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ABSTRACT  
Demonstrating the viability and safety of a project is an essential step in the licensing process of new 
nuclear plants. Simulation makes it possible to explore and predict how complex core concepts will 
behave in different situations. Improving the performances of numerical methods is essential for 
innovation.  

Methods to model nuclear reactor cores are split into deterministic and stochastic methods. 
Deterministic methods discretize the phase space to solve the neutron transport equation. 
Approximations are an integral part of this method. Stochastic methods rely on random sampling of the 
neutron population. Their probabilistic nature can hinder their calculation costs. While at first, it might 
seem that stochastic methods are reference methods and deterministic methods allow for quicker but 
less precise calculations there are situations where neither method has led to good results. To take 
advantage of both methods and overcome some of their respective limitations, this work focuses on the 
development of numerical methods coupling both. 

IDT is a discrete ordinates deterministic solver developed within the APOLLO3® platform with a non-
overlapping domain decomposition method (DDM) implemented. LAST is a stochastic mini-app. The 
goal is to develop a method, making it possible to differentiate the treatment of the spatial zone from the 
rest of the problem, to obtain fine information on local neutronic quantities of interest and a better 
description of local heterogeneities. 

To move towards a coupled approach, two different hybrid methods were developed and studied. The 
first is an energetic deterministic-deterministic hybrid method. This method is a first step towards the 
development of a hybrid method using DDM. IDT’s DDM scheme was modified to accommodate 
different energy grids. Treating subdomains with different energy grids allows the user to treat 
resonances for each subdomain with refined energy meshes and/or advanced self-shielding methods. 
This method leads to more accurate results compared to a coarse-energy mesh calculation for shorter 
calculation times than the fine-energy mesh calculation. 

The second method is a partially coupled deterministic-stochastic hybrid method. The boundary fluxes 
resulting from the deterministic code were used as input for the LAST simulation. The deterministic 
calculation is unaffected by the stochastic calculation. A first study is performed with the coarser and 
quicker IDT solver and then LAST is used on a small portion of the problem to obtain more precise data 
on a region of interest. 

Keywords: Hybrid method, Spatial Domain Decomposition Method, Deterministic / Monte Carlo 
Coupling  
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RÉSUMÉ 
La démonstration de la viabilité et de la sûreté d'un projet est une étape essentielle du processus de 
développement des nouvelles centrales nucléaires. La simulation permet d'explorer et de prévoir 
comment des concepts de réacteurs complexes se comporteraient dans différentes situations. 
L'amélioration des performances des méthodes numériques est essentielle à l'innovation. 

Les méthodes de modélisation en neutronique se divisent en deux catégories, les méthodes 
déterministes et stochastiques. Les méthodes déterministes discrétisent l'espace des phases pour 
résoudre l'équation de transport des neutrons. Les approximations font partie intégrante de cette 
méthode. Les méthodes stochastiques reposent sur un échantillonnage aléatoire de la population de 
neutrons. Leur nature probabiliste peut nuire à leur coût de calcul. À première vue, il semble que les 
méthodes stochastiques soient des méthodes de référence, tandis que les méthodes déterministes 
permettent des calculs plus rapides, mais moins précis. Dans certaines situations, aucune des deux 
méthodes ne conduit à des résultats satisfaisants. Pour tirer parti des deux méthodes et surmonter 
certaines de leurs limites respectives, ce travail se concentre sur le développement de méthodes 
numériques couplant les deux. 

IDT est un solveur déterministe aux ordonnées discrètes de la plate-forme de calcul APOLLO3® ayant 
déjà une méthode de décomposition de domaines (DDM) sans recouvrement implémentée. La 
maquette stochastique LAST a été utilisée pour implémenter cette méthode hybride. L’objectif est de 
réaliser des calculs de réacteurs où des zones spatiales sont singularisées à l’aide de méthodes de 
décomposition de domaines spatiale. Cette méthode permet de différencier le traitement de la zone 
spatiale du reste du problème, d’obtenir des informations fines sur des grandeurs neutroniques locales 
et une meilleure description des hétérogénéités locales. 

Pour avancer vers une approche couplée, deux méthodes hybrides différentes ont été développées et 
étudiées. La première est une méthode hybride déterministe-déterministe énergétique. Cette méthode 
est une première étape dans le développement d'une méthode hybride utilisant la décomposition de 
domaine. Le schéma DDM d'IDT a été modifié pour prendre en compte différentes grilles d'énergie. Le 
traitement des sous-domaines avec différentes grilles d'énergie permet à l'utilisateur de traiter les 
résonances de chaque sous-domaine avec des mailles d'énergie raffinées et/ou des méthodes 
avancées d'auto-autoprotection. Cette méthode permet d'obtenir des résultats plus précis qu'avec un 
calcul à maillage énergétique grossier pour des temps de calcul plus courts qu'avec un calcul à maillage 
énergétique fin. 

La deuxième méthode est une méthode hybride déterministe-stochastique partiellement couplée. Les 
flux aux limites résultant du code déterministe ont été utilisés comme entrée pour la simulation LAST. 
Le calcul déterministe n'est pas affecté par le calcul stochastique. Une première étude est réalisée avec 
le solveur IDT plus grossier et plus rapide, puis LAST est utilisé sur une petite partie du problème pour 
obtenir des données plus précises sur une région d'intérêt. 

Mots clés : Méthode hybride, Décomposition de domaine spatiale, Couplage déterministe / Monte-
Carlo 
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RÉSUMÉ ÉTENDU 
Les méthodes numériques jouent un rôle majeur dans le développement de nouveaux concepts de 
réacteurs, mais aussi pour la prolongation de la durée de vie grâce aux démonstrations de sûreté 
produites. En raison du coût élevé de la construction d'une installation nucléaire, et des exigences de 
sécurité, il est nécessaire de pouvoir démontrer la viabilité d'un projet en utilisant des critères prédéfinis, 
comme la disponibilité des matériaux, la capacité de recyclage du combustible usé, la compétitivité 
économique, la durée de vie prévue, etc. En France, le gouvernement exige une démonstration de la 
sûreté du projet de centrale pour pouvoir autoriser un projet [1]. L'article 3.8 de [2] précise que la 
démonstration de sûreté doit utiliser des outils de calcul vérifiés. 

Ces outils sont appelés "Outils de Calcul Scientifique" (OCS) et sont définis par l'Autorité de Sûreté 
Nucléaire (ASN), l'autorité française régulant la sûreté nucléaire et la radioprotection. L'ASN a défini un 
guide, le "guide 28" [3], dans lequel elle émet des recommandations concernant les outils de calcul afin 
de s'assurer qu'ils répondent aux besoins de l'exploitant de l'installation. 

Il existe deux grandes familles de modélisation en neutronique : les méthodes déterministes et les 
méthodes stochastiques. Les méthodes déterministes discrétisent l’espace des phases pour résoudre 
l’équation du transport de neutrons. Des approximations et traitements sont nécessaires pour résoudre 
un problème. Un solveur déterministe correspond à une combinaison de traitements spatial, 
énergétique, et angulaire. Les différentes méthodes pouvant être utilisées sont présentées en Fig. 1. 

 

Fig. 1: Différentes méthodes de discrétisation pouvant être utilisées dans une simulation déterministe 

Dans ce travail nous avons utilisé IDT. IDT est un solveur déterministe aux ordonnées discrètes de la 
plate-forme de calcul APOLLO3® ayant déjà une méthode de décomposition de domaines (DDM) sans 
recouvrement implémentée.  

Les méthodes stochastiques utilisent peu d’approximation, mais reposent sur l’échantillonnage aléatoire 
de la population de neutron pour obtenir des grandeurs d’intérêts grâce à des estimateurs. Cependant, 
ces résultats sont entachés d’une incertitude statistique et peuvent demander de simuler beaucoup de 
particules pour être représentatives de la situation. Cette méthode est plus précise que les méthodes 
déterministes, et est utilisée comme référence, notamment pour la validation de nouveaux solveurs. La 
maquette stochastique LAST a été utilisée pour les calculs probabilistes. 

Ces deux méthodes sont complémentaires, les méthodes stochastiques sont plus adaptées aux calculs 
de référence, mais les méthodes déterministes permettent de réaliser des calculs moins couteux et sont 
plus faciles à coupler avec des calculs thermomécaniques ou thermohydrauliques. Malgré cette 
complémentarité des deux branches de méthodes numériques, il y a des problèmes qui sont difficiles à 
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traiter avec les deux méthodes. Les expériences d'irradiation GEDEON [5] réalisées dans le réacteur 
MELUSINE [6] en sont un exemple. Ces expériences ont été conçues pour étudier l'UO2 empoisonné 
par le gadolinium dans les REP. Les cellules de gadolinium sont un mélange d'UO2 et de Gd2O3 et 
sont placées dans un réseau avec un rapport de modération de 1,8. Les prédictions déterministes sont 
moins bonnes à faible taux de combustion, en partie à cause du manque d'informations sur la position 
des barres de contrôle pendant l'irradiation. Le mouvement pendant l'irradiation augmente le coût d'une 
analyse Monte-Carlo complète de ces expériences.  

Pour essayer de contourner les limitations respectives de chaque méthode, nous allons travailler sur 
une méthode hybride combinant celles-ci. Ayant des coûts de calculs plus faibles, la méthode 
déterministe serait utilisée pour réaliser le calcul global et la méthode stochastique pourrait ainsi se 
focaliser sur une zone d’intérêt. On pourrait ainsi avoir plus de précision sur une zone difficile à traiter 
en déterministe, sans devoir faire le calcul stochastique sur le problème complet. 

Cette thèse explore les différents couplages déterministe-stochastique, et propose une méthode 
utilisant la décomposition de domaine spatiale déjà implémentée dans le solveur déterministe IDT. 
L’objectif est d’utiliser la décomposition de domaine spatiale pour singulariser une zone. Cette zone 
pourra donc être traitée avec la méthode stochastique, ce qui permettrait d’obtenir une information plus 
fine sur les grandeurs d’intérêt et une meilleure description des hétérogénéités spatiales. Le but de ce 
travail est d’implémenter cette méthode hybride. 

Afin d’avoir une vision plus complète des méthodes déterministes et stochastiques actuelles et des 
problèmes à traiter, le comportement d’un neutron d’un cœur de réacteur sera étudié. Cette partie 
permettra de présenter les algorithmes de résolutions d’IDT et LAST. Ceci sera suivi par une analyse 
bibliographique des différentes méthodes hybrides existantes. 

Les méthodes combinant deux méthodes déterministes (ou stochastiques) peuvent aussi être appelées 
hybrides. Ces méthodes permettent d’obtenir des résultats intéressants, mais peuvent toujours être 
sujettes aux limitations des méthodes déterministes (ou stochastiques) pures. Les hybrides 
déterministes-stochastiques peuvent rentrer dans trois catégories principales : 

• Les techniques de réduction de variance. Ces méthodes biaisent la simulation stochastique en 
modifiant les poids des particules, ce qui permet de simuler moins de particules, tout en 
s’assurant des résultats satisfaisants autour du détecteur. Elles ont été étendues pour aussi 
traiter des problèmes globaux. Les problèmes de protection sont leur application principale. 

• Les méthodes chaînées. On choisit de parler de chaînage puisque l’interaction entre les deux 
codes est unidirectionnelle, c’est-à-dire qu’un calcul fournit des informations au calcul suivant, 
mais il n’y a pas de retour. Ces méthodes peuvent être appliquées à des problèmes complexes, 
comme des études de protection dans des installations nucléaires. Un calcul déterministe peut 
réaliser un premier calcul pour déterminer la distribution des sources au bord du cœur. Ces 
sources peuvent ensuite être propagées dans le reste du bâtiment. Ces méthodes permettent 
aussi d’obtenir des gains en précision et temps de calcul. 

• Les méthodes couplées. Cette fois-ci les deux méthodes échangent des informations pour 
mettre à jour le calcul hybride complet. Les calculs stochastiques et déterministes doivent être 
lancés ensemble pour pouvoir réaliser le calcul couplé. Ce type de méthode peut être très 
avantageux pour les problèmes où les deux zones étudiées sont dépendantes l’une de l’autre. 
Implémenter une méthode hybride couplée rajoute des difficultés à gérer dans le contrôle de la 
simulation, mais conduit à des bénéfices importants quand le problème entier dépend des 
résultats de la zone d’intérêt. 

Les méthodes de décomposition de domaine (DDM) permettent de séparer un problème en plusieurs 
sous-problèmes et résolvent le problème global en mettant à jour les conditions aux limites des sous-
domaines à chaque itération. Elles paraissent donc adaptées pour le développement de méthodes 
couplées, du moment que les conditions aux limites entre les sous-domaines sont compatibles. Elles 
ont déjà été utilisées pour développer des méthodes déterministes avec des traitements spatiaux 
différents pour chaque sous-domaine notamment. Ces méthodes se prêtent donc à la singularisation 
d’une région d’intérêt et adapter le traitement de celle-ci. 
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Avant de s’attaquer au développement de la méthode hybride, il est important de mieux comprendre le 
fonctionnement et l’implémentation de la DDM dans IDT. La première étape de cette thèse a été de 
modifier l’algorithme de DDM d’IDT pour permettre l’utilisation de maillages énergétiques différents 
entre les sous-domaines. Ce travail est nécessaire pour se confronter à l’impact sur la DDM des 
échanges de données déséquilibrés. En effet, nous allons avoir des sous-domaines plus raffinés que 
d’autres et devoir créer des méthodes permettant ces échanges inégaux. Cette étape permettra aussi 
de prendre en main le code déterministe en vue des futures modifications. 

Pour reconstruire l’information venant des sous-domaines grossiers vers les sous-domaines raffinés, 
trois méthodes de reconstruction ont été testées. Les méthodes sont présentées ci-dessous, dans le 
Tableau 1. 

 Reconstruction 
élémentaire (BRM) 

Reconstruction par le 
courant (CRM) 

Reconstruction par le 
flux (FRM) 

Facteur 
∆"#

∆"$
 

%&
'(), +)

∑ %&
'(), +)#∈$

 
/&
'0),−23⃗ 5, +6

∑ /&
'0),−23⃗ 5, +6#∈$

 

Tableau 1: Méthodes de reconstruction étudiées 

Une modélisation adéquate du réflecteur est essentielle pour obtenir une bonne estimation du flux en 
périphérie du cœur. C’est aussi une donnée pour les calculs de structure. Nous avons donc choisi de 
tester notre méthode de reconstruction sur un problème cœur-réflecteur. Le problème étudié est 
représenté en Fig. 2. 

 

 

Fig. 2: Quart de cœur étudié dans ce travail 

Nous avons choisi de nous concentrer sur un réflecteur de type EPR, constitués d’une vingtaine de 
centimètres d’acier inoxydable. Les résonances du fer compliquent la modélisation de ces réflecteurs 
comparée à la modélisation d’un réflecteur en eau.  

Les trois méthodes ont permis d’obtenir des résultats intermédiaires en termes de keff et temps de calcul. 
Cependant, une analyse des taux d’absorption permettra d’identifier les gains locaux apportés par 
celles-ci.  Dans ce travail, nous avons considéré un maillage fin et un maillage grossier avec des bornes 
énergétiques communes. Cependant, ces contraintes ne sont pas compatibles avec la généralisation 
de cette méthode. Pour généraliser cette méthode, il faudrait tout d’abord pouvoir utiliser des 
raffinements locaux dans chaque sous-domaine pour s’adapter au problème énergétique du sous-
domaine. Pour rendre cette méthode plus facile à utiliser par un futur utilisateur, il faudrait pouvoir utiliser 
des maillages sans bornes énergétiques communes, et donc implémenter de nouvelles méthodes de 
reconstruction adaptées à des bornes non-communes. Les maillages énergétiques vers lesquels il 
faudrait tendre dans cette nouvelle méthode sont illustrés en Fig. 3. 
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Fig. 3: Illustration des maillages énergétiques dans la méthode actuelle (gauche) et une généralisation de cette 
méthode (droite) 

Cette méthode de reconstruction énergétique est un premier pas vers le développement d’une future 
méthode hybride déterministe-déterministe, cette méthode fait toujours face aux problèmes des 
méthodes déterministes. Malgré les gains que l’on pourrait obtenir, cette méthode sera toujours 
impactée par les problèmes d’autoprotection en 3D, qui ne peut être réalisée dans APOLLO3®. Pour 
pouvoir s’affranchir de cette contrainte, nous faisons le choix de passer au développement d’une 
méthode hybride dans la suite du travail. 

Une première méthode chainée est étudiée par la suite, pour travailler sur l’échange d’information du 
déterministe vers le stochastique. Cette méthode permettra d’étudier les gains qu’un calcul stochastique 
peut apporter sur une petite zone du problème déterministe. Le calcul déterministe ne prend pas de 
retour d’information par le calcul LAST. Cette étape est essentielle avant de réaliser le développement 
de la méthode couplée, puisqu’elle permet de quantifier pour un problème donné, l’impact de 
l’initialisation déterministe sur le calcul stochastique. 

La décomposition de domaines d’IDT échange les flux aux bords des sous-domaines pour mettre à jour 
les conditions aux limites. Nous avons choisi d’utiliser ces flux aux bords pour initialiser le calcul LAST 
dans notre méthode hybride pour être cohérents avec la procédure de DDM déjà implémentée. 
Cependant, LAST utilise une distribution de sources pour initialiser ses calculs. Nous avons donc besoin 
de transformer des flux aux bords en sources stochastiques. Les flux aux bords sont définis sur les 
arêtes des sous-domaines, donc nous allons créer une distribution de sources surfaciques pour le calcul 
LAST. Pour transformer ces flux en sources, nous allons échantillonner la distribution de flux aux bords 
pour obtenir des sources surfaciques. Cette méthode est présentée en Algorithme 1. 

Algorithme d’échantillonnage de la source stochastique 

 Stocker les flux aux bords d’IDT pour les lire dans le calcul LAST 

 Créer la distribution des poids à partir des flux angulaires d’IDT 7
5

#
()) = /

5

#
())23⃗ 5. :3⃗  

 Échantillonner N particules  

  Utiliser la distribution des poids comme distribution discrète et tirer un index 

   Utiliser l’index pour déterminer la maille spatiale dans IDT et la convertir en une position 
(), ;, <) 

   Utiliser l’index pour déterminer le groupe énergétique dans IDT et le convertir en une énergie 
=  

   Utiliser l’index pour déterminer la direction dans IDT et trouver les coordonnées associées 
{?, @, A} 

 

Algorithme 1: Procédure de transformation des flux au bord des sous-domaines d’IDT en une distribution de 
sources surfaciques pour LAST 

Pour tester cette méthode, nous avons commencé à regarder un problème 2D simplifié avec une 
traverse de cellules combustible et de réflecteur eau, illustré en Fig. 4. 
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Fig. 4: Illustration du problème traverse qui sera étudiée 

Nous réalisons un premier calcul avec IDT sur toute la géométrie, et utilisons les flux à l’interface entre 
le combustible et le réflecteur pour initialiser le calcul stochastique. À chaque batch du calcul 
stochastique, nous refixerons les sources au bord gauche de la traverse en eau.  Cette méthode permet 
de bien reproduire les flux dans chaque cellule d’eau. Nous allons ensuite dégrader les distributions 
énergétiques, angulaires et spatiales du calcul initial IDT pour voir l’impact sur le calcul chainé. Sur ce 
problème transverse, nous obtenons de bons résultats sur les flux dans la traverse en eau. 

  



 

X 

  



 

XI 

TABLE OF CONTENTS 
ABSTRACT ........................................................................................................................................................ I 

RÉSUMÉ ........................................................................................................................................................ IV 

RÉSUMÉ ÉTENDU ........................................................................................................................................... V 

TABLE OF CONTENTS ...................................................................................................................................... XI 

LIST OF FIGURES ........................................................................................................................................... XIII 

LIST OF TABLES ............................................................................................................................................ XV 

LIST OF ALGORITHMS .................................................................................................................................. XVI 

LIST OF ACRONYMS AND ABBREVIATIONS ................................................................................................. XVII 

1. INTRODUCTION ....................................................................................................................................... 1 

1.1 CURRENT METHODS IN NEUTRONICS AND CHALLENGES ......................................................................................... 1 
1.2 OBJECTIVES OF THIS WORK ............................................................................................................................. 3 
1.3 MANUSCRIPT LAYOUT ................................................................................................................................... 3 

2. STATE-OF-THE-ART HYBRID METHODS TO SOLVE TRANSPORT PROBLEMS ............................................... 4 

2.1 DERIVING THE BOLTZMANN EQUATION ............................................................................................................. 5 
2.1.1 Hypotheses and approximations to study nuclear reactors ............................................................ 5 
2.1.2 Phase-space ..................................................................................................................................... 5 
2.1.3 Cross-sections .................................................................................................................................. 5 
2.1.4 Particle balance ............................................................................................................................... 6 
2.1.5 Stationary approximation ................................................................................................................ 8 
2.1.6 Scattering operator ......................................................................................................................... 9 

2.2 DETERMINISTIC METHODS ............................................................................................................................ 10 
2.2.1 Solving neutron transport problems .............................................................................................. 11 
2.2.2 Domain Decomposition Methods .................................................................................................. 15 
2.2.3 Modification of the deterministic scheme to accommodate DDM ................................................ 18 
2.2.4 Advantages and disadvantages of deterministic methods ............................................................ 21 

2.3 STOCHASTIC METHODS ................................................................................................................................ 21 
2.3.1 Neutron transport equation derivation for stochastic methods .................................................... 22 
2.3.2 Monte Carlo scheme ...................................................................................................................... 23 
2.3.3 Estimators ...................................................................................................................................... 24 
2.3.4 Stochastic code used ...................................................................................................................... 26 
2.3.5 Advantages and disadvantages of stochastic methods ................................................................. 26 

2.4 EXISTING HYBRID METHODS IN REACTOR PHYSICS .............................................................................................. 26 
2.4.1 Coupling to treat shielding problems ............................................................................................. 27 
2.4.2 Coupled calculations to treat reactor core problems ..................................................................... 29 

2.5 HYBRID METHOD STUDIED IN THIS WORK ......................................................................................................... 33 
2.5.1 Choice of hybrid method ................................................................................................................ 33 
2.5.2 Predicted difficulties and development plan ................................................................................. 34 

2.6 CONCLUSIONS ............................................................................................................................................ 34 

3. DEVELOPMENT OF A MULTIPLE-ENERGY-GRID METHOD USING DDM .................................................... 37 

3.1 METHODOLOGY DESCRIPTION ....................................................................................................................... 37 
3.1.1 Domain Decomposition modeling ................................................................................................. 38 
3.1.2 Matching energetic bounds ........................................................................................................... 39 
3.1.3 Choosing energy grids ................................................................................................................... 41 

3.2 2D C5G7 CORE ......................................................................................................................................... 42 
3.2.1 C5G7 problem description ............................................................................................................. 43 
3.2.2 Reference case ............................................................................................................................... 45 
3.2.3 Single energy grid results ............................................................................................................... 45 

3.3 ANALYSIS OF A MODIFIED 2D C5G7 CORE ....................................................................................................... 46 
3.3.1 Basic reconstruction method ......................................................................................................... 46 



 

XII 

3.3.2 Current reconstruction method ..................................................................................................... 49 
3.3.3 Flux reconstruction method ........................................................................................................... 52 

3.4 CONCLUSIONS ............................................................................................................................................ 54 

4. DEVELOPMENT OF A MONTE CARLO-DETERMINISTIC HYBRID SPATIAL METHOD ................................... 57 

4.1 PARTIAL COUPLING PRINCIPLES AND IMPLEMENTATION IN IDT AND LAST .............................................................. 58 
4.1.1 Description of 1-way coupling application to core problems ......................................................... 58 
4.1.2 Sampling of the incoming boundary fluxes to create a fixed source ............................................. 58 
4.1.3 Interfacing phase space coordinates ............................................................................................. 60 
4.1.4 Computational structure of the method’s implementation ........................................................... 62 

4.2 APPLICATION TO A PROPAGATION CASE: CORE-REFLECTOR TRAVERSE .................................................................... 63 
4.2.1 Problem geometry ......................................................................................................................... 63 
4.2.2 Calculation options ........................................................................................................................ 65 
4.2.3 Comparing the sampling method to the boundary flux distribution ............................................. 66 
4.2.4 Results ........................................................................................................................................... 69 
4.2.5 Parametric study ........................................................................................................................... 73 
4.2.6 Conclusions on the 1-way coupling results .................................................................................... 80 

4.3 CONCLUSION: TOWARD A 2-WAY COUPLED SCHEME .......................................................................................... 80 
4.3.1 Main limitations faced ................................................................................................................... 80 
4.3.2 Remaining work ............................................................................................................................. 80 

5. CONCLUSIONS ....................................................................................................................................... 85 

5.1 GENERAL CONCLUSIONS ............................................................................................................................... 85 
5.2 PERSPECTIVES ............................................................................................................................................ 85 

REFERENCES .................................................................................................................................................. 89 

APPENDICES ................................................................................................................................................. 93 

APPENDIX 1: 51-GROUP ENERGY MESH ...................................................................................................................... 93 
APPENDIX 2: 23-GROUP ENERGY MESH ...................................................................................................................... 95 
APPENDIX 3: 7-GROUP ENERGY MESH ........................................................................................................................ 96 
APPENDIX 4: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING THE BRM ........................................... 97 
APPENDIX 5: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING THE CRM ........................................... 98 
APPENDIX 6: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING THE FRM ........................................... 99 

 

 

  



 

XIII 

LIST OF FIGURES 
Figure 1: Radial views of a 900 MWe LWR core .................................................................................... 2 
Figure 2: Different discretization methods used in a deterministic simulation ...................................... 10 
Figure 3: Generic multigroup representation ........................................................................................ 11 
Figure 4: MOSC discretization for a fuel cell ........................................................................................ 13 
Figure 5: Original problem studied by Schwarz in 1870 ....................................................................... 16 
Figure 6: Non-overlapping DDM of the geometry of the original Schwarz problem .............................. 17 
Figure 7: Example of non-overlapping domain decomposition ............................................................. 19 
Figure 8: Illustration of how a global domain (left) can be separated into nine subdomains (right) ...... 20 
Figure 9: Representation of the different possible reactions considered in a Monte Carlo simulation . 21 
Figure 10: Balance representation to obtain the integral of the neutron transport equation ................. 22 
Figure 11: Schematic representation of a particle’s life simulated by a stochastic method .................. 24 
Figure 12: Main steps to separate a core problem in the 2-way coupled hybrid methods – Left: core to 
study – Middle: Separation into subdomains – Right: Calculation scheme applied to each subdomain
 .............................................................................................................................................................. 33 
Figure 13: Illustration of how multiple energy grids could be used with DDM – Right: core to study – 
Middle: Core split unto subdomains – Left: Energy grid applied to each subdomain ........................... 38 
Figure 14: Boundary fluxes between two neighboring cells with different energy grids ....................... 39 
Figure 15: Energy meshes with unequal group boundaries ................................................................. 42 
Figure 16: 2D core geometry of the C5G7 benchmark and boundary conditions ................................. 43 
Figure 17: Pin cell geometry – Left: Fuel cell – Right: Reflector cell .................................................... 43 
Figure 18: 2D core geometry of the problems to study – Left: boundary conditions – Right: energy mesh 
separations ........................................................................................................................................... 44 
Figure 19: Reflector configurations created – Left: Light water reflector – Middle: Thin steel baffle 
reflector – Right: Heavy steel baffle ...................................................................................................... 44 
Figure 20: Cell by cell absorption difference with reference case – Left: G51 – Middle: G23 – Right: G7
 .............................................................................................................................................................. 46 
Figure 21: Cell-by-cell absorption-rate differences with the reference case using the BRM ................ 48 
Figure 29: Cell-by-cell absorption-rate differences with the reference case using the CRM ................ 51 
Figure 36: Cell-by-cell absorption-rate differences with the reference case using the FRM ................ 53 
Figure 43: Illustration of energy meshes using the current multiple-energy-grid method (left) and a 
possible generalization of the method (right) ........................................................................................ 54 
Figure 44: Illustration of energy meshes using the current multiple-energy-grid method (left) and a 
possible generalization of the method without common energy boundaries (right) .............................. 56 
Figure 45: Illustration of the main steps in the 1-way coupled process ................................................ 58 
Figure 46: Fuel cell treated with a stochastic method (left) and fuel treated with a deterministic method 
(right) .................................................................................................................................................... 60 
Figure 47: Normalized spatial distribution of boundary flux steps and continuous representations ..... 61 
Figure 48: Normalized energetic distribution of boundary flux steps and continuous representations . 62 
Figure 49: SN quadrature with discrete directions [63] .......................................................................... 62 
Figure 50: Core-reflector traverse geometry with cell numbering ......................................................... 64 
Figure 51: Fuel cell media .................................................................................................................... 64 
Figure 52: Cell separation into a 20x20 submesh – Water cell (left) – Fuel cell (right) ........................ 64 
Figure 53: Core-reflector traverse geometry with cell numbering with voided fuel cells used in the 
coupled calculation ............................................................................................................................... 64 
Figure 54: Second Core-reflector traverse geometry with cell numbering cells which was not used ... 65 
Figure 55: Comparison of the complete IDT calculation (orange) to the complete LAST calculation (blue) 
– Fast group comparison (left) – Thermal group comparison (right) .................................................... 67 
Figure 56: C/C’ comparing complete IDT calculation to complete LAST calculation – Fast group 
comparison (left) – Thermal group comparison (right) .......................................................................... 67 
Figure 57: Comparison of IDT spatial distribution (blue) with the sampled spatial distribution (orange)
 .............................................................................................................................................................. 68 
Figure 58: Comparison of the IDT energetic distribution (blue) with the sampled energetic distribution 
(orange) ................................................................................................................................................ 68 
Figure 59: Comparison of the IDT angular distribution (blue) with the sampled angular distribution 
(orange) ................................................................................................................................................ 69 
Figure 60: Normalized flux in each water cell – Fast flux (left) – Thermal flux (right) ........................... 69 
Figure 61: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) 
to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) ......................... 70 



 

XIV 

Figure 62: Polar plot comparing the normalized boundary flux from IDT (orange) and the number of 
particles in each direction of solid angle from LAST (blue) ................................................................... 71 
Figure 63: Spatial plot comparing the normalized boundary flux from IDT (orange) and the number of 
particles in each sub-edge (blue) .......................................................................................................... 71 
Figure 64: Energy plot comparing the normalized boundary flux from IDT (orange) and the number of 
particles in each group from LAST (blue) ............................................................................................. 72 
Figure 65: Normalized flux in each water cell – Fast flux (left) – Thermal flux (right) ........................... 73 
Figure 66: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) 
to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) ......................... 73 
Figure 67: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green, 
red, and purple) to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 75 
Figure 68: C/C’ comparing complete IDT calculation (yellow, red, and purple) and coupled IDT-LAST 
calculation (red, and purple) to complete LAST calculation – Fast comparison (left) – Thermal 
comparison (right) ................................................................................................................................. 75 
Figure 69: Energy ranges and neutron spectrum ................................................................................. 76 
Figure 70: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) 
to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) ......................... 76 
Figure 71: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) 
to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) ......................... 78 
Figure 72: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) 
to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) ......................... 79 
Figure 73: Illustration of the main steps in the fully coupled process ................................................... 82 
 

  



 

XV 

LIST OF TABLES 
Table 1: Minimum number of unknowns for a deterministic calculation of a LWR ................................. 2 
Table 2: Main properties of the IDT solver ............................................................................................ 15 
Table 3: Parallelization of the phase-space in deterministic methods .................................................. 18 
Table 4: Main advantages and disadvantages of deterministic methods ............................................. 21 
Table 5: Main estimators used to obtain flux, current, or reaction rates ............................................... 25 
Table 6: keff estimators .......................................................................................................................... 25 
Table 7: Main advantages and disadvantages of stochastic methods ................................................. 26 
Table 8: Reconstruction methods tested and the associated expression of the form factor ................ 41 
Table 9: Global results obtained for each single energy grid calculation .............................................. 45 
Table 10: Maximum, average and minimum difference in pcm between single-energy-grid cases ..... 46 
Table 11: The difference in pcm between the obtained eigenvalue and the reference case using the 
BRM ...................................................................................................................................................... 47 
Table 12: Calculation time with OpenMP parallelization (12 threads) using the BRM .......................... 47 
Table 13: Maximum iterations reached using BRM .............................................................................. 47 
Table 14: Maximum, average and minimum difference using the BRM ............................................... 49 
Table 15: The difference in pcm between the obtained eigenvalue and the reference case using the 
CRM ...................................................................................................................................................... 49 
Table 16: Calculation time with OpenMP parallelization (12 threads) using the CRM ......................... 50 
Table 17: Maximum, average and minimum difference using the CRM ............................................... 52 
Table 18: The difference in pcm between the obtained eigenvalue and the reference case using the 
FRM ...................................................................................................................................................... 52 
Table 19: Calculation time with OpenMP parallelization (12 threads) using the FRM .......................... 53 
Table 20: Maximum, average and minimum difference using the FRM ............................................... 54 
Table 21: Array generated by IDT boundary flux print .......................................................................... 59 
Table 22: IDT calculation options ......................................................................................................... 65 
Table 23: LAST calculation options ...................................................................................................... 66 
Table 24: LAST calculation options for the 1-way coupled calculation ................................................. 66 
Table 25: Calculation time spent in each code ..................................................................................... 67 
Table 26: IDT calculation options simplified in energy .......................................................................... 74 
Table 27: Calculation time spent in each code ..................................................................................... 74 
Table 28: IDT calculation options simplified in space ........................................................................... 76 
Table 29: Calculation time spent in each code ..................................................................................... 77 
Table 30: IDT calculation options simplified in directions ..................................................................... 77 
Table 31: Calculation time spent in each code ..................................................................................... 78 
Table 32: Calculation time spent in each code ..................................................................................... 79 
Table 33: Upper and lower boundaries for each energy group for the 51-group mesh ........................ 94 
Table 34: Upper and lower boundaries for each energy group for the 23-group mesh ........................ 95 
Table 35: Upper and lower boundaries for each energy group for the 7-group mesh .......................... 96 
 

  



 

XVI 

LIST OF ALGORITHMS 
Algorithm 1: Algorithm implemented in IDT to solve a multigroup problem .......................................... 15 
Algorithm 2: Algorithm comparison between additive and multiplicative Schwarz methods ................. 16 
Algorithm 3: Algorithm implemented in IDT to solve a multigroup problem using multiple subdomains
 .............................................................................................................................................................. 20 
Algorithm 4: Implementation of Chen’s coupled shielding MC-DO method .......................................... 27 
Algorithm 5: Implementation of the coupled method by Becker et al. ................................................... 27 
Algorithm 6: Implementation of the hybrid estimator by Guadagni et al. .............................................. 28 
Algorithm 7: Implementation of the CADIS and FW-CADIS method .................................................... 29 
Algorithm 8: Implementation of the MMMD method ............................................................................... 30 
Algorithm 9: Implementation of Lee et al. energy hybrid method ......................................................... 30 
Algorithm 10: Implementation of the hybrid method for Baker’s work during his Ph.D. ........................ 31 
Algorithm 11: Implementation of the hybrid method in COMET ........................................................... 32 
Algorithm 12: Implementation of the energy selection from multi-group to continuous energy in SCONE
 .............................................................................................................................................................. 32 
Algorithm 13: Algorithm implemented in IDT to solve problems using DDM and multiple energy grids 40 
Algorithm 14: Boundary flux exchange in updated multiple-energy-grid method ................................. 55 
Algorithm 15: Sampling algorithm of discrete distributions ................................................................... 59 
Algorithm 16: Algorithm implemented in LAST to sample IDT boundary fluxes ................................... 60 
Algorithm 17: Algorithm implemented in IDT to run a fixed source calculation in LAST with boundary 
sources from IDT .................................................................................................................................. 63 
Algorithm 18: Corrected algorithm implemented in LAST to sample IDT boundary fluxes ................... 72 
Algorithm 19: Checks to perform to change the sampling distribution with energy .............................. 81 
 

  



 

XVII 

LIST OF ACRONYMS AND ABBREVIATIONS 
 

APOLLO3® Multi-purpose deterministic neutronic code under development at CEA/Saclay 

ASN Autorité de Sûreté Nucléaire – Nuclear Safety Authority, it is tasked with regulating 
nuclear safety, on behalf of the state, and informing citizens 

BRM Basic Reconstruction Method 

CRM Current Reconstruction Method 

DDM Domain Decomposition Methods 

FR Fast Reactor 

FRM Flux Reconstruction Method 

IDT Transport solver of APOLLO3® that can perform 2D and 3D lattice simulations, 
and 2D and 3D domain decomposition simulations 

keff k-effective or effective multiplication factor 

LAST A prototype for Monte Carlo transport code, developed at CEA/Cadarache 

LWR Light Water Reactor 

MC Monte Carlo 

MOC Method of Characteristics 

MOSC Method of Short Characteristics 

MOX Mixed Oxide 

OCS Outil de Calcul Scientifique – Scientific computing tools 

PN Spherical Harmonics 

PWR Pressurized Water Reactor 

SN Discrete Ordinates method 

TRIPOLI-4® Fourth generation of the continuous-energy radiation transport Monte Carlo code 
developed at CEA/Saclay 

UOX Uranium Oxide 

ZR4 Zircaloy-4 
 





 

1 

1. INTRODUCTION 
Numerical methods play an important role in the demonstration of both the viability of a new reactor 
concept and the safety demonstration of power plant life extension. Due to the high cost of building a 
nuclear facility, as well as the safety requirements, it is necessary to be able to demonstrate the viability 
of a project using predefined criteria, such as material availability, used fuel recycling capability, 
economic competitiveness, expected lifetime, etc. In France, the government requires a safety 
demonstration of the plant project to license the project [1]. Article 3.8 of [2] specifies that the safety 
demonstration must use verified computational tools.  

The Autorité de Sûreté Nucléaire (ASN) has defined a guideline, “guide 28” [3], in which it issues 
recommendations regarding the computational tools to ensure that they satisfy the plant operator’s 
needs. ASN is the French authority regulating nuclear safety and radiation protection. Such tools are 
called “Outils de Calcul Scientifique” OCS in French, are scientific computing tools, which are defined 
by the CEA and its industrial partners to fulfill ASN’s requirements for each field of application. These 
tools can notably be used to study core physics, shielding, or dismantling. 

In this context this work aims to develop innovative numerical methods to improve neutronic simulations. 
While computational tools rely on a model to simulate neutron behavior in a core, they also require input 
data and a calculation scheme to compute parameters / quantities of interest.  For neutronic calculation 
tools, the four main elements are: 

• Model: neutron transport equation; 
• Input data: neutron cross sections, material composition, geometry; 
• Calculation scheme: methods used to compute the quantities of interest. 
• Quantities of interest: reactor power map, effective multiplication factor keff, reaction rates, etc. 

 
As it will be detailed later in the next paragraph, existing methods are not suited to some complex 
situations such as new reactor concepts. Exploring new neutronic calculation schemes is therefore 
necessary.  

1.1 CURRENT METHODS IN NEUTRONICS AND CHALLENGES 
Calculation schemes modeling nuclear reactor cores can be separated into two categories: deterministic 
and stochastic methods. These methods are used in other fields, but this work will only describe the 
theory and processes in neutronics. 

Deterministic methods solve the neutron transport equation by discretizing the phase-space, which 
means that approximations are necessary to solve the equation. While this method leads to an 
approximate solution, this solution is still provided over the whole problem. 

The discretization of the neutron transport equation for deterministic methods will be explained further 
in §2.2.1. The focus here is the number of mesh cells necessary to discretize a full-core light water 
reactor (LWR), based on the order of magnitudes presented in [4]. 

Figure 1 represents the spatial dimensions of the different levels of a reactor core where core height 
can be considered to be approximately 4m. 
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~1,3 cm ~21 cm ~3 m 

Fuel cell Fuel assembly (17x17 cells) Core 
Figure 1: Radial views of a 900 MWe LWR core 

Based on the dimensions presented in Figure 1, it is possible to determine the minimum number of 
mesh cells necessary to fully represent each spatial level of a LWR core. This information is condensed 
in Table 1, in which the minimum number of unknowns necessary for each phase-space component to 
perform a critical LWR deterministic calculation is represented. Because the LWR core is critical, it is 
possible to neglect the time dependency, and for this reason, the discretization is only for the phase-
space excluding time. 

 Energy Direction / 
angle 

Space 

Cell Assembly Core 

Minimum number 
of mesh cells 100 000 250 

5 radial 

40 axial 
281 cells per 

assembly 
150 

assemblies 

Total per phase 
space component 100 000 250 8,42 x 106 

Total 2,2 x 1014 

Table 1: Minimum number of unknowns for a deterministic calculation of a LWR 

To perform a whole core LWR deterministic calculation without approximations requires at least 2,2 x 
1014 unknowns. This means that at every step of the calculation 2,2 x 1014 equations must be solved. 
Performing such a calculation requires large computational resources, which is not currently feasible. It 
is necessary to simplify the problem with approximations to be able to perform a deterministic core 
calculation. 

Stochastic methods, on the other hand, do not rely on a discretization of the phase-space. Stochastic 
methods are instead probabilistic (Monte Carlo type) methods, and rely on random sampling of the 
neutron population. Trajectories, interactions with matter, and induced reactions are all governed by 
probabilities of occurrence. Due to the probabilistic nature of these methods, a statistical error is 
associated with each result. The process is repeated until the statistical error is reduced to a satisfactory 
level. No or very few approximations of the physics and geometry of the problem are necessary to 
perform stochastic calculations, rendering this method more precise than deterministic methods. 
However, this precision requires longer calculation times and more computational resources. 
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The two branches of numerical methods named are complementary. At first glance, stochastic methods 
seem better suited for reference calculation, whereas deterministic calculations would be quicker but 
less precise. 

While these two methods are complementary in most cases, there are still situations where neither 
method performs well. The irradiation experiments GEDEON [5] performed in the MELUSINE reactor 
[6] are such examples. The experiments were designed to study gadolinium poisoned UO2 in PWRs. 
The gadolinium cells are a mixture of UO2 and Gd2O3 and are placed in a lattice with a moderation ratio 
of 1.8. Deterministic predictions are worse at lower burnup, in part due to the lack of information on the 
position of the control rods during irradiation. The movement during irradiation increases the cost of a 
full Monte Carlo analysis of these experiments.  

Using the complementary nature of the two methods, it seems that combining the two into a hybrid 
method would help overcome of their limitations. The deterministic calculation is better suited for the 
global calculation with control rod movement. The stochastic calculation is better suited for the 
gadolinium cell rate calculation. To be able to treat such problems, we chose to study them with the 
development of a hybrid method. 

1.2 OBJECTIVES OF THIS WORK 
This Ph.D. thesis explores the possibilities of deterministic - stochastic coupling and proposes a method 
using spatial domain decomposition already implemented in the deterministic solver IDT. IDT is a 
discrete ordinates deterministic solver of the APOLLO3® platform that can perform 2D and 3D 
computations using a non-overlapping spatial domain decomposition method. The stochastic prototype 
LAST, developed at CEA Cadarache, has been used to implement this hybrid method. The objective is 
to perform calculations of reactor cores where spatial areas are singularized using spatial domain 
decomposition methods (DDM). This hybrid method would make it possible to differentiate the treatment 
of the spatial zone from the rest of the problem, to obtain fine information on local neutronic quantities 
of interest and a better description of local heterogeneities. The goal of this work is to implement a 2-
way coupled hybrid method using DDM. 

1.3 MANUSCRIPT LAYOUT 
After this brief introduction to the types of methods used for neutron core calculations, it is time to dive 
in deeper and provide solutions to the problem statement. Chapter 2 explains the mathematical 
formalism of the neutron transport equation. Once the neutron transport derivation is complete, a 
derivation of the mathematical formalism of the two branches of numerical methods will be performed. 
After comparing both deterministic and stochastic methods, an overview of the different types of hybrid 
methods will complete chapter 2.  

Chapter 1 presents the analysis of a deterministic-deterministic energetic hybrid method. It introduces 
some of the challenges in the boundary exchange for hybrid methods when meshes are different on 
each side of the interface. It also presents the changes in the DDM calculation methodology to 
accommodate different meshes. 

Chapter 1 proposes a deterministic-stochastic hybrid method where the two codes are not directly 
linked, and where the deterministic simulation provides additional information to the stochastic 
calculation. The methodology relies on a converged deterministic calculation as input for the stochastic 
code. 

Conclusions on the work accomplished, the challenges faced and recommendations for future work 
developing this hybrid method are presented in our last section. 
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2. STATE-OF-THE-ART HYBRID METHODS TO SOLVE TRANSPORT 
PROBLEMS 
This chapter is aimed at giving the reader key elements of neutronics and an understanding of the 
current challenges in neutronics studies. The chapter first focuses on neutron behavior in a reactor core, 
then moves on to the derivation of said behavior (§2.1). We then look at deterministic (§2.2) and 
stochastic (§2.3) resolution schemes, and also review different hybrid methods developed (§2.4) to 
overcome challenges faced by purely deterministic or stochastic analysis. 
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2.1 DERIVING THE BOLTZMANN EQUATION 
Neutron behavior in a reactor core can be described by a distribution in space, direction, energy, and 
time, which obeys the neutron transport equation. This is a linear form of the Boltzmann transport 
equation [7] [8] [9] [10], in which it is possible to consider a “gas of neutrons deploying throughout a gas 
of nuclides” [4]. The particle distribution is defined in the phase-space, which is constituted of position 
C⃗, particle direction Ω33⃗ , and energy =. The neutron angular flux Ψ0C⃗, Ω33⃗ , =, F6 is obtained by solving the 
neutron transport equation and is used to calculate quantities of interest such as reaction rates. 

2.1.1 Hypotheses and approximations to study nuclear reactors 
In this work, we will look at the Boltzmann equation applied to nuclear reactors. Before deriving the 
equation to solve, it is necessary to establish the context in which it will be solved. The following 
hypotheses are made to set the environment: 

• In a nuclear reactor, the maximum kinetic energy (20 MeV) does not justify a relativist correction. 
For this reason, neutrons can only be considered as classical particles, and the polarizing effect 
is neglected. In this context, a neutron can be completely characterized by its position, direction 
and speed (or energy). 

• Mean free path – a few centimeters in a LWR and a few tens of cm in a fast reactor (FR) – is 
significantly larger than a nucleus – about 10-15 m. This means that collision can be viewed as 
a local phenomenon in time and space. We assume that neutrons move in straight lines 
between two collisions. We neglect any other force acting on neutrons other than the one 
responsible for collisions. 

• GH disintegration’s half-life (10 min) is notably longer than the average neutron lifetime in a 
reactor (from 10-3 to 10-7s), rendering it possible to neglect this phenomenon. 

• Neutron density in a nuclear reactor (1015 neutrons/cm3) is appreciably smaller than nuclei 
density (1023 nuclei/cm3). Neutron-neutron interactions are much less probable than neutron-
nuclei interactions. As a result, neutron-neutron collisions are neglected. 

• From the neutron perspective, materials in a reactor core can be considered as isotropic. 
• Delayed neutrons (those produced by radioactive decay of fission products) are not 

distinguished from prompt neutrons. The effect of the delay is noticeable for small time scales 
(10-5 s for thermal reactors) and not in a stationary case. Stationarity will be explained further 
down in §2.1.5. 

2.1.2 Phase-space 

The neutron population is described at instant F in the phase-space Γ by its position C⃗, direction Ω33⃗ , and 
energy =. The phase-space Γ = 0C⃗, Ω33⃗ , =6 is a seven-dimensional space. 

2.1.3 Cross-sections 
JK,LM is the microscopic cross-section, which can be considered as the surface of the C-type interaction, 
of a neutron with the isotope NO. It is typically expressed in barns, where 1Q = 10HSTUVS. As previously 
expressed in §2.1.1, materials are considered isotropic yielding rotationally invariant microscopic cross-
sections JK,LM(C⃗, =). 

ΣK is the macroscopic cross-section and is the probability of the interaction C of a neutron by unit of 
distance. Writing the macroscopic cross-section as such might be problematic when dealing with a sum. 
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To avoid confusion, the sum is indicated in bold. For instance, the macroscopic cross-section is the 
sum of the microscopic cross-sections for all isotopes multiplied by their respective concentrations: 

ΣK(C⃗, =, F) =XYLM(C⃗, F)JK,LM(C⃗, =)

Z[

 

The reader can turn to references [11] and [10] for more information regarding neutron interactions with 
matter, nuclear physics, and cross-sections. 

2.1.4 Particle balance 
The statistical study of the evolution of a particle population was conducted at the end of the 19th century 
by Boltzmann, who then derived the Boltzmann transport equation. As mentioned in §2.1.1, to determine 
parameters of interest for nuclear physics, a simplified version of this equation is solved. 

Using the hypotheses defined above, and the methodology defined in [9], it is possible to derive the 
neutron transport equation through a particle balance on the volume \]C⃗\SΩ33⃗ \= in the phase-space, 
between the instants F and F + \F. We derive the transport equation by looking at the particle balance in 
the phase-space, using the number of particles at time F, in C⃗ within \]C with a velocity of _⃗ within \]_, 
contained in the \Γ = \]C⃗\SΩ33⃗ \= volume at the instant F. In the absence of collisions, these same 
particles occupy volume	\Γ′ = \]C′33⃗ \SΩ′333⃗ \=′ at instant F + \F. However, the external source of neutrons 
and collisions also need to be accounted for. 

Neutrons appearing between instants of F and F + \F can be attributed to both a neutron source and 
collisions. Neutrons disappearing during this interval of time, can, in turn, be attributed to collisions. With 
this information, it is possible to synthesize the particle balance as an equation: 

FNVb	_cCNcFNd: + \NOceebcCc:UbO = UdffNONd:O + Od"CUb 

The particles of interest, in this case, are neutrons, so the neutron balance can be expressed as follows: 

g:

gF
0C⃗, Ω33⃗ , =, F6 + _Ω33⃗ . ∇33⃗ :0C⃗, Ω33⃗ , =, F6 = OijkkLMLjlM0C⃗, Ω

33⃗ , =, F6 + m0C⃗, Ω33⃗ , =, F6 ( 2.1 ) 

With :0C⃗, Ω33⃗ , =, F6 neutron angular density, _ speed, and m0C⃗, Ω33⃗ , =, F6 source term. The source term can 
be separated into two components: external source and neutrons induced by fission.  

• Angular flux 

The product of _ and the neutron angular density is called the neutron angular flux:  

Ψ0C⃗, Ω33⃗ , =, F6 = _:0C⃗, Ω33⃗ , =, F6 

With this definition, it is possible to rewrite the temporal variation term as so: 

1

_

gΨ

gF
0C⃗, Ω33⃗ , =, F6 =

g:

gF
0C⃗, Ω33⃗ , =, F6 

• Collision term 

As mentioned previously, collisions are responsible for neutrons both appearing and disappearing. The 
probability of a neutron disappearing through collisions can be expressed with Σn(C⃗, =, F) the probability 
that a neutron in 0C⃗, Ω33⃗ , =6 collides with a nucleus.  

On the contrary, the probability for neutron in 0C⃗, Ω33⃗ , =6 to collide with a nucleus and be remitted in 
0C⃗, Ωo3333⃗ , =o6, depends on the scattering cross-section ΣM0C⃗, Ω33⃗ , = → Ω33⃗ ′, =′, F6. 

OijkkLMLjl = −Σn(C⃗, =, F)Ψ0C⃗, Ω
33⃗ , =, F6 + q q ΣM0C⃗, Ω

33⃗ , = → Ω33⃗ ′, =′, F6Ψ0C⃗, Ω33⃗ ′, =′, F6\Ω′333⃗ S\=′
Tr

s

t
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• External source 

Neutrons emitted by an independent external source u, are one part of the neutron source term. This 
source includes different production methods, all independent of the flux. This could be a reactor startup 
source, spallation or spontaneous fission. 

• Neutron source 

The other part of the neutron source term is made up of neutrons induced by fission. This source is 
dependent on the flux. A fraction of the neutrons produced are instantly emitted (prompt neutrons) while 
others are emitted with a delay (delayed neutrons). The total number of neutrons induced by fission is 
made up both of these terms. The number of prompt neutrons produced is: 

vwΨ0C⃗, Ω
33⃗ , =, F6 =X

1

4y
q ν{,LM(=′)|{,LM(=′ → =)Σ},LM(C⃗, =′, F)Ψ(C⃗, =′, F)\=′

s

t

~}

LM

 ( 2.2 ) 

Fission products are grouped in 6 to 8 precursor families depending on their half-life. �Ä the 
concentration of precursor family Å, ÇÄ its decay constant and |5,Ä the delayed neutron spectrum. The 
number of delayed neutrons is: 

vÉΨ0C⃗, Ω
33⃗ , =, F6 =

1

4y
X|5,Ä(=)ÇÄ�Ä(C⃗, F)

Ä

 ( 2.3 ) 

The evolution of the precursor’s concentration reveals this terms dependence to the flux. 

∀Å,
\�Ä

\F
(C⃗, F) + ÇÄ�Ä(C⃗, F) =Xq |5,Ä,LM(=′)

s

t

Σ},LM(C⃗, =′, F)Ψ(C⃗, =′, F)\=′

~}

LM

 ( 2.4 ) 

The production cross-section ÖΣ}0C⃗, Ω33⃗ , = → Ω33⃗ ′, =′, F6 is defined for steady-state situations according to 
the hypotheses made in §2.1.1.The total source term in steady-state conditions can be expressed by 
combining the external and fission source components: 

m = u +X
1

4y
q q νΣ}0C⃗, Ω

33⃗ , = → Ω33⃗ ′, =′, F6Ψ0C⃗, Ω33⃗ ′, =′, F6|(= → =′)\Ω′333⃗ S\=′
Tr

s

t

~}

LM

 

Using the four previous points, it is possible to rewrite the particle balance ( 2.1 ) depending on the 
angular flux.  

1

_

gΨ

gF
0C⃗, Ω33⃗ , =, F6 + Ω33⃗ . ∇33⃗ Ψ0C⃗, Ω33⃗ , =, F6 + Σn(C⃗, =, F)Ψ0C⃗, Ω

33⃗ , =, F6

= q q ΣM0C⃗, Ω
33⃗ , = → Ω33⃗ ′, =′, F6Ψ0C⃗, Ω33⃗ ′, =′, F6\Ω′333⃗ S\=′

Tr

s

t

+X
1

4y
q q νΣ}0C⃗, Ω

33⃗ , = → Ω33⃗ ′, =′, F6Ψ0C⃗, Ω33⃗ ′, =′, F6|(= → =′)\Ω′333⃗ S\=′
Tr

s

t

~}

LM

+ u 

( 2.5 ) 

The angular flux is simplified to alleviate the neutron transport equation, it now becomes Ψ =

Ψ0C⃗, Ω33⃗ , =, F6. It is possible to write this equation in an even simpler form, by using operators. Operators 
are written in bold to differentiate them from other variables. 

1

_

gΨ

gF
+ ÜΨ = áΨ+ àΨ+ u ( 2.6 ) 

L is the leakage operator, H scattering operator, and F fission operator. The leakage operator includes 
both geometrical leakage and disappearances from collisions.  
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It is important to note that without boundary conditions, the neutron transport problem is not closed. The 
existence and uniqueness of the solution are confirmed by spatial boundary conditions and a temporal 
initial condition. 

â
Ψ0C⃗, Ω33⃗ , =, F6 = Ψt0C⃗, Ω33⃗ , =6																																																															à	F = Ft

Ψ0C⃗, Ω33⃗ , =, F6 = G ãC′33⃗ → C⃗	, Ω33⃗ → Ω33⃗ , =, FåΨãC′33⃗ , Ω′333⃗ , =, Få											 C⃗, C′33⃗ ∈ C⃗çjK5, Ω33⃗ . :3⃗ éèn < 0
 

( 2.7 ) 

 
G is called albedo and expresses the ratio between outgoing and ingoing fluxes at the domain interface. 
If there is a reflective boundary condition then G = 1 and 0C⃗, Ω33⃗ 6 = ãC′33⃗ , Ω′333⃗ − 2Ω′333⃗ . :3⃗ éènå but if there is a 
vacuum boundary condition then G = 0. 

2.1.5 Stationary approximation 
Materials exposed to irradiation see their properties vary due to neutronic reactions. This effect is directly 
observable on macroscopic cross-sections. 

The inventory variation of nuclides under irradiation can be described by the Bateman equation. For 
each fission product or actinide, the concentration variation in fuel is dependent on neutron flux. This 
means that studying a reactor core over time requires iteratively solving the Boltzmann and Bateman 
equations. 

However, in a nuclear reactor, cross-sections slowly vary with time when compared to the average 
neutron lifespan (§2.1.1). The stationary hypothesis simplifies the equation to be solved. Under this 
hypothesis, it is possible to neglect the time-dependent component of the neutron transport  
equation ( 2.6 ). Furthermore, for a critical nuclear power reactors, a source is used during startup to get 
the subcritical core to reach criticality. Once the reactor is critical, the flux level produced by fissions is 
much more significant than the startup source’s. From this point on, we neglect the flux produced by this 
source. The neutron transport problem can then be written as an eigenvalue problem ( 2.8 ), introducing 
the eigenvalue Ç. 

ÜΨ = áΨ+ ÇàΨ ( 2.8 ) 

Correcting the fission operator is convenient because the eigenvalue now coincides with the inverse of 
the effective multiplication factor Åé}} of the system. It is possible to rewrite the ( 2.8 ) eigenvalue problem 
depending on Åé}}. 

ÜΨ = áΨ+
1

Åé}}
àΨ ( 2.9 ) 

This multiplication factor represents the number of neutrons from one iteration to the next. This factor 
makes it possible to predict reactor behavior: 

- Åé}} > 1: supercritical state of the system, in which the population of neutrons increases with 
each generation; 

- Åé}} = 1: critical state where the chain reaction is self-sustaining, meaning there is no change 
in the neutron population over time; 

- Åé}} < 1: subcritical state then the number of neutrons decreases with time. 

The multiplication factor shows the difference between the current reactor state and the critical state. 
Reactivity is defined using the multiplication factor ì = 1 −

&

Äîïï
. It is important to note that solving the 

eigenvalue problem is not sufficient to directly obtain the angular flux Ψ, because it also means that 
Å × Ψ is as well, with Å ∈ ℝ. To be able to determine the flux, one can normalize the result using the 
global power of the core.  

In the rest of this manuscript, the phase-space will refer to the six-dimension space excluding time. 
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2.1.6 Scattering operator 

The stationary approximation renders the transfer cross-section ΣM0C⃗, Ω33⃗ , = → Ω33⃗ ′, =′6 independent of time. 
This is not the only hypothesis made to fit the nuclear reactor context, meaning it is possible to simplify 
this expression even further. 

As expressed §2.1.1, materials are isotropic, making cross-sections rotationally invariant and solely 
dependent on the deviation angle ? = Ω33⃗ . Ω33⃗ ′ of the neutron after a collision. Under this hypothesis, the 
transfer cross-section can be rewritten as: 

ΣM0C⃗, Ω
33⃗ , = → Ω33⃗ ′, =′6 =

1

2y
	ΣM(C⃗, = → =o, ?) 

By using the separation of variables method, the angular dependence of the transfer cross-section can 
be developed by a Legendre polynomial expansion. òÄ said polynomials. 

ΣM(C⃗, = → =o, ?) =
1

2y
X

(2Å + 1)

2
ΣM,Ä(C⃗, = → =′)òÄ(?)

s

Äôt

 ( 2.10 ) 

ΣM,Ä(C⃗, = → =′) = q ΣM(C⃗, = → =o, ?)òÄ(?)\?

Tr

 

ΣM,Ä(C⃗, = → =′), the k-order moment of the transfer cross-section. 

Furthermore, the addition theorem can be applied to Legendre polynomials, resulting in the development 
of the scattering operator on real spherical harmonics [11] [12]. 

òÄ(?) =
1

2Å + 1
X öÄk0Ω

33⃗ 6öÄk0Ω
33⃗ ′6

Ä

kôHÄ

 

By injecting this information into the angular flux expression, it is possible to obtain: 

Ψ0C⃗, Ω33⃗ , =6 =
1

4y
X X ΦÄk(C⃗, =)öÄk0Ω

33⃗ 6

Ä

kôHÄ

s

Äôt

 

ΦÄk(C⃗, =) = q öÄk ãΩ′
333⃗ åΨ ãC⃗, Ω′333⃗ , =å\Ω′333⃗

Tr

 

It is possible to simplify the scattering operator H by using the polynomial expansions of the angular flux 
and transfer cross-section. 

áΨ0C⃗, Ω33⃗ , =6 =
1

4y
X X öÄk0Ω

33⃗ 6q ΣM,Ä(C⃗, =′ → =)ΦÄk(C⃗, =′)\=′

s

t

Ä

kôHÄ

s

Äôt

 ( 2.11 ) 

 

Numerical methods describing critical nuclear reactors are the focus of this document, meaning that the 
eigenvalue problem needs to be resolved. 

This part of the review describes the main methods and approximations necessary to numerically solve 
the neutron transport equation. 

As a reminder, there exist two main types of methods to obtain the solution of the neutron transport 
equation. 
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- Stochastic methods rely on few approximations, the solution is instead obtained by looking at 
the simulated average neutron life, creating a statistical error attached to the result. The main 
principles of this method are explained in §2.3. 

- Deterministic methods, however, do rely on approximations and the discretization of the phase-
space. The initial problem is transformed into a system of equations. The steps to solve the 
neutron transport equation by deterministic methods are detailed in the following paragraph. 

2.2 DETERMINISTIC METHODS 
Deterministic methods rely on discretization of the phase-space, as such different methods can be used 
to discretize energy, angle, and space. Figure 2, which is inspired by a figure in reference [4], 
synthesizes different discretization methods.  

 

Figure 2: Different discretization methods used in a deterministic simulation 

Methods used by IDT are in red, which is the deterministic solver chosen in this thesis. The following 
paragraphs derive the equations implemented in IDT, relying on references [13] [14] [15] and [16]. 

APOLLO3® is a platform in which different solvers can be used; IDT is one of these solvers. A more 
comprehensive explanation of the project around the APOLLO3® multi-purpose code can be found in 
[17] and [18]. Deterministic solvers are a combination of angular and spatial discretization. The following 
list illustrates how different discretization methods are used in APOLLO3® solvers. 

- TDT [19]: where a coupled spatial/angular discretization is implemented. It is traditionally used 
for 2D problems using either collision probabilities (TDT-Pij) or method of characteristics (TDT-
MOC). Both methods lead to good results in terms of precisions; TDT-Pij is better suited to 
smaller geometries. TDT-MOC is one of the most precise deterministic methods available. 

- MINOS [20]: can treat Cartesian geometries using Raviart-Thomas finite elements. The 
transport operator is simplified by either using the diffusion approximation or a simplified 
spherical harmonics angular method. For these reasons, this method is usually preferred for 3D 
core calculation where the precision/calculation-time balance favors calculation time. 

- MINARET [21] [22]: is also a discrete ordinates method, the spatial treatment is performed using 
discontinuous Galerkin finite elements. This method can treat non-structured radial geometries, 
but leads to increased calculation costs compared to IDT. 

- IDT [14] [15] [23] [24] [25]: the Integro-Differential Transport (IDT) code is designed to solve the 
multigroup time-independent equation for neutrons in 2D and 3D Cartesian geometries. IDT 
was originally developed as a stand-alone discrete ordinates (SN) flux solver for 2D use in 
APOLLO2 [23] and is currently under development for 3D use in the CEA code APOLLO3® [17]. 
A non-overlapping spatial domain decomposition method (DDM) is implemented in IDT [25]. 

Neutron transport
equation

Integro-differential
form Integral form

Multigroup approach
(Energy)

Multigroup approach
(Energy)

Diffusion 
approximation

Angular
discretization

Angular & spatial 
discretization

Spherical Harmonics
PN

Discrete Ordinates SN

Spatial discretization

Finite differences
(1D/2D/3D)

Finite Elements
(1D/2D/3D)

Nodal methods
(1D/2D/3D)

Method of 
Characteristics (1D/2D)

Spatial discretization

Collision 
probabilities (1D/2D)
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The reader can refer to the following references, [4] [26] [21] [27] and [28], for a larger overview of 
deterministic methods. 

2.2.1 Solving neutron transport problems 

2.2.1.1 Energy discretization 
The multigroup approximation is used to discretize the energy spectrum in most deterministic solvers. It 
consists of replacing continuous-energy variables with discrete variables by dividing the energy 
spectrum into subdomains called groups. In Figure 3 the energy spectrum is divided into Ng groups, 
which are conventionally numbered decreasingly with energy: =t = =úùè and =~û'& = =úLl.  

 

Figure 3: Generic multigroup representation 

Furthermore, high-energy groups are called fast groups, whereas low energy ones are called thermal 
groups. 

In the multigroup approximation, cross-sections and flux are discretized into a finite number Ng of energy 
groups, and are constant and averaged in each of these groups.  

Once the energy spectrum is divided into groups, the neutron transport equation is integrated over each 
group. To ensure the correct resolution of the neutron transport equation, it is necessary to conserve 
reaction rates. For this reason, cross-sections are defined as follows: 

Σ#0C⃗, Ω33⃗ 6 =

∫ Σ(C⃗, =)Ψ0C⃗, Ω33⃗ , =6\=
†û

†û°¢

∫ Ψ0C⃗, Ω33⃗ , =6\=
†û

†û°¢

 

Unfortunately, this expression of the multigroup cross-section illustrates difficulties in solving the neutron 
transport equation. There is now an angular dependence of the macroscopic cross-section, even though 
materials are isotropic. The macroscopic cross-section is now dependent on the angular flux, which is 
itself determined by solving the neutron transport equation. 

In cases where the isotopes’ energy dependence is weak, the flux can be replaced by an analytic 
spectrum representative of a type of reactor. However, for resonant isotopes another method needs to 
be used, this process is called self-shielding [7] [28] This generates self-shielded cross-sections, specific 
to each problem. 

The multigroup angular flux can be expressed as: 

Ψ0C⃗, Ω33⃗ , =6 = £Ψ#0C⃗, Ω33⃗ 6												c_bU	+ ∈ §1,Y#•¶ 

As mentioned previously, the multigroup approximation transforms the eigenvalue problem ( 2.8 ) as a 
system of Ng angular-flux-dependent monokinetic equations over intervals ß=#; =#H&©. 

™#Ψ# = ´#o→#Ψ# +
1

Åé}}
¨#Ψ# ( 2.12 ) 

The operators are defined in the multigroup approximation as follows. 

Ü# = Ω33⃗ . ∇33⃗ + Σn
# 

≠#o→#Ψ#0C⃗, Ω33⃗ 6 =
1

4y
X X Σ

M,Ä

#o→#
(C⃗)Φ

Äk

#o
(C⃗)ÆÄk0Ω

33⃗ 6

Ä

kôHÄ

s

Äôt

 

Emin=0 Emax∆Eg

E (MeV)
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à#Ψ#(C⃗) =
1

4y
X |

Ø

#
YØ(C⃗) X ÖΣ

},Ø

#o
(C⃗)Φ#o(C⃗)

~û

#∞ô&

~ï±≤≤

Øô&

 

Φ
Äk

#
(C⃗) q ÆÄk0Ω

33⃗ 6Ψ#0C⃗, Ω33⃗ 6\Ω33⃗

Tr

 

Neutrons tend to lose energy with each collision, this phenomenon is called down-scattering. The 
increase in energy by collision, also called up-scattering, is negligible at high energy. This makes it 
possible to separate the scattering operator into three components. 

X á#o→#

~û'&

#∞ôt

= á#→# + X á
5j≥l

#o→#

#∞¥#

+ X áµ{

#o→#

#∞∂#

 

Because up-scattering is negligible at high energy, it is possible to solve the multigroup equations 
starting with high energy groups and using the previously calculated flux moments to determine the 
slowing-down operator. This is called the Gauss-Siedel iteration. 

When using this method, caution is recommended for groups in which up-scattering can no longer be 
neglected. In this case, it is necessary to iterate the calculation within the group to ensure convergence. 

The fission source is estimated at the beginning of every iteration using the scalar fluxes from the 
previous one. The effective multiplication coefficient keff is calculated at the end of each iteration. 

2.2.1.2 Angular discretization 
The multigroup approximation is insufficient to discretize the whole phase-space, it is also important to 
discretize the angular component. Three methods are traditionally used to discretize the angular variable 
in transport codes [28]. 

- Discrete ordinates SN: considers a finite number of directions £Ω33⃗ 5¶5∈⟦&,~∏⟧ belonging to the unit 
sphere. 

- Spherical harmonics PN: projects the angular flux on a spherical harmonic basis. 
- Simplified spherical harmonics SPN: is, as the name suggests, a simplified version of the PN 

method, making it more suited to core calculations. 

Discrete ordinates are the basis of the method of characteristics (MOC), and IDT discretizes the phase-
space using a variation of this method (MOSC). This method provides a system of Nd differential flux-
dependent equations for the angular variable. 

To simplify the discretization of the neutron transport equation, group indices will no longer be written 
for either fluxes or cross-sections. 

Ψ0C⃗, Ω33⃗ 6 ≡ Ψ#0C⃗, Ω33⃗ 6 

The system of equations is obtained by considering a set of directions £Ω33⃗ 5¶5∈⟦&,~∏⟧, transforming the 
multigroup equation ( 2.12 ) as: 

ßΩ33⃗ 5. ∇
33⃗ + Σn(C⃗)©Ψ0C⃗, Ω

33⃗
56

=
1

4y
X X ΣM,Ä(C⃗)ΦÄk(C⃗)ÆÄk0Ω

33⃗
56

Ä

kôHÄ

s

Äôt

+
1

4y
X |LM(C⃗)YLM(C⃗) X ÖΣ},LM(C⃗)Φ(C⃗)

~û

#∞ô&

~ï±≤≤

LMô&

 
( 2.13 ) 

The previous equation can be simplified by rewriting the angular flux as follows. 

Ψ5(C⃗) ≡ Ψ0C⃗, Ω33⃗ 56 ( 2.14 ) 
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2.2.1.3 Spatial discretization 
As shown previously in Figure 2, spatial discretization methods in neutron transport codes are similar to 
those used in other fields. Spatial discretization in IDT can be performed by finite differences, the nodal 
method, or MOSC. This document presents MOC spatial discretization. The reader can turn to 
references [21] [26] for more information on the methods not presented here. 

The MOC variant implemented in IDT is the method of short characteristics (MOSC). This method is 
based on integrating the neutron transport equation over trajectories in the 2D or 3D domain. Since 
neutrons are supposed to move in straight lines between collisions, the trajectories modeled are also 
straight lines. These straight trajectories are called characteristics. Masiello [29] chose to implement the 
MOSC in IDT since it was less memory-expensive than MOC. MOC stores all the points of impact of 
each trajectory to the interfaces between subdomains, while MOSC only stores projections on constant 
or linear functions. MOSC trajectories are limited to a single cell and uses MOC to calculate the flux on 
these trajectories. Having trajectories limited on a single cell means that the matrixes connecting spatial 
flux moments only need to be calculated once for each type of cell. 

Figure 4 represents trajectories to discretize a fuel cell under the MOSC. 

 

Figure 4: MOSC discretization for a fuel cell 

MOSC relies on the angular flux integration along trajectories, making it more convenient to use a source 
problem rather than an eigenvalue problem. The ( 2.13 ) equation becomes the equation below, with ª5 
the source term, containing both collision and fission sources. 

ßΩ33⃗ 5. ∇
33⃗ + Σn(C⃗)©Ψ5(C⃗) = ª5 ( 2.15 ) 

Before integrating the flux along the trajectory Γl, it is important to define the optical path º. The distance 
traveled O = |C⃗ − C⃗t|	by the particle is central to this definition. 

º0O, C⃗, Ω33⃗ 6 = qΣn0C⃗ − O′Ω
33⃗ 6\O′

M

t

 

By integrating the angular flux along the trajectory Γl, the source problem becomes an expression of 
the angular flux. 

Ψ5(C⃗) = Ψ5(C⃗t)b
Hæ0M,K⃗,ø33⃗ ∏6 + qª50C⃗ − O′Ω

33⃗
56b

Hæ0M∞,K⃗,ø33⃗ ∏6\O′

M

t

 ( 2.16 ) 

Introducing operators ¿ and ¡, the equation ( 2.16 ) can be written under operator form. 

Ψ5(C⃗) = ¿0C⃗, Ω33⃗ 56Ψ5(C⃗t) + [¡ª5]0C⃗, Ω
33⃗
56 ( 2.17 ) 

In practice, the integrals in equation ( 2.16 ) are obtained by dividing the domain ƒ into discrete regions 
ƒK. In this case, the source and cross-sections are projected into regions using domain functions. Over 
the considered regions cross-sections ΣK and source qK are constant and averaged over C. 

Ω
Γ#

$%

&'

&%

&%()
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∀	C⃗ ∈ ƒK, ∀	Ω
33⃗ ∈ m	 ∆

Σ(C⃗) ≅ ΣK»K(C⃗)

ª0C⃗, Ω33⃗ 6 ≅ ªK0Ω33⃗ 6»K(C⃗)
 

With this information the integration in equation ( 2.16 ) can be performed over the interval … = [C⃗K; C⃗K'&] =

Γl ∩ ƒK. 

Ψ5(C⃗K'&) = Ψ5(C⃗K)b
Hæ0M,K⃗,ø33⃗ ∏6 +

1 − bHæ0M,K⃗,ø
33⃗
∏6

ΣK
ªK0Ω

33⃗
56 

( 2.18 ) 

The new definition of the angular flux ( 2.18 ), provides the information necessary to define the operator 
¿ and ¡, from equation ( 2.17 ). ¿  is the transmission operator, and ¡ is the leakage operator. 

¿0C⃗, Ω33⃗ 56 = bHæ0M,K⃗,ø
33⃗
∏6 ¡0C⃗, Ω33⃗ 56 =

1 − bHæ0M,K⃗,ø
33⃗
∏6

ΣK
 

The goal is to solve the discretized neutron transport equation ( 2.15 ). To do so, the averaged neutron 
flux per region C is defined. This is a piecewise-constant definition of the flux. 

ΨK0Ω
33⃗ 6 =

1

ÀK
q Ψ0C⃗, Ω33⃗ 6\]C⃗

ÃÕ

 

In practice, the flux integral over the domain ƒK can be used to reconstruct the region-averaged angular 
flux. 

ΨK0Ω
33⃗ 6 =

1

ΣK
ãªK0Ω

33⃗ 6 − ∆%K0Ω
33⃗ 6å ( 2.19 ) 

∆%K is the difference between outgoing 0:3⃗ . Ω33⃗ > 06 and incoming currents. Following this definition, the 
difference can be expressed using the region’s surface mK. 

∆%K0Ω
33⃗ 6 =

1

ÀK
qŒ:3⃗ . Ω33⃗ ŒΨ0C⃗, Ω33⃗ 6\SC⃗

œÕ

 

This difference is typically approximated by a quadrature formula, using a set of characteristics parallel 
to Ω33⃗ 5 and intersecting the cell. To each of these trajectories, a weight 7K,l is associated, resulting in ∆%K 
being expressed as a sum of the different characteristics …. 

∆%K0Ω
33⃗ 6 ≅X7K,l0Ω

33⃗ 6 ãΨ0C⃗K'&, Ω
33⃗ 6 − Ψ0C⃗K, Ω

33⃗ 6å

–

 

 

Now that the derivation of the discretized neutron transport equation is completed, we can look at how 
this is implemented in IDT. The sequential algorithm implemented in IDT is shown below, in Algorithm 
1. 
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Numerical Steps in IDT to solve the multigroup problem 

 Loop over external iterations e=1,…,Ne 

  Update the local fission source from —(éH&)  

  Multigroup approximation – Scattering source calculation g=1,…,NG 

   Update local scattering sources (∀+o ≠ +) from /(é),#∞¥# and /(éH&),#∞∂#  

   Internal iterations i=1,…,Ni 

    Solve the spatial sub-problem: sweep over the mesh and propagate from 
boundary conditions 

 

    Update the local self-scattering source á##/
(é,L),#  

  Update keff  

  Convergence test on keff and power distribution  
Algorithm 1: Algorithm implemented in IDT to solve a multigroup problem 

To conclude the derivation of the discretized neutron transport equation, the main properties of IDT are 
summarized in Table 2. 

Transport equation form Integro-differential 

Energetic discretization Multigroup approximation 

Angular discretization SN method 

Spatial discretization 

Finite differences 

Nodal method 

MOSC 

Anisotropy Arbitrary 

Applications Assemblies and small cores 
Table 2: Main properties of the IDT solver 

The previous section focused on the sequential deterministic scheme implemented in IDT. As mentioned 
at the beginning of this section, a non-overlapping spatial DDM is already implemented in IDT. The 
following section is aimed at providing the reader with a better grasp of how DDM works and impacts 
the multigroup scheme. 

2.2.2 Domain Decomposition Methods 
The development of parallel architectures over the last decades has led to an increase in the use of 
domain decomposition methods (DDM) to numerically solve problems. As this continues, algorithms 
need to be suited to parallel calculations. A large amount of literature exists, as evidenced by the 
proceedings of the annual conference on DDM [30]. This document only refers to DDM applications to 
neutronics codes. 

The first definition of DDM is attributed to the mathematician H.A. Schwarz in the 1870s. Schwarz 
proposed an iterative method to analytically solve elliptical problems in complex geometries [31]. The 
equations of this problem rely on Ü a differential operator and " the unknown.  

”
Ü" = »									 N:	Ω						

" = +		 d_bC	Γ = gΩ
  ( 2.20 ) 
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Such methods made a comeback in the 1990s, in part due to Lions’ work [32], and with the development 
of parallel architectures. 

2.2.2.1 Overlapping DDM 
Schwarz’s idea was to separate the global domain into two overlapping subdomains	Ω = Ω& ∩ ΩS. This 
method iteratively solves the Laplace problem with a Dirichlet boundary condition (BC), taking into 
account the presence of the other subdomain. The Laplace problem is similar to the initial problem. 

 

Figure 5: Original problem studied by Schwarz in 1870 

It is possible to write the problem ( 2.11 ) as two iterative problems, one for each subdomain. 

Problem 1 Problem 2 

Ü"&
l'& = »					N:	Ω&																											

"&
l'& = +							d_bC	gΩ& ∖ Γ&											

"&
l'& = "S

l					d_bC	Γ& = gΩS ∩ ΩS

 
Ü"S

l'& = »					N:	ΩS																											

"S
l'& = +							d_bC	gΩS ∖ ΓS											

"S
l'& = "&

l					d_bC	Γ& = gΩ& ∩ Ω&

 

Each “half-problem” is solved at every iteration and updates the solutions ("&l, "Sl). Schwarz established 
that the convergence of the iterative process tends toward the solution of ( 2.20 ). This process is called 
alternating Schwarz method. When the global domain is separated into two subdomains, there are two 
variants of the alternating Schwarz method called additive and multiplicative Schwarz methods. 
Algorithm 2 compares the two algorithms, and the differences are written in red. 

Additive Schwarz method Multiplicative Schwarz method 

Problem 1 
Ü"&

l = »&								N:	Ω&																													

"&
l = +										d_bC	gΩ& ∖ Γ&													

"&
l = "S

lH&			d_bC	Γ& = gΩS ∩ ΩS		

 

Problem 1 
Ü"&

l = »&						N:	Ω&																														

"&
l = +									d_bC	gΩ& ∖ Γ&														

"&
l = "S

lH&			d_bC	Γ& = gΩS ∩ ΩS		

 

Problem 2 
Ü"S

l = »S						N:	ΩS																											

"S
l = +									d_bC	gΩS ∖ ΓS											

"S
l = "&

lH&			d_bC	Γ& = gΩ& ∩ Ω&

 

Problem 2 
Ü"S

l = »S				N:	ΩS																											

"S
l = +							d_bC	gΩS ∖ ΓS											

"S
l = "&

l					d_bC	Γ& = gΩ& ∩ Ω&

 

Algorithm 2: Algorithm comparison between additive and multiplicative Schwarz methods 

The way information is exchanged between subdomains at iteration : is the main difference between 
the two methods, as shown in Algorithm 2. Information is propagated as soon as it is available in the 
multiplicative method, while in the additive one, information from the previous iteration is used. 

It is to be noted that the additive method’s convergence is slower than the multiplicative one. This can 
be understood by the fact that the additive method requires more iterations since it uses the information 
from the previous generation.  

2.2.2.2 Non-overlapping DDM 
With this approach, the idea is to separate the global domain into S non-overlapping subdomains, as 
represented in Figure 6. The information is now solely propagated on the interfaces between 
subdomains. 

Ω" Ω" ∩ Ω$ Ω$

Γ"

Γ$
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Ω =’ΩL

œ

Lô&

ΩL ∩ ΩØ = ∅ ( 2.21 ) 

The difference between these two types of DDM is seen at the interface between subdomains. 

\NV◊’’0ΩÿL ∩ Ω
ÿ
Ø6

ØL

Ÿ = ”
\NV(Ω) − 1						:d: − d_bCfceeN:+

\NV(Ω)																											d_bCfceeN:+
 ( 2.22 ) 

 
Figure 6: Non-overlapping DDM of the geometry of the original Schwarz problem 

The following problem is solved in each subdomain. The goal is to determine " on the interface ΓL ∩ ΓØ. 

⁄

™L"L = »L	 N:	Ω											

"L = +	 d_bC		ΓL ∩ Γ		

"L = "¤				d_bC	ΓL ∩ ΓØ	

 ( 2.23 ) 

System ( 2.23 ) can be written as a linear system by starting with the unknowns from subdomain 1, then 
numbering those from subdomain 2, and finally, those belonging to the interface. 

‹

ö& 0 −›&¤
0 öS −›S¤

−ƒ¤& −ƒ¤S �¤¢fi

fl ‡

"&
"S
"¤¢fi

· = ‡

»&

»S
+

· ( 2.24 ) 

System ( 2.24 ) relies on the following definitions. 

- öL the discretized form restricted to ΩL, of the L operator ; 
- �¤¢fi the discretized form restricted to ΓL ∩ ΓØ, of the L operator ; 
- ›L¤ and ƒ¤‚ matrices linking the unknowns of a subdomain to the boundary unknown ;  
- "L the discretized form restricted to ΩL, of the unknown " ; 
- "¤¢fi the discretized form restricted to ΓL ∩ ΓØ, of the unknown " ; 
- »L the discretized form restricted to ΩL, of ». 

To highlight the bloc structure of ( 2.24 ) matrices of the same type can be grouped. 

„
ö ›

� ƒ
‰ „
"

"¤
‰ = Â

»

+
Ê ( 2.25 ) 

It is possible to transform this system into a linear problem depending on the boundary unknowns. 

m"¤ = Q ( 2.26 ) 

where m = � − ƒöH&› is the Schur complement and Q = + − ƒöH&». It is also possible to obtain the 
solution of subdomains, by solving the system on the boundary surfaces ( 2.26 ). This system can be 
solved by both direct and iterative methods and is typically performed with preconditioned Krylov 
subspace methods. 

" = öH&(» − ›"¤) ( 2.27 ) 

Building the Schur complement requires the inversion of matrix A. This matrix is diagonal by blocs, 
making the inversion of the matrix A, is equivalent to inverting the local problem for each subdomain. 

Ω" Ω#Γ"#
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2.2.2.3 Applications to neutron transport 
Spatial DDM have increasingly been used in the last few years in neutronic calculation schemes, 
particularly in deterministic methods. It is important to note that the interest in spatial DDM is 
complementary to the development of parallel architectures. 

DDM have been applied to deterministic schemes with two main objectives. On the one hand, they can 
be used to decompose the phase-space to solve in parallel the decomposed problem.  

Table 3 shows the parallelization of the phase-space using deterministic methods. 

Energy Angle Space 

Each processor solves a 
monokinetic problem. This is 
equivalent to solving the 
multigroup problem by an 
iterative bloc Gauss-Jacobi  

It depends on the method used. 

Sn methods can be parallelized 
because they use a set of 
discrete  and independent 
directions. Each direction can 
be treated by a different 
processor. 

No particular parallelization 

Table 3: Parallelization of the phase-space in deterministic methods 

This parallel step is necessary to calculate the ( 2.8 ) collision source and to solve the ( 2.5 ) monokinetic 
equation for a given direction. Once this step is finished, data is synchronized sequentially using 
moments of the angular flux in equation ( 2.6 ).  

2.2.3 Modification of the deterministic scheme to accommodate DDM 
The implementation of a spatial DDM in IDT does not change its goal: to solve the neutron transport 
equation. The formulation of the problem is written for a domain ƒ. Domains are now called ƒ to avoid 
confusion with angular directions. 

Á
ËΨ = È									N:	ƒ

ΨH = 0					d_bC	Γ
 ( 2.28 ) 

Ψ is the angular flux within the domain ƒ, ΨH is the ingoing flux at the boundary Γ, Ë is the transport 
operator, and È =

&

Í
àΨ the normalized fission source. à the fission operator and Ç the problem’s 

eigenvalue. The phase space is represented in Î. 

Î ≡ 0C⃗ ∈ ƒ, 23⃗ ∈ mS, = ∈ ℝ'6

Ï ≡ 0C⃗ ∈ gƒ, 23⃗ ∈ mS, = ∈ ℝ'6

Ï± ≡ ãC⃗ ∈ gƒ, 23⃗ ∈ mS: 23⃗ . :'(C⃗)
33333333333⃗ ≶ 0, = ∈ ℝ'å

 ( 2.29 ) 

As a reminder gƒ is the domain’s border, :'(C⃗)33333333333⃗  is the outgoing normal at a point C⃗ ∈ gƒ and Ï' and ÏH 
are the outgoing and incoming boundaries of the phase space Î. 

A non-overlapping domain decomposition method is implemented in IDT as shown in Figure 7. In his 
Ph.D thesis, Lenain [13] shows that a non-overlapping method was chosen to optimize memory costs. 
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Figure 7: Example of non-overlapping domain decomposition 

For each subdomain the phase space can be written as follows: 

ÎL ≡ 0C⃗ ∈ ƒL, 2
3⃗ ∈ mS, = ∈ ℝ'6

ÏL ≡ 0C⃗ ∈ gƒL, 23⃗ ∈ m
S, = ∈ ℝ'6

ÏL
±
≡ ãC⃗ ∈ gƒL, 23⃗ ∈ m

S: 23⃗ . :'(C⃗)
33333333333⃗ ≶ 0, = ∈ ℝ'å

 ( 2.30 ) 

For each subdomain, the following problem can be solved. /L is the multigroup angular flux for the i-th 
subdomain and /&S is the angular flux at the interface between subdomains 1 and 2.  

⁄

ËLΨL = ÈZ									N:	ÎL						

/L
H
= 0						d_bC	ÏL ∩ Ï

/L = /&S		d_bC	ÏL ∩ ÏØ

 ( 2.31 ) 

The vacuum boundary condition is ensured by the second line of equations ( 2.31 ), where the incoming 
boundary flux is null. The global solution is obtained by line 3 of equations ( 2.31 ). This line shows that 
the continuity of the angular flux at the interface is imposed. By proceeding as shown in §2.2.2.2, the 
following system is obtained. 

‡

ö& 0 −›&
0 öS −›S

−ƒ& −ƒS �&S

· . ‡

/&
/S
/&S

· = ‡

u&
uS

0

· ( 2.32 ) 

As a reminder, ›L and ƒL are the projection operators, while �&S is the coupling operator. ›L projects 
the flux into the subdomain, ƒL projects the flux to the interface, and �&S couples the interface fluxes. 
To continue and solve the problem, the interface flux needs to be expressed as. 

/&S =

⎩
⎪
⎨

⎪
⎧/& = ∆

/&', 23⃗ ∈ mS: 23⃗ . :&'(C⃗)
3333333333333⃗ > 0

/&H, 23⃗ ∈ mS: 23⃗ . :&'(C⃗)
3333333333333⃗ < 0

/S = ∆
/S', 23⃗ ∈ mS: 23⃗ . :S'(C⃗)

3333333333333⃗ > 0

/SH, 23⃗ ∈ mS: 23⃗ . :S'(C⃗)
3333333333333⃗ < 0

 ( 2.33 ) 

System ( 2.32 ) becomes: 

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎡

ö& 0

0 öS

−ƒ̄&

0
0

0

0

−ƒ̄&
0

0

˘

˘ 0

0

0

0

−›̇&
0

0

−›̇S

…
0

0

−…

0
…

−…

0

−�̊&
0

…

0

0

�̊S

0

… ⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎤

.

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎡

/&
/S

/&'
/S'
/&H
/SH⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎤

=

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎡

u&
uS

0

0
0

0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎤

 ( 2.34 ) 

During his Ph.D., Lenain [13] found this system particularly interesting because of the first two lines. 
These lines show the restrictions of the transport equation to each subdomain to be independent, thus 
making it possible to run each subdomain calculation in parallel. The communication procedure is 

!" !#

Γ = Γ" = Γ#
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represented by the last two lines of the system. This is the reason he implemented an additive Schwarz 
scheme to solve the transport equation. 

For each iteration, the incoming multigroup angular flux is imposed as the boundary condition for each 
subdomain. This incoming flux is nothing more than the outgoing flux from neighboring subdomains 
obtained at the previous iteration by inversing the multigroup transport problem in each subdomain. 
Boundary fluxes are updated at the end of each external iteration. 

The implementation of these updates to accommodate multiple subdomains in IDT is shown in Algorithm 
3. It can be noted that, compared to the sequential scheme shown in Algorithm 1, a loop over 
subdomains is added above the scattering source calculation. 

Numerical Steps in IDT to solve the multigroup problem using DDM 

 Loop over external iterations e=1,…,Ne 

  Loop over subdomains s=1,…,Ns 

   Update the local fission source from —M
(éH&)  

   Multigroup approximation – Scattering source calculation g=1,…,NG 

    Update local scattering sources (∀+o ≠ +) from /M
(é),#∞¥# and /M

(éH&),#∞∂#  

    Internal iterations i=1,…,Ni 

     Solve the spatial sub-problem: sweep over the mesh and propagate from 
boundary conditions 

 

     Update the local self-scattering source á##/M
(é,L),#  

  Update the boundary flux and exchange boundary fluxes between subdomains 

∀	O"Q\d, ∀+, ∀23⃗ â
/
	Mµç5j,Ll

(é)
0C⃗, 23⃗ , +6 = /

	léL#ˇçjK,jµn

(é)
0C⃗, 23⃗ , +6,					23⃗ . :3⃗ éèn < 0

/
	léL#ˇçjµK,Ll

(é)
0C⃗, 23⃗ , +6 = /

	Mµç5j,jµn

(é)
0C⃗, 23⃗ , +6,					23⃗ . :3⃗ éèn ≥ 0

 

 

  Update keff  

  Convergence test on keff and power distribution  

 Reconstruction distribution at the core scale 
Algorithm 3: Algorithm implemented in IDT to solve a multigroup problem using multiple subdomains 

Domain decomposition methods make it possible to separate a global calculation into sub-problems. A 
non-overlapping DDM is implemented in IDT enabling the user to separate the core to be studied into 
different subdomains. Subdomains are defined and set by the user. In Figure 8, the user separated a 
quarter of a core into nine subdomains, each subdomain corresponding to the size of a subassembly. 

 

Figure 8: Illustration of how a global domain (left) can be separated into nine subdomains (right) 

In the current implementation of the DDM in IDT, subdomains do not need to be the same size. This 
can be interesting from a computational point of view when certain subdomains are much more 
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expensive to calculate than others. To simplify boundary exchanges between subdomains, the phase 
space is treated the same way for each subdomain. This means that the spatial treatment of each 
subdomain is the same for all subdomains. 

Future work to develop the hybrid method will use the DDM already implemented in IDT. The reason for 
this will be explained in §2.5. 

2.2.4 Advantages and disadvantages of deterministic methods 
In §1.1, Monte Carlo methods were shown to be better suited as reference methods than deterministic 
methods. Deterministic methods seemed more interesting for design purposes thanks to their 
comparatively quicker calculation time. To have a better understanding of the limitations of deterministic 
methods, we synthesized the advantages and disadvantages in Table 4. 

Advantages Disadvantages 

Provides information in all phase-space of the 
problem 

Increasing the phase-space discretization will 
increase the calculation time 

Depletion calculations  

Coupling with thermo-hydraulic or thermo-
mechanic codes 

 

 Discretization error 

 Self-shielding procedure and associated error 
Table 4: Main advantages and disadvantages of deterministic methods 

2.3 STOCHASTIC METHODS 
In this paper, stochastic methods are indifferently being referred to as stochastic, probabilistic, or Monte 
Carlo methods. 

The Boltzmann equation offers a statistical description of a neutron population in the phase-space. 
Monte Carlo methods rely on random sampling to obtain a numerical solution of the problem, naturally 
suited to obtain a numerical solution of the Boltzmann equation. 

To do so, neutron lives are simulated, from their birth up to their disappearance from the system by 
either leakage or absorption. Figure 9, represents the different lives a neutron can lead, as well as the 
reactions considered in a Monte Carlo simulation. 

 

Figure 9: Representation of the different possible reactions considered in a Monte Carlo simulation 

Due to the probabilistic nature of the simulation, a discretization of the phase-space is not necessary to 
solve the problem. This leads to fewer approximations, making stochastic methods better suited to 
reference calculations. However, to ensure convergence of such a simulation a large number of particle 
histories must be simulated, requiring large calculation times and computational resources for some 
calculations. 
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Before going over the Monte Carlo algorithm, it is necessary to define key notions of stochastic methods. 
This type of simulation relies on the law of large numbers and the central limit theorem. 

2.3.1 Neutron transport equation derivation for stochastic methods 
Contrary to deterministic methods used in IDT, stochastic methods rely on an integral form of the neutron 
transport equation. Figure 10 is used to derive the stationary and integral form of the neutron transport 
equation, using the methodology presented in references [4] [33]. 

 

Figure 10: Balance representation to obtain the integral of the neutron transport equation 

Figure 10 shows that the angular flux at the point of calculation Ψ0C⃗, Ω33⃗ , =6 is the result of two 
contributions. 

- The first part is composed of neutrons emitted by the source m0C⃗o, Ω33⃗ , =6. These neutrons only 
reach the point of calculation if they do not collide. This contribution is made up of all the source 
points. 

q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿm0C⃗ − OΩ33⃗ , Ω33⃗ , =6\O

s

t

 

- The second contribution is made up of neutrons arriving at C⃗o = C⃗ − OΩ33⃗ , with an energy =′, 
instead of = and in a different direction. These neutrons contribute to the angular flux at the 
point of calculation if they collide with matter resulting in an energy = and direction Ω33⃗ . Once they 
are at the desired energy and direction, they must not collide with anything else over the 
remaining distance. 

q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿq q ΣnK0C⃗ − OΩ
33⃗ , Ω33⃗ o, =o → Ω33⃗ , =6Ψ0C⃗ − OΩ33⃗ , Ω33⃗ , =6\Ω33⃗ ′

Tr

\=′

s

t

\O

s

t

 

By summing these two contributions, it is possible to obtain the integral form of the neutron transport 
equation, as written below. 

Ψ0C⃗, Ω33⃗ , =6 = q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿq q ΣnK0C⃗ − OΩ
33⃗ , Ω33⃗ o, =o

Tr

s

t

s

t

→ Ω33⃗ , =6Ψ0C⃗ − OΩ33⃗ , Ω33⃗ , =6\Ω33⃗ ′ \=′ \O

+q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿ m0C⃗ − OΩ33⃗ , Ω33⃗ , =6\O

s

t

 

 

( 2.35 ) 
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It is possible to rewrite the transport equation ( 2.35 ) as a function of the collision density A0C⃗, Ω33⃗ , =6 =
Σ(C⃗, =)Ψ0C⃗, Ω33⃗ , =6. 

A0C⃗, Ω33⃗ , =6 = Σ(C⃗, =) ‹qb)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿm0C⃗ − OΩ33⃗ , Ω33⃗ , =6\O

M

t

+q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′

M

t

Ÿq q
ΣnK0C⃗ − OΩ

33⃗ , Ω33⃗ o, =o → Ω33⃗ , =6

Σ(C⃗, =)
A0C⃗ − OΩ33⃗ , Ω33⃗ , =6\Ω33⃗ ′

Tr

\=′

s

t

\O

s

t

fl

 

 

( 2.36 ) 

With this new expression, it is possible to define the following operators. T is the transfer operator, while 
C is called the collision operator. 

¿ãC′33⃗ → C⃗, Ω33⃗ , =å = Σ(C⃗, =)q b)e◊−qΣ0C⃗ − O′Ω33⃗ , =6\O′
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Equation ( 2.36 ) can be written under operator form using the previously defined operators T and C. 

A = ¿"A + ¿m ( 2.37 ) 

By defining the transport operator ¡ãC′33⃗ , Ω33⃗ o, =o → C,33⃗ Ω33⃗ , =å = ¿ãC′33⃗ → C⃗, Ω33⃗ , =å"0C⃗, Ω33⃗ o, =o → Ω33⃗ , =6, equation  
( 2.37 ) becomes: 

A = ¡A + ¿m ( 2.38 ) 

2.3.2 Monte Carlo scheme 
The following paragraph reviews the different steps of a Monte Carlo simulation. 

(1) Statistical process parameters definition. These are necessary to generate particle histories. 
(2) Associating the random variable Î to a quantity of interest #. Every time a neutron reaches the 

counting area, a score 7 is attributed to Î. 
(3) Probability density definition. To do so, the following equation must be satisfied in the region of 

interest $: =[Î($)] = #($). Under this condition, defining probability densities is equivalent to 
randomly choosing the particles, their interactions and the distance traveled, and following the 
laws of physics. 

(4) Repeating N times the simulation. N cycles, also called batches, of M particles, are simulated, 
after which it is possible to obtain Î%l($) =

&

&
∑ 7l,ú($)
&
úô& . 7l,ú the score associated with 

history : of batch V. 
(5) Law of large numbers to obtain #. According to the law of large numbers, it is possible to obtain 

#($) with the average value Î%~($) =
&

~
∑ Î%l($)
~
lô& . 

lim
~→s

Î~($) = #($) 
This is possible with the central limit theorem, according to which Î%~($) are distributed along a 
Gaussian of variance JS. 

JS =
1

*(* − 1)
XãÎ+($) − Î,($)å

S
,

+ô&

 

A confidence interval U(b) with the central limit theorem can be calculated for a Gaussian 
probability density ò, and b a positive real number. In practice, b is a multiple of JS. 

U(b) = ò0Î,($) − b ≤ Î($) ≤ Î,($) + b6 
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Figure 11 represents the particle history simulation of step (3) and is inspired by a similar scheme in 
reference [4]. 

 

Figure 11: Schematic representation of a particle’s life simulated by a stochastic method 

 

To summarize, deterministic methods discretize the phase-space and require approximations to solve 
the neutron transport equation, while stochastic methods rely on random sampling and deal with 
statistical processes. IDT’s MOSC is limited by the number of characteristics and directions considered, 
while stochastic methods’ uses are limited by computational resources. 

The processes described so far are performed sequentially. However, stochastic methods are naturally 
suited to parallel processes, as shown in step (4). The development of parallel architectures has 
improved the speed of a stochastic simulation. 

2.3.3 Estimators 
The goal of a stochastic simulation is to estimate quantities of interest. Given the probabilistic nature of 
the simulation, estimators need to deal with statistical data.  

Neutron flux, current, reaction rates, and keff can all be obtained with estimators. Table 5 synthesizes 
the main estimators used in a Monte Carlo simulation to obtain the previously mentioned quantities of 
interest. 

Emission
• Position choice
• Energy choice
• Direction choice

Distance travelled

Collision
• Nucleide choice
• Interaction choice

Boundary Interface between
materials

Leakage Sterile capture
Characteristics

after interaction
• Direction choice
• Energy choice

Reflection

End of particle life
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Table 5: Main estimators used to obtain flux, current, or reaction rates 

Table 5 relies on the following physical parameters. 

- 7 neutron weight before colliding; 
- f distance traveled by the neutron between two collisions; 
- Σ total macroscopic cross-section; 
- ΣM scattering macroscopic cross-section; 
- ΣK macroscopic cross-section of the reaction of interest; 
- :3⃗  normal direction to the considered surface; 
- º optical path between the collision point and the point of calculation. 

Neutron weight is different in analog and non-analog simulations. Analog simulations aims to represent 
natural laws, meaning that each particle is simulated exactly and the weight is set to 1 for each event. 
This method has led to low scores for certain configurations, such as too few particles reaching a 
detector after an absorbing slab with a source on the other side. To limit the number of histories to be 
run, biasing methods are developed. These biased calculations are non-analog. The neutron weight is 
adjusted after each collision and tends to zero. In this simulation, the neutron weight can be seen as its 
probability to contribute to the desired result. 

Table 5 highlights the fact that estimators cannot be used arbitrarily for all situations. For instance, the 
collision estimator cannot be used in vacuum cases because it is not defined for Σ = 0. Point kernel 
estimators are better suited to vacuum conditions. Convergence speed also varies with the estimator 
and the problem to treat. 

keff can be obtained either using reactions or with specific estimators, two of which are given in Table 6. 

Track length 7fXÖØYØJ}Ø

Ø

 

Collision 
7

Σ
XÖØYØJ}Ø

Ø

 

Table 6: keff estimators 

Stochastic methods do not yield results over the whole geometry unless estimators are explicitly defined 
to do so. If flux variations are to be observed in a water traverse, for instance, the user needs to define 
cells in that traverse instead of one block of water. Creating additional tally volumes by superimposing 
a mesh over the problem geometry can be necessary for such problems but for evolution problems, this 
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is not sufficient. In such problems, additional volumes need to be created to account for the changes 
through time in the volumes of interest. However, by discretizing the whole problem, deterministic 
methods naturally produce results over the whole phase-space. This can be a problematic aspect when 
using stochastic methods. 

2.3.4 Stochastic code used 
Many different stochastic codes have been developed using the method presented such as TRIPOLI-
4® [34] , MCNP [35], OpenMC [36], and SERPENT [37]. In this work, we chose to use LAST [38]. It was 
developed at CEA Cadarache as a Monte Carlo code for 3D neutron transport to run a simulation with 
self-evaluated nuclear data. This code was chosen to be used for test purposes. In our case, we chose 
to work with LAST, to implement a proof of concept of the hybrid method. If this method yields interesting 
results, it could then be implemented into a reference code. 

However, the implementation of functionalities in LAST must be verified with a reference code. TRIPOLI-
4® is a continuous-energy Monte Carlo code developed at CEA Saclay capable of performing 3D neutron 
and photon transport. It is used as a verification tool for the estimators implemented in LAST. 

2.3.5 Advantages and disadvantages of stochastic methods 
Stochastic methods are continuous in energy, space, and angle, and avoid discretization errors; 
therefore, they seem to have significant advantages over deterministic methods. To better understand 
the limitations of both methods, we look at stochastic methods in Table 7.  

Advantages Disadvantages 

No discretization required à well suited for 
complex geometries and used as a reference 

method 

Stochastic uncertainties à Standard deviation 
decrease as the square root of the number of 
histories run. Calculations can become very 

costly for large and complex problems 

 Increasing the number of tally volumes, surfaces 
and points can also be computationally costly 

Well suited to low scattering regions The calculation becomes more costly in highly 
scattering regions. Neutrons will have to collide 
and scatter a greater number of times before 

escaping or dying. 
Table 7: Main advantages and disadvantages of stochastic methods 

From Table 4 and Table 7, we get a better understanding of the complementary nature of both these 
two methods. While stochastic methods do not discretize the phase-space and can be used as reference 
methods, their stochastic nature means that a sufficient number of histories needs to be run for each 
problem studied. This means that coupling stochastic problems with thermo-hydraulics codes is difficult 
because feedback from the thermo-hydraulics code means running new histories to lower the 
uncertainties and can become too computationally costly. Deterministic methods are much better suited 
for coupled schemes and are often much quicker to run. As discussed in §1.1 some situations are difficult 
to study with both stochastic and deterministic methods. To treat these problems, different hybrid 
methods have been developed. 

2.4 EXISTING HYBRID METHODS IN REACTOR PHYSICS 
Deterministic and stochastic methods each have their strengths and weaknesses. The errors of 
discretization of the phase-space and errors due to the self-shielding process are the main weaknesses 
of deterministic methods. Monte Carlo methods can be very computationally intensive because they 
simulate individual particles and are by nature stochastic. Different responses have been developed to 
overcome these weaknesses. 
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2.4.1 Coupling to treat shielding problems 
Modeling nuclear facilities can be quite a challenge due to their large dimensions and complex 
geometries. This can make deep penetration problems all the more difficult to handle for traditional 
methods. 

2.4.1.1 Hybrid calculations separating global problem into multiple problems 
Chen found [39] that the main difficulties of shielding design and analysis came from the complex 
geometry of the target and/or source region. The thickness of the shield around the target/source, and 
charged particle transport need to be modeled. Chen said that Monte Carlo methods are unable to give 
satisfactory results for deep penetrating simulations and that discrete-ordinate-deterministic methods 
are limited in treating complex geometries and cannot handle charge particle transport. This led to the 
development of a coupled scheme where the shielding problem was separated into a source region 
treated by the Monte Carlo method and a bulk shield region treated by the deterministic method, which 
was implemented as follows in Algorithm 4. 

Numerical Steps in Chen’s MC-DO [39] 

 Monte Carlo calculation over the source region and store particle tracks crossing the link surface 
in the binary file 

 Initialize the deterministic model using the link source as the source input 

 The interface program reads the link file and defines meshes, energy group structure, and angular 
quadrature sets 

 The user-created input file to define the remaining parameters 

 Discrete ordinates deterministic calculation of the bulk shield region 
Algorithm 4: Implementation of Chen’s coupled shielding MC-DO method 

In this method, the code is separated into two regions to study but the two codes use do not interact 
much. The shield region uses the source region data to initialize its second calculation but no feedback 
is implemented. The interaction between the two codes is weak. 

2.4.1.2 Hybrid calculations using variance reduction methods 
Instead of separating the problem into two regions, it is also possible to use the deterministic method to 
initialize the Monte Carlo problem. Becker et al. [40] also looked at deep-penetration problems without 
dividing the problem and implemented a solution as follows in Algorithm 5. Becker et al. used the 
deterministic scalar flux to define a correction of said flux, the “correcton flux”. This allowed them to 
transform the stochastic problem to solve. Becker et al. showed that correctons propagate to deep parts 
in fewer collisions and in greater numbers than the usual particles. This allows their method to obtain 
flux tallies over the whole problem and not only around a detector, as would be the case with traditional 
weight window Monte Carlo simulations. 

Numerical Steps in Becker et al. [40] 

 Run an inexpensive deterministic global estimate of the forward flux 

 Transform the original problem of the angular flux into a modified problem of the multiplicative 
correction to the deterministic flux 

 Run a Monte Carlo calculation to estimate the multiplicative correction of the deterministic flux 
(correcton flux) 

Algorithm 5: Implementation of the coupled method by Becker et al. 

Another way to modify the Monte Carlo simulation using deterministic methods is studied by Guadagni 
et al. for dose rate calculations [41]. They worked on the implementation of a deterministic estimator to 
speed-up Monte Carlo calculations. This modified track-length estimator can be seen as a combination 
of deterministic straight-line transport and a Monte Carlo track-length estimator simulation. Using 
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deterministic straight-line in the estimators means that particles can contribute to the score as long as 
“virtual” line of flight intersects the scoring volume, even if the real particle does not cross the scoring 
volume. The deterministic aspect comes from the path the virtual particle is being sent on and this 
method is implemented as shown in Algorithm 6. 

Numerical Steps in Guadagni et al. [41]  

 The user sets a bounding sphere to each detection volume 

 Loop over bounding spheres 

  Create a virtual copy of the original particle. The virtual copy is a replica of the original particle 

  Sample a random direction in the solid angle. A solid angle subtended by the sphere is 
calculated based on the bounding radius and the distance between the interaction point and the 
sphere center. 

  Sample a virtual collision for the virtual particle to adjust its weight and assign the previously 
obtained direction 

  Calculate the straight-line distance between the virtual particle and the closest volume frontier 

  The particle is moved to the volume frontier and data is stored 

  Correct weight of the particle exponentially 

  Repeat until the virtual particle reaches a domain boundary 

  Check if the particle has crossed the detector volume. If crossed, register the score and then kill 
the particle 

  Kill the virtual particle and initialize transport quantities. Go back to the transport of the real 
particle 

Algorithm 6: Implementation of the hybrid estimator by Guadagni et al. 

In analog Monte Carlo simulations, a particle is transported through each encounter and this process is 
repeated until the desired statistical precision is reached. Some particles may not reach the region of 
interest and will not contribute to tallies and therefore transporting these particles can be exorbitantly 
expensive depending on the problem. Variance reduction methods were developed to avoid simulating 
large quantities of particles and without obtaining the desired precision. These methods modify the 
weights of the particles to be simulated to bias the simulation. 

Two different hybrid methods developed and in use at Oak Ridge National Laboratory [42] are hybrid 
variance reduction methods. Both CADIS and FW-CADIS use automated variance reduction methods. 
The importance map used by the weight windows is obtained from a deterministic calculation. The 
CADIS method is based on the idea that the adjoint function can be considered as the importance of a 
particle and implemented as shown in Algorithm 7. Sampling the deterministic source distribution means 
that the particles are obtained in proportion to their expected contribution to the detector response. The 
CADIS method is aimed at the optimization of localized detector regions while FW-CADIS is aimed at 
the optimization of distributions.  
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Numerical Steps in CADIS and FW-CADIS 

 Run a deterministic calculation to get either forward (FW-CADIS) or adjoint (CADIS) flux 
distribution 

 Calculate variance reduction parameters 

 Run a Monte Carlo simulation 
Algorithm 7: Implementation of the CADIS and FW-CADIS method 

These new methods have led to faster calculations for both local (CADIS) and global (FW-CADIS) 
simulations. The forward calculation in FW-CADIS allows the method to evenly distribute the particles 
across the problem. This methodology can now accurately treat global problems and can be used in 
large and complex problems. 

To deal with large and complex problems, such as shielding problems, different hybrid methods were 
imagined. Chen developed a 1-way stochastic-deterministic coupling to deal with deep-penetration 
problems and chose to separate the problem into two regions. Becker et al. did not split the problem, 
instead, they chose to initialize the Monte Carlo calculation with deterministic data and convert the 
angular flux problem to a correction flux problem. This way they ensured more particles covered the 
whole problem. Guadagni et al. chose to only focus on the detector, which lead them to develop a hybrid 
estimator. This quick overview gives us a glance at the variety of hybrid methods that can be imagined 
depending on the problem to be solved, the regions of interest, and the codes available among others. 

2.4.2 Coupled calculations to treat reactor core problems 
When the region of interest is made up of a few subassemblies and accurate high-fidelity results are not 
always required over the whole core, refining a whole core calculation can be very costly. However, with 
traditional methods, the accuracy of the model is the same over the whole problem. Hybrid methods are 
being developed to overcome this issue and to obtain higher fidelity results at a lower cost than 
traditional methods. The following sections illustrate the different methods imagined and their 
implementation. 

2.4.2.1 Deterministic coupling of angular and/or spatial methods 
Wang et al. [43] implemented a hybrid PN-SN calculation scheme in Rattlesnake. This angular hybrid 
scheme made it possible to treat regions of interest with a higher resolution using the discrete ordinates 
method (SN) while other regions were treated with a spherical harmonics expansion method (PN). 
According to Wang et al. [43], PN methods yield more accurate results than SN methods for problems 
with homogenization using the same number of unknowns.  

In his work [26] [44] [45], Girardi uses a non-overlapping spatial domain decomposition method to couple 
different deterministic methods depending on the geometry to be modeled. In this method, named 
MMMD, Girardi defined coupling operators in order to translate the boundary conditions between different 
subdomains and methods. The goal of the MMMD method is to allow for local spatial/angular refinement 
using domain decomposition methods and is implemented with the steps shown below in Algorithm 8. 
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Numerical Steps in Girardi’s MMMD [26] 

 Calculate the coupling coefficients 

 Initialization of the outer iterations (fission source and keff) 

 Outer iteration 

  Loop over groups 

   Coupling iteration 

    Loop over subdomains 

     Calculate the incoming boundary condition 

     Call the monokinetic solver (IDT, VNM, or TDT) 

     Storing the outgoing boundary condition 

   Update the fission source dot product 

  Update keff and normalize fission sources using keff 

  Continue until convergence is reached (keff and fission source) 
Algorithm 8: Implementation of the MMMD method 

2.4.2.2 Deterministic-stochastic coupling to treat the energy spectrum 
Lee et al. [46] proposed a method directly coupling deterministic and Monte Carlo methods, where the 
Monte Carlo method was used to treat the resonance energy range. The method aims to benefit from 
both the accuracy of the Monte Carlo method over the resonance range and the fast execution of the 
deterministic method over high and low-energy ranges. The implementation of this method is described 
in Algorithm 9. The Monte Carlo simulation is a fixed-source simulation and the source is a sum of the 
down-scattered neutrons from the deterministic fast range and fission sources from the group of interest. 
In this hybrid method, there is some overlap between the stochastic and deterministic methods. The 
Monte Carlo method also includes the thermal range to account for upscattering from thermal energies, 
but tallies are only produced by the resonance range. 

Numerical Steps in Lee et al. hybrid method [46] 

 Fast region calculation using the deterministic method 

 Sample scattering source for the Monte Carlo fixed source calculation 

 Resonance region calculation using the Monte Carlo method 

 Thermal region calculation using the deterministic method 

 Continue until convergence is reached (keff) 
Algorithm 9: Implementation of Lee et al. energy hybrid method 

2.4.2.3 Deterministic-stochastic coupling to treat subassemblies 
During his Ph.D., Baker [47] implemented a coupled Monte Carlo-discrete ordinates scheme using 
response matrixes. He separated the problem into two regions: a Monte Carlo region and a deterministic 
one. He expressed the outgoing flux from the Monte Carlo region using a precalculated response matrix 
and outgoing source term ( 2.39 ). 

/jµn = //Ll + mjµn ( 2.39 ) 

mjµn  being the exiting flux from the Monte Carlo region under vacuum boundary conditions. The response 
matrix is the angular flux leaving the Monte Carlo region for state k due to a unit incident angular flux in 
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state k’. /Ll is not generally known and can be solved iteratively by setting the following system for each 
iteration r. 

”
/jµn(K'&) = //Ll(K) + mjµn

/jµn(&) = mjµn
 ( 2.40 ) 

Using this, it is possible to perform a discrete ordinates calculation and obtain /Ll(K). This scheme is 
illustrated in Algorithm 10. 

Numerical Steps in R.S. Baker Ph.D. [47] 

 Define the Monte Carlo cross-sections and initialize data required by Monte Carlo functions 

 Samples the fixed source to determine m#jµn and computes the volumetric sources in the SN region 
resulting from the Monte Carlo calculation 

 Loop over energy groups 

  Calculate the response matrix ### 

 Initialize SN cross-sections and functions required by SN calculation 

 Loop over energy groups 

  Calculate the volumetric source in group g for both Monte Carlo and SN regions 

  Determine the contribution to group g of the volumetric sources located in the Monte Carlo 
region 

  Initial outgoing boundary flux is calculated 

  Perform SN inner iteration to get /#Ll(K'&,&) and /#jµn(K'&,S) 

  Calculate maximum relative error between /#Ll(K'&,&) and /#jµn(K'&,S) 

  Continue until convergence is reached 
Algorithm 10: Implementation of the hybrid method for Baker’s work during his Ph.D. 

In this method, regions are treated with either a Monte Carlo or deterministic method, the response 
matrix is used to update the boundary condition with the deterministic calculation. Baker found that 
precalculating the response matrix reduces the computational cost of the method. 

Another way to use response matrixes is shown in COMET [25]. COMET is a hybrid stochastic-
deterministic solver capable of treating whole core problems. It uses solutions from local fixed sources 
problems to generate response functions and iterates the deterministic method to converge the 
eigenvalue problem, as shown in Algorithm 11. It does not directly solve the multigroup transport 
problem. 
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Numerical steps in COMET [48] 

 Local calculations to generate response functions (stochastic code) 

 Global calculations to converge whole core solution (deterministic solver) 

  Guess initial eigenvalue and partial currents 

  Perform inner iterations to converge on the partial current moments for the eigenvalue computed 
in the previous step 

   Normalize the outgoing partial current moments 

   Use the external boundary condition or the internal interface boundary condition to update 
the incoming partial current moments 

   Compute the outgoing partial current moments via the pre-computed response coefficients 

   Repeat until moments are converged 

  Use the global particle balance to update the eigenvalue 

  Repeat until the eigenvalue is converged 

 Superposition of local problem solutions to construct the flux distribution in the core 
Algorithm 11: Implementation of the hybrid method in COMET 

COMET aims to be a high-fidelity whole core solver and obtains comparable accuracy to multigroup 
stochastic solvers significantly faster [48]. The hybrid method implemented in COMET accelerates the 
computational speed and fission source convergence for large eigenvalue problems compared to 
stochastic methods. 

2.4.2.4 Stochastic-stochastic coupling to treat the energy spectrum 
The hybrid methods thus far considered all used deterministic methods to accelerate the continuous 
energy Monte Carlo method. However, multi-group Monte Carlo methods are also faster than continuous 
energy Monte Carlo methods. Kowalski et al. [49] [50] worked on combining these two methods in a 
single Monte Carlo calculation. This coupled method is implemented in SCONE, which is already 
supported in both continuous energy and multi-group stochastic calculations. Unlike the previous 
methods, the only modification necessary is the transition from multi-group to continuous energy.   

Multi-Group to continuous energy transition in SCONE [49] 

 If the group is a resonant group 

  Draw energy from uniform function in lethargy 

  Determine total cross-section data from sampled energy 

  Repeat until converged 

 Otherwise, draw energy from uniform function in lethargy 
Algorithm 12: Implementation of the energy selection from multi-group to continuous energy in SCONE 

Kowalski and Shwageraus [50] observed that most of the error introduced in the continuous region by 
the multigroup calculation is located close to the boundary between the two regions.   

Hybrid methods open a world of possibilities to solve deep-penetration problems and core problems as 
shown above. These methods have yielded interesting gains in precision, and particularly in calculation 
time when dealing with deterministic-stochastic hybrid methods.  
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2.5 HYBRID METHOD STUDIED IN THIS WORK 
Hybrid methods in reactor physics cover a large range of methods from acceleration methods of 
stochastic codes and protection problems to coupled stochastic-deterministic codes. Hybrid methods 
can also refer to coupled deterministic codes. From this point on, hybrid methods will refer to 
deterministic-stochastic coupled schemes for neutron transport. 

2.5.1 Choice of hybrid method 
The irradiation experiments carried out by the ICARE program [51] in the MELUSINE reactor in Grenoble 
are examples of whole core configurations for which traditional methods have reached their limits. In the 
ICARE program, the experimental devices were designed to measure integral capture cross-sections of 
fission products and actinides in PWR and under-moderated conditions. The experimental 
subassemblies consist of stacked UO2 depleted pellets and doped pellets with isotopes of interest. On 
the one hand, a 3D deterministic analysis of the configuration is complicated by the geometry of the 
experimental subassembly. A 3D-self-shielding calculation is difficult to perform due to the sequence of 
stacked pellets. In APOLLO2 and APOLLO3®, there is no 3D-self-shielding method, each plane is self-
shielded with a 2D scheme. Resonances perturb the energy spectrum seen by target nuclei. On the 
other hand, the depletion calculation requiring control rod movement during irradiation makes it 
extremely costly to perform a full Monte Carlo analysis of these experiments. We chose to focus on 
studying such problems with the development of our hybrid method. 

This work also focuses on hybrid methods using domain decomposition methods (DDM). These 
methods can allow users to select methods to treat different parts of a problem. The goal of this work is 
to implement a 2-way coupled hybrid method using DDM. In this method, the core is separated into 
subdomains and the user can choose to apply either a stochastic or deterministic method. The DDM 
control the boundary flux exchanges between subdomains. This method does not require any 
assumptions about the geometry in either region. This could be beneficial to studying the irradiation 
experiments of the ICARE program. For instance, experimental devices would be treated using a Monte 
Carlo method, while the rest of the core where the self-shielding problem is not as complicated are 
studied using a deterministic method. This could also be beneficial for irradiation cycles because the 
Monte Carlo region would be smaller which should accelerate convergence. 

The basic scheme of this 2-way coupled hybrid method would be to start with a problem to study. On 
the right-hand side of Figure 12, an arbitrary quarter of a core was chosen to illustrate the methodology. 
Using the deterministic method (IDT in our case), the user would separate the core into subdomains 
and specify which method to use for each subdomain. In Figure 12, each subdomain corresponds to a 
subassembly and two subassemblies would be treated using the Monte Carlo method (LAST in our 
case). We think it is best to limit the number of subdomains to be treated with the Monte Carlo method 
to ensure that the stochastic region remains small keeping calculation costs down. 

 

Figure 12: Main steps to separate a core problem in the 2-way coupled hybrid methods – Left: core to study – 
Middle: Separation into subdomains – Right: Calculation scheme applied to each subdomain 

An important aspect of the method to develop is the intention to use the deterministic method’s spatial 
domain decomposition scheme to control our hybrid method. The goal is to use this scheme to exchange 
data between the two methods. This means that all developments during this work aim to be compatible 
with the already implemented domain decomposition scheme. 
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2.5.2 Predicted difficulties and development plan 
Developing this coupled scheme is not trivial due to the different nature of these methods. It is assumed 
that at least the following difficulties will arise: 

- Communications between Monte Carlo and SN methods will have to deal with statistical 
estimators. This raises the question of how the “noise” from the Monte Carlo simulation will 
affect the convergence of the deterministic calculation. Relaxing certain convergence criteria 
may be sufficient. 

- Calculation time difference might be avoided by limiting the size and/or the number of the Monte 
Carlo subdomains. Using deterministic sources to initialize the Monte Carlo problem might also 
help reduce the stochastic calculation time. 

- Monte Carlo results being quasi-continuous means that part of the information sent from the 
deterministic code will be missing. To overcome this issue, we will have to sample the 
deterministic distribution. 

- Fitting the hybrid scheme in the deterministic DDM already implemented. In IDT, a non-
overlapping spatial DDM is implemented. This means that subdomains do not have common 
cells. Using an overlapping DDM, it would be possible to use the boundary fluxes in the 
overlapping cells as a function with which to reconstruct a coarse flux, which might facilitate 
exchanges. This strict separation of subdomains means that some subdomain boundaries might 
be where our flux needs to be studied. To limit this issue, subdomains should be a few cells 
larger than the region of interest. 

To overcome these difficulties, the development of the hybrid method will be separated into the following 
steps: deterministic-deterministic hybrid method in IDT to modify DDM, deterministic to stochastic 
coupled calculation to have a 1-way hybrid, stochastic to deterministic 1-way hybrid, deterministic-
stochastic 2-way hybrid using the two previous steps. 

2.6 CONCLUSIONS 
Neutronic modeling is traditionally performed using either deterministic or stochastic methods. 
Deterministic codes discretize the phase-space and introduce models to solve the transport equation. 
Self-shielding can be an important a source of bias. Spatial discretization methods cannot be used to 
treat any and all geometries. These methods play a great role in multi-physics computational schemes.  
Monte Carlo methods can be very computationally intensive because they simulate individual particles 
using random sampling. They are used as reference codes but their cost and problematic statistical 
convergence for large domains limits their use. In an effort to improve numerical modeling of reactor 
problems, hybrid methods are being developed. Therefore by combining both deterministic and 
stochastic methods in the same calculation, as a hybrid method, we can take advantage of the benefits 
offered by each method. 

Deterministic-stochastic hybrid methods today can be split into three categories: variance reduction 
methods, weakly-interacting-coupled codes and strongly-interacting-coupled codes. Variance reduction 
methods are mainly used and developed to treat shielding problems. They bias the simulation by 
changing the particle weights. This makes it possible to simulate fewer particles and ensure their 
satisfactory results over the detector region. These methods were originally developed for local 
detectors, but have been adapted to be used over large problems (eg: FW-CADIS [42], and Becker et 
al [40]). Hybrid methods with no feedback between the two methods are referred to as weakly interacting 
methods. In Chen’s MC-DO method [39], the discrete ordinates calculation is initialized by the Monte 
Carlo simulation. This shows that in some problems, initializing our problem with one method can lead 
to important gains in both precision and calculation time. Strongly interacting methods do rely on 
feedback between the two methods to ensure convergence. Girardi [26] and Lee et al. [46] developed 
methods where running both methods at the same time in a hybrid method yielded gains in precision. 
Implementing a hybrid method that runs both deterministic and stochastic calculations can add 
complexity. It creates new challenges, but in problems where the regions of interest depend on the 
surrounding problem, it can be very beneficial. 

DDM separate a large problem into smaller sub-problems and updates the boundary conditions of each 
subdomain to account for neighboring phenomena. This means that as long as the boundary conditions 
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are compatible, subdomains can be treated with different methods. This can lead to a more flexibility to 
solve complex problems. Using a modified DDM scheme can allow the user to work with different spatial 
descriptions as was seen in Girardi’s work [26]. Therefore, DDM seem to be naturally suited to strongly-
interacting hybrid methods. 

On key aspect of a deterministic and stochastic hybrid approach is the boundary exchange. The DDM 
implemented in IDT is currently managing subdomains with different descriptions. The first step is 
therefore to modify the DDM scheme to allow subdomains to have different energy discretization. This 
IDT update gives a better sense of how boundary exchanges are impacted when neighboring 
subdomains have different energetic refinements. This will also help us get a better understanding of 
the IDT source code for future modifications. This work is presented in the next chapter. 
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3. DEVELOPMENT OF A MULTIPLE-ENERGY-GRID METHOD USING DDM 
Implementing a hybrid deterministic-deterministic energetic scheme serves different purposes. It was 
an important step in the development of a deterministic-stochastic scheme, giving us time to get a better 
understanding of IDT and particularly of DDM functions under normal usage. In a deterministic-
stochastic scheme, we use a continuous energy stochastic code. A multiple-energy-grid deterministic 
hybrid makes it possible to anticipate some of the problems that will occur when exchanging coarse 
energy data with fine (or continuous) energy data. This work on the difficulties of unequal boundary flux 
exchanges is a first step towards discrete-continuous boundary flux exchanges (§3.1). After this, the 
study case is presented (§3.2). Three different flux reconstruction methods are implemented in IDT to 
deal with the unequal boundary data exchange. Section §3.3 compares these methods. 
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3.1 METHODOLOGY DESCRIPTION 
Self-shielding is an essential step in deterministic schemes, and the number of energy groups chosen 
by the user can lead to significant differences in terms of precision and calculation times. One of the 
challenges of studying complex core problems is the wide variety of interfaces present in the problem, 
such as UOX-MOX or fuel-reflector. The materials present in the different subassemblies each have 
their specific resonances, which may overlap. This begs the question of choosing appropriate energy 
meshes and self-shielding methods to describe all these subassemblies. However, with a modified 
domain decomposition scheme, the user would be able to treat the resonances of each subdomain with 
refined energy meshes and/or advanced self-shielding methods, which could lead to interesting 
improvements in precision. 

The aim here is to use the already implemented DDM in the deterministic solver IDT and to modify the 
existing scheme to support subdomains with different energy grids. Being able to apply different energy 
grids allows the user to obtain finer data over parts of the problem. Figure 13 illustrates how a core can 
be split into subdomains using IDT. In this example, each subdomain corresponds to a subassembly. 
The difference with the regular DDM calculation is that the user can specify which energy grid is applied 
to each subdomain. In Figure 13, the core is split into a core-reflector problem where the energy grids 
in the fuel and reflector are different. 
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Figure 13: Illustration of how multiple energy grids could be used with DDM – Right: core to study – Middle: Core 
split unto subdomains – Left: Energy grid applied to each subdomain 

By using multiple energy grids in the same problem, some regions will have more data. The boundary-
exchange update step will need to be modified accordingly. Before changing the DDM scheme to use 
multiple energy grids, we start by taking a closer look at the boundary exchanges between subdomains. 

3.1.1 Domain Decomposition modeling 
The modification of the multigroup problem to accommodate domain decomposition methods was 
presented in §2.2.2.3 This led to the development of equations ( 2.29 ). We will write this system by 
separating the phase-space into U subspaces in equations ( 3.1 ). 

Î ≡ ⋃ Îµ
,
µô&

Îµ ≡ 0C⃗ ∈ ƒµ, 2
3⃗ ∈ mS, = ∈ ℝ$

'6

gÎµ ≡ 0C⃗ ∈ Ïµ
±
023⃗ 6, 23⃗ ∈ mS, = ∈ ℝ$

'6

Ïµ
±
023⃗ 6 ≡ ãC⃗ ∈ gƒµ, 23⃗ ∈ m

S: 23⃗ . :1'(C⃗)
3333333333333⃗ ≶ 0, = ∈ ℝ$

'å

 ( 3.1 ) 

We also saw with ( 2.31 ) that the solution of multigroup transport equation can be decomposed over 
the subspaces and can be expressed as follows in ( 3.2 ). For this purpose, we simplified the flux for a 
specific group and direction to /()). 

/()) =X|µ())/µ())

µ

|µ()) = Á
1	N»	) ∈ Îµ

0	dFℎbC7NOb

 ( 3.2 ) 

Angular boundary fluxes are exchanged between subdomains to update the boundary condition. This 
decision was made to ensure the continuity of solution in the DDM scheme implemented in IDT. The 
continuity condition, shown below, preserves the global solution and particle balance when updating the 
local fluxes.  

/µ
'()) = /+

H())								) ∈ gÎµ
' ∩ gÎ+

H	»dC	cff	" ∩ _ ( 3.3 ) 

To better understand how energy groups are exchanged, equation ( 3.3 ) is written as follows. With 23⃗ 5 
being the considered direction and + the considered energy group. 

/µ
'0), 23⃗ 5, +6 = /+

H0), 23⃗ 5, +6 ( 3.4 ) 

Figure 14 is a zoom into Figure 13 to illustrate two neighboring cells and get a closer look at the boundary 
exchange between subdomains with different energy grids. In this situation, energy grid 1 (cell A) is finer 
than energy grid 2 (cell B). The spatial and angular discretizations are the same on either side. This 
means that the angular flux in grid 1 is finer in energy than the angular flux in grid 2. In this illustration 
grid 1 is made up of + groups while grid 2 is made up of 3 groups. 
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Figure 14: Boundary fluxes between two neighboring cells with different energy grids 

From equation ( 3.4 ) and Figure 14, the modification of the continuity condition will only affect the energy 
component of the angular boundary flux. Depending on the boundary update, we can imagine two 
situations. The first being updating the B-incoming boundary flux, which will use the finer A-outgoing 
flux. The second being reconstructing the A-incoming boundary flux, which uses the coarser B-outgoing 
flux. To account for the changes presented above during the boundary flux exchange, we need to update 
the boundary condition in the scheme presented in Algorithm 3. 

3.1.2 Matching energetic bounds 
A new scheme is implemented to allow the user to run a calculation with multiple energy grids and is 
shown in Algorithm 13. In red are the differences with Algorithm 3. The boundary flux exchanges are no 
longer solely controlled by the continuity condition; there is now a distinction depending on whether the 
neighboring subdomains have the same energy grids or not. 
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Numerical Steps in IDT to solve the multigrid problem using DDM 

 Loop over external iterations e=1,…,Ne 

  Loop over subdomains s=1,…,Ns 

   Update the local fission source from —M
(éH&)  

   Multigroup approximation – Scattering source calculation g=1,…,NG 

    Update local scattering sources (∀+o ≠ +) from /M
(é),#∞¥# and /M

(éH&),#∞∂#  

    Internal iterations i=1,…,Ni 

     Solve the spatial sub-problem: sweep over the mesh and propagate from 
boundary conditions 

 

     Update the local self-scattering source á##/M
(é,L),#  

  Update the boundary flux and exchange boundary fluxes between subdomains 
and check if energy grids different 

 

   If grids are the same 

∀+, ∀23⃗ â
/
	Mµç5j,Ll

(é)
0C⃗, 23⃗ , +6 = /

	léL#ˇçjK,jµn
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	Mµç5j,jµn

(é)
0C⃗, 23⃗ , +6,					23⃗ . :3⃗ éèn ≥ 0

 

 

   If neighboring grid is different from subdomain grid 

∀23⃗ 4
∀3, /

	Mµç5j,Ll

(é)
0C⃗, 23⃗ ,36 = X/

	léL#ˇçjK,jµn

(é)
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(é)
0C⃗, 23⃗ ,36,					23⃗ . :3⃗ éèn ≥ 0

 

 

  Update keff  

  Convergence test on keff and power distribution  

 Reconstruction distribution at the core scale 
Algorithm 13: Algorithm implemented in IDT to solve problems using DDM and multiple energy grids 

Figure 14 and Algorithm 13 show that a test must be performed when updating boundary fluxes to check 
if neighboring grids are the same, or if the neighboring grid is finer, or if the neighboring grid is coarser. 
To perform these tests, energy meshes need to be defined by the user. During the data exchange 
between subdomains with different energy grids, it is necessary to distinguish sending fine information 
to a coarser grid with sending coarse data to a finer grid. The former means condensing information for 
it to fit. The latter means that some data will be missing and a fine-flux will need to be expanded from 
the coarse flux. The reconstruction of the fine-flux will not be trivial. Implementing this test means 
transforming the continuity equation ( 3.4 ) into the following system.  

⎩
⎪
⎨

⎪
⎧
/&
H(), \, +) = /S

'(), \, +)												N»	+CN\1 = +CN\2

/&
H(), \,3) = X/S

'(), \, +)	

#∈$

			N»	+CN\1 < +CN\2

/&
H(), \, +) = 5$→#/S

'(), \,3)		N»	+CN\1 > +CN\2

 ( 3.5 ) 

From the new update boundary flux exchange in ( 3.5 ), it is clear that when the outgoing coarse flux 
from cell B is used to generate the cell A incoming fine flux, additional information must be created to 
have a complete fine-group description. 
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An elementary reconstruction model was initially considered in which the fine-flux was reconstructed 
using equation ( 3.6 ). We decided to call this reconstruction method the Basic Reconstruction Method 
(BRM). 

/&
H0), 23⃗ 5, +6 =

∆"#

∆"$
/S
'0), 23⃗ 5,36 

( 3.6 ) 

An issue with this reconstruction method is that it does not account for the energetic variation of the flux 
within the coarse group. To overcome this problem, a fine-flux reconstruction using the partial outgoing 
integrated current %&'(), +) = ∫ /&

'0), 23⃗ , +6\S2
633⃗ .l3⃗ ∂t

 is used. We called this the Current Reconstruction 
Method (CRM). In this method we consider the outgoing current, which is obtained using the outgoing 
directions. 

/&
H0), 23⃗ 5, +6 =

%&
'(), +)

∑ %&
'(), +)#∈$

/S
'0), 23⃗ 5,36 ( 3.7 ) 

While equation ( 3.7 ) is interesting the energy-angle distribution within a coarse group is hidden through 
the current. This led us work on this final reconstruction method that will be called the Flux 
Reconstruction Method (FRM). 

/&
H0), 23⃗ 5, +6 =

/&
'0),−23⃗ 5, +6

∑ /&
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/S
'0), 23⃗ 5,36 ( 3.8 ) 

Equation ( 3.8 ) only yielded results for constant MOSC and 0-th angular flux spatial moments. Moments 
with V > 0 are weighed with the 0-th moment factor to avoid null or negative values. Equation ( 3.8 ) 
becomes a system depending on the spatial moment. 
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Given that angular boundary flux are used to update the boundary conditions at each iteration 
modifications to the IDT solver only affected the boundary flux correspondences. Setting up flux 
exchanges between subdomains is not a trivial problem and is described with two neighboring cells in 
Figure 14. When information is transferred from fine to coarse, it needs to be collapsed. The natural and 
conservative solution is to sum up the fine components belonging to a coarse group. Transferring coarse 
information to a finer grid requires creating information in the missing cells. The three reconstruction 
methods in Table 8 were implemented in IDT. 

 Basic Reconstruction 
Method (BRM) 

Current Reconstruction 
Method (CRM) 

Flux Reconstruction 
Method (FRM) 

78→9 
∆"#

∆"$
 

%&
'(), +)

∑ %&
'(), +)#∈$

 
/&
'0),−23⃗ 5, +6

∑ /&
'0),−23⃗ 5, +6#∈$

 

Table 8: Reconstruction methods tested and the associated expression of the form factor 

3.1.3 Choosing energy grids 
Now that the boundary flux exchange procedure has been updated to accommodate multiple energy 
grids, the next step is to decide what rules need to be applied to the energy grids used. To ensure 
compatibility between the different energy meshes, the energy boundaries of the 3-mesh are common 
with those of the +-mesh. Sharing the same coarse mesh facilitates boundary flux exchanges because 
no special consideration needs to be added at group boundaries. If energy meshes do not share the 
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same group boundaries, the reconstruction method might need to distinguish the reconstruction 
methods in the following situations (Figure 15). In Figure 15, the A energy mesh is coarser than B. 

  

Figure 15: Energy meshes with unequal group boundaries 

The first difficult situation to deal with in Figure 15 corresponds to the flux condensation in group 1 of 
mesh A, using fluxes in mesh B. The difficulty here is that the mesh B’s second group does not have a 
common boundary with the group in which it needs to be condensed. The condensation can be 
expressed as follows. 

/:
H0), 23⃗ 5,3&6 = /;

'0), 23⃗ 5, +&6 + 5j+éKkù{	≥Lnˇ	úéMˇ	:/:
'0), 23⃗ 5, +S6 ( 3.10 ) 

The second challenge comes from a situation where the contribution to B’s energy group comes from 
two of A’s. This is situation number 2 in Figure 15. To deal with this situation, we would need to apply a 
reconstruction method to both energy groups and only consider the part overlapping with B’s group. 

/;
H0), 23⃗ 5, +S6 = 5j+éKkù{	≥Lnˇ	úéMˇ	;5$→#/:

'0), 23⃗ 5,3&6 + 5j+éKkù{	≥Lnˇ	úéMˇ	;5$→#/:
'0), 23⃗ 5,3S6 ( 3.11 ) 

The challenge here is defining the link between the overlap between energy mesh reconstruction factor, 
and the group reconstruction factor.  

Using any energy grid regardless of the common group boundaries, would be much easier for the user 
in an industrial code. However, using common group boundaries might lead to better results, since fewer 
distinctions need to be made to the reconstruction method. The goal of our method is to familiarize 
ourselves with IDT’s DDM, so we chose to use energy grids with the same group boundaries. 

Cross-sections are generated using the APOLLO3 [17] [25] code using the SHEM-MOC methodology 
and calculation scheme for 281 [52], 51, 23 and 7 groups. The 281-group cross-sections are self-
shielded using Livolant-Jeanpierre methodology [53]. They are then partially homogenized (cell by cell) 
and collapsed into 51, 23 or 7 energy groups, without using any equivalence. 

The 281-group mesh was chosen to be used as a deterministic-reference calculation. The 51- and 23-
group meshes were chosen as intermediately coarse grids, while the 7-group mesh was chosen as the 
coarsest mesh. The 7-group mesh was also chosen in the benchmark presented in the next section. 
The case study is based on this benchmark as explained in §3.2. The reader can find the 51-, 23-, and 
7-group energy meshes descriptions in the appendices. 

3.2 2D C5G7 CORE 
The 2D C5G7 benchmark [54] was originally developed by the OECD/NEA Expert Group in 2001 as an 
international benchmark to test the abilities of deterministic codes to treat reactor problems without 
spatial homogenization. It is a small water-cooled reactor made up of sixteen fuel assemblies: eight 
uranium oxide assemblies (UOX), and eight mixed oxide assemblies (MOX). These fuel assemblies are 
surrounded by a light water reflector. Figure 16 represents a quarter of this core with the appropriate 
boundary conditions. Each subassembly is a square lattice of 17x17 pin cells.  
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Figure 16: 2D core geometry of the C5G7 benchmark and boundary conditions 

Seven-group cross-sections are provided for this benchmark to describe the neutron behavior in each 
medium. Cross-sections were generated for a fuel-clad mixture, as illustrated in Figure 17. According to 
the benchmark description [54], the 7-group cross sections were obtained using the densities and 
dimensions specified by Cathalau et al. [55] using the DRAGON code [56]. Each fuel type was modeled 
in an infinite-lattice using WIMS-AECL 69-group library. After this, the results were collapsed to seven 
energy groups. 

3.2.1 C5G7 problem description 
To test the multiple-energy-grid technique, 2D cases inspired by the C5G7 benchmark were created. 
Geometry and boundary conditions remain the same, the only difference comes from generating our 
own cross-sections. As mentioned above, the new cross-sections are generated using the SHEM-MOC 
calculation scheme. Another residue of the benchmark is the use of a single cross-section set to 
represent all UOX or all MOX fuel cells in the core, whether they are located in the center of the core or 
bordering the reflector. The assumptions made in the 2D C5G7 benchmark generate calculation biases 
in the new cases as well. We chose to produce the cross-sections with the same assumptions but using 
the Livolant-Jeanpierre self-shielding method implemented in APOLLO3®. The idea was to keep the 
philosophy of the 2D C5G7 benchmark, knowing that identical results will not be obtained by generating 
cross-sections with up-to-date methods. 

Cell geometry is kept simple as described in the 2D C5G7 benchmark. Fuel cells are described as 
heterogeneous Cartesian cells [24], while reflector cells are homogeneous as illustrated below in Figure 
17. In this document, fuel cells refer to heterogeneous Cartesian cells with either UOX or MOX fuel in 
them. 

 

Figure 17: Pin cell geometry – Left: Fuel cell – Right: Reflector cell 

In this study we decided to investigate the benefits of a multiple-energy-grid method on core/reflector 
interfaces. The core was separated into two mesh zones, the first zone in green is made up of all the 
fuel subassemblies, and the second zone in red is the reflector as shown in Figure 18. 
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Figure 18: 2D core geometry of the problems to study – Left: boundary conditions – Right: energy mesh 
separations  

The name of the different multiple-energy-grid cases is GX-Y, with X the number of groups in the fuel 
energy grid, and Y the number of groups in the reflector grid. When the fuel and the reflector grids are 
the same, cases will be called GX.  

An accurate model of the reflector is necessary to ensure a proper estimation of the flux outside the 
core, and is necessary for vessel integrity studies. To study such problems, three configurations were 
inspired by the 2D C5G7 benchmark with modified reflector assemblies. In the first configuration, every 
aspect of the C5G7 geometry was conserved, as shown on the left side of Figure 19. In our second 
problem, reflector assemblies are inspired by PWR reflector subassemblies. A typical PWR reflector 
subassembly is approximately made up of 2 cm of stainless steel and 18 cm of water. To approximate 
this, the first two rows of cells bordering the core are made up of steel coming from the PERLE 
experiment carried out on the EOLE reactor at CEA Cadarache [57]. This amounts to 2.52 cm of steel 
and 18.9 cm of water, which mimics the PWR baffle. The last configuration is based on EPR reflector 
subassemblies. These reflectors are constituted by 20 cm of stainless steel. In our case, the reflector 
subassemblies contain 17 rows of steel cells (21.42 cm of PERLE experiment steel) as shown on the 
right in Figure 19. 

 

Figure 19: Reflector configurations created – Left: Light water reflector – Middle: Thin steel baffle reflector – Right: 
Heavy steel baffle 

In this work, we will only discuss the results obtained over the heavy steel baffle reflector, which is the 
configuration on the right of Figure 19 and the most challenging. We chose this configuration because 
the results were the least satisfactory of the three. The reader can refer to two articles analyzing the 
other configurations [58] [59]. The first paper focused on comparing the results obtained for the left and 
middle geometries in Figure 19. It showed that the steel baffle led to poorer results in terms of absorption 
rates. However, the results obtained with each of the reconstruction methods suited was overall similar. 
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The second paper presented the illustration on the right of Figure 19, which is the one also discussed 
in this document. 

3.2.2 Reference case 
From this point on, the EPR-inspired heavy-steel-baffle reflector configuration will be referred to as the 
heavy reflector case. 

This chapter is an investigation into a multiple-energy-grid scheme and our goal is to get a sense of the 
behavior and robustness of a locally refined scheme. We will compare the multiple-energy-grid results 
to single-energy-grid results, to understand the impact on the deterministic domain decomposition 
calculation. 

Pin cell geometries are homogenized and cross-sections are the same regardless of the position of the 
cell to keep with the procedure of the 2D C5G7 benchmark. The cross-sections can then be condensed 
to generate the macroscopic cross sections for 51, 23, and 7 groups. No equivalence is performed, 
which means that the eigenvalues are different in all our single-energy-grid calculations. 

Cell geometry is illustrated in Figure 17, and we decided to keep the fuel-clad mix in our calculation. 
This means that the pincell description is very different to a stochastic calculation, where pincells have 
to be described according to problem specifications. These differences in problem description will mean 
that are not able to separate the errors coming from the energy from the rest.  

3.2.3 Single energy grid results 
Before running the multiple-energy-grid scheme, it was important to quantify the differences between 
the different single-energy-grid calculations. The only difference in each case is the energy grid used 
which has an impact on the results.  

Table 9 compares the single-energy-grid calculations. Eigenvalue differences to our reference case 
(G281 case) and calculation times (with and without using OpenMP parallelization) are all shown. 
OpenMP and MPI parallelization standards are both implemented in IDT. However, to be able to use 
MPI parallelization we needed to modify many of the domain decomposition functions. To be able to 
focus on the data exchange, which will be used by the hybrid scheme, we only used OpenMP 
parallelization in the multiple-energy-grid scheme. The lack of equivalence, when condensing cross-
sections from 281 groups to 51, 23, and 7 groups, leads to 64, 105 and 535 pcm of reactivity difference 
to the reference case. 

 Number of groups in each energy mesh 

 281 51 23 7 

Eigenvalue difference 
(pcm) 0 64 105 535 

Calculation time 10h57 2h58 1h17 16 min 

Calculation time with 
OpenMP parallelization 3h49 1h02 22 min 5 min 

Table 9: Global results obtained for each single energy grid calculation 

Figure 20 represents the cell-by-cell difference of absorption rates between the reference and other 
single-energy-grid cases. Absorption rates are integrated over each cell and normalized by setting the 
total production rate to 105 pcm. 
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Figure 20: Cell by cell absorption difference with reference case – Left: G51 – Middle: G23 – Right: G7 

As expected, the error in absorption rate calculation increases as the number of energy groups 
decreases. It can be noted that the largest differences are along the interface between the core and the 
reflector, and in the central UOX subassembly. The error in the UOX subassembly might be a remnant 
of the C5G7 benchmark cross-sections definition. By using the same cross-sections regardless of the 
position in the core, errors are introduced in the calculation. As shown in Figure 18, one of the UOX 
subassemblies is located at the center of the core and is surrounded by MOX fuel subassemblies, while 
the other UOX subassembly is bordering the reflector. The neutron behavior in these two subassemblies 
is very different, which leads to the errors obtained in Figure 20. 

In Table 10, the root means squared (RMS) error, the maximum and minimum difference with G281 
reference case are synthesized. 

 
Number of groups in each energy mesh 

281 51 23 7 

RMS 
<=>? 

0 
0 

0.002 
0.26 

0.02 
0.70 

0.18 
2.01 

<=Z@ 0 -0.13 -0.39 -0.76 
Table 10: Maximum, average and minimum difference in pcm between single-energy-grid cases 

Table 9, Figure 20, and Table 10 confirm the expected increase in error and decrease in calculation 
time with the decrease in the number of groups simulated. In the following section, we will discuss the 
overall convergence of the multiple-energy-grid cases using “global” results obtained in Table 9. Once 
the convergence of the multiple-energy-grid method has been shown, we will look at the effect of the 
scheme on each pincell using absorption rates. 

3.3 ANALYSIS OF A MODIFIED 2D C5G7 CORE 

3.3.1 Basic reconstruction method 
Table 11 shows that the multiple-energy-grid eigenvalues are not in-between the two single-energy-grid 
eigenvalues.  
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 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 0 4 -42 20 

51 61 64 29 86 

23 115 120 105 168 

7 498 512 501 535 
Table 11: The difference in pcm between the obtained eigenvalue and the reference case using the BRM 

From Table 11, it can be seen that most of the eigenvalues are bounded by the corresponding single-
energy-grid calculation. The eigenvalue difference in G23-7 (168 pcm) is lower than G7-23 (501 pcm) 
but are both bounded by the G23 (105 pcm) and G7 (535 pcm). However, this is not the case for G281-
23, G51-23, G23-281, and G23-51. Both G23-281 (115 pcm) and G23-51 (120 pcm) are larger than 
G23 (105 pcm), which should be the higher bound. On the contrary, G281-23 (-42 pcm) and G51-23 (29 
pcm) are both lower than G281 (0 pcm) and G51 (64 pcm) respectively by about 35 pcm. 

Let us take a look at the calculation time presented in Table 12 to check if calculation times are also 
bounded. 

 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 3h49 2h11 2h12 2h14 

51 4h30 1h02 52 min 30 min 

23 3h02 50 min 22 min 11 min 

7 2h48 47 min 27 min 5 min 
Table 12: Calculation time with OpenMP parallelization (12 threads) using the BRM 

Table 12 shows that every calculation time is bounded except G51-281 and G7-23. It takes 4h30 to run, 
which is much longer than the 3h49 it took to perform the single-energy-grid 281-group calculation. 
Given these results in Table 11 and Table 12, we want to take a closer look at the number of iterations 
each calculation took. We noticed in Table 13 that the maximum number of iterations (200) was reach 
for the G51-281 and G23-281 cases.  

 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 No (91) No No No 

51 Yes No No No 

23 Yes No No No 

7 No No No No 
Table 13: Maximum iterations reached using BRM 

The previous tables indicated that combining the 23 and 51-group grids did not yield satisfactory results 
in terms of eigenvalue and calculation time. It seems surprising that a more localized assessment of the 
BRM would yield improved results. This is why we chose to focus on the combination of the 7 and 23-
group meshes to look at the cell-by-cell differences for a local analysis of the BRM. Figure 21 represents 



 

48 

the cell-by-cell difference of absorption rates between the reference case and the multiple-energy-grid 
cases. The reader can find all the other cell-by-cell differences in appendices. 

G23-23 G23-7 

 

  

G7-23 G7-7 

  
Figure 21: Cell-by-cell absorption-rate differences with the reference case using the BRM 

Both the G23-7 and G7-23 calculation seem to have lower errors that the single-energy G7 calculation. 
This confirms that the BRM method did not increase errors for these cases. The BRM held up locally, 
absorption-rate differences were bounded by the single-energy-grid calculations, and globally, 
eigenvalues and calculation times as well. To check if this is the case for all the other calculation, in 
Table 14, the root mean squared (RMS) error, the maximum and minimum difference with the G281 
reference case are synthesized. This table confirms the observations made in Figure 21, and also shows 
that most of the other calculations increase errors compared the single-energy-grid calculations. 
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Number of groups in each energy mesh 

281 51 23 7 

Number 
of 

groups in 
the fuel 
(green) 
region 

281 RMS 
Aúùè 

0.0006 
0.16 

0.31 
2.90 

0.59 
3.02 

AúLl -0.10 -2.52 -4.94 

51 0.07 
0.37 

0.002 
0.26 

0.17 
2.24 

0.38 
2.13 

-0.19 -0.13 -1.74 -3.98 

23 0.03 
0.90 

0.17 
2.24 

0.02 
0.70 

0.16 
1.86 

-0.41 -1.75 -0.39 -1.09 

7 0.42 
1.82 

0.39 
1.94 

0.33 
1.66 

0.18 
2.01 

-1.04 -1.37 -0.99 -0.76 
Table 14: Maximum, average and minimum difference using the BRM 

This BRM does not yield satisfactory results and does not always converge. It shows that the 
reconstruction performs better for GX>Y calculations. This is why we want to move on to reconstruction 
methods that account for either the current or flux shape. 

3.3.2 Current reconstruction method 
Table 15 represents the difference between eigenvalues and the reference case. The eigenvalue 
difference in G23-7 (195 pcm) is lower than G7-23 (501 pcm) but both are bounded by the G23 (105 
pcm) and G7 (535 pcm). It can be noted that the difference in eigenvalue is lower for GX>Y cases than 
GX<Y cases. 

 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 0 3 0 90 

51 66 64 60 149 

23 119 115 105 195 

7 485 488 501 535 
Table 15: The difference in pcm between the obtained eigenvalue and the reference case using the CRM 

Unlike the BRM in §3.3.1, none of the multiple-energy-grid calculations reach the maximum number of 
iterations and all converge with about the same number of outer iterations. In Table 16, the calculation 
time using OpenMP parallelization is shown. Table 16 is encouraging as it shows that both eigenvalue 
differences and calculation times are bounded by the corresponding single-energy-grid calculations. 
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 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 3h49 2h12 1h46 1h36 

51 2h39 1h02 36 min 25 min 

23 2h28 49 min 22 min 9 min 

7 2h27 48 min 19 min 5 min 
Table 16: Calculation time with OpenMP parallelization (12 threads) using the CRM 

From Table 15 and Table 16, we can gather that the iterative process converges for all cross-section 
combinations using the CRM. It also seems that a local increase in precision results in an overall 
increase in accuracy. It can be noted that G23-7 is 40% shorter than G7-23. It appears that a coarse-
group description of the reflector is beneficial to the calculation scheme while a poorer source description 
leads to performing more iterations to reach convergence. The difference in calculation time could also 
be because in our core there are four fuel subassemblies and five reflector subassemblies. This could 
be a contributing factor to the increase in calculation time. 

In Table 16, we noticed that some multiple-energy-grid calculations are particularly long with little benefit 
to the eigenvalue difference. For instance, G7-281 lasts for 2h27 while the G23 and G51 calculations 
are respectively 22 min and 1h02 long. This is also the case for G23-281. It seems unrealistic to focus 
on such cases, when they would not likely be run to study core-reflector problems. Figure 22 represents 
the cell-by-cell difference of absorption rates between the reference case and the multiple-energy-grid 
cases. We choose to focus on four cases for readability and to illustrate that most of the error from the 
multi-grid scheme is located close to the interface and the central UOX subassembly as expected. The 
reader can find all cell-by-cell differences in the appendices. 
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G23-23 G23-7 

 

  

G7-23 G7-7 

  
Figure 22: Cell-by-cell absorption-rate differences with the reference case using the CRM 

The CRM showed interesting gains in calculation time and eigenvalue, but they do not hold up locally. 
If the CRM led to improvements, the maximum error should be obtained in the G7 case. The maximum 
error is obtained in the G7-23 case.  This seems to indicate that in the G7-23 case, the CRM propagates 
and increases errors at the interface. In Table 17, the root mean squared (RMS) error, the maximum 
and minimum difference with the G281 reference case are synthesized. This table also confirms the 
observations made in Figure 22. 
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Number of groups in each energy mesh 

281 51 23 7 

Number 
of 

groups in 
the fuel 
(green) 
region 

281 RMS 
Aúùè 

0.0003 
0.10 

0.01 
0.63 

0.17 
1.26 

AúLl -0.03 -0.24 -0.73 

51 0.006 
0.33 

0.002 
0.26 

0.01 
0.70 

0.16 
1.46 

-0.20 -0.13 -0.20 -0.66 

23 0.02 
0.71 

0.02 
0.70 

0.02 
0.70 

0.18 
1.84 

-0.39 -0.38 -0.39 -0.67 

7 0.99 
4.20 

0.52 
3.14 

0.45 
3.03 

0.18 
2.01 

-2.60 -1.94 -1.87 -0.76 
Table 17: Maximum, average and minimum difference using the CRM 

The errors in G7-Y cases using the CRM methods are all higher than the errors in the G7 case. Overall, 
the GX<Y cases all have larger or equal errors to the corresponding GX case using the CRM, while 
GX>Y all have lower errors. This effect was also noticeable in Table 15 and Table 16, and seems to 
indicate that the CRM is better suited to problems where the core is more refined than the reflector. The 
contribution to the source description mainly comes from the fuel subassemblies, which could be why 
having a better neutron feedback description does not significantly improve the coarse source 
description. 

The CRM leads to better eigenvalues with shorter calculation times, but creates more errors in half the 
cases when looking at the absorption rates. A possible explanation of this problem might be due to the 
form factor itself. The simplification of the form factor (using the current) may not provide an appropriate 
description of neutron feedback. 

3.3.3 Flux reconstruction method 
Table 18 represents the difference between eigenvalues with the reference case using the FRM. 

 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 0 3 0 90 

51 66 64 60 149 

23 119 115 105 195 

7 485 488 501 535 
Table 18: The difference in pcm between the obtained eigenvalue and the reference case using the FRM 

It is interesting to note that G23-7 is closer to G23 than G7-23 in both Table 15 and Table 18. This 
means that from the eigenvalue standpoint both the FRM and CRM yield better results for cases GX>Y 
and seems to indicate that this effect might be due to the geometry and problem separation. 

Table 19 is also encouraging, it shows that both the multiple-energy-grid eigenvalues and calculation 
times are in-between the corresponding single-grid calculations. 



 

53 

 Number of groups in the reflector region (red) 

 281 51 23 7 

Number of 
groups in 
the fuel’s 
(green) 
cross 

sections 

281 3h49 2h15 1h45 1h36 

51 2h39 1h02 36 min 25 min 

23 2h37 49 min 22 min 9 min 

7 2h46 48 min 19 min 5 min 
Table 19: Calculation time with OpenMP parallelization (12 threads) using the FRM 

The iterative process converges, and multiple-energy-grid results are in-between the corresponding the 
single-grid results. 

Figure 23 represents the cell-by-cell difference in absorption rates between the reference case and the 
other cases. Only two multiple-energy-grid cases (G23-7 and G7-23) are presented in Figure 23 for the 
same reasons mentioned in §3.3.2. 

G23-23 G23-7 

 

  

G7-23 G7-7 

 
 

Figure 23: Cell-by-cell absorption-rate differences with the reference case using the FRM 

In Figure 23, most of the error is located around the fuel-reflector interface. The maximum error is still 
obtained in the G7 case. This time the maximum error of the G7-23 case is no longer located along the 
interface between the two grids, but is now located in the central UOX subassembly. Table 20 confirms 
that while the maximum difference in absorption rates is obtained in the G7 case, theRMS and minimum 
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difference of the G7-23 case both exceed the errors obtained in the G7 case. This seems to indicate 
that the FRM creates more errors on average in the G7-23 case. 

 
Number of groups in each energy mesh 

281 51 23 7 

Number 
of 

groups in 
the fuel 
(green) 
region 

281 RMS 
Aúùè 

0.0003 
0.10 

0.008 
0.59 

0.17 
1.27 

AúLl -0.04 -0.25 -0.72 

51 0.0004 
0.10 

0.002 
0.26 

0.011 
0.67 

0.17 
1.48 

-0.06 -0.13 -0.20 -0.66 

23 0.02 
0.94 

0.02 
0.91 

0.02 
0.70 

0.18 
2.00 

-0.23 -0.23 -0.39 -0.65 

7 0.37 
1.79 

0.26 
1.41 

0.23 
1.54 

0.18 
2.01 

-0.94 -0.91 -0.80 -0.76 
Table 20: Maximum, average and minimum difference using the FRM 

From Table 20, it seems that the FRM is better suited to GX>Y problems, since it degraded other 
calculations by increasing the negative and average errors. However, the errors obtained in Table 20 
are smaller than those obtained using the CRM in Table 17. The FRM seems to yield better results from 
the absorption rates point-of-view than the CRM. 

The FRM also leads to better eigenvalues and shorter calculation times despite the assumptions made 
for the definition of the form factor. However, the average error increases when the fuel’s energy mesh 
is coarser than the reflector’s. 

3.4 CONCLUSIONS 
Implementing a multiple-energy-grid scheme in IDT makes it possible to treat subdomains with 
appropriate energy meshes, and leads to more accurate results compared to using the coarser energy 
grid over the whole core. This threefold approach shows gains in keff and calculation time. Out of the 
three methods developed, the flux reconstruction method (FRM) yields better results at the local level 
than both the current (CRM) and basic reconstruction methods (BRM).  

Instead of considering a “fine” and a “coarse” energy mesh as we did in our work, in the future, it would 
be interesting to update the multiple-energy-grid scheme to handle different energy grids that deal with 
different resonances. All the grids would then share the same coarse mesh but each grid would be 
refined in a specific energy range as illustrated in Figure 24.  

 

Figure 24: Illustration of energy meshes using the current multiple-energy-grid method (left) and a possible 
generalization of the method (right) 
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In this proposed update, reconstruction and condensation would not be a binary test, but would depend 
on the comparison for each group between the two grids. By only focusing on the boundary exchange 
step of Algorithm 13, we can illustrate (Algorithm 14) the proposed procedure to update the boundary 
condition for the multiple-energy-grid scheme on the right side of Figure 24. 

Boundary flux exchange only from Algorithm 13 

 If energy meshes A and B are the same 

  
∀+, ∀23⃗ â

/
	Mµç5j,Ll

(é)
0C⃗, 23⃗ , +6 = /

	léL#ˇçjK,jµn

(é)
0C⃗, 23⃗ , +6,					23⃗ . :3⃗ éèn < 0

/
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(é)
0C⃗, 23⃗ , +6 = /

	Mµç5j,jµn

(é)
0C⃗, 23⃗ , +6,					23⃗ . :3⃗ éèn ≥ 0

  

 If energy meshes A and B are different 

  Create a fine energy mesh B# using all the groups from both A and B 

  Loop over groups in subdomain 

   If group in fine energy mesh B#then group is + 

    Find all the fine groups in the coarse group 
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   If group not in fine energy mesh B#then group is 3 
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 Otherwise, draw energy from uniform function in lethargy 
Algorithm 14: Boundary flux exchange in updated multiple-energy-grid method 

The main difference in this proposed procedure with the developed Algorithm 13 is that a fine mesh is 
created and that each group needs to be checked against this mesh, rather than just comparing mesh 
sizes. This proposed update to the current multiple-energy-grid scheme would allow the user to refine 
multiple regions of interest. A better description of the reflector resonances would also likely have a 
more important impact on the calculation. 

Another potential update to the multiple-energy-grid scheme could be to study the boundary flux 
reconstruction without common group boundaries, as illustrated in Figure 25. The difficulties with such 
a method were discussed in §3.1.2, but the main challenges would be that no common grid could be 
used to simplify the test during the boundary flux exchange and different coefficients would be used to 
reconstruct the flux, and to weigh the group correspondences. 
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Figure 25: Illustration of energy meshes using the current multiple-energy-grid method (left) and a possible 
generalization of the method without common energy boundaries (right) 

The multiple-energy-grid method can also be seen as a first step towards an adaptive energetic method, 
where at each step an error condition determines if a region needs to be refined. IDT uses macroscopic 
cross sections generated from a previous APOLLO3® calculation. To be able to implement such a 
method in IDT, it would be necessary to precalculate many different energy grids and then switch 
between them. 

To conclude, modifying the DDM to accommodate the multiple-energy-grid scheme helped us 
understand what data is necessary to update the boundary condition between subdomains: subdomains 
update the boundary condition using boundary fluxes, an eigenvalue and the fission source for each 
subdomain. As a result, the stochastic method needs to have surface flux estimators for each group and 
direction, as well as the fission rate. 

While a multiple-energy-grid scheme is a starting point for future deterministic-deterministic hybrid 
methods, it faces most of the same challenges as traditional deterministic methods such as self-
shielding and spatial discretization. For this reason, we decided to move on to the development of a 
deterministic-stochastic hybrid method. In the next chapter, we look at the implementation of a 1-way 
coupled deterministic-stochastic scheme.  
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4. DEVELOPMENT OF A MONTE CARLO-DETERMINISTIC HYBRID SPATIAL 
METHOD 
In the previous chapter, one of the goals of the multiple-energy-grid method was to have a finer energetic 
description of certain subdomains. This method made it possible to get more information on a part of 
the core, which led to having more precise reaction rates for the energy-refined subdomains. However 
it kept the limitations of traditional deterministic methods.  

In this chapter, a hybrid deterministic-stochastic method is developed to try to overcome some of the 
deterministic limitations. A partially coupled method was chosen to study the benefits the stochastic 
methods can bring to a small section of the deterministic calculation. We consider this method partially 
coupled because the deterministic calculation is unaffected by the stochastic calculation. The first 
section of this chapter will explain the hybrid method implemented here (§4.1). After this, the study case 
is presented (§4.2), followed by a conclusion and perspectives (§4.3). 
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4.1 PARTIAL COUPLING PRINCIPLES AND IMPLEMENTATION IN IDT AND LAST 
This section focuses on a hybrid method, which uses a deterministic flux distribution as a fixed source 
for a stochastic calculation. A deterministic calculation is first performed on a large problem. A stochastic 
calculation is also performed on a small section. The deterministic flux distribution provided by the 
complete calculation initializes the stochastic calculation and is fixed on its boundaries. The stochastic 
calculation will lead to increased precision over the region of interest, while the overall calculation will 
be run using a quicker and coarser method. 

4.1.1 Description of 1-way coupling application to core problems 
The method developed here starts by performing a whole core deterministic calculation using IDT’s 
DDM. The boundary fluxes resulting from this deterministic calculation are stored in a file and then used 
by the stochastic calculation. A stochastic calculation is consequently run on a smaller region of interest 
using the boundary fluxes from the neighboring deterministic subdomains. This process is illustrated in 
Figure 26. 

 

Figure 26: Illustration of the main steps in the 1-way coupled process 

We sample the fixed source to determine the boundary source for our simplified Monte Carlo problem. 
In this method, we chose to deal with a surface source created from the deterministic angular boundary 
fluxes. 

In an industrial hybrid method, using files to transfer information between the two codes will become too 
memory expensive. Transferring information using files will also slow the calculation down significantly. 
In such a code, it would be best to transfer information in memory directly. However, in our case this 
was not possible. IDT and LAST are two independent codes, making it easier to implement and test a 
hybrid method using files. 

4.1.2 Sampling of the incoming boundary fluxes to create a fixed source 
As mentioned above, one of the reasons we chose to sample our boundary source was to be able to 
run calculations with large numbers of particles. To create the discrete distribution to sample, we use 
the C++ library <random> [60] and the discrete_distribution function. The source creation is 
implemented in C++ in LAST, which is why we used C++ libraries to implement the sampling function 
that will create the source from the IDT distribution. 

In §2.2, we saw that in deterministic methods, the neutron transport equation is split into a system of 
equations to solve. By solving the neutron transport equation, we obtain the following system. 
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The results of a deterministic calculation are discrete fluxes. Let us consider a deterministic calculation 
performed using # positions, 3 groups, and ƒ directions. Using the discrete distribution for each 
component of the deterministic phase-space, we can sample Monte Carlo coordinates of the phase-
space.  
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The array presented in Table 21 is generated by the boundary flux output procedure in IDT. The 
Cartesian coordinates at the end of each direction {?, @, A} can be obtained from the IDT calculation 
directly. This data is necessary when converting coordinates in the deterministic phase-space to the 
stochastic phase-space. The quadrature weight is printed to allow us to weigh boundary flux by the 
quadrature weight. 

Subdomain 
number Axis Sub-edge 

number ) 
Group 

number + 
Direction 
number \ \è \D \E 

Boundary 
flux /

5

#
()) 

Direction 
weight 7 

Table 21: Array generated by IDT boundary flux print 

The angular distribution, the third line of system ( 4.1 ), is the only one printed in Table 21. To be able 
to sample the deterministic spatial distribution (first line) and energetic distribution, we need to create 
the remaining distributions from /

5

#
()). 

Once each distribution is created, we can start by sampling a surface from the spatial distribution. It is 
then possible to create the corresponding energetic distribution and sample an energy group. From the 
spatial mesh and energy group, the angular distribution is created and a direction can be sampled. After 
this, we need to convert deterministic data into a point of the phase-space for the stochastic calculation. 
This procedure is illustrated below in Algorithm 15.  

Sampling algorithm 

 Read boundary fluxes from the IDT output file 

 Sum boundary fluxes over directions and energy to create the spatial distribution 

 Sample N particles 

  Sample the spatial distribution and get index of spatial mesh 

   Use spatial mesh index to determine energy distribution 

   Sample the energy distribution and get energy group index 

    Use spatial mesh and energy group indexes to determine angular distribution 

    Sample the angular distribution and get direction 

  Convert spatial mesh into a position (), ;, <) by sampling uniformly on sub-edge 

  Sample uniformly energy = within energy group boundaries  

  Use sampled direction number to find the associated {?, @, A}  
Algorithm 15: Sampling algorithm of discrete distributions 

To be able to create the deterministic spatial and energetic source distributions, some functions were 
created: a function determining the number of spatial meshes along each axis, the number of energy 
groups, and the number of directions. The objects to store the three distributions are then generated. 
The last function is used to create each distribution from the global data ( 4.2 ). 
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 ( 4.2 ) 

These functions require looping over the deterministic data a second time, which slightly slows down 
the Monte Carlo simulation in the hybrid scheme. To limit the number of functions to run and steps 
implemented, we wanted to see the effect of sampling over the boundary flux distribution presented  in 
( 4.3 ). 
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This new method is presented in Algorithm 16. The simplified sampling method led to the same results 
as the ones shown in Algorithm 15. To limit the potential for mistakes and limit the functions called during 
the sampling procedure, we decided to use the sampling algorithm implemented below. 

Sample source algorithm 

 Loop over parallel threads 

  Read boundary flux from the IDT output file 

  Create distribution of weights using all the IDT data to sample from  

  Sample N particles 

   Use C++ discrete distribution to sample the weights distribution and get index 

   Use index to find the corresponding subsurface on each edge and convert into a position 
(), ;, <) 

   Use index to find the corresponding energy group and sample energy = within energy group 
boundaries 

   Use index to find the corresponding direction and associated {?, @, A}  
Algorithm 16: Algorithm implemented in LAST to sample IDT boundary fluxes 

It is important to note is that we illustrated this issue for a single interface between neighboring cells. If 
we had multiple deterministic-stochastic interfaces, we would need a weight distribution associated with 
each interface. This modifies slightly the sampling algorithm because we would no longer sample Y 
particles but Y × :"VQbC	d»	N:FbC»cUbO. 

4.1.3 Interfacing phase space coordinates 
Another aspect of the sampling algorithm is the need to convert surface, group, and direction numbers 
into stochastic coordinates of the phase-space. We will start by looking at the description of the spatial 
problem in both calculations. Let us imagine the same interface treated by both a deterministic and a 
stochastic method. The deterministic calculation is separated into eight subdivisions along each axis. 
The number of subdivisions is determined by the user for each calculation. This is illustrated using a 
fuel cell in Figure 27. In red is the interface we will focus on. 

 

Figure 27: Fuel cell treated with a stochastic method (left) and fuel treated with a deterministic method (right) 

The resulting boundary flux for each calculation on this interface is represented in Figure 28. The output 
of the deterministic calculation will give a value of the boundary flux for each subdivision. This means 
that the number of subdivisions is also important to determine the shape of the boundary flux.  
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Figure 28: Normalized spatial distribution of boundary flux steps and continuous representations 

In a 3D Cartesian geometry, each interface is characterized by two out of three of the coordinates 
(), ;, <). In our example, let us say that the interface position in Figure 28 is along the ;-axis. This means 
that ) and < are known, while ; is only known in intervals. To determine the ;-position in each interval, 
we need to the spatial description used in each interval. The spatial description may be determined 
using polynomials. To simplify the spatial problem, we decided to run constant MOSC calculation. 
Constant calculations make it possible to uniformelysample the ;-position in each subdivision. 

One problem with spatial correspondence is that it is problem-dependent. Subdomain numbering is 
dependent on the number of interfaces between the two calculations, the size of the problem, and the 
number of subspaces in each cell. This means that a different spatial correspondence method is 
implemented for each different study case. This problem is in part due to the use of two independent 
codes, with no common geometry description as is the case between IDT and LAST. LAST uses ROOT 
geometries [61], while the user needs to use the native IDT formalism to describe the geometry. 
However, for more practical use, having the user implements spatial correspondences is not realistic. A 
solution for this problem would either to use the same geometry interpreter and/or generator or to create 
an interface, which would automatically adapt the coordinates between the two methods. In this second 
method, the user would have to precisely define the interface between the two methods, and the rest 
would be automatic. The design software INCA [62] could be a starting point for a future interface. INCA 
offers the possibility of defining the geometry or calculation scheme for TRIPOLI-4® and APOLLO3®. 
However, additional work must be done to make the same problem definition compatible for both codes. 
Further modifications must be done to deal with spatial correspondences while calculations are running 
as well. 

Let us move on to the deterministic energetic description. The deterministic energy distribution is split 
into groups, which are seen as steps in Figure 29. The problem is the same as above; we need to 
sample within each group to determine a single energy. We again decided to use more than tens of 
groups in the deterministic calculations and to sample uniformly within each group, to be able to use the 
same sampling method regardless of the problem to study. If we wanted to use fewer groups, we might 
need to change sampling methods with the energy range. The sampling method would also need to be 
changed with the problem’s energy spectrum. 
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Figure 29: Normalized energetic distribution of boundary flux steps and continuous representations 

The angular description of deterministic problems uses the discrete ordinates method as explained in 
§2.2.1.2. The discrete ordinates are the directions associated with the center of each mesh as shown in 
Figure 30. In IDT, we are able to obtain the vector corresponding to each direction. We decided to use 
this vector and not sample within the solid angle. The SN calculation does not provide the distribution 
within the solid angle. Sampling in the solid angle would mean assuming a distribution.  

 

Figure 30: SN quadrature with discrete directions [63] 

Once the sampled point of the IDT distribution is converted into a point in the phase space, its weight is 
set to one, and it is added to the list of sources for the stochastic calculation. The sampling procedure 
means that meshes with more important boundary fluxes will have more particles in the stochastic 
simulation. The number of particles in each mesh will compensate for the fact that the particle weight is 
set to one. 

4.1.4 Computational structure of the method’s implementation 
With a better understanding of how we convert an IDT boundary flux distribution into sources for LAST, 
let us have a look at how this first hybrid method is implemented in Algorithm 17. The deterministic 
calculation is run using the DDM algorithm shown in Algorithm 3. Once the deterministic calculation is 
converged, subdomain boundary fluxes are stored in an output file and the LAST calculation is run using 
this file as input sources. 
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Numerical Steps in IDT to solve a problem using DDM and calling LAST 

 Loop over external iterations e=1,…,Ne 

  Loop over subdomains s=1,…,Ns 

   Update the local fission source from —M
(éH&)  

   Multigroup approximation – Scattering source calculation g=1,…,NG 

    Update local scattering sources (∀+o ≠ +) from /M
(é),#∞¥# and /M

(éH&),#∞∂#  

    Internal iterations i=1,…,Ni 

     Solve the spatial sub-problem: sweep over the mesh and propagate from 
boundary conditions 

 

     Update the local self-scattering source á##/M
(é,L),#  

  Update the boundary flux and exchange boundary fluxes between subdomains  

  Update keff  

  Convergence test on keff and power distribution  

 Reconstruction distribution at the core scale 

 Print boundary fluxes in output file 

 Call LAST to run a fixed source calculation following Algorithm 16 
Algorithm 17: Algorithm implemented in IDT to run a fixed source calculation in LAST with boundary sources from 

IDT 

As in the case of the multiple-energy-grid scheme, the region of interest is isolated from the rest of the 
problem by its subdomain’s boundaries. Creating a subdomain that only contains the region of interest, 
helps limit the output data to its boundaries. This reduces the amount of information to pass between 
codes and ensures that the subdomain of interest has the same boundaries as the problem to study 
with the stochastic method. 

4.2 APPLICATION TO A PROPAGATION CASE: CORE-REFLECTOR TRAVERSE 
The 1-way coupled scheme is implemented to propagate a fixed source coming from a deterministic 
calculation. The idea is to propagate this source and use the stochastic estimators to access more 
information compared to the deterministic calculation. This means that we would not only have access 
to a flux for instance. 

Setting up this scheme requires multiple steps to ensure the viability of the method. We need to look at 
different problems to develop a more complex methodology. For this problem, we wanted to work with 
a single interface between the two codes, to simplify the spatial description of our problem. This first 
study sets the single-interface sampling scheme. 

4.2.1 Problem geometry 
Having a single interface between our two codes meant that we needed to work on a simplified 2D 
problem. We then decided to look at a separation between subdomains along the ;-axis and to focus 
on a single row of cells surrounded by reflective boundary conditions. We created a geometry using 10 
UOX cells and 10 water cells as depicted below in Figure 31. 
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Figure 31: Core-reflector traverse geometry with cell numbering 

Each fuel cell is a heterogeneous Cartesian cell represented in Figure 32 while each water cell is 
homogenous.  

 

Figure 32: Fuel cell media 

Zircaloy-4 (ZR4) is a zirconium-tin-iron-chrome alloy, which is used for cladding for some fuel pins in 
LWRs [64] [65]. AG3 is an aluminum-magnesium-iron alloy, which is used as an overclad in the EOLE 
experiments [64] [65]. The overclad is used in the experimental facility to recreate the moderation ratio 
at lower temperature than the one in a functioning PWR. Even in this simplified configuration, we tried 
to incorporate elements of the experiments that could be studied by hybrid methods. In this traverse 
problem, we choose to use the fuel cell from the EPICURE UH1.2 configuration [65]. 

The geometry presented in Figure 31 and Figure 32 was used to run a reference stochastic calculation 
using LAST and a deterministic calculation using IDT. The stochastic code does not allow for true 2D 
calculation. We had to create a thin 3D geometry with reflections on the <-axis. In the IDT calculation, 
submeshes were created to ensure the spatial convergence of our problem. A preliminary analysis of 
the problem was performed comparing the eigenvalues for both IDT and LAST calculation determined 
the number of submeshes. Since we chose to run a constant MOSC calculation, we created twenty 
subspaces along each axis, which can be seen in Figure 33. 

 

Figure 33: Cell separation into a 20x20 submesh – Water cell (left) – Fuel cell (right) 

The geometry used to run our coupled calculation was a bit different. We still used our twenty-cell 
traverse, but instead of filling the fuel cells with the appropriate media, each ring and the moderator were 
filled with a voided media. This is illustrated below in Figure 34. We decided to use the same geometry 
as the complete traverse, to facilitate geometric correspondences. 

 

Figure 34: Core-reflector traverse geometry with cell numbering with voided fuel cells used in the coupled 
calculation 
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Originally, we had created a geometry simply made up of the water traverse as seen below in Figure 
35. This geometry was unsuited for specifying the appropriate boundary conditions, because we could 
not differentiate the boundary condition entering the first cell along the ;-axis with the two boundaries 
on the )-axis. This is because the whole traverse is surrounded by the same medium. To overcome this 
issue a small volume needs to be added before the first water cell.  

 

Figure 35: Second Core-reflector traverse geometry with cell numbering cells which was not used 

A secondary issue with this geometry is that the origin of the problem is no longer the middle of the 
interface between the fuel and water subdomains. The origin is now between cells 5 and 6 in Figure 35. 
While this is not a problem, it is important to bear in mind for both the spatial correspondences between 
the deterministic and stochastic codes and the development of an interface between two codes. 

An important difference with the whole traverse is that the water traverse is not surrounded by reflective 
boundary conditions. Three of the external surfaces have a reflective boundary condition, while the 
interface surface has a void boundary condition. The interface surface already has the imposed 
boundary source obtained from a converged calculation from IDT. If we impose a reflective boundary 
condition, we bias the problem by not allowing particles slowed down in the water cells to leave this 
area.  

4.2.2 Calculation options 
Not only was the geometry used in the IDT and LAST calculations a bit different due to the requirements 
of each method, but the parameters of each code were as well. For instance, we mentioned above the 
need to refine each spatial cell to ensure the spatial convergence of the problem, this is the number of 
subdivisions on each edge in Table 22. Table 22 presents the different methods and options used to 
treat the phase space using IDT. 

Spatial method Constant MOSC 

Number of subdivisions on each edge 10 

Number of energy groups 281 

Number of directions 144 (~S16) 

Angular method Chebyshev-Legendre 
Table 22: IDT calculation options 

LAST does not discretize the phase space, so there is no specific spatial treatment. However, to reduce 
probabilistic uncertainties, we need to ensure that a sufficient number of particles were simulated and 
batches were run. These options are synthesized in Table 23. Each MPI process runs a batch, when it 
completes said batch, the process moves on the next. Each MPI process will run approximately 667 
batches. 
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Number of batches 10000 

Number of MPI processes 15 

Number of neutrons per batch and per MPI 
process 2000 

Number of neutron to discard 100 

Initial source Ponctual (0, 0, 0), Isotropic, Watt 
spectre 

Simulation type Critical 
Table 23: LAST calculation options 

The 1-way coupled calculation can be seen as a combination of the IDT and LAST calculation options. 
We only present the stochastic options used in Table 24, because they differ from the stochastic options 
in Table 23, while the initial deterministic calculation is the whole problem IDT calculation. 

Number of batches 10 

Number of MPI processes 15 

Number of neutrons per batch and per MPI 
process 20000 

Number of neutrons to discard 0 

Initial source IDT output file 

Simulation type Propagation with fixed source 
Table 24: LAST calculation options for the 1-way coupled calculation 

It can be noted in Table 24 that the number of batches to be run is much smaller, while the number of 
particles per batch is larger. The reason for this is to strive for the same magnitude of statistical 
uncertainties. The total number of neutrons simulated in both calculations lead to 10-3 of relative 
uncertainty. Contrary to the complete LAST simulation, we no longer need to discard the first few 
batches, since we are already using a converged source distribution. The analysis of the IDT distribution 
will be performed below in §4.2.3. To be representative of the IDT boundary flux distribution, we need 
to generate a sufficient number of particles per batch. All the neutrons simulated in the 1-way calculation 
are in the water section of the traverse, they all contribute to the flux in this part of the geometry. 
However, in the complete geometry LAST calculation, the neutrons simulated can contribute to the flux 
in the fuel region, the water region or both. This is why we can run fewer batches in the 1-way coupled 
calculation.  

4.2.3 Comparing the sampling method to the boundary flux distribution 
Before running the 1-way coupled calculation, we started by comparing the two complete calculations. 
This analysis is meant to serve as an envelope parameter for the results of the 1-way coupled 
calculation. In Figure 36, we take a look at the normalized flux in each cell of the traverse. The flux 
distribution is separated into two groups, a fast group covering energies from 0.625 eV to 20 MeV, and 
a thermal group covering energies below 0.625 eV. The fast (or thermal) flux is divided to the sum of 
the fast and thermal fluxes in the water cells. The results are normalized to the flux obtained in the water 
cells to be coherent with 1-way coupled calculation. In this figure, we can see good agreement between 
the two calculations. 
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Figure 36: Comparison of the complete IDT calculation (orange) to the complete LAST calculation (blue) – Fast 

group comparison (left) – Thermal group comparison (right) 

In Figure 37, we plot the relative differences between IDT and LAST. In Figure 36, it seemed that the 
two curves overlapped completely so we need the results of Figure 37 to quantify the differences 
between the two calculations. The error bars shown are the uncertainty at 3J obtained by the stochastic 
calculation only, since we have no associated uncertainty to the flux obtained by IDT.  

  
Figure 37: C/C’ comparing complete IDT calculation to complete LAST calculation – Fast group comparison (left) 

– Thermal group comparison (right) 

We compared calculation times for both of these calculations in Table 25. 

Calculation Time spent in IDT Time spent in LAST Total calculation time 

IDT only 3 min  3 min 

LAST only  2h 7 min 2h 7 min 
Table 25: Calculation time spent in each code 

Having a good idea of how our calculation is expected to behave, we then looked at the data generated 
by the sampling algorithm. 

Our goal is to have a sampled distribution that reproduces the IDT boundary flux distribution. To be able 
to compare the two distributions, while sampling our boundary source with LAST, we counted the 
surface, group, and direction numbers before converting this data into a point in the phase-space. Using 
this data, we were able to compare the normalized boundary flux on each surface with the normalized 
counts of particles on each surface as shown in Figure 38. 
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Figure 38: Comparison of IDT spatial distribution (blue) with the sampled spatial distribution (orange) 

The spatial distribution showed good agreement, and the energetic distribution is shown in Figure 39. It 
can be noted that some statistical fluctuations disturb the energetic distribution slightly, but the overall 
shape is conserved after sampling. 

 

Figure 39: Comparison of the IDT energetic distribution (blue) with the sampled energetic distribution (orange) 

The same method is used to compare the angular distribution of the sampled source to IDT’s. The 
comparison of the direction numbers is shown on the left side of Figure 40. Some statistical fluctuation 
can also be observed here. The axis shows the increasing arbitrary index given to the most directions 
with the largest flux (blue).  
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Figure 40: Comparison of the IDT angular distribution (blue) with the sampled angular distribution (orange) 

In the last three figures, we can see that there is good agreement between the two distributions. This 
sampling method seems to be able to recreate the boundary flux distribution. 

4.2.4 Results 

4.2.4.1 Initial results 
Next we compared the normalized flux in each cell of the water subdomain in Figure 41. Cell numbering 
is illustrated in Figure 34. The results are surprising because the crosses in green (resulting from the 
coupled calculation) do not follow the expected shape. 

  
Figure 41: Normalized flux in each water cell – Fast flux (left) – Thermal flux (right) 

The fast range seems to be poorly predicted with an important overestimation of the flux for the first few 
cells on the left of Figure 41. The prediction seems slightly better for the thermal range. In both cases, 
there seems to be an overestimation of the flux in the first few cells. To get a closer look at the behavior 
of the coupled calculation compared to the complete IDT calculation, we use the same method described 
for Figure 37. Figure 42 presents the way the 1-way coupled calculation and complete IDT calculation 
differ from the complete LAST calculation. 
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Figure 42: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) to 

complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

Figure 42 confirms the observations made above. The C/C’ variation for the 1-way coupled calculation 
does not follow the IDT only variation and far exceeds the 3J uncertainty. In particular, the 20% error 
obtained for the first cell of the fast flux is much too large. It was expected that the 1-way coupled method 
would lead to equivalent or better flux. These results must indicate a problem with our methodology. 

4.2.4.2  Problem analysis 
After comparing the result of the sampling method with the initial deterministic calculation, we compared 
data crossing the interface between the two subdomains in the complete deterministic and stochastic 
calculation. We started by comparing the angular distribution, by summing the boundary fluxes in energy 
and space. After this, we separated the polar coordinates into intervals, following IDT directions. We 
then summed up all the particles in each interval to obtain the final count. We also only represented the 
directions obtained in a single polar plan. From Table 5, in a stochastic calculation fluxes are estimated 
using G

633⃗ .l3⃗
, while currents are estimated using H. On the left side of Figure 43, we only summed up weights 

in each direction, which means that we are comparing a flux and a current. To be able to compare 
stochastic data to this boundary flux, we started by converting our weight distribution into a flux 
distribution by dividing the particle weight by 23⃗ . :3⃗ . In this case, this product can be simplified since we 
are comparing data going through a single interface, the product now becomes 23⃗ . :3⃗ = 2è. After this, we 
separated the spatial coordinates into intervals, to fit in with the deterministic subspaces. We then 
summed all the particles in each interval to obtain the final count. In Figure 43, we represent the two 
normalized distributions. These two distributions now show good agreement and both seem almost 
isotropic. 
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Figure 43: Polar plot comparing the normalized boundary flux from IDT (orange) and the number of particles in 
each direction of solid angle from LAST (blue) 

We use the same procedure to convert the weight distribution into a spatial distribution. The subspaces 
are shown above in Figure 33. The results are condensed in Figure 44.  

 

Figure 44: Spatial plot comparing the normalized boundary flux from IDT (orange) and the number of particles in 
each sub-edge (blue) 

This time instead of separating the weight distribution into directions, we converted the energies into 
groups, using the procedure explained in §4.1.2. The results are shown in Figure 45. 
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Figure 45: Energy plot comparing the normalized boundary flux from IDT (orange) and the number of particles in 
each group from LAST (blue) 

In the last three figures, we can see that there is good agreement between the two calculations. The 
three distributions show that the similar fluxes go through the interface in the two codes. The stochastic 
flux is higher in the thermal region, so we expect that we may have slightly underestimated this using 
IDT. Now that we have seen how similar the data transiting between the subdomains is, we can see 
that the problem comes from the sampling algorithm used in LAST. By considering our boundary flux 
distribution as a distribution of weights, we were biasing our calculation. To correct this error, we need 
to add an extra step that converts a boundary flux distribution into a true distribution of weights as shown 
in Algorithm 18. Once the boundary flux file is obtained from the IDT calculation, it needs to be converted 
into a point source to be run in the stochastic calculation. To do this, we start by transforming our 
boundary fluxes into surface sources. In our method, this means that we are going to use our boundary 
flux distribution on each surface as the discrete distribution to sample surface sources.  

Sampling algorithm 

 Loop over parallel threads 

  Read boundary flux output file from IDT 

  Create distribution of weights to sample from   

   Convert boundary fluxes into weights by multiplying each value by 23⃗ . :3⃗  

  Sample N particles 

   Use C++ discrete distribution to sample the weights distribution and get index 

   Use index to find the corresponding subsurface on each edge and convert into a position 
(), ;, <) 

   Use index to find the corresponding energy group and sample uniformly within group to 
determine energy = 

   Use index to find the corresponding direction and associated {?, @, A}  
Algorithm 18: Corrected algorithm implemented in LAST to sample IDT boundary fluxes 

In Algorithm 16, we mentioned converting boundary fluxes into weights. The reason we need to do this 
is that, in a stochastic calculation, fluxes are estimated using G

633⃗ .l3⃗
, as seen in Table 5. To get a distribution 

of weights, we need to multiply each component of the boundary flux distribution with the associated 
23⃗ . :3⃗ . After implementing this new correction, a new analysis of the hybrid scheme is performed. 
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4.2.4.3 Final results 
We first start by looking at the normalized flux in each cell of the water subdomain of the traverse in 
Figure 46. Cell numbering is shown in Figure 34. The crosses in green seem to follow the curves 
obtained with the single method calculation scheme for both the fast and thermal ranges. 

  
Figure 46: Normalized flux in each water cell – Fast flux (left) – Thermal flux (right) 

To get a closer look at the difference between the 1-way coupled calculation and the complete stochastic 
calculation, the relative difference to the stochastic simulation is shown below in Figure 47. This allows 
us to see how the 1-way coupled scheme differs from the complete calculation, and how its behavior 
compares to the complete deterministic calculation. 

  
Figure 47: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) to 

complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

From Figure 47 it seems that the fast flux is improved by the 1-way coupled scheme. The 1-way coupled 
scheme is closer to the fast-flux obtained by LAST, than the one calculated by IDT. However, it seems 
that the thermal flux is close to the one obtained by IDT. On the right side of Figure 47, the two curves 
are very similar. Similar results from the IDT calculation and the coupled calculation were expected. We 
chose to look at a fuel-reflector traverse that was well modeled by the deterministic calculation already, 
which is why gains were expected in the 1-way coupled calculation. 

4.2.5 Parametric study 
The results obtained in the previous section came from a fully converged and finely refined deterministic 
calculation. However, in a 2-way coupled calculation scheme, the deterministic calculation will not 
perform as many power iterations, or as fine as studied above. This will have an impact on the data 
used by the stochastic calculation, which will in turn affect the partially coupled calculation. We assume 
that the refinement and convergence of the deterministic problem will probably be case-dependent in a 
2-way coupled scheme. The reference parameters are those used in the previous IDT calculation (Table 
22). 
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4.2.5.1 Number of groups 
Table 26 presents the different methods and number of meshes used to treat the phase space using 
IDT. The original calculation was run in IDT using 281 energy groups; in this section, we are going to 
reduce the number of energy groups to see how this might affect the calculation. 

Spatial method Constant MOC 

Number of subdivisions on each edge 10 

Number of energy groups 51 and 23 

Number of directions 144 

Angular method Chebyshev-Legendre 
Table 26: IDT calculation options simplified in energy 

An important part of the calculation time (1 min 23 s) is spent preparing the DDM simulation and 
initializing subdomains. This part of the calculation is barely affected by the change in the number of 
groups. The different calculation times for the new 1-way coupled calculations are presented in Table 
27. 

Decreasing the number of groups, decreased both the size of the distribution to sample from and the 
size of the file to be read. The creation of the surface source distribution from IDT’s boundary fluxes was 
significantly quicker for these new distribution. For 281 groups it took about 51 minutes, 10 minutes for 
51 groups and 5 minutes for 23 groups. The 1-way coupled calculation time was then much shorter 
compared to the 281 group calculation. The calculation times obtained for each are presented in Table 
27. 

Calculation Time spent in IDT Time spent in LAST Total calculation time 

IDT only 3 min  3 min 

LAST only  2h 7 min 2h 7 min 

IDT->LAST 281 
groups 3 min 55 min 15 s 58 min 15 s 

IDT->LAST 51 groups 2 min 42 s 14 min 30 s 17 min 12 s 

IDT->LAST 23 groups 2 min 16 s 9 min 28 s 11 min 44 s 
Table 27: Calculation time spent in each code 

Despite the lower number of groups used in the deterministic calculation, there is still good agreement 
with the normalized flux obtained in LAST. To better see the differences between all our calculations, 
we decided to only present the (C-C’)/C’ results in Figure 48 and Figure 49. The IDT curve is in yellow, 
the coupled IDT-LAST 281 group calculation in green, the 51-group calculation in red and the 23-group 
calculation in purple. 
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Figure 48: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green, red, and 

purple) to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

   
Figure 49: C/C’ comparing complete IDT calculation (yellow, red, and purple) and coupled IDT-LAST calculation 

(red, and purple) to complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

As expected, decreasing the number of groups in the deterministic calculation leads to a poorer flux 
calculation in the coupled calculation. The deterministic calculation performed much better than the 1-
way coupled calculation with fewer energy groups. It seems more beneficial with a coarser energetic 
calculation to use the deterministic method. In §4.1.2, we explained that the energy used in the 
stochastic calculation is obtained by sampling uniformly all the energies within the selected group. From 
Figure 48, the thermal flux seems much less affected by the number of groups in the initial calculation. 
This might be explained by the width in lethargy for thermal groups (<0.625 eV) which is still close to 
0.1-0.3 as was the case in the 281-group mesh. The discrepancies obtained in the fast region might be 
due to uniform sampling method, which samples in wider groups. This might lead to higher energies 
being sampled, which could explain why the flux is overestimated in the last few cells of the traverse. 

The results seem to indicate the need to run energetically fine IDT calculations when using the coupled 
method. Another solution could be to change the sampling method and adapt the sampling method with 
the energy range. This could be done using weighting functions such as those proposed by NJOY [66] 
[67], samples energies in the fast range using a Watt spectrum, a 1

=
I  distribution for the epithermal 

range, and a Maxwell-Boltzmann distribution for the thermal range. The three distributions are illustrated 
below for a thermal reactor in Figure 50. 
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Figure 50: Energy ranges and neutron spectrum 

4.2.5.2 Number of spatial meshes 
Now that we have seen the impact of changing the energy grids has on the coupled calculation, let us 
take a look at the number of surfaces on each edge. The original calculation was performed with 10 
surfaces on each edge. Table 28 presents the different methods and number of meshes used to treat 
the phase space using IDT in this new coupled calculation. 

Spatial method Constant MOC 

Number of subdivision on each edge 5 and 3 

Number of energy groups 281 

Number of directions 144 

Angular method Chebyshev-Legendre 
Table 28: IDT calculation options simplified in space 

Figure 51 compares the complete IDT calculation and the three coupled calculations to the complete 
LAST calculation. IDT is in yellow, the 10-subdivision calculation in green, the 5-subdivision calculation 
in red, and the 3-subdivision calculation in purple. 

    
Figure 51: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) to 

complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

From Figure 51, the number of subdivisions on the interface seems to have very little impact on the 
coupled calculation scheme. This is not very surprising given that the spatial flux distribution is relatively 
flat according to Figure 44. This is a consequence of the problem that we chose to study, presented in 
Figure 34, and the reflective boundary condition surrounding the pattern. We are also dealing with an 
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interface of only 1.26 cm. All of this combined lead to an even distribution of the flux, which explains the 
small impact the number of subdivisions have on the calculation. 

Once again, most of the difference in calculation time obtained in Table 29 comes from the decreased 
preparation time in LAST. The preparation time could be decreased if an interface was used, which pass 
information in a more time-efficient way.  

Calculation Time spent in IDT Time spent in LAST Total calculation time 

IDT only 3 min  3 min 

LAST only  2h 7 min 2h 7 min 

IDT->LAST 10 
subdivisions 3 min 55 min 15 s 58 min 15 s 

IDT->LAST 5 
subdivisions 2 min 34 s 20 min 34 s 23 min 8 s 

IDT->LAST 3 
subdivisions 2 min 01 s 12 min 53 s 14 min 54 s 

Table 29: Calculation time spent in each code 

While the number of subdivisions had very little impact on this problem, we expect that it would not be 
the case on larger problems with spatial gradients. 

4.2.5.3 Angular directions 
The next step in this parametric study was to observe the impact of the number of directions on the 
coupled simulation. The original coupled calculation was run using 144 directions. Table presents the 
different methods and number of meshes used to treat the phase space using IDT. 

Spatial method Constant MOC 

Number of subdivisions on each edge 10 

Number of energy groups 51 

Number of directions 60 (~S10) and 40 (~S8) 

Angular method Chebyshev-Legendre 
Table 30: IDT calculation options simplified in directions 

Figure 52 IDT and the coupled calculations to the complete LAST calculation. IDT is in yellow, the 144-
direction calculation in green, the 60-direction calculation in red, and the 40-direction calculation in 
purple. 
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Figure 52: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) to 

complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

There seems to be very little impact to the flux calculation by decreasing the number of directions. Some 
impact is observed in the fast flux region with up to 1% difference between the original coupled 
calculation and the 40-direction calculation. The impact is much more limited in the thermal region, as 
shown in Figure 52. There is no sampling of the angular distribution, the direction used is the one 
obtained in the deterministic calculation, and the small differences observed cannot be attributed to the 
sampling method.  

Decreasing the number of directions in the initial IDT calculation had an important impact on the 
sampling procedure. It originally took about 51 minutes to read and sample 144-direction boundary flux 
distribution, but only 27 minutes to sample the 60-direction distribution, and 15 minutes to sample the 
40-direction distribution. The LAST calculation time for the 1-way coupled calculation was always around 
4 to 6 minutes. This had decreased the overall calculation time of the 1-way coupled procedure as 
shown in Table 31. 

Calculation Time spent in IDT Time spent in LAST Total calculation time 

IDT only 3 min  3 min 

LAST only  2h 7 min 2h 7 min 

IDT->LAST 144 
directions 3 min 55 min 15 s 58 min 15 s 

IDT->LAST 60 
directions 2 min 37 s 31 min 45 s 34 min 22 s 

IDT->LAST 40 
directions 2 min 06 s 19 min 26 s 21 min 32 s 

Table 31: Calculation time spent in each code 

The angular source distribution created from the boundary fluxes shown on the left of Figure 43 revealed 
that directions within a -60° to 60° intervals are more likely to be sampled. As long as there are directions 
within this interval, most sampled sources will be associated to these directions. The limited changes 
due to the angular distribution used in the deterministic calculation might be attributed to the traverse 
geometry and the shape of the angular distribution. 

4.2.5.4 Deterministic calculation convergence 
In this section, we use the same options as presented in Table 22, but instead of letting the calculation 
run its course (13 power iterations), we stopped it after [1, 4, 8] outer iterations. Figure 53 compares IDT 
and the coupled calculations to the complete LAST calculation. 
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Figure 53: C/C’ comparing complete IDT calculation (yellow) and coupled IDT-LAST calculation (green) to 

complete LAST calculation – Fast comparison (left) – Thermal comparison (right) 

Figure 53 shows that performing four power iterations, eight power iterations or the complete IDT 
calculation leads to very similar results (less than 0.5 % difference). However, only using the first power 
iteration negatively influences the calculation. It leads to an overestimation of the fast flux in the last few 
cells by 2.5 %, compared to the 0.5% for the other coupled calculations. It seems that for the traverse 
problem studied, the newer results show good agreement with the complete LAST calculation, despite 
using deterministic data that has not fully converged.  

It was expected that the first power iteration would lead to poorer results. The results of the first power 
iteration are obtained only after considering each subdomain as an infinite medium. The boundary 
conditions has not yet been updated using neighboring subdomains. This explains why the shape is 
quite different for the fast flux in Figure 53. 

Performing fewer externals will shorten the IDT calculation, let us see how that impacts the overall 
calculation time of the 1-way coupled calculation in Table 32. Decreasing the number of iterations 
performed by the IDT calculation had little impact on the calculation time of the 1-way method. Most of 
the calculation time is attributed to the preparation of the surface sources, which is unaffected by the 
number of external iterations. This procedure depends on the size of the boundary source distribution. 

Calculation Time spent in IDT Time spent in LAST Total calculation time 

IDT only 3 min  3 min 

LAST only  2h 7 min 2h 7 min 

IDT->LAST total 
externals 3 min 55 min 15 s 58 min 15 s 

IDT->LAST 8 externals 2 min 15 s 56 min 58 min 15 s 

IDT->LAST 4 externals 1 min 53 s 55 min 52 s 57 min 45 s 

IDT->LAST 1 external 1 min 16 s 55 min 34 s 56 min 50 s 
Table 32: Calculation time spent in each code 

The four previous sections have shown that partially coupled calculation using simplifying and 
shortening the deterministic calculation lead to similar results to those obtained using fine and fully 
converged data. However, some work can still be done to improve the energetic sampling of the selected 
group. The good results obtained in the last few paragraphs are, in part, due to the simple geometry 
studied, which is why spatial subdivision had little impact on the coupled calculation. 

The sampling method is able to recreate the deterministic distribution and lead to improved results in 
the flux calculation over the water subdomain. For this single interface problem, with a non-multiplying 
medium, the 1-way coupled scheme leads to improved results in the flux calculation with very few 
batches. The goal is to use this method for more complex geometries with multiple interfaces between 
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the two codes, which will require studying additional test cases to see if similar results are obtained. 
Toward a 2-way coupling scheme 

4.2.6 Conclusions on the 1-way coupling results 
The sampling method is able to recreate the deterministic distribution and lead to improved results in 
the flux calculation over the water subdomain. For an IDT calculation using 281 groups, 144 directions 
and 10 subdivisions per cell, the source preparation time was almost three times longer in the coupled 
calculation compared to the complete LAST calculation. The 1-way coupled calculation simulated more 
neutrons per batch for fewer batches compared to the complete LAST calculation. While the source 
preparation was longer, the overall calculation time was shorter. The relative difference between the 
fluxes of the 1-way coupled calculation and LAST was below 3 %. The relative difference between the 
1-way calculation and LAST, was always in the same range or smaller as the one obtained between 
IDT and LAST. For this single interface problem, with a non-multiplying medium, the 1-way coupled 
scheme leads to improved results in the flux calculation with very few batches. 

Performing a 281-group, 144-direction, and 10-subdivision calculation on a larger problem would lead 
to much longer deterministic calculations. The stochastic calculation is only performed on a region of 
interest, to lead to more precise results without having to run a complete stochastic calculation. The goal 
is to be able to run a coarser and/or less converged deterministic calculation to initialize the stochastic 
problem. This leads us to perform a “parametric” study of the flux calculation in §4.2.5. Good results 
were obtained despite decreasing either the number of directions or the number of subdivisions. 
Decreasing the number of external iterations or groups did increase the relative difference to the 
complete LAST calculation. One key learning from this study is the role of the energetic refinement of 
the IDT calculation.  Refinement directly improves the 1-way coupled calculation.  

The importance of energetic refinement also applies to the previously studied multiple-energy-grid 
scheme (1). As a result, future work should focus on improving the energetic sampling. This might be 
done by choosing energy grids that better match the flux spectrum. Another possibility might be adapting 
the energetic sampling method to the energy range. This method would not require knowing the flux 
spectrum beforehand which would facilitate its use. Nevertheless, this would require implementing 
additional tests to determine the distribution from which to sample, thus increasing the computational 
cost.  

4.3 CONCLUSION: TOWARD A 2-WAY COUPLED SCHEME 

4.3.1 Main limitations faced 
As described in §4.2.4.2, we encountered significant errors in the flux calculation. After tedious analysis 
we discovered the root caused to be in the interpretation of the weight in LAST which should have been 
Gô

633⃗ .l3⃗
, Coherent results were obtained afterwards (§4.2). 

One of the challenges linked to our choice of methods came from the lack of common interfaces between 
the two codes, IDT and LAST. This meant that geometries needed to be defined separately for the two 
codes, vigilance when creating the initial geometries to solve with each method is paramount. In 
addition, technical challenges came from the state of development of the codes used.  

Other difficulties came from the need to implement and test different functionalities in both codes. For 
instance, flux estimators were not implemented in LAST. This also required a verification procedure 
using the already implemented flux estimators in TRIPOLI-4®. In IDT, we needed to implement a number 
of post-treatment functions to be able to print data. The challenge in developing these functions is that 
they needed to be compatible with the DDM scheme and parallel method used. While this step is 
necessary to make our tools compatible, the choice of methods here was at times a contributing factor 
to slowing down progress. 

4.3.2 Remaining work 
The development of this partially coupled method can serve multiple purposes. Future developments 
can continue to complete work done to date and extend this method into an industrial code. In addition, 
our work can serve as a stepping-stone towards a fully coupled method. 
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4.3.2.1 Partially coupled hybrid method 
Let us start by looking at the work required to complete this method as a partially coupled method. The 
parametric study conducted on the traverse problem gave us a better understanding of how the 
deterministic calculation could be simplified before running the stochastic problem. However, the low 
sensitivity to the angular and spatial distribution are likely specific to the traverse problem. The next step 
would be to continue the sensitivity study on the second problem. This might help identify which 
parameters are likely to be case-dependent.  

The partially coupled calculation fast flux showed important variations with the deterministic energetic 
grid used. As mentioned in §4.2.5.1, adapting the energetic sampling method with the energy might be 
beneficial to partially coupled calculations. Sampling uniformly within each group yielded good results 
for a fine energy grid but it could be interesting to use a more representative spectrum such as the 
weighting spectrum proposed by NJOY [66] [67]: a Watt spectrum for the fast range, a Maxwell-
Boltzmann distribution in the thermal range and a 1

=
I  distribution in the epithermal one. However, the 

challenge might be finding the appropriate distribution within each group. Before implementing the three 
distributions, two energy bounds need to be set, the upper thermal boundary =nˇéKúùk (0.625 eV), and 
the lower fast boundary =}ùMn (100 keV). An energetic sampling algorithm would need to replace the 
uniform sampling procedure. Let us consider the selected group + = ß=#H&, =#©, with =# > =#H&. 

Sampling an energy in the selected energy group 

 Check the energy range the group belongs to 

 If =# < =nˇéKúùk 

  Use the partial thermal distribution to sample the energy  

 If =#H& > =}ùMn  

  Use the partial fast distribution to sample the energy 

 If =# > =nˇéKúùk and =#H& > =}ùMn 

  Sample using a linear distribution over Â &

†û°¢
,
&

†û
Ê. 

Algorithm 19: Checks to perform to change the sampling distribution with energy 

This algorithm still needs some work, particularly when dealing with energy grids that overlap both 
energy ranges. The effect of such groups would need to be investigated further when developing this 
method. 

At the beginning of each batch, the sampled source is imposed on the stochastic problem’s interface 
and then propagated. However, from one batch to the next, it does not create a new source which would 
be the sum of the sampled source and all the new source points generated by fission. While the partially 
coupled method was able to provide microscopic reactions, fluxes, and currents, it cannot yet calculate 
an eigenvalue. Having an eigenvalue in the partially coupled method would also be an interesting point 
of comparison with the complete IDT and LAST calculations. To obtain this information, a fixed-source 
criticality calculation mode would need to be implemented.  

In §4.3.1, we mentioned that one of the challenges of working with two independent codes is that the 
problem definition in each code can be quite different. In this case, IDT defines its geometry natively 
while LAST uses ROOT geometries. This leads to having to manually update the spatial correspondence 
scheme for each problem studied. This process is not sustainable, and a future partially coupled hybrid 
scheme would need an interface that automates this process. The method was currently imagined with 
IDT controlling everything. This is not the best solution given the important differences between IDT and 
LAST. In the long run, developing an external interface which controls both codes would be the best 
solution as it would not only help with the problem definition in both codes but would also facilitate the 
data exchanges between them. This interface could also offer the possibility of being developed for 
different deterministic solvers making it possible to treat a wider range of geometries. 
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A more complete parametric study of the impact of the convergence and refinement of boundary fluxes 
on the stochastic scheme is also an important step in the development of a fully coupled hybrid method. 
Let us consider a scenario where a coarse energy grid leads to increased errors in all configurations. 
This would mean that the energetic description of the deterministic problem would also have an effect 
on the fully coupled calculation which is dependent on the results from the partially coupled hybrid 
method. The developments mentioned above would be interesting for a future fully coupled hybrid 
method. 

4.3.2.2 Towards the fully coupled method 
To be able to develop the fully coupled hybrid method, it would be pertinent to start by continuing the 
development of the partially coupled method. The fully coupled hybrid method process is illustrated 
below in Figure 54. 

 

Figure 54: Illustration of the main steps in the fully coupled process 

The fully coupled calculation was imagined with the deterministic calculation performing the initialization 
of the whole problem. This means that the hybrid subdomain would first be treated by IDT and then by 
LAST. This choice was made by imagining the DDM implemented in IDT controlling the hybrid method. 
Having IDT control the hybrid process, means that the whole problem is described to IDT to set up the 
scheme. Having IDT initialize each subdomain in the hybrid calculation would then be interesting to have 
data accounting for neighboring subdomains. The sources created by stochastic code during its first 
iteration would not be based on a user-defined source but would instead be created using deterministic 
fluxes that have already been updated with neighboring subdomains. The deterministic fluxes would 
account for the real environment, as opposed to the user-defined stochastic source. This would speed 
up the stochastic calculation. However, this process requires verifying the partially coupled 
deterministic-stochastic scheme and identifying sources of biases.  

Once the 1-way deterministic to stochastic calculation is optimized and fully automated, the next step 
would be to work on feedback from the stochastic code to the deterministic solver. Before moving 
straight to automation of this feedback, an important step would involve developing the necessary 
procedures in IDT to receive this information. This step may seem like the opposite 1-way hybrid 
scheme, but is just an important element to prepare the fully coupled hybrid method. It would give us an 
idea of how the DDM procedure needs to be adapted to wait for the stochastic calculation. In this step 
it seems that it would be best to treat smaller problems and work with fewer subdomains. An option for 
this might be to study two neighboring subassemblies, each treated with its own method. This would be 
easier to implement since there would be fewer interfaces. During this first step in the development of 
the fully coupled hybrid scheme, we will need to deal with the following problems and steps:  

• Before starting to develop the 1-way stochastic-deterministic method, some preparation will be 
necessary. IDT uses angular boundary fluxes and a fission source to proceed. The appropriate 
boundary flux estimators will need to be implemented in LAST [68]. The challenge here is that 
the angular distribution needs to match the one used in IDT. IDT uses the discrete ordinates 
method, which means that by implementing the same partitioning of the unit sphere, we could 
collect neutrons in the solid angle associated to each direction and pass this information to IDT. 
The boundary flux estimators can be implemented in LAST or can be dealt with by an interface 
linking the two codes. 

• To ensure that the deterministic calculation really waits for the stochastic calculation, a first step 
would be to wait until the stochastic calculation converges. IDT would be able to use fully 
converged boundary fluxes from LAST. This can be done either using files (much more costly) 
or in memory (using an interface for example). The reasoning here is that using converged data 
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to initialize the calculation should help move IDT in the right direction, and speed up the 
calculation while reaching the expected results. However, the overall calculation process in this 
step would still be slower than desired since IDT would have to wait for a fully converged LAST 
calculation between each power iterations. 

• After the stochastic-deterministic data exchange has been tested and approved using 
converged data, a sensitivity study will need to be conducted using data that has not been fully 
converged. Different cases can be imagined by reducing either the number of batches, the 
number of neutrons per batch or both. 

• When passing data from LAST to IDT some errors may arise due to the different normalization 
processes used in both codes. LAST normalizes all its outputs to one neutron, which is not the 
case in IDT, where fluxes can be normalized to power or fission rates for instance. More 
investigation into how the data sent to IDT needs to be normalized is necessary. 

• In the previous points, the stochastic nature of LAST’s data was not discussed. The average 
value of the estimator will be sent to IDT at each power iteration. To see how much the statistical 
uncertainty of the stochastic calculation may affect the overall convergence of the stochastic-
deterministic method, it would be interesting to use different values of the boundary fluxes. This 
could be done at first by sampling a value of the boundary flux within its uncertainty range.  

Having completed two opposite 1-way hybrid methods and their performance analysis, we will be able 
to inform future research on the viability of a 2-way hybrid method. However, before really focusing on 
the development of the 2-way hybrid scheme, it will be necessary to modify the deterministic-stochastic 
scheme to run the two codes in parallel so that IDT DDM’s deals with calling the LAST calculation and 
waits for its results. Once this step is complete, it will be time to add the second 1-way calculation. Once 
this is completed, the next step will be to run both deterministic and stochastic calculations at the same 
time. These steps will be tricky because problems will need to be separated into categories: 

• Implementation: these problems will be due to errors coming from the implementation of the 
boundary exchange. Spatial correspondences are such examples. The errors may also be due 
to modifications of the DDM scheme. 

• Calculation time: DDM make it possible to split the global calculation into smaller problems, 
which can be run using parallel processes. This parallel calculation decreases significantly the 
calculation time when the total calculation time for each parallel thread is equivalent. This might 
not be the case when using the fully coupled method. In some problems, the stochastic 
calculation may be significantly longer than all the other deterministic iterations. This would 
cause the overall method to be significantly slower. In such cases, it will be necessary to study 
more closely the cost/precision balance. 

• Data: these errors may come from poor convergence of either the deterministic or stochastic 
calculation, or from the statistical fluctuations in the stochastic calculation. To correct these 
errors, we should start by making sure that the stochastic data completely covers the data 
exchanges, which should have been checked in the previous step. At first, the average value of 
the flux will be used to implement the stochastic-deterministic interface, but it will be necessary 
to study the effect of uncertainties on the convergence of the overall calculation. 
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5. CONCLUSIONS 

5.1 GENERAL CONCLUSIONS 
With the goal of improving neutronic numerical method, this works tackles challenge of coupling 
deterministic - stochastic calculations. While, existing publications on hybrid methods are promising, 
hybrid deterministic-stochastic methods that use DDM to solve problems more efficiently than either 
method remains to be explored. The goal of this work was to move towards a fully coupled hybrid method 
and examine its feasibility for problems such as ICARE. 

To reach this goal, different hybrid methods were examined and developed. To get a wider view of the 
variety offered by hybrid methods, an analysis was performed. This brought to light three main 
categories of methods: variance reduction, partially coupled and fully coupled. Partially coupled methods 
can be easier to implement since the two methods only interact one way, and one calculation scheme 
is completely unaffected and still lead to interesting gains in precision and calculation time. However, 
fully coupled methods have the potential to treat a much wider range of applications and may lead to 
important advances in reactor modeling.  

One of the main challenges faced during this Ph.D. thesis has been the lack of a common interface 
between the two methods to couple. Given the independent nature of the two methods, it was decided 
to first develop different hybrid methods before working on the fully coupled deterministic-stochastic 
method. The multiple-energy-grid scheme was created to gain more information on the DDM 
architecture, which is a central topic in the fully coupled hybrid method. Modifying the DDM scheme to 
allow for different energy grids in each subdomain helps to understand the challenges of unequal 
boundary exchanges, and seeing how the quality of data influences the overall calculation scheme. 
Overall, the multiple-energy-grid results were bounded by the corresponding single-energy-grid results, 
which means that the method developed led to more precise absorption rates. 

The next step towards fully coupled methods is to develop a partially coupled deterministic-stochastic 
hybrid scheme. This was an essential step to ensure that the communication from deterministic to 
stochastic behaves as expected. In this method, the converged boundary fluxes from the surrounding 
subdomains were fixed at the stochastic problem’s boundaries. An IDT calculation was  performed over 
the whole problem and converged boundary fluxes were used to create a source for the stochastic 
calculation. 

The partially coupled method was implemented and tested for a simplified 2D problem. For this single 
interface problem, with a non-multiplying medium, the 1-way coupled scheme leads to improved results 
in the flux calculation with very few batches. The partially coupled calculation was then tested using data 
from a partially converged and coarser deterministic calculation. The 1-way coupled method led to 
similar results to those obtained using fine and fully converged data. The partially coupled calculation is 
not only a stepping stone towards the fully coupled method, it can also be used to obtain more precision 
on problems with little feedback between the problem and the region of interest. 

In this work, two hybrid methods were developed and studied. Energetic refinement was confirmed to 
play a key role in both methods and might also for future developments. But energy refinement also 
comes at a cost for deterministic calculation. In our view, future work towards fully coupled hybrid 
methods should include a step to deal specifically with energetic refinement. 

5.2 PERSPECTIVES 
During this three-year Ph.D., we have explored various paths, encountered several issues. Some were 
resolved, whereas others may become the subject of future work towards a fully coupled hybrid method. 
In this section, we have selected some of the most promising perspectives for the hybrid methods 
presented and towards a fully coupled hybrid method. 

• Energetic deterministic-deterministic hybrid. 
- A first step would be to continue updating the multiple-energy-grid scheme to go beyond 

the fine/coarse mesh separation. Being able to refine around specific resonances might 
help the reconstruction methods. We observed that the reconstruction method 
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performed better when the fuel’s energy mesh was finer than the reflectors. Having 
group refinement in both energy meshes might be a solution to this problem. 

- To make this method more user-friendly, the next step would be to allow energy grids 
to have different group boundaries. However, the flux reconstruction and condensation 
for unequal group sizes become more complex and might not lead to better results 
compared to grids with common boundaries. 

- Another difficulty for the user with this method might be choosing appropriate energy 
grids. To overcome this, a solution might be to move towards an adaptive method, 
starting from a coarse grid and refining it as needed. This is obviously a much more 
complicated step to perform compared to the previous ones. This method would need 
to create estimators to test the precision at each iteration to determine if the 
subdomain’s grid needs to be refined. This might at first be done using precalculated 
cross sections with different energy grids for each subdomain. 

• Partially coupled deterministic-stochastic method. 
- A more complete parametric study of the effect of the coarseness and convergence of 

the deterministic calculation would serve to provide more information on the viability of 
a fully coupled deterministic-stochastic method. 

- This method was only developed on propagation cases, to be able to give a more 
complete picture of critical problems, where multiplying media are studied using the 
stochastic code. Currently, fission sources generated during a batch are not stored; the 
only sources used are those sampled from the deterministic output. A fixed criticality 
mode would also be interesting to get an indication of the keff of the stochastic region of 
interest. This would also be important for the development of a fully coupled hybrid 
method, which requires feedback from the stochastic calculation. 

- This method could also be made more efficient by changing the method of passing 
information. Currently data is exchanged using files, this is obviously not suitable, and 
future work could focus on building an interface between the two codes and more 
efficient exchanges. This same interface could also be used for the creation of 
appropriate geometries for both codes to limit sources of error for the user. 

• Fully coupled hybrid method. 
- Assuming the deterministic to stochastic boundary exchanges has been completed and 

verified as explained above, the next step would be to focus on the stochastic to 
deterministic communication. This step can also be separated into much smaller steps. 
To start, an angular surface flux estimator needs to be implemented to be able to 
initialize an IDT calculation. Once LAST is capable of sending the necessary data to 
IDT, the next step would be to start with a converged calculation. After ensuring the 
convergence of the stochastic to deterministic scheme using converged data, it would 
be important to understand how the stochastic nature of LAST might impact the 
convergence of the deterministic calculation. This would mean studying the impact of 
sending information earlier. An alternative to sending information from a less converged 
calculation could be to add fluctuations manually by sampling data within the uncertainty 
range. A difficult aspect of this is creating or implementing a stochastic estimator, which 
will send the necessary data to the deterministic calculation. Part of the challenge is 
using an angular discretization compatible with the chosen deterministic method. IDT 
requires implementing a discrete ordinates discretization.  

- An interface between the two codes could also be beneficial here. While the DDM offers 
interesting possibilities in terms of problem description, when working with two 
independent codes, adding an interface makes the method much more user-friendly 
and limits potential errors from the user in problem definition and translation between 
the two codes. 

In the development of a future hybrid method, a first key result derived from our work is the importance 
of finding a balance between the fixed source from the determinist calculation and the sources created 
during the stochastic calculations is paramount to model critical problems in hybrid methods. Accurate 
modeling of this balance will yield to a better neutron production estimation. A second take way is the 
convergence duration of stochastic methods over the determinist method.  Energy refinement was 
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shown to significantly impact hybrid calculations. However, the resulting precision comes at a cost of 
slower calculation. The precision / cost ratio remains a challenging balance to be found. Lastly, having 
a common data model compatible with both stochastic (e.g., LAST) and determinist (e.g., IDT) is 
paramount to ensure greater compatibility of the two codes coupled in a fully hybrid method.  
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APPENDICES 

APPENDIX 1: 51-GROUP ENERGY MESH 

Group 
number 

Group number 
in 281-SHEM 

Upper boundary 
in energy (eV) 

Lower boundary 
in energy (eV) Lethargy width 

1 1 1,96403E+07 6,70320E+06 1,07500E+00 

2 9 6,70320E+06 4,96585E+06 3,00001E-01 

3 11 4,96585E+06 2,23130E+06 8,00000E-01 

4 15 2,23130E+06 1,33694E+06 5,12201E-01 

5 19 1,33694E+06 8,60007E+05 4,41198E-01 

6 24 8,60007E+05 4,94002E+05 5,54401E-01 

7 27 4,94002E+05 1,95008E+05 9,29499E-01 

8 34 1,95008E+05 6,73795E+04 1,06270E+00 

9 41 6,73795E+04 4,99159E+04 3,00001E-01 

10 43 4,99159E+04 2,49991E+04 6,91500E-01 

11 50 2,49991E+04 9,11882E+03 1,00850E+00 

12 57 9,11882E+03 1,91045E+03 1,56300E+00 

13 66 1,91045E+03 9,07502E+02 7,44398E-01 

14 71 9,07502E+02 4,10796E+02 7,92599E-01 

15 75 4,10796E+02 1,32701E+02 1,13000E+00 

16 82 1,32701E+02 7,50456E+01 5,70003E-01 

17 85 7,50456E+01 4,57914E+01 4,94000E-01 

18 88 4,57914E+01 2,76077E+01 5,06002E-01 

19 92 2,76077E+01 1,44703E+01 6,45996E-01 

20 127 1,44703E+01 1,19795E+01 1,88901E-01 

21 136 1,19795E+01 8,13028E+00 3,87601E-01 

22 151 8,13028E+00 7,13988E+00 1,29899E-01 

23 157 7,13988E+00 6,28016E+00 1,28301E-01 

24 178 6,28016E+00 5,41025E+00 1,49100E-01 

25 187 5,41025E+00 4,93324E+00 9,22993E-02 

26 192 4,93324E+00 4,76785E+00 3,41005E-02 

27 193 4,76785E+00 4,00001E+00 1,75599E-01 

28 197 4,00001E+00 2,46994E+00 4,82103E-01 
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29 211 2,46994E+00 1,90008E+00 2,62298E-01 

30 218 1,90008E+00 1,44397E+00 2,74500E-01 

31 223 1,44397E+00 1,25094E+00 1,43501E-01 

32 228 1,25094E+00 1,16999E+00 6,69001E-02 

33 230 1,16999E+00 1,14797E+00 1,90000E-02 

34 231 1,14797E+00 1,10395E+00 3,91005E-02 

35 234 1,10395E+00 1,00904E+00 8,98953E-02 

36 239 1,00904E+00 9,63961E-01 4,57038E-02 

37 242 9,63961E-01 9,19979E-01 4,67000E-02 

38 244 9,19979E-01 8,80026E-01 4,43994E-02 

39 245 8,80026E-01 6,25000E-01 3,42200E-01 

40 248 6,25000E-01 5,20012E-01 1,83900E-01 

41 251 5,20012E-01 3,52994E-01 3,87401E-01 

42 255 3,52994E-01 2,79989E-01 2,31701E-01 

43 258 2,79989E-01 1,90005E-01 3,87700E-01 

44 262 1,90005E-01 1,61895E-01 1,60102E-01 

45 263 1,61895E-01 1,04298E-01 4,39696E-01 

46 266 1,04298E-01 7,64970E-02 3,10001E-01 

47 268 7,64970E-02 5,54982E-02 3,20901E-01 

48 270 5,54982E-02 4,03000E-02 3,19999E-01 

49 272 4,03000E-02 2,92989E-02 3,18801E-01 

50 274 2,92989E-02 1,04505E-02 1,03090E+00 

51 278 1,04505E-02 1,10000E-04 4,55392E+00 
Table 33: Upper and lower boundaries for each energy group for the 51-group mesh 
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APPENDIX 2: 23-GROUP ENERGY MESH 

Group 
number 

Group number 
in 281-SHEM 

Upper boundary 
in energy (eV) 

Lower boundary 
in energy (eV) Lethargy width 

1 1 1,96403E+07 4,96585E+06 1,37500E+00 

2 11 4,96585E+06 2,23130E+06 8,00000E-01 

3 15 2,23130E+06 1,33694E+06 5,12201E-01 

4 19 1,33694E+06 4,94002E+05 9,95599E-01 

5 27 4,94002E+05 1,95008E+05 9,29499E-01 

6 34 1,95008E+05 6,73795E+04 1,06270E+00 

7 41 6,73795E+04 2,49991E+04 9,91501E-01 

8 50 2,49991E+04 9,11882E+03 1,00850E+00 

9 57 9,11882E+03 1,91045E+03 1,56300E+00 

10 66 1,91045E+03 4,10796E+02 1,53700E+00 

11 75 4,10796E+02 7,50456E+01 1,70000E+00 

12 85 7,50456E+01 4,00001E+00 2,93180E+00 

13 197 4,00001E+00 1,25094E+00 1,16240E+00 

14 228 1,25094E+00 1,14797E+00 8,59001E-02 

15 231 1,14797E+00 1,10395E+00 3,91005E-02 

16 234 1,10395E+00 1,00904E+00 8,98953E-02 

17 239 1,00904E+00 9,63961E-01 4,57038E-02 

18 242 9,63961E-01 8,80026E-01 9,10994E-02 

19 245 8,80026E-01 6,25000E-01 3,42200E-01 

20 248 6,25000E-01 3,52994E-01 5,71301E-01 

21 255 3,52994E-01 1,90005E-01 6,19401E-01 

22 262 1,90005E-01 7,64970E-02 9,09799E-01 

23 268 7,64970E-02 1,10000E-04 6,54453E+00 

24 178 6,28016E+00 5,41025E+00 1,49100E-01 
Table 34: Upper and lower boundaries for each energy group for the 23-group mesh 
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APPENDIX 3: 7-GROUP ENERGY MESH 

Group 
number 

Group number 
in 281-SHEM 

Upper boundary 
in energy (eV) 

Lower boundary 
in energy (eV) Lethargy width 

1 1 1,96403E+07 1,33694E+06 2,68720E+00 

2 19 1,33694E+06 4,10796E+02 8,08780E+00 

3 75 4,10796E+02 7,50456E+01 1,70000E+00 

4 85 7,50456E+01 4,00001E+00 2,93180E+00 

5 197 4,00001E+00 6,25000E-01 1,85630E+00 

6 248 6,25000E-01 1,90005E-01 1,19070E+00 

7 262 1,90005E-01 1,10000E-04 7,45433E+00 
Table 35: Upper and lower boundaries for each energy group for the 7-group mesh 
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APPENDIX 4: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING 
THE BRM 

F 281 – R 281 F 281 – R 51 F 281 – R 23 F 281 – R 7 

 

    
F 51 – R 281 F 51 – R 51 F 51 – R 23 F 51 – R 7 

    
F 23 – R 281 F 23 – R 51 F 23 – R 23 F 23 – R 7 

    
F 7 – R 281 F 7 – R 51 F 7 – R 23 F 7 – R 7 
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APPENDIX 5: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING 
THE CRM 

F 281 – R 281 F 281 – R 51 F 281 – R 23 F 281 – R 7 

 

    
F 51 – R 281 F 51 – R 51 F 51 – R 23 F 51 – R 7 

    
F 23 – R 281 F 23 – R 51 F 23 – R 23 F 23 – R 7 

    
F 7 – R 281 F 7 – R 51 F 7 – R 23 F 7 – R 7 
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APPENDIX 6: CELL-BY-CELL NORMALIZED ABSORPTION RATE DIFFERENCE (PCM) USING 
THE FRM 

F 281 – R 281 F 281 – R 51 F 281 – R 23 F 281 – R 7 

 

    
F 51 – R 281 F 51 – R 51 F 51 – R 23 F 51 – R 7 

    
F 23 – R 281 F 23 – R 51 F 23 – R 23 F 23 – R 7 

    
F 7 – R 281 F 7 – R 51 F 7 – R 23 F 7 – R 7 
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