec. 1.2). As discussed in Sec. 1.4.1, fiog sets the typical extent of quantum
states with respect to the scaled phase space of the system. As we are interested in studying
transport along the ratchet island that we designed in the previous section, we place our study
“at the onset” of the semi-classical regime (see Sec. 1.4.1 and below), for values of heg such that
the minimal extent of the quantum states is of the order of the area of the engineered ratcheting
island. We recall that in the semi-classical regime, Floquet states are, in general, either localized
on regular phase space structures or spread over the chaotic sea (see Sec. 1.4.1 and [86, 87, 69]).
By “at the onset of the semi-classical regime”, we mean that the values of heg that we will
consider will be small enough for quantum dynamics to be strongly affected by underlying phase
space structures, but not be small enough for more than one Floquet state to be localized on
the ratcheting island.

The quantum analogue of the periodic trajectory at the center of the ratcheting island (see
Figs. 4.3 and 4.4) is the Floquet state |p,) that can be associated with this island, and we refer
to it as the ratcheting Floquet state. For a given value of h.g, we compute the Floquet states
|om) by diagonalizing the Floquet operator (Sec. 1.3.2) around the sub-stroboscopic observation
time #g = 0, i.e. when the ratcheting island is centered in the phase space (Fig. 4.4). We then
identify the ratcheting Floquet state |p;) as the one with the greatest overlap with the ground
state |¢pp) of the static potential, a state itself centered in the phase space:

pe) = ang max { (o} (4.21)

To quantify transport in a quantum state, we also define the expected transport between
times fg and f; as the integral over this time interval of the averaged momentum'®. For an

arbitrary state [¢), the expected transport can be written as

t

A (100 = |

ﬁ> di. (4.22)
to < 11’(

with ;5 the scaled momentum operator. In the semi-classical regime, one expects Floquet states
associated with regular structures to evolve as their associated structure, and, in particular for
the ratcheting Floquet state, AZg 2xn(|¢r)) ~ 2wn. While this is generally true (see below), one
has to account for Floquet state mixing which can complexify the picture for certain values of

s

!5This definition is, among other things, motivated by our TOF imaging setup (Sec. 2.3), through which we
measure the momentum distribution of the quantum state evolving in our lattice.
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4.2.2 Influence of the effective Planck constant and Floquet state mixing

We show in Fig. 4.5 numerical results of quantum transport in the ratcheting island as a
function of 1/heg (i.e. as a function of a classical scaling action in the system ; see Sec. 1.4.1).
We plot in Fig. 4.5(a,b) two quantities as a function of 1/hg: first, the overlap |{¢o|pr)|?
between the ratcheting Floquet state and the ground state of the static potential. This overlap
somehow quantifies the “centrality” of |,) in the phase space (as well as our upcoming ability
to experimentally load the ratcheting Floquet state from the ground state of the optical lattice
in order to observe ratchet transport). Second, we plot the expected transport per period
AZo2x(|epr)) of the ratcheting Floquet state. Having fixed the classical scaled dynamics (and,
in particular, fixing v = Vp/2md?v?), the limit 1/ — 0 < v — 0 (Eq. 4.20) corresponds
to a vanishing amplitude of the potential. In this radically deep quantum limit, both |p;) and
|#o) tend to the resting plane wave'S
in the vanishing potential tends to zero (Fig. 4.5(a,b)). As 1/heg varies, both |{¢o|e;)|? and

AZy2x(|er)) display rather sharp non-monotonic fluctuations ascribed to the phenomenon of

: their overlap tends to one and the transport of |p;)

Floquet state mixing (which we now introduce ; the description of Fig. 4.5 is continued shortly
below).

Floquet state mixing. As a parameter of the Hamiltonian is varied, the energy levels in the
quasi-energy spectrum vary at different rates giving rise to the generic phenomenon of avoided
crossings. This effect results in the coupled state mixing into reshaped orthogonal Floquet
states near the crossing. We illustrate this phenomenon in Fig. 4.6 for realistic parameters,
in the interval of 1/heg identified in Fig. 4.5(a,b) by the gray shaded area, around a sharp
drop of both [{¢o|er)|?> and AZgar(|er)). In Fig. 4.6(a), we draw a zoom of the quasi-energy
spectrum (Sec. 1.3.2) where relevant Floquet levels have been identified from their overlap with
the Floquet states'” shown in panels (c,d). In Fig. 4.6(b), we again plot |{¢o|p;)|? in this small
interval of 1/heg. This quantity displays two drops that were not resolved in Fig. 4.5. These
drops correspond to the two consecutive avoided crossings observed in panel (a), at which the
ratcheting Floquet state |¢,) is strongly reshaped (as one can see from the Husimi representations
of Fig. 4.6(c-e)). Surprisingly, we observe in Fig. 4.5(b) that there are even values of g such
that the periodic transport of the ratcheting Floquet state becomes negative (even though the
scaled classical dynamics still remains unchanged, with the ratcheting island going in the positive
direction). As a matter of fact, there are such values of g in the zoom region of Fig. 4.6, and
we see from the Husimi representations shown in panels (c-e) that negative transport in |¢y)
results from couplings with other Floquet states having weights in the negative momentum part

of phase space.

Going back to Fig. 4.5, we draw on panels (c-e) the Husimi representations of |¢pg) (blue)
and |py) (green) for the three values of 1/fi.g identified on panel (a,b). At heg ~ 0.79 ~ 1/1.27,
Fig. 4.5(d) is an example of a semi-classical, phase-space-centered and island-shaped |p;), with

16See for instance Sec. 1.2.2.
"The Floquet states shown in Fig. 4.6(c,d) have themselves been identified by their overlap with the ground state

|$0).
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|(¢0|(Pr)|

Figure 4.5 | Ratcheting Floquet state and influence of the effective Planck constant. (a) Over-
lap between the ratcheting Floquet state |¢,) and the ground state |¢g) of the potential as a function of
1/he. (b) Periodic expected transport AZg . of |¢,) as a function of 1/heq. (c-€) Stroboscopic phase
portraits and Husimi representations (Sec. 1.4.1) of |¢g) (top, blue) and |p,) (bottom, green) for the
values of 1/hq identified by the vertical black lines on the panels (a,b) (with 1/fi.g ~ 0.704,1.27 and
1.56 for (c-e) resp.). The Husimi functions in the inset of panels (d,e) are truncated to a quarter of their
respective overall maximum value to reveal details. The gray shaded area in panels (a,b) corresponds
to the interval of 1/fi.g studied in Fig. 4.6. The Hamiltonian of the system is given by Eq. (4.13) with
parameters (7, €9, v0) = (1.2,0.3,1.7).

a ground state overlap of |{¢o|¢;)|?> ~ 0.86 and a periodic transport of AZg 2x(|¢r)) ~ 0.93. On
the other hand, Fig. 4.5(c) and (e) correspond to values of h.g where a wave function (such
as the ground state of the static lattice) placed in the ratcheting island will evolve out of it
(towards a mode of high momentum®® for Fig. 4.5(c) and over the chaotic sea for Fig. 4.5(e)).

This concludes our numerical study (both classical and quantum mechanical) about this
non-diffusive Hamiltonian ratchet. In the following section, we apply our analysis of the influence
of h.g and the observations of Fig. 4.5 to experimentally observe ratchet transport of matter

8 Quantum ratchet effects based on such couplings with Floquet states associated with large momentum have e.g.
been studied in [189, 190].
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Figure 4.6 | Floquet state mixing phenomenon illustrated on the ratcheting Floquet state.
(a) Portion of the quasi-energy spectrum as a function of 1/heg for the modulated Hamiltonian (4.13)
with parameters (v,£0,¢0) = (1.2,0.3,1.7). ¢ denotes the quasi-energy that we plot reduced by the
characteristic quantum energy scale of the potential Ey, = h?/2md? (Secs. 1.2 and 1.3.2). The Floquet
states associated with the quasi-energy marked by the letters (¢) and (d) are identified from their overlap
with the ground state of the potential (see text). The colors green and red are associated with these
states, and the spectrum is in return colored depending on the overlaps with these states (see Sec. 1.3.2 for
method details). For all values of fie, the most green quasi-energy corresponds to the ratcheting Floquet
state |¢,) according to Eq. (4.21). (b) Overlap between the ratcheting Floquet state and the ground state
|po) of the potential. The black vertical lines in (a,b) mark the position of the two avoided crossings seen
in (a) corresponding to the two drops in ground state overlap seen in (b) (see text). (c-e) Stroboscopic
phase portraits and Husimi representations of the three states associated with the quasi-energies identified
in (a).

waves along the ratcheting island that we engineered in Sec. 4.1.

4.3 Experimental ratchet transport of matter waves

In this last section, we present experiments of non-diffusive ratchet transport of BECs in
the optical lattice. We focus on the two values of the effective reduced Planck constant heg =
0.79 ~ 1/1.27 and 0.64 ~ 1/1.56, which respectively correspond to the numerical simulations
of Fig. 4.5(d) and (e). For both values, we see in Fig. 4.5(b) that the periodic transport of
the ratcheting Floquet state is approximately one. However, their projection on lattice ground
state (Fig. 4.5(a)) is quite different, with |{¢g|er)|? ~ 0.86 for heg =~ 0.79, while we only have
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|(po|er)|? = 0.56 for heg ~ 0.64 (resulting from a mixing with a Floquet state from the chaotic
sea in this case).

In Sec. 4.3.1, we first present, for these two values of h.g, experiments of ratchet transport
from the lattice ground state. In a second set of experiments (Sec. 4.3.2), we use the quantum-
optimal control protocol detailed in Chap. 3 to prepare the ratcheting Floquet states and enhance

ratchet transport and the periodicity of the evolution.

4.3.1 Transport from the ground state

The time-dependent Hamiltonian (4.13) studied in the two previous sections is directly imple-
mentable on our experiment of BECs in a one-dimensional optical lattice introduced in Chap. 2.
To determine the experimental parameters for the modulation, we follow this procedure:

(i) We determine a value of heg at which we want to perform the experiment of ratchet trans-
port (Sec. 4.2). As we require a given scaled phase space associated with the modulation
parameters (v, ¢, p0) = (1.2,0.3,1.7), we broadly set the lattice beams intensity in order
to have the lattice depth so = 4v/h2¢ (as v = sv? /v? and heg = 2v1,/v ; see p. 34). We can
quickly verify the consistency of our settings by performing a “Kapitza-Dirac calibration”
of the lattice (Sec. 2.4.2).

(ii) We precisely calibrate the lattice depth sg using our usual method of ground state trans-
lation (Sec. 2.4.2 and [112, 113]). As v = so(vL/v)?, we set the value of the modulation
frequency to v = vy, m, which fixes in return the true value of the effective Planck
constant fi.g = 2v7, /v at which the experiment will be performed.

(iii) We perform the ratchet transport experiment (see below).

After obtaining the BECs (Sec. 2.2.3), we adiabatically load them into the ground state of the
optical lattice at the calibrated depth sg. We then modulate the depth and phase of the lattice to
realize the Hamiltonian (4.13) during a given amount of time, before proceeding to TOF imaging
(Sec. 2.3.2) allowing us to measure the momentum distribution of the atomic state in the lattice
right before the TOF'. For this experiment, we sample the evolution with four observations per
modulation period.

We start by showing results of ratchet transport from the ground state of the lattice at
het = 0.79 (the value of Fig. 4.5(d) associated to a semi-classical behavior). In Fig. 4.7(a-
d), we show next to each other the stroboscopic phase portraits and the absorption images at
corresponding sub-stroboscopic times during the first modulation period. In order to compare
the momentum of the ratcheting island to that of the momentum components of the diffraction

images, the classical dynamics in the phase portraits of Fig. 4.7(a~-d) has been unscaled using

p/hk1, = p/hes, (4.23)
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Figure 4.7 | Semi-classical non-diffusive ratchet transport from the ground state. (a-d) Stro-
boscopic phase portraits (left) and experimental TOF absorption images (right) at sub-period observation
times ¢ = (n +r) x 27, with n € N and » = 0,0.25,0.5 and 0.75 for (a) to (d) respectively. The period
shown for the experimental images is n = 0, implying that (a) is the momentum distribution of the lattice
ground state. (e) Momentum as a function of time, showing the experimental (blue markers linked with
dotted lines) and numerical (plain red line) average of the momentum distribution with the ground state
as the initial state, as well as the momentum of the classical trajectory at the center of the ratcheting
island (plain black line).

an expression that can be deduced from Eqgs. (4.9) and (4.20) (with kr, = 27/d). The great
qualitative agreement observed between the momentum of the island and that of the momentum
peaks in the diffraction pattern illustrates the semi-classicality of the observed ratchet transport,
as well as its non-diffusive nature over this first period (this is demonstrated for longer times
below). In Fig. 4.7(e), we compare three momentum evolutions: the experimental average
momentum measured from the diffraction patterns, the corresponding numerical simulation for
the evolution from the ground state, and the momentum of the classical trajectory at the center
of the ratcheting island (as in Fig. 4.3(b), although unscaled using Eq. (4.23)). This plot further

illustrates the semi-classicality of this ratchet transport.

The experimentally measured moment distributions (used to plot Fig. 4.7(e)) are shown in
Fig. 4.8(a), as well as the corresponding numerically obtained momentum distributions. This
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evolution is to be compared with the same experiment performed for the other value of the
effective Planck constant i = 0.64. Numerical and experimental momentum evolutions for this
experiment are shown in Fig. 4.8(b). While the scaled phase space is fixed and the initial state
is in both cases the ground state of the static lattice, we observe a strong difference between the
momentum evolutions for these two experiments. For i ~ 0.79 in panel (a), we observe a quasi-
periodic evolution with a rather constant momentum dispersion. This semi-classical evolution
results from the ground state |¢g) of the static lattice being well projected onto the ratcheting
Floquet state |py) for this values of fi.g (as seen in Fig. 4.5(d)). In the case of i ~ 0.64 shown
in Fig. 4.8(b), the momentum distribution is initially rather narrow before quickly widening,
never to return to a configuration close to that of the initial situation. This is emblematic of
a diffusion in the chaotic sea, which results from a situation where |¢,) is partially delocalized
over the chaotic sea (as seen in Fig. 4.5(e) and discussed in Sec. 4.2). This observation is of
purely quantum nature: although the atoms are initially at the center'® of the regular island,
we here obtain a quantum evolution diverging from its classical counterpart.

From the sub-stroboscopic sampling of the momentum evolution, we compute the expected
transport (4.22). We plot this quantity in Fig. 4.8(c). In the case of experiment (a), we get
a transport of approximately 10 lattice sites in 10 modulation periods, as was expected from
Fig. 4.5. We also show this transport in the strongly aperiodic case of experiment (b). The
overall great agreement between experiments and numerical simulation shows our successful
implementation of the ratchet Hamiltonian (4.13), as well as our ability to precisely set and
determine modulation parameters in the experiment (notably thanks to our fine calibrations of
the lattice depths ; Sec. 2.4.2).

Transport reversal. A key feature of the ratchet effect is the ability to reverse the direction
of the transport [163, 164]. For our Hamiltonian (4.13), this direction is imposed by the sign
of the phase quadrature between the modulations of amplitude and phase. One expects the
opposition of the phase modulation (¢(t) = —pgsin(t) — +gosin(t)) to result in a negative
ratchet transport. In Fig. 4.8(c), we label (a’) the integrated transport obtained experimentally
(blue dots) and numerically (red line) for the parameters (v, ¢, o) = (1.2,0.3, —1.7) and heg ~
0.77 (i.e. close to the experiment of panel(a)). We measure for this experiment a ratchet
transport of approximately —10 sites in 10 modulation periods, a symmetric ratchet transport.

These results demonstrate the observation of quantum transport along a ratcheting island in
the phase space of our system. We have also observed how Floquet state mixing can complexify
the loading of the ratcheting phase space region, as this phenomenon reshapes the ratcheting
Floquet state. In the following section, we present a last experiment in which we use quantum-
optimal control to optimize the loading of this state.

19We also highlight that hg‘&) > hi‘;) (corresponding to Fig. 4.5(d,e) resp.), meaning that the phase space extent of
the initial state in panel (b) is smaller than that of panel (a), the latter yielding nevertheless a more semi-classical
behavior.
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Figure 4.8 | Experiments of ratchet transport from the ground state of the lattice. (a) Top:
Numerical simulation of the momentum evolution during the ratchet modulation as a function of time for
hegr =~ 0.79 (corresponding to Fig. 4.5(d)). Bottom: Corresponding experimental integrated absorption
images. (b) Same as (a) for fies ~ 0.64 (corresponding to Fig. 4.5(e)). (c) Expected numerical (solid
red line) and experimental (blue markers) transport (see text) for data (a) and (b) as a function of time.
Data (a’) is approximately the reversed ratchet transport of (a), with ¢g — —¢@o and fieg &~ 0.77 (see
text).

4.3.2 Preparation of the ratcheting Floquet state using quantum-optimal control

To improve the transport of a quantum state in a ratcheting island (as well as the periodicity
of its evolution), the Floquet state |¢,) associated with the island must be prepared as the initial
state for the modulation. To do so, we use the quantum-optimal control (QOC) protocol detailed
in Chap. 3. As in that chapter, we use the lattice phase ¢(t) as our control parameter, and we
target |p;) from the ground state |¢o) of the static lattice at depth of work. For this experiment,
between the steps (ii) and (iii) of the experimental procedure presented in the previous section
(p. 113), we add the following steps:

(ii.i) Having set all the modulation parameters, we numerically determine |¢,) by diagonalizing
the Floquet operator, and selecting among its eigenstates the one that maximizes the

overlap with the lattice ground state |¢g) (itself centered in the phase space).

(ii.ii) Using our QOC algorithm (Sec. 3.1.3), we numerically compute the control field ¢(¢) that
drives |¢o) to |¢r). We set the control duration to t. = 1.75Tp (see Sec. 3.1.4), and
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Figure 4.9 | Ratchet transport experiments of ratcheting Floquet states prepared by QOC.
(a-c) Sketch of the QOC protocol to prepare the ratcheting Floquet state |¢,) from the ground state
|po) at fieg =~ 0.64. (a) Husimi representation of |¢g) in the phase space of the static lattice. (b) Lattice
phase evolution that drives |¢o) to [t)qoc) with the fidelity Frnum = |{¢r|¥/qoc)|? ~ 0.996. (c) Same as
(a) for the prepared state |1)qoc). (d) Top: Numerical simulation of the momentum evolution of |¢qoc)
during the ratchet modulation as a function of time for fi.g &~ 0.77 (corresponding to Fig. 4.6(d) and
Fig. 4.8(a)). Bottom: Corresponding experimental integrated absorption images. (e) Same as (d) for
et = 0.64 (corresponding to Fig. 4.5(e) and Fig. 4.8(b)).

the algorithm converges to control fields that numerically prepare the state [)qoc) with
numerical fidelity to the target Foum = |{¢r|¥qoc)|* > 0.995

The experimental sequence then consists in an adiabatical loading of |pg) (Sec. 2.4.1), the QOC
preparation with the computed control field, the ratchet modulation for a given amount of time
and finally the TOF imaging. As in the previous section, we take four images of the momentum

distribution of the atoms per modulation period.

We sketch in Fig. 4.9(a-c) the QOC procedure applied to this ratchet study for fieg =~ 0.64.
This value corresponds to the case of the poor ratchet state loading of Fig. 4.5(e) and Fig. 4.8(b).
In Fig. 4.9(d,e), we show numerical simulations and experimental results of optimized ratchet
transport using QOC. The values of heg in Fig. 4.9(d,e) approximately correspond to the two
values of this parameter previously studied in Fig. 4.8(a,b) (see the caption). While Fig. 4.8(a)
already presented a clear regular ratchet transport, we see that the use of QOC enhances the
periodicity of the evolution of the momentum distribution (as one expects from the evolution
of a Floquet state). Comparing Fig. 4.9(e) with Fig. 4.8(b), one sees in this case an evident
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improvement of periodicity. Interestingly, the momentum evolution of Fig. 4.9(e) display a
broad momentum dispersion from the beginning of the modulation, corresponding to |¢,) being
partially delocalized over the chaotic sea for this value of fi.g (Fig. 4.5(e)).

These results further demonstrate our experimental observation of matter waves ratcheting
along a regular structure in the phase space of the modulated optical lattice. They also give
another example of Floquet state preparations from QOC, in addition to the results of Sec. 3.4.

Conclusion

The ratchet effect is the intriguing emergence of a directed transport of particle in the
global absence of net force. In this chapter, we presented the first study and experimental
implementation of a Hamiltonian ratchet system that features a non-diffusive ratchet effect
along space. Following an introduction on the ratchet effect, we presented the method that
allowed to determine modulation parameters to observe this new kind of ratchet effect in a
sine potential modulated in amplitude and phase. After having determined such modulation
parameters, we characterized classical dynamics in this system. Interestingly, it follows from
the quasi-periodicity of the ratcheting trajectories that, for this kind of ratchet, no net force is
exerted on the particles locally, along their trajectories. In a second stage, we studied quantum
mechanics in this ratchet system as a function of the effective reduced Planck constant h.g, and
discussed the phenomenon of Floquet state mixing that can complexify the semi-classical picture
for given values of Aeg.

Following these numerical studies, we experimentally implemented this system using our
setup of Bose-Einstein condensates in a controlled one-dimensional optical lattice (Chap. 2).
We performed experiments of ratchet transport from the ground state of the optical lattice
and experimentally observed the ratchet effect of matter waves. Finally, we optimized, using
quantum-optimal control (QOC), the loading of the Floquet state associated with the ratcheting
island even at values of heg for which Floquet state mixing couples the island with the chaotic
sea. Following our results on QOC presented in the previous chapter, these experiments give
another example of application of QOC to quantum simulation in a Floquet system, this time
in a study of the ratchet effect.
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Chapter 5 - Emergence of a tunable
supercrystalline order in a
Floquet-Bloch system

Spectacular. You appear to understand how a portal affects forward momentum, or to
be more precise, how it does not. Momentum, a function of mass and velocity, is
conserved between portals. In layman'’s terms, speedy goes in, speedy thing comes out.

GLaDOS (Portal, 2007)
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Introduction

In the last two chapters, we presented results on the control and the transport of the
one-body wave function of BECs in a one-dimensional optical lattice. In both these studies,
we captured the dynamics of the BECs in the lattice with the Schrédinger equation. In this
linear framework, we designed efficient control fields for the preparation of non-trivial quantum
states (Chap. 3), and determined the right modulation parameters to observe ratchet transport
of matter waves along regular classical trajectories in the optical lattice (Chap. 4). In both
studies, we obtained very good agreements between the experiments and numerical simulations,
while completely neglecting the repulsive interatomic interactions in the system. This is made
possible by the weak interaction regime of our one-dimensional system combined with the short
timescales of the experiments presented so far (typically a few hundreds of microseconds). In this
final chapter, we present experiments performed over longer timescales that take us out of the
one-body formalism: the emergence of a supercrystalline order through spontaneous four-wave
mixing in the phase modulated optical lattice.

Four-wave mixing is an emblematic consequence of the introduction of interactions in a
wave theory. In non-linear optical media, it leads to the production of photon pairs, correlated
in momentum and energy according to conservation laws. As a direct consequence, the effect
strongly depends on the relation of dispersion of the media. Four-wave mixing is an essential
tool in quantum optics, notably for the generation of entangled states. In its formalism, one
speaks of input and output channels for the wave states before and after the process. In quantum
gases, the same phenomenon is at work through two-body interactions [191, 90]. At equilibrium,
it is at the root of the production of momentum-correlated atom pairs [192, 193, 194]. In direct
analogy with the optical parametric amplification, four-wave mixing of matter waves can also be
parametrized [195]. A way to achieve it in Bloch systems is by engineering the band structures
with a periodic modulation of an external parameter of the system!.

Using ultracold atoms in modulated optical lattices, parametric four-wave mixing has been
studied in effective one-band systems [196, 197], for frequencies of lattice modulation low in
comparison to the frequencies of interband transitions. The effect notably leads to the realization
of staggered states [198, 199, 200, 201] with output channels located at the edge of the Brillouin

zone.

In this chapter, we present experiments where we modulate our optical lattice at a frequency
that couples the ground band with an excited band, but not at the quasi-momentum where the
atoms are initially loaded. After tens of periods of modulation, we observe the emergence of new,
narrow and macroscopically populated diffraction peaks, between the momentum components
associated with the ground state. To understand these observations, we develop a two-level tight-
binding model with interactions that allows us to study the dynamical stability of our system. As
it turns out, we find sharp regions of dynamical instabilities located near the quasi-momenta at
which our modulation couples the bands. These instabilities indicate narrow four-wave mixing

1One speaks of Floquet engineering,.
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output channels in the Brillouin zone, where atoms colliding from ¢ = 0 may accumulate.
From the connection between the unstable modes and the avoided crossings, we deduce that we
can tune the output channel quasi-momenta (and experimentally the momentum at which the
structure emerges) by varying the position of the interband coupling in the Brillouin zone.

This last chapter is organized as follow: in the first section 5.1, we discuss the modulation
regime of this study and present experiments with typical observations of the phenomenon. In
the second section 5.2, we detail the development of an effective tight-binding model of two
coupled bands that is able to reproduce the quasi-energy spectrum of our system. Following
a perturbative Bogoliubov treatment of the interactions, we study the dynamical stability of
our system for realistic parameters. We make a series of predictions from the behavior of the
exponents of instability at the avoided-crossing. Section 5.3 presents experiments that test these
predictions. The narrow diffraction patterns via which the new structures manifest hints at a
preserved coherence in the emerging states. Moreover, the existence of closer diffraction peaks
at adjustable momenta suggests, that a new, larger and controllable periodicity structures the
BECs real space. We confirm these experimental hints in the last section 5.4 of this chapter by
presenting results of Truncated-Wigner simulations, performed by Peter Schlagheck from the
CESAM Research Unit in the University of Liege.

The research work presented in this chapter results from a collaboration for the numerical
studies with Prof. Peter Schlagheck from the CESAM Research Unit at the University of Liege.
A publication is in preparation:

[66] N. Dupont, L. Gabardos, F. Arrouas, G. Chatelain, M. Arnal, J. Billy, P. Schlagheck,
B. Peaudecerf, and D. Guéry-Odelin, Emergence of a tunable supercrystalline order in a
Floguet-Bloch system, In preparation, (2022)
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5.1 Modulation regime and typical observations

In this chapter, we study the behavior of a weakly interacting BEC in a phase-modulated
optical lattice over many modulation periods. The atoms experience the lattice potential

E
Vi(z) = —SO?L cos [kr,z + @o cos(2mvt)] . (5.1)

At a given lattice depth sg, we write |¢, ) the n'! eigenstate of the static lattice (pg = 0) at
quasi-momentum ¢. Before the modulation, the atoms are adiabatically loaded in the ground
state |¢nq) = |d0,0) (Sec. 2.4.1). We then modulate the lattice in phase, with a moderate
modulation amplitude g and a frequency v that couples the ground band s to an excited band
at ¢ # 0. As the modulation does not resonantly couple |¢go) to another state of the static
lattice?, this situation results, in the Floquet picture, in a Floquet eigenstate |©m,q=0) that
strongly resembles |¢g ) for a given m. For instance at lattice depth sy = 3.7, the frequency
of modulation® v = 2.9y, couples the lattice bands s and d at ¢ =~ 0.28 (Fig. 5.1(a)). In this
situation, a phase modulation of amplitude g = 15° gives

mjaX{!<¢o,0\90j,o>|2} = [(d0,0m,0)|* ~ 0.995, (5.2)

with Husimi representations® of ¢ o) and |¢m,0) displayed in Fig. 5.1. According to what we
have studied so far in this thesis®, one expects the stroboscopic evolution of |p0,0) to be almost
static, as it is mainly projected over one Floquet eigenstate. Experimentally (Fig. 5.2(c-d)),
for the first tens of periods of modulation, we essentially observe the ground state of the static
lattice and indeed see no evolution of the characteristic diffraction patterns, with momentum
components separated by fiky, = h/d. However, after ~ 70 periods of modulation, we distinctly
see new diffraction peaks appear in between the original ones, with momenta hk* # ¢ x h/d
(with £ € Z). In the following, we refer to these peaks as “decimal peaks”. We note that the
decimal peaks are observed both for a coupling between the bands s and d (Fig. 5.2(c)), and
a coupling between the bands s and f (Fig. 5.2(c)), i.e. regardless the curvature of the excited
band. In both cases, the TOF images clearly display the emergence of a smaller periodicity
in the reciprocal space. Through Fourier analysis, this would indicate a spontaneous in situ
structuring with a new step d* > d.

In Bloch systems, the drift of the whole diffraction pattern in the resting frame of the lattice
results from a variation of quasi-momentum (Sec. 1.2.1). This well known effect is at the root
of the Bloch oscillation phenomenon (see for example [148, 79]), where the quasi-momentum of

the system is swept adiabatically by the mean of a constant force. In our case, only a part of

2At least not by a realistic number of phonons considering the low amplitude of modulation ; see Sec. 1.3.2

3We recall the characteristic angular frequency of the lattice v, = h/de2 =~ 8.1 kHz in our system ; see Sec. 2.4.

“Drawn with respect to the stroboscopic phase portrait (Sec. 1.1.2) of the driven system to inform incidentally
on the degree of chaoticity for our modulation parameters.

5i.e. studying the evolution of the system with Schrodinger equation.
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Figure 5.1 | Non-resonant modulation in the one-body wave function framework. (a) band
structure of the static lattice (colored lines), with the point that corresponds to the initial state of the
atoms (blue disk) and the energy of modulation (black arrows, only from the ground state) that leads to
the spectrum (c). (b) Husimi representation of the ground state in the classical phase space of the static
lattice. (c) Quasi-energy spectrum (colored lines) where the overlaps between the Floquet eigenstates and
the eigenstates of the static lattice have been color coded (see Sec. 1.3.2) and projection of the atomic
state (blue disk) at the beginning of the modulation. (d) Husimi representation of the Floquet state
that maximizes the overlap with the ground state in the stroboscopic phase portrait for the modulated
potential (5.1). Parameters are sg = 3.7 for all panels, and v = 2.9y, and ¢y = 15° for panels (c¢) and

(d).

the atoms are observed in shifted but symmetric diffraction peaks (Fig. 5.2(c-d)), behaving as
if a local force was selectively and symmetrically applied on some of the atoms. According to
this observation, and inspired by previous studies on dynamical instabilities in Floquet system
[196, 201], we attribute the emergence of the decimal peaks to short-range interactions in the
system. More precisely, we interpret the emergent momentum peaks as originating from two-
body collisions that occur between atoms of the lattice ground state ¢ = 0 and result in atoms
accumulating in ¢ = £ 4%, i.e. four-wave mixing of atomic wave functions from the center of
the Brillouin zone scattering into quasi-momenta ¢ = £+ ¢*. In this framework, an initial seed is
needed in the output channels of the mixing. In our case, this role is provided by fluctuations

of thermal or quantum origin as will be discussed in Sec 5.4.1.

To account for the interactions in the system, we develop an effective tight-biding model
with interactions. As the real system is driven by a phase modulation that couples the s band
with an excited state at ¢ # 0, we implement a two-band model with a coupling at the quasi-
momentum where the modulation is resonant. We detail the development of this model in the

following section.

5.2 An effective tight-binding model

We consider N bosons placed into a periodic lattice potential of L sites. Labelling two energy
bands 0 and 1, we define, in the second quantification formalism, the effective Hamiltonian
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Figure 5.2 | Experimental protocol and nucleation of decimals peaks. (a) Time-evolution of
lattice depth and (b) phase, showing the adiabatic loading to the ground state of the lattice, the phase
modulation for an integer number of periods, and the lattice release for TOF. (c,d) Stacks of experimental
absorption images (tror = 35 ms) showing the stroboscopic evolutions of the momentum distribution as a
function of the number n of periods 7. Parameters for (c) are: BECs of N = 5-10° atoms, sg = 3.7+0.10,
o = 15°, v = 1/T = 25.5 kHz. Parameters for (d) are: N = 1-10° atoms, so = 3.4 £ 0.10, o = 20°,
v = 30.0 kHz. The upper value of the colormaps for the ODs (optical densities ; Sec. 2.3) are truncated
to reveal details. (e) Lattice band structure for average g = 3.55 and transitions from the ground state
for the modulation (c) and (d).

Iffeff :ﬁO + ﬁint (53)
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where:
e our spatial coordinate is the lattice site j and the periodicity is d = 1,

e a; and I;j (respectively d;- and IA)j) are the annihilation (respectively creation) operators for
the effective bands 0 and 1 on site j of the lattice,

e Jy and Jj are the tunneling amplitudes with neighboring sites for the two bands (in the
sine-potential system that we want to model, we have a ground band with Jy > 0 coupled
with an higher energy band with a tunneling amplitude |J;| > |Jo]),

o AF, offsets the energy of the band 1 with respect to the band 0, allowing us to tune the
position of energy crossings in the Brillouin zone for the model,

e W is a coupling amplitude between the bands on site j,
e U is an effective on-site interaction energy in the lowest band (Uy = U, see below).

The interaction Hamiltonian ﬁint here only takes into account the on-site two-body interactions
for the band 0. One could include the interactions between an atom in band 0 and an atom
in band 1 with a term of the form Up }_; &}ZA);IA)]-&]-/Q, or the interactions between two atoms
in band 1 with U > y 133233 /2. However, as we are interested in modeling the beginning of the
decimal peaks nucleation from atoms initially almost all in band 0, we will see that Hi, as

written in Eq. (5.3) is sufficient to obtain our results (Sec. 5.2.5).

5.2.1 Modeling the Floquet bands

Setting aside the interactions for the moment, we show how Hy can model the two Floquet
levels associated with the two lowest bands of the lattice that are coupled by the phase modu-
lation (that is, for instance, the blue and green eigenvalues as a function of ¢ in the spectrum
of Fig. 5.1(c)). Doing so, we will determine realistic parameters for the model. As we consider
a finite number L of lattice sites, the quasi-momentum ¢ becomes a discrete quantity:

L L
q= Tk with the integer k = [—2 +1,..., 2} . (5.4)

In the limit L — oo, we retrieve a continuous quasi-momentum ¢/k;, € (—0.5,0.5]. We start
by writing the annihilation operators in the reciprocal space, yielding Fourier modes ¢; and dp,

associated with the Bloch waves for our two bands:

L-1 o—i27kj/L
Qj and dk =

S SR
Jj=0 VL Jj=0 \/f

Cl =

along with the inverse transformations
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z27rk:]/L ’LQT(’C]/L

Z and Z

k k

(5.6)

where the summation boundaries for k have been defined in Eq. (5.4). The Hamiltonian Hy
(Eq. (5.3)) becomes®

N 27k N A
Hy —Z 2.Jo cos( ) éLéHZ( 2J; Cos< 2 ) +AE1> dl dy, (5.7)
+ ZZW ( kck - dek>

We see that the eigenenergies of the uncoupled Bloch modes are cosine functions of the quasi-
momentum, as expected for a tight-binding model:

ok
Eo(k) = —2.J cos <Z> , (5.8)
Eq(k) = —2Jp cos <2;rk> + AE;.

The Hamiltonian (5.7) is now expressed as a sum over the Brillouin zone: Hy = 3, Ho(k),
where the coupling Hamiltonian E[O(k) in the sub-space of quasi-momentum g = 27k/L reads

Hy(k) = Eo(k) éLéx + B (k) didy +iW (J,Qék - é,idk) . (5.9)

This Rabi Hamiltonian can be diagonalized by defining the mode 4 and O:

Qi = cos (9(2k)> ¢y, — isin (9(’“)> dy, (5.10)

where the mixing angle (k) € [0, 7) is defined by

2W
tan (0(k)) = ——m———. 5.11
() Eo(k) — Ex(k) (5:11)
L-1 )
5We use the relation Z e 2mik—kD)/L L0y g
=0
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Figure 5.3 | Partial fits of Floquet spectra with the two-level tight-biding model. (a,d) Typ-
ical Floquet spectra (colored lines) to be partially modeled (see text). Parameters are so = 3.7, v = 23.5
kHz and ¢o = 15° for (a) and sop = 3.4, v = 30.0 kHz and ¢¢ = 15° for (d). (b,e) Zooms on the mod-
eled parts of (a-e) resp., each only displaying the quasi-energies of the 2 Floquet states onto which
the coupled static bands are maximally decomposed. (c,f) Spectra of ﬁo, the Hamiltonian of the
model (Eq. (5.3)) without interactions, with parameters adjusted to fit (b,e) The parameters for (c)
are (Jo, J1, AE, W) = (1.63-1073,1.73- 1071, -1.22-1071,3.11 - 1072) x Ep, and the parameters for ()
are (Jo, J1, AE;, W) = (3.00-1073, -2.75-1071,3.18 - 1071,3.81- 1072) x Er. The gray areas in (b,c,e,f)
indicate the intervals of quasi-momenta over which the fits are performed (see text).

In the following, we write § with an implicit dependence on k to lighten the notation. We finally

get
g . s
=Y <Eu(k) il iy, + By (k) vkvk> (5.12)
k
with dressed energy levels
2 (0 - |
E.(k) = Ey(k) cos 3 + Eq (k) sin 3 + Wsin(6), (5.13)

E,(k) = Ey(k) sin® (g) + B4 (k) cos? (g) — W sin(9).

With the effective dressed bands of Eq. (5.13), we can now fit the part of interest in the
Floquet spectrum of the real system with the parameters Jy, J1, AFE; and W. This is done
in the continuous quasi-momentum limit (L — oo). We draw in Fig. 5.3 the fit of two spectra
for modulation parameters similar to those of the experiments of Fig. 5.2. As the frequency of
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modulation can also couple the excited state to even higher bands (or, slightly, the ground band
to higher bands through multi-phonon processes, see Sec. 1.3.2), we see in Fig. 5.3(b,e) that more
than two avoided crossings are seen in the part of interest of the Floquet spectra. Therefore,
we only perform the fits in intervals of quasi-momenta around the main avoided crossings. For
this adjustment, the quasi-energies of the real system are also offseted in order to have a zero
eigenvalue in the center of the Brillouin zone for the Floquet state associated with the lower band
of the model (as we only set an energy offset for band 1 in our model (5.3)). Figures 5.3(c,f)
show the corresponding adjusted spectra of Hy (with details presented in the figure caption).
This method can be applied for other modulation parameters if they are moderate enough to
identify effective static bands. Moreover, the results (5.9), (5.11) and (5.13) are general and can
be used with other choices for the uncoupled energy levels Ey(k) and F(k), for instance with
more paraboloid functions for the method to work at lower lattice depths, in a regime where the
tight-binding approximation with only next-neighbor tunneling does not hold.

We can now add the interactions and study their effect in a model with two realistic coupled
bands.

5.2.2 Adding the interactions

In Eq. (5.3), the presence of the interaction part lﬁIint, quartic in operators, complicates
the diagonalization of the effective Hamiltonian H.g in order to determine how the system
evolves. To handle the quartic terms, we use a pertubative approach in the fashion of N.
Bogoliubov [202, 90]. We choose to present a detailed derivation of the equations of evolution
for the perturbation modes in the Brillouin zone. Results are summarized at the end of the
derivation (p. 136).

In the experimental situation (Fig. 5.2), the vast majority of atoms (with the exception
of perhaps some thermal excitations) is initially in the ground state. In the model, the cor-
responding mode is ¢y from Eq. (5.5). This mode therefore contains a large number of atoms
Ny = <é$éo), and only a small number of atoms N* = N — Ny populates the other modes:

N =Y ((éLé@ n <cZLcZk>) + (dlde) < No ~ N. (5.14)
kA0

The perturbative treatement then consists in an expansion in powers of the small parameter
e = N*/N. Besides, the Bogoliubov prescription consists in replacing the macroscopically
populated mode & by a scalar™: ¢ ~ /Ny ~ +/N. This prescription implies that we can
decompose the mode a; as (from Eq. (5.6))

a; = /ng + daj, (5.15)

" A more rigorous method can be found in [203, 204].
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with ng = No/L and

oi2mkj/L

Vi (5.16)

S =
k0

We note at this stage that, from these definitions, we have
L-1
> da; = éxdos =0, (5.17)
j=0 k0

which is to say that the perturbation on band 0 is orthogonal to the mode of the condensate
described by ¢(j) = \/no:

L-1

> ¢ (§)da; = 0. (5.18)

j=0

We also note that the number operator for the non-condensed modes can be written equiva-
lently

L—1 L—-1
N* = Z 5&;(5613 + Z B;TBJ (5.19)
=0 =0

We can now insert decomposition (5.15) into the Heg (5.3) and consider terms in successive
powers of the perturbations (i.e. containing 0, 1 or 2 quantum fields).

Zeroth order. At lowest order, H ég) is a function of the atom number:

N2U N?U
HY = —2J,Ny + =2% ~ —2JyN + 57 (5.20)

where, in the second equation, we neglected second order corrections from perturbations ®.
Equation (5.20) is the energy of the condensate of approximately /N atoms in the mode ¢y. In

particular, we can identify the chemical potential of the condensate:

0
. oHY
ON

= —2Jy + nU. (5.21)

8As No ~ N — N*, see Eq. (5.19)
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First order. Injecting the decomposition (5.15) in Heg (5.3) yields the following first-order
terms:

gy =aV + Al (5.22)
A L—1 L—1 ) .
i = 2700 Y (5&} + 55@) +iW iy (bj - bj)

=0 =0

L-1
i) = ndPuS (d6] + 5dy)

int
5=0
However, from Eq. (5.17), the only contribution that does not cancel out is
L—1
HY ~iwyn 'y (bj - bj) : (5.23)
j=0

where we have equated n ~ ng (as it amounts to neglecting third-order terms) and neglected
edge terms in rearranging the sums. We will make sense of this remaining term (5.23) shortly
below.

Second order. The terms up to the second order in perturbations are

ﬁe(?f) = 1Y + A3 (5.24)
L—1 L-1 A A L L—lA R
a? = -5y (551}“5&1 + 5@}5@»“) ~ny (b}Hbj - b}ij) +AE Y blb;
j=0 j=0 Jj=0
@ U=
72 2 | 552 | gsatss
H,, ~ - j;o <5aj +da; —|—46aj(5aj> .

Here, another contribution needs to be considered: at zeroth order in Eq. (5.20), we defined the
energy of the condensate H ég) (No) ~ H ég) (N). However the corrections in this last equation are

of order two. Therefore, we may write

) A . . N*U
HO(No) = BN = N*) ~ HO(N) + 2J,N* — AN, (5.25)

stopping the expansion at second order. This means that in order for our treatment to be
consistent, we need to include in the second order Hamiltonian the extra term
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AP = (2Jy — nU)N* = —uN*, (5.26)

where we recognized the chemical potential p of the condensate (5.21). Equation (5.26) means
that, in this approximation, the condensate is acting as a chemical potential for the perturbation

modes.

Dynamics in £k = 0. From Egs. (5.23), (5.24) and (5.26), we can isolate the terms pertaining
to the dynamics of the mode dy (noting that > b; = VL dy by definition (5.5)):

HP = iWVN(d] — do) + (—=2J1 + AE; — p)dldo. (5.27)
This is, in fact, a Rabi Hamiltonian for the mode czg, driven by the coupling to the condensate
mode ¢y ~ v/N. This coupling is non resonant provided the energy difference (=2J1+ AE; — )

is large compared to the coupling. We will make sure to consider such situations, as in Figs. 5.1
and 5.3.

Dynamics in k£ # 0. The dynamics of the other modes is also best viewed in momentum space.
Rewriting the corresponding terms of Eq. (5.24) with the use of Egs. (5.16), (5.6) and (5.10),

we get

(2 AT A AT A
o= (Buyalan + Bu(k)ofor) | (5.28)
k0

and, likewise for the interaction terms®:

~(2) _nU 0\ . A AW 0\ . A AR
Him’lwéO == Z { (cos (2> 1} + sin <2 Ok | (cos {5 ) i + sin 3 ) Ok (5.29)
k0
9 AT . 0 A-'- 9 ,\T . 0 AT
+ | cos 5 Uy, + sin 5 Uy, CcOs 5 U_y 4 sin 5 vl
0\ .+ AN 0\ . . (0 .
+4 | cos 3 Uy, + sin 3 Uy, cos 3 U + sin 3 Vg, .
Finally, the chemical potential term for the perturbation may be written

A5 = 1> (ahie + ofoy) (5.30)

9We here use the fact that 6(k) = 0(—k) for the symmetric band structure of Hy, modeling our Floquet-Bloch
system whose quasi-energy spectrum also presents that symmetry (e.g. Fig. 5.3) as it is a time-reversal symmetric
system (see Eq. (5.1) and Sec. 1.2.2).
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With the quadratic expression for ]flé?k;éo (i.e. the sum of Egs. (5.28), (5.29) and (5.30)), we
can now study the dynamics of the modes (i, U)xo in the system.

5.2.3 Stability

Evolution of the perturbations. To study the stability of the system, we write the Heisenberg
equations for the evolution of the fields .o and 5o from their commutation with H gf)k £0° In
the following, we stop specifying that this study of dynamical stability is performed away from
k = 0. We remind that the operators ¢, and czk, as well as 1y and ¥y, have bosonic commutation
relations. We have [y, O] = [y, @;2,] =0 (Vk) and [ug, ﬁL,] = [0, @};,} = 10y . Important

consequences for our derivation are

[ﬁk, ﬁzﬁk} = Uy, [uk, Z uk,uk/] g, and [uk, Z Ty, 0 k/] 241 r.

With these relations, we find that the differential equations for the evolution of 4 and vy are:

8“’“ [ ] (5.31)
~ A (k) + Ay (k) 0k + Buu(k)al , + By (k)o
k
07 [
A

)

wo (K + Ay (k)0 + Buy(k)al 4+ By (k)o!

The nomenclature for the coefficients is such that A couples the evolution of modes in the same
quasi-momentum while B couples the evolution of modes at opposite quasi-momentum, with
indices specifying the modes. From the parameters of the model, these coefficients read

Ayu(k) = Ey(k) 4 2nU cos? (2) By (k) = nU cos? (Z) (5.32)
Ay (k) = Ey(k) + 2nU sin® (g) By (k) = nU sin? (g)
Ao () = nlU sin(0) Buy (k) = % sin(6),

where we defined the energy levels of the coupled bands offseted by the chemical potential
Euv(k) = Ey, (k) — p. In the following, we make implicit the dependence of Eu,v (as well as
that of the parameters of Eq. (5.32)) on the quasi-momentum ¢ = 27k/L. In Eq. (5.31), we see
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that we get a set of four coupled differential equations. The last two can simply be obtained by

complex conjugation of the first two and transforming'® k — —k:

_oal,

ih— ~ —Buyiig — BuwOk — Ayl — Ayt (5.33)
oot ) A AT r
ih 5 ~ — Byl — Byolp — Auplll ), — A0

We write this system in a matrix format:

Uk Uk
L0 O, g,
h— = L(k 5.34
IR EECI (530
ot ot

where the matrix £(k) that governs the evolution of the modes reads

Auu Auv Buu Buv
A A B B
£ k) = uv VU uv VU ' 5.35
( ) _Buu Buv _Auu Auv ( )
—A A

_Buv _va uv T Lo
The spectrum of L(k) contains the information about the stability of the system, as discussed

in the following summary box.

Result of the perturbative treatment of the interactions.
L(k) (5.35) is the coupling matrix for the differential equations (5.34) of the modes g,
U, U—g, and 0_g (which are the coupled Fourier modes of our perturbations (5.10)).
Its diagonalization yields eigenmodes whose angular frequencies of evolution are the four
eigenvalues \;(k) of L(k). These eigenvalues contain the information about the stability
of the system. Indeed, any perturbation at quasi-momentum ¢ = 27k/L will have a stable
° oscillating behavior if and only if all four eigenvalues \;(q) are real. On the other hand, if
either of the \;(¢) has non-zero imaginary part along the Brillouin zone, we get a “complex
frequency” associated to exponential growth of unstable modes at that quasi-momentum.

In the following, we will compute and display the instability parameter

w(q) = max {[Tm{Ai(q) }} - (5.36)

Evaluated for all quasi-momentum —0.5 < ¢/kr, < 0.5 (taken in the continuous limit

0Using once again the central symmetry of the band structure (see footnote p. 134), implying here Aag(—k) =
Aap(k) and Bag(—k) = Bag(k) for all modes &, .
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corresponding to L — o0), w(q) informs us on the regions where to expect the growth of
unstable modes in the Brillouin zone.

The matrix elements of L£(k) (5.35) for the evaluation of w(g) are computed using
Egs. (5.32), (5.13), (5.11) and (5.8).

To summarize, in Sec. 5.2.1, we developed a method to fit Floquet spectra of the real
system and determine realistic parameters for the model. In this section, we explicitly obtained
the elements of the evolution matrix for the perturbations in the Brillouin zone, allowing to
determine regions of instability in the system through the parameter w(q) (Eq. (5.36)). The
only unknown quantity is the interaction parameter nU. In the next section, we discuss an

estimation for this parameter.

5.2.4 Estimation of the interaction parameter

The interaction parameter nU in the effective one-dimensional model has to take into ac-
count two features from the real system:

(i) the real system is a one-dimensional lattice of pancakes of atoms, highly confined in the
lattice wells parallel to the lattice and loosely confined in perpendicular directions,

(ii) the number of atoms per site is not constant along the lattice, with more atoms in the
center of the hybrid trap than further away from it.

A heuristic formula obtained from [205, 201] allows us to estimate the interaction parameter
noUp in the central, most populated lattice site:

Qs

V2mag

TLoUo ~ hQL \/TTQ, (537)

where 2, ~ 27 x 67 Hz is the averaged angular frequency of the hybrid trap along the axes
perpendicular to the lattice (see Sec. 2.2.4), as ~ 5.23 nm is the s-wave scattering length of 8’Rb,
ag = \/W is the characteristic size of the ground state in each lattice site in the harmonic
approximation (with wg = \/sg x 27v, see Sec. 1.4.1) and ng is the number of atoms in this
central lattice site. Working with BECs of N ~ 5 -10° atoms in a hybrid trap with angular
frequencies (Qg, €, 2,) ~ 27 x (10.4,66, 68) Hz, we can estimate [201, 66] ng ~ 4.4 - 10* atoms
in this central lattice site. There, we thus get for the interaction parameter (in units of Er,):
noUp/Er, =~ 0.86. This estimate gives us an upper bound for nU across the lattice, which permits
to study the spectrum of £(q) (Eq. (5.35)) over a realistic range of interaction parameters.
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Figure 5.4 | Typical results of the two-band tight-binding model with interactions for re-
alistic parameters. (a,d) Quasi-energy spectra. (b,e) Spectra of the effective Hamiltonian partially
fitting (a,d) (see Sec. 5.2.1). (c,f) Corresponding instability parameter w(q) (5.36) as a function of ¢
and nU. Parameters for (a-c) correspond to those of Fig. 5.3(a-c) and parameters for (d-f) correspond to
those of Fig. 5.3(d-f). The vertical black dashed lines mark the quasi-momenta of the avoided crossings.
A closer look of the crossings can be seen in Fig. 5.3.

5.2.5 Results of the model and predictions

In the Secs. 5.2.1 and 5.2.4, we have determined realistic values for all the parameters of the
tight-binding model and we are now able to study the stability of the system by computing the
instability parameter w(q) along the Brillouin zone. According to our estimation of the upper
bound for the interaction parameter, we evaluate w(q) in the realistic interval nU € [0,0.1] Ex.
Figure 5.4 shows a summary of our approach, from the fit of the Floquet bands to the study of
the spectrum of £(g). As nU is increased, we see emerging sharp stripes in quasi-momentum of
non-zero values of w(q), corresponding to region where £(q) has at least one complex eigenvalue
and where instabilities are expected. Strikingly, these sharp regions are observed in the vicinity
of the avoided crossings. As we will demonstrate in the next section of experimental results, the
decimal peaks observed in the experiments can be traced back to these unstable regions in the
Brillouin zone.
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Figure 5.5 | Predictions from the two-band tight-binding model with interactions. Instability
regions versus AE; and W with the interaction parameter value fixed to nU = 0.05 Er,. (a) Instability
parameter w(q) as a function of ¢ and AFE; for J; > 0 (the parameters Jy, J; and W are those of the fit
of Fig. 5.3(c)). The variation of AE; is such that the crossings position ¢’ (oblique dashed black lines)
varies linearly, that is AE;(¢’) = —2Jy cos(q’) + 2.1 cos(q'), with 0 < ¢’ < 7 from the top to the bottom
of the panel. (b) Same for J; < 0, with parameters corresponding to Fig. 5.3(f). (c) w(g) as a function
of ¢ and W for J; > 0 (the parameters Jy, J; and AFE; are those of the fit of Fig. 5.3(c)). (d) Same for
J1 < 0, with parameters corresponding to Fig. 5.3(f). The vertical dashed black lines mark the crossings
position and the horizontal plain black line mark the value of the varied parameter corresponding to
Fig. 5.4.

We see in Fig. 5.4 that the relative position of the unstable regions and the crossings depends
on the curvature of the higher band 1 in the model. Indeed for J; > 0 (Fig. 5.4(c)), instabilities
are observed outside the central region delimited by the crossings in the first Brillouin zone, while
we observe them toward the inside this region for J; < 0 (Fig. 5.4(f)). This is a general trend
of the model: for the regime of relative magnitude of |Jo| and |Ji| considered, instabilities are
always observed away from the crossings, in the direction toward which the upper band grows
(i.e. away from p = 0 in the unfolded band structure ; see for instance Sec. 2.4.3). However, we
will see in the next section (Sec. 5.3.1) that these small shifts are not resolved experimentally.

In Fig. 5.4(f), one can distinguish a broad region of low instability centered in ¢ = 0. This
may indicate in that case a less pronounced destabilization of modes near ¢ = 0.

Predictions. We can make a series of experimental predictions from the model.

(i) A first prediction follows from the apparent connection between the avoided crossings
and the instability region. We further investigate this connection in Fig. 5.5, where we fix
the interaction parameter to a realistic intermediate value of nU = 0.05 Ey, and we vary the
energy offset AF; of the band 1. This changes the quasi-momenta at which the uncoupled
levels of the model cross, and we see in Fig. 5.5(a,b) that the position of the instability regions
follows this variation. Experimentally, the positions of the avoided crossings are mainly set by
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the modulation frequency of the lattice (see Fig. 1.6). By tuning this parameter, we expect
four-wave mixing to feed decimal peaks at momenta that will follow the variation of the quasi-
momentum at which resonant coupling occurs. This experiment is presented in Sec. 5.3.2.

(ii) Another expected behavior directly stems from Fig. 5.4: we note that as nU increases, so
do the maxima of the instability parameter w(g). In the model, this is associated with shorter
instability timescales. In the experiment, we can decrease the interaction parameter nU by
reducing the number of atoms in the BECs (Sec. 2.2.4), which is expected to delay the decimal
peaks nucleation. In Fig. 5.5(c,d), we also see that the variation of the coupling parameter
W results in a similar trend. Experimentally, the main parameter on which W depends is the
amplitude of modulation . Therefore, we should measure a strictly decreasing nucleation
timescale as g increases. These experiments are presented in Sec. 5.3.3.

(iii) A last prediction concerns the generality of the model. Since the effective model is blind
to the coupling mechanism between the bands, we can for instance expect similar instabilities
with another type of modulation. With our experimental setup, we can very well generate
similar looking Floquet spectra by modulating the depth instead of the phase of the lattice (see
for instance Fig. 1.6). As a result, we expect to observe the nucleation of decimal peaks in
depth-modulated optical lattices with similar modulation parameters.

We present experimental results in the next section. We start in 5.3.1 by measuring the
quasi-momentum of the experimental decimal peaks to confirm the connection with the insta-
bility regions observed in the spectrum of £(g). In the rest of the section, we test our series of

predictions.

5.3 Experimental results

5.3.1 Band-mapping method and quasi-momentum of the decimal diffraction
peaks

In the previous section, we developed a tight-binding model that predicts the growth of
instability modes in the neighborhood of the avoided crossings in the quasi-energy spectrum.
Following this result, we perform a band-mapping experiment to access the quasi-momentum
of the decimal peaks (observed in for example in Fig. 5.2) in order to confirm that it matches
that of the instabilities predicted by the model. A reminder on the band-mapping technique is
provided in Sec. 2.4.3.

Figure 5.6 shows a band-mapping experiment for the same modulation parameters as in
Fig. 5.2(c). Comparing Fig. 5.6(c) and Fig. 5.2(c), we see how the TOF images are simplified
through band-mapping. Indeed, as the atoms from the ground state only populate the plane
wave of zero momentum after band-mapping, the rest of the signal stands out. In Fig. 5.6(d-
f), we sketch the effect of the band-mapping process on the spectra of the system at different
times. In panel (d), we place markers on the bands at the avoided crossings (in the model, these
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Figure 5.6 | Measurement of the quasi-momentum of the decimals peaks through band-
mapping. (a) Depth of the lattice along time: adiabatical loading at sg, held constant during the
experiment, adiabatical unloading to band map (see text) and switch off for TOF imaging. (b) Phase of
the lattice along time, sine-modulated with amplitude g for an integer number n of periods T'. (c) Stack
of experimental absorption images for increasing n, with so = 3.70 £ 0.10, ¢ = 15°, v = 1/T = 25.5
kHz and tTor = 35 ms. (d) Corresponding quasi-energy spectrum (colored lines), with BEC (disk in
g = 0) and instability (disks in ¢ # 0) modes. (e-f) Band structures of the lattices of depth so = 3.7
for (e) and so = 0 for (f) (solid colored lines) and follow-up of the modes (see text) with the same color
code. (f-g) Borders of the Brillouin zone (black dotted lines). (g) Absorption image after n = 80 periods
of data (c). The upper value of the colormaps for the ODs are truncated to reveal details.

markers correspond to states in the modes @, and 0, at the crossing) and a marker in ¢ = 0 that
corresponds to the atoms in the ground state that initially macroscopically populate one Floquet
state (see Fig. 5.1). When we stop the modulation (panel (e)), the populated states are projected
on the Bloch eigenstates of the static lattice. Figures 5.6(f-g) correspond to the situation at the
end of the band-mapping. We compare the position of the markers in the unfolded relation of
dispersion with a TOF image from Fig. 5.6(c) after the nucleation of the decimal peaks. The
agreement between the momentum of the markers and the position of the momentum peaks in
the diffraction pattern confirms that, as predicted by the model, the quasi-momentum ¢* of the
observed decimals peaks is related to the quasi-momentum of the avoided crossings in the quasi-
energy spectrum. In the unfolded band structure, the model however predicts unstable modes
with a slightly higher absolute momentum that the unfolded quasi-momentum of the crossings
(Sec. 5.2.5). This trend has not been clearly observed in the experiments and we suspect that
we cannot resolve this phenomenon due to the non-zero momentum dispersion of our atomic
clouds, which translates in diffraction peaks of finite width.
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Figure 5.7 | Instability displacement with the modulation frequency. (a) Stack of experimental
absorption images after n = 100 periods, averaged over 3 realizations, for an increasing modulation
frequency v , with sqg = 3.57 £ 0.10, @9 = 15° and tror = 35 ms. The upper value of the colormaps for
the ODs are truncated to reveal details. (b) Average instability position (in terms of the reduced quasi-
momentum k/kr, of the unfolded band structure) extracted from the fitted drift of the four 1 < |p|/hkr, < 3
orders of diffraction over all realizations (blue dots, errorbars correspond to the standard deviation of
the 12-point sample) and calculated position of the resonant coupling as a function of the modulation
frequency (solid black line). (c¢) Transition diagram from the lowest band s over the first two Brillouin
zones (solid black lines) and addressed transitions for data by, by and bz (blue dots and solid lines). In
(b-c) the gap between the transitions s-d and s-f (grey shaded area) and edge of the first Brillouin zone
(black dotted line) are represented.

5.3.2 Tuning the momenta of the instabilities

To further demonstrate that the quasi-momenta of the decimal peaks follows that of the
avoided crossings, we tune the position of the crossings in the Floquet spectrum. This is simply
achieved by varying the frequency v of the phase modulation and taking TOF images after the
nucleation of the decimal peaks. To this end, we fix the observation time at n = 100 periods
for similar parameters as in Fig. 5.2. In Fig. 5.7, we compare, as a function of v, the measured
reduced wave number k/ky, of the emerging peaks with the unfolded quasi-momentum at which
v couples the bands. We vary v from ~ 20.5 to ~ 40.5 kHz, resulting in a complete scan of the
transitions s to d through s to f over the whole Brillouin zone (see Fig. 5.7(c)).

We observe that the decimal peaks in Fig. 5.7(a) follow the position of the avoided crossings
in the quasi-momentum space (Fig. 5.7(b)), and even through the gap where the crossing transi-
tions from the band pair (s,d) to the pair (s,f). Although this is globally in very good agreement
with the predictions of the model, such a smooth correspondence over the whole Brillouin zone
is not trivial as our interpretation of the model is valid when studying the instability at ¢ # 0
(see Sec. 5.2).
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This experiment demonstrates our ability to tune the position of the unstable modes in
the quasi-momentum space, i.e. the quasi-momentum of the output channels for the four-wave
mixing occurring at ¢ = 0. Considering the experiment of Fig. 5.7, one can argue that the
determination of the quasi-momenta of the decimal peaks as a function of v would have been
easier with a band-mapping before the measurements (as in Sec. 5.3.1). However, we here decided
not to band-map in order to display the periodicity of both the ground state and the decimals
peaks. Doing so, the results that we show in Fig. 5.7(a) suggest, from the momentum space, the
coexistence of multiple spatial periodicities with a ratio of periods that can be tuned with the
frequency of the phase modulation. At the end of this chapter (Sec. 5.4.1), we discuss numerical
simulations that have been performed on this system, which corroborate the emergence of new
spatial periodicities in the system.

5.3.3 Nucleation time

The two-band model (Sec. 5.2) can provide the position of unstable modes in the Brillouin
zone and the magnitude of the exponents that characterize their growth, but it cannot provide
the full kinetics of the mode growth nor their subsequent evolution. However, as hinted by
Fig. 5.6(c), the full dynamics of the mode growth is readily accessible experimentally. In this
section, we study the behavior of the nucleation time versus the amplitude ¢y of the phase
modulation and the initial number N of atoms in the BECs.

To easily extract the population of atoms in the decimal diffraction peaks, we once again per-
form band-mapping. The data analysis is presented in Fig. 5.8. For a given run (e.g. Fig. 5.8(a)),
we count, as a function of the modulation time, the fraction of atoms in a set of lateral decimal
peaks that are clearly visible. We do not take into account the decimal peaks that are too close
to the central BEC, as the proximity with this highly populated region makes difficult to extract
the populations in the emerging structures. We fit the fraction of atoms in the lateral decimal
peaks in time with the sigmoid growth curve:

(5.38)

where:

e 7, is the value of the plateau, i.e. the final fraction of atoms in the decimal peaks consid-
ered,

e t, is the time of half~-maximum, which we choose to define the nucleation time,
e 7 is the characteristic growth time of the instability.

For a frequency that couples the bands s and d, we plot in Fig. 5.8(b) the growths of the atomic
populations in the lateral order and the results of the fit for ¢g ranging from 10° to 20°. The
extracted nucleation times ¢, are shown in Fig. 5.8(c) together with data corresponding to a
resonant modulation between the bands s and f. Fig. 5.8(d) shows a similar experiment, but
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Figure 5.8 | Measurement of the nucleation time of the instability. (a) Stack of absorption
images after band-mapping for an increasing time of modulation, for s = 3.70 + 0.20, v = 25.5 kHz
(coupling bands s-d), po = 15° and N = (4.840.4) - 10° atoms in the BECs. The number of atoms in the
grey stripes (here for 1 < |p|/(hkr) < 2) is used to determine the nucleation time ¢, (blue vertical line,
with a surrounding blue shaded area corresponding to one standard deviation on the fit). The upper value
of the colormaps for the ODs are truncated to reveal details. (b) Growth curves extracted from data as in
(a), with the purple, red, blue, orange, and green data corresponding to ¢y = {10°,12.5°,15°,17.5°,20°}
respectively. The sigmoid fitting curves are shown and ¢, is displayed as in (a). (c) ¢, as a function of
the modulation amplitude for data (b) (colored dots) and for v = 30.5 kHz and sy = 3.56 £ 0.20 (black
dots, coupling bands s-f). (d) Same as (c) as a function of the number of atoms N in the BEC for
v = 25.5 kHz and sg = 3.58 & 0.30, for a fixed modulation amplitude pg = 15°. The blue marker/line
in every panels corresponds to the same experiment. Error bars correspond vertically to one standard
deviation on the fit and horizontally to one standard deviation over 4 independent measurements of the
atom number.

as a function of the initial number N of atoms in the BECs for a frequency of modulation that
couples the bands s and d. In the experiment, we reduce the number of atoms in the BECs

during a holding time prior to the lattice loading (Sec. 2.2.4).

Results in Fig. 5.8 show that the nucleation time decreases with ¢g and N. These trends
are in agreement with the predictions of the tight-binding model (Sec. 5.2.5): by increasing
(o, we mainly increase the coupling W between the bands, which leads to larger instability
exponents. The variation of the nucleation time with N is qualitatively expected as well, as
the initial interaction energy in the condensate increases with N, and is also associated with a
stronger instability. We note that these results are similar to those obtained for the single-band
Bogoliubov instability leading to staggered states [201].

5.3.4 Survival of the instability

Using the same experimental procedure as for the study of the nucleation time of the decimal

peaks, we observe the behavior of the instability over a longer period of time. Figure 5.9 shows
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Figure 5.9 | Survival time of the nucleated pattern for sy = 3.8 £ 0.1, v = 25.5 kHz, ¢y = 15°
and N =~ 5-10° atoms. (a) Stack of absorption images after band-mapping. The upper value of the
colormaps for the ODs are truncated to reveal details. (b) Growth of the population of atoms in the
instability regions. Same analysis as Fig. 5.8

the result of the experiment for a large number of atoms and a coupling between the bands s
and d. We see that the emerging patterns remain visible even ~ 2¢, (~ 8 ms ~ 200 modulation
periods) after their appearance (¢, ~ 4 ms). Beyond that, we observe some heating, typical in
modulated systems, that blurs the signal as a whole. We come back to the disappearance of the
decimals peaks in Sec. 5.4.1.

5.3.5 Amplitude modulation

A last experiment suggested by the tight-binding model is the amplitude modulation of
the lattice with similar lattice depth and frequency of modulation. Indeed, as the effective
model is of static nature, it does not distinguish between phase and amplitude modulations.
As the amplitude modulation of the real system can produce comparable Floquet spectra (see
Fig. 5.10(a) below), four-wave mixing should trigger similar results in a depth-modulated lattice.
Our amplitude-modulated potential is

V(z,t) = —so% [1 4 g cos(2mvt)] cos(x). (5.39)

Results are shown in Fig. 5.10. On panels (a,b), we plot the quasi-energy spectrum and its fit
from the two-band tight-binding model. As we see, the pair (so,v/vr) = (3.2,2.84) couples the
bands s and d close to the edge of the Brillouin zone. panel (c) shows the instability parameter
w(q), predicting unstable modes near the edge of the Brillouin zone for realistic interaction
parameters nU (Sec. 5.2.4). Experimentally (panel (e)), we indeed observe the emergence of
diffraction peaks in between those associated to the lattice ground states (panel (d)). The
emerging peaks have momentum slightly below half integer values of hkp, which is consistent
with predictions made from w(q) (panel (c)). This experiment highlights the generality of the
phenomenon studied in this chapter, and the relevance of the two-level model that predicts
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Figure 5.10 | Instability nucleation through amplitude modulation of the lattice. (a) Quasi-
energy spectrum (colored lines) for the amplitude modulation of Eq. (5.39) with parameters sg = 3.2,
go = 0.325 and v = 2.84v,. (b) Spectrum of the two-band tight-binding model partially fitting (a).
(c) Instability parameter w(q) over the Brillouin zone as a function of nU. (d) TOF absorption image
of the ground state of the static lattice of depth sy = 3.2 + 0.1 at the beginning of the modulation with
N =~ 4-10° atoms. (e) TOF absorption image of the atom cloud after n = 60 periods of modulation
with v = 23.05 kHz, corresponding to the spectrum (a). The upper value of the colormaps for the ODs
are truncated to reveal details.

the instabilities regardless the nature of the interband coupling (in this case the kind of lattice

modulation employed).

5.4 Discussion on the realized state

5.4.1 Truncated-Wigner simulations

As discussed previously (Sec. 5.3.3), our two-level tight-binding model (Sec. 5.2) is able to
predict trends on the timescale of the instability produced by four-wave mixing, but it is not
suitable to study the kinetics of the phenomenon. To do so, one needs to make a simulation
of the modulated system that takes into account both the interactions between the particles
and fluctuations, either of thermal or quantum nature, to work as a seed for the spontaneous
four-wave mixing process and feed the modes that eventually start to grow. To face these re-
quirements, Truncated-Wigner (TW) simulations [201] were performed by our collaborator Peter
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Schlagheck from the University of Liege. Through TW simulations, one is able to mimic quan-
tum fluctuations by averaging over the integration of many independent trajectories with slightly
different initializations. The simulations were performed with a realistic harmonic confinement

(sec. 2.2.4) superimposed to the lattice potential.

These simulations are performed with N = 1-10° atoms in the phase-modulated lat-
tice (Eq.(5.1)), with parameters sp = 3.4, v = 30 kHz (which couples the bands s and f at
g = 0.36 k1) and ¢ = 20°. These parameters are similar to those of the experiments featured in
this chapter. These simulations reproduce what we observe experimentally, namely an absence
of evolution for the first milliseconds of modulation, followed by the nucleation of momentum
components at decimal multiples of hky,, and later a disappearance of the patterns (as experi-
mentally shown in Fig. 5.9). In Figs. 5.11 and 5.12, we present typical results of TW simulations
on the state of the system after a fixed t = 5 ms of lattice modulation.

First in Fig. 5.11, we present details on the reduced one-body density matrix p(!) of atomic
ensemble after the nucleation of the instability. panel (a) displays the eigenvalues of p!). The
greatest eigenvalue corresponds to the initially populated state at ¢ = 0 (closely alike the lattice
ground state, see Sec. 5.1). We then see two eigenvalues emerging from the rest. This manifests
the emergence of two condensed mode in the mixed state. panels (b-d) shows successively
the momentum representation of the states associated with these three greatest eigenvalues.
Focusing on the emerging modes (Fig. 5.11(d-e)), we see that the two secondary condensate wave
functions are symmetric and antisymmetric combinations of plane waves (z|x4q+/k ) X etia®
(Sec. 1.2.1), with ¢* ~ ¢ = 0.36, the quasi-momentum of the avoided crossings for our modulation
parameter (see above). These modes are coherently populated by four-wave mixing during the
evolution of the atoms in the modulated lattice.

With (1), we can also verify that the apparition of these modes translates to the emer-
gence of a periodicity d* larger than the lattice step d. Figure 5.12 features a study of spatial
correlations in the atomic ensemble. On panel (a), we show, as a function of the lattice site
J, the atomic density distribution computed within the s band. On the two individual TW
trajectories displayed, we see evidence of a new structuration on a scale of about 3 sites. This is
in agreement with the expected quasi-momentum at which the instability occurs, as a resonant
modulation at ¢/k;, = 0.36 leads to a spacing d*/d ~ 1/0.36 ~ 2.8. The phase reference of
the density modulation appears random for each trajectory, so the modulation washes out on
the spatial density averaged over many TW realizations. Nevertheless, we can recover evidence
of the spatial density modulation in the averaged state by computing the normalized density-
density correlation function g (j) = (non;)/(no)(n;)), between the central and the j site of
the lattice. This is plotted in Fig. 5.12(b). It reveals clear density oscillations across the lattice
which signal the emergence of a new long-range order. Still within the ground band, we can also
compute a normalized coherence gV (j) = <dgdj>/(<ng)(nj>)1/2. We plot g§1) in Fig. 5.12(c). It
displays a modulations at long-range with the same period. These last two panels show that
coherent emergent states with a new period d* coexist with the initial condensate of period d.
As we briefly discuss in the next section, there are shared features between supersolids and the
exotic state that we realize in the modulated lattice.
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Figure 5.11 | Structure of the reduced one-body density matrix after nucleation of the
instability. (a) Ordered eigenvalues of the reduced one-body density matrix normalized by the total
number N of atoms. The eigenvalues identified by color and letter are shown in panel (b-d). (b-d) s band
components of the eigenstates identified in (a) (scaled by the square roots of the associated eigenvalues)
plotted in the momentum space, displayed by plotting their real parts (solid colored lines) and imaginary
part (dashed colored line). Parameters are sg = 3.4, po = 20°, v = 30 (kHz) and N = 1-10° atoms.

5.4.2 Shared features and differences between supersolids and the state emerging
in our system

In this last section, we discuss common features between supersolids and the emerging
state in our system, as well as differences that make reluctant to use the work supersolid in our
case. Briefly introduced, supersolidity is the emergence of a crystalline order within a coherent
superfluid phase [206]. This mysterious state of matter was first introduce near 1960 (see [207,
208, 209]. Its existence was first discussed and debated in the context of “He [210]. It was only
in 2017, in the field of ultracold atoms, that conclusive observations of supersolidity were made.
To bring out supersolid features, these pioneering experiments relied on different experimental
techniques involving spin-orbit coupling [211], cavity-mediated long-range interactions [212], and
later long-range dipolar interactions in ultracold erbium and dysprosium gases [213, 214]. Three
key requirements [206] for a quantum state to be dubbed supersolid are

(i) a long range modulation of the spatial density accompanied by
(ii) a preserved coherence in the modes associated with the large density oscillations, and

(iii) the realization of a stable and stationary state (possibly the ground state of the system).

In our case, requirements (i) and (ii) are respectively demonstrated by the oscillations observed
in the ¢@ and ¢ correlations function (Fig. 5.12). However, as hinted by the disappearance of
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Figure 5.12 | Correlations and coherence after nucleation of the instability. (a) Spatial density
distribution in the s band as a function of the site index j. Two individual TW trajectories (dashed and
dotted lines) exhibit a clear periodic modulation of the density, which is washed out in the average of 1000
trajectories (thick line). (b) Average density-density correlation function g(®)(j) between the central site
and the j* site in the s band. (c) Average amplitude correlation function g(!)(j) between the central
site and the ;' site in the s band. Parameters are s = 3.4, ¢y = 20°, v = 30 (kHz) and N = 1-10°
atoms.

the emerging structure for long modulation times (observed both in the experiments (Fig. 5.9)
and in the TW simulations [66]), the state that emerges in our system is not a steady state
strictly speaking. This is the reason why we avoid to use the term of supersolidity, and prefer
to speak of the transient emergence of supercrystalline order.

Conclusion

In this last chapter, we presented results on the observation and control of a supercrystalline
order emerging from short-range interatomic interactions in the phase-modulated optical lattice.
By loading the ground state of the lattice and modulating its phase at a frequency that couples
the ground band to an excited state in ¢ # 0, we make the peculiar observation of momentum
components emerging between the diffraction peaks associated with the ground state.

To model this situation, we develop an effective two-level tight-binding model with inter-
actions to study the stability of the system. With the two-band model, we obtain instability
regions symmetric in quasi-momentum that are much narrower than what can be found with
one-band systems [199, 201, 197]. These instabilities are populated by pairs of atoms from the
BEC at ¢ = 0 that coherently scatters into ¢ = +¢* (the output channels of the four-wave
mixing process at stake). We find that these output channels follows the quasi-momentum of
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the avoided-crossings in the Floquet spectrum, so their quasi-momenta can be tuned by the fre-
quency of lattice modulation. Through several experiments, we confirm the connection between
the instability regions of the model, the avoided crossings in the quasi-energy spectrum and
the emerging structures observed in TOF images. We demonstrate how the periodicity and the
nucleation timescale of the emerging momentum peaks can be tuned by engineering the Floquet
spectrum.

To quantitatively account for the kinetics of four-wave mixing, a numerical study of this
problem has to go beyond a mean-field treatment of the interactions. Such analysis were per-
formed by Peter Schlagheck with Truncated-Wigner simulations, typical results of which were
presented in the end of this chapter.

This work opens unexplored routes to generate exotic tunable states in higher dimensions
and/or other lattice geometries. A publication on this work is in preparation [66].
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General conclusion

“Audi panem quid meliora.” Ca veut rien dire, mais je trouve que ¢a boucle bien.

Roi Loth (Kaamelott, Livre IV, Episode 1)

This manuscript features part of the results that I obtained during my PhD in the Cold
Atoms group at Laboratoire Collisions, Agrégats et Réactivité (LCAR, Toulouse) between 2019
and 2022. Using Bose-Einstein condensates (BECs) of 8"Rb in a controllable one-dimensional
optical lattice, my PhD work concerned the development and implementation of quantum state
control methods and their application to quantum simulation in a Floquet-Bloch system (i.e.
a system periodic in space and time). In this conclusion, I begin with a brief summary of this
work, and I then discuss perspectives opened by this thesis and the results of our group these
last three years.

Summary

Quantum-optimal control of matter waves in a one-dimensional optical lattice. In the first
study presented in this manuscript (Chap. 3), we used the formalism of quantum-optimal control
(QOC) to compute the way in which to continuously shift the optical lattice in order to arbitrarily
control the motional state of the BECs in the lattice. Using this protocol, we first prepared
specific momentum distributions, for which the success of the preparation could be assessed with
a single time-of-flight (TOF') observation of the atoms, as shown in Fig. 6.1(a). We then targeted
more involved quantum state, the preparation of which we had to certify by implementing a
dedicated state tomography algorithm based on likelihood maximization. Using these tools,
we demonstrated our ability to prepare Gaussian states that we squeezed in position up to
more than a factor of four, an example of states unattainable by more conventional methods
such as adiabatic approaches. I conclude this first chapter of results with the presentation
of an experiment providing a proof-of-principle of QOC application to quantum simulation
in a Floquet system. We demonstrated how the optimization on the initial state in a study
of dynamical tunneling in the depth-modulated lattice resulted in clearer signals of tunneling

oscillations. See [63, 64] for our publications on this subject.

Non-diffusive Hamiltonian ratchet in space. I detailed in Chap. 4 the design of an integrable
ratchet effect in a sine potential whose amplitude and phase modulations are correlated. This
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Figure 6.1 | Summary figure of my PhD work. (a) Horizontal stack of independent TOF absorption
images showing our control over the BEC momentum distribution in the optical lattice. This panel
refers to [63, 64] and Chap. 3. (b) Horizontal stack of TOF absorption images showing the momentum
evolution of the ratcheting Floquet state (here prepared by quantum-optimal control) over three ratchet
periods. This panel refers to [65] and Chap. 4. (c) Horizontal stack of TOF absorption images showing
the momenta at which emerge a transient supercrystalline structure as a function of the lattice phase
modulation frequency. This panel refers to [66] and Chap. 5. (d) TOF absorption image featuring a
scattering halo between the momentum components =+ 4 hiky, (diffractions orders are not well resolved for
this TOF shortened to 8 ms in order to reveal the halo). This panel refers to [62]. (e) Stroboscopic phase
portrait and Husimi representation of a Floquet state (localized on regular islands) invovled in CAT in
this system. This panel refers to [61].

kind of ratchet effect consists in the emergence of a directed current of particles along quasi-
periodic trajectories, with the noteworthy detail that these integrable trajectories periodically
stop in each lattice site. After having presented our method to determine the modulation
parameters for this classical mechanics effect to emerge, I discussed wave function transport along
these classical trajectories: as a parameter of the system is varied (in our case the effective Planck
constant!), Floquet state mixing couples in a non-monotonous way the ratcheting region of phase
space with the chaotic sea. The identification of this effect allowed us to determine optimal
experimental parameters to observe the effect, and the chapter ends with the presentation of
experiments where we observed the transport of matter waves along the ratcheting structures
in the classical phase space (Fig. 6.1(b)). A publication on this study is in preparation [65].

Emergence of a tunable supercrystalline order in a Floquet-Bloch system. In the last part of
this manuscript (Chap. 5), I presented the study of an effect that goes beyond one-body physics
in our system: the transient emergence of a supercrystalline phase resulting from short-range
interactions in the shaken optical lattice. In these experiments, we initially loaded the ground
state (at quasi-momentum ¢ = 0) of the lattice before applying a phase modulation that couples
the ground band to an excited band away from the center of the Brillouin zone (at |q| # 0,
resulting in avoided crossings between the two bands involved at +¢q). Experimentally, after
tens of modulation periods, we observed the nucleation of additional momentum components
in the TOF images. To understand this phenomenon, we developed a two-band tight-binding
model with on-site interactions. Through a Bogoliubov treatment of the interactions, we found

"Which is the only free parameter left once the classical phase space is fixed..

152



the presence of instability regions near the quasi-momenta of the avoided crossings. Through
Floquet engineering of the avoided crossings, we demonstrated a control on these unstable modes
(namely their periodicity, as shown in Fig. 6.1(c), and nucleation timescale) resulting from
spontaneous four-wave mixing. A publication on this study is in preparation [66].

Research not featured in this manuscript. I have contributed to two other research axes
during my thesis, which I did not include in this manuscript for concision. The two following
paragraphs briefly summarize these results:

Observations of chaos-assisted tunneling (CAT) resonances. CAT [88, 155, 154, 89]
is a type of dynamical tunneling (Sec. 3.4) where the tunneling between the two regular
regions is carried by two Floquet states mainly localized on these regions (Fig. 6.1(e)),
as well as by a third Floquet state mainly delocalized over a chaotic sea. Under the
variation of a parameter of the system, the phenomenon of Floquet-state mixing (described
in Sec. 4.2) leads to CAT resonances [88], associated with a non-monotonic variation of
the tunneling frequencies in that three-level system. In this sense, the mixing chaotic
state can assist, or on the contrary freeze, dynamical tunneling in the system. In our
work [61], we were the first to unambiguously observe such a resonance of CAT using
BECs in the depth-modulated optical lattice. This work results from a collaboration with
M. Martinez, G. Lemarié and B. Georgeot from the Laboratoire de Physique Théorique
(Toulouse) and O. Giraud and D. Ullmo from the Laboratoire de Physique Théorique et
Modéles Statistiques (Paris). For numerical and theoretical details on this work, see the
thesis of M. Martinez [69]. For experimental details, see the theses of M. Arnal [67] and
G. Chatelain [68].

Observation and control of quantized scattering halos. When BECs are released from an
optical lattice to perform a TOF, atoms can undergo two-body collisions at the beginning
of the TOF [62] resulting in well visible scattering halos in the images [107, 215, 216, 62].
In our experiment, the low relative kinetic energy between the colliding pair results in
spherical s-wave scattering [90] (Fig. 6.1(d)), and the momentum quantization implied by
the lattice periodicity (Sec. 1.2.1) results in a quantization of the possible relative momen-
tum for the colliding atoms, thus leading to the observation of scattering halos of quantized
diameter. In our work [62], we showed how one can control the momentum characteristics
of these quantized halos: from a perturbative treatement of the collisions, one obtains that
the number of atoms in the halos is proportional to the product of the colliding momen-
tum component populations [62]. Thus, controlling halo momentum amounts to control
the momentum probability distributions® of the state in the lattice before the TOF. In
our work [62], we demonstrated such control with a systematic technique that relies on a
sudden lattice shift g followed by a precisely timed evolution 7 in the lattice of depth so.
By determining optimal triplet (¢g, T, S9), we managed to control the atomic populations
in the momentum components to the best of what is achievable from the evolution of a

2We point out that these results where obtained before our implementation of QOC in the experiment. This
study on quantized scattering halos was actually our gateway to QOC.
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translated state in the static lattice, and thereby demonstrated our ability to control the
scattering halos in the reciprocal space. This work results from a collaboration with P.
Schlagheck from the CESAM research unit at the University of Liege. Details on this
study [62] can be found in the thesis of G. Chatelain [68].

Some prospects

Several lines of research are opened by these works. I highlight three of them here:

QOC for qudit computation. A qubit, the famous building block of quantum processors,
can be defined as the superposition of two discrete quantum levels |1)) = ¢|0) + ¢1]1), with
co,c1 € C and |cp|? = |e1|? = 1. A d-qudit [217, 218] is the generalization in d dimensions of the
two-dimensional qubit: [¢g) = 3¢, ¢,|n), with ¢, € C and 3.?_, |¢,|> = 1. In that regard,
we remark that the external quantum states of BECs in Bloch systems (with their discretized
Hilbert space) can be considered as qudits in momentum space. In Chap. 3 and [63, 64], we
used QOC with the phase of the lattice as a control parameter u(t), of which we computed the
optimal evolution to drive an initial state [¢,) to a final state |ip):

) " ) (6.1)

One can try to go further and compute the optimized control field u(¢) in order to connect

one-to-one the elements of two bases of the Hilbert space:

Pa,1) [b1)

u(t)

: : 5 (6.2)
|Va,d) |Vb.d)

with, for example in our system, a mapping between the plane waves [1,) = |x¢) and the Bloch
eigenstates |1y ;) = |¢n) (see Sec. 1.2) for some relation n = o(¢) between ¢ and n. Operations
such as Eq. (6.2) correspond to unitary transformations, and allow one to design quantum gates
acting on the qudits. Through this control approach, one does not have to compute the numerous
matrix elements of the transformation (6.2), but only to optimize the control field u(t). From
here, one can implement basic quantum computing algorithms as for instance a version of the

Deutsch algorithm [219] with a single qudit.

This application directly benefits from our implementation of QOC on the experiment. The
connections with our work are here multiple, as, after the application of quantum processing
operations, it will be necessary to measure the qudit. The maximume-likelihood state tomography
technique implemented in Chap. 3 is well suited for this task.
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QOC for quantum sensing. From our implementation of QOC, we can also design protocols
for quantum sensing, i.e. the accurate measurement of an external parameter. A possible
approach is to engineer a control field u(t) in order to maximize, as a function of an external
parameter to be measured, the rate at which diverge the different evolutions of a same initial
state. Preliminary numerical results have been obtained for our setup in order to measure e.g.
the lattice depth or a small magnetic force. Proof-of-concept experiments of quantum sensing
will soon be realized by the group.

Long-range chaos-assisted tunneling. In our study of CAT [61], we have observed coupling
resonances between pairs of regular islands of the same lattice site (Fig. 6.1). As a generalization
of the effect, it has been predicted [220] that when the chaotic sea extend between lattice sites,
there exists an harmonically decreasing coupling ¢(n) o 1/n between the regular structures of a
given site and the regular structures in the n*® neighboring site. This slowly decreasing behavior
of longer-range couplings can for instance be opposed with the exponentially decreasing coupling
to neighboring sites in the case of the static lattice. Our observations of CAT resonances pave
the way for a study of long-range chaos-assisted tunneling.

New experimental setup. Finally, our group is building a new experiment of 8Rb BECs in
the newly built facility at LCAR. On this new setup, the implementation of optical lattices of
higher dimensionality is planned. The developments presented in this manuscript are readily
applicable to be utilized and further studied on systems of higher dimensionality.

These perspectives will be addressed during the theses of F. Arrouas and N. Ombredane,
PhD students recently arrived in the group.
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Appendix A - Rubidium 87 D, line

This appendix refers to the Chap. 2. We present in Fig. A.1 the detail of the ’Rb D,
line, and we identify the transitions that we work with during the cooling sequence (Sec. 2.2).

In a magnetic field gradient, the transition frequency between states |F'=1,mp = —1) and

|F'=2,mp = —1) (on which microwave evaporation is based) decreases as the magnetic field

increases, hence the negative detuning dyw(¢) in Fig. A.1 (see Sec. 2.2.2). We remind that more

information on the cooling sequence can be found in previous theses of our group [93, 94, 115,

67, 63).

Cooling (MQOT)
Repumping (MOT)
Imaging

Micro-wave (evaporation)

M=21x6.07 MHz

52p

52P1

1 M=2nx5.75 MHz

384.230 484 THz
780.24 nm

377.107 463 THz
794.98 nm

gr=2/3
(0.93 MHz/G)

194 MHz

9r=2/3
(0.93 MHz/G)

230 MHz
302 MHz

A

g = 2/3
(0.93 MHz/G)

9r=1/2
(0.70 MHz/G)

6.835 GHz
4.272 GHz

g =-1/2
(-0.70 MHz/G)

=1
F'=0
F=1

Figure A.1 | Rubidium 87 D, line. During the MOT loading (Sec. 2.2.1), the cooling beam is red-
detuned by a quantity dpor &~ 2T, with the spontaneous decay rate I' &~ 27 x 6.07 MHz (FWHM). The
micro-wave frequency sweep dnw (t) is discussed in Sec. 2.2.2. The data in this figure are taken from [99].
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Appendix B - Dipole beams preparation and
control

This appendix refers to the Chap. 2. We list the main elements that allow to prepare and
control the dipole trap. We then present the optical diagram for the preparation of the dipole
beams that constitute the trap in which Bose-Einstein condensation is achieved.

Dipole beams. The laser for the dipole trap is a monomode ALS-IR-1064-20-1-SF from Azurlight
Systems, with wavelength A = 1064 nm and maximum power P = 20 W. We operate it at P = 17
W. The two beams that make the dipole trap are focused at the same point in the cell. Their
waist is wg = 45 pm with maximum power P =~ 4 W each. At the end of the evaporation in the

dipole trap, their power is Pr ~ 20 mW each.

AOMs. The control of the dipole beams is the same for both beams. A radio frequency (RF)
generator QMODP140,68-B-45-03 drives an acousto-optic modulator MQ4o0-ByA2-L1064-WSc
(both components are from AA Opto-Electronic). This RF generator has an input channel that
allows to vary the intensity of the driving RF and control the power of the diffracted beam. To
prevent interference between the dipole beams, we work with opposite diffracted orders +1 (see
Fig. B.2).

Mirror Acousto optic modulator

N v
% Dichroic mirror Photodiode
)

O,

Optical isolator

f Lenses

—

4 Translation stage Optical periscope

A/n” Waveplate - Iris / diaphragms
z‘ Polarizing splitting Beam dump
cube

Figure B.1 | Legend for the optical diagram.
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Figure B.2 | Optical diagram for the dipole beams. This figure completes Fig. C.2 of App. C. See

Fig. B.1 for the legend. Adapted from [67].
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Appendix C - Lattice beams preparation and
control

This appendix refers to the Chap. 2. We list the major components that constitute the
optical lattice. We then present in Fig. C.2 the optical diagram for the preparation of the laser
beams for the optical lattice. We remind the lattice dipole potential locally experienced by the

atoms:

Via,t) = —A(l) x so% cos (kL + (1)) . (1)

with the lattice wavenumber ki, = 27/d.

Lattice beams. The laser is a monomode YLR-15-1064-LP-SF from IPG Photonics. Its wave-
length is A = 1064 nm and it has maximum a power P = 15 W. At their focal point on the
crossed dipole trap, the counterpropagating beams have maximum power P = 2.3 W and waist
wo = 150 um. The corresponding Rayleigh length is xr ~ 66.4 mm, large compared to the
lattice spacing d = A\/2 = 532 nm.

Amplitude control. The acousto-optic modulator (AOM) for the control of the lattice depth
A(t) x s is placed before the beam splitting. It is a AA Opto-Electronic MQ80-Ao0.3-L1064-Z20-
WLg driven by a radio frequency (RF) generator AA Opto-Electronic MODA80-B4-43. This
latter component has a [0,5] V modulation input acting on the amplitude of the RF that goes to
the AOM, and its effect on the diffracted beam power is linear on the range [1.3,3.3] V where we
operate it [67]. We trigger an arbitrary waveform generator (AWG) (Keysight 33611A) during
the sequence to control that input and therefore the lattice depth. We present in Fig. C.1 the
Bode plot for the amplitude modulation of the lattice (measured using a photodiode with a
sampling rate of 150 MHz placed before the cell on the lattice beam 2, see Fig. C.2). We see
that we have approximately no loss in the amplitude of the depth modulation up to v = 100
kHz, a bound below which every experiments presented in this manuscript are performed.

Phase control. We control the lattice phase ¢(t) with one AOM per beam placed after the
splitting. These AOMs are two AA Opto-Electronic MT200-Ao0.5-1064. By controlling the
relative phase between their driving RFs, we control the relative phase between the diffracted
beams. We generate their driving RF ourselves using AWGs, frequency doublers, filters and
amplifiers (see [94, 115, 67]). We drive them at 160 MHz, i.e. slower than their nominal driving
frequency of 200 MHz. The two AWGs are:

Beam 1: a Keysight 33612A with two channels. The first channel generates the AOM
driving RF and the second channel modulates internally the phase of the first channel.

Beam 2: a Keysight 33611 A to generate the AOM driving RF.

163



gain (dB)
w.r.t. the signal at v=10 kHz
A

T T T T T T TTTT T T T T T TTTT T T T T T TTTT T T T
104 10° 106 107
v (Hz)

Figure C.1 | Bode plot for the amplitude modulation of the lattice. The frequency at -3 dB is
Vo =~ 10 MHz.

These two AWGs are synchronized with each other, as well as with the AWG that controls
A(t).

We are yet to implement an optical monitoring of the phase between the lattice beams
from a beat signal. However, the result of two experiments allow us to estimate the cutoff
frequency for the phase modulation of the lattice. On one hand, from electronical beat between
the phase-modulated beam 1 RF and the unmodulated beam 2 RF, we measured an electronical
cutoff frequency v elec 2 3 MHz for the phase modulation of the beam 1 RF [68]. On the other
hand, we measured the renormalization of the lattice depth in a fast phase-modulated optical
lattice [198, 199, 113]. This effect, that depends on the amplitude of the phase-modulation, was
measured up to v = 500 kHz [113, 67]. We therefore estimate the cutoff frequency for the phase
modulation of the lattice to be somewhere in the range [0.5, 3] MHz.
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Figure C.2 | Optical diagram for the lattice beams that completes Fig. B.2 of App. B. See Fig. B.1

for the legend. Adapted from [67].
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Appendix D - Effect of the control duration in
our QOC protocol

This appendix refers to the Chap. 3. We present a brief study of the experimental effect
of the control duration . in our QOC protocol. This study consists in targeting the state of
Fig. 3.5(a):

) = % (Ix—1) + X)) (D.1)

for different control times ¢, € [0.75, 8] Ty and two lattice depth sg = 2.55+0.10 and sp = 5.540.2.
Results are shown in Fig. D.1.

As discussed in Sec. 3.1.4, the lower bound on the control duration is of theoretical nature
and consists in the lowest time needed for the target state to become reachable from the initial
state. In the lattice, the dynamics of the atoms is dictated by the band structure. The initial
state that we use for QOC protocols is generally the ground state of the lattice. The relevant
timescale with respect to which the control duration needs to be sufficiently long is the largest
inter-band transition period from the lattice ground state, i.e. Ty as defined in Eq. (3.34).

For too long control times, experimental fluctuations have more time to accumulate. This
is illustrated in Fig. D.1, as we observe a decreasing fidelity when t. increases. For the lattice
depth sp ~ 5.5 (at which we performed most of the experiments in Chap. 3), we also observe
larger fluctuations in the prepared state the longer the control time. Our rule of thumb is
to set the control duration to the shortest time for which the numerical algorithm converged

satisfactorily.
1
A
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Figure D.1 | Effect of the control duration when targeting the state (|x1) + [x_1))/v2. Fidelity
F) (3.36) between the momentum distributions of the numerical and experimental states prepared by
QOC as a function of the scaled control duration t./T} for two lattice depth (sg = 2.55+0.10 — Ty ~ 87 us
(blue dots) and sp = 5.5+ 0.2 — Tp =~ 59 ps (red triangles)). Error bars correspond to one standard
deviation over a 10-realization statistics.
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Appendix E - Additional optimal control
preparations

This appendix refers to the Chap. 3. We present three additional experiments that we have
chosen to put in appendix in order to lighten the reading of that chapter. The three experiments
featured in this appendix are (E.1) a preparation of the plane wave |yg) from the resting plane
wave |xo), (E.2) a qualitative demonstration of our ability to control the relative phases between
three momentum components and (E.3) the preparation and measurement of rotated squeezed

Gaussian states.

E.1 Momentum distribution control from the resting BEC

In Chap. 3, we demonstrate the efficiency of QOC for computing the manner in which to
continuously shift the optical lattice in time in order to prepare arbitrary quantum states in our
Bloch system. In the experiments presented in that chapter, the control stage always follows
an adiabatical lattice loading (see Sec. 2.4.1), so the initial condition is the ground state of the
lattice. We present in Fig. E.1 an experiment illustrating that this choice is somewhat arbitrary,
and that control fields can as well be computed and experimentally applied to prepare a target
starting from the resting BEC (i.e. the plain wave |xo), see Secs. 1.2.1 and 2.4.1). Indeed, we
manage to prepare the 6'" momentum component with fidelity fe(fr)) = 0.85+0.06 (averaged over
10 realizations with one standard deviation as uncertainty), i.e. as reliably as for the equivalent

preparations of the Sec. 3.2.2 achieved from the ground state of the lattice.

E.2 Control of the relative phases between three momentum

components

We here extend the experiment of Sec. 3.3.1 and further display our ability to control the
argument of the ¢, coefficients. We here target three-momentum component superpositions
with specific relative phases between the plane wave coefficients:

#4) = 5 (xe) + xa) + o) (B1)

m\ _ 1 2ir /3 4in)3
Yrr > v (\x_z> +e™™ x0) +e \XQ>)

1 A ,
987) = 5 (7 ) + o)+ o))

Experimental results are shown in Fig. E.2. For each of these states, we show the experimen-

tally measured evolution of the momentum distribution in the static lattice following the state
preparation. We also present the theoretical evolutions of the numerically prepared states. We
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Figure E.1 | Experimental preparation of the plane wave with momentum p = 6 hkr, from the
resting BEC. (a) Depth of the lattice as a function of time. (b) Phase of the lattice as function of time,
optimized for the preparation of the plane wave |yg) from |xo) using QOC in the interval 0 < ¢t < t.. The
numerical fidelity for this control field is F(®) ~ 0.977 (see Sec. 3.2.1). (c) Numerical simulation of the
momentum distribution in the lattice as function of time. (d) Experimental TOF absorption image after
the preparation. The colormap for the OD is truncated to 0.8 of its maximum value (which saturates
the center of the sixth momentum order) to see preparation defects. Parameters are so = 5.23 £ 0.10,
t. = 3.25T) (see Sec. 3.1.2) and tror = 30 ms.

observe good qualitative agreement between the experimental and theoretical data, which allows
us to identify the prepared superposition. Our general control on the ¢, coefficients is asserted
when we target and reconstruct phase space distributions (see Secs. 3.3.4 and 3.3.5 as well as

following section).

E.3 Squeezed and rotated Gaussian states

This last section refers to Sec. 3.3. As a final example of optimal control preparation of
Gaussian states, we present the rotation of squeezed Gaussian states. For a rotation angle 6
(defined positive from the z axis to the p axis), the plane wave coefficients of a rotated squeezed

Gaussian state can be written as:

AN\ VA A
ngﬁ) (u7v) _ <Re{ }> ezuv/Ze—zlue—A(l—v)Q/Z’ (EQ)
T
with ) ") 94
cosh(r) — sinh(r) e 1 s
— _ =—-In|l—|.
cosh(r) + sinh(r) 2 and 1 4 n(4§4>

We focus on a rather large squeezing £ = 1/3 (as compared to the experiments of Sec. 3.3.5),
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Figure E.2 | Preparation of three-momentum component states. (a,b,c) Preparation of the
superpositions |1/J&? )>, \w%b)), and |1/)r(fc )> (see Eq. (E.1)) respectively . Top: stack of integrated experi-
mental images showing the evolution of the momentum distribution during a subsequent 110 us holding
time in a static lattice after applying the control field (¢) for the preparation of the target. Bottom:
numerical propagation of the expected prepared state in a static lattice. For all three prepared states,
the dimensionless lattice depth is s = 5.7 £0.2.

phase space-centered states with (u,v) = (0,0) and we target the two rotation angles § = +7 /4.
As for most of our targets in Secs. 3.3.4 and 3.3.5, the control duration is fixed to t. = 1.75Ty
and we reconstruct the experimentally prepared states from the data of its evolution in the static
lattice as detailed in 3.3.3. In Fig. E.3 we compare the Husimi representations of the numerically
prepared and experimentally reconstructed states. In both cases, the QOC algorithm converged
to a control field preparing the target with quantum fidelity Fyum > 0.995. For 6 = 7/4
(Fig. E.3(a)), the experimental fidelity to the numerically prepared state is Fexp, = 0.88 with
purity v = 0.89 (see Sec. 3.3.3). For § = —x /4 (Fig. E.3(b)), we have Fexp = 0.89 and v = 0.88.

-1/2 0 1/2 -1/2 O 1/2 -1/2 0 1/2 -1/2 O 1/2
x/d

Figure E.3 | Preparation and measurement of rotated squeezed Gaussian states. (a-b) Husimi
representations in the phase space of the static lattice. Left (red): state |t)qoc) numerically prepared by
optimal control. Right (blue): density matrix pyp, reconstructed from experimental data by likelihood
maximization. The squeezing parameter for both targets is £ = 1/3 and the rotation angles are § = +7/4
for (a,b) respectively. The lattice depth during the experiments is sg = 5.45 £ 0.30. See text for fidelities
and purities.

171






Appendix F - Résumé du manuscrit en francais

Introduction

L’usage de la lumiere et de champs magnétiques afin de controler les degrés de liberté ex-
ternes des atomes (c’est-a-dire leur position et vitesse) a révolutionné le domaine de la physique
atomique. Tirant parti du développement des lasers dans les années 1960, les techniques de
piégeage et de refroidissement d’atomes [1, 2, 3] ont permis aux expérimentateurs d’atteindre
un niveau de controle sans précédant sur les systemes atomiques. Grace a ces méthodes, il est
possible de refroidir des ensembles atomiques proche du zéro absolu, jusqu’a des températures
auxquelles une description quantique de la matiere devient nécessaire. Un résultat emblématique
de ce domaine d’étude est celui de la condensation de Bose-Einstein, une transition de phase
quantique au travers de laquelle un gaz de bosons passe d’un ensemble de particules décrit clas-
siquement par la statistique de Maxwell-Boltzmann a une fonction d’onde macroscopiquement
peuplée par les atomes du gaz et dont I’évolution est gouvernée par la mécanique quantique: un
condensat de Bose-Einstein (CBE).

La condensation de Bose-Einstein a été atteinte pour la premiere fois en 1995, dans les
groupes de E. Cornell et C. Wieman [6] puis dans celui de W. Ketterle [7]. Cette prouesse
expérimentale, récompensée par le prix Nobel de physique en 2001, marque la naissance du
domaine de recherche sur les gaz quantiques, en constante croissance depuis lors. Ces gaz
d’atomes ultrafroids, qui peuvent étres de nature bosonique ou fermionique, constituent une

plateforme hautement versatile avec laquelle étudier la mécanique quantique. En effet:

e L’utilisation de lasers et de champs magnétiques permet la réalisation d’une grande variété
de potentiels [8, 9] dans lequels étudier I’évolution de ces systemes quantiques. Il est par
exemple possible de manipuler jusqu’a ’atome unique a ’aide de pinces optiques [10, 11]
ou de réaliser des potentiels périodiques dans I’espace (dits de Bloch) finement controlables
a laide e.g. de réseau optique [12] et de modulateurs spatiaux de lumiere (spatial light
modulators) [13, 14].

e En modulant périodiquement dans le temps ces potentiels artificiels (on parle alors de
systemes de Floquet), il devient possible de réaliser des hamiltoniens effectifs d’intérét
pour ’étude d’un systéme particulier [15, 16]. Un telle ingénierie de Floquet permet par
exemple de créer des effets de magnétisme artificiel pour les atomes neutres [17, 18].

o Les effets des interactions entre particules quantiques peuvent étre étudiés grace aux
résonances de Feshbach [19], qui permettent, pour les systémes d’atomes ultrafroids, de

controler la force et le signe des interactions & courtes portées entre les atomes. En outre,
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d’autres systemes sont développés afin d’étudier des effets d’interaction a plus longue
portée, comme notamment les gaz dipolaires [20, 21, 22] et les systémes d’atomes de Ry-
dberg [23, 24, 25].

Le haut degré de controle qu’il est possible d’atteindre grace aux expériences de gaz quan-
tiques revét un intérét particulier pour les deux domaines que sont la simulation quantique et

la métrologie quantique.

Le domaine de la simulation quantique [26, 27] vise & émuler des systémes quantiques
complexes sur des systémes plus simples a observer et a controler. Cette idée a initialement
été proposée par R. Feynman en 1982 [28] et a depuis été mise en ceuvre sur de nombreux
systémes, comme par exemple les circuits supraconducteurs [29], les systémes photoniques [30],
les ions piégés [31] et les atomes neutres ultrafroids [32, 33, 34]. Nous nous intéressons dans ce
manuscrit a cette derniere plateforme avec laquelle ont été réalisées, ces vingt dernieres années,
des expériences phare dans le domaine de la simulation quantique. On peut notamment citer la
réalisation du modele de Bose-Hubbard en trois dimensions, grace a laquelle a été observée la
transition entre une phase superfluide et un isolant de Mott [35], 'observation de la localisation
d’Anderson en une [36, 37|, deux [38, 39] et trois dimensions [40, 41, 42] dans des systemes avec
un désordre artificiel et la transition de Berezinskii-Kosterlitz-Thouless dans un gaz quantique
confiné a deux dimensions [43, 44].

Un autre domaine fondamental qui bénéficie du haut niveau de controle offert par les gaz
quantiques est celui de la métrologie quantique. Un exemple clé des avantages que recele la ma-
nipulation d’un systéme quantique a des fins de métrologie est donné par les états comprimés,
qui permettent d’atteindre des sensibilités de mesure de plus en plus proche des limites fon-
damentales dictées par le principe d’incertitude d’Heisenberg [45, 46]. C’est notamment le cas
avec les états comprimés de photons pour la spectroscopie [47] et U'interférométrie [48, 49], et
d’importants efforts sont fournis pour tirer parti de la compression d’états quantiques de matiere
dans le domaine de l'interférométrie avec des ondes de matieres [50, 51, 52, 53, 54, 55].

Ces différents champs d’application encouragent le développement de nouvelles méthodes
afin de controler et de manipuler les systémes d’atomes froids. Plusieurs approches modernes
sont proposées, parmi lesquelles les boucles de rétroaction [56], les raccourcis vers I’adiabaticité [57],
Papprentissage machine [58] et le controle optimal appliqué aux systémes quantiques [59, 60].

Le groupe de recherche Atomes Froids dans lequel j’ai réalisé mon doctorat au Laboratoire
Collisions, Agrégats et Réactivité (LCAR, Toulouse) travaille dans le domaine de la simulation
quantique et du développement de techniques pour le controle de systemes d’atomes ultrafroids.
Le travail de these rapporté dans ce manuscrit porte a la fois sur le développement de telles
méthodes et sur leur application pour la simulation quantique dans un systeme de Floquet-Bloch
(c’est-a-dire un systeme périodique a la fois dans le temps et 'espace). Dans 1’équipe Atomes
Froids du LCAR, nous travaillons sur une expériences avec laquelle nous réalisons des CBE
de 8 Rb que nous placons ensuite dans un réseau optique unidimensionnel. Le long de I’axe du
réseau, les atomes (qui peuvent étre décrits par une fonction d’onde unique) font I’expérience d’un
potentiel sinusoidal dont nous pouvons controler la profondeur et la phase de maniere arbitraire
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au cours du temps a ’aide de modulateurs acousto-optiques. Ce systeme relativement simple
constitue une plateforme idéale sur laquelle développer de nouvelles méthodes pour le controle
d’états quantiques, ainsi que pour 'expérimentation sur la dynamique d’ondes de matiere dans
un potentiel sinusoidal finement controlable dans le temps, et cela dans un régime de faibles

interactions interatomiques.

Ce manuscrit de these est organisé de la maniere suivante:

Partie 1. Nous commencons par une premiere partie de méthodes, composée des chapitres 1
et 2. Dans le Chapitre 1, nous présentons des rappels de théorie pour 1’étude de la dynamique
d’une fonction d’onde dans un systeme de Floquet-Bloch. Dans le Chapitre 2, nous présentons
notre montage expérimental pour 'obtention de CBE, ainsi que le réseau optique et la maniere
dont nous le contrélons, ce qui nous permet de réaliser dans le laboratoire le systeme décrit au

premier chapitre.

Partie 2. La seconde partie présentent deux études expérimentales pour lesquelles les échelles
de temps des expériences nous permettent de négliger les interactions interatomiques dans les
CBE. Le Chapitre 3 porte sur la mise en place d'un protocole de controle optimal quantique
afin de controler arbitrairement 1’état quantique externe des CBE dans le réseau optique (c’est-
a-dire leur état de mouvement). Dans le Chapitre 4, nous détaillons I’étude, a la fois théorique
et expérimentale, d'un effet ratchet (ou rochet) non-diffusif (c’est-a-dire le long de trajectoires

classiques non-chaotiques) dans un systeme hamiltonien.

Partie 3. La troisieme et derniére partie de ce manuscrit est composée du Chapitre 5 ou
nous nous placons dans un régime expérimental dans lequel il n’est plus possible de négliger les
interactions entre les atomes qui constituent le CBE. Nous y présentons I’étude de ’émergence
d’une nouvelle structuration des atomes dans le réseau optique modulé en phase, qu’il nous est
possible de controler par 'ingénierie, dans ’espace des impulsions, d’instabilités dynamiques
dues a un phénomene de mélange a quatre ondes.

Nous dressons ci-apres un bref résumé de ces cinq chapitres.

Chapitre 1 : Eléments de théorie pour I'étude d’une fonction d’onde
dans un potentiel unidimensionnel

Dans ce premier chapitre, nous rappelons des éléments de théorie pour étudier la dynamique
d’une fonction d’onde dans un potentiel unidimensionnel V' (z,t) dont les parametres peuvent
dépendre du temps. La forme générale de potentiel qui nous intéresse dans ce manuscrit est la

suivante :
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V(z,t) = —A(t)— cos <2mz + <p(t)> . (F.1)

avec Vp 'amplitude typique du potentiel (par la suite, on donne cette profondeur en unité de
Pénergie caractéristique Ep, via le parametre so = V/Ey, ; voir p. 18), d sa périodicité spatiale,
A(t) une fonction de modulation de 'amplitude du potentiel et () une fonction de modulation
de sa phase.

Nous adressons dans un premier temps le cas d’une particule classique dans un tel potentiel.
Apres un bref rappel de mécanique classique hamiltonienne, nous introduisons la notion d’espace
des phases position-impulsion, un outil puissant qui encapsule la dynamique du systeme. Dans
le cas d’un potentiel statique unidimensionnel (A(t) = 1 et () = 0 dans I'Eq. (F.1)), le tracé de
l’espace des phases (x,p) permet d’afficher de maniere concise la dynamique d’un systéme (voir
Fig. 1.1, p. 14), qui est dans ce cas completement intégrable. A I'inverse, lorsque le potentiel
varie dans le temps, des trajectoires chaotiques peuvent exister dans l’espace des phases, qui
devient un espace (x, p, t) car I’évolution d’une configuration (x, p) dépend du potentiel & I'instant
t. Nous terminons cette partie de mécanique classique avec la notion de portrait de phase
stroboscopique : dans le cas particulier ou la dépendance du potentiel est périodique dans le
temps (i.e. V(x,t+T) =V (x,t)), on peut considérer des sections (x, p,tg+nT) de 'espace des
phases et ainsi tracer un portrait de phase stroboscopique (voir Fig. 1.2, p. 15 pour un schéma de
la procédure). La figure F.1 présente deux exemples de portraits de phase stroboscopiques qui

correspondent aux cas du potentiel sinusoidal modulé périodiquement en amplitude (panneaux

(a)) :

A(t) =1+ egcos(2mvt) et o(t) =0, (F.2)

ou en phase (panneaux (b)) :

A(t) =1 et (t) = @gcos(2mvt). (F.3)

On y voit la coexistence de trajectoires intégrables (ou “régulieres”, identifiables par des traits
continus) et de trajectoires chaotiques (identifiables par une “mer chaotique” de points dis-

persés). Lorsque chaos et intégrabilité ainsi coexistent, on parle de dynamique mixte.

La suite de ce premier chapitre traite de la dynamique d’une fonction d’onde dans un
potentiel périodique dans I’espace et éventuellement modulé dans le temps. Nous commencons
par rappeler le théoreme de Bloch, qui énonce que les fonctions d’ondes v,(x,t) qui évoluent
dans un potentiel de période spatiale d s’écrivent, dans un sous-espace donné de quasi-moment
q, comme le produit d’une onde plane et d’une fonction d’amplitude de périodicité spatiale d.
En conséquence directe de cette périodicité, ces fonctions d’ondes dans un systeme de Bloch

s’écrivent sous la forme de leur série de Fourier
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Figure F.1 | Exemples de portraits de phase stroboscopiques. En haut : potentiels sinusoidaux,
modulés périodiquement dans le temps, représentés sur trois périodes spatiales. En bas : portraits
de phase stroboscopiques correspondants, représentés sur une période spatiale. (a) Modulation de
amplitude du potentiel, une configuration associée aux Egs. (F.1) et (F.2), avec les parametres de
modulation v = 0.375, g9 = 0.24 et un temps de référence pour I’observation sous-stroboscopique £y = 0.
(b) Modulation de la phase du potentiel, associée aux Egs. (F.1) et (F.3), avec y = 0.44, pg = 2m/24 = 15°
et to = 0. Les grandeurs “tildées” adimensionnées et le parametre v sont obtenus & partir des grandeurs
dimensionnées en suivant la procédure résumée p. 34.

ei(ZkL'f‘q)x
¢Q(x7t) = Zc%z(t) - =
leZ \/g

(F.4)
avec le nombre d’onde du potentiel (F.1) k, = 27 /d et les coeflicients des ondes planes ¢, ¢(t) € C,
Soleqe®)]? = 1. A Daide du théoréme de Bloch, on peut chercher les états propres associés i
un potentiel périodique (dits états propres de Bloch) sous la forme (F.4), et nous donnons une
méthode numérique pour calculer la structure de bande du potentiel sinusoidal statique a partir

du spectre de 'hamiltonien, comme montré sur la figure F.2(a) (ainsi qu’avec plus de détails sur
le figure 1.5, p. 22).

Nous poursuivons avec ’étude de I’évolution temporelle d'un état arbitraire |1¢,(tp)) dans
un tel systeme. Dans le cas d’indépendance temporelle du potentiel, ’évolution d’un tel état est
completement déterminée par sa décomposition sur les états propres de Bloch a I'instant ¢g. Ce
n’est plus le cas lorsque 1’'on considere un potentiel qui dépend du temps de maniere arbitraire.
Nous exposons néanmoins une approche numérique pour calculer cette évolution, en constru-
isant de maniere itérative un opérateur d’évolution sur des intervalles de temps suffisamment
brefs, lors desquels il est peut étre valide de considérer constant le potentiel. Nous adressons
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Figure F.2 | Structure de bande et spectres de quasi-énergie. (a) Structure de bande (lignes
colorées continues) pour le potentiel sinusoidal statique de profondeur sg = 4. Les cing bandes de plus
basse énergie sont en bleu, orange, vert, rouge et violet respectivement. Les fleches sont placées aux quasi-
moments ol les bandes sont séparées par une énergie |E; ; — E; 4| = k x hv correspondant & 1’énergie de
transition associée aux spectres de Floquet des panneaux (b) et (c) (avec k = 1 en noir et trait continu
et k =2 en gris et tireté). Ces fleches ne sont montrées que pour g < 0 par souci de lisibilité. Les lignes
tiretées horizontales marquent la périodicité énergétique des spectres de Floquet des panneaux (b) et (c).
(b,c) Spectres de quasi-énergie pour le potentiel sinusoidal modulé périodiquement en amplitude au cours
du temps (Eq (1.40), p. 26), pour deux amplitudes de modulation g, différentes et autres parametres
communs sy = 4 and v = 4y, (voir p. 18). Les amplitudes de modulation sont g = 0 (b) et eg = 0.15

(c).

ensuite le cas particulier des systemes de Floquet, pour lesquels la dépendance temporelle du
potentiel est périodique. On s’intéresse dans ce cas a 'opérateur d’évolution sur une période de
modulation ('opérateur de Floquet), et nous montrons comment ses états propres (dits de Flo-
quet) permettent d’étudier de fagon stroboscopique la dynamique d’un état quantique dans un
tel systeme, a la maniere des états propres de I’hamiltonien dans le cas statique. Nous détaillons
notamment comment calculer et représenter le spectre de quasi-énergie associé a un opérateur
de Floquet, dont la périodicité en quasi-énergie est similaire, dans ’espace des énergies, a la
notion de zone de Brillouin pour un spectre associé a un potentiel périodique dans 1’espace.
La figure F.2(b,c) montre des exemples de spectres de quasi-énergie, ou les quasi-énergies sont
représentées en fonction de la projection entre leur état de Floquet associé et les états de Bloch
de plus basse énergie (qui correspondent aux bandes du panneau (a) ; une procédure détaillée
dans la section 1.3.2).

Pour terminer ce premier chapitre, nous considérons la représentation d’états quantiques
dans ’espace des phases d’un systeme dynamique. Nous expliquons dans cette section com-
ment, en conséquence du principe d’incertitude d’Heisenberg AxzAp > h/2, la constante de
Planck réduite A limite ’étendue minimale que peut avoir la distribution d’un état quantique
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Figure F.3 | Représentations de Husimi d’états de Floquet-Bloch dans le cas du potentiel si-
nusoidal modulé en amplitude (Eqs. (F.1), p. 176) avec les parametres v = 0.375, g = 0.24 and fieg = 0.2
(voir l’adimensionnement p. 18). (a) Un état de Floquet-Bloch localisé sur des ilots réguliers. (b) Un
état de Floquet-Bloch délocalisé sur la mer chaotique.

dans 'espace des phases. Nous introduisons les quasi-distributions de probabilité de Wigner
(figure 1.7, p. 30) et de Husimi (figure 1.8, p. 32) pour représenter un état dans lespace des
phases, ainsi que la notion de constante de Planck effective hg, un parametre qui permet de
régler la prévalence des effets quantiques dans la dynamique d’un systeme (figure 1.8, p. 32).
Enfin, nous montrons comment les outils introduits dans ce premier chapitre permettent de
représenter, pour un systeme de Floquet-Bloch, les états de Floquet vis-a-vis du portrait de
phase stroboscopique (Fig. F.3), c’est-a-dire vis-a-vis de la dynamique classique du systéme.

Chapitre 2 : Montage expérimental

Nous présentons dans ce deuxieme chapitre Pexpérience de refroidissement d’atomes de 8"Rb
développée par I’équipe Atomes Froids au LCAR qui nous permet de réaliser au laboratoire les
sytemes étudiés au chapitre 1. Cette expérience, en fonctionnement depuis 2016, a déja fait
lobjet d’exhaustives descriptions dans les theéses de mes prédécesseurs [93, 94, 115, 67, 68], et
nous choisissons, par souci de concision, de ne procéder ici qu’a une succincte description de ce

montage expérimental.

Nous commencons par un bref rappel de notions sur la condensation de Bose-Einstein, et
revenons sur la longueur d’onde de de Broglie thermique

27 h?
Ap = 4 ———— F.
T \/ mkpT’ (F.5)
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une quantité qui rend compte de la longueur d’onde typique des atomes de masse m dans un gaz
a température T (avec kp la constante de Boltzmann). La condensation de Bose-Einstein a lieu

lorsque A > 1 = n=1/3

, avec [ la distance moyenne entre les atomes dans le gaz et n la densité
du gaz. L’enjeu d’une expérience d’atomes ultrafroids est donc de refroidir un gaz d’atomes
tout en conservant suffisamment importante la densité n, de sorte a ce que la longueur d’onde
de de Broglie thermique devienne supérieure & la distance moyenne entre les particules. Pour le
piege dans lequel sont maintenus les atomes dans notre expérience, on calcule (voir p. 40) que la

température critique en dessous de laquelle il nous faut refroidir le gaz est d’environ 130 nK.

L’expérience de 1’équipe Atomes Froids au LCAR permet d’obtenir des CBE composés
d’approximativement 5 - 10° atomes de 8"Rb toutes les 22 secondes. La séquence de refroidisse-
ment atomique peut étre décomposée en trois parties : une premiere étape de refroidissement
dans un piege magnéto-optique, suivie d’'une étape d’évaporation micro-onde dans un piege
magnétique avant une derniere étape d’évaporation dans un piege dipolaire dans lequel la con-
densation de Bose-Einstein est atteinte. Afin de rendre davantage robuste ’obtention des CBE
sur 'expérience, nous avons durant ma these changé la géométrie du piege dipolaire dans lequel
cette derniere étape de refroidissement a lieu. Cette modification, avec les ancienne et nouvelle
géométries, est schématisée sur la figure 2.1 (p. 44). Nous caractérisons cette nouvelle géométrie,
et donnons les fréquences harmoniques du piege dans lequel se trouvent les CBE a la fin de la
séquence de refroidissement.

Nous détaillons ensuite comment nous sommes capables de remonter a la distribution
d’impulsion de ’ensemble atomique au cours des expériences via un systeme d’imagerie par
absorption (figure 2.2, p. 47) réalisée aprés un temps de vol. Lorsque nous souhaitons mesurer
cette distribution d’impulsion, nous coupons subitement tous les pieges, et les atomes qui com-
mencent a chuter sous 'effet de la gravité entrent en expansion. Apres un temps d’expansion
suffisamment long, la mesure de la dispersion spatiale du nuage atomique reflete directement la
dispersion en vitesse qu’avaient les atomes avant la coupure du piege. Pour un nuage thermique
(i.e. avant transition vers un CBE), nous décrivons comment la mesure de cette expansion
en fonction de la durée du temps de vol permet de mesurer la température du nuage. Pour
un CBE, I'imagerie du nuage apres un temps de vol revient a échantillonner statistiquement,
en représentation impulsion, la fonction d’onde macroscopiquement partagée par les atomes

condensés.

Nous poursuivons avec la présentation du réseau optique unidimensionnel qui nous per-
met de réaliser les potentiels étudiés au chapitre 1 : ce réseau est formé par l'interférence de
deux faisceaux laser contrapropageants dont la longueur d’onde A = 1064 nm est fortement
désaccordée vers le rouge par rapport & la transition atomique Do du 8"Rb (voir appendice A).
Cela crée, pour les atomes, un potentiel dipolaire [8, 79] attractif vers les maxima d’intensité de
I'interférence lumineuse, résultant en un potentiel sinusoidal le long de ’axe de propagation des
faisceaux. A l’aide de trois modulateurs acousto-optiques, nous pouvons controler 'intensité du
réseau optique (et donc sa profondeur) ainsi que sa phase (voir appendice C). Tel que discuté
ci-dessus, notre systeme d’imagerie apres temps de vol nous permet d’accéder a la distribution
en impulsion des atomes dans le réseau optique. Travaillant avec des CBE (i.e. des fonctions
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Figure F.4 | Chargement adiabatique du réseau optique et diffraction d’onde de matieére.
(a) Rampe de profondeur du réseau optique pour le chargement adiabatique de ’état fondamental du
réseau optique de profondeur sy (voir texte). (b) Simulation numérique de la distribution d’impulsion au
cours du chargement adiabatique du réseau. (c) (respectivement (e)) Image d’absorption expérimentale
apres temps de vol montrant les atomes avant (respectivement apres) le chargement du réseau optique.
Les rectangles gris délimitent les régions dans lesquels les populations dans les ondes planes |c,|? sont
extraites. (f) (respectivement (e)) Diagramme en barres comparant les populations expérimentales (bleu)
et théoriques (rouge) des ondes planes avant (respectivement apres) le chargement du réseau optique. La
profondeur du réseau est ici sg = 8.06 £+ 0.10, la durée du temps de vol est tror = 35 ms et les cartes de
couleurs pour les images d’atomes sont tronquées a 0.8 de leur valeur maximale respective afin de révéler
les détails.

d’ondes) dans un systéeme de Bloch, nous remontons ainsi aux modules carrés des coefficients

des ondes planes |c,¢|?, comme montré sur la figure F.4 (dans un cas pour lequel ¢ = 0).

Je conclue ce chapitre de présentation de I’expérience avec quelques techniques expérimentales

usuelles lorsqu’on travaille avec des atomes froids dans un réseau optique, & savoir :

e une technique de chargement adiabatique de ’état fondamental du réseau optique (c’est-

a-dire de 1’état propre de Bloch de plus basse énergie) (figure F.4),

e deux méthodes pour calibrer, I'une rapidement [108] et 'autre finement [112, 113] , la

profondeur du réseau optique (voir figures 2.5 et 2.6, p.54 et 56),

e la méthode dite de band-mapping afin d’imager la structure de bande du réseau op-
tique [107, 114, 79] (voir figure 2.7, p. 57).
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Les trois chapitres suivants présentent une partie des résultats de recherche auxquels j’ai
contribué durant ma these. Le reste de ces résultats publiés (a savoir les premieres observations
de résonance d’effet tunnel assisté par le chaos [61] et une étude du contrdle des halos de collisions
quantifiés en impulsion qui apparaissent sur les figures de diffraction [62]) sont détaillés dans les
theses de M. Arnal [67] et G. Chatelain [68].

Chapitre 3 : Controle optimal quantique d’ondes de matieres dans
un réseau optique unidimensionnel

Ce chapitre s’inscrit dans le développement de méthodes pour le contréle de I'état quantique
d’un systeme d’atomes ultrafroids. Nous y détaillons la mise en place d’un protocole de controle
optimal pour calculer la fagon dont nous devons déplacer le réseau optique au cours du temps

afin de contrdler arbitrairement 1’état externe des CBE dans le réseau.

Nous commencons le chapitre par une introduction a la théorie du contréle optimal quan-

tique. Etant donné un systeme dont 1’équation d’évolution est paramétrisée :

a(t) = f (x(t), u(t),t), (F.6)

avec x(t) le vecteur d’état du systeéme, u(t) un vecteur de parametres et f la fonction d’évolution,
la théorie du controle optimal permet de calculer le champ de controle optimal w*(¢) qui améne
le systéme d’un état initial x(typ = 0) & un état cible x(t.) (avec t. la durée du contrdle) tout en
minimisant une fonctionnelle de cotut. La détermination du champ de controle optimal s’énonce
a l’aide du principe du maximum de Pontryagin que nous rappelons (voir section 3.1.1). Dans
notre cas, nous souhaitons amener un état initial |¢)g) (généralement 1'état fondamental du
réseau optique que nous savons préparer de maniere fiable comme illustré sur la figure F.4) le
plus proche possible d’une certaine cible, avec la phase du réseau optique ¢(t) comme unique
champ de controéle, le tout en un temps de controle fixé. Nous tachons donc de maximiser une
fidélité F entre I’état préparé et la cible. La détermination du champ de controle optimal n’est
généralement pas simple, et nous recourons a une approche numérique itérative de montée de
gradient sur cette fidélité. Nous détaillons notre méthode dans les sections 3.1.2 et 3.1.3, et

notre algorithme numérique est résumé p. 72.

Nous présentons dans la suite de ce chapitre une série d’expériences qui démontre notre
capacité de controle de ’état externe des CBE dans le réseau optique.

Contrdle de la distribution en impulsion. Une premiere section de résultats (section 3.2)
concerne le contréle de la distribution en impulsion du CBE. Dans notre sytéme de Bloch ou la
fonction d’onde du CBE s’écrit selon I’Eq. F.4, nous ciblons dans cette section! des ensembles

ci dans le sous-espace de quasi-moment g = 0.
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Figure F.5 | “Controle” écrit avec des diffractions d’ondes de matiere. Concaténation de 44
images d’absorption expérimentales obtenues apres temps de vol, chaque colonne montrant la distri-
bution en impulsion des atomes apres application d’un champ de controle préalablement calculé via le
formalisme du contréle optimal quantique pour le réalisation d’une superposition équiprobable donnée
de composantes d’impulsion.

donnés de probabilités {|c/|?} (i.e. des ensembles donnés de nombre réels). Nous sommes ainsi
capables de préparer :

e des ondes planes spécifiques, c’est-a-dire des états ou tous les atomes sont mesurés dans
le méme ordre de diffraction (ce que nous démontrons jusqu’a une impulsion du paquet
d’onde de 10 hky,, voir Fig. 3.3, p.76),

o des superpositions équiprobables de composantes d’impulsion, comme illustré sur la fig-
ure F.5 (ainsi qu’avec davantage de détails sur la figure 3.4, p. 78),

e une superposition arbitraire de composantes d’impulsion (également sur la figure 3.4,
p. 78).

Controle complet de I'état quantique. Nous nous intéressons dans un second temps au
controle complet de I'état quantique externe des CBE selon l'axe du réseau, c’est-a-dire au
controle de l’ensemble de nombres complexes {cq¢}. Se pose ici la question de la certifica-
tion des préparations : étant donné que nous n’accédons, par nos mesures apres temps de vol,
quaux modules carrés des coefficients |c, ¢|?, comment attester de la réalisation d'un état donné
présentant une certaine relation de phase entre ses coefficients ¢, ¢ ?

Nous démontrons premierement un tel contréle complet d’état quantique en préparant des
cibles pour lesquelles il est simple de remonter aux phases relatives entre les coefficients ¢y,

avec:

e La préparation des superpositions des ondes planes d’impulsion +1hk;, (dans le sous-
espace de quasi-moment ¢ = 0) avec pour phase relative arg{c_1/c1} = A¢p = j x 1/8 et
j €10,1,...,15} (voir figure 3.5, p. 81). Alors que la mesure des états préparés au terme de
la préparation donne le méme résultat (c’est-a-dire environ 50 % des atomes dans les ordres
de diffraction associés aux impulsions +1 fiky,), les évolutions subséquentes des distribu-
tions d’impulsion de ces états dans le réseau optique maintenu statique different fortement
les unes des autres. L’ajustement de cette évolution avec pour parametre ajustable la
phase relative effectivement préparée entre les composantes d’impulsion nous permet de
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Figure F.6 | Reconstruction d’un état quantique dans un systéme de Bloch par maximisation
de la vraisemblance. (a-b) Matrices densité p avec arg{p; ;} encodé en couleur et |p; ;| encodé en
taille (pas & l’échelle entre les panneaux). (a) Matrice identité 14, /dy (ol dy est la dimension de
Pespace de Hilbert, avec dy = 11 ici) comme matrice densité d’essai. (b) Matrice densité de plus
grande vraisemblance. (c¢) Concaténation d’images d’absorption expérimentales intégrées acquises durant
lévolution de I’état préparé dans le réseau maintenu statique & la profondeur s = 5.540.5. (d) Simulation
numérique de 1’évolution de ’état de plus grande vraisemblance dans le méme réseau statique.

remonter a celle-ci. Ces mesures sont proches de ce que nous ciblons (voir figure 3.5, p. 81),
démontrant un contréle complet des états quantiques préparés dans ce cas simple.

e La préparation d’états propres du réseau (figure 3.6, p. 83). Etant donné que nous ciblons
ici des états stationnaires du systeme, I’absence d’évolution atteste la bonne préparation.
Nous préparons aussi des superpositions données de deux états propres du réseau, et
observons une seule fréquence d’évolution pour les ordres de diffraction, qui est associée a

la différence entre les énergies propres des états propres superposés.

Pour aller plus loin et démontrer notre capacité a préparer de maniere arbitraire des états
quantiques donnés, nous mettons en place un protocole dédié de reconstruction d’états par
maximisation de vraisemblance. A nouveau, nous nous servons de 1’évolution de la distribution
en impulsion de I’état expérimentalement préparé lorsque celui-ci est maintenu dans le réseau
statique au terme de la préparation. L’idée est de déterminer I’état théorique le plus susceptible
de donner cette évolution, cette fois-ci de fagon systématique. Notre approche itérative (inspirée
de [138, 140, 141]) est résumée p. 86 et illustrée sur la figure F.6.

Nous appliquons cette méthode de reconstruction a plusieurs préparations. Nous com-
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Figure F.7 | Préparation expérimentale et reconstruction d’états gaussiens comprimés. (a-
e) Représentations de Husimi dans 'espace des phases du réseau statique. En haut (rouge) : états
théoriques préparés par I'application du champ de controle préalablement calculé via le formalisme
du controle optimal quantique pour le réalisation d’une compression donnée. En bas (vert) : états
reconstruits de plus grande vraisemblance avec les mesures expérimentales (obtenue via la procédure
illustrée sur la figure F.6). Les cartes de couleurs pour chaque fonction de Husimi vont de 0 &
la valeur maximale que prend cette fonction sur ’espace des phases. Les facteurs de compressions
sont 1/¢6 = (0.44,0.62,1.65,2.75,4.34) pour (a-e) respectivement. Les fidélités des états reconstru-
its aux états théoriques sont Fexp = (0.99,0.96,0.98,0.93,0.75) et la pureté des états reconstruits est
~ = (1.00,1.00, 1.00, 0.92,0.72) (voir section 3.3.3, p. 82).

mencons par cibler des translations ainsi que des superpositions d’états gaussiens non com-
primés dans 'espace des phases associé a chaque site du réseau optique. On définit ’absence
de compression comme le rapport d’aspect position-impulsion de I'état gaussien qui est 1’état
fondamental des potentiels harmoniques approximant localement le fond des puits du réseau
optique sinusoidal, c’est a dire un état dont les écarts-types en position Axgy et en impulsion
Apg s’écrivent, dans un réseau de profondeur s :

krAxg = 381/4 et Apg/hkr, = 8(1)/4/2. (F.7)

Les résultats de ces expériences sont présentés dans le section 3.3.4 (voir figure 3.8, p. 88).
Nous poursuivons avec la préparation d’état gaussiens comprimés. Dans un réseau optique
de profondeur sy, on associe & un état d’écart-type en position Ax le facteur de compression
¢ = Ax/Axy. On prépare ainsi des états gaussiens comprimés en impulsion (£ > 1) ainsi que des
états comprimé en position (£ < 1) dans un réseau de profondeur sy ~ 5.5. Ces résultats sont
montrés sur la figure F.7. Nous démontrons notamment notre capacité a préparer fidelement
(Fexp = 0.75) des états comprimés en position jusqu'a un facteur 1/§ = 4.34. 11 s’agit, d’apres
nos connaissances, de la premiere réalisation d’un tel état, qui est impossible a obtenir de fagon
adiabatique. On peut en effet chercher la profondeur effective sqg & laquelle I'état fondamental
du réseau posséde la méme dispersion en position que celle réalisée expérimentalement. D’apres

185



I'Eq. F.7, on trouve Sef = s0/€% = 2000. On note qu’il nous faudrait sur ’expérience du LCAR
un laser de puissance P =~ 750 W pour réaliser un réseau de cette profondeur !

Nous avons également réalisé des états comprimés et inclinés dans 1’espace des phases. Ces
préparations et reconstructions sont présentées, ainsi que deux autres expériences mises de coté

afin de fluidifier la lecture de ce chapitre, dans I'appendice E.

Application a la simulation quantique. Nous concluons ce premier chapitre de résultats par
la présentation d’une expérience ou nous appliquons notre protocole de préparation d’états
quantiques a une étude d’effet tunnel dynamique [142, 89] dans le réseau modulé en amplitude.
L’effet tunnel dynamique est une généralisation de I'effet tunnel usuel, ot 'impossibilité classique
du transport ne releve pas d'un défaut d’énergie mécanique (comme dans le cas usuel) mais de
la traversée de surfaces KAM [89] dans un espace des phases présentant une dynamique mixte
(c’est-a-dire de la traversée d’orbites régulieres, classiquement impossible car impliquant une
violation du principe de détermination ; voir section 1.1). L’effet tunnel dynamique peut avoir
lieu dans un tel systeme lorsque deux états de Floquet non-dégénérés occupent les mémes régions
réguliéres du portrait de phase. Dans une telle situation, une particule quantique initialisée dans
I'une de ces régions se mettra a osciller, avec une fréquence d’oscillation proportionnelle a la
différence de quasi-énergie entre les états de Floquet impliqués.

Nous réalisons ici une expérience d’effet tunnel dynamique ou nous initialisons, grace
au controle optimal quantique, les CBE dans l'idéale superposition des deux états de Flo-
quet associés a ce phénomene pour des parametres donnés de modulation d’amplitude du
potentiel sinusoidal. On compare cette approche optimale avec une approche plus tradition-
nelle [154, 155, 61] de translation soudaine du réseau optique afin de charger une des régions
réguliéres entre lesquelles 'effet tunnel dynamique a lieu. Cette méthode simple est limitée en
ceci qu’une translation de I’état fondamental du réseau statique ne se projette que partiellement
dans le sous-espace composé des deux états de Floquet qui entrainent l’effet tunnel dynamique,
ainsi que par 'asymétrie des projections sur ces deux états. Les résultats de cette comparaison
de méthodes sont présentés sur la figure 3.13, p. 95, ot nous observons une nette amélioration
du signal d’oscillation tunnel a I'aide du contréle optimal.

Publications en lien avec ce chapitre. Les travaux présentés dans ce chapitre résultent d’une
collaboration avec Dominique Sugny du Laboratoire Interdisciplinaire de Carnot Bourgogne

(Dijon). Ces études ont fait 'objet de deux publications :

[63] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Sugny and
D. Guéry-Odelin, Quantum State Control of a Bose-Einstein Condensate in an Optical
Lattice, PRX Quantum, 2:040303, (2021)

[64] N. Dupont, F. Arrouas, L. Gabardos, N. Ombredane, J. Billy, B. Peaudecerf, D. Sugny
and D. Guéry-Odelin. Phase-space distributions of Bose-Finstein condensates in an optical

lattice: Optimal shaping and reconstruction, actuellement en processus de revue (2022)
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Chapitre 4 : Ratchet hamiltonien non-diffusif

La deuxieéme étude présentée dans ce manuscrit traite d'un effet ratchet (rochet) non-diffusif
dans un systéme hamiltonien. L’effet ratchet est ’émergence d’un courant de particules dans
un potentiel duquel aucune force nette n’est dérivée [161, 162, 163]. Dans ce travail, nous
corrélons les modulations d’amplitude et de phase du potentiel sinusoidal afin de faire émerger,
dans ’espace des phases du systeme, une ilot de trajectoires régulieres qui transite d’un site
au suivant en s’arrétant périodiquement au centre du site. Nous présentons ici les premieres
étude théorique et réalisation expérimentale d’un tel effet ratchet déterministe, non-dissipatif et
porté par des trajectoires non-chaotiques entrainant un déplacement linéaire dans I’espace pour
des particules initialement au repos®. Avec ce systéme, nous faisons ’observation expérimentale

d’un transport linéaire et non-diffusif d’ondes de matiere dans le réseau optique.

Dans ce chapitre, nous considérons ’hamiltonien suivant, associé a un potentiel sinusoidal
modulé en amplitude et en phase :

2
1% 2
H(x,p,t) = 2 [1+ g cos (2mvt)] 20 o | TE

o 5 g T o cos(2mvt + Ag) + Ap| . (F.8)

Nous commencons par chercher des parametres de modulation (Vj, €9, @0, v, Ad, Ap) tels qu'une
particule classique initialisée au repos au fond d’un site de ce potentiel se retrouve, aprés une
période de modulation, au repos au fond du prochain site. L’intérét d’une telle modulation
est qu’elle peut alors étre répétée pour entrainer un transport directif. Nous développons une
méthode systématique pour déterminer de tels parametres (section 4.1) et nous convergeons vers
le jeu

(7, €0, o, Ap, Ap) = (1.2,0.3,1.7,7/2,0), (F.9)

qui est celui que nous étudions dans le reste du chapitre (avec 'amplitude dynamique adimen-
sionnée v = Vp/2md?v?). Ces parametres donnent un exemple de la dynamique classique que
nous requérons, comme présenté sur les portraits de phase stroboscopiques de la figure F.8 (voir
aussi la figure 4.3, p. 107). De maniére plus forte encore que I'absence de force nette globale
inhérente aux systemes présentant l'effet ratchet, on obtient ici, pour la trajectoire périodique
au centre de I'llot de transport, une absence de force nette le long de la trajectoire sur chaque
période (voir notamment la figure 4.3, p. 107).

Nous poursuivons ce chapitre avec 1’étude du transport quantique le long de l'ilot ratchet
de cet espace des phases. On montre comment ce transport dépend la constante de Planck

2Leffet ratchet que nous étudions systéme se rapproche de Ueffet ratchet “accélérateur” [183, 184, 185] observé
dans le systeme du rotateur frappé (kicked rotor) avec lequel il est possible de faire émerger un transport non-
diffusif, cette fois le long de ’axe des impulsions, en déplagant savamment le potentiel sinusoidal entre les flashs
du potentiel.
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Figure F.8 Evolution sous-stroboscopique du portrait de phase stroboscopique d’un
systéme présentant un effet ratchet régulier. (a-e) Portraits de phase stroboscopiques associés
& 'hamiltonien (F.8) (avec les paramatres de I'Eq. (F.9)) et les références de temps d’observation sous-
stroboscopique vty = 0,0.25,0.5,0.75 et 1. On représente sur chaque panneau la trajectoire au centre de
I'llot ratchet pour tout temps (ligne noire tiretée).

effective introduite au chapitre 1 (avec ici heg = h/mvd?), en ceci que ce parametre regle la
surface relative entre I’étendue minimale que peuvent avoir les états dans ’espace des phases et
les structures classiques dans ce dernier. L’analyse de ce transport en fonction de 1/fi.g (c’est-
a-dire proportionnellement & l’action classique dans le systéme, voir section 1.4) est présentée

sur la figure F.9. On y représente :

e la projection de I'état fondamental du réseau statique avec I’état de Floquet associé a I'ilot
ratchet (une sorte de mesure de la centricité de cet état de Floquet, stroboscopiquement
stationnaire comme le transport classique dont nous avons fait I'ingénierie en début de

chapitre) (panneau (a)),
e le transport périodique de cet état de Floquet (panneau (b)),

e les représentations de Husimi de I’état fondamental du réseau statique et de 1’état de

Floquet ratchet pour les trois valeurs de heg identifiées en sur les panneaux (a) et (b).

On observe une dépendance non-monotone de ces métriques de transport semi-classique en
fonction de fieg. Cet effet est lié au phénomene de mélange d’états de Floquet (et notamment avec
des états de Floquet localisés dans la mer chaotique) que nous présentons dans la section 4.2.2

et illustrons sur la figure 4.6, p 112.

Fort de ces analyse, nous procédons enfin a des expériences de transport de CBE dans
le réseau optique dont nous corrélons les modulations d’amplitude et de phase afin de réaliser
I’hamiltonien ratchet (Eq (F.8)), ce dans un premier temps & partir de 1’état fondamental du
réseau statique. Ces expériences sont réalisées pour les deux valeurs de heg correspondant aux
panneaux (d) et (e) de la figure F.9, c’est-a-dire dans un cas idéal pour observer un trans-
port ratchet semi-classique et dans un cas davantage défavorable a ’observation de ce transport
controlé. Le cas favorable est présenté sur la figure F.10, ot nous observons un tres bon accord

entre 'expérience et la simulation numérique des dynamiques a la fois quantique et classique (ce
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Figure F.9 | Influence de la constante de Planck effective sur le transport ratchet. (a) Pro-
jection entre ’état de Floquet |¢,) associé a l'ilot ratchet et 1'état fondamental du réseau static |¢g) en
fonction de 1/heg. (b) Transport périodique AZg 2, de |¢y) sur une période de modulation (voir Eq. 4.22,
p.- 109) en fonction de 1/heg. (c-e) Représentations de Husimi de |¢g) (en haut, bleu) et de |p,) (en
bas, vert) vis-a-vis du portrait de phase stroboscopique du systéme pour les valeurs de 1/hqq identifiée
sur les panneaux (a,b). Les fonctions de Husimi dans les encadrés sont tronquées & un quart de leur
valeur maximale afin de visualiser les détails. La zone grisée des panneaux (a,b) marque l'intervalle de
1/heg sur lequel le phénomene de mélange d’états de Floquet est étudié (voir figure 4.6). Les grandeurs
“tildées” adimensionnées sont obtenues a partir des grandeurs dimensionnées en suivant la procédure
résumée p. 34.

qui s’explique par la semi-classicalité attendue pour le transport a cette valeur de heg). La com-
paraison du transport pour les deux valeurs de hqg étudiées expérimentalement est présentée sur
la figure 4.8, p. 116. Pour la valeur de heg correspondant a la figure F.9(d), nous observons une
évolution quasi-périodique de la distribution en impulsion. Pour la valeur de h¢g correspondant
a la figure F.9(e), nous mesurons une forte croissance apériodique de la dispersion en impulsion,
associée a une fuite vers la mer chaotique (comme suggéré par la représentation de Husimi de
I'état Floquet ratchet illustré sur la figure F.9(e)).

Dans un second et dernier temps, nous appliquons notre protocole de contrble optimal
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Figure F.10 | Transport ratchet semi-classique et non-diffusif a4 partir de 1’état fondamen-
tal du réseau optique. (a-d) Portraits de phase stroboscopiques (& gauche) et images d’absorption
expérimentales apres temps de vol (& droite) pour les temps sous-stroboscopiques vt = n+r, avec n € N
et = 0,0.25,0.5 et 0.75 pour les panneaux (a) & (d) respectivement. Les images expérimentales ont
été prises lors de la premiére période de modulation n = 0. (e) Quantité de mouvement en fonction
du temps, montrant la valeur moyenne de la distribution d’impulsion expérimentale (bleu) et numérique
(rouge) ainsi que la quantité de mouvement de la trajectoire au centre de I'ilot ratchet (noir).

quantique mis en place dans le chapitre 3 afin d’optimiser le transport ratchet. Nous ciblons
alors, avant lapplication de la modulation, ’état de Floquet associé a l'ilot de transport (voir
figure F.9(c-e)). Ces résultats sont présentés sur la figure 4.9, p. 117. Nous montrons comment le
protocole de controle optimal quantique permet de restaurer la périodicité du transport ratchet,

et ce, méme dans le cas de fort couplage avec la mer chaotique (figure F.9(e)).

Publication en lien avec ce chapitre. L’étude présentée dans ce chapitre résulte d’un travail
de recherche que je mene sur l'effet ratchet depuis mon stage de pré-these réalisé au LCAR en

2019. Une publication est en cours de préparation :

[65] N. Dupont, L. Gabardos, F. Arrouas, B. Peaudecerf, J. Billy and D. Guéry-Odelin, Matter

wave transport from non-diffusive Hamiltonian ratchet effect, In preparation, (2022)

190



Chapitre 5 : Emergence d’un ordre supercrystallin de pas accordable
dans un systeme de Floquet-Bloch

La derniere étude que nous présentons dans ce manuscrit se place dans un régime dans lequel
il n’est plus possible de négliger les interactions entre les atomes du CBE. Nous y démontrons
comment, dans un réseau optique modulé sinusoidalement en phase a une fréquence couplant la
bande fondamentale a une bande excitée du systeme, les interactions interatomiques a courte-
portée peuvent entrainer, sur de longs temps d’expérience, I’émergence d’un ordre supercrystallin
de pas accordable via un processus de mélange a quatre ondes contrélé. Cette travail s’inscrit
dans I’étude des instabilités dynamiques dans un systeme de Floquet-Bloch [198, 199, 196, 201,
197].

Nous illustrons sur la figure F.11 le protocole typique pour les expériences présentées dans ce
chapitre, ainsi que les observations qui en résultent. On commence par charger I’état fondamental
du réseau optique en ¢ = 0. Celui-ci est ensuite modulé en phase a une fréquence qui couple
la bande fondamentale & une bande excitée (ici la bande 2 ou 3) en ¢ # 0. Sur les premieres
dizaines de périodes de modulation, on observe inchangée, ou peu s’en faut, la distribution en
impulsion de I’état fondamental du réseau statique (comme on peu s’y attendre étant donné que
la modulation n’est pas résonante pour la bande fondamentale en ¢ = 0, 1a ou sont initialement
chargés les atomes). Cependant aprés un certain temps d’expérience®, on observe la nucléation
d’ordres de diffraction entre les ordres associés a I'état fondamental du réseau statique, a des
valeurs d’impulsion Ak* qui ne sont pas des multiples entiers du quantum d’impulsion fikr, = h/d
(de nouveaux ordres de diffractions qu’'on qualifie de “décimaux”). Cette nouvelle périodicité
plus fine dans l'espace réciproque (observée apreés temps de vol) suggere I’émergence d’une

structuration avec un pas d* supérieur a la périodicité d du réseau optique.

Pour comprendre ce phénomene, nous modélisons ce systeme a ’aide d’un systeme effectif
a deux bandes couplées, fortement liées et avec interactions. Dans un formalisme de seconde

quantification, ce systéeme est régi par I’hamiltonien effectif .Heﬁ‘ = fIO + fIint, ou

L—1 L—1
iy ==Y (alga; +alagen) = Y (b + b1y ) (F.10)
j=0 =0
L-1 L-1
+ A Y b+ aw Y (bla, — ali,)
=0 =0

et

3De lordre de la milliseconde, 14 ol la période de modulation du réseau optique est de l'ordre de la dizaine de
microsecondes.
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Figure F.11 | Protocole expérimental et observation typique de nucléation d’ordres
décimaux. (a) Profondeur s(t) et (b) phase ¢(t) du réseau optique au cours du temps, montrant
le chargement adiabatique de 1’état fondamental du réseau, la modulation de phase pour un nombre en-
tier de périodes et I'extinction du réseau pour 'imagerie par temps de vol. (c,d) Concaténation d’images
d’absorption expérimentales apres temps de vol montrant ’évolution stroboscopique de la distribution
en impulsion en fonction du nombre n de périodes de modulation T. Les parametres expérimentaux
sont donnés sur la figure 5.2, p. 127. (e) Structure de bande du réseau statique a la profondeur des
expériences (lignes colorées) et principales transitions induites sur la bande fondamentale par les modu-
lations des expériences (c) et (d) (fleches noires).

al’a? (F.11)

avec L le nombre de sites peuplés du réseau, a; et Ej les opérateurs de créations sur les deux
bandes au site j, Jy et Ji les amplitudes tunnel des bandes, AFE; un décalage d’énergie pour la
bande modélisant le niveau excité, W 'amplitude de couplage entre les bandes et U le parametre
d’interaction sur site pour la bande initialement peuplée. Nous montrons dans un premier temps
comment, les interactions mises de coté, ’hamiltonien PAIO permet de modéliser les spectres de
quasi-énergie des systemes modulés a la maniere des expériences de la figure F.11. Ce processus
de modélisation est détaillé sur la figure 5.3, p. 130 (et peut étre observé sur la figure F.12

ci-dessous).

Nous procédons ensuite & un traitement perturbatif des interactions & la maniere de Bo-
goliubov [202, 90], que nous présentons en détail. Nous obtenons un jeu de quatre équations
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Figure F.12 | Résultats de 1’étude de la stabilité du systéme pour des parametres de modele
réalistes. (a,d) Spectres de quasi-énergie. (b,e) Spectres de 'hamiltonien Hy, avec parametres ajustés
afin de reproduire le comportement des spectres (a,d) aux abords des croisements principaux de la bande
associé a I’état fondamentale (bleu). (c,f) Parametre d’instabilité w(q) correspondant, tracé en fonction
de ¢ et du parametre d’interaction nU (voir section 5.2.4, p. 137, avec n le nombre d’atomes par site du
réseau, supposé ici ne pas dépendre de I'indice du site). Les lignes verticales noires tiretées marquent la
position des croisements évités.

d’évolution d’Heisenberg couplées pour les perturbations le long de la zone de Brillouin. I’étude
du spectre \;(g) (avec i = 1,2,3,4) de la matrice de couplage de ces équations différentielles
d’ordre 1 nous permets de déterminer les régions de la zone de Brillouin ou le systéme présente
des instabilités dynamiques (via le parametre w(q) = max;{| Im{\;(¢)}|}, voir résumé p. 136).
Cette analyse renseigne sur les quasi-moments en lesquels on peut s’attendre a ce que se peuplent
des modes dynamiquement instables. La figure F.12 présente le résultat de cette modélisation.
On y observe le comportement général qui ressort de notre étude, a savoir que de fines régions
d’instabilité sont localisées au voisinage des croisement évités dans les spectres de Hy (qui

modélisent eux-mémes les spectres de quasi-énergie du systeme réel).
Nous poursuivons avec une série de prédictions sur le comportement des pics de diffraction

décimaux en fonction des parametres du systeme (voir section 5.2.5, p. 138). Notamment, on
s’attend a ce que la fréquence de modulation du potentiel, qui a pour principale conséquence de
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Figure F.13 | Déplacement de ’instabilité avec la fréquence de modulation. (a) Concaténation
d’images d’absorption expérimentales (post temps de vol et moyennées sur 3 réalisations), apres un nombre
fixe de n = 100 périodes de modulation, en fonction de la fréquence de modulation v. (b) Comparaison
entre la position moyenne de I'instabilité (en terme du quasi-moment réduit k/k;, dans la structure de
bande dépliée) extraite a partir d’'un ajustement de la position des quatre ordres décimaux dans U'intervalle
1 < |p|/hkL < 3 (points bleus, les barres d’erreur correspondant & un écart-type sur la statistique de
12 points) et le quasi-moment de résonance entre les bandes d’intérét (ligne noire) en fonction de v.
(c) Diagramme de transition & partir de la bande fondamentale tracé sur les deux premiéres zones de
Brillouin (lignes noires) et transitions adressées pour les données by, by et by (bleu). Voir figure 5.7,
p- 142, pour davantage de détails.

déplacer les croisements évités dans la zone de Brillouin (comme suggéré par le graphe F.11(e)),
nous permette d’accorder la position des pics décimaux dans les figures de diffraction (voir
figure 5.5, p. 139).

Nous présentons a une série d’expériences qui confirment ces prédictions (voir section 5.3),
comme illustré sur la figure F.13 dans le cas énoncé ici du déplacement des motifs émergents en
fonction de la fréquence de modulation du potentiel. Ces expériences confirment nos prédictions,

et la justesse de notre modele a deux bandes fortement liées avec interactions.

Pour conclure, nous discutons de la nature de 1’état réalisé dans le systéeme, et confrontons
I’hypothese de I’émergence d’un ordre in-situ de période d* supérieur au pas d du réseau optique.
Pour évaluer ces points, des simulations Truncated- Wigner [201] ont été réalisées par notre col-
laborateur Peter Schlagheck de I’Université de Liege. Ces simulations confirment 1’émergence
d’une structuration a longue portée dans le systéme, présentant une période d* ~ 27/q* (avec
q* le quasi-moment des instabilités). De fagon inhérente aux simulations Truncated- Wigner (de
par la considération in fine d’'une moyenne sur de nombreuses trajectoires simulées), cette struc-
turation est invisible sur la densité in-situ, mais peut étre retrouvée en calculant une corrélation
d’ordre deux (voir figure 5.12, p. 149). Ces simulations pointent aussi que la cohérence est
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préservée dans les modes instables, comme suggéré en premier lieu expérimentalement par
I’observation des pics décimaux sur les figures de diffraction.

Ce travail résulte d’une collaboration avec Peter Schlagheck de 'unité de recherche CESAM
a I’Université de Liege. Une publication est en préparation :

[66] N. Dupont, L. Gabardos, F. Arrouas, G. Chatelain, M. Arnal, J. Billy, P. Schlagheck,
B. Peaudecerf, and D. Guéry-Odelin, Emergence of a tunable supercrystalline order in a
Floguet-Bloch system, In preparation, (2022)
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Abstract: The field of quantum simulation aims at emulating complex quantum systems on platforms
that are easier to control and observe. In the last twenty years, ultracold atoms in optical lattices have
established themselves as a versatile controllable system for quantum simulation. The three experimental
studies presented in this manuscript take place in the development of this field. They are performed using
Bose-Einstein condensates (BECs) in a one-dimensional optical lattice that can be precisely controlled in
amplitude and phase.

In the first study, we use the optimal control formalism to compute the way in which to continuously
shift the lattice in order to arbitrarily shape the BEC distribution in the phase space of the system.
We apply this method to different targets, among which squeezed Gaussian states more than four times
narrower in position than the ground state of the system, as well as the ideal Floquet state superposition
to perform quantum simulation of dynamical tunneling is the modulated lattice.

The second study concerns the realization of a non-diffusive Hamiltonian ratchet. The ratchet effect
consists in the emergence of a directed current of particles in a system with no net force. In this second
work, we correlate the amplitude and phase modulations of the lattice to produce, in the phase space
of the system, a region of non-chaotic trajectories that travels between lattice sites, resting periodically
in the center of each sites. We experimentally implement this system and observe non-diffusive ratchet
transport of matter waves in the optical lattice.

Finally, we show how short-range interactions between atoms in the BECs lead to the emergence of
a supercrystalline order in a sinusoidally modulated optical lattice for a modulation frequency coupling
two energy levels. We develop a two-band tight-binding model which predicts that collisions occuring
between the atoms of the BECs can lead to the growth of unstable Bogoliubov modes in the vicinity of
avoided crossings in the quasi-energy spectrum of the modulated system. Interestingly, we experimentally
demonstrate that the periodicity of the emergent order can be tuned through Floquet engineering of these
crossings.

Résumé : Le domaine de la simulation quantique vise a émuler des systémes quantiques complexes
sur des systemes plus simples a observer et a controler. Ces vingt dernieres années, les gaz d’atomes
ultrafroids sur réseau optique se sont démarqués comme une plateforme versatile et contrélable pour la
simulation quantique. Les trois études expérimentales présentées dans ce manuscrit s’inscrivent dans le
développement de ce domaine. Elles sont réalisées avec des condensats de Bose-Einstein (CBE) placés
dans un réseau optique unidimensionnel dont on peut controler finement la phase et I’amplitude.

Dans la premiere étude, nous utilisons le formalisme du controle optimal pour calculer la phase variable
que doit avoir le réseau optique au cours du temps afin de préparer des distributions arbitraires de CBE
dans I'espace des phases du systeme. Avec cette méthode, nous réalisons différents états, parmi lesquels
des états gaussiens jusqu’a quatre fois plus comprimés en position que 1’état fondamental du réseau
optique, ou encore la superposition idéale d’états de Floquet pour faire une simulation quantique d’effet
tunnel dynamique dans le réseau optique modulé.

La deuxiéme étude traite d'un effet ratchet (rochet) non-diffusif dans un systéme hamiltonien. L’effet
ratchet est 'émergence d’un courant de particules dans un potentiel duquel aucune force nette n’est
dérivée. Dans ce travail, nous corrélons les modulations d’amplitude et de phase du réseau afin de faire
émerger, dans I'espace des phases du systéme, une région de trajectoires non-chaotiques qui transite d’un
site au suivant en s’arrétant périodiquement au centre du site. Nous réalisons expérimentalement ce
systeme et observons le transport ratchet non-diffusif d’ondes de matiere dans le réseau optique.

La derniere étude présentée dans cette these démontre comment, dans un réseau optique modulé
sinusoidalement a une fréquence couplant deux bandes du systeme, les interactions a courte-portée entre
atomes du CBE peuvent entrainer ’émergence d’un ordre supercristallin. Nous développons un modele
de bandes fortement liées a deux niveaux prédisant que les collisions interatomiques dans le CBE peuvent
mener a la croissance de modes instables de Bogoliubov situés a proximité des croisements évités dans le
spectre de quasi-énergie du systéme modulé. Notamment, nous montrons expérimentalement comment
la périodicité de cet ordre émergent peut étre accordée en procédant a l'ingénierie de Floquet de ces
croisements.
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