
HAL Id: tel-03997401
https://theses.hal.science/tel-03997401v2

Submitted on 22 May 2023 (v2), last revised 16 Aug 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Control and transport of matter waves in an optical
lattice

Nathan Dupont

To cite this version:
Nathan Dupont. Control and transport of matter waves in an optical lattice: Optimal control, ratchet
effect and study of an emergent supercrystalline order. Quantum Physics [quant-ph]. Université
Toulouse 3 - Paul Sabatier, 2022. English. �NNT : �. �tel-03997401v2�

https://theses.hal.science/tel-03997401v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

 

Présentée et soutenue par

Nathan DUPONT

Le 15 décembre 2022

Contrôle et transport d'ondes de matière dans un réseau
optique : Contrôle optimal, effet ratchet et étude de l'émergence

d'un ordre supercristallin

Ecole doctorale : SDM - SCIENCES DE LA MATIERE - Toulouse

Spécialité : Physique 

Unité de recherche :
LCAR - Laboratoire Collisions Agrégats Réactivité 

Thèse dirigée par
David GUERY-ODELIN

Jury
Mme Caroline CHAMPENOIS, Rapporteure

M. Jérôme BEUGNON, Rapporteur
M. Éric SURAUD, Examinateur

M. Nathan GOLDMAN, Examinateur
M. David GUERY-ODELIN, Directeur de thèse





Contents

List of Figures iii

Remerciements vii

General introduction 1

I Methods for the study of wave function dynamics in a one-dimensional

periodic potential 7

1 Elements of theory for the study of a wave function in a one-dimensional potential 9

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Classical particle in a one-dimensional periodic potential . . . . . . . . . . . . . . . . . . 11

1.2 Wave function in a time-independent sine potential . . . . . . . . . . . . . . . . . . . . 18

1.3 Wave function in a time-dependent sine potential . . . . . . . . . . . . . . . . . . . . . 24

1.4 Quantum states in the phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Experimental setup 37

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Experimental sequence for Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . 40

2.3 Observing the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 The one-dimensional optical lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II Control and transport of the BEC one-body wave function in the optical

lattice 59

3 Quantum optimal control of matter waves in a one-dimensional optical lattice 61

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Optimal-control formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Controlling momentum distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Wave function control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 An application to quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

i



Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Non-diffusive Hamiltonian ratchet 97

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Designing a non-diffusive Hamiltonian ratchet in classical mechanics . . . . . . . . . . . . 102

4.2 Quantum ratchet transport along regular classical trajectories . . . . . . . . . . . . . . . 108

4.3 Experimental ratchet transport of matter waves . . . . . . . . . . . . . . . . . . . . . . 112

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

III Beyond the one-body wave function 119

5 Emergence of a tunable supercrystalline order in a Floquet-Bloch system 121

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Modulation regime and typical observations . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 An effective tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Discussion on the realized state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

General conclusion 151

IV Appendices 157

A Rubidium 87 D2 line 159

B Dipole beams preparation and control 161

C Lattice beams preparation and control 163

D Effect of the control duration in our QOC protocol 167

E Additional optimal control preparations 169

E.1 Momentum distribution control from the resting BEC . . . . . . . . . . . . . . . . . . . 169

E.2 Control of the relative phases between three momentum components . . . . . . . . . . . . 169

E.3 Squeezed and rotated Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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Je remercie sincèrement Maxime Martinez, Bertrand Georgeot, Gabriel Lemarié, Olivier
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General introduction

The use of light and magnetic fields to control the external degrees of freedom of atoms

(their position and speed) has revolutionized the field of atomic physics. Benefiting from the

development of lasers in the 1960s, techniques of laser trapping and cooling [1, 2, 3] have resulted

in unprecedented control abilities of atomic particles, to such an extent that, in 1997, S. Chu, C.

Cohen-Tannoudji and W. Phillips were awarded the Nobel Prize in Physics for their contributions

to the development of these experimental techniques. Using them, one is able to cool gases of

atoms near the absolute zero, at temperatures where the unusual laws of quantum physics begin

to prevail. An emblematic example of this is Bose-Einstein condensation. Through this quantum

phase transition first described by A. Einstein around 1925 [4, 5], a bosonic gas goes from an

ensemble of particles classically described by Maxwell-Boltzmann statistics to a macroscopically

populated matter wave whose evolution is governed by quantum mechanics: a Bose-Einstein

condensate (BEC).

Bose-Einstein condensation was achieved for the first time in 1995, 70 years later, in the

groups of E. Cornell and C. Wieman [6] and in that of W. Ketterle [7], from the combination

of laser and evaporative coolings. This experimental achievement, rewarded by the Nobel prize

in 2001, marked the birth of the field of quantum gases which has been constantly growing ever

since. Ultracold quantum gases, which may be bosonic or fermionic, constitute very versatile

platforms for the experimentalist to study and harness quantum mechanics:

� Using laser and magnetic fields, one is able to realize a wide variety of potentials [8, 9] in

which to study the evolution of quantum systems. It is for instance possible to manipulate

single atoms in optical tweezers [10, 11] and realize controllable periodic Bloch potential

using e.g. optical lattices [12] or spatial light modulators [13, 14].

� Effective Hamiltonians [15, 16] can be designed in Floquet systems, where one periodically

modulates the potentials in order to design specific energy level structures and dynamics.

Such Floquet engineering is for example an approach to create artificial magnetism for

neutral atoms [17, 18].

� A powerful tool provided by ultracold atoms is the ability to tune the strength and sign of

short-range interatomic interactions using magnetic fields and Feshbach resonances [19].

Also, a strong experimental effort has recently been devoted to the realization and control

of systems with longer-range interactions, such as dipolar gases [20, 21, 22] and Rydberg

atom ensembles [23, 24, 25].

This high degree of control offered by quantum gas setups is of particular interest in the fields

of quantum simulation and quantum metrology.

1



Quantum simulation [26, 27] consists in using a highly controllable quantum system to sim-

ulate the model Hamiltonian of another one, less controllable or more difficult to characterize.

This idea was first suggested by R. Feynman in 1982 [28], and, since then, quantum simulation

has been implemented on many platforms, such as superconducting circuits [29], photonic sys-

tems [30], trapped ions [31] and ultracold neutral atoms [32, 33, 34]. We are here interested in

this last platform, on which in the last twenty years, major experiments of quantum simulation

with ultracold atoms were realized. One can cite the three-dimensional implementation of the

Bose-Hubbard model, on which the phase transition between a superfluid and a Mott insulator

could be observed [35], the realization of the Anderson localization in one [36, 37], two [38, 39] and

three-dimensional [40, 41, 42] systems with simulated disorder, and the Berezinskii-Kosterlitz-

Thouless transition in two-dimensional gases [43, 44].

Another field of application that benefits from the great controllability offered by quantum

gases is quantum metrology. There, a key example of the advantage of manipulating fully

a quantum system is given by the use of squeezed states, which allow to reach sensitivities

closer to the fundamental limits intimately related to Heisenberg uncertainty principle [45, 46].

This is famously the case of squeezed photonic states, used to enhanced spectroscopy [47] and

interferometry experiments [48, 49], but there is also a long going theoretical and experimental

effort to take advantage of squeezing with matter for enhanced matter wave interferometry [50,

51, 52, 53, 54, 55].

All these applications call for the development of new optimization methods to control

and manipulate quantum states in cold atom systems. Several modern approaches have been

proposed for this purpose, among which we can cite quantum feedback [56], shortcut to adia-

baticity [57], machine learning [58] and optimal control theory [59, 60].

The Cold Atoms research group in which I did my PhD at Laboratoire Collisions, Agrégats

et Réactivité (LCAR, Toulouse) takes part in the effort to develop techniques to control ultracold

atom systems. My PhD work reported in this manuscript deals with both the development of

such methods and their application to quantum simulation studies in a Floquet-Bloch system

(periodic in space and time). The LCAR Cold Atoms group developed an ultracold atom

experiment producing BECs of 87Rb that are placed in a far-detuned one-dimensional optical

lattice. Along the axis of the lattice, the atoms experience a sine potential whose depth and

position can be arbitrarily controlled in time by the means of acousto-optic modulators. This

system constitutes a powerful and versatile platform to develop new methods for the control

of quantum states, as well as to experimentally study the dynamics of matter waves in a sine

potential with controllable time dependencies, in a regime of weakly interacting particles.

Summary of my work and outline of this manuscript

This manuscript presents the research work in which I participated from 2019 to 2022 in the

Cold Atoms group at LCAR. It is divided into three parts: a first part introducing theoretical,

numerical and experimental methods required for the studies presented in the thesis, a second
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part featuring results about the control and transport of quantum states apprehended in the

one-body wave function formalism and a third part presenting a study beyond one-body physics

in our system. New results are presented in the parts two and three of this thesis. There, a

detailed introduction on the addressed subject is given in the beginning of the corresponding

chapter.

Part 1 - Methods for the study of wave function dynamics in a one-dimensional periodic

potential. The first part, made up of two chapters, is dedicated to the introduction of methods

to study the dynamics of wave functions in a one-dimensional periodic potential whose param-

eters can be periodically modulated in time. Chapter 1 consists in reminders of theoretical

concepts and numerical tools for the study of such one-dimensional Floquet-Bloch systems. I

then present in Chapter 2 the BECs experiment and the controllable optical lattice used to

implement this system in the laboratory, and with which the results presented in the following

parts were obtained.

Part 2 - Control and transport of the BEC one-body wave function in the optical lattice.

The second part of this manuscript features two research works where the evolution of the

atomic state is described by the Schrödinger equation and the formalism introduced in Chap. 1.

In Chapter 3, I present the experimental implementation of a quantum-optimal control protocol

in our experiment: by continuously shifting the optical lattice in an optimal way, we demonstrate

our ability to prepare arbitrary momentum distributions and motional quantum states for the

BECs in the lattice. This allowed us to prepare squeezed Gaussian states up to more than four

times narrower in position than the ground state of the optical lattice, a state that would be

unattainable using standard adiabatical methods. To characterize the states that we prepare,

we implemented a quantum state tomography based on likelihood maximization which I then

detail. I conclude this chapter with the presentation of a concrete application of quantum-

optimal control to a simulation of dynamical tunneling in a Floquet system. Chapter 4 features

a study (both numerical and experimental) of the ratchet effect, which consists in the emergence

of a directed current of particles in a potential periodic in space and time. I begin with a classical

mechanics study in which I show how to design an integrable ratchet effect in a Hamiltonian

system by correlating the modulations of amplitude and phase of a symmetric sine potential.

I then consider quantum mechanics in this system, and detail how quantum transport along

the ratcheting classical trajectories depends, in a non-monotonous way, on the effective Planck

constant. Following these studies, we experimentally realized this system, and I report on the

observation of non-diffusive ratchet transport of matter waves in the optical lattice.

Part 3 - Beyond the one-body wave function. The last part of this manuscript is composed

of Chapter 5, featuring a study of the emergence of a supercrystalline order that results from

interatomic interactions in the modulated optical lattice. In the experiments presented in this

chapter, we load the atoms in the ground state of the lattice before modulating its phase at a

frequency that couples the ground band to an excited band, that coupling being not resonant for
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the initial state. In this configuration, we show how two-body collisions occurring between atoms

of the ground state lead to the appearance of atomic population at symmetric quasi-momenta

through four-wave mixing, at a position in the Brillouin zone that can be tuned by Floquet

engineering the quasi-energy spectrum of the system. This produces a new periodicity in the

distribution of atoms in the lattice, larger and non-commensurable with the lattice spacing.

The work presented in Chap. 3 results from a collaboration with Prof. D. Sugny from the

Laboratoire Interdisciplinaire de Carnot Bourgogne (Dijon), and the work presented in Chap. 5

results from a collaboration with Prof. P. Schlagheck from the CESAM research unit at the

University of Liège.
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Chapter 1 - Elements of theory for the study of

a wave function in a

one-dimensional potential

Si vous me savez peu de gré de ce que je vous dis, sachez-m’en beaucoup de ce que je

ne vous dis pas.

Denis Diderot (Jacques le Fataliste et son mâıtre, ca. 1778)
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Introduction

The goal of this first chapter is to briefly recapitulate elements of theory, concepts and

numerical tools used to study one-body wave functions in one-dimensional periodic potentials

without interactions. The methods that we recall will then be used throughout this manuscript.

Some of the developments presented in this chapter are inspired from [69].

1.1 Classical particle in a one-dimensional periodic potential

In this first section, we present some reminders on analytical mechanics. The main objective

is to introduce the notion of phase space, and the construction of the stroboscopic phase portrait

of a one-dimensional system periodically modulated in time. In the end of this first chapter,

after discussing quantum dynamics in a one-dimensional sine potential, we revisit the notion of

phase space to introduce the phase space representation of a quantum state (Sec. 1.4).

1.1.1 Basics on analytical mechanics

Lagrangian mechanics. We consider a classical system with N degrees of freedom. In the La-

grangian formulation of analytical mechanics, the state of the system is completely described by

N independent generalized coordinates q = (q1, ..., qN ) and their time derivatives q̇ = (q̇1, ..., q̇N ).

The dynamics of the system is ruled by the Lagrangian

L(q, q̇, t) = T − V, (1.1)

with T and V being respectively the kinetic and potential energies. Given an initial condition

(q(t0), q̇(t0)), the classical trajectory q(t) that the system will follow over the time interval [t0, t1]

is, among all the possible trajectories, the one that minimizes the action S, a functional of q(t)

that reads

S [q(t), t0, t1] =

∫ t1

t0

L(q, q̇, t) dt. (1.2)

The minimization of S leads to N Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1.3)

which in turn gives N equations of motion.
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Hamiltonian mechanics. To introduce the phase space of the system, we switch to the Hamilto-

nian formulation of analytical mechanics by introducing the generalized momenta p = (p1, ..., pN )

and the Hamiltonian H through the Legendre transformation:

pi =
∂L

∂q̇i
, H (q,p, t) =

N∑
i=0

q̇ipi − L. (1.4)

From the Hamiltonian, the equations of motion are given by the Hamilton equations:

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

. (1.5)

For a particle of mass m, a Cartesian coordinate system, a kinetic energy T (q̇) = mq̇2/2 and a

potential V (q, t) that does not depend on the velocities q̇, the Hamiltonian is

H(q,p, t) = T (p) + V (q, t), (1.6)

where the generalized momenta are the usual momenta p = mq̇.

Phase space. In the Hamiltonian formalism, the state of the system at a given time t0 is

a point (q(t0),p(t0)) in the phase space of the system. In this space of dimension 2N , the

conservation of the mechanical energy constrains trajectories (q(t),p(t)) on a hypersurface of

dimension 2N − 1. For such a constant Hamiltonian system, the determinism of the dynamics

implies that there cannot be intersection of trajectories in the phase space, since then the state

at the hypothetical crossing would have multiple possible evolutions.

Integrability of a dynamical system. The dynamics of an Hamiltonian system is fully inte-

grable if there are as many conserved and independent constants of motion as there are degrees

of freedom [70, 71, 69]. As we will see for the time-independent sine-potential in one dimension,

the phase space of an integrable system only displays regular trajectories. On the other hand,

irregular chaotic trajectories can emerge in the phase space of systems with fewer constants of

motion than degrees of freedom. As for most of the dynamical systems studied in this thesis,

the majority of physical systems present a mixed dynamics, with the coexistence of integrable

and chaotic trajectories.

1.1.2 Phase space of the one-dimensional sine potential

The Hamiltonian that will interest us in most of this manuscript is the Hamiltonian for the

one-dimensional sine potential of spatial period d whose depth and position can be varied along

time:
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H(x, p, t) =
p2

2m
−A(t)× V0

2
cos

(
2πx

d
+ ϕ(t)

)
. (1.7)

with A(t) a dimensionless scaling function of order 1. In this section, we study the classical

dynamics in this system by successively considering the case where H is time-independent, the

case where it is time-dependent and the special case where H is periodic in time.

Time-independent sine potential. We first consider the time-independent Hamiltonian with

modulation functions A(t) = 1 and ϕ(t) = 0 in Eq. (1.7):

H(x, p) =
p2

2m
− V0

2
cos

(
2πx

d

)
, (1.8)

which corresponds to the Hamiltonian of the simple pendulum. To represent the phase space of

the system, the general strategy is to compute1 several trajectories (x(t), p(t)) for several initial

conditions (x0, p0) using the Hamilton equations (1.5). However, as the time-independent Hamil-

tonian (1.8) conserves the mechanical energy, we can circumvent the explicit numerical integra-

tion of individual trajectories, evaluate the Hamiltonian over the discretized two-dimensional

space (x, p) and display lines of iso-mechanical energy. These lines (also called orbits, which we

draw in Fig. 1.1) correspond to trajectories (x(t), p(t)) of a classical particle described by the

Hamiltonian (1.8). As the ordinate p of a point informs on the time evolution of its abscissa x,

orbits are followed in a given direction (clockwise in a (x, p) plot where x and p are defined as

increasing to the right and upwards respectively, as in Fig. 1.1).

We display the separatrix, the limit trajectory of infinite period that separates periodic

trajectories bounded within a site of the potential from unbounded trajectories that travel

between sites. We define the momentum psep =
√

2mV0 of the separatrix in x = 0. We note

that, displaying the position in units of d and the momentum in units of psep, the phase space of

Fig. 1.1(b) describes the classical dynamics of the Hamiltonian (1.8) for all specific parameters

m, V0 and d. As we discuss in Sec. 1.4, this scaling invariance of the dynamics does not hold in

the quantum case.

!

In this manuscript, we use different sets of characteristic quantities to scale the dynamics.

In Fig. 1.1, the (x, p) phase space is plotted with respect to x/d and p/psep. In a following

paragraph concerning time-modulated potentials, the time scale in the scaling of the

momentum is proportional to the period of modulation. A summary on our two main

dynamical scalings is presented at the end of this chapter (p. 33).

1In the work presented in this manuscript, we use the Runge-Kutta “RK4” method to integrate classical dynamics.
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Figure 1.1 One-dimensional sine potential and corresponding phase space. (a) One dimen-
sional sine potential over three spatial cells (solid blue line). We draw a particle moving in the potential
(black marker and arrow). (b) (x, p) phase space over one spatial cell, with bounded trajectories (plain
black lines), unbounded trajectories (dashed black lines) and the separatrix (dotted red line). We mark
the phase space coordinate of the particle in panel (a) (black marker) with the direction of its evolution
(black arrow).

Time-dependent sine potential. The situation becomes more complicated for time-dependent

systems. First of all, the mechanical energy is not conserved anymore. Even in one dimension,

we have fewer constant(s) of motion than degree(s) of freedom, so we lose the certainty of

having integrable dynamics. Furthermore, in the general case of time-dependent Hamiltonians

H(x, p, t), one cannot simply adjoin integrated trajectories in the (x, p) plane in order to display

the phase space of the system. Indeed, as the states in (x0, p0, t1) and (x0, p0, t2) generally

experience different potentials V (x0, t1) and V (x0, t2), they evolve along different trajectories.

A naive (x, p) plot of the trajectories would result in crossing trajectories artifacts. Therefore,

for a time-dependent system, one has to consider the (x, p, t) phase space, with an additional

effective dimension.

Periodically time-modulated sine potential. A specific type of time-dependent systems that

interests us in this manuscript is the case of the periodically modulated sine potential in one

dimension, with a Hamiltonian of the form H(x, p, t + T ) = H(x, p, t) (with T the modulation

period). Here, the periodicity of the Hamiltonian allows for a valid and informative representa-

tion of the (x, p, t) phase space in the (x, p) plane. To compare trajectories when the potential is

identical, one only displays the states (x(t), p(t)) of the system at times t = t0 +nT . As depicted

in Fig. 1.2(a) for one trajectory, this amounts to only considering the trajectories when they
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Figure 1.2 Construction of a stroboscopic phase portrait. (a) Intersections (blue dots) between
a trajectory (blue solid line) of the (x, p, t) phase space and the planes (x, p, tn) with tn = t0 + nT (see
text). (b) Resulting strobscopic phase portrait. Figure inspired from [69].

intersect the planes (x, p, t0 + nT ), with 0 ≤ t0 < T and n ∈ N. The resulting plot (Fig. 1.2(b))

is called the stroboscopic phase portrait and is an example of Poincaré section, a method to

represent the phase space of a system in a subspace of lower dimensionality [69].

We now give examples of stroboscopic phase portraits. We consider the time-dependent

Hamiltonian (1.7) whose depth and position reference are modulated periodically: A(t + T ) =

A(t) and ϕ(t+ T ) = ϕ(t). We define the dimensionless units

x̃ =
2π

d
x, t̃ =

2π

T
t, p̃ =

dx̃

dt̃
=

T

md
p and H̃ =

T 2

md2
H. (1.9)

From Eqs. (1.7) and (1.9), the dimensionless Hamiltonian reads:

H̃(x̃, p̃, t̃) =
p̃2

2
−A(t̃)× γ cos

(
x̃+ ϕ(t̃)

)
(1.10)

with the scaled potential amplitude γ = V0T
2/2md2. In Fig. 1.3, we consider two cases:

(a) The offset2 modulation of amplitude with one harmonic:

A(t̃) = 1 + ε0 cos
(
t̃
)

(1.11)

ϕ(t̃) = 0

2In Chap. 2, we present the experimental realization of the systems discussed in this chapter. We then see how
experimental constraints require |A(t̃)| > 0, which explain the form of A(t̃) in Eq. (1.11), with 0 ≤ ε0 ≤ 1 in the
experiment.
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Figure 1.3 Examples of stroboscopic phase portraits. Top: periodically modulated potentials
over three spatial periods. Bottom: stroboscopic phase portraits. (a) Modulation of the depth of the
potential, i.e. Eq. (1.10) for the modulation functions (1.11), with γ = 0.375, ε0 = 0.24 and a subperiod
time of stroboscopic observation t̃0 = 0 (see text). (b) Modulation of the position reference of the
potential, i.e. Eq. (1.10) for the modulation functions (1.12), with γ = 0.44, ϕ0 = 2π/24 = 15o and a
subperiod time of stroboscopic observation t̃0 = 0.

(b) The phase modulation with one harmonic:

A(t̃) = 1 (1.12)

ϕ(t̃) = ϕ0 cos
(
t̃
)

In the stroboscopic phase portraits of Fig. 1.3(a2,b2), we see three kinds of trajectories:

� We first have trajectories that live on closed lines inscribed inside one another. These

regions of various shapes are called regular islands and consist of sections of inscribed

tori3 made of surfaces of regular trajectories in the (x, p, t) phase space.

� At large dimensionless momentum (|p̃| & 1 in Fig. 1.3), we see the unbounded trajectories

that we already encountered in the case of the static potential (Fig. 1.1(b)), with enough

mechanical energy to only be slightly perturbed by the modulation.

� Finally, inside the unbounded trajectories and surrounding the regular islands is the chaotic

sea, a region of irregular trajectories that ergodically span all the accessible region of the

phase space.

3They are also called KAM tori [71], for A. Kolmogorov [72], V. Arnold [73] and J. Moser [74]. A classical
trajectory cannot cross a KAM torus by virtue of determinism.
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Figure 1.4 Subperiod evolution of a stroboscopic phase portrait. (a-e) Stroboscopic phase
portraits of the same Hamiltonian (1.10) in the amplitude modulation case of Eq. (1.11). The difference
between the panels is the reference time t̃0 of the stroboscopic observations, with t̃0 = 0, π/2, π, 3π/2 and
2π for (a) to (e) resp.

The phase portraits of Fig. 1.3 give examples of mixed dynamics, with the coexistence of regular

and chaotic trajectories. The degree of chaos (i.e. the ratio of phase space area between the

chaotic sea and the regular islands) depends on the strength of the modulations [75, 69].

The stroboscopic phase portraits of Fig. 1.3 correspond to the specific choice of subperiod

observation time t̃0 = 0 (in accordance with our definitions of the modulation functions A(t̃)

and ϕ(t̃) in Eqs (1.11) and (1.12) ; see Fig.1.2 and the explanation of the construction of a

stroboscopic phase portrait). This parameter can be varied to inform on the sub-stroboscopic

evolution of the system. We illustrate this procedure in Fig. 1.4, where we draw, for different

times 0 ≤ t̃0 ≤ 2π, the stroboscopic phase portraits in the case of the amplitude modulation of

the sine potential (Fig. 1.3(a)). In Fig. 1.4, we can discriminate between two kinds of regular

islands: the islands that are linked to a given site of the potential (e.g. the three islands on

the p̃ = 0 axis at t̃0 = 0) and the islands that travel to neighboring sites between periods (e.g.

the two islands in (x̃, p̃) ≈ (0,±1.25) at t̃0 = 0). In the dimensionless units (1.9), the average

momentum of any trajectory from a given regular island is the same rational number4:

〈p̃reg〉 = lim
n→∞

1

n× 2π

∫ n×2π

0
p̃reg(t̃) dt̃ = w ∈ Q, (1.13)

for p̃reg(t̃) the scaled momentum of a trajectory in the regular island. The number w is the wind-

ing number [76, 71] of the regular island, which corresponds to the number of sites traveled per

modulation period. This observation is at the heart of Chap. 4, where, through the correlation

of the amplitude and phase modulations (Eqs. (1.11) and (1.12)), we engineer a transporting

regular island (i.e. with a winding number w 6= 0) that passes by (x, p) = (0, 0).

4In the evaluation of this average, the necessity of the limit comes from the quasi-periodicity of trajectories in
regular islands. With the exception of the trajectory at the center of a regular island, the result 〈p̃reg〉 = w ∈ Q
is in general only obtained asymptotically.
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1.1.3 Symmetries of the phase space.

The symmetries of the phase space reflect the symmetries of the Hamiltonian. The two

relevant symmetries for our dynamical study are the spatial symmetry Sx and the time-reversal

symmetry St:

Sx :
x→ −x
t→ t

, and St :
x→ x

t→ −t
(1.14)

with each symmetry transformation implying p→ −p. At time t, a given Hamiltonian H(x, p, t)

with trajectories (x(t), p(t)) has the symmetry S if the symmetric trajectories S(x(t), p(t)) are

solutions of the symmetric equations of motion deduced from S(H(x, p, t)).

For instance, the amplitude modulation of Eq. (1.11) never breaks the spatial symmetry Sx̃

of the Hamiltonian (1.10). Therefore, the stroboscopic phase portraits in Fig. 1.4 have the central

symmetry (x̃, p̃) → (−x̃,−p̃) for all observation times t̃0. Moreover, the amplitude modulation

being a function of cos
(
t̃
)
, the Hamiltonian has the symmetry St̃ only at times t̃0 = nπ with

n ∈ N, which corresponds to the instants when the stroboscopic phase portraits have the axial

symmetry (x̃, p̃)→ (x̃,−p̃) (Fig. 1.4(a,c,e)). The same analysis for the phase modulation (1.12)

confirms the fact that the stroboscopic phase portrait of Fig. 1.3(b) displays the symmetry St̃
but not Sx̃ at t̃0 = 0.

This concludes our reminders on classical mechanics. We now turn to the quantum regime

for the study of a wave function in the sine-potential system.

1.2 Wave function in a time-independent sine potential

We first consider the case of a quantum particle in the static potential

V (x) = −V0

2
cos

(
2πx

d

)
. (1.15)

≡

We define characteristic quantities that we use throughout this manuscript:

� the wave number of the sine potential kL = 2π/d,

� the characteristic energy EL = ~2k2
L/2m = h2/2md2,

� the corresponding frequency νL = EL/h = h/2md2,

with h the Planck constant. In the following, we express the depth V0 of the potential

in units of EL through the dimensionless parameter s0 = V0/EL. In Chap. 2, we discuss

the experimental implementation of the potential (1.15) and we give the numerical values
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of these quantities. In the experiment, realistic accessible values for s0 are in the range

[0, 40].

When working with optical lattices, an energy scale commonly found in the literature

is the recoil energy Er = h2/8md2 = EL/4, which is the kinetic energy acquired by an

initially resting atom of mass m when absorbing of a photon with wave number kL/2. The

realistic range for experimental lattice depths given in the previous paragraph corresponds

to V0 ≤ 160Er.

The quantum treatment of periodic potentials falls under the study of wave functions in

crystalline structures. A major result in this field is Bloch’s theorem, that we briefly present in

the one-dimensional case.

1.2.1 Bloch’s theorem in one dimension

We want to determine the eigenvectors of a generic one-dimensional Hamiltonian:

Ĥ =
p̂2

2m
+ V̂ (x) (1.16)

with p̂ = −i~ ∂/∂x and a spatially periodic potential V̂ (x + d) = V̂ (x). We define the plane

waves |χr〉, eigenstate of the momentum operator p̂ with eigenvalue r~kL:

〈x|χr〉 = χr(x) =
eirkLx

√
d

(1.17)

with a normalization over one site of the potential. Since Ĥ is left invariant by the discrete

spatial translation x → x − d, it commutes with the spatial translation operator T̂d = e−idp̂/~.

Consequently, one can look for a basis of states in which Ĥ and T̂d are diagonal operators,

i.e. a common set of eigenstates for Ĥ and T̂d. Bloch’s theorem [77, 78, 79] states that these

eigenstates are the product of a plane wave χq/kL
(x) and a function with the periodicity of the

potential. They are functions of the form:

ψq(x) = uq(x)eiqx, (1.18)

where the wave number q will be referred to as the quasi-momentum5, and uq(x + d) = uq(x).

Considering smooth enough potentials V (x), the functions uq(x) can be expressed as their

Fourier series:

uq(x) =
∑
`∈Z

cq,`
ei`kLx

√
d

=
∑
`∈Z

cq,` χ`(x), (1.19)

5Even though the quantity associated to q that is homogeneous to a momentum is rather ~q.

19



with cq,` ∈ C. From Eqs. (1.18) and (1.19), the Bloch eigenstates can be written as

ψq(x) =
∑
`∈Z

cq,`
ei(`kL+q)x

√
d

=
∑
`∈Z

cq,` χ`+q/kL
(x), (1.20)

as well as any state evolving in the potential at given quasi-momentum q, since the basis of

the Bloch eigenstates spans the Hilbert space for all q. We refer to the coefficients cq,` ∈ C as

the plane wave coefficients of a state, with the normalization condition
∑

` |cq,`|2 = 1. Within

a subspace of fixed q, a state in a Bloch system is fully defined by the infinite set of its plane

wave coefficients, and we see from Eq. (1.20) that it consists of a comb of plane waves with

momenta p = ~(`kL + q) (with ` ∈ Z). We see that a phenomenological interpretation for the

quasi-momentum is that it is the quantity that sets the momentum reference of the plane wave

comb in the rest frame of the potential. Furthermore, Eq. (1.20) implies that quantum states

at a given quasi-momentum in Bloch systems are periodic under the discrete quasi-momentum

translation q → q + kL (with cq+mkL,` = cq,` for m ∈ Z in the plane wave expansion of a given

state ψq(x)). This defines the first Brillouin zone, the relevant quasi-momentum cell in which

to study the dynamics of a system, that we define as −0.5 < q/kL ≤ 0.5.

In the following, we write |ψq〉 an arbitrary state at quasi-momentum q, and |φq,n〉 the

nth Bloch eigenstate at quasi-momentum q (where the index n sorts the states by increasing

eigenvalues ; see below).

1.2.2 The central equation for the sine potential and the band structure

The central equation. We now go back to the specific case of a wave function in a sine

potential:

V (x) = −s0
EL

2
cos (kLx) . (1.21)

From Bloch’s theorem, we look for the eigenstates of this system in the form of Bloch waves

φq,n(x) =
∑

` c
(n)
q,` χ`+q/kL

(x) . Combining Eqs (1.16), (1.20) and (1.21), the time-independent

Schrödinger equation leads to the central equation:

Ĥφq,n(x) = Eq,nφq,n(x) (1.22)(
`+

q

kL

)2

c
(n)
q,` −

s0

4

(
c

(n)
q,`−1 + c

(n)
q,`+1

)
=
Eq,n
EL

c
(n)
q,` ,

with Eq,n the eigenenergy associated with the Bloch eigenstate |φq,n〉. We see that the Hamilto-

nian for the sine potential is tridiagonal in the basis of the plane waves, as it couples the plane

wave |χ`〉 to the plane waves |χ`±1〉. For given parameters (s0, q), its diagonalization gives the
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Bloch eigenstates and the associated eigenenergies. This is done numerically. As the Hilbert

space dimension of this continuous system is infinite, ` needs to be truncated to |`| ≤ `max, an

upper bound for the plane waves of highest kinetic energy considered. For a given problem, `max

is determined by making sure that the plane waves with the highest kinetic energy contributing

to the dynamics are taken into account (i.e. by ensuring that the choice of a greater `max results

in the same dynamics). The resulting Hilbert space dimension is dH = 2 `max + 1. To model

realistic situations in the experimental optical lattice (see Chap. 2), our simulations are typically

done with dH ∼ 30.

The band structure. For a given s0, the spectrum of the Hamiltonian as a function of the quasi-

momentum gives the band structure. In this thesis, we adopt the nomenclature (s, p, d, f ...)

for the bands of eigenenergy n = (0, 1, 2, 3 ...). In Fig. 1.5, we draw the band structures for

two non-zero potential depths, and we show examples of Bloch eigenstates by displaying their

plane wave coefficients cq,` and their spatial density of probability |φq,n(x)|2. We make a series

of remarks:

� We define the parity operator P̂ , whose action on an arbitrary state in the position repre-

sentation is

P̂ψq(x) = ψq(−x). (1.23)

For a symmetric potential V (x) = V (−x), the Hamiltonian commutes with P̂ . Therefore,

φ−q,n(x) = φq,n(−x). (1.24)

Consequently, we have c
(n)
q,` = ± c(n)

−q,−`, and moreover c
(n)
q,` = ± c(n)

q,−` for q ∈ {0, 0.5}. This

is illustrated in Fig. 1.5(b,c,d,g,h).

� For a Bloch system left invariant by the time-reversal symmetry St (1.14) (such as the

time-independent sine potential that we consider), the band structure is symmetric around

q = 0, so we have Eq,n = E−q,n [79] (see Fig. 1.5(a,e)).

� Comparing the two ground states in Fig. 1.5(d) and (h), we see that, as the depth of

the potential increases, the envelope of the c` gets wider and the probability dispersion of

the spatial density gets narrower. This illustrates the uncertainty principle ∆x∆p ≥ ~/2
between the two incompatible observables x and p. At the end of this chapter, we briefly

discuss the uncertainty principle when we consider the representation of a wave function

in the phase space (Sec. 1.4). This phenomenon is also highlighted in Chap. 3, where we

perform state squeezing in the optical lattice.

� Figure 1.5(f,g) shows two states at q 6= 0. We see how the momentum reference of the

plane wave comb is translated accordingly. In Chap. 5, we study the emergence of states

21



0.5 0.0 0.5
q/kL

0

1

2

E/
E L

d

c
b

a

0.5

0.0

0.5
b1

0.5

0.0

0.5

c q
,

c1

-2 0 2
p/ kL

0.0

0.5

1.0 d1

0

b2

0

|
q,

n(
x)

|2

c2

-0.5 0 0.5
x/d

0

d2

0.5 0.0 0.5
q/kL

1

0

1

2

3

E/
E L

h

g

f

e

0.5

0.0

0.5
f1

0.5

0.0

0.5

c q
,

g1

-2 0 2
p/ kL

0.0

0.5

1.0 h1

0

f2

0

|
q,

n(
x)

|2

g2

-0.5 0 0.5
x/d

0

h2

Figure 1.5 Band structures and Bloch eigenstates. (a,e) Band structures in the first Brillouin
zone obtained from Eq. (1.22) with s0 = 1 (a) and s0 = 5 (e). The bands s, p, d and f are in blue,
orange, green and red. The grey shaded areas indicate the energies below the maximum potential energy
V (±d/2) = s0EL/2. (b,c,d,f,g,h)1 Plane wave coefficients c` as a function of the plane waves momenta p
in the rest frame of the potential for the Bloch eigenstates identified on panels (a,e). (b,c,d,f,g,h)2 Spatial
densities of probability for the Bloch eigenstates identified on panels (a,e).
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coexisting at different quasi-momenta in a modulated optical lattice. The signature of the

phenomenon is the population of plane waves on translated momentum comb.

The limit s0 → 0. In the absence of potential (s0 = 0), the Hamiltonian in Eq. (1.22) is diagonal

in the basis of the plane waves. This is expected since the plane waves are the eigenstates of the

momentum operator p̂. The band structure then simply becomes Eq,n → Eq,`/EL = (`+q/kL)2,

i.e. the parabolic relation of dispersion for the free particle. In this situation, we get pairs of

degenerate eigenstates at q/kL = 0 and q/kL = 0.5 as there then exist two relative integer values

of ` such that ` + q/kL takes the same value (with the exception of ` = 0 at q = 0). This has

experimental consequences when performing a band-mapping (see Sec. 2.4.3).

1.2.3 Quantum state evolution in a Bloch system

In the absence of interactions, the dynamics of a wave function is ruled by the time-

dependent Schrödinger equation:

i~
∂

∂t
ψq(x, t) = Ĥ(t)ψq(x, t). (1.25)

From time t0 to t, the evolution of a state ψq(x, t0) is given by

ψq(x, t) = Û(t, t0)ψq(x, t0). (1.26)

The evolution operator Û(t, t0) is a unitary operator that satisfies the Schrödinger equation

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0). (1.27)

The solution of this equation reads

Û(t, t0) = T̂ exp

{
−i
~

∫ t

t0

Ĥ(t′)dt′
}
. (1.28)

where T̂ is the time-ordering operator. For a time-independent periodic potential, it simplifies

into

Û(t, t0) = e−iĤ×(t−t0)/~ (1.29)

=
∑
n∈N

e−iEq,n(t−t0)/~ |φn,q〉 〈φn,q| .
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We see that it is straightforward to obtain the evolution of an arbitrary state in the time-

independent sine potential (1.21) from its expansion on the Bloch eigenstates:

|ψq(t0)〉 =
∑
n∈N

dq,n(t0) |φq,n〉 (1.30)

⇒ Û(t, t0) |ψq(t0)〉 =
∑
n∈N

dq,n(t) |φq,n〉

with dq,n(t) = e−iEq,n(t−t0)/~ dq,n(t0).

In Chap. 2, we present a method to calibrate the depth of our optical lattice that con-

sists in probing the eigenenergies Eq,n by triggering an out-of-equilibrium evolution in the sine

potential.

1.3 Wave function in a time-dependent sine potential

1.3.1 Time-dependent sine potential: general case

Let us now consider the case of a sine potential whose depth and phase reference can be

arbitrarily varied in time:

V (x, t) = −A(t)× s0
EL

2
cos (kLx+ ϕ(t)) . (1.31)

The diagonal and off-diagonal matrix elements of the Hamiltonian in the central equation (1.22)

become

〈
χ`+q/kL±1

∣∣ Ĥ(t)

EL

∣∣χ`+q/kL

〉
= −A(t)s0 e∓iϕ(t)

4
. (1.32)

We cannot develop further in the case of arbitrary functions A(t) and ϕ(t). We can however

make numerical simulations to study a given dynamics, for instance by iteratively constructing

the evolution operator from a series of Hamiltonians considered constant over a small enough

time intervals δt:

Û(t, t0) = lim
δt→0

b(t−t0)/δtc∏
n=0

exp

{
−iĤ(t− nδt)× δt

~

}
. (1.33)

with b·c denoting the integer part. In Chap. 3, we show how the optical lattice can be contin-

uously moved in space in order to bring an initial state to a given target state. The quantum
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optimal control algorithm used for the determination of the control field x0(t) notably relies on

Eq. (1.33) to integrate the dynamics in the lattice.

In the next section, we address the specific case of time-periodic modulations of the sine

potential (1.31).

1.3.2 Time-periodic Hamiltonians : Floquet formalism

We consider a potential that is periodically modulated in time:

V (x, t) = V (x, t+ T ). (1.34)

Floquet operator, Floquet states and quasi-energies. In this system, a natural basis [80, 16]

over which to decompose a state to study its evolution is the set of Floquet states {|ϕ(t0)
m 〉},

the eigenstates of the evolution operator from t0 to t0 + T (i.e. a one-period evolution). This

operator, called the Floquet operator, reads

U
(t0)
F = U(t0 + T, t0) = T̂ exp

{
−i
~

∫ t0+T

t0

Ĥ(t)dt

}
, (1.35)

with the subperiod reference time 0 ≤ t0 < T . As the evolution operator is unitary, its eigen-

values are complex numbers with norm one:

U
(t0)
F

∣∣∣ϕ(t0)
m

〉
= λm

∣∣∣ϕ(t0)
m

〉
= e−iεmT/~

∣∣∣ϕ(t0)
m

〉
. (1.36)

where we have defined the quasi-energies εm given by εm = − arg{λm}~/T . We see that the

quasi-energies are periodic under the translation

εm → εm +
2π~
T

= εm + hν, (1.37)

with hν the energy of one phonon at the frequency ν = 1/T . Therefore, we only consider

the quasi-energies in the interval −hν/2 < εm ≤ hν/2. This “quasi-energetic Floquet cell” is

the translation of the Brillouin zone in the time domain [16]. For a given Floquet potential

(Eq. (1.34)), two useful properties (see [16]) are that:

� the Floquet states for a different time reference t1 can be determined from the Floquet

states |ϕ(t0)
m 〉 by propagating them from t0 to t1, i.e.∣∣∣ϕ(t1)

m

〉
= Û(t1, t0)

∣∣∣ϕ(t0)
m

〉
, (1.38)

� the quasi-energies εm of U
(t0)
F do not depend on the reference time t0.
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From the Floquet states and their associated quasi-energies, we rewrite the Floquet opera-

tor (1.35)

(
Û

(t0)
F

)n
=
∑
m∈N

e−in×εmT/~
∣∣∣ϕ(t0)
m

〉〈
ϕ(t0)
m

∣∣∣ (1.39)

for n ∈ N modulation periods. Comparing Eqs. (1.29) and (1.39), we see that, in the Flo-

quet formalism, the discrete, stroboscopic dynamics of a quantum system with a time periodic

Hamiltonian is analogous to the continuous dynamics with a time independent Hamiltonian ;

the quasi-energies and the Floquet states playing the role of the eigenenergies and the Bloch

eigenstates. A potential that is both periodic in space and time is called a Floquet-Bloch poten-

tial.

Quasi-energy spectrum. The analog of the band structure for a Floquet-Bloch Hamiltonian

is the quasi-energy spectrum (or Floquet spectrum) as a function of the quasi-momentum. As

examples, we draw in Fig. 1.6 two quasi-energy spectra (computed from Eqs. (1.32) and (1.33))

for the amplitude modulated Floquet-Bloch potential

V (x, t) = − [1 + ε0 cos(2πνt)] s0
EL

2
cos (kLx) , (1.40)

with parameters s0 = 4, ν = 3.2 νL and the two amplitudes of modulation ε0 = 0 and ε0 = 0.15.

For ε0 = 0 (Fig. 1.6(b)), we are actually in the situation of the static potential, so the Floquet

states are simply the Bloch eigenstates, with the eigenenergies correspondence

εn ≡ En mod (hν) + ∆ε (1.41)

(the dependence on q is implicit, and ∆ε is an arbitrary offset of all the quasi-energies correspond-

ing on the arbitrary global phase in Eq. (1.36)). This equivalence modulo the phononic energy

hν (Eq. (1.37)) is well illustrated by the comparison between the band structure of the static

potential (Fig. 1.6(a)) and the quasi-energy spectrum in absence of modulation (Fig. 1.6(b)).

We see that the quasi-energy spectrum consists of superimposed slices of the band structure with

energy height hν. In the absence of modulation (Fig. 1.6(b)), the quasi-energy levels cross at the

quasi-momenta where the Bloch bands in the band structure are separated by k×hν with k ∈ N∗.

The integer k is directly the order of the phononic transition implied. For ε0 > 0 (Fig. 1.6(c)),

the inter-band couplings induced by the modulation of the potential leads to Bloch eigenstates

hybridizations (see below), with quasi-energy bands displaying avoided crossings whose width

increases with the modulation amplitude.
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Figure 1.6 Band structure and quasi-energy spectra. (a) Band structure (plain colored lines)
of the static sine potential for s0 = 4. The s, p, d, f and g bands are in blue, orange, green, red and
purple respectively. The arrows are placed at the quasi-momenta where the Bloch bands are separated
by an energy |Ei,q − Ej,q| = k × hν (see text), with k = 1 (plain back arrow) and k = 2 (dotted grey
arrow). Arrows are only shown for q < 0 for the figure to remain legible. The horizontal dashed lines
correspond to the energy period in the quasi-energy spectra (b,c) (see text). (b,c) Quasi-energy spectra
for the time-periodic potential (1.40) for two different amplitudes of modulation ε0 and other parameters
s0 = 4 and ν = 3.2 νL. The amplitudes of modulation are ε0 = 0 (b) and ε0 = 0.15 (c).

Identification of the relevant Floquet states. The static band structure of Fig. 1.6(a) has

been obtained numerically in a Hilbert space of truncated dimension dH (in this case dH = 30,

see Sec. 1.2.2). After the diagonalization of the Hamiltonian, one can directly identify the

nth Bloch eigenstate as it is the state corresponding to the nth greatest eigenenergy. The

amplitude modulated sine potential (1.40) is also a continuous system with an infinite Hilbert

space dimension. As for the static case, the Floquet spectra of Fig. 1.6(b,c) have been obtained

working with a basis of the dH plane waves (from Eqs. (1.32) and (1.33) with dH = 30). Therefore,

for each quasi-momentum considered in Fig. 1.6(b,c), we actually have dH states, with no obvious

ordering between the quasi-energies −hν/2 < εm ≤ hν/2 (which are moreover defined up to an

arbitrary offset). To identify relevant Floquet states, an efficient method is to sort them by

their overlap with known states. We use this method, in Fig. 1.6(b,c) where, for all the quasi-

momenta considered, we only display the quasi-energies of the N = 5 Floquet states maximally

alike the first five Bloch eigenstates. Furthermore, the color6 C
(ϕ)
m with which we draw the quasi-

energy εm of a given Floquet state |ϕq,m〉 is the weighted average of the colors C
(φ)
n associated to

the first five Bloch bands |φq,n〉, with weights corresponding to the overlaps between the Bloch

eigenstates and the Floquet state considered:

6For instance encoded in RGB: Ci = [ri, gi, bi] with 0 ≤ ri, gi, bi ≤ 1.
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C(ϕ)
m =

N∑
n=1

C(φ)
n |〈φq,n|ϕq,m〉|

2 (1.42)

Doing so, the above-mentioned hybridization of Bloch eigenstates induced by the modulation of

the potential can directly be observed at the avoided crossings of Fig. 1.6(c), through which the

color of a Floquet band smoothly transitions between the colors associated with the two static

Bloch bands.

1.4 Quantum states in the phase space

In Fig. 1.5, we have drawn band structures and represented typical Bloch eigenstates both in

the p and x representations. In this section, we discuss the endeavor of giving both informations

at once, i.e. representing the quantum state of a one-dimensional system in the (x, p) phase

space.

In the beginning of this chapter (Sec. 1.1), we recalled that the state of a classical system

at a given time is a point in the position-momentum phase space of the system. In the quantum

regime, the position and momentum of a particle are not defined point-wise. Instead, if the

state of a particle is defined by the ket |ψ〉, the Born rule states that the probability of finding

the particle between x and x+ dx is |〈x|ψ〉|2dx = |ψ(x)|2dx, and the probability of finding the

particle with a momentum between p and p+ dp is |〈p|ψ〉|2dp = |ψ(p)|2dp. Moreover, the wave

function ψ(x) and ψ(p) for a particle in a given state are related by the Fourier transform:

ψ(p) =

∫ ∞
−∞

ψ(x) e−ixp/~√
2π~

dx (1.43)

with the Heisenberg uncertainty relation between the standard deviation7 ∆x of ψ(x) and the

standard deviation ∆p of ψ(p):

∆x∆p ≥ ~
2
. (1.44)

This inequality implies that the minimal “area” ∆x∆p of a state in the phase space is typically

~, and corroborates that a wave function cannot be described by a vector in the phase space.

7For an observable Â, we have ∆A =
√
〈Â2〉ψ − 〈Â〉2ψ,
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1.4.1 Wigner and Husimi representations and the effective Planck constant

Wigner representation. To represent a quantum state |ψ〉 in the phase space, E. Wigner [81]

introduced the function Wψ(x, p) : R2 7→ R:

Wψ(x, p) =
1

π~

∫ ∞
−∞

ψ∗(x+ u)ψ(x− u) exp

{
−i2pu

~

}
du. (1.45)

such that its integration along the x axis or the p axis (called the marginal distributions) yields

the density of probability:

∫
Ωp

Wψ(x, p)dp = |ψ(x)|2 (1.46)∫
Ωx

Wψ(x, p)dx = |ψ(p)|2

where Ωx,p are the intervals over which ψ(x) and ψ(p) are normalized (in the case of our sine

potential, we work with Ωx = [−d/2, d/2) and Ωp = (−∞,∞)). However, it is known that the

Wigner function can take negative values [82], so one speaks of a quasiprobability distribution.

For a state ψq(x) in the subspace of quasi-momentum q written over the basis of the plane waves

in an infinite sine potential (Eq. (1.20)), the Wigner function reads [83]:

Wψq (x, p) =


1

2π

∑
`∈Z c

∗
`cm−` e−i(2`−m)kLx, p/~ = q +

m

2
kL

0, elsewhere
(1.47)

with m ∈ Z. We note that Wψq(x, p) takes non-zero values for integer and half integer values of

p− ~q, whereas |ψq(p)|2 is non-zero only for integer values of p− ~q (Sec. 1.2.1). In Fig. 1.7, we

plot the Wigner representations and marginal distributions of the first two Bloch eigenstates for

a lattice of depth s0 = 3 at quasi-momentum q = 0. We see that the contribution of Wψq(x, p)

for half integer values of p cancels out when integrating along x for the evaluation of the marginal

distribution |ψq(p)|2, as could also be deduced from (1.47).

Husimi representation. The alternative to the Wigner representation that we choose to use in

this manuscript is the Husimi representation [84] commonly used for dynamical studies in the

semi-classical regime (see below). The Husimi function Qψ(x, p) : R2 7→ [0, 1] can be expressed

as

Qψ(x, p) =
1

2π~
|〈g(x, p)|ψ〉|2 . (1.48)
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Figure 1.7 Wigner representation of Bloch eigenstates in the phase space of the static sine
potential (1.21) (a) Wigner representation Wψ(x, p) (Eq. (1.45)) of the ground state |ψ〉 = |φq,n=0〉
at depth s0 = 3 and quasi-momentum q = 0. For visibility, the resulting horizontal stripes are plotted
with width ~kL/2 but are in reality infinitesimally thin. (b) Densities of probability in the momentum
representation obtained either from the marginal distribution of Wψ(x, p) (dark blue bars) or directly
from the known plane wave coefficients (light blue bars). (c) Densities of probability in the position
representation obtained either from the marginal distribution of Wψ(x, p) (dark blue line) or directly
from the Fourier series of ψ(x) (Eq. (1.20)) with the known plane wave coefficients (curve delimiting
the light blue area). (d,e,f) Same as (a,b,c) for the first excited state |ψ〉 = |φq=0,n=1〉. The classical
trajectories are plotted in black lines.

i.e. the evaluation of the overlap between |ψ〉 and a Gaussian state |g(x, p)〉 centered in

(〈x̂〉g(x,p), 〈p̂〉g(x,p)) = (x, p). In the position representation, this state can be written

〈x|g(x0, p0)〉 =
1

4
√

2π(∆x)2
exp

{
−(x− x0)2

4(∆x)2
+ i

xp0

~

}
. (1.49)

The Gaussian state |g(x0, p0)〉 is a state that minimizes the uncertainty inequality (1.44), with

∆p = ~/2∆x. The evaluation of Qψ(x, p) (1.48) informs on the probability of measuring the

particle described by the state |ψ〉 in a typical phase space area of ∼ ~ around the point

(x, p), with normalization
∫∫

Qψ(x, p) dx dp = 1. There is however a somewhat arbitrary choice

that needs to be made on the standard deviation ∆x of the Gaussian state in the Husimi

function (1.48). In the case of a harmonic oscillator of angular frequency ω, one usually takes

the ground state of the system, i.e. a Gaussian state with standard deviation ∆x =
√
~/2mw.

In the case of the sine potential, we make a similar choice by taking the ground state of the

harmonic oscillator that approximates the bottom of each site of the potential. At depth s0, the

corresponding angular frequency is ω0 =
√
s0 × 2πνL (see Sec. 1.2). The plane wave coefficients

of this periodic Gaussian state are [85]:
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cq,`(x0, p0) =

(
2

π
√
s0

)1/4

exp

{
−i(`kL + q)x0 −

(`~kL + ~q − p0)2

√
s0(~kL)2

}
(1.50)

with standard deviations ∆x = s−1/4k−1
L and ∆p = s1/4~kL/2, verifying the uncertainty rela-

tion (1.44). Such Husimi representations are shown in Fig. 1.8.

!

Equation (1.50) only yields normalized states |gq(x0, p0)〉 =
∑

` cq,`(x0, p0)|χ`+q/kL
〉 when

the standard deviation ∆p of the envelope of the plane wave coefficients is far greater

than the spacing ~kL of the momentum comb:

∆p� ~kL ⇔ s� 1. (1.51)

At depth s0 ≥ 5, one can compute that the error of normalization is at most∣∣∣∣∣∑
`∈Z

|cq,`(x0, p0)|2 − 1

∣∣∣∣∣ ≤ 3.25 · 10−5. (1.52)

As a precaution, we systematically renormalize the states obtained from the defini-

tion (1.50).

The effective Planck constant. In Fig. 1.8, we plot, alongside trajectories from classical dy-

namics, the Husimi functions of the first two Bloch eigenstates in the sine potential for the two

depths s0 = 3 and s0 = 20. We see that, while the classical trajectories scaled by k−1
L and psep

do not depend on the parameters of the potential, the effect of the variation of the depth of

the potential is well visible on the quantum states’ extent in the phase space. The difference in

behavior between the classical and quantum descriptions can be shown formally: we once again

consider the one-dimensional Hamiltonian

H(x, p) =
p2

2m
− s0EL

2
cos(kLx) (1.53)

and the dimensionless units

x̃ =
x

x0
, p̃ =

p

p0
and t̃ =

p0t

mx0
=

t

t0
, (1.54)

with the scalings

x0 = k−1
L and p0 = psep =

√
2ms0EL = ~kL

√
s0. (1.55)

The scaled Hamiltonian is
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Figure 1.8 Husimi representation of Bloch eigenstates in the phase space of the static sine
potential (1.21). (a-b) Husimi representation Qψ(x, p) of the first two Bloch eigenstates |ψ〉 = |φq,n=0,1〉
in a sine potential of depth s0 = 3 at q = 0. (c-d) Same as (a,b) in a sine potential of depth s0 = 20.
The classical trajectories are plotted in black lines. Please note that two momentum axes are presented
on each side of the panels: the first one on the left is in absolute units of ~kL, and the second one on
the right is relative to a given classical trajectory (in this case the separatrix, see Fig. 1.1). Having fixed
here the relative momentum axes, classical trajectories are invariant under variation of the depth of the
potential, whereas Husimi representations of the shown states display important differences, especially in
extent. These scaling behaviors are embedded in the notion of the effective Planck constant (see text).

H̃(x̃, p̃) =
p̃2

2
− 1

4
cos(x̃) (1.56)

with H̃ = Hm/p2
0 = H/(2s0EL). One can verify that the Hamilton equations (1.5) hold:

dx̃

dt̃
=
∂H̃

∂p̃
and

dp̃

dt̃
= −∂H̃

∂x̃
. (1.57)

The resulting equations of motion describe the scaled classical dynamics for the Hamilto-
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nian (1.56) which now depends on zero parameter. This demonstrates the scaling invariance

of the classical dynamics (see Fig. 1.8). However, if we now consider the quantum dynamics,

the scaled Schrödinger equation reads:

i
~

x0p0

∂ |ψ〉
∂t̃

=

(
ˆ̃p2

2
− 1

4
cos
(

ˆ̃x
))
|ψ〉 (1.58)

We see that the reduced Planck constant is scaled by an action parameter S0 = x0p0. This leads

to define an effective Planck constant:

~eff =
~
S0
, (1.59)

a tunable parameter that sets the typical extent of quantum states in the scaled phase space

(Fig. 1.8), as well as the prevalence and timescales of quantum phenomena in the system (such

as tunneling between the sites of the potential).

For the time-independent sine potential, we find in the end, with our choice of scaling,

~eff =
1
√
s0
. (1.60)

➜

Scaling of the time-independent sine potential

H(x, p) =
p2

2m
− s0

EL

2
cos(kLx) (1.61)

→ H̃(x̃, p̃) =
p̃2

2
− 1

4
cos(x̃)

with

x̃ = kLx, p̃ =
p

psep
=

p

~kL
√
s0
, t̃ = 4πνL

√
s0 t, and H̃ =

H

2s0EL
. (1.62)

• The scaled classical dynamics does not depend on any parameter.

• The scaled quantum dynamics depends on

~eff =
1
√
s0
. (1.63)

The same procedure can be followed to scale the dynamics of the periodically modulated

sine potential (see p. 15). In this case, it is the frequency of modulation that tunes ~eff, and

thus the “quantumness” of the dynamics.
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➜

Scaling of the sine potential periodically modulated in depth and position

H(x, p, t) =
p2

2m
−A(t)× s0

EL

2
cos(kLx+ ϕ(t))

A(t+ T ) = A(t)

ϕ(t+ T ) = ϕ(t)

T = ν−1

(1.64)

→ H̃(x̃, p̃, t̃) =
p̃2

2
−A(t̃)× γ cos

(
x̃+ ϕ(t̃)

)
with

x̃ = kLx, p̃ =
T

md
p, t̃ =

2π

T
t, and H̃ =

T 2

md2
H. (1.65)

The classical dynamics depends on

A(t̃), ϕ(t̃) and γ = s0

(νL
ν

)2
. (1.66)

The quantum dynamics depends, in addition, on

~eff = 2
νL
ν
. (1.67)

One can vary ~eff in a fixed scaled stroboscopic phase space (with a fixed γ (1.66)) by

tuning ν and adjusting s0 = 4γ/~2
eff accordingly.

1.4.2 Floquet states representation in the phase space

In this final section, we combine the notions of stroboscopic phase portraits (Sec. 1.1.2),

Floquet states (Sec. 1.3.2) and Husimi function (Sec. 1.4.1) to give an example of phase space

representation of Floquet states. We define the semi-classical regime (~eff → 0), in which the

extent of the quantum states gets much smaller than the area of the regular islands in the

stroboscopic phase portrait. In this regime, the Floquet states can be divided between states

localized on regular islands and states spread over the chaotic sea [86, 87]. We illustrate this

phenomenon in Fig. 1.9, in the case of the amplitude-modulated potential (Eq. (1.11)) and for

a small value of ~eff.

For finite values of ~eff, coupling can occur between Floquet states, resulting in new states

that can span both regular and chaotic regions of the phase space. This mechanism is discussed

in Chap. 4, in which we determine optimal values of ~eff for the transport of matter waves via

a transporting regular island in the phase space. The quantum coupling between regular and

chaotic regions of the phase space is also at the origin of chaos-assisted tunneling (CAT) [88, 89].

During my thesis, we made the first observations of CAT resonances [61] with matter wave. I do

not present this work in this manuscript, as it is already detailed in previous theses, focusing on

both the experimental [67, 68] and theoretical aspects [69] of the study. We however re-address

this subject at the end of Chap. 3, where we apply a state-control protocol to the study of

dynamical tunneling (of which CAT is a particular case).
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Figure 1.9 Husimi representations of Floquet-Bloch states in the amplitude-modulated poten-
tial (1.11) with parameters γ = 0.375, ε0 = 0.24 and ~eff = 0.2. (a) A Floquet state localized on regular
islands. (b) A Floquet state spread over the chaotic sea.

Conclusion

In this first chapter, I briefly introduced concepts and numerical tools for the study of wave

functions in a time-periodic potential. During my thesis, I have worked with Bose-Einstein

Condensates placed in a controllable one-dimensional optical lattice for the simulation of this

system. The next chapter is dedicated to the presentation of the experiment.
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Chapter 2 - Experimental setup

C’était l’époque des diodes, on en foutait sous tous les boutons, ça s’vendait comme

des p’tits pains.

Karim Debbache (CROSSED - 11 - WarGames, 2013)
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Introduction

In the first chapter, we recalled elements of theory to study the dynamics of a wave function

in a sine potential. In this chapter, we describe the ultracold atom setup used at LCAR to

realize this system with Bose-Einstein condensates (BECs) of 87Rb in a one-dimensional optical

lattice. We start with a brief introduction on Bose-Einstein condensation. We then present

our experimental sequence for the obtention of BECs and how we access the atomic momentum

distribution. We conclude with a description of the optical lattice, its control, and common

experimental techniques that are used in the experiments presented in the following chapters of

this manuscript.

2.1 Bose-Einstein condensation

In this section, we briefly introduce concepts and quantities relative to Bose-Einstein con-

densation. For details and derivations of these results, see e.g. [90, 91].

Bose-Einstein condensation is a quantum phase transition first predicted for massive parti-

cles in seminal works of A. Einstein in 1924 [4] and 1925 [5]. In an ideal gas of N bosons, there

exists a critical temperature TC below which a macroscopic number N0 of particles condenses

into the ground state |ψ0〉 of the trap in which they are confined. In the zero temperature limit

(see below), all the particles indexed by i are in the ground state |ψ0〉 of the system, and the

BEC state is

|Ψ〉 =

N⊗
i=1

∣∣∣ψ(i)
0

〉
. (2.1)

In a gas of density n, the average distance between particles is l = n−1/3. Bose-Einstein con-

densation occurs when the typical extent of the particle wave functions becomes of the order of

l. For particles of mass m in a gas at temperature T , this typical wave function size is given by

the thermal de Broglie wavelength

ΛT =

√
2π~2

mkBT
, (2.2)

with kB the Boltzmann constant. The condition for Bose-Einstein condensation is thus ΛT ≥ l,
and TC is defined as the temperature under which this condition is met. In order to reach this

regime, one needs to cool the gas while keeping the atomic density high enough for ΛT to become

greater that l.

For a dilute (see below) gas of N bosons in a three-dimensional harmonic trap with average

frequency Ω = (ΩxΩyΩz)
1/3, it can be shown [90] that, in the semi-classical limit where kBT �
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~Ωj (with j = x, y, z ; i.e. when the level spacing in the harmonic potential is much smaller

than the thermal energy), TC is approximately given by:

kBTC ≈ 0.94 ~ΩN1/3, (2.3)

with a number of condensed atoms

N0(T ) ≈ N

[
1−

(
T

TC

)3
]
, for T < TC. (2.4)

#

The experimental setup presented in this chapter produces BECs of N ≈ 5 · 105 atoms in

a three-dimensional harmonic trap with average angular frequency Ω ≈ 2π × 36 Hz (see

Sec. 2.2.4). From Eq. (2.3), the critical temperature is approximately

TC ≈ 130 nK. (2.5)

Working at temperatures T . TC, the above-mentioned semi-classical limit is valid, since

~Ω/kB ∼ 1 nK.

Experimentally, Bose-Einstein condensation was first achieved in 1995, more than 70 years

after its prediction, in the group of E. Cornell and C. Wieman with 87Rb [6] and in the group

of W. Ketterle with 23Na [7]. In 2001, they were awarded the Nobel Prize in Physics for this

experimental achievement. Since then, the number of research groups working with quantum

gases has exploded [92].

The version of the experimental setup used for the studies presented in this manuscript is

in operation at LCAR since 2016. Previous PhD students of the group have extensively detailed

in their thesis [93, 94, 67, 68] the construction of the experiment as well as the physics behind

the different cooling steps towards Bose-Einstein condensation. In this manuscript, I choose to

simply list the steps that compose the cooling sequence, with brief descriptions and updated key

figures. During my thesis, we modified the geometry of the dipole trap in which the BECs are

finally obtained. In the corresponding section (Sec. 2.2.3), I describe and characterize this new

configuration.

2.2 Experimental sequence for Bose-Einstein condensation

We start with a vapor of Rb atoms in a vacuum chamber [93]. Our atomic cooling sequence

for the obtention of BECs is composed of three main phases:

(2.2.1) - an initial cooling stage in magneto-optical traps,
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(2.2.2) - a first step of forced evaporation, by selectively inducing micro-wave transitions in a strong

magnetic gradient,

(2.2.3) - a second step of forced evaporation in a dipole trap (with a remaining low magnetic

gradient).

In the section dedicated to each phase, we begin with general considerations about the cooling

process involved, followed by a paragraph with specific experimental details.

Note on evaporative cooling. The last two cooling steps are based on evaporative cooling [95,

96]: through elastic collisions in a trap of given depth, particles sometimes acquire enough

energy to leave the trap, so the total energy of the gas decreases. Further elastic collisions lead

to the thermalization of the ensemble at a lower temperature. In the experiment, we perform

forced evaporation, which consists in actively facilitating the loss of the most energetic atoms

(see Secs. 2.2.2 and 2.2.3). In our case, given the relatively low energy of the colliding bosons,

collisions occur in s-waves [90, 97, 68]. In this case, the cross section of collisions is σ = 8πa2
s,

where the s-wave scattering length as describes the effective range of inter-particle interaction1.

Furthermore, we work in the regime of dilute Bose gases, meaning that the average distance

between particles is much larger than the s-wave scattering length (na3
s � 1).

2.2.1 Magneto-optical traps

A magneto-optical trap (MOT) combines Doppler cooling, with laser beams slightly red-

detuned from an atomic resonance, and Zeeman shifts induced by a magnetic field gradient

to create a non-conservative trap in which the atoms are cooled and confined [90, 100]. We

work with the D2 line2 of 87Rb, between the two atomic levels 52S1/2 and 52P3/2. The cooling

transition is between the states |F = 2〉 → |F ′ = 3〉 and this two-state cycle is closed by a

repumping beam tuned on the |F = 1〉 → |F ′ = 2〉 transition.

Experimental details. Our MOT setup is composed of a two-dimensional MOT (made by

the SYRTE lab (Paris)) that feeds a home-made three-dimensional MOT at the center of a

rectangular glass cell. For the 3D MOT, the intensity of the six cooling beams is ∼ 2 mW/cm2,

and a magnetic field gradient of b′ ≈ 13 G/cm is created by two coils (located on the cell

sides [93], along the x axis of the cell shown in Fig. 2.1) in which current flows in opposite

directions. The 3D MOT is loaded during 5 s, and we get3 a cloud of N ∼ 4 · 109 atoms at

T ∼ 400 µK. After a dark MOT [101, 67] and an optical molasses [102, 90, 67], we shut down

1For the atomic state in which the atoms are when we perform evaporative cooling (see below), we have as ≈
5.23 nm [98, 99].

2We present details of this line in App. A. For more information, see [99].
3The amount of atoms in the MOT saturates absorption images (see Sec. 2.3) and these numbers are estimates.
Reliable references are taken for a shortened 3D MOT loading time. After 1 s (instead of 5), we have N ≈ 1.9·109

atoms at T ≈ 300 µK
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the magnetic gradient and the repumping beams for 5 ms. The atoms accumulate in the three

mF levels of the state |F = 1〉. At this stage, we have N ∼ 4 · 109 atoms at T . 100 µK.

2.2.2 Magnetic trapping and micro-wave evaporation

The second cooling step consists in capturing the atoms in a quadrupole magnetic trap

and selectively transfering the most energetic atoms toward a non-trapped state [95, 103]. In a

magnetic field B(r), an atom in the state |F,mF 〉 experiences the potential

Umag(r) = gFmFµB|B(r)|, (2.6)

where gF is the Landé g-factor (dependent on the state considered, see App. A) and µB =

9.27 · 10−24 J/T is the Bohr magneton. We generate a magnetic quadrupole field (see below),

which near the field zero can be written as

B(x, y, z) = b′

 x/2

y/2

−z

 . (2.7)

with gravity along −ez. The atoms that we capture are in the low-field-seeking state |F =

1,mF = −1〉 (with gF = −1/2 for F = 1), and we work with the transition toward the non-

trapped high-field-seeking state |F = 2,mF = −1〉 (with gF = 1/2 for F = 2). In the absence of

magnetic field, the micro-wave frequency associated with this transition is ν0 ≈ 6.835 GHz [99].

As in the MOT, the gradient of the quadrupole makes the energy levels of the different mF

states spatially dependent. This allows us to tune the frequency of the micro-waves shone on

the atoms to only induce the transition at a controlled distance from the center of the trap,

in regions only explored by the most energetic atoms. This forced evaporation, followed by a

subsequent thermalization, causes the temperature of the atom cloud to decrease, as described

above (p. 41).

Experimental details. This second phase happens in a conservative quadrupole trap produced

by three pairs of water-cooled coils in the anti-Helmholtz configuration where current4 flows in

opposite direction. They are located above and below the glass cell [93], along the z axis of the

cell (Fig. 2.1). The coils withstand 160 A of current, which corresponds to a total maximum

gradient of ≈ 300 G/cm. Among the atoms falling from the 3D MOT, only the ones in the

low-field-seeking state |F = 1,mF = −1〉 are captured5. To match the size of the expanding

cloud falling during 5 ms from the 3D MOT, the initial gradient of magnetic field is set to ≈ 60

G/cm. A compensation coil allows to adjust the position of the magnetic field zero along the y

4The six coils are powered by six SM 15-200D supplies by Delta Elektronika.
5As Bose-Einstein condensation is achieved reliably on the experiment, increasing the number of atoms captured
in the quadrupole trap through spin polarization is not required.
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axis of the cell (Fig. 2.1). In 500 ms, we load 1.2 ·109 atoms at a temperature that has increased

to T ≈ 170 µK. To increase the interatomic collision rate for the evaporation, we compress

adiabatically the cloud by ramping the gradient of magnetic field to ≈ 250 G/cm in 200 ms.

The temperature rises to T ≈ 220 µK. During 8.5 s, we then shine micro-waves on the atoms,

at a frequency swept from 6.720 to 6.818 GHz6. At this stage, we have N ≈ 7 · 107 atoms at

T ≈ 40 µK.

Majorana losses [90, 93] near the magnetic field zero at the center of the quadrupole (2.7)

prevent us from pushing the cooling further with this method. The final cooling step is then

performed in an optical dipole trap.

2.2.3 Dipole trapping and evaporation

For the third and final cooling stage, the atoms are loaded in an optical dipole trap. The

dipole force results from the interaction between an atom and a light beam of inhomogeneous

intensity, which is far-detuned from an atomic transition. Considering a light beam of intensity

I(r) and optical frequency ν, the dipole potential [8, 79] experienced by the atom is proportional

to I(r) and inversely proportional to the frequency detuning ∆ = ν−ν0 (where ν0 is the frequency

associated to the atomic transition considered):

Udip(r) ∝ I(r)

∆
. (2.8)

Depending on the sign of ∆, the resulting dipole force F = −∇V (r) is either attractive or

repulsive. In the experiment, we work with linearly polarized Gaussian beams (see below) of

wavelength λ = 1064 nm, i.e. red-detuned from the D2 line of 87Rb (λ0 ≈ 780.2 nm, see

App. A). This creates an attractive force towards the intensity maxima. In this situation,

Eq. (2.8) becomes Udip(r) = ζI(r), with ζ ≈ −2.1 ·10−36 J/(W/m2) [104]. Finally, the intensity

of a Gaussian beam propagating along the x axis is:

I(x, y, z) =
2P

πw2(x)
exp

{
−

2
(
y2 + z2

)
w2(x)

}
, (2.9)

where P is the power of the beam and w(x) is the distance to the x axis at which the intensity

is 1/e2 times its value on the axis7. The end of the evaporation takes place in a dipole trap

made of crossing red-detuned laser beams, whose powers are decreased in time to force the

evaporation [93].

6For the generation of the micro-wave, see [93]. The final frequency νf = 6.818 GHz cuts the depth of the
quadrupole trap to h|νf − ν0| ≈ kB × 580 µK, with h the Planck constant and ν0 = 6.83 GHz the frequency
associated to the transition between the levels in the absence of magnetic field (i.e. in the center of the trap).

7This distance is w(x) = w0

√
1 +

(
x

xR

)2

, with w0 the beam waist and xR = πw2
0/λ the Rayleigh length.
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Figure 2.1 Sketch of the old and new dipole beam geometries. The dark red rectangles represent
the dipole beams and the pale blue rectangle represents the glass cell (neither the beam sizes nor their
divergence is to scale with the size of the cell). To prevent reflections, the incidence angle of the horizontal
beam H1 on the uncoated cell is ∼ 1o [93]. (a) Old geometry illustrated with an axial section of the
cell. The angle between the recycled vertical beam V1 and the z axis was θa ≈ 30o. (b) New geometry
illustrated in the horizontal plane. The angle between the two independent horizontal beams H1 and H2

is θb ≈ 16o, so the principal axes x′ and y′ of the resulting trap make an angle θ′ ≈ 8o with x and y.

Experimental details. After the micro-wave evaporation, we decompress the cloud by lowering

the magnetic gradient from b′ ≈ 250 G/cm to b′ ≈ 22 G/cm in 1.1 s. This final gradient com-

pensates approximately 72% of gravity, and the atoms slowly fall into a dipole trap positionned

approximately 200 µm below the center of the quadrupole [17]. The dipole trap is made of two

crossed Gaussian beams8 of wavelength λ = 1064 nm. Figure 2.1 shows the previous and new

geometries of the dipole trap.

Previous configuration - An horizontal beam H1 (with waist w0 = 75 µm and initial

power P0 = 10.3 W) went through the cell a first time. It was recycled into a vertical

beam V1 (w0 = 35 µm, P0 = 6 W) that went back through the cell in its (x, z) plane from

top to bottom. This recycled beam made an angle θ ≈ 30o with the vertical axis. In this

recycled configuration, only the intensity of H1 was locked with a PID9 controller acting

on the power of the radio-frequency (RF) driving the acousto-optic modulator (AOM) of

this beam.

New configuration - Two independent beams H1,2 (w0 = 45 µm, P0 = 4 W) intersect in

the horizontal plane with an angle θ ≈ 16o. The reasons for the change are an increased

volume for the dipole trap as well as the ability to independently diagnose the individual

effect of the two beams on the atoms (which was impossible in the recycled configuration).

In this configuration, both the intensities of H1 and H2 are controlled with PIDs. To

minimize the reflection on the uncoated cell, the polarization of both beams is horizontal

(i.e. in the (x, y) plane of the cell). To prevent interferences between the beams, we

work with opposite AOM diffraction orders ± 1 to detune the beams frequencies by about

80 MHz (see App. B for details).

8See App. B for technical details and the optical diagram for the preparation of the dipole beams.
9PID: proportional–integral–derivative
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We load N ≈ 1.2 · 107 atoms at T ≈ 40 µK into the resulting hybrid trap (composed of the

dipole trap, the magnetic trap and gravity). We force the evaporation by lowering the power of

the dipole beams using the smooth power law [105]

P (t) = P0

(
1 +

t

τ

)−α
, (2.10)

with τ = 1.75 s and α = 4. After 5.4 s of evaporation, the depth of the dipole trap is reduced

by a factor P0/Pf ≈ 275 and Bose-Einstein condensation is achieved. The experiment produces

BECs of N ≈ 5 · 105 87Rb atoms10 in the lowest hyperfine level |F = 1,mF = −1〉 every 22 s.

Such a BEC is shown in Fig. 2.2(c).

2.2.4 Characterization of the hybrid trap at the end of the evaporative cooling

At the end of the evaporative cooling, the BEC is in a hybrid trap made of

� the two dipole beams with powers Pf ≈ 20 mW,

� the quadrupole (2.7) with a magnetic gradient b′ ≈ 22 G/cm and whose center is located

approximately 200 µm above the crossed dipole trap,

� the gravitational potential.

We locally approximate this hybrid trap with the three-dimensional harmonic potential

Uhyb(x′, y′, z) ' 1

2
m
[
Ω2
x′(x

′)2 + Ω2
y′(y

′)2 + Ω2
zz

2
]
, (2.11)

where (x′, y′, z) = (0, 0, 0) is the center of the crossed dipole trap and the primed x′ and y′ lie

along the principal axes of the trap, i.e. at an angle θ′ ≈ 8o with x and y (see Fig. 2.1(b)). To

measure the angular frequencies Ωj , we trigger out-of-equilibrium evolutions11 and measure the

periods of oscillation in the corresponding directions (we present the method for the observation

of the system in the next section 2.3). We find

Ωx′ = 2π × (10.4± 0.2) Hz, (2.12)

Ωy′ = 2π × (68± 4) Hz,

Ωz = 2π × (66± 2) Hz,

with an average angular frequency Ω = (ΩxΩy′Ωz′)
1/3 ≈ 2π × 36 Hz.

10For information, we made BECs of up to N = 2 · 105 atoms every 30 s with the previous dipole trap geometry.
11We make three independent experiments where we trigger oscillations by pulsing current into coils approximately

placed along the right axis, i.e. one of the 3D MOT coils to measure Ωx′ , the compensation coil for Ωy′ and
one of the magnetic trap coils for Ωz (see Sec. 2.2).
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Life time in the hybrid trap and reduction of the number of atoms in the BECs. We measure

the life time in the hybrid trap by monitoring the number of atoms (see following section) in the

hybrid trap during a holding time at the end of the evaporation. During this holding time, we

observe a spontaneous evaporation leading to an exponential decrease of the number of atoms in

the BECs. We measure a characteristic time of τ ≈ 20 s for this exponential atomic loss. This

method can be used to artificially reduce the number of atoms in the BECs for experiments that

require a control on that parameter. This is the case in Sec. 3.4 and 5.

2.3 Observing the system

2.3.1 Absorption imaging

In this section, we explain how we access the atomic density distribution using absorption

imaging. Its principle is the following: in due time, we illuminate the atoms with a laser beam

that is resonant with an atomic transition and light is absorbed. From the shadow of the cloud,

we determine its position and size (Fig. 2.2). The number of atoms in the cloud is deduced from

the fraction of light absorbed.

As depicted in Fig. 2.2, we consider a resonant beam traveling along a fictitious z axis. In

the regime where the beam intensity is low compared to the atomic saturation intensity, the

intensity that remains after passing through the cloud is given by the Beer-Lambert law:

Iout(x, y) = Iin(x, y) e−σ0nc(x,y) (2.13)

where Iin(x, y) is the initial intensity, σ0 is the cross section of absorption and nc(x, y) =∫
n(x, y, z) dz is the atomic column density traversed by the light. By taking pictures with

and without atoms, we respectively access Iout(x, y) ad Iin(x, y). From Eq. (2.13), the column

density simply reads

nc(x, y) =
1

σ0
OD(x, y), (2.14)

with the optical density OD(x, y) = ln{Iin(x, y)/Iout(x, y)}. The number of atoms in a cloud is

N =
∫∫

nc(x, y) dx dy. On the example of Fig. 2.2(c), we measure a BEC of N = 5.11 ·105±3 %

atoms over 10 realizations (where the uncertainty corresponds to one standard deviation of the

statistics).
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Figure 2.2 Schematic of absorption imaging. (a) We illuminate the atom cloud (black disk) with a
resonant beam (red area), light is absorbed (white area) and Iout(x, y) is measured by taking an image on
the screen (thin white rectangle). (b) Iin(x, y) is measured by taking an image shortly after without the
cloud. (c) Experimental example of Iin(x, y), Iout(x, y) and the resulting optical density when performing
the absorption image of a BEC after a 35 ms time-of-flight (see Sec. 2.3.2). The coordinate system (x, y, z)
is that of the imagery axis and does not correspond to the coordinate system of the cell (see Fig. 2.3).
Figure inspired from [69].

Experimental details. The frequency of the imaging beam is tuned on the transition |F = 2〉 →
|F ′ = 3〉 (i.e. the cooling transition in the MOT, see Sec. 2.2.1 and App. A). We recall that, after

the MOT stage, the atoms are in the state |F = 1〉. Before imaging the cloud, we repump the

atoms in the state |F = 2〉 by shining the repumping beam for a few ms. For 87Rb atoms equally

distributed in the five mF levels of this state and an imaging beam with linear polarization and

wavelength λ ≈ 780 nm, the cross section of absorption is σ0 ≈ 0.136 µm2 [61]. To correct

imperfections (extraneous light, defaults on the optical path, etc.), we take three images12: (i)

a first image with the atoms and the imaging beam (Iatoms), (ii) an image of the imaging beam

without the atoms (Ibeam) and (iii) a background image (Ibackground) without the beam. We

compute the OD with Iin = Ibeam − Ibackground and Iout = Iatoms − Ibackground. Figure 2.2(c)

shows examples of Iin, Iout and the resulting OD when performing the absorption image of a

BEC after time-of-flight (see Sec. 2.3.2).

Three imaging setups (see Fig. 2.3) are installed on the experiment to observe the atoms

along different axes during the experimental sequence:

12Images are taken using a CCD camera A102f from Basler. The screen is made of 1392×1040 square pixels with
side 6.45 µm. The signal is a photoelectron count per pixel proportional to the imaging beam intensity at that
point.
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Figure 2.3 Imaging axes in the horizontal plane (with a 90o rotation from Fig. 2.1(b)). The identified
angles are θ1 ≈ 16o and θ2 ≈ 30o. The “vert. BEC” imaging beam goes through the dipole cross from
the bottom to the top of the cell. The red lines and arrows indicate the crossed dipole trap with the
direction of propagation of the beams and the pale blue rectangle represents the cell (not to scale).

� the “MOT” axis, in the horizontal plane, with magnification M ≈ 0.33,

� the “horizontal BEC” axis, in the horizontal plane, with magnification M ≈ 2.5,

� the “vertical BEC” axis, with magnification M ≈ 4.2. This axis was added during my

thesis to visualize the new crossed dipole trap.

Every experimental image presented in this manuscript is taken with the “horizontal BEC”

imaging axis.

2.3.2 Time-of-flight

The observation of the atoms in the experiment is generally performed after a time-of-flight

(TOF): after a sudden switch-off of all trapping potentials, the atom cloud starts to fall due to

gravity, with a constant expansion in the center of mass frame that carries information on the

in situ velocity distribution. We take an absorption image after a time tTOF.

For a thermal atomic ensemble (T � Tc, see Sec. 2.1) described by the Maxwell-Boltzmann

statistics, the standard deviation of the cloud size along a given axis x following a TOF is

∆x(tTOF) =
√

∆x2
0 + (∆vxtTOF)2. (2.15)

with ∆x0 and ∆vx the in situ standard deviations of the position and velocity respectively.

By measuring the expansion of a thermal cloud as tTOF increases, Eq. (2.15) allows to access

the cloud temperature T , as the slope of ∆x2(t2TOF) is proportional to T according to the

equipartition theorem:
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1

2
m∆v2

x =
1

2
kBT. (2.16)

Moreover, after sufficiently long TOF (tTOF � ∆x0/∆vx), one can neglect the initial size of the

cloud, and the final density distribution reflects directly the velocity distribution of the cloud

before the TOF.

For quantum gases, TOF imagery allows to dilute the clouds whose observation is made

difficult by their small size and high optical density. In a similar way as for the thermal case, one

measures a momentum density of probability when observing the system after a sufficiently long

ballistic TOF. For a BEC composed of atoms condensed in the state |ψ〉, one even statistically

samples |〈p|ψ〉|2 in a single TOF measurement of the system (see for instance next section 2.4).

2.4 The one-dimensional optical lattice

In this last section, we describe our one-dimensional optical lattice and introduce exper-

imental methods that we frequently use in the rest of this manuscript to study matter waves

dynamics in the optical lattice.

An optical lattice is a periodic dipole potential (Eq. (2.8)) resulting from a spatially periodic

variation of light intensity. Our one-dimensional optical lattice results from the interference of

two Gaussian beams (Eq. (2.9)) with the same wavelength and linear polarization, that are

counterpropagating along the x axis (see below). Neglecting the divergence of the beams13,

their electric fields along the x axis are the real part of the phasors

E1(x, t) = E0 ei(−kx−ωt−ϕ1)e⊥ and E2(x, t) = E0 ei(kx−ωt−ϕ2)e⊥, (2.17)

where k = 2π/λ is the wavenumber of the laser beams and e⊥ is a constant unitary vector in

the (y, z) plane. The light intensity resulting from the interference of these fields is proportional

to the square modulus of the total field E = E1 + E2:

I(x) ∝ |E(x, t)|2 = 4
∣∣E0

∣∣2 cos2
(
kx+

ϕ

2

)
(2.18)

= 2
∣∣E0

∣∣2 cos

(
2πx

λ/2
+ ϕ

)
+ 2

∣∣E0

∣∣2
with ϕ = ϕ1 − ϕ2 the phase difference between the beams. We see that the step of the periodic

variation of intensity is d = λ/2. Dropping the constant term that stems from the linearization

of the quadratic cosine, we finally get the attractive dipole potential for the lattice

13e.g. near the focal point, for values of x small compared to the Rayleigh length xR of the beams (see below).
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V (x) = −V0

2
cos (kLx+ ϕ) , (2.19)

where we used the wave number of the periodic potential kL = 2π/d defined in Chap. 1. V0 is

proportional to the maximum intensity of the lattice standing wave of Eq. (2.18). Controlling

the intensity and the relative phase ϕ of the interfering beams, we get the sine potential studied

in Chap. 1:

V (x, t) = −A(t)× s0
EL

2
cos (kLx+ ϕ(t)) . (2.20)

Experimental details. We here briefly present the experimental implementation of this con-

trolled one-dimensional optical lattice. Technical details and the optical diagram for the prepa-

ration of the beams can be found in App. C. The two beams for the lattice are obtained from

the same laser source with wavelength λ = 1064 nm. They are counterpropagating along the x

axis of the cell and focused on the crossed dipole trap, with waist w0 = 150 µm and a maximum

power P = 2.3 W. Using four synchronized arbitrary waveform generators and three AOMs (see

App. C), we are able to continuously control A(t) and ϕ(t) in Eq. (2.20).

We remark that, by only controlling the intensity of the lattice beams, we have 0 ≤ A(t) ≤
smax/s0 in Eq. (2.20), where smax is the maximum lattice depth achievable (smax ≈ 40 for our

setup).

#

Given the atomic mass m of 87Rb and the lattice spacing d:

m ≈ 1.443 · 10−25 kg and d = λ/2 = 532 nm, (2.21)

we evaluate the characteristic lattice quantities defined in the previous chapter (sec. 1.2):

� kL = 2π/d ≈ 11.81 · 106 m−1,

� EL = ~2k2
L/2m ≈ 5.375 · 10−30 J,

� νL = EL/h ≈ 8111.3 Hz.

Our one-dimensional optical lattice constrains the dynamics along the x axis into lattice sites

associated with the harmonic oscillator frequency ν =
√
s0 νL (see Sec. 1.4.1). This frequency

is to be compared with the frequencies (2.12) of the three-dimensional hybrid trap in which

the atoms are held. We see that, regardless the lattice depth, the typical timescales for the

dynamics in the lattice (T ≈ 123µs/
√
s0) are much smaller than the timescales in the hybrid

trap (Tj = 2π/Ωj > 15 ms). As the typical duration of the experiments presented in this

manuscript is ∼ 1 ms, the dynamics along the x axis is uncoupled from the dynamics along

the perpendicular axes, which allows us to assume a one-dimensional system in our studies. In

50



particular in the following, we consider along the x axis only the shared wave function (2.1) of

a BECs evolving in the time-dependent Bloch system (2.20), i.e. Bloch waves (see Chap. 1)

ψq(x, t) =
∑
`∈Z

cq,`(t)
∣∣χ`+q/kL

〉
, (2.22)

with the plane waves defined in Sec. 1.2.1 as 〈x|χ`q/kL
〉 = ei(`kL+q)x/

√
d.

We now present a series of established experimental techniques when working with ultracold

atoms in optical lattices.

2.4.1 Adiabatic loading of the lattice ground state

The first technique we present is a protocol to load the ground state of the static lattice.

For a given lattice depth s0, this state is the Bloch eigenstate |φ(s0)
q=0,n=0〉 associated to the lowest

eigenenergy E
(s0)
q=0,n=0 (see Sec.1.2.1). Initially, the BEC state is the resting plane wave that

corresponds to the ground state of a lattice of null depth |χ0〉 = |φ(s0=0)
0,0 〉, and we want to drive

this state to |φ(s0)
0,0 〉. One can do so adiabatically14 by ramping up the lattice depth s0 with a

timescale τ much larger than the largest timescales of the system given its energy levels [106].

This smallest timescale is the period associated to the transition towards the plane waves of

second lowest kinetic energy |χ±1〉, which have an energy difference EL with the BEC. The

timescale in comparison to which the lattice loading needs to be slow is h/EL = ν−1
L ≈ 123 µs.

To this end, we ramp up the lattice depth s(t) = A(t)×s0 with the smooth amplitude function

A(t) = (κ+ 1)

(
t

τ

)κ
− κ

(
t

τ

)κ+1

. (2.23)

Experimentally, we use the characteristic loading time τ = 1 ms (sufficiently large in comparison

to h/EL) and slope parameter κ = 11. The lattice depth follows the loading curve (2.23) during

the interval 0 ≤ t ≤ tload = τ , such that 0 ≤ A(t) ≤ 1.

We show in Fig. 2.4 an experiment of adiabatic lattice loading. The matter wave diffraction

observed in Fig. 2.4(e) illustrates how the TOF measurement of BEC in an optical lattice (i.e. a

Bloch wave (2.22)) amounts to sampling its momentum distribution: during the TOF expansion,

the planes waves separate into spatially resolved momentum components15, with a momentum

difference ∆p = ~kL = h/d. When we shine the imaging beam, an atom is measured in the plane

wave ` with probability |cq,`|2, which we access by measuring the fraction of atoms in the `th

momentum component. In the specific case of Fig.2.4, we adiabatically load the ground state

of the lattice, and we see that the relative atomic populations in the momentum orders are in

14The term “adiabatic” must be understood in the quantum sense of an eigenstate follow-up as a parameter of the
system is varied. On the other hand, a diabatic process projects the initial state onto several non-degenerate
eigenstates of the final system.

15In the form of diffraction orders that we often refer to as “momentum orders”.
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Figure 2.4 Adiabatic lattice loading and matter wave diffraction. (a) Lattice depth curve (2.23)
to adiabatically load the ground state of the lattice of depth s0 (see text). (b) Numerical simulation
of the lattice loading showing the momentum distribution as a function of time. (c) Experimental
TOF absorption image of the BEC before loading the lattice. The grey rectangles delimit the regions
in which the plane wave populations are extracted (see (e), Sec. 2.3 and text for details). (d) Bar
diagram comparing the experimental (blue) and numerical (red) plane wave populations (i.e. momentum
distribution). (e) Experimental TOF absorption image at the end of the loading. (f) Experimental
(blue) and numerical (red) momentum distributions. The lattice depth, determined after the loading (see
Sec. 2.4.2), is s0 = 8.06± 0.10. The duration of the TOF is tTOF = 35 ms and the colormaps for the OD
on panels (c,e) are truncated to 0.8 of their respective maximum value in order to see details.

agreement with a numerical computation (see Sec. 1.2.2) of momentum distribution |〈p|φ(s0)
0,0 〉|2

of the ground state (where the experimental s0 is determined in the next section).

The method of adiabatic lattice loading is limited to the preparation of the ground state

of the lattice. In the next chapter (Chap. 3), we apply quantum optimal control to extend the

range of quantum states reachable in an optical lattice.

Note on measurement of the momentum component population. Here, the plane wave pop-

ulation is exctracted from a count of the atoms in the rectangular regions shown in Fig. 2.4(c,e).

In Fig. 2.4(e), we see atomic signal between the diffraction orders 0 and ± 1. This signal comes

from scattering halos populated by pairs of atoms undergoing a two-body collision at the begin-

ning of the TOF [107, 62] (see also Fig. 2.5 where this phenomenon is more obvious). As the

momentum distribution of the atoms in the periodic lattice is quantized (see Chap. 1), these

halos (that also expand during the TOF) are seen in between the diffraction orders (mostly in
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between the most populated ones). During my thesis, we have studied these halos and developed

a protocol to observe them between given momentum orders. This method, which relies on a

sudden lattice shift followed by a precisely timed evolution in the lattice in order to populate

given momentum orders, is detailed in our publication [62] as well as in a previous thesis [68].

This study is at the root of our initiative to implement quantum-optimal control on the ex-

periment, which is the subject of the next chapter of this manuscript. Importantly, scattering

halos can make the extraction of momentum distributions more complicated as (i) momentum

orders are depopulated during the process [68] and (ii) the counting region associated to a given

order can be polluted by scattering atoms coming from adjacent orders. This latter effect can

be mitigated by subtracting to each order population the halo signal measured in the two lateral

regions between that order and its neighbors.

2.4.2 Optical lattice calibration

In Sec. 2.4 (with details in App. C), we presented the optical lattice with its amplitude and

phase control by the mean of three AOMs. The experiments of quantum state preparation and

transport in the optical lattice that we present in the next two chapters require to know the

depth s0 of the optical lattice with great precision (typically a few percents). In this section, we

introduce two methods to measure the lattice depth.

Kapitza-Dirac diffraction. The first method that we use relies on pulsing the lattice of unknown

depth on the BEC [108]. For a sufficiently short pulse (see below), one can consider that the

atoms get their momentum affected by the potential without enough time to start accumulating

a displacement. This is the Raman-Nath approximation [109, 110], notably used for efficient

computation of the dynamics in the kicked-rotor [111], a simple yet powerful model to study

quantum chaos. Formally, one neglects the kinetic terms in the Hamiltonian when integrating

the time-dependent Schrödinger equation during the pulse. In the position representation, we

have

i~
∂

∂t
ψ(x, t) ' V̂ (x)ψ(x, t) ⇒ ψ(x, t) ' exp

{
it

~
× s0

EL

2
cos(kLx)

}
ψ(x, 0) (2.24)

with ψ(x, 0) = χ0(x) = 1/
√
d the initial wave function just before pulsing the lattice. To

compute this phase impression, we use the Jacobi-Anger identity:

eiz cos(θ) =

∞∑
n=−∞

inJn(z)einθ, (2.25)

where Jn(z) are the Bessel functions of the first kind. The evolution (2.24) becomes
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Figure 2.5 Calibration of the optical lattice depth from Kapitza-Dirac diffraction. Horizontal
stack of experimental TOF absorption images as the duration of the Raman-Nath pulse increases.

ψ(x, t) '
∑
`∈Z

i`J` (πνLs0t)
ei`kLx

√
d

=
∑
`∈Z

c`(t)χ`(x) (2.26)

with plane wave coefficients c`(t) = i`J`(πνLs0t).

A quick method to estimate the lattice depth s0 is to experimentally determine the first

pulse time τ0 for which the zeroth plane wave is totally depleted (i.e. a complete depletion of

the zeroth momentum order). Once this time is found, and knowing the first zero z0 ≈ 2.405 of

J0(z), we get

|c0(τ0)|2 = 0 ⇔ |J0 (πνLs0τ0)|2 = 0 (2.27)

⇔ s0 =
z0

πνLτ0
≈ 94.38µs

τ0

Figure 2.5 shows experimental Kapitza-Dirac diffraction of matter wave in an optical lattice of

fixed depth for an increasing pulse duration. We see that the zeroth momentum order is depleted

for τ0 ≈ 2.6 µs, which gives a lattice depth s0 ≈ 36.3 according to Eq. (2.27).

!

In Eqs.(2.24), (2.26) and (2.27), we made the approximation that the lattice is pulsed for

a duration negligible compared to the time needed for the atoms to start moving in the

potential. In a semi-classical picture, a lower bound for this timescale is approximately

given by the period T0 of the harmonic oscillator that approximates the bottom of the

lattice sites. In the previous chapter (see Sec. 1.4.1), we found the frequency of this

harmonic oscillator to be ν0 =
√
s0 νL.

We have T0 ∝ s−1/2
0 while τ0 ∝ s−1

0 (Eq. (2.27)). These scalings are favorable for this first

lattice calibration, which works if s0 is large enough for the Raman-Nath approximation
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to hold up to τ0 [94]. We state the following condition for the validity of this calibration

method:

τ0

T0
≈ z0

π
√
s0
� 1⇔

√
s0 � 1 (2.28)

This calibration technique is a fast way to estimate the depth of a sufficiently deep lat-

tice. For more precision (notably for s0 < 10 where most of the experiments presented in this

manuscript are performed), we use a second method that relies on fitting an out-of-equilibrium

evolution of the atoms in the lattice.

Oscillation of the translated ground state. A second, longer but more precise method has

been proposed by our group and published before my thesis [112, 113]. It consists in loading

the ground state (Sec. 2.4.1) of the lattice of unknown depth s0 before applying a sudden

phase translation ϕ0 such that the atoms are placed on the flank of the lattice wells and start

oscillating. In the quantum picture, the translated ground state16 is projected onto the Bloch

eigenstates of the lattice and its evolution is totally determined by this projection according

to Eq. (1.29). Using s0 as an adjustable parameter17, we perform a least-square fit of the

experimental evolution of the atomic momentum distribution. In Fig. 2.6, we show an example

of lattice calibration with the experimental data and numerical fit. The lattice depth determined

with the experiment of Fig. 2.6 was used in Fig. 2.4 to compare the experimental loading of the

ground state with the numerical simulation. This lattice calibration method is used before and

after each experiment presented in the rest of this manuscript (to verify that the lattice depth,

which notably depends on the lattice beams alignment, has not shifted).

A strength of this method is that, given the adiabatic loading of the lattice, we can infer

with confidence that the initial state is the shifted ground state of the lattice of unknown depth.

In Chap. 3 about quantum-optimal control, in order to certify our quantum state preparation

protocol, we revisit this method of parameter determination through an evolution in the static

lattice. However, the point of view is there reversed, as the unknown parameter is the initial

quantum state that begins to evolve in a static lattice of previously calibrated depth.

2.4.3 Band-mapping

Band-mapping is a well established experimental technique for cold atoms in optical lat-

tices [107, 114, 79], by which the weights of a state on the different Bloch bands are mapped on

16We recall (see Sec. 1.2.1) the expression of the translation operator T̂∆x = e−i∆xp̂/~ with p̂|χr〉 = r ~kL|χr〉. The
translation of a state |ψ〉 in a Bloch system reads T̂∆x|ψ〉 =

∑
` c`e

−i∆x`kL |χ`〉 with c` = 〈χ`|ψ〉. According to
our expression of the lattice potential (2.19), a phase shift ϕ0 translates the lattice by a distance ∆x = −ϕ0/kL

in the laboratory frame of reference which translates an arbitrary state |ψ〉 by a distance −∆x = ϕ0/kL in the
lattice.

17For each lattice depth considered, the Bloch eigenstates and eigenenergies are computed numerically as described
in Sec. 1.2.2.
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Figure 2.6 Calibration of the optical lattice depth from a sudden lattice translation.
(a) Stack of experimental integrated TOF absorption images as a function of the holding time show-
ing the momentum evolution of the initial state (which was the ground state up until the sudden lattice
shift) in the translated lattice. (b) Numerical evolution at the lattice depth that fits (a). (c) Relative
plane wave populations (with panel (c`) featuring |c`|2) as a function of time, with experimental data
of (a) (blue points) and fitting numerical simulation of (b) (solid red line). The known parameter was
the initial lattice phase translation ϕ0 = 30o and we measured s0 = 8.06± 0.10.

the plane wave populations. It consists in an adiabatic unloading of the lattice, during which a

state |ψq〉 has the norm of its Bloch coefficients |〈φq,n|ψq〉| conserved (with |φq,n〉 the nth Bloch

eigenstate at quasi-momentum q). For degenerate Bose gases resolved in quasi-momentum, this

methods allows to access the probability distribution of a state over the basis of the Bloch waves.

In q/kL = 0 and q/kL = 0.5 however18, the closings of the gaps lead to eigenstate degeneracies

that mix the information for two consecutive bands (with the exception of the ground state at

q/kL = 0). In the end, an atom initially in the nth Bloch band at quasi-momentum q ends up

in the plane wave(s) of reduced momentum

p/~kL =


q

kL
+ sgn (q) (−1)n

⌊
n+ 1

2

⌋
, q /∈ {0, 0.5}

±
(
q

kL
+ (−1)n

⌊
n+ 1

2

⌋)
, q ∈ {0, 0.5}

(2.29)

where the integer part b·c and the factors (−1)n and sgn (q) stem from the unfolding of the

band structure. We draw in Fig. 2.7 an example for three different states in q/kL = 0 (blue),

q/kL = 0.5 (green) and q/kL /∈ {0, 0.5} (yellow) before and after a fictitious band-mapping

protocol.

This method is used in Chap. 5 where we study the emergence of unstable modes in the

18We recall that we express the quasi-momentum in the first Brillouin zone q/kL ∈ (−0.5, 0.5], see Sec. 1.2.1.
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Figure 2.7 Sketch of the band-mapping technique. (a) Band structure of a static one-dimensional
optical lattice at depth s0 = 1 (solid lines). (b) Equivalent, unfolded representation of the same band
structure (solid and dotted lines). (c) Unfolded representation of the band structure of a lattice of depth
s0 = 0 (solid and dotted lines) i.e. relation of dispersion of the free particle (solid line). We draw three
hypothetical states resolved in quasi-momentum: the blue and yellow states are superpositions of the first
three Bloch states in q/kL = 0 and q/kL = 0.25 respectively, and the green state is a superposition of the
first two Bloch states in q = 0.5. Between the three superpositions considered, only the yellow state in
q/kL /∈ {0, 0.5} has the norm of all its Bloch coefficients unambiguously accessible through band-mapping.

Brillouin zone of the phase-modulated optical lattice. These instabilities lead to the population

of states coexisting at different quasi-momenta, which we highlight through band-mapping.

Conclusion

This brief presentation of the experimental setup concludes this first part of methods. Once

again, I redirect an unfulfilled reader to the theses of my predecessors [93, 94, 115, 67, 68] where

the experimental setup has been more detailed. The next parts of this manuscript present

results obtained on the ultracold atom experiment described in this chapter and that will be

apprehended in the theoretical and numerical framework discussed in Chap. 1.
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Part II

Control and transport of the BEC

one-body wave function in the optical

lattice
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Chapter 3 - Quantum optimal control of matter

waves in a one-dimensional optical

lattice

-3
0
3

p/
k L

Horizontal stack of 54 independent momentum distributions (see Sec. 3.2)
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Introduction

In the first part of this manuscript, we recalled basics of quantum mechanics to study wave

function dynamics in a one-dimensional Floquet-Bloch system (Chap. 1), and we presented our

experimental setup, in which we place BECs in a controllable one-dimensional optical lattice

(Chap. 2) to implement this system in the laboratory. This setup is simple and therefore

a powerful system on which to develop methods of quantum state manipulation, notably for

quantum simulation, as we will show in this chapter. To perform the simulation of a quantum

system [26, 27], one has to engineer the Hamiltonian to be studied, prepare the system in the

desired initial state and in due time measure the state of system. In this chapter, we present

research work that we undertook in 2021, which is part of the development and implementation

of techniques to face the last two of the above-mentioned requirements: initial state preparation

and final state measurement.

Quantum state control. The preparation of a desired quantum state generally calls for ma-

nipulating a quantum dynamical system by means of external time-dependent parameters. In

practice, it amounts to steering that system from a state easily provided by an experimental

setup to the desired one with high fidelity, and in a reasonable, or even minimum time, while

satisfying experimental constraints and limitations. Several approaches have been developed

for quantum state control, allowing to reach states unachievable by adiabatical means. We can

cite the use of composite pulses [116, 117], shortcuts to adiabaticity [57] or machine-learning

schemes [58]. Another approach, which we use in this chapter, is the application of optimal-

control theory to control quantum systems.

Optimal-control theory, of which we introduce the formalism in Sec. 3.1, arguably goes

back to the Brachistochrone problem, submitted by J. Bernouilli in 1696 to the mathematicians

of his time [118]. Considering a system that can, more generally, be controlled with external

parameters, optimal-control theory is a mathematical framework with which one can compute

the optimal variation of control parameters in order for the system to follow optimal trajectories

that minimize some cost functionnal. The evolution of this field is intertwined with the genesis

of analytical mechanics in the 18th century, before the crowning contributions of L. Pontrya-

gin [119] in the 1950s and later R. Bellman [120]. Applications of optimal control could hardly be

more diverse, with examples in aerospace with satellite maneuvering [121, 122], communication

protocols in computer science [123], finance [124] and biology [125].

Quantum optimal control (QOC) is the application of optimal-control theory to quan-

tum systems [126], with proposals and implementations e.g. in the fields of quantum chem-

istry, quantum information, magnetic resonance and NV-centers, (see [59, 60] and references

therein). QOC is well suited for quantum state control of cold and ultracold atoms for inter-

ferometry [127, 128, 129] and quantum simulation [130, 131]. We present in this chapter the

implementation of QOC in our experiment, where we use the time variation of the phase of

the optical lattice (Sec. 2.4) as our single control parameter in order to control the motional

state |ψq,`〉 =
∑

` cq,`|χ`+q/kL
〉 of BECs in the lattice. We prepare firstly momentum probability

distributions (targeting sets of real elements {|cq,`|2}, i.e. regardless the relative phases between
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coefficients cq,`), before fully addressing specific quantum states in the Hilbert space of our Bloch

system (targeting sets of complex amplitudes {cq,`}).

Observation of the system and certification of the preparation. When performing measure-

ment on a quantum system, one never accesses the wave function of the system, but rather a

possible outcome of the measurement of an observable with a probability distribution given by

the squared modulus of the wave function. This is well illustrated by our TOF measurement,

through which we access the momentum distribution of the BEC in the lattice, i.e. the set

{|cq,`|2} of the squared moduli of the plane wave amplitude (see Sec. 2.4.1). Such a measure-

ment, based on a single observation of the system, is sufficient to evaluate a fidelity to a target

defined purely as a momentum probability distribution, but cannot ensure proper quantum state

preparation. Indeed, to certify our ability to prepare a given quantum state |ψq,`〉 associated

to a unique set {cq,`} of complex coefficients, we need to access all the information of these

measured coefficients cq,`, that is both their norm |cq,`| and phase arg{cq,`}. Full quantum state

tomography [132] is a matter of great relevance to quantum simulation and computation. Several

methods to solve that problem have been put forward, using e.g. mappings from the motional

state to internal degrees of freedom [133, 134, 135], while recent proposals in the context of

many-body systems exploit randomized measurements [136] or neural networks [137]. In our

case, we reconstruct the motional state of the BECs in the lattice with a maximum likelihood

iterative method inspired by quantum optics [138, 139, 140, 141], using measurements of the

subsequent evolution of the prepared state in the static lattice potential.

This chapter is organized as follow: in the first section 3.1, we give an introduction to

the basics of optimal-control theory, we detail the application of QOC to our one-dimensional

Bloch system, and we present our numerical approach to compute the lattice phase curve for

the preparation of a given target. The second section features experimental results on the

preparation of readily-observable momentum distributions (Sec. 3.2). In the third section, we

target specific quantum states and detail the state reconstruction algorithm (Sec. 3.3). To

conclude, we present in the Sec. 3.4 an application of our QOC implementation to the quantum

simulation of dynamical tunneling [142, 89, 61] in the depth-modulated optical lattice. Some of

the developments in Sec. 3.1 are inspired from [68, 143].

The research work presented in this chapter results from a collaboration with Prof. Dominique

Sugny from the Laboratoire Interdisciplinaire de Carnot Bourgogne (Dijon), who specializes in

the application of optimal control to quantum systems. It has lead to the publications:

[63] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Sugny and

D. Guéry-Odelin, Quantum State Control of a Bose-Einstein Condensate in an Optical

Lattice, PRX Quantum, 2:040303, (2021)

[64] N. Dupont, F. Arrouas, L. Gabardos, N. Ombredane, J. Billy, B. Peaudecerf, D. Sugny

and D. Guéry-Odelin. Phase-space distributions of Bose-Einstein condensates in an optical

lattice: Optimal shaping and reconstruction, currently under review (2022)
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3.1 Optimal-control formalism

3.1.1 Introduction to optimal control in the classical case

Optimal-control theory deals with systems described by parameterized equations of evolu-

tion:

ẋ(t) = f (x(t),u(t), t) , (3.1)

with the initial condition x(0) = x0 and a given scalar cost functional J [x(t),u(t), t] (see below).

In Eq. (3.1),

� x(t) ∈ Rn is the state vector of the system (for a classical system, it can for example be

phase space coordinates, with n = 2N if there are N degrees of freedom ; Sec. 1.1),

� f is a function encapsulating the evolution (e.g. the Hamilton equations for a dynamical

system),

� u(t) ∈ Rm are m time-dependent control parameters used to drive the initial state x0 to

a target state xT (with m 6= n in general).

The optimal-control problem is to determine the control u(t) over the time interval 0 ≤ t ≤ tc

(with tc the control duration, a parameter let free for now) that drives x0 into x(tc) ' xT while

minimizing the cost J . This cost can generally be written

J [x(t),u(t), t] = φ(x(tc), tc) +

∫ tc

0
f0 (x(t),u(t), t) dt (3.2)

where the first term accounts for the cost in reaching the target, and in the time required, and

the second term is a cost functional dependent on the path x(t) and resource u(t) to reach the

final state (it can for example be a resource cost of the form
∫ tc

0 |u(t)|2dt).

Pontryagin maximum principle. To solve such optimal-control problems, L. Pontryagin intro-

duced in 1956 what is now refered to as the Pontryagin maximum principle (PMP). We here

state this principle without demonstration (for more information, see [119, 144, 143]). We start

by introducing a scalar, Hamiltonian-like function HP, named Pontryagin Hamiltonian, that can

be written as

HP(x(t),p(t),u(t), t) = −f0(x(t),u(t), t) + p(t) · f(x(t),u(t), t), (3.3)
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where the adjoint momentum-like1 vector p(t) ∈ Rn is nothing but a time-dependent Lagrange

multiplier. This adjoint state has its evolution governed by Hamilton equations deduced from

the Pontryagin Hamiltonian:

ẋ =
∂HP

∂p
and ṗ = −∂HP

∂x
. (3.4)

The PMP states that optimal controls2 u∗(t), that minimize the cost, maximize HP along the

trajectory:

HP (x(t),p(t),u∗(t), t) = max
u(t)
{HP(x(t),p(t),u(t), t)} for 0 ≤ t ≤ tc, (3.5)

or, equivalently

∂HP

∂u

∣∣∣∣
u=u∗

= 0 for 0 ≤ t ≤ tc. (3.6)

Solving an optimal-control problem amounts to solving Eq. (3.6) for u∗(t). However, we so far do

not have enough information to evaluate HP and p(t). One tackles a given problem depending

on the constraints that enter the definition of the cost function (3.2) [143, 68]. This leads to the

definition of a series of cases:

(i) If neither x(tc) nor tc are fixed, we set

p(tc) = − ∂φ(x(t), t)

∂x

∣∣∣∣
t=tc

and
∂φ(x(t), t)

∂t

∣∣∣∣
t=tc

= HP (x(tc),p(tc),u(tc), tc) . (3.7)

(ii) If x(tc) is fixed and tc is free, we set

∂φ(x(t), t)

∂t

∣∣∣∣
t=tc

= HP (x(tc),p(tc),u(tc), tc) . (3.8)

(iii) If, on the contrary, tc is fixed and x(tc) is free, we set

p(tc) = − ∂φ(x(t), t)

∂x

∣∣∣∣
t=tc

(3.9)

(iv) Finally if both x(tc) and tc are fixed, Eqs. (3.3) and (3.4) contain enough information to

solve for u∗(t) in Eq. (3.6).

1We stress that p is a mathematical construction, adjoint vector to the state vector x. In the classical dynamics
example taken above, we have x = (q1, ..., qN , p1, ..., pN )T, comprising itself the true generalized momenta pi
(Sec. 1.1).

2We consider the case where there are no constraints on u(t).
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Our constraints. In our case, we will only require for the final state x(tc) to reach xT the most

accurately possible in a fixed amount of time tc and regardless of the path taken. This puts us

in the third case detailed above, with a cost function that becomes

J [x(t),u(t), t]→ J(x(tc)) = φ(x(tc)) = −F(xT,x(tc)), (3.10)

where F(xT,x(tc)) is a fidelity to the target to be maximized. Thus, we need to determine

u∗(t) from the system composed of Eqs. (3.4) and (3.6) with the boundary conditions x(0) = x0

(defined as our initial state) and p(tc) (Eq. (3.9)). However, this task is generally not easy.

We therefore proceed using an iterative algorithm. One can show that the transformation

u(t) → u(t) + δu(t) with δu(t) = ε ∂HP/∂u (with ε a small positive parameter) increases the

fidelity [143], with u∗(t) a fixed point of the transformation (according to Eq. (3.6)). In our

implementation, we use a numerical iterative gradient-ascent method based on this property.

The procedure is detailed in Sec. (3.1.3).

3.1.2 Application to one-dimensional Bloch systems

In order to apply the previous discussion to the control of BECs in the optical lattice, we

need to get expressions for the state vector, adjoint vector (with its final condition) and ∂HP/∂u

in our system. In the experiment, the atoms experience the controllable lattice potential

V (x, t) = −A(t)s0
EL

2
cos (kLx+ ϕ(t)) . (3.11)

In Sec. 1.2, we recalled Bloch’s theorem in one dimension, from which it follows that a quan-

tum state at a given quasi-momentum q in a one-dimensional potential of period d is uniquely

expanded over the basis of the plane waves as

|ψq(t)〉 =
∑
`∈Z

cq,`(t)
∣∣χ`+q/kL

〉
, (3.12)

with 〈x|χ`+q/kL
〉 = ei(`kL+q)x/

√
d and kL = 2π/d. We state the uniqueness of this expansion

with the isomorphism

|ψq(t)〉 ↔ Cq(t) =


...

cq,`(t)
...

 . (3.13)

In the following, we represent an arbitrary state |ψq(t)〉 using its associated coefficient vector

Cq(t), and we drop the explicit dependence on q. In vector form, the time-dependent Schrödinger

equation reads
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iĊ(t) = M(u(t))C(t), (3.14)

with M(u(t)) = H(u(t))/EL (see Eqs. (1.22) and (1.32)) and u(t) is a parameter of the controlled

lattice potential (3.11). In the experiments presented in Secs. 3.2, 3.3 and 3.4, the control

parameter u(t) is the lattice phase ϕ(t), and the control is performed in a lattice of constant

depth (A(t) = 1). In what follows, we keep a general narrative with the parameter u(t) as long

as our development allows it.

The formalism of optimal-control theory is introduced for real-valued state vectors. We

connect our quantum state C(t) to the real vector X(t) defined as

X(t) =

(
Re{C(t)}
Im{C(t)}

)
=



Re


...

c`(t)
...


Im


...

c`(t)
...




. (3.15)

We get a real-valued vector X(t) ∈ R2dH , with dH the Hilbert space dimension (see Sec. 1.2.2).

The evolution equation for X(t) in the form of (3.1) is obtained from the Schrödinger equa-

tion (3.14):

Ẋ(t) =

(
Im{M(u(t))} Re{M(u(t))}
−Re{M(u(t))} Im{M(u(t))}

)
X(t) = f(X(t), u(t)). (3.16)

Following optimal-control formalism, we define the Pontryagin Hamiltonian for this problem:

HP = P (t) · f(X(t), u(t)) = PT(t)× f(X(t), u(t)), (3.17)

where we have denoted the matrix product with ×. In a similar way as the relation (3.15)

between X(t) and C(t), we associate a complex-valued vector D(t) to the adjoint state P (t):

P (t) =

(
Re{D(t)}
Im{D(t)}

)
. (3.18)

From Eqs (3.17) and (3.18), the Pontryagin Hamiltonian for the one-dimensional Bloch system

becomes
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HP = Re{D}Re
{
Ċ
}

+ Im{D} Im
{
Ċ
}

(3.19)

= Re
{(

Re
{
DT
}
− i Im

{
DT
})
×
(

Re
{
Ċ
}

+ i Im
{
Ċ
})}

= Re
{
D† × Ċ

}
.

where the time dependence is implicit. Using Eq. (3.14), we finally get for HP:

HP = Im
{
D†(t)M(u(t))C(t)

}
⇒ ∂HP

∂u
= Im

{
D†(t)

∂M(u(t))

∂u
C(t)

}
(3.20)

Finally, the boundary condition D(tc) is obtained from the evolution of P (t) given by the

Hamilton equations applied to HP. Using Eqs. (3.16) and (3.17):

Ṗ = −
(
∂HP

∂X

)T

=

[
PT

(
− Im{M(u(t))} −Re{M(u(t))}
Re{M(u(t))} − Im{M(u(t))}

)]T

(3.21)

=

(
Im{M(u(t))} Re{M(u(t))}
−Re{M(u(t))} Im{M(u(t))}

)
P

where we have used the fact that M(u(t)) = H(u(t))/EL is Hermitian 3. We get that D(t)

evolves as C(t):

i ˙D(t) = M(u(t))D(t), (3.22)

with a final condition obtained from Eqs. (3.9) and (3.10):

PT(tc) = +
∂F
∂X

∣∣∣∣
t=tc

⇒D(tc) =
∂F
∂CT

∣∣∣∣
t=tc

, (3.23)

The adjoint state D(t) is evaluated for all time 0 ≤ t ≤ tc by propagating its final state (3.23)

backward in time using Eq. (3.22). We also need to define the fidelity function F to the target

3Which implies for our development Re
{
MT

}
= Re{M} and Im

{
MT

}
= − Im{M}.
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|ψT〉 ↔ CT. This choice depends on the states targeted (see below). For most of our targets,

we will use the quantum fidelity between pure states

F (|ψT〉 , |ψ(t)〉) = |〈ψT|ψ(t)〉|2 =
∣∣∣C†T ×C(t)

∣∣∣2 . (3.24)

With the expressions for the state C(t) and its adjoint D(t), their boundary condition

(a free choice for C0 and Eq. 3.23 for D(tc)), the knowledge that they both evolve according

to Schrödinger equation (Eqs. (3.14) and (3.22)) and the expression for ∂HP/∂u along the

trajectory (Eq. (3.20)), we have all the ingredients to iteratively compute control fields.

3.1.3 Numerical method for control field computation

As discussed in the previous section, our control parameter in the studies presented there-

after is the lattice phase ϕ(t). We now explicit this choice with u(t) → ϕ(t). For numerical

computation, we discretize the time vector t → tn = t0, t1, ...tN during the state preparation,

with t0 = 0 and tN = N∆t = tc (with ∆t a small time interval ; see below). The lattice phase

ϕ(t) is defined constant by part over ∆t (see Fig. 3.1 below), and we write ϕ(tn) = ϕn. The

evolution operator from tn−1 to tn is

U(tn, tn−1) = Un = exp

{
−i∆tHn

~

}
= exp{−i2πνL∆tMn}, (3.25)

where we have used H(tn) = Hn = ELMn = hνLMn. We want to drive an initial state C(0) to

a target CT. We start with the initialization of the control field ϕ
(0)
n (an initial guess), which

prepares a certain final state

C(0)(tc) = U
(0)
N U

(0)
N−1...U

(0)
2 U

(0)
1 C(0), (3.26)

that has a fidelity F (0) to the target. If we vary of the control field ϕn → ϕn+δϕn, the variation

of fidelity is

δF =

N∑
n=1

∂F
∂ϕn

δϕn (3.27)

The heart of the gradient ascent method [145, 146, 147] that we use is to choose δϕn so that δF ≥
0 in order for F to increase. We see that if we modify the control field with the corrections

δϕn = ε
∂F
∂ϕn

, (3.28)
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with ε > 0, we make sure to have δF ≥ 0 since the right-hand-side of Eq. (3.27) becomes∑
n ε(∂F/∂ϕn)2 where each term is greater than or equal to zero. As we will see below, the

corrections (3.28) correspond to the general control field corrections δu(t) = ε∂HP/∂u discussed

at the end of Sec. 3.1.1.

We now show how one can compute δF/δϕn. As the fidelity only depends on the final state

reached C(tc) (for a fixed target), the dependence of F on the control field ϕn is that of C(tc).

The resulting complex derivative reads4

∂F
∂ϕn

=
∂C†(tc)

∂ϕn

∂F
∂C†(tc)

+
∂F

∂C(tc)

∂C(tc)

∂ϕn

= 2 Re

{
∂C†(tc)

∂ϕn

∂F
∂C†(tc)

}
. (3.29)

The first factor in the argument of the real-part function is

∂C†(tc)

∂ϕn
= C†0U

†
1 ...U

†
n−1

∂U †n
∂ϕn

U †n+1...U
†
N (3.30)

' i2πνL∆tC†0U
†
1 ...U

†
n−1

∂Mn

∂ϕn
U †n+1...U

†
N

where we expanded Un ' 1dH
− i2πνL∆tMn (arguing that ∆t is a small time interval) and used

M †n = Mn. As the second factor in the argument of the real-part function in Eq. (3.29), we

recognize the boundary condition D(tc) = DN (Eq. (3.23)). Equation (3.29) thus becomes5

∂F
∂ϕn

' 2 Re

{
i2πνL∆tC†0U

†
1 ...U

†
n−1

∂Mn

∂ϕn
U †n+1...U

†
NDN

}
' −4πνL∆t Im

{
C†n−1

∂Mn

∂ϕn
Dn

}
= 4πνL∆t Im

{
D†n

∂Mn

∂ϕn
Cn−1

}
, (3.31)

where we have propagated C†0 forward up to C†n−1, and DN backward up to Dn. From

Eqs. (3.27) and (3.28), we see that doing this operation for all n such that 0 ≤ tn ≤ tc gives the

corrections to be applied to each ϕn to increase the fidelity.

In Eq. (3.31), we recognize a discrete version of the derivative of the Pontryagin Hamiltonian

with respect to the control parameter (3.20). Our gradient ascent (3.28) is effectively performed

by iteratively modifying the control field with the corrections

4with z + z∗ = 2 Re{z} ; z ∈ C.
5with Re{iz} = − Im{z} and Im{z∗} = − Im{z}.
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Figure 3.1 Schematic of a gradient ascent iteration for the computation of a discretized
control field showing the field ϕn at time tn at the current step (gray line) and at the next step (black
line), after applying the corrections δϕn (red arrows). Our discretization convention is such that the
evolution operator U(ϕn) transforms Cn−1 into Cn.

δϕn = ε 4πνL∆t Im

{
D†n

∂Mn

∂ϕn
Cn−1

}
' ε′∂HP

∂ϕn
(3.32)

as prescribed by optimal-control theory through the PMP (Sec. 3.1.1). The small positive

parameter ε is initialized to 1 and then slightly adjusted following a line-search method [147].

Our numerical approach is summarized in a list of concrete steps in the following box, and an

iteration of this algorithm is schematically depicted in Fig. 3.1.

➜

Iterative gradient-ascent algorithm

0. Set a initial state C0, a target CT, a fidelity function and a control durationa tc (we

state typical values for this parameter in the next section 3.1.4). Set also a break

condition on the fidelity or the number of iterations.

1. Initialize a guess field ϕ
(0)
n .

2. Propagate C0 forward to obtain Cn for all n using the time dependent Schrödinger

equation (Eqs. (3.26) and (3.25)).

3. Evaluate the adjoint state at final time DN using Eq. (3.23) and propagate it back-

ward up to t = 0 using Schrödinger equation to obtain Dn for all n.

4. Compute the corrections δϕn for all n using Eq. (3.32) and the integration of Cn

and Dn. Transform ϕn → ϕn + δϕn.

5. Repeat from step 2 (with a possible adaptation of the correction amplitude ε) until

reaching the desired fidelity or the maximum number of iterations.

aWhich needs to be discretized into a number N of sufficiently small time steps ∆t in order for the
approximation done in Eq. (3.30) to be valid, as well as for the time-discretized fidelity gradient (3.31)
to approximate the gradient of the Pontryagin Hamiltonian (3.20) in the continuous-time limit.
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3.1.4 Numerical results, local optima and control duration

We now present numerical results of control field computation using the algorithm presented

in the previous section. As an example, we target, in the subspace of quasi-momentum q = 0,

the state

|ψT〉 =
1√
2

(|χ−3〉+ |χ3〉) (3.33)

i.e. the superposition of plane waves with momenta (−3, 3) ~kL and a relative phase arg{c−3/c3} =

0. Our initial state for the control is the ground state of the lattice at depth s0 = 5 (a parameter

that is fixed during the QOC preparation). We use the quantum fidelity (3.24), with a break

condition of F > 0.995 for the algorithm. Here, and in the following of this manuscript, we define

|ψQOC〉 as the theoretical state obtained from the numerical propagation of the initial state with

the optimized control field. Results are shown in Fig. 3.2 for two different resulting control fields

for the preparation of the state (3.33). The control fields have been obtained from two different

initial guesses, from which, in both cases, the gradient ascent algorithm has converged to an

optimal control (which means that we effectively get F > 0.995). This illustrates the general

fact in optical-control theory that if there exist multiple local optima for the control parameter

with respect to the cost function, a gradient-based approach may only converge towards one of

these optima depending on the initialization of the control field [126, 143]. In this case, both

optimal control fields ϕ(t) give a satisfactory result, which mean that the local fidelity maxima

near our two initializations were such that F ≈ 1.

Remark on the control duration. In our numerical approach of this optical-control problem,

we fix the control duration tc. This quantity has to be large enough for the target to be-

come reachable, and preferably from a vast region of control field initialization (see previous

paragraph). In our system, the evolution of the atoms in the lattice is governed by the band

structure (Sec. 1.2.2). As our initial state is the ground state of the optical lattice, we define as

the relevant timescale the period T0 associated to the transition between the two lowest bands

s and p at the center of the Brillouin zone (q = 0):

T0(s0) =
h

E
(s0)
0,1 − E

(s0)
0,0

, (3.34)

with E
(s0)
q,n the nth Bloch eigenenergy at quasi-momentum q and lattice depth s0. For tc � T0,

not enough time is given for the atomic state to eventually evolve toward the target. For tc � T0,

it is easier for the numerical algorithm to converge. The problem then becomes an experimental

one, as experimental fluctuations have more time to accumulate and limit the fidelity of the

preparation. We present a brief study of the control duration effect on experimental preparations

in App. D. In our experiments, we typically use control durations of a few T0 (mainly 1.5 to
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Figure 3.2 Non-unicity of the control fields for the preparation of a given target. (a1,b1) Ex-
amples of lattice phase evolutions as a function of time optimized by optimal-control theory (solid black
line) for the preparation of |ψT〉 (3.33), starting from two different initial guesses (dashed black line).
(a2,b2) Corresponding numerical evolutions of momentum distribution. (a3,b3) Comparisons between
the momentum distribution of |φQOC〉 (red bars) and the target (grey bars). Resulting numerical quan-
tum fidelities (Eq. (3.24)) are F & 0.996 for (a,b). The lattice depth is s0 = 5 and time is given in units
of T0(s0 = 5) ≈ 62 µs (see text).

2T0). Most of the results presented in this chapter are obtained with lattice depths around

s0 = 5, for which T0 ≈ 62 µs.

3.2 Controlling momentum distributions

We now turn to experimental results. In first sets of experiments, we control the momentum

distribution |〈p|ψ〉|2 of BECs in the optical lattice. We start by introducing two new fidelity

definitions, which are less restrictive than (3.24) given our targets.

3.2.1 Fidelities between momentum distributions

Our goal in this first section of results is to target given momentum distributions {|c`|2}
at quasi-momentum q = 0. As our targets only depend on the norms {|c`|}, we note that it

is unnecessarily restrictive to require the preparation of a specific state whose c` coefficients

have imposed relative phases. Indeed, a given momentum distributions {|c`|2} is achieved if we
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drive our initial state to the Hilbert subspace composed of the infinitely large number of states

whose plane wave coefficient norms are {|c`|}. We define two fidelities, less restrictive than the

quantum fidelity (3.24), that allow to compute control fields towards this subspace:

F (α) ({|c`|} , {|d`|}) = 1− 1

2

∑
`∈Z

(|c`| − |d`|)2 (3.35)

F (β) ({|c`|} , {|d`|}) =

(∑
`∈Z

|c`| |d`|

)2

, (3.36)

with c`, d` the plane wave coefficients of the two states between which the fidelities are computed,

and 0 ≤ F (α,β) ≤ 1 for normalized states
∑

` |c`|2 =
∑

` |d`|2 = 1. This duplicity of definition

for the fidelity between momentum distributions is fortuitous: for the results presented in the

following sections 3.2.2 and 3.2.3, control fields have been computed with the first definition

F (α) (3.35). For the treatment of the experimental data, we however use the second definition

F (β) (3.36), as it corresponds to the quantum fidelity (3.24) in the specific case of complex

phase matching between the two states coefficients of the two states6. We have verified that

the results of momentum distribution presented in the following could have been obtained with

either definition, whether for the control field calculation or data treatment.

!
The choice for the fidelity function impacts steps 3 and 5 of our iterative gradient-ascent

algorithm (p. 72), namely the final condition for the adjoint state and the break condition.

Experimental results of momentum distribution control are shown in the next two sec-

tions. In Sec. 3.2.2, we present preparations of single momentum components. In Sec. 3.2.3, we

present equiprobable superpositions of two momentum components and an arbitrarily populated

momentum state.

3.2.2 Preparing single momentum components

We first target momentum distributions given by {|c`|2} = {δm,`}, with m the reduced

momentum p/~kL of the targeted plane waves. Results are shown in Fig. 3.3 for m = 0, 2, 4, 10

and quantitative details can be found in Table 3.1. The measured experimental fidelities are

very close to the numerical ones, and both show a similar trend, with slowly decreasing values as

we go from low momentum targets to high momentum targets (see Table 3.1). At the same time,

the control phase gets more complex, as seen in Fig.3.3(d). To reach high single momentum

states, such as p = 10 ~kL (Fig.3.3(d)) we increase the time of the control ramp to ensure the

convergence of the algorithm. We note that we reach momenta much higher than the separatrix

momentum psep =
√
s0 ~kL (Sec. 1.1.2), which corresponds to the classical limit with a sudden

lattice shift [62].

6Given the coefficient norms of two states, F (β) (3.36) is therefore an upper bound of F (3.24).
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Figure 3.3 Controlling momentum distributions: single momentum components. Left: Con-
trol field as a function of time. Right: TOF absorption images, where the OD colormaps have been
truncated to 0.5 of their maximum respective value (which saturates the center of the mainly populated
orders) to reveal preparation defects. (a,b,c1,d) QOC preparations. (c2) Lattice acceleration (see text).
See Table 3.1 for details.

We stress that, as any image of atoms featured in this thesis, the ODs shown in panels

(a,b,c1,d) are TOF absorption images of BECs directly dropped from the optical lattice (in

this case, once the propagation procedurehas been applied). Strikingly, the usual momentum

quantization induced by the lattice periodicity imprinted in the wave function is suppressed.

While this is expected as we target single plane waves, these experiments interestingly amount

to the realization of a blazed grating for matter waves (in direct analogy with optics), as the

measured momentum distributions correspond to an in situ constant phase gradient ∆φ(x) =

mkLx across the lattice sites (see for instance [90]).

Preparing the single plane wave with momentum m × ~kL corresponds to accelerating all

the atoms of the BEC up to that momentum. We can compare our QOC method to the more

standard protocol of accelerating the lattice to impart momentum to the atoms. In Fig. 3.3(c2),

we illustrate this comparison in the case of m = 4, where we uniformly accelerate the lattice up to

a velocity of 4h/md for the same amount of time tc and lattice depth s0 used for the corresponding

QOC experiment of Fig. 3.3(c1). After the acceleration, the fidelity to the target state, i.e. the

single momentum state p = 4 ~kL, is only F (β)
c2 = 0.49± 0.03, which is much lower than the one

obtained using the QOC method (F (β)
c1 = 0.89 ± 0.01, see Table 3.1). This is clearly visible on

the experimental absorption image of Fig. 3.3(c2), with atomic population on the neighboring

momentum orders. One could argue that the fidelity to the target state using the acceleration

method can be increased by working adiabatically and performing Bloch oscillations [148, 149,

79]. Numerical simulations show however that reaching a fidelity F (β) > 90 % to a given single

momentum state requires low lattice depths s0 < 1 and that the adiabaticity condition [79] then
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Fig. 3.3 a b c d

s0 5.1±0.2 5.2±0.2 5.2±0.2 5.1±0.2

tc/T0 1.5 1.5 1.5 4.25
m 0 2 4 10

F (β)
num 0.99 0.99 0.89 0.87

F (β)
exp 0.94±0.01 0.94±0.01 0.89±0.01 0.74±0.05

Table 3.1 Detail table related to the preparation of single momentum components. This
table refers to Fig. 3.3. s0 is the lattice depth, tc/T0 is the control duration rescaled by the period T0

(Eq. (3.34), see text) and m is the momentum (rescaled by ~kL) of the targeted plane wave. The fidelity

F (β) is defined in Eq. (3.36). F (β)
num is evaluated between the target and |ψQOC〉. F (β)

exp is evaluated between
the target and the state experimentally prepared by the application of optimal control fields (with an
average over 10 realizations, and an uncertainty corresponding to one standard-deviation).

leads to a generally much longer control time tc (see below). The control time will also grow

linearly with the momentum of the targeted state, reaching tc = 1.7 ms for the p = 4 ~kL state

considered in our comparison (to be compared with tc = 1.5T0 ≈ 92 µs using QOC). Such long

control times also mean that the atoms move much further away from the center of the trap

(Sec. 2.2.4) during the lattice acceleration, with expected deleterious effects as this additional

potential is not taken into account by our model. In Table 3.2, we summarize the results of the

comparison between QOC and adiabatic acceleration for several momentum orders. We conclude

that the QOC method is both a fast and accurate procedure to populate single momentum states

with a high fidelity.

m 2 4 8 10

F (β)
exp 0.94±0.01 0.89±0.01 0.76±0.04 0.74±0.05

QOC
s0(±0.2) 5.2 5.2 5.1 5.1
tc (µs) 91.7 91.7 260 260

Acc
s0 0.75 1.1 2.1 2.3

tacc (µs) 1.7 · 103 1.7 · 103 1.2 · 103 1.4 · 103

Table 3.2 QOC versus adiabatic lattice acceleration. Comparison of the control time tc required
to reach a given single momentum target (p = m × ~kL) with the same fidelity using either our QOC

protocol or an adiabatical Bloch oscillation scheme with a uniformly accelerated lattice (“Acc”). F (β)
exp

refers to the experiments Fig. 3.3(b,c1,d) as well a preparation of the 8th plane wave not featured in
Fig. 3.3. We indicate the lattice depth s0 at which the experiments were performed (for the QOC case),
or which would be required (for the accelerated case).

The comparison between the control fields ϕ(t) in both methods (QOC and lattice accel-

eration) also sheds light on the way the optimal phase is designed: the artificially-made folded

quadratic growth pattern in the control phase for the acceleration method (Fig. 3.3(c2)) can

also be found in the QOC phases, for instance in Fig. 3.3(c1,d). In the case of panel (c1), the

optimal control field ϕ(t) can be interpreted as a first acceleration stage towards the targeted

momentum state (for t/T0 < 0.75), and a second “correction” stage to reduce the population in

unwanted momentum states.
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Figure 3.4 Controlling momentum distributions: two-components equiprobable and arbi-
trary momentum superpositions. Left: Control field as a function of time. Right: TOF absorption
images, where the OD colormaps have been truncated to 0.5 of their maximum respective value (which
saturates the center of the mainly populated orders) to reveal preparation defects. See Table 3.3 for
details.

3.2.3 Preparing arbitrary superpositions of momentum components

In this last section of results concerning momentum distribution control, we shape the lattice

phase ϕ(t) to realize arbitrary momentum superpositions. Results are shown in Fig. 3.4, with

details in Table 3.3. We begin with equiprobable superpositions of two momentum states, varying

their relative momentum. We show the case of neighboring momentum states (Fig. 3.4(a)),

opposite momentum states (Fig. 3.4(b)) and an arbitrary pair of momentum states (Fig. 3.4(c)).

We also prepare an arbitrary momentum distribution corresponding to an “ascending staircase”

distribution (|c−2|2, |c−1|2, |c0|2, |c1|2, |c2|2) = (1, 2, 3, 4, 5)/15 (Fig. 3.4(d)). In each case shown,

we achieve good experimental fidelities to the ideal target (larger than 88 %, see Table 3.3),

slightly below the corresponding numerical fidelities.

To further demonstrate the robustness and versatility of our QOC method for the prepa-

ration of momentum distributions, we prepared all the 27 = 128 equal-weight superpositions of

momenta between p = −3 ~kL and p = 3 ~kL in the lattice of depth s0 ≈ 5. As an amusing

way of presenting the results, we constructed an alphabet by concatenating the resulting TOF

absorption images, allowing us to write words and sentences. An example of such a printout is

shown in the beginning of this chapter (p. 61).

All experimental results of QOC featured in this chapter are obtained with the ground state

of the lattice as the initial state for the control. The arbitrariness of this choice is illustrated in

App. E, where we show an experiment of momentum distribution control with the resting BEC

(c` = δ0,`) as the initial state.

We recall that the targets in this section were defined regardless the relative phases between

their c` coefficients. In the next section, we experimentally target specific quantum states, and
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Fig. 3.4 a b c d

s0 4.6±0.2 5.0±0.1 4.6±0.2 5.1±0.1

tc/T0 1.5 1.5 ≈ 2 1.5
{m} {−3,−2} {−4, 4} {−3, 2} {−2,−1, 0, 1, 2}
{|cm|2} {0.5, 0.5} {1, 2, 3, 4, 5}/15

F (β)
num 0.95 0.92 0.98 0.99

F (β)
exp 0.88±0.03 0.93±0.01 0.93±0.02 0.94±0.01

Table 3.3 Detail table related to the preparation of two-component equiprobable and ar-
bitrary momentum superpositions. This table refers to Fig. 3.4. s0 is the lattice depth, tc/T0 is the
control duration reduced by the period T0 (Eq. (3.34), see text), {m} is the set of momenta of the targeted
components (reduced by ~kL) and {|cm|2}T are the square moduli of the corresponding coefficients The

fidelity F (β) is defined in Eq. (3.36). F (β)
num is evaluated between the target |ψQOC〉. F (β)

exp is evaluated
between the target and the state experimentally prepared by the application of optimal control fields
(with an average over 10 realizations, and an uncertainty corresponding to one standard-deviation).

present how we manage to assess the prepared states.

3.3 Wave function control

In this second section of results, we tackle the preparation of specific quantum states |ψ〉 =∑
` cq,`|χ`+q/kL

〉. To compute control fields, we therefore use the usual fidelity between pure

quantum states F = |〈ψ|φ〉|2. The difficulty now lies in the measurement of the prepared

complex wave function in order to certify our preparation protocol. Our general procedure to

deduce the prepared quantum states is to hold them in the static lattice after the preparation.

We then use the data of their evolution in the optical lattice as information to identify the state.

In the following, we first show that we can prepare and identify superpositions of two momentum

components with an arbitrary relative phase (Sec.3.3.1) and specific eigenstates of the lattice

potential as well as eigenstate superpositions (Sec.3.3.2). We then turn to the more general

preparation of arbitrary states in the system, through the target of Gaussian states (for which

we develop a systematic reconstruction method) that we translate and superpose (Sec. 3.3.4) or

squeeze (Sec. 3.3.5) in the (x, p) phase space of each lattice site.

3.3.1 Control of the relative phases between two momentum components

To prepare a given quantum state in our Bloch system, we need to control the complex phase

of each7 coefficient cq,`. We first demonstrate this control by targeting the simple momentum

superposition

∣∣∣ψ(∆φ)
T

〉
=

1√
2

(
|χ1〉+ ei∆φ |χ−1〉

)
. (3.37)

7Actually each coefficient minus one, since states are defined up to a global phase.
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For several target values of the relative phase ∆φ = j×π/8 (with j ∈ {0, 1, ..., 15}) we compute

an optimal-control ramp that prepares the corresponding superposition
∣∣∣ψ(∆φ)

QOC

〉
with numerical

quantum fidelity Fnum > 0.995. With each ramp, we also evaluate the prepared relative phase

∆φprep = arg{c−1/c1} from a simulation of the optimal control preparation. To measure the

relative phase ∆φmeas of the experimentally prepared superpositions, we use the subsequent

evolutions of the momentum distribution in the static lattice. These evolutions are measured

over an extra 110 µs (≈ 1.75T0). Results are shown in Fig. 3.5.

For each of the five evolutions presented, we see that the initial momentum distributions

(at t = 0) are the same, which is the expected superposition (−1, 1) ~kL given the addressed

state (3.37). The subsequent evolutions then strongly differ depending on the prepared relative

phase ∆φprep. This allows us to measure relative phases ∆φmeas with precision by fitting, on

the experimental data, numerical evolutions of the ideal state (3.37) with the relative phase ∆φ

as the adjustable parameter. This procedure is illustrated in Fig. 3.5(c−2-c2). In Fig. 3.5(f), we

compare the prepared and measured relative phases. The good agreement between the two (see

the caption of Fig. 3.5 for details) demonstrates our ability to engineer the phase of momentum

superpositions reliably. The residual mismatch may be attributed to at least two different effects:

on the first hand, lattice depth fluctuations has a double deleterious effect on this experimental

scheme, as they impact both the QOC preparations and the subsequent evolutions. On the other

hand, the adjustments of wave function dynamics performed here suffer from only having the

relative phase ∆φ as adjustable parameter. Indeed, we here effectively assume that the prepared

states at the beginning of the evolution were always the ideal state (3.37), with an equal-weight

superposition of the sole momentum components (−1, 1) ~kL. Even if the preparations were

ideal, we know for a fact that this is inaccurate, as the numerical fidelities to the targets only

are F & 0.995. This necessarily limits the measurement potential of our fit. Later in this

chapter (Sec. 3.3.3), we overcome this limitation with a reconstruction method that only require

a constant lattice depth s0 as an assumption.

We have also performed similar experiments with three-momentum superpositions and dif-

ferent relative phases. These experiments are presented in App. E.

3.3.2 Preparation of Bloch eigenstates and superpositions thereof

To further demonstrate our ability to prepare quantum states with specific relative phases

between their c` coefficients, we target two Bloch eigenstates of the static lattice and two given

superpositions of Bloch eigenstates. Our target are computed from the diagonalization of the

static lattice Hamiltonian in the basis of the plane waves (see Sec. 1.2.2). Writing |φ(s0)
q,n 〉 the nth

Bloch eigenstate (ranked by increasing eigenenergies) at quasi-momentum q and lattice depth

s0, we target the states8 (with indices corresponding to the panels of Fig. 3.6)

8The specific depth values indicated for these targets correspond to the depths calibrated before each experiment
(Sec. 2.4.2).
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Figure 3.5 Control and measurement of the phase between two momentum components.
(a-e) Top: stacks of integrated experimental images (blue) showing the evolution of the momentum
distribution during a 110 µs holding time in a static lattice after applying a control field ϕ(t) preparing
the momentum superposition |ψ∆φ〉 of momentum components (−1, 1) ~kL (Eq. (3.37)) with an expected
relative phases ∆φprep = 3o, 46o, 96o, 184o and 276o. Bottom: numerical propagation (red) in a static
lattice of the same momentum superposition with a relative phase adjusted by least-squares fitting of
the experimental data, yielding respectively ∆φmeas = (11± 6)

o
, (48± 7)

o
, (84± 6)

o
, (192± 7)

o
and

(285± 6)
o
. (c−2-c2) Detail of the evolution of momentum populations in (c), with panel (c`) featuring

the `th momentum component, and showing the experimental data (blue dots) and numerical propagation
of the superposition |ψ∆φmeas〉 with relative phase ∆φmeas determined by least-square fitting (continuous
red line). (f) Measured relative phase ∆φmeas as a function of QOC prepared relative phase ∆φprep for
data (a-e) and more. All data shown were obtained for a calibrated lattice depth s0 ≈ 5. The error bars
represent the 95 % confidence interval for the fitted value of ∆φmeas. The grey dotted line is of slope one.

∣∣∣ψ(b)
T

〉
=
∣∣∣φ(s0=8.15)
q=0,n=1

〉
(3.38)∣∣∣ψ(c)

T

〉
=
∣∣∣φ(s0=8.26)
q=kL/4,n=2

〉
∣∣∣ψ(e)

T

〉
=

1√
2

(∣∣∣φ(s0=5.60)
q=0,n=1

〉
+
∣∣∣φ(s0=5.60)
q=0,n=3

〉)
∣∣∣ψ(f)

T

〉
=

1√
2

(∣∣∣φ(s0=5.66)
q=kL/4,n=0

〉
+
∣∣∣φ(s0=5.66)
q=kL/4,n=1

〉)
.

Expectations. In the case of the one-eigenstate targets |ψ(b,c)
T 〉, we expect to observe no evo-

lution of the momentum distributions as we target steady states of the system. For the two

eigenstate superpositions |ψ(e,f)
T 〉, we are preparing the two-level superposition:

|ψq(t = 0)〉 =
1√
2

(∣∣∣φ(s0)
q,n

〉
+
∣∣∣φ(s0)
q,m

〉)
, (3.39)
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whose evolution can be written as (Sec. 1.2.3)

|ψq(t)〉 =
e−iE

(s0)
q,n t/~
√

2

(∣∣∣φ(s0)
q,n

〉
+ e
−i

(
E

(s0)
q,m−E

(s0)
q,n

)
t/~
∣∣∣φ(s0)
q,m

〉)
. (3.40)

We therefore expect to detect only one frequency of evolution ν
(s0)
q,n,m = |E(s0)

q,m − E(s0)
q,n |/h. We

compute ν(e) ≈ 33 µs and ν(f) ≈ 59 µs.

For these expectations to hold, the eigenstates that go into our target definitions (3.38) need

indeed to be eigenstates (see below). While this is directly the case when targeting |ψ(b,e)
T 〉 (as

we apply our QOC protocol in the subspace of quasi-momentum q = 0), we need, in the case of

|ψ(c,f)
T 〉, to put our preparations in the subspace q = kL/4 after the QOC stage. A state associated

with a particle of mass m initially in the subspace of quasi-momentum q is projected onto the

subspace of quasi-momentum q′ by instantaneously giving it a speed v = ~(q′ − q)/m with

respect to the Bloch system in which it evolves. In the experiment, we induce this instantaneous

speed shift by putting the lattice at speed v = −~(q′ − q)/m with a linear lattice phase curve

once the QOC preparation is done9.

We present the results of these experiments in Fig. 3.6. The control duration is tc = 1.5T0

and we obtain control fields with numerical fidelities F & 0.99. In Fig. 3.6(b,c,e,f), we compare

the evolutions of the states prepared experimentally and the theoretical states |ψQOC〉 prepared

numerically. As expected, the plane wave populations for the one-eigenstate preparations do not

evolve in time (Fig. 3.6(b,c)), demonstrating that we have indeed generated eigenstates. For the

eigenstate superpositions (Fig. 3.6(e,f)), we strikingly observe the evolution of all momentum

orders with mainly one frequency in each case (one can contrast these with e.g. Fig. 3.5(c)).

The observed frequency are in agreement with our expectations (see above).

We point out that similar experiments of eigenstate preparations where performed in one,

two and three dimensions with control sequences of pulsed lattices [130].

We have so far demonstrated quantum state control with simple two-momentum component

superpositions (Sec. 3.3.1) and here with the preparation of lattice eigenstates. To prove our

ability to prepare arbitrary quantum states, we need a systematic state reconstruction method

to measure our preparations.

! In the rest of this chapter, we work in the subspace of quasi-momentum q = 0.

3.3.3 Quantum state reconstruction by likelihood maximization

We present in this section the implementation of an iterative likelihood maximization

method that allows us to systematically reconstruct prepared states from their evolution in

the static lattice after the preparation. As we will see, a strength of this method is that no

9For the targets |ψ(c,f)
T 〉, the lattice is given a speed of v = −~kL/4m ≈ −2.158 mm/s after the QOC stage.
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Figure 3.6 Preparations of Bloch eigenstates and superpositions thereof. (a,d) Lattice band
structures (color lines) for the two depths s0 = 8.2 (a) and s0 = 5.6 (d) over one Brillouin zone, and iden-
tification of the eigenstates targeted in panels (b,c) and eigenstate superpositions targeted in panels (e,f)
(black annotations). The grey areas indicates the energies below the maximum potential energy of the
lattice. (b) Preparation of the eigenstate of the p band at quasi-momentum q = 0 for s0 = 8.15± 0.30.
(b1) Experimental data showing the evolution of the prepared state in the lattice. (b2) Numerical
evolution of |ψQOC〉. (b3) Time-averaged experimental (blue) and theoretical (red) momentum distri-
butions. The error bars represent the standard deviation along the evolution. (c) Same as (b) but for
the eigenstate on the d band at quasi-momentum q/kL = 0.25 for s0 = 8.26 ± 0.10. (e) Same as (b)
but for the equal-weight superposition of eigenstates of the p and f bands at quasi-momentum q = 0 for
s0 = 5.60 ± 0.15. (f) Same as (b) but for the equal-weight superposition of eigenstates of the s and p
bands at quasi-momentum q/kL = 0.25 for s0 = 5.66± 0.15. This experimental figure can be compared
with the theoretical figure 1.5 p. 22.
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assumption is made about the state to be reconstructed (as opposed to the evolution fits shown

in Sec. 3.3.1). The only details needed by the algorithm are “contextual”, namely the lattice

depth s0 and the data time stamps corresponding to the evolution data fed to the algorithm.

We start with reminders on measurement in quantum mechanics [150], and we then present the

reconstruction algorithm that we use in the following section. Let ρ̂ be the density matrix10

associated to the state of a system that we want to reconstruct from a set of measurements.

Projective measurement. We consider the projective measurement of the physical quantity a

associated with the observable operator Â with eigenvalues and eigenvectors {ai, |ai〉}. When

measuring Â on ρ̂, one gets the result ai with probability

πi = tr
{
P̂iρ̂
}

and the state becomes ρ̂→ ρ̂′ =
P̂iρ̂P̂i
πi

, (3.41)

where P̂i = |ai〉〈ai| is the projector on the corresponding eigenstate, with
∑

i P̂i = 1. This ideal

projective measurement scheme is also refered to as von Neumann measurement [150].

Generalized measurement. We can describe a more general measurement that is not based on

projectors anymore. We consider a set of operator M̂i (named Kraus operators) acting on the

system, the only condition being
∑

i M̂
†
i M̂i = 1. When measuring the state of the system, we

get the result i with probability

πi = tr
{
ρ̂M̂ †i M̂i

}
and the state becomes ρ̂→ ρ̂′ =

M̂iρ̂M̂
†
i

π
. (3.42)

Projective measurement is a special case of generalized measurement where the Kraus operators

Mi are projectors. We define the positive operator-valued measure (POVM) formed by the set

of operators Êi = M̂ †i M̂i (which are not necessarily projectors).

We now consider an unknown state ρ̂, prepared a large number of times, on which have

been performed a set of measurements of the POVM {Ei}. We are given the frequencies fi

(with
∑

i fi = 1) with which the results i were obtained. Reconstructing ρ̂ consists in finding

the theoretical state most likely to have produced these results. This state ρ̂ML is the one that

maximizes the likelihood function L defined as

L [ρ̂] =
∏
i

tr
{
ρ̂Êi

}fi
and ρ̂ML = arg max

ρ̂
{L [ρ̂]} (3.43)

However, finding ρ̂ is a tedious endeavor, as one needs to set all the matrix elements of ρ̂ML.

Precisely, in a Hilbert space of dimension dH, symmetric density matrices have dH real numbers

10For a one-body pure state |ψ〉, one has ρ̂ = |ψ〉〈ψ|. As will be explained below, we will however not restrict our
analysis to pure states. In general, one rather has ρ̂ =

∑
i pi|ψi〉〈ψi|, where pi is a classical probability for the

state defined by ρ̂ to be measured in the state |ψi〉, with
∑
i pi = 1.
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on the diagonal, and dH(dH − 1)/2 complex numbers as unique off-diagonal coefficients, which

amounts to (dH)2 real number to determine. We therefore turn to a numerical iterative process

to reconstruct ρ̂ML.

Iterative maximum likelihood algorithm and application to our case. The algorithm that

we implement to reconstruct ρ̂ML is inspired from quantum optics [138, 140, 141] with recent

implementations on matter wave systems [151, 152]. We consider a POVM {Ei}, with the

experimental frequency fi for the measure i, and a guess density matrix ρ̂. The algorithm is

based on the definition of an operator R̂[ρ̂]:

R̂ [ρ̂] =
∑
i

fi

tr
{
ρ̂Êi

}Êi, (3.44)

and the transformation

ρ̂→ ρ̂′ =
R̂ [ρ̂] ρ̂ R̂ [ρ̂]

tr
{
R̂ [ρ̂] ρ̂ R̂ [ρ̂]

} . (3.45)

We remark that if ρ̂ is the maximum likelihood density matrix ρ̂ML, we have πi = tr{ρ̂MLÊi} ≈ fi,
implying that R̂[ρ̂ML] ≈

∑
i Êi = 1. Thus ρ̂ML is left unchanged by the transformation (3.45),

with L[ρ̂′] ≥ L[ρ̂] [140]. The iterative application of the transformation (3.45) thus yields a series

of density matrices that have increasing likelihood with respect to the experimental data.

Concretely, we measure in our case the relative plane wave atomic populations |c`(t)|2 of the

prepared state evolving in the static lattice during a time interval t ∈ [tc, tc + trec] with a number

Nt of measurement times (unless specified otherwise, we use trec = 100 µs and Nt = 21 time

steps). Considering all the evolution data as our measurement ensemble, an atom is measured

at time t in the plane wave ` with frequency

fi = f`,t =
1

Nt
|c`(t)|2 . (3.46)

As we intend to use these measurements to reconstruct the state prepared at tc, the elements of

the POVM are therefore

Êi = Ê`,t =
1

Nt
Û †(t, tc) |χ`〉 〈χ`| Û(t, tc), (3.47)

with Û(t, tc) the evolution operator in the static lattice potential from t to tc. This allows to

define the operator R̂ (3.44) for a given density matrix. With these expressions, we implement

the algorithm summarized in the following box.
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➜

Summary of the iterative maximum likelihood algorithm

1. Set an initial guess state ρ̂(i=0).

2. At iteration i, construct R
[
ρ̂(i)
]

=
∑

j fjEj/ tr
{
ρ̂(i)Ej

}
.

3. Transform ρ̂(i) → ρ̂(i+1) = R
[
ρ̂(i)
]
ρ̂(i)R

[
ρ̂(i)
]
/ tr

{
R
[
ρ̂(i)
]
ρ̂(i)R

[
ρ̂(i)
]}

.

4. Iterate from step 2 until L
[
ρ̂(i+1)

]
− L

[
ρ̂(i)
]
≈ 0 ⇔ ρ̂(i+1) converged to ρ̂ML.

As our initial guess for the one-body density matrix, we set ρ̂(0) = 1dH
/dH, with dH =

2`max + 3 chosen as the cut-off dimension of the Hilbert space in order to avoid boundary ef-

fects, `max being the highest diffraction order at which some signal is experimentally detected

(for the experiments presented in the following section, we have 2 ≤ `max ≤ 6). Our choice for

ρ̂(0) is the state that maximizes the von Neumann entropy11, which corresponds to the most

unbiased guess with no assumption on the state to be reconstructed. Finally, two indicators are

computed to certify the preparation: the fidelity of ρ̂ML to the numerically propagated state

Fexp = 〈ψQOC|ρ̂ML|ψQOC〉 and the purity γ = tr{ρ̂2
ML} which is an indicator of our preparation

reproducibility over the realizations used for the reconstruction (see next paragraph). We illus-

trate the quantum state reconstruction process in Fig.3.7 with an experimental example taken

from the next section.

Note on the framework shift and the introduction of density matrices. Beside the reconstruc-

tion formalism, one can apprehend the shift from working with kets to working with one-body

density matrices as the need to introduce mixed states in order for the reconstructed evolution

to have a chance to match the experimental data. Indeed, we recall that our experimental data

along time are the preparation of several states |ψj(tc)〉 identical to the extent of our experimental

abilities and evolved for increasing times (before being destructed for the momentum distribu-

tions measurement, see Sec. 2.3). Thus, one can expect the theoretical state whose evolution

maximizes the likelihood with the experimental data to be a state resulting of some statistical

mix of the states |ψj〉, with a purity γ quantifying the reproducibility of the preparation.

In the following, we apply this state reconstruction scheme to evaluate the preparation

of translated Gaussian states, superpositions of Gaussian states and squeezed Gaussian states

using our QOC protocol.

3.3.4 Non-squeezed Gaussian states

In this section, we prepare and reconstruct non-squeezed Gaussian states centered at ar-

bitrary positions in phase space. As already introduced in Sec. 1.4.1 where we introduced the

Husimi representation of a state in the (x, p) phase space, we define non-squeezed Gaussian

states in our Bloch system as the Gaussian states that have the same (x, p) aspect ratio as the

11The von Neumann entropy reads S = − tr{ρ̂ ln ρ̂}.
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Figure 3.7 Quantum state reconstruction in a Bloch system by likelihood maximization.
(a-b) Density matrices ρ̂ with arg{ρ̂i,j} color coded and |ρ̂i,j | size coded (not to scale between panels).
(a) Identity matrix 1dH/dH (dH = 11) as the initial guess. (b) Density matrix of maximum likelihood
ρ̂ML. (c) Stack of experimental integrated absorption images taken during the evolution of the prepared
state in the static lattice at s = 5.5 ± 0.5. (d) Diagonal terms of the numerical propagation of ρ̂ML,
whose evolution maximizes the likelihood of results in (c). These data correspond to the experiment of
Fig. 3.8(d) (see below).

ground state of the harmonic oscillator that approximates the bottom of each lattice well. We

here denote as |g(u, v)〉 this state displaced in phase space by (u, v) = (kL〈x̂〉g(u,v), 〈p̂〉g(u,v)/~kL).

In this system of coordinates, Eq. (1.50) for the plane wave coefficients of this state becomes

c`(u, v) =

(
2

π
√
s0

)1/4

eiuv/2e−ilue−(l−v)2/
√
s0 . (3.48)

We write ∆x0 and ∆p0 the position and momentum standard deviation for this non-squeezed

state. We have kL∆x0 = s−1/4 and ∆p0/~kL = s1/4/2.

To present the results for the preparations of such phase space distributions, we compare

the Husimi function Qρ̂(u, v) = 〈g(u, v)|ρ̂|g(u, v)〉/2π (see Sec. 1.4.1) of the numerically pre-

pared states ρ̂QOC = |ψQOC〉〈ψQOC| and corresponding density matrices ρ̂ML reconstructed from

experimental data. We show results of non-squeezed state preparations in Fig. 3.8(a-c) with

quantitative details in Table 3.4. We see that we are able to prepare non-squeezed Gaussian

states with high fidelity to numerical simulations (Fexp ≥ 0.86) and great purity (γ ≥ 0.93).

As discussed in the previous section, our experimental reconstruction data comes from several
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Figure 3.8 Experimental preparation and measurement of non-squeezed Gaussian states.
(a-e) Husimi representations in the phase space of the static lattice. Top (red): states |ψQOC〉 numerically
prepared by optimal control. Bottom (green): density matrices ρ̂ML reconstructed from experimental data
by likelihood maximization. The relative phases in the superpositions (d,e) are respectively 0 and π (see
text). The colormap value for each Husimi function extends from 0 to its maximum value. See Table 3.4
for associated experimental parameters and figures of merit.

Fig. 3.8 a b c d e

u π/2 0 π/2 ±π/2 ±π/2
v 0

√
s

√
s/2 ±

√
s ±

√
s

Fexp 0.95 0.86 0.93 0.89 0.91
γ 0.95 0.96 0.93 0.82 0.91
s 5.50±0.25 5.49±0.20 5.57±0.20 5.5±0.5 5.30±0.25

Table 3.4 Parameters used for the preparation of non-squeezed Gaussian states and figures
of merit obtained from their reconstruction. For all experiments Fnum > 0.995 and tc = 1.75T0.
This table refers to Fig. 3.8.

independent initial states evolved for different durations before measurement. We thus attribute

the eventual decrease in purity to experimental fluctuations. In Fig. 3.8(d,e), we realize even

and odd superpositions of non-squeezed Gaussian states, that is

∣∣∣ψ(∆φ)
T

〉
=

1√
2

(
|g(u, v)〉+ ei∆φ |g(−u,−v)〉

)
, (3.49)

with ∆φ = 0, π for (d,e) respectively. While very little difference is observed between the Husimi

functions12 of the two superpositions realized (both for |ψQOC〉 and ρ̂ML), the differences between

their momentum evolutions (shown in Fig. 3.9) allow to unambiguously identify the prepared

states. This allows us to iteratively reconstruct density matrices ρ̂
(d)
ML and ρ̂

(e)
ML with good purity

12The apparent similitude between the Husimi functions of the Gaussian state superpositions realized is a known
feature of the Husimi quasi-distribution of probability [153].
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Figure 3.9 Evolution of the momentum distribution of superpositions of Gaussian states in
the static lattice.Top panels (a) correspond to the even superposition of Fig. 3.8(d). Bottom panels (b)
correspond to the odd superposition of Fig. 3.8(e). (a1-b1) Stacks of experimental integrated absorption
images taken during the evolution of the prepared states in the static lattice. (a2-b2) Numerical evolution
of the diagonal terms of the density matrices reconstructed from (a1-b1). (a3-b3) Numerical evolution
of the numerically prepared states |ψQOC〉. See Table 3.4 for details.

(γ ≥ 0.82) and consistency with numerical simulations: F (d)
exp = 0.89 and F (d)

exp = 0.91 (see

Table 3.4). This is further confirmed by the very low cross fidelities F(|ψ(d)
QOC〉, ρ̂

(e)
ML) = 0.026

and F(|ψ(e)
QOC〉, ρ̂

(d)
ML) = 0.042 (as the targets for Fig. 3.8(d,e) are orthogonal). To our knowledge,

there is no adiabatic method for preparing such superpositions of translated Gaussian states in

the lattice.

3.3.5 Squeezed Gaussian states

In this last section of experimental results about wave function control, we apply our prepa-

ration and reconstruction procedures to the squeezing of Gaussian states. We define the x-

squeezing parameter as the ratio of standard deviations ξ = ∆x/∆x0 = (∆p/∆p0)−1, with

∆x0 and ∆p0 the non-squeezed standard deviations (see previous section). Including ξ in the

definition of our Gaussian states, Eq. (3.48) becomes

c
(ξ)
` (u, v) =

(
2ξ2

π
√
s0

)1/4

eiuv/2e−ilue−ξ
2(l−v)2/

√
s0 . (3.50)

For the squeezed Gaussian state |g(ξ)〉 at lattice depth s0, position and momentum standard

deviations are given by kL∆x = ξs
(−1/4)
0 and ∆p/~kL = s

1/4
0 /2ξ. In our periodic system, the

upper bound on ξ is infinite and is reached when only a single diffraction order ` is populated

(we have shown results up to |`| = 10 in Sec. 3.2.2). Figure 3.10 and Table 3.5 display results

of squeezed Gaussian states positioned at the center of the phase space ((u, v) = (0, 0)) for 1/ξ
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Figure 3.10 Experimental preparation and measurement of squeezed Gaussian states. (a-
e) Husimi representations in the phase space of the static lattice. Top (red): states |ψQOC〉 numerically
prepared by optimal control. Bottom (green): density matrices ρ̂ML reconstructed from experimental
data by likelihood maximization. The colormap value for each Husimi function extends from 0 to its
maximum value. See Table 3.5 for details.

Fig. 3.10 a b c d e

1/ξ 0.44 0.62 1.65 2.75 4.34
Fnum > 0.995 0.980 0.965
Fexp 0.99 0.96 0.98 0.93 0.75
γ 1.00 1.00 1.00 0.92 0.72
s 5.49±0.20 5.49±0.20 5.45±0.40 5.57±0.20 5.62±0.25

tc/T0 1.75 2
trec (µs) 100 125

Table 3.5 Parameters used for the preparation of squeezed Gaussian states and figures of
merit obtained from their reconstruction. For all experiments (u, v) = (0, 0).

ranging from 0.44 to 4.34. Up to 1/ξ = 2.75, we prepare and reconstruct states with good

fidelities and purities (Fexp ≥ 0.93 and γ ≥ 0.92, see Fig. 3.10(a-d)). For the highly squeezed

state 1/ξ = 4.34 of Fig.3.10(e), we increase tc to 2T0 in order for the QOC algorithm to converge

to a control field giving a reasonable numerical fidelity Fnum. This is due to the complexity of

the target state which consists in the superposition of 13 significantly populated momentum

components (|c|`|<7|2 > 0.025) with as many complex coefficients to control. This large number

of populated momentum components also makes the reconstruction more challenging, requiring

a Hilbert space of dimension dH = 15, with 152 = 225 real parameters to determine in order

to find ρ̂ML (Sec. 3.3.3). To help the algorithm set this many parameters, we increase the

amount of information we give it by increasing the duration of the evolution after the QOC

preparation to trec = 125 µs with Nt = 26 time steps. The simultaneous population of many

momentum components also affects the reconstruction in that it reduces the signal-to-noise
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Figure 3.11 Evolution of the momentum distribution of a highly squeezed state in the
static lattice. (a) Stack of experimental integrated absorption images taken during the evolution of the
prepared state in the static lattice. (b) Numerical evolution of the diagonal terms of the density matrix
reconstructed from (a). (c) Numerical evolution of the state |ψQOC〉 obtained by optimal control. (b,c)
correspond to the evolutions of the states presented in Fig. 3.10(e). See Table 3.5 for details.

ratio due to the lower number of atoms per diffraction peak. We illustrate this by drawing

in Fig. 3.11 the momentum evolutions of the experimental, reconstructed and numerical states

during their evolution in the lattice, where one sees an important loss of signal-to-noise ratio in

experimental data as the magnitude of the considered momentum increases. Nevertheless, we

achieve a fidelity Fexp = 0.75 even in that extreme case, and all the Husimi functions of Fig. 3.10

show qualitatively very good agreement between ρ̂ML and |ψQOC〉 for the squeezing of Gaussian

states.

Interestingly, one can consider the effective lattice depth seff at which the ground state

matches the squeezed Gaussian state (3.50) generated at depth s0 with squeezing parameter ξ.

Comparing Eqs. (3.48) and (3.50), one finds seff = s0/ξ
4. In that sense, Fig.3.10(e) shows the

realization of the ground state of a lattice of effective depth seff ≈ 2000 in our lattice of depth

s0 = 5.62. This is, to our knowledge, the first realization of such a state, the production of which

is technically impossible with adiabatic methods. To give an idea, the laser for the lattice in our

experiment (see Sec. 2.4 and App. C) has a maximum power of 15 W, which corresponds for

our setup to a maximum lattice depth of s0 ≈ 40. With the same setup, we thus would require

a laser of about 750 W to produce a lattice depth of s0 ≈ 2000.

We also targeted Gaussian states both squeezed and rotated in the (x, p) plane. Target

state definition and results for those experiments are presented in App. E.

3.4 An application to quantum simulation

We conclude this chapter with an example of application of our QOC protocol to quantum

simulation, namely the production of the initial state for the study of dynamical tunneling in
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an amplitude-modulated one-dimensional optical lattice.

3.4.1 Introduction to dynamical tunneling

As we discussed in the first chapter of this manuscript (Sec. 1.1.2), the mixed stroboscopic

phase portrait of a periodically driven dynamical system features classical trajectories that are

either quasi-periodic (regular) or chaotic (resulting respectively in continuous lines or spread

points in the phase portrait, see e.g. Fig. 3.12(a2)). In such a system, quantum particles can

undergo dynamical tunneling, which consists in oscillating from one region of regular trajectories

to another, crossing classically impassable Kolmogorov-Arnold-Moser surfaces (see Sec. 1.1.2

and [89]). Dynamical tunneling occurs when two non-degenerate Floquet states (Sec. 1.3.2) span

the same regular regions of phase space, with an tunneling oscillation frequency proportional to

the quasi-energy difference between the two states in the quasi-energy spectrum [142, 89].

In previous experiments with cold atoms in optical lattices, dynamical tunneling was studied

with an initial sudden shift of the lattice to bring the ground state of the system in one of the

tunnel-coupled regular regions (a representation of this approach is shown in Fig. 3.12(a) for

the parameters of the dynamical tunneling experiment performed here ; see below). Although

this method provides evidence of the phenomenon [154, 155, 61], more than one frequency is

observed in the tunneling signal as the initial states are only partially projected in the subspace

of the two relevant Floquet states that carries the dynamical tunneling of interest. Moreover,

the visibility of the oscillations is limited by the unequal-weight projection onto these states.

We here apply QOC as a way to optimize the initial state for the observation of dynamical

tunneling. Our goal is to compare the tunneling signal between the two methods.

Following the dynamical scaling for periodically modulated potentials summarized p. 34,

the Hamiltonian that we study is that of the amplitude-modulated potential13:

H̃(x̃, p̃, t̃) =
p̃2

2
− γ

[
1 + ε0 cos

(
t̃
)]

cos(x̃), (3.51)

which generates the mixed phase space of Fig. 3.12(a1,b) for the parameters (γ, ε0) = (0.25, 0.1).

We focus on the center of the stroboscopic phase portrait, where a classical particle, stroboscop-

ically observed every two periods of modulation, is bound to the lateral harmonic-oscillator-like

region it started in (see Fig. 3.13(a)). We fix ~eff = 0.355 (which corresponds to the experimental

parameters s0 = 7.93 and ν = 45.697 kHz, see p. 34) for the dynamical tunneling timescale to be

compatible with the two-period stroboscopic sampling14. Our optimal-control target is the state

that maximizes the visibility of the tunneling oscillation, that is the equal-weight superposition

of the two main Floquet states |ϕA〉 and |ϕB〉 in the central regular region of the stroboscopic

phase portrait. Once the Floquet states are obtained through diagonalization of the Floquet

13Note that γ is the scaled depth of the potential, and no longer the purity of a density matrix.
14For ~eff = 0.355, numerical simulations give a dynamical tunneling period of approximately 20T where T = 1/ν

is the period of modulation of the potential. As the system is observed every 2 periods, we thus expect to
sample the tunneling signal with approximately 10 measures per tunneling period, which is satisfactory.

92



- 0
x

-1

0

1

p

a1

- 0

a2

- 0

b1

- 0
x

b2

- 0

b3

Figure 3.12 Initial states for dynamical tunneling. Husimi representations and underlying clas-
sical phase spaces for (a) the states involved in the translation method and (b) the relevant Floquet
states (see text). (a1) Lattice ground state |φn=0〉. (a2) Translation of the ground state T̂∆x̃R

|φn=0〉 just
after the start of the modulation. (b1) One of the relevant Floquet state |ϕA〉. (b2) The other relevant
Floquet state |ϕB〉. (b3) The ideal superposition of Floquet states |ψ(θR)〉. See text for the definitions of
these states. The colormap for each Husimi function extends from 0 to its maximum value. Parameters
are (γ, ε0, ~eff) = (0.25, 0.1, 0.355).

operator (i.e. the evolution operator over one modulation period, see 1.3.2), we identify |ϕA,B〉
from their overlap with a non-squeezed Gaussian state (Eq. (3.48)) translated in the center of

one of the lateral harmonic-oscillator-like region of the stroboscopic phase portrait. We show

the Husimi functions of |ϕA,B〉 in Fig. 3.12(b1, b2). The theoretical state that maximizes the

visibility of the tunneling oscillation reads

|ψ(θ)〉 =
1√
2

(
|ϕA〉+ eiθ |ϕB〉

)
(3.52)

where the relative phase θ between the Floquet states |ϕA〉 and |ϕB〉 fixes the initial condition

for the oscillation between the two lateral regular regions. We arbitrarily fix a starting point in

the right region, so we set θ = θR defined as

θR = arg max
θ

{〈
ˆ̃x
〉
ψ(θ)

}
(3.53)

Our optimal-control target is thus |ψ(θR)〉. We draw the Husimi distribution of this state in

Fig. 3.12(b3). Finally, in order to compare the QOC approach with the signal obtained from

the translated15 ground state T̂∆x̃|φn=0〉, we determine the optimal translation distance ∆x̃R as

the one that maximizes the overlap between T̂∆x̃|φn=0〉 and the ideal state |ψ(θR)〉:

∆x̃R = arg max
∆x̃

{∣∣∣〈ψ(θR)| T̂∆x̃ |φn=0〉
∣∣∣2} . (3.54)

For our modulation parameters, we find a maximum overlap | 〈ψ(θR)| T̂∆x̃R
|φn=0〉 |2 ≈ 0.91 for

the translation method. The Husimi distributions of the states |φn=0〉 and T̂∆xR
|φn=0〉 are

15See Sec. 1.2.1 for an expression of the translation operator.
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shown in Fig. 3.12(a).

3.4.2 Experimental results

For the experiment without QOC, the ground state is translated by a distance ∆x̃R by

applying a sudden phase shift ϕ0 = ∆x̃R (which spatially translates the lattice by a quantity

−∆x̃R/kL, see Eq. (3.11)) right between the lattice loading and the beginning of the amplitude

modulation. For the QOC experiment, we choose the ground state of the static lattice as our

initial state for the QOC preparation. The amplitude modulation begins immediately after the

QOC stage. Our control parameter remains the phase of the lattice ϕ(t), with a control duration

set to tc = 1.75T0. The QOC algorithm (p. 72) converges to a control field reaching numerical

fidelity Fnum > 0.995.

In this dynamical tunneling experiment, the tunneling takes place between two region of

the x axis, separated by a fraction of the lattice step d = 532 nm. Our imagery setup (Sec. 2.3)

cannot spatially resolve the phenomenon in-situ. The trick is to transfer the spatial information

along the momentum axis using the sub-stroboscopic dynamics (see Fig. 1.4). To do so, after

evolution in the modulated potential, and before TOF measurement, we modulate the potential

during an additional half-period to perform a π/2-rotation around the center of the phase space

and convert the population in the right (resp. left) regular region of the lattice well into negative

(resp. positive) momentum components accessible through TOF [61]. This phase portrait

rotation technique is illustrated in Fig. 3.13(a-b).

Figure 3.13(c-j) compares the results of dynamical tunneling experiments when the initial

state is either approximated by a translation of the ground state (Fig.3.13(c-f)) or targeted by

our optimal control method (Fig.3.13(g-j)). The spectral content of the oscillations is clearly

refined when the two-Floquet state superposition is prepared, resulting in a greater signal-to-

noise ratio for the measurement of the atomic tunneling frequency.

Chaos-assisted tunneling. Our application of QOC to dynamical tunneling is inspired from the

study [61] of chaos-assisted tunneling (CAT) [88, 89] that we performed in 2020 in collaboration

with M. Martinez, G. Lemarié and B. Georgeot from the Laboratoire de Physique Théorique

(Toulouse) and O. Giraud and D. Ullmo from the Laboratoire de Physique Théorique et Modèles

Statistiques (Paris). CAT is a type of dynamical tunneling where the tunneling between the

two regular region is carried by two Floquet states mainly located on these regions, as well as

by a third Floquet state delocalized over the chaotic sea (see Fig. 1.9 for an example of such

a state). Under the variation of an external parameter of the system (e.g. the frequency of

modulation), CAT resonances were predicted [88], associated with a non-monotonic variation of

the tunneling frequencies in that three-level system. In our publication [61], we were the first to

unambiguously observe such a resonance of CAT with matter wave. I recall that, while I chose

not to present in my manuscript this research axis in which I participated, details of this study

can be find in the thesis of M. Arnal [67], G. Chatelain [68] and M. Martinez [69].
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Figure 3.13 Quantum-optimal control applied to dynamical tunneling experiments.
(a) Stroboscopic phase portrait for the amplitude-modulated potential (3.51) with the initially popu-
lated region (gray area with black solid line border) and the coupled regular region that gets populated
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Importantly, in our experiments on CAT [61], we observed that a large number of atoms in

the BECs happens to have a deleterious effect on the time during which dynamical tunneling

signals could be observed16. In [61], we indeed have had to measure signals over up to hundreds

of modulation periods of the potential, and reducing the number of atoms in the BECs by a

factor of 10 had a salutary effect on this experiment. Since then, the modification of the dipole

trap geometry on our experiment (Sec. 2.2.3) has lead to the setup regularly producing BECs

with up to five times more atoms. We thus point out that similar reduction of the number of

atoms in the BECs were performed for the experiment of this section, where we worked with

BECs of N ≈ 5 · 104 atoms, i.e. 10 times less that what the experiment produces. The protocol

to reduce the number of atoms in the BECs in discussed in Sec. 2.2.4.

Conclusion

In this chapter, we discussed the successful implementation of quantum-optimal control

16We attribute this phenomenon to the interactions between atoms, but the exact mechanism is still unclear.
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(QOC) in our experiment to control the motional state of BECs in a one-dimensional optical

lattice. QOC allows us to target states either unreachable by adiabatical means or in compara-

tively much shorter time.

In a first set of experiments, we established our ability to prepare given momentum distri-

butions in the lattice. In a second step, we demonstrated full and reliable control of the external

quantum state in which we prepare the atoms. We applied this control for the preparation of

specific states in the phase space of the system. Such state control is a great tool for quantum

simulation, notably in the semi-classical regime (Sec. 1.4.2) where quantum dynamics is strongly

related to the underlying structures in the classical phase space. We concluded this chapter with

an example of application of QOC for quantum simulation in a study of dynamical tunneling in

the depth-modulated optical lattice. In this last example, we demonstrated our ability to target

Floquet states of a given time-periodic Hamiltonian.

Quantum state control raises the question: How does one certifies proper state preparation?

In our first experiments of momentum distribution preparation, the information was readily

accessible through TOF imaging. We however required dedicated protocols when we targeted

a broader range of quantum states (associated with sets of complex coefficients). Our general

approach was to use data from the subsequent evolution of the prepared state in the static lattice

as information to infer this prepared state. For simple momentum superposition targets, this

was achieved through least-square analysis. To reconstruct the quantum state in the general

case, we implemented a full quantum state tomography using a maximum-likelihood iterative

approach, which allowed us to characterize our experimental states and confirm the success of

the optimal-control preparation.
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Chapter 4 - Non-diffusive Hamiltonian ratchet

[...] because we pull up the shades and let the light out, because we cool off on the

earth and get heat from the sun, the ratchets and pawls that we make can turn one

way. This one-wayness is interrelated with the fact that the ratchet is part of the

universe. It is part of the universe not only in the sense that it obeys the physical laws

of the universe, but its one-way behavior is tied to the one-way behavior of the entire

universe. It cannot be completely understood until the mystery of the beginnings of

the history of the universe are reduced still further from speculation to scientific

understanding.

Richard Feynman (The Feynman Lectures on Physics, Vol. 1, Chap. 46, 1963)
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Introduction

A ratchet is a mechanical device that constrains the movement of a system in a defined

direction. Its mechanism is schematically depicted in its rotating configuration in Fig. 4.1: if

we apply torque on the gear, the combined effect of the pawl and the axial asymmetry of the

toothing prevents the gear from rotating counterclockwise. Ratchets are widespread mechanisms

that are part of many common devices, such as pendulum clocks, ratchet wrenches or bicycle

freewheels.

Figure 4.1 Diagram of a mechanical rotating ratchet. Both the red pawl and the blue gear can
rotate around their fixed black pivots.

In physics, ratchet became a subject of interest with G. Lippmann around 1900 [156, 157].

In a thought experiment, he considers a molecular size device that produces work from thermal

noise using a ratchet mechanism to rectify the isotropy of Brownian motion. The first argu-

ments against this setup apparently violating the second law of thermodynamics came from M.

von Smoluchowski in 1912 [158], saying that as the ratchet part of the system also undergoes

Brownian motion, it cannot consistently direct movement. In 1962, R. Feynman revisits the

idea in the 46th chapter of his Lectures in Physics [159, 160], showing that for such a system to

work, the ratchet must be held at a lower temperature than the rest of the machine, with heat

flowing irreversibly between the parts (this ratchet system being in fine an intricate Carnot heat

engine).

More abstractly, one defines the ratchet effect as the emergence of a directed current1

J = lim
T→∞

1

T

∫ T

0
ẋ(t) dt 6= 0, (4.1)

for a particle in a potential that is periodic in space and time:

V (x+ d, t) = V (x, t+ T ) = V (x, t). (4.2)

1We restrict ourselves to the one dimensional case.
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The ratchet effect is an intriguing phenomenon2, as it directly follows from the spatial periodicity

of V (x, t) that no net force derives globally from such potentials:

〈F (x, t)〉d,T =
1

dT

∫∫
d,T
−∂V (x, t)

∂x
dx dt = 0. (4.3)

The operating mechanism of the ratchet effect is well understood, and relies minimally on the

fact that systems featuring this effect are out of equilibrium, with time-dependent potentials

that break specific space and time symmetries [161, 162, 163, 164]. Among such systems, we

can distinguish two families of ratchets:

(i) On one hand, Brownian ratchets [165, 166] consist in systems submitted to stochastic

forces with a potential that rectifies the isotropy of Brownian motion [167] into a di-

rected transport (in the fashion of the Lippmann-von Smoluchowski-Feynman ratchet).

Interestingly, Brownian ratchets are thought to be the principle of operation of molecular

motors [168, 169, 170, 171], as for instance for the kinesin [172], a motor protein found in

eukaryotic cells. They are usually studied in the overdamped regime to account for the

strong dissipation in biological media [166, 173]

(ii) On the other hand, one has deterministic ratchets, for which the classical dynamics is

captured by the phase space of the systems (Sec. 1.1.2). Deterministic ratchets are either

dissipative3 or Hamiltonian [76, 182, 163].

We focus in this chapter on Hamiltonian ratchets.

As we have seen in Chap. 1, Hamiltonian systems under moderate temporal driving exhibit

a mixed dynamics, with a phase space displaying islands of regular trajectories embedded in a

chaotic sea of non-integrable ones. A fundamental property of chaotic systems briefly addressed

in Sec. 1.1.2 is ergodicity, which corresponds to the fact that a classical trajectory (qc(t),pc(t))

(Sec. 1.1.2) initialized in a chaotic region of phase space (index “c”) will eventually span all

this chaotic region uniformly [69]. Considering a physical quantity f(q,p), ergodicity formally

means

lim
T→∞

1

T

∫ T

0
f(qc(t),pc(t)) dt =

1

VΠc

∫
Πc

f(q,p) dq dp (4.4)

〈f(qc(t),pc(t))〉t = 〈f(q,p)〉Πc
,

where Πc stands for the considered chaotic region of phase space and VΠc its hyper-volume. Put

in words, ergodicity means that a trajectory from a given chaotic region of phase space is, in

2We add that particles are usually considered starting at rest in the reference frame of the potential, and the
emerging asymptotic current J (Eq. (4.1)) is also measured with respect to that reference frame. In other words,
neither particles launched at high speed in unbounded phase space trajectories (Sec. 1.1.2) nor particles bound
to a potential of the form (4.2) that travels linearly at v = d/T are experiencing ratchet effect.

3A few references on research about dissipative deterministic ratchet: [174, 175, 176, 177, 178, 179, 180, 181]
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time, representative of all trajectories from that chaotic region. Going back to one-dimensional

Hamiltonian ratchets, the physical quantity f(x(t), p(t)) that goes into the definition of the

asymptotic current J (Eq. (4.1)) is the speed ẋ(t) = p(t)/m. From the ergodicity principle (4.4),

we have, for a trajectory initialized in a chaotic region Πc,

J =
1

m
〈pc(t)〉t =

1

m
〈p〉Πc

. (4.5)

From the right-hand side of this last equation, we see that the emergence of a non-zero asymp-

totic current (i.e. the ratchet effect) can result from the contribution of trajectories belonging

to chaotic regions having a non-zero momentum barycentre. As a matter of fact, studies on

Hamiltonian ratchets have so far mainly focused on so-called “diffusive Hamiltonian ratchets”,

where the directed transport results from trajectories ergodically diffusing4 into such momentum-

asymmetric chaotic seas [76, 182, 163].

We here take a differente route, and study a system where the ratchet effect is based

on integrable trajectories. The integrable ratchet effect has only been studied in the kicked

rotor, where the ratchet effect occurs along the momentum axis (one speaks of accelerator

ratchet [183, 184, 185]). The system that we study is a sine potential modulated in amplitude

and phase in the fashion of the gating ratchet [186, 180]. In the simplest case of a single

frequency of modulation, we determine modulation parameters such that the phase space of the

system presents a regular island that travels between the sites of the periodic potential while

periodically stopping in each site. This is to our knowledge the first study of such a non-diffusive

ratchet effect along position space.

This chapter presents our study of this effect. The first section (Sec. 4.1) concerns the clas-

sical dynamics in this system. We then detail our method to determine modulations parameters

for the integrable ratchet effect to emerge, and we then characterize the system. In the second

section (Sec. 4.2), we consider quantum transport of wave functions in this Floquet system.

Finally, we present experiments where we observed this non-diffusive ratchet effect with BECs

in the modulated optical lattice.

The study presented in this chapter is the result of a quite personal work that I have been

doing on the ratchet effect since my pre-thesis internship at LCAR in 2019. A publication is in

preparation:

[65] N. Dupont, L. Gabardos, F. Arrouas, B. Peaudecerf, J. Billy and D. Guéry-Odelin, Matter

wave transport from non-diffusive Hamiltonian ratchet effect, In preparation, (2022)

4We stress that, for Hamiltonian systems, this chaotic diffusion is deterministic.
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4.1 Designing a non-diffusive Hamiltonian ratchet in classical

mechanics

In this section, we detail our method to determine, in a classical Hamiltonian system,

modulation parameters of the sine potential in order for the system to feature a non-diffusive

ratchet effect in position space.

4.1.1 Hamiltonian system considered and statement of the problem

Our system. We consider a classical particle of mass m in a one-dimensional sine potential

that is modulated in amplitude and phase with one harmonic at the same frequency. The

corresponding time-dependent Hamiltonian can be written

H(x, p, t) =
p2

2m
− [1 + ε0 cos (2πνt)]

V0

2
cos

[
2πx

d
+ ϕ0 cos(2πνt+ ∆φ) + ∆ϕ

]
, (4.6)

with the fixed spatial periodicity d, and the adjustable modulation parameters,

� V0, the average amplitude of the potential,

� ε0, the amplitude of amplitude modulation,

� ϕ0, the amplitude of phase modulation,

� ν, the frequency of modulation,

� and ∆φ, the relative phase between the phase and amplitude modulations.

The parameter ∆ϕ is a constant spatial phase that we set to

∆ϕ = −ϕ0 cos(∆φ), (4.7)

in order for the spatial origin x = 0 to correspond to a minimum of the potential at time t = 0.

As we have already seen in Chap. 1, one can look for a scaling of the Hamiltonian (4.6) such

that the classical dynamics depends on fewer parameters. Following the procedure summarized

Sec. 1.4.1 (p. 34), we get

H̃(x̃, p̃, t̃) =
p̃2

2
− γ

[
1 + ε0 cos

(
t̃
)]

cos
[
x̃+ ϕ0 cos

(
t̃+ ∆φ

)
+ ∆ϕ

]
, (4.8)

with

x̃ =
2π

d
x, t̃ = 2πνt, p̃ =

dx̃

dt̃
=

1

mdν
p, and H̃ =

1

md2ν2
H, (4.9)
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and the scaled amplitude of the potential γ = V0/2md
2ν2. The scaled dynamics effectively

depends on the four modulation parameters {γ, ε0, ϕ0,∆φ} (with ∆ϕ still fixed by Eq. (4.7)).

Correspondence with the gating ratchet. Our Hamiltonian (4.8) is a known system from

the ratchet community, called the gating ratchet. To understand this designation, we perform

the Galilean transformation to switch from the inertial reference frame to the frame of the

phase-modulated potential:

x̃′ = x̃+ ϕ0 cos
(
t̃+ ∆φ

)
+ ∆ϕ. (4.10)

In this non-inertial frame, the lattice is stationary, and the particle experiences the pseudo

force

F̃ ′(t̃) = −mϕ0 cos
(
t̃+ ∆φ

)
. (4.11)

In this system, the amplitude-modulated potential barriers between sites act as opening and

closing gates whose period can be correlated with the modulated pseudo force (4.11) to induce

ratchet transport. This system has been theoretically studied in the Brownian case [186], as well

as experimentally in the deterministic case with dissipation [180, 164]. We here consider this

system in the Hamiltonian regime as a candidate for the emergence of a non-diffusive ratchet

effect.

Statement of the problem. In order to design such a non-diffusive Hamiltonian ratchet (i.e.

with a transport based on quasi-periodic trajectories in the phase space), we ask the question:

Are there modulation parameters {γ, ε0, ϕ0,∆φ} such that a classical particle starting at rest

at the bottom of a site ends up in the bottom of the next site after one modulation period

(T = 1/ν)? Mathematically put, we are looking for modulation parameters such that the

trajectory (x̃(t̃), p̃(t̃)) starting in

(
x̃(0)

p̃(0)

)
=

(
0

0

)
goes to

(
x̃(2π)

p̃(2π)

)
=

(
2π

0

)
, (4.12)

where we arbitrarily aim for a positive ratchet displacement. From the periodicity of the poten-

tial, a direct consequence of this hypothetical trajectory is that x̃(t̃ = 2πn) = 2πn with n ∈ N,

resulting in a constant5 ratchet current J = 1 (Eq. (4.1)).

5At least stroboscopically constant, i.e. when evaluated after an integer number of modulation periods.
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4.1.2 Search for modulation parameters

We are looking for modulation parameters {γ, ε0, ϕ0,∆φ} such that a classical particle

described by the Hamiltonian (4.8) follows a trajectory passing by the two phase space points

of Eq. (4.12).

From the correspondence with the gating ratchet discussed above, we simplify the problem

by reducing the set of parameters: we set the relative phase ∆φ between the amplitude and

phase modulations to a value that optimizes the gating effect in this system. With the gating

potential (4.8), the most efficient way [180] to induce a positive ratchet current is to have

∆φ = π/2 (i.e. a phase quadrature between the amplitude and phase modulations). In this

case, the pseudo force becomes F̃ ′(t̃) = mϕ0 sin
(
t̃
)
, which is maximally positive (resp. negative)

a quarter of a period before the instant at which the potential barrier between neighboring sites

is minimum (resp. maximum), resulting in a configuration that globally favors a positive ratchet

transport. Our Hamiltonian becomes

H̃(x̃, p̃, t̃) =
p̃2

2
− γ

[
1 + ε0 cos

(
t̃
)]

cos
[
x̃− ϕ0 sin

(
t̃+ ∆φ

)]
, (4.13)

with a set of modulation parameters reduced to {γ, ϕ0, ε0}.

To determine values for these three parameters, we note that, for the periodic trajec-

tory (4.12) that we are looking to induce, the initial and final conditions have the same mechan-

ical energy (evaluated by the Hamiltonian (4.13)), which is the global minimum of mechanical

energy for this system:

H̃(2πn, 0, 2πn) = −γ(1 + ε0), (4.14)

with n ∈ Z. Our search for modulation parameters can thus be expressed as a minimization

problem, where we want to minimize, as a function of {γ, ε0, ϕ0}, the increase of mechanical

energy over one modulation period for a trajectory starting in (x̃(0), p̃(0)) = (0, 0) and ending

in the neighboring site6. We define the function to minimize:

g(γ, ε0, ϕ0) =

H̃γ,ε0,ϕ0 [x̃(2π), p̃(2π), 2π]− H̃γ,ε0,ϕ0 [x̃(0), p̃(0), 0] if π < x̃(2π) < 3π

a large number otherwise,
(4.15)

where the condition is set to force the particle to change site. We proceed numerically to

minimize g(γ, ε0, ϕ0), with numerical integration7 of the trajectories (x̃(t), p̃(t)).

6One must be careful with this condition for the restatement of our problem, as, for instance, an absence of
modulation (ε0, ϕ0) = (0, 0) results in a constant trajectory (x̃(t̃), p̃(t̃)) = (0, 0) that also trivially minimizes the
variation of mechanical energy.

7We use the Runge-Kutta “RK4” method to integrate classical dynamics.
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Nelder-Mead algorithm. To tackle this minimization problem, we use Nelder-Mead [187]

method8,9: given a function f(u) : RN 7→ R+ to be minimized and a guess u(0), this iterative

method consists in considering a polytope of N + 1 vertices ui initialized in the neighborhood

of u(0). The function f is evaluated at each vertex, which are then iteratively moved from the

one that maximizes f to the one that minimizes f until they all converge toward the same local

minimum for f . The Nelder-Mead method is an efficient alternative to gradient-descent methods

when the gradient of the function to be minimized cannot be written explicitly, as it is the case

for us with f(u) = g(γ, ε0, ϕ0) (Eq. (4.15)). As is generally the case when employing iterative

methods of optimization, we want our initial guess to be in the vicinity of a global optimum.

Initial guess. To be able to minimize Eq. (4.15), we minimally require an initial guess such that

the particle is located in the next site after one modulation period. To find such initial guesses, we

start by maximizing the energy transferred to the particle at the beginning of the modulation

by making our initial guess correspond to a modulation frequency that is resonant with the

harmonic frequency ν0 at the bottom of the potential wells. For the Hamiltonian (4.13), the

frequency of modulation is hidden in the scaled amplitude γ = V0/2md
2ν2. From the potential

of the unscaled Hamiltonian (4.6), we find ν0 =
√
V0/2md2, and we see that γ = 1 is the scaled

amplitude corresponding to a resonant modulation at the bottom of the wells. We therefore set

γ = 1 as our initial guess for this parameter.

To determine initial guesses for the amplitudes of modulation (ε0, ϕ0), we compute maps

showing, after one modulation period, the position and the momentum of a particle starting at

in (x̃(0), p̃(0)) = (0, 0) as a function of (ε0, ϕ0). Such maps are shown in Fig. 4.2, for ε ∈ [0, 1]

(bounded so that the amplitude of the potential does not get negative, as required by the

optical lattice setup in our experiment ; Sec. 2.4) and ϕ0 ∈ [0, π] (corresponding to a peak-to-

peak modulation of up to one spatial period). We use these maps to initialize (ε0, ϕ0) to values

such that x̃(2π) ≈ 2π and p̃(2π) ≈ 0.

Figure 4.2 features an interesting behavior identified with a dashed black line. This linear10

region corresponds to values of (ε0, ϕ0) such that x̃(2π) ≈ π and p̃(2π) ≈ 0. In words, they

are modulation parameters such that the particle starting in (x̃(0), p̃(0)) = (0, 0) is brought to

the top of the potential barrier, at the border between two lattice sites, and finishes there at

rest. For our problem, we want to overcome this barrier of potential, and stop at the bottom

of the following well. In Fig. 4.2, we see that this can be achieved for amplitudes of phase

modulation ϕ0 larger than those bringing the particle to a stop at the top of the potential (i.e.

larger amplitudes for the pseudo force (4.11)). To the right of the dashed line, one sees a rather

vast region of (ε0, ϕ0) values such that x̃(2π) ≈ 2π and p̃(2π) ≈ 0. We identify with solid black

lines an example of good initialization (ε0, ϕ0) for the algorithm.

8Using the open-source Python library SciPy.
9We note that this problem could have very well been addressed using the formalism of optimal-control theory
presented in Chap. 3. However, we ourselves were introduced to this field only after having found working
modulation parameters for our non-diffusive Hamiltonian ratchet.

10That is actually not trivial.
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Figure 4.2 Parameter maps for initial guess determination in the search for ratchet mod-
ulation parameters. (a) Position x̃ and (b) momentum p̃ after one modulation period for a particle
starting in (x̃(0), p̃(0)) = (0, 0) and described by the Hamiltonian (4.13) with the scaled potential ampli-
tude γ = 1 (see text). The solid black lines in (ε0, ϕ0) = (0.3, 1.9) mark a parameter pair for an initial
guess (see text), and the dashed black line marks a region of parameters for which the particle ends up
resting at the top of the potential barrier between the central well and the next one.

4.1.3 Results of classical mechanics

Using the method detailed in the previous section, we converge to the modulation parame-

ters

(γ, ε0, ϕ0) = (1.2, 0.3, 1.7). (4.16)

This solution for the problem that we set ourselves in Sec. 4.1.1 (p. 103) is not unique, and others

can be found using the same method. In the rest of this chapter, we however focus on parame-

ters (4.16). For these modulation parameters, we draw in Fig. 4.3(a,b) the position x̃(t̃) and the

momentum p̃(t̃) over three modulation periods for the particle starting in (x̃(0), p̃(0)) = (0, 0).

As required, we get a periodic evolution, with a particle that travels one site per modulation

period: x̃(2πn) = 2πn (n ∈ N). As explained in the introduction of this chapter, the general

ratchet effect is intriguing as no global net force derives from a periodic potential (Eq. (4.3)). In

the specific case of our periodic ratchet, we have the stronger fact that the average force exerted

per modulation by the potential on the ratcheting particle is zero along its trajectory :

〈
F̃ (x̃(t̃), t̃)

〉
2π

=
1

2π

∫ 2π

0
F̃ (x̃(t̃), t̃)dt̃ = 0. (4.17)

This is illustrated numerically in Fig. 4.3(c) where we plot, as a function of time, the instanta-

neous force F̃ (x̃(t̃), t̃) exerted by the potential on the particle in x̃(t̃), as well as the average of
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Figure 4.3 Classical non-diffusive ratchet trajectory. (a) Position x̃ as a function of time t̃ for
the particle starting at rest at the bottom of the central well. (b) Momentum p̃ as a function of time
for that same particle. (c) Instantaneous (dashed black line) and integrated average (solid black line)
force F̃ (x̃(t̃), t̃) as a function of time. We show three modulation periods, with modulation parameters
(γ, ε0, ϕ0) = (1.2, 0.3, 1.7).

this force from t̃ = 0 up to that time. We see that this accumulated average is zero for t̃ = 2πn

(n ∈ N). This observation is also directly deduced from the conditions (4.12) that we imposed

on the generated trajectory. Indeed, having p̃(0) = p̃(2π) implies, from Hamilton equations and

the fundamental theorem of calculus,

−∂H̃
∂x̃

= ˙̃p ⇒
∫ 2π

0
−∂H̃
∂x̃

dt̃ = p̃(2π)− p̃(0) (4.18)

⇔
∫ 2π

0
F̃ (x̃(t̃), t̃)dt̃ = 0 (4.19)

This is a key difference between our periodic system and diffusive systems 11, as well as between

our spatial ratchet and the accelerator ratchet, also based on periodic trajectories, but ratcheting

along the momentum axis12 in a kicked-rotor system.

11For diffusive Hamiltonian ratchet based on a chaotic sea bounded in momentum, one has 〈F 〉t only going to
zero asymptotically in time.

12With p(nT )− p((n− 1)T ) 6= 0⇒ 〈F 〉T 6= 0.
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Figure 4.4 Subperiod evolution of the stroboscopic phase portrait and ratcheting island.
(a-e) Stroboscopic phase portraits for the same Hamiltonian (4.13) with (γ, ε0, ϕ0) = (1.2, 0.3, 1.7) and
the sub-stroboscopic observation times t̃0 = 0, 0.25, 0.5, 0.75 and 1. In each panel, we artificially draw in
continuous time the phase space trajectory at the center of the ratcheting island (dashed black line). See
Sec. 1.1.2 and Fig. 1.2 for details on the procedure.

We also compute the stroboscopic phase portrait (Sec. 1.1.2) for our ratchet modulation

parameters (4.16). In Fig. 4.4, we draw five portraits associated with the sub-stroboscopic13

observation times t̃ = 0, 0.25, 0.5, 0.75 and 1. We see that the determination of modulation

parameters such that the trajectory starting in (x̃(0), p̃(0)) = (0, 0) periodically ratchets to the

next site amounts to a “regularization” of the center of the phase space for this ratchet system.

Indeed, we see that we generated a regular island that goes through one site of the potential per

modulation period14, with the highly non-trivial fact that this island finds itself resting at the

center of the sites periodically [188]. This is to our knowledge the first study of such a ratcheting

regular island along the x axis. We also note from Fig. 4.4 that the rest of the phase portrait

is greatly chaotic, which will later allows us to distinguish between evolutions carried by the

regular ratcheting island and diffusive behavior in the chaotic sea.

We have so far considered classical mechanics in this system. In the next section, we study

the transport of a wave function along this ratchet island.

4.2 Quantum ratchet transport along regular classical trajectories

4.2.1 A Floquet system

Given the modulation parameters (γ, ε0, ϕ0) = (1.2, 0.3, 1.7), the scaled classical dynamics

governed by the Hamiltonian (4.13) is completely determined, and represented by the phase

space depicted in Fig. 4.4. We now consider wave function transport in this ratchet system.

As introduced in Chap. 1, quantum dynamics in such scaled systems depends on an effective

reduced Planck constant ~eff. For our scaling (p. 102), we have

13See Sec. 1.1.2 and Fig. 1.2 for details.
14i.e. a regular island with a winding number w = 1 (Sec. 1.1.2).
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~eff = 2
νL

ν
, (4.20)

with ν the unscaled modulation frequency and νL = h/2md2 a characteristic quantum frequency

in Bloch systems (Sec. 1.2). As discussed in Sec. 1.4.1, ~eff sets the typical extent of quantum

states with respect to the scaled phase space of the system. As we are interested in studying

transport along the ratchet island that we designed in the previous section, we place our study

“at the onset” of the semi-classical regime (see Sec. 1.4.1 and below), for values of ~eff such that

the minimal extent of the quantum states is of the order of the area of the engineered ratcheting

island. We recall that in the semi-classical regime, Floquet states are, in general, either localized

on regular phase space structures or spread over the chaotic sea (see Sec. 1.4.1 and [86, 87, 69]).

By “at the onset of the semi-classical regime”, we mean that the values of ~eff that we will

consider will be small enough for quantum dynamics to be strongly affected by underlying phase

space structures, but not be small enough for more than one Floquet state to be localized on

the ratcheting island.

The quantum analogue of the periodic trajectory at the center of the ratcheting island (see

Figs. 4.3 and 4.4) is the Floquet state |ϕr〉 that can be associated with this island, and we refer

to it as the ratcheting Floquet state. For a given value of ~eff, we compute the Floquet states

|ϕm〉 by diagonalizing the Floquet operator (Sec. 1.3.2) around the sub-stroboscopic observation

time t̃0 = 0, i.e. when the ratcheting island is centered in the phase space (Fig. 4.4). We then

identify the ratcheting Floquet state |ϕr〉 as the one with the greatest overlap with the ground

state |φ0〉 of the static potential, a state itself centered in the phase space:

|ϕr〉 = arg max
|ϕm〉

{
|〈φ0|ϕm〉|2

}
. (4.21)

To quantify transport in a quantum state, we also define the expected transport between

times t̃0 and t̃1 as the integral over this time interval of the averaged momentum15. For an

arbitrary state |ψ〉, the expected transport can be written as

∆x̃t̃0,t̃1(|ψ〉) =

∫ t̃1

t̃0

〈
ˆ̃p
〉
ψ(t̃)

dt̃. (4.22)

with ˆ̃p the scaled momentum operator. In the semi-classical regime, one expects Floquet states

associated with regular structures to evolve as their associated structure, and, in particular for

the ratcheting Floquet state, ∆x̃0,2πn(|ϕr〉) ∼ 2πn. While this is generally true (see below), one

has to account for Floquet state mixing which can complexify the picture for certain values of

~eff.

15This definition is, among other things, motivated by our TOF imaging setup (Sec. 2.3), through which we
measure the momentum distribution of the quantum state evolving in our lattice.
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4.2.2 Influence of the effective Planck constant and Floquet state mixing

We show in Fig. 4.5 numerical results of quantum transport in the ratcheting island as a

function of 1/~eff (i.e. as a function of a classical scaling action in the system ; see Sec. 1.4.1).

We plot in Fig. 4.5(a,b) two quantities as a function of 1/~eff: first, the overlap |〈φ0|ϕr〉|2

between the ratcheting Floquet state and the ground state of the static potential. This overlap

somehow quantifies the “centrality” of |ϕr〉 in the phase space (as well as our upcoming ability

to experimentally load the ratcheting Floquet state from the ground state of the optical lattice

in order to observe ratchet transport). Second, we plot the expected transport per period

∆x̃0,2π(|ϕr〉) of the ratcheting Floquet state. Having fixed the classical scaled dynamics (and,

in particular, fixing γ = V0/2md
2ν2), the limit 1/~eff → 0 ⇔ ν → 0 (Eq. 4.20) corresponds

to a vanishing amplitude of the potential. In this radically deep quantum limit, both |ϕr〉 and

|φ0〉 tend to the resting plane wave16: their overlap tends to one and the transport of |ϕr〉
in the vanishing potential tends to zero (Fig. 4.5(a,b)). As 1/~eff varies, both |〈φ0|ϕr〉|2 and

∆x̃0,2π(|ϕr〉) display rather sharp non-monotonic fluctuations ascribed to the phenomenon of

Floquet state mixing (which we now introduce ; the description of Fig. 4.5 is continued shortly

below).

Floquet state mixing. As a parameter of the Hamiltonian is varied, the energy levels in the

quasi-energy spectrum vary at different rates giving rise to the generic phenomenon of avoided

crossings. This effect results in the coupled state mixing into reshaped orthogonal Floquet

states near the crossing. We illustrate this phenomenon in Fig. 4.6 for realistic parameters,

in the interval of 1/~eff identified in Fig. 4.5(a,b) by the gray shaded area, around a sharp

drop of both |〈φ0|ϕr〉|2 and ∆x̃0,2π(|ϕr〉). In Fig. 4.6(a), we draw a zoom of the quasi-energy

spectrum (Sec. 1.3.2) where relevant Floquet levels have been identified from their overlap with

the Floquet states17 shown in panels (c,d). In Fig. 4.6(b), we again plot |〈φ0|ϕr〉|2 in this small

interval of 1/~eff. This quantity displays two drops that were not resolved in Fig. 4.5. These

drops correspond to the two consecutive avoided crossings observed in panel (a), at which the

ratcheting Floquet state |ϕr〉 is strongly reshaped (as one can see from the Husimi representations

of Fig. 4.6(c-e)). Surprisingly, we observe in Fig. 4.5(b) that there are even values of ~eff such

that the periodic transport of the ratcheting Floquet state becomes negative (even though the

scaled classical dynamics still remains unchanged, with the ratcheting island going in the positive

direction). As a matter of fact, there are such values of ~eff in the zoom region of Fig. 4.6, and

we see from the Husimi representations shown in panels (c-e) that negative transport in |ϕr〉
results from couplings with other Floquet states having weights in the negative momentum part

of phase space.

Going back to Fig. 4.5, we draw on panels (c-e) the Husimi representations of |φ0〉 (blue)

and |ϕr〉 (green) for the three values of 1/~eff identified on panel (a,b). At ~eff ≈ 0.79 ≈ 1/1.27,

Fig. 4.5(d) is an example of a semi-classical, phase-space-centered and island-shaped |ϕr〉, with

16See for instance Sec. 1.2.2.
17The Floquet states shown in Fig. 4.6(c,d) have themselves been identified by their overlap with the ground state
|φ0〉.
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Figure 4.5 Ratcheting Floquet state and influence of the effective Planck constant. (a) Over-
lap between the ratcheting Floquet state |ϕr〉 and the ground state |φ0〉 of the potential as a function of
1/~eff. (b) Periodic expected transport ∆x̃0,2π of |ϕr〉 as a function of 1/~eff. (c-e) Stroboscopic phase
portraits and Husimi representations (Sec. 1.4.1) of |φ0〉 (top, blue) and |ϕr〉 (bottom, green) for the
values of 1/~eff identified by the vertical black lines on the panels (a,b) (with 1/~eff ≈ 0.704, 1.27 and
1.56 for (c-e) resp.). The Husimi functions in the inset of panels (d,e) are truncated to a quarter of their
respective overall maximum value to reveal details. The gray shaded area in panels (a,b) corresponds
to the interval of 1/~eff studied in Fig. 4.6. The Hamiltonian of the system is given by Eq. (4.13) with
parameters (γ, ε0, ϕ0) = (1.2, 0.3, 1.7).

a ground state overlap of |〈φ0|ϕr〉|2 ≈ 0.86 and a periodic transport of ∆x̃0,2π(|ϕr〉) ≈ 0.93. On

the other hand, Fig. 4.5(c) and (e) correspond to values of ~eff where a wave function (such

as the ground state of the static lattice) placed in the ratcheting island will evolve out of it

(towards a mode of high momentum18 for Fig. 4.5(c) and over the chaotic sea for Fig. 4.5(e)).

This concludes our numerical study (both classical and quantum mechanical) about this

non-diffusive Hamiltonian ratchet. In the following section, we apply our analysis of the influence

of ~eff and the observations of Fig. 4.5 to experimentally observe ratchet transport of matter

18Quantum ratchet effects based on such couplings with Floquet states associated with large momentum have e.g.
been studied in [189, 190].
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Figure 4.6 Floquet state mixing phenomenon illustrated on the ratcheting Floquet state.
(a) Portion of the quasi-energy spectrum as a function of 1/~eff for the modulated Hamiltonian (4.13)
with parameters (γ, ε0, ϕ0) = (1.2, 0.3, 1.7). ε denotes the quasi-energy that we plot reduced by the
characteristic quantum energy scale of the potential EL = h2/2md2 (Secs. 1.2 and 1.3.2). The Floquet
states associated with the quasi-energy marked by the letters (c) and (d) are identified from their overlap
with the ground state of the potential (see text). The colors green and red are associated with these
states, and the spectrum is in return colored depending on the overlaps with these states (see Sec. 1.3.2 for
method details). For all values of ~eff, the most green quasi-energy corresponds to the ratcheting Floquet
state |ϕr〉 according to Eq. (4.21). (b) Overlap between the ratcheting Floquet state and the ground state
|φ0〉 of the potential. The black vertical lines in (a,b) mark the position of the two avoided crossings seen
in (a) corresponding to the two drops in ground state overlap seen in (b) (see text). (c-e) Stroboscopic
phase portraits and Husimi representations of the three states associated with the quasi-energies identified
in (a).

waves along the ratcheting island that we engineered in Sec. 4.1.

4.3 Experimental ratchet transport of matter waves

In this last section, we present experiments of non-diffusive ratchet transport of BECs in

the optical lattice. We focus on the two values of the effective reduced Planck constant ~eff ≈
0.79 ≈ 1/1.27 and 0.64 ≈ 1/1.56, which respectively correspond to the numerical simulations

of Fig. 4.5(d) and (e). For both values, we see in Fig. 4.5(b) that the periodic transport of

the ratcheting Floquet state is approximately one. However, their projection on lattice ground

state (Fig. 4.5(a)) is quite different, with |〈φ0|ϕr〉|2 ≈ 0.86 for ~eff ≈ 0.79, while we only have
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|〈φ0|ϕr〉|2 ≈ 0.56 for ~eff ≈ 0.64 (resulting from a mixing with a Floquet state from the chaotic

sea in this case).

In Sec. 4.3.1, we first present, for these two values of ~eff, experiments of ratchet transport

from the lattice ground state. In a second set of experiments (Sec. 4.3.2), we use the quantum-

optimal control protocol detailed in Chap. 3 to prepare the ratcheting Floquet states and enhance

ratchet transport and the periodicity of the evolution.

4.3.1 Transport from the ground state

The time-dependent Hamiltonian (4.13) studied in the two previous sections is directly imple-

mentable on our experiment of BECs in a one-dimensional optical lattice introduced in Chap. 2.

To determine the experimental parameters for the modulation, we follow this procedure:

(i) We determine a value of ~eff at which we want to perform the experiment of ratchet trans-

port (Sec. 4.2). As we require a given scaled phase space associated with the modulation

parameters (γ, ε, ϕ0) = (1.2, 0.3, 1.7), we broadly set the lattice beams intensity in order

to have the lattice depth s0 = 4γ/~2
eff (as γ = sν2

L/ν
2 and ~eff = 2νL/ν ; see p. 34). We can

quickly verify the consistency of our settings by performing a “Kapitza-Dirac calibration”

of the lattice (Sec. 2.4.2).

(ii) We precisely calibrate the lattice depth s0 using our usual method of ground state trans-

lation (Sec. 2.4.2 and [112, 113]). As γ = s0(νL/ν)2, we set the value of the modulation

frequency to ν = νL

√
s0/γ, which fixes in return the true value of the effective Planck

constant ~eff = 2νL/ν at which the experiment will be performed.

(iii) We perform the ratchet transport experiment (see below).

After obtaining the BECs (Sec. 2.2.3), we adiabatically load them into the ground state of the

optical lattice at the calibrated depth s0. We then modulate the depth and phase of the lattice to

realize the Hamiltonian (4.13) during a given amount of time, before proceeding to TOF imaging

(Sec. 2.3.2) allowing us to measure the momentum distribution of the atomic state in the lattice

right before the TOF. For this experiment, we sample the evolution with four observations per

modulation period.

We start by showing results of ratchet transport from the ground state of the lattice at

~eff ≈ 0.79 (the value of Fig. 4.5(d) associated to a semi-classical behavior). In Fig. 4.7(a-

d), we show next to each other the stroboscopic phase portraits and the absorption images at

corresponding sub-stroboscopic times during the first modulation period. In order to compare

the momentum of the ratcheting island to that of the momentum components of the diffraction

images, the classical dynamics in the phase portraits of Fig. 4.7(a-d) has been unscaled using

p/~kL = p̃/~eff, (4.23)
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Figure 4.7 Semi-classical non-diffusive ratchet transport from the ground state. (a-d) Stro-
boscopic phase portraits (left) and experimental TOF absorption images (right) at sub-period observation
times t̃ = (n + r) × 2π, with n ∈ N and r = 0, 0.25, 0.5 and 0.75 for (a) to (d) respectively. The period
shown for the experimental images is n = 0, implying that (a) is the momentum distribution of the lattice
ground state. (e) Momentum as a function of time, showing the experimental (blue markers linked with
dotted lines) and numerical (plain red line) average of the momentum distribution with the ground state
as the initial state, as well as the momentum of the classical trajectory at the center of the ratcheting
island (plain black line).

an expression that can be deduced from Eqs. (4.9) and (4.20) (with kL = 2π/d). The great

qualitative agreement observed between the momentum of the island and that of the momentum

peaks in the diffraction pattern illustrates the semi-classicality of the observed ratchet transport,

as well as its non-diffusive nature over this first period (this is demonstrated for longer times

below). In Fig. 4.7(e), we compare three momentum evolutions: the experimental average

momentum measured from the diffraction patterns, the corresponding numerical simulation for

the evolution from the ground state, and the momentum of the classical trajectory at the center

of the ratcheting island (as in Fig. 4.3(b), although unscaled using Eq. (4.23)). This plot further

illustrates the semi-classicality of this ratchet transport.

The experimentally measured moment distributions (used to plot Fig. 4.7(e)) are shown in

Fig. 4.8(a), as well as the corresponding numerically obtained momentum distributions. This
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evolution is to be compared with the same experiment performed for the other value of the

effective Planck constant ~ ≈ 0.64. Numerical and experimental momentum evolutions for this

experiment are shown in Fig. 4.8(b). While the scaled phase space is fixed and the initial state

is in both cases the ground state of the static lattice, we observe a strong difference between the

momentum evolutions for these two experiments. For ~ ≈ 0.79 in panel (a), we observe a quasi-

periodic evolution with a rather constant momentum dispersion. This semi-classical evolution

results from the ground state |φ0〉 of the static lattice being well projected onto the ratcheting

Floquet state |ϕr〉 for this values of ~eff (as seen in Fig. 4.5(d)). In the case of ~ ≈ 0.64 shown

in Fig. 4.8(b), the momentum distribution is initially rather narrow before quickly widening,

never to return to a configuration close to that of the initial situation. This is emblematic of

a diffusion in the chaotic sea, which results from a situation where |ϕr〉 is partially delocalized

over the chaotic sea (as seen in Fig. 4.5(e) and discussed in Sec. 4.2). This observation is of

purely quantum nature: although the atoms are initially at the center19 of the regular island,

we here obtain a quantum evolution diverging from its classical counterpart.

From the sub-stroboscopic sampling of the momentum evolution, we compute the expected

transport (4.22). We plot this quantity in Fig. 4.8(c). In the case of experiment (a), we get

a transport of approximately 10 lattice sites in 10 modulation periods, as was expected from

Fig. 4.5. We also show this transport in the strongly aperiodic case of experiment (b). The

overall great agreement between experiments and numerical simulation shows our successful

implementation of the ratchet Hamiltonian (4.13), as well as our ability to precisely set and

determine modulation parameters in the experiment (notably thanks to our fine calibrations of

the lattice depths ; Sec. 2.4.2).

Transport reversal. A key feature of the ratchet effect is the ability to reverse the direction

of the transport [163, 164]. For our Hamiltonian (4.13), this direction is imposed by the sign

of the phase quadrature between the modulations of amplitude and phase. One expects the

opposition of the phase modulation (ϕ(t) = −ϕ0 sin(t) → +ϕ0 sin(t)) to result in a negative

ratchet transport. In Fig. 4.8(c), we label (a’) the integrated transport obtained experimentally

(blue dots) and numerically (red line) for the parameters (γ, ε, ϕ0) = (1.2, 0.3,−1.7) and ~eff ≈
0.77 (i.e. close to the experiment of panel(a)). We measure for this experiment a ratchet

transport of approximately −10 sites in 10 modulation periods, a symmetric ratchet transport.

These results demonstrate the observation of quantum transport along a ratcheting island in

the phase space of our system. We have also observed how Floquet state mixing can complexify

the loading of the ratcheting phase space region, as this phenomenon reshapes the ratcheting

Floquet state. In the following section, we present a last experiment in which we use quantum-

optimal control to optimize the loading of this state.

19We also highlight that ~(a)
eff > ~(b)

eff (corresponding to Fig. 4.5(d,e) resp.), meaning that the phase space extent of
the initial state in panel (b) is smaller than that of panel (a), the latter yielding nevertheless a more semi-classical
behavior.
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Figure 4.8 Experiments of ratchet transport from the ground state of the lattice. (a) Top:
Numerical simulation of the momentum evolution during the ratchet modulation as a function of time for
~eff ≈ 0.79 (corresponding to Fig. 4.5(d)). Bottom: Corresponding experimental integrated absorption
images. (b) Same as (a) for ~eff ≈ 0.64 (corresponding to Fig. 4.5(e)). (c) Expected numerical (solid
red line) and experimental (blue markers) transport (see text) for data (a) and (b) as a function of time.
Data (a’) is approximately the reversed ratchet transport of (a), with ϕ0 → −ϕ0 and ~eff ≈ 0.77 (see
text).

4.3.2 Preparation of the ratcheting Floquet state using quantum-optimal control

To improve the transport of a quantum state in a ratcheting island (as well as the periodicity

of its evolution), the Floquet state |ϕr〉 associated with the island must be prepared as the initial

state for the modulation. To do so, we use the quantum-optimal control (QOC) protocol detailed

in Chap. 3. As in that chapter, we use the lattice phase ϕ(t) as our control parameter, and we

target |ϕr〉 from the ground state |φ0〉 of the static lattice at depth of work. For this experiment,

between the steps (ii) and (iii) of the experimental procedure presented in the previous section

(p. 113), we add the following steps:

(ii.i) Having set all the modulation parameters, we numerically determine |ϕr〉 by diagonalizing

the Floquet operator, and selecting among its eigenstates the one that maximizes the

overlap with the lattice ground state |φ0〉 (itself centered in the phase space).

(ii.ii) Using our QOC algorithm (Sec. 3.1.3), we numerically compute the control field ϕ(t) that

drives |φ0〉 to |ϕr〉. We set the control duration to tc = 1.75T0 (see Sec. 3.1.4), and
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Figure 4.9 Ratchet transport experiments of ratcheting Floquet states prepared by QOC.
(a-c) Sketch of the QOC protocol to prepare the ratcheting Floquet state |ϕr〉 from the ground state
|φ0〉 at ~eff ≈ 0.64. (a) Husimi representation of |φ0〉 in the phase space of the static lattice. (b) Lattice
phase evolution that drives |φ0〉 to |ψQOC〉 with the fidelity Fnum = |〈ϕr|ψQOC〉|2 ≈ 0.996. (c) Same as
(a) for the prepared state |ψQOC〉. (d) Top: Numerical simulation of the momentum evolution of |ψQOC〉
during the ratchet modulation as a function of time for ~eff ≈ 0.77 (corresponding to Fig. 4.6(d) and
Fig. 4.8(a)). Bottom: Corresponding experimental integrated absorption images. (e) Same as (d) for
~eff ≈ 0.64 (corresponding to Fig. 4.5(e) and Fig. 4.8(b)).

the algorithm converges to control fields that numerically prepare the state |ψQOC〉 with

numerical fidelity to the target Fnum = |〈ϕr|ψQOC〉|2 > 0.995

The experimental sequence then consists in an adiabatical loading of |ϕ0〉 (Sec. 2.4.1), the QOC

preparation with the computed control field, the ratchet modulation for a given amount of time

and finally the TOF imaging. As in the previous section, we take four images of the momentum

distribution of the atoms per modulation period.

We sketch in Fig. 4.9(a-c) the QOC procedure applied to this ratchet study for ~eff ≈ 0.64.

This value corresponds to the case of the poor ratchet state loading of Fig. 4.5(e) and Fig. 4.8(b).

In Fig. 4.9(d,e), we show numerical simulations and experimental results of optimized ratchet

transport using QOC. The values of ~eff in Fig. 4.9(d,e) approximately correspond to the two

values of this parameter previously studied in Fig. 4.8(a,b) (see the caption). While Fig. 4.8(a)

already presented a clear regular ratchet transport, we see that the use of QOC enhances the

periodicity of the evolution of the momentum distribution (as one expects from the evolution

of a Floquet state). Comparing Fig. 4.9(e) with Fig. 4.8(b), one sees in this case an evident
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improvement of periodicity. Interestingly, the momentum evolution of Fig. 4.9(e) display a

broad momentum dispersion from the beginning of the modulation, corresponding to |ϕr〉 being

partially delocalized over the chaotic sea for this value of ~eff (Fig. 4.5(e)).

These results further demonstrate our experimental observation of matter waves ratcheting

along a regular structure in the phase space of the modulated optical lattice. They also give

another example of Floquet state preparations from QOC, in addition to the results of Sec. 3.4.

Conclusion

The ratchet effect is the intriguing emergence of a directed transport of particle in the

global absence of net force. In this chapter, we presented the first study and experimental

implementation of a Hamiltonian ratchet system that features a non-diffusive ratchet effect

along space. Following an introduction on the ratchet effect, we presented the method that

allowed to determine modulation parameters to observe this new kind of ratchet effect in a

sine potential modulated in amplitude and phase. After having determined such modulation

parameters, we characterized classical dynamics in this system. Interestingly, it follows from

the quasi-periodicity of the ratcheting trajectories that, for this kind of ratchet, no net force is

exerted on the particles locally, along their trajectories. In a second stage, we studied quantum

mechanics in this ratchet system as a function of the effective reduced Planck constant ~eff, and

discussed the phenomenon of Floquet state mixing that can complexify the semi-classical picture

for given values of ~eff.

Following these numerical studies, we experimentally implemented this system using our

setup of Bose-Einstein condensates in a controlled one-dimensional optical lattice (Chap. 2).

We performed experiments of ratchet transport from the ground state of the optical lattice

and experimentally observed the ratchet effect of matter waves. Finally, we optimized, using

quantum-optimal control (QOC), the loading of the Floquet state associated with the ratcheting

island even at values of ~eff for which Floquet state mixing couples the island with the chaotic

sea. Following our results on QOC presented in the previous chapter, these experiments give

another example of application of QOC to quantum simulation in a Floquet system, this time

in a study of the ratchet effect.
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Chapter 5 - Emergence of a tunable

supercrystalline order in a

Floquet-Bloch system

Spectacular. You appear to understand how a portal affects forward momentum, or to

be more precise, how it does not. Momentum, a function of mass and velocity, is

conserved between portals. In layman’s terms, speedy goes in, speedy thing comes out.

GLaDOS (Portal, 2007)
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Introduction

In the last two chapters, we presented results on the control and the transport of the

one-body wave function of BECs in a one-dimensional optical lattice. In both these studies,

we captured the dynamics of the BECs in the lattice with the Schrödinger equation. In this

linear framework, we designed efficient control fields for the preparation of non-trivial quantum

states (Chap. 3), and determined the right modulation parameters to observe ratchet transport

of matter waves along regular classical trajectories in the optical lattice (Chap. 4). In both

studies, we obtained very good agreements between the experiments and numerical simulations,

while completely neglecting the repulsive interatomic interactions in the system. This is made

possible by the weak interaction regime of our one-dimensional system combined with the short

timescales of the experiments presented so far (typically a few hundreds of microseconds). In this

final chapter, we present experiments performed over longer timescales that take us out of the

one-body formalism: the emergence of a supercrystalline order through spontaneous four-wave

mixing in the phase modulated optical lattice.

Four-wave mixing is an emblematic consequence of the introduction of interactions in a

wave theory. In non-linear optical media, it leads to the production of photon pairs, correlated

in momentum and energy according to conservation laws. As a direct consequence, the effect

strongly depends on the relation of dispersion of the media. Four-wave mixing is an essential

tool in quantum optics, notably for the generation of entangled states. In its formalism, one

speaks of input and output channels for the wave states before and after the process. In quantum

gases, the same phenomenon is at work through two-body interactions [191, 90]. At equilibrium,

it is at the root of the production of momentum-correlated atom pairs [192, 193, 194]. In direct

analogy with the optical parametric amplification, four-wave mixing of matter waves can also be

parametrized [195]. A way to achieve it in Bloch systems is by engineering the band structures

with a periodic modulation of an external parameter of the system1.

Using ultracold atoms in modulated optical lattices, parametric four-wave mixing has been

studied in effective one-band systems [196, 197], for frequencies of lattice modulation low in

comparison to the frequencies of interband transitions. The effect notably leads to the realization

of staggered states [198, 199, 200, 201] with output channels located at the edge of the Brillouin

zone.

In this chapter, we present experiments where we modulate our optical lattice at a frequency

that couples the ground band with an excited band, but not at the quasi-momentum where the

atoms are initially loaded. After tens of periods of modulation, we observe the emergence of new,

narrow and macroscopically populated diffraction peaks, between the momentum components

associated with the ground state. To understand these observations, we develop a two-level tight-

binding model with interactions that allows us to study the dynamical stability of our system. As

it turns out, we find sharp regions of dynamical instabilities located near the quasi-momenta at

which our modulation couples the bands. These instabilities indicate narrow four-wave mixing

1One speaks of Floquet engineering.
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output channels in the Brillouin zone, where atoms colliding from q = 0 may accumulate.

From the connection between the unstable modes and the avoided crossings, we deduce that we

can tune the output channel quasi-momenta (and experimentally the momentum at which the

structure emerges) by varying the position of the interband coupling in the Brillouin zone.

This last chapter is organized as follow: in the first section 5.1, we discuss the modulation

regime of this study and present experiments with typical observations of the phenomenon. In

the second section 5.2, we detail the development of an effective tight-binding model of two

coupled bands that is able to reproduce the quasi-energy spectrum of our system. Following

a perturbative Bogoliubov treatment of the interactions, we study the dynamical stability of

our system for realistic parameters. We make a series of predictions from the behavior of the

exponents of instability at the avoided-crossing. Section 5.3 presents experiments that test these

predictions. The narrow diffraction patterns via which the new structures manifest hints at a

preserved coherence in the emerging states. Moreover, the existence of closer diffraction peaks

at adjustable momenta suggests, that a new, larger and controllable periodicity structures the

BECs real space. We confirm these experimental hints in the last section 5.4 of this chapter by

presenting results of Truncated-Wigner simulations, performed by Peter Schlagheck from the

CESAM Research Unit in the University of Liège.

The research work presented in this chapter results from a collaboration for the numerical

studies with Prof. Peter Schlagheck from the CESAM Research Unit at the University of Liège.

A publication is in preparation:

[66] N. Dupont, L. Gabardos, F. Arrouas, G. Chatelain, M. Arnal, J. Billy, P. Schlagheck,

B. Peaudecerf, and D. Guéry-Odelin, Emergence of a tunable supercrystalline order in a

Floquet-Bloch system, In preparation, (2022)
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5.1 Modulation regime and typical observations

In this chapter, we study the behavior of a weakly interacting BEC in a phase-modulated

optical lattice over many modulation periods. The atoms experience the lattice potential

V (x) = −s0
EL

2
cos [kLx+ ϕ0 cos(2πνt)] . (5.1)

At a given lattice depth s0, we write |φn,q〉 the nth eigenstate of the static lattice (ϕ0 = 0) at

quasi-momentum q. Before the modulation, the atoms are adiabatically loaded in the ground

state |φn,q〉 = |φ0,0〉 (Sec. 2.4.1). We then modulate the lattice in phase, with a moderate

modulation amplitude ϕ0 and a frequency ν that couples the ground band s to an excited band

at q 6= 0. As the modulation does not resonantly couple |φ0,0〉 to another state of the static

lattice2, this situation results, in the Floquet picture, in a Floquet eigenstate |ϕm,q=0〉 that

strongly resembles |φ0,0〉 for a given m. For instance at lattice depth s0 = 3.7, the frequency

of modulation3 ν = 2.9 νL couples the lattice bands s and d at q ≈ 0.28 (Fig. 5.1(a)). In this

situation, a phase modulation of amplitude ϕ0 = 15o gives

max
j

{
|〈φ0,0|ϕj,0〉|2

}
= |〈φ0,0|ϕm,0〉|2 ≈ 0.995, (5.2)

with Husimi representations4 of |φ0,0〉 and |ϕm,0〉 displayed in Fig. 5.1. According to what we

have studied so far in this thesis5, one expects the stroboscopic evolution of |φ0,0〉 to be almost

static, as it is mainly projected over one Floquet eigenstate. Experimentally (Fig. 5.2(c-d)),

for the first tens of periods of modulation, we essentially observe the ground state of the static

lattice and indeed see no evolution of the characteristic diffraction patterns, with momentum

components separated by ~kL = h/d. However, after ∼ 70 periods of modulation, we distinctly

see new diffraction peaks appear in between the original ones, with momenta ~k∗ 6= ` × h/d
(with ` ∈ Z). In the following, we refer to these peaks as “decimal peaks”. We note that the

decimal peaks are observed both for a coupling between the bands s and d (Fig. 5.2(c)), and

a coupling between the bands s and f (Fig. 5.2(c)), i.e. regardless the curvature of the excited

band. In both cases, the TOF images clearly display the emergence of a smaller periodicity

in the reciprocal space. Through Fourier analysis, this would indicate a spontaneous in situ

structuring with a new step d∗ > d.

In Bloch systems, the drift of the whole diffraction pattern in the resting frame of the lattice

results from a variation of quasi-momentum (Sec. 1.2.1). This well known effect is at the root

of the Bloch oscillation phenomenon (see for example [148, 79]), where the quasi-momentum of

the system is swept adiabatically by the mean of a constant force. In our case, only a part of

2At least not by a realistic number of phonons considering the low amplitude of modulation ; see Sec. 1.3.2
3We recall the characteristic angular frequency of the lattice νL = h/2md2 ≈ 8.1 kHz in our system ; see Sec. 2.4.
4Drawn with respect to the stroboscopic phase portrait (Sec. 1.1.2) of the driven system to inform incidentally
on the degree of chaoticity for our modulation parameters.

5i.e. studying the evolution of the system with Schrödinger equation.
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Figure 5.1 Non-resonant modulation in the one-body wave function framework. (a) band
structure of the static lattice (colored lines), with the point that corresponds to the initial state of the
atoms (blue disk) and the energy of modulation (black arrows, only from the ground state) that leads to
the spectrum (c). (b) Husimi representation of the ground state in the classical phase space of the static
lattice. (c) Quasi-energy spectrum (colored lines) where the overlaps between the Floquet eigenstates and
the eigenstates of the static lattice have been color coded (see Sec. 1.3.2) and projection of the atomic
state (blue disk) at the beginning of the modulation. (d) Husimi representation of the Floquet state
that maximizes the overlap with the ground state in the stroboscopic phase portrait for the modulated
potential (5.1). Parameters are s0 = 3.7 for all panels, and ν = 2.9 νL and φ0 = 15o for panels (c) and
(d).

the atoms are observed in shifted but symmetric diffraction peaks (Fig. 5.2(c-d)), behaving as

if a local force was selectively and symmetrically applied on some of the atoms. According to

this observation, and inspired by previous studies on dynamical instabilities in Floquet system

[196, 201], we attribute the emergence of the decimal peaks to short-range interactions in the

system. More precisely, we interpret the emergent momentum peaks as originating from two-

body collisions that occur between atoms of the lattice ground state q = 0 and result in atoms

accumulating in q = ± q∗, i.e. four-wave mixing of atomic wave functions from the center of

the Brillouin zone scattering into quasi-momenta q = ± q∗. In this framework, an initial seed is

needed in the output channels of the mixing. In our case, this role is provided by fluctuations

of thermal or quantum origin as will be discussed in Sec 5.4.1.

To account for the interactions in the system, we develop an effective tight-biding model

with interactions. As the real system is driven by a phase modulation that couples the s band

with an excited state at q 6= 0, we implement a two-band model with a coupling at the quasi-

momentum where the modulation is resonant. We detail the development of this model in the

following section.

5.2 An effective tight-binding model

We considerN bosons placed into a periodic lattice potential of L sites. Labelling two energy

bands 0 and 1, we define, in the second quantification formalism, the effective Hamiltonian
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Figure 5.2 Experimental protocol and nucleation of decimals peaks. (a) Time-evolution of
lattice depth and (b) phase, showing the adiabatic loading to the ground state of the lattice, the phase
modulation for an integer number of periods, and the lattice release for TOF. (c,d) Stacks of experimental
absorption images (tTOF = 35 ms) showing the stroboscopic evolutions of the momentum distribution as a
function of the number n of periods T . Parameters for (c) are: BECs of N = 5·105 atoms, s0 = 3.7±0.10,
ϕ0 = 15o, ν = 1/T = 25.5 kHz. Parameters for (d) are: N = 1 · 105 atoms, s0 = 3.4 ± 0.10, ϕ0 = 20o,
ν = 30.0 kHz. The upper value of the colormaps for the ODs (optical densities ; Sec. 2.3) are truncated
to reveal details. (e) Lattice band structure for average s0 = 3.55 and transitions from the ground state
for the modulation (c) and (d).

Ĥeff =Ĥ0 + Ĥint (5.3)

Ĥ0 =− J0

L−1∑
j=0

(
â†j+1âj + â†j âj+1

)

− J1

L−1∑
j=0

(
b̂†j+1b̂j + b̂†j b̂j+1

)
+ ∆E1

L−1∑
j=0

b̂†j b̂j

+ iW
L−1∑
j=0

(
b̂†j âj − â

†
j b̂j

)

Ĥint =
U

2

L−1∑
j=0

â†2j â
2
j ,
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where:

� our spatial coordinate is the lattice site j and the periodicity is d = 1,

� âj and b̂j (respectively â†j and b̂†j) are the annihilation (respectively creation) operators for

the effective bands 0 and 1 on site j of the lattice,

� J0 and J1 are the tunneling amplitudes with neighboring sites for the two bands (in the

sine-potential system that we want to model, we have a ground band with J0 > 0 coupled

with an higher energy band with a tunneling amplitude |J1| > |J0|),

� ∆E1 offsets the energy of the band 1 with respect to the band 0, allowing us to tune the

position of energy crossings in the Brillouin zone for the model,

� W is a coupling amplitude between the bands on site j,

� U is an effective on-site interaction energy in the lowest band (U0 = U , see below).

The interaction Hamiltonian Ĥint here only takes into account the on-site two-body interactions

for the band 0. One could include the interactions between an atom in band 0 and an atom

in band 1 with a term of the form U01
∑

j â
†
j b̂
†
j b̂j âj/2, or the interactions between two atoms

in band 1 with U1
∑

j b̂
†2
j b̂

2
j/2. However, as we are interested in modeling the beginning of the

decimal peaks nucleation from atoms initially almost all in band 0, we will see that Ĥint as

written in Eq. (5.3) is sufficient to obtain our results (Sec. 5.2.5).

5.2.1 Modeling the Floquet bands

Setting aside the interactions for the moment, we show how Ĥ0 can model the two Floquet

levels associated with the two lowest bands of the lattice that are coupled by the phase modu-

lation (that is, for instance, the blue and green eigenvalues as a function of q in the spectrum

of Fig. 5.1(c)). Doing so, we will determine realistic parameters for the model. As we consider

a finite number L of lattice sites, the quasi-momentum q becomes a discrete quantity:

q =
2πk

L
with the integer k =

[
−L

2
+ 1, ...,

L

2

]
. (5.4)

In the limit L → ∞, we retrieve a continuous quasi-momentum q/kL ∈ (−0.5, 0.5]. We start

by writing the annihilation operators in the reciprocal space, yielding Fourier modes ĉk and d̂k

associated with the Bloch waves for our two bands:

ĉk =

L−1∑
j=0

e−i2πkj/L√
L

âj and d̂k =

L−1∑
j=0

e−i2πkj/L√
L

b̂j , (5.5)

along with the inverse transformations
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âj =
∑
k

ei2πkj/L√
L

ĉk and b̂j =
∑
k

ei2πkj/L√
L

d̂k, (5.6)

where the summation boundaries for k have been defined in Eq. (5.4). The Hamiltonian Ĥ0

(Eq. (5.3)) becomes6

Ĥ0 =
∑
k

−2J0 cos

(
2πk

L

)
ĉ†k ĉk +

∑
k

(
−2J1 cos

(
2πk

L

)
+ ∆E1

)
d̂†kd̂k (5.7)

+
∑
k

iW
(
d̂†k ĉk − ĉ

†
kd̂k

)
.

We see that the eigenenergies of the uncoupled Bloch modes are cosine functions of the quasi-

momentum, as expected for a tight-binding model:

E0(k) = −2J0 cos

(
2πk

L

)
, (5.8)

E1(k) = −2J1 cos

(
2πk

L

)
+ ∆E1.

The Hamiltonian (5.7) is now expressed as a sum over the Brillouin zone: Ĥ0 =
∑

k Ĥ0(k),

where the coupling Hamiltonian Ĥ0(k) in the sub-space of quasi-momentum q = 2πk/L reads

Ĥ0(k) = E0(k) ĉ†k ĉk + E1(k) d̂†kd̂k + iW
(
d̂†k ĉk − ĉ

†
kd̂k

)
. (5.9)

This Rabi Hamiltonian can be diagonalized by defining the mode ûk and v̂k:

ûk = cos

(
θ(k)

2

)
ĉk − i sin

(
θ(k)

2

)
d̂k, (5.10)

v̂k = sin

(
θ(k)

2

)
ĉk + i cos

(
θ(k)

2

)
d̂k,

where the mixing angle θ(k) ∈ [0, π) is defined by

tan (θ(k)) =
2W

E0(k)− E1(k)
. (5.11)

6We use the relation

L−1∑
j=0

ei2πj(k−k
′)/L = Lδk,k′ .
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Figure 5.3 Partial fits of Floquet spectra with the two-level tight-biding model. (a,d) Typ-
ical Floquet spectra (colored lines) to be partially modeled (see text). Parameters are s0 = 3.7, ν = 23.5
kHz and ϕ0 = 15o for (a) and s0 = 3.4, ν = 30.0 kHz and ϕ0 = 15o for (d). (b,e) Zooms on the mod-
eled parts of (a-e) resp., each only displaying the quasi-energies of the 2 Floquet states onto which
the coupled static bands are maximally decomposed. (c,f) Spectra of Ĥ0, the Hamiltonian of the
model (Eq. (5.3)) without interactions, with parameters adjusted to fit (b,e) The parameters for (c)
are (J0, J1,∆E1,W ) = (1.63 · 10−3, 1.73 · 10−1,−1.22 · 10−1, 3.11 · 10−2)×EL and the parameters for (f)
are (J0, J1,∆E1,W ) = (3.00 · 10−3,−2.75 · 10−1, 3.18 · 10−1, 3.81 · 10−2)×EL. The gray areas in (b,c,e,f)
indicate the intervals of quasi-momenta over which the fits are performed (see text).

In the following, we write θ with an implicit dependence on k to lighten the notation. We finally

get

Ĥ0 =
∑
k

(
Eu(k) û†kûk + Ev(k) v̂†kv̂k

)
(5.12)

with dressed energy levels

Eu(k) = E0(k) cos2

(
θ

2

)
+ E1(k) sin2

(
θ

2

)
+W sin(θ), (5.13)

Ev(k) = E0(k) sin2

(
θ

2

)
+ E1(k) cos2

(
θ

2

)
−W sin(θ).

With the effective dressed bands of Eq. (5.13), we can now fit the part of interest in the

Floquet spectrum of the real system with the parameters J0, J1, ∆E1 and W . This is done

in the continuous quasi-momentum limit (L → ∞). We draw in Fig. 5.3 the fit of two spectra

for modulation parameters similar to those of the experiments of Fig. 5.2. As the frequency of
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modulation can also couple the excited state to even higher bands (or, slightly, the ground band

to higher bands through multi-phonon processes, see Sec. 1.3.2), we see in Fig. 5.3(b,e) that more

than two avoided crossings are seen in the part of interest of the Floquet spectra. Therefore,

we only perform the fits in intervals of quasi-momenta around the main avoided crossings. For

this adjustment, the quasi-energies of the real system are also offseted in order to have a zero

eigenvalue in the center of the Brillouin zone for the Floquet state associated with the lower band

of the model (as we only set an energy offset for band 1 in our model (5.3)). Figures 5.3(c,f)

show the corresponding adjusted spectra of H0 (with details presented in the figure caption).

This method can be applied for other modulation parameters if they are moderate enough to

identify effective static bands. Moreover, the results (5.9), (5.11) and (5.13) are general and can

be used with other choices for the uncoupled energy levels E0(k) and E1(k), for instance with

more paraboloid functions for the method to work at lower lattice depths, in a regime where the

tight-binding approximation with only next-neighbor tunneling does not hold.

We can now add the interactions and study their effect in a model with two realistic coupled

bands.

5.2.2 Adding the interactions

In Eq. (5.3), the presence of the interaction part Ĥint, quartic in operators, complicates

the diagonalization of the effective Hamiltonian Ĥeff in order to determine how the system

evolves. To handle the quartic terms, we use a pertubative approach in the fashion of N.

Bogoliubov [202, 90]. We choose to present a detailed derivation of the equations of evolution

for the perturbation modes in the Brillouin zone. Results are summarized at the end of the

derivation (p. 136).

In the experimental situation (Fig. 5.2), the vast majority of atoms (with the exception

of perhaps some thermal excitations) is initially in the ground state. In the model, the cor-

responding mode is ĉ0 from Eq. (5.5). This mode therefore contains a large number of atoms

N0 = 〈ĉ†0ĉ0〉, and only a small number of atoms N∗ = N −N0 populates the other modes:

N∗ =
∑
k 6=0

(
〈ĉ†k ĉk〉+ 〈d̂†kd̂k〉

)
+ 〈d̂†0d̂0〉 � N0 ≈ N. (5.14)

The perturbative treatement then consists in an expansion in powers of the small parameter

ε = N∗/N . Besides, the Bogoliubov prescription consists in replacing the macroscopically

populated mode ĉ0 by a scalar7: ĉ0 '
√
N0 '

√
N . This prescription implies that we can

decompose the mode âj as (from Eq. (5.6))

âj =
√
n0 + δâj , (5.15)

7A more rigorous method can be found in [203, 204].
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with n0 = N0/L and

δâj =
∑
k 6=0

ei2πkj/L√
L

ĉk. (5.16)

We note at this stage that, from these definitions, we have

L−1∑
j=0

δâj =
∑
k 6=0

ĉkδ0,k = 0, (5.17)

which is to say that the perturbation on band 0 is orthogonal to the mode of the condensate

described by φ(j) =
√
n0:

L−1∑
j=0

φ∗(j)δâj = 0. (5.18)

We also note that the number operator for the non-condensed modes can be written equiva-

lently

N̂∗ =

L−1∑
j=0

δâ†jδâj +

L−1∑
j=0

b̂†j b̂j . (5.19)

We can now insert decomposition (5.15) into the Ĥeff (5.3) and consider terms in successive

powers of the perturbations (i.e. containing 0, 1 or 2 quantum fields).

Zeroth order. At lowest order, H
(0)
eff is a function of the atom number:

H
(0)
eff = −2J0N0 +

N2
0U

2L
' −2J0N +

N2U

2L
, (5.20)

where, in the second equation, we neglected second order corrections from perturbations 8.

Equation (5.20) is the energy of the condensate of approximately N atoms in the mode ĉ0. In

particular, we can identify the chemical potential of the condensate:

µ =
∂H

(0)
eff

∂N
= −2J0 + nU. (5.21)

8As N0 ' N − N̂∗, see Eq. (5.19)
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First order. Injecting the decomposition (5.15) in Ĥeff (5.3) yields the following first-order

terms:

Ĥ
(1)
eff = Ĥ

(1)
0 + Ĥ

(1)
int (5.22)

Ĥ
(1)
0 = −2J0

√
n0

L−1∑
j=0

(
δâ†j + δâj

)
+ iW

√
n0

L−1∑
j=0

(
b̂†j − b̂j

)

Ĥ
(1)
int = n

3/2
0 U

L−1∑
j=0

(
δâ†j + δâj

)
.

However, from Eq. (5.17), the only contribution that does not cancel out is

H
(1)
eff ' iW

√
n
L−1∑
j=0

(
b̂†j − b̂j

)
, (5.23)

where we have equated n ' n0 (as it amounts to neglecting third-order terms) and neglected

edge terms in rearranging the sums. We will make sense of this remaining term (5.23) shortly

below.

Second order. The terms up to the second order in perturbations are

Ĥ
(2)
eff = Ĥ

(2)
0 + Ĥ

(2)
int (5.24)

Ĥ
(2)
0 = −J0

L−1∑
j=0

(
δâ†j+1δâj + δâ†jδâj+1

)
− J1

L−1∑
j=0

(
b̂†j+1b̂j + b̂†j b̂j+1

)
+ ∆E1

L−1∑
j=0

b̂†j b̂j

Ĥ
(2)
int '

nU

2

L−1∑
j=0

(
δâ†2j + δâ2

j + 4δâ†jδâj

)
.

Here, another contribution needs to be considered: at zeroth order in Eq. (5.20), we defined the

energy of the condensate H
(0)
eff (N0) ' H(0)

eff (N). However the corrections in this last equation are

of order two. Therefore, we may write

Ĥ
(0)
eff (N0) = Ĥ

(0)
eff (N − N̂∗) ' H(0)

eff (N) + 2J0N̂
∗ − 2N

N̂∗U

2L
, (5.25)

stopping the expansion at second order. This means that in order for our treatment to be

consistent, we need to include in the second order Hamiltonian the extra term
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Ĥ(2)
µ = (2J0 − nU)N̂∗ = −µN̂∗, (5.26)

where we recognized the chemical potential µ of the condensate (5.21). Equation (5.26) means

that, in this approximation, the condensate is acting as a chemical potential for the perturbation

modes.

Dynamics in k = 0. From Eqs. (5.23), (5.24) and (5.26), we can isolate the terms pertaining

to the dynamics of the mode d̂0 (noting that
∑

j b̂j =
√
L d̂0 by definition (5.5)):

Ĥ
(2)
k=0 = iW

√
N(d̂†0 − d̂0) + (−2J1 + ∆E1 − µ)d̂†0d̂0. (5.27)

This is, in fact, a Rabi Hamiltonian for the mode d̂0, driven by the coupling to the condensate

mode ĉ0 '
√
N . This coupling is non resonant provided the energy difference (−2J1 + ∆E1−µ)

is large compared to the coupling. We will make sure to consider such situations, as in Figs. 5.1

and 5.3.

Dynamics in k 6= 0. The dynamics of the other modes is also best viewed in momentum space.

Rewriting the corresponding terms of Eq. (5.24) with the use of Eqs. (5.16), (5.6) and (5.10),

we get

Ĥ
(2)
0,k 6=0 =

∑
k 6=0

(
Eu(k)û†kûk + Ev(k)v̂†kv̂k

)
, (5.28)

and, likewise for the interaction terms9:

Ĥ
(2)
int,k 6=0 =

nU

2

∑
k 6=0

{(
cos

(
θ

2

)
ûk + sin

(
θ

2

)
v̂k

)(
cos

(
θ

2

)
û−k + sin

(
θ

2

)
v̂−k

)
(5.29)

+

(
cos

(
θ

2

)
û†k + sin

(
θ

2

)
v̂†k

)(
cos

(
θ

2

)
û†−k + sin

(
θ

2

)
v̂†−k

)
+4

(
cos

(
θ

2

)
û†k + sin

(
θ

2

)
v̂†k

)(
cos

(
θ

2

)
ûk + sin

(
θ

2

)
v̂k

)}
.

Finally, the chemical potential term for the perturbation may be written

Ĥ
(2)
µ,k 6=0 = −µ

∑
k 6=0

(
û†kûk + v̂†kv̂k

)
. (5.30)

9We here use the fact that θ(k) = θ(−k) for the symmetric band structure of Ĥ0, modeling our Floquet-Bloch
system whose quasi-energy spectrum also presents that symmetry (e.g. Fig. 5.3) as it is a time-reversal symmetric
system (see Eq. (5.1) and Sec. 1.2.2).
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With the quadratic expression for Ĥ
(2)
eff,k 6=0 (i.e. the sum of Eqs. (5.28), (5.29) and (5.30)), we

can now study the dynamics of the modes (ûk, v̂k)k 6=0 in the system.

5.2.3 Stability

Evolution of the perturbations. To study the stability of the system, we write the Heisenberg

equations for the evolution of the fields ûk 6=0 and v̂k 6=0 from their commutation with Ĥ
(2)
eff,k 6=0. In

the following, we stop specifying that this study of dynamical stability is performed away from

k = 0. We remind that the operators ĉk and d̂k, as well as ûk and v̂k, have bosonic commutation

relations. We have [ûk, v̂k′ ] = [ûk, v̂
†
k′ ] = 0 (∀ k) and [ûk, û

†
k′ ] = [v̂k, v̂

†
k′ ] = 1δk,k′ . Important

consequences for our derivation are

[
ûk, û

†
kûk

]
= ûk,

[
ûk,
∑
k′

û†k′ ûk′

]
= ûk and

[
ûk,
∑
k′

û†k′ û
†
−k′

]
= 2û†−k.

With these relations, we find that the differential equations for the evolution of ûk and v̂k are:

i~
∂ûk
∂t
'
[
ûk, Ĥ

(2)
eff

]
(5.31)

' Auu(k)ûk +Auv(k)v̂k +Buu(k)û†−k +Buv(k)v̂†−k

i~
∂v̂k
∂t
'
[
v̂k, Ĥ

(2)
eff

]
' Auv(k)ûk +Avv(k)v̂k +Buv(k)û†−k +Bvv(k)v̂†−k.

The nomenclature for the coefficients is such that A couples the evolution of modes in the same

quasi-momentum while B couples the evolution of modes at opposite quasi-momentum, with

indices specifying the modes. From the parameters of the model, these coefficients read

Auu(k) = Ẽu(k) + 2nU cos2

(
θ

2

)
Buu(k) = nU cos2

(
θ

2

)
(5.32)

Avv(k) = Ẽv(k) + 2nU sin2

(
θ

2

)
Bvv(k) = nU sin2

(
θ

2

)
Auv(k) = nU sin(θ) Buv(k) =

nU

2
sin(θ),

where we defined the energy levels of the coupled bands offseted by the chemical potential

Ẽu,v(k) = Eu,v(k) − µ. In the following, we make implicit the dependence of Ẽu,v (as well as

that of the parameters of Eq. (5.32)) on the quasi-momentum q = 2πk/L. In Eq. (5.31), we see
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that we get a set of four coupled differential equations. The last two can simply be obtained by

complex conjugation of the first two and transforming10 k → −k:

i~
∂û†−k
∂t
' −Buuûk −Buvv̂k −Auuû†−k −Auvv̂

†
−k (5.33)

i~
∂v̂†−k
∂t
' −Buvûk −Bvvv̂k −Auvû†−k −Avvv̂

†
−k.

We write this system in a matrix format:

i~
∂

∂t


ûk

v̂k

û†−k
v̂†−k

 = L(k)


ûk

v̂k

û†−k
v̂†−k

 , (5.34)

where the matrix L(k) that governs the evolution of the modes reads

L(k) =


Auu Auv Buu Buv

Auv Avv Buv Bvv

−Buu −Buv −Auu −Auv
−Buv −Bvv −Auv −Avv

 . (5.35)

The spectrum of L(k) contains the information about the stability of the system, as discussed

in the following summary box.

➜

Result of the perturbative treatment of the interactions.

L(k) (5.35) is the coupling matrix for the differential equations (5.34) of the modes ûk,

v̂k, û−k, and v̂−k (which are the coupled Fourier modes of our perturbations (5.10)).

Its diagonalization yields eigenmodes whose angular frequencies of evolution are the four

eigenvalues λi(k) of L(k). These eigenvalues contain the information about the stability

of the system. Indeed, any perturbation at quasi-momentum q = 2πk/L will have a stable

oscillating behavior if and only if all four eigenvalues λi(q) are real. On the other hand, if

either of the λi(q) has non-zero imaginary part along the Brillouin zone, we get a “complex

frequency” associated to exponential growth of unstable modes at that quasi-momentum.

In the following, we will compute and display the instability parameter

w(q) = max
i
{|Im{λi(q)}|} . (5.36)

Evaluated for all quasi-momentum −0.5 < q/kL ≤ 0.5 (taken in the continuous limit

10Using once again the central symmetry of the band structure (see footnote p. 134), implying here Aαβ(−k) =
Aαβ(k) and Bαβ(−k) = Bαβ(k) for all modes α̂, β̂.
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corresponding to L→∞), w(q) informs us on the regions where to expect the growth of

unstable modes in the Brillouin zone.

The matrix elements of L(k) (5.35) for the evaluation of w(q) are computed using

Eqs. (5.32), (5.13), (5.11) and (5.8).

To summarize, in Sec. 5.2.1, we developed a method to fit Floquet spectra of the real

system and determine realistic parameters for the model. In this section, we explicitly obtained

the elements of the evolution matrix for the perturbations in the Brillouin zone, allowing to

determine regions of instability in the system through the parameter w(q) (Eq. (5.36)). The

only unknown quantity is the interaction parameter nU . In the next section, we discuss an

estimation for this parameter.

5.2.4 Estimation of the interaction parameter

The interaction parameter nU in the effective one-dimensional model has to take into ac-

count two features from the real system:

(i) the real system is a one-dimensional lattice of pancakes of atoms, highly confined in the

lattice wells parallel to the lattice and loosely confined in perpendicular directions,

(ii) the number of atoms per site is not constant along the lattice, with more atoms in the

center of the hybrid trap than further away from it.

A heuristic formula obtained from [205, 201] allows us to estimate the interaction parameter

n0U0 in the central, most populated lattice site:

n0U0 ' ~Ω⊥

√
as√
2πa0

√
n0, (5.37)

where Ω⊥ ≈ 2π × 67 Hz is the averaged angular frequency of the hybrid trap along the axes

perpendicular to the lattice (see Sec. 2.2.4), as ≈ 5.23 nm is the s-wave scattering length of 87Rb,

a0 =
√
~/mω0 is the characteristic size of the ground state in each lattice site in the harmonic

approximation (with ω0 =
√
s0 × 2πνL, see Sec. 1.4.1) and n0 is the number of atoms in this

central lattice site. Working with BECs of N ≈ 5 · 105 atoms in a hybrid trap with angular

frequencies (Ωx,Ω
′
y,Ω

′
z) ≈ 2π × (10.4, 66, 68) Hz, we can estimate [201, 66] n0 ≈ 4.4 · 103 atoms

in this central lattice site. There, we thus get for the interaction parameter (in units of EL):

n0U0/EL ≈ 0.86. This estimate gives us an upper bound for nU across the lattice, which permits

to study the spectrum of L(q) (Eq. (5.35)) over a realistic range of interaction parameters.
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Figure 5.4 Typical results of the two-band tight-binding model with interactions for re-
alistic parameters. (a,d) Quasi-energy spectra. (b,e) Spectra of the effective Hamiltonian partially
fitting (a,d) (see Sec. 5.2.1). (c,f) Corresponding instability parameter w(q) (5.36) as a function of q
and nU . Parameters for (a-c) correspond to those of Fig. 5.3(a-c) and parameters for (d-f) correspond to
those of Fig. 5.3(d-f). The vertical black dashed lines mark the quasi-momenta of the avoided crossings.
A closer look of the crossings can be seen in Fig. 5.3.

5.2.5 Results of the model and predictions

In the Secs. 5.2.1 and 5.2.4, we have determined realistic values for all the parameters of the

tight-binding model and we are now able to study the stability of the system by computing the

instability parameter w(q) along the Brillouin zone. According to our estimation of the upper

bound for the interaction parameter, we evaluate w(q) in the realistic interval nU ∈ [0, 0.1]EL.

Figure 5.4 shows a summary of our approach, from the fit of the Floquet bands to the study of

the spectrum of L(q). As nU is increased, we see emerging sharp stripes in quasi-momentum of

non-zero values of w(q), corresponding to region where L(q) has at least one complex eigenvalue

and where instabilities are expected. Strikingly, these sharp regions are observed in the vicinity

of the avoided crossings. As we will demonstrate in the next section of experimental results, the

decimal peaks observed in the experiments can be traced back to these unstable regions in the

Brillouin zone.
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Figure 5.5 Predictions from the two-band tight-binding model with interactions. Instability
regions versus ∆E1 and W with the interaction parameter value fixed to nU = 0.05EL. (a) Instability
parameter w(q) as a function of q and ∆E1 for J1 > 0 (the parameters J0, J1 and W are those of the fit
of Fig. 5.3(c)). The variation of ∆E1 is such that the crossings position q′ (oblique dashed black lines)
varies linearly, that is ∆E1(q′) = −2J0 cos(q′) + 2J1 cos(q′), with 0 ≤ q′ ≤ π from the top to the bottom
of the panel. (b) Same for J1 < 0, with parameters corresponding to Fig. 5.3(f). (c) w(q) as a function
of q and W for J1 > 0 (the parameters J0, J1 and ∆E1 are those of the fit of Fig. 5.3(c)). (d) Same for
J1 < 0, with parameters corresponding to Fig. 5.3(f). The vertical dashed black lines mark the crossings
position and the horizontal plain black line mark the value of the varied parameter corresponding to
Fig. 5.4.

We see in Fig. 5.4 that the relative position of the unstable regions and the crossings depends

on the curvature of the higher band 1 in the model. Indeed for J1 > 0 (Fig. 5.4(c)), instabilities

are observed outside the central region delimited by the crossings in the first Brillouin zone, while

we observe them toward the inside this region for J1 < 0 (Fig. 5.4(f)). This is a general trend

of the model: for the regime of relative magnitude of |J0| and |J1| considered, instabilities are

always observed away from the crossings, in the direction toward which the upper band grows

(i.e. away from p = 0 in the unfolded band structure ; see for instance Sec. 2.4.3). However, we

will see in the next section (Sec. 5.3.1) that these small shifts are not resolved experimentally.

In Fig. 5.4(f), one can distinguish a broad region of low instability centered in q = 0. This

may indicate in that case a less pronounced destabilization of modes near q = 0.

Predictions. We can make a series of experimental predictions from the model.

(i) A first prediction follows from the apparent connection between the avoided crossings

and the instability region. We further investigate this connection in Fig. 5.5, where we fix

the interaction parameter to a realistic intermediate value of nU = 0.05EL and we vary the

energy offset ∆E1 of the band 1. This changes the quasi-momenta at which the uncoupled

levels of the model cross, and we see in Fig. 5.5(a,b) that the position of the instability regions

follows this variation. Experimentally, the positions of the avoided crossings are mainly set by
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the modulation frequency of the lattice (see Fig. 1.6). By tuning this parameter, we expect

four-wave mixing to feed decimal peaks at momenta that will follow the variation of the quasi-

momentum at which resonant coupling occurs. This experiment is presented in Sec. 5.3.2.

(ii) Another expected behavior directly stems from Fig. 5.4: we note that as nU increases, so

do the maxima of the instability parameter w(q). In the model, this is associated with shorter

instability timescales. In the experiment, we can decrease the interaction parameter nU by

reducing the number of atoms in the BECs (Sec. 2.2.4), which is expected to delay the decimal

peaks nucleation. In Fig. 5.5(c,d), we also see that the variation of the coupling parameter

W results in a similar trend. Experimentally, the main parameter on which W depends is the

amplitude of modulation ϕ0. Therefore, we should measure a strictly decreasing nucleation

timescale as ϕ0 increases. These experiments are presented in Sec. 5.3.3.

(iii) A last prediction concerns the generality of the model. Since the effective model is blind

to the coupling mechanism between the bands, we can for instance expect similar instabilities

with another type of modulation. With our experimental setup, we can very well generate

similar looking Floquet spectra by modulating the depth instead of the phase of the lattice (see

for instance Fig. 1.6). As a result, we expect to observe the nucleation of decimal peaks in

depth-modulated optical lattices with similar modulation parameters.

We present experimental results in the next section. We start in 5.3.1 by measuring the

quasi-momentum of the experimental decimal peaks to confirm the connection with the insta-

bility regions observed in the spectrum of L(q). In the rest of the section, we test our series of

predictions.

5.3 Experimental results

5.3.1 Band-mapping method and quasi-momentum of the decimal diffraction

peaks

In the previous section, we developed a tight-binding model that predicts the growth of

instability modes in the neighborhood of the avoided crossings in the quasi-energy spectrum.

Following this result, we perform a band-mapping experiment to access the quasi-momentum

of the decimal peaks (observed in for example in Fig. 5.2) in order to confirm that it matches

that of the instabilities predicted by the model. A reminder on the band-mapping technique is

provided in Sec. 2.4.3.

Figure 5.6 shows a band-mapping experiment for the same modulation parameters as in

Fig. 5.2(c). Comparing Fig. 5.6(c) and Fig. 5.2(c), we see how the TOF images are simplified

through band-mapping. Indeed, as the atoms from the ground state only populate the plane

wave of zero momentum after band-mapping, the rest of the signal stands out. In Fig. 5.6(d-

f), we sketch the effect of the band-mapping process on the spectra of the system at different

times. In panel (d), we place markers on the bands at the avoided crossings (in the model, these
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Figure 5.6 Measurement of the quasi-momentum of the decimals peaks through band-
mapping. (a) Depth of the lattice along time: adiabatical loading at s0, held constant during the
experiment, adiabatical unloading to band map (see text) and switch off for TOF imaging. (b) Phase of
the lattice along time, sine-modulated with amplitude ϕ0 for an integer number n of periods T . (c) Stack
of experimental absorption images for increasing n, with s0 = 3.70 ± 0.10, ϕ0 = 15o, ν = 1/T = 25.5
kHz and tTOF = 35 ms. (d) Corresponding quasi-energy spectrum (colored lines), with BEC (disk in
q = 0) and instability (disks in q 6= 0) modes. (e-f) Band structures of the lattices of depth s0 = 3.7
for (e) and s0 = 0 for (f) (solid colored lines) and follow-up of the modes (see text) with the same color
code. (f-g) Borders of the Brillouin zone (black dotted lines). (g) Absorption image after n = 80 periods
of data (c). The upper value of the colormaps for the ODs are truncated to reveal details.

markers correspond to states in the modes ûq and v̂q at the crossing) and a marker in q = 0 that

corresponds to the atoms in the ground state that initially macroscopically populate one Floquet

state (see Fig. 5.1). When we stop the modulation (panel (e)), the populated states are projected

on the Bloch eigenstates of the static lattice. Figures 5.6(f-g) correspond to the situation at the

end of the band-mapping. We compare the position of the markers in the unfolded relation of

dispersion with a TOF image from Fig. 5.6(c) after the nucleation of the decimal peaks. The

agreement between the momentum of the markers and the position of the momentum peaks in

the diffraction pattern confirms that, as predicted by the model, the quasi-momentum q∗ of the

observed decimals peaks is related to the quasi-momentum of the avoided crossings in the quasi-

energy spectrum. In the unfolded band structure, the model however predicts unstable modes

with a slightly higher absolute momentum that the unfolded quasi-momentum of the crossings

(Sec. 5.2.5). This trend has not been clearly observed in the experiments and we suspect that

we cannot resolve this phenomenon due to the non-zero momentum dispersion of our atomic

clouds, which translates in diffraction peaks of finite width.
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Figure 5.7 Instability displacement with the modulation frequency. (a) Stack of experimental
absorption images after n = 100 periods, averaged over 3 realizations, for an increasing modulation
frequency ν , with s0 = 3.57± 0.10, ϕ0 = 15o and tTOF = 35 ms. The upper value of the colormaps for
the ODs are truncated to reveal details. (b) Average instability position (in terms of the reduced quasi-
momentum k/kL of the unfolded band structure) extracted from the fitted drift of the four 1 ≤ |p|/~kL ≤ 3
orders of diffraction over all realizations (blue dots, errorbars correspond to the standard deviation of
the 12-point sample) and calculated position of the resonant coupling as a function of the modulation
frequency (solid black line). (c) Transition diagram from the lowest band s over the first two Brillouin
zones (solid black lines) and addressed transitions for data b1, b2 and b3 (blue dots and solid lines). In
(b-c) the gap between the transitions s-d and s-f (grey shaded area) and edge of the first Brillouin zone
(black dotted line) are represented.

5.3.2 Tuning the momenta of the instabilities

To further demonstrate that the quasi-momenta of the decimal peaks follows that of the

avoided crossings, we tune the position of the crossings in the Floquet spectrum. This is simply

achieved by varying the frequency ν of the phase modulation and taking TOF images after the

nucleation of the decimal peaks. To this end, we fix the observation time at n = 100 periods

for similar parameters as in Fig. 5.2. In Fig. 5.7, we compare, as a function of ν, the measured

reduced wave number k/kL of the emerging peaks with the unfolded quasi-momentum at which

ν couples the bands. We vary ν from ∼ 20.5 to ∼ 40.5 kHz, resulting in a complete scan of the

transitions s to d through s to f over the whole Brillouin zone (see Fig. 5.7(c)).

We observe that the decimal peaks in Fig. 5.7(a) follow the position of the avoided crossings

in the quasi-momentum space (Fig. 5.7(b)), and even through the gap where the crossing transi-

tions from the band pair (s,d) to the pair (s,f ). Although this is globally in very good agreement

with the predictions of the model, such a smooth correspondence over the whole Brillouin zone

is not trivial as our interpretation of the model is valid when studying the instability at q 6= 0

(see Sec. 5.2).
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This experiment demonstrates our ability to tune the position of the unstable modes in

the quasi-momentum space, i.e. the quasi-momentum of the output channels for the four-wave

mixing occurring at q = 0. Considering the experiment of Fig. 5.7, one can argue that the

determination of the quasi-momenta of the decimal peaks as a function of ν would have been

easier with a band-mapping before the measurements (as in Sec. 5.3.1). However, we here decided

not to band-map in order to display the periodicity of both the ground state and the decimals

peaks. Doing so, the results that we show in Fig. 5.7(a) suggest, from the momentum space, the

coexistence of multiple spatial periodicities with a ratio of periods that can be tuned with the

frequency of the phase modulation. At the end of this chapter (Sec. 5.4.1), we discuss numerical

simulations that have been performed on this system, which corroborate the emergence of new

spatial periodicities in the system.

5.3.3 Nucleation time

The two-band model (Sec. 5.2) can provide the position of unstable modes in the Brillouin

zone and the magnitude of the exponents that characterize their growth, but it cannot provide

the full kinetics of the mode growth nor their subsequent evolution. However, as hinted by

Fig. 5.6(c), the full dynamics of the mode growth is readily accessible experimentally. In this

section, we study the behavior of the nucleation time versus the amplitude ϕ0 of the phase

modulation and the initial number N of atoms in the BECs.

To easily extract the population of atoms in the decimal diffraction peaks, we once again per-

form band-mapping. The data analysis is presented in Fig. 5.8. For a given run (e.g. Fig. 5.8(a)),

we count, as a function of the modulation time, the fraction of atoms in a set of lateral decimal

peaks that are clearly visible. We do not take into account the decimal peaks that are too close

to the central BEC, as the proximity with this highly populated region makes difficult to extract

the populations in the emerging structures. We fit the fraction of atoms in the lateral decimal

peaks in time with the sigmoid growth curve:

π∗(t) =
π∗0

1 + e−(t−tn)/τ
, (5.38)

where:

� π∗0 is the value of the plateau, i.e. the final fraction of atoms in the decimal peaks consid-

ered,

� tn is the time of half-maximum, which we choose to define the nucleation time,

� τ is the characteristic growth time of the instability.

For a frequency that couples the bands s and d, we plot in Fig. 5.8(b) the growths of the atomic

populations in the lateral order and the results of the fit for ϕ0 ranging from 10o to 20o. The

extracted nucleation times tn are shown in Fig. 5.8(c) together with data corresponding to a

resonant modulation between the bands s and f. Fig. 5.8(d) shows a similar experiment, but
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Figure 5.8 Measurement of the nucleation time of the instability. (a) Stack of absorption
images after band-mapping for an increasing time of modulation, for s0 = 3.70 ± 0.20, ν = 25.5 kHz
(coupling bands s-d), ϕ0 = 15o and N = (4.8±0.4) ·105 atoms in the BECs. The number of atoms in the
grey stripes (here for 1 . |p|/(~kL) . 2) is used to determine the nucleation time tn (blue vertical line,
with a surrounding blue shaded area corresponding to one standard deviation on the fit). The upper value
of the colormaps for the ODs are truncated to reveal details. (b) Growth curves extracted from data as in
(a), with the purple, red, blue, orange, and green data corresponding to ϕ0 = {10o, 12.5o, 15o, 17.5o, 20o}
respectively. The sigmoid fitting curves are shown and tn is displayed as in (a). (c) tn as a function of
the modulation amplitude for data (b) (colored dots) and for ν = 30.5 kHz and s0 = 3.56 ± 0.20 (black
dots, coupling bands s-f ). (d) Same as (c) as a function of the number of atoms N in the BEC for
ν = 25.5 kHz and s0 = 3.58 ± 0.30, for a fixed modulation amplitude ϕ0 = 15o. The blue marker/line
in every panels corresponds to the same experiment. Error bars correspond vertically to one standard
deviation on the fit and horizontally to one standard deviation over 4 independent measurements of the
atom number.

as a function of the initial number N of atoms in the BECs for a frequency of modulation that

couples the bands s and d. In the experiment, we reduce the number of atoms in the BECs

during a holding time prior to the lattice loading (Sec. 2.2.4).

Results in Fig. 5.8 show that the nucleation time decreases with ϕ0 and N . These trends

are in agreement with the predictions of the tight-binding model (Sec. 5.2.5): by increasing

ϕ0, we mainly increase the coupling W between the bands, which leads to larger instability

exponents. The variation of the nucleation time with N is qualitatively expected as well, as

the initial interaction energy in the condensate increases with N , and is also associated with a

stronger instability. We note that these results are similar to those obtained for the single-band

Bogoliubov instability leading to staggered states [201].

5.3.4 Survival of the instability

Using the same experimental procedure as for the study of the nucleation time of the decimal

peaks, we observe the behavior of the instability over a longer period of time. Figure 5.9 shows
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Figure 5.9 Survival time of the nucleated pattern for s0 = 3.8 ± 0.1, ν = 25.5 kHz, ϕ0 = 15o

and N ≈ 5 · 105 atoms. (a) Stack of absorption images after band-mapping. The upper value of the
colormaps for the ODs are truncated to reveal details. (b) Growth of the population of atoms in the
instability regions. Same analysis as Fig. 5.8

the result of the experiment for a large number of atoms and a coupling between the bands s

and d. We see that the emerging patterns remain visible even ∼ 2 tn (∼ 8 ms ∼ 200 modulation

periods) after their appearance (tn ∼ 4 ms). Beyond that, we observe some heating, typical in

modulated systems, that blurs the signal as a whole. We come back to the disappearance of the

decimals peaks in Sec. 5.4.1.

5.3.5 Amplitude modulation

A last experiment suggested by the tight-binding model is the amplitude modulation of

the lattice with similar lattice depth and frequency of modulation. Indeed, as the effective

model is of static nature, it does not distinguish between phase and amplitude modulations.

As the amplitude modulation of the real system can produce comparable Floquet spectra (see

Fig. 5.10(a) below), four-wave mixing should trigger similar results in a depth-modulated lattice.

Our amplitude-modulated potential is

V (x, t) = −s0
EL

2
[1 + ε0 cos(2πνt)] cos(x). (5.39)

Results are shown in Fig. 5.10. On panels (a,b), we plot the quasi-energy spectrum and its fit

from the two-band tight-binding model. As we see, the pair (s0, ν/νL) = (3.2, 2.84) couples the

bands s and d close to the edge of the Brillouin zone. panel (c) shows the instability parameter

w(q), predicting unstable modes near the edge of the Brillouin zone for realistic interaction

parameters nU (Sec. 5.2.4). Experimentally (panel (e)), we indeed observe the emergence of

diffraction peaks in between those associated to the lattice ground states (panel (d)). The

emerging peaks have momentum slightly below half integer values of ~kL, which is consistent

with predictions made from w(q) (panel (c)). This experiment highlights the generality of the

phenomenon studied in this chapter, and the relevance of the two-level model that predicts
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Figure 5.10 Instability nucleation through amplitude modulation of the lattice. (a) Quasi-
energy spectrum (colored lines) for the amplitude modulation of Eq. (5.39) with parameters s0 = 3.2,
ε0 = 0.325 and ν = 2.84 νL. (b) Spectrum of the two-band tight-binding model partially fitting (a).
(c) Instability parameter w(q) over the Brillouin zone as a function of nU . (d) TOF absorption image
of the ground state of the static lattice of depth s0 = 3.2± 0.1 at the beginning of the modulation with
N ≈ 4 · 105 atoms. (e) TOF absorption image of the atom cloud after n = 60 periods of modulation
with ν = 23.05 kHz, corresponding to the spectrum (a). The upper value of the colormaps for the ODs
are truncated to reveal details.

the instabilities regardless the nature of the interband coupling (in this case the kind of lattice

modulation employed).

5.4 Discussion on the realized state

5.4.1 Truncated-Wigner simulations

As discussed previously (Sec. 5.3.3), our two-level tight-binding model (Sec. 5.2) is able to

predict trends on the timescale of the instability produced by four-wave mixing, but it is not

suitable to study the kinetics of the phenomenon. To do so, one needs to make a simulation

of the modulated system that takes into account both the interactions between the particles

and fluctuations, either of thermal or quantum nature, to work as a seed for the spontaneous

four-wave mixing process and feed the modes that eventually start to grow. To face these re-

quirements, Truncated-Wigner (TW) simulations [201] were performed by our collaborator Peter
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Schlagheck from the University of Liège. Through TW simulations, one is able to mimic quan-

tum fluctuations by averaging over the integration of many independent trajectories with slightly

different initializations. The simulations were performed with a realistic harmonic confinement

(sec. 2.2.4) superimposed to the lattice potential.

These simulations are performed with N = 1 · 105 atoms in the phase-modulated lat-

tice (Eq.(5.1)), with parameters s0 = 3.4, ν = 30 kHz (which couples the bands s and f at

q = 0.36 kL) and ϕ0 = 20o. These parameters are similar to those of the experiments featured in

this chapter. These simulations reproduce what we observe experimentally, namely an absence

of evolution for the first milliseconds of modulation, followed by the nucleation of momentum

components at decimal multiples of ~kL, and later a disappearance of the patterns (as experi-

mentally shown in Fig. 5.9). In Figs. 5.11 and 5.12, we present typical results of TW simulations

on the state of the system after a fixed t = 5 ms of lattice modulation.

First in Fig. 5.11, we present details on the reduced one-body density matrix ρ̂(1) of atomic

ensemble after the nucleation of the instability. panel (a) displays the eigenvalues of ρ̂(1). The

greatest eigenvalue corresponds to the initially populated state at q = 0 (closely alike the lattice

ground state, see Sec. 5.1). We then see two eigenvalues emerging from the rest. This manifests

the emergence of two condensed mode in the mixed state. panels (b-d) shows successively

the momentum representation of the states associated with these three greatest eigenvalues.

Focusing on the emerging modes (Fig. 5.11(d-e)), we see that the two secondary condensate wave

functions are symmetric and antisymmetric combinations of plane waves 〈x|χ±q∗/kL
〉 ∝ e±iq

∗x

(Sec. 1.2.1), with q∗ ≈ q = 0.36, the quasi-momentum of the avoided crossings for our modulation

parameter (see above). These modes are coherently populated by four-wave mixing during the

evolution of the atoms in the modulated lattice.

With ρ̂(1), we can also verify that the apparition of these modes translates to the emer-

gence of a periodicity d∗ larger than the lattice step d. Figure 5.12 features a study of spatial

correlations in the atomic ensemble. On panel (a), we show, as a function of the lattice site

j, the atomic density distribution computed within the s band. On the two individual TW

trajectories displayed, we see evidence of a new structuration on a scale of about 3 sites. This is

in agreement with the expected quasi-momentum at which the instability occurs, as a resonant

modulation at q/kL = 0.36 leads to a spacing d∗/d ' 1/0.36 ' 2.8. The phase reference of

the density modulation appears random for each trajectory, so the modulation washes out on

the spatial density averaged over many TW realizations. Nevertheless, we can recover evidence

of the spatial density modulation in the averaged state by computing the normalized density-

density correlation function g(2)(j) = 〈n0nj〉/〈n0〉〈nj〉), between the central and the jth site of

the lattice. This is plotted in Fig. 5.12(b). It reveals clear density oscillations across the lattice

which signal the emergence of a new long-range order. Still within the ground band, we can also

compute a normalized coherence g(1)(j) = 〈â†0âj〉/(〈n0〉〈nj〉)1/2. We plot g
(1)
j in Fig. 5.12(c). It

displays a modulations at long-range with the same period. These last two panels show that

coherent emergent states with a new period d∗ coexist with the initial condensate of period d.

As we briefly discuss in the next section, there are shared features between supersolids and the

exotic state that we realize in the modulated lattice.
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Figure 5.11 Structure of the reduced one-body density matrix after nucleation of the
instability. (a) Ordered eigenvalues of the reduced one-body density matrix normalized by the total
number N of atoms. The eigenvalues identified by color and letter are shown in panel (b-d). (b-d) s band
components of the eigenstates identified in (a) (scaled by the square roots of the associated eigenvalues)
plotted in the momentum space, displayed by plotting their real parts (solid colored lines) and imaginary
part (dashed colored line). Parameters are s0 = 3.4, ϕ0 = 20o, ν = 30 (kHz) and N = 1 · 105 atoms.

5.4.2 Shared features and differences between supersolids and the state emerging

in our system

In this last section, we discuss common features between supersolids and the emerging

state in our system, as well as differences that make reluctant to use the work supersolid in our

case. Briefly introduced, supersolidity is the emergence of a crystalline order within a coherent

superfluid phase [206]. This mysterious state of matter was first introduce near 1960 (see [207,

208, 209]. Its existence was first discussed and debated in the context of 4He [210]. It was only

in 2017, in the field of ultracold atoms, that conclusive observations of supersolidity were made.

To bring out supersolid features, these pioneering experiments relied on different experimental

techniques involving spin-orbit coupling [211], cavity-mediated long-range interactions [212], and

later long-range dipolar interactions in ultracold erbium and dysprosium gases [213, 214]. Three

key requirements [206] for a quantum state to be dubbed supersolid are

(i) a long range modulation of the spatial density accompanied by

(ii) a preserved coherence in the modes associated with the large density oscillations, and

(iii) the realization of a stable and stationary state (possibly the ground state of the system).

In our case, requirements (i) and (ii) are respectively demonstrated by the oscillations observed

in the g(2) and g(1) correlations function (Fig. 5.12). However, as hinted by the disappearance of
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Figure 5.12 Correlations and coherence after nucleation of the instability. (a) Spatial density
distribution in the s band as a function of the site index j. Two individual TW trajectories (dashed and
dotted lines) exhibit a clear periodic modulation of the density, which is washed out in the average of 1000
trajectories (thick line). (b) Average density-density correlation function g(2)(j) between the central site
and the jth site in the s band. (c) Average amplitude correlation function g(1)(j) between the central
site and the jth site in the s band. Parameters are s0 = 3.4, ϕ0 = 20o, ν = 30 (kHz) and N = 1 · 105

atoms.

the emerging structure for long modulation times (observed both in the experiments (Fig. 5.9)

and in the TW simulations [66]), the state that emerges in our system is not a steady state

strictly speaking. This is the reason why we avoid to use the term of supersolidity, and prefer

to speak of the transient emergence of supercrystalline order.

Conclusion

In this last chapter, we presented results on the observation and control of a supercrystalline

order emerging from short-range interatomic interactions in the phase-modulated optical lattice.

By loading the ground state of the lattice and modulating its phase at a frequency that couples

the ground band to an excited state in q 6= 0, we make the peculiar observation of momentum

components emerging between the diffraction peaks associated with the ground state.

To model this situation, we develop an effective two-level tight-binding model with inter-

actions to study the stability of the system. With the two-band model, we obtain instability

regions symmetric in quasi-momentum that are much narrower than what can be found with

one-band systems [199, 201, 197]. These instabilities are populated by pairs of atoms from the

BEC at q = 0 that coherently scatters into q = ±q∗ (the output channels of the four-wave

mixing process at stake). We find that these output channels follows the quasi-momentum of
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the avoided-crossings in the Floquet spectrum, so their quasi-momenta can be tuned by the fre-

quency of lattice modulation. Through several experiments, we confirm the connection between

the instability regions of the model, the avoided crossings in the quasi-energy spectrum and

the emerging structures observed in TOF images. We demonstrate how the periodicity and the

nucleation timescale of the emerging momentum peaks can be tuned by engineering the Floquet

spectrum.

To quantitatively account for the kinetics of four-wave mixing, a numerical study of this

problem has to go beyond a mean-field treatment of the interactions. Such analysis were per-

formed by Peter Schlagheck with Truncated-Wigner simulations, typical results of which were

presented in the end of this chapter.

This work opens unexplored routes to generate exotic tunable states in higher dimensions

and/or other lattice geometries. A publication on this work is in preparation [66].
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General conclusion

“Audi panem quid meliora.” Ça veut rien dire, mais je trouve que ça boucle bien.

Roi Loth (Kaamelott, Livre IV, Episode 1)

This manuscript features part of the results that I obtained during my PhD in the Cold

Atoms group at Laboratoire Collisions, Agrégats et Réactivité (LCAR, Toulouse) between 2019

and 2022. Using Bose-Einstein condensates (BECs) of 87Rb in a controllable one-dimensional

optical lattice, my PhD work concerned the development and implementation of quantum state

control methods and their application to quantum simulation in a Floquet-Bloch system (i.e.

a system periodic in space and time). In this conclusion, I begin with a brief summary of this

work, and I then discuss perspectives opened by this thesis and the results of our group these

last three years.

Summary

Quantum-optimal control of matter waves in a one-dimensional optical lattice. In the first

study presented in this manuscript (Chap. 3), we used the formalism of quantum-optimal control

(QOC) to compute the way in which to continuously shift the optical lattice in order to arbitrarily

control the motional state of the BECs in the lattice. Using this protocol, we first prepared

specific momentum distributions, for which the success of the preparation could be assessed with

a single time-of-flight (TOF) observation of the atoms, as shown in Fig. 6.1(a). We then targeted

more involved quantum state, the preparation of which we had to certify by implementing a

dedicated state tomography algorithm based on likelihood maximization. Using these tools,

we demonstrated our ability to prepare Gaussian states that we squeezed in position up to

more than a factor of four, an example of states unattainable by more conventional methods

such as adiabatic approaches. I conclude this first chapter of results with the presentation

of an experiment providing a proof-of-principle of QOC application to quantum simulation

in a Floquet system. We demonstrated how the optimization on the initial state in a study

of dynamical tunneling in the depth-modulated lattice resulted in clearer signals of tunneling

oscillations. See [63, 64] for our publications on this subject.

Non-diffusive Hamiltonian ratchet in space. I detailed in Chap. 4 the design of an integrable

ratchet effect in a sine potential whose amplitude and phase modulations are correlated. This
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Figure 6.1 Summary figure of my PhD work. (a) Horizontal stack of independent TOF absorption
images showing our control over the BEC momentum distribution in the optical lattice. This panel
refers to [63, 64] and Chap. 3. (b) Horizontal stack of TOF absorption images showing the momentum
evolution of the ratcheting Floquet state (here prepared by quantum-optimal control) over three ratchet
periods. This panel refers to [65] and Chap. 4. (c) Horizontal stack of TOF absorption images showing
the momenta at which emerge a transient supercrystalline structure as a function of the lattice phase
modulation frequency. This panel refers to [66] and Chap. 5. (d) TOF absorption image featuring a
scattering halo between the momentum components ± 4 ~kL (diffractions orders are not well resolved for
this TOF shortened to 8 ms in order to reveal the halo). This panel refers to [62]. (e) Stroboscopic phase
portrait and Husimi representation of a Floquet state (localized on regular islands) invovled in CAT in
this system. This panel refers to [61].

kind of ratchet effect consists in the emergence of a directed current of particles along quasi-

periodic trajectories, with the noteworthy detail that these integrable trajectories periodically

stop in each lattice site. After having presented our method to determine the modulation

parameters for this classical mechanics effect to emerge, I discussed wave function transport along

these classical trajectories: as a parameter of the system is varied (in our case the effective Planck

constant1), Floquet state mixing couples in a non-monotonous way the ratcheting region of phase

space with the chaotic sea. The identification of this effect allowed us to determine optimal

experimental parameters to observe the effect, and the chapter ends with the presentation of

experiments where we observed the transport of matter waves along the ratcheting structures

in the classical phase space (Fig. 6.1(b)). A publication on this study is in preparation [65].

Emergence of a tunable supercrystalline order in a Floquet-Bloch system. In the last part of

this manuscript (Chap. 5), I presented the study of an effect that goes beyond one-body physics

in our system: the transient emergence of a supercrystalline phase resulting from short-range

interactions in the shaken optical lattice. In these experiments, we initially loaded the ground

state (at quasi-momentum q = 0) of the lattice before applying a phase modulation that couples

the ground band to an excited band away from the center of the Brillouin zone (at |q| 6= 0,

resulting in avoided crossings between the two bands involved at ±q). Experimentally, after

tens of modulation periods, we observed the nucleation of additional momentum components

in the TOF images. To understand this phenomenon, we developed a two-band tight-binding

model with on-site interactions. Through a Bogoliubov treatment of the interactions, we found

1Which is the only free parameter left once the classical phase space is fixed..
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the presence of instability regions near the quasi-momenta of the avoided crossings. Through

Floquet engineering of the avoided crossings, we demonstrated a control on these unstable modes

(namely their periodicity, as shown in Fig. 6.1(c), and nucleation timescale) resulting from

spontaneous four-wave mixing. A publication on this study is in preparation [66].

Research not featured in this manuscript. I have contributed to two other research axes

during my thesis, which I did not include in this manuscript for concision. The two following

paragraphs briefly summarize these results:

Observations of chaos-assisted tunneling (CAT) resonances. CAT [88, 155, 154, 89]

is a type of dynamical tunneling (Sec. 3.4) where the tunneling between the two regular

regions is carried by two Floquet states mainly localized on these regions (Fig. 6.1(e)),

as well as by a third Floquet state mainly delocalized over a chaotic sea. Under the

variation of a parameter of the system, the phenomenon of Floquet-state mixing (described

in Sec. 4.2) leads to CAT resonances [88], associated with a non-monotonic variation of

the tunneling frequencies in that three-level system. In this sense, the mixing chaotic

state can assist, or on the contrary freeze, dynamical tunneling in the system. In our

work [61], we were the first to unambiguously observe such a resonance of CAT using

BECs in the depth-modulated optical lattice. This work results from a collaboration with

M. Martinez, G. Lemarié and B. Georgeot from the Laboratoire de Physique Théorique

(Toulouse) and O. Giraud and D. Ullmo from the Laboratoire de Physique Théorique et

Modèles Statistiques (Paris). For numerical and theoretical details on this work, see the

thesis of M. Martinez [69]. For experimental details, see the theses of M. Arnal [67] and

G. Chatelain [68].

Observation and control of quantized scattering halos. When BECs are released from an

optical lattice to perform a TOF, atoms can undergo two-body collisions at the beginning

of the TOF [62] resulting in well visible scattering halos in the images [107, 215, 216, 62].

In our experiment, the low relative kinetic energy between the colliding pair results in

spherical s-wave scattering [90] (Fig. 6.1(d)), and the momentum quantization implied by

the lattice periodicity (Sec. 1.2.1) results in a quantization of the possible relative momen-

tum for the colliding atoms, thus leading to the observation of scattering halos of quantized

diameter. In our work [62], we showed how one can control the momentum characteristics

of these quantized halos: from a perturbative treatement of the collisions, one obtains that

the number of atoms in the halos is proportional to the product of the colliding momen-

tum component populations [62]. Thus, controlling halo momentum amounts to control

the momentum probability distributions2 of the state in the lattice before the TOF. In

our work [62], we demonstrated such control with a systematic technique that relies on a

sudden lattice shift ϕ0 followed by a precisely timed evolution τ in the lattice of depth s0.

By determining optimal triplet (ϕ0, τ, s0), we managed to control the atomic populations

in the momentum components to the best of what is achievable from the evolution of a

2We point out that these results where obtained before our implementation of QOC in the experiment. This
study on quantized scattering halos was actually our gateway to QOC.
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translated state in the static lattice, and thereby demonstrated our ability to control the

scattering halos in the reciprocal space. This work results from a collaboration with P.

Schlagheck from the CESAM research unit at the University of Liège. Details on this

study [62] can be found in the thesis of G. Chatelain [68].

Some prospects

Several lines of research are opened by these works. I highlight three of them here:

QOC for qudit computation. A qubit, the famous building block of quantum processors,

can be defined as the superposition of two discrete quantum levels |ψ〉 = c0|0〉 + c1|1〉, with

c0, c1 ∈ C and |c0|2 = |c1|2 = 1. A d-qudit [217, 218] is the generalization in d dimensions of the

two-dimensional qubit: |ψd〉 =
∑d

n=1 cn|n〉, with cn ∈ C and
∑d

n=1 |cn|2 = 1. In that regard,

we remark that the external quantum states of BECs in Bloch systems (with their discretized

Hilbert space) can be considered as qudits in momentum space. In Chap. 3 and [63, 64], we

used QOC with the phase of the lattice as a control parameter u(t), of which we computed the

optimal evolution to drive an initial state |ψa〉 to a final state |ψb〉:

|ψa〉
u(t)→ |ψb〉 . (6.1)

One can try to go further and compute the optimized control field u(t) in order to connect

one-to-one the elements of two bases of the Hilbert space:


|ψa,1〉

...

|ψa,d〉


u(t)→


|ψb,1〉

...

|ψb,d〉

 , (6.2)

with, for example in our system, a mapping between the plane waves |ψa,i〉 = |χ`〉 and the Bloch

eigenstates |ψb,i〉 = |φn〉 (see Sec. 1.2) for some relation n = σ(`) between ` and n. Operations

such as Eq. (6.2) correspond to unitary transformations, and allow one to design quantum gates

acting on the qudits. Through this control approach, one does not have to compute the numerous

matrix elements of the transformation (6.2), but only to optimize the control field u(t). From

here, one can implement basic quantum computing algorithms as for instance a version of the

Deutsch algorithm [219] with a single qudit.

This application directly benefits from our implementation of QOC on the experiment. The

connections with our work are here multiple, as, after the application of quantum processing

operations, it will be necessary to measure the qudit. The maximum-likelihood state tomography

technique implemented in Chap. 3 is well suited for this task.

154



QOC for quantum sensing. From our implementation of QOC, we can also design protocols

for quantum sensing, i.e. the accurate measurement of an external parameter. A possible

approach is to engineer a control field u(t) in order to maximize, as a function of an external

parameter to be measured, the rate at which diverge the different evolutions of a same initial

state. Preliminary numerical results have been obtained for our setup in order to measure e.g.

the lattice depth or a small magnetic force. Proof-of-concept experiments of quantum sensing

will soon be realized by the group.

Long-range chaos-assisted tunneling. In our study of CAT [61], we have observed coupling

resonances between pairs of regular islands of the same lattice site (Fig. 6.1). As a generalization

of the effect, it has been predicted [220] that when the chaotic sea extend between lattice sites,

there exists an harmonically decreasing coupling t(n) ∝ 1/n between the regular structures of a

given site and the regular structures in the nth neighboring site. This slowly decreasing behavior

of longer-range couplings can for instance be opposed with the exponentially decreasing coupling

to neighboring sites in the case of the static lattice. Our observations of CAT resonances pave

the way for a study of long-range chaos-assisted tunneling.

New experimental setup. Finally, our group is building a new experiment of 87Rb BECs in

the newly built facility at LCAR. On this new setup, the implementation of optical lattices of

higher dimensionality is planned. The developments presented in this manuscript are readily

applicable to be utilized and further studied on systems of higher dimensionality.

These perspectives will be addressed during the theses of F. Arrouas and N. Ombredane,

PhD students recently arrived in the group.
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Appendix A - Rubidium 87 D2 line

This appendix refers to the Chap. 2. We present in Fig. A.1 the detail of the 87Rb D2

line, and we identify the transitions that we work with during the cooling sequence (Sec. 2.2).

In a magnetic field gradient, the transition frequency between states |F = 1,mF = −1〉 and

|F = 2,mF = −1〉 (on which microwave evaporation is based) decreases as the magnetic field

increases, hence the negative detuning δMW(t) in Fig. A.1 (see Sec. 2.2.2). We remind that more

information on the cooling sequence can be found in previous theses of our group [93, 94, 115,

67, 68].

52S1/252S

52P

52P1/2

52P3/2

F=1

F=2

F'=0

F'=1

F'=2

F'=3

4.272 GHz

6.835 GHz

377.107 463 THz
794.98 nm

384.230 484 THz
780.24 nm

302 MHz

230 MHz

73 MHz

194 MHz

Cooling (MOT)

Repumping (MOT)

Imaging

Micro-wave (evaporation)

δMOT

gF = 1/2

(0.70 MHz/G)

gF = -1/2

(-0.70 MHz/G)

gF = 2/3

(0.93 MHz/G)

gF = 2/3

(0.93 MHz/G)

gF = 2/3

(0.93 MHz/G)

Γ=2π×6.07 MHz

Γ=2π×5.75 MHz

δMW(t)

Figure A.1 Rubidium 87 D2 line. During the MOT loading (Sec. 2.2.1), the cooling beam is red-
detuned by a quantity δMOT ≈ 2Γ, with the spontaneous decay rate Γ ≈ 2π × 6.07 MHz (FWHM). The
micro-wave frequency sweep δMW(t) is discussed in Sec. 2.2.2. The data in this figure are taken from [99].
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Appendix B - Dipole beams preparation and

control

This appendix refers to the Chap. 2. We list the main elements that allow to prepare and

control the dipole trap. We then present the optical diagram for the preparation of the dipole

beams that constitute the trap in which Bose-Einstein condensation is achieved.

Dipole beams. The laser for the dipole trap is a monomode ALS-IR-1064-20-I-SF from Azurlight

Systems, with wavelength λ = 1064 nm and maximum power P = 20 W. We operate it at P = 17

W. The two beams that make the dipole trap are focused at the same point in the cell. Their

waist is w0 = 45 µm with maximum power P ≈ 4 W each. At the end of the evaporation in the

dipole trap, their power is Pf ≈ 20 mW each.

AOMs. The control of the dipole beams is the same for both beams. A radio frequency (RF)

generator QMODP140,68-B-45-03 drives an acousto-optic modulator MQ40-B5A2-L1064-WSc

(both components are from AA Opto-Electronic). This RF generator has an input channel that

allows to vary the intensity of the driving RF and control the power of the diffracted beam. To

prevent interference between the dipole beams, we work with opposite diffracted orders ± 1 (see

Fig. B.2).

AOMMirror

λ/n

f Lenses

Waveplate

Polarizing splitting
cube

Translation stage

Dichroic mirror PD Photodiode

Optical isolator

Optical periscope

Iris / diaphragms

Beam dump

Acousto optic modulatorν

Figure B.1 Legend for the optical diagram.
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Figure B.2 Optical diagram for the dipole beams. This figure completes Fig. C.2 of App. C. See
Fig. B.1 for the legend. Adapted from [67].
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Appendix C - Lattice beams preparation and

control

This appendix refers to the Chap. 2. We list the major components that constitute the

optical lattice. We then present in Fig. C.2 the optical diagram for the preparation of the laser

beams for the optical lattice. We remind the lattice dipole potential locally experienced by the

atoms:

V (x, t) = −A(t)× s0
EL

2
cos (kLx+ ϕ(t)) . (C.1)

with the lattice wavenumber kL = 2π/d.

Lattice beams. The laser is a monomode YLR-15-1064-LP-SF from IPG Photonics. Its wave-

length is λ = 1064 nm and it has maximum a power P = 15 W. At their focal point on the

crossed dipole trap, the counterpropagating beams have maximum power P = 2.3 W and waist

w0 = 150 µm. The corresponding Rayleigh length is xR ≈ 66.4 mm, large compared to the

lattice spacing d = λ/2 = 532 nm.

Amplitude control. The acousto-optic modulator (AOM) for the control of the lattice depth

A(t)×s0 is placed before the beam splitting. It is a AA Opto-Electronic MQ80-A0.3-L1064-Z20-

WLg driven by a radio frequency (RF) generator AA Opto-Electronic MODA80-B4-43. This

latter component has a [0, 5] V modulation input acting on the amplitude of the RF that goes to

the AOM, and its effect on the diffracted beam power is linear on the range [1.3, 3.3] V where we

operate it [67]. We trigger an arbitrary waveform generator (AWG) (Keysight 33611A) during

the sequence to control that input and therefore the lattice depth. We present in Fig. C.1 the

Bode plot for the amplitude modulation of the lattice (measured using a photodiode with a

sampling rate of 150 MHz placed before the cell on the lattice beam 2, see Fig. C.2). We see

that we have approximately no loss in the amplitude of the depth modulation up to ν = 100

kHz, a bound below which every experiments presented in this manuscript are performed.

Phase control. We control the lattice phase ϕ(t) with one AOM per beam placed after the

splitting. These AOMs are two AA Opto-Electronic MT200-A0.5-1064. By controlling the

relative phase between their driving RFs, we control the relative phase between the diffracted

beams. We generate their driving RF ourselves using AWGs, frequency doublers, filters and

amplifiers (see [94, 115, 67]). We drive them at 160 MHz, i.e. slower than their nominal driving

frequency of 200 MHz. The two AWGs are:

Beam 1 : a Keysight 33612A with two channels. The first channel generates the AOM

driving RF and the second channel modulates internally the phase of the first channel.

Beam 2 : a Keysight 33611A to generate the AOM driving RF.
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Figure C.1 Bode plot for the amplitude modulation of the lattice. The frequency at -3 dB is
ν0 ≈ 10 MHz.

These two AWGs are synchronized with each other, as well as with the AWG that controls

A(t).

We are yet to implement an optical monitoring of the phase between the lattice beams

from a beat signal. However, the result of two experiments allow us to estimate the cutoff

frequency for the phase modulation of the lattice. On one hand, from electronical beat between

the phase-modulated beam 1 RF and the unmodulated beam 2 RF, we measured an electronical

cutoff frequency ν0,elec & 3 MHz for the phase modulation of the beam 1 RF [68]. On the other

hand, we measured the renormalization of the lattice depth in a fast phase-modulated optical

lattice [198, 199, 113]. This effect, that depends on the amplitude of the phase-modulation, was

measured up to ν = 500 kHz [113, 67]. We therefore estimate the cutoff frequency for the phase

modulation of the lattice to be somewhere in the range [0.5, 3] MHz.
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for the legend. Adapted from [67].
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Appendix D - Effect of the control duration in

our QOC protocol

This appendix refers to the Chap. 3. We present a brief study of the experimental effect

of the control duration tc in our QOC protocol. This study consists in targeting the state of

Fig. 3.5(a):

|ψ〉 =
1√
2

(|χ−1〉+ |χ1〉) , (D.1)

for different control times tc ∈ [0.75, 8]T0 and two lattice depth s0 = 2.55±0.10 and s0 = 5.5±0.2.

Results are shown in Fig. D.1.

As discussed in Sec. 3.1.4, the lower bound on the control duration is of theoretical nature

and consists in the lowest time needed for the target state to become reachable from the initial

state. In the lattice, the dynamics of the atoms is dictated by the band structure. The initial

state that we use for QOC protocols is generally the ground state of the lattice. The relevant

timescale with respect to which the control duration needs to be sufficiently long is the largest

inter-band transition period from the lattice ground state, i.e. T0 as defined in Eq. (3.34).

For too long control times, experimental fluctuations have more time to accumulate. This

is illustrated in Fig. D.1, as we observe a decreasing fidelity when tc increases. For the lattice

depth s0 ≈ 5.5 (at which we performed most of the experiments in Chap. 3), we also observe

larger fluctuations in the prepared state the longer the control time. Our rule of thumb is

to set the control duration to the shortest time for which the numerical algorithm converged

satisfactorily.

1 2 3 4 5 6 7 8
tc/T0

0.25

0.5

0.75

1

(
)

Figure D.1 Effect of the control duration when targeting the state (|χ1〉 + |χ−1〉)/
√

2. Fidelity
F (β) (3.36) between the momentum distributions of the numerical and experimental states prepared by
QOC as a function of the scaled control duration tc/T0 for two lattice depth (s0 = 2.55±0.10→ T0 ≈ 87 µs
(blue dots) and s0 = 5.5 ± 0.2 → T0 ≈ 59 µs (red triangles)). Error bars correspond to one standard
deviation over a 10-realization statistics.
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Appendix E - Additional optimal control

preparations

This appendix refers to the Chap. 3. We present three additional experiments that we have

chosen to put in appendix in order to lighten the reading of that chapter. The three experiments

featured in this appendix are (E.1) a preparation of the plane wave |χ6〉 from the resting plane

wave |χ0〉, (E.2) a qualitative demonstration of our ability to control the relative phases between

three momentum components and (E.3) the preparation and measurement of rotated squeezed

Gaussian states.

E.1 Momentum distribution control from the resting BEC

In Chap. 3, we demonstrate the efficiency of QOC for computing the manner in which to

continuously shift the optical lattice in time in order to prepare arbitrary quantum states in our

Bloch system. In the experiments presented in that chapter, the control stage always follows

an adiabatical lattice loading (see Sec. 2.4.1), so the initial condition is the ground state of the

lattice. We present in Fig. E.1 an experiment illustrating that this choice is somewhat arbitrary,

and that control fields can as well be computed and experimentally applied to prepare a target

starting from the resting BEC (i.e. the plain wave |χ0〉, see Secs. 1.2.1 and 2.4.1). Indeed, we

manage to prepare the 6th momentum component with fidelity F (β)
exp = 0.85±0.06 (averaged over

10 realizations with one standard deviation as uncertainty), i.e. as reliably as for the equivalent

preparations of the Sec. 3.2.2 achieved from the ground state of the lattice.

E.2 Control of the relative phases between three momentum

components

We here extend the experiment of Sec. 3.3.1 and further display our ability to control the

argument of the cq,` coefficients. We here target three-momentum component superpositions

with specific relative phases between the plane wave coefficients:∣∣∣ψ(a)
T

〉
=

1√
3

(|χ−2〉+ |χ0〉+ |χ2〉) (E.1)∣∣∣ψ(b)
T

〉
=

1√
3

(
|χ−2〉+ e2iπ/3 |χ0〉+ e4iπ/3 |χ2〉

)
∣∣∣ψ(c)

T

〉
=

1√
3

(
e2iπ/3 |χ−2〉+ |χ0〉+ e2iπ/3 |χ2〉

)
Experimental results are shown in Fig. E.2. For each of these states, we show the experimen-

tally measured evolution of the momentum distribution in the static lattice following the state

preparation. We also present the theoretical evolutions of the numerically prepared states. We
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Figure E.1 Experimental preparation of the plane wave with momentum p = 6 ~kL from the
resting BEC. (a) Depth of the lattice as a function of time. (b) Phase of the lattice as function of time,
optimized for the preparation of the plane wave |χ6〉 from |χ0〉 using QOC in the interval 0 ≤ t ≤ tc. The
numerical fidelity for this control field is F (β) ≈ 0.977 (see Sec. 3.2.1). (c) Numerical simulation of the
momentum distribution in the lattice as function of time. (d) Experimental TOF absorption image after
the preparation. The colormap for the OD is truncated to 0.8 of its maximum value (which saturates
the center of the sixth momentum order) to see preparation defects. Parameters are s0 = 5.23 ± 0.10,
tc = 3.25T0 (see Sec. 3.1.2) and tTOF = 30 ms.

observe good qualitative agreement between the experimental and theoretical data, which allows

us to identify the prepared superposition. Our general control on the c` coefficients is asserted

when we target and reconstruct phase space distributions (see Secs. 3.3.4 and 3.3.5 as well as

following section).

E.3 Squeezed and rotated Gaussian states

This last section refers to Sec. 3.3. As a final example of optimal control preparation of

Gaussian states, we present the rotation of squeezed Gaussian states. For a rotation angle θ

(defined positive from the x axis to the p axis), the plane wave coefficients of a rotated squeezed

Gaussian state can be written as:

c
(ξ,θ)
` (u, v) =

(
Re{A}
π

)1/4

eiuv/2e−ilue−A(l−v)2/2, (E.2)

with

A =
cosh(r)− sinh(r) e2iθ

cosh(r) + sinh(r) e2iθ
and r =

1

4
ln

(
s

4 ξ4

)
.

We focus on a rather large squeezing ξ = 1/3 (as compared to the experiments of Sec. 3.3.5),
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Figure E.2 Preparation of three-momentum component states. (a,b,c) Preparation of the

superpositions |ψ(a)
T 〉, |ψ

(b)
T 〉, and |ψ(c)

T 〉 (see Eq. (E.1)) respectively . Top: stack of integrated experi-
mental images showing the evolution of the momentum distribution during a subsequent 110 µs holding
time in a static lattice after applying the control field ϕ(t) for the preparation of the target. Bottom:
numerical propagation of the expected prepared state in a static lattice. For all three prepared states,
the dimensionless lattice depth is s0 = 5.7± 0.2.

phase space-centered states with (u, v) = (0, 0) and we target the two rotation angles θ = ±π/4.

As for most of our targets in Secs. 3.3.4 and 3.3.5, the control duration is fixed to tc = 1.75T0

and we reconstruct the experimentally prepared states from the data of its evolution in the static

lattice as detailed in 3.3.3. In Fig. E.3 we compare the Husimi representations of the numerically

prepared and experimentally reconstructed states. In both cases, the QOC algorithm converged

to a control field preparing the target with quantum fidelity Fnum > 0.995. For θ = π/4

(Fig. E.3(a)), the experimental fidelity to the numerically prepared state is Fexp = 0.88 with

purity γ = 0.89 (see Sec. 3.3.3). For θ = −π/4 (Fig. E.3(b)), we have Fexp = 0.89 and γ = 0.88.
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Figure E.3 Preparation and measurement of rotated squeezed Gaussian states. (a-b) Husimi
representations in the phase space of the static lattice. Left (red): state |ψQOC〉 numerically prepared by
optimal control. Right (blue): density matrix ρ̂ML reconstructed from experimental data by likelihood
maximization. The squeezing parameter for both targets is ξ = 1/3 and the rotation angles are θ = ±π/4
for (a,b) respectively. The lattice depth during the experiments is s0 = 5.45± 0.30. See text for fidelities
and purities.
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Appendix F - Résumé du manuscrit en français

Introduction

L’usage de la lumière et de champs magnétiques afin de contrôler les degrés de liberté ex-

ternes des atomes (c’est-à-dire leur position et vitesse) a révolutionné le domaine de la physique

atomique. Tirant parti du développement des lasers dans les années 1960, les techniques de

piégeage et de refroidissement d’atomes [1, 2, 3] ont permis aux expérimentateurs d’atteindre

un niveau de contrôle sans précédant sur les systèmes atomiques. Grâce à ces méthodes, il est

possible de refroidir des ensembles atomiques proche du zéro absolu, jusqu’à des températures

auxquelles une description quantique de la matière devient nécessaire. Un résultat emblématique

de ce domaine d’étude est celui de la condensation de Bose-Einstein, une transition de phase

quantique au travers de laquelle un gaz de bosons passe d’un ensemble de particules décrit clas-

siquement par la statistique de Maxwell-Boltzmann à une fonction d’onde macroscopiquement

peuplée par les atomes du gaz et dont l’évolution est gouvernée par la mécanique quantique: un

condensat de Bose-Einstein (CBE).

La condensation de Bose-Einstein a été atteinte pour la première fois en 1995, dans les

groupes de E. Cornell et C. Wieman [6] puis dans celui de W. Ketterle [7]. Cette prouesse

expérimentale, récompensée par le prix Nobel de physique en 2001, marque la naissance du

domaine de recherche sur les gaz quantiques, en constante croissance depuis lors. Ces gaz

d’atomes ultrafroids, qui peuvent êtres de nature bosonique ou fermionique, constituent une

plateforme hautement versatile avec laquelle étudier la mécanique quantique. En effet:

� L’utilisation de lasers et de champs magnétiques permet la réalisation d’une grande variété

de potentiels [8, 9] dans lequels étudier l’évolution de ces systèmes quantiques. Il est par

exemple possible de manipuler jusqu’à l’atome unique à l’aide de pinces optiques [10, 11]

ou de réaliser des potentiels périodiques dans l’espace (dits de Bloch) finement contrôlables

à l’aide e.g. de réseau optique [12] et de modulateurs spatiaux de lumière (spatial light

modulators) [13, 14].

� En modulant périodiquement dans le temps ces potentiels artificiels (on parle alors de

systèmes de Floquet), il devient possible de réaliser des hamiltoniens effectifs d’intérêt

pour l’étude d’un système particulier [15, 16]. Un telle ingénierie de Floquet permet par

exemple de créer des effets de magnétisme artificiel pour les atomes neutres [17, 18].

� Les effets des interactions entre particules quantiques peuvent être étudiés grâce aux

résonances de Feshbach [19], qui permettent, pour les systèmes d’atomes ultrafroids, de

contrôler la force et le signe des interactions à courtes portées entre les atomes. En outre,
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d’autres systèmes sont développés afin d’étudier des effets d’interaction à plus longue

portée, comme notamment les gaz dipolaires [20, 21, 22] et les systèmes d’atomes de Ry-

dberg [23, 24, 25].

Le haut degré de contrôle qu’il est possible d’atteindre grâce aux expériences de gaz quan-

tiques revêt un intérêt particulier pour les deux domaines que sont la simulation quantique et

la métrologie quantique.

Le domaine de la simulation quantique [26, 27] vise à émuler des systèmes quantiques

complexes sur des systèmes plus simples à observer et à contrôler. Cette idée a initialement

été proposée par R. Feynman en 1982 [28] et a depuis été mise en œuvre sur de nombreux

systèmes, comme par exemple les circuits supraconducteurs [29], les systèmes photoniques [30],

les ions piégés [31] et les atomes neutres ultrafroids [32, 33, 34]. Nous nous intéressons dans ce

manuscrit à cette dernière plateforme avec laquelle ont été réalisées, ces vingt dernières années,

des expériences phare dans le domaine de la simulation quantique. On peut notamment citer la

réalisation du modèle de Bose-Hubbard en trois dimensions, grâce à laquelle a été observée la

transition entre une phase superfluide et un isolant de Mott [35], l’observation de la localisation

d’Anderson en une [36, 37], deux [38, 39] et trois dimensions [40, 41, 42] dans des systèmes avec

un désordre artificiel et la transition de Berezinskii-Kosterlitz-Thouless dans un gaz quantique

confiné à deux dimensions [43, 44].

Un autre domaine fondamental qui bénéficie du haut niveau de contrôle offert par les gaz

quantiques est celui de la métrologie quantique. Un exemple clé des avantages que recèle la ma-

nipulation d’un système quantique à des fins de métrologie est donné par les états comprimés,

qui permettent d’atteindre des sensibilités de mesure de plus en plus proche des limites fon-

damentales dictées par le principe d’incertitude d’Heisenberg [45, 46]. C’est notamment le cas

avec les états comprimés de photons pour la spectroscopie [47] et l’interférométrie [48, 49], et

d’importants efforts sont fournis pour tirer parti de la compression d’états quantiques de matière

dans le domaine de l’interférométrie avec des ondes de matières [50, 51, 52, 53, 54, 55].

Ces différents champs d’application encouragent le développement de nouvelles méthodes

afin de contrôler et de manipuler les systèmes d’atomes froids. Plusieurs approches modernes

sont proposées, parmi lesquelles les boucles de rétroaction [56], les raccourcis vers l’adiabaticité [57],

l’apprentissage machine [58] et le contrôle optimal appliqué aux systèmes quantiques [59, 60].

Le groupe de recherche Atomes Froids dans lequel j’ai réalisé mon doctorat au Laboratoire

Collisions, Agrégats et Réactivité (LCAR, Toulouse) travaille dans le domaine de la simulation

quantique et du développement de techniques pour le contrôle de systèmes d’atomes ultrafroids.

Le travail de thèse rapporté dans ce manuscrit porte à la fois sur le développement de telles

méthodes et sur leur application pour la simulation quantique dans un système de Floquet-Bloch

(c’est-à-dire un système périodique à la fois dans le temps et l’espace). Dans l’équipe Atomes

Froids du LCAR, nous travaillons sur une expériences avec laquelle nous réalisons des CBE

de 87Rb que nous plaçons ensuite dans un réseau optique unidimensionnel. Le long de l’axe du

réseau, les atomes (qui peuvent être décrits par une fonction d’onde unique) font l’expérience d’un

potentiel sinusöıdal dont nous pouvons contrôler la profondeur et la phase de manière arbitraire
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au cours du temps à l’aide de modulateurs acousto-optiques. Ce système relativement simple

constitue une plateforme idéale sur laquelle développer de nouvelles méthodes pour le contrôle

d’états quantiques, ainsi que pour l’expérimentation sur la dynamique d’ondes de matière dans

un potentiel sinusöıdal finement contrôlable dans le temps, et cela dans un régime de faibles

interactions interatomiques.

Ce manuscrit de thèse est organisé de la manière suivante:

Partie 1. Nous commençons par une première partie de méthodes, composée des chapitres 1

et 2. Dans le Chapitre 1, nous présentons des rappels de théorie pour l’étude de la dynamique

d’une fonction d’onde dans un système de Floquet-Bloch. Dans le Chapitre 2, nous présentons

notre montage expérimental pour l’obtention de CBE, ainsi que le réseau optique et la manière

dont nous le contrôlons, ce qui nous permet de réaliser dans le laboratoire le système décrit au

premier chapitre.

Partie 2. La seconde partie présentent deux études expérimentales pour lesquelles les échelles

de temps des expériences nous permettent de négliger les interactions interatomiques dans les

CBE. Le Chapitre 3 porte sur la mise en place d’un protocole de contrôle optimal quantique

afin de contrôler arbitrairement l’état quantique externe des CBE dans le réseau optique (c’est-

à-dire leur état de mouvement). Dans le Chapitre 4, nous détaillons l’étude, à la fois théorique

et expérimentale, d’un effet ratchet (ou rochet) non-diffusif (c’est-à-dire le long de trajectoires

classiques non-chaotiques) dans un système hamiltonien.

Partie 3. La troisième et dernière partie de ce manuscrit est composée du Chapitre 5 où

nous nous plaçons dans un régime expérimental dans lequel il n’est plus possible de négliger les

interactions entre les atomes qui constituent le CBE. Nous y présentons l’étude de l’émergence

d’une nouvelle structuration des atomes dans le réseau optique modulé en phase, qu’il nous est

possible de contrôler par l’ingénierie, dans l’espace des impulsions, d’instabilités dynamiques

dues à un phénomène de mélange à quatre ondes.

Nous dressons ci-après un bref résumé de ces cinq chapitres.

Chapitre 1 : Éléments de théorie pour l’étude d’une fonction d’onde

dans un potentiel unidimensionnel

Dans ce premier chapitre, nous rappelons des éléments de théorie pour étudier la dynamique

d’une fonction d’onde dans un potentiel unidimensionnel V (x, t) dont les paramètres peuvent

dépendre du temps. La forme générale de potentiel qui nous intéresse dans ce manuscrit est la

suivante :
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V (x, t) = −A(t)
V0

2
cos

(
2πx

d
+ ϕ(t)

)
. (F.1)

avec V0 l’amplitude typique du potentiel (par la suite, on donne cette profondeur en unité de

l’énergie caractéristique EL via le paramètre s0 = V0/EL ; voir p. 18), d sa périodicité spatiale,

A(t) une fonction de modulation de l’amplitude du potentiel et ϕ(t) une fonction de modulation

de sa phase.

Nous adressons dans un premier temps le cas d’une particule classique dans un tel potentiel.

Après un bref rappel de mécanique classique hamiltonienne, nous introduisons la notion d’espace

des phases position-impulsion, un outil puissant qui encapsule la dynamique du système. Dans

le cas d’un potentiel statique unidimensionnel (A(t) = 1 et ϕ(t) = 0 dans l’Éq. (F.1)), le tracé de

l’espace des phases (x, p) permet d’afficher de manière concise la dynamique d’un système (voir

Fig. 1.1, p. 14), qui est dans ce cas complètement intégrable. À l’inverse, lorsque le potentiel

varie dans le temps, des trajectoires chaotiques peuvent exister dans l’espace des phases, qui

devient un espace (x, p, t) car l’évolution d’une configuration (x, p) dépend du potentiel à l’instant

t. Nous terminons cette partie de mécanique classique avec la notion de portrait de phase

stroboscopique : dans le cas particulier où la dépendance du potentiel est périodique dans le

temps (i.e. V (x, t+T ) = V (x, t)), on peut considérer des sections (x, p, t0 +nT ) de l’espace des

phases et ainsi tracer un portrait de phase stroboscopique (voir Fig. 1.2, p. 15 pour un schéma de

la procédure). La figure F.1 présente deux exemples de portraits de phase stroboscopiques qui

correspondent aux cas du potentiel sinusöıdal modulé périodiquement en amplitude (panneaux

(a)) :

A(t) = 1 + ε0 cos(2πνt) et ϕ(t) = 0, (F.2)

ou en phase (panneaux (b)) :

A(t) = 1 et ϕ(t) = ϕ0 cos(2πνt). (F.3)

On y voit la coexistence de trajectoires intégrables (ou “régulières”, identifiables par des traits

continus) et de trajectoires chaotiques (identifiables par une “mer chaotique” de points dis-

persés). Lorsque chaos et intégrabilité ainsi coexistent, on parle de dynamique mixte.

La suite de ce premier chapitre traite de la dynamique d’une fonction d’onde dans un

potentiel périodique dans l’espace et éventuellement modulé dans le temps. Nous commençons

par rappeler le théorème de Bloch, qui énonce que les fonctions d’ondes ψq(x, t) qui évoluent

dans un potentiel de période spatiale d s’écrivent, dans un sous-espace donné de quasi-moment

q, comme le produit d’une onde plane et d’une fonction d’amplitude de périodicité spatiale d.

En conséquence directe de cette périodicité, ces fonctions d’ondes dans un système de Bloch

s’écrivent sous la forme de leur série de Fourier

176



2 0 2
x

V(
x,

t)
a1

0
x

1

0

1

p

a2

2 0 2
b1

0

b2

Figure F.1 Exemples de portraits de phase stroboscopiques. En haut : potentiels sinusöıdaux,
modulés périodiquement dans le temps, représentés sur trois périodes spatiales. En bas : portraits
de phase stroboscopiques correspondants, représentés sur une période spatiale. (a) Modulation de
l’amplitude du potentiel, une configuration associée aux Éqs. (F.1) et (F.2), avec les paramètres de
modulation γ = 0.375, ε0 = 0.24 et un temps de référence pour l’observation sous-stroboscopique t̃0 = 0.
(b) Modulation de la phase du potentiel, associée aux Éqs. (F.1) et (F.3), avec γ = 0.44, ϕ0 = 2π/24 = 15o

et t̃0 = 0. Les grandeurs “tildées” adimensionnées et le paramètre γ sont obtenus à partir des grandeurs
dimensionnées en suivant la procédure résumée p. 34.

ψq(x, t) =
∑
`∈Z

cq,`(t)
ei(`kL+q)x

√
d

, (F.4)

avec le nombre d’onde du potentiel (F.1) kL = 2π/d et les coefficients des ondes planes cq,`(t) ∈ C,∑
` |cq,`(t)|2 = 1. À l’aide du théorème de Bloch, on peut chercher les états propres associés à

un potentiel périodique (dits états propres de Bloch) sous la forme (F.4), et nous donnons une

méthode numérique pour calculer la structure de bande du potentiel sinusöıdal statique à partir

du spectre de l’hamiltonien, comme montré sur la figure F.2(a) (ainsi qu’avec plus de détails sur

le figure 1.5, p. 22).

Nous poursuivons avec l’étude de l’évolution temporelle d’un état arbitraire |ψq(t0)〉 dans

un tel système. Dans le cas d’indépendance temporelle du potentiel, l’évolution d’un tel état est

complètement déterminée par sa décomposition sur les états propres de Bloch à l’instant t0. Ce

n’est plus le cas lorsque l’on considère un potentiel qui dépend du temps de manière arbitraire.

Nous exposons néanmoins une approche numérique pour calculer cette évolution, en constru-

isant de manière itérative un opérateur d’évolution sur des intervalles de temps suffisamment

brefs, lors desquels il est peut être valide de considérer constant le potentiel. Nous adressons
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Figure F.2 Structure de bande et spectres de quasi-énergie. (a) Structure de bande (lignes
colorées continues) pour le potentiel sinusöıdal statique de profondeur s0 = 4. Les cinq bandes de plus
basse énergie sont en bleu, orange, vert, rouge et violet respectivement. Les flèches sont placées aux quasi-
moments où les bandes sont séparées par une énergie |Ei,q −Ej,q| = k × hν correspondant à l’énergie de
transition associée aux spectres de Floquet des panneaux (b) et (c) (avec k = 1 en noir et trait continu
et k = 2 en gris et tireté). Ces flèches ne sont montrées que pour q < 0 par souci de lisibilité. Les lignes
tiretées horizontales marquent la périodicité énergétique des spectres de Floquet des panneaux (b) et (c).
(b,c) Spectres de quasi-énergie pour le potentiel sinusöıdal modulé périodiquement en amplitude au cours
du temps (Éq. (1.40), p. 26), pour deux amplitudes de modulation ε0 différentes et autres paramètres
communs s0 = 4 and ν = 4 νL (voir p. 18). Les amplitudes de modulation sont ε0 = 0 (b) et ε0 = 0.15
(c).

ensuite le cas particulier des systèmes de Floquet, pour lesquels la dépendance temporelle du

potentiel est périodique. On s’intéresse dans ce cas à l’opérateur d’évolution sur une période de

modulation (l’opérateur de Floquet), et nous montrons comment ses états propres (dits de Flo-

quet) permettent d’étudier de façon stroboscopique la dynamique d’un état quantique dans un

tel système, à la manière des états propres de l’hamiltonien dans le cas statique. Nous détaillons

notamment comment calculer et représenter le spectre de quasi-énergie associé à un opérateur

de Floquet, dont la périodicité en quasi-énergie est similaire, dans l’espace des énergies, à la

notion de zone de Brillouin pour un spectre associé à un potentiel périodique dans l’espace.

La figure F.2(b,c) montre des exemples de spectres de quasi-énergie, où les quasi-énergies sont

représentées en fonction de la projection entre leur état de Floquet associé et les états de Bloch

de plus basse énergie (qui correspondent aux bandes du panneau (a) ; une procédure détaillée

dans la section 1.3.2).

Pour terminer ce premier chapitre, nous considèrons la représentation d’états quantiques

dans l’espace des phases d’un système dynamique. Nous expliquons dans cette section com-

ment, en conséquence du principe d’incertitude d’Heisenberg ∆x∆p ≥ ~/2, la constante de

Planck réduite ~ limite l’étendue minimale que peut avoir la distribution d’un état quantique
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Figure F.3 Représentations de Husimi d’états de Floquet-Bloch dans le cas du potentiel si-
nusöıdal modulé en amplitude (Éqs. (F.1), p. 176) avec les paramètres γ = 0.375, ε0 = 0.24 and ~eff = 0.2
(voir l’adimensionnement p. 18). (a) Un état de Floquet-Bloch localisé sur des ı̂lots réguliers. (b) Un
état de Floquet-Bloch délocalisé sur la mer chaotique.

dans l’espace des phases. Nous introduisons les quasi-distributions de probabilité de Wigner

(figure 1.7, p. 30) et de Husimi (figure 1.8, p. 32) pour représenter un état dans l’espace des

phases, ainsi que la notion de constante de Planck effective ~eff, un paramètre qui permet de

régler la prévalence des effets quantiques dans la dynamique d’un système (figure 1.8, p. 32).

Enfin, nous montrons comment les outils introduits dans ce premier chapitre permettent de

représenter, pour un système de Floquet-Bloch, les états de Floquet vis-à-vis du portrait de

phase stroboscopique (Fig. F.3), c’est-à-dire vis-à-vis de la dynamique classique du système.

Chapitre 2 : Montage expérimental

Nous présentons dans ce deuxième chapitre l’expérience de refroidissement d’atomes de 87Rb

développée par l’équipe Atomes Froids au LCAR qui nous permet de réaliser au laboratoire les

sytèmes étudiés au chapitre 1. Cette expérience, en fonctionnement depuis 2016, a déjà fait

l’objet d’exhaustives descriptions dans les thèses de mes prédécesseurs [93, 94, 115, 67, 68], et

nous choisissons, par souci de concision, de ne procéder ici qu’à une succincte description de ce

montage expérimental.

Nous commençons par un bref rappel de notions sur la condensation de Bose-Einstein, et

revenons sur la longueur d’onde de de Broglie thermique

ΛT =

√
2π~2

mkBT
, (F.5)
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une quantité qui rend compte de la longueur d’onde typique des atomes de masse m dans un gaz

à température T (avec kB la constante de Boltzmann). La condensation de Bose-Einstein a lieu

lorsque ΛT ≥ l = n−1/3, avec l la distance moyenne entre les atomes dans le gaz et n la densité

du gaz. L’enjeu d’une expérience d’atomes ultrafroids est donc de refroidir un gaz d’atomes

tout en conservant suffisamment importante la densité n, de sorte à ce que la longueur d’onde

de de Broglie thermique devienne supérieure à la distance moyenne entre les particules. Pour le

piège dans lequel sont maintenus les atomes dans notre expérience, on calcule (voir p. 40) que la

température critique en dessous de laquelle il nous faut refroidir le gaz est d’environ 130 nK.

L’expérience de l’équipe Atomes Froids au LCAR permet d’obtenir des CBE composés

d’approximativement 5 · 105 atomes de 87Rb toutes les 22 secondes. La séquence de refroidisse-

ment atomique peut être décomposée en trois parties : une première étape de refroidissement

dans un piège magnéto-optique, suivie d’une étape d’évaporation micro-onde dans un piège

magnétique avant une dernière étape d’évaporation dans un piège dipolaire dans lequel la con-

densation de Bose-Einstein est atteinte. Afin de rendre davantage robuste l’obtention des CBE

sur l’expérience, nous avons durant ma thèse changé la géométrie du piège dipolaire dans lequel

cette dernière étape de refroidissement a lieu. Cette modification, avec les ancienne et nouvelle

géométries, est schématisée sur la figure 2.1 (p. 44). Nous caractérisons cette nouvelle géométrie,

et donnons les fréquences harmoniques du piège dans lequel se trouvent les CBE à la fin de la

séquence de refroidissement.

Nous détaillons ensuite comment nous sommes capables de remonter à la distribution

d’impulsion de l’ensemble atomique au cours des expériences via un système d’imagerie par

absorption (figure 2.2, p. 47) réalisée après un temps de vol. Lorsque nous souhaitons mesurer

cette distribution d’impulsion, nous coupons subitement tous les pièges, et les atomes qui com-

mencent à chuter sous l’effet de la gravité entrent en expansion. Après un temps d’expansion

suffisamment long, la mesure de la dispersion spatiale du nuage atomique reflète directement la

dispersion en vitesse qu’avaient les atomes avant la coupure du piège. Pour un nuage thermique

(i.e. avant transition vers un CBE), nous décrivons comment la mesure de cette expansion

en fonction de la durée du temps de vol permet de mesurer la température du nuage. Pour

un CBE, l’imagerie du nuage après un temps de vol revient à échantillonner statistiquement,

en représentation impulsion, la fonction d’onde macroscopiquement partagée par les atomes

condensés.

Nous poursuivons avec la présentation du réseau optique unidimensionnel qui nous per-

met de réaliser les potentiels étudiés au chapitre 1 : ce réseau est formé par l’interférence de

deux faisceaux laser contrapropageants dont la longueur d’onde λ = 1064 nm est fortement

désaccordée vers le rouge par rapport à la transition atomique D2 du 87Rb (voir appendice A).

Cela crée, pour les atomes, un potentiel dipolaire [8, 79] attractif vers les maxima d’intensité de

l’interférence lumineuse, résultant en un potentiel sinusöıdal le long de l’axe de propagation des

faisceaux. À l’aide de trois modulateurs acousto-optiques, nous pouvons contrôler l’intensité du

réseau optique (et donc sa profondeur) ainsi que sa phase (voir appendice C). Tel que discuté

ci-dessus, notre système d’imagerie après temps de vol nous permet d’accéder à la distribution

en impulsion des atomes dans le réseau optique. Travaillant avec des CBE (i.e. des fonctions
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Figure F.4 Chargement adiabatique du réseau optique et diffraction d’onde de matière.
(a) Rampe de profondeur du réseau optique pour le chargement adiabatique de l’état fondamental du
réseau optique de profondeur s0 (voir texte). (b) Simulation numérique de la distribution d’impulsion au
cours du chargement adiabatique du réseau. (c) (respectivement (e)) Image d’absorption expérimentale
après temps de vol montrant les atomes avant (respectivement après) le chargement du réseau optique.
Les rectangles gris délimitent les régions dans lesquels les populations dans les ondes planes |c`|2 sont
extraites. (f) (respectivement (e)) Diagramme en barres comparant les populations expérimentales (bleu)
et théoriques (rouge) des ondes planes avant (respectivement après) le chargement du réseau optique. La
profondeur du réseau est ici s0 = 8.06± 0.10, la durée du temps de vol est tTOF = 35 ms et les cartes de
couleurs pour les images d’atomes sont tronquées à 0.8 de leur valeur maximale respective afin de révéler
les détails.

d’ondes) dans un système de Bloch, nous remontons ainsi aux modules carrés des coefficients

des ondes planes |cq,`|2, comme montré sur la figure F.4 (dans un cas pour lequel q = 0).

Je conclue ce chapitre de présentation de l’expérience avec quelques techniques expérimentales

usuelles lorsqu’on travaille avec des atomes froids dans un réseau optique, à savoir :

� une technique de chargement adiabatique de l’état fondamental du réseau optique (c’est-

à-dire de l’état propre de Bloch de plus basse énergie) (figure F.4),

� deux méthodes pour calibrer, l’une rapidement [108] et l’autre finement [112, 113] , la

profondeur du réseau optique (voir figures 2.5 et 2.6, p.54 et 56),

� la méthode dite de band-mapping afin d’imager la structure de bande du réseau op-

tique [107, 114, 79] (voir figure 2.7, p. 57).
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Les trois chapitres suivants présentent une partie des résultats de recherche auxquels j’ai

contribué durant ma thèse. Le reste de ces résultats publiés (à savoir les premières observations

de résonance d’effet tunnel assisté par le chaos [61] et une étude du contrôle des halos de collisions

quantifiés en impulsion qui apparaissent sur les figures de diffraction [62]) sont détaillés dans les

thèses de M. Arnal [67] et G. Chatelain [68].

Chapitre 3 : Contrôle optimal quantique d’ondes de matières dans

un réseau optique unidimensionnel

Ce chapitre s’inscrit dans le développement de méthodes pour le contrôle de l’état quantique

d’un système d’atomes ultrafroids. Nous y détaillons la mise en place d’un protocole de contrôle

optimal pour calculer la façon dont nous devons déplacer le réseau optique au cours du temps

afin de contrôler arbitrairement l’état externe des CBE dans le réseau.

Nous commençons le chapitre par une introduction à la théorie du contrôle optimal quan-

tique. Étant donné un système dont l’équation d’évolution est paramétrisée :

ẋ(t) = f (x(t),u(t), t) , (F.6)

avec x(t) le vecteur d’état du système, u(t) un vecteur de paramètres et f la fonction d’évolution,

la théorie du contrôle optimal permet de calculer le champ de contrôle optimal u∗(t) qui amène

le système d’un état initial x(t0 = 0) à un état cible x(tc) (avec tc la durée du contrôle) tout en

minimisant une fonctionnelle de coût. La détermination du champ de contrôle optimal s’énonce

à l’aide du principe du maximum de Pontryagin que nous rappelons (voir section 3.1.1). Dans

notre cas, nous souhaitons amener un état initial |ψ0〉 (généralement l’état fondamental du

réseau optique que nous savons préparer de manière fiable comme illustré sur la figure F.4) le

plus proche possible d’une certaine cible, avec la phase du réseau optique ϕ(t) comme unique

champ de contrôle, le tout en un temps de contrôle fixé. Nous tâchons donc de maximiser une

fidélité F entre l’état préparé et la cible. La détermination du champ de contrôle optimal n’est

généralement pas simple, et nous recourons à une approche numérique itérative de montée de

gradient sur cette fidélité. Nous détaillons notre méthode dans les sections 3.1.2 et 3.1.3, et

notre algorithme numérique est résumé p. 72.

Nous présentons dans la suite de ce chapitre une série d’expériences qui démontre notre

capacité de contrôle de l’état externe des CBE dans le réseau optique.

Contrôle de la distribution en impulsion. Une première section de résultats (section 3.2)

concerne le contrôle de la distribution en impulsion du CBE. Dans notre sytème de Bloch où la

fonction d’onde du CBE s’écrit selon l’Éq. F.4, nous ciblons dans cette section1 des ensembles

1Ici dans le sous-espace de quasi-moment q = 0.
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Figure F.5 “Controle” écrit avec des diffractions d’ondes de matière. Concaténation de 44
images d’absorption expérimentales obtenues après temps de vol, chaque colonne montrant la distri-
bution en impulsion des atomes après application d’un champ de contrôle préalablement calculé via le
formalisme du contrôle optimal quantique pour le réalisation d’une superposition équiprobable donnée
de composantes d’impulsion.

donnés de probabilités {|c`|2} (i.e. des ensembles donnés de nombre réels). Nous sommes ainsi

capables de préparer :

� des ondes planes spécifiques, c’est-à-dire des états où tous les atomes sont mesurés dans

le même ordre de diffraction (ce que nous démontrons jusqu’à une impulsion du paquet

d’onde de 10 ~kL, voir Fig. 3.3, p.76),

� des superpositions équiprobables de composantes d’impulsion, comme illustré sur la fig-

ure F.5 (ainsi qu’avec davantage de détails sur la figure 3.4, p. 78),

� une superposition arbitraire de composantes d’impulsion (également sur la figure 3.4,

p. 78).

Contrôle complet de l’état quantique. Nous nous intéressons dans un second temps au

contrôle complet de l’état quantique externe des CBE selon l’axe du réseau, c’est-à-dire au

contrôle de l’ensemble de nombres complexes {cq,`}. Se pose ici la question de la certifica-

tion des préparations : étant donné que nous n’accédons, par nos mesures après temps de vol,

qu’aux modules carrés des coefficients |cq,`|2, comment attester de la réalisation d’un état donné

présentant une certaine relation de phase entre ses coefficients cq,` ?

Nous démontrons premièrement un tel contrôle complet d’état quantique en préparant des

cibles pour lesquelles il est simple de remonter aux phases relatives entre les coefficients cq,`,

avec:

� La préparation des superpositions des ondes planes d’impulsion ±1 ~kL (dans le sous-

espace de quasi-moment q = 0) avec pour phase relative arg{c−1/c1} = ∆φ = j × π/8 et

j ∈ {0, 1, ..., 15} (voir figure 3.5, p. 81). Alors que la mesure des états préparés au terme de

la préparation donne le même résultat (c’est-à-dire environ 50 % des atomes dans les ordres

de diffraction associés aux impulsions ±1 ~kL), les évolutions subséquentes des distribu-

tions d’impulsion de ces états dans le réseau optique maintenu statique diffèrent fortement

les unes des autres. L’ajustement de cette évolution avec pour paramètre ajustable la

phase relative effectivement préparée entre les composantes d’impulsion nous permet de
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Figure F.6 Reconstruction d’un état quantique dans un système de Bloch par maximisation
de la vraisemblance. (a-b) Matrices densité ρ̂ avec arg{ρ̂i,j} encodé en couleur et |ρ̂i,j | encodé en
taille (pas à l’échelle entre les panneaux). (a) Matrice identité 1dH/dH (où dH est la dimension de
l’espace de Hilbert, avec dH = 11 ici) comme matrice densité d’essai. (b) Matrice densité de plus
grande vraisemblance. (c) Concaténation d’images d’absorption expérimentales intégrées acquises durant
l’évolution de l’état préparé dans le réseau maintenu statique à la profondeur s = 5.5±0.5. (d) Simulation
numérique de l’évolution de l’état de plus grande vraisemblance dans le même réseau statique.

remonter à celle-ci. Ces mesures sont proches de ce que nous ciblons (voir figure 3.5, p. 81),

démontrant un contrôle complet des états quantiques préparés dans ce cas simple.

� La préparation d’états propres du réseau (figure 3.6, p. 83). Étant donné que nous ciblons

ici des états stationnaires du système, l’absence d’évolution atteste la bonne préparation.

Nous préparons aussi des superpositions données de deux états propres du réseau, et

observons une seule fréquence d’évolution pour les ordres de diffraction, qui est associée à

la différence entre les énergies propres des états propres superposés.

Pour aller plus loin et démontrer notre capacité à préparer de manière arbitraire des états

quantiques donnés, nous mettons en place un protocole dédié de reconstruction d’états par

maximisation de vraisemblance. À nouveau, nous nous servons de l’évolution de la distribution

en impulsion de l’état expérimentalement préparé lorsque celui-ci est maintenu dans le réseau

statique au terme de la préparation. L’idée est de déterminer l’état théorique le plus susceptible

de donner cette évolution, cette fois-ci de façon systématique. Notre approche itérative (inspirée

de [138, 140, 141]) est résumée p. 86 et illustrée sur la figure F.6.

Nous appliquons cette méthode de reconstruction à plusieurs préparations. Nous com-
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Figure F.7 Préparation expérimentale et reconstruction d’états gaussiens comprimés. (a-
e) Représentations de Husimi dans l’espace des phases du réseau statique. En haut (rouge) : états
théoriques préparés par l’application du champ de contrôle préalablement calculé via le formalisme
du contrôle optimal quantique pour le réalisation d’une compression donnée. En bas (vert) : états
reconstruits de plus grande vraisemblance avec les mesures expérimentales (obtenue via la procédure
illustrée sur la figure F.6). Les cartes de couleurs pour chaque fonction de Husimi vont de 0 à
la valeur maximale que prend cette fonction sur l’espace des phases. Les facteurs de compressions
sont 1/ξ = (0.44, 0.62, 1.65, 2.75, 4.34) pour (a-e) respectivement. Les fidélités des états reconstru-
its aux états théoriques sont Fexp = (0.99, 0.96, 0.98, 0.93, 0.75) et la pureté des états reconstruits est
γ = (1.00, 1.00, 1.00, 0.92, 0.72) (voir section 3.3.3, p. 82).

mençons par cibler des translations ainsi que des superpositions d’états gaussiens non com-

primés dans l’espace des phases associé à chaque site du réseau optique. On définit l’absence

de compression comme le rapport d’aspect position-impulsion de l’état gaussien qui est l’état

fondamental des potentiels harmoniques approximant localement le fond des puits du réseau

optique sinusöıdal, c’est à dire un état dont les écarts-types en position ∆x0 et en impulsion

∆p0 s’écrivent, dans un réseau de profondeur s0 :

kL∆x0 = s
−1/4
0 et ∆p0/~kL = s

1/4
0 /2. (F.7)

Les résultats de ces expériences sont présentés dans le section 3.3.4 (voir figure 3.8, p. 88).

Nous poursuivons avec la préparation d’état gaussiens comprimés. Dans un réseau optique

de profondeur s0, on associe à un état d’écart-type en position ∆x le facteur de compression

ξ = ∆x/∆x0. On prépare ainsi des états gaussiens comprimés en impulsion (ξ > 1) ainsi que des

états comprimé en position (ξ < 1) dans un réseau de profondeur s0 ≈ 5.5. Ces résultats sont

montrés sur la figure F.7. Nous démontrons notamment notre capacité à préparer fidèlement

(Fexp ≥ 0.75) des états comprimés en position jusqu’à un facteur 1/ξ = 4.34. Il s’agit, d’après

nos connaissances, de la première réalisation d’un tel état, qui est impossible à obtenir de façon

adiabatique. On peut en effet chercher la profondeur effective seff à laquelle l’état fondamental

du réseau possède la même dispersion en position que celle réalisée expérimentalement. D’après
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l’Éq. F.7, on trouve seff = s0/ξ
4 ≈ 2000. On note qu’il nous faudrait sur l’expérience du LCAR

un laser de puissance P ≈ 750 W pour réaliser un réseau de cette profondeur !

Nous avons également réalisé des états comprimés et inclinés dans l’espace des phases. Ces

préparations et reconstructions sont présentées, ainsi que deux autres expériences mises de côté

afin de fluidifier la lecture de ce chapitre, dans l’appendice E.

Application à la simulation quantique. Nous concluons ce premier chapitre de résultats par

la présentation d’une expérience où nous appliquons notre protocole de préparation d’états

quantiques à une étude d’effet tunnel dynamique [142, 89] dans le réseau modulé en amplitude.

L’effet tunnel dynamique est une généralisation de l’effet tunnel usuel, où l’impossibilité classique

du transport ne relève pas d’un défaut d’énergie mécanique (comme dans le cas usuel) mais de

la traversée de surfaces KAM [89] dans un espace des phases présentant une dynamique mixte

(c’est-à-dire de la traversée d’orbites régulières, classiquement impossible car impliquant une

violation du principe de détermination ; voir section 1.1). L’effet tunnel dynamique peut avoir

lieu dans un tel système lorsque deux états de Floquet non-dégénérés occupent les mêmes régions

régulières du portrait de phase. Dans une telle situation, une particule quantique initialisée dans

l’une de ces régions se mettra à osciller, avec une fréquence d’oscillation proportionnelle à la

différence de quasi-énergie entre les états de Floquet impliqués.

Nous réalisons ici une expérience d’effet tunnel dynamique où nous initialisons, grâce

au contrôle optimal quantique, les CBE dans l’idéale superposition des deux états de Flo-

quet associés à ce phénomène pour des paramètres donnés de modulation d’amplitude du

potentiel sinusöıdal. On compare cette approche optimale avec une approche plus tradition-

nelle [154, 155, 61] de translation soudaine du réseau optique afin de charger une des régions

régulières entre lesquelles l’effet tunnel dynamique a lieu. Cette méthode simple est limitée en

ceci qu’une translation de l’état fondamental du réseau statique ne se projette que partiellement

dans le sous-espace composé des deux états de Floquet qui entrâınent l’effet tunnel dynamique,

ainsi que par l’asymétrie des projections sur ces deux états. Les résultats de cette comparaison

de méthodes sont présentés sur la figure 3.13, p. 95, où nous observons une nette amélioration

du signal d’oscillation tunnel à l’aide du contrôle optimal.

Publications en lien avec ce chapitre. Les travaux présentés dans ce chapitre résultent d’une

collaboration avec Dominique Sugny du Laboratoire Interdisciplinaire de Carnot Bourgogne

(Dijon). Ces études ont fait l’objet de deux publications :

[63] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Sugny and

D. Guéry-Odelin, Quantum State Control of a Bose-Einstein Condensate in an Optical

Lattice, PRX Quantum, 2:040303, (2021)

[64] N. Dupont, F. Arrouas, L. Gabardos, N. Ombredane, J. Billy, B. Peaudecerf, D. Sugny

and D. Guéry-Odelin. Phase-space distributions of Bose-Einstein condensates in an optical

lattice: Optimal shaping and reconstruction, actuellement en processus de revue (2022)
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Chapitre 4 : Ratchet hamiltonien non-diffusif

La deuxième étude présentée dans ce manuscrit traite d’un effet ratchet (rochet) non-diffusif

dans un système hamiltonien. L’effet ratchet est l’émergence d’un courant de particules dans

un potentiel duquel aucune force nette n’est dérivée [161, 162, 163]. Dans ce travail, nous

corrélons les modulations d’amplitude et de phase du potentiel sinusöıdal afin de faire émerger,

dans l’espace des phases du système, une ı̂lot de trajectoires régulières qui transite d’un site

au suivant en s’arrêtant périodiquement au centre du site. Nous présentons ici les premières

étude théorique et réalisation expérimentale d’un tel effet ratchet déterministe, non-dissipatif et

porté par des trajectoires non-chaotiques entrâınant un déplacement linéaire dans l’espace pour

des particules initialement au repos2. Avec ce système, nous faisons l’observation expérimentale

d’un transport linéaire et non-diffusif d’ondes de matière dans le réseau optique.

Dans ce chapitre, nous considérons l’hamiltonien suivant, associé à un potentiel sinusöıdal

modulé en amplitude et en phase :

H(x, p, t) =
p2

2m
− [1 + ε0 cos (2πνt)]

V0

2
cos

[
2πx

d
+ ϕ0 cos(2πνt+ ∆φ) + ∆ϕ

]
. (F.8)

Nous commençons par chercher des paramètres de modulation (V0, ε0, ϕ0, ν,∆φ,∆ϕ) tels qu’une

particule classique initialisée au repos au fond d’un site de ce potentiel se retrouve, après une

période de modulation, au repos au fond du prochain site. L’intérêt d’une telle modulation

est qu’elle peut alors être répétée pour entrâıner un transport directif. Nous développons une

méthode systématique pour déterminer de tels paramètres (section 4.1) et nous convergeons vers

le jeu

(γ, ε0, ϕ0,∆φ,∆ϕ) = (1.2, 0.3, 1.7, π/2, 0), (F.9)

qui est celui que nous étudions dans le reste du chapitre (avec l’amplitude dynamique adimen-

sionnée γ = V0/2md
2ν2). Ces paramètres donnent un exemple de la dynamique classique que

nous requérons, comme présenté sur les portraits de phase stroboscopiques de la figure F.8 (voir

aussi la figure 4.3, p. 107). De manière plus forte encore que l’absence de force nette globale

inhérente aux systèmes présentant l’effet ratchet, on obtient ici, pour la trajectoire périodique

au centre de l’̂ılot de transport, une absence de force nette le long de la trajectoire sur chaque

période (voir notamment la figure 4.3, p. 107).

Nous poursuivons ce chapitre avec l’étude du transport quantique le long de l’̂ılot ratchet

de cet espace des phases. On montre comment ce transport dépend la constante de Planck

2L’effet ratchet que nous étudions système se rapproche de l’effet ratchet “accélérateur” [183, 184, 185] observé
dans le système du rotateur frappé (kicked rotor) avec lequel il est possible de faire émerger un transport non-
diffusif, cette fois le long de l’axe des impulsions, en déplaçant savamment le potentiel sinusöıdal entre les flashs
du potentiel.
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Figure F.8 Évolution sous-stroboscopique du portrait de phase stroboscopique d’un
système présentant un effet ratchet régulier. (a-e) Portraits de phase stroboscopiques associés
à l’hamiltonien (F.8) (avec les paramètres de l’Éq. (F.9)) et les références de temps d’observation sous-
stroboscopique νt0 = 0, 0.25, 0.5, 0.75 et 1. On représente sur chaque panneau la trajectoire au centre de
l’̂ılot ratchet pour tout temps (ligne noire tiretée).

effective introduite au chapitre 1 (avec ici ~eff = h/mνd2), en ceci que ce paramètre règle la

surface relative entre l’étendue minimale que peuvent avoir les états dans l’espace des phases et

les structures classiques dans ce dernier. L’analyse de ce transport en fonction de 1/~eff (c’est-

à-dire proportionnellement à l’action classique dans le système, voir section 1.4) est présentée

sur la figure F.9. On y représente :

� la projection de l’état fondamental du réseau statique avec l’état de Floquet associé à l’̂ılot

ratchet (une sorte de mesure de la centricité de cet état de Floquet, stroboscopiquement

stationnaire comme le transport classique dont nous avons fait l’ingénierie en début de

chapitre) (panneau (a)),

� le transport périodique de cet état de Floquet (panneau (b)),

� les représentations de Husimi de l’état fondamental du réseau statique et de l’état de

Floquet ratchet pour les trois valeurs de ~eff identifiées en sur les panneaux (a) et (b).

On observe une dépendance non-monotone de ces métriques de transport semi-classique en

fonction de ~eff. Cet effet est lié au phénomène de mélange d’états de Floquet (et notamment avec

des états de Floquet localisés dans la mer chaotique) que nous présentons dans la section 4.2.2

et illustrons sur la figure 4.6, p 112.

Fort de ces analyse, nous procédons enfin à des expériences de transport de CBE dans

le réseau optique dont nous corrélons les modulations d’amplitude et de phase afin de réaliser

l’hamiltonien ratchet (Éq. (F.8)), ce dans un premier temps à partir de l’état fondamental du

réseau statique. Ces expériences sont réalisées pour les deux valeurs de ~eff correspondant aux

panneaux (d) et (e) de la figure F.9, c’est-à-dire dans un cas idéal pour observer un trans-

port ratchet semi-classique et dans un cas davantage défavorable à l’observation de ce transport

contrôlé. Le cas favorable est présenté sur la figure F.10, où nous observons un très bon accord

entre l’expérience et la simulation numérique des dynamiques à la fois quantique et classique (ce
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Figure F.9 Influence de la constante de Planck effective sur le transport ratchet. (a) Pro-
jection entre l’état de Floquet |ϕr〉 associé à l’̂ılot ratchet et l’état fondamental du réseau static |φ0〉 en
fonction de 1/~eff. (b) Transport périodique ∆x̃0,2π de |ϕr〉 sur une période de modulation (voir Éq. 4.22,
p. 109) en fonction de 1/~eff. (c-e) Représentations de Husimi de |φ0〉 (en haut, bleu) et de |ϕr〉 (en
bas, vert) vis-à-vis du portrait de phase stroboscopique du système pour les valeurs de 1/~eff identifiée
sur les panneaux (a,b). Les fonctions de Husimi dans les encadrés sont tronquées à un quart de leur
valeur maximale afin de visualiser les détails. La zone grisée des panneaux (a,b) marque l’intervalle de
1/~eff sur lequel le phénomène de mélange d’états de Floquet est étudié (voir figure 4.6). Les grandeurs
“tildées” adimensionnées sont obtenues à partir des grandeurs dimensionnées en suivant la procédure
résumée p. 34.

qui s’explique par la semi-classicalité attendue pour le transport à cette valeur de ~eff). La com-

paraison du transport pour les deux valeurs de ~eff étudiées expérimentalement est présentée sur

la figure 4.8, p. 116. Pour la valeur de ~eff correspondant à la figure F.9(d), nous observons une

évolution quasi-périodique de la distribution en impulsion. Pour la valeur de ~eff correspondant

à la figure F.9(e), nous mesurons une forte croissance apériodique de la dispersion en impulsion,

associée à une fuite vers la mer chaotique (comme suggéré par la représentation de Husimi de

l’état Floquet ratchet illustré sur la figure F.9(e)).

Dans un second et dernier temps, nous appliquons notre protocole de contrôle optimal

189



-4
-2
0
2
4
6

-0.5 0 0.5
x/d

-4
-2
0
2
4
6p/

k L

-0.5 0 0.5
x/d

a b

c d

0 2 4 6 8 10
t/T

0

1

2

p/
k L

e

Figure F.10 Transport ratchet semi-classique et non-diffusif à partir de l’état fondamen-
tal du réseau optique. (a-d) Portraits de phase stroboscopiques (à gauche) et images d’absorption
expérimentales après temps de vol (à droite) pour les temps sous-stroboscopiques νt = n+ r, avec n ∈ N
et r = 0, 0.25, 0.5 et 0.75 pour les panneaux (a) à (d) respectivement. Les images expérimentales ont
été prises lors de la première période de modulation n = 0. (e) Quantité de mouvement en fonction
du temps, montrant la valeur moyenne de la distribution d’impulsion expérimentale (bleu) et numérique
(rouge) ainsi que la quantité de mouvement de la trajectoire au centre de l’̂ılot ratchet (noir).

quantique mis en place dans le chapitre 3 afin d’optimiser le transport ratchet. Nous ciblons

alors, avant l’application de la modulation, l’état de Floquet associé à l’̂ılot de transport (voir

figure F.9(c-e)). Ces résultats sont présentés sur la figure 4.9, p. 117. Nous montrons comment le

protocole de contrôle optimal quantique permet de restaurer la périodicité du transport ratchet,

et ce, même dans le cas de fort couplage avec la mer chaotique (figure F.9(e)).

Publication en lien avec ce chapitre. L’étude présentée dans ce chapitre résulte d’un travail

de recherche que je mène sur l’effet ratchet depuis mon stage de pré-thèse réalisé au LCAR en

2019. Une publication est en cours de préparation :

[65] N. Dupont, L. Gabardos, F. Arrouas, B. Peaudecerf, J. Billy and D. Guéry-Odelin, Matter

wave transport from non-diffusive Hamiltonian ratchet effect, In preparation, (2022)
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Chapitre 5 : Émergence d’un ordre supercrystallin de pas accordable

dans un système de Floquet-Bloch

La dernière étude que nous présentons dans ce manuscrit se place dans un régime dans lequel

il n’est plus possible de négliger les interactions entre les atomes du CBE. Nous y démontrons

comment, dans un réseau optique modulé sinusöıdalement en phase à une fréquence couplant la

bande fondamentale à une bande excitée du système, les interactions interatomiques à courte-

portée peuvent entrâıner, sur de longs temps d’expérience, l’émergence d’un ordre supercrystallin

de pas accordable via un processus de mélange à quatre ondes contrôlé. Cette travail s’inscrit

dans l’étude des instabilités dynamiques dans un système de Floquet-Bloch [198, 199, 196, 201,

197].

Nous illustrons sur la figure F.11 le protocole typique pour les expériences présentées dans ce

chapitre, ainsi que les observations qui en résultent. On commence par charger l’état fondamental

du réseau optique en q = 0. Celui-ci est ensuite modulé en phase à une fréquence qui couple

la bande fondamentale à une bande excitée (ici la bande 2 ou 3) en q 6= 0. Sur les premières

dizaines de périodes de modulation, on observe inchangée, ou peu s’en faut, la distribution en

impulsion de l’état fondamental du réseau statique (comme on peu s’y attendre étant donné que

la modulation n’est pas résonante pour la bande fondamentale en q = 0, là où sont initialement

chargés les atomes). Cependant après un certain temps d’expérience3, on observe la nucléation

d’ordres de diffraction entre les ordres associés à l’état fondamental du réseau statique, à des

valeurs d’impulsion ~k∗ qui ne sont pas des multiples entiers du quantum d’impulsion ~kL = h/d

(de nouveaux ordres de diffractions qu’on qualifie de “décimaux”). Cette nouvelle périodicité

plus fine dans l’espace réciproque (observée après temps de vol) suggère l’émergence d’une

structuration avec un pas d∗ supérieur à la périodicité d du réseau optique.

Pour comprendre ce phénomène, nous modélisons ce système à l’aide d’un système effectif

à deux bandes couplées, fortement liées et avec interactions. Dans un formalisme de seconde

quantification, ce système est régi par l’hamiltonien effectif Ĥeff = Ĥ0 + Ĥint, où

Ĥ0 =− J0

L−1∑
j=0

(
â†j+1âj + â†j âj+1

)
− J1

L−1∑
j=0

(
b̂†j+1b̂j + b̂†j b̂j+1

)
(F.10)

+ ∆E1

L−1∑
j=0

b̂†j b̂j + iW

L−1∑
j=0

(
b̂†j âj − â

†
j b̂j

)
,

et

3De l’ordre de la milliseconde, là où la période de modulation du réseau optique est de l’ordre de la dizaine de
microsecondes.
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Figure F.11 Protocole expérimental et observation typique de nucléation d’ordres
décimaux. (a) Profondeur s(t) et (b) phase ϕ(t) du réseau optique au cours du temps, montrant
le chargement adiabatique de l’état fondamental du réseau, la modulation de phase pour un nombre en-
tier de périodes et l’extinction du réseau pour l’imagerie par temps de vol. (c,d) Concaténation d’images
d’absorption expérimentales après temps de vol montrant l’évolution stroboscopique de la distribution
en impulsion en fonction du nombre n de périodes de modulation T . Les paramètres expérimentaux
sont donnés sur la figure 5.2, p. 127. (e) Structure de bande du réseau statique à la profondeur des
expériences (lignes colorées) et principales transitions induites sur la bande fondamentale par les modu-
lations des expériences (c) et (d) (flèches noires).

Ĥint =
U

2

L−1∑
j=0

â†2j â
2
j , (F.11)

avec L le nombre de sites peuplés du réseau, âj et b̂j les opérateurs de créations sur les deux

bandes au site j, J0 et J1 les amplitudes tunnel des bandes, ∆E1 un décalage d’énergie pour la

bande modélisant le niveau excité, W l’amplitude de couplage entre les bandes et U le paramètre

d’interaction sur site pour la bande initialement peuplée. Nous montrons dans un premier temps

comment, les interactions mises de côté, l’hamiltonien Ĥ0 permet de modéliser les spectres de

quasi-énergie des systèmes modulés à la manière des expériences de la figure F.11. Ce processus

de modélisation est détaillé sur la figure 5.3, p. 130 (et peut être observé sur la figure F.12

ci-dessous).

Nous procédons ensuite à un traitement perturbatif des interactions à la manière de Bo-

goliubov [202, 90], que nous présentons en détail. Nous obtenons un jeu de quatre équations
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Figure F.12 Résultats de l’étude de la stabilité du système pour des paramètres de modèle
réalistes. (a,d) Spectres de quasi-énergie. (b,e) Spectres de l’hamiltonien H0, avec paramètres ajustés
afin de reproduire le comportement des spectres (a,d) aux abords des croisements principaux de la bande
associé à l’état fondamentale (bleu). (c,f) Paramètre d’instabilité w(q) correspondant, tracé en fonction
de q et du paramètre d’interaction nU (voir section 5.2.4, p. 137, avec n le nombre d’atomes par site du
réseau, supposé ici ne pas dépendre de l’indice du site). Les lignes verticales noires tiretées marquent la
position des croisements évités.

d’évolution d’Heisenberg couplées pour les perturbations le long de la zone de Brillouin. L’étude

du spectre λi(q) (avec i = 1, 2, 3, 4) de la matrice de couplage de ces équations différentielles

d’ordre 1 nous permets de déterminer les régions de la zone de Brillouin où le système présente

des instabilités dynamiques (via le paramètre w(q) = maxi{| Im{λi(q)}|}, voir résumé p. 136).

Cette analyse renseigne sur les quasi-moments en lesquels on peut s’attendre à ce que se peuplent

des modes dynamiquement instables. La figure F.12 présente le résultat de cette modélisation.

On y observe le comportement général qui ressort de notre étude, à savoir que de fines régions

d’instabilité sont localisées au voisinage des croisement évités dans les spectres de Ĥ0 (qui

modélisent eux-mêmes les spectres de quasi-énergie du système réel).

Nous poursuivons avec une série de prédictions sur le comportement des pics de diffraction

décimaux en fonction des paramètres du système (voir section 5.2.5, p. 138). Notamment, on

s’attend à ce que la fréquence de modulation du potentiel, qui a pour principale conséquence de
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Figure F.13 Déplacement de l’instabilité avec la fréquence de modulation. (a) Concaténation
d’images d’absorption expérimentales (post temps de vol et moyennées sur 3 réalisations), après un nombre
fixe de n = 100 périodes de modulation, en fonction de la fréquence de modulation ν. (b) Comparaison
entre la position moyenne de l’instabilité (en terme du quasi-moment réduit k/kL dans la structure de
bande dépliée) extraite à partir d’un ajustement de la position des quatre ordres décimaux dans l’intervalle
1 ≤ |p|/~kL ≤ 3 (points bleus, les barres d’erreur correspondant à un écart-type sur la statistique de
12 points) et le quasi-moment de résonance entre les bandes d’intérêt (ligne noire) en fonction de ν.
(c) Diagramme de transition à partir de la bande fondamentale tracé sur les deux premières zones de
Brillouin (lignes noires) et transitions adressées pour les données b1, b2 et b3 (bleu). Voir figure 5.7,
p. 142, pour davantage de détails.

déplacer les croisements évités dans la zone de Brillouin (comme suggéré par le graphe F.11(e)),

nous permette d’accorder la position des pics décimaux dans les figures de diffraction (voir

figure 5.5, p. 139).

Nous présentons à une série d’expériences qui confirment ces prédictions (voir section 5.3),

comme illustré sur la figure F.13 dans le cas énoncé ici du déplacement des motifs émergents en

fonction de la fréquence de modulation du potentiel. Ces expériences confirment nos prédictions,

et la justesse de notre modèle à deux bandes fortement liées avec interactions.

Pour conclure, nous discutons de la nature de l’état réalisé dans le système, et confrontons

l’hypothèse de l’émergence d’un ordre in-situ de période d∗ supérieur au pas d du réseau optique.

Pour évaluer ces points, des simulations Truncated-Wigner [201] ont été réalisées par notre col-

laborateur Peter Schlagheck de l’Université de Liège. Ces simulations confirment l’émergence

d’une structuration à longue portée dans le système, présentant une période d∗ ≈ 2π/q∗ (avec

q∗ le quasi-moment des instabilités). De façon inhérente aux simulations Truncated-Wigner (de

par la considération in fine d’une moyenne sur de nombreuses trajectoires simulées), cette struc-

turation est invisible sur la densité in-situ, mais peut être retrouvée en calculant une corrélation

d’ordre deux (voir figure 5.12, p. 149). Ces simulations pointent aussi que la cohérence est
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préservée dans les modes instables, comme suggéré en premier lieu expérimentalement par

l’observation des pics décimaux sur les figures de diffraction.

Ce travail résulte d’une collaboration avec Peter Schlagheck de l’unité de recherche CESAM

à l’Université de Liège. Une publication est en préparation :

[66] N. Dupont, L. Gabardos, F. Arrouas, G. Chatelain, M. Arnal, J. Billy, P. Schlagheck,

B. Peaudecerf, and D. Guéry-Odelin, Emergence of a tunable supercrystalline order in a

Floquet-Bloch system, In preparation, (2022)
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and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature,

551(7682):579–584, Nov 2017.

[25] Antoine Browaeys and Thierry Lahaye. Many-body physics with individually controlled Rydberg

atoms. Nature Physics, 16(2):132–142, Feb 2020.

[26] J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nature Physics,

8(4):264–266, Apr 2012.

[27] Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, Lincoln D. Carr, Eugene Demler, Cheng

Chin, Brian DeMarco, Sophia E. Economou, Mark A. Eriksson, Kai-Mei C. Fu, Markus Greiner,

Kaden R.A. Hazzard, Randall G. Hulet, Alicia J. Kollár, Benjamin L. Lev, Mikhail D. Lukin,

Ruichao Ma, Xiao Mi, Shashank Misra, Christopher Monroe, Kater Murch, Zaira Nazario, Kang-

Kuen Ni, Andrew C. Potter, Pedram Roushan, Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi,

Raymond Simmonds, Meenakshi Singh, I.B. Spielman, Kristan Temme, David S. Weiss, Jelena
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Palencia, A. Aspect, and P. Bouyer. Three-dimensional localization of ultracold atoms in an optical

disordered potential. Nature Physics, 8(5):398–403, May 2012.

[42] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli, A. Trenkwalder, M. Fattori, M. In-

guscio, and G. Modugno. Measurement of the mobility edge for 3D Anderson localization. Nature

Physics, 11(7):554–559, Jul 2015.
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tique. PhD thesis, Université Toulouse III - Paul Sabatier, 2021.

[70] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, 1993.

[71] L. Reichl. The Transition to Chaos. Springer Cham, 3rd edition, 2021.

[72] A. N. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamil-

ton’s function. Doklady Akademii Nauk SSSR, 98, 1954.

[73] V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic

motions under a small perturbation of the Hamiltonian. Russian Mathematical Surveys, 18(5):9–36,

1963.

[74] J. Moser. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss.

Göttingen Math.-Phys. Kl., 2:1–20, 1962.
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[77] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik,

52(7):555–600, 1929.

[78] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt, Rinehart and Winston, 1976.

[79] J. Dalibard. Des cages de lumière pour les atomes : la physique des pièges et des réseaux optiques,
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du temps. PhD thesis, Université Toulouse III - Paul Sabatier, 2016.

[95] Harald F. Hess. Evaporative cooling of magnetically trapped and compressed spin-polarized hy-

drogen. Phys. Rev. B, 34:3476–3479, Sep 1986.

202

https://everycoldatom.com/


[96] K. B. Davis, M.-O. Mewes, and W. Ketterle. An analytical model for evaporative cooling of atoms.

Applied Physics B, 60(2):155–159, 1995.

[97] J. Dalibard. Les interactions entre particules dans les gaz quantiques, 2020.
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glement Hamiltonian tomography in quantum simulation. Nature Physics, 17(8):936–942, Aug

2021.

[137] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and

Giuseppe Carleo. Neural-network quantum state tomography. Nature Physics, 14(5):447–450,

May 2018.
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Abstract: The field of quantum simulation aims at emulating complex quantum systems on platforms
that are easier to control and observe. In the last twenty years, ultracold atoms in optical lattices have
established themselves as a versatile controllable system for quantum simulation. The three experimental
studies presented in this manuscript take place in the development of this field. They are performed using
Bose-Einstein condensates (BECs) in a one-dimensional optical lattice that can be precisely controlled in
amplitude and phase.

In the first study, we use the optimal control formalism to compute the way in which to continuously
shift the lattice in order to arbitrarily shape the BEC distribution in the phase space of the system.
We apply this method to different targets, among which squeezed Gaussian states more than four times
narrower in position than the ground state of the system, as well as the ideal Floquet state superposition
to perform quantum simulation of dynamical tunneling is the modulated lattice.

The second study concerns the realization of a non-diffusive Hamiltonian ratchet. The ratchet effect
consists in the emergence of a directed current of particles in a system with no net force. In this second
work, we correlate the amplitude and phase modulations of the lattice to produce, in the phase space
of the system, a region of non-chaotic trajectories that travels between lattice sites, resting periodically
in the center of each sites. We experimentally implement this system and observe non-diffusive ratchet
transport of matter waves in the optical lattice.

Finally, we show how short-range interactions between atoms in the BECs lead to the emergence of
a supercrystalline order in a sinusoidally modulated optical lattice for a modulation frequency coupling
two energy levels. We develop a two-band tight-binding model which predicts that collisions occuring
between the atoms of the BECs can lead to the growth of unstable Bogoliubov modes in the vicinity of
avoided crossings in the quasi-energy spectrum of the modulated system. Interestingly, we experimentally
demonstrate that the periodicity of the emergent order can be tuned through Floquet engineering of these
crossings.

Résumé : Le domaine de la simulation quantique vise à émuler des systèmes quantiques complexes
sur des systèmes plus simples à observer et à contrôler. Ces vingt dernières années, les gaz d’atomes
ultrafroids sur réseau optique se sont démarqués comme une plateforme versatile et contrôlable pour la
simulation quantique. Les trois études expérimentales présentées dans ce manuscrit s’inscrivent dans le
développement de ce domaine. Elles sont réalisées avec des condensats de Bose-Einstein (CBE) placés
dans un réseau optique unidimensionnel dont on peut contrôler finement la phase et l’amplitude.

Dans la première étude, nous utilisons le formalisme du contrôle optimal pour calculer la phase variable
que doit avoir le réseau optique au cours du temps afin de préparer des distributions arbitraires de CBE
dans l’espace des phases du système. Avec cette méthode, nous réalisons différents états, parmi lesquels
des états gaussiens jusqu’à quatre fois plus comprimés en position que l’état fondamental du réseau
optique, ou encore la superposition idéale d’états de Floquet pour faire une simulation quantique d’effet
tunnel dynamique dans le réseau optique modulé.

La deuxième étude traite d’un effet ratchet (rochet) non-diffusif dans un système hamiltonien. L’effet
ratchet est l’émergence d’un courant de particules dans un potentiel duquel aucune force nette n’est
dérivée. Dans ce travail, nous corrélons les modulations d’amplitude et de phase du réseau afin de faire
émerger, dans l’espace des phases du système, une région de trajectoires non-chaotiques qui transite d’un
site au suivant en s’arrêtant périodiquement au centre du site. Nous réalisons expérimentalement ce
système et observons le transport ratchet non-diffusif d’ondes de matière dans le réseau optique.

La dernière étude présentée dans cette thèse démontre comment, dans un réseau optique modulé
sinusöıdalement à une fréquence couplant deux bandes du système, les interactions à courte-portée entre
atomes du CBE peuvent entrâıner l’émergence d’un ordre supercristallin. Nous développons un modèle
de bandes fortement liées à deux niveaux prédisant que les collisions interatomiques dans le CBE peuvent
mener à la croissance de modes instables de Bogoliubov situés à proximité des croisements évités dans le
spectre de quasi-énergie du système modulé. Notamment, nous montrons expérimentalement comment
la périodicité de cet ordre émergent peut être accordée en procédant à l’ingénierie de Floquet de ces
croisements.
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