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Abstract
The miniaturisation of electronic components is one of the major improvements that
happened during the last decades. Space agencies followed this trend, and satellites
became more and more compact, while their embedded functions increased their
complexities. Unfortunately, by reducing the size of their components, satellites became
subject to space radiation. Indeed, satellites are not protected by the terrestrial
atmosphere and defects caused by energetic particles can happen. These events are called
"Single Event Effect" (SEE). Their consequences range from a functional interruption
of the component to its destruction. Therefore it is essential to implement solutions to
protect the satellites against SEEs. However, SEEs are random and can take many forms,
so detecting and preventing them is a scientific challenge. Nowadays, protection methods
are based on hardening methods, that modify the fabrication process of a component.
The major inconvenience is that hardened components are complex to design, and heavy
engineering studies are mandatory.
As a consequence, the price of hardened components increases significantly. However,
since the 21st century and the rise of the new space era, the use of hardened components
has decreased significantly. Alternatively, a threshold protection method exists to prevent
destructive single event effects from harming electronic components. However, not all
faults can be detected by the sole use of this method. Researches on new techniques
need to be developed to detect single event effects.

Anomaly detection is a sub-field of artificial intelligence and machine learning. Its
aims to detect patterns that deviate from a well-defined normal behaviour. To do so,
a model is trained on known data to be able to generalise and predict the system’s
future behaviour. It is then possible to pinpoint abnormal observations occurring in the
system. These approaches are called data-based methods, and differ from model-based
approaches, as they do not require an overall knowledge of the system. These methods
proved to be efficient in many fields, but are yet to be applied to single event effects
detection.

This manuscript details research work done to evaluate the performance of machine
learning on the detection of single event effects for space applications. For this purpose,
two distinctive types of research were conducted. The first research is focused on
single event effects characteristics and their potential impacts on an ATMEL SAM3X8E
microcontroller. A significant database has been created, mixing both experimental and
simulated data. In addition, a thorough analysis of the impact of single event effects on
the supply current is made to extract the most meaningful features.
Following the groundwork laid by the first research, machine learning performance is
thoroughly studied for the detection of single event effects in a second research work.
A proof of concept is realised by using most common anomaly detection methods.
It is demonstrated that the performance of machine learning is on par with today’s
threshold methods, outperforming it for the detection of non-destructive single event
effects. From there, a specific algorithm is developed. Called Dynamic Double anomaly
Detection (DyD2), this algorithm meets space applications requirements. Extensive
experiments have been conducted to test DyD2 on simulated data, as well as real-time
on-board application with the ATMEL SAM3X8E, that proved that DyD2 is a valid
alternative to today’s detection methods.

Artificial intelligence, Machine learning, Anomaly detection, Embedded systems,
Space applications, Radiation



Résumé
Les satellites n’étant pas protégés par l’atmosphère terrestre, ils sont soumis aux
radiations spatiales. L’un des effets de ces radiations est l’apparition de perturbations
liées à des particules isolées, allant de l’arrêt temporaire du composant, jusqu’à sa
destruction. Il est donc important de protéger les composants électroniques utilisés
lors d’une mission spatiale. Jusqu’à présent, la méthode la plus commune se base
sur le durcissement des composants : un composant durci voit sa conception modifiée
pour se prémunir des perturbations liées à une particule isolée, appelées événements
singuliers. Cette solution nécessite une ingénierie complexe, qui se répercute sur le prix
des composants. Avec la nouvelle ère spatiale qui a débuté au 21ème siècle, l’utilisation
de composants durcis diminue, au profit de composants moins coûteux. Une alternative
au durcissement consiste en une méthode de détection de seuil de sur-intensité et/ou de
sur-tension. Plus générale et moins coûteuse, cette méthode ne permet cependant pas
de détecter tous les types de défauts. De ce fait, de nouvelles méthodes sont nécessaires
pour préserver l’intégrité des composants lors de missions spatiales.

La détection d’anomalies est un domaine appartenant à l’intelligence artificielle et à
l’apprentissage automatique. L’objectif est de mettre en évidence des comportements qui
dévient du fonctionnement nominal d’un système. Pour ce faire, un modèle est entraîné
sur des données d’apprentissage afin de modéliser et de prédire le comportement du
système. À partir de ce modèle, il est possible d’identifier les comportements anormaux,
et d’agir en conséquence. Cette approche, basée sur les données, se distingue par le
fait qu’elle ne nécessite pas de connaissances préalables du système étudié. Aussi, avec
la montée en popularité de ces méthodes, de nombreuses applications ont démontré
l’efficacité de ces méthodes dans le cadre de la détection d’anomalies. Néanmoins, ces
méthodes n’ont pas encore été testées pour la détection des événements singuliers

Ce manuscrit détaille le travail réalisé visant à démontrer l’intérêt des méthodes
d’apprentissage automatique pour la détection des défauts provoqués par des particules
isolées. Dans ce but, notre recherche s’articule en deux parties. La première partie
est consacrée à l’impact des radiations sur les composants électroniques et l’étude d’un
composant de type microcontrôleur. La seconde partie s’intéresse à l’application des
méthodes d’apprentissage automatique pour la détection de défauts dus aux radiations
spatiales sur composants électroniques.

La première partie se décompose en deux sections distinctes. Premièrement, une
plateforme expérimentale a été créée. Pour ce faire, un composant électronique est
sélectionné sur lequel la majorité des études sera menée. Le microcontrôleur ATMEL
SAM3X8E est choisi. Sa sensibilité aux radiations, son accessibilité ainsi que le fait qu’il
soit actuellement utilisé dans le contexte de missions spatiales sont les trois raisons qui
ont conduit à ce choix. Des études de comportements ont été réalisées afin d’établir
des profils de normalités. De ces études, un profil de consommation lié au logiciel ainsi
qu’un profil de consommation lié aux charges placées sur les I/O du composant ont été
mis en évidence. Suite à cela, une carte de test appelée DIAG-RAD a été développée.
Cette carte permet la réalisation de tests visant à émuler les effets des radiations sur le
microcontrôleur SAM3X8E tout en simulant des scénarios de fonctionnement. Elle répond
à diverses spécifications, comme la possibilité de changer facilement de composant de



test en cas de défaillance, ou encore la possibilité de simuler les profils de consommations
décris précédemment.

Dans un second temps, une base de données contenant des défauts liés aux radiations est
créée. Elle est constituée à la fois d’observations provenant du fonctionnement nominal
du SAM3X8E, mais également d’observations d’événements singuliers. Afin de recueillir
ces observations de défaillance, trois campagnes de tests sont menées. Des essais de test
lasers ainsi que des essais utilisant une source radioactive sont réalisés afin d’émuler des
défauts dans le courant de consommation du SAM3X8E. En complément, des essais ions
lourds réalisés par le CNES sur le BS62LV4006 CMOS ont été récupérés permettant
d’étendre l’étude à d’autres composants. Suite à ces essais, un simulateur de courant
est développé sous MATLAB afin de disposer d’une base de données conséquente. Ce
simulateur repose sur les données récoltées du courant de consommation du SAM3X8E
en fonctionnement normal ainsi que des données récoltées lors des tests expérimentaux.
Il est également possible de paramétrer le simulateur afin d’ajouter diverses variations
dans le courant simulé, tel que des sauts de courant ou des déviations linéaires afin de
créer divers scénarios de comportements.
De plus, une étude sur l’impact des événements singuliers sur le courant de consommation
du SAM3X8E est réalisée. Cette étude a été rendue possible grâce aux données collectées
lors des différentes campagnes de tests. Lors de cette étude, des indicateurs statistiques
ainsi que la signature fréquentielle du courant de consommation sont examinés afin de
caractériser les événements singuliers. L’objectif final est d’extraire les attributs les
plus pertinents afin d’entraîner les modèles d’apprentissage automatique. Les résultats
font ressortir quatre indicateurs statistiques : la moyenne arithmétique, la variance,
l’erreur-type de la moyenne et l’écart absolu médian. Ces attributs sont utilisés lors de
la seconde partie concernant l’utilisation des méthodes d’apprentissage automatique. De
plus, l’analyse du spectre fréquentiel montre qu’il est possible de caractériser les défauts
liés aux radiations en analysant les fluctuations des harmoniques. En effet, il a été mis en
évidence que l’amplitude des pics de fréquence prédominants en comportement normal
diminue, et l’ajout de pics de fréquence bruités sont caractéristiques de l’impact des
événements singuliers sur le SAM3X8E.

La deuxième partie de ce manuscrit porte sur l’application des méthodes d’apprentissage
automatique pour la détection de défauts sur composant électronique. Trois sections
distinctes divisent cette partie. Dans un premier temps, une preuve de concept est
réalisée concernant la validité des approches d’apprentissage automatique pour la
détection de défauts dus aux radiations spatiales sur des composants électroniques.
Pour ce faire, diverses méthodes d’apprentissage automatique parmi les plus connues sont
utilisées et testées sur la base de données détaillée précédemment. Dans ces travaux, ces
méthodes sont divisées en trois catégories appelées classification, classification renforcée
par clustering et classification mono classe. Afin d’analyser la performance de chaque
méthode, trois critères de validation sont définis. Ces critères différencient la détection
de défauts destructifs, qu’un modèle doit détecter sans faille, de la détection de défauts
non-destructifs, qui permettent une marge d’erreur dans la qualité de la détection. Les
résultats de ces expérimentations montrent que les méthodes d’apprentissage sont efficaces



dans la détection de défauts dus aux radiations spatiales sur des composants électroniques.

Dans un second temps, suite aux résultats positifs obtenus précédemment, un nouvel
algorithme d’apprentissage automatique a été développé afin de répondre aux spécifica-
tions du contexte spatial. Ces spécifications incluent une implémentation embarquée
de l’algorithme. Cela se traduit par un traitement en temps réel des observations ainsi
qu’une exécution de la méthode sur des composants possédant une puissance de calcul
limitée. Aussi, du fait du vieillissement des composants accéléré par l’environnement
radiatif, la méthode doit pouvoir s’adapter à un environnement dynamique. Enfin, cette
méthode ne doit nécessiter que des observations provenant du comportement normal
lors de l’entraînement, car il est complexe de collecter des données de défauts.
La méthode ainsi développée est appelée Dynamic Double anomaly Detection (DyD2).
Cette méthode se base sur un clustering dynamique afin de proposer une détection en
quatre phases. La première phase permet de repérer les ruptures dans un signal. La
deuxième phase met en place une détection rapide des défauts destructifs. La troisième
phase, plus lente, permet la détection de défauts non-destructifs qui pourraient être
confondus avec le comportement normal. Enfin, la dernière phase met à jour le modèle
avec les dernières observations afin de suivre une éventuelle déviation du comportement
normal du système.

Dans un troisième temps, DyD2 est testé sur divers jeux de données afin de vérifier
ses performances. DyD2 est tout d’abord testé sur des jeux de données provenant
du simulateur de courant décrit précédemment. Ces résultats ont permis de comparer
DyD2 avec d’autres algorithmes d’apprentissage automatique. Il en ressort que DyD2

propose des performances similaires aux méthodes provenant de l’état de l’art. De
plus, grâce à des tests sur des jeux de données contenant une déviation linéaire, il a
été montré que DyD2 est capable de s’adapter à un système dynamique. Par la suite,
DyD2 a été testé sur des jeux de données provenant de campagnes de tests sous un
accélérateur de particules. Il a été montré que les résultats de DyD2 corroborent ceux
obtenus par simulation. Enfin DyD2 a été embarqué sur microcontrôleur SAM3X8E
afin de détecter des défauts provenant d’un deuxième SAM3X8E sous un faisceau laser.
Cette expérience a montré que DyD2 est capable de fonctionner de façon nominale sur
des composants possédant de faibles puissances de calcul. Ces résultats ont permis de
mettre en évidence que DyD2 est une alternative efficace aux méthodes de détection
actuellement utilisées par l’industrie spatiale.

Intelligence artificielle, Apprentissage automatique, Détection d’anomalies, Systèmes
embarqués, Application spatiales, Radiation
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Chapter 1
Introduction

1.1 Context/Motivation
Since the launch of the first satellite Sputnik-1 on the 4th of October 1957, the space
industry has become part of society. Communication, topographic pictures, weather
forecast and scientific research are heavily dependent on the few three thousand satellites
in operation around Earth. With the growth in demand and the advent of the new space
era, the number of launches grew drastically.
New technological constraints emerged from the outer space hostile environment. Indeed,
space electronic components are subject to collisions with high energetic particles.
The faults resulting from these encounters are called "single event effects". It can
be tricky to counter such faults as these phenomena are random and take various
forms. Designing protection against single event effects is called "hardening". The most
common method consists in modifying a component during its conception. Radiation-
hardened components are based on their non-hardened equivalents, with some design and
manufacturing variations that reduce the susceptibility to radiation damage. Research of
new hardening techniques is a major topic for the space industry as it directly impacts
mission reliability and costs.

With the emergence of machine learning, the industry gradually shifted and new solutions
appeared. In the space industry, machine learning is core in many applications and
showed highly beneficial for image processing. However, machine learning, and mostly
anomaly detection methods, are yet to be tested for the protection of space components.

1.2 Goal
The primary goal of this thesis is to propose new solutions for the detection of single event
effects. Indeed, this thesis project aims at exploring machine learning algorithms that
could replace traditional hardening methods. The work has been organized along
the three following sub-goals:

• Building a database gathering both normal and radiation faults observations.

• Providing a proof of concept to establish the feasibility of machine learning methods.

• Proposing a novel machine learning based method for anomaly detection accounting
for on-board constraints.
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1. Introduction

1.3 Thesis content
One of the particularities of this work is its multidisciplinary nature. Tackling radioac-
tivity, electrical engineering and computer science, a large variety of knowledge is needed
to get a good insight of this project. Therefore, it has been decided to focus on two
aspects: radiation effects and anomaly detection.

Part I describes the theoretical background of this work.
In chapter 2 the specificities of the space environment are reported. A thorough review
of the different kinds of radiation is given, as well as their effect on electronic devices.
In chapter 3 machine learning and its application for anomaly detection are detailed.
An insight of the different types of anomalies and algorithms used in this field is given.

Part II is dedicated to the creation of databases
In chapter 4, the components and the hardware used during this thesis are described.
An overview of the SAM3X8E microcontroller is given as well as a description of the
DIAG-RAD electronic board specifically designed for this thesis project are given.
In chapter 5, the focus is on the creation of an extensive database for the study of single
event effects. A description of the various experiments done during this project is given.
Also, a supply current simulator developed for the needs of this thesis is detailed. Finally,
a thorough study of the features characterising a single event effect is performed.

Part III is dedicated to the application of machine learning to radiation fault detection.
In chapter 6, a proof of concept is performed to evaluate the validity of machine learning
approaches. State of art algorithms are tested on various databases containing single
event effects.
In chapter 7, a new algorithm specifically designed for the detection of single event
effects and meeting the space industry requirements is proposed. Called Dynamic double
Anomaly Detection (DyD2), it is the main contribution of this thesis.
In chapter 8, an evaluation of the performance of DyD2 using different data sets is
performed. These tests are made to evaluate the performance of DyD2 in the case
of real space applications.
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Chapter 2
Space environment
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Unlike most applications that are protected by the Earth’s atmosphere, the space
industry has to deal with specific constraints linked to radiation. Space components
are subject to high levels of particle bombardment throughout their lifetime, which can
endanger the success of a mission. Therefore, a solid understanding of the different
phenomena at hand enables researchers to develop countermeasures.

This chapter focuses on introducing the space environment, and more particularly the ra-
diation activity involved around embedded applications. It resolves around two questions:

• How does radiation impact electronic components and embedded applications?

• How can protection be designed?
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2. Space environment

First, a little bit of context regarding the space industry is given in section 2.1. Then
section 2.2 describes the different sources of radiation found in space that are likely to
damage space components. After that, section 2.3 focuses on the various impacts caused
by radiation on electronic components. Following in section 2.4, the different methods
used to emulate radiation faults on Earth are described. Finally, section 2.5 briefly
describes some techniques used to protect electronic devices against the effects presented
beforehand, in order to position our work regarding the already existing solutions.

2.1 Space industry context

Moore’s law states that the number of transistors in integrated circuits (IC) doubles
yearly, improving computers’ performance in the process [1]. Despite being an unproven
theory, this statement has proved to be true and led the semiconductor industry for
many decades. Indeed, the growth in computation power has evolved significantly since
the introduction of Moore’s law in 1965. With the massive increase in computation
power, applications became more complex and led to many technological breakthroughs.

However, the harsh space environment and the limited satellite size are factors that
render the use of COTS (Commercial Off-The-Shelf) components for the space industry
complicated. Moreover, the impossibility of undergoing maintenance means that the
failure of a component often induces the end of the mission. Therefore, extensive research
is conducted on components to improve their reliability in a space environment. This
process is called hardening.

With the advent of SpaceX and the successful launch of its reusable launcher Falcon9
in 2010, a new revolution emerged in the space industry. It was characterised by a
massive increase in the use of COTS, leading to a drastic drop of the cost of space
missions, although lowering the reliability of the components. This space revolution is
known as the new space era. In the meantime, more and more satellites were launched
each year, as well as the number of mission failures. Precisely, from temporary loss of
communication with a satellite, to complete destruction of one of its components, these
disruptions have become more frequent since 2010. From around 15% between 2000 and
2008, the percentage of failure skyrocketed to around 35% between 2012 and 2016 [2]. It
is why this thesis work aims at improving the reliability of space components at reduced
cost. By doing so, it would be possible to decrease missions failures while providing low
cost solutions to the space agencies.

One of the leading causes of failures comes from space radiation. For this reason,
it is essential to get an insight into the different types of radiation, as well as their
impact on electronic devices.
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2.2 Cosmic radiation

Before diving into the radiation sources, it is important to get a fundamental insight into
radioactivity. Radioactivity is energy released by the disintegration of naturally unstable
atoms seeing their electrons stripped away. The energy released from this separation can
be emitted in the form of rays, electromagnetic waves and particles. On Earth, sources
of radiation are numerous. From natural radiation coming from various materials, to
man-made radiation such as nuclear plants, X-rays, microwaves or cellphones.
However, most radiation sources are not coming from Earth, but instead are coming from
space. These radiations are actively blocked by the magnetic field surrounding Earth, and
few reach the ground. The International Atomic Energy Agency (IAEA) defines cosmic
radiation as radiation received from outer space. These radiations can be divided into solar
flares, radiation belts, and galactic cosmic rays. Each of them is going to be thoroughly
described in the following sections, but a quick summary is available table 2.1.

Source Particle type Energy (in electronvolt (eV))

Radiation belt Protons few keV to 500 MeV
Ions few eV to 10 MeV

Galactic cosmic rays Ions From 1GeV to 108 TeVAtomic nuclei
Protons few keV to 500 MeV

Solar flares Electrons few keV to 500 MeV
Heavy ions 1-10 MeV/n

Table 2.1: Radiation types (data from [3])

2.2.1 Radiation belts

Radiation belts are the most problematic type of radiation for space applications, as it
is the closest source of radiation to satellite orbits. Radiation belts result from trapped
energetic particles by a planet’s magnetic field. Earth possesses two radiation belts
called Van Allen radiation belts, named after James Van Allen, who discovered them in
1958 [4]. It is in January 1958, that Explorer 1 was launched by Van Allen from Cap
Canaveral, equipped with Geiger-Müller tubes to measure radiative activity. However, at
the time, the radiation levels in space were heavily undervalued, leading to a saturation
of most of the instruments. Nevertheless, Van Allen still achieved to conclude that
the radiation field inside the satellite’s components was around 0.06 rad per hour. As
the maximum dose rate fixed for a human being is approximately 0.3 rad per week,
we can easily imagine what would have happened to Yuri Gagarin, the first human
to reach outer space in 1961, without those discoveries.
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2.2.2 Solar flares
Also called Solar Particle Event (SPE), solar flares are massive amounts of energy
released by the sun. It is the most potent magnetic event in the solar system [5]. Solar
storms consist of a series of solar flares that can heavily damage electronic components
by the high quantity of energetic particles released at once, disturbing space missions.
For example, the Halloween solar storm in October 2003 significantly impacted satellite
systems and communication. In addition, this excess of particles hitting Earth’s magnetic
field resulted in aurorae visible in uncommon latitudes, such as Texas.

Even though solar flares were known in China centuries before Christ, it was only
with the invention of the telescope in the 18th century that solar activity started to
be extensively studied [6]. These observations led to the discovery of an 11-year solar
cycle that helped astronomers predict solar activity [7]. In addition, these predictions
helped space agencies to adapt their mission to solar activities. The Sunspot Index and
Long-Term Solar Observations (SILSO) make available a public record of the sunspot
activity. In figure 2.1, the 11 years cycle as well as a slower 100 years cycle can be
identified from Sunspot data measured since 1750.

Figure 2.1: Sunspot observation since 1750 (data from [8])

2.2.3 Galactic Cosmic Radiation (GCR)
Galactic cosmic radiations are coming from outside our solar system. They are constituted
by nuclei of atoms travelling in space at near light speed. Events such as the end of
life of a massive star, resulting in a powerful explosion called supernova, can accelerate
those nuclei. They are incredibly high-energy particles that can easily ram and even
cross space equipment causing severe damage to space equipment, going as far as total
destruction of the equipment. Note that in our solar system, they can be repelled by
the sun’s magnetic field. Therefore, their intensity is increased during low solar activities.
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GCR are in majority absorbed by Earth’s atmosphere that is acting as a powerful
protection. When cosmic radiation impacts Earth’s atmosphere, a shower of secondary
particles is produced, creating additional particles of various natures, such as proton,
neutron or photon, as displayed in figure 2.2.

This phenomenon was discovered by Victor Hess in 1912 with balloon experiments
[9]. At the time, only radiations coming from Earth’s soil were known, and expectations
were that radiation levels would decrease at high altitudes. However, Hess’s experiments
gave different results, as even though radiation level first decreased with altitude, it
was not without a certain surprise that the level rose again at a higher altitude. Hess
predicted correctly that this was due to cosmic radiation.

Figure 2.2: Particle cascade (from [10])

2.3 Radiation effects on electronics
The effects of radiation on electronic components are diverse. From long-term non-
destructive damage, to instantaneous destruction, the outcomes of an electronic device
evolving in a radiative environment are diverse. The study of these phenomena has led the
scientific community to categorise them depending on the effect caused by an energetic
particle on a component. Nowadays, the distinction is made between instantaneous
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damage, and long-term latent damage. Each category implies different phenomena, and
the counter-measures differ drastically. These two categories are called respectively single
event effects and cumulative effects. An overview of each category is given at the end of
this section in figure 2.7.

In addition, it is possible to make a distinction between non-ionising and ionising
radiations. Non-ionising radiations are defined as particles that are not capable of
displacing electrons from the crossed materials, while ionising radiations refer to particle
with enough energy to remove an electron from its orbit. Therefore, while damages
made by non-ionising radiations are often limited to thermal damages, ionising particles
can move through substances and alter them as they pass through. Ionising and
non-ionising radiations are defined based on their frequency on the electromagnetic
spectrum. As displayed in figure 2.3, non-ionising radiation is composed of low frequency
radiation, while ionising radiation is composed of high frequency radiation. The
separation between these two is around 2, 4.109MHz, which corresponds to UV light
with a wavelength around 124nm.

Figure 2.3: Frequency spectrum (from [11])

2.3.1 Single Event Effects
Single Event Effects (SEEs) are faults induced in electronic components by highly
energetic particles striking a sensitive node. A sensitive node is defined as a node in
which electrical potential can be modified by internal injection or collection of electrical
charges [12]. A change in the electrical state of a sensitive node can be qualified as a lack
of conformity. It becomes a fault when the collected fraction of the charge liberated by
an ionising particle is more significant than the electric charge stored on a sensitive node.
This type of event is a direct consequence of the radiation phenomena on components.
A brief chronology remembering the main steps of the discovery of single event effects is
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displayed figure 2.4.

With the invention of Integrated Circuits (IC) in 1958 by Jack Kilby, a handful of
studies were made in the ’60s to evaluate the new possibilities, but also the limitations
provided by this new technology. With component size starting to decrease drastically,
fears of increased perturbations began to emerge. The possibility of radiation-sensitive
components was stipulated in 1962 by Wallmark [13], but this hypothesis was not taken
seriously at the time. Nevertheless, with components becoming smaller, it induces that
less energy is needed to damage them. Therefore, the probability of being hit by a
particle with enough energy to cause such damage increased.
In 1972, anomalies appeared with several satellites. For example, during its mission,
the communication with the Hughes satellite was lost for 96 seconds. No explanation
was provided for these faults, and investigations started. In 1975, the hypothesis that
these anomalies resulted from galactic cosmic rays started to emerge [14]. However, as
only four events occurred during seventeen satellite years of operation, plus the fact that
the radiation community worked solely with high levels of dose, the idea that a single
particle could cause damage gained few supporters.
It is in 1978 that this phenomenon was first described by May [15]. With the possibility
of a single energetic particle being able to cause soft errors in electronic components
being proved, it is quickly after that the link between galactic cosmic radiation and
satellite soft errors was established [16]. Following these discoveries, the hypothesis of
hard error caused by space radiation emerged [17].
Later, the distinction between Single Event Upset (SEU) and Single Event Latch-up
(SEL) was made to differentiate between soft and hard errors caused by a single energetic
particle. Finally, these faults were categorised as Single Event Effect (SEE), gathering
all discovered faults induced by energetic particles. Indeed, even though only SEU and
SEL were known at the time, researchers found new phenomena caused by energetic
particles.
Regardless of the type, the impact of single event effects on the supply current of a
component is often perceived as a High Current Event (HCE).

Figure 2.4: Single event effects key dates (dates from [17, 18])

2.3.1.1 Soft errors

Soft errors gather the faults imbued to the signal or data of a component. It is usually
the result of memory failure. Thus, it may be corrected by a rewrite of the defective
memory cell, a reset, or a power cycling of the component [12].
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Single Event Upset (SEU) SEU is a direct modification of a memory cell due to
an ionising particle [19]. In figure 2.5, it is shown that SEU is impacting directly the
memory by changing the fourth bit. To prevent SEU, an Error-Correcting Code (ECC)
can be implemented. SEU happens in micro-electronic devices such as microprocessor,
semiconductor memory or power transistors.

Multiple Bit Upset (MBU) MBU is an extension of a single event upset when
numerous memory cells are modified simultaneously in the same word. In the case of
SEU, a simple ECC can be applied to correct the fault. However, when multiple cells
are faulty, a much more elaborated ECC is needed [19].

Single Event Transient (SET) SET is the manifestation of an overcharge generated
by an ionising particle on the sensitive node of a transistor [20]. It leads to the creation
of a transient voltage that can modify the logical state of a gate, as shown in figure 2.5.

Figure 2.5: SEU and SET examples on a circuit

Single Event Functional Interrupt (SEFI) SEFI corresponds to a temporary
interruption of the functionality of complex devices. Its origin can vary and lasts as
long as a power cycle is not performed [21].

2.3.1.2 Hard errors

Hard errors are non-recoverable issues and cause permanent degradation of the component
[22]. They can also be referred as destructive anomalies.

Single Event Latch-up (SEL) A single event latch-up is a phenomenon caused
by an inherent parasitic structure in the CMOS technology. it can be modelled as
two bipolar transistors, NPN and PNP and multiple resistances representing a specific
substrate region [23]. When an energetic particle strikes through the substrate between
the transistors, it creates electron-hole pairs allowing charges to travel throughout
different regions of the substrate. If the moving energy is high enough, a low impedance,
high current path starts a short circuit between the transistors, as shown in figure
2.6. The resulting heat generated can damage the component. Recently, the term
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(a) Energetic particle colliding with the substrate

(b) Resulting short circuit

Figure 2.6: Single event latch-up modeling (from [24])

micro latch-up started to emerge [24]. It defines a single event latch-up that is not
damaging enough to immediately destroy the component. It is characterised by a
discrete step in the supply current. It results in the deactivation of some functions
and an additional strain on the component. Moreover, micro latch-ups can add up in
different component locations, creating significant damage.

Single Event Snapback (SESB) A single event snapback occurs when a high current
is found between the source and the drain of a single NMOS transistor. Then, through
the action of an ionising particle, a parasitic NPN bipolar transistor between the source
and drain is activated, resulting in a local overheating of the component.

Single Event Hard Errors (SEHE) Single event hard errors are very similar to single
event upset, with the exception that the damage done to the memory cell is permanent.

Single Event Gate Rupture (SEGR) Single event gate ruptures results from a
heavy ion striking the drain region of a power MOSFET [25]. It manifests by an increased
gate leakage current that can lead to the complete failure of the device.
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Single Event Burnout (SEB) Single event burnout is primarily observed in power
bipolar transistors and MOSFETs. It is the result of a heavy ion causing triggering the
component combined with the avalanche effect. The component suffers from thermal
degradation that can lead to the complete failure of the device [22].

2.3.2 Cumulative effects
As opposed to single event effects that are probabilistic one-shot damage, cumulative
effects increase with continued exposure to radiation. They can be compared to ageing
effects as the component characteristics gradually degrade through its lifetime. Also,
it is important to note that cumulative effects are permanent, and the component
cannot be restored by a power reset.

2.3.2.1 Total Ionizing Dose (TID)

Total ionising dose corresponds to the cumulative effects caused by ionising particles over
an exposition time. Indeed, charged particles cause an electrostatic force on a material
that they cross. The result is the creation of electron-hole pairs due to exited electrons
shifting from their bound state. In short, it corresponds to the cumulative energy
absorbed by the component. The unit used is rad (Radiation Absorbed Dose). TID
effects on a component include leakage current, threshold voltage, functional failures...

To reduce TID effects, device shielding is commonly used for space missions. This
protection method is going to be covered in section 2.5.1.

2.3.2.2 Displacement Damage Dose (DDD)

Displacement damage dose has similar long-term effects on a component to TID. However,
the mechanism is different. DDD results from the displacement of multiple nuclei from
their lattice position through time. If too many nuclei are altered, then the component’s
material property are altered.

2.4 SEE testing methods
Being able to evaluate the radiation levels a component is going through during the
whole time of a space mission is essential to implement efficient counter-measures.

Therefore, ways to simulate radiation faults on Earth are of prime interest to space
agencies, and many techniques are available today. However, as we saw, a wide variety
of radiation faults exists, and choosing the right test is never an easy task, as many
parameters have to be taken into account.

Nevertheless, when working in anomaly detection, the main obstacle is usually the
accessibility of faulty data. Indeed, it can be complex to gather representative data
of all anomalous behaviour of a system. In case of space applications, single event
effects are miscellaneous, thus, it is almost impossible to get all possible appearance
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Figure 2.7: Radiation effects insight

for a specific device. To do so, it would require to test each sensitive node of a component.

Another solution is to evaluate the number of SEEs during a mission. For this, it
is possible to evaluate the amount of energy perceived by a material using the linear
energy transfer value. From there, it is possible to calculate the cross section of a
component to evaluate the number of SEEs expected during a mission.
Then, different testing methods exist to simulate to simulate single event effects on
a specific component

2.4.1 Linear Energy Transfer (LET)
The Linear Energy Transfer (LET) corresponds to the amount of energy transferred to
a material traversed by an ionising particle per unit of distance. It is influenced by the
particle’s nature and the traversed material. The LET is often used as a unit of measure
during experimental testing, or to design space missions. Therefore, it is a precious
indicator to predict the possible damage that can be done to a specific component.
It is defined in Eq. (2.1). Its unit is MeV/cm. Still, because the energy loss is
proportional to the density of the traversed material, it is possible to express the LET
divided by the material density. In that case, its unit is MeV.cm2.mg−1

LET = −1
ρ

dE

dx
(2.1)
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with ρ the density of the material, dE the energy loss of the charged particle and dx

the distance travelled by it in the material.

2.4.2 Cross section calculation

The cross-section corresponds to the measurement of the sensitive area of a component
as a function of energy [24]. It indicates the probability of an event involving an ionising
particle at a given energy. Using the cross-section, it is possible to estimate the number of
single event effects happening during a space mission and thus, design suitable protection.
The cross-section can be measured by counting the number of events triggered on a
component and comparing it to the flow of particles irradiating the component.
The aim goal is to create a cross-section curve for various LET values. From there, it is
possible to distinguish two key values. The first one is the LET threshold level at which
SEEs start to appear. The second one is called the saturation threshold at which the
number of SEEs is stabilising (see figure 2.8).
The cross-section is calculated using Eq. (2.2) and its unit is cm2.

σ = NSEE

ϕ
(2.2)

with NSEE the number of events recorded and ϕ the particle fluence.

Figure 2.8: Cross section as a function of LET (from [26])

When calculating the cross-section of a component, it is possible to predict its durability
when exposed to a certain quantity of radiation. Doing so makes it possible to choose
the most suitable component for a space mission.
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2.4.3 Californium-252
To emulate a radiative environment on Earth, a Californium-252 (Cf252) radiation source
can be used. Californium-252 sources emit various types of radiation. The list goes
from alpha particles, beta particles, gamma particles, neutrons and around 3% of heavy
ions. It is why Cf252 is an adequate source to be used to test single even effects on
a component. The main inconvenience is that its emission radius is short. With only
15µm maximum, it can fail to reach the deepest part of a component [27, 28].

2.4.4 Laser
Laser testing for SEE is first introduced in 1965 [29]. At the time, only X-rays or particle
generator testing is available to emulate the effects of radiation on a component. Laser
is only seen as an inexpensive, yet powerful tool during a system design’s phase, but is
not able to replace entirely traditional testing methods. Limited at the time to single
event transient, studies started to emerge using a laser in a large spectrum of single
event effects [30–32].
The main inconvenience for IC is the metallisation layers located at the top of the
components. These layers can prevent the laser beam from accessing critical nodes
on the chip. That is why that backside testing started to emerge in the 2000s [33].
Nowadays, laser testing is gaining much interest due to its ease of access. It is seen
during the whole design process of a system, and is often used as a pre-characterisation
phase before heavy-ion testing.

2.4.5 Heavy ion testing
Heavy ion accelerators are considered the standard procedure when testing for single
event effects. When using this method, particles are accelerated by using an electric
field [27, 30]. The resulting beam is directed on the device under test previously placed
in a vacuum.

In general, two types of accelerators can be used for single event effect testing. First,
linear electrostatic accelerators uses two electrodes to accelerate ions. This type of
accelerator is using the resulting acceleration from a change state of ions provoked
by the electrodes. The other common type is called cyclotron. This type of circular
accelerator uses an electric field in combination of a curve trajectory induced by a
magnetic field to accelerate ions.

2.5 Protection methods
2.5.1 Shielding
Shielding is mainly used to prevent TID effects. The sensitive component is surrounded
by a protective material. Aluminium is a common shielding material as it can effectively
stop electrons. Also, the protection design can be tedious, as numerous parameters, such
as material composition, thickness, and geometry have to be taken into consideration [34].
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2.5.2 Radiation-hardening
Radiation-hardening is the concept of improving the protection of a component against its
radiative environment. Usually, hardening in the space industry refers to a modification
of the manufacturing process of a specific component. Many techniques already exist,
such as increasing the distance between transistors to avoid single event latch-up or
adding a decoupling capacitor at the gates of a device against single event transient.
Unfortunately, these techniques add a lot of complexity to a component, as they have to
be designed for a specific device, thus adding development cost. As a result, hardened
components are drastically more expensive than their COTS counterparts.

It is why the space industry is looking more and more to new means of detecting
radiation faults, that are not components dependent.

2.5.3 Anti-latch-up system
An anti-latch-up system is a part of what is called system-level latch-up counter-measures
[24]. It is the method currently used for most space missions. The concept is fairly simple.
The supply current of the component is monitored to find any high deviation that would
be diagnosed as a single event latch-up. In other words, it is a threshold-based method.
This method can be implemented in various ways and is a low-cost solution. However,
even though this method is efficient in detecting destructive single event effects that
heavily influence the supply current, it cannot detect minor faults that could still lead
to long-term damages. Indeed, because of the TID effect and the deviation resulting in
the supply current, the threshold value must be taken with a high margin. It results in
an important non-detection zone.

In this work, the anti-latch-up system is considered as a reference in the detection
of single event effects. It is referenced as the baseline threshold detection method.

2.5.4 NOSTRADAMUS
NOSTRADAMUS is a detection method developed by CNES in order to improve the
quality of spacecraft monitoring. This method is based on a machine learning algorithm,
and more specifically, a combination of Principal Component Analysis (PCA) [35] and
One-Class Support Vector Machines (OCSVM) [36]. The main drawback found during
the implementation of this project was the high number of false alarms during testing [37].

2.5.5 Latch-up Detection and Protection (LDAP)
LDAP is a protection chip developed by Zero-Error Sytems (ZES). This solution is a
three-stage detection method that first focuses on absolute current values(i). Then, the
second stage is configured to detect the rate of change of supply current (di/dt). Finally,
the power reset decision is taken by evaluating the previous two values with a fixed
threshold [38]. The advantage of this method is that the detection is performed by an
independent chip. Therefore, it is possible to use every component available, including
COTS.
Airbus provided 2.5 million dollars to ZES in order to scale its method [39].
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2.5.6 Adaptive threshold
INVAP recently fielded a patent for a new single event latch-up detection system [40]. It
can be seen as an improvement of the classic threshold detection method that takes into
consideration the TID effect. As stated before the TID effect is responsible for a deviation
of component characteristics. The idea proposed by INVAP is an adaptive threshold that
is able to follow the deviation. By doing so, it is possible to set up the threshold closer to
the nominal behaviour of the component. Figure 2.9 shows an example of such a method.
The supply current monitored labelled as "801" clearly display a deviation of its behaviour.
In this example, the threshold labelled "800" is able to follow the deviation, allowing a
much closer and more precise threshold than without applying this adaptive method.

Figure 2.9: Adaptative threshold (from Cibils [40])

2.6 Conclusion
In this chapter, a detailed overview of the radiative environment that space components
undergo is provided. Diverse sources are responsible for the emission of energetic particles.
These particles are the cause of various damages to electronic components that range
from long-term damages to instantaneous destruction of devices.
To counter radiation faults, extensive testing has been performed to improve the
understanding of single event effects. By doing so, it has been possible to design
protections suitable for specific components or faults. Nevertheless, today’s baseline
method fails in detecting tiny single event effects. New approaches aim to improve the
detection of such faults (LDAP, adaptive threshold) and many resources are deployed to
enhance the durability of space components.

In that context, anomaly detection using machine learning techniques is a stimulating
domain to investigate.
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Machine learning for anomaly detection
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Artificial intelligence is a computer science field that aims to build machines capable of
mimicking intelligent behaviour. Indeed, even though machines are able to memorise and
manipulate tremendous values that are way beyond human comprehension, some basic
tasks still remain impossible to be performed by a computer. For example, comparing
two cat pictures, describing a scene, having a simple conversation about the weather or
composing a catchy melody might seem trivial for the reader, but reveals to be highly
complex for our binary friends. Artificial intelligence aims to decrease the gap between
machines and humans in these tasks.

Artificial intelligence bases its approach on the concept of agent. An agent is anything
that is able to perceive its environment using sensors and then acts upon this environment
using actuators [41].
From there, artificial intelligence can be divided into two main fields. The first one is
symbolic AI. The most commonly cited method of symbolic AI is expert systems method
[42]. These require knowledge of the system.

The focus of this thesis is on the second field, called machine learning [43]. This
area focuses on improving the agent’s performance through multiple observations of its
environment. Machine learning usually works in two phases. First, a training phase is
performed in order to model the system. In this phase, the machine learning algorithm
tries to create relations between the given inputs and outputs. Then the prediction
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phase uses the previously created model to adapt to new and unknown input data. The
advantage of machine learning is that it can adapt and generalise to situations that were
not considered by the programmer. Moreover, it is powerful in cases where the system is
too complex to be programmed manually (as for facial recognition or self-driving car).

Anomaly detection is one of the use cases of machine learning [44]. Anomaly detection
finds its interest in a wide variety of applications. From fraud detection, cyber-security,
to health care and surveillance, anomaly detection is of the utmost importance. In the
case of space applications, anomaly detection techniques can be introduced to improve
the detection of single event effects, by finding anomalous patterns that deviate from
the normal behaviour of space components.

In this chapter, the focus is on anomaly detection. It resolves around two questions:

• How to characterise single event effects as anomalies?

• Which machine learning methods could be used to improve single event effects
detection?

First, the different types of anomalies are described in section 3.2. Three types of
anomalies are mentioned, as well as a discussion about the definition of single event
effects. Then, the three broad categories of anomaly detection techniques are detailed in
section 3.3. In these categories are listed some of the most common anomaly detection
methods. Finally, some of the most encountered distance metrics used in these methods
are listed in 3.4.
Before diving into technical considerations, a run-through of some key dates of artificial
intelligence is proposed in section 3.1. It is done in chronological order, and some of
the methods described will be detailed in the following sections.

3.1 A brief history of artificial intelligence
Artificial intelligence has known an incredible gain of interest since the beginning of the
21st century, mainly in the machine learning sub-field. Firstly for its performance in
image recognition, it quickly spread to almost all engineering fields, and became the
focus of many societal issues. However, artificial intelligence, is in fact, an old field
of research that has met a dead end two times already. Referred today as artificial
intelligence winter, these events are characterised by a drastic disinterest in the field for
an extended period.

It is possible to trace the foundation of artificial intelligence back to ancient times
with philosophers like Aristotle or Descartes, or with major mathematical foundations
like formal logic or probability. However, in this brief history of artificial intelligence,
the focus is on modern interpretations of artificial intelligence.

Artificial intelligence started with the goal of mimicking the human brain’s functionalities.
It is possible to pinpoint its beginning in 1943 with the first definition of the artificial
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neuron [45]. Published in the bulletin of mathematical biophysics by McCulloch and
Pitts, this publication shows the strong link that artificial intelligence always had with
biology. Indeed, this preliminary work was to give a better understanding of the complex
mechanisms of the brain to achieve intelligent behaviour.

This work was completed in 1949 by Hebb, which stated the rules in which the neurons
behave and are able to learn together. It is then that the term connectionism started to
emerge. Often summarised as "cells that fire together, wire together", these rules describe
the plasticity of the brain cells by pointing out the efficiency of continuous and repeated
activity on two synaptic cells.

A year later, a groundbreaking article is published. In 1950, Turing stated the possibility
of intelligent machines [46]. Even though, from the author’s consent, no concrete proofs
are given, this article is one of the foundations of the artificial intelligence field. Moreover,
it nourished many science fiction works, such as 2001: Space Odyssey by S.Kubrick
(1968), or more recently The Turing Test by Bulkhead Interactive (2016) or Detroit:
Become Human by Quantic Dreams (2018).

In 1952, Samuel writes about what we consider today as the first machine learning
example. An algorithm is being trained onto numerous games of checker. By each game
played, the algorithm learns and improves its performance [47]. The ability to "foresee"
future moves is performed using a tree of moves. From a given position, the algorithm
chooses the optimal move based on its previous experiences recorded in this tree. By
doing so, the machine is able to perform better than an "average novice".

It is in 1958, following the footsteps of its predecessor, that the perceptron is defined by
Rosenblatt [48]. Thought as a binary classifier, this algorithm uses first-hand examples
to modify the weights of an artificial neuron, resulting in the linear separation of two
classes. The ancestor of modern neural networks is born. Figure 3.1 display a scheme of
Rosenblatt’s perceptron. On the left part, each input xi is weighted by a coefficient wi.
The output y is given by the result of an activation function f on the total sum of each
weighted input. Traditionally it is possible to add a bias β to the total sum.

In 1967, the first formal properties of the k-nearest neighbour algorithm (KNN) are
formalised [49]. Even though it is possible to trace the first introduction of such
classification method in 1951 by Fix and Hodges, 1967 marks the start of a long
investigation to improve the nearest neighbour algorithm to what we know nowadays.
KNN is one of the most popular classification methods and is still widely used by
industrials alongside academicians.

After that, artificial intelligence interest decreased drastically. This period between 1969
and 1982 is known as the first AI winter. With high expectations crushed by many
failures, fundings were stopped. Plus, research on connectionism took a critical strike
when Minsky and Papert described the limitations of the perceptron in 1969 [50]. One
of the main arguments states that the perceptron is unable to achieve some very simple
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Figure 3.1: Rosenblatt’s perceptron

problems. Indeed, it was proven that the perceptron could not apprehend the logical
function XOR, because of the non-linear nature of the problem.
In addition, technical limitations started to arise. As computers were not powerful
enough to run complex neural networks, many of the promises made by this field were
out of reach at the time. Indeed, first breakthroughs were performed on problems with
few objects, and scaling proved to be more difficult than AI researchers encompassed .

During this period, efforts are focused on another aspect of artificial intelligence: symbolic
AI. Expert systems mainly represented this sub-field of AI. Rather than relying on specific
formalisms and inference schemes like connectionism, expert systems focus on domain
knowledge to allow larger reasoning. It can be broken down into a set of logical rules
dictated by the programmer that the program has to follow to give its prediction. Even
though it is limited by the knowledge of the expert community to resolve a problem,
expert systems gave more consistent and deterministic results. One of the first examples
of an expert systems program is the DENDRAL program created by Buchaman in 1969.
Buchaman teamed up with chemical experts in order to describe molecular structures
corresponding to input mass spectrum and formula of an organic chemical compound
[51]. The important milestone of this project is that Buchaman proved the feasibility of
DENDRAL, allowing it to be seen as a reliable method for real applications.
From there, knowledge-based systems became more and more popular. The massive
project called the Fifth Generation Computer Systems (FGCS) funded in Japan in 1981
had a major impact on promoting knowledge-based systems worldwide. This project
aimed to create powerful computers able to use massively parallel computing and logic
programming.

The regain of interest for AI started in 1982, due to new technological breakthroughs
that went to invalidate Minsky and Papert’s propositions. When they restricted their
argumentation to Rosenblatt’s perceptron, they did not emphasise that the improvement
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of learning rules would allow multiple layered architectures.

The next few years are marked by the publication of the most well-known neural
networks used today:
First, the Self Organizing Maps (SOM) by Konhonen [52] is published in 1982. This
architecture enables the mapping of high dimensional in 2D spaces using a topographic
neuron model that can influence other neurons in proximity.

A milestone for artificial intelligence happens in 1985 with the work of LeCun and Parker
on the backpropagation of neural networks. Backpropagation consists in propagating the
error through the different layers of a neural network during the training phase. Even
though they were not the first to use the backpropagation method, they demonstrated
that an efficient backpropagation was possible for neural network applications.
In 1986, Hinton developed a new architecture relying on input and hidden neurons called
Boltzmann Machines (BM) [53]. This specificity gives the ability to understand unknown
or complex information about the system.

Next, in 1988, a well-known architecture called Auto-Encoders (AE) is published by
Bourlard [54]. This architecture is similar to classic neural networks architecture but with
the output being identical to the input. From there, it is possible to use auto-encoders
in many ways (feature extraction, encryption, feature reduction, de-noising...).

In 1989, LeCun et al. published a groundbreaking article in which Convolutional
Neural Networks (CNNs) are used to recognise hand-written numbers successfully [55].

In the same year, a new axis of artificial intelligence emerged from the thesis of Watkins
[56]. With its proposal of what is now called Q-Learning, reinforcement learning was
born. It varies largely from the machine learning methods discovered until then, as no
input nor outputs are explicitly given to the algorithm. Instead, an agent evolves on its
own in an environment by performing actions. The training is based on rewards given
to the agent depending on the output of its actions.

In 1990, a second winter occurred. Similarly to the first winter, artificial intelligence did
not fulfil the promises made during the last decade, and its popularity decreased. At
the time, computational power is still insufficient to run complex neural networks.
Moreover, some argue that the cause of this second fall started way back in the 70s:
The game of change in the command chain of the Defense Advanced Research Projects
Agency (DARPA) resulted in significant cuts in the funding in AI. It is interesting
to note that those cuts did not happen because of hostility in regards to artificial
intelligence fields, but instead because DARPA estimated that the funds allowed to AI
were disproportionate in regards to other scientific fields, such as supercomputing [57].
Moreover, AI researchers failing to see that the funding cuts were primarily responsible
for the lack of new projects, started to divide themselves. The connectionism experts
started to label expert systems as "not really AI" and pointed out the flaws of such
methods. Therefore began a quarrel that is continued today.
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Some significant works are still published during this period. In 1995, Cortes continued
a work started by Fisher in 1936 on a binary classification method using couples of
vectors [58] [59]. Called at the time support-vector-networks, these are known today as
Support Vectors Machine (SVM) and is still one of the most used classification methods
nowadays.
The same year, Ho wrote about a new method that uses multiple decision trees to
improve prediction results. This algorithm is called Random forests (RF) [60].

It can be complex to pinpoint precisely the end of the second winter, as multiple
references vary from 1997 to 2001. However, the defeat in May 1997 of the world chess
champion Garry Kasparov to Deep Blue, the supercomputer of IBM, is a significant
event in artificial intelligence. When it was thought impossible for a machine to win
against a pro player, the defeat of the world champion shifts entirely the opinion of the
public eye towards AI.

In 1999, Nvidia released, as they called it, the world’s first Graphics Processing Unit
(GPU): the GeForce 256. The parallelisation possibilities offered by GPU and the massive
jump in computer performance finally allowed to run complex neural networks models
efficiently.
At the beginning of the 21th century, the advent of internet led to a massive increase in
data collected. Extensive and labelled databases of various kinds started the era of what
is referred today as big data. Hand analysis, which was sufficient in the past, quickly
became too complex, and new ways of treating information were needed.
With the new popularity of AI, the technological breakthrough of GPUs, plus the
availability of large amounts of data, artificial intelligence became the centre of attention.
Following these breakthroughs, a great number of projects involving AI flourished from
2001 to 2009. Then, significant successes started to arise.

2009 marked the grand entrance of neural networks in computer vision competitions
with the victory of Jürgen Schmidhuber in the ICDAR French Connected Hand-written
Competition using a fast deep neural net. Since then, neural networks have won almost
all competitions they entered in, being image segmentation, object detection or object
classification, with accuracy improvement of up to 40% from other technics.

In 2010, Google announced its self-driving car system that was able to drive more
than 225 000 km without any accidents. Even though the field of self-driving cars is not
novel, with Tsukuba’s lab that demonstrated the first autonomous car able to follow a
line at 30km/h in 1977, it is only since these announcements that funding started to
grow in this field.

In 2013, The Facebook AI Research (FAIR) group is created in order to improve
state-of-the-art AI. Their work benefits greatly facial recognition field but also the
generative image field with major work in self-supervised learning. Notably, they worked
on scaling Generative Adversarial Network (GAN), a network model resolving into two
competing networks proposed by Goodfellow in 2014 [61].
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In 2018, Nvidia shakes the computer graphic field by realising their RTX series. Besides
a totally new Turing architecture enabling real-time ray tracing, RTX cards are equipped
with Deep Learning Super Sampling (DLSS). This technology uses a convolutional auto-
encoder neural network to enhance and upscale low-resolution images to be rendered in
real-time at higher resolution. Some benchmarks showed double in performance when
this feature is enabled.

Nowadays, Artificial intelligence has grown in almost all industrial fields. From anomaly
detection in telemetry [62], to new diagnosis methods in medicine [63, 64], control
simulation [65] or audience recommendation [66, 67], artificial intelligence is everywhere.

With the recent expansion of machine learning at the beginning of this century, many
think that it is a new field of research, whereas most of its methods have been created
during the last century. Moreover, it is interesting to realise all the setbacks that machine
learning went through to see in a new light the recent success of this field.

From there, the next sections are going to focus to the specific field of machine
learning of anomaly detection.

3.2 Anomaly detection

Anomaly detection refers to the problem of identifying observations that deviate from
what is defined as the system’s normal behaviour. These observations are called anomalies
or outliers. It is possible to discriminate between three types of anomalies [44]. These
are point anomalies, collective anomalies and contextual anomalies.

(a) Point anomaly (b) Collective anomaly (c) Contextual anomaly

Figure 3.2: Anomaly types

3.2.1 Point anomalies

A single observation that deviates from normal behaviour is considered a point anomaly. It
is the simplest type of anomaly. It is displayed in figure 3.2a. In this figure, the observation
at 0.8s takes a value that is impossible to encounter when the system runs normally.
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3.2.2 Collective anomalies
When multiple observations taken together deviate from normal behaviour, it is consid-
ered as a collective anomaly. In figure 3.2b, if taken individually, each observation inside
the red circle is already observed, thus they are valid values for this data set. However, it
is the combination of all these observations that is problematic. Indeed, the lower state
lasting between 0.4s and 0.7s is twice as long as it should be. It is a sign of anomalous
behaviour.
Another example would be when considering multiple data sets altogether. For example,
let us take the example of a hospital with 100 patients. The average heart rate is around
80 beats per minute (BPM), with a normal state between 60 BPM to 100 BPM. A point
anomaly would be that a single patient having a heart attack will see heart rate going
up to 150 BPM. However, if all patient’s heart rates rise to 100 BPM, even though it is
still at the acceptance rate and not considered a point anomaly, the average cannot be
considered normal behaviour. It is then considered a collective anomaly.

3.2.3 Contextual anomalies
When an observation differs from the anticipated scenario, it is considered as a contextual
anomaly. The border between contextual anomalies and the two categories described
earlier is difficult to establish. Indeed, both point and collective anomalies can be
considered as contextual anomalies. To be able to distinguish contextual anomalies,
a priori knowledge of the system behaviour is required. For example, in figure 3.2c,
the observations made at t=0.8s have the same value as any observation of the lower
cycle. However, it is the context of the data set that gives the information of an
anomaly. As the steady state at t=0.8s is the higher cycle, the normal value should
be equal to the observations of the higher cycle.

3.2.4 Single event effects as anomalies
The topic of this thesis project is to improve single event effects detection. As referenced
in section 2.3.1, the impact of a single event effect on the supply current is perceived as
a high current event. It corresponds to a persistent shift in the supply current. From
there, it is possible to categorise single event effects based on the types of anomalies.
For this, a distinction is made between destructive and non-destructive single event effects.

Destructive single event effects result in a significant shift of the supply current. The
resulting values are heavily deviated from the normal behaviour. Therefore, even though
multiple faulty observations are resulting from single event effects, it is possible to define
them as point anomalies, as each individual observation differs from the normal behaviour.

On the other hand, the supply current deviation resulting from a non-destructive
single event effect can stay hidden in the normal behaviour to the naked eye. Therefore,
it is not possible to characterise these anomalies by looking at a single point, but
multiple observations have to be taken into consideration. Consequently, it is possible
to characterise these non-destructive SEEs as collective anomalies.

26



3. Machine learning for anomaly detection

3.3 Categories of anomaly detection methods

Supervised learning, semi-supervised learning and non-supervised learning are the three
main categories of learning that govern anomaly detection. Based on the problem to
solve, one might use one of each category.

Anomaly detection depends on the availability of labels that characterise observations
as normal or anomalous. Anomaly detection models use these labels to extrapolate a
model of the system during the training phase. Then during the prediction phase, the
model is used to predict new observations as normal or anomalous. It is the availability
of these labels that defines the category of learning method used.
Note that in general machine learning, these labels represent the target information of
an observation.

(a) Supervised learning (b) Unsupervised learning (c) Semi-supervised learning

Figure 3.3: Anomaly detection categories

In addition, a fourth category exists in general machine learning. Called reinforcement
learning, it is a particular case of machine learning where no data has to be provided
during the training phase. Reinforcement learning is not used in anomaly detection.
However, the author finds interesting to detail the possibilities of reinforcement learning.
Therefore, it is possible to find a description of reinforcement learning in section
A in the appendices.

3.3.1 Supervised learning

In machine learning, the learning task is about modelling a system based on input-output
pairs. The particularity of supervised learning is that the nature, or label, of each
observation contained in the training set is given to the algorithm. An observation is
composed of features representing measurable characteristics of the system. Formally,
the training stage can be written as follows:
Given a training set X of N observations as

X = {(x1, y1), (x2, y2), ..., (xN , yN )}
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Table 3.1: Confusion matrix

with x the input feature vector and y the output value and being related by a function
such that y = f(x), find a function h that approximates the true function f [41].

In general machine learning, it is possible to distinguish between regression and classifi-
cation algorithms. A regression algorithm corresponds to the case when the output y is
a quantity. The model aims to understand the relationship between independent (y) and
dependent (x) variables. Therefore, it can be used to understand the relations between
variables. However, its main applications dwell in the forecast of a system [68]. The
most common regression method is linear regression and logistic regression. Regression
is rarely used in anomaly detection, but some research can be found on the topic [69, 70].

On the other hand, classification algorithms are the most used for anomaly detection.
Classification corresponds to the task of being able to differentiate objects. For instance,
differentiating between the picture of a cat and a dog is one of the most used example.
Classification is when y corresponds to specific labels or categories. The goal is to
propose a model that can identify different categories, or classes, based on their inputs.
The classification task can be extended to multi-class classification, where the algorithm
tries to separate multiple known classes. The label for each sample is known, and all
classes are represented, as in figure 3.4.
In anomaly detection, supervised learning can be considered as a classification task with
only two classes: normal and anomalous, as shown in figure 3.3a

A critical aspect of classification is to judge the performance of the classification model.
Multiple evaluation factors can be used to assess if the modelled function h is satisfactory.
Most of them rely on the confusion matrix, as displayed in table 3.1. It is a powerful tool
that allows quick visualisation of the performances of a model for a specific data set.
It primarily reports all possible prediction outcomes for true and predicted class:
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• True positive: Positive sample predicted positive

• True negative: Negative sample predicted negative

• False positive: Negative sample predicted positive

• False negative: Positive sample predicted Negative

From there, multiple indicators can be calculated. As each of them delivers specific
information on the model performances, it is essential to cross-validate the results using
various indicators.
The most common are explained below:

• Sensitivity or recall refers to the probability of correctly predict positive classes.

• Specificity refers to the probability of correctly predict negative classes.

• Precision refers to the probability of being correct when predicting a positive
value.

• Negative predictive value refers to the probability of being correct when
predicting a negative value.

• Accuracy refers to the overall probability of the model being correct on each
prediction.

These indicators are precious to evaluate the performance of a classification model.

As it appeared in section 3.1, many algorithms exist in order to perform similar tasks.
Classification algorithms are no different, and it is essential to understand the advantages
and drawbacks offered by each technique when trying to model a system. The following
are examples of the most common classification algorithms. Note that some of these
algorithms, such as neural networks, can be used for classification and regression.

• K-Nearest Neighbors (k-NN): k-NN is a non-parametric method that consists in
finding the class of a point based on its k nearest neighbours in the feature space
[71].

• Naïve Bayes: This method is based on the Bayes’s theorem defined in equation 3.1
with a strong independence assumption between the features.

P (A\B) = P (B\A).P (A)
P (B) (3.1)

• Decision Trees: This method uses tree-like models [72] where the target variable
can take a value in a discrete set. In these structures, the leaves represent class
labels, and branches represent conjunctions of feature values. This method is
prevalent because of its easy-to-understand principle.
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• Random Forests: This method is an ensemble learning method, meaning that it is
based on multiple agents working together to get a better result. For the random
forest algorithm, a multitude of decision trees is used to build the prediction [60].

• Support Vector Machines: SVM models map training examples to points in space
in order to maximise the width of the gap between two classes. The algorithm
uses support vectors to calculate the maximum margin between classes and find a
linear correlation between data. For non-linear separation, it is possible to use the
kernel trick, searching for the boundary in a higher dimension space [58].

• Artificial Neural Network: ANN models can be considered the base method of
deep learning and aim to mimic the brain’s learning process [73]. Its basic element
is an artificial neuron as seen in fig 3.1. An artificial neuron is an entity composed
of the inputs x and associated weights w, the outputs y and a neuron σ. While σ

depends of the pair (x,w), an activation function ϕ is then pondering the output y.
Equations 3.2 and 3.3 govern the artificial neuron behaviour.

σ =
Xn∑
i=1

wixi (3.2)

Y = ϕ(σ) (3.3)

From there, an artificial neural network is a construction of multiple artificial
neurons connected in multiple layers. ANN are composed of an input layer, hidden
layers and an output layer. Two distinct phases are used during training. First, the
propagation of the input through the hidden layers gives the prediction available in
the output layers. Then these predictions are compared to the real values through
a cost function. Finally, the backpropagation can begin: the error is injected back
into the hidden layers, thus modifying the weights w. During the test phase, only
the propagation phase is used with the final weights of the training phase.

3.3.2 Unsupervised learning
In anomaly detection problems, the observations labels are not necessary available. In
the case of unsupervised learning, the training set is only composed of unlabelled data.
The algorithm groups multiple samples into groups sharing similarities called clusters.
For example, in the general case, let us suppose an unsupervised algorithm is shown
many pictures representing a cat, but without labels. In that case, when presented with
a picture of a cat, the algorithm cannot tell the subject of the picture, but it might
distinguish the content of the picture as similar to the ones offered during training. This
can be defined as clustering.

Moreover, in anomaly detection, it is assumed that the vast majority of the training
observations are normal. In that case, it is possible to predict isolated observations or
clusters as anomalous, as shown in figure 3.3b.
Some examples of clustering algorithms are described below:
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• K-means clustering: This vector quantisation method aims to partition N
observations into K clusters [74, 75]. Each point is assigned to the cluster with the
nearest mean. K must be chosen by the user. Some methods exist to help decide
about the K parameter. Among them, the elbow method is the most popular. It
consists in calculating the Within Cluster Sum of Squares (WCSS) (see equation
(3.4)) for a multitude of K values and then finding the elbow on the curve. This
break is the optimal number of clusters K

WCSS =
k∑
j

∑
xi∈clusterj

distance(xi, Cj)2 (3.4)

where Cj is the clusterj centroids and xi is an observation in cluster clusterj .

• Hierarchical Clustering: This method aims to build a hierarchy of clusters [76].
There are generally two strategies. The first one is called agglomerative. The
algorithm starts with one cluster for each observation and merges them until all
data form one unique cluster. The second strategy is called divisive. Here, it starts
with one single cluster, and splits it recursively as one moves down the hierarchy.
As in K-means clustering, the user must specify the number of desired clusters.
The dendrogram method is most commonly used to evaluate the adequate number
of clusters.

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN): DBSCAN
is a density-based clustering non-parametric algorithm [77]. It aims to group data
points that are closely packed together. It also marks as outliers points that lie in
low-density regions. The main parameter to set is the radius of a neighbourhood ε.
Note that this algorithm does not need to specify the number of desired clusters.

• Dynamic clustering for tracking evolving environments (DyClee): DyClee is a two-
stages distance-based and density-based clustering algorithm [78]. Data samples
are fed as input to the distance-based clustering stage in an incremental, online
fashion, and they are then clustered to form micro clusters. The density-based
algorithm analyses the micro-clusters to provide the final clusters. Thanks to a
forgetting process, clusters may emerge, drift, merge, split or disappear, hence
following the environment’s evolution. Like DBSCAN, DyClee does not require
the number of desired clusters. Instead, the main parameter to be set is the size of
the micro clusters.

3.3.3 Semi-supervised learning and one-class classification (OCC)
Semi-supervised learning is an in-between of supervised and unsupervised learning. It
can be complex to define the limit between semi-supervised and unsupervised anomaly
detection. Indeed, different definitions can be found in the literature [44, 79]. In this
thesis, semi-supervised learning assumes a partial labelling of the training set, or only a
partial representation of the classes.

A first problem is multi-class detection that focuses on one class only. Usually, it
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Figure 3.4: Classification overview

is called the positive or target class, in contrast to all other classes called negative or
outlier classes [36]. The training is performed with samples from both classes, aiming to
separate the positive class from the negative class.

The most common problem is when only observations of one class is available during
training. This particular case displayed in figure 3.4 is called one-class classification
(OCC). It can be seen as a special case of classification. As shown in figure 3.3c, only
the positive class is represented during training in one-class classification. Therefore,
the algorithm is trying to find a fitting boundary that models the positive class to leave
outside other objects during the inference phase [80].
One-class classification algorithms represent an important asset for anomaly detection.
Indeed, it can often prove tedious to gather numerous and representative examples
of faulty behaviours. Thus, other classification methods can be nearly impossible to
implement due to the lack of positive class. By restraining the need to only normal
behaviour during training, OCC is a powerful alternative.

Some examples of well-known one-class classification algorithms are described below:

• Elliptic Envelope (EE): EE algorithm aims to encapsulate the training data into an
elliptical shape. Then, every data point that falls outside the shape is considered as
an anomaly. This method works best with data sets that are Gaussian distributed.

• Isolation Forest (IF): IF is an algorithm primary used for outlier detection. Indeed,
it is especially efficient for unbalanced data sets by focusing on out-of-distribution
samples. An unbalanced data set describes the data set for which the number of
observations for each class is not equally distributed. This algorithm recursively
splits the samples by randomly selecting an attribute and then randomly selecting
a split value for this attribute, between its minimum and maximum [81].

• Local Outlier Factor (LOF): As the name implies, LOF is an outlier detection
method that works by giving a score to each sample of a data set [82]. LOF based
its prediction on the density of the neighbourhood. The calculation of the score
is a multi-phase algorithm that works as follows. First, the distance between an
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observation A and its kth nearest neighbour is calculated. Nk(A) represents the
set of k nearest neighbours. Then, a reachability distance is calculated between A
and another observation B following equation (3.5):

RDk(A, B) = max(Kdistance(B), distance(A, B)) (3.5)

where Kdistance(B) is the distance between B and its kth neighbour. From there,
the k-nearest neighbours of each observation have to be found. Then, it is possible
to calculate the local reachability density of A using equation 3.6. LRDk(A) is
the inverse of the average reachability distance of sample A from its neighbours.

LRDk(A) = 1∑
B∈Nk(A) RDk(A,B)

|Nk(A)|

(3.6)

Finally, it is possible to compare the density of A with its neighbours by calculating
the local outlier using equation (3.7):

LOFk(A) =
∑

B∈Nk(A)LRDk(B)
|Nk(A)| ∗ LRk(A) (3.7)

Based on the LOFk(A) value, the observation A is assigned as outlier or not.
Usually, if LOF > 1, it is considered as an outlier.

• One-Class Support Vector Machines: OCSVM is a special case of SVM [36] [37].
Unlike SVM, which tries to find a hyperplane separating two classes, OCSVM
considers a hypersphere encompassing all positive instances. In this case, the
margins references outside of the hypersphere. Thus, OCSVM aims to create the
smallest hypersphere possible.

• Auto-Encoders: AE are a particular case of artificial neural networks where the
input layer and the output layer are identical [83]. This architecture gives the
ability to the neural network of coding itself. Two phases can be distinguished in
AE. The first phase is called encoding. It is the action of transforming the input
into the hidden layer space. From there, it is possible to continue the propagation
to the output layer. This phase is called decoding. In one-class auto-encoders,
the model is is trained to reconstruct a single class. Then a reconstruction error
τ is considered during the inference to estimates how well the model is able to
reconstruct the input [84]. This error is used as a score to define a new observation
into the positive or negative class.

3.4 Distance metric used in anomaly detection
In machine learning and anomaly detection, many algorithms rely heavily on a distance
metric in order to analyse the similarities between each observation of the input space
[85]. Therefore, choosing the distance function that will be computed by the algorithm
is a crucial aspect in resolving a machine learning task. Defining this function has
been studied for years, and many metrics have been developed to evaluate the distance
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between two observations. This section defines the most commonly used metrics for
anomaly detection tasks.
For each metric, we assume two points X = (x1, x2, ..., xn) ∈ Rn and Y = (y1, y2, ..., yn) ∈
Rn.

• Manhattan distance, also called Taxicab distance, calculates the distance by
taking the absolute differences between the points across all dimensions. Even
though it is not an intuitive way to measure a distance, it is commonly encountered
as an efficient metric in high-dimensional data sets [86]. An example of this metric
is displayed in figure 3.5a. Manhattan metric is formulated as in equation 3.8

distManhattan(X, Y ) =
n∑

i=1
|xi − yi| (3.8)

• Euclidean distance calculates the shortest distance between two points. It is
the most intuitive and used metric. However, euclidean distance becomes less
effective for machine learning applications as the dimensionality of the feature
space increases. It is said that euclidean distance works best for three or lower
dimensions [87]. An example of this metric is displayed in figure 3.5a. Euclidean
distance is formulated in equation 3.9

distEuclidean(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 (3.9)

• Minkowski distance calculates the distance between two points in the normed
vector space. It can be seen as a generalised form of the Manhattan and Euclidean
distances. It resolves around an order p that must be fixed by the user depending on
its application. Usually, its value is a strictly positive integer. Studies demonstrated
that choosing p ∈ (0, 1) does not increase the performance of machine learning
algorithms [88]. An example of Minkowski metric for different p values is shown
in figure 3.5b. The different curves represent the same Minkowski value from the
centre. Minkowski metric is defined in equation 3.10

distMinkowski(X, Y ) = (
n∑

i=1
|xi − yi|p)

1
p (3.10)

with P ∈ Z.
Note that p = 1 refers to Manhattan distance and p = 2 refers to Euclidean
distance.

• Cosine similarity calculates the cosine of the angle between two vectors. It is
often used in place of euclidean distance for high dimensional data sets. However, it
is worth noting that the vectors’ magnitude is not taken into account. An example
of this metric is displayed in figure 3.5a Cosine similarity is defined in equation
3.11

distCosine(X, Y ) = cos(θ) = A.B

||A|| ||B||
=

∑n
i=1 xi.yi√∑n

i=1 x2
i

√∑n
i=1 y2

i

(3.11)

34



3. Machine learning for anomaly detection

(a) Manhattan, Euclidean and
Cosine metrics

(b) Minkowski metric (c) Hamming metric

Figure 3.5: Distance metrics

• Hamming distance calculates the number of different elements in two vectors.
The most common use case is string comparison, by analysing how many characters
differ. Note that it is best used when the vectors are of the same length. The
hamming distance is calculated using the sum of identical elements between two
vectors. An example of this metric is displayed in figure 3.5c.

3.5 Conclusion
In this chapter, A brief history of AI has been presented, then focusing the anomaly
detection field . It has been highlighted that three types of anomalies can be encountered.
It also has been demonstrated that depending on the severity of the damage, a single
event effect can be considered as a point or a collective anomaly. Moreover, some
anomaly detection methods have been presented. Divided into three categories, these
methods are valid candidates to improve single event effects detection. The focus is
now to setup an experimental platform to test anomaly detection methods and evaluate
their performance compared to already available detection methods for single event effects.

The first part of this manuscript focused on establishing the theoretical prerequisites for
this thesis work. The objective developed in the second part, is to setup an experimental
platform to test anomaly detection methods and to evaluate their performance compared
to already available detection methods for single event effects.
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Experimental platform
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Experimental circuit design
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To study the effects of radiation on electronic components, one must first select
the devices that will be examined. Indeed, the impact of radiation can vary greatly
depending on the type of component used [89]. In consequence, performing a study that
encloses all types of SEEs might reveal to be a stall. Plus, some components exist in a
hardened version specifically designed for space applications [90], so a choice must be
made whether to choose the COTS or the hardened version of a component.

The first step of this research was to choose a component sensitive enough to radi-
ation to carry out research on new detection methods. Microcontrollers are complex
integrated components. Therefore, it is complicated to carry out a hardened version of a
microcontroller, justifying the need for alternative detection methods.
The reference chosen for our study was the ATMEL SAM3X8E. Its normal behaviour
must be analysed and documented before any experience in order to compare its evolution
in a radiative environment. In consequence, an experimental circuit setup is required.

In this chapter, the goal is to describe the microcontroller chosen to study single
event effects. In addition, a specific electronic board designed to go through radiation
testing is described.

First, in section 4.1, the component chosen for this study is described. Its main
characteristics as well as its behaviour are studied to help the characterisation of single
event effects. Then, in section 4.2, the process of creating an electronic board specifically
designed for single event effects testing is detailed.
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4.1 ATMEL SAM3X8E microcontroller
The ATMEL SAM3X8E microcontroller is chosen as the core component of this study.
Therefore, most tests and analyses will be performed on this specific component. It
was first considered because the CNES team coordinating this project was already
familiar with working with this component. Additional reasons explained in section
4.1.1 validated this choice. Thus, extensive studies on its normal behaviour have been
performed in order to have references and prepare radiation experimentations.

4.1.1 Choice reasons
A vast choice of components is available when talking about space equipment. Photo-
voltaic panels, transistor as switching MOSFET, memory, camera equip satellites on
space missions and are all valid options when defining a space case study. Nevertheless,
a component able to execute instructions and store informations is needed if it is used to
work with a software detection method. This criterion led us to choose a microcontroller
as our tested component. The ATMEL SAM3X is finally chosen. Three reasons led to
choosing the ATMEL SAM3X over other microcontrollers.

Firstly, this component is currently used in actual space applications. For this particular
case, the ANGELS project is taken as an example. ANGELS (Argos Neo on Generic
Economical and Light Satellite) corresponds to a first genereation of nano-satellite
jointly developed by the CNES and Hemeria. It was successfully launched by a Soyuz
launcher on December 18, 2019, from the Guiana Space Center. To control and ensure its
functions, the component primary chosen is a SAM3X microcontroller with the 144 pins
package. The satellite follows the CubeSat 12U requirements, weighing 20kg. ANGELS
satellites are designed to carry Argos-Neo, a whole new generation of instruments set to
gather environmental data based on the Argos system.

Secondly, the ATMEL SAM3X8E version is a central component for the widely distributed
Arduino DUE development board. Arduino is a well-known company that designs and
manufactures single-board microcontrollers kits. Choosing an Arduino DUE board
removes the need to design a whole new testing board for preliminary testing, and gives
access to a quick setup to test the microcontroller specifications. Furthermore, the
Arduino DUE board provides access to numerous IOs allowing communication with the
SAM3X8E microcontroller. It also gives the possibility to program the microcontroller
using USB communication.

Thirdly, an important criterion in our case study is that the component has to be
sensitive to radiation to get failure examples in the study. That is why our choice was
to take the COTS version of the SAM3X via the SAM3X8E. Nevertheless, studies show
that even the rad tolerant version, the SAMA3X8ERT, is sensitive to single event effects
[90]. Indeed, microcontrollers are complex, designing an efficient protection on such
components is highly complicated. Therefore, it emphasises the complexity of device
protection and the need for new methods to protect space components.

In conclusion, this component is chosen for its use in real space applications, its availability
on already existing development boards, and its sensitivity to single event effects.
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4.1.2 SAM3X8E specification

The ATMEL SAM3X8E is made by Microchip. The package is an LQFP-144 with
20*20mm2 dimensions. It is based on the ARM Cortex-M3 processor, optimised for
low-cost and energy-efficient integrated circuits. It possesses 512Kb of flash memory
used to store the program. It operates on a 96Kb SRAM at 84MHz. Finally, it features
103 I/O lines. Fore more information, the internal diagram is available in figure B.1 in
appendices.
Most of the studies regarding the SAM3X8E were performed using the Aduino DUE
development board displayed in figure 4.1.

Figure 4.1: Arduino DUE board equipeed with an ATMEL SAM3X8E microcontroller

The Arduino DUE is equipped with a SAM3X8E as its primary component. It also
features the ATMEGA16U2, which provides a USB interface between the SAM3X8E and
a connected computer. The board is powered using a 7V-12V voltage source. Multiple
pins are available and are used to connect with the SAM3X8E I/Os: digital, analogue,
PWM, CAN and I2C types are available for a total of 54 I/O pins. For more information
on the Arduino DUE, the specifications are available in table B.2 in appendices

It is possible to program the SAM3X8E using the USB port or the JTAG connectors
available on the board.
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4.1.3 Behaviour study
Understanding the faulty behaviour of a component due to a radiative environment
requires a basic understanding of its normal behaviour. The supply current is the main
indicator of the component’s behaviour when performing radiation testing. Thus, it is
the indicator that will be mainly used in this study.
Most ground radiative experimentations are performed using a component in sleep mode.
Thus, only a few variations of normal behaviour are available. In that case, detecting
non-destructive single event effects is facilitated compared to realistic scenario. In this
study, the goal is to provide a complex emulation of the chip behaviour so that it is as
realistic as possible. By doing so, some anomalies may not be directly discriminable.
This way, it is possible to provide results even for complex cases.

In order to emulate realistic behaviour, different functions are implemented in the
microcontroller while monitoring the supply current. Note that the Arduino DUE design
was not made to easily access the SAM3X8E’s supply current. Thus, only the supply
current of the entire board is monitored. However, as the SAM3X8E is the only active
component, it is also the only component that significantly impacts the board’s supply
current during the execution of a program.

During the experiments, two primary consumption profiles were highlighted:
• The load consumption profile refers to any activities of the microcontroller that

results in a modification of the electrical load on the microcontroller. Usually, this
results from a state change of an I/O inducing a mean shift of the supply current ,
as shown in figure 4.2a. The main characteristic of the shift is governed by the
resistive value of the attached load.

• The software profile refers to any modification of a memory cell of the microcon-
troller. In this case, the supply current is modified depending on the activity of
the chip. The mean of the supply current remains the same, whereas the variance
is affected, as shown in figure 4.2b. During the experiments, functions such as
variable modification, SPI communication or display functions are elements that
are considered as a software consumption profile. However, it is difficult to estimate
the impact of a specific function on the supply current.

(a) Load profile (b) Software profile

Figure 4.2: SAM3X supply current profiles
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4.2 DIAG-RAD electronic board

During the preliminary phase of this thesis project, the Arduino DUE development
board gave crucial information regarding the microcontroller’s behaviour. However,
harsh radiation testing was planned, and the base functionalities of the Arduino board
became limited. It was then decided to develop a specific electronic board in addition to
the Arduino DUE.
This board, called the DIAG-RAD board, is a dual microcontroller board. It is based
on the Université Catholique de Louvain (UCL) cyclotron’s frame, as experiments
were primarly planned in this facility1. The frame’s dimensions are displayed in
figure B.3 in appendices

4.2.1 Specifications

Before starting the design of the DIAG-RAD board, the testing requirements are listed.
It is done to enquire that this board can cover all the needs of radiation testing. The
specifications of the DIAG-RAD board are given table 4.1. The functions referred to
in the table are described subsequently.

n° Requirements Functions

A - Test of a SAM3X8E 1⃝, 2⃝, 3⃝, 6⃝- Availability of both front and back sides of the chip
B - Compatibility of the board with a testing frame 4⃝

C - Emulation of various load consumption 8⃝- Current pulse of 1,2,3,5 or 10 mA
D - Emulation of various software consumption 2⃝, 8⃝

E
- Protection of the device under test

5⃝- Protection controlled by a dedicated input
- Fault signal must be available as an output

F
- Monitoring of the device under test

2⃝, 5⃝, 7⃝- Signal must be numerical output compatible
with computer’s communication

G - Availability of Arduino DUE functions 6⃝, 7⃝to facilitate programming

H
- Emulation of high current events on the supply current

9⃝- The high current events must be independent
of the device under test

Table 4.1: DIAG-RAD electronic board specifications

1However, the reader must not put some expectations into this, as a world sanitary crisis resulting in
the closure of the facility are substantial obstacles, that shattered all hopes of the author to see such
state-of-the-art equipment.
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4.2.2 Characteristics
From the specifications, an electronic board is designed. The characteristics featured
on the card are stated next.

4.2.2.1 Mother/daughter boards 1⃝

The DIAG-RAD board is primarily made for experimental tests on microcontrollers. It
means that the device under test will be put under extreme stress, and failure of the
component is a possibility. However, replacing the whole board for each experiment
would be dubious and time-consuming. Therefore, the DIAG-RAD board is composed
of two distinct electronic boards: the main test-bench constituted with a motherboard
equipped with all the functionalities needed for experimental testing, and a daughterboard,
which includes only the device under test with few passive components. Thus, if a failure
occurs on this daughterboard, it would be easily replaced by another daughterboard
without damaging other functions. The motherboard and daughterboard are shown in
figure 4.3.

Mother/daughter boards respond to requirement A.

Figure 4.3: DIAG-RAD board (left: mother board; right: daugterboard)

4.2.2.2 Dual microcontroller setup 2⃝

The DIAG-RAD board is equipped with two distinct SAM3X8E microcontrollers. One
is mounted on the motherboard, while the other is mounted on the daughterboard.
However, each one has a specific role.
The daughterboard’s chip is targeted to be the device under test that is going to be
monitored and put under stress, whereas the motherboard’s microcontroller is used to
provide monitoring and supervise tests.
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It is possible to communicate between both SAM3X8E microcontrollers as their respective
CAN ports are connected. It can be used to gather data on the device under test or to
emulate data transfer.

The dual microcontroller specification responds to requirements A, D, F.

4.2.2.3 Flipped daughterboard 3⃝

The specificity of this architecture is that it is possible to plug the daughterboard on
both sides of the motherboard. Indeed, male and female board-to-board connectors are
present on both sides of each board. Moreover, a hole is drilled on the PCB located at
the back of the SAM3X8E microcontroller. Doing so makes it possible to access the
back of the chip during a test.

The flipped daughterboard specification responds to the requirement A.

4.2.2.4 Dimensions 4⃝

As specified previously, the DIAG-RAD board was initially designed to fit the frame of
the UCL’s cyclotron, respecting specifications, connectors and dimensions. Even though,
for pandemic reasons, alternative solutions had to be found for radiation tests, it was
decided that the overall board dimensions would remain unchanged, as the UCL frame
uses standard testing specifications. Therefore, the motherboard is 240*240mm2. It
features four drilled holes of 6.50mm diameter and eight drilled holes of 3mm diameter
used for stability during testing. The daughterboard is 70*80mm2.

The dimension specification responds to requirement B.

4.2.2.5 Anti-latch-up system 5⃝

Even though the mother/daughter board specificity allows for a quick replacement of a
defective chip, it is still preferable to avoid critical failures as much as possible. For this
purpose, a protection circuit is designed to be able to power cycle the daughterboard
in case of a high current peak. This protection is called an anti-latch-up system. The
schematic of the protection is available in figure 4.4 .

The circuit is composed of five components. First, a shunt resistor Rs is set up as
a current sensor between the power line and the device under test to get the supply
current value. Next, a combination of amplifier and comparator is used to compare the
supply current with a threshold value. The chosen component to perform these actions
is the INA301. Then, the signal is transferred into one port of a NOR gate alongside
a software detection input. This input is used to allow an external signal set up by
the user to activate the protection. By doing so, it is possible to set up a detection
algorithm running alongside the board that can interact with directly the protection.
The component used for the NOR gate is the 74LVC1G08GW. The NOR gate signal is
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sent into a switch that controls the passage of the current into the daughterboard. The
TPS22919 is used for the switch function function.
To summarise, the protection is activated either when the supply current is higher than
the set threshold, or when an external signal is sent into the NOR gate.

Moreover, it is possible to monitor the protection’s status using the outputs of the
INA301 component. Both the supply current value and the logic state of the protection
can be retrieved this way.

The anti-latch-up system specification responds to requirements E and F.

Figure 4.4: Anti latch-up system logic schematic

4.2.2.6 Power supply 6⃝

Both boards can be powered simultaneously using a jack connector. The required voltage
Vcc to ensure all functions is between 12 to 18V. It is also possible to power supply each
board (mother and daughter boards) individually using the corresponding USBs. In this
case, the required voltage is standardised to the 5V of a USB port.

The power supply specification responds to requirements A and G.

44



4. Experimental circuit design

4.2.2.7 External communication 7⃝

For each board, communication with an external computer can be performed in two
ways. First, it is possible to program the two SAM3X8E microcontrollers using USB
communication. An additional component, the ATMEGA16U2 is used to ensure USB
communication between the computer and the chip. It runs at 16MHz and is alimented
by 3.3V. From there, it is possible to upload programs written for Arduino boards.

Second, JTAG connectors can be used for each SAM3X8E microcontroller. It allows to
upload C programs directly into each chip without the need for Arduino’s interface. In
this configuration, the Atmel-ICE debugger by Microchip is used as an interface between
a computer and the microcontroller.

The external communication specification responds to requirements F and G.

4.2.2.8 Consumption functions 8⃝

Consumption functions are set up to emulate a realistic supply current behaviour. To do
so, multiple programmed resistive loads are connected at the I/Os of the device under
test. They are placed on the motherboard, and linked to the daughterboard by the
board-to-board connectors.

A total of ten load slots are available. Five of them have fixed resistors of 50Ω, 100Ω,
250Ω, 500Ω, 1kΩ, while the others are resistor plugs that can take in any resistor value
needed by the user.

Moreover, analogue pins are linked between both SAM3X8E. Therefore, depending
on how the I/Os are configured, they can send signals to each other, which can be seen
as a software load.

The consumption functions specification responds to requirements C and D.

4.2.2.9 Fault emulator 9⃝

Four fixed loads, characterised by resistors of 50Ω, 200Ω, 300Ω, 500Ω are connected to
the 3V3 supply voltage of the device under test. These loads can be controlled by the
SAM3X8E on the motherboard. It is done by the TPL7407LPWR, a 7-way switch that
can be turned on and off by the I/Os of the motherboard’s SAM3X8E.
This way, it is possible to activate an external load on the supply current that does
not depend on the device under test behaviour and could be interpreted as a short-circuit.

The fault emulator specification responds to requirement H.
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4.3 Conclusion
In this chapter, the SAM3X8E microcontroller that will be used for radiation testing is
described. Its specificities are given, and a study on its normal behaviour is performed.
Also, two electronic boards are introduced. The first one is the Arduino DUE board that
is easily accessible on the market. The second one is the DIAG-RAD board, which was
designed and developed during this thesis to meet the specific requirement of this project.

Now that the components and circuit are detailed, the next step is to create an extensive
database of both normal and abnormal observations in order to evaluate the performance
of machine learning for single event effects detection.
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A crucial aspect of machine learning is having access to qualitative and quantitative
database. This aspect might be often overlooked when starting a project in this field,
but it does not exist machine learning without data. Moreover, the data must be
representative of the modelled system, and in large quantity to be able to train the
algorithm correctly.

At the beginning of this project, neither anomaly nor normal data of space component
supply current were at our disposal. Indeed, data gathered during space missions are,
most of the time, confidential. In addition, even though the CNES is performing extensive
testing on various components in heavy-ion facilities, the results are often ordered by
private companies, such as Microchip. Thus, the CNES does not hold property over the
data log gathered during experimental missions.
The only available files were reports containing graphs of the current consumed by different
organs and embedded cards. Even though it can be proved helpful in understanding
the impact of radiation on a specific component, it cannot be used to train a machine
learning algorithm. Therefore, it is necessary to setup experiments or simulated systems
in order to gather experimental observations of single event effects.

Moreover, supply current alone is not sufficient to be able to characterise efficiently non-
destructive single event effects. A significant step in machine learning is to extrapolate
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meaningful information on the signal. Thus, a study is necessary to extract from the
supply current the most valuable features for the characterisation of single event effects.

This chapter aims to answer these three questions:

• How to gather observations of single event effects?

• What features can be used to characterise single event effects?

• What data sets will be used to evaluate anomaly detection algorithms?

In the first part of this chapter, experiments including various testing methods are
reported in section 5.1. Following these experiments, a supply current simulator has
been developed to constitute an extensive database, which is reported in section 5.2.
These two sections aims to answer the first question. After that, the data sets are
formalised as time series data streams, as detailed in section 5.3. Using this formalism,
it is possible to extract various features that enhance the characterisation of single
event effects. The retained features are described in section 5.4. These two sections
aim to answer the second question. Finally, the last question is answered in section
5.5, which proposes a description of the databases used to analyse the performance
of machine learning for single event effects.

5.1 Experimental tests

The question of having access to anomalous behaviour caused by the radiative environ-
ment arose quickly in this project. Indeed, the best case scenario would have been to
have access to onboard monitoring of a real space mission. It would have allowed to work
and train models on realistic data, giving trusting results. However, as discussed earlier,
no databases were at our disposal due to confidentiality restrictions. The only choice left
was to perform experimental tests on our own to emulate single event effects. Thus, three
types of radiation testing have been performed to collect single event effects observations.

5.1.1 Experimental setup

In order to perform radiation testing, an experimental framework is designed to recover
as much data as possible. Therefore, even though the setup for each experiment slightly
differs, most of the equipment remains similar. Also, different testing scenarii are
developed in order to gather single event effects observations in various situations.
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n° Qty. Device Reference

1⃝ 2 PC DELL Precision 7540
Laser control

2⃝ 1 Power supply Tenma 72-8690A
3⃝ 1 Data acquisition Keithley DAQ6510
4⃝ 1 Differential multiplexer 7700
5⃝ 1 Protection device MAX17612AEVKIT
6⃝ 1 Device under test SAM3X8E
7⃝ 1 Test board Arduino DUE
8⃝ 1 Shunt resistor 1Ω
9⃝ 1 Amplifier SR560

Table 5.1: Pieces of equipment used in radiation experiments

5.1.1.1 Equipment

The main equipment used for radiation testing is described in this section and referenced
in table 5.1. It can be noticed that the specific configuration of the equipment is heavily
dependent on each experiment. Thus only key elements are described in this section.

First, a laptop 1⃝ is needed for all experiments to supervise the acquisition devices.
In addition, another computer is used during the laser experiment to control the laser
parameters that will be described in section 5.1.3. This other computer is referred to as
laser control.

The power supply used for these experiments, identified as 2⃝, is a Tenma 72-8690A.
The maximum voltage output is 32V. During the experiments, the Arduino DUE board
is powered at 12V, corresponding to data-sheet recommendations.

Data acquisition is performed by the combination of the Keithley DAQ6510 3⃝ and
the 7700 differential multiplexer 4⃝. This combination gives the possibility to measure
DC voltage from 100nV to 1000V, and DC current from 10pA to 3A simultaneously.
According to the DAQ6510 datasheet [91, 92], the maximum sampling frequency is 333Hz
when recording voltage and current simultaneously, while it is 1MHZ when recording a
single channel. It is the reason why in most experiments, the voltage and supply current
of the DUT are monitored one at a time. The memory used to store measurements is
the DAQ6510 standard buffer. Consequently, an individual run is limited by a maximum
buffer size of 7.106 points.

To avoid the destruction of the DUT, the MAX17612A evaluation kit circuit protection
device 5⃝ is used. It works as a threshold protection that cuts the power when the supply
current exceeds the threshold. The range of the threshold can be adjusted from 10mA
to 250mA, which is adequate knowing that the DUT supply current is around 65mA.
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5.1.1.2 Test functions

Guided by the two consumption profiles established for the SAM3X8E microcontroller
(see section 4.1.3), a total of five functions are created to emulate a complex supply
current behaviour. The functions are listed in table 5.2, and detailed subsequently.

n° Function name Consumption type
1⃝ oscilloscope load + software
2⃝ analogue load
3⃝ addition software
4⃝ switchPin load
5⃝ USB communication software

Table 5.2: Functions used during testing

1⃝ oscilloscope This function is designed to display the value of an analogue I/O
as an oscilloscope would. An LCD screen must be connected to the board through SPI
communication to visualise data.
It acts both on the I/O profile, as the load created by the LCD screen may vary depending
on the information given, and as a software profile, due to the communication between
the chip and the LCD screen.
First, the screen must be connected to the board using the I2C communication pins.
Then, during runtime, the value of the monitored analogue I/O is constantly recorded.
Depending on the LCD screen dimensions, its value is converted into a height coordinate.

Let us take an input defined by the couple (yi, Yi), with yi ∈ ℜ+ the monitored value of
the input signal and Yi = (wi, hi) its coordinates on a screen of dimension W ∗H.
First let us focus on calculating hi. To do so, two constants minInput ∈ ℜ+ and
maxInput ∈ ℜ+ such that minInput ≤ yi ≤ maxInput are defined. From there, it is
possible to formulate a height ratio as in equation 5.1. Finally, the coordinates Yi to
display on the LCD screen are calculated using equation (5.2)

heightRatio = H

−maxInput
minInput

(5.1)

hi = −heightRatio

minInput
∗ yi + heightRatio (5.2)

The analogue pins have a 10bits resolution. Therefore, the monitored input values
are comprised between 0 and 1023.
After finding, hi, let us focus on wi. No calculation are necessary for wi as it can be
associated to the index of the latest observation. Indeed, for each new observation, wi is
incremented. Consequently, each index corresponds to a horizontal pixel on the LCD
screen. By doing so, each new plot is going to move forward the right axis of the LCD
screen. It is considered that most of the screen is travelled when wi = 0.75W . Then, the
increment of wi is stopped, and new observations are replacing the oldest ones.
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2⃝ analogue This function gives a random value to an analogue I/O. It can be
combined with the oscilloscope function by setting up the analogue I/O as the one
monitored in this function. The activation on an analogue I/O in addition to the shift
of associated bits modifies the load consumption profile of the chip.

3⃝ addition This function constantly adds two variables and stores the result
in a third variable. The value of one of the two variables is incremented each iter-
ation. This function influences the software consumption profile by switching the
variable’s bits at each call.

4⃝ switchPin This function is designed to switch digital I/Os on and off. Doing
so is modifying the load. It is possible to use resistors to control the supply current shift
due to load consumption. This function impacts the load consumption profile.

5⃝ USB communication This function is designed to send messages to a computer
connected by USB with the board. The Serial Monitor function of the Arduino IDE is
used to display the text. Usually, this function is used as a watchdog during testing,
sending a message at fixed intervals to verify the status of the chip. This function
impacts the software consumption profile.

Behaviour scenarii During experimental tests, a combination of these functions
are used to emulate a realistic supply current behaviour. A total of three test scenarii
are created, each one emphasising a specific profile behaviour described in section 4.1.3.

• Load profile scenario: This scenario is focuses on the load consumption profile.
It regroups functions 2⃝ analogue and 4⃝ switchPin. The function 5⃝ USB
communication is solely used as a watchdog.

• Software profile scenario: This scenario focuses on the software consumption
profile. It combines functions 1⃝ oscilloscope, 3⃝ addition and 5⃝ USB communica-
tion. Even though the oscilloscope function can be seen as both load and software
consumption, it mainly impacts the software profile, while the impact on the load
profile is minimal. Moreover, USB communication is also used to send information
on some variables at fixed intervals in addition to its base watchdog function.

• All profile scenario: This scenario combines both load and software scenarii.

This concludes the presentation of the experimental setup. All pieces of equipment and
programs described here are used for the Californium-252 and laser tests performed
during this thesis project.
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5.1.2 Californium-252 testing

5.1.2.1 TRAD facility

The test facility is located at TRAD Tests & Radiations in Labège, France (see figure
5.1). The site is equipped with a Californium-252 source, a support plate to place the
DUT at irradiation distance of the Cf252 source (see figure 5.3a), a frame to fix the
support plate, and an airtight tank that isolates the radiation source from the user (see
figure 5.3b). As stated in section 2.4, Californium-252 sources emit a small portion of
heavy ions [28]. Therefore, it is possible to characterise single event effects by using
Cf252 source. The radiation source LET is 42 MeV.cm2.mg−1. The DUT is at 3cm of
the radiation source when positioned on the support plate. After the Cf252 support
plate is positioned inside the tank, a vacuum is performed at 2.10−2mbar.

Figure 5.1: TRAD facility

5.1.2.2 Setup

First, the board is positioned at the bottom of the support plate as displayed in figure
5.3a. This plate is equipped with a small motor that is able to cut the DUT from the
source. Therefore it is possible to control precisely the exposition time of the SAM3X8E
during the whole test. Then, the whole frame is placed into an enclosed tank that
isolates the Cf252 source from the surrounding users. The cuve is displayed in figure
5.3b. From there, connections are made accordingly to the schematic shown in fig 5.2
between the board inside the tank and the monitoring equipment. The protection of
the MAX17612 device is set to 200mA. Finally, a vacuum is performed in the tank.
After that, the test can begin.
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Figure 5.2: Cf252 testing schematic

(a) Support plate placed on the frame (b) airtight tank

Figure 5.3: Cf252 testing setup

5.1.2.3 Observations

The device under test is powered at 12.0V during the test. Related to this voltage, the
DUT nominal supply current is 65mA, with a peak-to-peak value of 4mA. It received
irradiation during a total time of 5200s. Around ten high current events that can be seen
as single event effects occurred during the experiment. As the maximum supply current
value reached in failure mode is 70mA, these faults correspond to a gain of less than 5%
from the nominal behaviour. Therefore these faults can be considered non-destructive
anomalies and are prone to serve as examples of hidden faults for the machine learning
algorithms.

In figure 5.4 is shown an example of a run where a fault occurred. During this run, 1.106

points were recorded with a sampling frequency of 666Hz. Figure 5.4a describes the
nominal behaviour of the DUT. It represents the beginning of the run and no anomalies
have been detected in the supply current. A periodic pattern of 1Hz can be extrapolated
from the figure. In addition, when zoomed in, the supply current denotes another
periodic pattern of 50Hz.
An anomaly is observed 23 minutes after the beginning of the run. The transition
between the nominal and failure mode is captured in figure 5.4c. It can be observed that
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(a) SAM3X8E nominal behaviour (b) Transition between nominal and failure
mode

(c) SAM3X8E in failure mode

Figure 5.4: SAM3X8E supply current while expose to the Cf252 radiation source

the transition is not instantaneous. Indeed, a transition phase is seen between 1429s and
1439s, and then between 1439s and 1460s. After that, the failure mode stays up for the
rest of the run. Its behaviour is denoted in figure 5.4c. Considerable differences can be
pointed out from the nominal behaviour. First, the nominal current value has increased
by 1mA. Also, the pattern clearly deviates from the nominal behaviour displayed in
figure 5.4a. Finally, the 1Hz and 50Hz periodic patterns have disappeared and been
replaced by a new asymmetric pattern lasting around 7 seconds.
It is delicate to give an explanation regarding failure mode behaviour. However, one
hypothesis is that when entering failure mode due to an energetic particle, some of the
functionalities of the DUT stopped functioning correctly, thus modifying the supply
current signature. In addition, with possible local short circuits, it could explain the
failure mode’s pattern as well as the nominal current increase.

In conclusion, the observations made during this experiment give a good overview of the
phenomenon of non-destructive single event effects. However, no destructive anomalies
were detected. As stated before, the nominal current only increased by a few milliamperes.
Therefore, further experiments are needed to collect more examples of single event effects.
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5.1.3 Laser testing
5.1.3.1 The CNES laser facility

Laser testing is a powerful tool when trying to emulate single event effects [30–32]. In
this project, The CNES facility in Toulouse is chosen to perform laser testing. As a
partner of this thesis project, it is convenient to get access to their equipment. The
facility is equipped with a class 1 laser controlled by specific software on a dedicated
computer (see figure 5.5).

Figure 5.5: CNES laser facility

The characteristics of the laser are available in table 5.3.

Features Values
Wavelength λ 1064nm
Max pulse frequency 20Mhz
Max power ≈600mW
Optics 1x, 5x, 20x
Scan axis X, Y

Table 5.3: Laser characteristics

5.1.3.2 Setup

In this experiment, the board is placed inside the laser machine. The schematic of
the test is shown in figure 5.6. The setup is similar to the Cf252 experiment, with
the exception of the added amplifier as well as an extra Arduino DUE board. This
additional equipment is used to monitor the supply current using the SAM3X8E of the
Arduino DUE board. The protection device is set to 250mA. Moreover, experiments
are performed on the front side of the chip, due to the impossibility of accessing to
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Figure 5.6: Laser testing schematic

(a) Optic 1x (b) Optic 5x (c) Optic 20x

Figure 5.7: Laser picture of the SAM3X8E

the backside of the chip with the tested Arduino DUE board. Using the laser, it
is possible to get an image of the chip as it is scanned. It enables the possibility to
focus precisely at any sensitive areas discovered during tests. The global picture of
the DUT captured by the laser is available figure 5.7a.

5.1.3.3 Observations

A total of three testing campaigns of two days each were performed at the CNES facility,
and around ten hours of data were collected. Using the precision provided by laser
testing, experimentation’s first step was to find sensitive nodes on the DUT. As a result,
two sensitive areas were discovered. One of them is highlighted in figure 5.7c.

Two types of faults were discovered during the test campaign. The first one is non-
permanent high current events. These faults occurred when the laser is striking exactly
a sensitive area of the DUT. In these cases, the supply current returns to normal when
the laser stops emitting into the area. Around a hundred of these kinds of faults were
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(a) Non-permanent HCE (b) Power cycle example

Figure 5.8: Two types of faults discovered during laser testing

recorded. An example of such behaviour is available in figure 5.8.
The second type of fault encountered is permanent high current events. The main
difference is that the component stays in failure mode even after the laser stop emitting
on the sensitive area. Consequently, it is possible to consider these faults as single
event effects. A total of twenty single event effects were recorded during these testing
campaigns. After the component enters a permanent failure mode, power cycling is
operated to restore the component to its normal behaviour. An example of such a
process is displayed in figure 5.8b.

In conclusion, destructive high current events were recorded during the laser test
campaigns. Combined with the observations obtained during Cf252 testing, both
destructive and non-destructive anomalies examples are available. However, the downside
of laser testing is that it can be complicated to assess that the recorded faults are indeed
single event effects. Therefore, final experiments are needed to ensure the presence of
destructive single event effects to be used with machine learning algorithms.

5.1.4 Heavy ion testing

This experiment has been conducted by the CNES team led by Françoise Bezerra in 2014.

5.1.4.1 The UMCG-PARTREC facility

Heavy ion testing is the primary method used to emulate single event effects. It has been
performed in the UMCG-PARTREC facility located in the Netherlands. The PARTREC
accelerator facility performs proton and heavy-ion irradiations for radiation hardness
testing of electronics or radiobiology. For radiation-hardness testing, the range of energy
available for ion testing is 30MeV per Atomic Mass Unit (amu). Also, the flux generated
ranges between 10 and 105 ions per cm2 for heavy ion testing.
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5.1.4.2 Setup - TILU2

An experimental platform has been developed by the CNES in order to perform heavy-ion
testing. The result is a piece of equipment acting as a monitoring system as well as a
protection device. This device called Integrated SEL Tester 2nd generation (TILU2),
can store a recording of the supply current and voltage and pinpoint the location of
heavy high current events [93]. This equipment is displayed in figure 5.9.

Figure 5.9: TILU2 device (from Bezerra [93])

In addition to the TILU2 equipment, the device under test is a BS62LV4006 CMOS. The
sampling time of measures is fixed to 10ms, and the detection threshold is set to 100mA.

5.1.4.3 Observations

A total of 3.105 observations have been gathered during 50 minutes. During these runs,
the TILU2 threshold has detected 654 high current events. A typical run is displayed
in figure 5.10a. The normal value of the DUT is around 15mA. For this specific run,
TILU2 triggered 48 anomalies that correspond to single event latch-ups (SEL). When an
anomaly is detected, a power reset of the component is done for 30ms. The characteristics
of the anomalies detected are given in figure 5.10b. It is possible to see that the vast
majority of the single event latch-up resolves around 325mA to 350mA. These values of
latch-up could quickly destroy the component if no power reset is performed on short
notice. However, in this run, the DUT returned to its nominal behaviour after each
power reset of the TILU2, proof that a detection device coupled with a power reset
system is efficient in protecting a component against radiation faults.

In conclusion, these experiments give solid observations of single event effects on electronic
components. These data can be used to assess the performance of detection algorithms
on radiation faults.
However, the number of faults observed is still insufficient to perform statistical analysis
regarding the efficiency of a detection system.
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(a) A run of TILU2 (b) TILU2 histogram

Figure 5.10: TILU2 run result

5.2 Supply current anomaly simulator
One conclusion drawn after performing experimental testing is that the quantity of
observations is insufficient to analyse the performance of machine learning algorithms
for the detection of single event effects. More anomaly examples are needed in order to
properly exploit the confusion matrix and its derivative indicators described in section
3.3.1. One solution is to use a simulator to provide examples of both normal and
abnormal behaviour. Unfortunately, the supply current of a complex component, such
as a microcontroller, is influenced by a high number of variables. Passive components
values, connected pins or programs booted in the chips are parameters that have to be
taken into account to model the supply current. Thus, such a simulator is not available.
Most efforts are made to calculate the maximum power consumption of a component, so
that it is possible to design a system’s power supply. For example, STMicroelectronics
proposes its power consumption calculator for STM32L components.

In consequence, a supply current simulator that is able to insert high current events is
developed in MATLAB for this project [94]. The data gathered from the experimental
testing are used as examples to mimic the behaviour of a real microcontroller.

The advantage of using a simulator is to have complete control over the generated
data. It is possible to know precisely where the anomalies are located, improving the
quality of the results analysis. Also, it is possible to create numerous scenarii regarding
the supply current behaviour of a microcontroller, as well as being able to test on both
destructive and non-destructive anomalies.

The simulated data set considered can be defined as I(t) = {x(t), y(t)} where I(t) ∈
ℜ+ corresponds to the supply current value at time t, and y(t) ∈ Bn is a vector
identifying the active functions at a time t. The variable I(t) results from multiple
functions and is expressed as in equation 5.3. The total number of active functions
corresponds to the size of y(t).
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I(t) = (fNominal(t, Ī) +
∑

i

fLoadi
(t, li, ti, di)

+
∑

j

fSoftj
(t, sj , tj , dj) +

∑
k

fDevik
(t, ak, tk, dk)

+
∑

l

fHCEl
(t, fl, tl, rl)) ∗

∑
m

fResetm(t, tm, dm)

(5.3)

with i, j, k, l, m ∈ N+ indexing the multiple occurrences of each function.
The fNominal function simulates the base current of a microcontroller. It is done by
taking the mean current of the component Ī and adding uniformly distributed noise:

fNominal(t, Ī) = Ī + Noise(t) (5.4)

The fLoadi
function simulates the electrical load created by a component on the

microcontroller. It is defined as a rectangular function:

fLoadi
(t, li, ti, di) =


0 if t < ti and t > ti + di
li
2 if t = ti or t = ti + di

li if t > ti + di and t < ti + di

(5.5)

with li the added load current, ti the time when the load begins, di the duration of the
electric load.
The fSoftj

function corresponds to the current modifications induced by the internal
processing of the microcontroller (calculations or memory modification for example).
When active, this function amplifies the noise already present in the fNominal function:

fSoftj
(t, sj , tj , dj) =

{
0 if t < tj and t > tj + dj

−1r(t) ∗ sj if t ⩾ tj and t ⩽ tj + dj
(5.6)

with sj the added noise, r(t) a function alternating between 0 and 1, the random function,
tj the time when the function begins, dj the activation duration of the function.
The fDevik

function corresponds to a slow deviation of the component’s normal behaviour.
It can be caused by a change in the component environment such as temperature variation
or ageing. A linear function is then applied to the data set:

fDevik
(t, ak, tk, dk) =


0 if t < tk

ak(t− tk) if t ⩾ tk and t ⩽ tk + dk

ak(tk + dk) if t > tk + dk

(5.7)

with ak the linear coefficient of the variation, tk the time when the variation begins, dk

the duration of the function remaining active..
The Resetm function simulates power cycling:

fResetm(t, tm, dm) =
{

1 if t < tm and t > tm + dm

0 if t ⩾ tm and t ⩽ tm + dm
(5.8)
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(a) Simulated test set (b) Simulated deviation set

Figure 5.11: Simulator examples

with tk the time when the reset begins, dk the duration of the function remaining active..
Finally, the fHCEl

function simulates persistent high current events. It is similar to fLoadi
,

except that the modification stays active permanently or until fResetm is performed:

fHCE(t, fl, tl, rl) =
{

0 if t < tl and t ≥ rl

fl if t ≥ tland t < rl
(5.9)

with fl the HCE magnitude, tl the time when the fault begins, rl the time of the next
reset (the end of the data set if no reset occurs afterwards).

Examples of data sets generated with this simulator are shown in figure 5.11

5.3 Time series data stream
The data sets of the supply current gathered in the previous section can be referenced
as a time series. A time series X is a data set in which each observation x is indexed
by a time t. Time series are defined in equation 5.10

X = {xt, t ∈ T} (5.10)
with T ∈ ℜ+ is the index set of X.

As this work is focused on real-time application, not all observations are available
at once. Then, a special case of time series called time series data stream is used [95].
When all observations are always available in a time series, only previous observations
[xt−∆t, xt] are known in a time series data stream. New observations must be treated on
the fly, and a continuous update is therefore necessary.

Finally, the definition of a time series data stream is extended to take the labels
needed in anomaly detection into account. Thus, the data set used in the following
chapter can be defined as in equation 5.11

X = {xt, yt, t ∈ T} (5.11)
with yt ∈ {−1, 1} the label of the observation xt. yt = −1 means that xt is an anomaly,
and yt = 1 means that xt is normal.
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5.4 Feature extraction

The characteristics of an individual observation are called features. It is the only
information given to a machine learning model about the studied system. Therefore,
choosing them wisely is a critical step in data science. No relevant features and the
algorithm will be unable to properly model the system, while too many redundant or
unnecessary features introduce noise. In both cases, poor feature choices induce-low
quality predictions. In this context, the first step in introducing machine learning is to
discover which features must be chosen to discriminate between normal behaviour and
single event effects.

In the case of single event effects, the monitored data consists of time series of various
indicators such as supply current, supply voltage or device temperature. In this study,
efforts are focused on the supply current, as it is the most common indicator in single
event effects evaluation. However, supply current value alone is insufficient to perform
accurate predictions using machine learning models. Additional features have to be
created on the time series to leverage as much information as possible. The process of
extracting information from a feature space onto a new one is called feature extraction.
Afterwards, it is possible to analyse the relevance of the extracted features and eliminate
the ones that do not give valuable information using a process called feature selection.

The data sets gathered through Cf252 and laser testing are used for feature selection.
Therefore, the remarks given in the following sections are valid for both experiments.
Moreover, it is important to note that this preliminary study is heavily application-
dependent. Nonetheless, tests performed afterwards on the data sets provided by CNES
on different components proved that it is possible to extend these features to more
applications aiming at characterising single event effects.

Statistical analysis, as well as frequency analysis, are put to the test for the char-
acterisation of single event effects [96]. Normal behaviour is compared to failure mode
using these features to establish their relevance.

5.4.1 Statistical features

Statistical evaluation is a classic process in time series analysis. It is performed on a
collection of observations to uncover trends or patterns in the data set. Thus, finding
a method to group observations is required. In the case of a finite time series, one of
the possibilities is to perform statistical analysis on the entirety of the observations.
However, as stated in section 5.3, not all observations are known in the case of time
series data streams.

To address this issue, the sliding time window method is used by creating groups
of observations. Let us consider a window function ht, such as the sliding time
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window of a time series data stream becomes H = {xt.ht, t ∈ T}. In this work, ht

is defined as in equation 5.12

ht =
{

1 if t ∈ [τ −∆t, τ ]
0 otherwise

(5.12)

with τ the time of the latest observation xt and ∆t the window’s size.

By doing so, statistical analysis is performed by computing the statistical features
of the whole observations such as xt.ht ̸= 0. Statistical features are then calculated for
each observation xt.

In this study, many features were calculated, but only a small part gave a good
characterisation of single event effects. Therefore, a feature selection is performed using
the parallel coordinates [97] as a tool to discern decisive features in the characterisation
of single event effects. This method plot all observations to visualise each feature
independently. It is then possible to select the most discriminant features by comparing
their values for each classes.

Four of them are kept for their relevance: the mean, the variance, the standard error of
the mean and the median absolute deviation. Figure 5.12 displays the parallel coordinates
of these four indicators for destructive anomalies (figure 5.12c) and non-destructive
anomalies (figure 5.12d). Independently of the type of anomaly, it is shown that these
indicators enable to discriminate between normal and anomalous observations.

5.4.1.1 Arithmetic mean

The arithmetic mean of a sliding time window HX is defined in equation (5.13):

H̄X = 1
n

τ∑
t=τ−∆t

xt (5.13)

with n ∈ N the number of observation xt with t ∈ [τ −∆t, τ ].
When characterising a persistent anomaly such as a single event effect, a study of
the mean value is a relevant indicator. Indeed, an abrupt shift of the signal mean
might indicate an anomaly, as displayed in figure 5.13a. However, if the mean shift is
small enough, it can be tricky to discern the anomaly from normal behaviour. Thus,
other criteria have to be found.

5.4.1.2 Variance

The variance of a sliding time window HX is defined in equation (5.14):

V(HX) = 1
n

τ∑
t=τ−∆t

(xt − H̄X)2 (5.14)

The variance can be used to detect the beginning of a SEE. Indeed, the variance is
heavily affected by the mean shift induced by a heavy ion. Therefore, a local increase of
the variance can be a symptom of a single event effect, as shown in figure 5.13b.
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(a) Statistical features for destructive anomalies (b) Statistical features for non-destructive
anomalies

(c) parallel coordinates for destructive anoma-
lies

(d) parallel coordinates for non-destructive
anomalies

Figure 5.12: Parallel coordinates

5.4.1.3 Standard error of the mean and median absolute deviation

The Standard error of the mean (SEM) of a sliding time window HX is defined in equation
(5.15):

σHX
=

√
V(HX)√

n
(5.15)

The median absolute deviation (MAD) of a sliding time window HX is defined in equation
(5.16):

MAD(Hx) = median(|xt − H̃X |) (5.16)

with H̃X the median of the sliding time window’s observations.
These two criteria are chosen due to analysis of the impact of a single event effect
on the microcontroller functionalities. Indeed, in failure mode, functions, such as
communication with the computer, are disabled deeding on the stroked sensitive node of
the microcontroller. Therefore, this loss of activities reverberates through the supply
current profile. It is possible to measure this phenomenon by using the standard error of
the mean and the median absolute deviation. Then, a decrease in these indicators can
characterise a SEE, as displayed in Figures 5.13c and 5.13d.
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(a) Mean value (b) Variance

(c) Standard error of mean (d) Median absolute deviation

Figure 5.13: Statistical features

In conclusion, using of statistical analysis could be key in characterising small and
hard-to-detect single event effects. By offering the advantage of being easily interpretable,
as well as fast to compute, the proposed indicators are fitted to improve the detection
of single event effects.

5.4.2 Frequency based features
In addition to statistical features, an analysis of the frequency spectrum of single event
effects is performed. Using the discrete Fourier transform (DFT), it is possible to obtain
the frequency spectrum of finite sequences. In this work, the Fast Fourier Transform
(FFT) algorithm is used to calculate the DFT of a data set, as defined in equation (5.17):

Fk(HX(t)) =
τ∑

t=τ−∆t

xt.e
−2iπ

n
kt for k ∈ [τ −∆t, τ ] (5.17)

By doing so, it is then possible to compare the frequency spectrum of normal behaviour
with anomalous behaviour. However, note that these results only consist of a preliminary
study on limited data sets. Indeed, an extensive study by multiplying radiation condition
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(a) Frequency spectrum for normal behaviour (b) Frequency spectrum for faulty behaviour

(c) Frequency spectrum during a laser pass on a
sensitive node

Figure 5.14: Frequency spectrum

tests is needed to define the impact of single event effects on the frequency spectrum
more precisely.

In this study, the frequency value corresponding to 0Hz is removed. Indeed, as the
amplitude of this frequency is far greater than any other, it obstructs the readability of
the resulting graph.

Figure 5.14a corresponds to the spectrum of the SAM3X8E during its nominal behaviour.
The prominent harmonic is located around 6.5Hz, and is echoed at 13Hz, 20Hz and
26.5Hz. Minor peaks are also visible at 2Hz, 4Hz and 40Hz. Aside from these peaks,
there is little noise to be seen on the spectrum.
On the other hand, a frequency spectrum created from an active single event effect
data set is displayed in figure 5.14b. A significant decrease in the prominent peaks
(6.5Hz, 13Hz, 20Hz and 26.5Hz), as well as secondary peaks (2Hz, 4Hz and 40Hz) can be
observed compared to the same frequencies of the normal behaviour. Moreover, many
small noisy peaks appear when the component is in failure mode.

Also, an interesting phenomenon was noted during laser test protocols. A particular
spectrum emerges when the laser is pointed at a sensitive node, as displayed in figure
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(a) Simulated training set of destructive anoma-
lies

(b) Simulated training set of non-destructive
anomalies

(c) Heavy ion training set

Figure 5.15: Training database examples

5.14c. The presence of multiple peaks in the higher range of frequencies was systematic
during these experiments, and could be valuable information to characterise the start of
a single event effects. This behaviour analysis is possible thanks to the laser capability
to unearth specific locations on the microcontroller.

In conclusion, frequency features could be a new lead to improve the detection of
single event effects. It has been seen that the frequency spectrum of the nominal
behaviour and single event effects significantly differ, and that it would be possible to
pinpoint the beginning of an anomaly by analysing the amplitude of high frequency peaks.

5.5 Databases description

Previous sections have presented the means deployed in creating an extensive database
grouping examples of both destructive and non-destructive single event effects. These
data are to be used to test and analyse the performance of machine learning algorithms
for the detection of single event effects. Thus, data sets have been selected for this
only purpose. Divided between the training set and test set, this section presents an
exhaustive list of all data used in the following chapters.
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5.5.1 Training sets
The training set contains the observations used to fit the parameters of the machine
learning model. In table 5.4 are referenced the data sets used to train the models. A
total of three different training databases are used to fit machine learning models. All
data sets used are composed of the supply current of an electronic component as the
sole monitored feature. Note that additional features can be computed on the fly when
executing a machine learning algorithm.

TrainsimD and TrainsimND both stand for data sets created using the simulation
described in section 5.2. The former includes observations of destructive anomalies (the
supply current in failure mode is around two times higher than the supply current in
normal mode, as shown in figure 5.15a), while the latter includes observation of small
hidden faults (a few milliamperes higher than normal mode, as shown in figure 5.15b).

Trainsim stands for simulated data sets that do not include any fault. Only normal
observations of the supply current are available. This database is used to train one-class
classification algorithms (see section 3.3.3).

TrainHIon stands for the data set created using the data collected in the heavy ion
facility, as described in section 5.1.4. Like Trainsim, this training database does not
include any fault observation, as it is used to train one-class classification algorithms.
An example of this training set is available in figure 5.15c

Table 5.4: Training sets overview

TrainsimD TrainsimND Trainsim TrainHIon

Number of set 10 10 10 2
Data per set 1.104 1.104 1.104 [1, 4.103, 1, 7.104]

Total data 1.105 1.105 1.105 5, 4.104

Positive rate 21.03% 21.37% 0.00% 0.00%

5.5.2 Test sets
The test sets contain the observations that will be used to analyse the performance of
a trained model. To do so, a differentiation is made between the true label yt and the
predicted label ỹt given by the model. Afterwards, it is possible to create the confusion
matrix and resulting indicators, as stated in section 3.3.1.
A total of five databases are used to evaluate the different models studied in chapter 6.
Four of them are coming from the simulation software (see section 5.2), while the fifth is
from heavy ion testing. Again, the characteristics of all databases are available in table
5.5.

TestsimD and TestsimND are both simulated databases. Similarly to the train sets
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(a) Simulated test set of destructive anomalies (b) Simulated test set of non-destructive anoma-
lies

(c) Simulated test set of non-destructive anoma-
lies

(d) Heavy ion test set

Figure 5.16: Test database examples

described in section 5.5.1, TestsimD contains observations of destructive faults, while
testsimND contains observations of non-destructive faults. An example of these databases
is displayed in figures 5.16a and 5.16b. Regarding TestsimDevD and TestsimDevND, these
databases provide similar faulty observations as the two databases described earlier. In
addition, a linear deviation is added throughout these data sets by using the deviation
function fDevik

of the supply current anomaly simulator (see section 5.2). An example of
a data set of TestsimDevND is provided in figure 5.16c. As their nature of simulated data
set, the label yt of an observation xt is always known. Thus, it is possible to perform a
complete analysis of the model’s performance.
TestHIon database is coming from the data collected by the CNES during the heavy ion
campaign. In order to get the positive rate value, a threshold on the supply current value
has been placed to count the number of single event effects recorded. In this campaign,
the value was fixed at 50mA, thus only faults that would create a high current event
higher than 50mA are counted. In consequence, unlike simulated data, it is not possible to
assess the exact number of faults, as only significant single event effects can be numbered.
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Table 5.5: test sets overview

TestsimD TestsimND TestsimDevD TestsimDevND TestHIon

Number of set 20 20 10 10 8
Data per set 1.103 1.103 1.104 1.104 [4, 0.103, 6, 5.104]

Total data 2.104 2.104 1.105 1.105 3, 1.105

Positive rate 16.99% 16.39% 9.06% 9.56% 0.21%

5.6 Conclusion
In this chapter, multiple experiments have been conducted in order to establish an
extensive database supply current observations. Laser, californium-252 and heavy ion
testing are performed to get a wide range of single event effects observations. From
destructive anomalies with laser and heavy-ion testing to non-destructive anomalies
with californium-252 testing, a solid database of single event effects is at our disposal.
Moreover, by using this knowledge, a simulation of the supply current is developed based
on the knowledge gathered from the experiments. This simulation gives the possibility
to create an infinite number of diverse data sets.

Next, feature extraction is performed on the SAM3X8E’s observations to extract
additional information regarding single event effects impacts on the supply current.
Statistical indicators as well as the frequency spectrum can be considered as valid
features for the characterisation of single event effects.

Finally, by regrouping all previous observations, various databases have been created
that regroup both normal and abnormal observations in various situations.

This chapter concludes the second part of this manuscript. A solid database regrouping
single event effects observations has been created. Using this database makes it possible
to evaluate the performance of anomaly detection methods for the specific case of single
event effects, what is the aim of the last part of this thesis.
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Machine learning based anomaly
detection for electronics hardening
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Chapter 6
Machine learning feasibility for space mission

reliability
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Single event effects detection is a crucial aspect of a space mission. Most of today’s
techniques are focused on hardware detection methods that are tedious or expensive
to implement. However, software detection methods are yet to be investigated. The
ambition of this chapter is to demonstrate that machine learning is efficient for the
detection of single event effects. The first action is to perform a proof of concept of these
methods. On that account, well-known machine learning algorithms are tested for single
event effect detection using the databases described in section 5.5.

As machine learning is not yet used for the single event effect detection problem, it is
necessary to set performance thresholds that must meet the algorithms to be accepted.
Machine learning is compared to the baseline threshold detection method to establish
the requirements.

Referencing section 3.3, it is possible to divide anomaly detection into several categories.
The border between each category is the information given by the training set [44]. Is
it possible to observe all classes? Are the labels available? From these questions, it is
possible to separate the different methods. It is based on these information constraints
that the different tests went through.
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This chapter aims to answer these three questions:

• How to judge the performance of a detection algorithm?

• Is anomaly detection efficient for single event effects detection?

• What are the minimal information required to perform SEEs detection?

First, the validation criterion that must be satisfied by an algorithm to be defined as
efficient are given in section 6.1. Then supervised detection is tested in section 6.2. In
that case, it is assumed that both normal and abnormal observations are available, as
well as their labels. After that, supervised detection boosted by expert opinion is tested
in section 6.3. In this experiment, it is assumed the availability of both normal and
abnormal observations, but without labels. Finally, one-class classification is tested in
section 6.4. In that experiment, only normal observations are available during training.
The exact setup of each experiment is displayed in table 6.1.

Table 6.1: Case study steps

Classes available Labels available Machine learning categories

Normal + anomaly Normal + anomaly Supervised learning
(Classification)

Normal + anomaly None Classification boosted by expert opinion
(Clustering + classification)

Normal Normal One-class classification

6.1 Validation criterion

There is no real consensus on what is a perfect result regarding machine learning
algorithms. Nevertheless, in order to analyse their efficiency, it is needed to quantify
the model’s quality, and compare it to fixed criteria. Thus, the indicators previously
detailed in table 3.1 are used to create three validation criteria C1, C2 and C3, that
will be used throughout this chapter. These criteria are chosen with respect to space
industry standards for of single event effects detection.

• C1 : TPRtestD = 100%.
The detection must perform as good as the baseline detection method. In other
words, it must be able to detect without fail all destructive anomalies. Thus, the
true positive rate for the destructive test set must be 100%.
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• C2 : ACCtestND ≥ 85%.
The detection must perform reasonably well regarding non-destructive anomalies.
It can be tricky to define a threshold at which a model is defined as effective or
not. Indeed, this value is heavily application dependant. For anomaly detection
purposes, with only normal and abnormal classes, it is possible to say that a model
is underperforming when its accuracy is below 50%. However, it is decided to set
a higher threshold, so any model with an accuracy falling below 85% is rejected.

• C3 : min(TNRtestD ≥ 85%, TNRtestND ≥ 85%).
The detection must limit the abundance of false positives. Indeed, a false positive
induces a power reboot of the monitored component, thus reducing utilisation
time. If not actively limited, it would render the component useless for the mission.
Therefore, a special attention is given to the true negative rate for all tests. As
for criterion C2, it is complicated to properly estimate a threshold regarding true
negative rate. However, today’s baseline detection method does not have false
positives. In that case, even though 100% is not required, a strict 85% true negative
rate is required to validate a model. To take into account both destructive and
non-destructive anomalies, the lowest true negative rate is selected.

6.2 Supervised anomaly detection

6.2.1 Principle

Supervised learning assumes the availability of both normal and abnormal labels. It
builds a model based given labelled observations. By doing so, a separation of the classes
is proposed by the classifier. It is then possible to predict whether a future sample is
either normal or anomalous.

A selection of classification algorithms is tested to get an overview of the possibilities
given by machine learning. The algorithms used are K-nearest neighbours [71], decision
trees [72], Random forests [60], and support vector machines [58]. These models are
chosen as they are the most commonly cited for classification problems [98–100]. An
example of how each model divides normal mode from failure mode based on the
same training set is given in figure 6.1.

6.2.2 Parameter selection

Parameter selection contributes extensively to the performance of a model. Consequently,
many efforts are deployed in order to select optimal parameters to give a fair analysis
regarding anomaly detection results.
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(a) K-NN classification (b) Naïve Bayes classification (c) Decision tree classification

(d) Random forest classification (e) SVM classification

Figure 6.1: Classification examples

6.2.2.1 Hold-out validation

Two experiments are performed. First, the best parameters are set in order to detect
destructive single event effects using TrainsimD database. Then another experiment is
conducted using TrainsimD database in order to detect small single event effects.

In this study, only the training databases are used. The hold-out validation method is
used to divide the data sets into a train set and a validation set. The difference between
a test set and a validation set is that the validation set is used for parameter selection,
while the test set is used to evaluate the model’s performance. Moreover, unlike the test
set, the validation set does not have to be decorrelated with the training set.

Algorithm 1: Supervised models parameter selection
1 input: X = {X1, X2, ..., Xn} (set of time series Xi = {xt, yt, t ∈ T})
2 P = {P1, P2, ..., Pm} (set of parameters set)
3 output: Confusion matrix cm
4 Initialise the confusion matrix cm ;
5 foreach data sets Xi ∈ X do
6 Split Xi in two new data sets X1 and X2 ;
7 foreach sets of parameters Pj ∈ P do
8 Train a classifier C using X1 and Pj ;
9 Make a prediction set ỹt of X2 using the classifier C ;

10 Update cm by comparing yt ∈ X2 and ỹt ;
11 end
12 end
13 return cm ;
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The hold-out validation method works as follows. A data set of size n is divided into
two non-overlapping parts, the training set and the validation set [101]. Usually, the
training set contains at least 60% of n. Cross-validation is another popular method to
test machine learning models, which includes algorithms such as K-fold [102] or leave
one out [103].

The whole parameter selection process is described in algorithm 1. First, the hold-
out method is applied to the input data set, giving a train set X1 and a validation set X2
(line 5). The data set is either TrainsimD or TrainsimND. Then, a classifier is trained on
X1 using a set Pj of parameters (line 7). Afterwards, The confusion matrix of this model
is computed (lines 8 and 9). Doing so for each set of parameters Pj , it is then possible
to compare the results of each model to decide the best set of parameters to be tuned.

6.2.2.2 Selected parameters

The number of neighbours N as well as the distance metric for K-NN, the number of
trees Ntree for random forest and the kernel used in SVM are the parameters put to the
test. The resulting parameters chosen after evaluation are displayed in table 6.2

Table 6.2: Parameter selection for supervised algorithms

TrainsimD TrainsimND

K-NN N 9 20
K-NN metric Euclidean Euclidean

Random Forest Ntree 10 10
SVM kernel RBF RBF

6.2.3 Results
The results of supervised learning for single event effects detection are discussed in
this section. The analysis of the validation criteria is available in table 6.3 for all
tested methods. In addition, the complete confusion matrix is available in table C.1 in
appendices for an in-depth verification of the results.

All methods have proved efficient in detecting of single event effects, as all methods
validated all three criteria. In regards to criterion C1, all destructive single event effects
have been correctly predicted by all algorithms. It means that supervised learning is as
efficient as the baseline detection method regarding this task.
Furthermore, regarding criteria C2 and C3, the results are heavily outperforming. With
an average accuracy for the non-destructive test set of 93.5%, and an average TNR of
92.7%, supervised methods are definitely a valid option for SEEs detection. Looking in
detail at all methods shows that the decision tree algorithm is the least efficient method.
Nevertheless, its performance is around 90% for both accuracy and true negative rate,
which still validates all criteria. On the other hand, support vector machines outclassed
other methods. Consequently, SVM would be considered the primary algorithm for this
problem, assuming that both normal mode and failure observations are available and
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the user has access to all labels.

These experiments demonstrated that supervised learning can be considered a viable
alternative for detecting single event effects. However, this alternative can only be used
in perfect training conditions (observations of failure mode and labels available during
training), which are not necessarily fulfilled for space missions. Thus, other experiments
are required to expand the analysis to other categories of machine learning algorithms.

Table 6.3: Results of supervised detection regarding the three criteria

C1 C2 C3
(TPRtestD = 100%) (ACCtestND ≥ 85%) (TNRtestD&ND

≥ 85%)

K-NN TPRtestsimD = 100% ACCtestsimND = 93.95% TNRtestsimND = 92.92%
✓ ✓ ✓

Naive Bayes TPRtestsimD = 100% ACCtestsimND = 94.40% TNRtestsimND = 93.32%
✓ ✓ ✓

Decision tree TPRtestsimD = 100% ACCtestsimND = 90.58% TNRtestsimND = 89.22%
✓ ✓ ✓

Random forest TPRtestsimD = 100% ACCtestsimND = 94.42% TNRtestsimND = 93.60%
✓ ✓ ✓

SVM TPRtestsimD = 100% ACCtestsimND = 95.63% TNRtestsimND = 95.22%
✓ ✓ ✓

6.3 Classification boosted by expert opinion
6.3.1 Principle
In this experiment, the labels have been removed from the training set. In that case,
during the training phase, the data set is still composed of observations coming from
both normal and failure mode, but the labels are not available to the algorithm.

In these conditions, new labels have to be created beforehand of the supervised detection.
This part is performed by a combination of unsupervised clustering and expert labelling.
The expert labelling method consists of using an expert to assess in which class falls each
observation. However, treating each sample of all training sets would be too intricate.
Thus, clustering is used beforehand to group samples based on similarity criteria.

Classification boosted by clustering testing methodology is described in algorithm
2. Note that the labels yt are not available during the training phase. However, the
labels of the testing sets are available in order to be able to evaluate the performance of
the algorithms regarding the three criterion.
First, clustering is applied on the training set. It results in a division of the observations
into clusters (line 5). Then the expert opinion is used to assign the different clusters to
the most likely class (line 6). By doing so, it is possible to associate each observation xt
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of the training set to a label yt. In the case of single event effects detection, it would be
either normal or failure class. Afterwards, it is possible to evaluate the model based on
the criterion. A classifier is trained on the training set augmented by expert opinion,
then predictions are made using the test set to update the confusion matrix.

Algorithm 2: Classification boosted by clustering
1 input: X = {X1, X2, ..., Xn} (set of train sets Xi = {xt, t ∈ T} )
2 Z = {Z1, Z2, ..., Zm} (set of test sets Zj = {xt, yt, t ∈ T})
3 output: confusion matrix cm
4 Initialise the confusion matrix cm ;
5 foreach Training set Xi ∈ X do
6 Apply clustering on Xi, resulting in the set of clusters

K = {K1, K2, ..., Kn} ;
7 Apply expert labelling on K, resulting in the label set

yK
t = {y1, y2, ..., ym} (with m ≤ n) ;

8 Train a classifier Ci on Xi using the label set yK
t ;

9 foreach test sets Zj ∈ Z do
10 Make a prediction set ỹt of Zj using the classifier C ;
11 Update cm by comparing yt ∈ Zj and ỹt ;
12 end
13 end
14 return cm

The main drawback of this method is that it multiplies prediction errors of both
classification and clustering algorithms. However, the benefits are that the accuracy
results are a relevant estimation of the performance of unsupervised learning techniques in
the detection of anomalies. In addition, as we have seen in section 6.2.3, the classification
performance is sufficient to have only a small impact on the prediction.
Four clustering algorithms are tested, including K-means [74], Hierarchical clustering
[76], DBSCAN [77] and DyClee [78]. The support vector machines method is used for
the supervised step, as it gave the best results in section 6.2.

Note that these methods performed offline training using a specific training set. However,
some unsupervised methods rely only on incoming observations to perform both training
and anomaly detection [104–106]. These methods were not considered in this work as
it is not possible to guarantee that no anomalies are present at the beginning of the
algorithm. Because single event effects are permanent anomalies, the algorithm would
train on anomalous behaviour, leading to a high rate of false negatives.

6.3.2 Parameter selection
As stated in section 3.3.2, clustering is the action of regrouping similar samples in
groups called clusters. The number of clusters is sometimes a parameter required by
the algorithm (K-means, hierarchical clustering). External indicators (such as the elbow
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(a) K-means elbow method (b) Hierarchical clustering dendrogram

Figure 6.2: Optimal K search

method [107] or a dendrogram) are needed to find the optimal number of clusters, .
Other methods (such as DBSCAN or DyClee) resolve around different parameters to
define the number of clusters. Thus, the user does not decide the final number of
clusters. The parameter selection method largely varies depending on this factor, so
these two cases are treated separately.

6.3.2.1 Number of clusters as a parameter

This section focuses on the parameter selection of K-Means and Hierarchical clustering
methods. In these methods, the most important parameter is the number of clusters K
to form from the training set. In order to find the optimal K value, different methods
are available depending on the algorithm. The elbow method is used for K-Means (see
figure 6.2a), and a dendrogram is used for hierarchical clustering (see figure 6.2b). Note
that these figures have been created for each training set of the training database, but
as they are similar for all data sets, only one example of each is shown here.

The results are noted in table 6.4 Considering K-means, the elbow method gives a
clear indication of fracture from 3 clusters to 7 clusters. Thus, for K-means, it is possible
to get K ∈ [3, 7]. In this experiment, K = 4.
Regarding hierarchical clustering, horizontally crossing by leaving the maximum height
possible as shown in figure 6.2b gives an intersection of four clusters. In consequence,
the number of clusters chosen for hierarchical clustering is also K = 4.

6.3.2.2 Number of clusters left to the algorithm

This section aims to find optimal parameters for clustering algorithms that do not
consider formed clusters K as parameter. As the aim of this step is to facilitate the
expert labelling step, a large number of clusters would be counterproductive. Therefore,
an indicator was created during this thesis project in order to limit the number of clusters
decided by these methods.

A score function is implemented (see eq.6.1) to help decide optimal parameters. It
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is used on algorithms compute the final number of clusters during training. A penalty
is given when the number of clusters exceeds a set threshold.

Score =


Accuracy if K

N ⩽ R

Accuracy.e−( K
N

−R)
1
P if K

N > R

(6.1)

with P the penalty, K the clusters created, N the true classes and R the ratio.

Figure 6.3: Score function for N=2, R=10 and accuracy=1

An example of how the score behaves depending on the number of clusters is given in
figure 6.3. The values to be selected by the user are the Penalty P and the ratio R. P
influences the weight of the penalty when there is a big number of clusters. The greater
is P , the slower is the decrease of the score. R establishes the clusters ratio threshold
when the penalty is applied. Using this score, we are able to select more efficiently the
parameters of DBSCAN and DyClee to limit the number of clusters.

Table 6.4: Parameter selection for supervised algorithms

TrainsimD TrainsimND

K-Means K 4 4
Hierarchical clustering K 4 4

Hierarchical clustering metric euclidean euclidean
DBSCAN ε 0.05 0.01

DBSCAN metric Manhattan Euclidean
DyClee g_size 0.200 0.050

The chosen parameters are displayed in tab 6.4. The selection is based on the performance
of a model regarding the score indicator. The epsilon (ε) value and the metric of
DBSCAN and the g_size of DyClee are the parameters that are put to the test. Note
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that in the table, the hierarchical clustering metric parameter has been tested using
only the accuracy indicator.

6.3.3 Results

Table 6.5: Results of classification boosted by clustering regarding the three criteria

C1 C2 C3
(TPRtestD = 100%) (ACCtestND ≥ 85%) (TNRtestD&ND

≥ 85%)

K-Means TPRtestsimD = 100% ACCtestsimND = 93.95% TNRtestsimND = 92.92%
✓ ✓ ✓

Hierarchical TPRtestsimD = 100% ACCtestsimD = 92.98% TNRtestsimD = 96.58%
clustering ✓ ✓ ✓

DBSCAN TPRtestsimD = 100% ACCtestsimND = 82.58% TNRtestsimD = 92.84%
✓ ✗ ✓

DyClee TPRtestsimD = 100% ACCtestsimND = 92.97% TNRtestsimD = 94.47%
✓ ✓ ✓

The results on the three criteria in the case where the classification is boosted by
clustering are available in table 6.5 for all tested methods. Also, the complete confusion
matrix is available in table C.2 in the appendices.

Again, most of the methods have validated all three criteria. The best performing
algorithm is hierarchical clustering in this experiment.
First, criteria C1 has been validated for all methods, proving the capability of machine
learning in the detection of destructive single event effects.
However, one method did not validate C2. Indeed, DBSCAN accuracy for non-destructive
faults falls below 85%. Looking at the in-depth results in table C.2, it appears that
DBSCAN failed to detect all anomalies present in TestsimND. One hypothesis is that
the density aspect of DBSCAN is not appropriate for this case study.
Finally, all algorithms validated criteria C3. Overall, hierarchical clustering is the best
performing unsupervised algorithm regarding the results obtained for all three criteria.

In conclusion, most algorithms proved to be efficient in the detection of single event
effects. It demonstrates that even when no labels are available, it is still possible to
accurately model single event effects by using machine learning algorithm. However, in
a real case study, it is unlikely to be able to perform the training phase using single
event effects observation. Therefore, the final step is to be able to prove the efficiency of
machine learning limited to only normal observation during the training phase.
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6.4 One-class classification
6.4.1 Principle
One-class classification regroups methods that try to model a system based on ob-
servations of a single target class. After training, the model is capable of identifying
observations either as part of the target class or as outlier, as stated in section3.3.3. In the
case of anomaly detection, it is possible to identify anomalies, such as single event effects,
by training the model only on the system’s normal behaviour. The goal is to demonstrate
that one-class classification algorithms are efficient for the detection of single event effects.

This last experiment is crucial for the proof of concept. Indeed, proving that one-
class classification algorithms are a valid approach for single event effect detection would
avoid the need to perform extensive experiments to collect radiation fault examples.

The methodology used to analyse the algorithm’s performance is the same as described
in section 6.2.2. Note that only the Trainsim database is used to train the model. The
algorithms tested are Elliptic Envelope (EE), Local Outlier Factor (LOF) [82], Isolation
Forest (IF) [81], One-Class SVM [58] and Auto-Encoders (AE) [83].

6.4.2 Parameters
As a sub-category derivated from classification, one-class classification parameter op-
timisation is treated similarly as in section 6.2.2. The hold-out method described in
algorithm 1 is used to compare the performance of a batch of selected parameters for
each method. At the exception that only normal class observations are retain to train
the one class algorithm.
Note that during the parameter selection, labelled anomalous observations are introduced
in the validation set to evaluate the selected parameters. It is done so the proof of
concept is perform using optimal condition. However, it would not be possible to perform
this step due to the lack of anomalous observations in real condition.

The tested parameters are the support fraction for elliptic envelope, the number of
neighbours N to use during LOF calculations, the number of estimator M for isolation
forest and the architecture (number of neurons per layer) for auto-encoders.
The chosen parameters are displayed in table 6.6.

Table 6.6: Parameter selection for supervised algorithms

TrainsimD TrainsimND

EE supportfraction 0.8 0.7
LOF N 10 30
IF M 40 100

OC-SVM kernel RBF RBF
AE architecture 64 32 16 16 32 64 64 32 16 16 32 64
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6.4.3 Results
The results of the tests are displayed in table 6.7. Plus, the detailed confusion matrix is
available in table C.3.

Regarding criterion C1, only isolation forest is not able to identify all destructive
single event effects. However, all other tested methods can perform equally with the
baseline threshold method.
Focusing on criteria C2 and C3, Except auto-encoders, all methods validated them. An
explanation of auto-encoders’ underperformance might be that insufficient observations
are available to train the model, as neural networks tend to need massive amounts of
data to model a system correctly. Another explanation is that a lot of parameter tuning
is required for neural network oriented methods. During this experiment, it was tried
to give an equal amount of time to fine-tune each method as to avoid bias during the
comparison. Therefore, it is possible that an in-depth study of auto-encoders parameters
might improve the results.

In conclusion, three out of the five tested methods validated all three criteria. Therefore,
it has been proven that one-class classification algorithms can be effectively used for the
detection of single event effects. Consequently, it now possible to consider using only
normal behaviour to train the model. Doing so removes the need to perform tedious
experimental testing to emulate radiation fault observations. Rather than that, the
system can be simply monitored and the resulting observations fed to the model.

Table 6.7: Results of one-class classification regarding the three criteria

C1 C2 C3
(TPRtestD = 100%) (ACCtestND ≥ 85%) (TNRtestD&ND

≥ 85%)
Elliptic TPRtestsimD = 100% ACCtestsimND = 85.96% TNRtestsimND = 98.87%
Envelope ✓ ✓ ✓
Isolation TPRtestsimD = 94.00% ACCtestsimND = 90.00% TNRtestsimD = 98.91%
Forest ✗ ✓ ✓

LOF TPRtestsimD = 100% ACCtestsimND = 88.87% TNRtestsimD = 91.44%
✓ ✓ ✓

OC-SVM TPRtestsimD = 100% ACCtestsimND = 94.11% TNRtestsimD = 95.20%
✓ ✓ ✓

Auto TPRtestsimD = 100% ACCtestsimND = 81.64% TNRtestsimD = 77.86%
Encoders ✓ ✗ ✗

6.5 Conclusion
In this chapter, three experiments have been reported to establish the validity of machine
learning for the detection of single event effects. First, three criteria have been stated to
compare machine learning results with the baseline threshold detection method. Focusing
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on both destructive and non-destructive anomalies, it is possible to judge the result of a
detection method.

The three experiments resulted in the validation of anomaly detection methods for
SEE detection. Indeed, out of the eleven selected algorithms, eight of them outperformed
the baseline detection methods regarding destructive anomalies, while giving satisfactory
results on non-destructive anomalies. The results of each category are summarised in
figure 6.4

By looking at the specificities of each test, it appears that supervised detection methods
are the most efficient at detecting single event effects. Nevertheless, three one-class
classification algorithms validated all three criteria, even though only normal observations
were available during training. This result indicates that depending on the availability
of the observations during training, one can always select an efficient algorithm to detect
SEEs.

Nevertheless, space applications require specifications that are not always met by the
algorithms selected in this study. In fact, few algorithms could be used on-board for
a space mission. Therefore, the next chapter presents our proposal of a new anomaly
detection method tailored to the requirements of space missions.

(a) Supervised anomaly detection results (b) Classification boosted by expert opinion
results

(c) One-class classification results

Figure 6.4: Classification examples
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Dynamic double Anomaly Detection DyD2
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Throughout the previous chapter, it has been demonstrated that machine learning
algorithms are well fitted for the detection of single event effects. However, performance
is not the only criterion that must be considered when planning a space mission.
Adaptability, on-board constraints and real-time applications are examples of other
requirements. Unfortunately, most machine learning algorithms are not designed to suit
all of these specifications.

It is why a new anomaly detection has been developed to meet all the specifications
of space applications. Called Dynamic Double anomaly Detection (DyD2)1 [109], this
algorithm is designed as an alternative to one-class classification methods tested before.

In this chapter, the focus is on the description of the DyD2algorithm. First, in section
7.1, the requirements fulfilled by DyD2 are stated. Then in section 7.2, a formalisation
of the anomalies considered by DyD2 is proposed. After that, a description of the
concepts underlying DyD2 is done in section 7.3. In section 7.4, the DyD2 algorithm is

1The code of DyD2 is available on a GitHub repository [108]

85



7. Dynamic double Anomaly Detection DyD2

extensively detailed. Following, the parameters that can be configured by the user are
described in section 7.5. Finally, the complexity of DyD2 is analysed in section 7.6.

7.1 Space specifications

Space applications impose many constraints that must be taken into account when
planning a mission. Therefore, it is crucial to define the requirements that set the
functionalities required when designing a new machine learning algorithm for the detection
of single event effects in the case of an on-board space mission. In consequence, DyD2 is
designed to detect single effects in space missions while satisfying the requirements below:

7.1.1 Change point anomaly detection in time series data streams

The algorithm must be able to detect anomalies in data sets that take the form of time
series data streams. Those anomalies are identified as anomalous change points in the
time series. In space electronics, anomalies always manifest as high current events in the
supply current. Moreover, the detection algorithm should be able to detect destructive
SEE, such as single event latch-ups, without fail. Finally, it must be able to detect soft
errors that can pass through the baseline threshold detection method.
DyD2 is specifically designed to handle time series data stream, as each observations
can impact future prediction. Furthermore, DyD2 integrates a change point detection
step followed by a two-phases anomaly detection.

7.1.2 Low memory usage

The algorithm must be able to be embedded and run on minimal resources. Indeed,
some space missions are designed for microcontrollers with only a few Kbytes of flash
memory. Therefore, the available memory space must be optimised as much as possible.
DyD2 is based on specific objects called µ-clusters that group together similar samples.
Therefore, only the µ-clusters need to be stored in memory, instead of the entire data
set, which drastically decreases memory usage.

7.1.3 Real-time detection

The algorithm must be able to run efficiently in real-time in regard to the capability
of space components. With the reliability of the monitored component at stake, the
algorithm must be able to process new observations as they arrive without delay.
DyD2 uses a fast change point detection to decide whether new observations are
potential anomalies. Doing so avoids processing non-anomalous data points, thus saving
time. Also, DyD2 is designed around the concept of µ-clusters, which accelerates the
detection process. By doing so, fewer objects need to be addressed, as opposed to
the entirety of the data set.
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7.1.4 Adaptability in evolving environment

The algorithm must be able to adapt to a constantly changing environment. Indeed,
due to the total ionising dose, components’ behaviour evolve during the entirety of
the mission. These evolutions modify the supply current significantly, so any training
performed beforehand becomes irrelevant. Moreover, it can be complex to model the
ageing process, as many factors influence it (e.g. type of component, process, internal
structures) [89].
By the use of an update phase that constantly adapts to incoming data, DyD2 is able to
follow the deviation of incoming data and does not require additional training for that.

7.1.5 Training on normal behaviour only

The training phase must be performed using only normal data. Indeed, the emulation of
single event effects can be tedious and complex, and removing the need for extensive
radiation testing is crucial. For example, two main scientific hurdles emerged during our
previous study [94]. First, it is challenging to characterise correctly the type of anomaly
appearing during testing (such as SEL, SEGR, SEFI, SEU). Second, getting an extensive
database of all possible anomalies for complex components, such as microcontrollers, is
complicated. Therefore, the database can only be partially created, and so, the quality
of the prediction of machine learning algorithms can be severely altered.
DyD2 is part of a sub-field of machine learning called one-class classification [36, 80] in
which only one type of observations is needed to create a model: those of normal be-
haviour.

7.1.6 Interpretability

The last requirement to consider is linked to the acceptability of the results of black-box
models. The algorithm must be as interpretable as possible. It is well-known that
it is complicated to determine precisely how deep learning algorithms give a specific
prediction [110–115]. For the space industry, the possibility to interpret the prediction
is essential to apply with confidence machine learning detection for radiation faults. It
is why tools such as neural networks are not investigated in this work. There is no
clear definition to evaluate the interpretability of a model yet, but some indicators can
improve its comprehension.
DyD2 is a deterministic algorithm. Its predictions are not based on probabilistic
calculations. Also, the evaluation of an anomaly is designed around explicable tools such
as the notion of reachability and µ-clusters. Finally, tools are developed to visualise the
evolution of DyD2 through a data set, giving the possibility to explain its predictions.
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7.2 Change point detection

As stated in the previous section, DyD2 is focused on detecting change point detection
anomalies in time series data streams. There exists many applications requiring to detect
change points, or ruptures in time series. Climate change detection, speech recognition
or video analysis are all representative examples. Therefore, this problem is thoroughly
studied, and many methods are developed in the literature [116–120]. The focus is
on finding abrupt changes in data when the properties of the time series are modified.
Let us consider a time series as in equation (7.1):

X = {xt, t ∈ T} (7.1)

with xt an observation at the time t and T ∈ ℜ+ is the index set of X
Then, it is possible to define a stationary time series as a succession of events whose
statistical properties are constant [121]. From there, a change point represents a transition
between different events of the time series. The action of finding change points can be
seen as a model selection problem [122] in which the aim is to find the best segmentation.

7.3 Principles of DyD2

The DyD2 algorithm is a real-time dynamic anomaly detection method designed to fulfil
on-board requirements, particularly low computational cost. The goal is to efficiently
detect several types of anomalies in multivariate time series data streams. The general
idea is to first train a model offline with normal data. Then the data stream is
checked against the model during the online detection phase. Taking inspiration from
clustering techniques for data streams [78, 123], the model is composed of µ-clusters
that group together data points according to a distance-based criterion. In DyD2, this
principle is used for two detection phases of the algorithm with different features
to characterise data points:

• The first detection phase aims at detecting critical and heavily out-of-distribution
anomalies. It is why it takes raw measured quantities as features. Such features
do not require preprocessing, hence promoting speed. These features are called
outer features, the model learned through this phase is called the outer map, and
the detected anomalies are qualified as outer anomalies.

• The second detection phase aims at detecting subtle anomalies that require in-depth
analysis. Relevant features are extracted in well-chosen time windows. These
features are called inner features, the model learned during this phase is called
the inner map, and the detected anomalies are qualified as inner anomalies. This
phase is slower than the first phase and assumes that this type of anomaly is not
time-critical.
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As already mentioned, anomaly detection is approached as a one-class classification
problem: only normal data are mandatory to train the outer and inner detection maps.
Consequently, no extensive testing to gather faulty observations is required. However,
the downside is that the user must ensure that no anomalies are present in the training
set, as faulty behaviour could be learned, leading to false-negative results.

The DyD2 algorithm manages objects called samples and µ-clusters:

Definition 1 (Sample) A sample S is characterised by a couple (FS , tS) where FS is a
feature vector and tS is a date.

DyD2 makes use of two types of samples. The point sample Sp is a vector of features
coming from time series values of a given time t. The window sample Sw is a vector of
features extracted from a window of time series values starting at a given time t.
In the following, the notation S is used when it applies indifferently to point sample
or window sample.

Definition 2 (µ-cluster) A µ-cluster µClk is defined by a characteristic vector CFk of
the following form:

CFk = (nk, Ck, tck, tuk) (7.2)

where nk ∈ N is the number of samples in the µ-cluster, Ck ∈ R+ is a vector containing
the coordinates of the µ-cluster center, tck ∈ R+ is the creation time of the µ-cluster,
tuk ∈ R+ is the time of the last update of the µ-cluster.

The initialisation of a µ-cluster is performed using a sample S. The feature vector of
S is used as coordinates for the µ-cluster center Ck. Also, the date t of S is used
for both tck and tuk.

Definition 3 (Detection map) A detection map M is composed of a set of learned
µ-clusters of size sM ∈ (R+)m, where m ∈ N is the dimension of the considered space.
A detection map models normal behaviour.

DyD2 makes use of two detection maps. The outer map, denoted Mout, is created
using point samples Sp. The inner map, denoted Min, works with window samples
Sw. Detection maps are dynamic objects in the sense that µ-cluster positions in the
dimensional space defined by a set of features are adjusted depending on incoming data.
Therefore, detection maps are able to follow data evolution that must not be considered
anomalous (ageing or environmental modifications), hence allowing dynamic detection.

DyD2 is developed as an on-board application, taking into consideration computing
limitations. Low memory requirements and fast response time are key elements in
on-board applications. The use of µ-clusters avoids the need to save all incoming data
points by grouping them. By doing so, it is possible to work on significantly fewer
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(a) outerMap (b) Inner map

Figure 7.1: DyD2 maps

objects, thus saving computation time and memory space.

The notion of reachability [78] is used to perform the anomaly detection by evaluating
the detection maps in regards to incoming observation.

Definition 4 (Reachability) A µ-cluster µClk is reachable by a sample S if S is located
inside the volume of µClk defined by its size sk:

distance(Ck, Fs) ⪯ sk

2 (7.3)

where ⪯ is the dimension-by-dimension ≤ relation.

By extension, a map M is reachable by a sample S if at least one µ-cluster of M is
reachable by S. The Manhattan metric is used for the distance function as it performs
better for high dimensions than the Euclidean distance [86].

In figure 7.1 is displayed an example of both outer an inner maps. The µ-cluster’s
distribution after training are displayed, with their respected density represented by
the transparency. When a sample point is created, it is placed on the space displayed
in figure 7.1a to see if it falls inside a µ-cluster. By doing so, it is possible to check
the reachability of the point sample with the outer map. It is done similarly for the
window sample and the inner map.
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7.4 Algorithm
In this section, a thorough description of DyD2 is done according to the flow chart
in figure 7.5. The different steps are identified by circled numbers referenced in the
corresponding sections and paragraphs.

In addition, a simplified flow chart is given in figure 7.2 in order to give an overview of
DyD2’s algorithm. DyD2 is divided into an offline training phase and an online detection.

The offline training phase 1 is performed prior to the beginning of the mission.
The user sets the hyper-parameters of DyD2, such as the µ-clusters size, and the outer
and inner maps are created using an anomaly-free training set.

The online phase is divided into four distinct steps. First, streaming data is processed
with a change point detection 2 that localizes potential anomalies in the stream. This
analysis is critical to DyD2 efficiency because it allows not to consider each sample as a
possible anomaly and significantly improves the algorithm reaction time. To do so, the
reachability is checked between a newly created point sample and a specific µ-cluster
called rupture µ-cluster.
Then, a double anomaly detection 3 is performed. As stated in section 7.3, this two-
step detection allows to discriminate between destructive and non-destructive anomalies
by the use of the outer and inner maps.
Finally, each observation predicted as normal is used to perform an update phase 4 .
A displacement of the µ-clusterscontained as well as an ageing process are applied to the
detection maps. By doing so, it is possible to integrate deviation happening in the system.

Figure 7.2: DyD2 algorithm

7.4.1 Offline phase
7.4.1.1 Training 1

DyD2 training is performed offline. As a one class classification method, DyD2 only
needs normal data for the training phase. Therefore, the nominal behaviour of the
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system is learned from historical normal data streams and stored in the detection maps
Mout and Min.
The training phase is detailed in Algorithm 3. First, a time window W of fixed size
is defined (lines 3 and 4). W is used to create Sw and acts as a short-term memory
that stores recent observations and moves through the data stream. For each new
incoming observations, the first sample W0 is erased (line 7). Given the incoming data
stream, point samples Sp and window samples Sw are created (lines 8, 14, 15) to be
checked for reachability against the µ-clusters of Mout and Min respectively (lines 9,
16). If no µ-cluster of the detection map is reachable by the sample, a new µ-cluster is
created using the sample characteristics (lines 10, 16). Otherwise, reachable µ-clusters
are updated according to the sample feature vector (lines 12, 18).

Algorithm 3: Training
1 input: training set X = {xt, t ∈ T}
2 output: inner map Min and outer map Mout

3 initialisation of time window W = {w1, w2, ..., wn} ;
4 for i ∈ [0, n[ do
5 wi ← xi ;
6 end
7 foreach observation xi ∈ X (with i ≥ time window size) do
8 add xi to wi and remove w1 ;
9 Sp ← (xi, i) ;

10 if reachable(Mout, Sp) = false then
11 Mout← initµCluster(Mout, Sp) ;
12 else
13 Mout← update(Mout, Sp) ;
14 end
15 Sw ← featureExtraction(W ) ;
16 if reachable(Min, Sw) = false then
17 Min← initµCluster(Min, Sw) ;
18 else
19 Min← update(Min, Sw) ;
20 end
21 end
22 return Mout, Min

An example of the training phase for a particular observation is displayed in figure 7.3.
The training set as already been partially treated, and the focus is on the observation
located around 420s. From this observation, a point sample Sp is created, as well as
a window sample Sw with the use of a time window. From there, the reachability is
verified between these two samples and their corresponding detection maps.
In this example, the outer map Mout is not reachable by the point sample Sp. In that
case, a new µ-cluster is created in Mout at the location of Sp. On the other hand, the
inner map Min is reachable by the window sample Sw. In that case, the number of
sample nk of the k reachable cluster is updated.
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Figure 7.3: Training phase example

7.4.2 Online detection

When offline training is finalised and the two detection maps Min and Mout have been
created, DyD2 can run on-board to detect anomalies on the fly based on the incoming
data stream. As stated in figure 7.2, four steps are performed by DyD2 during this phase.
However, due to their similarities, the double detection phase is considered as one function

7.4.2.1 Change point detection 2

In the considered application, anomalies are defined as change points. Hence, the first
stage of DyD2 is a change point detection to quickly exclude non-anomalous data from
further processing, thus saving computation time. Algorithm 4 describes the change
point detection method used in DyD2.

Change point detection is performed using a single µ-cluster called rupture µ-cluster
and denoted µClr. Unlike the µ-clusters of Mout and Min, µClr is given a specific size
sr ∈ (R+)Mout and is created during the online phase of the algorithm. The first µClr is
created during an initialisation phase of the online detection (line 4). The first sample
point Sp created during the online detection is used to create the first µClr. A change
point is identified when µClr is not reachable by Sp (line 6). In that case, µClr is
destroyed and a new rupture µ-cluster µClr is created using Sp (lines 7,8). Otherwise,
µClr is updated using Sp.
Note that only one µClr is used throughout the lifetime of DyD2. Indeed, when the
current µClr is not used anymore, it is immediately replaced by a new one.
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Algorithm 4: Change point detection
1 input: rupture µ-cluster µClr and point sample Sp

2 output: true if a change point is detected, false otherwise
3 if first iteration of the online phase then
4 initialise µClr with Sp ;
5 else
6 if reachable(µClr, Sp)=false then
7 destroy µClr ;
8 initialise new µClr using Sp ;
9 return true ;

10 else
11 update µClr using Sp ;
12 return false ;
13 end
14 end

7.4.2.2 Double anomaly detection 3

In order to distinguish between critical from non-critical anomalies, DyD2 performs two
detection phases. For the first phase, the outer map Mout is used with outer features
directly given by the coordinates of point samples Sp. This detection phase targets
time-critical anomalies that are heavily out of the normal distribution. For the second
phase, the inner map Min is used along the window W from which a feature extraction
process is performed to obtain window samples Sw. This feature extraction process is
key to detect complex anomalies. The features to be extracted from the data window
are left to the user, as they are application dependant.

Double anomaly detection is performed by checking Sp and conditionally Sw for
reachability against the µ-clusters of the detection maps Mout and Min, respectively. A
critical outer anomaly is detected if Mout is not reachable by Sp. If this is not the case,
detection goes on with Sw with respect to Min. An inner anomaly is detected if
Min is not reachable by Sw.

7.4.2.3 Updating maps 4

This step reflects the dynamic aspect of the DyD2 method. It allows the integration
of new knowledge about the current state of the system in the detection maps by
updating Mout and Min with samples that have been identified as normal. The update
process is described in algorithm 5. In this process, the characteristic vectors of the
µ-clusters contained in the detection maps are updated. Two steps are performed:
center displacement and µ-cluster ageing

• Center displacement of µ-clusters is only performed on reachable µ-clusters in the
map (line 3). Given a µ-cluster µClk, the displacement of its center is weighted
by the number of samples nk already present. The higher the amount of samples
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Algorithm 5: Update map
1 input: Detection map M , sample S and ageing threshold τ
2 foreach k µ-clusters µClK ∈M do
3 if µClk reachable by S then
4 foreach dimension mk do
5 update Ck using eq (7.4) ;
6 end
7 nk + + ;
8 tuk ← tS ;
9 end

10 if tuk ≥ τ then
11 Ageing using eq (7.5) ;
12 end
13 end
14 return M

inside µClk, the smaller the displacement due to the integration of a new sample
S. The new µ-cluster center C ′

k is given by the following formula to be understood
as the center of mass:

C ′
k = S + nkCk

1 + nk
(7.4)

µ-cluster centers update is performed in line 5.
The number of samples of the µ-cluster and the last update time are also updated
(lines 7,8).
An example of center displacement for the outer and inner maps is dislayed in figure
7.4. On the left is shown the µ-clusters disposition before the update, while the
µ-clusters disposition after the update is shown on the right. During the update,
the reachable µ-cluster position (in purple) is modified accordingly to the sample
coordinates.

• µ-clusters ageing is performed to prioritise the most recent samples and forget
those observed in the past. Indeed, mapping a dynamic behaviour means that
newest information is more representative of the system’s current behaviour. For a
µ-cluster µClk of a map, the last update time tuk is compared to the date of the
last to arrive sample S (line 10). If the difference is higher than a fixed threshold,
a penalty is applied to nk (line 11). By doing so, old µ-clusters are the ones that
will be the most impacted by future updates. The penalty is a linear decrease and
is written as follows:

n′
k = nk ∗ penalty (7.5)

where n′
k is the new number of samples in µClk after applying the penalty.
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(a) Outer map before center displacement (b) Outer map after center displacement

(c) Inner map before center displacement (d) Inner map after center displacement

Figure 7.4: Center displacement during DyD2 update

7.5 Parameters
The parameters required by DyD2 are:

• Rupture µ-cluster µClr size: Defines the value at which a change point is
detected. The higher this parameter, the less points are analysed by DyD2, but
the higher the risk of false negatives.

• Outer and inner maps µ-cluster size: Define the double detection accuracy.
Small size means being able to detect more subtle faults, but it increases the risk
of false positives. Note that it is possible to define a different µ-cluster size for
each feature space dimension.

• Time window size: Defines the number of points used for creating the window
samples and their features, which determines the inner map. A higher time window
size means that more precise information can be given by the extracted features,
but it also increases inner anomaly detection time.
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• Ageing threshold: Defines the date limit at which a µ-cluster starts to decay.
Decaying starts when the difference between the last update of a µ-cluster and the
current date is greater than this parameter. A low value tends to favour dynamic
behaviour, but it can increase the number of false positives as mapped behaviours
may evolve too quickly.

• Decay penalty: Defines the decay hastiness of an old µ-cluster. It works as a
decreasing linear function on the µ-cluster number of samples nk (see eq. 7.5).

7.6 Complexity of DyD2

The complexity analysis of an algorithm starts from a simple question asked by all
computer scientists: "How long running this algorithm will take and how much memory
do I need?". If all users used the exact same system, it would be simply answered by
benchmarking. Benchmarking is running the algorithm while measuring time and memory
consumption. However, with the large variety of existing systems, other methods have
to be used.

Complexity analysis is crucial for embedded systems, as it gives information of an
algorithm behaviour in terms of computation time and memory usage. Therefore, the
the complexity of DyD2 is the focus of this section. The big-O O(n) notation [124]
is used to evaluate the worst-case complexity of DyD2. Two distinct evaluations are
needed to estimate the complexity of DyD2. Each evaluation refers to one aspect of
DyD2: the offline training and the online detection. In order to get a grasp of the
complexity of DyD2, these parts have to be studied separately.

7.6.1 Offline training complexity
7.6.1.1 Space complexity

To calculate the space complexity of the training phase, it is important to look at the
memory created during the whole training process. The main objects manipulated by
DyD2 are samples and µ-clusters. It is important to assess that both of these objects
are constant in memory. Indeed, their size is constant regardless of the input used to
create such objects. Even though the space required depends on the number of features
fixed by the user, it stays the same during the execution of the training phase. The
input considered is the observations contained in the training set.

Let us dive inside a single loop of the algorithm.
First, a time window is initialised to be used for the creation of inner samples. The size
of the window remains constant throughout the training phase, therefore the complexity
is O(1). Then, outer samples and inner samples are created. These samples are needed
for only one iteration of the loop and can be erased at the end of each iteration. Again,
as neither the number of outer samples nor inner samples are evolving, the complexity is
O(1). Finally, the core concept of the training phase is the creation of µ-clusters to model
the normal behaviour of a system. Therefore, if the current sample is different from
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previous observations, a new µ-cluster is created. The user can influence the number of
µ-clusters created by adjusting the µ-cluster size of a detection map. However, unlike
algorithms like K-means or hierarchical clustering, it is not possible to set a fixed amount
of clusters to be discovered. Let us study the worst case:
Let us take a training set X = x1, x2, ..., xn. If for each point (xi, xj) such as dist(xi, xj) >

sk, with sk the size of all µ-clusters inside a detection map, then the final number of
µ-clusters N is N = n.
The conclusion is that in the worst-case scenario, the number of µ-clusters is the same
as the number of observations in the training set. A linear relation can be established,
and because a µ-cluster is a constant object, it is possible to conclude that the creation
of µ-clusters is of linear O(n) complexity.

In conclusion, only µ-clusters creation impacts space complexity during the training
phase. Because µ-clusters creation is O(n), the overall space complexity of offline training
of DyD2 is O(n). It is important to understand the consequences of this result. Indeed,
DyD2 is designed to work in low memory environments. Therefore, the higher the
number of µ-clusters the more memory space is needed to run the algorithm. Thus, two
goals have to be achieved during the offline training phase of DyD2. The detection
map has to model as precisely as possible the system, while assuring that the number
of µ-clusters created is not overflowing the memory. The user has to achieve a balance
between precision and memory space by adjusting the map size parameter as well as
the number of observations in the training set.

7.6.1.2 Time complexity

As for the space complexity, the time complexity is calculated by evaluating the
complexity of a single observation. Again, the inputs correspond to the observations
contained in the training set.
First of all, the creation and update of the time window, as well as the creation of
samples can be seen as an assignment. Therefore, the time needed to perform this step is
constant O(1). The interesting part is, again, the management of µ-clusters. As stated
during space complexity evaluation, it is possible to discriminate the worst case of the
offline training phase by the creation of µ-clusters for each observation of the training
set. To update the detection map, it is needed to check the sample created by the latest
observation with all µ-clusters contained in the detection map. In other words, for each
observation, it is needed to go through a list of objects that is as long as the indices of
given observations. This kind of algorithm is of O(n2) complexity as it involves a loop
contained in another loop.

In the end, the highest complexity is within the creation and update of µ-clusters.
Therefore, the complexity of the offline training phase of DyD2 is O(n2).
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7.6.2 Online detection complexity

7.6.2.1 Space complexity

For the most part, the space complexity of the online detection phase is very similar
to the one of the offline training. Indeed, the time window and the sample creation
mechanism are similar, thus the complexity is O(1). The key difference between the
offline training phase and the online detection phase is the management of the detection
maps. When a sample is not reachable by any µ-clusters that constitutes a detection
map, the point is considered as an anomaly and DyD2 is put on hold. Unlike the
training phase, no µ-cluster is created. Therefore, the number of µ-clusters contained
in a detection map remains constant throughout the algorithm and the complexity is O(1).

As a result, the overall space complexity of the offline training phase is constant O(1).
It is crucial information for any user wanting to design an embedded algorithm. Indeed,
the memory staying constant throughout the mission means that the risk of overflowing
the memory at runtime is inexistent.

7.6.2.2 Time complexity

Regarding the time complexity for the online phase, it would be possible to tackle the
problem with two different approaches. First, it is possible to reason similarly to the
space complexity, and express the time complexity based on the input size n. In that
case, the same conclusion can be applied by comparing the offline and online phase, and
it is deduced that the time complexity is only dependant of the input size, as the number
of µ-clusters remains constant throughout the execution of DyD2. Therefore, the online
phase time complexity is O(n).
Second, due to the online phase being a real-time application, an alternative would be
to analyse the time complexity for a single observation. In that case, a possible input
would be the number of µ-clusters m in the outer and inner detection maps. By taking
the worst possible case, it can be considered that both maps have to be checked for each
observations. The reachability of a sample is verified for all µ-clusters of a detection
maps. Thus, the time complexity is linearly dependant of the total number of µ-clusters
O(m).

The result is that the overall time complexity of the online detection phase is linearly
dependant of the input O(n), while it is linearly dependant of the number of µ-clusters
in the outer and inner detection maps O(m) when looking at a single input. Again, this
result is critical for an embedded application. Indeed, not only the time needed to perform
a detection loop is, in the worst possible case, constant, but it is also possible to impact
the prediction time of an input by adjusting the number of µ-clusters during training.
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7.7 Conclusion
In this chapter, an extensive description of DyD2 has been reported. First, the space
specifications that were set when designing DyD2 are detailed. After that, a description
of the core principles of DyD2 is given. DyD2 is based on the idea of moving µ-clusters
that are grouped in detection maps. By checking the reachability of new observations,
called samples, with the µ-clusters contained in a detection map, DyD2 is able to
differentiate between normal and abnormal observations.

From there, DyD2 is working with two phases. The offline phase can be assimilated
with training on normal observations, and the online phase can be assimilated as the
prediction phase. The online phase works as a four stage algorithm. It starts with a
change point detection phase, followed by two detection phases that discriminate between
destructive and non-destructive anomalies, followed by an update phase that takes into
consideration the system behaviour.

After that, the complexity of DyD2 is provided. Divided between the offline and
online phase, it is shown that time and space complexity of DyD2 are suitable for
real-time embedded applications.

Now that the theoretical background of DyD2 has been laid, assessing its performance
on single event effects detection is needed.
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Figure 7.5: DyD2 flow chart
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The Dynamic Double anomaly Detection (DyD2) algorithm’s performance on single
event effects detection are put to the test in this chapter. Moreover, all aspects of DyD2

must be evaluated. Consequently, in addition to the evaluation based on stationary data
sets, DyD2 is applied on dynamic systems to evaluate its adapting ability. Moreover,
its capacity to perform in real-time on embedded applications must be assessed. To do
so, experiments using the databases described in section 5.5 are performed. If DyD2

validates all tests, it would validate one of the first machine learning algorithms for single
event effects specifically designed to suit space applications.

This chapter resolves around three questions:

• Is DyD2 performance on par with state-of-the art methods?

• Is DyD2 able to adapt to a dynamic environment?

• Is DyD2 suited for real-time embedded applications?

First, the performance of DyD2 are evaluated on simulated data sets in section 8.1.
A comparison with a selection of one-class classification methods is reported for both
stationary and dynamic systems. Then DyD2 is experimented on experimental data sets
in section 8.1. An offline experiment is performed on observations gathered by heavy
ion testing. Moreover, a laser experiment in a real embedded setup is reported.
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8.1 DyD2 results on simulation

The first test performed with DyD2 is based on the data set created by computer
simulation (see section 5.2). As for one-class classification experiments, DyD2, is trained
on data sets that only contain normal observations. Then, during testing, destructive
and non-destructive single effects detection are treated separately. These are identified
respectively as outer and inner anomalies regarding DyD2 concepts. In addition, the
dynamic behaviour of DyD2 is also evaluated using simulated databases including a
linear deviation throughout each test sets. It is important to note that this linear
deviation is not considered as an anomaly in the system.

The databases used in each experiment were described in section 5.5. For each experiment,
DyD2 is trained with the Trainsim simulated database. The first experiment is based on
stationary data sets. Destructive and non-destructive anomaly detection are evaluated
by using respectively TestsimD and TestsimND databases. Then, to evaluate DyD2’s
capacity to adapt to a dynamic system, the simulated databases TestsimDevD and
TestsimDevND are used. Again each of these couples contains respectively destructive
and non-destructive anomalies, in addition to a linear deviation throughout each test
set.

Finally, the three criteria introduced to analyse algorithm’s performance in section
6.1 are used here to evaluate DyD2 on simulated data sets.

8.1.1 Parameters

In this section, the parameters of DyD2 for the series of experiments reported above
are detailed. As DyD2 is developed as an OCC algorithm, it is not possible to predict
the type of anomalies encountered during the online detection phase. Consequently it
is decided that the parameters chosen must remain unchanged for all experiments on
simulated data. In doing so, the same conditions hold for all tests, and can give conclusive
results regarding the efficiency of DyD2 in detecting multiple types of anomalies.

In order to find optimal parameters, DyD2 is executed on a batch of data sets. From
there, the best results are taken. The parameters of DyD2 (see section 7.5) are
presented in table 8.1.

Table 8.1: DyD2 parameters for tests on simulated data

µClr outer inner window age decay
size µCl size µCl size size threshold penalty
0.20 0.05 0.15 20ms 150ms 0.975
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Table 8.2: Results of DyD2 on simulated data regarding the three criteria

C1 C2 C3
(TPRtestD = 100%) (ACCtestND ≥ 75%) (TNRtestD&ND

≥ 85%)
DyD2 TPRtestsimD = 100% ACCtestsimND = 93.55% TNRtestsimD = 93.97%
Stationary test ✓ ✓ ✓
DyD2 TPRtestsimD = 100% ACCtestsimND = 90.17% TNRtestsimND = 89.24%
Dynamic test ✓ ✓ ✓

8.1.2 Results
The results for both stationary and dynamic experiments are displayed in table 8.2.
These results are going to be described in the two following subsections.

8.1.2.1 Stationary behaviour

The first line of table 8.2 gives the performance of DyD2 regarding the three criteria on
stationary data sets. Looking at C1, one can notice that DyD2 succeeded in detecting all
anomalies in TestsimD. It indicates that DyD2 performs as well as the baseline threshold
protection by correctly identifying all destructive anomalies. Moreover, the accuracy
is 93.5%, which validates the C2 criteria. Lastly, the focus is on the false negative rate
achieved by DyD2. With a result of 94.6%, DyD2 validates the last criterion.
Overall, DyD2 performance match the performance of state-of-the-art anomaly detection
methods. With the validation of all three criteria, DyD2 can be confirmed as a valid
method for the detection of single event effects.

8.1.2.2 Dynamic behaviour

DyD2 is designed as an algorithm that is able to adapt to a dynamic environment.
Thus, it is necessary to evaluate DyD2 in this particular aspect. To do so, the databases
TestsimDevD and TestsimDevND are used. In addition to representing respectively
destructive and non-destructive single event effects respectively, they both feature a
linear deviation on the data.

Again the same three criteria C1, C2 and C3 are used to evaluate the performance
of DyD2 on dynamic data sets. This test’s results are displayed on the second line of
table 8.2. First, looking at criterion C1, it is clear that DyD2 can detect without fail
all destructive faults occurring in TestsimDevD. Thus, by validating this first criterion,
DyD2 matches the detection performance of the baseline threshold-based detection
method, even for data sets with dynamic behaviour. The same conclusion can be made
for criterion C2, as the accuracy of DyD2 for TestsimDevND is around 90.2%.
Finally, let us look at criterion C3 which evaluates the true negative rate. Again,
DyD2 validates this criterion with a true negative rate of 89.2%. It means that DyD2

correctly predicts most normal observations. Regarding this result, one can assess that
DyD2 succeeded in following the linear deviation present in TestsimDevND. However, by
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(a) Outer map after training (b) Outer map after test (c) Outer map superposition be-
fore and after test

(d) Inner map after training (e) Inner map after (f) Inner map superposition be-
fore and after test

Figure 8.1: Example of inner map evolution after a test set including a linear deviation

comparing this test with the results obtained previously with the stationnary database
TestsimND, it is possible to see that DyD2 performance are lower for the dynamic
test. During this experiment, it was observed that if the slope of the deviation is too
important, DyD2 needs time to re-adjust to the system by relocating its micro-clusters
in the outer and inner detection maps.

The evolution of an outer and inner map is shown in figure 8.1. In figure 8.1a and 8.1d are
depicted the detection maps after the training while in figure 8.1b and 8.1e are depicted
the detection maps after testing, when the µ-clustershave evolved due to the observations
contained in the test set. In figure 8.1c and 8.1f, the superposition of the maps before
and after testing is displayed to emphasis the µ-cluster’s movement. Regarding the outer
map, most of the µ-clusters went up on the supply current axis. A similar conclusion can
be made for the inner map, as most µ-clusters moved forward along the supply current
mean axis. These outcomes agree with the linear deviation. Therefore, the µ-clusters’
evolution results from DyD2 adapting to the linear deviation present in the testing set.

8.1.2.3 Comparison with state-of-the-art one-class classification algorithms

As it can be complicated to evaluate the performance of a single machine learning
algorithm, DyD2 results on simulated data are compared with those of the one-class
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classification algorithms used in section 6.4, namely Elliptic Envelope (EE), Local Outlier
Factor (LOF) [82], Isolation Forest (IF) [81], One-Class SVM [58] and Auto-Encoders
(AE) [83]. Doing so makes it possible to position DyD2 with respect to the state-of-the-
art methods in order to give an honest estimation of its performance.

The results of the selected OCC algorithms for the stationary experiments discussed in
section 6.4 are used to compare DyD2. In addition, further experiments have been made
to evaluate OCC algorithms on dynamic data sets by using the databases TestsimDevD

and TestsimDevND. The results are available in table C.4 and in figure C.1 in appendices.

A summary of the tests is displayed in figure 8.2. Note that, as DyD2 already satisfied
all criterion, and to simplify the comparison between the algorithms, only the accuracy
indicator and the execution time are used. These two indicators are available for DyD2

and the five OCC algorithms. On the figure, the blue, green, red and purple bars represent
the accuracy for the experiments performed on respectively TestsimD, TestsimND, and
TestsimDevND. Lastly, the yellow bar represents the average time of each model to
perform all four tests.

First, let us focus on the two stationary experiments. It is possible to see that DyD2

performance are on par with state-of-the-art methods. Indeed, the accuracy of most
algorithms is between 93% and 97.5% for both destructive and non-destructive anomalies.
In this regard, DyD2 can be considered a solid alternative for any of the selected OCC
algorithms.
Secondly, let us dive into the results of the dynamic experiment. In this experiment,
DyD2 was still able to validate all three validation criteria. Looking at the results of
the other five algorithms, it appears clear that they could not follow the linear deviation
present in TestsimDevD and TestsimDevND. Indeed, the accuracy dropped below 70%
during the dynamic experiment. In conclusion, by outperforming the state-of-the-art
algorithms on these databases, DyD2 proved its capability to follow the deviations of a
dynamic system.
Lastly, the yellow curve indicates the average time of each algorithm in the four
experiments. DyD2 fastest of all tested algorithms. It is possible to pinpoint the
isolation forest algorithm, which took on average 38.70s, while the second slowest
algorithm only took 1.71s on average. Also, the auto-encoders method is the second
fastest algorithm, but it also possesses the lowest accuracy among all algorithms for all
four experiments. In the end, these results comfort the efficiency of DyD2 for real-time
applications.

In conclusion, DyD2 it is possible to say that DyD2 is on par with the state-of-the-art
methods regarding stationary systems. This result is significant because it validates
DyD2 as a functional one-class classification algorithm and assesses that DyD2 can be
used as an alternative to these well-known methods. Furthermore, DyD2 proved its
ability to adapt to dynamic behaviour as well as to provide a fast detection method when
compared to other algorithms. Therefore, DyD2 is proved to be an efficient solution for
single event effects detection, not only in regard to today’s threshold-based detection
method, but also in regard to other state-of-the-art detection methods.
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Figure 8.2: DyD2 comparative results on simulated data sets

8.2 DyD2 results on experimental tests
In the previous section, the performance of DyD2 has been demonstrated using an
extensive database created using simulation. However, simulation experiments alone are
not conclusive evidence to validate DyD2 for real case applications. DyD2 has to be
tested on data sets used by the space community as representative of satellite-based
applications.

To do so, DyD2 is applied on trainHion and testHion databases. As a reminder, these
data sets are coming from heavy ion testing performed by the CNES. These are highly
representative of the damages caused by space radiations on electronic components
and hence suitable to analyse the performance of DyD2. In addition, online tests are
performed on laser testing with DyD2 executed on a SAM3X8E microcontroller. It is done
to evaluate the capability of DyD2 to perform in real time on a low power component.

8.2.1 Offline heavy-ion testing
DyD2 is firstly trained on trainHion, and then it is tested on testHion. The characteristics
of these databases are available in section 5.5. The parameters used for this experiment
are given in table 8.3.
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Table 8.3: DyD2 parameters for tests for heavy ion testing

µClr outer inner window age decay
size µCl size µCl size size threshold penalty
0.20 0.01 0.05 20ms 100s 0.975

The experimental setup for gathering these data sets do not allow to know precisely
when a fault occurs. Therefore, only faults picked up by a threshold of 200mA can be
considered. Consequently, even if a fault due to heavy ions occurred during the tests,
but with a limited impact on the supply current, it cannot be labelled as an anomaly.
Only the performance of destructive anomaly detection can hence be evaluated.
In this context, on the three validation criteria stated in section 6.1, only C1 and the
indicator based on destructive anomalies for C3 can be evaluated. The performance of
DyD2 regarding these two criteria are displayed in table 8.4, while detailed results are
available in table C.4 in appendices. DyD2 performance on the heavy-ion database are

Table 8.4: DyD2 results on heavy-ion database

C1 C3
(TPRtestD = 100%) (TNRtestsimD ≥ 85%)

DyD2 TPRtestHion = 100% TNRtestHion = 99.55%
✓ ✓

extremely positive. Indeed, not only every single anomalies detected by the threshold-
based detection method are also detected by DyD2, but also the rate of false detection
is really low. Furthermore, it is possible to calculate the total time lost in false detection
if DyD2 was used in a real case application. Indeed, 50 minutes of recording time are
totalised in testHion. As shown in table C.4, the false positive rate is equal to 0.45%.
Therefore, only 13.5 seconds out of 50 minutes of active time is lost due to false detections.

In addition, an example of the detection result is given in figure 8.3. The supply current
is represented by both blue and green dots. When the supply current is represented by a
blue dot, it means that DyD2 is active and looking for anomalies, while when the supply
current is represented by a green dot, it means that DyD2 detection is on hold, and
is waiting for the supply current to return to a normal value. In this test, we consider
that the system is back to its normal state when a new point sample reaches the outer
map. The vertical red lines indicate when an outer anomaly is detected, and the vertical
orange lines indicates when an outer anomaly is detected.
In this example, DyD2 is able to detect all anomalies picked up by the threshold detector
of 200mA. These anomalies are flagged as outer anomalies by DyD2. In addition, three
observations are flagged as inner anomalies by DyD2 that fall below the detection
threshold. Nevertheless, these observations clearly deviate from normal behaviour. In
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these cases, DyD2 is able to detect anomalies that are not picked up by the baseline
detection method.
Furthermore, the capability to discriminate between destructive and non-destructive
anomalies can be used to assist decision-making regarding the response when confronted
with an anomaly. Indeed, while a fast and important response must be done regarding
outer anomalies (such as power reset of the component), the response when confronting
with a less critical inner anomaly can be adapted.

Figure 8.3: Results of DyD2 on heavy ion testing

It is possible to conclude that the performance of DyD2 obtained with experimental data
are similar to the ones obtained with simulated data. It comforts the results obtained
solely with simulated data, and the suitability of DyD2 for real case applications. The
last step is to demonstrate that DyD2 is relevant for real-time applications.

8.2.2 Online laser testing
The last aspect that needs to be validated is the suitability of DyD2 for real-time
applications. In section 7.1, DyD2 is described as an on-board algorithm, able to process
anomaly detection on incoming observations in real-time. In consequence, DyD2 has
to be tested on an embedded setup in order to evaluate its capacity to perform in a
real-time and memory-limited environment.

To do so, a laser experiment has been carried out. The setup is the same as described
in section 5.1.3. The component used to run DyD2 is the SAM3X8E microcontroller
featured on the Arduino DUE board. It is referenced as the U5 component in figure 5.6.
Note that the Device Under Test (DUT) and the microcontroller responsible for the
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detection are two different components.

The goal of this experiment is to prove that DyD2 is able to process all incoming
observations in real-time, with the limitations of the SAM3X8E microcontroller. Thus,
only a qualitative approach is used to analyse the results. In consequence, only a single
run is presented in this section. During this run, a total of seven anomalies were recorded
due to the laser striking a sensitive node on the DUT. Even though those anomalies
are not persistent, they represent anomalies that have to be detected by DyD2. The
sampling time for this experiment was set at 0.1ms.

DyD2 is active during the whole run. However, DyD2 does not have the possibility
to perform a power reset of the DUT when an anomaly is detected. The protection of
the component is performed using a threshold-based protection device, the MAX17613
board. During the run, if an anomaly is detected by DyD2, the detection is put on hold
until the supply current returns to its normal state. In practice, the supply current is
considered in its normal state if the last outer sample is reachable by one of the outer
map’s micro-cluster.

The run is displayed in figure 8.4. As for the heavy ion test performed in section

Figure 8.4: Results of DyD2 during laser online testing

8.2.1, the monitored supply current is also represented by both blue and green lines.
A blue dot indicated that DyD2 is active while a green dot indicate that DyD2is on
standby and is waiting for the supply current to return to a normal value. The vertical
red lines indicate when an outer anomaly is detected. On this run, no inner anomalies
were reported by DyD2. It is possible to see that DyD2 successfully detected all seven
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anomalies that happened on the DUT. Also, no other anomalies were reported by DyD2,
meaning that no false positive happened during this run.

In conclusion, DyD2 was able to run in real-time on a microcontroller limited in
memory. It was able to run without fail, and consistently achieved to execute the whole
algorithm in less time than the sampling time of 100ms. Therefore, it validates DyD2 as
an on-board anomaly detection algorithm that can be executed on low power components.

8.3 Conclusion
In this chapter, four experiments designed to evaluate the performance of DyD2 in
various situations are reported. First, it has been demonstrated that DyD2 is on par
with the state-of-the-art OCCs algorithms selected for stationary data sets. Indeed, all
three criteria were validated by DyD2 for this experiment. Moreover, an experiment
using experimental observations coming from heavy ion testing consolidated these results,
as DyD2 was still able to validate all criteria.

In addition, DyD2 has been able to adapt to dynamic environment. Indeed, DyD2

validates all criteria even on data sets including a linear deviation. As a comparison, all
selected OCC algorithms failed to validate all criteria for this experiment.

Finally, an experiment conducted on an embedded application demonstrated that DyD2

is still able to run even in real-time and low-power conditions.

Overall, these results point out that DyD2 is fitted to perform on-board anomaly
detection on dynamic systems. Doing so, it validates DyD2 as a perfectly functional
and efficient anomaly detection method.
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Chapter 9
Conclusions and perspectives
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9.1 Conclusion
The protection of electronic components is an important topic when designing a space
application. With the various effects due to the presence of radiation and high energetic
particles, it can be tedious to select the best approach. Moreover, new research emerges
regularly to improve the reliability of space electronics during missions. In this manuscript,
machine learning methods for anomaly detection were experimented to improve single
event effect detection.

Databases gathering observations of normal and faulty behaviour in the supply current
of components were created. To do so, an experimental circuit based on the ATMEL
SAM3X8E microcontroller was used. Then experimental testing was performed to gather
observations of single event effects. By doing so, it was possible to develop a supply
current simulator that enables the creation of significant and varied databases. After that,
a thorough study of the characteristics of single event effects was reported. Consequently,
it was deduced that statistical indicators as well as the frequency spectrum of the supply
current are precious information to discriminate single event effects.

Then, the databases were used to evaluate the performance of a selection of anomaly
detection methods for single event effects detection. A proof of concept is provided to
assert the validity of this approach. Three criteria were presented to compare anomaly
detection methods with the baseline detection method used in space applications. Then,
the results were divided into three case studies, each of them characterised by the
information available during the training phase. Results demonstrated that machine
learning-based anomaly detection can be a powerful asset when trying to detect single
event effects based on a component supply current.

Finally, a specific algorithm was developed to meet space application requirements.
Called Dynamic Double anomaly Detection (DyD2), this method resolves around the
concept of µ-clusters to detect anomalies accurately in time series. DyD2 is designed
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to be functional even on real-time embedded applications, in addition to being able
to follow deviations present in dynamic systems. Four experiments were conducted to
assess the performance of DyD2, each focusing on a specific aspect of DyD2. Results
demonstrated that the performance of DyD2 are on par with the baseline detection
method as well as with other selected anomaly detection methods, while being suitable
for real-time embedded applications. In conclusion, DyD2 can be considered as an
efficient solution for space applications.

9.2 Perspectives
Some ideas were left unexplored during this project.
First, with promising results of frequency features in the characterisation of single event
effects, it would also be interesting to investigate the wavelet function. Indeed, the
Fourier transform studied in section 5.4.2 is a transformation primarily focused on
periodic signals. However, it is not necessarily the case of the supply current when
focusing on low frequency. Using wavelet transformation, it might be possible to uncover
decisive characteristics to improve the detection of single event effects.

Another interesting research orientation to explore would be deep learning. Indeed, as
stated in section 7.1 of DyD2, the use of neural networks model was not considered.
Two reasons were at the core of this decision. First, because deep models are considered
as black-box models, it can be complicated to incorporate them into a space mission
for certification reasons. Indeed, the space community prefers to rely on interpretable
models when designing protections. The second reason is linked to the calculation power.
As of today, space components are still limited, and it is intricate to run complex neural
networks on admissible processors. However, with the work of this thesis, machine
learning methods might be accepted in the future by the space community, and space
components will be powerful enough to run complex models. In that case, embedded
deep models are probably the next step for the space industry. Note that some deep
models, such as recurrent neural networks for regression, were tried during this project,
and showed promising results. Nevertheless, this thesis work should be considered as
preliminary work towards the acceptance of machine learning for single event effects
detection.

Regarding the DyD2 algorithm itself, some results of dynamic experiments highlighted
that for severe deviations in the data sets, DyD2 becomes unstable and unable to follow
the deviation. It results in a high number of false positives. Nevertheless, a lead is
currently being investigated to counter this problem. The properties of the Christoffel
function in regard to data sets [125, 126] are considered to detect when a detection map
is unable to follow the deviation.
Finally, the last perspective is about the use of the main contribution, DyD2, on
real case space applications. Indeed, many tests have been performed to demonstrate
the validity of DyD2, so only the real test on a satellite is left to do, representing
the consecration of this thesis work.
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Appendix A
Reinforcement Learning

Reinforcement learning is a unique field of machine learning. Here, no database is needed
at the beginning of the training. Instead, a learning environment in which an agent can
interact to receive rewards is used. From there, the agent’s ultimate goal is to maximise
the reward. Reinforcement learning is a particular and exciting case of machine learning.

Reinforcement learning can be modelled as a Markov decision process (MDP). A MDP
is a discrete-time stochastic control process that depends on four factors: a state-space
S, an action space A, the probability P (s′|s, a) of reaching a state s′ from s using the
action a, and the expected immediate reward Ra(s′, s).
To take an example, picture an adventurer lost in a 2-dimensional labyrinth. s ∈ S
represents its current location. For each location, the adventurer can choose to go
up, down, left, or right. The actions possible for each state are represented by a ∈ A.
However, as our adventurer is scared and fallible, he does not always go in the wanted
direction. This probability is denoted by P (s′|s, a). Furthermore, as the adventurer is
evolving in a Markovian model, the probability of reaching s’ from s is only influenced
by s, and not from the history of previous states. Finally, a reward is associated with
each step taken by the adventurer. The reward can be positive, like getting closer to the
exit, or negative, like falling into a deadly trap.

The purpose of reinforcement learning is for an agent to learn through trial and error an
optimal policy that maximises the expected reward sum. However, at the beginning, the
agent does only know about each possible action for its current state. Reinforcement
learning is like playing a game whose rules are unknown to you, and after 15 minutes,
you are congratulated with a "You loose" screen. You might get frustrated and give up,
whereas an artificial agent will not give up, and will retry as many times as needed to
find the best way to win the game.
In reinforcement learning, the developer has to provide a list of rewards that will influence
the agent in its environment. It is the key point of reinforcement learning, as it will
affect how the agent interprets the rules.

An essential aspect of reinforcement learning is exploration vs exploitation. Exploitation
consists of an agent using the knowledge uncovered before and starts to optimise its
actions to maximise the reward. However, it is possible that the agent gets stuck in a
local minimum. To avoid this, the agent has to see as many possibilities as he can. It
means that he has to take intentional "bad decisions" to try new options. It is called
exploration. The key is to balance exploration so that the agent experiences as much as
possible, with exploitation to improve its model.
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The most well-known algorithm in reinforcement learning is Q-learning [56]. It works
by trying to give a score for an action in a particular state. In order to choose the best
possible action, the agent uses a function Q(s, a) that represents the expected reward
for an action a taken in a state s. At the beginning of training, the function Q(s, a) is
initialised randomly. Then after each iteration, it is updated using equation A.1:

Q(s, a)← Q(s, a) + α[Ra(s′, s) + γmaxa′Q(s′, a′)−Q(s, a)] (A.1)

with α the learning rate, maxa′Q(s′, a′) the maximum reward that can be obtained from
the future state s′ and γ ∈ [0, 1] the discount factor.

Others example of reinforcement learning algorithms are Deep Q-learning which Google
DeepMind first used in 2014 to train an agent to play Atari Breakout and Proximal Policy
Optimisation (PPO) [65] developed by OpenAi, which is the currently used algorithm
by the game engine Unity. The latter enables the creation of video games that take
advantage of reinforcement learning, such as Deep Down by Law Tech Productions, that
let the player help a group of neural network-controlled group of adventurers [127].

In this section was given a brief overview of reinforcement learning. The interesting
feature of this category lies in the uncertainty of the results. The model can produce
unexpected but nonetheless fascinating behaviours.
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Schematics
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Figure B.1: SAM3X8E bloc diagram
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Figure B.2: Arduino DUE specifications
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Figure B.3: Cyclotron schematic frame
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Figure B.5: DIAG-RAD daughter board schematic
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Appendix C
Detailed results

Table C.1: Supervised algorithms confusion matrix

TP FP FN TN Time

K-NN TestsimD 17.33% 2.74% 0.00% 79.94% 0.235s
TestsimND 16.91% 5.87% 0.18% 77.04% 0.239s

Naive TestsimD 17.40% 2.75% 0.00% 80.35% 0.108s
Bayès TestsimND 17.03% 5.54% 0.07% 77.37% 0.260s
Decision TestsimD 17.33% 3.14% 0.00% 79.53% 0.072s
tree TestsimND 16.65% 8.98% 0.44% 73.93% 0.058s
Random TestsimD 17.33% 2.72% 0.00% 79.95% 2.885s
forest TestsimND 16.81% 5.31% 0.28% 77.61% 2.912s

SVM TestsimD 17.33% 3.50% 0.00% 79.17% 0.104s
TestsimND 16.67% 3.96% 0.41% 78.96% 0.177s

Table C.2: Classification boosted by clustering algorithms confusion matrix

TP FP FN TN

K-Means TestsimD 14.71% 5.71% 0.00% 79.58%
TestsimND 17.93% 5.87% 0.18% 77.04%

Hierarchical TestsimD 14.71% 5.99% 0.00% 79.30%
Clustering TestsimND 17.52% 2.80% 0.50% 79.18%

DBSCAN TestsimD 14.71% 6.11% 0.00% 79.18%
TestsimND 0.00% 0.00% 17.42% 82.58%

DyClee TestsimD 14.71% 4.72% 0.00% 80.56%
TestsimND 10.95% 1.05% 5.97% 82.02%
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C. Detailed results

Table C.3: One-class classification algorithms confusion matrix

TP FP FN TN Time
Elliptic TestsimD 17.33% 0.79% 0.00% 81.88% 0.192s
Envelope TestsimND 3.66% 0.94% 13.11% 82.30% 0.185s
Isolation TestsimD 16.29% 0.90% 1.04% 81.77% 9.691
Forest TestsimND 7.55% 0.71% 9.29% 82.45% 12.256s

LOF TestsimD 17.33% 7.08% 0.00% 75.60% 0.447s
TestsimND 12.11% 6.24% 4.90% 76.76% 0.414s

OC-SVM TestsimD 17.33% 3.97% 0.00% 78.71% 0.094s
TestsimND 14.07% 2.94% 2.94% 80.04% 0.077s

Auto-encoders TestsimD 17.33% 18.30% 0.00% 64.37% 0.174s
TestsimND 11.58% 13.36% 5.00% 70.06% 0.097s

Table C.4: DyD2 and OCC algorithms confusion matrix

TP FP FN TN Time

DyD2

TestsimD 16.80% 5.02% 0.00% 78.18% 0.034s
TestsimND 14.57% 4.46% 1.99% 78.98% 0.036s
TestsimDevD 9.06% 9.04% 0.00% 81.91% 0.304s
TestsimDevND 9.46% 9.73% 0.10% 80.71% 0.257s
TestHion 0.41% 0.45% 0.00% 99.14% NA

Elliptic TestsimDevD 9.06% 16.17% 0.00% 74.10% 1.692s
Envelope TestsimDevND 7.92% 11.87% 1.69% 78.53% 1.789s
Isolation TestsimDevD 9.06% 31.90% 0.0% 58.04% 92.657s
Forest TestsimDevND 9.58% 31.12% 0.02% 59.28% 94.161s

LOF TestsimDevD 9.06% 41.96% 0.00% 48.98% 4.309s
TestsimDevND 9.40% 37.13% 0.21% 53.27% 4.263s

OC-SVM TestsimDevD 9.06% 24.18% 0.00% 66.76% 1.048s
TestsimDevND 9.28% 23.20% 0.33% 67.20% 1.045s

Auto-encoders TestsimDevD 9.06% 38.61% 0.00% 52.33% 0.342s
TestsimDevND 8.92% 36.03% 0.63% 54.40% 0.344s
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C. Detailed results

Figure C.1: State of art comparison with DyD2 on simulated sets
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