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R
R É S U M É E N F R A N Ç A I S

r.1 introduction

Avec le développement du transport automobile et de l’informatique,
les systèmes d’aide à la conduite se sont multipliés au fil des années
pour améliorer la sécurité et le confort d’utilisation des véhicules.
Dans un premier temps, ces systèmes d’aide à la conduite utilisaient
essentiellement des capteurs proprioceptifs et ne permettaient pas
d’analyser l’environnement dans lequel le véhicule évoluait. Au début
des années 2000, les systèmes d’aide à la conduite se sont complexi-
fiés pour devenir des systèmes d’aide à la conduite avancés (ADAS)
offrants de de nouvelles fonctions se basant sur la perception de
l’environnement. Pour répondre à ce besoin, les véhicules ont été
équipés de capteurs extéroceptifs et de système de traitement pour
comprendre l’environnement proche dans lequel évolue le véhicule.
Naturellement, la multiplication des ADAS a porté l’idée de véhicules
autonomes et souligné le besoin de comprendre l’environnement le
plus précisément possible. Au début des années 2010, une approche
coopérative a émergé afin d’outrepasser les limitations des capteurs
ainsi que les problématiques d’occultations. Cette approche fut ini-
tialement abordée par la coopération entre véhicules jusqu’à l’arrivée
d’infrastructures. Toutefois, les méthodes de coopération sont encore
disparates et soulèvent de nouvelles problématiques techniques. Ainsi,
les travaux effectués pendant cette thèse s’orientent sur deux axes
organisés en trois chapitres. Le premier constitue la réalisation d’un
état de l’art sur la perception coopérative dans le contexte automobile
et occupera le premier chapitre. Le second axe consiste en deux contri-
butions occupant chacune un chapitre. L’une se concentrant sur la
génération d’une carte des obstacles au niveau d’une intersection via
une architecture faisant coopérer les véhicules et une infrastructure,
l’autre sur la mise à jour vers une carte sémantique.

r.2 la perception coopérative dans un contexte auto-
mobile

r.2.1 Les bases de la coopération

Pour effectuer de la perception coopérative, on observe que trois
éléments sont obligatoires et doivent être choisis minutieusement, car
ils impacteront les résultats suivants. Ces trois éléments sont : les
capteurs, la communication et l’architecture. Toutefois, malgré le soin
apporté au choix de ces trois éléments, l’aspect coopératif impose de
nouveaux défis qu’il est important de prendre en compte lors de la
réalisation d’un système coopératif.

3
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4 résumé en français

r.2.1.1 Capteurs

Les capteurs sont à la racine des systèmes de perception, qu’ils soient
coopératifs ou non. Il est important de connaître leurs performances
seul ou au sein d’un système de perception multimodal non coopératif
pour avoir un point de comparaison sur les systèmes de perception
coopératifs. Nous allons donc dans les prochaines lignes étudier les
capteurs les plus communs dans un contexte automobile. Le tableau
1.1 compare les capteurs et leurs performances.

système de navigation globale par satellite Le position-
nement par satellite, souvent appelé Global Positioning System (GPS)
ou Global Navigation Satellite System (GNSS), est sans doute l’un
des capteurs les plus répandus, puisqu’utilisés par les conducteurs
eux-mêmes en guise d’assistance à la conduite. Alors que le GPS seul
obtient une erreur allant jusqu’à 20 m [104], des évolutions comme
le Real-Time Kinematic GPS (GPS RTK) permettent une précision de
quelques centimètres [65]. Pour augmenter la fréquence d’estimation
de la position, l’ GNSS est souvent associé à un Inertial Measurement
Unit (IMU) [74, 125].

caméra Les caméras sont des capteurs fréquents sur les véhicules
et permettent plusieurs taches comme la détection d’objets [6] ou
l’estimation de trajectoire et la création de cartes via le Simultaneous
Mocalization And Mapping (SLAM) [94]. Les caméras sont souvent
associées à des capteurs de distances, car elles ne fournissent pas
directement d’informations de profondeur [65].

radar Les Radio Detection and Ranging (RADAR)s font partie des
capteurs de distances fréquemment utilisés [48, 111, 114]. Leurs prix
sont assez faibles et permettent d’obtenir la distance d’un objet, mais
souffre d’une mauvaise résolution angulaire.

lidar Les Light Detection and Ranging (LiDAR) sont, comme les
RADAR, des capteurs de distance qui sont de plus en plus présents
sur les véhicules malgré leur prix élevé [23, 77]. Ils sont fréquemment
associés à des caméras pour apporter l’aspect de profondeur aux
images. Ainsi, on les retrouve dans les mêmes tâches que pour les ca-
méras, c’est-à-dire de la détection et classification d’objets, estimation
de trajectoire et cartographie comme le SLAM [21, 24, 68, 69].

capteur ultrasonic Ces capteurs sont très commun grâce à
leur faible coût, mais ne fonctionne qu’à basse vitesse [65].

méthodes basées rf Ces méthodes se basent sur les communi-
cations entre le véhicule et une infrastructure ou d’autres véhicules
[30]. On distingue quatre méthodes pour se positionner à partir de
plusieurs points définis. Elles se basent sur le Received Signal Strength
Indication (RSSI), le Time Of Arrival (TOA), le Time Difference Of
Arrival (TDOA) et le Angle Of Arrival (AOA). On distingue une
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autre approche qui permet de reconnaitre l’environnement radio à
partir d’une carte réalisée en amont et de l’empreinte radio de chaque
localisation.

installation typique Aujourd’hui, on trouve au sein d’un sys-
tème des couples de capteurs. On retrouve notamment fréquemment le
couple GNSS-IMU pour la localisation et les couples caméra-LiDAR et
caméra-RADAR pour offrir les informations de profondeurs robustes
manquantes sur les images [48, 119].

r.2.1.2 Communication

Dans un système coopératif avec plusieurs agents, les moyens de
communication sont incontournables. Ceux-ci doivent offrir une infra-
structure robuste ainsi que divers standards permettant aux véhicules
de communiquer entre eux.

infrastructure de communication pour les communica-
tions à courtes distances, le standard IEEE 802.11p, extension du
Wireless Fidelity (Wi-Fi) est fréquemment utilisé sous la norme améri-
caine Wireless Access in Vehicular Environments (WAVE) ou la norme
européenne ITS-G5, mais offre des performances réduites [12]. Une
autre solution consiste en l’utilisation du réseau cellulaire, et notam-
ment du réseau 5G [56] et de ses liens haut débit Millimeter Wave
(mmWAVE) [73, 83]. Cependant, la mise en place de ce réseau est
toujours en cours et des tests de robustesse doivent être effectués.
Enfin, d’autres solutions sont envisagées comme celles se basant sur
l’Ultra Wide Band (UWB) [52, 62] et le Visible Light Communication
(VLC) [65] mais sont encore très expérimentales.

transport des données Pour transporter des données, il est
nécessaire de les empaqueter. Le protocole Vehicular Ad-hoc Net-
work (VANET) [38] est assez répandu et se constitue d’une norme
européenne Cooperative-ITS (C-ITS) [40] et d’une norme américaine
Dedicated Short-Range Communication (DSRC) [60]. Elles apportent
des solutions sur les couches du modèle OSI, énoncé dans le tableau
1.2. En dehors du modèle VANET, le framework proposé avec Robot
Operating System (ROS) [88] permet une communication presque
transparente sur un réseau, peu importe sa taille [4, 63, 64, 73, 110].

r.2.1.3 Architecture

L’architecture d’un système coopératif indique comment les agents
vont communiquer entre eux. On remarque deux approches : l’ap-
proche centralisée et l’approche distribuée.

approche centralisée L’approche centralisée se définie par
un point par lequel toutes les données transitent. Cette approche
est souvent utilisée dès lors qu’une infrastructure en bord de voie
est présente et traite des données [48, 77]. Cette approche permet
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d’agréger plus de données et d’avoir un point de vue plus global sur
la scène tout en pouvant offrir plus de puissance de calcul. Cependant,
cette approche induit un délai entre les données issues des capteurs et
les données après traitement. De plus, si l’élément central tombe en
panne, l’intégralité du système cesse de fonctionner.

approche distribuée Cette approche est quant à elle plus com-
mune dans les scénarii où des véhicules communiquent les uns avec
les autres [73, 119, 126]. Cette approche a pour avantage d’être toujours
disponible dès qu’au moins deux véhicules sont disponibles et est
résiliente. Toutefois, le réseau est moins optimisé et des délais peuvent
impacter la synchronisation des agents.

r.2.1.4 Défis

Dès lors que nous utilisons plusieurs capteurs, certains défis appa-
raissent comme la multimodalité ou le calibrage des capteurs. Ces défis
sont exacerbés dans un système coopératif et d’autres s’adjoignent à
eux.

multimodalité La multimodalité est l’un des défis les plus
connus, car l’un des défis les plus fréquemment rencontrés dès lors que
plusieurs capteurs de différents types sont associés. Deux solutions
sont apportées. La première consiste à créer des objets topologiques
pour chaque objet détecté dans la scène et d’enrichir ou d’affiner suc-
cessivement ses caractéristiques en utilisant chaque type de capteurs
séparément [56]. Une autre solution est de traiter chaque objet indé-
pendamment et dans une représentation finale commune afin de les
fusionner [77, 119].

calibrage Le calibrage consiste à trouver la pose des capteurs les
uns par rapport aux autres (les paramètres extrinsèques). Dans un
système où les capteurs sont fixes les uns par rapport aux autres, ce
calibrage peut être effectué manuellement [4, 77]. Or, ce n’est pas le
cas lorsque des agents sont dynamiques et aucune méthode ne donne
de réelle solution pour effectuer une calibration dynamique.

synchronisation La synchronisation est une étape primordiale,
car un délai induit impacte significativement la précision de l’esti-
mation de pose des objets dynamiques. Bien qu’il soit possible de
déclencher physiquement toutes les acquisitions simultanément sur
un système unique, cette tâche est impossible dès lors que plusieurs
agents sont dynamiques. Une solution est d’utiliser le protocole Net-
work Time Protocol (NTP) [120] ou l’horloge transmise par les satellites
GPS [112].

points de vues Dans un système coopératif, les points de vues
peuvent être extrêmement différents. Ainsi, un même objet observé par
différents points de vues peut avoir un aspect radicalement différent.
Actuellement, ce qui semble se rapprocher le plus de cette problé-
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matique sont les systèmes de Motion Capture (Mo-Cap) moyennant
l’installation d’amers singulière sur les objets facilitant l’association.
Aujourd’hui, ce problème n’est pas encore réellement exploré.

association Enfin, en rapport avec la différence de points de
vue, il est nécessaire pour toutes les observations d’un objet de les
associer ensemble. Une solution consiste à utiliser sa position ou
encore des paramètres comme sa vitesse [63]. Une autre solution
proposée consiste en l’utilisation de graphes bipartites [81].

r.2.2 Localisation

La localisation coopérative est un sujet très actif dans la littérature.
Celui-ci consiste à localiser le véhicule ainsi que les autres agents
connectés. On remarque deux approches : l’estimation de pose sans
à priori et l’optimisation de pose. Le tableau 1.4 compare les perfor-
mances des méthodes de localisation.

r.2.2.1 Estimation de pose coopérative

L’estimation de pose coopérative, sans à priori, permet de trouver
sa position à partir d’autres points dont la position est connue. Ce
procédé trouve toute son utilité dans des lieux non couverts par les
infrastructures de positionnement comme le GNSS. D’ailleurs, nous
pouvons noter que le système de positionnement par satellite est
lui-même un système de localisation coopératif satellite-utilisateur.

multilatération Le principe de la multilatération est d’utiliser
la distance entre des ancres (mobiles ou non) localisées. C’est sur
ce principe que fonctionne le GNSS où les satellites sont des ancres
mobiles avec une position parfaitement connue ainsi que les méthodes
basées sur le RSSI, le TOA et le TDOA fonctionnent [2, 3, 86, 91].

triangulation Le principe de la triangulation est similaire à
celui de la multilatération, mais se base sur des mesures d’angles au
lieu des mesures de distances. C’est sur ce principe que se base l’AOA
[54].

approche géométrique L’approche géométrique consiste à ef-
fectuer une estimation de pose relative à une ancre localisée grâce à
des caméras, LiDAR ou RADAR [4, 35]. Cette estimation peut être
effectuée par une ancre ou par le véhicule. Toutefois, il a été observé
que les performances ne sont pas équivalentes en fonction de qui fait
l’estimation relative [55].

r.2.2.2 Optimisation de l’estimation de pose coopérative

L’optimisation de l’estimation de pose consiste à affiner la pose des
différents utilisateurs. Cette partie peut utiliser les trois procédés de
l’estimation de pose et va chercher à minimiser les erreurs [43]. On
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trouve alors trois méthodes principales. Celles basées sur les Extended
Kalman Filter (EKF) [81], celles basées sur les Particle Filter (PF)
[58] et celles basées sur la théorie des graphes citegulati2016vehicle,
gulati2017graph.

r.2.3 Détection et suivi d’objets

Une autre tâche de la perception coopérative est la détection et le
suivi d’objets. Ce sujet est moins exploré que celui de la localisation
coopérative, mais y est aussi très lié dans la partie de suivie. Le tableau
1.5 récapitule les méthodes et leurs performances.

r.2.3.1 Détection et classification

La détection et la classification coopérative est peut-être la partie
la moins explorée par la communauté. En général, cette tâche est
effectuée localement sur les agents et sur des objets topologiques qui
sont distribués en vue d’être fusionnés [4, 77]. C’est ce qu’on appelle
la fusion tardive, qui est l’un des trois schémas de fusion pour la
détection et la classification [6, 27].

fusion tardive Comme énoncé dans les lignes précédentes, cette
forme de fusion utilise la capacité individuelle de chaque agent obser-
vateur pour obtenir des objets déjà traités pour les fusionner.

fusion précoce Cette méthode de fusion compte sur le partage
de données brutes et uniformes pour densifier les observations et
aider à la détection et à la classification.

fusion profonde Cette méthode se base sur le fait que les al-
gorithmes de classification et de détection sont aujourd’hui majori-
tairement constitués de réseaux de neurones [49]. L’idée est de faire
passer les données brutes dans les premières couches d’un réseau de
neurones et de partager des valeurs intermédiaires. Toutefois, cela
nécessite que tous les agents aient le même réseau de neurones ayant
reçu le même entrainement [23].

r.2.3.2 Suivi

Le suivi et la localisation coopérative sont intrinsèquement liés [29].
Ainsi, dans beaucoup de travaux, ces deux notions sont confondues
comme avec les méthodes de Simultaneous Localization And Tracking
(SLAT) [113] ou de Gaussian Mixture Probability Hypothesis Density
(GMPHD) [4, 25, 56]. Pour suivre des objets topologiques au travers
d’une scène, il est aussi possible de prendre des paramètres constituant
l’objet comme sa vitesse ou sa pose [63, 64, 77, 81].
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r.2.4 Génération de cartes

Globalement, les cartes se distinguent en deux familles : les cartes
géométriques et les cartes volumétriques. La génération ou la mise à
jour de cartes coopératives s’applique à ces deux familles.

r.2.4.1 Cartes géométriques

Les cartes géométriques contiennent des éléments décrit par des pa-
ramètres [4, 8, 11, 77, 119]. En tant qu’utilisateurs, nous sommes
déjà familiers des cartes géométriques coopératives. En effet, de nom-
breuses applications de navigation participative mettent à profit les
observations des utilisateurs pour mettre à jour certains éléments de la
carte. C’est notamment sur ce principe que se basent les cartes utilisant
la formalisation Local Dynamic Maps (LDM) proposée par l’European
Telecommunications Standards Institute (ETSI) [39]. Cette formalisa-
tion prend la forme d’une carte formée de 4 couches. La première
couche constitue les informations statiques comme les voies de circula-
tion et leur vitesse associée. La seconde est constituée des informations
à long terme comme des zones de travaux. La troisième couche est
constituée d’informations à moyen terme comme des véhicules en
stationnement, des bouchons ou des conditions météorologiques parti-
culières. Enfin, la quatrième et dernière couche concerne les éléments
à court terme comme les véhicules en circulation ou le statut des feux
de circulation.

r.2.4.2 Cartes volumétriques

Contrairement aux cartes géométriques, les cartes volumétriques re-
présentent l’environnement dans une forme discrétisée [96]. Les grilles
d’occupation et ses dérivées sont un exemple très commun de carte
volumétrique dans lequel l’environnement est discrétisé en cellules
et ont l’avantage de facilement pouvoir être fusionnées [14, 63, 64].
Chaque cellule donne une indication sur son statut occupé ou libre.
Bien que certains auteurs génèrent ces cartes à partir de caméras, elles
sont majoritairement construites à partir de capteurs de distances.
Cependant, les scanners laser offrent naturellement des cartes sous la
forme de nuages de points pouvant être fusionnés notamment grâce
à l’algorithme d’Iterative Closest Point (ICP) et de ses variantes [116,
122].

r.2.5 La perception coopérative aujourd’hui

Ces dernières années, la perception coopérative gagne de plus en plus
en intérêt et de nombreux projets tentent de répondre à un ensemble
de scénarii.

r.2.5.1 Scénarii et expérimentations

Généralement, la perception coopérative répond à la problématique
du manque de visibilité dû aux limitations des capteurs ou aux occul-
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tations. La gestion des intersections est un des scénarii qui bénéficie
d’une grande part des travaux. Viennent ensuite les dépassements,
rabattement et les insertions dans lesquels les autres véhicules forment
de multiples occultations [4, 16, 42, 64, 77, 119].

r.2.5.2 Jeux de données

Bien que les projets de perception coopérative se multiplient et que
l’effort de recherche s’intensifie dans cet axe, on observe que les jeux
de données sont très peu nombreux. On note la présence du dataset
T&J [23] où plusieurs véhicules équipés de LiDAR s’observent. Pour
obtenir des jeux de données coopératifs, il faut utiliser un simulateur
comme celui proposé par CARLA [33, 89, 92, 98].

r.3 génération coopérative de grilles d’occupation évi-
dentielles

Après avoir effectué notre état de l’art, nous avons remarqué que les
efforts de recherches se concentrent sur les architectures Vehicle-to-
Vehicle (V2V) Vehicle-to-Infrastructure (V2I) unidirectionnelles. En
effet, lorsqu’une infrastructure est présente dans un système, seules
les données issues de cette dernière et de l’ego-véhicule sont utilisées.
Nous souhaitons donc utiliser ces points de vue jusqu’ici ignorés
pour générer une carte. Cette carte sera ensuite redistribuée à tous les
utilisateurs. Afin de rester dans les spécifications des liens de commu-
nication, nous n’utiliserons que des boîtes englobantes 2-Dimensional
(2D) issues des images acquises par les différents points de vue.

r.3.1 Idée générale

L’idée générale est que nous pouvons faire une projection inverse des
boîtes englobantes dans l’espace 3-Dimensional (3D). Puisque nous
n’avons aucune information sur la distance, ces projections inverses
prennent la forme de frustum. Dès lors qu’un objet est observé par
plusieurs points de vue, nous pouvons estimer que les frustums se
croiseront et que la position de l’objet dans l’espace se situe à cette
intersection.

Puisque les véhicules évoluent sur le sol, nous pouvons estimer la
position de celui-ci en cherchant l’intersection avec le frustum associé
à sa détection et le plan du sol. Cette intersection entre le frustum
et le sol forme une silhouette similaire à une ombre projetée. Ainsi,
plus un véhicule est observé, plus les silhouettes projetées au sol
s’accumuleront et plus l’estimation de l’emprise réelle du véhicule
sera précise.

r.3.2 Architecture du système

D’un point de vue macroscopique, notre architecture est constituée
de trois éléments. Les agents observateurs, le Road Side Unit (RSU) et
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les utilisateurs qui reçoivent la carte générée sans nécessairement être
contributeurs. Les agents envoient des données au RSU qui génère
une carte et l’envoie aux utilisateurs selon la figure 2.3.

agents Les agents observateurs peuvent aussi bien être des véhi-
cules ou un point de vue de l’infrastructure. En fait, nous les consi-
dérons simplement comme des points de vue transmettant une boîte
englobante 2D ainsi que les paramètres intrinsèques et la pose du
capteur d’images.

RSU Le RSU reçoit les données transmises par les agents pour en
créer une carte sous la forme d’une grille d’occupation. Les données
suivent le cheminement décrit dans la figure 2.4. Dans un premier
temps, on duplique ces données en de multiples particules sur les-
quelles on ajoute du bruit sur tous les paramètres afin de modéliser
les incertitudes. Ces particules sont projetées et discrétisées avant
d’être fusionnées dans une grille d’occupation locale. Nous obtenons
donc une grille d’occupation locale pour chaque point de vue sur
laquelle les silhouettes représentant l’emprise au sol des véhicules
ainsi que l’incertitude qui leur est associée. Ces grilles sont ensuite
synchronisées puis fusionnées avant d’être partagées.

r.3.3 Méthodes

Les deux points les plus importants dans le traitement des données
effectuées par le RSU réside dans la création des grilles d’occupation
locales ainsi que la fusion de ces dernières dans une grille d’occupation
finale à partager.

r.3.3.1 Génération de grilles d’occupation locales

Pour obtenir les silhouettes des boîtes englobantes sur le sol, nous
devons trouver l’intersection entre le frustum associé aux boîtes englo-
bantes avec le plan du sol avec pour à priori la pose approximative
des caméras.

frustum Pour retrouver les paramètres décrivant le frustum, nous
avons besoin de quatre rayons. Puisque les boîtes englobantes sont
issues du plan image de la caméra, nous considérerons le modèle du
sténopé inverse. Le modèle du sténopé permet de prendre un point
3D et de le projeter sur le plan image en un point 2D. Néanmoins,
avec cette opération nous perdons l’information de profondeur. Par
conséquent, en effectuant l’opération inverse, pour un point 2D du
plan image, nous obtenons une multitude de points 3D suivant une
ligne passant par le centre optique de la caméra et le point 3D réel
duquel provient le point 2D sur l’image. Suivant ce principe, avec les
quatre coins formant une boîte englobante, on obtient quatre lignes
3D formant le frustum. Ces quatre lignes sont décrites en utilisant
deux points 3D appartenant à la projection inverse d’un point 2D avec
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deux distances arbitraires différentes. On considérera par exemple le
centre optique de la caméra et un point reprojeté à 1 m de la caméra.

obtention de silhouettes Puisque les lignes du frustum sont
décrites par deux points, nous utilisons le système de coordonnées de
Plücker pour décrire les lignes. Le plan du sol est quant à lui décrit
par 3 points ou le vecteur normal du plan et une distance par rapport
à son origine. Ainsi, on retrouve le point 3D Pintersection à l’intersection
d’une ligne L et d’un plan π via une multiplication décrite dans
l’équation R.1.

Pintersection = Lπ (R.1)

Pour un ensemble de quatre lignes formant le frustum, nous obtenons
donc quatre points sur le plan du sol formant un polygone corres-
pondant à la silhouette de la boîte englobante 2D. Ce polygone est
discrétisé afin d’assigner aux cellules une valeur d’occupation dans le
but d’obtenir une grille d’occupation.

r.3.3.2 Fusion des grilles

Pour fusionner les grilles d’occupation, nous avons testé deux ap-
proches. La première se base sur la théorie bayésienne tandis que
l’autre se base sur la théorie de l’évidence aussi appelée la théorie de
Dempster-Shafer ou Dempster-Shafer Theory (DST).

fusion bayésienne Puisque les observations entre deux points
de vue sont indépendantes et ne s’influencent pas les unes les autres,
nous pouvons utiliser le principe de probabilité jointe décrite dans
l’équation R.2.

P(o1 ∩ o2) = P(o1)× P(o2) (R.2)

Où o1 et o2 représentent des observations distinctes. Ainsi, pour deux
cellules de même coordonnées, mais issues d’observations différentes,
la probabilité jointe de leur occupation est le produit de la probabilité
d’occupation selon les deux observations. Puisque cette opération est
associative, nous pouvons fusionner les cellules de même coordon-
nées pour un nombre arbitraire d’observations sans se préoccuper de
l’ordre. On renouvellera cette opération pour toutes les coordonnées
de la carte.

fusion évidentielle La DST se base sur un système de masses
associé à des éléments focaux. Puisque nous avons une grille d’occu-
pation, nous considérons deux états pour une cellule : occupée O ou
libre F . Cet univers de possibilité est noté Ω. Les éléments focaux
proviennent de l’ensemble des sous parties de Ω et est noté 2Ω où
2Ω = {∅,O,F , Ω}. Une masse est associée à chacun des éléments
focaux suivant une fonction nommée Basic Belief Assigment (BBA).
Nous avons défini cette fonction suivant l’algorithme 1. Nous obtenons
donc une grille évidentielle où, pour chaque coordonnée, une cellule
contient les masses des quatre éléments focaux.
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Figure R.1 : Champs de vue de tous les agents du dataset.

Pour fusionner ces grilles évidentielles, nous avons utilisé la règle
de combinaison de Dempster définie dans l’équation R.3 où m1 et m2

correspondent aux masses pour deux observations.

m f (X) = m1(X)⊕m2(X), X ∈ Ω (R.3)

m f (X) =
1

1− K ∑
Y∩Z=X ̸=∅

m1(Y)m2(Z) (R.4)

K = ∑
Y∩Z=∅

m1(Y)m2(Z), ∀Y, Z ∈ 2Ω (R.5)

Cette opération est renouvelée pour toutes les coordonnées de la carte.
La carte fusionnée ainsi obtenue est donc une grille évidentielle qu’il
faudra retransformer en grille d’occupation. Nous avons donc utilisé
les valeurs de m(O) en guise de grille d’occupation.

r.3.4 Résultats

Puisqu’aucun jeu de données ne proposait un ensemble de véhicules
tous instrumentés ainsi qu’une infrastructure avec des champs de vue
se recouvrant, nous avons dû créer notre propre jeu de données pour
tester notre approche. Nous avons ensuite fait une étude qualitative
pour vérifier que nous avions des résultats cohérents puis nous avons
fait une étude quantitative.

r.3.4.1 Jeu de données

Pour construire notre jeu de données, nous avons utilisé le simulateur
CARLA. En guise de scénario, nous faisons transiter trois véhicules
dans un rond-point surveillé par un point de vue infrastructure. Ces
véhicules embarquent tous une caméra et s’observent les uns les autres.
Tous les agents partagent leur point de vue simultanément. La figure
R.1 montre les différents points de vue disponibles dans ce dataset.
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r.3.4.2 Résultats qualitatifs

Les résultats qualitatifs nous ont permis d’isoler 6 scénarii ayant
des configurations de véhicules différentes. Nous avons notamment
remarqué que plus les champs de vue se recoupent, meilleurs sont les
résultats. Nous avons pu aussi observer que les véhicules semblent
bien positionnés sur la carte et que les résultats sont cohérents avec la
vérité terrain comme le montre la figure R.2.

r.3.4.3 Résultats quantitatifs

Afin d’étudier quantitativement les résultats de notre approche, nous
avoins choisi d’utiliser deux indicateurs : l’intersection sur l’union
(Intersection over Union (IoU)) ainsi que le F1-score. Nous considérons
une cellule comme occupée si sa probabilité est supérieure à 0.5. Pour
la méthode basée sur la fusion évidentielle, nous obtenons un IoU
maximal de 30.52 % sur l’une de nos séquences et un IoU global
de 22.35 %. En revanche, pour la méthode de fusion bayésienne, les
résultats sont nuls, car aucune cellule ne semble dépasser le seuil
requis pour être considérée comme occupée.

r.4 génération coopérative de grilles sémantiques évi-
dentielles

Jusqu’ici, nous n’avons pas abordé l’aspect sémantique sur nos cartes.
En fait, nous avons validé que notre approche apporte des résultats in-
téressants malgré une implémentation rudimentaire. Nous allons donc
ajouter l’aspect sémantique dans nos travaux et incrémentalement
améliorer notre implémentation. Nous testerons aussi notre approche
sur une plus grande variété de datasets.

r.4.1 Nouvelle architecture

L’architecture globale de notre approche n’évolue que très peu. Les
agents observateurs partagent les boîtes englobantes avec le label
associé à l’objet observé avec les paramètres intrinsèques et la pose
du capteur d’images. Une carte sous forme de grille sémantique
locale est créée à partir des boîtes englobantes puis est transformée
en grille d’occupation sémantique ou en grille somatique évidentielle
avant d’être fusionnée soit par une méthode bayésienne, soit par une
méthode basée sur la DST. Enfin, la carte issue de la fusion de tous
les points de vue est transformée en carte sémantique par un bloc de
prises de décision.

r.4.2 Grilles locales

La création de la grille sémantique locale utilise le même principe
d’obtention des silhouettes expliquées précédemment se basant sur
l’intersection de frustums créés à partir de boîtes englobantes et du
plan du sol. Toutefois, lors de la discrétisation, les cellules ne se voient
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(a) Vérité terrain

(b) Carte après fusion par DST

Figure R.2 : Cartes à la trame 150 permetant une étude qualitative. Les
véhicules sont détéctés mais plus grand que leur taille réelle.
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pas assigner une valeur de probabilité, mais le label associé à la boîte
englobante d’origine pour former une grille sémantique.

Puisque nous connaissons maintenant les labels associés aux sil-
houettes, nous pouvons réduire leurs tailles dans des dimensions
raisonnables. En effet, une voiture à rarement une emprise au sol supé-
rieur à 6 m et un piéton une emprise supérieure à 1 m sur l’axe le plus
long de la silhouette. Nous réduisons donc la taille des silhouettes et
assignons le label non observé dans la partie que nous avons supprimé
de la partie silhouette originale.

r.4.2.1 Assignement des valeurs

Selon si nous effectuons une fusion dans le cadre bayésien ou dans le
cadre evidentiel, l’assignation de valeurs diffère.

grille d’occupation sémantique La grille d’occupation sé-
mantique contient plusieurs couches : une par label. Dans notre cas,
nous avons choisi de considérer trois labels : des piétons, des véhicules
et le terrain. Ainsi, pour chaque cellule d’une carte sémantique, en
fonction du label de la cellule, nous appliquons sur la cellule cellule
associée à une position correspondante des valeurs prédéfinies pour
les sous-cellules représentant un espace de label.

grille sémantique évidentielle Pour les grilles sémantiques
évidentielles, le principe est similaire aux grilles d’occupation séman-
tique, mais le nombre de sous-cellules correspond aux éléments focaux
formés par l’ensemble des parties de l’ensemble des labels. Ici aussi,
pour chacune des observations un ensemble de valeurs à assigner à
chacun des éléments focaux est prédéfini.

r.4.3 Méthode de fusion

Dans notre première implémentation de notre approche, nous avons
observé que l’approche bayésienne ne donnait pas de résultats, car le
seuil de probabilité de détection d’occupation des cellules n’était ja-
mais dépassé. Cependant, puisque notre méthode de prise de décision
change, nous pourrions avoir des résultats différents. C’est pourquoi
nous implémentons aussi bien une version adaptée pour l’aspect sé-
mantique d’une méthode de fusion se basant sur la théorie bayésienne
qu’une basée sur la DST.

r.4.3.1 Fusion bayésienne

Nous considérons toujours que les observations entre tous les utilisa-
teurs sont indépendantes et qu’elles ne sont pas influençables par les
unes avec les autres. Par conséquent, nous utiliserons la propriété des
probabilités jointes pour fusionner les sous-cellules de même label et
de mêmes coordonnées de toutes les observations.
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r.4.3.2 Fusion évidentielle

Jusqu’ici, nous avons utilisé uniquement la règle de combinaison de
Dempster qui est normalisée par une mesure du conflit d’observa-
tion. Nous testerons ici une autre méthode, en plus de la règle de
combinaison de Dempster : la règle de combinaison conjonctive. Cette
règle de combinaison est très proche de celle de Dempster puisque
seule la partie de normalisation est abandonnée comme décrite dans
l’équation R.6.

m1(X) ∩ m2(X) = ∑
Y∩Z=X∈2Ω

m1(Y)m2(Z) (R.6)

Similairement à ce que nous avons expliqué dans la section précédente,
les cellules de mêmes coordonnées et pour les trois labels véhicule,
piéton et terrain sont fusionnées pour toutes les observations.

r.4.4 Prises de décision

L’aspect décisionnel a été fortement n’a pas été totalement exploré
lors de notre première implémentation. C’est pourquoi nous avons
développé de nouvelles solutions pour décider quel label assigner à
une cellule à partir des cartes fusionnées.

r.4.4.1 À partir d’une grille d’occupation

Puisque la grille d’occupation sémantique finale contient les proba-
bilités pour chacun des labels, nous avons décidé de choisir le label
ayant la probabilité maximale. Puisque nous retrouvons une grille
sémantique, nous ne devrions plus avoir à considérer un seuil d’oc-
cupation, mais une correspondance de label. Cela supprime donc la
problématique rencontrée précédemment.

r.4.4.2 À partir d’une grille évidentielle

Pour prendre une décision à partir des éléments focaux d’une grille
évidentielle, beaucoup de solutions existent que nous avons regrou-
pées en trois familles.

masses Une méthode simple, s’inspirant de celle adoptée pour les
grilles d’occupation sémantique, est de sélectionner le label ayant une
masse maximale en ignorant les autres éléments focaux.

croyance et plausibilité La DST vient avec deux notions : la
croyance dont la fonction est notée bel et la plausibilité dont la fonction
est notée pl. Les deux valeurs obtenues par ces fonctions encadrent
la probabilité associée au label. Il est donc possible de choisir le label
ayant une croyance ou une plausibilité maximale.

estimation de probabilités Une solution pour estimer la pro-
babilité est de prendre la valeur se situant entre les valeurs de croyance
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et de plausibilité. On choisira donc le label ayant la probabilité esti-
mée maximale. De la même façon, il est possible d’ajouter un poids
qui diminuera la probabilité estimée si l’écart entre la croyance et la
plausibilité est grand.

Il est aussi possible de mesurer la probabilité estimée par le calcul
de probabilité pignistique BetP décrit dans l’équation R.7.

BetP(A) = ∑
∅ ̸=B⊆Ω

m(B)
1−m(∅)

|A ∩ B|
|B| , ∀A ⊆ Ω (R.7)

La fonction BetP est normalisée par le conflit. Par conséquent, elle
devrait avoir les mêmes résultats après une fusion par la règle de
combinaison conjonctive et la règle de combinaison de Dempster. On
choisira ici aussi le label pour lequel la valeur de BetP est maximale.

r.4.5 Résultats

Jusqu’ici, nous avons testé notre approche avec deux méthodes de
fusion et un jeu de données limité. Par conséquent, nous allons tester
notre approche avec plusieurs jeux de données de notre conception
ainsi qu’avec différents paramètres.

r.4.5.1 Jeux de données

Puisqu’au début de nos travaux sur la mise à jour de notre approche,
nous nous sommes encore heurtés à la problématique du manque
de jeu de données coopératif, nous avons créé de nouveaux jeux de
données avec plus de véhicules et des configurations différentes. De
plus, nous voulons tester notre approche avec des piétons, qui étaient
absents sur notre jeu de données original. Nous avons donc fait 3 jeux
de données au niveau du rond-point en faisant varier le nombre de
véhicules et les configurations de l’infrastructure ainsi qu’un autre jeu
de données au niveau d’une infrastructure.

r.4.5.2 Résultats qualitatifs

Comme dans notre première implémentation, nous pouvons remar-
quer que notre approche fonctionne aussi avec l’aspect sémantique
comme le montre la figure R.3. On remarque qu’ici, la fusion bayé-
sienne fonctionne quasiment aussi bien que l’approche basée sur la
DST. L’étude quantitative nous permet de mieux les distinguer. Pour
comparer nos résultats avec les méthodes de l’état de l’art, nous avons
utilisé les algorithmes de reconstruction 3D proposés avec COLMAP
[95]. Cependant, en donnant les images de tous les points de vue ainsi
que la pose des capteurs à COLMAP, nous ne sommes pas parvenus à
obtenir de résultats. Cela est dû à la différence de point de vue et à
l’apparence des objets qui rend impossible l’association des features.

r.4.5.3 Résultats quantitatifs

Pour effectuer notre étude quantitative, nous avons utilisé trois mé-
triques : l’IoU, le F1-Score ainsi que le Correct Ratio (CR). Nous avons
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(a) Vérité terrain. (b) Carte après fusion par
la règle de Dempster
et après une prise de
décision avec la masse
maximale.

(c) Carte après fusion
bayésienne.

Figure R.3 : Cartes sémantiques pour l’étude qualitative. En violet : le terrain,
en cyan : les véhicules et en jaune : les piétons.

Fusion Classe IoU F1-Score CR

Méthode
bayésienne

V 26.21 36.46 96.50

P 22.33 41.52 99.95

T 96.40 98.17 96.45

Moyenne 48.31 58.71 N/A

Méthode
(DST)

V 50.55 67.07 98.87

P 28.03 43.49 99.98

T 98.84 99.41 98.85

Moyenne 59.14 69.99 N/A

Table R.1 : Detail de l’IoU, F1-Score et du CR (en %) sur notre jeu de données
autour d’un rond-point et une densité de trafic forte.

comparé l’approche avec la fusion bayésienne et la fusion par la DST.
Puis, nous avons comparé les méthodes de prise de décisions, le taux
d’agents contributeurs dans la flotte de véhicules et la densité du
trafic.

fusion bayésienne vs fusion par la DST Dans un premier
temps, nous voulons comparer pour un même jeu de données l’ap-
proche avec la fusion bayésienne et la fusion par la DST. Nous avons
donc effectué cette comparaison sur notre jeu de données autour d’un
rond-point et une densité de trafic forte. C’est aussi l’occasion pour
nous de comparer nos trois indicateurs. Le tableau R.1 montre que la
fusion par DST donne des résultats supérieurs à la fusion bayésienne.
puisque le F1-score et le CR sont des métriques intrinsèquement liées,
nous n’utiliserons que l’IoU dans les prochaines lignes.

prise de décision Nous avons remarqué un comportement étrange
au premier abord puisque tous les résultats étaient identiques pour
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toutes les méthodes de prise de décision ainsi que pour les deux règles
de combinaison de la DST : la règle conjonctive et la règle disjonctive.
Cela est dû au fait que les résultats finaux sont obtenus après une
comparaison entre les labels. Ainsi, si le classement entre les labels est
le même, même si les valeurs absolues sont différentes, nous obtenons
le même résultat final.

taux d’agents contributeurs Nous avons remarqué que la
méthode bayésienne offre ses meilleurs résultats lorsque le taux de
participation est faible pour atteindre un mIoU de 54.86 % avec 3 % de
véhicules contributeur et seulement un tiers des points de vue infra-
structure en fonctionnement. Toutefois, dans tous les cas, la méthode
basée sur la DST est supérieur à la méthode de fusion bayésienne.

La fusion basée sur la DST quant à elle semble atteindre un seuil
sur l’IoU moyenne d’environ 57 % pour 50 % de véhicules connectés et
un tiers de l’infrastructure ainsi qu’un seuil d’environ 60 % pour 50 %
de véhicules connectés et tous les points de vue de l’infrastructure en
fonctionnement.

densité du trafic Nous avons remarqué que, aussi bien pour
la méthode de fusion bayésienne, et celle basée sur la DST, les perfor-
mances sont meilleurs pour une densité de trafic moyenne. On relève
un IoU moyen de 52.59 % pour la fusion bayésienne et de 62.05 % pour
la fusion basée sur la DST. Cependant, l’écart entre les deux méthodes
semble augmenter avec la densité du trafic.

r.5 conclusion

Dans ces travaux de thèse, nous avons établi un état de l’art sur
la perception coopérative dans le contexte automobile. Nous avons
notamment listé les modalités de perception les plus communes, les
méthodes de communication ainsi que les problèmes soulevés. Nous
avons ensuite discuté des méthodes de localisation, de détection et
suivi d’objets et de cartographie coopérative avant de lister les scénarii
et expérimentations impliquant de la perception coopérative.

Nous avons ensuite proposé une nouvelle méthode prenant aussi
bien en compte les points de vue dans-la-scène des véhicules ainsi
que les points de vue en hauteur qu’offrent les infrastructures pour
générer une carte d’occupation de l’environnement. Nous avons dé-
cidé de nous limiter à l’utilisation de boîtes englobantes 2D afin de
respecter les limitations imposées par le réseau. Nous avons testé deux
approches pour fusionner les points de vue : une approche bayésienne
et une approche basée sur la théorie de Dempster-Shafer qui nous a
permis d’obtenir une carte cohérente avec la vérité terrain. Finalement,
nous avons poursuivi le développement de notre approche pour y
inclure l’aspect sémantique et lui apporter des amméliorations. Nous
avons aussi effectué une validation plus approfondie avec un ensemble
de jeux de données proposant différents scénarii. Nous avons pu mon-
trer lors de notre étude qualitative que notre approche fonctionne
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tandis que les méthodes de l’état de l’art proposé dans COLMAP ne
parviennent pas à obtenir de résultat. Nos améliorations ont significa-
tivement amélioré les résultats suite à une fusion bayésienne, mais les
résultats issus d’une fusion basée sur la théorie de Dempster-Shafer
restent systématiquement supérieurs.

Les travaux de cette thèse ouvrent de nouvelles perspectives encore
inexplorées. Cependant, pour continuer le développement de cette
approche, il est nécessaire d’obtenir de véritables jeux de données co-
opératifs. Une étude devrait aussi être faite pour la gestion du bruit de
pose des capteurs et du bruit de détection aussi bien sur la génération
de grilles locales que sur l’assignation de valeur de probabilités ou de
masses. Pour nous concentrer sur la partie coopérative, nous n’avons
pas traité l’obtention des boîtes englobantes 2D dans les images. Il se-
rait intéressant de tester la robustesse de notre système en fonction de
la distance, des perturbations météorologiques et du bruit de classe. Il
serait intéressant d’inclure des informations optionnelles dépendantes
des capacités perceptives des agents comme des boîtes englobantes
3D ou des informations de distance.
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I N T R O D U C T I O N

Terrestrial transport is a fundamental element of our society
and has been evolving continuously, adopting a wide variety
of technical developments. As soon as steam engines appeared,

the idea of creating machines dedicated to transportation was born,
giving birth to the automobile. However, with the increase in speed, we
have also observed an increase in accidents, mostly caused by human
error. In response to this problem, ITT Automotives introduced the
first electronically controlled anti-lock braking system (ABS) in 1969

to improve braking performance. Other systems such as electronic
stability program (ESP) or traction control have been introduced to
help drivers. The common point of these driving assistance systems is
that they are based only on proprioceptive sensors and do not interact
with the environment.

With the progress of embedded computer technology since the
early 2000s, driver assistance systems have become more complex and
have become advanced driver assistance systems (ADAS). The latter
are equipped with exteroceptive sensors and can interact with their
environment. This is notably the case of lane keeping assistance (LKA)
based on a camera observing the road and an actuator inflicting a
slight correction on the steering wheel. There is also the automatic
emergency braking (AEB) using a radar to slow down the vehicle
to maintain a safe distance or to brake in case of risk of collision.
Finally, we can also cite the blind spot warning (BSW) that warns of
the presence of obstacles.

Naturally, with the multiplication of ADAS, the idea of autonomous
vehicles and autonomous navigation has been reinforced. However,
autonomous navigation requires a perfect understanding of the en-
vironment in order to adapt to each situation. One solution to this
problem is the multiplication of sensors on the vehicle in order to
reduce the blind spots as much as possible and to surpass the percep-
tion capacities of humans. Nevertheless, some obstacles remain such
as sensor limitations (e.g. angular resolution, dynamic range, etc.),
external disturbances (e.g. weather, ambient light, etc.) or limitations
inflicted by the environment in which the vehicle is navigating (e.g.
occlusion due to buildings or other vehicles).

Since the beginning of the 2010s, a solution seems to emerge: con-
necting vehicles to each other. Indeed, if vehicles share their state
(position, speed, direction), then it becomes possible to anticipate
situations that were unpredictable until now. However, this does not
take into account other objects like pedestrians and other inanimate
obstacles. Moreover, not all vehicles are equipped to communicate.
This is how the cooperative perception was imagined where vehicles
are equipped with sensors and transmit what they detect to each other.
However, today the proportion of connected vehicles and, among
them, the proportion of vehicles equipped with sensors is still very

25
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low. It is also to address this issue that lane-side sensors have started
to be introduced into this equation. The other major advantage of
point-of-views is that they are often positioned high up and offer a
new perspective to understand the environment.

Today, the methods of cooperation are still disparate and poorly
coordinated despite efforts to standardize them, while raising new
technical challenges. Thus, the work carried out during this thesis has
two major axes which will be represented by three chapters in this
manuscript. The first axis is to establish a state of the art of cooperative
perception in the automotive context in order to identify the different
projects, methods, approaches and difficulties encountered so far.
The second axis consists of two contributions in which we present a
new approach of cooperative perception on board / off board. This
approach will first address the presence or absence of obstacles in a
scene before adding a semantic dimension in a second step.

In the first chapter, we present the state of the art of cooperative per-
ception in the automotive context. We start by discussing the sensors
and data most frequently used to perceive the environment and then
we present the different communication modes to share the acquired
data. We also discuss the approaches and architectures of coopera-
tion as well as the difficulties encountered in this domain. We then
present and evaluate the methods and performances of cooperative
localization, object detection and tracking before discussing the meth-
ods for generating cooperative maps. Finally, we discuss the scenarios
to which cooperative perception responds as well as related projects.

In the second chapter, we note that cooperative approaches involving
infrastructure do not take into account data from connected vehicles.
We therefore propose an approach using all available data to gener-
ate a dynamic object occupancy map and the associated cooperative
architecture. In order to keep the impact on the network infrastruc-
ture as low as possible, we have decided to use only 2-dimensional
information, such as that captured by ADAS currently available on
the market. We also present two data fusion methods: one based
on Bayesian theory and the other based on Dempster-Shafer theory
(DST). Our approach is tested on a dataset built from the CARLA
simulator. In our qualitative evaluation, we show that our approach
works and allows us to find the position of vehicles in the scene with
very little information. Finally, our quantitative evaluation highlights
the superiority of the DST-based solution over the most widely used
state-of-the-art method based on the Bayesian theory.

In the third chapter, we take the idea presented in chapter two
and add the semantic dimension. We start by updating the already
presented architecture and then we present new methods for local
grid generation needed for viewpoint fusion. After adapting the fu-
sion methods to the semantic aspect, we propose several methods
for decision making, an aspect that was not treated in the previous
chapter. Finally, we perform an extensive study on a set of new and
more complete datasets. This study allows us to evaluate the global
performances of our approach and to study its response to the change
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of the proportions of connected vehicles in the scene or the number of
vehicles in the scene.

Finally, we conclude this manuscript with a summary of the key
points presented and by discussing the perspectives of this work.

[ December 15, 2022 at 19:11 – version 3.1 release ]



[ December 15, 2022 at 19:11 – version 3.1 release ]



1
C O O P E R AT I V E P E R C E P T I O N I N A N AU T O M O T I V E
C O N T E X T

associated article

[1] Antoine Caillot, Safa Ouerghi, Pascal Vasseur, Rémi Boutteau,
and Yohan Dupuis. “Survey on Cooperative Perception in
an Automotive Context.” In: IEEE Transactions on Intelligent
Transportation Systems (2022), pp. 1–20. issn: 1558-0016. doi:
10.1109/TITS.2022.3153815. url: https://hal.archives-
ouvertes.fr/hal-03608119/document.

1.1 introduction

The concept of driverless cars is one of the landmarks of a futuristic
world for generations. Already in 1939, General Motors (GM) initiated
the first attempt of making this a reality by showcasing a radio piloted
car [13]. Since then, the development of this technology has never
stopped and is increasingly getting complicated over a wide range
of fields such as perception, decision making, and control. After the
pioneer works of GM, during the 1980s, Mercedes-Benz showcased
the first autonomous car with a vision-controlled robotic van reaching
a speed of 63 km/h on streets without traffic. This led to the creation
of international projects and challenges such as the Defense Advanced
Research Projects Agency (DARPA) Grand Challenge in 2004 consist-
ing of autonomously navigating through the Mojave desert in 142

miles long course [107]. The next step was navigation in an urban
environment through normal traffic conditions. In 2007, the DARPA
announced the holding of the Urban Challenge that simulates an urban
environment with streets, traffic lights, and human-driven vehicles.
[108]. We can also note the VisLab Intercontinental Autonomous Chal-
lenge (VIAC) challenge in 2010 consisting of driving autonomously
through a 13000 km long way from Parma in Italy to Shanghai in
China [18]. Nowadays, several companies sell cars with the ability to
offer an autonomous driving experience such as Tesla [31] or the Audi
A8 [100]. The idea of cooperative vehicles quickly appeared and in
2011 the grand Cooperative Driving Challenge (GCDC) took place in
the Netherlands in which vehicles had to perform the best in a platoon
[36, 61]. The GCDC has been reiterated in 2016 to perform lane merg-
ing, driving in an intersection as well as emergency vehicle handling
in a cooperative context [119]. Cooperation between vehicles can be
extended to infrastructure and thus led to the project Providentia in
Germany [48] consisting in creating a digital twin of a road section
generated from the sensors of an infrastructure.
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In our context, the perception task consists in the estimation of
the status of the ego-vehicle in the scene as well as the environment
elements surrounding it. We distinguish 3 subsections, the localization
of the ego-vehicle, the detection and tracking of other users and,
finally, the detection and representation of the environment (mapping).
Cooperation represents the use of data provided by other agents to
perform perception tasks or to refine their results. Cooperation can be
performed at three levels of data sharing depending on whether the
data is raw (early fusion), preprocessed data (mid fusion), or processed
data (late fusion). Fig. 1.1 represents this pipeline with three steps and
three blocks (namely: Localization, Object Detection and Tracking and
Map Generation) performing the main perceptive tasks to understand
the scene. In the early fusion stage, we represent the raw data fusion.
In this stage, the data provided by the sensor at a given timestamp
is aggregated and associated with a given transformation between
sensors. The raw data comes from connected users which perform an
early fusion. The raw data from the ego vehicle may also be shared
with other users. In the second stage, we note two parallel tasks
running. One estimates the vehicle’s location in the environment from
the sensors and can also benefit from other users’ measurements as an
aid. The second task performs the detection and tracking of objects in
the scene. It can also benefit from the data of connected users to densify
the global perception of the environment. Both together perform the
heart of the perception outputting feature level data shareable with
other users. The last stage aims to build a map, hence giving context
to the previously acquired data. It is based on the use of a given
prior map and can also be updated cooperatively by connected users.
This block diagram tries to briefly showcase the classical scheme of a
cooperative Vehicle-to-Everything (V2X) perception pipeline. However,
reality offers a broader range of architectures with their specificities
and a certain amount of challenges when realizing them, which is
exposed later in this survey.
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Figure 1.1: Block diagram of the minimal perception pipeline in a vehicle (in black). We can distinguish three main stages able to share the locally produced data
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This chapter aims to provide a state of the art of cooperative percep-
tion methods for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I). We have organized the chapter in an order that respects the
data flow, divided in six sections. Section 1.2 focuses on the creation
of cooperative systems from a general point of view. We particularly
review the challenges brought by cooperative systems, the possible ar-
chitectures, and the available communication facilities. We also present
a review of frequently used sensors along with their performances in
a non-cooperative environment to provide a reference as a basis for
comparison. Section 1.3 lists the cooperative methods of locating the
ego-vehicle in the scene. Section 1.4, for its part, reviews the methods
of detection and tracking of objects in the scene. Section 1.5 reviews
the role of maps and their usage in a cooperative context. In Section
1.6, we propose to summarize the cited techniques through a summary
table and we propose a Strengths, Weaknesses, Opportunities, and
Threats (SWOT) analysis. In section 1.7 we review the scenarios in
which cooperation brings real advantages illustrated by experimenta-
tions. Finally, We list the datasets available to unlock work perspectives
before providing our conclusion in section 1.8.

1.2 basics of cooperation

The ways of creating cooperative perception systems are multiple and
require to assess several types of architecture. Each design has advan-
tages and disadvantages and will deeply affect how the system will
react as well as its strengths and its weaknesses. Another unavoidable
point of any cooperative system is the communication facilities which
define what data can be shared as well as the formats available. These
two points will be tackled in this section but we will start by briefly
reviewing the results available in the non-cooperative methods based
on the same sensors widely used in the cooperative counterpart to get
comparison points.

1.2.1 Sensing Modalities

Sensors are the basics of any perception system as they allow us
to sense ourselves as well as the surrounding environment. Since
the sensors we are going to discuss have already been presented in
numerous articles, we will rather focus on their performances. In [65],
Kuutti et al. brought a survey introducing the sensors and comparing
their performances in a positioning context and therefore inspired
the following structure. In table 1.1, we provide an overview and a
comparison of the most widely used sensors.

1.2.1.1 Global Navigation Satellite System

When it comes to knowing our position, the satellite positioning
system is the most widely used. Initiated by the United States with
the Global Positioning System (GPS), several countries contributed
with new satellite constellations. The pure GPS has an error of up to
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20 meters [104] but several methods have been used to refine these
results. However, since the GPS has an update rate up to 20 Hz, it is
often associated with an Inertial Measurement Unit (IMU) bringing a
high updating rate [74]. An association of a pure GPS with an IMU
showed they could achieve an error of 7.2 meters (Root Mean Square
(RMS)) after a path of 408 meters [125].

One of the problems encountered with pure GPS is its first acquisi-
tion time. The Assisted GPS (AGPS) brings a solution to this by using
the cellular network to download the almanacs and hence reducing
the downloading time from the slow satellite connection. However,
it does not bring any precision improvement. Unlike the AGPS, the
Differential GPS (DGPS) allows a reduction of the error up to 1 to 2

meters in the covered zones [101]. The arrival of the Real-Time Kine-
matic GPS (GPS RTK) achieved unprecedented performance with an
error of a few centimeters range [65]. Similarly to the AGPS, both
DGPS and RTK do use a terrestrial infrastructure to download the
satellites’ almanacs via an internet connection. Although we do not
consider Global Navigation Satellite System (GNSS) technology as a
cooperative system, it is one as it features several vehicles (terrestrial
users and satellites) and infrastructures.

Nowadays, pure GPS had been replaced by the GNSS, currently
based on several satellite constellations such as the American GPS, the
Chinese BeiDou Navigation System, the Russian Global Navigation
Satellite System (GLONASS), the Japanese Quasi-Zenith Satellite Sys-
tem (QZSS) and the European Galileo. Using the Real-time extended
(RTX) technology, the Root Mean Square Error (RMSE) achieves a 2.9
cm accuracy [84].

1.2.1.2 Camera

Cameras can be used to detect and track obstacles (pedestrians, cars,
animals) as described by Arnold et al. [6]. Formerly, these tasks were
mostly based on a geometric approach to the problem, but machine
learning and deep learning methods have taken over the state-of-the-
art. Hence, nowadays, most efforts are based on machine learning
solutions.

Another field of application for cameras is trajectory estimation,
especially with visual odometry [94]. This technique consists in recog-
nizing key points in a frame and then finding them in the following
frames to estimate the displacement of the camera. We can note that
this method is sensitive to error accumulation over time. This principle
is extended in the Simultaneous Mocalization And Mapping (SLAM)
algorithms with the difference that the perceived environment is kept
to create a map and estimate its position with an accuracy of 75 cm
[70]. Nowadays, new methods featuring Deep Learning bring even
better results such as DeepSLAM proposed by Li et al. in [71] which
gives a mean translation RMSE drift of 5.58% and a mean rotational
RMSE drift of 2.47◦/100m alongside a 100 m to 800 m path. Since
visual odometry and SLAM are based on the notion of optical flow,
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the arrival of event-driven cameras with hardware adaptation offers
promising results in both localization and classification.

However, monocular systems pose a limitation on the estimation
of the position on the depth axis of the images. One solution is to
use two or more cameras to create a stereoscopic vision system and
to synchronously search in both cameras for corresponding interest
points. Another solution to get the depth information from a monoc-
ular system is to use a deep learning algorithm [44]. In addition to
these techniques, Camera-Light Detection and Ranging (LiDAR) or
Camera-Radar coupling has been extensively investigated in the state
of the art.

1.2.1.3 Radio Detection and Ranging (RADAR)

Compared to cameras, radars have a lower angular resolution. This
characteristic makes them less suitable for the classification of per-
ceived objects. However, their accuracy in distance and speed mea-
surements is much better than cameras and they are therefore used in
addition to the latter as in the Providentia project [48].

The concept of visual odometry has been adapted to the radar
device. A high-speed rotating radar has allowed a position estimation
with an error of 12 meters despite the distortions due to the rapid
rotation [111]. Another system using Short Range Radar (SRR) allowed
an estimation with an RMS error of 7.3 cm on the lateral axis and
37.7 cm on the longitudinal axis in [114]. In the same way with the
SLAM, an experiment allowed a localization with a mean error of 9

cm and a standard deviation of 38 cm [111]. Nevertheless, radars can
penetrate certain materials, notably those that compose the ground.
Thus, a method based on the mapping of underground terrain has
allowed a localization with a precision of 4 cm and is presented in
[28]. Despite advantages such as insensitivity to weather conditions,
the authors specify that further researches are needed to create robust
maps to multi-path effect or to characterize reflections induced by
vehicle’s chassis.

1.2.1.4 LiDAR

LiDARs (Light Detection And Ranging) can be considered as an in-
termediary between radar and camera. They provide a list of points
in a three-dimension space. These points are extracted from the angle
formed by the laser beam and the distance from the sensor and the
impact. To get the distance, there are several techniques. The most com-
mon one is based on the Time of Flight (ToF) principle, but we can cite
other techniques such as the Frequency Modulated Continuous-Wave
(FMCW) or the Amplitude Modulated Continuous-Wave (AMCW)
[44]. Since the angular resolution is thinner than the radar, we can clas-
sify detected objects besides being able to locate them more accurately
[23, 77].

In the same way as what we have seen with previous sensors, the
principles of visual odometry and SLAM can be adapted to LiDAR
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sensors. In [68], a GPS, IMU and wheel odometry have been combined
within a SLAM framework that allowed a localization estimation
error between 10 and 30 cm. An improvement of the SLAM and an
implementation of dynamic maps allow an error of 9 cm in a dynamic
environment [69]. By projecting the ground on a grid invariant to
the laser perspective, a position estimation with an RMS error of 3.3
cm on the longitudinal axis and 1.7 cm on the lateral axis has been
performed in [21].

Halfway between cameras and LiDARs, ToF cameras, made of a
sensor similar to cameras are based on measuring the ToF taken bay
the light to return to the sensor. They provide depth images that can
be related to point clouds generated by the LiDARs. By using them
in a visual odometry algorithm, Chen et al. were able to estimate
the trajectory with an absolute trajectory error (ATE) of 78 cm on a
25-meter path [24].

1.2.1.5 Ultrasonic

The majority of vehicles sold today carry ultrasonic sensors. The draw-
back of such sensors is that they have a very low angular resolution
that requires a too important calculation cost. Also, they are highly
sensitive to weather conditions and the Doppler effect when objects
are moving fast and have a short-range [65]. These elements make
this sensor unsuitable for applications of obstacle localization and
classification.

1.2.1.6 Radio Frequency (RF) based methods

Wireless communications are mandatory in a cooperative environment
hosting mobile users. However, they can be used as sensors, especially
to estimate the position of a receiver. Various sources of radio signals
can be used, such as the cellular network or infrastructure made up of
anchors, as in the case of Ultra Wide Band (UWB) systems allowing
centimeter-scale location [30].

Position estimation methods are generally based on measuring the
distance between the transmitter and the receiver. Thus there are four
main methods for position estimation :

• Received Signal Strength Indication (RSSI): RSSI based method
that consists of measuring the signal strength to measure the
distance between the transmitter and the receiver based on the
electromagnetic permeability and the diffusion factors of the
environment. A distance measurement allows us to position
ourselves on a circle surrounding the transmitter base, but, as
shown in Fig. 1.2, it is impossible to know where on this circle.
To eliminate ambiguity, it is necessary to make at least three
measurements to find the common intersection of the three
circles.

• Time Of Arrival (TOA) and Time Difference Of Arrival (TDOA):
These methods that use the transmission delay of a signal be-
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tween its emission and its reception. Since the speed of an elec-
tromagnetic wave is known, it is possible to find the distance
between the two devices. In the same way as the RSSI-based
method, at least three measurements are necessary to estimate
the position of the receiver.

• Angle Of Arrival (AOA):, Unlike the other two methods, AOA
method, is based on measuring the angle formed by the direction
of the received signal. This angle associated with the position of
an anchor forms a straight line on which the vehicle is located.
With a second measurement on another anchor, a second straight
line is obtained which intersects the first one at the position of
the vehicle as illustrated in Fig. 1.3.

• Fingerprint: This method is based on the specificity of the envi-
ronment and in particular on its capacity to alter the strength of a
signal and to reflect it (multi-path). The aggregated information
is compiled into a map allowing us to match the received signals
to a position.

Typical setup

The listed sensors succeed to achieve their tasks but also suffer from
shortcomings. Therefore, sensor fusion is mandatory to get over the
limitations of each one. We already mentioned the fusion between a
GNSS receiver and an IMU to improve the localization performance.
Similarly, vehicles or infrastructures embed several types of sensors.
A usual setup for autonomous cars is constituted of GNSS - IMU to
achieve global localization with cameras, laser scanners or RADARs
for detection and tracking of elements in the scene or as another source
of localization information. Infrastructure also embeds sensors such
as cameras and laser scanners or RADARs to locate users as seen in
[48, 119].
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Sensor Given data Environement’s
impact

Advantage Disadvantage Performances

GNSS
Absolute

position
Requires at least 4

satellites in sight of
view and is sensitive
to the canyoning effect
in urban environment.

The system doesn’t re-
quire an initial posi-
tion to give a result
and can be used in
an unknown environ-
ment.

The result is out-
putted once per sec-
ond and the reliability
of the signal depends
on the services cover-
age.

Pure GPS: 20 m

Pure GPS + IMU:

7.2 m error

GNSS RTX: 2.9 cm

IMU Relative posi-
tion

The system is not af-
fected by the environ-
ment.

Ability to output a re-
sult at a higher fre-
quency than GNSS.

The error accumulate
as the time passes and
is affected by the pre-
cision. The higher the
precision is, the higher
the price is.

Estimated bellow 7.1 % Rela-
tive Error for MPU-9150 [109]
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Radar
Distance and

relative speed
Affected by weather
conditions (mainly
rain but also snow,
mist).

Long range percep-
tion and hardware
speed measurement
possible

Poor angular resolu-
tion making object
classification harder

Angular accuracy: 0.5º to 5º;
Speed accuracy: 0.2ms−1; Per-
ception range: up to 250 m;
Sampling rate: up to 20 Hz

LiDAR Point cloud Affected by weather
conditions (mainly fog
but also rain).

Compromise between
radar and camera al-
lowing a physical mea-
sure of the distance
but with a lower angu-
lar resolution.

The sparseness of the
point cloud makes it
hard to difficult to
sense the texture.

Angular accuracy: 0.03º; rang-
ing accuracy: 10 cm to 2 cm;
Perception range: 80 m to 200

m; Sampling rate: up to 100

Hz

Camera Image Affected by weather
conditions and bright-
ness.

Sense color and tex-
tures facilitating seg-
mentation and classi-
fying.

Although it can be es-
timated, there is no
direct depth measure-
ment.

Highly dependent on the sen-
sor and associated optics.

Ultrasonic Distance from
obstacle

Affected by weather
conditions

Low cost sensor Small detection range
and high sensitivity to
Doppler effect

Maximum range: 6 m

Table 1.1: Sensor comparison based on [6, 10, 84, 85, 87, 104, 123, 125]
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1.2.2 Communication

In the previous section, we have reviewed the most used sensor in
an automotive context. In a cooperative context, we want to share
the generated data, raw or processed, with other agents with the
aim to densify the image of a covered area. Thus, it is mandatory to
discuss the communication facilities available, which is the aim of this
section. We will focus on the ways to wrap the data they produce and
how to share them. Then, we present some of the most widely used
communication facilities. We also consider new approaches.

1.2.2.1 Wrapping and sharing the data

To share data, users have to choose a specific network architecture. The
most common is the Vehicular Ad-hoc Network (VANET) architecture
consisting in connecting every vehicle in the range from each other
[38]. In VANET, a channel is common to every vehicle to coordinate
the network. The data is shared on different channels and routed by
hopping on vehicles between the sender and the receiver. To assess
the physical layer’s requirement in a VANET network, an amendment
of the IEEE 802.11 was added to create Wireless Access in Vehicular
Environments (WAVE) (IEEE 802.11p). In Europe, the IEEE 802.11p
standard was used to create the ITS-G5 standard [40]. In the same way,
two communication protocols are based on these two standards which
are respectively the Dedicated Short-Range Communication (DSRC)
[60] and the Cooperative-ITS (C-ITS) [40]. Table. 1.2 gives an overview
of both of the standards and their components compared to the OSI
model as given in [40, 60]. We can note the presence of Basic Transport
Protocol (BTP) and GeoNetwork which are defined in [40] as well as
WAVE Short Message Protocol (WSMP), defined in [60] as facilities
to achieve the network and transport layer tasks. The specificity of
the GeoNetwork protocol is that it bases itself on the geographical
position of the agents to determine the path to follow for the data.

The information shared with DSRC protocol is wrapped in Ba-
sic Safety Messages (BSM) [60] which convey information about the
emitting vehicle to avoid collisions. Similarly, C-ITS introduces the
Cooperative Awareness Messages (CAM) also conveying vehicle infor-
mation as the BSM but also introduces the Distributed Environment
Notification Messages (DENM) which notify hazards on the road and
which has a higher priority than the CAM [38]. CAM and DENM
messages proposed with C-ITS are used by [119] but the authors also
needed to use another type of message, the i-GAME Cooperative Lane
Change Message (iCLCM), to indicate to other vehicles their willing to
change lane. Authors in [77] used the Signal Phase and Timing (SPaT)
messages to anticipate the traffic light changes and used the DSRC’s
BSM to notify the presence of detected vehicles by the infrastructure.
To respond to these new needs, messages such as SPaT but also the
messages for road topology data (MAP), for special vehicles (SRM,
SSM), for probe vehicle data (PVD, PDM), and in-vehicle information
(IVI) are being standardized [40].
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Application Other App. Layer Safety App. Layer

Pre-Application
CAM / DENM

BSM / SPaT / MAP / SRM / SSM

Transport TCP / UDP GeoNetwork / BTP

WSMPNetwork IPv6

Data Link ITS-G5

WAVEPhysical

Table 1.2: Representation of the two protocols available in a VANET architec-
ture given through the OSI model [40, 60]. The the C-ITS defined
standard are given in green while the DSRC defined standard is
given in blue. Both of them provide adapted answers for vehicular
communication on the physical layer based on IEEE 802.11p as
well as dedicated messages to encapsulate the data between the
application layer and the transport layer.

Novel network architecture is used by Li et al. in [73]: the Software-
Defined Network (SDN). This solution is placed between the VANET
and the fully centralized network. The common network is thereby
replaced with centralized architecture communicating with a con-
troller which manages the interconnections between the road users
dynamically.

Another common architecture used nowadays is based on the pub-
lisher / subscriber paradigm, mainly supported by the Robot Operat-
ing System (ROS) [88] which is frequently used in recent projects [4, 63,
64, 73, 110]. The structure is based on nodes communicating messages
transmitted on topics. Each node can be a publisher or a listener and
they can be placed on different devices on the same network. A master
program runs and plays the role of a dictionary and is contacted by
every node either to inform about the topic they publish on or to know
which node to listen to for a specific topic. Messages transiting through
topics and are very various and can contain coordinates, images, or
point clouds. A new version of ROS (ROS 2) is being developed with
some improvements regarding fleets of collaborative robots.

1.2.2.2 Communication facilities

A wide range of communication facilities has been proposed for
tackling different needs. We have already mentioned WAVE and ITS-
G5 which are based on Wireless Fidelity (Wi-Fi) (IEEE 802.11) but with
a given frequency of 5.8 GHz in Europe as well as in Japan and 5.9
GHz in USA [12]. Authors of [35] used the IEEE 802.11p to establish a
communication between infrastructure and a vehicle and used DENM
to transmit the control messages and the position information. Chen
et al. [23] similarly used DSRC, and thus WAVE, to share regions of
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interest of LiDAR point clouds and indicate sufficient speed. Kim et
al. [63] used Wi-Fi IEEE 802.11n and studied the impact of the delay
on the position estimation error.

Even if the majority of the current solutions are based on IEEE 802.11

technology and its derivatives, other technologies can be used such as
the cellular network. The advantage of it is its wider coverage and the
already existing infrastructure [7]. 5G cellular network is particularly
promising thanks to its features such as precise localization, high
throughput, and low latency. As described in [56], Proviendentia
takes the advantage of the 5G network to communicate between the
different elements (back-end station, Road Side Unit (RSU), On-Board
Unit (OBU)).

Emerging communication technologies are being explored by au-
thors of [73] who used the Millimeter Wave (mmWAVE) [83] band to
transmit the point cloud produced by the RSU to the OBU and noted
a significant data throughput increase. Another technology studied is
the Visible Light Communication (VLC) [5] which consists of using
light-emitting diode (LED) arrays (e.g. traffic lights, car lights) to dis-
play patterns. VLC allows data rates up to 96 Mb/s but is sensitive to
the environment [65]. Finally, UWB which is used for localization is
capable of communication [93] with data rates tested up to 250 Mb/s
in [52] and up to 1 Gb/s in [62]. However, to our knowledge, UWB
is not used for data sharing in the Intelligent Transportation System
(ITS) context.

1.2.3 Designs and challenges

Until now, we have reviewed the most used sensors used in the au-
tomotive context as well as the communication facilities available to
share the generated data between agents. However, when several users
interact with each other, we have to define the organization of the
communication. We distinguish two main approaches: the centralized
and the distributed ones. We discuss and compare these approaches
in the next lines. Nonetheless, no matter the chosen approach, cooper-
ation brings new challenges. We provide a review of these challenges
following the discussion on organization approaches.

1.2.3.1 Centralized approach

The cooperative approach makes it possible to overcome the problems
of non-cooperative approaches such as extending the horizon line. As
an example, multiple points of view can be used to reduce the effects
of obstructions while densifying the areas covered.

The centralized aspect of this approach concerns the processing
of the acquired data. In this mode of operation, users share their
acquisitions to a single point, for example, a road-side processing
unit. This server is in charge of processing the data and extracting
useful information from it, which are then shared with users. The
Providentia project is based on this approach. Data acquired by the
sensors placed on gantries on a section of highway are transmitted to
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a roadside processing unit, which creates a digital twin of the section
of road accessible to all [48]. Similarly, Lv et al. based their work on a
centralized approach in which four LiDARs monitor an intersection
and transmit their data to an RSU. Users are detected, located and their
information is then relayed to other users [77]. The main disadvantage
of this solution is that the efficiency of this architecture relies mainly
on the processing power of the processing unit. In [99], Shi et al.
proposed a solution to the throughput drop of the service model
of [82] by introducing the cluster-based VANET which consists of
linking sub vehicular network into a larger one. Data collected by
each vehicle of a sub-network are filtered and stored on a server to
be broadcasted under request which resulted in lower network usage
and hence reduced energy consumption.

1.2.3.2 Distributed approach

In contrast to the centralized approach, the data acquired by the users
are directly transmitted to all vehicles simultaneously. Therefore the
processing of these data is done onboard for each vehicle. A typical
case of decentralized management is presented in [119] by Xu et al.
through their participation in the GCDC of 2016. Each vehicle was
broadcasting its state and its maneuver intentions which allowed the
event anticipation and improved the car control. However, the system
used connected cars which are in range with each other limiting the
size of the network. Li et al. proposed the use of the SDN in [73] to
optimize the network usage and set up mmWAVE communication
to increase the throughput allowing them to share raw LiDAR point
clouds. To solve the problem of disconnection in a sparse fleet, Zheng
et al. proposed in [126] the use of the cellular infrastructure to create
a heterogeneous network. The common point of these applications
is that data of every vehicle is processed onboard on each vehicle.
However, the coverage quality depends on the size of the user fleet
[20].

1.2.3.3 Centralized vs Distributed approaches

As stated before, both centralized and distributed approaches have
several advantages and weaknesses, as shown in table 1.3. We can
observe that the distributed approach is the most common because,
nowadays, the majority of cooperative applications are based on V2V
approaches. However, applications based on centralized approaches
are increasingly present today, especially within projects such as MEC-
View [16, 42] and Providentia [48].
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s • Reliable in case of fail-

ure of an element

• Available everywhere

• More data aggregated

• Global view of the scene

• More computing power

D
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• Limited computing

power

• Network less optimised
(duplicated data)

• Synchronisation

• Synchronisation

• Converging network
(Possible bottleneck
effect)

• Latency between the
sensor and the received
information

Table 1.3: Advantages and disadvantages observed between distributed and centralized architectures.
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1.2.3.4 Challenges of cooperation

As we have seen, the architecture of a cooperative system dramatically
impacts the efficiency of a cooperative system. However, this is not
the only challenging part of cooperative systems. As well as for non-
cooperative systems, difficulties brought by the type’s diversity from
the data acquired from the sensors exists as well as the one from the
calibration of the acquisition hardware. But, to them, other challenges
are added such as the synchronization between the actors, the extreme
difference of point of view, or the matching of the receiving data with
the locally acquired one.

multi-modality Multi-modality is the one we are the most aware
of since it appeared in the early time of robotic perception. Indeed,
this challenge appears as soon as several types of sensors giving data
of different nature are used within a system. Some projects avoided
this problem such as Lv et al. [77] who decided to solely use LiDARs
as well Chen et al. in [23] and Li et al. in [73].

Another project trend is to use the different sensors for an appli-
cation to merge the results to improve the reliability or to enrich the
properties of a detected item. As explained by Hinz et al. [56], the
Providentia project uses cameras and radars to sense the environment.
The choice of multi-modality has been made to answer different needs
which are the detection and the classification, performed by the cam-
eras, and the distance and speed measurement, performed by the
radars. Later in this chapter, we assess the way of merging the streams
of data given by the sensors with three different approaches: early
fusion, late fusion, and deep fusion.

Another way to solve the multi-modality and calibration challenges
is to process the data locally for each sensor and share the output in
the form of messages. The above-cited project of Lv et al. [77] uses this
principle to share the detected vehicles facilitating the broadcasting
with smaller data. However, data association is a challenging topic that
must be performed afterward during the aggregation step. The GCDC
2016 offers an answer based on the choice that users broadcast their
states and intentions only avoiding duplicate data and assignment
tasks. Xu et al. used in [119] a LiDAR to perceive vehicle in front of
the ego-vehicle on both lanes by looking for clusters of points. As
reported by the authors, these clusters could be associated with the
messages sent by other vehicles on the map with their coordinates.

calibration Calibration is the other most known challenge in
the perception pipeline. The calibration in a cooperative environment
aims to determine the transformation between the sensors to be able
to merge acquired data from several views at least at a given frame.
If this task can already be challenging on a single agent, it becomes
more laborious in a multi-mobile user environment. In this situation,
the transformation matrix between sensors constantly changes as
the vehicle moves in the scene, featuring long baselines. Moreover,
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synchronization is arduous due to the absence of a physical triggering
line.

Fortunately, to calibrate an infrastructure, manual measures can be
sufficient and remain simple to conduct. Lv et al. [77] calibrated their
infrastructure by measuring the distance between the four sensors
placed at each corner of the intersections.

Similarly, it is possible to semi-automate the calibration process in
the same way as the vision calibration with a chessboard. Krammer et
al. describe in [4] the calibration procedure of the Providentia project:
cameras have been intrinsically calibrated using a chessboard and the
radar was calibrated by using the built-in tools based on the vanishing
point method. We can note that for a cooperative project, the baselines
encountered in the scenes are much wider than the ones met locally
on a vehicle. Thus, a similar application might bring an answer to
calibrate infrastructures with a large baseline and very different point
of view: the Motion Capture (Mo-Cap) systems. Yang et al. give in
[120] an example of calibration with multiple Microsoft Kinects v2

synchronized through Network Time Protocol (NTP). The system uses
a calibration wand to fix the common origin between the cameras
similarly to several other commercial systems (e.g. Vicon, OptiTrack).
Unfortunately, the use of a calibration wand will encounter laser scan-
ners or radars limits: their low angular resolution. In [117], Xia et
al. propose a state of art for global calibration of non-overlapping
cameras. Some of the presented methods could apply to cooperative
roadside infrastructures such as the methods based on Structure From
Motion (SFM) or the visual measuring instruments consisting in lo-
cating landmarks with a known position in the sensor data to recover
the position of the sensors.

However, none of these methods helps when mobile acquisition
platforms appear. Nowadays, the most widely used method, in this
case, relies on absolute coordinates and hence relying on the pose
estimation performance assessed in the Perception part.

synchronization Synchronization is another major challenge to
consider. In a cooperative context, calibration relies on the synchro-
nization of the elements to determine the transformation between
the sensors, especially with the mobile sensors. There are multiple
sources of desynchronization such as an offset between the clocks or
the communication delays. Although clocks are synchronized, we can-
not ensure their acquisition are triggered at the same moment which
adds uncertainty at the moment to merge the acquired data. Similarly,
different sampling rates require interpolation between acquired or
predicted data, also adding uncertainty.

In a local system such as a car or an infrastructure, physical lines can
be used to trigger and thus synchronize the sensors together. However,
this solution cannot be used in a cooperative context since some users
are mobile.

In [63], the authors showed that the delay induced by the communi-
cation can significantly affect the position estimation and thus estimate
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delays between the users to match the timestamps of acquisition to
reduce the delay’s impact.

Another solution can be found by using the NTP to synchronize
the users. This is the solution given by Yang et al. in [120]. As we
mentioned earlier, they use the NTP protocol to synchronize their
Kinect to perform their acquisitions. Nevertheless, while adapting the
NTP to the automotive network seems to be a reasonable solution, it
brings the question of which user provides the clock. A natural answer
could be to use the infrastructure’s clock but we know by experience
that they are not always accurate (e.g. clock provided by the Radio
Data System (RDS) data from the local radios). Another answer is to
use the GPS timestamps and the triggering signal they provide with a
Coordinated Universal Time (UTC) format offering a basic accuracy
of 2µs [112], widely used nowadays.

Movement-based synchronization can also be an answer but highly
depends on the calibration stage and requires an overlapping area in
the acquired data.

point of views Point of views can be extremely different in a
scene featuring infrastructure and mobile users. Thus ask the question
on the fundamentally different looking of a single object which can
even be considered as non-overlapping data. An example could be
a sensor observing the front left corner of a car and another sensor
observing the right back corner of the same car. The Mo-Cap systems
can bring an answer to this section here as well by trying to match the
perceived object with a skeleton or a bounding box and fitting them
together.

Another question comes with the mix of mobile and static users.
In [79] Merriaux et al. show that LiDAR scans are affected by the
movement and demonstrate that the rectification of the point cloud
brings better results at the merging step. To our knowledge, there is no
study of a fixed laser scanner with moving objects but we can suppose
that some alteration can be caused on the scanned moving structures.

perception matching Perception matching between objects
sensed by others and shared to the ego vehicle and the object sensed
by the local sensor is a typical challenge of a cooperative system and is
rarely assessed in the works we have seen. A basic solution is to match
the object with their positions as in [119] but the noise induced by the
sensors can lead to errors. Similarly, we can use features describing a
vehicle. The position can indeed be a feature and we can add to them
more features. This is what Kim et al. do in [63] by using the speed
of the vehicle as the key feature to match the shared data with the
perceived objects.

With a more mathematical approach, Miller et al. propose in [81] a
solution based on the bipartite graphs which are based on the graph
theory. However, the limitation of the bipartite graphs seems that
the data can be associated with only two participants. Thus, it can
perfectly fit with a centralized architecture with each participant fitting
their observation with the one stored by the infrastructure.
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1.3 localization

As we have seen earlier, some non-cooperative methods manage to
reach the constraints of 0.3m given for in-lane autonomous navigation
[47, 65] in optimal conditions. However, non-cooperative approach
is limited by sensor capabilities such as the GPS coverage density
significantly affecting its performance as well as weather and light
conditions affecting optical sensors such as cameras and LiDARs.
Indeed, the multiplication of the estimations makes it possible to
eliminate the outliers as highlighted in [43]. Moreover, cooperative
systems allow the extension of covered areas and fields of view, which
again increases the reliability and precision of the estimations [50, 55,
63]. The other interest of cooperation in a localization context lies in
the reduction of costs. The improvement of the accuracy and reliability
of a sensor is generally proportional to its price. However, they can be
improved by multiplying the number of sensors distributed over other
users or infrastructures hence reducing the cost of each vehicle [50].

The cooperation can be implemented at several levels of estimation
from the lowest level by sharing raw sensor results to a higher level by
sharing estimated coordinates. In the first case, the objective is rather to
extend the coverage of services either because they are inaccessible (e.g.
GPS in a tunnel) or because the vehicle is not sufficiently equipped.

1.3.1 Low-level cooperative position estimation

One of the most commonly used examples of cooperative position
estimation today is GNSS. GNSS uses the multilateration technique to
estimate the position of a point by measuring the distance between
it and several anchors as explained for TDOA or TOA algorithms
(Fig. 1.2). Here, GPS satellites are used as anchors with their known
positions since, in addition to transmitting the time of transmission
allowing to estimate the distance between the satellite and the receiver,
they also transmit their orbital parameters (almanacs) allowing to
recalculate their position depending on the date.

1.3.1.1 Multilateration

Because of the effectiveness of multilateration, this method has been
adapted to other sensors from other vehicles or infrastructures. In
particular, Rohani et al. in [91] made a simulation with a GPS and
a measurement of the distance between vehicles, obtaining an error
ranging from 3.3 m to 6.75 m depending on the quality of communica-
tion with other vehicles. The maximum error corresponds to the error
of the GPS alone which shows that, in this case, the cooperation only
adds a better accuracy to the GPS but does not degrade it in case of
bad conditions.

To reduce the impact of poor communication, it is possible to apply
weight on distance measurements. This is notably what Ahammed et
al. propose in [2] by applying weight on the measurements depending
on the distance between the two entities leading to an average error of
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Figure 1.2: Illustration of the multilateration principle. A, B and C represent
users or infrastructure points with known locations. The multilat-
eration allow to find the location of the vehicle from the distances
rA, rB and rC and the positions of A, B and C.

2.38 m on a fleet of 10 vehicles. Similarly, Altoaimy et al. in [3] apply
weight on position estimates using the signal to noise ratio (SNR) on
the communication used to estimate the distance between entities. The
simulation of this scenario leads to errors of 85 cm with 20 vehicles
and 25 cm with 200 vehicles.

Although these results are not accurate enough for stand-alone
navigation, it is important to note that they were obtained using GPS
only as a base. Therefore, the use of other technologies may lead to
better results, such as the work by Del Peral-Rosando in [86] using
a TDOA algorithm on 5G cellular network antennas estimating the
position of the receiver with an error between 20 cm and 25cm.

1.3.1.2 Triangulation

In the same way, as for multilateration, triangulation makes possible
the estimation of the position of a receiver in an environment equipped
with anchors. However, where multilateration uses the measurement
of the distance between the receiver and the anchors, triangulation
uses the angle of incidence of the signal emitted by the anchors.
Triangulation is therefore the principle on which the AOA approaches
are based, as illustrated in Fig. 1.3.

However, the authors of [54] note that the multilateration approach
obtained better results at the middle of the network but that the trian-
gulation approach became more efficient at the edges of the network.
The authors, therefore, propose the implementation of hybrid TDOA
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Figure 1.3: Illustration of the triangulation principle. A and B are users with
a known location and are detected by the ego-vehicle. The angles
of detection αA and αB form two lines intersecting at the position
of the ego-vehicle.

and AOA systems. Nevertheless, triangulation-based approaches in
the context of cooperative vehicle localization are still rare today.

1.3.1.3 Geometric

Compared to the two previous approaches, the geometric approach is
one of the most direct methods. It consists of positioning the users in
the local coordinate system of an observer (vehicle or infrastructure)
having its global position known. To locate the user in the local coor-
dinate system, several sensors can be used such as cameras, RADARs
or LiDARs.

In particular, Einseider et al. have implemented an alternative po-
sitioning system for underground parking lots [35]. The detection
and localization of vehicles are done via cameras placed at known
positions. To estimate the position of vehicles in the fields of view
of the cameras, the images are segmented into zones of 1 meter. The
device set up by the authors allows detecting a vehicle at 20 m with
a maximum error of 80cm. This methodology takes advantage of the
geometric topology and the small distances of the scene but does not
apply to larger baselines. To overcome this problem of scenes with
large distances of the Providentia project, RADARs have been added
to the cameras. This device allows the detection and localization of
vehicles over distances up to 200 m with a longitudinal RMSE of 3.27

m and a lateral RMSE of 0.53 m [4].
With a smaller scene, Lv et al. proposed an approach based on

LiDARs at the four corners of an intersection. Vehicles are identified
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in point clouds by clustering points having a distance between them
below a fixed threshold. The position extracted from this point cloud
corresponds to the nearest point of the laser scanner. In [55], Héry et
al. suggest a solution to extract the position of the vehicle from these
point clouds. They distinguish two types of clusters, those shaped
like an L common in lateral detection and those shaped like a C for
longitudinal detection. In addition to these two types of clusters, two
cooperation formulations are presented. The first one corresponds to
the one where the ego-vehicle is equipped with sensors estimating the
pose of a vehicle with a known position. The second one corresponds
to the formulation where the ego vehicle has its position estimated
by the other vehicle having its position known and being equipped
with the sensors. Héry et al. observe that the second formulation,
corresponding to the case where the ego-vehicle position is estimated
by the vehicle knowing its position and being equipped with sensors
to estimate the pose between the two vehicles, obtains better results
than the first formulation. This lies in the case of infrastructures where
the positions of the sensors are precisely known. Besides, L-shaped
clusters provide, in both formulations, results with better accuracy and
consistency, underlining the importance of the structural perception
of the vehicle.

1.3.2 High-level cooperative position estimation

As we have shown, low-level-oriented approaches are much closer to
the hardware. In the case of high-level approaches, they use estimates
of already established positions as a basis for refining them. One
of the most popular methods for position estimation applications is
based on the Extended Kalman Filter (EKF). This approach has been
chosen by Miller et al. in [81] to enrich the position estimate obtained
by a GNSS system with position estimates from other vehicles and
integrating these data through the use of an EKF with a resulting
standard deviation of 0.02m.

However, despite their efficiency in terms of calculation cost, EKFs
are only applicable to locally linear signals with noise following a
Gaussian distribution. In other words, the error of position estimation
must be contained in a Gaussian distribution and thus won’t allow
jumps (which can appear in urban canyoning conditions). Outside
these conditions, they are no longer efficient and other methods such as
particle filters are preferred. This is what Huang and Wu have chosen
in [58] by proposing a cooperative framework based on this approach
and the Interacting Multiple Model (IMM) adapted to cooperation.
The authors simulate the use of the simple Particle Filter (PF) and
obtain an RMS error of 0.2146 m/m traveled on the x-axis and 0.2135

m/m on the y-axis whereas with the IMM-PF filter they obtain 0.1249

m/m and 0.1193 m/m on the x-axis and y-axis respectively.
While Miller et al. [81] use an approach based on graph theory

and in particular bipartite graphs to associate perceived vehicles with
the one from the real world, Gulati et al. use bipartite graphs in the
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form of factor graphs for localization [50, 51]. In [50], the authors
present a formulation of the cooperative localization problem by set-
ting constraints between vehicles according to their distance to correct
measurement errors and obtain better results than those obtained
using an EKF. The authors reiterate in [51] by integrating data from
infrastructures and exceed the previous results.

The use of the high-level approach based on optimization and fil-
tering methods brings several advantages. The first one is that this
approach is compatible with low-level approaches. Indeed, low-level
approaches give as output a position estimation whereas high-level ap-
proaches take as input position estimates to refine them. Consequently,
the high-level approaches operate as a brick placed to improve those
used for position estimation. However, this advantage of easy integra-
tion into an existing system underlines a major drawback: high-level
approaches require basic components to obtain a first position estima-
tion and therefore cannot be used alone. Another advantage of using
this approach is that the processing and size of the data required are
reduced significantly facilitating the communication between users.
This is indeed the observation of Gulati et al. in [50, 51] via the use of
factor graphs.

We could distinguish 3 methods mainly used: EKF, Particle Filter,
and Graph-based methods. Thus we introduced an example of each
to understand the available methods with their advantages as well
as their limitations. However, Gao et al. gather a lot more of these
methods in a cooperative context in their book [43] diving into mathe-
matical details as well as the diversity of variations of each method
which is beyond the scope of this thesis.

1.3.3 Conclusion

In Table 1.4, we note that several methods solely offer a better precision
compared to the non-cooperative methods. Generally, cooperative
localization optimizes the output of the standalone position estimation
methods, refining the estimation through extra data usage. However, a
poor quality localization ability of an agent might dramatically affect
the overall results. It also offers an alternative source of localization
for GNSS denied environments, especially from well-located measure
points such as infrastructures.
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Paper Category Methodology Metrics Results Experiment Style Notes

[91] Multilateration
(Low-Level)

GPS Multilateration Error 3.3 m to
6.75 m

Simulation V2V

[2] Multilateration
(Low-Level)

GPS weighted Multi-
lateration (based on
distance)

Average er-
ror

2.38 m Simulation V2V With a fleet of 10

vehicles.

[3] Multilateration
(Low-Level)

GPS weighted Multi-
lateration (based on
SNR)

Error 85 cm to 25

cm
Simulation V2V With a fleet of 20

vehicles and an-
other of 200.

[86] Multilateration
(Low-Level)

TDOA with 5G an-
tennas

Error 20 cm to 25

cm
Simulation V2I

[35] Geometric
(Low-Level)

Image segmentation Error 80 cm Experimental V2I At 20 m

[55] Geometric
(Low-Level)

Sensor fusion

known→ unknown
Mean error x: 11 cm, y:

36 cm, h: 39

cm

Experimental V2V
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[55] Geometric
(Low-Level)

Sensor fusion

unknown→ known
Mean error x: 27 cm, y:

116 cm, h:
124 cm

Experimental V2V

[58] Optimisation
(High-Level)

Particle Filter RMSE x: 0.2146,
y: 0.2135

m/m trav-
eled

Simulation V2V

[58] Optimisation
(High-Level)

IMM-PF RMSE x: 0.1249,
y: 0.1193

m/m trav-
eled

Simulation V2V

[81] Optimisation
(High-Level)

EKF based optimisa-
tion

Standard
deviation

0.02 m Both V2V

[50] Optimisation
(High-Level)

Factor Graph combined
RMSE

See original
publication
for graph

Simulation V2I Improvement
compared to EKF
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[51] Optimisation
(High-Level)

Factor Graph decrease
RMSE

10.54 % Simulation V2I Compared to EKF
with 4 vehicles for
1000 iterations

Table 1.4: Recapitulative table of the reviewed localization works.
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1.4 object detection and tracking

To navigate in an environment, it is necessary to be able to detect
obstacles in the scene and to track them. Today, most approaches are
based on non-cooperative detection algorithms. This is mainly due
to the limitations of communication methods. In this section, we will
review the different approaches to perform detection in a cooperative
context and the available tracking methods.

1.4.1 Detection and classification

The first step before classifying objects is the extraction of areas of
interest from the data produced by the sensors. Here, we want to iso-
late the mobile objects from the background. This is what Lv et al. do
in [77] where after subtracting the background, group the remaining
points into clusters. These clusters are delimited by batches of points
having a distance to each other below a threshold set beforehand.
Another strategy was adopted by Chen et al. in [23] where the shared
data correspond to areas of interest depending on the position of the
vehicles such as the part of the scene scanned by two vehicles. The
more precise extraction of objects is performed during the detection
phase.

The trend of point cloud raw data sharing is very recent. This is
because communication between users has been limited for a long
time. For instance, the majority of cooperative systems perform the
detection and classification of objects in a scene locally. The extracted
data is often enriched before being shared. A typical example is the
Providentia project [4] where cameras provide a video stream sent
into a neural network based on the You Only Look Once Version 3

(YOLOv3) architecture to detect vehicles in the images. The data of
the vehicles thus classified are enriched thanks to RADAR sensors
allowing a better estimation of their position in the scene. Similarly, Lv
et al. [77] based their solution on the same concept where the user’s
characteristics are locally extracted and where the classification, using
the random forest algorithm, is done locally. The corresponding data
are then centralized to facilitate user tracking.

Nowadays, the majority of detection and classification methods are
based on algorithms based on a neural network-oriented architecture.
Grigorescu et al. in [49] and Arnold et al. in [6] provides an overview
of methods used to detect and classify other users in a non-cooperative
manner. Although the details of these methods are beyond the scope
of this thesis, Arnold et al. offer a review of data fusion methods,
thus providing insight into the problem of multi-modality and the
management of several streams. Based on the work of Chen et al. [27],
the authors raise 3 fusion schemes :

early fusion :
The data streams are merged and formatted before passing
through the neural network. As an example, color data can be
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added to point clouds from cameras. The disadvantage of this
solution is that it is not robust to stream failure.

late fusion :
This is the classic scheme we have seen: the data are processed
locally and separately for each modality and then the results are
merged only at the end. Although it does not benefit as much
from the cooperation in terms of classification, it offers the best
performance.

mid fusion :
Also named as deep fusion, the raw data are sent to the neural
network, which will handle the association of the data by itself.
Although it is sensitive to the absence of modality, it takes full
advantage of cooperation and offers better results than the pre-
vious methods. It is with this scheme that the work of Chen et
al. [23] can be associated.

These three approaches were initially formulated for the local process-
ing on the vehicle but can easily be extrapolated into a cooperative
context. Therefore, we can associate these three strategies to the notion
of a stream that can contain point clouds, images, or the characteristics
of the detected users from any source. However, this extrapolation has
a cost in terms of complexity because the sensors have to be calibrated
dynamically from each other. Since the systems are independent of
each other, the extrinsic parameters between the sensors are composed
of translation, rotation, and time-shift parameters.

The authors of [23] however proposed an extrapolation of the deep
fusion scheme in [22] in which the raw data from a laser scanner
start being processed in a neural network. The authors tried using
the feature at a different level: the voxel feature level and the spatial
feature level. The first one shares a 3D grid containing the result of
the VoxelNET neural network while the other one shares a higher-
level feature from the fusion of spatial features maps. While the first
one generates a large amount of data, the spatial feature level is
sparser, thus lighter, facilitating the exchanges in a bandwidth-limited
environment. Similarly, Marvasti et al. in [78] propose a method to
share deep features from an intermediary layer of a neural network.
However, such an approach brings the question of standardization of
the perception pipeline among every user especially on the evolution
of the neural network in charge of detection as well as the diversity of
models from the different suppliers.

1.4.2 Tracking

The aim of tracking users is to follow them as long as possible in the
scene. Several methods are available to tackle tracking tasks, enumer-
ated in [29] by Datondji et al., such as region-based, contour-based,
feature-based, or model-based methods. Datondji et al. also list two
types of tracking algorithms: matching-based and Bayesian-based al-
gorithms. However, this can be a challenging task because of several
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parameters such as occlusions, change of perception (e.g. appearance,
distortion, etc.), or environment changes (e.g. lighting, color change,
weather change, etc.). Cooperation brings an answer to these difficul-
ties by bringing various points of view.

In [113], authors underline that localization tasks and tracking tasks
can be bounded in Simultaneous Localization And Tracking (SLAT).
Authors propose to use a localization method based on the footprints
of radio transceivers based on the Omnipresent Signals of Opportunity
(SOOP) method. Connected vehicles seek targets by exterminating the
radio reflection of illuminated targets. They propose a SLAT method
based on the derivation of Fisher Information Matrix (FIM) to locate
users and use a hybrid distributed algorithm based on Belief Propa-
gation (BP) to track them and obtain better results than EKF based
methods. The tracking method used is based on the region matching
method. Similarly, Miller et al. used in [81] a region matching method
based on bipartite graphs to track vehicles in a V2V context.

In Providentia project [4, 56], authors based their tracking methods
using Gaussian Mixture Probability Hypothesis Density (GMPHD).
Similarly, Chen et al. in [25] used a GMPHD based method to extract
the tracks of multiple vehicles. The authors perform a SLAT using a
Bayes inference-based algorithm optimizing relative pose estimation
and fusing the matched tracks using fast covariance intersection based
on information theory (IT-FCI). These methods are based on region
methods alongside Bayesian-based algorithms. An answer to the reso-
lution of complex scenes is provided by Huang and Wu in [58]. The
authors rely on cooperation and on a method using particle filters to
locate vehicles more precisely, thus reducing ambiguities when the
vehicles are very close to each other.

Kim et al. in [63, 64] uses the speed of the vehicles as a feature
to identify the user and to track them, thus performing a feature-
based tracking with a matching algorithm. Lv et al. in [77] used the
corner of the detected car the closest to the sensor and applied the
Global Nearest Neighbor (GNN) [15] method to track the vehicles. This
approach lies in the use of a contour-based method with a matching
algorithm.

In [9], authors propose a set of metrics available for tracking tasks
performance evaluation which is nowadays frequently used. However,
in a cooperative context, we have not found works that bring a quanti-
tative evaluation of their tracking methods. This is mainly caused by
the fact that, in cooperative works, a tracking task is just a tool but not
at the center of the research efforts.

1.4.3 Conclusion

The multiplication of the points of view offers a significant advantage
to overcome the limitations of the sensors or to reduce the effects of
the changes of the scene condition. In Table 1.5, we provide a summary
of the solutions given for user detection. Tracking on the other hand
seems to be put aside since the cooperative tracking methods used
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are often only a means to obtain other results on other parts of the
perception pipeline. We also observe that the field of detection and
tracking in a cooperative domain benefits from very little research
effort. We believe that this lack of experimentation in a cooperative
context is due to the bandwidth requirements in communication as
well as the sensitivity to desynchronization and pose estimation errors.
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Paper Category Methodology Metrics Results Experiment Style Notes

[77] Raw data based
detection

Random Forest Detection
Rate

95.5 % Experimental V2I No data given for
the tracking per-
formances

[22,
23]

Raw data fusion
based detection

CNN based network Average
Precision

Near detec-
tion: 77.46

%, far detec-
tion 71.42 %

Experimental
(Datasets)

V2V With KITTI

[22] Voxel feature fu-
sion detection

CNN based network Average
Precision

Near detec-
tion: 77.46

%, far detec-
tion 58.27 %

Experimental
(Datasets)

V2V With KITTI

[22] Spatial feature
fusion detection

CNN based network Average
Precision

Near de-
tection:
50 %, far
detection
57.14 %

Experimental
(Datasets)

V2V With KITTI
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[78] Deep feature fu-
sion detection

CNN based network Detection
of un-
detected
vehicle

Up to 30 % Simulation
(CARLA)

V2V Detection of un-
detected vehicle
by non coopera-
tive algorithm

[35] Geometric
Tracking

Image segmentation Error 80 cm Experimental V2I At 20 m

[4] Geometric
Tracking

Sensor fusion RMSE lat: 3.27 m
lon: 0.53 m

Experimental V2I At up to 200 m

Table 1.5: Recapitulative table of the reviewed cooperative detection and tracking works.
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1.5 map generation

In the previous sections, we have reviewed the ego-localization meth-
ods as well as the detection and tracking methods of agents in a given
scene. Ego-localization and detected and tracked objects can be merged
in a map. Thus, the map can be built cooperatively by aggregating
information from multiple agents. Nowadays, commercial solutions
are available to bring a cooperative aspect to the maps available in
navigation aids. This is notably the case for crowdsourcing-based
solutions such as TomTom, HERE, Waze, etc.

Hence, it is clear that the goal of cooperative mapping used today
is to optimize routes and adapt vehicle navigation by anticipating
the different events on the user’s route. These objectives can be taken
further, in particular, to predict trajectories in real-time thanks to lower
latency and better accuracy of shared data.

In this section, we review the use of maps in a cooperative context
and the different formats available.

1.5.1 Geometric maps

Geometric maps are made up of vector elements describing the envi-
ronment. This method is used in applications such as OpenStreetMaps.
However, in a cooperative context, data from services like the one
mentioned above are not precise enough, which has led to the creation
of maps with better accuracy. In [11], the authors present Enhanced
Maps (Emap) that provide lane level accuracy maps. To achieve this
goal, Bétaille et al. propose to add a set of circles and clothoids to the
traditional vertices. Also in view to improve map accuracy, Bender et
al. present in [8] the lanelets. The lanelets take the form of vertices
representing the left and right sides of a traffic lane. These vertices also
have an enhanced topological role by representing the links between
places and the distance between them.

The use of geometrical maps in a cooperative application has a
supporting role in which the information shared between users is
integrated. Xu et al., in their review of their participation in the 2016

GCDC [119], had to recreate a high-definition map to enrich the
OpenStreetMap plots before using it. Thanks to these high-definition
maps, it has become possible to precisely place elements in real-time
such as other users or danger zones to be avoided and thus to navigate
in a context of cooperative driving in several scenarios that we will
present later. Similarly, in the Providentia project, the autobahn section
has been modeled beforehand with great precision, creating a digital
twin of the scene [4]. Here, the infrastructure shares the position of
each of the detected vehicles to generate a dynamic map. Finally, the
team of Lv et al. [77] didn’t use maps but has rather relied on sharing
information in real-time that can be used to enrich geometric maps
such as the position of vehicles, pedestrians or even information on
the status of traffic lights.
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Through these applications, a global pattern emerges: the shared
information is used to enrich the map rather than to modify it in
depth. Cooperative geometric maps are therefore made up of a suc-
cession of layers. The base layer represents the terrain and is almost
invariable. It can be created from national institutes or directly ex-
tracted from sensors. Then, the higher the layer level is, the shorter
the lifespan of the elements of this layer is. This layer organization
has been formalized under the name Local Dynamic Maps (LDM)
by European Telecommunications Standards Institute (ETSI) [39] and
takes the format of layers with varying validity periods and offers an
implementation framework. The LDM is thus defined as 4 layers :

• Type 1: Static data (Roads, applied speeds, infrastructuresetc.)

• Type 2: Long term transient data (Work zone, temporary speed
change)

• Type 3: Medium-term transient data (weather situation, parked
vehicles, traffic jams, etc.)

• Type 4: short term transient data (vehicles on the road, traffic
lights, etc.)

Each layer is updated with a frequency depending on the duration of
validity of the information. Typically, the Type 4 Layer is updated in
real-time.

1.5.2 Volumetric maps

Volumetric maps are, unlike geometric maps, atomic elements repre-
senting the presence or absence of an obstacle that form a grid with
squares contiguous to each other or scattered arbitrarily. The advan-
tage of volumetric maps lies in the fact that they can be easily created
from sensor data and therefore represent the immediate environment
at the time of data acquisition. Occupancy grids fall into volumetric
maps category forming a 2-dimensional grid, or matrix, similar to an
image [96]. Indeed, a greyscale image can be taken where each pixel
corresponds to an area of the environment and where the greyscale
represents the probability that the area corresponding to the pixel
contains an obstacle as illustrated in Fig. 1.4.

These maps have the advantage that they can be combined very
easily. The authors of [14] have thus shown that they were able to
associate the maps of several robots to obtain a complete map of the
environment. The goal of associating them is to find the transforma-
tion matrix between perception systems. In the case of 2D occupation
grids, the transformation matrix Tx,y,θ contains three parameters: trans-
lation on the x-axis, translation on the y-axis and rotation by an angle
θ. Hence the authors seek a matrix Tx,y,θ that maximizes the similar-
ity between two overlapping maps also called a point registration
algorithm.

Kim et al. propose in [63, 64] to enrich their map by taking pictures
with cameras positioned on several vehicles. The images captured in
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Figure 1.4: Occupancy grid example. Grey boxes represent a 50 % probability
of occupancy if the area is unknown. The white boxes correspond
to the zones identified as free and the black boxes correspond to
the zones occupied by an obstacle.
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this way are distorted to be laid on the ground, providing a satellite
view of the scene. To obtain this result, they applied the Inverse
Perspective Mapping (IPM) method. When the camera acquires an
image, the scene is projected onto the sensor plane. TheIPM is based
on the inverse principle: the 2D points of the sensor plane (stored in
an image) are projected back into a 3D space, assuming that each of
the points is on a flat surface (e.g. the road). The authors of [63, 64]
set the plane to Z = 0 and used other sensors to remove the points
that do not belong to this plane. Thus, by knowing the position of the
different vehicles and, by extension, the position of the cameras, it is
possible to obtain a map enriched with a satellite view cooperatively.

Although this type of map has the advantage of being simple to use
and share, it has the disadvantage of becoming heavier with the size
of the environment being explored invariably, whether the areas are
interesting or not. To overcome this problem, the notion of quadtree
can be introduced. The quadtree divides the map into coarse blocks
which, if they contain useful details, can be subdivided into sub-blocks
which, in the same way, can be divided into sub-sub-blocks.

The authors of [59] used the quadtree-based method to store a
grid of occupancy generated by LiDAR type sensors. Although they
note that the method is more computationally intensive, it shows its
advantage by dividing up to 10.9 the storage required for an equal
area and accuracy. However, to the best of our knowledge, there are
no methods for merging maps in quadtree format.

Until now, we have mainly been talking about two-dimensional
maps, both geometric and volumetric maps. However, three-dimensional
maps are becoming more and more popular thanks to sensors that
provide information in three dimensions rather than just on one plane.
3D maps play an active role in navigation, especially in complex envi-
ronments [80], and provide additional elements that make it easier to
combine several maps.

Similarly, the 2D occupancy grids are also available in a 3D ver-
sion consisting of voxels (volumetric elements). However, just as 2D
maps tend to be too large, 3D maps are even more affected by this
problem due to the additional axis. The answer to this problem is
similar to that of two-axis maps: the octree. Hornung et al. present in
[57] the OctoMap framework allowing the management of maps and
their updates based on a probabilistic approach. Unlike the quadtree
maps, the octree maps have benefited from a better interest in the
context of cooperation. We can notably mention Drwiega’s work in
[34] proposing a method for associating several maps in the Octree
format. To estimate the transformation matrix between the respective
coordinate reference of the two maps, the author translates the Octree
map into a point cloud and then applies the Iterative Closest Point
(ICP) algorithm to it.

This brings us to maps based on point clouds. The volumetric maps
we have seen so far represent the first steps in navigation in the context
of mobile robotics that can be cooperative. However, in the context of
the autonomous vehicle, point cloud-based maps are more widespread.
Point cloud-based maps have the advantage of representing each im-
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pact (and therefore obstacle) in Cartesian coordinates as well as the
raw data from laser scanners like sensors [102]. These maps contain
both fixed elements (the background, Type 1 in the LDM reference
frame) and highly dynamic elements (Type 4 in the LDM reference
frame). As a result, the static part of the map is occluded by the dy-
namic elements of the scene. One solution to reduce the impact of
occlusion is cooperation, where the map can be generated by several
sensors offering several points of view. This is notably what Bosch’s
teams chose in the MEC-view project [16, 42] where a set of cameras
and LiDARs were placed on lampposts to generate an High Defini-
tion (HD) map and offer a view free of blind spots to autonomous
vehicles updating in real-time. In [77], Lv et al. proposed a solution
to extract the background from the raw scans by aggregating several
frames and then applying thresholding to the voxels resulting from
the rasterization of the accumulated point clouds.

In the same way, as for occupation grids (2D or 3D), the key point
allowing the cooperation and thus the association of point cloud maps
is the estimation of the transformation matrix between the respective
referential of each point cloud. As explained by Yang et al. in [121,
122], the point set registration algorithms are particularly suitable for
this task. Indeed, their objective is to find the transformation matrix
minimizing the distances between a set of points located on overlap-
ping acquisition parts. Note that sensors, and thus point clouds, by
convention, are measured in metric systems which implies that scaling
is generally not necessary (if it is required, it would be specified by
the manufacturer). Thus, the desired transformation is then quali-
fied as rigid in which the transformation matrix is composed only
of the translation matrix and the rotation matrix. The most popular
algorithm in mobile robotics is the ICP algorithm that looks for the
minimum distance between corresponding points in the two-point
clouds by using the method of least squares. However, this method
is particularly sensitive to outliers. Another challenge appears with
the lengthening of the baseline which is the increase of the disparity
of the points. To overcome this problem, Wu et al. propose in [116] a
semi-automatic solution to merge sparse point clouds called PA-ICP.
PA-ICP is based on the recognition of corners which must be paired
with their corresponding corners in every point cloud. Finally, in the
context of the autonomous vehicle, it is vital to know the confidence
index of the generated map and thus the quality of the point cloud as-
sociation. Yang et al. propose in [122] TEASER, a point set registration
algorithm capable of indicating its confidence index and being robust
to outliers.

As we have written, maps based on point clouds contain both
static and dynamic elements. The dynamic elements can therefore be
extracted from the latter to be processed to recognize their role in the
scene and track them if necessary.
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1.5.3 Conclusion

To conclude this section about mapping, we can observe that coopera-
tive mapping serves the enrichment of the context in which vehicles
moves. Thanks to the larger memory available on the infrastructure
it is possible to store and thus share heavy HD maps. As we will see
in the next section, the multiplication of the point of view reduces
the occlusions and improve the reliability of the detection and track-
ing. These detected objects can be placed on the map following the
LDM model and then shared with the connected vehicles to help the
trajectory planning stage.
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Strenghts:

• More precise localisation in environment with GNSS

• Localisation possible in GNSS denied environment

• No drift in Localisation

• V2X Mapping

• Better reliability

• Cost reduction

• Less occlusion

• Real-Time update (solely depending on the transfer
latency and computation time)

• Larger field of view

• Detection of unconnected User

Weaknesses:

• Similar precision of pose estimation with non cooper-
ative system

• Dependent to the number of users

• Computation expensive

• High throughput required

• Latency
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Opportunities:

• Raw sensor data fusion

• Various point of view of the scene

• V2I Map generation

• V2I Object management

• Infrastructure always available and calibrated

• Further Trajectory planning

• Anticipation of dangers

• Infrastructure offers more storage and can delete du-
plicate parts allowing storing HD maps

• Better Bird Eyes View map creation

• Existing matching methods

Threats:

• Higher cost for the infrastructure

• Lack of normalisation between constructors

• Consistency of the accuracy of the pose estimation
between the sensors

• Detection and classification accuracy of each partici-
pant

• Synchronisation between participants

• Data association of a single object with a very different
point of view.

• Missing stream or data management

• Data management between mobile and fixed users

Table 1.6: Cooperative Perception - SWOT
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1.6 review and summary

In the previous sections, we have reviewed the three main blocks of
the perception pipeline in a cooperative context: localization, mapping,
and object detection and tracking. In addition to this, we reviewed
the architectures available for cooperative systems along with their
advantages and drawbacks. We also observed the challenges brought
by cooperative solutions as well as the available network facilities.
This information allows us to establish a SWOT and thus obtain a
clear view of the state of the art of cooperative perception and more
particularly of those using an infrastructure. This SWOT is available
in Table 1.6.

Through these sections, we have also reviewed several solutions that
make use of cooperation for certain blocks of perception. For the sake
of clarity, Table 1.7 provides a review of them.

1.7 cooperative perception in real life

So far, we have reviewed the available data to perform perception,
the methods to share them as well as the different approaches and
challenges related to cooperation. We also reviewed three main tasks
of perception using cooperation namely, ego-localization, detection
and tracking, and, finally, map generation. This section aims to assess
the scenarios in which cooperative perception proposes a significant
impact as well as the related experimentations. We will close this
section with a presentation of datasets.

1.7.1 scenarios & Experiments

The cooperative perception responds to safety issues and more specifi-
cally those related to the lack of visibility in blind spots. This lack of
visibility can be caused by the structure of the scene or by other users.
We can take the example of pedestrians wanting to cross the road
but being hidden by parked vehicles or even vehicles appearing in an
intersection and being hidden by buildings. It is on this last example
that the point cloud sharing project of Li et al. is based [73]. The
authors’ work focuses on the SDN network structure for connected
vehicles as well as the use of mmWAVE wireless communication links
offering higher data rates than networks in the 2.4 GHz frequency
bands. In this network, there are several infrastructures equipped with
laser scanners that allow the visualization of areas hidden by buildings
thanks to the fusion of LiDAR point clouds covering the trajectory of
the connected vehicle. In this way, they can reduce the effects of blind
spots and detect other users that were previously undetectable.

Li et al. also addressed the overtaking scenario in which it can
sometimes be difficult to know whether a vehicle is coming into the
opposite lane since the view is occluded by the vehicle we wish to
overtake. This is also one of the scenarios that motivated the work of
Kim et al. in [64]. In this paper, the authors use cameras placed on
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several vehicles to create a see-through visualization system. To merge
the images, the authors project these pixels onto the ground to create
a birds-eye view map. This map can then be back-projected according
to a camera model to visualize what is behind the vehicle.

The 2016 edition of the GCDC was an opportunity to explore several
other scenarios as well as challenging several teams. In this case, Xu
et al. [119] presented these scenarios and their comments about their
experience. Three scenarios are presented:

zipper merge :
This case corresponds more generally to the insertion of a vehicle
into a lane and is encountered in several situations such as when
a traffic lane becomes inaccessible (e.g. for maintenance).

crossing at intersection :
Here, a vehicle wants to cross an intersection with as little dis-
turbance to the traffic situation as possible.

emergency vehicle yielding :
This situation corresponds to the arrival of an emergency vehicle
and which therefore has the priority. The vehicles on the scene
must leave a passageway between the traffic lanes to allow them
to circulate.

During the experimentation phase, the vehicles transmitted their status
(position, speed, wheel angle, etc.) and could make requests involving
a change in vehicle behavior. For example, when inserting into a
lane, the vehicle behind changes its speed to leave sufficient space
for the requesting vehicle to change lanes. During this challenge, the
vehicles do not cooperate on the perception axis but rather on the
vehicle control axis. However, the authors note in their remarks the
weaknesses of the perception implemented caused by the lack of a
multi-sensor based perception methods.

The project Proviendentia [4] aims to bring cooperative perception to
the motorways. This project is composed of cameras and radars placed
on gantry bridges on a section of the motorway. Vehicles are detected
and classified using machine learning algorithms, and their positions
are estimated using the data provided by the radars. A digital twin of
the road section is created from this data and is accessible in real-time.

MEC-View is a similar project implemented by Bosch [16, 42] where
LiDARs and cameras are placed on lampposts at an intersection to
cover blind spots caused by other vehicles. Similarly, Lv et al. in [77]
equipped an intersection with 4 LiDARs sensors to track vehicles
and detect obstacles to inform users. The problem of intersections is
particularly extrapolated to roundabouts, which are more frequent on
the European continent.

Another issue, raised by Kim et al. [64] as a limitation to their system
resides in the roads forming parabola peaks. Under these conditions,
the topology of the terrain reduces the driver’s field of view to the
sensors.
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Figure 1.5: Synchronous video frames from each camera of our multi-agent
dataset made with CARLA.

1.7.2 Datasets

The increasing interest in the cooperative vehicle initiated the shar-
ing of some datasets. However, they tackle specific contexts such as
communication or infrastructure perception.

ko-per [103] This dataset proposes a context of a cooperative
infrastructure. It is made of sequences monitoring an intersection with
14 laser scanners (4 for the road, 2 for the sidewalk, and 8 for the
egresses) and 8 monochromatic cameras (only two are available in
the dataset due to personal data protection purposes). Laser scanners
are synchronized and operate at 12.5Hz while the cameras operate at
25Hz in phase with the laser scanners. Raw data from the scanners and
undistorted images from the cameras are available alongside reference
data of selected vehicles and object labels.

warringal [115] The authors propose a dataset gathering com-
munication interaction between vehicles of a fleet of 13 elements for
3 years. The data proposed are the state of the vehicle, the list of
each communication and their length, the signal strength of each
communication (e.g. RSSI or antenna used by each vehicle), and the
map.

t&j [23] This dataset has been created to complement KITTI’s
dataset [46] by adding a cooperative dimension. For the learning
and evaluation phase of their Sparse Point-cloud Object Detection
(SPOD) algorithm, the authors needed a dataset offering overlapping
acquisitions from several points of view. The latter is composed of
images from multiple cameras, radar data as well as point clouds from
LiDARs. As with the KITTI dataset, this data is linked to a GPS and
an IMU but offers simultaneous views from different positions.
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a lack of cooperation We could have presented other datasets
such as KITTI’s or more recently the Waymo Open Dataset or IN-
TERACTION by Zhan et al. [124]. However, we can note the absence
of cooperation and dataset representing the scenarios we presented
despite the interest and the projects responding to its problems. We
can also note that the datasets presented deal either only with in-
frastructure or V2V cooperation. However, simulators can bring an
answer to this lack by allowing the acquisition of data from several
points of view synchronously. Moreover, they solve the problem of
the ground truth definition as well as the calibration challenges. CAR
Learning to Act (CARLA) [33] is one of them providing several sensors
such as cameras, depth cameras, LiDAR (simulated ray cast), IMU
and RADAR. In July 2018, version 0.9.0 introduced the multi-client
multi-agent support offering cooperative vehicles perspective. Fig.
1.5 showcases the possibilities offered by CARLA with synchronized
image acquisition from vehicles and infrastructure at a round-about.
Other simulators are available such as Deepdrive [89], LGSVL Simula-
tor [92] or AirSim [98]. However, CARLA remains the most popular
nowadays.
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Ref Type Tasks Sensors Communic. Architect. Method Comment

[77] V2I Localization,
Mapping, Clas-
sification &
Tracking

LiDAR DSRC, SPaT, BSM Centralized Geometric
Relative Lo-
calization,
Background
filtered, PC
cluster, Ran-
dom Forest

The lanes are detected by aggregat-
ing vehicles paths and vehicles are
tracked with the closest point of their
corresponding cluster. The infrastruc-
ture does not merge the Point Clouds
and transmit the information to the
users via Bluetooth. The pose of the
vehicle is determined in relative co-
ordinates and converted to absolute
coordinates.

[23] V2V Detection & clas-
sification

LiDAR DSRC (ROI) Distributed CNN SPOD is based on CNN. A dataset
has been created.

[119] V2X Localization LiDAR,
GNSS-RTK

ETSI C-ITS (CAM,
DENM, iCLCM)

Distributed Control Absolute coordinates are transmitted
by messages by each vehicle.

[73] V2I Mapping LiDAR mmWave, ROS Mixed LDM Share Point clouds through mmWave
links.
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Ref Type Tasks Sensors Communic. Architect. Method Comment

[4,
48]

V2I Detection, classifi-
cation & tracking,
Localisation

Camera,
radar

4G, 5G, Optic Fi-
bre

Centralised YOLOv3,
Tracking via
radar, GM-
PHD

The radar help to determine the po-
sition of the users in the absolutes
coordinates.

[63] V2V Mapping, vehicle
matching

Odometry,
LiDAR,
camera,
DGPS

IEEE802,11n
(WiFi)

Distributed IPM RAW data are shared between vehi-
cles for mapping. Feature-based ob-
ject matching (speed of the vehicles).
Maps are merged using the coordi-
nates given in the messages.

[64] V2V Tracking, Map-
ping

Odometry,
LiDAR,
camera,
DGPS

IEEE 802,11gn
(WiFi), 3G, 4G,
ROS

Distributed Mapping: IPM,
ICP, CSM

The position of tracked users are
given into relative to the ego-vehicle
coordinates.

[110] V2X Tracking Camera, Li-
DAR

IEEE 802.11bgn
(WiFi), ROS

Distributed GM-PHD
Filter, EKF,
Sequential
Monte Carlo

The relative poses are estimated
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Ref Type Tasks Sensors Communic. Architect. Method Comment

[50,
51]

V2I Localisation Range
detector,
Odometry,
GPS (all
simulated)

Simulated Distributed Factor graph
(High Level)

The absolute positions are directly
processed.

[35] V2I Tracking Camera IEEE 802.11g
(WiFi), IEEE
802.11p (WAVE)
with DENM
messages

Centralised Geometric
(Low level)

The map and position of the user are
transmitted from the infrastructure.
The position is given in absolute co-
ordinates of the car park space.

[55] V2V Localisation LiDAR,
GNSS RTK

Not given Distributed Geometric
(low level)

The relative pose is extracted from
the LiDAR’s data and is used to com-
pute the absolute pose.

[91] V2V Localisation GPS, Range
sensor

Not given Distributed Bayesian
(High level)

The estimated position is given in ab-
solute coordinates.
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Ref Type Tasks Sensors Communic. Architect. Method Comment

[81] V2V Localisation,
Tracking

GPS RTK,
camera,
radar,
LiDAR

DSRC Distributed EKF, Bipartite
graphs (High
level)

The localization is given in absolute
coordinates. The bipartite graphs are
used to match users to the detected
ones.

[16,
42]

V2I Localization, de-
tection and track-
ing

Camera, Li-
DAR

4G, 5G Centralised Not given

[26] V2V Localization and
tracking

Radar DSRC Distributed GMPHD The estimated position is given in ab-
solute coordinates.

Table 1.7: Summary of the experimentation and methods reviewed along the chapter underlining their conditions of realization, the methods used and their results.
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1.8 conclusion and perspectives

This chapter was an opportunity for us to review the different stages
of a perception pipeline under a cooperative context and its associated
challenges.

A large amount of work tackling the localization problem has been
accomplished. We reviewed a wide range of solutions introducing
different paradigms, improving the pose estimation, or offering an
alternative reference point in a GNSS denied environment. We also
noted that the cooperative localization topic is very active as wit-
nesses the amount of recent literature. However, we perceived a strong
contrast concerning the available literature amount on cooperative
detection and tracking. Even if some projects employ local perception
systems merging the detected user’s information, the topic remains
sparse in raw data sharing.

We also reviewed the usage of maps in a cooperative context which,
similarly to localization, is currently an active topic. In this field, coop-
eration also makes it possible to overcome the limits of the distance
of sensors, allowing better anticipation of trajectories and possible
adjustments.

More generally, we witnessed a difference in the cooperative scheme
between V2V and V2I architecture. In V2V, vehicles communicate
evenly with each other whereas, in V2I, the privileged approach is
unidirectional from the infrastructure to the connected agents. We
believe that bidirectional cooperation could be beneficial in bringing an
"in the scene" point of view, thus adding details helping to understand
the scene. This bidirectional scheme may provide new opportunities
for dynamic calibration, reinforcement learning [75] or as an arbitrator
in case some agents share erroneous data.

Finally, although cooperative perception is currently an active topic,
we noted the absence of datasets featuring multiple points of view,
from different actors, in a scene. These datasets are a real key point
in cooperative perception since they are mandatory to bring novel
cooperative solutions. However, their creation requires solving the
abovementioned challenges such as calibration.

In the next chapter, we present a bidirectional approach exploiting
the "in the scene" Point of View (PoV) of the vehicles as well as the
elevated PoV of the infrastructure. We also provide an answer to the
lack of dataset that we observed.
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M U LT I - A G E N T C O O P E R AT I V E C A M E R A - B A S E D
E V I D E N T I A L O C C U PA N C Y G R I D G E N E R AT I O N

associated article

[1] Antoine Caillot, Safa Ouerghi, Pascal Vasseur, Yohan Dupuis,
and Rémi Boutteau. “Multi-Agent Cooperative Camera-Based
Evidential Occupancy Grid Generation.” In: (2022), pp. 203–209.
doi: 10.1109/ITSC55140.2022.9921855.

2.1 introduction

In the previous chapter, we have noticed that two approaches for
cooperative perception benefit from the majority of the research effort.
The first approach corresponds to Vehicle-to-Vehicle (V2V) cooperation
where we take advantage of the sensors embedded in the vehicles to
perceive the scene in which the users evolve. However, this approach
is highly dependent on the number of users with onboard sensors
but requires almost no additional cost to establish cooperation. The
second approach corresponds to the Vehicle-to-Infrastructure (V2I)
cooperation where an infrastructure provides sensors to increase the
range of sensing of the users in the monitored scene. This approach
has the advantage of not depending on the number of users equipped
with sensors and of having more omniscient points of view than those
of the vehicles, but requires a non-negligible cost for the maintenance
of expensive sensors that are prone to bad weather.

In this chapter, we explore a new approach: providing user’s re-
sources to use their in-scene PoV alongside with the elevated PoV of
the infrastructure. The objective is to build a map, shared to all users
(contributor or not) while reducing the impact of sensor limitations
and occlusions due to terrain or other vehicles.

general idea Today, many vehicles already have cameras on
board, usually accompanied by a processing unit. It is the same for the
infrastructures which can be based on a mesh of cameras of surveil-
lance already in place or having solutions on the shelf. Indeed, cameras
are nowadays cheap sensors and offer a wide range of possibilities. It
is because they are so common today that the work of this thesis uses
exclusively cameras to generate our map.

The behavior of cameras can be modeled by a simplified mathemat-
ical model called the pinhole camera. This model allows to project ob-
jects from the 3-Dimensional (3D) world space into the 2-Dimensional
(2D) space of the image plane. However, when we look-up from 3D
points to 2D points, we lose a dimension: the distance of the 3D point
from the camera. The consequence is that, when we want to do the
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Camera

Frustum

Real vehicle Ground plane

Vehicle’s footprint

Figure 2.1: Inverse projection of a 2D bounding box in the space. The vehicle
is inside the frustum built from the bounding box.

reverse path, for each 2D point on the image plane, an infinite number
of 3D points exist in the world, all belonging to a half-line starting
from the camera. This half line is frequently called a ray in the com-
puter graphics field, and we will also use this terminology. Thus, for
four 2D points positioned on the image plane, we obtain four rays
crossing at the optical point of the camera before diverging forming a
pyramid called frustum. By knowing the position of the camera in the
world, it is possible to know the position of the frustum in 3D space.
If we define our four points from a bounding box corresponding to a
detected vehicle, then we know that this vehicle is somewhere in this
frustum.

In the case where we take several PoVs overlapping each other, if a
vehicle is present in the scene and is detected by all sensors: several
frustums will be created (one per PoV). Although we do not know
where the vehicle is in each frustum, we are sure that it is in all
frustums. Therefore, the vehicle will be at their intersection. It is on
the basis of this reasoning that we can generate a map of the dynamic
elements detected in a scene.

challenges As dealt with in the previous chapter, several chal-
lenges are encountered when using cooperative systems. We have
already discussed a solution to the problems of the network infras-
tructure limitation and data synchronization: the use of 2D bounding
boxes. Indeed, these bounding boxes have the advantage of being able
to be represented with very little data and can therefore be transmit-
ted in a very short time, no matter the quality of the network. This
also addresses the synchronization issue: with the GPS clock time
that we can easily obtain associated with a small transmission delay,
we can choose to neglect the synchronization issue. Moreover, the
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Camera 1
Camera 2

Camera 3

Refined footprint

Figure 2.2: With multiple frustum, a finer zone corresponding to the real
vehicle footprint can be found.

approach based on the intersection of frustums solves the problem of
the appearance and the matching of the detected vehicles.

The calibration of the sensors is another challenge that we have to
deal with in the following lines. Although the sensors on the infras-
tructure can be calibrated with respect to each other, it is impossible to
manually estimate the placement of the sensors on the vehicles moving
in the scene. In the following sections, we will present a method to
take into account the positional noise of the sensors with respect to
each other.

Finally, the question of the common container in which the perceived
data will be represented and merged arises. Since volumetric maps are
frequently used for information fusion, the format of the occupancy
grid will be the focus of our attention in the rest of this manuscript.
Another advantage of occupancy grids is that it is possible to represent
several types of data. Thus, in future developments, we could imagine
adding data from depth sensors like laser scanners without worrying
about the multimodal aspect.

in the remainder of this chapter We will first examine
the architecture of our approach in section 2.2 before detailing the
methods used in section 2.3. Finally we will detail our results in section
2.4 before concluding this chapter.

2.2 system architecture

The architecture of our approach is based on two elements: the per-
ceiving agents and the Road Side Unit (RSU). The perceiving agents,
which we will call agents in the following lines, perceive the scene
and transmit them to the RSU. The RSU is in charge of merging the
information to create a global map of the scene that is transmitted to
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Agent 1

Agent 2

...

Agent N

RSU

User

User

...

User

Bounding Boxes
& Sensor’s Pose

Final Occupancy
Grid Map

Figure 2.3: Macro organization of the agents and the RSU. The agents (ve-
hicles or infrastructure) perceive the environment, the RSU pro-
cesses the data to build a global semantic map shared to every
CV

all the Connected Vehicle (CV)s. To implement this framework, we
have resorted to using ROS [88]. In fact, ROS provides a framework
for the communication between the agents and the RSU as well as a
set of standards that will allow us to replicate our work or to use it in
other projects.

2.2.1 Agents

The agents can be intelligent roadside sensors or connected vehicles
and can be of an arbitrary amount in the scene. They are equipped
with an image sensor and a system to identify vehicles in their field of
view that extracts bounding boxes. Every agent publishes its messages
on a global topic that will threfore contain every bounding box of
every agent and will be read by the RSU as illustrated in Fig. 2.3.

In our work, we consider that the extraction of bounding boxes
is derived from off-the-shelf solutions and is therefore not a topic
covered here. We consider that timestamps are generated at the time
of shooting from a GPS clock and thus the sensors are roughly syn-
chronized. Therefore, we used the synthetic data from the ground
truth to which we added random Gaussian noise in order to simulate
synchronization, sensors’ pose noise and detection noise.

2.2.2 Road Side Unit

The RSU is the central element of our framework. It aggregates all
the data from the agents to form a map to be transmitted to all the
CVs. The processing of the data to obtain the final occupancy grid is
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divided into several tasks. Figure 2.4 represents the path of the data
transmitted by the agents through these tasks. Note that we consider
that the data transmitted by the agents takes the form of a continuous
flow. It is the stacking task that discretizes the data temporally in order
to be merged. The discretization interval is given by the agent that
transmits data the fastest. In fact, the map is computed and transmitted
as soon as the data from an agent that contributed in the previous
interval is received. The different tasks, for which the mathematical
details will be given in section 2.3, are described as follows:

monte carlo uncertainties sampler :
This block takes the bounding boxes and the sensor pose from
which they are extracted and models the uncertainties by ap-
plying noise to the parameters on N samples created from each
original measurement, with N the larger possible.

back projector :
This block uses the bounding box parameters for each of the N
samples, finds the 4 corners of the bounding box, and projects
them on the ground by ray tracing.

rasterizer :
This block takes the 4 projected points on the ground of each
bounding box and N samples and rasterizes them on the N
occupation grid.

sample merger :
This block merges the N occupancy grids forming a Local Occu-
pancy Grid (LOG) for a sensor.

stack :
This block keeps the LOGs until the next block empties it.

Basic Belief Assigment (BBA):
This block assigns, from the observations, the masses to the
different classes used with the Dempster-Shafer Theory (DST)
method to each cell of the occupation grids. This block appears
only for the DST fusion. In other cases, it is bypassed.

combiner :
This block merges the occupancy grids of the stack either based
on the DST and the Basic Belief Assigment (BBA) values or
directly with the probabilities contained in the occupancy grids.
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2.3 methods

In this section, we provide more details about the functioning of the
blocks composing the RSU. We start with the basic principle of our
system: the Back Projection, which allows us to obtain the silhouettes
of the bounding boxes. We also present the methods allowing us to
generate the LOG. Finally, we present the details of the methods for
merging the LOG. As we go along, we also give details on the use of
Monte Carlo methods.

2.3.1 Back Projection

In order to be merged together, the 2D bounding boxes provided by
the agents must be placed on a map. Since, today, vehicles are in
physical contact with the ground, we can consider that the position of
the vehicle on the map is at the intersection with the frustum from the
bounding box with the ground. In other words, we want to make a
projection of the bounding box from the camera plane to the ground
plane under the vehicle’s coordinate. This procedure is also called
IPM [63]. The intrinsic parameters of the camera and the extrinsic
transformation from the camera to the vehicle’s center are previously
calibrated. The technique used in our approach to perform this IPM is
based first on the calculation of the frustum from the bounding box’s
corners and then the intersection of this latter with the ground plane.

To compute the frustum related to a bounding box, we will use the
Plücker coordinate system as detailed below. Then, we will present
the persepective transform using the pinhole camera model followed
by the inverse perspective transform.

2.3.1.1 Plücker Coordinate System

The Plücker coordinate system is frequently used in computer graphics
and computer vision. This coordinate system is described by Hartley
and Zisserman in [53]. Indeed, this coordinate system allows to per-
form 3D geometry operations in homogeneous coordinates, offering
concise solutions that we will detail. In this case, we will look for
intersection points between the ground plane and rays constituting
the edges of the frustum formed from each bounding box. The ground
plane can be represented in Plücker coordinates as welle as the rays
which are symbolized by Plücker’s line. Therefore, we benefit from
the concise solution offered by using the Plücker coordianates.

plane We can define a π plane in homogeneous coordinates by
Equation (2.1).

π = (π1, π2, π3, π4)
⊺

π1X + π2Y + π3Z + π4 = 0
(2.1)

Where, π1, π2, π3 are the coordinates of the normal vector of the
plane, and π4 is the distance between the origin O and the plane π.
Therefore, we can construct the vector π using the normal vector of
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the sought plane and its distance from the origin such that π = [N|d]
where N ∈ R3 is the normal vector of the plane and d is the distance
between the origin O and the plane π, as defined in Equations (2.2).

N = (π1, π2, π3)
⊺

||Oπ|| = π4
(2.2)

line A ray, or line, can be defined by two points in homogeneous
coordinates A = [x1, y1, z1, 1]⊺ and B = [x2, y2, z2, 1]⊺. The definition
of the line L from these two points is defined by Equation (2.3).

L = AB⊺ − BA⊺ (2.3)

intersection Given the ground plane and the set of four rays cor-
responding to the four corners of each bounding box, the intersection
between each ray L and the ground plane π can be found according
to Equation (2.4) in non-normalized homogeneous coordinates.

Pintersection = Lπ (2.4)

where Pintersection is a four-dimensional vector in homogeneous coor-
dinates. Thus, we obtain for each bounding box a set of four projected
points on the ground plane forming a polygon that represents a sil-
houette on the ground of the detected object at a given glspov. To
obtain the final 3D point, it is required to normalize Pintersection.

2.3.1.2 Inverse Projection

To obtain the projections of the bounding boxes on the ground in order
to find the position of the vehicles, we want to use the frutum that these
bounding boxes form with the optical center of the camera. The four
edges constituting the frustums are considered as rays passing through
the optical center of the camera and the corners of the bounding box
(for each ray, a corner of the bounding box). The pinhole camera model
allows to find rays passing through a 3D object and the optical center
of the camera to obtain a 2D point on the image plane. We will present
this model in the next paragraph before doing the reverse path to find
the 3D rays from points on the image plane and the optical center
of the camera. From these rays, we will explain how we get the four
corners projected on the ground belonging to each 2D bounding box.

pinhole camera To make an inverse projection, we have to see
first the projection model of the objects in the plane 2D of the image.
For that, we can use the pinhole model as defined in [53]. This model,
defined in the equation (2.5), allows to project a 3D point in the
camera frame of coordinates Pcam = (X, Y, Z)⊺ on the image plane
with coordinates pimg = (u, v, w)⊺ after normalization by the value of
w.

pimg = KPcam (2.5)

where K is the intrinsic camera matrix defined in the equation (2.6)
and constructed from fx and fy which both here equals to f , the focal
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length, cx and cy the coordinates of the camera optical center on the
image.

K =


fx 0 cx

0 fy cy

0 0 1

 (2.6)

However, it should be noted that this model ignores the optical
deformations that the lenses can bring. In this thesis, we consider
these optical deformations as neglectable.

inverse pinhole camera To go from a point 2D to a point 3D
in the camera frame, we can use the inverse principle of what we saw
before. Thus, for a point pimg = (u, v, w)⊺ on the plane, there exists a
point Pcam = (X, Y, Z)⊺ in the camera frame, as given in the equation
(2.7).

Pcam = K−1 pimg (2.7)

However, since we only have the coordinates u and v of the point in
the image and the value of w is lost, the values of Pcam will depend
on w.

Therefore, instead of having a fixed point, we have a line defined by
all values of w passing through the center of the camera and the real
point in the world Preal .

We can construct a ray Rp from the point corresponding to the
center of the camera, which we will name Cworld, expressed in the
world frame, as well as a reprojected point of pimg , called Pcam. Pcam

is reprojected using an arbitrary value of w ̸= 0 in the world frame
using W TC and named Pworld. Where W TC is the transformation matrix
from the camera frame to the world. Equation (2.8) expresses these
steps.

Rreal = (CworldPreal)

∀w ̸= 0, ∃Pcam,Pworld = W TCPcam ∈ Rreal

⇒ Rp = CworldPworld
⊺ − PworldCworld

⊺

(2.8)

2.3.1.3 Silhouette’s Estimation

The silhouettes are obtained from the intersection of the 3D frustum,
formed by the four rays passing through the optical center of the
camera and the four corners of the bounding boxes on the image
plane, and the ground plane. Since we now have rays R created from
the corners of the 2D bounding boxes and the center of the camera.
The silhouettes are thus formed by these rays coming from the four
corners of each of the bounding boxes and the ground plane πsol

according to the equation (2.9).

Psol = Rπsol (2.9)
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If a corner of a bounding box is above the horizon, then it will be
projected to infinity of the map. In this case, we will not try to use
the intersection with the ray pointing to the sky and the ground plane
since this intersection will be at the back of the camera, which is
absurd. We therefore recalculate the point Pworld but this time with a
value of w greater than the size of the map (

√
2 ·mapsize for instance).

We will thus obtain Pworld outside the map which we can consider
it as at the infinite. To reproject it on the ground plane, we will just
place its altitude at that of the ground plane on the same < x, y >

coordinates.

2.3.2 Local Occupancy Grids generation

We consider a Local Occupancy Grid (LOG) as an occupancy grid
containing the information provided by a single sensor. LetM be the
occupancy grid map over a region of interest divided into square cells
Mx,y where ⟨x, y⟩ correspond to the position of the cellMx,y within
M as defined in [106]. Thus, the problem addressed is the determina-
tion of the probability of occupancy of each grid cell given the measure-
ments. The assigned values toMx,y are {mx,y ∈ Z| − 1 ≤ mx,y ≤ 100}
where −1 denotes a cell of unknown occupation, 0 denotes a free cell
and 100 an occupied cell as given in ROS documentation.

2.3.2.1 From Ground coordinates to Occupancy Grid coordinates

Let δ be the length of the square cell in meters, (Ox, Oy) correspond
to the position of the origin in the occupancy grid. The position of
a silhouette is obtained in cell coordinates from metric coordinates
according to (2.10),

xgrid =


1/δ 0 0 Ox

0 1/δ 0 Oy

 Xgnd

 (2.10)

where xgrid is a 2-vector and Xgnd a 4-vector.

2.3.2.2 Rasterization

Since the silhouettes are in topological format, it will be difficult to
merge them together. Therefore, we convert the topological informa-
tion describing the silhouette into volumetric information, which is a
set on cells on a grid, by resterization. This step consists in defining
for each cell if it belongs to a silhouette (and thus is occupied), to the
terrain (defined as free) or if it has not been observed. We will use
either occupancy grids or evidential grids, depending on the desired
fusion method.

First, all our cells are considered as unobserved (−1). Then, the
whole area covered by the camera is considered as free (0). To define
this area, we use the principle of inverse projection explained previ-
ously but with the 4 corners of the image. Finally, the cells belonging
to a silhouette are considered as occupied (100).
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The map resulting from this operation thus takes the format of a
grid where each cell contains a label (unknown, free or occupied). This
grid can be denoted M<x,y> where < x, y > are the cell coordinates.
Since the latter has a similar structure to the images, we used the
tools offered by image processing library to perform the rasterization
task. To plot the silhouettes on the occupancy grid, we used the
function fillPoly of the OpenCV API [17]. We use this function in
8-connected lines mode, also called Moore’s neighborhood to draw the
polygons constituting the silhouettes. This mode takes into account
the 8 cells bordering around a cell to draw a line, contrary to the
4-connected.

2.3.2.3 Modeling uncertainties

The position estimation of the camera in the scene is subject to noise as
well as the bounding box position and dimension determination on the
image. To model these uncertainties, we created N samples from each
original measurement, with N the larger possible. Then, we applied
noise to the pose estimation and bounding box estimation parameters
for each of the sample. The noise follows a Gaussian distribution with
parameters µ the original measurement and σ the standard deviation
presented in [66] and in [1]. Each of the N samples is projected on N
sample grids and then merged by averaging the cells.

2.3.3 Local Occupancy Grids Merging

Since each sensor provides a LOG, these latter have to be merged in
order to create a global one. The LOG is already created with respect
to a global frame reference and can therefore be directly merged
without frame transformations. In fact, two main paradigms have
been investigated in the state of the art to perform the merging namely
the probabilistic approach and the Evidential approach.

LetM be a Global Occupancy Grid (GOG). Let’s consider a LOG
Ml and Mi

x,y a given cell of Ml where ⟨x, y⟩ refer to the location
of the cell and i to the index of the agent 1 ≤ i ≤ NA with NA the
number of the available agents.

2.3.3.1 Probabilistic merging method

The first method we implemented is the Bayesian fusion method, as
proposed by the authors of [14, 41]. This method consists in using
probability theory to estimate the probability that two images are
similar.

Agents perform perception independently, i.e., they do not take into
account the observations of other agents to define the bounding boxes
to be detected and they do not take into account past observations.
Hence, we can make the assumption that there is no dependency
between different observations of a given cell. The joint probability of
a cell that is being observed by two agents where agent 1 performs an
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observation denoted as o1 and agent 2 as o2 is expressed in Equation
(2.11).

P(o1 ∩ o2) = P(o1)× P(o2) (2.11)

Since this operation is associative, for N agents, we can compute
the probability associated to a cell of the global mapMP<x,y>,where
the indice P indicate the map is issued from a probabilistic fusion,
from the maps issued from the agentsM<x,y>i according to Equation
(2.12), i being the index of the agent.

∀x ∈ [0, m], y ∈ [0, n]

MP<x,y,c> =
N

∏
i
M<x,y>i

(2.12)

We propose two methods that perform a product between cells to
determine its occupancy probability as given in Equation (2.12) [41].
The former, named inter1, considers the cells having an unknown state
(−1) as having a probability of 0.5 before performing the product of
the cells. The latter, named inter2, ignores the cells having an unknown
value (−1) in the product. For both of them, values between 0 and 100
are divided by 100.

2.3.3.2 Evidential merging method

Another possible method of merging LOGs is to use the evidential
theory, also called Dempster-Shafer Theory (DST) [97] as the authors of
[19] did. This theory is based on a set of classes with associated masses.
It is these masses that we will be able to merge using a merge rule.
We will detail these different concepts in the following paragraphs.

2.3.3.3 Classes

In our work, we used a set of classes given in Equation (2.13), where
O describes the status of an occupied cell and F that of a free cell.

Ω = {O,F} (2.13)

Ω represents the available universe of classes and we will use it later. In
addition, there is an internal state that we use to define whether a cell
has been observed or not. This will be treated differently depending
on the merge mode.

2.3.3.4 Evidential Grids

To perform a merge in the framework of the DST, it is necessary to
create evidential maps.
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grid definition The map takes a format very similar to the
occupancy grids we presented in 2.3.3.1 but have more sub-cells than
|Ω|. In fact, they are made of |2Ω| sub-cells, 2Ω being the power set
of Ω defined in the equation (2.14). This evidential grid format was
notably used by Richter et al. in [90]. We will note this mapME<x,y,c>
with < x, y > the coordinates of the cell and the indice E indication
we this map is an evidential map, c the index of the sub-cell (one per
element of the power set).

2Ω = {∅, {O}, {F}, Ω} (2.14)

The advantage of using a power set is that we can take into account
states of doubt or unknowns. For instance, in the case where a vehicle
is in the scene but occluded by the terrain from the PoV, it would be
classified as a terrain while seen from other PoV it would be easily
classified as a vehicle. Thus, we would want to apply to Ω a value to
reflect the unknownness of the observation. In another case, if a cell
has not been observed, we can consider that the confusion between all
classes is maximal. Therefore, we will consider only the set Ω.

masses In the previous paragraph, we mentioned masses. They are
similar to the probability values used in the Bayesian theory, but they
are applied to the sets of a power set and are defined according to the
equation (2.15).

m : 2Ω → [0, 1]

m(∅) = 0
(2.15)

When associating values with masses, it is necessary to follow the
property of the equation (2.16).

∑
A∈2Ω

m(A) = 1 (2.16)

These are the masses that are stored in the sub-cells of the evidential
grids.

basic belief assignment function The association of a mass
with a 2Ω status is performed by a function named BBA. Our basic
belief assignment function is given by the Algorithm 1. When a cell
is not observed, the uncertainty is maximal which leads to a value of
m(Ω) = 1. We then distinguish two cases. The first is the case where
the observation is made by a vehicle. The vehicles are more affected
by occlusions than the infrastructure. Therefore, the non-detection of
obstacles is more uncertain. On the other hand, since vehicles have a
PoV in the scene, when an object is detected, its bounding box is more
accurate than the infrastructure PoV. Thus, the cells observed by the
vehicles apply a value to the obstacle mass and uncertainty. On the
contrary, the infrastructure PoV will apply values on the masses of
the free case and on the uncertainty. Indeed, I make the hypothesis
that the infrastructure suffers much less from occlusions.
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Algorithm 1 Basic Belief Assignment

Require: C ∈ M
m(∅), m(O), m(F), m(Ω)← 0
if C = -1 then

m(Ω)← 1
else

if C is from an infrastructure sensor then
m(F)← 1.0− C

100
m(Ω)← C

100
else

m(O)← C
100

m(Ω)← 1.0− C
100

end if
end if

Once each cell of each LOG has had its masses assigned, it is possible
to merge them one by one with Dempster’s rule of combination given
in the equation (2.17) to merge two cells where X ∈ 2Ω is defined by
equation (2.18) with K = ∑Y∩Z=∅ m1(Y)m2(Z).

m f (X) = m1(X)⊕m2(X) (2.17)

m f (X) =
1

1− K ∑
Y∩Z=X ̸=∅

m1(Y)m2(Z) (2.18)

mout(X) =
N⊕

i=0

mi(X) (2.19)

Dempster’s rule of combination being commutative and associative, it
is, therefore, possible to combine N masses as expressed in equation
(2.19). Thus, we combine the masses associated with cells of the same
coordinate in each layer.

occupancy grid formating We propose two methods to as-
sociate the values to the cells from the masses of the final grid. The
former, named dst1, directly assigns to the cell the mass of the set O
while the latter one, named dst2, follow the rule given in Algorithm 2.

Algorithm 2 Evidential grid map to occupancy grid map rule for dst2

Require: m(O), m(F), m(Ω)

C ∈ Mout

if m(F) > m(O) and m(F) > m(Ω) then
C ← m(O)× 100

else if m(Ω) > m(O) and m(Ω) > m(F) then
C ← −1

else
C ← 100

end if
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2.4 results

Since we have detailed the methodological points used to implement
our approach in the previous section, we will now discuss the results
given by our method. We will start by discussing the dataset we
used to evaluate the method. We will then discuss the qualitative
evaluation of the results. Finally, we will make a quantitative study of
the results in which we will also give details of the metrics used for
the evaluation.

2.4.1 Carla dataset

To the best of our knowledge, we have not identified any dataset that
delivers a vehicle-infrastructure cooperative experimental framework
at the moment we were working on our approach. Therefore, we cre-
ated a dataset generator based on the CARLA simulator [32] allowing
the generation of datasets with one or more viewpoints from infras-
tructure and vehicles. For the works of this chapter, we generated a
dataset with 4 agents: 3 connected vehicles and an infrastructure. The
vehicles pass through the roundabout and are in the field of view of
the infrastructure. Also, some vehicles will enter the field of view of
one or more other vehicles and have their fields of view overlapping
as shown in Fig. 2.5. Each agent can have different sensors:

• 1× RGB camera (90◦ fov, 1384× 1032 pixels)

• 1× Depth camera (90◦, 1384× 1032)

• 1× Semantic segmentation camera (90◦, 1384× 1032)

• 1× LiDAR (32 layers, 40◦ vertical fov)

For the different agents, the rigid transformation between each on-
board sensor and the attached reference frame is the same. For the
infrastructure, the sensors are positioned at 13m altitude at the center
of the roundabout (located at the scene’s center) and with a pitch
of −20◦. For the vehicles, the sensors are located at 1.9m above the
chassis. In addition to the raw data, the vehicle’s state is stored in a
JSON file for each frame. This latter contains the sensor’s transfor-
mation matrix with respect to the world’s reference frame as well as
the vehicle’s transformation matrix, linear velocity, angular velocity,
acceleration, forward vector, and 3D bounding box.

In order to generate the ground truth, we used the JSON files. We
retrieve the 4 points forming the bottom plan of the bounding box
and place them in the scene with the given transformation matrix to
express their coordinates in the world reference frame. We get a perfect
polygon forming the footprint of the vehicle which is then rasterized
on the grid. Fig. 2.6e illustrates at the frame 155 of the dataset an
example of the map saved where black color corresponds to a value
of 100 and white color corresponds to a value of 0. Alongside, in Fig.
2.6, the outputs of each above-mentioned algorithm are featured.
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Figure 2.5: Synchronous video frames from each camera of our multi-agent
dataset made with CARLA.

2.4.2 Qualitative Evaluation

In the first instance, we carried out a qualitative study to ensure that
our solution gave us usable results. It is notably thanks to this study
that we validated our BBA function, explained in the previous section.
This study is based on the dataset that we created which contains
280 frames. These 280 frames are divided into 6 sub-scenarios of
cooperation defined as follows:

Seq 0: This sequence corresponds to the best coverage from the cars.
Each car sees at least one other vehicle.

Seq 1: The infrastructure coverage is maximal: each vehicle is visible
from the infrastructure’s point of view.

Seq 2: The coverage is maximal from every agent. Each car is seen by
at least one vehicle and by the infrastructure.

Seq 3: This sequence gives an example of partial coverage where both
vehicle and infrastructure operate but not every car is seen by
the infrastructure.

Seq 4: This sequence features monomodal detection. This means that
cars are detected either by the infrastructure or by other vehicles
but not both.

Seq 5: This sequence features single detection. The detected cars are
detected by only one agent and thus is not a cooperative situa-
tion.

Through these sub-scenarios, we observed that the performances
vary significantly. Therefore, these variations will be studied in the
next section.
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(a) Using inter1. (b) Using inter2.

(c) Using dst1. (d) Using dst2.

(e) Ground truth.

Figure 2.6: Occupancy grid map for different methods (frame 155).
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2.4.3 Quantitative Evaluation

We based our quantitative evaluation on Intersection over Union (IoU)
and F1-score which are two common metrics for occupancy grid
evaluation. Both of them are based on the number of True Positive
(TP), False Positive (FP), and False Negative (FN). To define if a cell
is positive, we compare its value to a threshold. IoU is defined as in
equation (2.20) and F1-score is defined in (2.21).

IoU =
TP

TP + FP + FN
(2.20)

F1 =
TP

TP + 1
2 (FP + FN)

(2.21)

Table 2.1 gives an overview of the IoU and the F1-score for each
sequence and each algorithm. These results were given with a noise
applied following a normal distribution with a standard deviation
of σ = 0.0243m on the lateral and longitudinal position and of σ =

0.0518m on the altitude as we can find in [1]. For the rotations, the
noise follows a normal distribution with a standard deviation of
σ = 0.1◦ on all axes as we can find in [66]. The bounding boxes have a
normal distribution noise with a standard deviation of 5 pixels applied
on each edge of the bounding box. The threshold was set at 0.5 but
requires in-depth research to determine its impact on the results.
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Table 2.1: Example of the evolution of the IoU and F1 scores with a threshold of detection of 0.50 (normalized) with 3 vehicles transiting in a roundabout.

Algorithm Metric Seq 0 Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Total

inter1 IoU 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

inter1 F1 Score 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

inter2 IoU 0.052524 0.005595 0.004103 0.022008 0.214580 0.019923 0.013490

inter2 F1 Score 0.099806 0.011128 0.008172 0.043068 0.353341 0.039067 0.026620

dst1 IoU 0.055993 0.305245 0.287551 0.233977 0.174009 0.162757 0.223513

dst1 F1 Score 0.106048 0.467721 0.446663 0.379224 0.296435 0.279951 0.365362

dst2 IoU 0.175572 0.217005 0.213857 0.175982 0.172789 0.142080 0.188038

dst2 F1 Score 0.298700 0.356621 0.352359 0.299293 0.294663 0.248810 0.316551
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We note that inter1 obtains a global result 0%, either on IoU and
F1-score, showing that the basic probability-based occupancy grid
fusion method as presented in [41, 105] is not usable in this situation.
However, inter2 offers slightly better results with a maximum IoU of
21.45% in sequence 4 as shown in Fig. 2.7 but a global IoU of 1.35%.

This behavior is explainable by the fact that inter2 is a modified
version of inter1. Indeed, although these two algorithms follow the
same merging rule, inter2 excludes the unobserved cells during the
merging. This avoids that individual detections be removed from
the final map because of the successive multiplications by 0.5 that
inter1 would perform in individual detections. However, this approach
shows its limits since beams appear when projecting the frustums
as shown in Fig. 2.6b, thus increasing the number of false negatives.
In sequence 4, the position of the vehicles offers viewpoints to the
agents allowing them to reduce the beams due to frustum and thus
to reduce the number of false positives. Nevertheless, this situation
disappears when moving to sequence 5, and the false-positive rate
increases dramatically.

Regarding the results obtained with our method, the algorithms
based on the Dempster-Shafer theory (DST) offers much better results
than the standard method cited in the previous paragraph. The fusion
algorithm dst1 offers a maximum IoU of 30.52% in the sequence 1 and
a global IoU of 22.35% while dst2 offers a global IoU of 18.8%.

The fusion algorithms dst1 and dst2, based on the DST, show much
better results since the DST allows the management of cells with an
unknown state. We can consider that the distribution of masses can
give a hint on the confidence of a measurement. Thus, when a cell is
not observed, the confidence associated with this measurement is null.
The consequence of this behavior is the elimination of the beams as
observed in the methods inter1 and inter2 and thus the reduction of
the false positives. We notice a more erratic behavior on Fig. 2.7 until
frame 140. This is due to the fact that a vehicle is too far away to be
detected which corresponds to a false negative. Moreover, the vehicles
are distant from each other, which has the consequence of amplifying
the observation errors. As for the last sequences, the vehicles move
away from each other and leave the field of view of the infrastructure,
thus increasing the measurement errors. Therefore, we can conclude
that the results are given at the beginning and the end of the traffic
circle transit as given in Fig. 2.7 are due to measurement errors. To
conclude, we note that dst1 and dst2 do not seem to be affected by
the arrangement of the vehicles as is inter2 and therefore dst1 and
dst2 are more robust than the state of the art methods while providing
better results.

2.5 conclusion

In this chapter, we presented a new approach for cooperative percep-
tion in order to create an evidential occupancy grid map. We used the
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vehicle PoV in addition to the infrastructure PoV in order to build
confidence at low cost.

In addition, we propose a method for cooperative generation of
evidential occupancy grid using only the two-dimensional bounding
boxes given by an image sensor as well as the position of that sensor
with the aim of keeping the system’s cost low as well as reducing the
load on the communication system.

Finally, we propose a study on different data fusion methods based
either on a Bayesian approach or on a Dempster-Shafer based approach
on which we observe much better results. We have validated our
results on a cooperative dataset that we have created from the CARLA
simulator that we provide and to which we have added measurement
noise.

We were able to validate our approach and the general idea of
creating maps from sparse data. However, this map only shows the
obstacles without giving the nature of the obstacle. Moreover, several
axes remain to be explored, notably on the decision making and the
assignment of masses. Finally, the dataset on which we validated our
results lacks scenarios. We explore these elements in the next chapter.
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[1] Antoine Caillot, Safa Ouerghi, Yohan Dupuis, Pascal Vasseur,
and Rémi Boutteau. “Multi-Agent Cooperative Camera-Based
Semantic Grid Generation.” In: UNDER REVIEW - IEEE Robotics
and Automation Letters (2022).

3.1 introduction

In the previous chapter, we have introduced a new approach using
in-scene vehicle PoVs in addition to infrastructure PoVs to monitor
a road section. We have used the 2D bounding boxes of the detected
objects instead of the image stream to reduce the pressure on the
network and have proposed a dynamic object occupancy grid of the
scene. To merge the data from all PoVs, we have implemented two
methods: the first one based on the Bayesian theory and the second
one on the DST. Our results showed a large benefit with the DST-based
method but must be put in perpective because of the rudimentary
aspect of the implemented decision making method. In addition, the
dataset we used to test the viability of our approach is very limited.

Semantic information brings a new level of understanding of the
scene and allows to estimate parameters that are not measured. Thus,
a user can assume that a vehicle is moving faster than a pedestrian
and can better prioritize his actions. This paradigm is also true within
our system. Indeed, through the implicit estimation of parameters of
an object, we can estimate the maximum size of an object according to
its associated class. This is why, in this chapter, we will develop our
approach to integrate a semantic notion. To achieve this, we will have
to adapt our architecture as well as the creation of local grids. We will
test several decision making methods and evaluate our approach on
several datasets.

3.2 road side unit architecture

We will not present the general architecture of the approach since
it has been done in Chapter 2. However, although the general idea
is the same, taking into account the semantic aspect requires some
modifications in the data processing. Fig. 3.1 shows an updated version
of the path of the data passing through the RSU and its different
processing blocks and up to the creation of the final map.

The RSU is constituted of two sets of blocks. The first, made up of
the back projector, rasterizer and BxA (Basic Probability Assigment

101
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Agent 1 Agent 2 Agent N

Back Projector Back Projector Back Projector

Rasterizer Rasterizer Rasterizer

BxA BxA BxA

Merger

Decision

Semantic Grid Map
sent to connected vehicles

Bounding box info.
Sensor info.

Projected silhou-
ettes

Grid masks

Sem. occup. grid or
Sem. evidential grid

Semantic occupancy grid
or Semantic evidential
grid

Figure 3.1: Pipeline of the data from the agent to create a semantic grid map.
The illustration shows the example with 3 agents, and thus, 3

parallel processings before the merge of the grids.
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(BPA) or BBA) blocks, which is intended to perform a first processing
on the data sent by each agent. In fact, for each agent, an instance of
this first set is created and several instances may, therefore, be created
in parallel. Since the output of this set has, not yet, benefited from
the cooperative aspect, it is considered as local processing. This latter
takes the form of a grid and we will, therefore, refer to it as local grid.
The second set of blocks is intended to merge the local grids into a
global semantic grid and thus, performs global treatments.

3.2.1 Local Processing Blocks

The local treatment consists of 3 blocks.

back projector :
This block uses the bounding box and sensor information to
make an inverse projection of the bounding boxes onto the
ground in the world frame. The produced silhouettes are associ-
ated with the label given with the bounding box.

rasterizer :
It allows to create masks in the form of grids from the topolog-
ical information of the previous block. Instead of storing the
probability of occupancy as in chapter 2, the cells store a number
corresponding to the label given by the silhouette.

bxa :
This interchangeable block takes the format of BPA to convert
the masks into a probabilistic occupancy grid or the format of
BBA to convert the masks into an evidential occupancy grid.

3.2.2 Global Processing Blocks

The set performing the global treatment consists of 2 blocks depending
on the type of input grid.

merger :
This block merges the local grids of each user using either a
Bayesian or a DST based method. This block is very similar to
the one presented in chapter 2. However, we presume the data
synchronised between the different agents.

decision :
Finally, the global occupancy or evidential grid are converted
into a semantic grid. This block must therefore make a decision
about each cell belongs to which semantic class among a finite
number of available semantic classes.

At the output of this set, we obtain a semantic grid map indicating
where the objects are located. In the scope of this chapter, only seman-
tic classes of "pedestrians" and "vehicles" are considered. The other
cells are considered as terrain, the default class. However, the number
of classes can be extended to any number.
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Figure 3.2: Bounding boxes for cars and pedestrians with their two lower
points on the ground as given from our Dataset built from CARLA.
Green boxes represent the 2D bounding boxes extracted from the
3D bounding boxes given by the simulator.

3.3 local grid maps

In this section, we give details about the methods used in the three
blocks of the local processing set.

3.3.1 Inverse Projection

As detailed in chapter 2, to find the position of the users in the scene
from the 2D bounding boxes, we can do an inverse projection of the
bounding boxes on the ground. Indeed, the two bottom points of the
2D bounding box correspond approximately to the two closest points
on the ground of the 3D bounding box, as shown in Fig. 3.2. The top
two points of the bounding box, when they can be projected to the
ground, give an upper limit to the span occupied by a user.

However, we observe that the silhouettes projected on the ground
are much larger than the span of the vehicle, especially on the axis of
the depth relative to the cameras. We can therefore reduce this effect
by assigning a maximum length on the depth axis according to the
class. In this case, we chose a length of 6 m for vehicles and 1 m for
pedestrians. The part of the original silhouette being trimmed will be
considered as hidden and therefore in an unknown state. This strategy
is notably illustrated in the Fig. 3.3.
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Cropped (Car)Terrain Unk. Terrain

Original Silhouette

Classified as Unknown

(a) Side View displaying the case where the originally projected silhouette is cropped
to reduce its size to an acceptable dimension. The removed part of the silhouette
is considered hidden by the object observed and thus classified as unknown.

Original Vehicle Sil.

Original Pedestrian Sil.
Classification Legend

Terrain
Unknown
Vehicle
Pedestrian

(b) Top view displays the original silhouettes for a vehicle and a pedestrian and the
cropped ones. In the case of a pedestrian, the dimensions to crop a silhouette are
smaller than for the vehicles.

Figure 3.3: The rays of the bounding boxes are projected onto the ground.
If the silhouette is too large, it is reduced along its length. The
areas resulting from the reduction are considered as unknown
since they are occluded.
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3.3.2 Basic Assignment

The task of putting the label grids into a compatible format for merging
belongs to the BxA block. If this block creates a semantic occupancy
for Bayesian-based merging method, it is then called BPA. However, if
it uses a mass system used in DST to create an evidential grid, it is
then called BBA.

3.3.2.1 Classes

In our work, we used three semantic classes namely: pedestrian, vehi-
cle and terrain as given in Equation (3.1),

Ω = {V ,P , T } (3.1)

where V is the vehicle class, P the pedestrian class, and T the terrain
class. Ω represents the available universe of classes. In addition, there
is an internal state that we use to define whether a cell has been
observed or not. This will be treated differently depending on the
merge mode, Bayesian or evidential.

3.3.2.2 Occupancy Grids

In the case where we want to merge the different PoV by a Bayesian
method, we can then transform the previously generated grid into a
semantic occupancy grid.

grid definition This type of grid has already been defined, as in
[76] where the authors propose an augmentation of the classical occu-
pancy grid by appending the presumed class to the occupancy value.
Nevertheless, this format is not suitable for grid fusion. Therefore, we
chose the format presented in [37] which, for each position, proposes
|Ω| sub-cells, containing the probability of each class. We will note
this map B<x,y,c> with < x, y > the coordinates of the cell, c the index
of the sub-cell (one per class).

basic probability assignment function The probability
value assignment is done based on the observed cell label and the
detection confusion estimate. This task is here called the function BPA
and can be defined according to Equation (3.2).

BPA : M<x,y> →M<x,y,z>, z ∈ Ω (3.2)

To perform this task, we use a lookup table that allows us to know the
probability value of each class for each observed label. Table 3.1 shows
the Look-Up Table (LUT) used for observations from vehicles. In this
example, when a vehicle has been detected, we estimate the fact that
it is really a vehicle at 85 %, that it is finally a pedestrian at 10 % and
that it is a land at 5 %. Table 3.2 shows the LUT used for observation
from the infrastructure.
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Obs. V P T

X 0.33 0.33 0.33

V 1.00 0.00 0.00

P 0.00 1.00 0.00

T 0.20 0.20 0.60

Table 3.1: LUT to assign probability values to each sub-cell based on the
observed class of the original cell when observed from a vehicle. X
stands for unobserved cases.

Obs. V P T

X 0.33 0.33 0.33

V 1.00 0.00 0.00

P 0.00 1.00 0.00

T 0.00 0.00 1.00

Table 3.2: LUT to assign probability values to each sub-cell based on the
observed class of the original cell when observed from the infras-
tructure. X stands for unobserved cases.

3.3.2.3 Evidential Grids

To perform a merge in the framework of the DST, it is necessary to
create evidential maps.

grid definition The definition of the semantic evidential grid
is almost identical to that presented in section 2.3.3.4. However, in
chapter 2, we considered only two classes, O and F , whereas we now
have three: V , P and T . Thus, each sub-cell takes the value of the mass
associated to each element of the power-set 2Ω which is defined in
Equation (3.3). We also notice that we have chosen only three distinct
classes but that more classes could be used in future works. Similarly,
we will note this map E<x,y,c> with < x, y > the coordinates of the
cell, c the index of the sub-cell (one per element of the power set).

2Ω = {∅, {V}, {P}, {T },
{{V}, {P}}, {{V}, {T }}, {{P}, {T }}, Ω}

(3.3)

Once again, the advantage of using a power set is that we can take
into account states of doubt, this time: between classes. For instance,
in the case where a motorcycle is seen from the front, it could be
classified as a pedestrian while seen from the side it would be more
easily classified as a vehicle. It is thus possible to compute specifically
the confusion factor between these two classes to assign a mass value
to the set {{V}, {P}}. Similarly, if a cell has not been observed, we
will only consider the set Ω.
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Obs. ∅ {V} {P} {T }
Ω\ Ω\ Ω\

Ω
{T} {P} {V}

X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

V 0.00 0.30 0.00 0.00 0.10 0.10 0.00 0.50

P 0.00 0.00 0.30 0.00 0.10 0.10 0.00 0.50

T 0.00 0.10 0.10 0.30 0.00 0.00 0.00 0.50

Table 3.3: LUT to assign mass values to each sub-cell from the observed class
of the original cell when observed from a vehicle. X stands for
unobserved cases.

Obs. ∅ {V} {P} {T }
Ω\ Ω\ Ω\

Ω
{T} {P} {V}

X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

V 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.60

P 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.60

T 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.60

Table 3.4: LUT to assign mass values to each sub-cell from the observed class
of the original cell when observed from the infrastructure. X stands
for unobserved cases.

basic belief assignment function In the same way as for the
function of BPA, the function of BBA allows to determine values for
each of the masses of the power set and can be formalized in the form
of Equation (3.4):

BBA : M<x,y> →M<x,y,z>, z ∈ 2Ω (3.4)

Similarly to the occupancy grids, we also use a LUT similar to that of
Table 3.3 to assign values to the masses of the power set depending on
the observation of the cell when observed from a vehicle. We observe,
however, that when a cell has not been observed, the mass of Ω is
assigned to 1 to account for this state of unknown, unlike the BPA
function. Table 3.4 shows the LUT used for observations from the
infrastructure.

Today, the functions of BBA still form contributions since no method
is yet agreed upon. Thus, we have defined the values of our LUT with
a heuristic method using qualitative and quantitative studies. Another
good indicator is the conflict value used in the Dempster fusion rule
given in Equation (3.9) which should be minimal. However, since these
values are influenced by the performances of the agents’ classifiers,
but also by their pose, their number or by the layout of the terrain in
the scene, it is necessary to frequently reevaluate the LUT’s values.
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3.4 merging methods

In this section, we come back to the merger block by detailing its
functioning and the different approaches evaluated. We firstly describe
the method based on the Bayesian theory before the method based on
the DST one.

3.4.1 Bayes-Based Merging

The Bayesian merge rule is very similar to the one presented in section
2.3.3.1 except that this rule is to be applied for each of the sub-cells
B<x,y,c>i with c ∈ Ω. Thus, the merge rule is updated to match the
one in Equation (3.5), i being the index of the agent, and knowing that
the cell contains the probability of the presence of its associated label.

∀x ∈ [0, m], y ∈ [0, n], c ∈ Ω

MB<x,y,c> =
N

∏
i
B<x,y,c>i

(3.5)

Therefore, for each subcell at a given < x, y, c > coordinates, we can
finally merge the observations by successive multiplications. Never-
theless, this method does not handle observation conflicts.

3.4.2 Evidential Merging

A method based on DST as used in [19, 90] provides a better under-
standing of conflicting observations. Several combination rules are
available.

3.4.2.1 Conjonctive’s Combination Rule

The first combination rule, called the conjunctive combination rule, is
defined by Equation (3.6),

m1(A) ∩ m2(A) = ∑
B∩C=A∈2Ω

m1(B)m2(C) (3.6)

where m1 and m2 are mass functions defined over the universe Ω. Since
the combination rule is associative, we can apply it to the E<x,y,c> maps
of each of the N agents to form a global evidential grid ME<x,y,c>
according to Equation (3.7):

∀x ∈ [0, m], y ∈ [0, n], c ∈ Ω

ME<x,y,c> =
N⋂

i=0

E<x,y,c>i
(3.7)

Following the association of the local grids, a global grid is obtained
with the particularity of having m(∅) ̸= 0 in some cells. This value is
generated by conflicts between the different agents observing the same
cell. Several interpretations of the conflict are possible [67] such as the
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non-exhaustiveness of the discernment framework (lack of available
classes), lack of reliability in the observations or bad modeling of the
perception capacities (BBA). Therefore it can be a good indication of
the weaknesses of our modeling of the scene and of the perception
that we will try to correct in order to reduce the conflict. Nevertheless,
it is sometimes impossible to reduce this conflict and it will have to be
managed either by coefficients of collapse in the BBA or in the phase
of combination. However, a possible solution to reduce the conflict
is the use of a slump coefficient on the BBA. This coefficient allows,
depending on certain parameters, to assign a higher value to the Ω
mass. For the moment, in the current state of our work, the closest
thing to the use of such a coefficient is the reduction of the silhouettes
according to their label. Another approach would be to implement
this coefficient according to the distance of the objects from the PoV
and the pose noise of the PoV.

3.4.2.2 Dempster’s Combination Rule

To handle the conflict in the combination phase, we can add a nor-
malization factor to the conjunctive combination rule to form the
Dempster combination rule which we used in section 2.3.3.4. This is
formalized in Equation (3.8),

m1(A)⊕m2(A) =
1

1− K ∑
B∩C=A ̸=∅

m1(B)m2(C) (3.8)

where K, defined in (3.9) gives the conflict value.

K = ∑
B∩C=∅

m1(B)m2(C) (3.9)

Thus, using Dempster’s combination rule, the conflict is distributed
among all masses, but respects m(∅) = 0, a property that must be
respected in the closed world proposed by Shafer.

As stated in section 2.3.3.4, this rule is associative. Hence, it is
possible to create a map from N observing agents providing local
evidential grids E<x,y,c> in order to obtain a global evidential one
ME<x,y,c> according to Equation (3.10).

∀x ∈ [0, m], y ∈ [0, n], c ∈ Ω

ME<x,y,c> =
N⊕

i=0

E<x,y,c>i
(3.10)

At this point, we have either a semantic occupancy gridMB<x,y,c>
or an evidential semantic grid ME<x,y,c>. These maps contain the
information for each class, but it is necessary to interpret them to
obtain a semantic grid representing the scene.

3.5 decision methods

In this section we discuss the decision making block. We formalize the
method to transform an occupancy grid or an evidential grid into a
semantic grid.
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3.5.1 From Occupancy Grids To Semantic Grids

As defined in Section 3.3.2.2, the occupancy gridMB<x,y,c> consists
of subcells containing the probability associated with each label. Thus,
it is possible to transform the occupancy grid into the semantic grid
S<x,y> by selecting the label with the highest probability as formalized
in equation (3.11).

∀x, y ∈ [0, m], [0, n]

S<x,y> = argmax
c∈Ω

MB<x,y,c>
(3.11)

S<x,y> thus consists, for each location cell < x, y >, of the label with
the maximum estimated probability.

3.5.2 From Evidential Grids To Semantic Grids

To make a decision, several approaches are possible.

3.5.2.1 Using masses

Similar to the approach presented in the section 3.5.1, one solution is
to choose the label with the largest mass as formalized in equation
(3.12).

∀x, y ∈ [0, m], [0, n]

S<x,y> = argmax
c∈Ω

ME<x,y,c>
(3.12)

Nevertheless, this solution does not take into account situations
where observations was contradictory since the labels of 2Ω \ A, ∀A ∈
Ω and thus, may bring less good performances than if all the elements
of 2Ω were taken into account.

3.5.2.2 Belief and Plausibility

In order to take into account all the elements of 2Ω, we can use an
approaches based on belief (bel) or plausibility (pl) functions. They
are defined in equation (3.13).

∀A ∈ Ω

bel(A) = ∑
B|B⊆A

m(B)

pl(A) = ∑
B|B∩A ̸=∅

m(B)

(3.13)

These belief and plausibility functions use the values of the masses
to give an interval, equation (3.14), in which lies the estimated proba-
bility value for a label A ∈ Ω.

bel(A) ≤ P(A) ≤ pl(A) (3.14)
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It is therefore possible to generate semantic maps from these func-
tions. We will then have a believed semantic grid Sbel<x,y> or a plausi-
ble semantic grid Spl<x,y> as defined in equation (3.15).

∀x, y ∈ [0, m], [0, n]

∀c ∈ 2Ω, m(c) =ME<x,y,c>

Sbel<x,y> = argmax
C∈Ω

bel(C)

Spl<x,y> = argmax
C∈Ω

pl(C)

(3.15)

3.5.2.3 Probability Estimation

It is also possible to create a map from an estimated probability, either
from the belief and plausibility functions or from the masses.

belief interval Since the probability of a label A ∈ Ω is framed
by belief and plausibility, equation (3.14), we can set the probability as
being in the center of these two bounds, as given in equation (3.16).

Pest(A) ∼ pl(A)− bel(A)

2
+ bel(A) (3.16)

It is therefore possible, in the same way as in the section 3.5.1, to
create a semantic map from this estimated probability, as in equation
(3.17).

∀x, y ∈ [0, m], [0, n]

∀c ∈ 2Ω, m(c) =ME<x,y,c>

SPest<x,y> = argmax
C∈Ω

Pest(C)
(3.17)

pignistic probability Finally, it is possible to determine the
pignistic probability noted BetP of a label A ∈ Ω using equation (3.18).

BetP(A) = ∑
∅ ̸=B⊆Ω

m(B)
1−m(∅)

|A ∩ B|
|B| , ∀A ⊆ Ω (3.18)

The advantage of calculating the pignistic probability resides in its
consideration of the conflict estimation, defined in the section 3.4.2.1,
in the decision-making.

The method to define the map is based on the maximum pignistic
probability among the elements of Ω, such as (3.19).

∀x, y ∈ [0, m], [0, n]

∀c ∈ 2Ω, m(c) =ME<x,y,c>

SBetP<x,y> = argmax
C∈Ω

BetP(C)
(3.19)
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3.6 results

In this section, we evaluate our approach. We first present the data we
used for our evaluation as well as the metrics allowing a quantitative
evaluation. Finally, we discuss the performance of our cooperative
semantic map creation approach.

3.6.1 Datasets

In order to evaluate our algorithm, it is necessary to put it in situation
which is possible via the use of datasets. In [90], the authors based
their evaluation on the KITTI dataset [45]. Nevertheless, the KITTI
dataset is not a cooperative dataset and, to the best of our knowledge,
no cooperative dataset was available.

3.6.1.1 CARLA

For the same reasons as those discussed in Section 2.4.1, namely
synchronization and pose estimation challenges, and to address the
limitations of the dataset we created previously, we created a set of
new datasets using CARLA [32]. However, we noticed in parallel to
our work that other teams have also realized cooperative datasets
based on CARLA. This is notably the case of the authors of [118]
who propose OPV2V, a cooperative dataset to test V2V approaches.
Nevertheless, our approach also requires views from infrastructures.
This latter doesn’t, though, include cooperation with an infrastructure
that we do use in our approach. Even more recently, authors of [72]
propose the V2X-Sim dataset with viewpoints coming from vehicles
and infrastructure. Nevertheless, we need more scenarios than the ones
proposed in V2X-Sim and especially a scenario in roundabouts where
occlusion occurs. That is why we have created our own cooperative
dataset.

3.6.1.2 Our Datasets

Since the previous dataset created in chapter 2 was featuring a small
amount of agents and, most importantly, was only featuring vehicles,
we made new datasets with PoV from vehicles and trackside infras-
tructure in order to provide an extensive validation of our approach.
The actors are vehicles and pedestrians using the CARLA autopilot.
The figure 3.4 shows a trackside infrastructure PoV with several actors
in the scene.

To observe different behaviors, we generated several datasets with
different traffic density at a roundabout and another dataset at a
crossroads. Our goal is to test the performance of our approach in
several situations where there may be occlusions or confusion among
agents. We can augment our dataset by enabling or disabling agents.
By default, all vehicles are considered agents and provide a stream of
images. It is therefore possible to ignore image streams to simulate
unconnected vehicles.
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Figure 3.4: Image from an infrastructure PoV of our dataset with a dense
traffic in a roundabout generated with CARLA [32].

sensors and recorded data Similar to what we used in chap-
ter 2 to generate our dataset, each PoV consists of a set of cameras.
This set of sensors consists of two cameras:

• RGB camera of 1384× 1032 pixels and a Field of View (FOV) of
90◦

• Semantic camera of 1384× 1032 pixels and a FOV of 90◦

These two cameras share the same pose, the same optical parameters
and are perfectly synchronized with their images, the position of the
sensors and the position of the bounding boxes of the actors are also
recorded for each simulation step. This allow a perfect correspondence
pixel by pixel in a PoV to filter the final 2D bounding boxes.

Indeed, the 2D bounding boxes are computed on the agent images
from the 3D bounding boxes and the camera position of the ego-agent.
Some of the 2D bounding boxes should not appear because occluded
by other objects. We use the semantic segmented images associated
with the RGB images to figure out the ratio of correct label within
a bounding box in order to define if the object is occluded and the
bounding box erased. A shortcoming of this solution is that objects
occluded by a same-label object are not erased as visible in Fig. 3.5.
Finally, an adjustable noise can be added to the retained bounding
boxes.

roundabout original , medium & dense The first set of
datasets is located at the same roundabout as the dataset we did
in Chapter 2. In fact, the original dataset is almost the same as the one
used in Chapter 2 but updated to match the method of generating
bounding boxes taking into account occlusions. The other two datasets
are then described in Table 3.5.
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Figure 3.5: Example of a bounding box that should be deleted but is notbe-
cause it belongs to the same class as the occluding object.

Table 3.5: Original dataset with different traffic density in the roundabout.

Dataset N# Infrastructure N# Vehicle N# Pedestrian

Original 1 3 0

Medium 6 6 12

Dense 6 30 6

The vehicles are then placed on the branches of the roundabout as
well as in the ring in the initial state and the pedestrians are positioned
on the sidewalks. Then, the autopilot provided with CARLA takes the
control of the vehicles and pedestrians to make them evolve in the
scene. Each dataset has a duration of 450 frames at a rate of 30 frames
per second, except for the Medium dataset with 1800 frames.

crossroads Although the framework of this thesis is primarily
aimed at roundabout navigation, we also generated an intersection
dataset to evaluate other types of occlusions such as buildings at
the corner of two streets like the one in Figure 3.6. This dataset also
provides a large number of occlusions due to the terrain, notably on
the pedestrians, and allows to counterbalance the limits evoked in
earlier.

Moreover, while the only roundabout provided in the CARLA maps
is positioned in < 0, 0 > coordinate, this dataset allowed us to validate
the functioning of our approach outside the particular case of the
roundabout. This has notably highlighted the problem of the center of
the map. Thus, the center of the map is defined by the barycenter of
the position of the PoVs of the infrastructure as guessable in Figure
3.7.

This dataset consists of the elements represented in Table 3.6. The
four PoVs of the infrastructure are placed in such a way that their
overlapping zone is limited to the intersection of the roads but that, for
each of the branches, we count on the presence of vehicles to complete
the map. Thus, we wish to observe if this limited number of PoVs is
sufficient to monitor an intersection.
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Figure 3.6: Image from an infrastructure PoV of our dataset at a crossroad
generated with CARLA [32].

Table 3.6: Original dataset with traffic density at a roundabout.

Dataset N# Infrastructure N# Vehicle N# Pedestrian

Crossroads 4 18 20

3.6.1.3 Ground Truth Generation

In order to evaluate the performance of our solution, it is necessary
to have a reference. In our case, the ground truth takes the form of a
semantic map. Since CARLA does not provide a map, it is necessary
to generate this map from the available information. Thus, we use
the bounding boxes of the different agents that we place on a grid
with the same format as the map that we want to generate with our
approach as illustrated in Fig. 3.7.

This semantic grid map can be transformed into an occupancy grid
by considering the cells corresponding to the terrain as free cells and
the others as occupied cells.

3.6.2 Qualitative Study

To ensure that our system could generate coherent and usable map, we
conducted a qualitative study. We also used this qualitative assessment
to roughly adjust the parameters used in the BBA and BPA. Fig. 3.8
illustrates a visual comparison between the ground truth Fig. 3.8b, the
map generated using the DST Fig. 3.8a, and the map generated using
a Bayesian fusion-based approach Fig. 3.8c. The Bayesian theory-based
method succeeds in placing all vehicles on the map, as does the DST
based method. However, the method based on the DST seems to have
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Figure 3.7: Ground truth map generated from bounding box information
provided by CARLA. In purple: terrain cells, in yellow: pedestri-
ans and in turquoise: vehicles.
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less false positives. As for the pedestrian, they are mostly correctly
placed on the map.

In order to compare our results, we tried to reconstruct a scene
using a multiview approach as proposed in COLMAP [95]. However,
despite the fact that we gave the true positions of the cameras in the a
priori, more margin of error to the algorithm or pairs of initial images:
we could not get any results. The reason is the lack of common fea-
tures between the elements. We believe that the baselines between the
images are also too large to perform an association and reconstruction.
To the best of our knowledge, we do not know of any other method to
create an occupancy grid from images and without depth information
from multiple viewpoints with freely available code. Our approach,
pragmatic and efficient, does not require object matching among the
different PoV and thus functions regardless of the appearance of the
objects in the scene.
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(a) Semantic map generated by our
approach using DST merging.

(b) Ground thruth map. (c) Semantic map generated by
our approach using Bayes-based
merging.

Figure 3.8: Comparison of the ground truth maps and the semantic map generated by our solution. In purple: ground cells, in yellow: pedestrians and in turquoise
vehicles.
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3.6.3 Metrics

To provide a quantitative study, we used several metrics commonly
found in the literature which we used in Chapter 2, namely Intersec-
tion over Union (IoU) and F1-score. IoU and F1-score measure the
performance on the size and the detection of objects which we adapted
to fit the semantic aspect of our new maps. We also used the Correct
Ratio (CR) to measure the semantic performance.

3.6.3.1 Intersection over Union

The IoU is based on the number of True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN). In this chapter, they
are generated by comparing the cells of the ground truth map with
the obtained semantic map. In this case, for a label ω ∈ Ω, if a cell of
the semantic map obtained is equal to ω and that it is the same on
the cell of the same position on the ground truth map, then this cell
is regarded as a TP. If a cell of the obtained semantic map is equal to
ω but it is not equal to ω on the cell of same position on the ground
truth map, then this cell is considered as an FP. If a cell of the obtained
semantic map is not equal to ω but is equal to ω on the cell of the
same position on the ground truth map, then this cell is considered as
an FN. Finally, if a cell of the obtained semantic map is not equal to
ω and it is not equal to ω on the cell of same position on the ground
truth map, then this cell is considered as an TN. Thus, the IoU for a
chosen ω label is given by equation (3.20).

IoUω =
TPω

TPω + FPω + FNω
(3.20)

To estimate the overall performance, it is possible to calculate the
average between all labels, as given in equation (3.21).

mIoU =
1
|Ω| ∑

ω∈Ω
IoUω (3.21)

However, we have noted a limitation of the average score. When
the detection gives a failure rate of 100 % and, therefore, the whole
map is considered as terrain, the default label, then the average IoU is
about 30 %. Another solution is to transform the semantic grids into
an occupancy grid and to compute the IoU on the occupancy rather
than on the labels.

3.6.3.2 F1-Score

The F1-Score is very similar to the IoU since it is also based on the
number of TP, TN, FP and FN. It can be calculated as shown in
equation (3.22).

F1ω =
TPω

TPω + FPω+FNω
2

(3.22)

[ December 15, 2022 at 19:11 – version 3.1 release ]



3.6 results 121

In the same way as for the average F1-score, it is possible to obtain
an overall value by calculating the average F1-score, as in equation
(3.23). It should be noted that the average F1-score shares the same
shortcomings as the average IoU.

mF1 =
1
|Ω| ∑

ω∈Ω
F1ω (3.23)

3.6.3.3 Correct Ratio

In order to measure the performance on assigning correct labels to
cells, we used the CR which we calculated as shown in equation (3.24).

CRω =
TPω + TNω

TPω + TNω + FNω + FPω
(3.24)

Usually, the CR is calculated by comparing corresponding label
cells on the ground truth map and the final map devided by the total
number of cell in the map. However, the cells having a correct label
are constituted by the sum of TP and TN. The limitation of this metric
in our use case is that the majority of the cells are considered as terrain
in the map to be evaluated and in the ground truth map. Therefore,
the results are always very high and it is difficult to distinguish the
variations.

3.6.4 Quantitative Study

In this section, we observe our approach in terms of several parameters
using the metrics designated above.

3.6.4.1 Bayes-based Method vs. DST-based Method

Since we have tried two approaches, one based on Bayesian theory
and the other based on the DST, we want to highlight which approach
is the most efficient. The Table 3.7 aims precisely at showing the
performance differences between the two approaches on a scene of the
dataset we created while showing the result for each of the metrics
stated earlier and can be used as a reference point for the rest of this
chapter.

The results highlighted in the Table 3.7 express an average improve-
ment of 22.42 % on the average IoU or 19.21 % on the mean F1-Score in
favor of the DST based approach. Vehicles benefit the most from this
approach with a gain on the IoU of 92.87 %. Pedestrians also benefit
from a better representation on the map when using DST. However,
we notice that the pedestrian IoU is low compared to the other classes.
This is due to the fact that the areas of the cells are significant com-
pared to the areas occupied by pedestrians. Thus, the number of cells
occupied by pedestrians is low and artificially increases the impact of
errors in the metrics. Conversely, for the terrain class which occupies
the majority of the cells of the map and on which the impact of errors
is particularly low in the metrics.
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Fusion Class IoU F1-Score CR

Ours
(Bayes)

V 26.21 36.46 96.50

P 22.33 41.52 99.95

T 96.40 98.17 96.45

Mean 48.31 58.71 N/A

Ours
(DST)

V 50.55 67.07 98.87

P 28.03 43.49 99.98

T 98.84 99.41 98.85

Mean 59.14 69.99 N/A

Table 3.7: Detail of the IoU, F1-Score and CR (in %) for the heavy traffic scene
(roundabout) in our dataset.

3.6.4.2 Decision taking methods

In the previous paragraph, we compared our fusion methods based
on the Pignistic probability decision making BetP defined in Section
3.5.2.3. In fact, it is this decision making method that is used in the
remainder of this section to compare different items. However, in
Section 3.5, we presented several decision making methods associated
with DST. However, as Table 3.8 shows, when we vary the decision
making method, we get strictly identical results. To observe differences
between these methods for estimating probability, we need to look at
the maps generated before each cell is assigned a class. In particular,
Figure 3.9 depicts some maps showing that the probabilities vary
as a whole, but that their ranking between labels remains the same
regardless of the method. Therefore, when a cell is given a label due
to the fact that its associated probability is maximal, the differences
between the decision making methods are lost.

This observation is valid on all the datasets we have created and
we could not obtain a situation in which an observation remains
ambiguous until the decision is made. Perhaps the increase of more
confusing classes or semantic noise in the observations could have an
impact on the decision making. Similarly, another method to associate
a class with a cell could offer other results.

Finally, we observe in Figure 3.9e and in Figure 3.9f that the decision
making method BetP generates the same values regardless of whether
the conjunctive or disjunctive merge rule is used. Indeed, this behavior
is expected since this decision making method normalizes its result
from the conflict value. This conflict is non-zero after merging via the
conjunctive rule, unlike Dempster’s combination rule.
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Classes

Combining Rule Method V P T Mean

Conjunctive

Max. m 57.33 35.62 99.13 64.03

Max. bel 57.33 35.62 99.13 64.03

Max. pl 57.33 35.62 99.13 64.03

Max. BetP 57.33 35.62 99.13 64.03

Max. Pest 57.33 35.62 99.13 64.03

Max. wPest 57.33 35.62 99.13 64.03

Dempster

Max. m 57.33 35.62 99.13 64.03

Max. bel 57.33 35.62 99.13 64.03

Max. pl 57.33 35.62 99.13 64.03

Max. BetP 57.33 35.62 99.13 64.03

Max. Pest 57.33 35.62 99.13 64.03

Max. wPest 57.33 35.62 99.13 64.03

Table 3.8: Evolution of the mIoU for both conjunctive and Dempster combing
rule and for each decision taking methods. Every value are identical
because of the assignment method of a class for each cell based on
the maximum of probability.

3.6.4.3 Connected Vehicles Ratio Evolution in a Scene

Now that we have seen the performance between the two approaches
of our solution, we can test, on the same scene of our dataset, to vary
the proportion of CV and PoV of the infrastructure. We therefore
performed several sub-scenarios. The first one consists of a single
vehicle observing the scene, as an instrumented vehicle. The second
scenario consists of an infrastructure alone in the manner of projects
like [4]. A third scenario is to have the infrastructure with only 1 CV
corresponding to the approach of MEC-View1. Finally, other scenarios
are created by changing the proportion of CV up to the all connected.

The Table 3.9 shows that the approach based on the Bayesian theory
maintains a IoU of 50 % and seems to suffer from the multiplication
of the points of view whereas the approach based on the DST benefits
from the multiplication of the points of views. Indeed, in the scene
of dense traffic in a roundabout, occlusions are frequent and can
produce conflicting observations between the agents. However, the
approach based on the DST manages the conflicting observations and
thus shows its advantage in such scenarios, contrary to the approach
based on the Bayesian theory. Thus, as the number of PoV increases,

1 http://www.mec-view.de/
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Infrastructure: Connected Ours (Bayes) Ours (DST) Gain

N# PoV Vehicles mIoU (%) mIoU (%) (%)

0 (0 %) 1 (3 %) 53.22 53.28 0.11

2 (33 %)

0 (0 %) 54.43 55.69 2.31

1 (3 %) 54.85 56.00 2.10

8 (27 %) 51.97 56.77 9.24

15 (50 %) 50.54 57.64 14.05

23 (77 %) 50.30 57.58 14.47

30 (100 %) 49.87 57.29 14.88

6 (100 %)

0 (0 %) 50.67 58.41 15.28

1 (3 %) 51.24 58.53 14.23

8 (27 %) 49.91 59.23 18.67

15 (50 %) 48.74 60.12 23.35

23 (77 %) 48.58 59.87 23.24

Full dataset

(6 Infra. PoV + 30 CVs)
48.31 59.14 22.42

Table 3.9: Evolution of the mIoU (in %) for the dense traffic scene (round-
about) of our dataset, varying the proportion of agents in the users
fleet.
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(a) Conjunctive BBA (b) Dempster BBA

(c) Conjunctive wPest (d) Dempster wPest

(e) Conjunctive BetP (f) Dempster BetP

Figure 3.9: Probability maps before assigning a label to each cell. The lighter,
the greater the probability. We can note that with the conjunctive
combination rule, the images are darker because of the absence of
normalization with conflictual observations except with the BetP
which performs such normalization. Blue stands for the terrain,
red for the vehicles, and green for the pedestrians.

the gap between the DST approach and the Bayesian approach widens,
up to a maximum of 23.35 % of mIoU gain.

We also observe that with an infrastructure reduced to the strict
minimum and a fleet with a proportion of about 50 % of mCV, it
is possible to generate a map with good results. This observation is
therefore encouraging in the transition that we will see until we have
100 % of CV instrumented on the roads.
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Number of agents 4 12 36

Ours
(Bayes)

V 36.82 32.10 26.21

P N/A 26.70 22.33

T 99.39 98.98 96.40

Mean 45.40 52.59 48.31

Ours(DST)

V 42.21 53.99 50.55

P N/A 32.57 28.03

T 99.55 99.59 98.84

Mean 47.25 62.05 59.14

Gain (%) Mean 4.07 18.00 22.42

Table 3.10: Comparison of the IoU varying the number of vehicles in the
roundabout (in %).

3.6.4.4 Traffic Density Evolution

Finally, another important variable at intersections is traffic density.
Indeed, the denser the traffic is, the more the phenomenon of occlu-
sions is accentuated and the more difficult the scene is to understand
and map. We have three scenarios with varying the number of agents
at the same roundabout as shown in the Table. 3.10.

As showed in Table 3.9, Table 3.10 points out that the more observers
there are, the larger the gap between the DST based approach and the
Bayesian theory based method. However, we also observe that even
the DST approach is affected by the complexity of the scene due to
occlusions and conflicting observations.

Nonetheless, we observe that the values of mIoU are fair and that
our solution provides usable maps regardless of the traffic density in
the scene.

3.7 conclusion

In this chapter, we presented a new method to generate semantic
grids from sparse and light information coming from both vehicle’s
embedded sensors and roadside infrastructure sensors. This approach
is designed to be highly cooperative and exploits the in-scene PoV of
the vehicles to refine the generated map.

Our approach succeeded to generate maps regardless of the ap-
pearance of the objects from the multiple PoV and overtook other
state-of-the-art tools such as COLMAP [95] which was unable to bring
results due to the limitations of its algorithms based on depth and 3D
reconstruction.

The method we have presented is based on two approaches: one
based on Bayesian theory and the other on the DST. We have tested the
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performance of our approach on a dataset composed of several scenes,
generated with CARLA [32] and provided an extensive validation
with various amount of CV and traffic density. These results also
highlighted the resilience of the approach based on DST in case of
conflicting observations.
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C O N C L U S I O N & P E R S P E C T I V E S

In this thesis, we have addressed onboard/offboard cooperative per-
ception for autonomous navigation.

In Chapter 1, we have reviewed the state of the art of coopera-
tive perception methods. In particular, we have discussed cooperative
perception approaches by detailing what constitutes them as well
as the challenges that these approaches raise. We also noticed that
cooperative localization is a very active topic as well as map gen-
eration, contrasting with efforts in cooperative object detection and
tracking. We also noticed a pattern absent in cooperative approaches:
full vehicle-infrastructure cooperation. Finally, we noted that coop-
erative perception is currently a very active topic with projects in
this area, but we also noted a lack of cooperative datasets featuring
instrumented vehicles and infrastructure.

In Chapter 2, we implemented the missing cooperative scheme.
We also developed a method to generate occupancy grids only from
camera data and a fundamentally cooperative but pragmatic and
efficient approach. We tested two methods to perform information
fusion: one based on Bayesian theory, the one closest to the state-
of-the-art methods, and the other based on Dempster-Shafer theory.
We also generated a dataset in order to validate our approach and
to demonstrate that the Dempster-Shafer based methods offer better
results.

In Chapter 3, we completed our initial idea by adding the semantic
aspect. We adapted the existing parts and added a decision making
block. We generated a set of new datasets in order to conduct an exten-
sive validation of our approach. The qualitative study we conducted
shows that our approach is fully capable of generating a semantic
map from sparse camera data while the state of the art methods imple-
mented in COLMAP fail to give results. Finally, the quantitative study
shows that our decision making methods improve the results when
the fusion is performed with the method based on Bayesian theory
but that the method based on Dempster-Shafer theory always gives
better results, no matter the conditions tested.

The work that has been done during this thesis opens new perspec-
tives that have not been explored yet. To develop this approach, it is
essential to obtain a set of data sets in which instrumented vehicles
evolve, themselves evolving in an area monitored by infrastructure.
Indeed, today, the approach proposed in this thesis has no real other
work to compare with.

Although Chapter 2 has provided a solution for the management of
sensor noise, it remains rudimentary. A real study on the modeling
of the noise of sensors laying with each other that could impact the
creation of local grids or the BPA and BBA function seems necessary
to complete this work. The management of the synchronization and
the impact on the data network also needs to be studied, especially if
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other data are added to those already shared. Network failures sould
also be explored since they could lead to erroneous data or imply
huge delay and desynchronization.

In order to focus on the study of cooperative map generation, we
have excluded the step of obtaining bounding boxes. Although the
task of detecting vehicles and pedestrians (or even other objects) is
taken for granted, it would be interesting to test the robustness of
our approach to the detection distance, the class noise and the impact
of weather conditions. Furthermore, these bounding boxes could be
augmented by adding information such as an estimate of the size of
the vehicle based on its type, an estimate of the center of the vehicle
(which is not necessarily the center of the bounding box) or an estimate
of the 3D bounding boxes. We could also imagine multi-modal systems
embedded on each agent based on vision such as camera-LiDAR or
camera-RADAR systems to better estimate 3D bounding boxes. At
the system level, we could imagine verification agents embedding
other types of sensors such as hyperspectral cameras to facilitate
classification or event-based cameras to interpolate intermediate states
between two real map updates. Finally, on the RGB camera only
architecture, we could use 2D silhouettes from pixel segmentation
images instead of bounding boxes in order to obtain more realistic
silhouettes after the reprojection on the ground. In the latter case,
the use of RGBD camera could enable the use of finite rays, helping
the silhouette estimation on the ground. The management and the
integration of these optional information in the information fusion
would be an interesting contribution.
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perception embarquée / débarquée pour la navigation autonome .

résumé Avec l’arrivée de la navigation autonome, la perception de l’environnement dans
lequel évoluent les véhicules est une tâche primordiale. Pour répondre à cette problématique,
les véhicules se sont dotés de plus en plus de capteurs pour percevoir leur environnement. Plus
récemment, nous pouvons observer l’apparition d’approches coopératives afin d’outrepasser
les limitations des capteurs embarqués.

Dans cette thèse, nous faisons un état de l’art des méthodes de perceptions coopératives dans
le contexte automobile. Nous y discutons des architectures fréquemment utilisées et des défis
qu’elles entraînent. Nous étudions aussi les méthodes de localisation, de détection et suivis
ainsi que les méthodes de cartographies coopératives avant de lister les projets et les scénarii
dans lesquels la perception coopérative est utilisée aujourd’hui.

En réponse à cet état de l’art, nous avons mis au point une nouvelle architecture coopérative
fusionnant les approches Véhicules-Véhicules et Véhicule-Infrastructure actuelles et basée sur
l’utilisation de données issues des véhicules et des infrastructures. Cette approche nous permet
dans un premier temps de générer des grilles d’occupation des objets dynamiques d’une scène
en utilisant uniquement des données limitées issues des caméras. Nous ajoutons ensuite à
cette approche un aspect sémantique permettant la création de grilles sémantiques. Afin de
fusionner les données issues des différents points de vues, nous avons testé deux méthodes :
l’une basée sur la théorie bayésienne et l’autre sur la théorie de Dempster-Shafer.

Les résultats sont obtenus à partir de jeux de données de notre conception et montrent des
résultats inatteignables par les méthodes de l’état de l’art aujourd’hui ainsi qu’une supériorité
de la méthode basée sur la théorie de Dempster-Shafer.

mots-clés : Perception coopérative, grille d’occupation, grille évidentielle, carte sémantique,
Théorie de l’évidence

onboard / offboard extended perception for autonomous navigation.

abstract With the emergence of autonomous navigation, the perception of the environment
in which vehicles evolve is a primordial task. To address this issue, vehicles have increasingly
been equipped with sensors to perceive their environment. Recently, we can observe the
emergence of cooperative approaches to overcome the limitations of onboard sensors.

In this thesis, we present a state-of-the-art of cooperative perception methods in the auto-
motive context. We discuss the frequently used architectures and the challenges they entail.
We also study localization, detection and tracking methods as well as cooperative mapping
methods before listing the projects and scenarios in which cooperative perception is used today.

As a response to this state-of-the-art, we have developed a new cooperative architecture
merging the current Vehicle-Vehicle and Vehicle-Infrastructure approaches based on the use of
data from vehicles and infrastructures. This approach allows us to generate dynamic object
occupancy grids of a scene using only limited camera data. We then add to this approach a
semantic aspect allowing the creation of semantic grids. To merge the data from the different
points of view, we evaluated two methods: one based on the Bayesian theory and the other on
the Dempster-Shafer theory.

The results are obtained from datasets of our own design and show results unattainable by
state-of-the-art methods today as well as a superiority of the method based on the Dempster-
Shafer theory.

keywords : Cooperative perception, occupancy grid, evidential grid, semantic map, eviden-
tial theory
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