Dr Aziz Abdulla Parosh

Dr Cezara Dragoi

Dr Hanan El Bakkali

Dr Karim Baina

Dr Krishnan

Biswas

Mohamed Sidi

German Andres Beillahi

Suha Orhun Delbianco

Mutluergil

Abi Dhar Al

Youness, Mohssine, Wael, Amine, Ismail, Med, Moha, Mhammad, Badr, Youssef, Omar… Hamid

Consistency, Availability and Partition tolerance SC

Keywords: Formal verication, Verication, Testing, Consistency, Concurrency, Sequential consistency, Total store ordering, Causal Consistency, Distributed systems. - Vérication formelle, Vérication, Test, Consistance, Concurrence, Consistance séquentielle, TSO, Consistance causale, Systèmes distribués algorithm. wCCM+ENUM algorithm. . . .

First, I would like to express my sincere

Résumé

Aujourd'hui, nous sommes tous des utilisateurs des systèmes distribués. Un système distribué est un ensemble d'ordinateurs an d'améliorer les performances par le partage des ressources. En eet, avec l'explosion massive d'Internet, ces systèmes sont devenus nécessaires. Malheureusement, en raison du parallélisme et de la latence de communication sur les grands réseaux, les systèmes distribués peuvent produire des comportements inattendus (incohérents) s'ils ne sont pas correctement conçus et implémentés. Par exemple, un siège dans un vol peut être attribué à deux utilisateurs d'un système de réservation de vol au même temps.

Cette thèse aborde le problème de vérier qu'une implémentation d'un système concurrent / distribué ore à ces clients les garanties de consistance attendues (consistance forte, faible ou éventuelle). En particulier, nous considérons le problème du test des systèmes concurrents / distribués pour déterminer s'ils orent le niveau de consistance attendu par leurs utilisateurs. Pour une exécution d'un système concurrent / distribué donnée, le test conrme la consistance ou l'inconsistance du système lors de cette exécution. Nous proposons des approches de vérication dynamique par rapport à certains modèles de consistance très connus, i.e., en exécutant un grand nombre de programmes de test et en les vériant par rapport à un modèle de consistance donné. Le principal critère de consistance que nous considérons dans cette thèse est un modèle fondamental appelé la consistance séquentielle. Le problème de vérication de ce modèle est connu pour être NP-dicile. La raison est que, pour prouver qu'une exécution est conforme à ce modèle de consistance, il faut trouver un ordre total sur les opérations d'écriture qui l'explique. Par conséquent, il faut énumérer tous les ordres totaux possibles, dans le pire des cas. Au début, nous nous intéressons à vérier la conformité à des modèles de consistance vériables en temps polynomial à l'aide de techniques basées sur la saturation. Nous considérons le modèle de la consistance causale dans ses diérentes variantes. Ensuite, nous nous appuyons sur ces travaux pour proposer une approche de vérication de la consistance séquentielle en se basant sur une variante plus forte de la consistance causale. Cette approche est améliorée par la suite en proposant un autre modèle faible basé sur des règles de saturation plus naturelles et plus simples. Ces approches permettent d'éviter de tomber systématiquement dans le pire des cas i.e., énumérer explicitement le nombre exponentiel des ordres totaux possibles entre les écritures de l'exécution.

-ix-

-xvii-INTRODUCTION

A concurrent program denes operations that may be executed at the same time. This kind of programs are present at various levels of modern computer systems varying from distributed softwares to basic applications running on multicore systems, multi-tasking operating systems and multi-threaded programs.

The design and implementation of concurrent systems is challenging and an error prone process because of the complexity of their behaviors resulting from the concurrency. Therefore, it is important to develop formal approaches to automatically check their correctness with respect to (w.r.t) some specications.

Several formal methods based technologies are proposed to verify these systems, for instance:

Model checking [START_REF] Kenneth Lauchlin Mcmillan | Symbolic Model Checking: An Approach to the State Explosion Problem[END_REF]: is a method for checking whether a program executions meet given properties (specications). The idea is to explore in an exhaustive and automatic way all models abstracting this program to decide if it satises the given specications or not. One of the challenges for this approach is to handle the exponential number of possible states, commonly known as the "State Explosion Problem" [START_REF] Clarke | Progress on the state explosion problem in model checking[END_REF].

Deductive programs verication: also called programs proving, expresses the program correctness as a set of mathematical statements, known as verication conditions, based on the specications that the program should meet. The SMT Solvers [START_REF] Barrett | Cvc4[END_REF][START_REF] De | Z3: An ecient smt solver[END_REF] or interactive theorem provers [START_REF] Nipkow | Isabelle/HOL: A Proof Assistant for Higher-Order Logic[END_REF][START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions[END_REF] are then used to discharge them.

Static analysis: is performed on an abstraction of the given program in order to determine if it satises some particular properties. This method consists on analyzing the static program representation without executing it. Abstract interpretation introduced by P. Cousot and R. Cousot in [START_REF] Cousot | Static determination of dynamic properties of programs[END_REF][START_REF] Cousot | Abstract interpretation: A unied lattice model for static analysis of programs by construction or approximation of xpoints[END_REF] is one of the widely used frameworks in static analysis.

Dynamic analysis: consists on executing the program with test data and analyzing the product behaviors to assure that it fully satises all the expected specications. Our thesis ts into the signicant research eort for proposing ecient dynamic analysis algorithms for testing memory models conformance.

Motivation

The evolution of our modern society, based on the dramatic development of information and communication technologies, is closely linked to our growing need for automated services that have become crucial in all areas of our lives (communication, commerce, nance, transport, health, leisure, energy, etc.). With the emergence of the Internet of Things and Cloud Computing, there will be more and more connecting objects of all kinds, communicating and interacting through large-scale networks, having access to virtually unlimited computing power and memory resources. The deployment of these highly distributed systems and the control of their complexity give rise to enormous scientic and technological challenges.

The quest for performance pushes designers and developers of computer systems to use dierent kinds of optimization, and in particular to more and more parallelism and distribution, with a parsimonious use of synchronization. The general idea is to try to increase the throughput of the system, to make the data available and quickly accessible for clients, and to avoid the expectations due to blocking actions. This actually happens at all levels of computer systems, from the lowest level of multi-core hardware architectures to the highest level of distributed applications running on network infrastructures, including geo-replicated distributed databases.

These optimizations and the distributed nature of the calculations tend to reorder the actions performed by each of the system components. This may be due to the fact that the more expensive actions (in terms of needed memory and/or computing power) are postponed, or performed in parallel, in order to allow the faster (or urgent) actions to be performed rst. It can also be due to communication latency and the fact that messages can follow dierent paths across large networks. A system can then produce behaviors towards client programs that are not possible when all system actions are executed instantly and atomically, and are immediately visible to all processes in the system. This kind of behaviors correspond to the consistency models known as "strong consistency" models. In fact, strong consistency is generally dicult to ensure in an acceptable way from a performance point of view. Therefore, the majority of systems used in practice (both modern micro-processors, as well as platforms for cloud computing) implement weak consistency models. The relaxation of the consistency guarantees that a system provides to its clients (programs) may aect their correction. For instance, if a system implementing a distributed database is not highly consistent, this implies that the information on dierent replicas may be dierent at some point since updates are not immediately visible everywhere in the system. This can aect the correction of applications using this system from both a safety and security perspectives. For example, two transactions on an account could withdraw twice the same amount available before they are executed if they are done in parallel and the updates are not immediately visible. Furthermore, if the policies for accessing information in a distributed database are updated in a weak manner i.e., these policies may dier from one site to another at a given moment, the information that are supposed to be protected can be leaked.

Then, one of the important problems is to ensure the correction of programs (clients) that will be executed on infrastructures that implement a weak consistency model. Indeed, concurrent and distributed systems are hard to design and program properly. This is due to the large number and complexity of interactions between their components. This diculty become greater when these systems have to be executed according to a weak consistency model that allows even more behaviors that are complex, not intuitive, and extremely dicult to understand. Therefore, it is important to have methods and tools for automatically verifying the concurrent programs on weak consistency models.

A second compulsory problem is to verify whether a system that is supposed to provide a service according to a given consistency model is correctly implemented.

Thus, it is important to check that the consistency guarantees are well ensured (for clients) by the implementation. This is a crucial problem, especially with regard to object libraries and geo-replicated/distributed data structures, that are the building blocks for building modern infrastructures for cloud computing.

Contributions

The aim of this thesis is to study the two verication problems mentioned above and provide general and ecient solutions to solve them. The proposed solutions are generically applicable to a large spectrum of consistency models, especially those adopted for reasoning on distributed systems with replication.

We briey summarize the contributions of our thesis:

First, we considered the problem of verifying that a computation is conform to a weak consistency model. We proposed an approach for verifying causal consistency models using a polynomial reduction of this problem to solving Datalog queries. Furthermore, we implemented our approach in an ecient tool for testing distributed systems.

Then, we addressed the problem of verifying strong consistency models. We considered the fundamental model known as Sequential Consistency (SC, for short) and proposed a gradual approach for checking the conformance of a computation to this model. This approach is based on a strengthening of all known causal consistency models that still polynomially checkable.

Next, we improved this approach by proposing a more natural and ecient upper-approximation of SC which is checkable in polynomial time as well.

Finally, we considered the problem of verifying the Total Store ordering model (TSO, for short) which is a weakening of SC. In fact, we generalized the SC approaches to cover TSO model by proposing suitable models for approximating it. The suggested generalizations of the approaches mentioned above are not trivial. In particular, because of the fact that these two models (Sequential Consistency and Total Store ordering) consider different kinds of relations, the latter relaxed some relations considered in the former.

Related work

The problem of checking whether a history is SC has been proved to be NPhard by Gibbons and Korach [START_REF] Gibbons | Testing shared memories[END_REF]. Two recent works tackle this verication problem [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF][START_REF] Parosh | Optimal stateless model checking for reads-from equivalence under sequential consistency[END_REF] and prove the interesting result that when the number of threads is xed, the problem of checking the conformance of a single computation to SC is polynomial time in the size of the computation. These papers introduce algorithms for SC checking based on a search for interleavings corresponding to valid SC executions. However, their works are limited to the case of a xed number of threads while our work consider the general problem. Biswas and Enea in [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF] consider also the problem of checking some other consistency models in the transactional systems context and prove some complexity results about these models.

The fact that checking whether a history satises TSO is also NP-hard has been proved by Furbach et al. [START_REF] Furbach | Memory-model-aware testing: A unied complexity analysis[END_REF]. The problem of verifying that a nite-state shared-memory implementations (over a bounded number of threads, variables, and values) has been shown to be undecidable by Alur et al. [START_REF] Alur | Model-checking of correctness conditions for concurrent objects[END_REF].

Several static techniques have been developed to prove that a shared-memory implementation (or cache coherence protocol) satises SC [START_REF] Parosh | Parameterized verication through view abstraction[END_REF][START_REF] Alur | Model-checking of correctness conditions for concurrent objects[END_REF][START_REF] Clarke | Verication of the future-bus+ cache coherence protocol[END_REF][START_REF] Delzanno | Automatic verication of parameterized cache coherence protocols[END_REF][START_REF] Delzanno | Constraint-based verication of parameterized cache coherence protocols[END_REF][START_REF] Th | Using formal verication/analysis methods on the critical path in system design: A case study[END_REF][START_REF] Esparza | On the verication of broadcast protocols[END_REF][START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Richa | Better verication through symmetry[END_REF][START_REF] Pong | A new approach for the verication of cache coherence protocols[END_REF][START_REF] Qadeer | Verifying sequential consistency on shared-memory multiprocessors by model checking[END_REF], however only few have addressed dynamic techniques such as testing and runtime verication (which scale to more realistic implementations).

There are several works that addressed the testing problem for related criteria, e.g., Linearizability. While SC requires that the operations in a history be explained by a linearization that is consistent with the program order, linearizability is requiring that such a linearization be also consistent with the real-time order between operations (linearizability is stronger than SC). The works in [START_REF] Wing | Testing and verifying concurrent objects[END_REF][START_REF] Lowe | Testing for linearizability[END_REF] describe monitors for checking linearizability that construct linearizations of a given history incrementally, in an online fashion. This incremental construction cannot be adapted to SC since it strongly relies on the specicities of linearizability. Line-Up [START_REF] Burckhardt | Lineup: a complete and automatic linearizability checker[END_REF] performs systematic concurrency testing via schedule enumeration, and oine linearizability checking via linearization enumeration. The works in [START_REF] Emmi | Monitoring renement via symbolic reasoning[END_REF][START_REF] Emmi | Sound, complete, and tractable linearizability monitoring for concurrent collections[END_REF] show that checking linearizability for some particular class of ADTs is polynomial time.

Jepsen [1] is a framework for distributed systems verication used to check dierent consistency models from eventual consistency to linearizability by using random clients. However, it focuses only on specic types of violations for a given consistency memory model.

Emmi and Enea [START_REF] Emmi | Monitoring weak consistency[END_REF] consider the problem of checking weak consistency criteria, but their approach focuses on specic relaxations in those criteria, falling back to an explicit enumeration of linearizations in the context of a criterion like SC or TSO. Bouajjani et al. [START_REF] Bouajjani | On verifying causal consistency[END_REF] consider the problem of checking causal consistency. They formalize the dierent variations of causal consistency we consider in this thesis and show that the problem of checking whether a history satises one of these variations is polynomial time.

The idea of using weaker approximations of a memory consistency model (TSO) in order to detect violations has been used, e.g., in [START_REF] Roy | Fast and generalized polynomial time memory consistency verication[END_REF]. In that paper the authors use a form of saturation that corresponds to a variant of causal consistency (similar to convergence consistency [START_REF] Burckhardt | Principles of Eventual Consistency[END_REF]). However, their method is not complete. Our work generalizes this idea of saturation in the framework of gradual consistency checking introduced in the rst part of chapter 4 (Section 4.1)

where SC is approximated using several variants of causal consistency (including a new one called CCM). Then, we improved this idea in the second part of chapter 4 (Section 4.2) using a stronger (weak) consistency model (called wSC and stronger than CCM). We generalized these approaches to cover TSO as well in chapter 5.

The McVerSi framework [START_REF] Elver | Mcversi: A test generation framework for fast memory consistency verication in simulation[END_REF] addresses test generation problem i.e., nding clients that increase the probability of uncovering bugs in shared memory implementations. Their methodology for checking SC lies within the context of white-box testing, i.e., the user is required to annotate the shared memory implementation with events that dene the store order in an execution. In the approach we follow, the implementation is treated as a black-box requiring less user intervention. The Jepsen framework [1] also addresses the problem of nding clients by using randomization (introducing faults randomly). Since the eciency of this approach has been shown in a recent work [START_REF] Burcu Kulahcioglu Ozkan | Randomized testing of distributed systems with probabilistic guarantees[END_REF], we follow it to generate the used executions in our experiments using random clients.

Organization of the thesis

In addition to the two introductory chapters, this thesis is divided into three chapters in which we present our contributions in details.

In Chapter 2, we introduce the preliminaries. We recall basic denitions about binary relations and we present the used system model. Then, we recall the denitions of the consistency models considered in this thesis.

In chapter 3 of this thesis, we consider the problem of verifying weak consistency models. Indeed, we propose an approach and a tool for verifying causal consistency in its dierent variants. Then, we show that our approach is ecient and scalable by using it to verify real life distributed databases.

In the rst part of chapter 4, we present an approach for checking Sequential Consistency gradually. The idea is to start by checking a weak consistency model that is stronger than all known causal consistency models. Then, if this model is not violated, the partial store order, that is computed using that model, is completed by enumeration to a total order. We show that our approach is more ecient compared to a standard enumeration using a SAT solver. The second part of this chapter presents a more ecient approximation for Sequential Consistency.

This approximation is based on a stronger model compared to the one considered in the rst part. Therefore, it allows, in addition of capturing more SC violations early, computing a large subset of the store order we need to nd in order to prove Sequential Consistency conformance, if it exists. The experiment results

show that the second approach outperforms the rst one.

The chapter 5 introduces a generalization of the approaches proposed for Sequential Consistency to cover the case of Total Store Ordering model. We focus on nding suitable approximations for this model. Similarly to SC approaches, we show that these approximations perform good experimental results.

Finally, conclusions and perspectives are drown in chapter 6.

-7-CHAPTER 2

FUNDAMENTALS

The rst chapter is dedicated to the denitions of notations used through this document. First we present some preliminaries. Then, we give the system model used in this work. Afterwards, we dene the notion of history and some related notions. Finally, we recall the consistency models we have studied. The rest of concepts that are used only locally in each chapter will be presented whenever they are needed.

Preliminaries

We now introduce the basic notions that we used in this thesis. First, we dene some notions on binary relations.

Binary Relations

Given a set 𝑂 and a binary relation ℛ ⊆ 𝑂 × 𝑂, we use the notation (𝑜 1 ,𝑜 2) ∈ ℛ to denote the fact that 𝑜 1 and 𝑜 2 are related by ℛ. If ℛ is an order, it denotes the fact that 𝑜 1 precedes 𝑜 2 in this order. A binary relation ℛ ⊆ 𝑂 × 𝑂 is a strict order if it is 1. Irreexive: for any 𝑜 ∈ 𝑂, (𝑜, 𝑜) ∈ ℛ does not hold, 2. Asymmetric: for any 𝑜 1 , 𝑜 2 ∈ 𝑂, if (𝑜 1 , 𝑜 2) ∈ ℛ, then (𝑜 2 , 𝑜 1) ∈ ℛ does not hold, and 3. Transitive: for any 𝑜 1 , 𝑜 2 ∈ 𝑂, if (𝑜 1 , 𝑜 2) ∈ ℛ and (𝑜 2 , 𝑜 3) ∈ ℛ, then (𝑜 1 , 𝑜 3) ∈ ℛ.

A strict order ℛ is total if, for any 𝑜 1 , 𝑜 2 ∈ 𝑂, we have either

(𝑜 1 , 𝑜 2) ∈ ℛ, (𝑜 2 , 𝑜 1) ∈ ℛ, or 𝑜 1 =𝑜 2 .
For a binary relation ℛ ⊆ 𝑂 × 𝑂 over a given set 𝑂, we use ℛ + (resp. ℛ *) to denote the transitive (resp. reexive transitive) closure of ℛ. We use ℛ -1 to denote the inverse relation of ℛ (i.e., (𝑎, 𝑏) ∈ ℛ -1 i (𝑏, 𝑎) ∈ ℛ). We say that ℛ is a partial order if it is irreexive (i.e., (𝑎, 𝑎) / ∈ ℛ for all 𝑎 ∈ 𝐴). We say that ℛ is total if, for every 𝑎, 𝑏 ∈ 𝐴, we have either (𝑎, 𝑏) ∈ ℛ or (𝑏, 𝑎) ∈ ℛ. For two binary relations ℛ 1 and ℛ 2 , we use ℛ 1 ∘ ℛ 2 (resp. ℛ 1 ∪ ℛ 2) to denote the composition (resp. union) of ℛ 1 and ℛ 2 , i.e., (𝑎,

𝑏) ∈ ℛ 1 ∘ ℛ 2 i there is 𝑐 ∈ 𝐴 such that (𝑎, 𝑐) ∈ ℛ 1 and (𝑐, 𝑏) ∈ ℛ 2 (resp. (𝑎, 𝑏) ∈ ℛ 1 ∪ ℛ 2 i (𝑎, 𝑏) ∈ ℛ 1 or (𝑎, 𝑏) ∈ ℛ 2). Let 𝑂 ′ be a subset of 𝑂. Then ℛ |𝑂 ′ is the relation ℛ projected on the set 𝑂 ′ , that is {(𝑜 1 , 𝑜 2) ∈ ℛ | 𝑜 1 , 𝑜 2 ∈ 𝑂 ′ }. The set 𝑂 ′ ⊆ 𝑂 is said to be downward-closed w.r.t a relation ℛ if ∀𝑜 1 , 𝑜 2 , if 𝑜 2 ∈ 𝑂 ′ and (𝑜 1 , 𝑜 2) ∈ ℛ then 𝑜 1 ∈ 𝑂 ′ as well. A relation ℛ ⊆ 𝑂 × 𝑂 is a strict
partial order if it is transitive and irreexive. Given a strict partial order ℛ over 𝑂, a poset is a pair (𝑂, ℛ). Notice here that we consider the strict version of posets (not the ones where the underlying partial order is weak, i.e. reexive, transitive and antisymmetric). Given a set Σ, a poset (𝑂, ℛ), and a labeling function ℓ : 𝑂 → Σ, the Σ labeled poset 𝜌 is a tuple (𝑂, ℛ, ℓ).

We say that 𝜌 ′ is a prefix of 𝜌 if there exists a downward closed set 𝐴 ⊆ 𝑂 w.r.t. relation ℛ such that 𝜌 ′ = (𝐴, ℛ, ℓ). If the relation ℛ is a strict total order, we say that a (resp., labeled) sequential poset (sequence for short) is a (resp., labeled) poset. The concatenation of two sequential posets 𝑒 and 𝑒 ′ is denote by 𝑒.𝑒 ′ . Consider a set of methods M from a domain D. For 𝑚 ∈ M and arg, rv ∈ D, and 𝑜 ∈ 𝑂, ℓ(𝑜) = (𝑚, arg, rv) means that operation 𝑜 is an invocation of 𝑚 with input arg which returns rv . The label ℓ(𝑜) is sometimes denoted 𝑚(arg, rv). Let 𝜌 = (𝑂, ℛ, ℓ) be a M × D × D labeled poset and 𝑂 ′ ⊆ 𝑂. We denote by 𝜌{𝑂 ′ } the labeled poset where we only keep the return values of the operations in 𝑂 ′ . Formally, 𝜌{𝑂 ′ } is the (M × D) ∪ (M × D × D) labeled poset (𝑂, ℛ, ℓ ′) where for all 𝑜 ∈ 𝑂 ′ , ℓ ′ (𝑜) = ℓ(𝑜), and for all 𝑜 ∈ 𝑂 ∖ 𝑂 ′ , if ℓ(𝑜) = (𝑚, arg, rv), then ℓ ′ (𝑜) = (𝑚, arg). Now, we introduce a relation on labeled posets, denoted ⪯. Let 𝜌 = (𝑂, ℛ, ℓ) and 𝜌 ′ = (𝑂, ℛ ′ , ℓ ′) be two posets labeled by (M × D) ∪ (M × D × D)

(the return values of some operations in 𝑂 might not be specied). The notation 𝜌 ′ ⪯ 𝜌 means that 𝜌 ′ has less order and label constraints on the set 𝑂. Formally, 𝜌 ′ ⪯ 𝜌 if ℛ ′ ⊆ ℛ and for all operation 𝑜 ∈ 𝑂, and for all 𝑚 ∈ M, arg, rv ∈ D, ℓ(𝑜) = ℓ ′ (𝑜), or ℓ(𝑜) = (𝑚, arg, rv) implies ℓ ′ (𝑜) = (𝑚, arg).

2.1.2

System model

We consider multi-threaded programs over a set of shared variables Var = {𝑥, 𝑦, . . .}. We assume that the set of (visible) operations issued by the threads of the program are read and write operations. Assuming an unspecied set of values Val and a set of operation identiers OId, we let Op = {read 𝑖 (𝑥, 𝑣), write 𝑖 (𝑥, 𝑣) : 𝑖 ∈ OId, 𝑥 ∈ Var, 𝑣 ∈ Val} be the set of operations reading a value 𝑣 or writing a value 𝑣 to a variable 𝑥. We omit operation identiers when it is clear from the context. The set of read operations in a set of operations 𝑂 is denoted by R(𝑂). The set of write, operations in a set of operations 𝑂 is denoted by W(𝑂). The variable accessed by an operation 𝑜 is denoted by var(𝑜). Given a binary relation ℛ on operations, let ℛ WW , ℛ WR , respectively, denote the projection of 𝑅 on pairs of writes, pairs of writes and reads respectively, on the same variable.

2.1.3

Histories

We consider an abstract notion of an execution called history which includes a set of write or read operations ordered according to a (partial) program order po which order operations issued by the same thread. Most often, po is a union of sequences, each sequence containing all the operations issued by some thread.

Then, we assume that the history includes a write-read relation wr which identies the write operation writing the value returned by each read in the execution.

Formally,

Definition 1 A history ⟨𝑂, po, wr⟩ is a set of operations 𝑂 along with a strict partial program order po and a write-read relation wr ⊆ W(𝑂) × R(𝑂), such that the inverse of wr is a total function and if (write(𝑥, 𝑣), read(𝑥 ′ , 𝑣 ′)) ∈ wr, then 𝑥 = 𝑥 ′ and 𝑣 = 𝑣 ′ .

We assume that every history includes a write operation writing the initial value for each variable 𝑥. These write operations precede all other operations in po.

Mentioning that these initial write operations is omitted when it is clear from the context. We notice that all considered histories are dierentiated. Differentiated histories. A history ⟨𝑂, po, wr⟩ is dierentiated if each value is written at most once, i.e., for all write operations write(𝑥, 𝑣) and write(𝑥, 𝑣 ′), 𝑣 ̸ = 𝑣 ′ . This is not a restriction since shared-memory implementations are dataindependent [START_REF] Wolper | Expressing interesting properties of programs in propositional temporal logic[END_REF] in practice.

Data

Independence. An implementation is data-independent if its behavior does not depend on the concrete values read or written in the programs, and therefore any potential buggy behavior can be exposed by executions where each value is written at most once. We consider implementations that are dataindependent which is a natural assumption that corresponds to a wide range of existing implementations. Thus, under this assumption, it is good enough to consider dierentiated histories [START_REF] Bouajjani | On verifying causal consistency[END_REF].

We use ℎ, ℎ 1 , ℎ 2 , . . . to range over histories. Since the writes on a variable are unique in the dierentiated histories, the write-read relation can be easily extracted by only looking to the value fetched by each read operation.

Example 1 The figure 2.1 presents a differentiated history in which the thread 𝑡 1 writes the value 1 on the variable 𝑥, write(𝑥, 1), then reads the value 1 from 𝑦. Similarly, the thread 𝑡 2 writes the value 1 on the variable 𝑦, write(𝑦, 1), then reads the value 1 from 𝑥. The write(𝑥, 1), resp. write(𝑦, 1), precedes read(𝑦, 1), resp. read(𝑥, 1), in the program order po. The write(𝑥, 1), resp. write(𝑦, 1) and read(𝑥, 1), resp., read(𝑦, 1) are related by the write-read relation wr, i.e., the read read(𝑥, 1), resp. read(𝑦, 1) returns the value written by write(𝑥, 1), resp. write(𝑦, 1).

Consistency models

A memory consistency model denes a set of rules that determines how the system deals with operations from multiple processes (threads). In other words, it denes the possible return values of read operations. The consistency model can also be dened as a contract between programmers and system which denes the consistency guarantees that the programmers expect from the system. There exists several consistency models. In the following, we present the models we studied in this thesis from the strong consistency models to the relaxed consistency models. We rst of all dene some needed notions in the next sections.

Specification. The consistency of an object is dened w.r.t. a specication, determining the correct behaviors of that object in a sequential setting. In this work, we consider the read/write memory for which the specication 𝑆 𝑅𝑊 is inductively dened as the smallest set of sequences closed under the following rules (x ∈ Var and v ∈ Val):

1. 𝜀 ∈ 𝑆 𝑅𝑊 , 2. if 𝜌 ∈ 𝑆 𝑅𝑊 , then

Consistency models comparison.

A consistency model 𝑀 1 is stronger than a consistency model 𝑀 2 if each possible computation under 𝑀 1 is also allowed under 𝑀 2 . We say also that 𝑀 2 is weaker than 𝑀 1 . Two consistency models 𝑀 1 and 𝑀 2 are incomparable if: Some computation 𝐶 1 is valid (possible) on 𝑀 1 and not valid on 𝑀 2 . And, Some computation 𝐶 2 is valid (possible) on 𝑀 2 and not valid on 𝑀 1 . Memory operations ordering. There exists four kinds of possible orders for memory operations: W-R: write operation must nish before the succeeding read operation.

W-W : write operation must nish before the succeeding write operation. R-W : read operation must nish before the succeeding write operation. R-R: read operation must nish before the succeeding read operation.

2.2.1

From Strong to weak consistency

In order to ensure high availability and fault tolerance, distributed systems store data in more than one location i.e., replication. Then, the updates are sent to one replica (the nearest one, for instance) which forwards them to the other replicas. The advantage of the replication is that if a replica crush, the others can continue providing service. However, the question is how to keep replicas up to date i.e., consistent?

The problem is that considering network failures, distance, etc., we may have inconsistent replicas. To illustrate this problem, lets consider 3 users (Alice, Bob and David) in a messaging application group (Whatsapp for instance), which stores data in a distributed database. As these users are in the same group, any message sent by one of them will be forwarded to all the others. Imagine now that David send a message to say that he is in Marrakech this week, then Alice answers "So good for you", afterwards, Bob says that he loses his phone. The ideal for users is to observe all messages in the same order so they can all understand what happened (Figure 2.2). This behavior can, theoretically, be guaranteed by strong consistency which guarantees that all replicas have the same state all time i.e., updates should be seen in the same order by all replicas. Therefore, Bob concludes that Alice message ("So good for you") is an answer to his message ("I've lost my phone"). That is not something that we really want to happen but it is completely acceptable considering the fact that data is geographically distributed and messages can be delayed. This kind of behaviors are allowed under weak consistency. Contrary to strong consistency which guarantees that all replicas have the same state all time, weak consistency, allows replicas to diverge. Indeed, there exists several variants of weak consistency depending on how replicas divergence is constrained.

CAP Theorem

Almost twenty years ago (in 2000) [START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF], the conjecture that there is trade-os between consistency, availability and partition tolerance was introduced by Eric Brewer. This trade-o is known as the CAP-Theorem. Let's rst of all explain what each of this notions stands for.

Consistency: Every read operation should return the last write value.

Availability: Correct nodes should return a response for all read and write operations in a reasonable amount of time.

Partition tolerance: The system should continue to operate in presence of network partitions.

Then, the CAP theorem states that, it is impossible to implement a distributed system that is simultaneously consistent, available, and partition tolerant.

In the following, we present the consistency models that we consider in this thesis.

2.2.3

Sequential Consistency

The most intuitive model is Sequential Consistency (SC) which is a fundamental model of shared memory formalized by [START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF]. A multiprocessor is sequentially consistent if the result of any execution is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specied by its program. [START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF]. In other words, write and read operations are atomic, and operations issued by dierent threads are interleaved arbitrarily while the order between operations issued by a same thread is preserved. SC oers (to the user of the memory) the strongest consistency guarantees, and therefore the best programming abstraction, since each write operation is considered to be immediately visible to all threads. In terms of memory operations orders, SC maintains all four orders discussed above (W-R, W-W, R-W, R-R).

We adopt the formal denition of the Sequential Consistency (SC) model introduced in [START_REF] Alglave | Herding cats: Modelling, simulation, testing, and data mining for weak memory[END_REF].

Definition 2 A history ⟨𝑂, po, wr⟩ is sequentially consistent if there exists a total relation (called store order) ww ⊆ W(𝑂) × W(𝑂) such that the relation po ∪ wr ∪ ww ∪ rw is acyclic.

The read-write relation rw is dened by rw = wr -1 ∘ ww. Intuitively, rw expresses the fact that when a read operation read(𝑥, 𝑣) reads a value 𝑣 from a write operation write(𝑥, 𝑣), and some other write operation write(𝑥, 𝑣 ′) comes after write(𝑥, 𝑣) in the store order, then there is a conict between read(𝑥, 𝑣) and write(𝑥, 𝑣 ′), and read(𝑥, 𝑣) must happens before write(𝑥, 𝑣 ′).

Operationally, this formal denition corresponds to an architecture (Figure 2.4) in which there is a global memory and a switch that associates an arbitrary processor to memory at any moment. Each processor issues memory operations in the program order and the switch ensures the total order among all memory operations.

The following examples illustrate the SC denition, Example 2 Figure 2.5a shows a history that is SC. Since read(𝑦, 0) should precede write(𝑦, 1), this history admits a total order where the operations of thread 𝑡 0 are executed before all 𝑡 1 thread operations.

Example 3 Figure 2.5b presents a history that does not satisfy SC. The reason is that a total order cannot be found. Since read(𝑥, 1) reads the value from write(𝑥, 1) and read(𝑥, 2) reads the value from write(𝑥, 2), all operations of 𝑡 0 should be executed before the operations of 𝑡 1 , or vice versa. This does not allow either 𝑡 0 or 𝑡 1 to read the value 0 on variable 𝑦.

In response to the trade-os implied by the CAP theorem we have seen above, other weaker memory models are adopted in order to meet performance and/or availability requirements in concurrent/distributed systems. Now, we present some memory models that are weaker than SC, i.e., allow relaxing some orderings (W-R, W-W, R-W, R-R). The rst one we consider is called Total Store Ordering.

Total Store Ordering

In the Total Store Ordering (TSO) model [START_REF] Sewell | Myreen. x86-tso: a rigorous and usable programmer's model for x86 multiprocessors[END_REF] writes can be delayed, which means that after a write is issued, it is not immediately visible to all threads (except for the thread that issued it), and it is committed later after some arbitrary delay. However, writes issued by the same thread are committed in the same order in which they were issued, and when a write is committed it becomes visible to all the other threads simultaneously. TSO is implemented in hardware but also in a distributed context over a network [START_REF] Gotsman | Consistency models with global operation sequencing and their composition[END_REF].

The denition of TSO relies on three additional relations: (1) the preserved program order, ppo relation which excludes from the program order pairs formed of a write and respectively, a read operation, i.e., ppo = po ∖ (W(𝑂) × R(𝑂)), (2) the program order per same location (variable), po-loc relation which is a restriction of po to operations accessing the same variable, i.e., po-loc = po ∩ {(𝑜, 𝑜 ′) | var(𝑜) = var(𝑜 ′)}, and (3) the write-read external relation wr 𝑒 which is a Then, Definition 3 A history ⟨𝑂, po, wr⟩ satisfies TSO if there exists a store order ww such that the relations po-loc ∪ wr 𝑒 ∪ ww ∪ rw and ppo ∪ wr 𝑒 ∪ ww ∪ rw are both acyclic.

Likewise the SC denition, the read-write relation is dened by rw = wr -1 ∘ ww.

The formal denition of the TSO model given above is equivalent to the operational model of TSO (See TSO architecture in Figure 2.6) that consists in considering that each thread has a store buer, and then, each write issued by a thread is rst sent to its store buer before being committed to the memory later in a non-deterministic way. To read a value from some variable 𝑥, a thread rst checks if a write on 𝑥 is still pending in its own buer. In this case it takes the value of this write from the buer. Otherwise, it fetches the value of 𝑥 from the memory. Regarding memory operation orderings, TSO model allows the W-R order to be violated i.e., write read pairs can be reordered.

To illustrate the TSO denition, consider the following examples, Example 4 The Figure 2.7a shows a history which satisfies TSO. The reason is, based on TSO operational model, the operation write(𝑥, 2) of thread 𝑡 1 can be delayed (pending in the store buffer of 𝑡 1) until the end of the execution. Therefore, after executing read(𝑧, 0), all the writes of thread 𝑡 0 are committed to the main memory so that thread 𝑡 1 can read 1 from 𝑦. Afterwards, it read the value 2 from the variable 𝑥 from its own store buffer. Example 5 Figure 2.7b shows a history that is not admitted by TSO. Under TSO, both 𝑡 2 and 𝑡 3 should see the writes on 𝑥 and 𝑦 performed by 𝑡 0 and 𝑡 1 , respectively, in the same order. This is not the case, because 𝑡 2 "observes" the write on 𝑥 before the write on 𝑦 (since it reads 0 from 𝑦) and 𝑡 3 "observes" the write on 𝑦 before the write on 𝑥 (since it reads 0 from 𝑥).

Other weaker models that impose less constraints on operations ordering are proposed such as causal consistency [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] which is one of the most implemented weak models for distributed systems. Contrary to SC and TSO, causal consistency can be implemented in the presence of faults while ensuring availability.

Causal Consistency

Causal consistency [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] is one of the most used models for replicated objects.

It guarantees that if two operations 𝑜 1 and 𝑜 2 are causally related (some process is aware of 𝑜 1 when executing 𝑜 2), then 𝑜 1 should be executed before 𝑜 2 in all processes. On the other hand, operations that are not causally related may be seen in dierent orders by dierent processes. In the following, we recall the denitions of three causal consistency variations, weak causal consistency, causal convergence and causal memory. We use the same denitions as in [START_REF] Bouajjani | On verifying causal consistency[END_REF].

Weak causal consistency

The weakest variation of causal consistency is called weak causal consistency (CC, for short). A history is CC if there exists a causal order that explains the return value of all operations in the history [START_REF] Bouajjani | On verifying causal consistency[END_REF] Example 6 The history 2.8d is CC, we can consider that write(𝑥, 1) is not causally-related to write(𝑥, 2). Therefore, 𝑝 2 can execute them in any order. Example 7 The history 2.8e is not CC. The reason is that a causal order that explains the return values of all operations in the history cannot be found. Intuitively, since read(𝑦, 1) reads the value from write(𝑦, 1), in any causal order, write(𝑦, 1) should precede read(𝑦, 1). By transitivity of the causal order and because any causal order should include the program order, write(𝑥, 1) precedes write(𝑥, 2) in the causal order (write(𝑥, 1) and write(𝑥, 2) are causally related). However, process 𝑝 3 inverse this order. This is a contradiction with the informal definition of CC which requires that every process should see causally related operations in the same order.

CausalHist(𝑜) = (CausalPast(𝑜), co, ℓ) CausalArb(𝑜) = (CausalPast(𝑜), arb, ℓ) CausalPast(𝑜) = {𝑜 ′ ∈ 𝑂 | (𝑜 ′ , 𝑜) ∈ co * } POPast(𝑜) = {𝑜 ′ ∈ 𝑂 | (𝑜 ′ , 𝑜) ∈ po * }
For a better understanding of the weak causal consistency model, let's recall our messaging application example (Figure 2.9). Since Alice message "So good for you " was sent only after reading the David message "I'm in Marrakech this week", these two messages are causally-related. To prevent the previous situation (Figure 2.2), weak causal consistency requires that this two causallyrelated messages appear in the same order in all replicas. Then, Bob should observes David message "I'm in Marrakech this week" before the Alice message "So good for you".

Causal convergence

Causal convergence (CCv, for short) is stronger than CC. It ensures that as long as no new updates are submitted, all processes eventually converge towards the same state. In addition of seeing causally related operations in the same order (CC), causal convergence uses a total order over all the operations in a history to agree on how to order operations which are not causally related [START_REF] Bouajjani | On verifying causal consistency[END_REF]. This total order is called the arbitration order and denoted by arb. Similarly to the causal order, the arbitration order is existentially quantied in the CCv denition. Formally, Definition 5 A history is CCv w.r.t a specification 𝑆 if there exists a strict partial order co ⊆ 𝑂×𝑂 and a strict total order arb ⊆ 𝑂×𝑂 such that, for each operation 𝑜 ∈ 𝑂 in ℎ, there is a specification sequence 𝜌 𝑜 ∈ 𝑆 such that the axioms AxCausal, AxArb, and AxCausalArb hold.

Axiom AxArb states that the arbitration order arb should at least include the causal order co. Axiom AxCausalArb states that, sequentializing the operations that are in the causal past of 𝑜 to explain the return value of an operation 𝑜, should respect the arbitration order arb.

We now present two examples, one which satises CCv and another one which violates it.

Example 8 The history 2.8a is CCv, we can set an arbitration order in which write(𝑥, 1) is ordered before write(𝑥, 2).

Example 9 The history 2.8b is not CCv. In order to read read(𝑥, 2), write(𝑥, 1) must be ordered before write(𝑥, 2) in the arbitration order. On the other hand, to read read(𝑥, 1), write(𝑥, 2) must be ordered before write(𝑥, 1) in the arbitration order, that is not possible under CCv.

Causal memory

The third model we consider is causal memory (CM, for short) that is also stronger than CC. It guarantees that each process should observe concurrent operations in the same order. In addition, this order should be maintained throughout its whole execution, but it can dier from one process to another [START_REF] Bouajjani | On verifying causal consistency[END_REF]. Formally, -25-

The Figure 4.3 summarizes the relationships between the consistency models presented in this chapter. As noticed above, SC is the strongest model we consider in this thesis, TSO is weaker than SC. The causal consistency variants are weaker than TSO and thus than SC.

Conclusion

In this chapter, we have introduced the notions and concepts we used through this thesis. We have presented the preliminaries in a rst time, then we dened the system model that we consider and the consistency models for which we propose verication methods in the following chapters. The next chapter is dedicated to the verication of causal consistency in its tree variants (CC, CCv and CM).

-26-CHAPTER 3

CAUSAL CONSISTENCY VERIFICATION

As we have seen in the second chapter, the CAP Theorem [START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF] shows that (strong) Consistency, Availability, and Partition tolerance are impossible to be ensured together. In response to this trade-os implied by the CAP Theorem, weak consistency models were proposed such as causal consistency [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] which is one of the most implemented weak models for distributed systems. Several implementations of dierent variants of causal consistency (such as causal convergence [START_REF] Mahajan | Consistency, availability, convergence[END_REF] and causal memory [START_REF] Ahamad | Causal memory: Denitions, implementation, and programming[END_REF]) have been developed i.e., [START_REF] Bailis | Bolt-on causal consistency[END_REF][START_REF] Du | Orbe: Scalable causal consistency using dependency matrices and physical clocks[END_REF][START_REF] Du | Gentlerain: Cheap and scalable causal consistency with physical clocks[END_REF][START_REF] Jiménez | A parametrized algorithm that implements sequential, causal, and cache memory consistencies[END_REF][START_REF] Lloyd | Andersen. Don't settle for eventual: Scalable causal consistency for wide-area storage with cops[END_REF][START_REF] Petersen | Flexible update propagation for weakly consistent replication[END_REF][START_REF] Preguiça | Swiftcloud: Fault-tolerant georeplication integrated all the way to the client machine[END_REF].

However, the development of such implementations that meet both consistency requirements and availability and performance requirements is an extremely hard and error prone task. Hence, developing ecient approaches to check the correctness of executions w.r.t consistency models such as causal consistency is crucial.

In this chapter we present an approach and a tool for checking automatically the conformance of a system computations to causal consistency. More precisely, we address the problem of, given a computation, how to check its conformance to causal consistency. We consider this problem for three variants of causal consistency that are used in practice and that we have seen in the previous chapter (Chapter 2). Solving this problem constitutes the cornerstone for developing dynamic verication and testing algorithms for causal consistency.

Bouajjani et al. [START_REF] Bouajjani | On verifying causal consistency[END_REF] studied the complexity of checking causal consistency for a given computation and showed that it is polynomial time 1 . In addition, they 1. All the causal consistency variations become NP-complete without the assumption that each value is written at most once [START_REF] Bouajjani | On verifying causal consistency[END_REF].

formalized the dierent variations of causal consistency and proposed a reduction of this problem to the occurrence of a nite number of small "bad-patterns" in the computations i.e., some small sets of events occurring in the computations in some particular order. We build on this work in order to dene a practical approach and a tool for checking causal consistency, and to apply this tool to real-life case studies. These bad-patterns rely on some relations that we introduce in the next section (3.1) and that can be computed using a least x point calculation (Datalog programs for instance). Therefore, our approach consists basically in reducing the problem of detecting the existence of these bad patterns in computations to the problem of solving Datalog queries. The fact that solving Datalog queries is polynomial time and that our reduction is polynomial in the size of the computation, allow to solve the conformance checking problem for causal consistency in polynomial time and improves the complexity of this problem from 𝒪(𝑛 5) to 𝒪(𝑛 3). We implement our approach in an ecient testing tool for distributed systems, and carry out several experiments on real distributed databases, showing the eciency and performance of this approach. To the best of our knowledge, this is the rst ecient and full-automated testing tool for causal consistency verication.

Since the experiment results show that CM costs more compared to CC and CCv, we propose a new denition of CM which improves the experiments results of the conformance checking procedure. The new denition of CM computes a small set of constraints compared to the one in [START_REF] Bouajjani | On verifying causal consistency[END_REF]. This optimization leads to a better conformance checking approach. This work extends the work originally published in [START_REF] Zennou | Checking causal consistency of distributed databases[END_REF][START_REF] Zennou | Checking causal consistency of distributed databases[END_REF][START_REF] Zennou | Checking causal consistency of distributed databases[END_REF].

The rest of this chapter is organized as follows, Section 3.1 recalls the characterization of causal consistency violations (bad-patterns) introduced in [START_REF] Bouajjani | On verifying causal consistency[END_REF]. We give new denitions of causal consistency models in Section 3.2. Section 3.3 is dedicated to our causal consistency verication approach. The Subsection 3.3.1 presents the reduction of the problem of conformance checking for causal consistency to the problem of solving Datalog queries. Subsection 3.3.4 describes our testing tool, the case studies we have considered, and the experimental results we obtained.

Causal consistency violations

In this section, we show, for each causal consistency variant, how to characterize histories that are not conform to it through the presence of some specic sets of operations. In [START_REF] Bouajjani | On verifying causal consistency[END_REF], computations that are violations of CC, CCv or CM are characterized by the occurrence of a nite number of particular (small) sets of ordered events, called bad-patterns. Roughly, this characterization describes the small sets of operations that should not occur in some particular order withing a history which satises the causal consistency model. We recall these bad-patterns in this section.

Bad-patterns definitions. The tables 3.1 and 3.2 represent the bad-patterns of each causal consistency variant and their denitions respectively.

We now recall the characterization of each causal consistency models based on bad-patterns.

CC Bad-patterns.

We now give the CC bad-patterns as dened in [START_REF] Bouajjani | On verifying causal consistency[END_REF]. These bad-patterns are dened using the relation of causality co which is given by the program order po or the write-read relation wr or any transitive composition of these relations i.e., co = (po ∪ wr) + .

Lemma 1 ([19]

) A history is CC if and only if it does not contain any of the bad-patterns CyclicCO, WriteCOInitRead, ThinAirRead and WriteCORead.

To illustrate this, consider the following example.

Example 15 The history in Figure 2.8e contains the bad-pattern WriteCORead, so it is not CC. The write(𝑥, 1) is causally ordered before write(𝑥, 2) by the transitivity.

On the other hand, the process 𝑝 3 , read(𝑥, 1) from write(𝑥, 1) ((write(𝑥, 1),read(𝑥, 1))∈ wr). The read read(𝑥, 1) is also causally-related to write(𝑥, 2) by transitivity. The history in Figure 2.8c does not contain any of the bad-patterns, so it is CC , CCv and CM.

3.1.2

CCv bad-patterns.

As we have seen before, CCv is stronger than CC. Therefore, CCv excludes all the CC bad-patterns we have seen above (such that v ̸ = 0 ThinAirRead there is a read(𝑥, 𝑣) operation that reads a value v, such that v ̸ = 0, that it is never written before i.e., it can not be related to any write by a wr relation.

WriteCORead

there exist write operations 𝑤 1 , 𝑤 2 such that var(𝑤 1) = var(𝑤 2) and a read operation 𝑟 1 such that (𝑤 1 , 𝑟 1) ∈ wr. In addition, (𝑤 1 , 𝑤 2) ∈ co and (𝑤 2 , 𝑟 1) ∈ co.

WriteHBInitRead there exist a read(𝑥, 0) and a write(𝑥, 𝑣) (v ̸ = 0) such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb 𝑜 for some operation o, with (𝑟, 𝑜) ∈ po * . CyclicHB the lhb 𝑜 relation is cyclic for some operation o.

CyclicCF the union of cf and co (cf ∪ co) is cyclic. CyclicCF. In order to read read(𝑥, 2), write(𝑥, 2) must precedes write(𝑥, 2) in the conflict order. On the other hand, to read read(𝑥, 1), write(𝑥, 2) must be ordered before write(𝑥, 1) in the conflict order. Thus, this leads to CyclicCF bad-pattern. 2. This relation was denoted hb 𝑜 in [START_REF] Bouajjani | On verifying causal consistency[END_REF][START_REF] Zennou | Checking causal consistency of distributed databases[END_REF]. We denote it lhb 𝑜 to avoid confusion with other happen-before relations considered in my thesis.

For example, Example 17 The history 2.8a contains the bad-pattern WriteHBInitRead so it is not CM. Let's consider 𝑙ℎ𝑏 = lhb read(𝑥,2) . We have (write(𝑧, 1),write(𝑥, 1))

∈ po and (write(𝑥, 1), write(𝑥, 2)) ∈ 𝑙ℎ𝑏 (the reason is that we have (write(𝑥, 1),read(𝑥, 2)) ∈ co and (write(𝑥, 2),read(𝑥, 2)) ∈ wr which implies (write(𝑥, 1),write(𝑥, 2)) ∈ lhb) and (write(𝑥, 2),read(𝑧, 0)) ∈ po, thus by transitivity we have (write(𝑧, 1),read(𝑧, 0) ∈ 𝑙ℎ𝑏.

In the next section, we present new causal consistency denitions that are based on saturation rules and we show that they are equivalent to the ones in [START_REF] Bouajjani | On verifying causal consistency[END_REF], we have seen above.

New Causal consistency definitions

In this section, we present equivalent causal consistency denitions to the bad patterns we have seen above (and thus to the axiomatic denitions used in [START_REF] Bouajjani | On verifying causal consistency[END_REF]).

These models denitions are based on saturation rules that we are going to see in the next sections. The SC checking approach proposed in Chapter 4 is based on a strong version of these saturation based causal consistency models.

3.2.1

Weak causal consistency

Weak causal consistency (CC) requires that any two causally-dependent values are observed in the same order by all threads, where causally-dependent means that either those values were written by the same thread (i.e., the corresponding writes are ordered by po), or that one value was written by a thread after reading the other value (the wr relation), or any transitive composition of such dependencies, i.e., co = (po ∪ wr) + . Values written concurrently by two threads can be observed in any order, and even-more, this order may change in time. Formally, Definition 8 A history ⟨𝑂, po, wr⟩ satisfies CC if the relation (po ∪ wr) + ; (rw[co]) ? is irreflexive.

Where the "?" exponent denotes the reexive closure and ";" is the standard composition. Note that "irreexive" is used here instead of "acyclic" to say that rw[co] is used at most once in the cycle.

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣

(read(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ rw[co] i (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ co and
(write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, for some write(𝑥, 𝑣)

The read-write relation rw[co] is a variation of rw from the denition of SC/TSO where the store order ww is replaced by the projection of co on pairs of writes. We obtain rw[co] by replacing R in We prove that this CC denition is equivalent to the CC bad-patterns we have seen in the rst section (Lemma 1).

Proof 1 (⇒) Let ℎ = ⟨𝑂, po, wr⟩ be a history that does not satisfy CC. The lemma 1 implies that ℎ contains one of the bad-patterns CyclicCO, WriteCOIni-tRead, ThinAirRead and WriteCORead. Let's show that (po ∪ wr) + ; (rw[co]) ? is not irreflexive.

If ℎ contains the CyclicCO bad pattern i.e., (po ∪ wr) + is cyclic then (po ∪ wr) + ; (rw[co]) ? is not irreflexive.

If ℎ contains the WriteCOInitRead bad pattern i.e., there exists a read(𝑥, 0) that is causally preceded by a write(𝑥, 𝑣) ((write(𝑥, 𝑣)), read(𝑥, 0) ∈ co) such that v ̸ = 0. Considering the assumption that every history includes a write operation write(𝑥, 0) writing the initial value for each variable 𝑥 and these write operations precede all other operations in po. We get (write(𝑥, 0), write(𝑥, 𝑣)) ∈ co and (write(𝑥, 0), read(𝑥, 0)) ∈ wr then (read(𝑥, 0), write(𝑥, 𝑣)) ∈ rw[co]. Thus, the relation (po ∪ wr) + ; (rw[co]) ? is not irreflexive.

If ℎ contains the WriteCORead bad pattern i.e., there exist two write operations 𝑤 1 , 𝑤 2 such that var(𝑤 1) = var(𝑤 2) and a read operation 𝑟 1 such that (𝑤 1 , 𝑟 1) ∈ wr, (𝑤 1 , 𝑤 2) ∈ co and (𝑤 2 , 𝑟 1) ∈ co. Given (𝑤 1 , 𝑟 1) ∈ wr and

(𝑤 1 , 𝑤 2) ∈ co we get (𝑟 1 , 𝑤 2) ∈ rw[co]. Thus, (po ∪ wr) + ; (rw[co]) ? is not irreflexive.
If ℎ contains the ThinAirRead bad pattern i.e., there is a read(𝑥, 𝑣) operation which reads a value v (v ̸ = 0) that it is never written before (there is no w operation such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ wr). ThinAirRead reads are excluded by the definition of a history and the write-read relation. Their presence can be detected easily and we assumed that this is done a-priori.

(⇐) Consider a history ℎ such that (po ∪ wr) + ; (rw[co]) ? is not irreflexive. Let's prove that this implies the presence of one of the bad patterns: CyclicCO, Write-COInitRead or WriteCORead. The (po ∪ wr) + ; (rw[co]) ? relation is not irreflexive implies that the history contains one of the following cycles:

A cycle in (po ∪ wr) + which implies directly the CyclicCO bad pattern.

A cycle in (po ∪ wr) + ; (rw[co]) ? (includes only one rw[co]). Following its definition, having a rw[co] relation means that there exist two write operations 𝑤 1 , 𝑤 2 such that var(𝑤 1) = var(𝑤 2) and a read operation 𝑟 1 such that (𝑤 1 , 𝑟 1) ∈ wr, (𝑤 1 , 𝑤 2) ∈ co and (𝑟 1 , 𝑤 2) ∈ rw [co]. In order to have a cycle in (po ∪ wr) + ; (rw[co]) ? which includes only one rw[co] relation, the (𝑤 2 , 𝑟 1) should be in co ((𝑤 2 , 𝑟 1) ∈ co). Thus, we get the WriteCORead bad pattern. Now let's consider a history that is valid following the new CC denition and another which is not. Example 18 The history 2.8d is CC, we can consider that write(𝑥, 1) and write(𝑥, 2) are not related by the causal order i.e., (write(𝑥, 1), write(𝑥, 2)) / ∈ co.

Therefore, they can be seen in any order by different threads. Example 19 The history 2.8e is not CC. The reason is that we have (write(𝑥, 1), write(𝑥, 2)) ∈ co by the transitivity which include (write(𝑥, 1), write(𝑦, 1)) ∈ po and (write(𝑦, 1), read(𝑦, 1)) ∈ wr and (read(𝑦, 1), write(𝑥, 2)) ∈ po. In 𝑡 3 , we have (read(𝑥, 2), read(𝑥, 1)) ∈ po then (read(𝑥, 1), write(𝑥, 2)) ∈ rw[co] which implies that co;(rw[co]) ? is not irreflexive. Therefore, the history is not allowed by CC.

3.2.2

Causal convergence

CCv ensures that concurrent values are observed in the same order by all threads. The denition of CCv is based on the conict order cf we have seen.

Then, Definition 10 A history ⟨𝑂, po, wr⟩ satisfies CCv if it satisfies CC and the relation po ∪ wr ∪ cf is acyclic.

Let's show that this CCv denition is equivalent to the CCv bad-patterns (Lemma 2).

Proof 2 (⇒) This is a direct consequence of lemma 2. Let ℎ = ⟨𝑂, po, wr⟩ be a history that does not satisfy CCv. The lemma 2 implies that ℎ is not CC or it contains the CyclicCF bad pattern. If it is not CC, then it is not CCv as well. Now, if it contains the CyclicCF bad pattern i.e., po ∪ wr ∪ cf is cyclic then we are done.

(⇐) If po ∪ wr ∪ cf is cyclic, then the history ℎ contains the CyclicCF bad pattern (Table 3.2).

We now present two examples to illustrate the new CCv denition, Example 20 The history 2.8a is CCv, we can set a conflict order in which write(𝑥, 1) is ordered before write(𝑥, 2), so po ∪ wr ∪ cf is acyclic. Example 21 The history 2.8b is not CCv. In order to read the value 2, read(𝑥, 2), the write write(𝑥, 1) must be ordered before write(𝑥, 2) in the conflict order cf. On the other hand, to read the value 1, read(𝑥, 1), the write write(𝑥, 2) must be ordered before write(𝑥, 1) in the conflict order cf. Thus, we get a cycle in po ∪ wr ∪ cf.

Causal Memory

The third model we consider is causal memory (CM) which is also a strengthening of CC where roughly, concurrent values are required to be observed in the same order by a thread. In addition, this order should be maintained throughout its whole execution, but it can dier from one thread to another. This is formalized by the happen-before relation per operation lhb 𝑜 we have seen in the previous section (denition 7). Now, we formally dene CM.

Definition 11 A history ⟨𝑂, po, wr⟩ satisfies CM if it satisfies CC and for each operation 𝑜 in the history, the lhb 𝑜 relation is acyclic.

Next, we prove that this new CCM denition is equivalent to the CM bad-patterns that we have seen above (Lemma 3).

Proof 3 (⇒) Let ℎ = ⟨𝑂, po, wr⟩ be a history that does not satisfy CM. The lemma 3 implies that ℎ is not CC or it contains the bad pattern WriteHBInitRead or CyclicHB. If it is not CC, then it is not CM as well. Now, If ℎ contains the CyclicHB bad pattern i.e., the lhb 𝑜 relation is cyclic for some operation o, then it is not CM (the definition 11).

If ℎ contains the WriteHBInitRead bad pattern i.e., there exists a read(𝑥, 0) and a write(𝑥, 𝑣) (v ̸ = 0) such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb 𝑜 for some operation o. As we said before, we assume that every history includes a write operation write(𝑥, 0) writing the initial value for each variable 𝑥 and these write operations precede all other operations in the program order po ((write(𝑥, 0), write(𝑥, 𝑣)) ∈ po for all write(𝑥, 𝑣)). Given (write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb 𝑜 and (write(𝑥, 0), read(𝑥, 0)) ∈ wr, we get (write(𝑥, 𝑣), write(𝑥, 0)) ∈ lhb 𝑜 . Since (write(𝑥, 0), write(𝑥, 𝑣)) ∈ po ⊆ lhb 𝑜 , we get a cycle in lhb 𝑜 .

(⇐) If for an operation 𝑜 in the history, the lhb 𝑜 relation is cyclic, then we get the CyclicHB bad pattern (Table 3.2).

In the following section, we propose an improved causal memory denition (denition 13) alternate to the denition we have seen above (denition 11).

An improved Causal Memory definition

In this section, we propose a succinct but equivalent CM denition (denition 13) which only asks lhb 𝑜 to be acyclic for a small set of operations 𝑜. As we will see in experiments (Section 3.3.4), this improves the verication runtime.

Let's call CM_1 the denition 12 and CM_2 the improved CM denition that we propose.

Let's recall the denition that we called CM_1, Definition

)) ∈ lhb 𝑖 𝑜 ′ is forced as well. Finally, lhb 𝑖 𝑜 ⊆ lhb 𝑖 𝑜 ′ . Corollary 1 If (𝑜, 𝑜 ′) ∈ po then lhb 𝑜 ⊆ lhb 𝑜 ′ .
Proof 6 Direct consequence of theorem 1 and lemma 4.

Finally, we can prove the equivalence between two CM denitions. Both of the denitions requires the history to be CC. So, we just need to do it for the acyclicity of lhb 𝑜 .

Denition 12 requires lhb 𝑜 to be acyclic for all 𝑜, whereas denition 13 requires lhb 𝑜 to be acyclic for a subset of operations 𝑜. So, trivially denition 12 implies denition 13.

For the other direction, we use corollary 1. If (𝑜, 𝑜 ′) ∈ po then lhb 𝑜 ⊆ lhb 𝑜 ′ . Hence, a cycle in lhb 𝑜 for some 𝑜 (if 𝑜 is po-maximal operation, then we are done) will be also present in lhb 𝑜 ′ for the po-maximal 𝑜 ′ because (𝑜, 𝑜 ′) ∈ po.

Theorem 2 Definition 12 and definition 13 for CM are equivalent.

The next section presents our approach for checking the causal consistency models we have seen above.

Causal Consistency verification

This section presents our causal consistency verication approach.

Reduction to Datalog queries solving

In this section, we introduce our reduction of the problem of checking whether a given computation is a CC, CCv or CM violation to the problem of Datalog queries solving. Datalog is a logic programming language that does not allow functions as predicate arguments. The advantage of using Datalog is that it provides a high level language for naturally dening constraints on relations and that solving Datalog queries is polynomial time [START_REF] Vardi | The complexity of relational query languages (extended abstract)[END_REF].

Datalog

A rule in Datalog is a statement of the following form:

𝑟 1 (𝑣 1) :-𝑟 2 (𝑣 2), ..., 𝑟 𝑖 (𝑣 𝑖)
Where i≥ 1, 𝑟 𝑖 are the names of predicates (relations) and 𝑣 𝑖 are arguments. A Datalog program is a nite set of Datalog rules over the same schema [START_REF]Foundations of Databases: The Logical Level[END_REF][START_REF] Ceri | What you always wanted to know about datalog (and never dared to ask)[END_REF]. trans(X,Y) :-edge(X,Y). trans(X,Y) :-trans(X,Z), trans(Z,Y).

Where the fact edge(a,b) means that there exists a direct edge from a to b.

Datalog and logic programming have some similarities. However, the main dierence between them is that logic programming allows using function, but Datalog does not. The next table presents some Datalog notations, that we are going to use in the following sections, and their logical counterparts.

Logical formulas

Datalog formulas

T(x,y) T(x,y) ←- T(x,y) ∨ ¬ R(x,z)∨ ¬ T(z,y) T(x,y) ←-R(x,z), T(x,y) ¬ R(x,z)∨ ¬ T(z,y) ←-R(x,z), T(z,y) Table 3.

Logical notations and their Datalog equivalence

In the literature, there are three denitions for the semantics of Datalog programs, model theoretic, proof-theoretic and fixpoint semantics [START_REF]Foundations of Databases: The Logical Level[END_REF][START_REF] Ceri | What you always wanted to know about datalog (and never dared to ask)[END_REF]. In this work, we consider the fix-point semantics.

Fix-point semantics.

Histories Encoding

In our approach, extracted relations from a history (po, wr...) are represented as predicates called facts, while the algorithm for xed point computation is formulated as Datalog recursive relations called inference rules.

We rst introduce facts. For instance, consider the fact po(a,b) which represents the program order from the operation a to the operation b (likewise for po(b,c)), po(a,b). po(b,c). Now, we dene the needed relations in our approach. rd(X), X is a read operation wrt(X), X is a write operation po(X,Y), X precedes Y in the program order po.

wr(X,Y), Y reads the value from a write operation X (wr relation) sv(X,Y), the operations X and Y access to the same variable.

Afterwards, we dene the inference rules used to generate derived relations. For instance, the following rules states that the causal relation co is derived from po and wr and it is transitive.

co(X,Y) :-po(X,Y). % co=(po U wr) co(X,Y) :-wr(X,Y). % co=(po U wr) co(X,Z) :-co(X,Y), co(Y,Z). % co is transitive

Bad-patterns Encoding

We have expressed all the bad-patterns as Datalog inference rules, except the ThinAirRead bad-pattern that we verify externally. The reason is that it contains an universal quantication over all operations. There exist two kinds of bad-patterns. The rst type is related to the existence of a cycle in a relation.

For instance, the bad-pattern CyclicCO that is expressed as :-co(X,Y), co(Y,X). % CyclicCO

Intuitively, this means that there exist no operations X and Y such that X precedes Y in the causal order and Y also precedes X in the causal order. Since co is transitive, we can simply write it as :-co(X,X). % CyclicCO

The second type of bad-patterns is related to the occurrence of a set of operations in some particular order. For instance, WriteCORead is expressed as follows :-co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z). % WriteCORead

Intuitively, this means that there exist no write operations X and Y on the same variable and a read operation Z which takes the value from X such that X precedes Y in the causal order and Y precedes Z in the causal order.

CC bad-patterns encoding.

In % Facts wrt("w(x,1,id0)"). po("w(x,1,id0)","r(x,2,id1)"). sv("r(x,2,id1)","w(x,1,id0)"). sv("w(x,2,id2)","w(x,1,id0)"). sv("r(x,1,id3)","w(x,1,id0)"). rd("r(x,2,id1)"). sv("w(x,1,id0)","r(x,2,id1)"). wr("w(x,2,id2)","r(x,2,id1)"). sv("w(x,2,id2)","r(x,2,id1)"). sv("r(x,1,id3)","r(x,2,id1)"). wrt("w(x,2,id2)"). sv("w(x,1,id0)","w(x,2,id2)"). sv("r(x,2,id1)","w(x,2,id2)"). po("w(x,2,id2)","r(x,1,id3)"). sv("r(x,1,id3)","w(x,2,id2)"). rd("r(x,1,id3)"). wr("w(x,1,id0)","r(x,1,id3)"). sv("w(x,1,id0)","r(x,1,id3)"). sv("r(x,2,id1)","r(x,1,id3)"). sv("w(x,2,id2)","r(x,1,id3)"). initread("r(a,0,ida)"). % Inference rules co(X,Y) :-po(X,Y). % co=(po U wr) co(X,Y) :-wr(X,Y). % co=(po U wr) co(X,Z) :-co(X,Y), co(Y,Z). % Transitivity % CC bad-patterns :-co(X,X). % CyclicCO :-co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead :-co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

We mention that since the bad pattern WriteCOInitRead includes a predicate initread(Y), we add the initread("r(a,0,ida)") to the programs that do not contain a read which reads the initial value.

-42-

Chapter 3. Causal Consistency Verification

The result of running this Datalog program using the online clingo version

[2] is shown in the following. We mention that when a history satises the consistency model we check, the Datalog program returns "SATISFIABLE" and has a model which includes the derived relations. On the other hand, when a history does not satisfy the consistency model, the Datalog program returns "UNSATISFIABLE" and has no model. clingo version 5.5.0 Reading from stdin Solving... Answer: 1 po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)"," r(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)") co("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0) ","r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2, id2)","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2, id2)") sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x ,1,id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x ,1,id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r (x,2,id1)") rd("r(x,1,id3)") SATISFIABLE

Models

: 1 Calls : 1 Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s) CPU Time : 0.000s % Facts wrt("w(x,1,id0)"). po("w(x,1,id0)","r(x,2,id1)"). sv("r(x,2,id1)","w(x,1,id0)"). sv("w(x,2,id2)","w(x,1,id0)"). sv("r(x,1,id3)","w(x,1,id0)"). rd("r(x,2,id1)"). sv("w(x,1,id0)","r(x,2,id1)"). wr("w(x,2,id2)","r(x,2,id1)"). sv("w(x,2,id2)","r(x,2,id1)"). sv("r(x,1,id3)","r(x,2,id1)"). wrt("w(x,2,id2)"). sv("w(x,1,id0)","w(x,2,id2)"). sv("r(x,2,id1)","w(x,2,id2)"). po("w(x,2,id2)","r(x,1,id3)"). sv("r(x,1,id3)","w(x,2,id2)"). rd("r(x,1,id3)"). wr("w(x,1,id0)","r(x,1,id3)"). sv("w(x,1,id0)","r(x,1,id3)"). sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)"). initread("r(a,0,ida)"). % CC inference rules co(X,Y) :-po(X,Y). % co=(po U wr) co(X,Y) :-wr(X,Y). % co=(po U wr) co(X,Z) :-co(X,Y), co(Y,Z). % Transitivity % CC bad-patterns :-co(X,X). % CyclicCO :-co(X,Y), wrt(X), initread(Y), sv(X,Y The WriteHBInitRead states that there exist a initread(Y) (read(𝑥, 0)) and a wrt(X) (write(𝑥, 𝑣)) such that sv(X,Y) (X and Y are in the same variable) and hb(X,Y,O) for some operation O, with po(Y,O) ((𝑟, 𝑜) ∈ po *). The CyclicHB bad-pattern states that there exist no operations X and Y such that X precedes Y in the lhb 𝑜 relation for some operation o.

CM_1 and CM_2 are characterized by the same CM bad-patterns described above. The only dierence is that for CM_2, we have added a function which identies the po-maximal operation in each thread. Then, we replace the operation "𝑂" in the CM bad-patterns above by these identied operations (last operation in each thread) instead of replacing it by all read/write operations in the history (for CM_1).

For a better understanding, consider the instantiation of the CM bad-patterns for CM_1 and CM_2.

For CM_1: we replace "𝑂" by all operations in the history.

%CM inference rules hb(X,w(x,1,id0),w(x,1,id0)) :-co(X,w(x,1,id0)). hb(X,Y,w(x,1,id0)) :-hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y). hb(X,Y,w(x,1,id0)) :-hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Y,w(x,1,id0)) :-hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,w(x,1,id0)) :-hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)). %CM bad-patterns :-hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y). :-hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)). %CM inference rules hb(X,w(x,2,id2),w(x,2,id2)) :-co(X,w(x,2,id2)). hb(X,Y,w(x,2,id2)) :-hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y). hb(X,Y,w(x,2,id2)) :-hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Y,w(x,2,id2)) :-hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,w(x,2,id2)) :-hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)). %CM bad-patterns :-hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y). :-hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)).

%CM inference rules hb(X,"r(x,2,id1)","r(x,2,id1)") :-co(X,"r(x,2,id1)"). hb(X,Y,"r(x,2,id1)") :-hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,2,id1)") :-hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)"). %CM bad-patterns :-hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y). :-hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)"). %CM inference rules hb(X,"r(x,1,id3)","r(x,1,id3)") :-co(X,"r(x,1,id3)"). hb(X,Y,"r(x,1,id3)") :-hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,1,id3)") :-hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)"). %CM bad-patterns :-hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y). :-hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

For CM_2: we replace "𝑂" by the last operation in each process in the history.

%CM inference rules hb(X,"r(x,2,id1)","r(x,2,id1)") :-co(X,"r(x,2,id1)"). hb(X,Y,"r(x,2,id1)") :-hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,2,id1)") :-hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)"). %CM bad-patterns :-hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y). :-hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)"). %CM inference rules hb(X,"r(x,1,id3)","r(x,1,id3)") :-co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :-hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,1,id3)") :-hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)"). %CM bad-patterns :-hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y). :-hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)"). Now, let's consider the whole Datalog programs and their running results.

For CM_1: % Facts wrt("w(x,1,id0)"). po("w(x,1,id0)","r(x,2,id1)"). sv("r(x,2,id1)","w(x,1,id0)"). sv("w(x,2,id2)","w(x,1,id0)"). sv("r(x,1,id3)","w(x,1,id0)"). rd("r(x,2,id1)"). sv("w(x,1,id0)","r(x,2,id1)"). wr("w(x,2,id2)","r(x,2,id1)"). sv("w(x,2,id2)","r(x,2,id1)"). sv("r(x,1,id3)","r(x,2,id1)"). wrt("w(x,2,id2)"). sv("w(x,1,id0)","w(x,2,id2)"). sv("r(x,2,id1)","w(x,2,id2)"). po("w(x,2,id2)","r(x,1,id3)"). sv("r(x,1,id3)","w(x,2,id2)"). rd("r(x,1,id3)"). wr("w(x,1,id0)","r(x,1,id3)"). sv("w(x,1,id0)","r(x,1,id3)"). sv("r(x,2,id1)","r(x,1,id3)"). sv("w(x,2,id2)","r(x,1,id3)"). initread("r(a,0,ida)"). % Inference rules co(X,Y) :-po(X,Y). co(X,Y) :-wr(X,Y). co(X,Z) :-co(X,Y), co(Y,Z). % Transitivity % CC bad-patterns :-co(X,X). % CyclicCO :-co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead :-co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z). % WriteCORead %CM inference rules hb(X,w(x,1,id0),w(x,1,id0)) :-co(X,w(x,1,id0)). hb(X,Y,w(x,1,id0)) :-hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y). hb(X,Y,w(x,1,id0)) :-hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Y,w(x,1,id0)) :-hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,w(x,1,id0)) :-hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)). %CM bad-patterns :-hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y). :-hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)). % CM inference rules hb(X,w(x,2,id2),w(x,2,id2)) :-co(X,w(x,2,id2)). hb(X,Y,w(x,2,id2)) :-hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y). hb(X,Y,w(x,2,id2)) :-hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Y,w(x,2,id2)) :-hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,w(x,2,id2)) :-hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)). %CM bad-patterns :-hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y). :-hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)). % CM inference rules hb(X,"r(x,2,id1)","r(x,2,id1)") :-co(X,"r(x,2,id1)"). hb(X,Y,"r(x,2,id1)") :-hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,2,id1)") :-hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)"). %CM bad-patterns :-hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y). :-hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)"). % CM inference rules hb(X,"r(x,1,id3)","r(x,1,id3)") :-co(X,"r(x,1,id3)"). hb(X,Y,"r(x,1,id3)") :-hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,1,id3)") :-hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)"). %CM bad-patterns :-hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y). :-hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)"). clingo version 5.5.0 Reading from stdin Solving... Answer: 1 po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)","r (x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)") co ("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0)", "r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2,id2) ","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2,id2)") sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x,1, id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1, id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x ,2,id1)") rd("r(x,1,id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb(" w(x,1,id0)","r(x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x ,1,id3)") hb("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x ,2,id1)","r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)") SATISFIABLE

Models

: 1 Calls : 1 Time : 0.029s CPU Time : 0.000s

The Datalog program is "SATISFIABLE" so the history satises CM_1.

For CM_2:

% Facts wrt("w(x,1,id0)"). po("w(x,1,id0)","r(x,2,id1)"). sv("r(x,2,id1)","w(x,1,id0)"). sv("w(x,2,id2)","w(x,1,id0)"). sv("r(x,1,id3)","w(x,1,id0)"). rd("r(x,2,id1)"). sv("w(x,1,id0)","r(x,2,id1)"). wr("w(x,2,id2)","r(x,2,id1)"). sv("w(x,2,id2)","r(x,2,id1)"). sv("r(x,1,id3)","r(x,2,id1)"). wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)"). sv("r(x,2,id1)","w(x,2,id2)"). po("w(x,2,id2)","r(x,1,id3)"). sv("r(x,1,id3)","w(x,2,id2)"). rd("r(x,1,id3)"). wr("w(x,1,id0)","r(x,1,id3)"). sv("w(x,1,id0)","r(x,1,id3)"). sv("r(x,2,id1)","r(x,1,id3)"). sv("w(x,2,id2)","r(x,1,id3)"). initread("r(a,0,ida)"). % CC inference rules co(X,Y) :-po(X,Y). co(X,Y) :-wr(X,Y). co(X,Z) :-co(X,Y), co(Y,Z). % Transitivity % CC bad-patterns :-co(X,X). % CyclicCO :-co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead :-co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z). % WriteCORead % CM inference rules hb(X,"r(x,2,id1)","r(x,2,id1)") :-co(X,"r(x,2,id1)"). hb(X,Y,"r(x,2,id1)") :-hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,2,id1)") :-hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,2,id1)") :-hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)"). %CM bad-patterns :-hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y). :-hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

% CM inference rules hb(X,"r(x,1,id3)","r(x,1,id3)") :-co(X,"r(x,1,id3)"). hb(X,Y,"r(x,1,id3)") :-hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt (X), sv(X,Y). hb(X,Y,"r(x,1,id3)") :-hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y). hb(X,Z,"r(x,1,id3)") :-hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)"). %CM bad-patterns :-hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y).

:-hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)"). clingo version 5.5.0 Reading from stdin Solving... Answer: 1 po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)","r (x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)") co ("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0)", "r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2,id2) ","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2,id2)") sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x,1, id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1, id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x ,2,id1)") rd("r(x,1,id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb(" w(x,1,id0)","r(x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x ,1,id3)") hb("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x ,2,id1)","r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)") SATISFIABLE

Models

: 1 Calls : 1 Time : 0.011s CPU Time : 0.000s

The Datalog program is "SATISFIABLE" so the history satises CM_2.

CM_2 computes the lhb 𝑜 relation for a small set of operations (po-maximal operations) compared to CM_1. As can be seen above, the size of the Datalog program was considerably reduced when we use CM_2 for a small history. Let alone long histories that contains hundreds of operations. The eect of this will be seen in the experimental results (Section 3.3.4).

An algorithm for checking Causal Consistency

Let's name the procedure which implements the reduction we have seen in the previous section REDUC-to-DATALOG. This procedure takes as input a history ℎ and a causal consistency model ℳ to check, and returns the corresponding Datalog program 𝒟. Afterwards, we call another procedure named DATALOG-SOLVER which veries whether the obtained Datalog program 𝒟 is SATISFIABLE or not.

Theorem 3 Algorithm 1 returns true iff the input history ℎ satisfies the causal consistency model M.

The correctness of this theorem is ensured by the fact that our reduction is a simple and direct encoding of bad patterns in Datalog and these bad-patterns were proven in [START_REF] Bouajjani | On verifying causal consistency[END_REF] to capture exactly the causal consistency violations.

Algorithm 1: Checking Causal Consistency algorithm.

Complexity

The complexity of a Datalog program is 𝒪(𝑛 𝑘) [START_REF] David S Warren | Programming in tabled prolog[END_REF], where n is the number of constants in the input data, and k is the maximum number of variables in a clause. As we have seen in the previous section, given a history ⟨𝑂, po, wr⟩, the maximum number of variables in a rule in our Datalog programs is 3. Thus, the complexity of our approach is 𝒪(𝑛 3), where n is the computation size (the number of operations). Our approach's complexity is better than the one dened in [START_REF] Bouajjani | On verifying causal consistency[END_REF] in which the complexity of checking CC, CCv and CM was shown to be 𝒪(𝑛 5).

Experimental Evaluation

We have investigated the eciency and scalability of our tool (named We ensure that all histories are dierentiated i.e., all written values are unique. These dierentiated histories are the input of our CausalC-Checker tool.

Case study 1: CockroachDB.

We have used the highly available and strongly consistent distributed database CockroachDB [3] (v2.1.0) that is built on a transactional strongly- consistent key-value store, so it is expected to be causally consistent. Considering one operation per transaction lead to our model.

We have examined the eect of the number of operations on runtime for a xed number of processes (4 processes) and the eect of the number of processes.

We have tested 200 histories for each conguration and calculated the average runtime.

We have checked CC, CCv and CM, using its two denitions CM_1 and CM_2, for all generated histories. The Figure 3.3 shows the results. The graphs 3.3a, 3.3c, 3.3e and 3.3g show the runtime while increasing the number of operations from 100 to 600, in augmentations of 100 (with a xed number of processes, 4 processes). The graphs 3.3b , 3.3d, 3.3f and 3.3h report the runtime when increasing the number of processes from 2 to 6, in augmentations of 1. For each number of processes 𝑥 we have considered 50𝑥 operations so increasing the number of processes increases the number of operations in the history as well.

The graph 3.3a resp., 3.3b shows a comparaison between CC, CCv, CM_1 and CM_2 verication runtimes while varying the number of operations resp., the number of processes. The graph 3.3c resp., 3.3d, presents the running time of CM_2 verication compared to CC and CCv verication running time. The graph 3.3e resp., graph 3.3g , shows the evolution of CC and CCv verication resp., CM_1 and CM_2 verication, runtime while increasing the number of operations. The graph 3.3f resp., graph 3.3h, shows the evolution of CC and CCv verication resp., CM_1 and CM_2 verication, runtime while increasing the number of processes.

Our approach is more ecient in the case of CC and CCv verication compared to the CM_1 case (graphs 3.3a and 3.3b). The gure 3.3c resp., 3.3d, is a zoom on CC, CCv and CM_2 of gure 3.3a resp., 3.3b. It shows that the CM_2 improves the running time but costs more compared to CC and CCv as well. The gure 3.3e resp., 3.3f, is a zoom on CC and CCv of gure 3.3a resp., 3.3b. It shows that CC and CCv verication are very ecient and terminates in less than 11.6 seconds for all histories we have tested. As we have noticed above, the results shown in 3.3g and 3.3h show that CM_2 has better performance, by factors of 8 times in the case of 600 operations. As expected, all the tested histories were valid w.r.t. all the considered causal consistency models.

Case study 2: Galera.

We have also used the cluster called Galera [4] (v3.20). Galera Cluster is a database cluster based on synchronous replication and Oracle's InnoDB/MySQL.

It is expected to implement Snapshot isolation when transactions are processed in separated nodes.

Similarly to the rst case study, we have studied the evolution of runtime while increasing the number of operations from 100 to 600, in augmentations of 100.

We have veried 200 histories for each number of operations and compute the runtime average.

The graphs in Figure 3.4 show the impact of increasing the number of opera- Likewise the CockroachDB case study, our approach is more ecient in the case of CC and CCv either while increasing the number of operations or processes.

The graph 3.4d shows that our new denition CM_2 outperforms CM_1, but still less ecient compared to CC and CCv (graph 3.4b).

Our approach allows capturing violations on the used Galera database. We have found that 1.25% of the tested Galera histories violate causal consistency, that conrms the bugs submitted on Github [5]. We mention that 73.3% of the detected CM violations are also CC violations. The suggested approach scales well and detects violations on the used version of Galera DB.

The experiments show that our approach is ecient for both verication of valid computations and detection of violations, especially in the case of CC and CCv. The gap between CC (CCv) and CM_1 runtimes reported in the graphs 3.3a, 3.3b and 3.4a is due to the fact that in CM_1 we compute the lhb 𝑜 relation and check the bad-patterns for each operation. This gap is reduced using the new denition CM_2 (graphs 3.3a, 3.3b and 3.4a) in which we compute the lhb 𝑜 relation and check the bad-patterns for only the last operation of each thread.

Conclusion

We have presented a tool for checking automatically that given computations of a system are causally consistent (w.r.t CC, CCv and CM). Our procedure for solving this conformance problem is based on implementing the theoretical approach introduced in [START_REF] Bouajjani | On verifying causal consistency[END_REF] where causal consistency violations are characterized in terms of the occurrence of some particular bad-patterns. We built on this work by reducing the problem of detecting the existence of these patterns in computations to the problem of solving Datalog queries. Our approach reduces the complexity of checking CC, CCv and CM from 𝒪(𝑛 5) to 𝒪(𝑛 3). We have applied our algorithm to two real-life case studies. The experimental results have shown that in the case of CC and CCv our approach is ecient and scalable. In the CM case, the costs grow polynomially but much faster than in the case of CC and CCv. In order to improve the CM checking performance, we have proposed an optimized denition (CM_2 where write and read operations are atomic, and operations issued by dierent threads are interleaved arbitrarily while the order between operations issued by a same thread is preserved. SC oers (to the user) the strongest consistency guarantees, and therefore the best programming abstraction, since each write operation is considered to be immediately visible to all threads. Other weaker memory models (Causal consistency variants and TSO for instance), adopted in order to ensure performance or availability in some contexts, allow in general write operations to be delayed, not simultaneously visible by all threads, and not being visible in the same order to all threads, which makes programming over such models very hard. However, while adopting SC as a memory model is desirable by memory users as it simplies their task, it pushes the burden on the memory implementers. Indeed, implementing sequential consistency is extremely complex and error prone due to various optimizations and complex cashing mechanisms that must be adopted in order to achieve acceptable performances.

Therefore, it is highly important to develop automated verication methods and tools for checking SC conformance and detecting subtile bugs in such implementations. A crucial problem for developing bugs detection and testing procedures is checking whether a given execution (of a memory implementation) is SC. However, this problem has been shown to be hard. The reason is that it amounts in nding a total order on write operations that explains the execution, in the sense that the happen-before relation induced by this order (that includes causality and conict constraints between writes and reads) is acyclic. It has been

shown that this problem is NP-complete in general [START_REF] Furbach | Memory-model-aware testing: A unied complexity analysis[END_REF][START_REF] Gibbons | Testing shared memories[END_REF], which means that in the worst case, it is necessary to enumerate the exponentially many possible store orders in order to solve the problem. Therefore, it is very important to investigate methods for solving this problem that avoid falling systematically in the worst case, and that are able to solve it in practice in polynomial time (in the size of the execution) as much as possible. This chapter addresses precisely this issue.

The situation is dierent for other weaker criteria such as Causal Consistency (CC, CCv and CM). As we have seen in the previous chapter, this models have been shown to be checkable in polynomial time (in the size of the computation) [START_REF] Bouajjani | On verifying causal consistency[END_REF][START_REF] Zennou | Checking causal consistency of distributed databases[END_REF]. In fact, causal consistency imposes fewer constraints than SC on the order between writes, and the way it imposes these constraints is deterministic, in the sense that they can be derived from the history of the execution by applying a least xpoint computation (which can be encoded for instance, as a standard DATALOG program). All these complexity results hold under the assumption that each value is written at most once, which is without loss of generality for implementations which are data-independent [START_REF] Wolper | Expressing interesting properties of programs in propositional temporal logic[END_REF], i.e., their behavior doesn't depend on the concrete values read or written in the program.

So, any buggy behavior of such implementations can be exposed in executions satisfying this assumption. Notice that as we have seen before, all the causal consistency variants become NP-complete without this assumption. This holds for the variations of the causal consistency we introduce in the next sections as well.

The intrinsic hardness of the problem of checking SC poses a crucial issue for the design of scalable verication or testing techniques for this important consistency model. Tackling this issue requires the development of practical approaches that can work well (with polynomial complexity) when the instance of the problem does not need to generate the worst case (exponential) complexity.

The purpose of this chapter is to propose such an approach. The idea is to reduce the amount of non-determinism in searching for the write orders in order to establish SC conformance. For that, our rst approach for SC checking is to consider a causal consistency variant CCM (for Convergent Causal Memory), that is stronger that all known causal consistency variants (CC, CCv and CM), but still weaker than SC, while being polynomial time checkable.

Then, if CCM is already violated by the given computation then we can conclude that the computation does not satisfy the stronger criterion SC. Here the hope is that in practice many computations violating SC can be caught already at this stage using a polynomial time check. Now, in the case that the computation does not violate CCM, we exploit the fact that establishing CCM already imposes a set of constraints on the order between writes. We show that these constraints form a partial order which must be a subset of any total write order if it exists, allowing to establish the SC conformance of the computation. Therefore, at this point, it is enough to nd an extension of this partial write order, and the hope is that in many practical cases, this set of constraints is already large enough, letting only a small number of pairs of writes to be ordered in order to check SC conformance.

We show experimentally that using CCM allows to improve signicantly the performance of SC checking w.r.t. an enumerative approach based on a reduction of the problem to SAT.

Then, a natural question is whether CCM is the strongest model that can be used in this approach? The second section of this chapter considers this question (and some other related questions) and brings answers to them.

We propose a new consistency model called weak sequential consistency (wSC, for short) that is dened using a simple saturation rule for introducing store order constraints. Roughly, the rule applies to a pair of writes; it adds an order constraint between them to avoid a happen-before cycle including a conict involving one of the writes. Compared to the denition of CCM, the one of wSC is much more natural and simpler. Interestingly, we prove that wSC is strictly stronger than CCM. This is due to the fact that wSC saturation computes a larger set of constraints on pairs of writes than CCM. Then, the question is whether it is possible to do better using a saturation-based denition. In fact we could have considered other saturation rules to dene stronger and stronger consistency models approximating SC. But what our experiments show is that the benet would not be important w.r.t. what is already achieved with wSC.

The work presented in this chapter is published in [START_REF] Zennou | Boosting sequential consistency checking using saturation[END_REF][START_REF] Zennou | Gradual consistency checking[END_REF].

The rest of this chapter is structured as follows, Section 4.1 presents our rst SC checking approach which is based on using CCM as an upper-approximation of SC. We rst dene the CCM memory model based on saturation rules. Afterwards, we prove some interesting results on the comparison of CCM with existent consistency models. Then, we study the complexity of checking CCM before presenting our algorithm for checking SC. Finally, we evaluate our approach using realistic cache coherence protocols executions. Section 4.2 is dedicated to our second SC checking approach using wSC consistency model. First, we dene weak consistency model (wSC). Then, we prove that wSC is stronger than CCM and weaker than SC. Afterwards, we study the complexity of checking wSC followed by a discussion about the notion of SC Kernel. The proposed algorithms for checking SC are presented in Section 4.2.3. Section 4.2.5 describes our testing approach and the obtained experimental results.

Approach 1: Checking Sequential Consistency Gradually using CCM

We dene an algorithm for checking whether a history satises SC which enforces a polynomially-time checkable criterion weaker than SC, a variation of causal consistency, in order to construct a partial store order, i.e., one in which not all the writes on the same variable are ordered. This partial store order is then completed until it orders every two writes on the same variable using a standard backtracking enumeration. This approach is ecient when the number of writes that remain to be ordered using the backtracking enumeration is relatively small, a hypothesis conrmed by our experimental evaluation (see Section 4.1.4).

The variation of causal consistency mentioned above, called convergent causal memory (CCM, for short), is stronger than existing variations [START_REF] Bouajjani | On verifying causal consistency[END_REF] while still being polynomially-time checkable (and weaker than SC). Its denition uses several saturation-based relations between read/write operations which are analogous or even exactly the same relations used to dene those variations (CC, CCv and CM).

As we have mentioned, Bouajjani et al. [START_REF] Bouajjani | On verifying causal consistency[END_REF] show that the problem of checking whether a history satises CC, CCv, or CM is polynomial time. This result is a straightforward consequence of the new denitions of these consistency models that we have introduced in the previous chapter (Section 3.2), since the union The partial store order pww is dened by

pww = (lhb WW ∪ cf[lhb]) + with lhb = (︀ ⋃︁ 𝑜∈𝑂 lhb 𝑜)︀ + .
The partial store order pww contains the ordering constraints between writes in all lhb 𝑜 relations used to dened causal memory, and also, the conict relation As we have seen in the last chapter, given a history ℎ = ⟨𝑂, po, wr⟩, for every operation 𝑜 in ℎ, lhb 𝑜 is the smallest transitive relation such that:

If there exist two operations 𝑜 1 and 𝑜 2 , (𝑜 1 , 𝑜 2) ∈ co, and another operation 𝑜 such that (𝑜 1 , 𝑜) ∈ co, and (𝑜 2 , 𝑜) ∈ co * , then (𝑜 1 , 𝑜 2) ∈ lhb 𝑜 , and If there exist two writes write(𝑥, 𝑣) and write(𝑥, 𝑣 ′), a read operation read(𝑥, 𝑣 ′) and another operation 𝑜, the lhb 𝑜 relation is dened as follows (Fig. 3.1c).

(write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ lhb 𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ lhb 𝑜 , (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, and (read(𝑥, 𝑣 ′), 𝑜) ∈ po * , for some read(𝑥, 𝑣 ′).

The following examples show a history which is allowed by CCM and another one which is not.

Example 24 The Figure 4.2a shows a history that is CCM. The reason is that it admits a partial store order pww where the writes in different threads are not ordered i.e., either 𝑡 0 operations can be executed first followed by 𝑡 1 operations or the inverse.

Example 25 The Figure 4.2b presents a history that does not satisfy CCM.

To show this, we use the fact that pww relates any two writes which are ordered by program order. Then, we get that read(𝑥, 1) and write(𝑥, 2) are related by rw[pww] (because write(𝑥, 1) is related by write-read to read(𝑥, 1)), which further implies that (read(𝑥, 1), read(𝑦, 1)) ∈ rw[pww] ∘ po. Similarly, we have (read(𝑦, 1), read(𝑥, 1)) ∈ rw[pww] ∘ po, which implies that po ∪ wr ∪ pww ∪ rw[pww]

is not acyclic, so the history does not satisfy CCM. Finally, since pww ⊆ ww, we get that (po ∪ wr ∪ pww ∪ rw[pww]) + ⊆ (po ∪ wr ∪ ww ∪ rw[ww]) + , which implies that the acyclicity of the latter implies the acyclicity of the former. Therefore, ℎ satisfies CCM.

The reverse of the above lemma doesn't hold. For instance, Example 27 The history in Figure 4.2a is not SC but it is CCM. The reason is that one can consider a partial store order pww where the writes of thread 𝑡 0 are not related to the writes of thread 𝑡 1 (are not ordered). Since a total order cannot be found, the history is not SC. As a rst step, it checks whether the given history satises CCM. If this is not the case, then, by Lemma 7, the history does not satisfy SC as well, and the algorithm returns false. Otherwise, it enumerates store orders which extend the partial store order pww, until nding one that witnesses for satisfaction of SC.

The history is a violation to SC i no such store order is found. The soundness of this last step is implied by the proof of Lemma 7, which shows that pww is included in any store order ww witnessing for SC satisfaction.

Algorithm 3: Checking SC conformance: CCM+ENUM algorithm.

Complexity

The partial store order pww includes relations that are dened using saturation rules, then it can be computed in polynomial time (in the size of the input history). Indeed, the lhb 𝑜 relations can be computed using a least xpoint calculation that converges in at most a quadratic number of iterations and acyclicity can be decided in polynomial time. Therefore, Theorem 5 Checking whether a history satisfies CCM is polynomial time (𝒪(𝑛 5)) in the size of the history.

Experimental Evaluation

To demonstrate the practical value of the theory developed in the previous sections, we argue that our algorithms are ecient and scalable. We experiment with the SC algorithms we presented above, investigating their running time compared to a standard encoding of these models into boolean satisability on a benchmark obtained by running realistic cache coherence protocols within the Gem5 simulator [START_REF] Binkert | The Gem5 Simulator[END_REF] in system emulation mode.

The executions histories that we use in this benchmark are generated using random clients of cache coherence protocols included in the Gem5 distribution. In order to support a memory consistency model, numerous machines provide cache coherence protocols. This protocols ensure that multiple cached copies of data are kept up to date. While Memory models specify the ordering of writes and reads to dierent memory locations, the cache coherence protocols are guaranteeing a unique order of all writes to the same memory location (the program order).

The gure 4.4 presents a simplied memory cache architecture. We used the protocols: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base.

Where, MI protocol is a simple cache coherence protocol used by default in Gem5.

It assumes one-level cache hierarchy, and each node has its own private cache. The randomization process is parametrized by the number of cpus (threads) and the total number of read/write operations. We have actually used the ruby random tester [6]. We ensure that every value is written at most once (data independence assumption).

We have compared two variations of our algorithms for checking SC with a standard encoding of SC into boolean satisability (named SC-SAT). The two variations dier in the way in which the partial store order pww dictated by CCM is completed to a total store order ww as required by SC: either using standard enumeration (named SC-CCM+Enum) or using a SAT solver (named SC-CCM+SAT).

The computation of the partial store order pww is done using an encoding of its denition into a DATALOG program. The inductive denition of lhb 𝑜 supports an easy translation to DATALOG rules, and the same holds for the union of two relations, or their composition. We used Clingo [START_REF] Gebser | Clingo = ASP + control: Preliminary report[END_REF] to run DATALOG programs.

The Figure 4.5 presents the general schema of the algorithm we used in our experiments to check SC using CCM-based approach.

Figure 4.6 reports on the running time of the three algorithms while increasing the number of operations or cpus. All the histories considered in this experiment satisfy SC. This is intended because valid histories force our algorithms to enu-Figure 4.5 The general schema of the SC checking procedure using CCM merate extensions of the partial store order (SC violations may be detected while checking CCM). The graph on the left pictures the evolution of the running time when increasing the number of operations from 100 to 500, in increments of 100 (while using a constant number of 4 cpus). For each number of operations, we have considered 200 histories and computed the average running time. The graph on the right shows the running time when increasing the number of cpus from 2 to 6, in increments of 1. For 𝑥 cpus, we have limited the number of operations to 50𝑥. As before for each number of cpus, we have considered 200 histories and computed the average running time. As it can be observed, our algorithms scale much better than the SAT encoding and interestingly enough, the dierence between an explicit enumeration of pww extensions and one using a SAT solver is not signicant. Note that even small improvements on the average running time provide large speedups when taking into account the whole testing process, i.e., checking consistency for a possibly large number of (randomly-generated) executions. For instance, the work on McVerSi [START_REF] Elver | Mcversi: A test generation framework for fast memory consistency verication in simulation[END_REF], which focuses on the complementary problem of nding clients that increase the probability of uncovering bugs, shows that exposing bugs in some realistic cache coherence implementations requires even 24 hours of continuous testing.

Since the bottleneck in our algorithms is given by the enumeration of pww extensions, we have measured the percentage of pairs of writes that are not ordered by pww. operations per history) and evaluated this percentage to be just 6.6%, which is surprisingly low. This explains the net gain in comparison to a SAT encoding of SC, since the number of pww extensions that need to be enumerated is quite low.

As a side remark, using CCv instead of CCM in the algorithms above leads to a drastic increase in the number of unordered writes. For the same random sample of 200 histories, we conclude that using CCv instead of CCM leaves 57.75% of unordered writes in average which is considerably bigger than the percentage of unordered writes when using CCM.

We have also evaluated our algorithms on SC violations. These violations were generated by reordering statements from the MI implementation, e.g., swapping the order of the actions s_store_hit and p_profileHit in the transition transition(M, Store). As an optimization, our implementation checks gradually the weaker variations of causal consistency CC and CCv before checking CCM. This is to increase the chances of returning in the case of a violation (a violation to CC/CCv is also a violation to CCM and SC). We have considered 1000 histories with 100 to 400 operations and 2 to 8 cpus, equally distributed in function of the number of cpus.

Discussion

To summarize, the approach we have presented above (let's call it Gradual Consistency Checking, GCC for short) consists in using weaker consistency models that are known to be polynomially checkable, such as causal consistency, in two ways. First, nding violations for the weaker models allows to detect eciently some of the SC violations. This can be useful since many violations are already violations for much weaker consistency models. Second, and this is the important point, we used weak consistency models for which checking conformance is based on computing, by a polynomial time xpoint calculation, a set of order constraints on writes, and these constraints are included in every store order witnessing SC conformance, if any. So, computing these constraints reduces the number of pairs of writes for which an order must be found non-deterministically.

We proposed for that a model called Convergence Causal Memory (CCM) that is stronger than all known variants of causal consistency, constructed by combining the constraints imposed by CCv [START_REF] Burckhardt | Principles of Eventual Consistency[END_REF] and CM [START_REF] Ahamad | Causal memory: denitions, implementation, and programming[END_REF][START_REF] Perrin | Causal consistency: beyond memory[END_REF]. We have shown experimentally that using CCM allows to improve drastically the performance of SC checking w.r.t. a straightforward enumerative approach (using a reduction of the problem to SAT).

As we have seen in related work (Section 1, Chapter 1), another approach for tackling the issue of ecient SC checking has been introduced recently in [START_REF] Parosh | Optimal stateless model checking for reads-from equivalence under sequential consistency[END_REF] and [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF]. In these two papers, the authors prove the interesting fact that when the number of threads is xed, the problem of verifying SC conformance of a single execution is polynomial time in the size of the execution. For that, they provide algorithms for solving this problem based on clever exploring the interleavings of operations of the execution, exploiting the specic properties of SC. This approach too, let us call it bounded-thread consistency checking (BTCC, for short), allows to obtain important performance gains w.r.t. the enumerative approach.

However, several questions can be asked concerning the two approaches described above.

1. As mentioned above, GCC is based on computing a set of constraints on write operations that must be included in all store orders witnessing SC.

The computation of these constraints actually uses saturation rules that consist, roughly speaking, in adding store order constraints when their reverse introduces new conicts between reads and writes such that the induced happen-before relation is cyclic. Saturation-based computations can be done in polynomial time. A natural question is how far this approach can be pushed i.e., is there any stronger consistency model (stronger that CCM and still weaker than SC) that can be used in this approach? This question leads to the following one: Given an execution that is SC, let us call the SC-kernel of this execution the intersection of all store order relations allowing to establish that the execution is SC (i.e., for which the induced happen-before relation is acyclic). Then, is it possible to compute the SC-kernel of any execution using saturation? 2. BTCC exploits in an essential way the fact that the number of threads is xed. While this approach reduces the complexity in the number of operations, which is important for scalability when the size of executions increases, it does not avoid the fact that the time complexity increases exponentially in the number of threads. So, natural questions is how BTCC scales when both the number of operation and the number of threads increases, and how it compares in this respect with the GCC approach? 3. Another natural question is, since the two approaches use dierent paradigms, whether it would be useful to combine them to get the best of the two.

The next section explores these questions and brings answers to them.

Approach 2: Checking Sequential Consistency using wSC

In this section, we introduce a new model called weak SC as a saturation-based approximation of SC. We rst prove an interesting result which states that wSC is strictly stronger than CCM and weaker than SC. Then, we show that the wSC saturation rule does not compute the whole SC-kernel in general. We analyze the reason of this by providing several families of counterexamples. We show that there are order constraints that must be imposed on pairs of writes to avoid happen-before cycles including not only one conict (as wSC saturation does), but several (actually any number) of conicts involving an arbitrary number of writes. Moreover, we show that in order to impose an order constraint on pairs of writes, in some cases it is necessary to enumerate the possible order of several other pairs of writes, and the number of these pairs can be arbitrarily high.

This shows that the design of a saturation-based schema for computing the SCkernel would require the addition of an unbounded number of saturation rules.

This leaves open the theoretical question whether there is a way to compute in polynomial time the SC-kernel of an SC execution).

Nevertheless, even if the wSC saturation does not always capture the SCkernel, an interesting question is how far is wSC saturation from computing the SC-kernel in practice? We show experimentally that, surprisingly, for executions of real protocols 1 , wSC allows to compute the full SC-kernel in most of the cases (more than 74% of the executions), and in general it computes almost the whole SC-kernel (around 99.9% of it). Interestingly, the experiments also show that CCM computes 100% of the SC-kernel for only 0.7% of the executions of the considered benchmark. This shows that the saturation rule we consider for wSC is very powerful and ecient in practice, despite its simplicity (and that it is theoretically not complete as discussed above).

The experimental results, show that wSC leads to a more ecient gradual consistency checking than CCM, and that it scales much better compared to the bounded-thread consistency checking algorithm when the number of threads (and therefore the number of operations as well) increases, while bounded-thread 1. We consider the same 4 protocols from the Gem5 platform that we used in the first section. consistency checking is in general more ecient for small number of threads. This leads us to dene an algorithm using saturation to enhance bounded-thread consistency checking. The obtained algorithm take advantage of both techniques and is shown to be very ecient and scalable. Section 4.2.1 presents wSC. Section 4.2.2 introduces our results about the SC kernel. Section 4.2.3 presents our algorithms for verifying SC while experimental results are drown in Section 4.2.5.

Weak Sequential Consistency

We dene our new consistency model obtained by computing a store order using a simple saturation rule. This amounts in using induction in order to dene the store order unlike the SC case where it is existentially quantied. Formally, let st and hb be the smallest relations such that

st = ((hb WR ∘ wr -1) ∪ hb WW) + hb = (po ∪ wr ∪ st ∪ rw[st]) + rw[st] = wr -1 ∘ st
The hb WW is the projection of hb on pairs of writes on the same variable and hb WR is the projection of hb on pairs of writes and reads on the same variable.

Then, Definition 16 a history ⟨𝑂, po, wr⟩ is conform to weak sequential consistency (wSC) if the hb relation is acyclic.

To illustrate this denition, consider the next examples.

Example 28 Figure 4.8a shows a history which satisfies wSC. To show this, one can consider a partial store order 𝑠𝑡 where the writes write(𝑧, 1) and write(𝑧, 2)

are not ordered.
Example 29 The Figure 4.8b presents a history that does not satisfies wSC.

Since rw[𝑠𝑡] is included in hb, read(𝑦, 0) is visible to write(𝑦, 2) then write(𝑥, 1) precedes read(𝑥, 2) in hb. Thus, write(𝑥, 2) should be executed before write(𝑥, 1). Similarly write(𝑥, 2) precedes read(𝑥, 1) in hb as well and write(𝑥, 1) should be executed before write(𝑥, 2). Therefore, we get a cycle in hb. We prove that wSC is stronger than CCM (which is already stronger that all known variants of causal consistency).

Lemma 9 If a history satisfies wSC, then it satisfies CCM.

Proof 9 Let ℎ = ⟨𝑂, po, wr⟩ be a history satisfying wSC i.e., po ∪ wr ∪ st ∪ rw [st] is acyclic. We prove that (po ∪ wr ∪ pww ∪ rw[pww]) + ⊆ hb (hence the history satisfies also CCM).

Let us show that for every operation 𝑜 in ℎ, lhb 𝑜 ⊆ hb. For that, we show that hb satisfies the two properties of lhb 𝑜 : If (𝑜 1 , 𝑜 2) ∈ co, (𝑜 1 , 𝑜) ∈ co, and (𝑜 2 , 𝑜) ∈ co then (𝑜 1 , 𝑜 2) ∈ hb trivially holds (since co ⊆ hb), and If (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ hb and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ (hb ∘ wr -1) and hence (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ st and (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ hb.

Thus, we have lhb 𝑜 ⊆ hb and hence lhb ⊆ hb.

Let us now show that pww = (lhb WW ∪ cf[lhb]) + ⊆ st. It is easy to see that lhb WW ⊆ hb WW (since lhb ⊆ hb). By definition, we have also that cf[lhb] = (lhb WR ∘ wr -1) and hence cf[lhb] ⊆ (hb WR ∘ wr -1). This implies that pww = (lhb WW ∪ cf[lhb]) + ⊆ st = ((hb WR ∘ wr -1) ∪ hb WW) + . Finally, we can deduce that (po

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣

∪ wr ∪ pww ∪ rw[pww]) + ⊆ hb = (po ∪ wr ∪ st ∪ rw[st]) + .
The reverse of this lemma does not hold. For example, Example 30 Figure 4.8b presents a history that satisfies CCM but not wSC.

A possible partial store order for CCM is to consider that the writes of each thread are not visible to the other thread. This history does not satisfy wSC (See Example 29).

Then, Lemma 10 wSC is strictly stronger than CCM.

We prove now that wSC is weaker than SC. For that, we need to consider the subrelations of st and hb obtained by iterative least x-point calculation. Let st = ⋃︀ 𝑖 𝑠𝑡 𝑖 and hb = ⋃︀ 𝑖 ℎ𝑏 𝑖 where 𝑠𝑡 𝑖 = (hb iWW ∪ 𝑠𝑡 ′ 𝑖) + and 𝑠𝑡 ′ 𝑖 (Fig. 4.9) is dened by:

(write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ 𝑠𝑡 ′ 𝑖 i (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ ℎ𝑏 𝑖 and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr where, for every 𝑖 ≥ 0, ℎ𝑏 𝑖 is dened by:

ℎ𝑏 0 = (po ∪ wr) + ℎ𝑏 𝑖+1 = (ℎ𝑏 𝑖 ∪ 𝑠𝑡 𝑖 ∪ rw[𝑠𝑡 𝑖]) +
We now show that the partial store order 𝑠𝑡 𝑖 is included in any store order ww witnessing for SC satisfaction.

Lemma 11 Let ℎ = ⟨𝑂, po, wr⟩ be a history and ww be a total store order such that po ∪ wr ∪ ww ∪ rw is acyclic. Then, 𝑠𝑡 𝑖 ⊆ ww and ℎ𝑏 𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw) + .

Proof 10 Let ℎ = ⟨𝑂, po, wr⟩ be a history satisfying SC i.e., there exists a store order ww such that po ∪ wr ∪ ww ∪ rw is acyclic. We show that ℎ𝑏 𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw) + and 𝑠𝑡 𝑖 ⊆ ww for all ww such that po ∪ wr ∪ ww ∪ rw is acyclic. The proof is by induction on the index 𝑖 of ℎ𝑏 𝑖 and 𝑠𝑡 𝑖 .

Base-Case (i=0). We have ℎ𝑏 0 =(po ∪ wr) + is included in (po ∪ wr ∪ ww ∪ rw) + . Since ℎ𝑏 0 ⊆ (po ∪ wr ∪ ww ∪ rw) + , if (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ ℎ𝑏 0 and there exists a read(𝑥, 𝑣 ′) such that (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Otherwise, assuming by contradiction that (write(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ ww, we get (read(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ rw. Since write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ ℎ𝑏 0 ⊆ (po ∪ wr ∪ ww ∪ rw) + , this implies that there is a cycle in (po ∪ wr ∪ ww ∪ rw) + which is a contradiction. So, we have (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Thus, 𝑠𝑡 ′ 0 is included in ww and hence 𝑠𝑡 0 = (hb 0WW ∪ 𝑠𝑡 ′ 0) + is also included in ww (since (hb 0WW ⊆ ww otherwise it leads to a contradiction since ℎ𝑏 0 ⊆ (po ∪ wr ∪ ww ∪ rw) + and (po ∪ wr ∪ ww ∪ rw) + is acyclic).

Induction

Step. Assume that for all ww, ℎ𝑏 𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw) + and 𝑠𝑡 𝑖 ⊆ ww. Now, let's show that this holds for 𝑖 + 1 as well. By induction hypothesis, 𝑠𝑡 𝑖 ⊆ ww, so using the definition of rw[𝑠𝑡 𝑖] we have rw[𝑠𝑡 𝑖] ⊆ rw. Then, ℎ𝑏 𝑖+1 = (ℎ𝑏 𝑖 ∪ 𝑠𝑡 𝑖 ∪ rw[𝑠𝑡 𝑖]) + ⊆ (po ∪ wr ∪ ww ∪ rw) + . Now, let's show that 𝑠𝑡 ′ 𝑖+1 ⊆

ww. If (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ ℎ𝑏 𝑖 and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Otherwise, using the same argument in the base case, we get that (read(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ rw and a contradiction of the fact that (po ∪ wr ∪ ww ∪ rw) + is acyclic. Hence, if (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ 𝑠𝑡 ′ 𝑖+1 then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww and so 𝑠𝑡 ′ 𝑖+1 ⊆ ww. Furthermore, we have hb i+1 WW ⊆ ww since ℎ𝑏 𝑖+1 ⊆ (𝑝𝑜 ∪ wr ∪ ww ∪ rw) + (otherwise it leads to a contradiction of the fact that (𝑝𝑜 ∪ wr ∪ ww ∪ rw) + is acyclic). Since 𝑠𝑡 𝑖+1 = (hb i+1 WW ∪ 𝑠𝑡 ′ 𝑖+1) + , 𝑠𝑡 ′ 𝑖+1 ⊆ ww and hb i+1 WW ⊆ ww, we get that 𝑠𝑡 𝑖+1 ⊆ ww (since ww is a total store order).

As an immediate corollary of Lemma 11, we get: Lemma 12 If a history satisfies SC, then it satisfies wSC. Proof 11 The proof is by contradiction. Assume that a history ℎ = ⟨𝑂, po, wr⟩ satisfies SC and it does not satisfy wSC. Since ℎ satisfies SC, there exists a total -80-store order ww such that po∪wr∪ww∪rw is acyclic. Since ℎ does not satisfy wSC, this means that ℎ𝑏 is cyclic. Since hb = ⋃︀ 𝑖 ℎ𝑏 𝑖 and ℎ𝑏 𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw) + (from Lemma 11), we can deduce that (po ∪ wr ∪ ww ∪ rw) + is also cyclic and this constitutes a contradiction.

The reverse of the above lemma doesn't hold. For instance, Example 31 Figure 4.8a shows a history which satisfies wSC (the reason has been shown above in example 28) but it is not SC. Since there is no valid store order for the writes write(𝑧, 1) and write(𝑧, 2), this history does not satisfy SC.

In fact, since 𝑤𝑤 is a total order, let's try the two possible cases:

If write(𝑧, 1) happens-before write(𝑧, 2) in the total order ww, then write(𝑦, 1) precedes write(𝑦, 2) in po ∪ wr ∪ ww. Since, read(𝑦, 1) reads its value from write(𝑦, 1), we get a rw relation between read(𝑦, 1) and write(𝑦, 2). In the same way, write(𝑥, 1) precedes write(𝑥, 2) in po ∪ wr ∪ ww, then, we get a rw between read(𝑥, 1) (which takes its value from write(𝑥, 1)) and write(𝑥, 3).

Thus, we get a cycle in po ∪ wr ∪ ww ∪ rw.

If write(𝑧, 2) precedes write(𝑧, 1) in ww, then write(𝑡, 1) precedes write(𝑡, 2) in po ∪ wr ∪ ww. Since, read(𝑡, 1) takes its value from write(𝑡, 1), read(𝑡, 1) should precede write(𝑡, 2) in read-write relation rw. Similarly, read(𝑠, 1) should precede write(𝑠, 2) in rw. Then, we get a cycle in po ∪ wr ∪ ww ∪ rw.

Both cases are not possible (i.e., lead to a cycle in po ∪ wr ∪ ww ∪ rw), then the history is not allowed by SC. Thus, Lemma 13 SC is strictly stronger than wSC.

The Figure 4.10 completes the Figure 4.3 by the relationships between the consistency models studied in this section. In this chapter, we have proposed CCM that is strictly stronger than all known causal consistency models (CC, CCv and CM) and strictly weaker than SC. We have also introduced wSC that is strictly stronger than CCM (and explicitly strictly stronger than CC, CCv and CM) and strictly weaker than SC. The Sequential Consistency Kernel Given a history ℎ = ⟨𝑂, po, wr⟩ that satises SC, we dene the Sequential Consistency Kernel (SC-Ker for short) of ℎ as the intersection of all store order orders allowing to establish the SCness of ℎ. We know already, from the previous section (Lemma 11), that the store order st, computed by the wSC saturation procedure, is included in any total store order ww such that po ∪ wr ∪ ww ∪ rw is acyclic. This means that the computed st is always a subset of SC-Ker. Then, the question is whether the computed store order st is equal to SC-Ker or not.

In the following, we show that the saturation procedure of wSC may in some cases not be able to compute the SC-Ker (but rather a strict subset of it). To see why, consider the history given in The wSC rules do not generate any st relation and therefore the saturation procedure of wSC returns that the store order st is empty while the happensbefore relation hb is equal to (po ∪ wr) + . However, any total store order ww that allows to show the SCness of this history should order write(𝑥, 4) before write(𝑥, 2) (and hence the pair (write(𝑥, 4), write(𝑥, 2)) is in the SC-Ker). We prove that (write(𝑥, 4), write(𝑥, 2)) belongs to the SC-Ker by contradiction. Assume that (write(𝑥, 4), write(𝑥, 2)) is not in SC-Ker. Then, there is a total store order ww such that (1) (write(𝑥, 2), write(𝑥, 4)) is in ww (represented in Figure 4.11 by a dashed arrow) and (2) (po ∪ wr ∪ ww ∪ rw) + is acyclic (since the history ℎ is SC).

However, if (write(𝑥, 2), write(𝑥, 4)) is in ww then the relation (po∪wr ∪ww ∪rw) + is not acyclic (as shown in Figure 4.11 by the dashed arrows) and which is a contradiction.

One way to overcome this problem is to include such a pattern in the denition of the total order 𝑠𝑡 ′ 𝑖 used in the saturation procedure. Thus, the new denition of 𝑠𝑡 ′ 𝑖 is updated as follows: (write(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ 𝑠𝑡 ′ 𝑖 if and only if one of the following cases holds:

(write(𝑥, 𝑣 ′), read(𝑥, 𝑣)) ∈ ℎ𝑏 𝑖 and (write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, or (write(𝑧, 𝑣 𝑧), write(𝑥, 𝑣)), (write(𝑦, 𝑣 𝑦), write(𝑥, 𝑣)), (write(𝑥, 𝑣 ′), write(𝑦, 𝑣 ′ 𝑦)), (write(𝑦, 𝑣 ′ 𝑦), read(𝑧, 𝑣 𝑧)), (write(𝑥, 𝑣 ′), write(𝑧, 𝑣 ′ 𝑧)), (write(𝑧, 𝑣 ′ 𝑧), read(𝑦, 𝑣 𝑦)) are in ℎ𝑏 𝑖 and (write(𝑧, 𝑣 𝑧), read(𝑧, 𝑣 𝑧)), (write(𝑦, 𝑣 𝑦), read(𝑦, 𝑣 𝑦)) are in wr.

Observe that the pattern added to 𝑠𝑡 ′ 𝑖 contains six write operations. Unfortu- nately, this pattern is not enough to allow us to capture the SC-Ker. In fact, we can construct a family of counter-examples (see Figure 4.12) such that in order to capture all of them, we need to add to the relation 𝑠𝑡 ′ 𝑖 patterns involving a strictly increasing number of writes (which is not feasible in practice).

One way to address the problem raised by the family of counter-examples given in Figure 4.12 is to guess for a given pair of writes write(𝑥, 𝑣) and write(𝑥, 𝑣 ′) that are not related by the computed store relation st (i.e., (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) and (write(𝑥, 𝑣 ′), write(𝑥, 𝑣)) are not in st) one possible order and check if it can make the history ℎ infeasible under SC and if it is the case we add the other order to st. For instance, in the history given in Figure 4.11, one would guess that the (write(𝑥, 2), write(𝑥, 4)) is in st. This guess makes the history infeasible under SC due to the existence of a cycle in (po ∪ wr ∪ ww ∪ rw) + and hence (write(𝑥, 4), write(𝑥, 2)) is added to st. Observe that this still results So the question is whether this extended saturation procedure calculates the SC-Ker. Alas, this is not true. Consider the history given in Figure 4. [START_REF] Alur | Model-checking of correctness conditions for concurrent objects[END_REF]. The previous saturation procedure of wSC (augmented with the guessing of the order of one pair of writes) results in an empty store order st. However, this history satises SC and (write(𝑥, 1), write(𝑥, 2)) and (write(𝑡, 2), write(𝑡, 1)) are in SC-Ker. In fact, ordering write(𝑥, 2) before write(𝑥, 1) and write(𝑡, 2) before write(𝑡, 1) creates a happens-before cycle in the top-left block of Figure 4.13 (in similar manner to the example given in Figure 4.11). While ordering write(𝑥, 2) before write(𝑥, 1) and write(𝑡, 1) before write(𝑡, 2) creates a happens-before cycle in the top-right block of Figure 4.13. Finally, ordering write(𝑥, 1) before write(𝑥, 2) and write(𝑡, 1) before write(𝑡, 2) creates a happens-before cycle in the top-middle block of Figure 4. 13. This shows the necessity of augmenting the saturation procedure with the enumeration of the order between two pairs of writes in order to compute the SC-Ker. Even worst, we can easily extend the history given in Figure 4.13 in order to force the enumeration of the order between several pairs of writes in order to be able to compute the SC-Ker. The main idea is to add a number of blocks (in similar manner to the examples given in Figure 4. 11 and Figure 4.12) to forbid all order combinations between certain pairs of write except one.

Algorithms for checking SC conformance

We dene in this section algorithms for SC checking that exploit the partial store order st computed by the wSC saturation. Following the approach of gradual consistency checking (GCC) we have seen in the rst part of this chapter, we start by checking that the given history is wSC. If not, then we conclude that it is not SC neither (by Lemma 12). If yes, we exploit st in order to enhance the SC verication of the history. This verication amounts in nding a total store order extending st. To solve this problem we adopt two approaches, one is based on reducing the SC verication problem to SAT, and the second one is based on using the bounded-thread approach of [START_REF] Parosh | Optimal stateless model checking for reads-from equivalence under sequential consistency[END_REF][START_REF] Biswas | On the complexity of checking transactional consistency[END_REF] implemented in the DBCOP tool.

Both of these approaches are enhanced by the fact that they will receive the st constraints in order to reduce their search space. The two so obtained algorithms are called wSC+ENUM and wSC+DBCOP.

The algorithm wSC+ENUM uses an encoding of SC conformance of a given history (dened with its po and wr constraints) as the satisfaction of a boolean formula. The latter expresses the constraints on the relations involved in the denition of SC, including the fact that the store oder ww is a total order relation (so every pair of writes must be order in one direction or the other), and that the happen-before relation is transitive and acyclic. Moreover, the order constraints corresponding to the relation st computed for wSC are added to the formula. Hence, Theorem 6 Algorithm 4 returns true iff the input history ℎ satisfies SC.

-85-pairs is polynomially bounded (in the size of the computation), there can be at most 𝑛 2 edges where n is the number of operations in the computation. As we have seen in the hb and st saturation rules, it involves 3 operations (𝒪(𝑛 3)). Thus, the acyclicity of hb can be decided in polynomial time. Then, Theorem 8 Checking whether a history ℎ satisfies wSC is polynomial time (𝒪(𝑛 5)) in the size of the history.

Experimental Evaluation

We show in this section an evaluation of the eciency of our approach and its scalability. We rst report on the eciency of the wSC saturation in computing the SC-kernel. Then, we present an evaluation of the approach in checking SC conformance by taking into account two dimensions: the number of operations and the number of threads. The evaluation examines the case of valid histories (that satisfy SC), the case of histories that violate SC, and the case where both types of histories are considered. Alike the rst section, experiments are done by considering histories that are generated by running random clients (ruby random tester [6]) on realistic cache coherence protocols within the Gem5 simulator [START_REF] Binkert | The Gem5 Simulator[END_REF] in system emulation mode. We used 4 cache coherence protocols included in Gem5: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base. We use another implementation of CCM+ENUM which is more ecient compared to the Datalog based approach we have considered in the Section 4.1.

The Figure 4.14 shows the general schema of the wSC-based testing procedure we used in our experiments to check SC.

Capacity of ordering the set of writes

We evaluate the capacity of CCM and wSC in computing store order constraints that must be part of any store order witnessing SCness. In fact, we know that their saturation procedures compute subsets of the SC-kernel of SC histories. The questions we address is what is the computed proportion of this set, and what is the proportion of the set of pairs of writes in the execution that are not ordered by saturation (including those that are outside the SC-kernel when the history is SC).

We found that wSC computes the SC-kernel in 74.24% of the tested execu-Figure 4.14 The general schema of the SC checking procedure using wSC tions, and that for the rest of the executions, it computes in average 99.97% of their kernel. As for CCM, we found that it computes the SC-kernel only in 0.7% of the same set of executions.

We also found that wSC saturation puts 98.51% of the pairs of writes of an execution in average, and that CCM order in average 97,89% of the pairs of writes. This is interesting since in terms of coverage of the sets of pairs of write, CCM is not far from wSC, however, only for very few execution it can cover fully its SC-kernel.

SC conformance checking: Valid histories

We consider in this section the case of executions that satisfy SC. The experiments are made by varying the number of operations and the number of threads.

For each value of number of operations, of threads, respectively, we have tested 200 histories and computed the running time average. It shows that for a xed, relatively small number of threads, DBCOP has the best performances, while wSC+ENUM good performances and is clearly superior than CCM+ENUM. This is due partly to the dierence in the coverage of store order constraints, but only because the dierence between the two coverage percentages is not big in average (98.51% vs 97,89%). So, here the complexity of the saturation technique plays also in important role: for CCM, the saturation schema requires computing local happen-before relation for each operation, which is very expensive compared with the much simpler saturation schema in wSC.

Conclusion

We have proposed two approaches for checking SC conformance. The idea over these approaches is to avoid an explicit enumeration of the exponential number of possible total orders between writes in order to solve these problem.

Our approach is to dene weaker criteria that are as strong as possible but still polynomial time checkable. Morally, the approach consists in being able to capture an as large as possible partial order on writes that can be computed in polynomial time (using a least xpoint calculation), and which is a subset of any total order witnessing SC conformance. Then, the rst idea was to exploit the existing causal consistency models and combine them in order to come out with a strong causal consistency variant (CCM) which is polynomially checkable and still weaker than SC. The experiments conrmed that this approach allows to reduce signicantly the number of pairs of writes for which an order should be found in order to establish SC conformance in an enumerative way. However, we have shown that this approach can be pushed more and we have introduced another consistency model (wSC) which is stronger than CCM, polynomially checkable and weaker than SC. Our experimental results showed that in practice (1) this allows to catch very quickly almost all SC-violations, and (2) our method allows to compute almost always the whole SC-kernel (around 99.9% of it), and leaves only a very small number of store order constraints to be found in order to check SC-ness. We considered two ways for nding the remaining constraints: either using SAT-solving, or using the search procedure of DBCOP. The latter option, exploiting saturation to enhance DBCOP, is the best one experimentally, leading to a performant and scalable algorithm. An interesting question is whether this approach can be generalized in order to cover other consistency models for which the conformance verication problem is NP-hard.

We address this problem in the next chapter and propose similar approaches for checking Total Store Order (TSO) conformance.

-92-CHAPTER 5

TOTAL STORE ORDERING VERIFICATION

In this chapter, we address the problem of verifying that an execution is conform to the TSO consistency model. This problem is known to be NP-complete [START_REF] Gibbons | Testing shared memories[END_REF][START_REF] Furbach | Memory-model-aware testing: A unied complexity analysis[END_REF] as the SC checking problem. This similarity is due to the fact that in order to justify that the execution is consistent, one has to nd a total order between the writes which explains the read operations happening along the computation. It can be proved that one cannot avoid enumerating all the possible total orders between writes, in the worst case.

For the case of TSO, we proceed in the same way as for SC, but we consider dierent intermediary polynomial time checkable criteria. This is due to the fact that some constraints need to be relaxed under TSO in order to take into account the program order relaxations of TSO (ppo and po-loc), that allow reads to overtake writes. As we have seen in the rst chapter, a history ⟨𝑂, po, wr⟩ satises TSO if there exists a store order ww such that po-loc ∪ wr 𝑒 ∪ ww ∪ rw and ppo ∪ wr 𝑒 ∪ ww ∪ rw are both acyclic.

Our rst approach is based on a weakening of CCM called weak CCM (wCCM), that is weaker than TSO and polynomial time checkable. Then, given a history, if it is a violation of wCCM then the history is not conform to TSO as well (TSO is stronger than wCCM). Otherwise, if the history satises wCCM, we try to nd an extension of the computed partial store order (the order between writes imposed by wpww) that can witness for TSO satisfaction. The soundness of this extension is implied by the fact the constraints imposed by wCCM on the writes order are included in any total store order witnessing for TSO conformance.

Our experiments show a signicant improvement of TSO checking performance when we use wCCM as an upper-approximation of TSO w.r.t. a standard enumeration using a SAT solver. However, an interesting question is whether wCCM is the strongest consistency model we can use in this approach.

Similarly to SC, our second approach extends this idea by proposing a new consistency model, called weak TSO (wTSO), that is stronger than wCCM, weaker than TSO and the most important point is that it is checkable in polynomial time.

Our second approach relies on the mentioned (new) consistency model called weak Total Storing Order (wTSO, for short) that is based on a simple saturation rule for imposing constraints on store order. The idea is to apply the saturation rule to a pair of writes in order to avoid a cycle in the happen-before relation involving a conict including one of the writes. The proposed saturation rule in wTSO is more simpler compared to the one used for wCCM. Furthermore, we prove that wTSO is stronger than wCCM. While the rst part of this chapter is published in [START_REF] Zennou | Gradual consistency checking[END_REF], the second part is an extension of the work published in [START_REF] Zennou | Boosting sequential consistency checking using saturation[END_REF].

This chapter is structured in two sections. The rst section (Section 5.1) is dedicated to the TSO checking approach which is based on using wCCM as an upper-approximation of TSO. We rst dene the wCCM consistency model and its related relations. Then, we show that wCCM is weaker than TSO. Afterwards, we present our algorithm for checking TSO conformance and evaluate it using the same real executions used in the SC case. The second section (Section5.2) presents wTSO based approach for checking TSO. First, we dene the wTSO consistency model. Then, we prove that wTSO is stronger than wCCM and weaker TSO, and discuss the wTSO checking complexity. Finally, we present our algorithm for checking TSO using wTSO based approximation and evaluate it on real executions.

Approach 1: wCCM-based TSO verification

We dene a polynomial time checkable criterion, called weak convergent causal memory (wCCM, for short), based on a (dierent) variation of causal consistency that is suitable for the case of TSO. This allows to reduce the number of pairs of writes for which an order must be guessed in order to establish the conformance to TSO.

The case of TSO requires the denition of a new intermediary consistency model because CCM is based on a causality order that includes the program order po which is relaxed in the context of TSO, compared to the SC model. Indeed, CCM is not weaker than TSO as shown by the history in Figure 5.1a (note that this does not imply that other variations of causal consistency, CC and CCv, are also not weaker than TSO). This history satises TSO because, based on its operational model, the operation write(𝑥, 2) of thread 𝑡 1 can be delayed (pending in the store buer of 𝑡 1) until the end of the execution. Therefore, after executing read(𝑧, 0), all the writes of thread 𝑡 0 are committed to the main memory so that thread 𝑡 1 can read 1 from 𝑦 and 2 from 𝑥 (it is obliged to read the value of 𝑥 from its own store buer).

This history is not admitted by CCM because it is not admitted by the weaker causal consistency variation CM. Figure 5.6b presents a history admitted by CCM but not by TSO. Indeed, under TSO, both 𝑡 2 and 𝑡 3 should observe the writes performed by 𝑡 0 and 𝑡 1 , respectively, on variable 𝑥 and variable 𝑦 in the same order. However, it does not, because 𝑡 2 sees the write on variable 𝑥 before the write on variable 𝑦 (since it reads 0 from 𝑦) and 𝑡 3 sees the write on 𝑦 before the write on 𝑥 (since it reads 0 from 𝑥). This history is admitted by CCM since the two writes are causally independent and they concern dierent variables.

We mention that TSO and CM are also incomparable. As we have seen in the chapter 2, the history in Figure 5 (c) wCCM and CCM but not TSO. Then, given a history ⟨𝑂, po, wr⟩, we dene for each operation 𝑜 two happensbefore relations lhb ppo 𝑜 and lhb po-loc

𝑜

. The denition of these relations is similar to the one of lhb 𝑜 (from causal memory (CM)), the dierences being that po is replaced by ppo and po-loc respectively, co is replaced by co ppo and co po-loc respectively, and wr is replaced by wr 𝑒 . Therefore, for 𝜋 ∈ {ppo, po-loc}, lhb , for each 𝜋 ∈ {ppo, po-loc}. In each case, the acyclicity of the latter implies the acyclicity of the former. Therefore, ℎ satisfies wCCM.

The reverse of the above lemma does not hold. Indeed, it can be easily seen that wCCM is weaker than CCM (since wpww is included in pww). The following example shows a history that satises CCM (then wCCM as well) but not TSO.

Example 34 The history in Figure 5.6b satisfies CCM but not TSO (as explained before) then it satisfies wCCM but not TSO (wCCM is strictly weaker than CCM).

Then, Lemma 15 TSO is strictly stronger than wCCM.

We now compare wCCM to CM. wCCM compared to CM: Consider the following examples, Example 35 The history in Figure 5.6b is allowed by wCCM (since it is allowed by TSO, as explained in the beginning of the section), but not by CM.

Example 36 Since CCM is stronger than CM, the history in Figure 5.1b satisfies CM but not wCCM (As we have seen above).

Then, Result 2 wCCM and CM are incomparable.

The relationships between the consistency models that we have seen above are summarized in Figure 5.3. Establishing the precise relation between CC/CCv and TSO is hard because of the fact that CC and CCv are dened using one acyclicity condition while TSO is based on two acyclicity conditions. We believe that CC and CCv are weaker than TSO, but we do not have a formal proof. So, in this case it returns true. Otherwise, if no valid total order is found, it returns false. This enumeration can be done either using standard enumeration or using a SAT solver.

Complexity

It can be seen that similarly to pww, the weak partial store order wpww can be computed in polynomial time (in the size of the input history). In fact, the lhb 𝜋 relations (for each 𝜋 ∈ {ppo, po-loc}) can be computed in at most a quadratic number of iterations (using a least x-point calculation for instance). the cf 𝑒 can be computed using a least x-point calculation as well, and the acyclicity of: ppo ∪ wr 𝑒 ∪ wpww ∪ rw[wpww] and po-loc ∪ wr 𝑒 ∪ wpww ∪ rw[wpww] can be decided in polynomial time. Thus, Theorem 10 Checking whether a history satisfies wCCM is polynomial time (𝒪(𝑛 5)) in the size of the history.

Experimental Evaluation

In order to evaluate the eciency and scalability of the proposed approach, we have implemented the TSO algorithms we introduced above and use them in experiments to check the TSO conformance. We have investigated their running time, compared to a standard encoding of TSO model into boolean satisability, on a set of histories generated by running random clients on realistic cache coherence protocols implemented in the Gem5 simulator [START_REF] Binkert | The Gem5 Simulator[END_REF]. Similarly to SC, we have used the following cache coherence protocols: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base. The parameters of these random clients are the number of cpus (threads) and the total number of read/write operations.

We ensure that all the histories are dierentiated i.e., writes on the same variable are unique. We have compared two variations of our algorithms for checking TSO with a standard encoding of TSO into boolean satisability (named TSO-SAT). The two variations dier in the way in which the partial store order wpww imposed by wCCM is completed to a total store order ww as required by TSO: either using standard enumeration (named TSO-CCM+Enum) or using a SAT solver (named TSO-CCM+SAT).

Similarly to pww in the case of CCM, the computation of the partial store order wpww is done using an encoding of its denition into a DATALOG program. The inductive denition of wlhb 𝑜 supports an easy translation to DATALOG rules, and the same holds for the union of two relations, or their composition.

The obtained Datalog programs were run using Clingo [START_REF] Gebser | Clingo = ASP + control: Preliminary report[END_REF].

The Figure 5.4 shows the general schema of the testing procedure that we used in these experiments to check TSO using wCCM.

We have evaluated our TSO algorithms on the same set of histories used for SC in Figure 4.6. Since these histories satisfy SC, they satisfy TSO as well. Our algorithms scale much better than the SAT encoding. However, dierently from SC, the enumeration of wpww extensions using a SAT solver outperforms the explicit enumeration. Since this dierence was more negligible in the case of SC, it seems that the SAT variation is generally better.

Discussion

We have presented an approach for verifying TSO by generalizing the rst SC verication approach introduced in Section 4.1 (Chapter 4). The approach consists in using a weak consistency model called wCCM that is checkable in polynomial time to approximate TSO. This approach allows computing a set of orders between writes on the same variable that is included in any store order that witnesses for TSO conformance, if it exists. In addition, it allows detecting TSO violations early (i.e., violations that are already wCCM violations) and in only polynomial time. Our Experiment results show that using wCCM allows to improve the TSO checking performance w.r.t. an explicit enumeration using a reduction of the problem to SAT. Now, the question again is how far this approach can be pushed? or can we found a stronger consistency model that can be used to approximate TSO in a more ecient way?

The following section investigates this question.

Approach 2: wTSO-based TSO verification

In this section we introduce a new saturation-based consistency model called weak Total Store Ordering (wTSO) used to approximate TSO. First of all, we prove that wTSO is strictly stronger than wCCM and weaker than TSO. The experimental results show that wTSO scales much better than wCCM when both the number of threads and the number of operations increase. Section 5.2.1 introduces wTSO. Then, Section 5.1.2 describes our wTSO-based algorithm for checking TSO. The complexity of our approach is discussed in the Section 5.2.3. Finally, the experiment results are shown in the Section 5.2.4. To show this, one can consider that the writes write(𝑧, 3) and write(𝑧, 4) are not related by the partial store order 𝑤𝑠𝑡. Roughly, the wTSO saturation rules does not impose any order for this pair of writes (write(𝑧, 3) and write(𝑧, 4)).

Example 38 The Figure 5.6b presents a history which does not satisfy wTSO.

Since read(𝑦, 0) in 𝑡 2 returns the initial value 0, it should precede all writes in the variable 𝑦, so read(𝑦, 0) should precede write(𝑦, 1) in read-write relation. Similarly, since read(𝑥, 0) in 𝑡 3 returns the initial value 0, it should precede write(𝑥, 1) We prove that wTSO is stronger than wCCM. Lemma 16 If a history satisfies wTSO, then it satisfies wCCM.

Proof 13 Let ℎ = ⟨𝑂, po, wr⟩ be a history which satisfies wTSO i.e., ppo ∪ wr 𝑒 ∪ wst ∪ rw[wst] and po-loc ∪ wr 𝑒 ∪ wst ∪ rw[wst] are both acyclic. We show that for 𝜋 ∈ {ppo, po-loc}, (𝜋 ∪ wr 𝑒 ∪ wpww ∪ rw[wpww]) + ⊆ whb 𝜋 (the history satisfies wCCM as well). Let co 𝜋 = (𝜋 ∪ wr 𝑒) + .

Let's prove that lhb 𝜋 𝑜 ⊆ whb 𝜋 for every operation 𝑜 in ℎ. To do, we prove that whb 𝜋 fulfill the two requirements of lhb 𝜋 𝑜 :

If (𝑜 1 , 𝑜 2) ∈ co 𝜋 , (𝑜 1 , 𝑜) ∈ co 𝜋 , and (𝑜 2 , 𝑜) ∈ co 𝜋 then (𝑜 1 , 𝑜 2) ∈ whb 𝜋 (the reason is that co 𝜋 ⊆ whb 𝜋), and If (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ whb 𝜋 and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ (whb 𝜋 ∘wr -1) and then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ wst and (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ whb 𝜋 . Therefore, we get lhb 𝜋 𝑜 ⊆ whb 𝜋 and then wlhb ⊆ whb 𝜋 . Let us now show that wpww = (wlhb WW ∪ cf 𝑒 [lhb po-loc] ∪ cf 𝑒 [lhb ppo]) + ⊆ wst. Then, Lemma 17 wTSO is strictly stronger than wCCM.

We show now that wTSO is weaker than TSO. Let's dene sub relations of wst and whb 𝜋 that are gotten using iterative least x-point computation.

Let wst = ⋃︀ 𝑖 𝑤𝑠𝑡 𝑖 and for 𝜋 ∈ {ppo, po-loc}, whb 𝜋 = ⋃︀ 𝑖 𝑤ℎ𝑏 𝜋 𝑖 where 𝑤𝑠𝑡 𝑖 = (whb 𝜋 i WW ∪ 𝑤𝑠𝑡 ′ 𝑖) + and 𝑤𝑠𝑡 ′ 𝑖 (Figure 5.7) is dened as follows:

(write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ 𝑤𝑠𝑡 ′ 𝑖 i (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ 𝑤ℎ𝑏 𝜋 𝑖 and

(write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr where, for 𝜋 ∈ {ppo, po-loc} and for every 𝑖 ≥ 0, 𝑤ℎ𝑏 𝜋 𝑖 is dened by: 𝑤ℎ𝑏 𝜋 0 = (𝜋 ∪ wr 𝑒) + 𝑤ℎ𝑏 𝜋 𝑖+1 = (𝑤ℎ𝑏 𝜋 𝑖 ∪ 𝑤𝑠𝑡 𝜋 𝑖 ∪ rw[𝑤𝑠𝑡 𝜋 𝑖]) +

We now prove that the partial store order 𝑤𝑠𝑡 𝑖 is a part of any store order ww that witnesses for TSO conformance. Lemma 18 Let ℎ = ⟨𝑂, po, wr⟩ be a history and ww be a total store order such that po-loc ∪ wr 𝑒 ∪ ww ∪ rw and ppo ∪ wr 𝑒 ∪ ww ∪ rw are both acyclic. Then, 𝑤𝑠𝑡 𝑖 ⊆ ww and 𝑤ℎ𝑏 𝜋 𝑖 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + .

Proof 14 Let ℎ = ⟨𝑂, po, wr⟩ be a history that is conform to TSO i.e., there exists a total order ww such that (ppo ∪ wr 𝑒 ∪ ww ∪ rw) and (po-loc ∪ wr 𝑒 ∪ ww ∪ rw) are acyclic. We prove that, for 𝜋 ∈ {ppo, po-loc}, 𝑤ℎ𝑏 𝜋 𝑖 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + and 𝑤𝑠𝑡 𝜋 𝑖 ⊆ ww for all ww such that (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) is acyclic. We show this using the induction on the index 𝑖 of 𝑤ℎ𝑏 𝜋 𝑖 and 𝑤𝑠𝑡 𝑖 . Base-Case. The 𝑤ℎ𝑏 𝜋 0 =(𝜋 ∪ wr 𝑒) + is included in (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + . Considering 𝑤ℎ𝑏 𝜋 0 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + , if (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ 𝑤ℎ𝑏 𝜋 0 and there exists a read(𝑥, 𝑣 ′) such that (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Otherwise, assuming by contradiction that (write(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ ww, then (read(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ rw. On the other hand, considering write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ 𝑤ℎ𝑏 𝜋 0 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + , we get a cycle in (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + which is a contradiction. Therefore, (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww.

Thus, 𝑤𝑠𝑡 ′ 0 is included in ww, then 𝑤𝑠𝑡 0 = (whb 𝜋 0 WW ∪ 𝑤𝑠𝑡 ′ 0) + is also included in ww (the reason is that whb 𝜋 0 WW ⊆ ww). Otherwise, it leads to a contradiction with the fact that 𝑤ℎ𝑏 𝜋 0 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + and (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + is acyclic for 𝜋 ∈ {ppo, po-loc}.

Induction

Step. Suppose that for all ww, 𝑤ℎ𝑏 𝜋 𝑖 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + and 𝑤𝑠𝑡 𝑖 ⊆ ww. We prove that this holds for 𝑖 + 1 as well. By induction hypothesis, 𝑤𝑠𝑡 𝑖 ⊆ ww, so using the definition of rw[𝑤𝑠𝑡 𝑖] we have rw[𝑤𝑠𝑡 𝑖] ⊆ rw. Then, 𝑤ℎ𝑏 𝜋 𝑖+1 = (𝑤ℎ𝑏 𝜋 𝑖 ∪ 𝑤𝑠𝑡 𝑖 ∪ rw[𝑤𝑠𝑡 𝑖]) + ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + . Now, let's prove that 𝑤𝑠𝑡 ′ 𝑖+1 ⊆ ww. If (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ 𝑤ℎ𝑏 𝜋 𝑖 and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Otherwise, using the same argument above (in the base case), (read(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ rw which is a contradiction with the fact that (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + is acyclic. Therefore, if (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ 𝑤𝑠𝑡 ′ 𝑖+1 then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww and then 𝑤𝑠𝑡 ′ 𝑖+1 ⊆ ww. Moreover, whb 𝜋 i+1 WW ⊆ ww since 𝑤ℎ𝑏 𝜋 𝑖+1 ⊆ (𝜋∪wr 𝑒 ∪ww∪rw) + (Otherwise it leads to a contradiction with the fact that (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + is acyclic). Since 𝑤𝑠𝑡 𝑖+1 = (whb 𝜋 i+1 WW ∪ 𝑤𝑠𝑡 ′ 𝑖+1) + , 𝑤𝑠𝑡 ′ 𝑖+1 ⊆ ww and whb 𝜋 i+1 WW ⊆ ww, we get 𝑤𝑠𝑡 𝑖+1 ⊆ ww (since ww is a total store order).

Then, as an immediate corollary of Lemma 18, we get: Lemma 19 If a history satisfies TSO, then it satisfies wTSO. Proof 15 The proof is by contradiction. Assume that a history ℎ = ⟨𝑂, po, wr⟩ satisfies TSO and it does not satisfy wTSO.

The history ℎ is conform to TSO means that there exists a total store order ww such that ppo ∪ wr 𝑒 ∪ ww ∪ rw and po-loc ∪ wr 𝑒 ∪ ww ∪ rw are acyclic. Considering that ℎ does not satisfy wTSO i.e., 𝑤ℎ𝑏 ppo or 𝑤ℎ𝑏 po-loc or both of them are cyclic. Since, for 𝜋 ∈ {ppo, po-loc}, whb 𝜋 = ⋃︀ 𝑖 𝑤ℎ𝑏 𝜋 𝑖 and 𝑤ℎ𝑏 𝜋 𝑖 ⊆ (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + (from Lemma 18), we can deduce that (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + is also cyclic and thus we get a contradiction.

The reverse of the above lemma doesn't hold. For instance, Example 40 Figure 5.6 shows a history which satisfies wTSO (The reason was shown in example 37) but not TSO. Since there is no valid store order for the writes write(𝑧, 3) and write(𝑧, 4), this history does not satisfy TSO. In fact, consider the two possible cases:

If write(𝑧, 3) precedes write(𝑧, 4) in ww, then write(𝑦, 1) precedes write(𝑦, 3) in ppo ∪ wr 𝑒 ∪ ww. Since, read(𝑦, 1) reads its value from write(𝑦, 1), we get a rw between read(𝑦, 1) and write(𝑦, 3). Similarly, write(𝑥, 1) precedes write(𝑥, 3) in ppo ∪ wr 𝑒 ∪ ww and read(𝑥, 1) reads its value from write(𝑥, 1), then, we get a rw between read(𝑥, 1) and write(𝑥, 3). Thus, we get a cycle in ppo ∪ wr 𝑒 ∪ ww ∪ rw.

If write(𝑧, 4) happens before write(𝑧, 3) in ww, then write(𝑦, 2) precedes write(𝑦, 4) in ppo ∪ wr 𝑒 ∪ ww. Since, read(𝑦, 2) reads its value from write(𝑦, 2), we get a rw between read(𝑦, 2) and write(𝑦, 4). Similarly, we get a rw between read(𝑥, 2) and write(𝑥, 4). Thus, we get a cycle in ppo ∪ wr 𝑒 ∪ ww ∪ rw.

Both of these cases lead to a cycle in ppo ∪ wr 𝑒 ∪ ww ∪ rw, so the history is not allowed under TSO model. Then, Lemma 20 TSO is strictly stronger than wTSO.

The Figure 5.8 presents the whole image of the relationships between the consistency models studied in this thesis. In this chapter, we have introduced wCCM which is strictly weaker than CCM, incomparable with CM and strictly weaker than TSO. We have also introduced wTSO that is strictly stronger than wCCM and strictly weaker than TSO.

5.2.2

An Algorithm for checking TSO conformance using wTSO In this section, we dene an algorithm for checking TSO conformance which completes the partial store order wst, computed by the wTSO saturation rules, to a total store order. Following the SC verication approaches and the TSO verication approach that we have presented in Section 5.1, we start by checking that the given history satises wTSO. If not, then we conclude that it is not TSO as well (by Lemma 19). If yes, we exploit wst in order to enhance the TSO verication of the history. Then, we use the SAT solver to nd a total store order extending wst. It starts enumerating the orders between the writes that are not related by the wst order until it founds one that allows establishing TSO satisfaction, so in this case it returns true. Otherwise, it returns false. Hence, Theorem 11 Algorithm 7 returns true iff the input history ℎ satisfies TSO.

5.2.3

Complexity

Since at each step of the computation of whb 𝜋 (𝜋 ∈ {ppo, po-loc}) and wst, we enumerate over three operations (𝒪(𝑛 3)) and at least one pair of operations is 6 return false ; added to one of these two relations and the number of such pairs is polynomially bounded (in the size of the computation), at most 𝑛 2 edges where n is the computation size. Then, the acyclicity of whb 𝜋 can be decided in polynomial time.

Hence, Theorem 12 Checking whether a history ℎ satisfies wTSO is polynomial time (𝒪(𝑛 5)) in the size of the history.

Experimental Evaluation

The Figure 5.9 presents the approach that we propose to check TSO conformance based on wTSO. The reason is that in addition of capturing more violations using wTSO (because wTSO is strictly stronger than wCCM), it allows computing a large subset of the total order witnessing for TSO conformance, if any. The adaptation of DBCOP to the case of TSO is non-trivial. This is left for future work.

We have implemented the wTSO and wCCM checking algorithms and compare them using a set of histories generated using Gem5 [START_REF] Binkert | The Gem5 Simulator[END_REF]. The Figure 5.10 presents the results of this comparison. The gure 5.10a presents the eect of increasing the number of operations from 200 to 800 on runtime for a xed number of processes (6 processes per trace). The gure 5.10b shows the eect of increasing the number of processes from 4 to 16. We have tested 150 histories for each case and computed the average runtime.

As expected, the results shown in Figure 5.10 conrm that wTSO has better performance compared to wCCM, by factors of 5 times in the case of 16 threads (Figure 5.10b). Notice that all the histories that we have tested were valid w.r.t. wTSO and wCCM.

Conclusion

We have introduced two approaches for tackling the problem of checking TSO conformance. The idea is to avoid falling in a systematic way in the worst case i.e., an explicit enumeration of the exponential number of possible total orders between writes. These approaches consists in dening weaker consistency models that are as strong as possible but still polynomial time checkable. These models allow capturing a large subset of the partial order on writes which can be computed using a least x point calculation (i.e., in polynomial time), and that is a subset of any total order witnessing TSO conformance.

The second part of the thesis focused on the verication of strong consistency models e.g., Sequential consistency (SC) and Total Store Ordering models (TSO is a relaxation of SC).

First of all, we built on the causal consistency verication approach to dene a gradual approach for checking SC. In fact, this approach is based on a strong variant of causal consistency (stronger than weak causal consistency, causal convergence, and causal memory) called convergent causal memory (CCM) which allows eciently approximating SC model. Afterwards, we extended this approach to dene a more simpler and natural approximation for SC called weak sequential consistency (wSC). The experiment results, obtained using realistic cache coherence protocols, showed that both approaches perform good results compared to an encoding of SC into boolean satisability. Furthermore, the wSC-based approach outperforms the CCM-based approach. This is due to the fact that wSC is stronger than CCM and to the fact that CCM uses more complicated saturation rules compared to the simpler ones used in wSC. A combination of wSC with an existent approach called DBCOP led to the best results.

Second, we addressed the problem of verifying the TSO model which is weaker than SC. In fact, these SC verication approaches were generalized to cover the TSO case. Since SC and TSO use dierent relations, the generalization of these approaches was not trivial. Our focus in this stage was dening suitable approximations for TSO. Indeed, we dened two TSO verication approaches, one based on a criterion called wCCM and another based on wTSO criterion. Similarly to the SC case, the experiments performed using real cache coherence protocols proved that the two approaches are more ecient and more scalable compared to the standard SAT encoding of TSO. In addition, the wTSO has better performances compared to wCCM.

Future Work

In terms of future work, several extensions of the work we have introduced in this thesis are possible. Next, we summarized some possible directions.

1. In chapter 3, we proposed a reduction of the causal consistency verication problem to a problem of solving Datalog queries. It will be interesting to see how a similar approach can be used to solve the verication problem for other polynomially checkable consistency models such as consistency models for transactions i.e., Read Committed, Read Atomic, and Causal consistency for transactions.

2. Since the approach we proposed to check strong consistency models was applicable for two consistency models SC and TSO (Chapter 4 and Chapter 5), an interesting problem for future work is the application of this approach to other correctness criteria that are hard to check (the problem of verication is NP-hard). The consistency models for transactions are good candidates to explore i.e., Prex consistency, Snapshot isolation, and Serializability. Actually, the latter is the analogous of Sequential consistency in transactional programs context. Therefore, it can be a starting point for an eventual adaptation.

3. Another direction could be the adaptation of DBCOP to the case of TSO.

The idea is to propose a similar approach to BTTC (dened in [START_REF] Parosh | Optimal stateless model checking for reads-from equivalence under sequential consistency[END_REF] and [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF]), which is ecient in the case of a xed number of threads. In addition, the combination of a such approach with wTSO may result a more ecient approach for checking TSO.

4. In Section 4.2.2 of the chapter 4, we introduced the notion of SC kernel (SC-Ker) and we proved some interesting results about it. One of these results is that neither wSC nor an extended saturation procedure can calculate the SC-Ker. So, a question for future work would be whether there is a way for computing the SC-kernel of a given SC execution in polynomial time.

Furthermore, it will be interesting to explore the TSO kernel as well.

-115-

Figure 2 . 1

 21 Figure 2.1 Dierentiated history. Operations of the same thread are aligned vertically.

Figure 2 . 2

 22 Figure 2.2 Strong consistent messages in a messaging application.

Figure 2 . 3

 23 Figure 2.3 Eventual consistent messages in a messaging application.

Figure 2

 2 Figure 2.4 SC architecture.

Figure 2 . 5

 25 Figure 2.5 Sequential consistency examples.

Figure 2

 2 Figure 2.6 TSO simplied architecture.

Figure 2 . 7

 27 Figure 2.7 Total Store Ordering examples.

Figure 2 . 9

 29 Figure 2.9 Causally-related messages in a messaging application.

Figure 2 .

 2 Figure 2.10 Relationships between consistency models CC, CCv, CM, TSO and SC. Directed arrows denote the weaker-than relation while dashed lines connect incomparable models.

 Figure 3.1 Denitions of relations used to dene causal consistency models.

 Figure 3.1a by co. In general, given a binary relation 𝑅 on operations, the read-write relation rw[𝑅] is dened using the saturation rule in Figure 3.1a as follows: Definition 9 The read-write relation rw[𝑅] induced by a relation 𝑅 is defined by rw[𝑅] = wr -1 ∘ 𝑅 WW .

 The left hand side (LHS) is called the rule head and represents the outcome of the query, while the right hand side (RHS) is called the rule body.Example 22 For instance, this Datalog program computes the transitivity closure of a given graph (edges are the inputs).

 addition to the CyclicCO bad-pattern we have seen above, we show how the other CC bad-patterns are encoded. Consider the following example which presents the Datalog program corresponding to an execution history.Example 23 This example represents the history 2.8b Datalog program for checking CC. Given a history, first we extract all the facts (the relations between operations that we defined in Section 3.3.1). Second, we define the inference rules (co definition and its transitivity in this example). Third, we encode the bad-patterns of the consistency model that we want to check (The CC consistency model in this case). The CC bad-patterns encoding is shown in the last part of the following Datalog program (After CC bad patterns comment). Mention that the CC bad patterns and their encoding are already explained above.

 Input: A history ℎ = ⟨𝑂, po, wr⟩ and a causal consistency model M Output: true iff ℎ satisfies M 1 REDUC-to-DATALOG(h, M) 2 if DATALOG-SOLVER(REDUC-to-DATALOG(h, M)) then 3

 CausalC-Checker) by applying it to two real-life distributed transactional databases, CockroachDB [3] and Galera [4].Histories generation: The Figure3.2 presents the general architecture of the testing procedure we used in our experiments.

Figure 3 . 2

 32 Figure 3.2 The General architecture of the histories checking procedure

 (a) Checking Causal Consistency while varying the number of operations. (b) Checking Causal Consistency while varying the number of processes. (c) Checking CC, CCv and CM_2 while varying the number of operations. (d) Checking CC, CCv and CM_2 while varying the number of processes. (e) Checking CC and CCv while varying the number of operations. (f) Checking CC and CCv while varying the number of processes. (g) Comparing CM_1 and CM_2 runtimes while varying the number of operations. (h) Comparing CM_1 and CM_2 runtimes while varying the number of processes.

Figure 3 . 3

 33 Figure 3.3 Checking Causal Consistency for CockreachDB histories.

 (a) Checking Causal Consistency while varying the number of operations. (b) Checking CC, CCv and CM_2 while varying the number of operations. (c) Checking CC and CCv while varying the number of operations. (d) Comparing CM_1 and CM_2 runtimes while varying the number of operations. (e) Comparing CM_2 and CC violations runtimes while varying the number of operations.

Figure 3 . 4

 34 Figure 3.4 Checking Causal Consistency for Galera histories.

 induced by this set of constraints (a weaker version of conict relation was used to dene causal convergence). The read-write relation rw[𝑝𝑤𝑤] induced by pww (Figure 4.1a) is dened by rw[𝑝𝑤𝑤] = wr -1 ∘ 𝑝𝑤𝑤. The conict order cf[lhb] (Figure 4.1b) is dened by cf[lhb] = lhb WR ∘ wr -1 .

 , 1) read(𝑦, 0) write(𝑦, 1) read(𝑥, 1) 𝑡 1 : write(𝑥, 2) read(𝑦, 0) write(𝑦, 2) read(𝑥, 2) (a) CCM but not SC 𝑡 0 : write(𝑥, 1) write(𝑥, 2) read(𝑦, 1) 𝑡 1 : write(𝑦, 1) write(𝑦, 2) read(𝑦, 2) read(𝑥, 1) (b) CM and CCv but not CCM

Figure 4 . 2

 42 Figure 4.2 Histories with two threads used to compare CCM with CC, CCv, CM and SC.

 is strictly stronger than CCM.The Figure4.3 summarizes the relationships between the consistency models presented above.

Figure 4 . 3

 43 Figure 4.3 Relationships between consistency models: CC, CCv, CM, CCM and SC.

 MEOSI protocol: is an implementation of the protocol used in AMD's Hammer chip called AMD's Hammer protocol. It assumes two-level private cache hierarchy L1 and L2 caches, and these caches are private to each node.

Figure 4 . 4

 44 Figure 4.4 The simplied architecture of a cache memory system

 (a) Checking SC while varying the number of operations. (b) Checking SC while varying the number of cpus.

Figure 4 .

 4 Figure 4.6 Checking SC for valid histories.

 Figure 4.7 reports on the evolution of the average running time. Since these histories happen to all be CCM violations, SC-CCM+Enum and SC-CCM+SAT have the same running time. As an evaluation of our optimization, we have found that 50% of the histories invalidate weaker variations of causal consistency, CC or CCv.

Figure 4 . 7

 47 Figure 4.7 Checking SC for invalid histories while increasing the number of cpus.

 Figure 4.8 Comparison of CCM, wSC and SC consistency models.

Figure 4 . 9

 49 Figure 4.9 Partial store order 𝑠𝑡 ′ 𝑖 used to dene wSC consistency model.

Figure 4 .

 4 Figure 4.10 Relationships between consistency models: CC, CCv, CM, CCM, wSC and SC

 Figure 4.11.

Figure 4 .

 4 Figure 4.11 SC-Kernel counter example

Figure 4 .

 4 Figure 4.12 SC-Kernel counter examples with cycles involving an arbitrary number of writes

Figure 4 .

 4 Figure 4.13 SC-Kernel counter requiring the enumeration of the possible order between two pairs of writes

Figure 4 .

 4 Figure 4.15 reports the running time of the 4 algorithms wSC+ENUM, CCM+ENUM, DPCOP, and wSC+DBCOP while increasing the number of operations from 200 to 800, in increments of 100 with a xed number of 6 threads.

Figure 4 .

 4 Figure 4.15 Checking SC for valid histories while varying the number of operations.

Figure 4 .

 4 Figure 4.16 reports the running time while increasing the number of threads from 4 to 16, in increments of 4. We have considered 50 operations per thread. Notice that increasing the number of threads increases the global number of operations too.Figure 4.16(a) shows that the performances of DBCOP degrade

 Figure 4.16(a) shows that the performances of DBCOP degrade quickly beyond 8 threads, while the other algorithms exploiting saturation are more scalable, wSC+ENUM being better than CCM+ENUM, wSC+DBCOP achieving the best performances.

 Figure 4.16(b) is a zoom of Figure 4.16(a) for a smaller time scale in order to examine more closely the separation between CCM+ENUM, wSC+ENUM, and wSC+DBCOP. It can be seen that the combination of wSC saturation with DBCOP leads to an ecient procedure that takes advantage from the DBCOP strategy for small number of threads, and exploits wSC saturation to stay scalable when both the number of threads and operations increase.SC conformance checking: Valid and invalid historiesWe now consider a set of histories containing 50% of violations. The violations are generated by randomly changing the write-read relation: for some number of reads chosen randomly, we modify their return value by choosing the one written by a write operation taken randomly in the execution within some (a) Comparing all approaches. (b) Comparison of wSC+ENUM, CCM+ENUM and wSC+DBCOP.

Figure 4 .

 4 Figure 4.16 Checking SC for valid histories while varying the number of threads.

Figure 4 .

 4 Figure 4.17 Checking SC for a set of 50% of valid and 50% of invalid histories.

Figure 4 .

 4 Figure 4.18 Checking SC for invalid histories.

Figure 5 . 1

 51 Figure 5.1 Comparison of CM, wCCM, CCM and TSO consistency models.

Figure 5 . 3

 53 Figure 5.3 Relationships between consistency models: CC, CCv, CM, CCM, wSC, wCCM, TSO and SC.

Figure 5 . 4

 54 Figure 5.4 The general schema of the TSO checking procedure using wCCM

 (a) Checking TSO while varying the number of operations. (b) Checking TSO while varying the number of cpus.

Figure 5 .

 5 Figure 5.5 Checking TSO for valid histories.

 𝑡 3 : read(𝑦, 1) read(𝑥, 0) (b) wCCM but not wTSO nor TSO.

Figure 5 . 6

 56 Figure 5.6 Comparison of wTSO and TSO consistency models.

Figure 5 . 7

 57 Figure 5.7 Partial store order 𝑤𝑠𝑡 ′ 𝑖 used to dene wTSO consistency model

Figure 5 . 8

 58 Figure 5.8 Relationships between all consistency models considered in this thesis.

Algorithm 7 :

 7 Checking TSO conformance: wTSO+ENUM algorithm. Input: A history ℎ = ⟨𝑂, po, wr⟩ Output: true iff ℎ satisfies TSO 1 if ppo ∪ wr 𝑒 ∪ wst ∪ rw[wst] or po-loc ∪ wr 𝑒 ∪ wst ∪ rw[wst] is cyclic then 2 return false; 3 foreach ww ⊃ wst do 4 if ppo ∪ wr 𝑒 ∪ ww ∪ rw[ww] and po-loc ∪ wr 𝑒 ∪ ww ∪ rw[ww] are acyclic then 5 return true;

Figure 5 . 9

 59 Figure 5.9 The general schema of the TSO checking procedure using wTSO

 (a) Checking wTSO and wCCM while varying the number of operations. (b) Checking wTSO and wCCM while varying the number of cpus.

Figure 5 .

 5 Figure 5.10 Checking wTSO and wCCM for valid histories.

 4.3 Relationships between consistency models: CC, CCv, CM, CCM and SC. Checking SC for invalid histories while increasing the number of cpus. .

				69
	4.4	The simplied architecture of a cache memory system	71
	4.5	The general schema of the SC checking procedure using CCM . .	72
	4.6	Checking SC for valid histories.	73
	4.7		
			74 LIST OF TABLES
	4.8	Comparison of CCM, wSC and SC consistency models.	78
	4.9	Partial store order 𝑠𝑡 ′ 𝑖 used to dene wSC consistency model. . . .	79
	4.10 Relationships between consistency models: CC, CCv, CM, CCM,
			.	91
	5.1	Comparison of CM, wCCM, CCM and TSO consistency models. .	96
	5.2	Denitions of relations used to dene wCCM consistency model. .	97
	5.3	Relationships between consistency models: CC, CCv, CM, CCM,
		wSC, wCCM, TSO and SC. .	99
	5.4	The general schema of the TSO checking procedure using wCCM	101
	5.5	Checking TSO for valid histories. 102
	5.6	Comparison of wTSO and TSO consistency models. 104
	5.7	Partial store order 𝑤𝑠𝑡 ′ 𝑖 used to dene wTSO consistency model . 105
	5.8	Relationships between all consistency models considered in this
		thesis. 108
	5.9	The general schema of the TSO checking procedure using wTSO . 109
	5.10 Checking wTSO and wCCM for valid histories. 110
			-xvi-

wSC and SC . 82 4.11 SC-Kernel counter example . 82 4.12 SC-Kernel counter examples with cycles involving an arbitrary number of writes . 84 4.13 SC-Kernel counter requiring the enumeration of the possible order between two pairs of writes . 85 4.14 The general schema of the SC checking procedure using wSC . . . 88 4.15 Checking SC for valid histories while varying the number of operations. 89 4.16 Checking SC for valid histories while varying the number of threads. 90 4.17 Checking SC for a set of 50% of valid and 50% of invalid histories. 90 4.18 Checking SC for invalid histories. 2.1 Axioms used in the causal consistency denitions. 21 3.1 Bad-patterns for each causal consistency model 30 3.2 Bad-patterns denitions . 30 3.3 Logical notations and their Datalog equivalence 39

 𝜌.write(𝑥, 𝑣) ∈ 𝑆 𝑅𝑊 , 3. if 𝜌 ∈ 𝑆 𝑅𝑊 includes no write on variable 𝑥, then 𝜌.read(𝑥, 0) ∈ 𝑆 𝑅𝑊 , 4. if 𝜌 ∈ 𝑆 𝑅𝑊 and write(𝑥, 𝑣) is the last write on variable 𝑥 in 𝜌, then 𝜌.read(𝑥, 𝑣) ∈ 𝑆 𝑅𝑊 .

 . Formally, Definition 4 A history ℎ satisfies CC w.r.t a specification 𝑆 if there exists a strict partial order, called causal order co ⊆ 𝑂 × 𝑂, such that, for all operations

	AxCausal	po ⊆ co
	AxArb	co ⊆ arb
	AxCausalValue CausalHist(𝑜){𝑜} ⪯ 𝜌 𝑜
	AxCausalSeq	CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌 𝑜
	AxCausalArb	CausalArb(𝑜){𝑜} ⪯ 𝜌 𝑜
	where:	

 Table 2.1 Axioms used in the causal consistency denitions.𝑜 ∈ 𝑂 in ℎ, there is a specification sequence 𝜌 𝑜 ∈ 𝑆 such that axioms AxCausal and AxCausalValue hold (see Table2.1). AxCausal states that the causal order should at least include the program order. Axiom AxCausalValue states that, for each operation 𝑜 ∈ 𝑂, a valid sequence of the specication 𝑆 can be obtained by sequentializing the causal history of 𝑜 i.e., all operations that precede 𝑜 in the causal order. In addition, this sequentialization must also preserve the constraints provided by the causal order.

	Formally, the causal past of 𝑜, CausalPast(𝑜), is the set of operations that precede
	𝑜 in the causal order. The causal history of 𝑜, CausalHist(𝑜), is the restriction of
	the causal order to the operations in its causal past CausalPast(𝑜). The notation
	CausalHist(𝑜){𝑜} means that only the return value of operation 𝑜 is kept. The
	axiom AxCausalValue uses CausalHist(𝑜){𝑜} because a process is not required to
	be consistent with the values it has returned in the past or the values returned
	by the other processes.
	The notations CausalHist(𝑜){𝑜} ⪯ 𝜌 𝑜 means that CausalHist(𝑜){𝑜} can be se-
	quentialized to a sequence 𝜌 𝑜 in the specication. We formally dene these last
	two notations in the next sections.
	For a better understanding of this model, consider the following examples.

Axiom

 Definition 6 A history ℎ is CM w.r.t. a specification 𝑆 if there exists a strict partial order co ⊆ 𝑂 × 𝑂 such that, for each operation 𝑜 ∈ 𝑂 in ℎ, there is a specification sequence 𝜌 𝑜 ∈ 𝑆 such that axioms AxCausal and AxCausalSeq hold.Notice that CC is actually strictly weaker that CCv and CM. For instance,Example 12 The history in Figure2.8d is CC but not CCv nor CM. It is CC, we can consider that write(𝑥, 1) is not causally-related to write(𝑥, 2). On the other hand, for reading the value 1 the thread 𝑡 2 decides to order write(𝑥, 2) before write(𝑥, 1), then it changes this order to read the value 2. This is not allowed under CM nor under CCv.

	Example 11 The history in Figure 2.8a is CCv but not CM. It is not allowed by
	CM because reading the initial value 0 from 𝑧 implies that write(𝑥, 1) is observed
	after write(𝑥, 2) while reading 2 from 𝑥 implies that write(𝑥, 2) is observed after
	write(𝑥, 1) (write(𝑥, 1) must have been observed because the same thread reads 1
	from 𝑦 and the writes on 𝑥 and 𝑦 are causally related). However, under CCv, a
	thread simply reads the most recent value on each variable and the order in which
	these values are ordered using timestamps for instance is independent of the order
	in which variables are read in a thread, e.g., reading 0 from 𝑧 doesn't imply that the
	timestamp of write(𝑥, 2) is smaller than the timestamp of write(𝑥, 1). This history
	is admitted by CCv assuming that the order in which write(𝑥, 1) and write(𝑥, 2)
	are observed is write(𝑥, 1) before write(𝑥, 2).
	Compared to CC, CM requires that each process should be consistent with
	the return values it has returned in the past. However, a process is not required
	to be consistent with respect to the return values provided by other processes.
	Therefore, AxCausalSeq states:
	CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌 𝑜
	The relationship between TSO and CM was not studied yet before. We actu-
	where CausalHist(𝑜){POPast(𝑜)} is the causal history where we only keep the re-ally show that this two models are incomparable. To do, consider the following
	turn values of the operations that precede 𝑜 in the program order (in POPast(𝑜)). examples.
	As we have seen above, concurrent values under CCv and CM are required to
	be observed in the same order by a thread during its entire execution. However, Example 13 The history in Figure 2.8a is admitted by TSO, but not by CM (the
	dierently from CCv, this order can dier from one thread to another under CM. reasons have been already explained in example 4 and example 11).
	Although this intuitive description seems to imply that CM is weaker than CCv,
	the two models are actually incomparable. The following examples illustrate the Example 14 The history in Figure 2.8b is allowed by CM (see example 10), but
	dierence between these models. not by TSO. Since 𝑡 1 is written in the variable 𝑥, it should read the value of 𝑥
	from its own store buffer and read the value 1 not 2. Similarly, 𝑡 2 is written in
	the variable 𝑥, so it should read the value of 𝑥 from its own store buffer and read
	2 instead of 1.
	Then,
	Result 1 CM and TSO are incomparable.

Table 3 .

 3 1 Bad-patterns for each causal consistency model CyclicCO the causality relation co is cyclic. WriteCOInitRead a read(𝑥, 0) is causally preceded by a write(𝑥, 𝑣) (i.e., (write(𝑥, 𝑣), read(𝑥, 0)) ∈ co)

	CyclicCO, WriteCOInitRead,

Table 3

 3 Lemma 2 ([START_REF] Bouajjani | On verifying causal consistency[END_REF]) A history is CCv if and only if it is CC and does not contain the bad-pattern CyclicCF.Example 16 The History in Figure2.8b is not CCv as it contains the bad-pattern

	Then,

.2 Bad-patterns denitions ThinAirRead and WriteCORead). In addition, CCv excludes another bad pattern, called CyclicCF, dened in terms of a conict relation cf. Intuitively, two writes 𝑤 1 and 𝑤 2 on the same variable are in conict, if 𝑤 1 is causally-related to a read taking its value from 𝑤 2 . Formally, cf is dened as (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ cf i (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ co and (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, for some read(𝑥, 𝑣 ′)

 12 A history ⟨𝑂, po, wr⟩ satisfies CM_1 if it satisfies CC and for each operation 𝑜 in the history, the relation lhb 𝑜 is acyclic. Definition 13 A history ⟨𝑂, po, wr⟩ satisfies CM_2 if it satisfies CC and for each po-maximal operation 𝑜 in the history, the relation lhb 𝑜 is acyclic. To prove the equivalence between denition 12 and 13, we have to prove some intermediate results. First, we dene lhb 𝑖 𝑜 to denote a controlled saturated version of lhb 𝑜 . Definition 14 For every operation 𝑜 in ℎ, 𝑜 be the relation such that if two operations are causally related and each one is causally related to 𝑜, then they are related by lhb 0 𝑜 i.e., (𝑜 1 , 𝑜 2) ∈ lhb 𝑜 if and only if (𝑜 1 , 𝑜 2) ∈ co, (𝑜 1 , 𝑜) ∈ co and (𝑜 2 , 𝑜) ∈ co 𝑣 ′)) ∈ wr and (read(𝑥, 𝑣 ′), 𝑜) ∈ po * for some read(𝑥, 𝑣 ′). 1 For all 𝑜, lhb 𝑜 = (∪ 𝑖≥0 lhb 𝑖 𝑜) + Proof 4 By construction, (∪ 𝑖≥0 lhb 𝑖 𝑜) + satisfies definition 7. Because lhb 𝑜 is the smallest one, lhb 𝑜 ⊆ (∪ 𝑖≥0 lhb 𝑖 𝑜) + . Also, by construction, all the relations in (∪ 𝑖≥0 lhb 𝑖 𝑜) + must be present in lhb 𝑜 because they are constructed statically from co and wr. So lhb 𝑜 ⊇ (∪ ≥ lhb 𝑖 𝑜) + . Now, we prove that lhb 𝑜 is included in lhb 𝑜 ′ if 𝑜 is executed before 𝑜 ′ in a same thread ((𝑜, 𝑜 ′) ∈ 𝑝𝑜). So, checking lhb 𝑜 acyclicity for only po-maximal operations is enough to decide for all operations. To prove this, we use the lhb 𝑖 𝑜 denition. Lemma 4 If (𝑜, 𝑜 ′) ∈ po then lhb 𝑖 𝑜 ⊆ lhb 𝑖 𝑜 ′ for 𝑖 ≥ 0 Proof 5 The proof is by induction on the index 𝑖 of lhb 𝑖 𝑜 . Base case. 𝑖 = 0. Since (𝑜, 𝑜 ′) ∈ po ⊆ co, (𝑜 1 , 𝑜) ∈ co and (𝑜 2 , 𝑜) ∈ co * implies, (𝑜 1 , 𝑜 ′) ∈ co and (𝑜 2 , 𝑜 ′) ∈ co * . Thus, we get lhb 0 𝑜 ⊆ lhb 0 𝑜 ′ . Inductive step. If there exists two writes write(𝑥, 𝑣), write(𝑥, 𝑣 ′) and a read read(𝑥, 𝑣 ′) with (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ (∪ 𝑗<𝑖 lhb 𝑗 𝑜) + and (read(𝑥, 𝑣 ′), 𝑜) ∈ po * to force (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ lhb 𝑖 𝑜 relation, then it is also true that (write(𝑥, 𝑣), read(𝑥, 𝑣 ′) ∈ (∪ 𝑗<𝑖 lhb 𝑗 𝑜 ′) + (induction hypothesis) and (read(𝑥, 𝑣 ′), 𝑜 ′) ∈ po * . Then, (write(𝑥, 𝑣), write(𝑥, 𝑣 ′

	Then, CM_2 is dened as follows,
	1. let lhb 0
	Theorem

* (where co * is the reflexive closure of co), 2. let lhb 𝑖 𝑜 for 𝑖 > 0 be the transitive relation if two writes 𝑤 1 and 𝑤 2 are related by lhb 𝑖 𝑜 if 𝑤 1 is (∪ 𝑗<𝑖 lhb 𝑗 𝑜) + (transitive closure of all the previous lhb 𝑗 𝑜) related to a read taking its value from 𝑤 2 and that read is done by the same thread executing 𝑜 and before 𝑜, i.e., (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ lhb 𝑖 𝑜 if and only if (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ (∪ 𝑗<𝑖 lhb 𝑗 𝑜) + , (write(𝑥, 𝑣 ′), read(𝑥,

 This approach is based on the x-point theory. A xed point of a function 𝑓 () is an element 𝑒 from its domain which is mapped by the function to itself i.e., 𝑓 (𝑒) = 𝑒. An operator called immediate consequence operator is dened from the Datalog program rules. In fact, this operator is applied repeatedly on existing facts in order to get new ones until getting a xed point. Doing so gives a constructive denition of Datalog programs semantics.

 to be acyclic can be computed in polynomial time from the relations po and wr which are xed in a given history. In particular, the union of these relations can be computed by a DATALOG program.

	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣)	𝑝𝑤𝑤	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣 ′)	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣)	𝑐𝑓 [𝑙ℎ𝑏]	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣 ′)
			𝑤 𝑟	𝑟	𝑟𝑤[𝑝𝑤𝑤]		𝑙ℎ 𝑏	𝑟	𝑤𝑟
		(a) Read-write rw[pww]	(b) Conflict order cf[lhb]
		Figure 4.1 Denitions of relations used to dene CCM consistency
						model.
	of relations required Section 4.1.1 introduces CCM, while Section 4.1.2 presents our algorithm
	for checking SC. The complexity of our approach is discussed in Section 4.1.3.
	Finally, Section 4.1.4 presents the experimental results.
	4.1.1	Convergent Causal Memory

We dene a new variation of causal consistency which builds on causal memory, but similar to causal convergence it enforces that all threads agree on an order in which to observe values written by concurrent (causally-unrelated) writes, and also, it uses a larger read-write relation. Formally, Definition 15 A history ⟨𝑂, po, wr⟩ satisfies convergent causal memory (CCM) if the relation po ∪ wr ∪ pww ∪ rw[pww] is acyclic.

 As a rst result, we show that all the variations of causal consistency presented in the previous chapter, i.e., CC, CCv and CM, are strictly weaker than CCM.Lemma 5 If a history satisfies CCM, then it satisfies CC, CCv and CM.Proof 7 Let ℎ = ⟨𝑂, po, wr⟩ be a history satisfying CCM. By the definition of lhb, we have co WW ⊆ lhb WW . In fact, any two writes 𝑜 1 and 𝑜 2 related by co are also related by lhb 𝑜 2 , which by the definition of lhb, implies that they are related by lhb WW . Then, by the definition of pww, we have lhb WW ⊆ pww. This implies that rw[co] ⊆ rw[pww] (by definition, rw[co] = rw[co WW]). Therefore, the acyclicity of po∪wr ∪pww ∪rw[pww] implies that its subset po∪wr ∪rw[co] is also acyclic. The As we have seen, in CCv and CM concurrent values should be observed in the same order and this order can differ from one thread to another in CM. A possible order for concurrent writes in the variable 𝑥 is to consider that write(𝑥, 1) precedes write(𝑥, 2) (this is already implied by the po order). Similarly, for concurrent values in the variable 𝑦, write(𝑦, 1) precedes write(𝑦, 2). Therefore, the threads 𝑡 0 and 𝑡 1 can consider this order and thus the history satisfies CCv and CM.Next, we show that CCM is weaker than SC, which will be important in our algorithm for checking whether a history satises SC.Lemma 7 If a history satisfies SC, then it satisfies CCM.Proof 8 Let ℎ = ⟨𝑂, po, wr⟩ be a history satisfying SC. Then, there exists a store order ww such that po ∪ wr ∪ ww ∪ rw[ww] is acyclic. Let's prove that it satisfies CCM as well. We show that the two relations lhb WW and cf[lhb], whose union constitutes pww, are both included in ww. We first prove that lhb ⊆ (po ∪ wr ∪ ww ∪ rw[ww]) + by structural induction on the definition of lhb 𝑜 ,

	Then,
	Lemma 6 CCM is strictly stronger than CC, CCv and CM.
	-67-

relation po ∪ wr ∪ rw

[co]

is acyclic implies that the relation (po ∪ wr) + ; (rw[co]) ? is irreflexive.The reason is that, while po ∪ wr ∪ rw[co] excludes cycles with one or more rw[co] relations, (po ∪ wr) + ; (rw[co]) ? excludes cycles with at most one rw[co] relation. Thus, ℎ satisfies CC. In addition, it implies that po ∪ wr ∪ cf

[lhb]

is acyclic (the last term of the union is included in pww), which by co ⊆ lhb, implies that po ∪ wr ∪ cf[co] is acyclic, and thus, ℎ satisfies CCv. The fact that ℎ satisfies CM follows from the fact that ℎ satisfies CC (since po ∪ wr is acyclic) and lhb is acyclic (lhb WW is included in pww and the rest of the dependencies in lhb are included in po ∪ wr).

The reverse of the above lemma doesn't hold. To show this, consider the following example. Example 26 Figure 4.2b shows a history which satisfies CM and CCv, but it is not CCM. The fact that this history satisfies CM and CCv follows easily from definitions. 1. If (𝑜 1 , 𝑜 2) ∈ co = (po∪wr) + , then clearly, (𝑜 1 , 𝑜 2) ∈ (po∪wr∪ww∪rw[ww]) + , 2. If (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ (po∪wr ∪ww ∪rw[ww]) + and there is read(𝑥, 𝑣 ′) such that (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr, then (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ ww. Otherwise, assuming by contradiction that (write(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ ww, we get that (read(𝑥, 𝑣 ′), write(𝑥, 𝑣)) ∈ rw[ww] (by the definition of rw[ww] using the hypothesis (write(𝑥, 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr). Note that the latter implies that po ∪ wr ∪ ww ∪ rw[ww] is cyclic. Since lhb ⊆ (po ∪ wr ∪ ww ∪ rw[ww]) + , we get that lhb WW ⊆ ww. Also, since cf[(po∪wr ∪ww ∪rw[ww]) +] ⊆ (po∪wr ∪ww ∪rw[ww]) + (using a similar argument as in point (2) above), we get that cf[lhb] ⊆ (po ∪ wr ∪ ww ∪ rw[ww]) + .

 Input: A history ℎ = ⟨𝑂, po, wr⟩ Output: true iff ℎ satisfies SC 1 if po ∪ wr ∪ pww ∪ rw[pww] is cyclic then Algorithm 3 returns true iff the input history ℎ satisfies SC.

	4.1.3	
	2	return false;
	3 foreach ww ⊃ pww do
	4	if po ∪ wr ∪ ww ∪ rw[ww] is acyclic then
	5	return true;
	6 return false ;
	Theorem 4 -69-

 Thus, we have considered a random sample of 200 histories (with 200

 .1b is allowed by CM, but not by TSO. The history in Figure5.1a is admitted by TSO, but not by CM. Then, CM and CCM cannot be used to approximate TSO.Next, we dene the weakening of CCM, called weak convergent causal memory (wCCM), which is also weaker than TSO. The wCCM model is actually based on causality relations induced by the relaxed program orders ppo and po-loc instead of po, and the external write-read relation instead of the full write-read relation.

	𝑡 1 :	𝑡 2 :	𝑡 0 :	𝑡 1 :
	write(𝑧, 1)	write(𝑥, 2)	write(𝑥, 1)	write(𝑥, 2)
	write(𝑥, 1)	read(𝑧, 0)	read(𝑥, 2)	read(𝑥, 1)
	write(𝑦, 1)	read(𝑦, 1)		
		read(𝑥, 2)	(b) CM but not CCv nor wCCM nor
	(a) TSO but not CM nor CCM 𝑡 0 : 𝑡 1 :	TSO 𝑡 2 :	𝑡 3 :
	write(𝑥, 1)	write(𝑦, 1)	read(𝑥, 1)	read(𝑦, 1)
			read(𝑦, 0)	read(𝑥, 0)
	Section 5.2.1 introduces wCCM while Section 5.1.2 is dedicated to our algo-
	rithm for verifying TSO based on wCCM. Section 5.1.4 presents the experimental
	results.			

)

 𝑣 ′), read(𝑥, 𝑣 ′)) ∈ wr and (read(𝑥, 𝑣 ′), 𝑜) ∈ 𝜋 * , for some read(𝑥, 𝑣 ′) + , for 𝜋 ∈ {ppo, po-loc}, and let wlhb = (lhb ppo + . Then, the weak partial store order is dened as follows:wpww = (wlhb WW ∪ cf 𝑒 [lhb po-loc] ∪ cf 𝑒 [lhb ppo]) +Example 32 The history in Figure5.1c is allowed by wCCM. The reason is that the two writes (write(𝑥, 1) and write(𝑦, 1)) are not causally related and they are written in different variables 𝑥 and 𝑦.Example 33 The history in Figure5.1b does not satisfy wCCM. Since write(𝑥, 1) precedes read(𝑥, 2) in po-loc and read(𝑥, 2) in 𝑡 0 takes its value from write(𝑥, 2) in the 𝑡 1 (i.e., (write(𝑥, 2),write(𝑥, 2)) ∈ wr 𝑒), write(𝑥, 1) should precede write(𝑥, 2) in cf 𝑒 relation. Similarly, since write(𝑥, 2) precedes read(𝑥, 1) in po-loc and read(𝑥, 1) in 𝑡 1 takes its value from write(𝑥, 1) in the 𝑡 0 (i.e., (write(𝑥, 1),write(𝑥, 1)) ∈ wr 𝑒), write(𝑥, 2) should precede write(𝑥, 1) in cf 𝑒 relation. Then, we get a cycle in cf 𝑒 and the history is not wCCM.We prove that TSO is stronger than wCCM.Lemma 14 If a history satisfies TSO, then it satisfies wCCM.Proof 12 Let ℎ = ⟨𝑂, po, wr⟩ be a history satisfying TSO. Then, there exists a store order ww such that po-loc ∪ wr 𝑒 ∪ ww ∪ rw and ppo ∪ wr 𝑒 ∪ ww ∪ rw are both acyclic. The fact that lhb po-loc ⊆ (po-loc ∪ wr 𝑒 ∪ ww ∪ rw) + and lhb ppo ⊆ (ppo ∪ wr 𝑒 ∪ ww ∪ rw) + can be proved by structural induction like in the case of SC (the step of the proof showing that lhb ⊆ po ∪ wr ∪ ww ∪ rw[ww]). Then, since ww is a total order on writes on the same variable, we get that the projection of wlhb (the transitive closure of the union of lhb po-loc and lhb ppo) on pairs of writes on the same variable is included in ww. Therefore, wlhb WW ⊆ ww. Then, since cf 𝑒 [𝑅 𝜋] ⊆ 𝑅 𝜋 for each 𝑅 𝜋 = (𝜋 ∪ wr 𝑒 ∪ ww ∪ rw) + with 𝜋 ∈ {ppo, po-loc} and since each cf 𝑒 [𝑅 𝜋] relates only writes on the same variable, we get that each cf 𝑒 [𝑅 𝜋] is included in ww. This implies that wpww ⊆ ww.

	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣)	cf𝑒[𝑅]	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣 ′)			𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣)	𝑤𝑝𝑤𝑤	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣 ′)
		𝑅	wr𝑒				𝑤 𝑟	𝑟	𝑟𝑤[𝑤𝑝𝑤𝑤]
			𝑟			
	(a) Conflict order cf[R]				(b) Read-write rw[wpww]
			𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣)	𝑙ℎ𝑏 𝜋	𝑜	𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣 ′)
				𝑜 𝑙ℎ 𝑏 𝜋	𝑟	𝑤𝑟
							𝜋 *
						𝑜
			(c) Local happen-before lhb 𝜋 𝑜
	Figure 5.2 Denitions of relations used to dene wCCM
			consistency model.
	(Figure 5.2c).				
	Let lhb 𝜋 = (⋃︀ 𝑜∈𝑂 lhb 𝜋 𝑜) 𝑜	∪
	lhb po-loc 𝑜					
	Then,					
	Definition 17 A history ⟨𝑂, po, wr⟩ satisfies weak Convergent Causal Memory

𝜋

𝑜 is the smallest transitive relation such that:

1. (𝑜 1 , 𝑜 2) ∈ lhb 𝜋 𝑜 if (𝑜 1 , 𝑜 2) ∈ co 𝜋 , (𝑜 1 , 𝑜) ∈ co

𝜋 , and (𝑜 2 , 𝑜) ∈ (co 𝜋) * , and 2. (write(𝑥, 𝑣), write(𝑥, 𝑣 ′)) ∈ lhb 𝜋 𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣 ′)) ∈ lhb 𝜋 𝑜 , and (write(𝑥, (wCCM) if both relations: ppo ∪ wr 𝑒 ∪ wpww ∪ rw[wpww] and po-loc ∪ wr 𝑒 ∪ wpww ∪ rw[wpww]

are acyclic. As we have seen, the external write-read relation wr 𝑒 is a restriction of the writeread relation to pairs that are not in the same thread, i.e., wr 𝑒 = wr ∩ {(𝑜, 𝑜 ′) | (𝑜, 𝑜 ′) ̸ ∈ po and (𝑜 ′ , 𝑜) ̸ ∈ po}. The read-write relation rw[𝑤𝑝𝑤𝑤] induced by wpww (Figure 5.2b) is dened by rw[𝑤𝑝𝑤𝑤] = wr -1 ∘ 𝑤𝑝𝑤𝑤. To exemplify, consider the following examples. Finally, since wpww ⊆ ww, we get that (𝜋 ∪ wr ∪ wpww ∪ rw[wpww]) + ⊆ (𝜋 ∪ wr ∪ ww ∪ rw[ww])

 Theorem 9 Algorithm 6 returns true iff the input history ℎ satisfies TSO. Algorithm 6: Checking TSO conformance: wCCM+ENUM algorithm. Input: A history ℎ = ⟨𝑂, po, wr⟩ Output: true iff ℎ satisfies TSO 1 if ppo ∪ wr 𝑒 ∪ wpww ∪ rw[wpww] or po-loc ∪ wr 𝑒 ∪ pww ∪ rw[wpww] is cyclic then wr 𝑒 ∪ ww ∪ rw[ww] and po-loc ∪ wr 𝑒 ∪ ww ∪ rw[ww] are acyclic then

	2	return false;
	3 foreach ww ⊃ wpww do
	4 if ppo ∪ 5 return true;
	6 return false ;
	5.1.3	

 This new model computes a partial store order using a simpler saturation rule compared to the one used in wCCM.Formally, for 𝜋 ∈ {ppo, po-loc}, let wst and whb 𝜋 be the smallest relationssuch that wst = ((whb 𝜋 WR ∘ wr -1) ∪ whb 𝜋 WW) + whb 𝜋 = (𝜋 ∪ wr 𝑒 ∪ wst ∪ rw[wst]) + rw[wst] = wr -1 ∘ wstWhere, whb 𝜋 WW , resp. whb 𝜋 WR , is the projection of whb 𝜋 , resp. whb 𝜋 , on pairs of writes, resp. on pairs of writes and reads, on the same variable parameterized

	5.2.1	Weak Total Store Ordering
	We propose a new consistency model called weak Total Store Ordering
	(wTSO). Then,
	Definition 18 A

by 𝜋. The external write-read is wr 𝑒 = wr ∩{(𝑜, 𝑜 ′) | (𝑜, 𝑜 ′) ̸ ∈ po and (𝑜 ′ , 𝑜) ̸ ∈ po}. history ⟨𝑂, po, wr⟩ satisfies weak Total Store Ordering (wTSO) if both whb ppo and whb po-loc are acyclic.

To illustrate, consider the following examples,

Example 37

The Figure

5

.6a presents a history which is conform to wTSO.

 Then, we get a cycle in rw[wst] ∪ wr 𝑒 .

	𝑡 0 :	𝑡 1 :		𝑡 2 :	𝑡 3 :
	write(𝑥, 1)	write(𝑥, 2)	read(𝑡, 1)	read(𝑡, 1)
	write(𝑦, 1)	write(𝑦, 2)	write(𝑥, 4)	write(𝑦, 4)
	write(𝑧, 3)	write(𝑧, 4)	write(𝑡, 3)	write(𝑡, 4)
	write(𝑡, 1)	write(𝑡, 2)	
	𝑡 4 :	𝑡 5 :		𝑡 6 :	𝑡 7 :
	read(𝑡, 2)	read(𝑡, 2)	read(𝑡, 3)	read(𝑡, 4)
	write(𝑥, 3)	write(𝑦, 3)	read(𝑦, 2)	read(𝑥, 2)
	write(𝑡, 5)	write(𝑡, 6)	
		𝑡 8 :		𝑡 9 :
		read(𝑡, 5)	read(𝑡, 6)
		read(𝑦, 1)	read(𝑥, 1)
	𝑡 0 :	𝑡 1 :	(a) wTSO but not TSO 𝑡 2 :
	write(𝑥, 1)	write(𝑦, 1)	read(𝑥, 1)
				read(𝑦, 0)

in read-write relation rw[wst].

de la performance pousse les concepteurs et les développeurs des systèmes informatiques à avoir recours à diérentes sortes d'optimisations, et en particulier à de plus en plus de parallélisation et de distribution, avec un usage parcimonieux de la synchronisation. L'idée générale est de chercher à augmenter le débit du système, de rendre les données disponibles et rapidement accessibles aux clients, et d'éviter les attentes dues aux actions bloquantes. Cela se produit en fait à tous les niveaux des systèmes informatiques, du niveau le plus bas qui est celui des architectures matérielles multi-c÷urs au niveau le plus élevé qui est celui des applications réparties qui s'exécutent sur des infrastructures en réseau, y compris les bases de données distribuées géo-répliquées. Ces optimisations ainsi que le caractère distribué des calculs, tendent à réordonner les actions eectuées par

Acknowledgments

Undertaking this PhD has been a challenge and a truly life-changing experience for me, and it would not have been possible to be fulfilled without the support and guidance that I received from many people.

Example 10 The history in Figure 2.8b is allowed by CM, but not by CCv. It is not allowed by CCv because reading 1 from 𝑥 in the first thread implies that it observed write(𝑥, 1) after write(𝑥, 2) while reading 2 from 𝑥 in the second thread implies that it observed write(𝑥, 2) after write(𝑥, 1). While this is allowed by CM where different threads can observe concurrent writes in different orders, it is not allowed by CCv.

-24-Chapter 2. Fundamentals

This work was supported in part by CNRST "PBER: Programme de Bourses d'Excellence de Recherche ", Campus France "Eiffel Excellence Scholarship Program", IRIF, ANR project "AdeCoDS", European Research Council (ERC), Agence universitaire de la Francophonie "Programme-pilote de soutien à l'excellence scientifique", and ENSIAS, without either of which this work would not have been possible. I would like to express my acknowledgments here to every person who have always supported me and contributed to the fulfillment of this work, to everyone who believed in me, and to

5 return false ;

The algorithm wSC+DBCOP is based on the algorithm implemented in DB-COP [START_REF] Biswas | On the complexity of checking transactional consistency[END_REF]. Given a history (again dened by its po and wr relations), DBCOP searches for an interleaving of all the operations of the history that respects the constraints imposed by SC. Then, wSC+DBCOP is an adaptation of DBCOP that exploits st in addition to po and wr as xed constraints during its search.

Hence, Theorem 7 Algorithm 5 returns true iff the input history ℎ satisfies SC.

For our experiments in next section, we compare wSC+ENUM and wSC+DBCOP to each other, to DBCOP, and also to CCM+ENUM which is the analogous of wSC+ENUM using CCM saturation instead of wSC saturation.

CCM+ENUM is the algorithm dened in the rst SC checking approach (Section 4.1).

4.2.4

Complexity Notice that at each step of the calculation of hb and st, at least one pair of operations is added to one of these two relations and that the number of such CHAPTER 6

CONCLUSIONS

In this nal chapter, we summarize the results of this thesis and discuss some possible extensions of the works presented in the chapters above.

Summary

In this thesis, we focused in the verication problem of concurrent/distributed systems. The main contribution is the proposition of an ecient approach for verifying consistency which is generically applicable to a wide spectrum of consistency models for which the problem of verication is known to be NP-hard.

Indeed, we proposed dynamic verication approaches with respect to some well known consistency models.

The rst part of this thesis was dedicated to the verication of weak consistency models e.g., causal consistency in its dierent variants: weak causal consistency, causal convergence, and causal memory. This work is based on a characterization of the set of all histories that are causal consistency violations called bad-patterns. These bad-patterns dene a small set of operations occurring in some particular order. We proposed a polynomial reduction of these bad-patterns to a problem of solving Datalog queries. The proposed approach allows to improve the complexity of checking causal consistency problem (from 𝒪(𝑛 5) to 𝒪(𝑛 3)). -126-

Rachid ZENNOU

Email : rachid.zennou@gmail.com LinkedIn: https://www.linkedin.com/in/rachid-zennou-323740a7/

Docteur en informatique

Formations et Diplômes

Compétences

 Systèmes distribués : Spécifications, vérification et sécurité.

 Cryptographie : Crypto-system symétrique (AES, DES), asymétriques (RSA, El Gamal), signature électronique, Quantique BB84, Chaotique.

 Sécurité informatique : Sécurité (Réseau, Web et Système), Management de la sécurité (ISO 2700X, EBIOS), Audit sécurité (Pentest, Organisationnel, de configuration…).

 Langages de programmation : VB.NET, C, C++, Java, Python.

 Machine Learning: Weka, Scikit Learn, Matplotlib.

Publications scientifiques