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Abstract

Nowadays, we are all end users of distributed systems. A distributed system is a

collection of computers in order to improve performance by sharing of resources.

Indeed, with the internet's massive explosion, these systems have become neces-

sary. Unfortunately, due to the parallelism and communication latency over large

networks, distributed systems may produce unexpected (inconsistent) behaviors

if they are not correctly designed and implemented. For instance, a �ight seat

can be assigned to two users of a �ight booking system at the same time.

This thesis addresses the problem of verifying that an implementation of a

concurrent/distributed system provides to the clients the expected consistency

guarantees (i.e., strong, weak or eventual consistency). In particular, we consider

the problem of testing concurrent/distributed systems to determine if they are

o�ering the consistency level expected by their users. For a given computation

of a concurrent/distributed system, the test con�rms the consistency or inconsis-

tency of the system during that computation. We propose dynamic veri�cation

approaches with respect to some well-known consistency models, i.e., executing

a large number of test programs and verifying them against a given consistency

model. The main consistency criterion that we consider in this thesis is a fun-

damental model called sequential consistency. The veri�cation problem of this

model is known to be NP-hard. The reason is that in order to prove that a com-

putation is conform to this consistency model, one need to �nd a total order on

write operations that explains the execution. Therefore, one need to enumerate

all the possible total orders, in the worst case. In the beginning, we are interested

in verifying the conformance to consistency models that are checkable in poly-

nomial time using saturation-based techniques. We consider causal consistency

in its di�erent variants. Then, we build on this work in order to propose an

approach for verifying sequential consistency using a strong causal consistency

variant. This approach is improved by proposing another weaker model based

on more natural and simpler saturation rules. These approaches allow to avoid

falling systematically in the worst case i.e., enumerating explicitly the exponential

number of the possible total orders between the computation writes. These two

approaches are generalized afterward to cover another consistency model that

is a relaxation of the sequential consistency model called total store ordering.

The problem of verifying this model is also known to be NP-hard. Indeed, the
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proposed generalizations use suitable models for approximating the total store

ordering model. We implement all these approaches and perform benchmark on

real life application.

Keywords: Formal veri�cation, Veri�cation, Testing, Consistency, Con-

currency, Sequential consistency, Total store ordering, Causal Consistency, Dis-

tributed systems.
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Résumé

Aujourd'hui, nous sommes tous des utilisateurs des systèmes distribués. Un

système distribué est un ensemble d'ordinateurs a�n d'améliorer les performances

par le partage des ressources. En e�et, avec l'explosion massive d'Internet, ces

systèmes sont devenus nécessaires. Malheureusement, en raison du parallélisme

et de la latence de communication sur les grands réseaux, les systèmes distribués

peuvent produire des comportements inattendus (incohérents) s'ils ne sont pas

correctement conçus et implémentés. Par exemple, un siège dans un vol peut être

attribué à deux utilisateurs d'un système de réservation de vol au même temps.

Cette thèse aborde le problème de véri�er qu'une implémentation d'un sys-

tème concurrent / distribué o�re à ces clients les garanties de consistance atten-

dues (consistance forte, faible ou éventuelle). En particulier, nous considérons

le problème du test des systèmes concurrents / distribués pour déterminer s'ils

o�rent le niveau de consistance attendu par leurs utilisateurs. Pour une exécu-

tion d'un système concurrent / distribué donnée, le test con�rme la consistance

ou l'inconsistance du système lors de cette exécution. Nous proposons des ap-

proches de véri�cation dynamique par rapport à certains modèles de consistance

très connus, i.e., en exécutant un grand nombre de programmes de test et en

les véri�ant par rapport à un modèle de consistance donné. Le principal critère

de consistance que nous considérons dans cette thèse est un modèle fondamental

appelé la consistance séquentielle. Le problème de véri�cation de ce modèle est

connu pour être NP-di�cile. La raison est que, pour prouver qu'une exécution est

conforme à ce modèle de consistance, il faut trouver un ordre total sur les opéra-

tions d'écriture qui l'explique. Par conséquent, il faut énumérer tous les ordres

totaux possibles, dans le pire des cas. Au début, nous nous intéressons à véri�er la

conformité à des modèles de consistance véri�ables en temps polynomial à l'aide

de techniques basées sur la saturation. Nous considérons le modèle de la consis-

tance causale dans ses di�érentes variantes. Ensuite, nous nous appuyons sur ces

travaux pour proposer une approche de véri�cation de la consistance séquentielle

en se basant sur une variante plus forte de la consistance causale. Cette approche

est améliorée par la suite en proposant un autre modèle faible basé sur des règles

de saturation plus naturelles et plus simples. Ces approches permettent d'éviter

de tomber systématiquement dans le pire des cas i.e., énumérer explicitement le

nombre exponentiel des ordres totaux possibles entre les écritures de l'exécution.
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Ces deux approches sont ensuite généralisées pour couvrir un autre modèle de

consistance qui est une relaxation de la cohérence séquentielle appelée "Total

Store Ordering" (TSO). Le problème de la véri�cation de ce modèle est égale-

ment connu pour être NP-di�cile. En e�et, la généralisation proposée utilise des

modèles convenables pour approximer le modèle TSO. Nous allons implémenter

toutes ces approches et réaliser des benchmarks sur des applications réelles.

Mots clés: Véri�cation formelle, Véri�cation, Test, Consistance, Concur-

rence, Consistance séquentielle, TSO, Consistance causale, Systèmes distribués.

–x–



CONTENTS

Abstract vii

Résumé xi

List of figures xv

List of tables xvii

List of algorithms xix

List of acronyms xxi

List of Publications xxiii

1 Introduction 1

2 Fundamentals 9

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Binary Relations . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Consistency models . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 From Strong to weak consistency . . . . . . . . . . . . . . 14

2.2.2 CAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Sequential Consistency . . . . . . . . . . . . . . . . . . . . 16

–xi–



CONTENTS

2.2.4 Total Store Ordering . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Causal Consistency . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Causal Consistency Verification 27

3.1 Causal consistency violations . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 CC Bad-patterns. . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 CCv bad-patterns. . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 CM bad-Patterns. . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 New Causal consistency de�nitions . . . . . . . . . . . . . . . . . 32

3.2.1 Weak causal consistency . . . . . . . . . . . . . . . . . . . 32

3.2.2 Causal convergence . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Causal Memory . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Causal Consistency veri�cation . . . . . . . . . . . . . . . . . . . 38

3.3.1 Reduction to Datalog queries solving . . . . . . . . . . . . 39

3.3.2 An algorithm for checking Causal Consistency . . . . . . . 52

3.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 53

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Sequential Consistency Verification 61

4.1 Approach 1: Checking Sequential Consistency Gradually using CCM 64

4.1.1 Convergent Causal Memory . . . . . . . . . . . . . . . . . 65

4.1.2 An Algorithm for Checking Sequential Consistency using

CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 70

4.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Approach 2: Checking Sequential Consistency using wSC . . . . . 76

4.2.1 Weak Sequential Consistency . . . . . . . . . . . . . . . . 77

4.2.2 The Sequential Consistency Kernel . . . . . . . . . . . . . 82

4.2.3 Algorithms for checking SC conformance . . . . . . . . . . 85

4.2.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 87

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

–xii–



CONTENTS

5 Total Store Ordering Verification 93

5.1 Approach 1: wCCM-based TSO veri�cation . . . . . . . . . . . . 94

5.1.1 Weak Convergent Causal Memory . . . . . . . . . . . . . . 96

5.1.2 An Algorithm for Checking TSO conformance using wCCM 99

5.1.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 100

5.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Approach 2: wTSO-based TSO veri�cation . . . . . . . . . . . . 102

5.2.1 Weak Total Store Ordering . . . . . . . . . . . . . . . . . . 103

5.2.2 An Algorithm for checking TSO conformance using wTSO 108

5.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 109

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions 113

Bibliography 117

A Synthèse de la thèse en Français 123

–xiii–





LIST OF FIGURES

2.1 Di�erentiated history. Operations of the same thread are aligned

vertically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Strong consistent messages in a messaging application. . . . . . . 15

2.3 Eventual consistent messages in a messaging application. . . . . . 15

2.4 SC architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Sequential consistency examples. . . . . . . . . . . . . . . . . . . 18

2.6 TSO simpli�ed architecture. . . . . . . . . . . . . . . . . . . . . . 19

2.7 Total Store Ordering examples. . . . . . . . . . . . . . . . . . . . 20

2.8 Causal Consistency examples. . . . . . . . . . . . . . . . . . . . . 22

2.9 Causally-related messages in a messaging application. . . . . . . . 23

2.10 Relationships between consistency models CC, CCv, CM, TSO

and SC. Directed arrows denote the �weaker-than� relation while

dashed lines connect incomparable models. . . . . . . . . . . . . . 26

3.1 De�nitions of relations used to de�ne causal consistency models. . 33

3.2 The General architecture of the histories checking procedure . . . 54

3.3 Checking Causal Consistency for CockreachDB histories. . . . . . 56

3.4 Checking Causal Consistency for Galera histories. . . . . . . . . . 58

4.1 De�nitions of relations used to de�ne CCM consistency model. . . 65

4.2 Histories with two threads used to compare CCM with CC, CCv,

CM and SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

–xv–



List of Figures

4.3 Relationships between consistency models: CC, CCv, CM, CCM

and SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 The simpli�ed architecture of a cache memory system . . . . . . . 71

4.5 The general schema of the SC checking procedure using CCM . . 72

4.6 Checking SC for valid histories. . . . . . . . . . . . . . . . . . . . 73

4.7 Checking SC for invalid histories while increasing the number of

cpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Comparison of CCM, wSC and SC consistency models. . . . . . . 78

4.9 Partial store order 𝑠𝑡′𝑖 used to de�ne wSC consistency model. . . . 79

4.10 Relationships between consistency models: CC, CCv, CM, CCM,

wSC and SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 SC-Kernel counter example . . . . . . . . . . . . . . . . . . . . . 82

4.12 SC-Kernel counter examples with cycles involving an arbitrary

number of writes . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 SC-Kernel counter requiring the enumeration of the possible order

between two pairs of writes . . . . . . . . . . . . . . . . . . . . . 85

4.14 The general schema of the SC checking procedure using wSC . . . 88

4.15 Checking SC for valid histories while varying the number of oper-

ations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.16 Checking SC for valid histories while varying the number of threads. 90

4.17 Checking SC for a set of 50% of valid and 50% of invalid histories. 90

4.18 Checking SC for invalid histories. . . . . . . . . . . . . . . . . . . 91

5.1 Comparison of CM, wCCM, CCM and TSO consistency models. . 96

5.2 De�nitions of relations used to de�ne wCCM consistency model. . 97

5.3 Relationships between consistency models: CC, CCv, CM, CCM,

wSC, wCCM, TSO and SC. . . . . . . . . . . . . . . . . . . . . . 99

5.4 The general schema of the TSO checking procedure using wCCM 101

5.5 Checking TSO for valid histories. . . . . . . . . . . . . . . . . . . 102

5.6 Comparison of wTSO and TSO consistency models. . . . . . . . . 104

5.7 Partial store order 𝑤𝑠𝑡′𝑖 used to de�ne wTSO consistency model . 105

5.8 Relationships between all consistency models considered in this

thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 The general schema of the TSO checking procedure using wTSO . 109

5.10 Checking wTSO and wCCM for valid histories. . . . . . . . . . . 110

–xvi–



LIST OF TABLES

2.1 Axioms used in the causal consistency de�nitions. . . . . . . . . . 21

3.1 Bad-patterns for each causal consistency model . . . . . . . . . . 30

3.2 Bad-patterns de�nitions . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Logical notations and their Datalog equivalence . . . . . . . . . . 39

–xvii–





LIST OF ALGORITHMS

1 Checking Causal Consistency algorithm. . . . . . . . . . . . . . . . 53

2 The histories generator algorithm . . . . . . . . . . . . . . . . . . . 55

3 Checking SC conformance: CCM+ENUM algorithm. . . . . . . . . 69

4 Checking SC conformance: wSC+ENUM algorithm. . . . . . . . . 86

5 Checking SC conformance: wSC+DBCOP algorithm. . . . . . . . . 86

6 Checking TSO conformance: wCCM+ENUM algorithm. . . . . . . 100

7 Checking TSO conformance: wTSO+ENUM algorithm. . . . . . . 109

–xix–





LIST OF ACRONYMS

CAP - Consistency, Availability and Partition tolerance

SC - Sequential Consistency

TSO - Total Store Ordering

CC - Weak Causal Consistency

CCv - Causal Convergence

CM - Causal Memory

CCM - Convergent Causal Memory

wCCM - weak Convergent Causal Memory

wSC - weak Sequential Consistency

wTSO - weak Total Store Ordering

CO - Causal Order

CF - Conf lict Order

CFe - external Conf lict Order

PO - Program Order

PPO - Preserved Program Order

PO-LOC - PO per same Location

PWW - Partial Write-Write order

wPWW - weak Partial Write-Write order

WR - Write-Read order

WRe - external Write-Read relation

RW - Read-Write order

WW - Write-Write order

HB - Happen-Before

–xxi–



List of Acronyms

wHB - weak Happen-Before

LHB - Local Happen-Before

ST - Store Order

wST - weak Store Order

NP - Nondeterministic Polynomial time

ADT - Abstract Data Type

ENUM - ENUMeration

SC-Ker - Sequential Consistency Kernel

–xxii–



LIST OF PUBLICATIONS

This thesis presents the research work carried out during the Ph.D period.

The outcomes of this work have been published in international conferences and

journals.

� Zennou, R., Biswas, R., Bouajjani, A. et al. Checking causal consistency

of distributed databases. Computing (2021). https://doi.org/10.1007/

s00607-021-00911-3 [Extended version of NETYS 2019 paper].

� Zennou R., Atig M.F., Biswas R., Bouajjani A., Enea C., Erradi M. (2020)

Boosting Sequential Consistency Checking Using Saturation. In: Hung D.V.,

Sokolsky O. (eds) Automated Technology for Verification and Analysis. ATVA

2020. Lecture Notes in Computer Science, vol 12302. Springer, Cham. https:

//doi.org/10.1007/978-3-030-59152-6_20.

� Zennou R., Bouajjani A., Enea C., Erradi M. (2019) Gradual Consistency

Checking. In: Dillig I., Tasiran S. (eds) Computer Aided Verification. CAV

2019. Lecture Notes in Computer Science, vol 11562. Springer, Cham: https:

//link.springer.com/chapter/10.1007/978-3-030-25543-5_16.

� Zennou R., Biswas R., Bouajjani A., Enea C., Erradi M. (2019) Checking

Causal Consistency of Distributed Databases. In: Atig M., Schwarzmann A.

(eds) Networked Systems. NETYS 2019. Lecture Notes in Computer Science,

vol 11704. Springer, Cham: https://link.springer.com/chapter/10.1007/

978-3-030-31277-0_3. [Best student paper award].

–xxiii–

https://doi.org/10.1007/s00607-021-00911-3
https://doi.org/10.1007/s00607-021-00911-3
https://doi.org/10.1007/978-3-030-59152-6_20
https://doi.org/10.1007/978-3-030-59152-6_20
https://link.springer.com/chapter/10.1007/978-3-030-25543-5_16
https://link.springer.com/chapter/10.1007/978-3-030-25543-5_16
https://link.springer.com/chapter/10.1007/978-3-030-31277-0_3
https://link.springer.com/chapter/10.1007/978-3-030-31277-0_3




CHAPTER 1

INTRODUCTION

A concurrent program de�nes operations that may be executed at the same

time. This kind of programs are present at various levels of modern computer

systems varying from distributed softwares to basic applications running on mul-

ticore systems, multi-tasking operating systems and multi-threaded programs.

The design and implementation of concurrent systems is challenging and an er-

ror prone process because of the complexity of their behaviors resulting from

the concurrency. Therefore, it is important to develop formal approaches to au-

tomatically check their correctness with respect to (w.r.t) some speci�cations.

Several formal methods based technologies are proposed to verify these systems,

for instance:

� Model checking [51]: is a method for checking whether a program execu-

tions meet given properties (speci�cations). The idea is to explore in an

exhaustive and automatic way all models abstracting this program to decide

if it satis�es the given speci�cations or not. One of the challenges for this

approach is to handle the exponential number of possible states, commonly

known as the "State Explosion Problem" [24].

� Deductive programs veri�cation: also called programs proving, expresses

the program correctness as a set of mathematical statements, known as

veri�cation conditions, based on the speci�cations that the program should

meet. The SMT Solvers [15, 27] or interactive theorem provers [52, 16] are

then used to discharge them.
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� Static analysis: is performed on an abstraction of the given program in

order to determine if it satis�es some particular properties. This method

consists on analyzing the static program representation without executing

it. Abstract interpretation introduced by P. Cousot and R. Cousot in [25,

26] is one of the widely used frameworks in static analysis.

� Dynamic analysis: consists on executing the program with test data and

analyzing the product behaviors to assure that it fully satis�es all the ex-

pected speci�cations. Our thesis �ts into the signi�cant research e�ort for

proposing e�cient dynamic analysis algorithms for testing memory models

conformance.

Motivation

The evolution of our modern society, based on the dramatic development of in-

formation and communication technologies, is closely linked to our growing need

for automated services that have become crucial in all areas of our lives (commu-

nication, commerce, �nance, transport, health, leisure, energy, etc.). With the

emergence of the Internet of Things and Cloud Computing, there will be more

and more connecting objects of all kinds, communicating and interacting through

large-scale networks, having access to virtually unlimited computing power and

memory resources. The deployment of these highly distributed systems and the

control of their complexity give rise to enormous scienti�c and technological chal-

lenges.

The quest for performance pushes designers and developers of computer sys-

tems to use di�erent kinds of optimization, and in particular to more and more

parallelism and distribution, with a parsimonious use of synchronization. The

general idea is to try to increase the throughput of the system, to make the data

available and quickly accessible for clients, and to avoid the expectations due to

blocking actions. This actually happens at all levels of computer systems, from

the lowest level of multi-core hardware architectures to the highest level of dis-

tributed applications running on network infrastructures, including geo-replicated

distributed databases.

These optimizations and the distributed nature of the calculations tend to re-

order the actions performed by each of the system components. This may be due
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to the fact that the more expensive actions (in terms of needed memory and/or

computing power) are postponed, or performed in parallel, in order to allow the

faster (or urgent) actions to be performed �rst. It can also be due to communi-

cation latency and the fact that messages can follow di�erent paths across large

networks. A system can then produce behaviors towards client programs that

are not possible when all system actions are executed instantly and atomically,

and are immediately visible to all processes in the system. This kind of behaviors

correspond to the consistency models known as "strong consistency" models. In

fact, strong consistency is generally di�cult to ensure in an acceptable way from

a performance point of view. Therefore, the majority of systems used in practice

(both modern micro-processors, as well as platforms for cloud computing) im-

plement weak consistency models. The relaxation of the consistency guarantees

that a system provides to its clients (programs) may a�ect their correction. For

instance, if a system implementing a distributed database is not highly consis-

tent, this implies that the information on di�erent replicas may be di�erent at

some point since updates are not immediately visible everywhere in the system.

This can a�ect the correction of applications using this system from both a

safety and security perspectives. For example, two transactions on an account

could withdraw twice the same amount available before they are executed if they

are done in parallel and the updates are not immediately visible. Furthermore,

if the policies for accessing information in a distributed database are updated in

a weak manner i.e., these policies may di�er from one site to another at a given

moment, the information that are supposed to be protected can be leaked.

Then, one of the important problems is to ensure the correction of programs

(clients) that will be executed on infrastructures that implement a weak con-

sistency model. Indeed, concurrent and distributed systems are hard to design

and program properly. This is due to the large number and complexity of in-

teractions between their components. This di�culty become greater when these

systems have to be executed according to a weak consistency model that allows

even more behaviors that are complex, not intuitive, and extremely di�cult to

understand. Therefore, it is important to have methods and tools for automati-

cally verifying the concurrent programs on weak consistency models.

A second compulsory problem is to verify whether a system that is supposed to

provide a service according to a given consistency model is correctly implemented.
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Thus, it is important to check that the consistency guarantees are well ensured

(for clients) by the implementation. This is a crucial problem, especially with

regard to object libraries and geo-replicated/distributed data structures, that are

the building blocks for building modern infrastructures for cloud computing.

Contributions

The aim of this thesis is to study the two veri�cation problems mentioned

above and provide general and e�cient solutions to solve them. The proposed

solutions are generically applicable to a large spectrum of consistency models,

especially those adopted for reasoning on distributed systems with replication.

We brie�y summarize the contributions of our thesis:

� First, we considered the problem of verifying that a computation is conform

to a weak consistency model. We proposed an approach for verifying causal

consistency models using a polynomial reduction of this problem to solving

Datalog queries. Furthermore, we implemented our approach in an e�cient

tool for testing distributed systems.

� Then, we addressed the problem of verifying strong consistency models. We

considered the fundamental model known as Sequential Consistency (SC,

for short) and proposed a gradual approach for checking the conformance

of a computation to this model. This approach is based on a strengthening

of all known causal consistency models that still polynomially checkable.

Next, we improved this approach by proposing a more natural and e�cient

upper-approximation of SC which is checkable in polynomial time as well.

� Finally, we considered the problem of verifying the Total Store ordering

model (TSO, for short) which is a weakening of SC. In fact, we generalized

the SC approaches to cover TSO model by proposing suitable models for

approximating it. The suggested generalizations of the approaches men-

tioned above are not trivial. In particular, because of the fact that these

two models (Sequential Consistency and Total Store ordering) consider dif-

ferent kinds of relations, the latter relaxed some relations considered in the

former.
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Related work

The problem of checking whether a history is SC has been proved to be NP-

hard by Gibbons and Korach [41]. Two recent works tackle this veri�cation

problem [18, 7] and prove the interesting result that when the number of threads

is �xed, the problem of checking the conformance of a single computation to

SC is polynomial time in the size of the computation. These papers introduce

algorithms for SC checking based on a search for interleavings corresponding to

valid SC executions. However, their works are limited to the case of a �xed

number of threads while our work consider the general problem. Biswas and

Enea in [18] consider also the problem of checking some other consistency models

in the transactional systems context and prove some complexity results about

these models.

The fact that checking whether a history satis�es TSO is also NP-hard has

been proved by Furbach et al. [38]. The problem of verifying that a �nite-state

shared-memory implementations (over a bounded number of threads, variables,

and values) has been shown to be undecidable by Alur et al. [13].

Several static techniques have been developed to prove that a shared-memory

implementation (or cache coherence protocol) satis�es SC [8, 13, 23, 28, 29, 32,

37, 40, 44, 56, 58], however only few have addressed dynamic techniques such as

testing and runtime veri�cation (which scale to more realistic implementations).

There are several works that addressed the testing problem for related criteria,

e.g., Linearizability. While SC requires that the operations in a history be ex-

plained by a linearization that is consistent with the program order, linearizability

is requiring that such a linearization be also consistent with the real-time order

between operations (linearizability is stronger than SC). The works in [63, 49]

describe monitors for checking linearizability that construct linearizations of a

given history incrementally, in an online fashion. This incremental construction

cannot be adapted to SC since it strongly relies on the speci�cities of lineariz-

ability. Line-Up [21] performs systematic concurrency testing via schedule enu-

meration, and o�ine linearizability checking via linearization enumeration. The

works in [36, 35] show that checking linearizability for some particular class of

ADTs is polynomial time.

Jepsen [1] is a framework for distributed systems veri�cation used to check
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di�erent consistency models from eventual consistency to linearizability by using

random clients. However, it focuses only on speci�c types of violations for a given

consistency memory model.

Emmi and Enea [34] consider the problem of checking weak consistency cri-

teria, but their approach focuses on speci�c relaxations in those criteria, falling

back to an explicit enumeration of linearizations in the context of a criterion like

SC or TSO. Bouajjani et al. [19] consider the problem of checking causal consis-

tency. They formalize the di�erent variations of causal consistency we consider

in this thesis and show that the problem of checking whether a history satis�es

one of these variations is polynomial time.

The idea of using weaker approximations of a memory consistency model

(TSO) in order to detect violations has been used, e.g., in [59]. In that paper

the authors use a form of saturation that corresponds to a variant of causal

consistency (similar to convergence consistency [20]). However, their method is

not complete. Our work generalizes this idea of saturation in the framework of

gradual consistency checking introduced in the �rst part of chapter 4 (Section 4.1)

where SC is approximated using several variants of causal consistency (including

a new one called CCM). Then, we improved this idea in the second part of

chapter 4 (Section 4.2) using a stronger (weak) consistency model (called wSC

and stronger than CCM). We generalized these approaches to cover TSO as well

in chapter 5.

The McVerSi framework [33] addresses test generation problem i.e., �nding

clients that increase the probability of uncovering bugs in shared memory im-

plementations. Their methodology for checking SC lies within the context of

white-box testing, i.e., the user is required to annotate the shared memory im-

plementation with events that de�ne the store order in an execution. In the

approach we follow, the implementation is treated as a black-box requiring less

user intervention. The Jepsen framework [1] also addresses the problem of �nding

clients by using randomization (introducing faults randomly). Since the e�ciency

of this approach has been shown in a recent work [53], we follow it to generate

the used executions in our experiments using random clients.
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Organization of the thesis

In addition to the two introductory chapters, this thesis is divided into three

chapters in which we present our contributions in details.

In Chapter 2, we introduce the preliminaries. We recall basic de�nitions

about binary relations and we present the used system model. Then, we recall

the de�nitions of the consistency models considered in this thesis.

In chapter 3 of this thesis, we consider the problem of verifying weak consis-

tency models. Indeed, we propose an approach and a tool for verifying causal

consistency in its di�erent variants. Then, we show that our approach is e�cient

and scalable by using it to verify real life distributed databases.

In the �rst part of chapter 4, we present an approach for checking Sequential

Consistency gradually. The idea is to start by checking a weak consistency model

that is stronger than all known causal consistency models. Then, if this model

is not violated, the partial store order, that is computed using that model, is

completed by enumeration to a total order. We show that our approach is more

e�cient compared to a standard enumeration using a SAT solver. The second part

of this chapter presents a more e�cient approximation for Sequential Consistency.

This approximation is based on a stronger model compared to the one considered

in the �rst part. Therefore, it allows, in addition of capturing more SC violations

early, computing a large subset of the store order we need to �nd in order to

prove Sequential Consistency conformance, if it exists. The experiment results

show that the second approach outperforms the �rst one.

The chapter 5 introduces a generalization of the approaches proposed for

Sequential Consistency to cover the case of Total Store Ordering model. We focus

on �nding suitable approximations for this model. Similarly to SC approaches,

we show that these approximations perform good experimental results.

Finally, conclusions and perspectives are drown in chapter 6.
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CHAPTER 2

FUNDAMENTALS

The �rst chapter is dedicated to the de�nitions of notations used through this

document. First we present some preliminaries. Then, we give the system model

used in this work. Afterwards, we de�ne the notion of history and some related

notions. Finally, we recall the consistency models we have studied. The rest of

concepts that are used only locally in each chapter will be presented whenever

they are needed.

2.1 Preliminaries

We now introduce the basic notions that we used in this thesis. First, we

de�ne some notions on binary relations.

2.1.1 Binary Relations

Given a set 𝑂 and a binary relation ℛ ⊆ 𝑂 × 𝑂, we use the notation (𝑜1,𝑜2)

∈ ℛ to denote the fact that 𝑜1 and 𝑜2 are related by ℛ. If ℛ is an order, it

denotes the fact that 𝑜1 precedes 𝑜2 in this order.

A binary relation ℛ ⊆ 𝑂 × 𝑂 is a strict order if it is

1. Irre�exive: for any 𝑜 ∈ 𝑂, (𝑜, 𝑜) ∈ ℛ does not hold,

2. Asymmetric: for any 𝑜1, 𝑜2 ∈ 𝑂, if (𝑜1, 𝑜2) ∈ ℛ, then (𝑜2, 𝑜1) ∈ ℛ does not

hold, and
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3. Transitive: for any 𝑜1, 𝑜2 ∈ 𝑂, if (𝑜1, 𝑜2) ∈ ℛ and (𝑜2, 𝑜3) ∈ ℛ, then (𝑜1, 𝑜3)

∈ ℛ.

A strict order ℛ is total if, for any 𝑜1, 𝑜2 ∈ 𝑂, we have either (𝑜1, 𝑜2) ∈ ℛ,
(𝑜2, 𝑜1) ∈ ℛ, or 𝑜1=𝑜2.

For a binary relation ℛ ⊆ 𝑂 × 𝑂 over a given set 𝑂, we use ℛ+ (resp. ℛ*)

to denote the transitive (resp. re�exive transitive) closure of ℛ. We use ℛ−1 to

denote the inverse relation of ℛ (i.e., (𝑎, 𝑏) ∈ ℛ−1 i� (𝑏, 𝑎) ∈ ℛ). We say that ℛ
is a partial order if it is irre�exive (i.e., (𝑎, 𝑎) /∈ ℛ for all 𝑎 ∈ 𝐴). We say that

ℛ is total if, for every 𝑎, 𝑏 ∈ 𝐴, we have either (𝑎, 𝑏) ∈ ℛ or (𝑏, 𝑎) ∈ ℛ. For

two binary relations ℛ1 and ℛ2, we use ℛ1 ∘ ℛ2 (resp. ℛ1 ∪ ℛ2) to denote the

composition (resp. union) of ℛ1 and ℛ2, i.e., (𝑎, 𝑏) ∈ ℛ1 ∘ ℛ2 i� there is 𝑐 ∈ 𝐴

such that (𝑎, 𝑐) ∈ ℛ1 and (𝑐, 𝑏) ∈ ℛ2 (resp. (𝑎, 𝑏) ∈ ℛ1 ∪ ℛ2 i� (𝑎, 𝑏) ∈ ℛ1 or

(𝑎, 𝑏) ∈ ℛ2).

Let 𝑂′ be a subset of 𝑂. Then ℛ|𝑂′ is the relation ℛ projected on the set 𝑂′,

that is {(𝑜1, 𝑜2) ∈ ℛ | 𝑜1, 𝑜2 ∈ 𝑂′}. The set 𝑂′ ⊆ 𝑂 is said to be downward-closed

w.r.t a relation ℛ if ∀𝑜1, 𝑜2, if 𝑜2 ∈ 𝑂′ and (𝑜1, 𝑜2) ∈ ℛ then 𝑜1 ∈ 𝑂′ as well.

A relation ℛ ⊆ 𝑂 × 𝑂 is a strict partial order if it is transitive and irre�exive.

Given a strict partial order ℛ over 𝑂, a poset is a pair (𝑂,ℛ). Notice here

that we consider the strict version of posets (not the ones where the underlying

partial order is weak, i.e. re�exive, transitive and antisymmetric). Given a set

Σ, a poset (𝑂,ℛ), and a labeling function ℓ : 𝑂 → Σ, the Σ labeled poset 𝜌 is a

tuple (𝑂,ℛ, ℓ).
We say that 𝜌′ is a prefix of 𝜌 if there exists a downward closed set 𝐴 ⊆ 𝑂

w.r.t. relation ℛ such that 𝜌′ = (𝐴,ℛ, ℓ). If the relation ℛ is a strict total order,

we say that a (resp., labeled) sequential poset (sequence for short) is a (resp.,

labeled) poset. The concatenation of two sequential posets 𝑒 and 𝑒′ is denote by

𝑒.𝑒′.

Consider a set of methods M from a domain D. For 𝑚 ∈M and arg , rv ∈ D,
and 𝑜 ∈ 𝑂, ℓ(𝑜) = (𝑚, arg , rv) means that operation 𝑜 is an invocation of 𝑚 with

input arg which returns rv . The label ℓ(𝑜) is sometimes denoted 𝑚(arg, rv). Let

𝜌 = (𝑂,ℛ, ℓ) be a M × D × D labeled poset and 𝑂′ ⊆ 𝑂. We denote by 𝜌{𝑂′}
the labeled poset where we only keep the return values of the operations in 𝑂′.

Formally, 𝜌{𝑂′} is the (M × D) ∪ (M × D × D) labeled poset (𝑂,ℛ, ℓ′) where

for all 𝑜 ∈ 𝑂′, ℓ′(𝑜) = ℓ(𝑜), and for all 𝑜 ∈ 𝑂 ∖ 𝑂′, if ℓ(𝑜) = (𝑚, arg , rv), then
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ℓ′(𝑜) = (𝑚, arg). Now, we introduce a relation on labeled posets, denoted ⪯. Let
𝜌 = (𝑂,ℛ, ℓ) and 𝜌′ = (𝑂,ℛ′, ℓ′) be two posets labeled by (M×D)∪ (M×D×D)

(the return values of some operations in 𝑂 might not be speci�ed). The notation

𝜌′ ⪯ 𝜌 means that 𝜌′ has less order and label constraints on the set 𝑂. Formally,

𝜌′ ⪯ 𝜌 if ℛ′ ⊆ ℛ and for all operation 𝑜 ∈ 𝑂, and for all 𝑚 ∈ M, arg , rv ∈ D,
ℓ(𝑜) = ℓ′(𝑜), or ℓ(𝑜) = (𝑚, arg , rv) implies ℓ′(𝑜) = (𝑚, arg).

2.1.2 System model

We consider multi-threaded programs over a set of shared variables Var =

{𝑥, 𝑦, . . .}. We assume that the set of (visible) operations issued by the threads

of the program are read and write operations. Assuming an unspeci�ed set of

values Val and a set of operation identi�ers OId, we let

Op = {read𝑖(𝑥, 𝑣),write𝑖(𝑥, 𝑣) : 𝑖 ∈ OId, 𝑥 ∈ Var, 𝑣 ∈ Val}

be the set of operations reading a value 𝑣 or writing a value 𝑣 to a variable

𝑥. We omit operation identi�ers when it is clear from the context. The set of

read operations in a set of operations 𝑂 is denoted by R(𝑂). The set of write,

operations in a set of operations 𝑂 is denoted by W(𝑂). The variable accessed

by an operation 𝑜 is denoted by var(𝑜). Given a binary relation ℛ on operations,

let ℛWW, ℛWR, respectively, denote the projection of 𝑅 on pairs of writes, pairs

of writes and reads respectively, on the same variable.

2.1.3 Histories

We consider an abstract notion of an execution called history which includes

a set of write or read operations ordered according to a (partial) program order

po which order operations issued by the same thread. Most often, po is a union

of sequences, each sequence containing all the operations issued by some thread.

Then, we assume that the history includes a write-read relation wr which identi�es

the write operation writing the value returned by each read in the execution.

Formally,

Definition 1 A history ⟨𝑂, po,wr⟩ is a set of operations 𝑂 along with a strict
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partial program order po and a write-read relation wr ⊆ W(𝑂) × R(𝑂), such

that the inverse of wr is a total function and if (write(𝑥, 𝑣), read(𝑥′, 𝑣′)) ∈ wr,

then 𝑥 = 𝑥′ and 𝑣 = 𝑣′.

We assume that every history includes a write operation writing the initial value

for each variable 𝑥. These write operations precede all other operations in po.

Mentioning that these initial write operations is omitted when it is clear from

the context. We notice that all considered histories are di�erentiated.

Differentiated histories. A history ⟨𝑂, po,wr⟩ is di�erentiated if each value

is written at most once, i.e., for all write operations write(𝑥, 𝑣) and write(𝑥, 𝑣′),

𝑣 ̸= 𝑣′. This is not a restriction since shared-memory implementations are data-

independent [64] in practice.

Data Independence. An implementation is data-independent if its behav-

ior does not depend on the concrete values read or written in the programs,

and therefore any potential buggy behavior can be exposed by executions where

each value is written at most once. We consider implementations that are data-

independent which is a natural assumption that corresponds to a wide range of

existing implementations. Thus, under this assumption, it is good enough to

consider di�erentiated histories [19].

We use ℎ, ℎ1, ℎ2, . . . to range over histories. Since the writes on a variable

are unique in the di�erentiated histories, the write-read relation can be easily

extracted by only looking to the value fetched by each read operation.

Example 1 The figure 2.1 presents a differentiated history in which the thread

𝑡1 writes the value 1 on the variable 𝑥, write(𝑥, 1), then reads the value 1 from

𝑦. Similarly, the thread 𝑡2 writes the value 1 on the variable 𝑦, write(𝑦, 1), then

reads the value 1 from 𝑥. The write(𝑥, 1), resp. write(𝑦, 1), precedes read(𝑦, 1),

resp. read(𝑥, 1), in the program order po. The write(𝑥, 1), resp. write(𝑦, 1) and

read(𝑥, 1), resp., read(𝑦, 1) are related by the write-read relation wr, i.e., the

read read(𝑥, 1), resp. read(𝑦, 1) returns the value written by write(𝑥, 1), resp.

write(𝑦, 1).
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𝑡1:
write(𝑥, 1)
read(𝑦, 1)

𝑡2:
write(𝑦, 1)
read(𝑥, 1)

Figure 2.1 � Di�erentiated history. Operations of the same thread are
aligned vertically.

2.2 Consistency models

A memory consistency model de�nes a set of rules that determines how the

system deals with operations from multiple processes (threads). In other words,

it de�nes the possible return values of read operations. The consistency model

can also be de�ned as a contract between programmers and system which de�nes

the consistency guarantees that the programmers expect from the system. There

exists several consistency models. In the following, we present the models we

studied in this thesis from the strong consistency models to the relaxed consis-

tency models. We �rst of all de�ne some needed notions in the next sections.

Specification. The consistency of an object is de�ned w.r.t. a speci�cation,

determining the correct behaviors of that object in a sequential setting. In this

work, we consider the read/write memory for which the speci�cation 𝑆𝑅𝑊 is in-

ductively de�ned as the smallest set of sequences closed under the following rules

(x ∈ Var and v ∈ Val):

1. 𝜀 ∈ 𝑆𝑅𝑊 ,

2. if 𝜌 ∈ 𝑆𝑅𝑊 , then 𝜌.write(𝑥, 𝑣) ∈ 𝑆𝑅𝑊 ,

3. if 𝜌 ∈ 𝑆𝑅𝑊 includes no write on variable 𝑥, then 𝜌.read(𝑥, 0) ∈ 𝑆𝑅𝑊 ,

4. if 𝜌 ∈ 𝑆𝑅𝑊 and write(𝑥, 𝑣) is the last write on variable 𝑥 in 𝜌, then

𝜌.read(𝑥, 𝑣) ∈ 𝑆𝑅𝑊 .

Consistency models comparison.

� A consistency model 𝑀1 is stronger than a consistency model 𝑀2 if each

possible computation under 𝑀1 is also allowed under 𝑀2. We say also that

𝑀2 is weaker than 𝑀1.

� Two consistency models 𝑀1 and 𝑀2 are incomparable if:

� Some computation 𝐶1 is valid (possible) on 𝑀1 and not valid on 𝑀2.

And,
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� Some computation 𝐶2 is valid (possible) on 𝑀2 and not valid on 𝑀1.

Memory operations ordering. There exists four kinds of possible orders for

memory operations:

� W-R: write operation must �nish before the succeeding read operation.

� W-W : write operation must �nish before the succeeding write operation.

� R-W : read operation must �nish before the succeeding write operation.

� R-R: read operation must �nish before the succeeding read operation.

2.2.1 From Strong to weak consistency

In order to ensure high availability and fault tolerance, distributed systems

store data in more than one location i.e., replication. Then, the updates are sent

to one replica (the nearest one, for instance) which forwards them to the other

replicas. The advantage of the replication is that if a replica crush, the others

can continue providing service. However, the question is how to keep replicas up

to date i.e., consistent?

The problem is that considering network failures, distance, etc., we may have

inconsistent replicas. To illustrate this problem, lets consider 3 users (Alice, Bob

and David) in a messaging application group (Whatsapp for instance), which

stores data in a distributed database. As these users are in the same group, any

message sent by one of them will be forwarded to all the others.

Imagine now that David send a message to say that he is in Marrakech this

week, then Alice answers "So good for you", afterwards, Bob says that he loses

his phone. The ideal for users is to observe all messages in the same order so they

can all understand what happened (Figure 2.2). This behavior can, theoretically,

be guaranteed by strong consistency which guarantees that all replicas have the

same state all time i.e., updates should be seen in the same order by all replicas.
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Figure 2.2 � Strong consistent messages in a messaging application.

However, this is actually impossible in existence of failures. So, let's see what

can happen in reality. Imagine now that bob receives the Alice message before

the David message (Figure 2.3).

Figure 2.3 � Eventual consistent messages in a messaging application.

Therefore, Bob concludes that Alice message ("So good for you") is an answer

to his message ("I've lost my phone"). That is not something that we really want

–15–



Chapter 2. Fundamentals

to happen but it is completely acceptable considering the fact that data is geo-

graphically distributed and messages can be delayed. This kind of behaviors are

allowed under weak consistency. Contrary to strong consistency which guarantees

that all replicas have the same state all time, weak consistency, allows replicas to

diverge. Indeed, there exists several variants of weak consistency depending on

how replicas divergence is constrained.

2.2.2 CAP Theorem

Almost twenty years ago (in 2000) [42], the conjecture that there is trade-o�s

between consistency, availability and partition tolerance was introduced by Eric

Brewer. This trade-o� is known as the CAP-Theorem. Let's �rst of all explain

what each of this notions stands for.

� Consistency: Every read operation should return the last write value.

� Availability: Correct nodes should return a response for all read and write

operations in a reasonable amount of time.

� Partition tolerance: The system should continue to operate in presence of

network partitions.

Then, the CAP theorem states that, it is impossible to implement a

distributed system that is simultaneously consistent, available, and

partition tolerant.

In the following, we present the consistency models that we consider in this

thesis.

2.2.3 Sequential Consistency

The most intuitive model is Sequential Consistency (SC) which is a funda-

mental model of shared memory formalized by Lamport(1979). �A multiprocessor

is sequentially consistent if the result of any execution is the same as if the op-

erations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order spec-

i�ed by its program.� [47]. In other words, write and read operations are atomic,

and operations issued by di�erent threads are interleaved arbitrarily while the

order between operations issued by a same thread is preserved. SC o�ers (to the

user of the memory) the strongest consistency guarantees, and therefore the best
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Figure 2.4 � SC architecture.

programming abstraction, since each write operation is considered to be immedi-

ately visible to all threads. In terms of memory operations orders, SC maintains

all four orders discussed above (W-R, W-W, R-W, R-R).

We adopt the formal de�nition of the Sequential Consistency (SC) model

introduced in [12].

Definition 2 A history ⟨𝑂, po,wr⟩ is sequentially consistent if there exists a

total relation (called store order) ww ⊆ W(𝑂) ×W(𝑂) such that the relation

po ∪ wr ∪ ww ∪ rw is acyclic.

The read-write relation rw is de�ned by rw = wr−1 ∘ ww. Intuitively, rw

expresses the fact that when a read operation read(𝑥, 𝑣) reads a value 𝑣 from

a write operation write(𝑥, 𝑣), and some other write operation write(𝑥, 𝑣′) comes

after write(𝑥, 𝑣) in the store order, then there is a con�ict between read(𝑥, 𝑣) and

write(𝑥, 𝑣′), and read(𝑥, 𝑣) must happens before write(𝑥, 𝑣′).

Operationally, this formal de�nition corresponds to an architecture (Figure

2.4) in which there is a global memory and a switch that associates an arbitrary

processor to memory at any moment. Each processor issues memory operations

in the program order and the switch ensures the total order among all memory

operations.

The following examples illustrate the SC de�nition,

Example 2 Figure 2.5a shows a history that is SC. Since read(𝑦, 0) should pre-

cede write(𝑦, 1), this history admits a total order where the operations of thread
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𝑡0:
write(𝑥, 1)
read(𝑦, 0)

𝑡1:
write(𝑦, 1)
read(𝑥, 1)

(a) SC

𝑡0:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡1:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(b) not SC

Figure 2.5 � Sequential consistency examples.

𝑡0 are executed before all 𝑡1 thread operations.

Example 3 Figure 2.5b presents a history that does not satisfy SC. The rea-

son is that a total order cannot be found. Since read(𝑥, 1) reads the value from

write(𝑥, 1) and read(𝑥, 2) reads the value from write(𝑥, 2), all operations of 𝑡0

should be executed before the operations of 𝑡1, or vice versa. This does not allow

either 𝑡0 or 𝑡1 to read the value 0 on variable 𝑦.

In response to the trade-o�s implied by the CAP theorem we have seen above,

other weaker memory models are adopted in order to meet performance and/or

availability requirements in concurrent/distributed systems. Now, we present

some memory models that are weaker than SC, i.e., allow relaxing some orderings

(W-R,W-W, R-W, R-R). The �rst one we consider is called Total Store Ordering.

2.2.4 Total Store Ordering

In the Total Store Ordering (TSO) model [60] writes can be delayed, which

means that after a write is issued, it is not immediately visible to all threads

(except for the thread that issued it), and it is committed later after some ar-

bitrary delay. However, writes issued by the same thread are committed in the

same order in which they were issued, and when a write is committed it becomes

visible to all the other threads simultaneously. TSO is implemented in hardware

but also in a distributed context over a network [43].

The de�nition of TSO relies on three additional relations: (1) the preserved

program order, ppo relation which excludes from the program order pairs formed

of a write and respectively, a read operation, i.e., ppo = po ∖ (W(𝑂) × R(𝑂)),

(2) the program order per same location (variable), po-loc relation which is a

restriction of po to operations accessing the same variable, i.e., po-loc = po ∩
{(𝑜, 𝑜′) | var(𝑜) = var(𝑜′)}, and (3) the write-read external relation wr𝑒 which is a
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Figure 2.6 � TSO simpli�ed architecture.

restriction of the write-read relation to pairs of operations in di�erent threads (not

related by program order), i.e., wr𝑒 = wr ∩ {(𝑜, 𝑜′) | (𝑜, 𝑜′) ̸∈ po and (𝑜′, 𝑜) ̸∈ po}.
Then,

Definition 3 A history ⟨𝑂, po,wr⟩ satisfies TSO if there exists a store order ww

such that the relations po-loc ∪ wr𝑒 ∪ ww ∪ rw and ppo ∪ wr𝑒 ∪ ww ∪ rw are both

acyclic.

Likewise the SC de�nition, the read-write relation is de�ned by rw = wr−1 ∘ ww.
The formal de�nition of the TSO model given above is equivalent to the

operational model of TSO (See TSO architecture in Figure 2.6) that consists in

considering that each thread has a store bu�er, and then, each write issued by a

thread is �rst sent to its store bu�er before being committed to the memory later

in a non-deterministic way. To read a value from some variable 𝑥, a thread �rst

checks if a write on 𝑥 is still pending in its own bu�er. In this case it takes the

value of this write from the bu�er. Otherwise, it fetches the value of 𝑥 from the

memory. Regarding memory operation orderings, TSO model allows the W-R

order to be violated i.e., write read pairs can be reordered.

To illustrate the TSO de�nition, consider the following examples,

Example 4 The Figure 2.7a shows a history which satisfies TSO. The reason

is, based on TSO operational model, the operation write(𝑥, 2) of thread 𝑡1 can be

delayed (pending in the store buffer of 𝑡1) until the end of the execution. There-

fore, after executing read(𝑧, 0), all the writes of thread 𝑡0 are committed to the

main memory so that thread 𝑡1 can read 1 from 𝑦. Afterwards, it read the value

2 from the variable 𝑥 from its own store buffer.
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𝑡1:
write(𝑧, 1)
write(𝑥, 1)
write(𝑦, 1)

𝑡2:
write(𝑥, 2)
read(𝑧, 0)
read(𝑦, 1)
read(𝑥, 2)

(a) TSO

𝑡0:
write(𝑥, 1)

𝑡1:
write(𝑦, 1)

𝑡2:
read(𝑥, 1)
read(𝑦, 0)

𝑡3:
read(𝑦, 1)
read(𝑥, 0)

(b) not TSO

Figure 2.7 � Total Store Ordering examples.

Example 5 Figure 2.7b shows a history that is not admitted by TSO. Under

TSO, both 𝑡2 and 𝑡3 should see the writes on 𝑥 and 𝑦 performed by 𝑡0 and 𝑡1,

respectively, in the same order. This is not the case, because 𝑡2 “observes” the

write on 𝑥 before the write on 𝑦 (since it reads 0 from 𝑦) and 𝑡3 “observes” the

write on 𝑦 before the write on 𝑥 (since it reads 0 from 𝑥).

Other weaker models that impose less constraints on operations ordering are

proposed such as causal consistency [46] which is one of the most implemented

weak models for distributed systems. Contrary to SC and TSO, causal consis-

tency can be implemented in the presence of faults while ensuring availability.

2.2.5 Causal Consistency

Causal consistency [46] is one of the most used models for replicated objects.

It guarantees that if two operations 𝑜1 and 𝑜2 are causally related (some process

is aware of 𝑜1 when executing 𝑜2), then 𝑜1 should be executed before 𝑜2 in all

processes. On the other hand, operations that are not causally related may be

seen in di�erent orders by di�erent processes. In the following, we recall the

de�nitions of three causal consistency variations, weak causal consistency, causal

convergence and causal memory. We use the same de�nitions as in [19].

Weak causal consistency

The weakest variation of causal consistency is called weak causal consistency

(CC, for short). A history is CC if there exists a causal order that explains the

return value of all operations in the history [19]. Formally,

Definition 4 A history ℎ satisfies CC w.r.t a specification 𝑆 if there exists a

strict partial order, called causal order co ⊆ 𝑂 ×𝑂, such that, for all operations
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AxCausal po ⊆ co
AxArb co ⊆ arb
AxCausalValue CausalHist(𝑜){𝑜} ⪯ 𝜌𝑜
AxCausalSeq CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌𝑜
AxCausalArb CausalArb(𝑜){𝑜} ⪯ 𝜌𝑜
where:
CausalHist(𝑜) = (CausalPast(𝑜), co, ℓ)
CausalArb(𝑜) = (CausalPast(𝑜), arb, ℓ)
CausalPast(𝑜) = {𝑜′ ∈ 𝑂 | (𝑜′, 𝑜) ∈ co*}
POPast(𝑜) = {𝑜′ ∈ 𝑂 | (𝑜′, 𝑜) ∈ po*}

Table 2.1 � Axioms used in the causal consistency de�nitions.

𝑜 ∈ 𝑂 in ℎ, there is a specification sequence 𝜌𝑜 ∈ 𝑆 such that axioms AxCausal

and AxCausalValue hold (see Table 2.1).

Axiom AxCausal states that the causal order should at least include the program

order. Axiom AxCausalValue states that, for each operation 𝑜 ∈ 𝑂, a valid se-

quence of the speci�cation 𝑆 can be obtained by sequentializing the causal history

of 𝑜 i.e., all operations that precede 𝑜 in the causal order. In addition, this se-

quentialization must also preserve the constraints provided by the causal order.

Formally, the causal past of 𝑜, CausalPast(𝑜), is the set of operations that precede

𝑜 in the causal order. The causal history of 𝑜, CausalHist(𝑜), is the restriction of

the causal order to the operations in its causal past CausalPast(𝑜). The notation

CausalHist(𝑜){𝑜} means that only the return value of operation 𝑜 is kept. The

axiom AxCausalValue uses CausalHist(𝑜){𝑜} because a process is not required to

be consistent with the values it has returned in the past or the values returned

by the other processes.

The notations CausalHist(𝑜){𝑜} ⪯ 𝜌𝑜 means that CausalHist(𝑜){𝑜} can be se-

quentialized to a sequence 𝜌𝑜 in the speci�cation. We formally de�ne these last

two notations in the next sections.

For a better understanding of this model, consider the following examples.

Example 6 The history 2.8d is CC, we can consider that write(𝑥, 1) is not

causally-related to write(𝑥, 2). Therefore, 𝑝2 can execute them in any order.

Example 7 The history 2.8e is not CC. The reason is that a causal order that

explains the return values of all operations in the history cannot be found. In-

tuitively, since read(𝑦, 1) reads the value from write(𝑦, 1), in any causal order,
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𝑡1:
write(𝑧, 1)
write(𝑥, 1)
write(𝑦, 1)

𝑡2:
write(𝑥, 2)
read(𝑧, 0)
read(𝑦, 1)
read(𝑥, 2)

(a) CCv (and TSO) but not CM
𝑡1:
write(𝑥, 1)
read(𝑥, 2)

𝑡2:
write(𝑥, 2)
read(𝑥, 1)

(b) CM but not CCv

𝑡1:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡2:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(c) CC , CCv and CM
𝑡1:
write(𝑥, 1)

𝑡2:
write(𝑥, 2)
read(𝑥, 1)
read(𝑥, 2)

(d) CC but not CCv nor CM
𝑡1:
write(𝑥, 1)
write(𝑦, 1)

𝑡2:
read(𝑦, 1)
write(𝑥, 2)

𝑡3:
read(𝑥, 2)
read(𝑥, 1)

(e) not CC (nor CCv, nor CM)

Figure 2.8 � Causal Consistency examples.

write(𝑦, 1) should precede read(𝑦, 1). By transitivity of the causal order and be-

cause any causal order should include the program order, write(𝑥, 1) precedes

write(𝑥, 2) in the causal order (write(𝑥, 1) and write(𝑥, 2) are causally related).

However, process 𝑝3 inverse this order. This is a contradiction with the infor-

mal definition of CC which requires that every process should see causally related

operations in the same order.

For a better understanding of the weak causal consistency model, let's recall

our messaging application example (Figure 2.9). Since Alice message "So good

for you " was sent only after reading the David message "I'm in Marrakech

this week", these two messages are causally-related. To prevent the previous

situation (Figure 2.2), weak causal consistency requires that this two causally-

related messages appear in the same order in all replicas. Then, Bob should

observes David message "I'm in Marrakech this week" before the Alice message

"So good for you".
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Figure 2.9 � Causally-related messages in a messaging application.

Causal convergence

Causal convergence (CCv, for short) is stronger than CC. It ensures that as

long as no new updates are submitted, all processes eventually converge towards

the same state. In addition of seeing causally related operations in the same

order (CC), causal convergence uses a total order over all the operations in a

history to agree on how to order operations which are not causally related [19].

This total order is called the arbitration order and denoted by arb. Similarly

to the causal order, the arbitration order is existentially quanti�ed in the CCv

de�nition. Formally,

Definition 5 A history is CCv w.r.t a specification 𝑆 if there exists a strict partial

order co ⊆ 𝑂×𝑂 and a strict total order arb ⊆ 𝑂×𝑂 such that, for each operation

𝑜 ∈ 𝑂 in ℎ, there is a specification sequence 𝜌𝑜 ∈ 𝑆 such that the axioms AxCausal,

AxArb, and AxCausalArb hold.

Axiom AxArb states that the arbitration order arb should at least include the

causal order co. Axiom AxCausalArb states that, sequentializing the operations

that are in the causal past of 𝑜 to explain the return value of an operation 𝑜,

should respect the arbitration order arb.

We now present two examples, one which satis�es CCv and another one which

violates it.

Example 8 The history 2.8a is CCv, we can set an arbitration order in which

write(𝑥, 1) is ordered before write(𝑥, 2).
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Example 9 The history 2.8b is not CCv. In order to read read(𝑥, 2), write(𝑥, 1)

must be ordered before write(𝑥, 2) in the arbitration order. On the other hand,

to read read(𝑥, 1), write(𝑥, 2) must be ordered before write(𝑥, 1) in the arbitration

order, that is not possible under CCv.

Causal memory

The third model we consider is causal memory (CM, for short) that is also

stronger than CC. It guarantees that each process should observe concurrent oper-

ations in the same order. In addition, this order should be maintained throughout

its whole execution, but it can di�er from one process to another [19]. Formally,

Definition 6 A history ℎ is CM w.r.t. a specification 𝑆 if there exists a strict

partial order co ⊆ 𝑂 × 𝑂 such that, for each operation 𝑜 ∈ 𝑂 in ℎ, there is a

specification sequence 𝜌𝑜 ∈ 𝑆 such that axioms AxCausal and AxCausalSeq hold.

Compared to CC, CM requires that each process should be consistent with

the return values it has returned in the past. However, a process is not required

to be consistent with respect to the return values provided by other processes.

Therefore, AxCausalSeq states:

CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌𝑜

where CausalHist(𝑜){POPast(𝑜)} is the causal history where we only keep the re-

turn values of the operations that precede 𝑜 in the program order (in POPast(𝑜)).

As we have seen above, concurrent values under CCv and CM are required to

be observed in the same order by a thread during its entire execution. However,

di�erently from CCv, this order can di�er from one thread to another under CM.

Although this intuitive description seems to imply that CM is weaker than CCv,

the two models are actually incomparable. The following examples illustrate the

di�erence between these models.

Example 10 The history in Figure 2.8b is allowed by CM, but not by CCv. It

is not allowed by CCv because reading 1 from 𝑥 in the first thread implies that it

observed write(𝑥, 1) after write(𝑥, 2) while reading 2 from 𝑥 in the second thread

implies that it observed write(𝑥, 2) after write(𝑥, 1). While this is allowed by CM

where different threads can observe concurrent writes in different orders, it is not

allowed by CCv.
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Example 11 The history in Figure 2.8a is CCv but not CM. It is not allowed by

CM because reading the initial value 0 from 𝑧 implies that write(𝑥, 1) is observed

after write(𝑥, 2) while reading 2 from 𝑥 implies that write(𝑥, 2) is observed after

write(𝑥, 1) (write(𝑥, 1) must have been observed because the same thread reads 1

from 𝑦 and the writes on 𝑥 and 𝑦 are causally related). However, under CCv, a

thread simply reads the most recent value on each variable and the order in which

these values are ordered using timestamps for instance is independent of the order

in which variables are read in a thread, e.g., reading 0 from 𝑧 doesn’t imply that the

timestamp of write(𝑥, 2) is smaller than the timestamp of write(𝑥, 1). This history

is admitted by CCv assuming that the order in which write(𝑥, 1) and write(𝑥, 2)

are observed is write(𝑥, 1) before write(𝑥, 2).

Notice that CC is actually strictly weaker that CCv and CM. For instance,

Example 12 The history in Figure 2.8d is CC but not CCv nor CM. It is CC, we

can consider that write(𝑥, 1) is not causally-related to write(𝑥, 2). On the other

hand, for reading the value 1 the thread 𝑡2 decides to order write(𝑥, 2) before

write(𝑥, 1), then it changes this order to read the value 2. This is not allowed

under CM nor under CCv.

The relationship between TSO and CM was not studied yet before. We actu-

ally show that this two models are incomparable. To do, consider the following

examples.

Example 13 The history in Figure 2.8a is admitted by TSO, but not by CM (the

reasons have been already explained in example 4 and example 11).

Example 14 The history in Figure 2.8b is allowed by CM (see example 10), but

not by TSO. Since 𝑡1 is written in the variable 𝑥, it should read the value of 𝑥

from its own store buffer and read the value 1 not 2. Similarly, 𝑡2 is written in

the variable 𝑥, so it should read the value of 𝑥 from its own store buffer and read

2 instead of 1.

Then,

Result 1 CM and TSO are incomparable.
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The Figure 4.3 summarizes the relationships between the consistency models

presented in this chapter. As noticed above, SC is the strongest model we consider

in this thesis, TSO is weaker than SC. The causal consistency variants are weaker

than TSO and thus than SC.

Figure 2.10 � Relationships between consistency models CC, CCv, CM, TSO
and SC. Directed arrows denote the �weaker-than� relation while dashed lines

connect incomparable models.

2.3 Conclusion

In this chapter, we have introduced the notions and concepts we used through

this thesis. We have presented the preliminaries in a �rst time, then we de�ned the

system model that we consider and the consistency models for which we propose

veri�cation methods in the following chapters. The next chapter is dedicated to

the veri�cation of causal consistency in its tree variants (CC, CCv and CM).
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CHAPTER 3

CAUSAL CONSISTENCY VERIFICATION

As we have seen in the second chapter, the CAP Theorem [42] shows that

(strong) Consistency, Availability, and Partition tolerance are impossible to be

ensured together. In response to this trade-o�s implied by the CAP Theorem,

weak consistency models were proposed such as causal consistency [46] which is

one of the most implemented weak models for distributed systems. Several imple-

mentations of di�erent variants of causal consistency (such as causal convergence

[50] and causal memory [10]) have been developed i.e., [14, 30, 31, 45, 48, 55, 57].

However, the development of such implementations that meet both consistency

requirements and availability and performance requirements is an extremely hard

and error prone task. Hence, developing e�cient approaches to check the correct-

ness of executions w.r.t consistency models such as causal consistency is crucial.

In this chapter we present an approach and a tool for checking automatically the

conformance of a system computations to causal consistency. More precisely, we

address the problem of, given a computation, how to check its conformance to

causal consistency. We consider this problem for three variants of causal consis-

tency that are used in practice and that we have seen in the previous chapter

(Chapter 2). Solving this problem constitutes the cornerstone for developing dy-

namic veri�cation and testing algorithms for causal consistency.

Bouajjani et al. [19] studied the complexity of checking causal consistency for

a given computation and showed that it is polynomial time 1. In addition, they

1. All the causal consistency variations become NP-complete without the assumption that
each value is written at most once [19].
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formalized the di�erent variations of causal consistency and proposed a reduction

of this problem to the occurrence of a �nite number of small "bad-patterns" in

the computations i.e., some small sets of events occurring in the computations

in some particular order. We build on this work in order to de�ne a practical

approach and a tool for checking causal consistency, and to apply this tool to

real-life case studies. These bad-patterns rely on some relations that we intro-

duce in the next section (3.1) and that can be computed using a least �x point

calculation (Datalog programs for instance). Therefore, our approach consists

basically in reducing the problem of detecting the existence of these bad patterns

in computations to the problem of solving Datalog queries. The fact that solving

Datalog queries is polynomial time and that our reduction is polynomial in the

size of the computation, allow to solve the conformance checking problem for

causal consistency in polynomial time and improves the complexity of this prob-

lem from 𝒪(𝑛5) to 𝒪(𝑛3). We implement our approach in an e�cient testing tool

for distributed systems, and carry out several experiments on real distributed

databases, showing the e�ciency and performance of this approach. To the best

of our knowledge, this is the �rst e�cient and full-automated testing tool for

causal consistency veri�cation.

Since the experiment results show that CM costs more compared to CC and

CCv, we propose a new de�nition of CM which improves the experiments results

of the conformance checking procedure. The new de�nition of CM computes a

small set of constraints compared to the one in [19]. This optimization leads to

a better conformance checking approach. This work extends the work originally

published in [66, 67, 68].

The rest of this chapter is organized as follows, Section 3.1 recalls the charac-

terization of causal consistency violations (bad-patterns) introduced in [19]. We

give new de�nitions of causal consistency models in Section 3.2. Section 3.3 is

dedicated to our causal consistency veri�cation approach. The Subsection 3.3.1

presents the reduction of the problem of conformance checking for causal consis-

tency to the problem of solving Datalog queries. Subsection 3.3.4 describes our

testing tool, the case studies we have considered, and the experimental results

we obtained.
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3.1 Causal consistency violations

In this section, we show, for each causal consistency variant, how to charac-

terize histories that are not conform to it through the presence of some speci�c

sets of operations. In [19], computations that are violations of CC, CCv or CM are

characterized by the occurrence of a �nite number of particular (small) sets of

ordered events, called bad-patterns. Roughly, this characterization describes the

small sets of operations that should not occur in some particular order withing a

history which satis�es the causal consistency model. We recall these bad-patterns

in this section.

Bad-patterns definitions. The tables 3.1 and 3.2 represent the bad-patterns

of each causal consistency variant and their de�nitions respectively.

We now recall the characterization of each causal consistency models based

on bad-patterns.

3.1.1 CC Bad-patterns.

We now give the CC bad-patterns as de�ned in [19]. These bad-patterns are

de�ned using the relation of causality co which is given by the program order po

or the write-read relation wr or any transitive composition of these relations i.e.,

co = (po ∪ wr)+.

Lemma 1 ([19]) A history is CC if and only if it does not contain any of the

bad-patterns CyclicCO, WriteCOInitRead, ThinAirRead and WriteCORead.

To illustrate this, consider the following example.

Example 15 The history in Figure 2.8e contains the bad-pattern WriteCORead,

so it is not CC. The write(𝑥, 1) is causally ordered before write(𝑥, 2) by the

transitivity. On the other hand, the process 𝑝3, read(𝑥, 1) from write(𝑥, 1)

((write(𝑥, 1),read(𝑥, 1))∈ wr). The read read(𝑥, 1) is also causally-related to

write(𝑥, 2) by transitivity. The history in Figure 2.8c does not contain any of

the bad-patterns, so it is CC , CCv and CM.

3.1.2 CCv bad-patterns.

As we have seen before, CCv is stronger than CC. Therefore, CCv ex-

cludes all the CC bad-patterns we have seen above (CyclicCO, WriteCOInitRead,
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CC CCv CM

CyclicCO CyclicCO CyclicCO

WriteCOInitRead WriteCOInitRead WriteCOInitRead

ThinAirRead ThinAirRead ThinAirRead

WriteCORead WriteCORead WriteCORead

CyclicCF WriteHBInitRead

CyclicHB

Table 3.1 � Bad-patterns for each causal consistency model
CyclicCO the causality relation co is cyclic.
WriteCOInitRead a read(𝑥, 0) is causally preceded by a

write(𝑥, 𝑣) (i.e., (write(𝑥, 𝑣), read(𝑥, 0)) ∈ co)
such that v ̸= 0

ThinAirRead there is a read(𝑥, 𝑣) operation that reads a
value v, such that v ̸= 0, that it is never
written before i.e., it can not be related to
any write by a wr relation.

WriteCORead there exist write operations 𝑤1, 𝑤2 such
that var(𝑤1) = var(𝑤2) and a read opera-
tion 𝑟1 such that (𝑤1, 𝑟1) ∈ wr. In addition,
(𝑤1, 𝑤2) ∈ co and (𝑤2, 𝑟1) ∈ co.

WriteHBInitRead there exist a read(𝑥, 0) and a write(𝑥, 𝑣) (v
̸= 0) such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb𝑜
for some operation o, with (𝑟, 𝑜) ∈ po*.

CyclicHB the lhb𝑜 relation is cyclic for some operation
o.

CyclicCF the union of cf and co (cf ∪ co) is cyclic.

Table 3.2 � Bad-patterns de�nitions

ThinAirRead and WriteCORead). In addition, CCv excludes another bad pattern,

called CyclicCF, de�ned in terms of a con�ict relation cf. Intuitively, two writes

𝑤1 and 𝑤2 on the same variable are in con�ict, if 𝑤1 is causally-related to a read

taking its value from 𝑤2. Formally, cf is de�ned as

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ cf i� (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ co and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, for some read(𝑥, 𝑣′)

Then,
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Lemma 2 ([19]) A history is CCv if and only if it is CC and does not contain the

bad-pattern CyclicCF.

For instance,

Example 16 The History in Figure 2.8b is not CCv as it contains the bad-pattern

CyclicCF. In order to read read(𝑥, 2), write(𝑥, 2) must precedes write(𝑥, 2) in the

conflict order. On the other hand, to read read(𝑥, 1), write(𝑥, 2) must be ordered

before write(𝑥, 1) in the conflict order. Thus, this leads to CyclicCF bad-pattern.

3.1.3 CM bad-Patterns.

As we have seen above, CM is also stronger than CC. Therefore, CM ex-

cludes all the CC bad-patterns (CyclicCO, WriteCOInitRead, ThinAirRead

and WriteCORead). In addition, CM excludes two additional bad-patterns

(WriteHBInitRead and CyclicHB), de�ned using a happened-before relation per

operation called lhb𝑜
2. Formally, lhb𝑜 is de�ned as follows.

Definition 7 Let h=⟨𝑂, po,wr⟩ be a history. For every operation 𝑜 in ℎ, let lhb𝑜

be the smallest transitive relation such that:

1. co|CausalPast(𝑜) ⊆ lhb𝑜, which means that if and only if two operations are

causally related and each one is causally related to 𝑜, then they are related

by lhb𝑜 i.e., (𝑜1, 𝑜2) ∈ lhb𝑜 if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co*

(where co* is the reflexive closure of co), and

2. two writes 𝑤1 and 𝑤2 are related by lhb𝑜 (saturation schema in Fig.3.1c) if

𝑤1 is lhb𝑜-related to a read taking its value from 𝑤2 and that read is done

by the same thread executing 𝑜 and before 𝑜, i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈
lhb𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ lhb𝑜, (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and

(read(𝑥, 𝑣′), 𝑜) ∈ po* for some operation 𝑜 (po* is the reflexive closure of

po).

Then,

Lemma 3 ([19]) A history is CM if and only if it is CC and does not contain any

of the bad-patterns WriteHBInitRead and CyclicHB.

2. This relation was denoted hb𝑜 in [19, 66]. We denote it lhb𝑜 to avoid confusion with other
happen-before relations considered in my thesis.
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For example,

Example 17 The history 2.8a contains the bad-pattern WriteHBInitRead so

it is not CM. Let’s consider 𝑙ℎ𝑏 = lhbread(𝑥,2). We have (write(𝑧, 1),write(𝑥, 1))

∈ po and (write(𝑥, 1), write(𝑥, 2)) ∈ 𝑙ℎ𝑏 (the reason is that we have

(write(𝑥, 1),read(𝑥, 2)) ∈ co and (write(𝑥, 2),read(𝑥, 2)) ∈ wr which implies

(write(𝑥, 1),write(𝑥, 2)) ∈ lhb) and (write(𝑥, 2),read(𝑧, 0)) ∈ po, thus by transi-

tivity we have (write(𝑧, 1),read(𝑧, 0) ∈ 𝑙ℎ𝑏.

In the next section, we present new causal consistency de�nitions that are based

on saturation rules and we show that they are equivalent to the ones in [19], we

have seen above.

3.2 New Causal consistency definitions

In this section, we present equivalent causal consistency de�nitions to the bad

patterns we have seen above (and thus to the axiomatic de�nitions used in [19]).

These models de�nitions are based on saturation rules that we are going to see

in the next sections. The SC checking approach proposed in Chapter 4 is based

on a strong version of these saturation based causal consistency models.

3.2.1 Weak causal consistency

Weak causal consistency (CC) requires that any two causally-dependent val-

ues are observed in the same order by all threads, where causally-dependent

means that either those values were written by the same thread (i.e., the corre-

sponding writes are ordered by po), or that one value was written by a thread

after reading the other value (the wr relation), or any transitive composition of

such dependencies, i.e., co = (po ∪ wr)+. Values written concurrently by two

threads can be observed in any order, and even-more, this order may change in

time. Formally,

Definition 8 A history ⟨𝑂, po,wr⟩ satisfies CC if the relation (po ∪
wr)+; (rw[co])? is irreflexive.

Where the "?" exponent denotes the re�exive closure and ";" is the standard

composition. Note that "irre�exive" is used here instead of "acyclic" to say that

rw[co] is used at most once in the cycle.
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𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑤𝑟

𝑅

𝑟𝑤[𝑅]

(a) Read-Write relation rw[R]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑐𝑜

𝑐𝑓

𝑤𝑟

(b) Conflict order cf

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟

𝑜

𝑙ℎ𝑏𝑜

𝑙ℎ𝑏𝑜

𝑤𝑟

𝑝𝑜*

(c) Local happen-before 𝑙ℎ𝑏𝑜

Figure 3.1 � De�nitions of relations used to de�ne causal consistency models.

The read-write relation rw[co] induced by the causal relation is de�ned by

(read(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ rw[co] i� (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ co and

(write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, for some write(𝑥, 𝑣)

The read-write relation rw[co] is a variation of rw from the de�nition of

SC/TSO where the store order ww is replaced by the projection of co on pairs of

writes. We obtain rw[co] by replacing R in Figure 3.1a by co. In general, given

a binary relation 𝑅 on operations, the read-write relation rw[𝑅] is de�ned using

the saturation rule in Figure 3.1a as follows:

Definition 9 The read-write relation rw[𝑅] induced by a relation 𝑅 is defined by

rw[𝑅] = wr−1 ∘𝑅WW.

We prove that this CC de�nition is equivalent to the CC bad-patterns we have

seen in the �rst section (Lemma 1).

Proof 1 (⇒) Let ℎ = ⟨𝑂, po,wr⟩ be a history that does not satisfy CC. The

lemma 1 implies that ℎ contains one of the bad-patterns CyclicCO, WriteCOIni-

tRead, ThinAirRead and WriteCORead. Let’s show that (po ∪ wr)+; (rw[co])? is

not irreflexive.

� If ℎ contains the CyclicCO bad pattern i.e., (po∪wr)+ is cyclic then (po∪
wr)+; (rw[co])? is not irreflexive.
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� If ℎ contains the WriteCOInitRead bad pattern i.e., there exists a read(𝑥, 0)

that is causally preceded by a write(𝑥, 𝑣) ((write(𝑥, 𝑣)), read(𝑥, 0) ∈ co)

such that v ̸= 0. Considering the assumption that every history in-

cludes a write operation write(𝑥, 0) writing the initial value for each vari-

able 𝑥 and these write operations precede all other operations in po. We

get (write(𝑥, 0), write(𝑥, 𝑣)) ∈ co and (write(𝑥, 0), read(𝑥, 0)) ∈ wr then

(read(𝑥, 0),write(𝑥, 𝑣)) ∈ rw[co]. Thus, the relation (po ∪ wr)+; (rw[co])? is

not irreflexive.

� If ℎ contains the WriteCORead bad pattern i.e., there exist two write op-

erations 𝑤1, 𝑤2 such that var(𝑤1) = var(𝑤2) and a read operation 𝑟1 such

that (𝑤1, 𝑟1) ∈ wr, (𝑤1, 𝑤2) ∈ co and (𝑤2, 𝑟1) ∈ co. Given (𝑤1, 𝑟1) ∈ wr and

(𝑤1, 𝑤2) ∈ co we get (𝑟1, 𝑤2) ∈ rw[co]. Thus, (po ∪ wr)+; (rw[co])? is not

irreflexive.

� If ℎ contains the ThinAirRead bad pattern i.e., there is a read(𝑥, 𝑣) opera-

tion which reads a value v (v ̸= 0) that it is never written before (there is

no w operation such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ wr). ThinAirRead reads

are excluded by the definition of a history and the write-read relation. Their

presence can be detected easily and we assumed that this is done a-priori.

(⇐) Consider a history ℎ such that (po ∪ wr)+; (rw[co])? is not irreflexive. Let’s

prove that this implies the presence of one of the bad patterns: CyclicCO, Write-

COInitRead or WriteCORead. The (po∪wr)+; (rw[co])? relation is not irreflexive

implies that the history contains one of the following cycles:

� A cycle in (po ∪ wr)+ which implies directly the CyclicCO bad pattern.

� A cycle in (po ∪ wr)+; (rw[co])? (includes only one rw[co]). Following its

definition, having a rw[co] relation means that there exist two write opera-

tions 𝑤1, 𝑤2 such that var(𝑤1) = var(𝑤2) and a read operation 𝑟1 such that

(𝑤1, 𝑟1) ∈ wr, (𝑤1, 𝑤2) ∈ co and (𝑟1, 𝑤2) ∈ rw[co]. In order to have a cycle

in (po∪wr)+; (rw[co])? which includes only one rw[co] relation, the (𝑤2, 𝑟1)

should be in co ((𝑤2, 𝑟1) ∈ co). Thus, we get the WriteCORead bad pattern.

�

Now let's consider a history that is valid following the new CC de�nition and

another which is not.

–34–



Chapter 3. Causal Consistency Verification

Example 18 The history 2.8d is CC, we can consider that write(𝑥, 1) and

write(𝑥, 2) are not related by the causal order i.e., (write(𝑥, 1),write(𝑥, 2)) /∈ co.

Therefore, they can be seen in any order by different threads.

Example 19 The history 2.8e is not CC. The reason is that we have (write(𝑥, 1),

write(𝑥, 2)) ∈ co by the transitivity which include (write(𝑥, 1),write(𝑦, 1)) ∈ po

and (write(𝑦, 1), read(𝑦, 1)) ∈ wr and (read(𝑦, 1), write(𝑥, 2)) ∈ po. In 𝑡3, we have

(read(𝑥, 2), read(𝑥, 1)) ∈ po then (read(𝑥, 1),write(𝑥, 2)) ∈ rw[co] which implies

that co;(rw[co])? is not irreflexive. Therefore, the history is not allowed by CC.

3.2.2 Causal convergence

CCv ensures that concurrent values are observed in the same order by all

threads. The de�nition of CCv is based on the con�ict order cf we have seen.

Then,

Definition 10 A history ⟨𝑂, po,wr⟩ satisfies CCv if it satisfies CC and the re-

lation po ∪ wr ∪ cf is acyclic.

Let's show that this CCv de�nition is equivalent to the CCv bad-patterns (Lemma

2).

Proof 2 (⇒) This is a direct consequence of lemma 2. Let ℎ = ⟨𝑂, po,wr⟩ be a

history that does not satisfy CCv. The lemma 2 implies that ℎ is not CC or it

contains the CyclicCF bad pattern. If it is not CC, then it is not CCv as well.

Now, if it contains the CyclicCF bad pattern i.e., po ∪ wr ∪ cf is cyclic then we

are done.

(⇐) If po ∪ wr ∪ cf is cyclic, then the history ℎ contains the CyclicCF bad

pattern (Table 3.2).

We now present two examples to illustrate the new CCv de�nition,

Example 20 The history 2.8a is CCv, we can set a conflict order in which

write(𝑥, 1) is ordered before write(𝑥, 2), so po ∪ wr ∪ cf is acyclic.

Example 21 The history 2.8b is not CCv. In order to read the value 2,

read(𝑥, 2), the write write(𝑥, 1) must be ordered before write(𝑥, 2) in the conflict

order cf. On the other hand, to read the value 1, read(𝑥, 1), the write write(𝑥, 2)

must be ordered before write(𝑥, 1) in the conflict order cf. Thus, we get a cycle

in po ∪ wr ∪ cf.
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3.2.3 Causal Memory

The third model we consider is causal memory (CM) which is also a strength-

ening of CC where roughly, concurrent values are required to be observed in the

same order by a thread. In addition, this order should be maintained through-

out its whole execution, but it can di�er from one thread to another. This is

formalized by the happen-before relation per operation lhb𝑜 we have seen in the

previous section (de�nition 7).

Now, we formally de�ne CM.

Definition 11 A history ⟨𝑂, po,wr⟩ satisfies CM if it satisfies CC and for each

operation 𝑜 in the history, the lhb𝑜 relation is acyclic.

Next, we prove that this new CCM de�nition is equivalent to the CM bad-patterns

that we have seen above (Lemma 3).

Proof 3 (⇒) Let ℎ = ⟨𝑂, po,wr⟩ be a history that does not satisfy CM. The

lemma 3 implies that ℎ is not CC or it contains the bad pattern WriteHBInitRead

or CyclicHB. If it is not CC, then it is not CM as well. Now,

� If ℎ contains the CyclicHB bad pattern i.e., the lhb𝑜 relation is cyclic for

some operation o, then it is not CM (the definition 11).

� If ℎ contains the WriteHBInitRead bad pattern i.e., there exists a read(𝑥, 0)

and a write(𝑥, 𝑣) (v ̸= 0) such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb𝑜 for

some operation o. As we said before, we assume that every history in-

cludes a write operation write(𝑥, 0) writing the initial value for each vari-

able 𝑥 and these write operations precede all other operations in the pro-

gram order po ((write(𝑥, 0), write(𝑥, 𝑣)) ∈ po for all write(𝑥, 𝑣)). Given

(write(𝑥, 𝑣), read(𝑥, 0)) ∈ lhb𝑜 and (write(𝑥, 0), read(𝑥, 0)) ∈ wr, we get

(write(𝑥, 𝑣), write(𝑥, 0)) ∈ lhb𝑜. Since (write(𝑥, 0), write(𝑥, 𝑣)) ∈ po ⊆ lhb𝑜,

we get a cycle in lhb𝑜.

(⇐) If for an operation 𝑜 in the history, the lhb𝑜 relation is cyclic, then we get

the CyclicHB bad pattern (Table 3.2).

In the following section, we propose an improved causal memory de�nition

(de�nition 13) alternate to the de�nition we have seen above (de�nition 11).
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An improved Causal Memory definition

In this section, we propose a succinct but equivalent CM de�nition (de�nition

13) which only asks lhb𝑜 to be acyclic for a small set of operations 𝑜. As we

will see in experiments (Section 3.3.4), this improves the veri�cation runtime.

Let's call CM_1 the de�nition 12 and CM_2 the improved CM de�nition that we

propose.

Let's recall the de�nition that we called CM_1,

Definition 12 A history ⟨𝑂, po,wr⟩ satisfies CM_1 if it satisfies CC and for each

operation 𝑜 in the history, the relation lhb𝑜 is acyclic.

Then, CM_2 is de�ned as follows,

Definition 13 A history ⟨𝑂, po,wr⟩ satisfies CM_2 if it satisfies CC and for each

po-maximal operation 𝑜 in the history, the relation lhb𝑜 is acyclic.

To prove the equivalence between de�nition 12 and 13, we have to prove some

intermediate results. First, we de�ne lhb𝑖𝑜 to denote a controlled saturated version

of lhb𝑜.

Definition 14 For every operation 𝑜 in ℎ,

1. let lhb0𝑜 be the relation such that if two operations are causally related and

each one is causally related to 𝑜, then they are related by lhb0𝑜 i.e., (𝑜1, 𝑜2) ∈
lhb𝑜 if and only if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co* (where co* is

the reflexive closure of co),

2. let lhb𝑖𝑜 for 𝑖 > 0 be the transitive relation if two writes 𝑤1 and 𝑤2 are related

by lhb𝑖𝑜 if 𝑤1 is (∪𝑗<𝑖lhb
𝑗
𝑜)

+ (transitive closure of all the previous lhb𝑗𝑜) related

to a read taking its value from 𝑤2 and that read is done by the same thread

executing 𝑜 and before 𝑜, i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝑖𝑜 if and only

if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (∪𝑗<𝑖lhb
𝑗
𝑜)

+, (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and

(read(𝑥, 𝑣′), 𝑜) ∈ po* for some read(𝑥, 𝑣′).

Theorem 1 For all 𝑜, lhb𝑜 = (∪𝑖≥0lhb
𝑖
𝑜)

+

Proof 4 By construction, (∪𝑖≥0lhb
𝑖
𝑜)

+ satisfies definition 7. Because lhb𝑜 is the

smallest one, lhb𝑜 ⊆ (∪𝑖≥0lhb
𝑖
𝑜)

+.

Also, by construction, all the relations in (∪𝑖≥0lhb
𝑖
𝑜)

+ must be present in lhb𝑜

because they are constructed statically from co and wr. So lhb𝑜 ⊇ (∪≥lhb
𝑖
𝑜)

+.
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Now, we prove that lhb𝑜 is included in lhb𝑜′ if 𝑜 is executed before 𝑜′ in a same

thread ((𝑜, 𝑜′) ∈ 𝑝𝑜). So, checking lhb𝑜 acyclicity for only po-maximal operations

is enough to decide for all operations. To prove this, we use the lhb𝑖𝑜 de�nition.

Lemma 4 If (𝑜, 𝑜′) ∈ po then lhb𝑖𝑜 ⊆ lhb𝑖𝑜′ for 𝑖 ≥ 0

Proof 5 The proof is by induction on the index 𝑖 of lhb𝑖𝑜.

� Base case. 𝑖 = 0. Since (𝑜, 𝑜′) ∈ po ⊆ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co*

implies, (𝑜1, 𝑜
′) ∈ co and (𝑜2, 𝑜

′) ∈ co*. Thus, we get lhb0𝑜 ⊆ lhb0𝑜′.

� Inductive step. If there exists two writes write(𝑥, 𝑣),write(𝑥, 𝑣′) and a read

read(𝑥, 𝑣′) with (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (∪𝑗<𝑖lhb
𝑗
𝑜)

+ and

(read(𝑥, 𝑣′), 𝑜) ∈ po* to force (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝑖𝑜 relation, then

it is also true that (write(𝑥, 𝑣), read(𝑥, 𝑣′) ∈ (∪𝑗<𝑖lhb
𝑗
𝑜′)

+ (induction hypoth-

esis) and (read(𝑥, 𝑣′), 𝑜′) ∈ po*. Then, (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝑖𝑜′ is

forced as well. Finally, lhb𝑖𝑜 ⊆ lhb𝑖𝑜′.

Corollary 1 If (𝑜, 𝑜′) ∈ po then lhb𝑜 ⊆ lhb𝑜′.

Proof 6 Direct consequence of theorem 1 and lemma 4.

Finally, we can prove the equivalence between two CM de�nitions. Both of

the de�nitions requires the history to be CC. So, we just need to do it for the

acyclicity of lhb𝑜.

De�nition 12 requires lhb𝑜 to be acyclic for all 𝑜, whereas de�nition 13 requires

lhb𝑜 to be acyclic for a subset of operations 𝑜. So, trivially de�nition 12 implies

de�nition 13.

For the other direction, we use corollary 1. If (𝑜, 𝑜′) ∈ po then lhb𝑜 ⊆ lhb𝑜′ .

Hence, a cycle in lhb𝑜 for some 𝑜 (if 𝑜 is po-maximal operation, then we are done)

will be also present in lhb𝑜′ for the po-maximal 𝑜′ because (𝑜, 𝑜′) ∈ po.

Theorem 2 Definition 12 and definition 13 for CM are equivalent.

The next section presents our approach for checking the causal consistency

models we have seen above.

3.3 Causal Consistency verification

This section presents our causal consistency veri�cation approach.
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3.3.1 Reduction to Datalog queries solving

In this section, we introduce our reduction of the problem of checking whether

a given computation is a CC, CCv or CM violation to the problem of Datalog

queries solving. Datalog is a logic programming language that does not allow

functions as predicate arguments. The advantage of using Datalog is that it

provides a high level language for naturally de�ning constraints on relations and

that solving Datalog queries is polynomial time [61].

Datalog

A rule in Datalog is a statement of the following form:

𝑟1(𝑣1) :- 𝑟2(𝑣2), ..., 𝑟𝑖(𝑣𝑖)

Where i≥ 1, 𝑟𝑖 are the names of predicates (relations) and 𝑣𝑖 are arguments. A

Datalog program is a �nite set of Datalog rules over the same schema [9, 22].

The left hand side (LHS) is called the rule head and represents the outcome of

the query, while the right hand side (RHS) is called the rule body.

Example 22 For instance, this Datalog program computes the transitivity clo-

sure of a given graph (edges are the inputs).

trans(X,Y) :- edge(X,Y).

trans(X,Y) :- trans(X,Z), trans(Z,Y).

Where the fact edge(a,b) means that there exists a direct edge from a to b.

Datalog and logic programming have some similarities. However, the main

di�erence between them is that logic programming allows using function, but

Datalog does not. The next table presents some Datalog notations, that we are

going to use in the following sections, and their logical counterparts.

Logical formulas Datalog formulas
T(x,y) T(x,y) ←−
T(x,y) ∨ ¬ R(x,z)∨ ¬ T(z,y) T(x,y) ←− R(x,z), T(x,y)
¬ R(x,z)∨ ¬ T(z,y) ←− R(x,z), T(z,y)

Table 3.3 � Logical notations and their Datalog equivalence
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In the literature, there are three de�nitions for the semantics of Datalog pro-

grams, model theoretic, proof-theoretic and fixpoint semantics [9, 22]. In this

work, we consider the fix-point semantics.

Fix-point semantics.

This approach is based on the �x-point theory. A �xed point of a function

𝑓() is an element 𝑒 from its domain which is mapped by the function to itself

i.e., 𝑓(𝑒) = 𝑒. An operator called immediate consequence operator is de�ned

from the Datalog program rules. In fact, this operator is applied repeatedly on

existing facts in order to get new ones until getting a �xed point. Doing so gives

a constructive de�nition of Datalog programs semantics.

Histories Encoding

In our approach, extracted relations from a history (po, wr...) are represented

as predicates called facts, while the algorithm for �xed point computation is

formulated as Datalog recursive relations called inference rules.

We �rst introduce facts. For instance, consider the fact po(a,b) which represents

the program order from the operation a to the operation b (likewise for po(b,c)),

po(a,b).

po(b,c).

Now, we de�ne the needed relations in our approach.

� rd(X), X is a read operation

� wrt(X), X is a write operation

� po(X,Y), X precedes Y in the program order po.

� wr(X,Y), Y reads the value from a write operation X (wr relation)

� sv(X,Y), the operations X and Y access to the same variable.

Afterwards, we de�ne the inference rules used to generate derived relations. For

instance, the following rules states that the causal relation co is derived from po

and wr and it is transitive.

–40–



Chapter 3. Causal Consistency Verification

co(X,Y) :- po(X,Y). % co=(po U wr)

co(X,Y) :- wr(X,Y). % co=(po U wr)

co(X,Z) :- co(X,Y), co(Y,Z). % co is transitive

Bad-patterns Encoding

We have expressed all the bad-patterns as Datalog inference rules, except

the ThinAirRead bad-pattern that we verify externally. The reason is that it

contains an universal quanti�cation over all operations. There exist two kinds of

bad-patterns. The �rst type is related to the existence of a cycle in a relation.

For instance, the bad-pattern CyclicCO that is expressed as

:- co(X,Y), co(Y,X). % CyclicCO

Intuitively, this means that there exist no operations X and Y such that X pre-

cedes Y in the causal order and Y also precedes X in the causal order. Since co

is transitive, we can simply write it as

:- co(X,X). % CyclicCO

The second type of bad-patterns is related to the occurrence of a set of operations

in some particular order. For instance, WriteCORead is expressed as follows

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z). %

WriteCORead

Intuitively, this means that there exist no write operations X and Y on the same

variable and a read operation Z which takes the value from X such that X precedes

Y in the causal order and Y precedes Z in the causal order.

CC bad-patterns encoding.

In addition to the CyclicCO bad-pattern we have seen above, we show how

the other CC bad-patterns are encoded. Consider the following example which

presents the Datalog program corresponding to an execution history.

Example 23 This example represents the history 2.8b Datalog program for

checking CC. Given a history, first we extract all the facts (the relations between

operations that we defined in Section 3.3.1). Second, we define the inference

rules ( co definition and its transitivity in this example). Third, we encode the
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bad-patterns of the consistency model that we want to check (The CC consistency

model in this case). The CC bad-patterns encoding is shown in the last part

of the following Datalog program (After CC bad patterns comment). Mention

that the CC bad patterns and their encoding are already explained above.

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% Inference rules

co(X,Y) :- po(X,Y). % co=(po U wr)

co(X,Y) :- wr(X,Y). % co=(po U wr)

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

We mention that since the bad pattern WriteCOInitRead includes a predicate

initread(Y), we add the initread("r(a,0,ida)") to the programs that do not contain

a read which reads the initial value.
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The result of running this Datalog program using the online clingo version

[2] is shown in the following. We mention that when a history satis�es the

consistency model we check, the Datalog program returns "SATISFIABLE" and

has a model which includes the derived relations. On the other hand, when a

history does not satisfy the consistency model, the Datalog program returns

"UNSATISFIABLE" and has no model.

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)","

r(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)")

co("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0)

","r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)"

) sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2,

id2)","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2,

id2)") sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x

,1,id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x

,1,id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r

(x,2,id1)") rd("r(x,1,id3)")

SATISFIABLE

Models : 1

Calls : 1

Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

The Datalog program is "SATISFIABLE" which means that the history does not

contain any of the bad-patterns CyclicCO, WriteCOInitRead and WriteCORead.

Therefore, it satis�es CC.

Now, let's see how CCv and CM bad-patterns are encoded. Since the

CCv/CM bad-patterns include CC bad-patterns, each CCv/CM Datalog program

should contain CC bad-patterns which we have already seen above in addition to

some other rules that present in the next sections.
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CCv bad-patterns encoding.

Following the same logic of the CC case, the CCv bad-patterns are encoded

as follows

% CCv inference rules

cf(X,Y) :- co(X,Z), wr(Y,Z), wrt(X), sv(X,Y), sv(X,Z). %Conflict order CF

cf(X,Y) :- cf(X,Z), cf(Z,Y). %Transitivity

cfco(X,Y) :- co(X,Y). %cfco= CF U CO, cfco is the union of cf and co.

cfco(X,Y) :- cf(X,Y). %cfco= CF U CO

%CCv bad-pattern

:- cfco(X,Y), cfco(Y,X). %CyclicCF (CF U CO is acyclic)

Intuitively, the CyclicCF bad-pattern encoding means that there exist no

operations X and Y such that X precedes Y in the con�ict order CF and Y also

precedes X in CF.

Let's consider an example of CCv Datalog programs (the history 2.8b Datalog

program).

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").
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sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% CC inference rules

co(X,Y) :- po(X,Y). % co=(po U wr)

co(X,Y) :- wr(X,Y). % co=(po U wr)

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

% CCv inference rules

cf(X,Y) :- co(X,Z), wr(Y,Z), wrt(X), sv(X,Y), sv(X,Z). %Conflict order CF

cf(X,Y) :- cf(X,Z), cf(Z,Y). %Transitivity

cfco(X,Y) :- co(X,Y). %cfco= CF U CO, cfco is the union of cf and co.

cfco(X,Y) :- cf(X,Y). %cfco= CF U CO

%CCv bad-pattern

:- cfco(X,Y), cfco(Y,X). %CyclicCF (CF U CO is acyclic)

clingo version 5.5.0

Reading from stdin

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 0.009s

CPU Time : 0.000s

As we have seen, the history 2.8b is not CCv so its CCv checking Datalog

program is "UNSATISFIABLE".

CM bad-patterns encoding.

Similarly to CC and CCv, the CM bad-patterns are encoded as follows:

%CM inference rules

hb(X,O,O) :- co(X,O). % hbo is initialized to causal order

hb(X,Y,O) :- hb(Y,O,O), co(X,Y).
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hb(X,Y,O) :- hb(X,Z,O), po(Z,O), wr(Y,Z), wrt(X), sv(X,Y).% hbo definition

hb(X,Y,O) :- hb(X,Z,O), wr(Y,Z), wrt(X), sv(X,Y). % hbo definition

hb(X,Z,O) :- hb(X,Y,O), hb(Y,Z,O). %Transitivity

%CM bad-patterns

:- hb(X,Y,O), wrt(X), sv(X,Y), po(Y,O), initread(Y). %WriteHBInitRead

:- hb(X,Y,O), hb(Y,X,O). %CyclicHB

The WriteHBInitRead states that there exist a initread(Y) (read(𝑥, 0)) and

a wrt(X) (write(𝑥, 𝑣)) such that sv(X,Y) (X and Y are in the same variable) and

hb(X,Y,O) for some operation O, with po(Y,O) ((𝑟, 𝑜) ∈ po*). The CyclicHB

bad-pattern states that there exist no operations X and Y such that X precedes

Y in the lhb𝑜 relation for some operation o.

CM_1 and CM_2 are characterized by the same CM bad-patterns described

above. The only di�erence is that for CM_2, we have added a function which

identi�es the po-maximal operation in each thread. Then, we replace the op-

eration "𝑂" in the CM bad-patterns above by these identi�ed operations (last

operation in each thread) instead of replacing it by all read/write operations in

the history (for CM_1).

For a better understanding, consider the instantiation of the CM bad-patterns

for CM_1 and CM_2.

� For CM_1: we replace "𝑂" by all operations in the history.

%CM inference rules

hb(X,w(x,1,id0),w(x,1,id0)) :- co(X,w(x,1,id0)).

hb(X,Y,w(x,1,id0)) :- hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(X),

sv(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,1,id0)) :- hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)).

%CM bad-patterns

:- hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y).

:- hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)).

%CM inference rules

hb(X,w(x,2,id2),w(x,2,id2)) :- co(X,w(x,2,id2)).

hb(X,Y,w(x,2,id2)) :- hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(X),

sv(X,Y).
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hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,2,id2)) :- hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)).

%CM bad-patterns

:- hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y).

:- hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)).

%CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y).

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

%CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y).

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

� For CM_2: we replace "𝑂" by the last operation in each process in the

history.

%CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y).

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

%CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").
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hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y).

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

Now, let's consider the whole Datalog programs and their running results.

� For CM_1:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% Inference rules

co(X,Y) :- po(X,Y).

co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).
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% WriteCORead

%CM inference rules

hb(X,w(x,1,id0),w(x,1,id0)) :- co(X,w(x,1,id0)).

hb(X,Y,w(x,1,id0)) :- hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(X),

sv(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,1,id0)) :- hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)).

%CM bad-patterns

:- hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y).

:- hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)).

% CM inference rules

hb(X,w(x,2,id2),w(x,2,id2)) :- co(X,w(x,2,id2)).

hb(X,Y,w(x,2,id2)) :- hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(X),

sv(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,2,id2)) :- hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)).

%CM bad-patterns

:- hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y).

:- hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)).

% CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y).

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

% CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns
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:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y).

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)","r

(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)") co

("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0)",

"r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)")

sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2,id2)

","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2,id2)"

) sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x,1,

id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1,

id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x

,2,id1)") rd("r(x,1,id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb("

w(x,1,id0)","r(x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x

,1,id3)") hb("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x

,2,id1)","r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)")

SATISFIABLE

Models : 1

Calls : 1

Time : 0.029s

CPU Time : 0.000s

The Datalog program is "SATISFIABLE" so the history satis�es CM_1.

� For CM_2:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").
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sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% CC inference rules

co(X,Y) :- po(X,Y).

co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

% CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y).

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

% CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z), wrt

(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y).
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:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0)","r

(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x,2,id1)") co

("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)") wr("w(x,1,id0)",

"r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x,2,id2)","w(x,1,id0)")

sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)","r(x,2,id1)") sv("w(x,2,id2)

","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,id1)") sv("w(x,1,id0)","w(x,2,id2)"

) sv("r(x,2,id1)","w(x,2,id2)") sv("r(x,1,id3)","w(x,2,id2)") sv("w(x,1,

id0)","r(x,1,id3)") sv("r(x,2,id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1,

id3)") initread("r(a,0,ida)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x

,2,id1)") rd("r(x,1,id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb("

w(x,1,id0)","r(x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x

,1,id3)") hb("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x

,2,id1)","r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)")

SATISFIABLE

Models : 1

Calls : 1

Time : 0.011s

CPU Time : 0.000s

The Datalog program is "SATISFIABLE" so the history satis�es CM_2.

CM_2 computes the lhb𝑜 relation for a small set of operations (po-maximal

operations) compared to CM_1. As can be seen above, the size of the Datalog

program was considerably reduced when we use CM_2 for a small history. Let

alone long histories that contains hundreds of operations. The e�ect of this will

be seen in the experimental results (Section 3.3.4).

3.3.2 An algorithm for checking Causal Consistency

Let's name the procedure which implements the reduction we have seen in

the previous section REDUC-to-DATALOG. This procedure takes as input a

history ℎ and a causal consistency model ℳ to check, and returns the corre-

sponding Datalog program 𝒟. Afterwards, we call another procedure named
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DATALOG-SOLVER which veri�es whether the obtained Datalog program 𝒟 is

SATISFIABLE or not.

Theorem 3 Algorithm 1 returns true iff the input history ℎ satisfies the causal

consistency model M.

The correctness of this theorem is ensured by the fact that our reduction is a

simple and direct encoding of bad patterns in Datalog and these bad-patterns

were proven in [19] to capture exactly the causal consistency violations.

Algorithm 1: Checking Causal Consistency algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩ and a causal consistency model M
Output: true iff ℎ satisfies M

1 REDUC-to-DATALOG(h, M)
2 if DATALOG-SOLVER(REDUC-to-DATALOG(h, M)) then
3 return true ;
4 else

5 return false ;

3.3.3 Complexity

The complexity of a Datalog program is 𝒪(𝑛𝑘) [62], where n is the number

of constants in the input data, and k is the maximum number of variables in

a clause. As we have seen in the previous section, given a history ⟨𝑂, po,wr⟩,
the maximum number of variables in a rule in our Datalog programs is 3. Thus,

the complexity of our approach is 𝒪(𝑛3), where n is the computation size (the

number of operations). Our approach's complexity is better than the one de�ned

in [19] in which the complexity of checking CC, CCv and CM was shown to be

𝒪(𝑛5).

3.3.4 Experimental Evaluation

We have investigated the e�ciency and scalability of our tool (named

CausalC-Checker) by applying it to two real-life distributed transactional

databases, CockroachDB [3] and Galera [4].

Histories generation: The Figure 3.2 presents the general architecture of

the testing procedure we used in our experiments.
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Figure 3.2 � The General architecture of the histories checking procedure

Following the approach used in Jepsen [1], histories are generated using ran-

dom clients with the parameters, the number of sessions, the number of trans-

actions per session, the number of events per transaction (in this context, we

consider one event per transaction), and the number of variables. A client is

generated by the generator of histories (Algorithm 2) by choosing randomly the

type of operation (read or write) in each transaction, the variable and a value for

write operations. This constitutes non executed histories that are the histories

which do not contain the return values of read operations. Each client performs

a session, communicates with the database cluster by executing operations (read-

/write) and gets the return values for read operations. The recorded histories are

called executed histories in the Figure 3.2.

We ensure that all histories are di�erentiated i.e., all written values are unique.

These di�erentiated histories are the input of our CausalC-Checker tool.

Case study 1: CockroachDB.

We have used the highly available and strongly consistent distributed

database CockroachDB [3] (v2.1.0) that is built on a transactional strongly-

–54–



Chapter 3. Causal Consistency Verification

Algorithm 2: The histories generator algorithm
Input: nClient, nTransaction, nEvent, nVariable
Output: A non executed history

1 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒← ∅;
2 foreach 𝑣 ∈ 1..nVariable do
3 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(𝑣)← 0;

4 history← ∅;
5 foreach 1..nClient do
6 Client← ∅;
7 foreach 1..nTransaction do
8 Transaction← ∅;
9 foreach 1..nEvent do
10 Event← 𝑛𝑒𝑤(Event);
11 Event.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦_𝑐ℎ𝑜𝑜𝑠𝑒({Read,Write});
12 Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦_𝑐ℎ𝑜𝑜𝑠𝑒({1..nVariable});
13 if Event.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = Write then

14 Event.𝑣𝑎𝑙𝑢𝑒← 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + 1;
15 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)←

𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + 1;

16 Transaction.𝑝𝑢𝑠ℎ(Event);

17 Client.𝑝𝑢𝑠ℎ(Transaction);

18 history.𝑝𝑢𝑠ℎ(Client);

19 return history;

consistent key-value store, so it is expected to be causally consistent. Considering

one operation per transaction lead to our model.

We have examined the e�ect of the number of operations on runtime for a

�xed number of processes (4 processes) and the e�ect of the number of processes.

We have tested 200 histories for each con�guration and calculated the average

runtime.

We have checked CC, CCv and CM, using its two de�nitions CM_1 and CM_2,

for all generated histories. The Figure 3.3 shows the results. The graphs 3.3a,

3.3c, 3.3e and 3.3g show the runtime while increasing the number of operations

from 100 to 600, in augmentations of 100 (with a �xed number of processes,
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(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking Causal Consistency while
varying the number of processes.

(c) Checking CC, CCv and CM_2
while varying the number of operations.

(d) Checking CC, CCv and CM_2
while varying the number of processes.

(e) Checking CC and CCv while vary-
ing the number of operations.

(f) Checking CC and CCv while varying
the number of processes.

(g) Comparing CM_1 and CM_2 run-
times while varying the number of op-
erations.

(h) Comparing CM_1 and CM_2 run-
times while varying the number of pro-
cesses.

Figure 3.3 � Checking Causal Consistency for CockreachDB histories.
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4 processes). The graphs 3.3b , 3.3d, 3.3f and 3.3h report the runtime when

increasing the number of processes from 2 to 6, in augmentations of 1. For

each number of processes 𝑥 we have considered 50𝑥 operations so increasing the

number of processes increases the number of operations in the history as well.

The graph 3.3a resp., 3.3b shows a comparaison between CC, CCv, CM_1

and CM_2 veri�cation runtimes while varying the number of operations resp.,

the number of processes. The graph 3.3c resp., 3.3d, presents the running time

of CM_2 veri�cation compared to CC and CCv veri�cation running time. The

graph 3.3e resp., graph 3.3g , shows the evolution of CC and CCv veri�cation

resp., CM_1 and CM_2 veri�cation, runtime while increasing the number of

operations. The graph 3.3f resp., graph 3.3h, shows the evolution of CC and

CCv veri�cation resp., CM_1 and CM_2 veri�cation, runtime while increasing

the number of processes.

Our approach is more e�cient in the case of CC and CCv veri�cation com-

pared to the CM_1 case (graphs 3.3a and 3.3b). The �gure 3.3c resp., 3.3d, is

a zoom on CC, CCv and CM_2 of �gure 3.3a resp., 3.3b. It shows that the

CM_2 improves the running time but costs more compared to CC and CCv as

well. The �gure 3.3e resp., 3.3f, is a zoom on CC and CCv of �gure 3.3a resp.,

3.3b. It shows that CC and CCv veri�cation are very e�cient and terminates in

less than 11.6 seconds for all histories we have tested. As we have noticed above,

the results shown in 3.3g and 3.3h show that CM_2 has better performance,

by factors of 8 times in the case of 600 operations. As expected, all the tested

histories were valid w.r.t. all the considered causal consistency models.

Case study 2: Galera.

We have also used the cluster called Galera [4] (v3.20). Galera Cluster is a

database cluster based on synchronous replication and Oracle's InnoDB/MySQL.

It is expected to implement Snapshot isolation when transactions are processed

in separated nodes.

Similarly to the �rst case study, we have studied the evolution of runtime while

increasing the number of operations from 100 to 600, in augmentations of 100.

We have veri�ed 200 histories for each number of operations and compute the

runtime average.

The graphs in Figure 3.4 show the impact of increasing the number of opera-
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(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking CC, CCv and CM_2
while varying the number of operations.

(c) Checking CC and CCv while vary-
ing the number of operations.

(d) Comparing CM_1 and CM_2 run-
times while varying the number of op-
erations.

(e) Comparing CM_2 and CC viola-
tions runtimes while varying the num-
ber of operations.

Figure 3.4 � Checking Causal Consistency for Galera histories.

–58–



Chapter 3. Causal Consistency Verification

tions on runtime while �xing the number of processes (4 processes).

The graph 3.4a shows the comparaison of CC, CCv, CM_1 and CM_2 ver-

i�cation runtimes. The graph 3.4b presents a zoom on graph 3.4a in order to

compare CM_2 to CC and CCv. The graph 3.4c reports the evolution of CC

and CCv veri�cation runtime. The graph 3.4d shows the evolution of CM_1 and

CM_2 checking runtimes. Finally, the graph 3.4e presents a comparison between

CC and CM_2 running times.

Likewise the CockroachDB case study, our approach is more e�cient in the

case of CC and CCv either while increasing the number of operations or processes.

The graph 3.4d shows that our new de�nition CM_2 outperforms CM_1, but

still less e�cient compared to CC and CCv (graph 3.4b).

Our approach allows capturing violations on the used Galera database. We

have found that 1.25% of the tested Galera histories violate causal consistency,

that con�rms the bugs submitted on Github[5]. We mention that 73.3% of the

detected CM violations are also CC violations. The suggested approach scales well

and detects violations on the used version of Galera DB.

The experiments show that our approach is e�cient for both veri�cation of

valid computations and detection of violations, especially in the case of CC

and CCv. The gap between CC (CCv) and CM_1 runtimes reported in the

graphs 3.3a, 3.3b and 3.4a is due to the fact that in CM_1 we compute the lhb𝑜
relation and check the bad-patterns for each operation. This gap is reduced us-

ing the new de�nition CM_2 (graphs 3.3a, 3.3b and 3.4a) in which we compute

the lhb𝑜 relation and check the bad-patterns for only the last operation of each

thread.

3.4 Conclusion

We have presented a tool for checking automatically that given computations

of a system are causally consistent (w.r.t CC, CCv and CM). Our procedure

for solving this conformance problem is based on implementing the theoretical

approach introduced in [19] where causal consistency violations are characterized

in terms of the occurrence of some particular bad-patterns. We built on this

work by reducing the problem of detecting the existence of these patterns in

computations to the problem of solving Datalog queries. Our approach reduces
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the complexity of checking CC, CCv and CM from 𝒪(𝑛5) to 𝒪(𝑛3). We have

applied our algorithm to two real-life case studies. The experimental results have

shown that in the case of CC and CCv our approach is e�cient and scalable. In

the CM case, the costs grow polynomially but much faster than in the case of CC

and CCv. In order to improve the CM checking performance, we have proposed

an optimized de�nition (CM_2). Our experimental results have con�rmed that

this new de�nition reduces the cost of CM veri�cation and leads to a better

conformance checking procedure. However, this optimized CM de�nition still

less e�cient compared to CC and CCv.

Since CM_1 and CM_2 cost more compared to CC in terms of runtime

(Figures 3.4a and 3.4e) and the most CM violations in practice are CC violations

(73.3% in the Galera case), one can start by verifying CC �rst.

Contrary to causal consistency variants that are checkable in polynomial time

under data-independent assumption (As we have mentioned before, all the causal

consistency models we have seen are NP-complete without this assumption), there

exist other consistency models for which the problem of conformance checking

is NP-hard. In the next chapters, we consider the problem of checking some of

these models (SC and TSO). The following chapter presents two SC veri�cation

approaches based on saturation procedures. The �rst one uses a strong variant of

causal consistency that combines the sets of constraints introduced by CCv and

CM.
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CHAPTER 4

SEQUENTIAL CONSISTENCY VERIFICATION

Sequential Consistency (SC) [47] is a fundamental model of shared memory,

where write and read operations are atomic, and operations issued by di�erent

threads are interleaved arbitrarily while the order between operations issued by

a same thread is preserved. SC o�ers (to the user) the strongest consistency

guarantees, and therefore the best programming abstraction, since each write

operation is considered to be immediately visible to all threads. Other weaker

memory models (Causal consistency variants and TSO for instance), adopted in

order to ensure performance or availability in some contexts, allow in general

write operations to be delayed, not simultaneously visible by all threads, and not

being visible in the same order to all threads, which makes programming over such

models very hard. However, while adopting SC as a memory model is desirable

by memory users as it simpli�es their task, it pushes the burden on the memory

implementers. Indeed, implementing sequential consistency is extremely complex

and error prone due to various optimizations and complex cashing mechanisms

that must be adopted in order to achieve acceptable performances.

Therefore, it is highly important to develop automated veri�cation meth-

ods and tools for checking SC conformance and detecting subtile bugs in such

implementations. A crucial problem for developing bugs detection and testing

procedures is checking whether a given execution (of a memory implementation)

is SC. However, this problem has been shown to be hard. The reason is that it

amounts in �nding a total order on write operations that explains the execution,

–61–



Chapter 4. Sequential Consistency Verification

in the sense that the happen-before relation induced by this order (that includes

causality and con�ict constraints between writes and reads) is acyclic. It has been

shown that this problem is NP-complete in general [38, 41], which means that

in the worst case, it is necessary to enumerate the exponentially many possible

store orders in order to solve the problem. Therefore, it is very important to

investigate methods for solving this problem that avoid falling systematically in

the worst case, and that are able to solve it in practice in polynomial time (in

the size of the execution) as much as possible. This chapter addresses precisely

this issue.

The situation is di�erent for other weaker criteria such as Causal Consistency

(CC, CCv and CM). As we have seen in the previous chapter, this models have

been shown to be checkable in polynomial time (in the size of the computa-

tion) [19, 66]. In fact, causal consistency imposes fewer constraints than SC on

the order between writes, and the way it imposes these constraints is �determin-

istic�, in the sense that they can be derived from the history of the execution

by applying a least �xpoint computation (which can be encoded for instance,

as a standard DATALOG program). All these complexity results hold under

the assumption that each value is written at most once, which is without loss

of generality for implementations which are data-independent [64], i.e., their be-

havior doesn't depend on the concrete values read or written in the program.

So, any buggy behavior of such implementations can be exposed in executions

satisfying this assumption. Notice that as we have seen before, all the causal

consistency variants become NP-complete without this assumption. This holds

for the variations of the causal consistency we introduce in the next sections as

well.

The intrinsic hardness of the problem of checking SC poses a crucial issue

for the design of scalable veri�cation or testing techniques for this important

consistency model. Tackling this issue requires the development of practical ap-

proaches that can work well (with polynomial complexity) when the instance of

the problem does not need to generate the worst case (exponential) complexity.

The purpose of this chapter is to propose such an approach. The idea is

to reduce the amount of �non-determinism� in searching for the write orders in

order to establish SC conformance. For that, our �rst approach for SC checking is

to consider a causal consistency variant CCM (for Convergent Causal Memory),
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that is stronger that all known causal consistency variants (CC, CCv and CM),

but still weaker than SC, while being polynomial time checkable.

Then, if CCM is already violated by the given computation then we can

conclude that the computation does not satisfy the stronger criterion SC. Here the

hope is that in practice many computations violating SC can be caught already at

this stage using a polynomial time check. Now, in the case that the computation

does not violate CCM, we exploit the fact that establishing CCM already imposes

a set of constraints on the order between writes. We show that these constraints

form a partial order which must be a subset of any total write order if it exists,

allowing to establish the SC conformance of the computation. Therefore, at this

point, it is enough to �nd an extension of this partial write order, and the hope

is that in many practical cases, this set of constraints is already large enough,

letting only a small number of pairs of writes to be ordered in order to check SC

conformance.

We show experimentally that using CCM allows to improve signi�cantly the

performance of SC checking w.r.t. an enumerative approach based on a reduction

of the problem to SAT.

Then, a natural question is whether CCM is the strongest model that can be

used in this approach? The second section of this chapter considers this question

(and some other related questions) and brings answers to them.

We propose a new consistency model called weak sequential consistency (wSC,

for short) that is de�ned using a simple saturation rule for introducing store or-

der constraints. Roughly, the rule applies to a pair of writes; it adds an order

constraint between them to avoid a happen-before cycle including a con�ict in-

volving one of the writes. Compared to the de�nition of CCM, the one of wSC

is much more natural and simpler. Interestingly, we prove that wSC is strictly

stronger than CCM. This is due to the fact that wSC saturation computes a

larger set of constraints on pairs of writes than CCM. Then, the question is

whether it is possible to do better using a saturation-based de�nition. In fact

we could have considered other saturation rules to de�ne stronger and stronger

consistency models approximating SC. But what our experiments show is that

the bene�t would not be important w.r.t. what is already achieved with wSC.

The work presented in this chapter is published in [65, 69].

The rest of this chapter is structured as follows, Section 4.1 presents our �rst
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SC checking approach which is based on using CCM as an upper-approximation

of SC. We �rst de�ne the CCM memory model based on saturation rules. After-

wards, we prove some interesting results on the comparison of CCM with existent

consistency models. Then, we study the complexity of checking CCM before pre-

senting our algorithm for checking SC. Finally, we evaluate our approach using

realistic cache coherence protocols executions. Section 4.2 is dedicated to our sec-

ond SC checking approach using wSC consistency model. First, we de�ne weak

consistency model (wSC). Then, we prove that wSC is stronger than CCM and

weaker than SC. Afterwards, we study the complexity of checking wSC followed

by a discussion about the notion of SC Kernel. The proposed algorithms for

checking SC are presented in Section 4.2.3. Section 4.2.5 describes our testing

approach and the obtained experimental results.

4.1 Approach 1: Checking Sequential Consistency

Gradually using CCM

We de�ne an algorithm for checking whether a history satis�es SC which

enforces a polynomially-time checkable criterion weaker than SC, a variation of

causal consistency, in order to construct a partial store order, i.e., one in which

not all the writes on the same variable are ordered. This partial store order is then

completed until it orders every two writes on the same variable using a standard

backtracking enumeration. This approach is e�cient when the number of writes

that remain to be ordered using the backtracking enumeration is relatively small,

a hypothesis con�rmed by our experimental evaluation (see Section 4.1.4).

The variation of causal consistency mentioned above, called convergent causal

memory (CCM, for short), is stronger than existing variations [19] while still be-

ing polynomially-time checkable (and weaker than SC). Its de�nition uses several

saturation-based relations between read/write operations which are analogous or

even exactly the same relations used to de�ne those variations (CC, CCv and

CM).

As we have mentioned, Bouajjani et al. [19] show that the problem of checking

whether a history satis�es CC, CCv, or CM is polynomial time. This result is

a straightforward consequence of the new de�nitions of these consistency models

that we have introduced in the previous chapter (Section 3.2), since the union
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𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑤𝑟

𝑝𝑤𝑤

𝑟𝑤[𝑝𝑤𝑤]

(a) Read-write rw[pww]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑙ℎ𝑏

𝑐𝑓 [𝑙ℎ𝑏]

𝑤𝑟

(b) Conflict order cf[lhb]

Figure 4.1 � De�nitions of relations used to de�ne CCM consistency
model.

of relations required to be acyclic can be computed in polynomial time from the

relations po and wr which are �xed in a given history. In particular, the union of

these relations can be computed by a DATALOG program.

Section 4.1.1 introduces CCM, while Section 4.1.2 presents our algorithm

for checking SC. The complexity of our approach is discussed in Section 4.1.3.

Finally, Section 4.1.4 presents the experimental results.

4.1.1 Convergent Causal Memory

We de�ne a new variation of causal consistency which builds on causal mem-

ory, but similar to causal convergence it enforces that all threads agree on an order

in which to observe values written by concurrent (causally-unrelated) writes, and

also, it uses a larger read-write relation. Formally,

Definition 15 A history ⟨𝑂, po,wr⟩ satisfies convergent causal memory (CCM)

if the relation po ∪ wr ∪ pww ∪ rw[pww] is acyclic.

The partial store order pww is de�ned by

pww = (lhbWW ∪ cf[lhb])+ with lhb =
(︀ ⋃︁
𝑜∈𝑂

lhb𝑜
)︀+

.

The partial store order pww contains the ordering constraints between writes in

all lhb𝑜 relations used to de�ned causal memory, and also, the con�ict relation

induced by this set of constraints (a weaker version of con�ict relation was used

to de�ne causal convergence).

The read-write relation rw[𝑝𝑤𝑤] induced by pww (Figure 4.1a) is de�ned by

rw[𝑝𝑤𝑤] = wr−1 ∘ 𝑝𝑤𝑤. The con�ict order cf[lhb] (Figure 4.1b) is de�ned by

cf[lhb] = lhbWR ∘ wr−1.
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𝑡0:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡1:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(a) CCM but not SC

𝑡0:
write(𝑥, 1)
write(𝑥, 2)
read(𝑦, 1)

𝑡1:
write(𝑦, 1)
write(𝑦, 2)
read(𝑦, 2)
read(𝑥, 1)

(b) CM and CCv but not CCM

Figure 4.2 � Histories with two threads used to compare CCM with CC, CCv,
CM and SC.

As we have seen in the last chapter, given a history ℎ = ⟨𝑂, po,wr⟩, for every
operation 𝑜 in ℎ, lhb𝑜 is the smallest transitive relation such that:

� If there exist two operations 𝑜1 and 𝑜2, (𝑜1, 𝑜2) ∈ co, and another operation

𝑜 such that (𝑜1, 𝑜) ∈ co, and (𝑜2, 𝑜) ∈ co*, then (𝑜1, 𝑜2) ∈ lhb𝑜 , and

� If there exist two writes write(𝑥, 𝑣) and write(𝑥, 𝑣′), a read operation

read(𝑥, 𝑣′) and another operation 𝑜, the lhb𝑜 relation is de�ned as follows

(Fig.3.1c).

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ lhb𝑜,

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, and

(read(𝑥, 𝑣′), 𝑜) ∈ po*, for some read(𝑥, 𝑣′).

The following examples show a history which is allowed by CCM and another

one which is not.

Example 24 The Figure 4.2a shows a history that is CCM. The reason is that

it admits a partial store order pww where the writes in different threads are not

ordered i.e., either 𝑡0 operations can be executed first followed by 𝑡1 operations or

the inverse.

Example 25 The Figure 4.2b presents a history that does not satisfy CCM.

To show this, we use the fact that pww relates any two writes which are or-

dered by program order. Then, we get that read(𝑥, 1) and write(𝑥, 2) are re-

lated by rw[pww] (because write(𝑥, 1) is related by write-read to read(𝑥, 1)), which

further implies that (read(𝑥, 1), read(𝑦, 1)) ∈ rw[pww] ∘ po. Similarly, we have

(read(𝑦, 1), read(𝑥, 1)) ∈ rw[pww]∘po, which implies that po∪wr∪pww∪ rw[pww]

is not acyclic, so the history does not satisfy CCM.
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As a �rst result, we show that all the variations of causal consistency presented

in the previous chapter, i.e., CC, CCv and CM, are strictly weaker than CCM.

Lemma 5 If a history satisfies CCM, then it satisfies CC, CCv and CM.

Proof 7 Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying CCM. By the definition of

lhb, we have coWW ⊆ lhbWW. In fact, any two writes 𝑜1 and 𝑜2 related by co are

also related by lhb𝑜2, which by the definition of lhb, implies that they are related by

lhbWW. Then, by the definition of pww, we have lhbWW ⊆ pww. This implies that

rw[co] ⊆ rw[pww] (by definition, rw[co] = rw[coWW]). Therefore, the acyclicity of

po∪wr∪pww∪rw[pww] implies that its subset po∪wr∪rw[co] is also acyclic. The

relation po ∪ wr ∪ rw[co] is acyclic implies that the relation (po ∪ wr)+; (rw[co])?

is irreflexive.The reason is that, while po ∪ wr ∪ rw[co] excludes cycles with one

or more rw[co] relations, (po ∪ wr)+; (rw[co])? excludes cycles with at most one

rw[co] relation. Thus, ℎ satisfies CC. In addition, it implies that po∪wr ∪ cf[lhb]

is acyclic (the last term of the union is included in pww), which by co ⊆ lhb,

implies that po ∪ wr ∪ cf[co] is acyclic, and thus, ℎ satisfies CCv. The fact that

ℎ satisfies CM follows from the fact that ℎ satisfies CC (since po∪wr is acyclic)
and lhb is acyclic (lhbWW is included in pww and the rest of the dependencies in

lhb are included in po ∪ wr). �

The reverse of the above lemma doesn't hold. To show this, consider the

following example.

Example 26 Figure 4.2b shows a history which satisfies CM and CCv, but it is

not CCM. The fact that this history satisfies CM and CCv follows easily from

definitions. As we have seen, in CCv and CM concurrent values should be ob-

served in the same order and this order can differ from one thread to another in

CM. A possible order for concurrent writes in the variable 𝑥 is to consider that

write(𝑥, 1) precedes write(𝑥, 2) (this is already implied by the po order). Similarly,

for concurrent values in the variable 𝑦, write(𝑦, 1) precedes write(𝑦, 2). Therefore,

the threads 𝑡0 and 𝑡1 can consider this order and thus the history satisfies CCv

and CM.

Then,

Lemma 6 CCM is strictly stronger than CC, CCv and CM.
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Next, we show that CCM is weaker than SC, which will be important in our

algorithm for checking whether a history satis�es SC.

Lemma 7 If a history satisfies SC, then it satisfies CCM.

Proof 8 Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying SC. Then, there exists a

store order ww such that po ∪ wr ∪ ww ∪ rw[ww] is acyclic. Let’s prove that

it satisfies CCM as well. We show that the two relations lhbWW and cf[lhb],

whose union constitutes pww, are both included in ww. We first prove that lhb ⊆
(po ∪ wr ∪ ww ∪ rw[ww])+ by structural induction on the definition of lhb𝑜,

1. If (𝑜1, 𝑜2) ∈ co = (po∪wr)+, then clearly, (𝑜1, 𝑜2) ∈ (po∪wr∪ww∪rw[ww])+,

2. If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (po∪wr∪ww∪rw[ww])+ and there is read(𝑥, 𝑣′)

such that (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈
ww. Otherwise, assuming by contradiction that (write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈
ww, we get that (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw[ww] (by the definition of

rw[ww] using the hypothesis (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr). Note that the

latter implies that po ∪ wr ∪ ww ∪ rw[ww] is cyclic.

Since lhb ⊆ (po ∪ wr ∪ ww ∪ rw[ww])+, we get that lhbWW ⊆ ww. Also, since

cf[(po∪wr∪ww∪rw[ww])+] ⊆ (po∪wr∪ww∪rw[ww])+ (using a similar argument

as in point (2) above), we get that cf[lhb] ⊆ (po ∪ wr ∪ ww ∪ rw[ww])+.

Finally, since pww ⊆ ww, we get that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ (po ∪
wr ∪ ww ∪ rw[ww])+, which implies that the acyclicity of the latter implies the

acyclicity of the former. Therefore, ℎ satisfies CCM. �

The reverse of the above lemma doesn't hold. For instance,

Example 27 The history in Figure 4.2a is not SC but it is CCM. The reason is

that one can consider a partial store order pww where the writes of thread 𝑡0 are

not related to the writes of thread 𝑡1 (are not ordered). Since a total order cannot

be found, the history is not SC.

Then,

Lemma 8 SC is strictly stronger than CCM.

The Figure 4.3 summarizes the relationships between the consistency models

presented above.
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Figure 4.3 � Relationships between consistency models: CC, CCv, CM, CCM
and SC.

4.1.2 An Algorithm for Checking Sequential Consistency us-

ing CCM

Algorithm 3 checks whether a given history satis�es sequential consistency.

As a �rst step, it checks whether the given history satis�es CCM. If this is not

the case, then, by Lemma 7, the history does not satisfy SC as well, and the

algorithm returns false. Otherwise, it enumerates store orders which extend the

partial store order pww, until �nding one that witnesses for satisfaction of SC.

The history is a violation to SC i� no such store order is found. The soundness

of this last step is implied by the proof of Lemma 7, which shows that pww is

included in any store order ww witnessing for SC satisfaction.

Algorithm 3: Checking SC conformance: CCM+ENUM algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies SC

1 if po ∪ wr ∪ pww ∪ rw[pww] is cyclic then

2 return false;

3 foreach ww ⊃ pww do

4 if po ∪ wr ∪ ww ∪ rw[ww] is acyclic then

5 return true;

6 return false;

Theorem 4 Algorithm 3 returns true iff the input history ℎ satisfies SC.
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4.1.3 Complexity

The partial store order pww includes relations that are de�ned using satura-

tion rules, then it can be computed in polynomial time (in the size of the input

history). Indeed, the lhb𝑜 relations can be computed using a least �xpoint calcu-

lation that converges in at most a quadratic number of iterations and acyclicity

can be decided in polynomial time. Therefore,

Theorem 5 Checking whether a history satisfies CCM is polynomial time

(𝒪(𝑛5)) in the size of the history.

4.1.4 Experimental Evaluation

To demonstrate the practical value of the theory developed in the previous

sections, we argue that our algorithms are e�cient and scalable. We experiment

with the SC algorithms we presented above, investigating their running time

compared to a standard encoding of these models into boolean satis�ability on

a benchmark obtained by running realistic cache coherence protocols within the

Gem5 simulator [17] in system emulation mode.

The executions histories that we use in this benchmark are generated using

random clients of cache coherence protocols included in the Gem5 distribution. In

order to support a memory consistency model, numerous machines provide cache

coherence protocols. This protocols ensure that multiple cached copies of data are

kept up to date. While Memory models specify the ordering of writes and reads

to di�erent memory locations, the cache coherence protocols are guaranteeing

a unique order of all writes to the same memory location (the program order).

The �gure 4.4 presents a simpli�ed memory cache architecture. We used the

protocols: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base.

Where,

� MI protocol is a simple cache coherence protocol used by default in Gem5.

It assumes one-level cache hierarchy, and each node has its own private

cache.

� MEOSI protocol: is an implementation of the protocol used in AMD's

Hammer chip called AMD's Hammer protocol. It assumes two-level private

cache hierarchy L1 and L2 caches, and these caches are private to each

node.
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Figure 4.4 � The simpli�ed architecture of a cache memory system

� MESI protocol: is one of the most used cache coherence protocols. It

assumes two-level cache hierarchy. L1 is private to each node, while L2 is

a shared cache among the nodes.

The randomization process is parametrized by the number of cpus (threads) and

the total number of read/write operations. We have actually used the ruby

random tester [6]. We ensure that every value is written at most once (data

independence assumption).

We have compared two variations of our algorithms for checking SC with a

standard encoding of SC into boolean satis�ability (named SC-SAT). The two

variations di�er in the way in which the partial store order pww dictated by

CCM is completed to a total store order ww as required by SC: either using

standard enumeration (named SC-CCM+Enum) or using a SAT solver (named

SC-CCM+SAT).

The computation of the partial store order pww is done using an encoding of

its de�nition into a DATALOG program. The inductive de�nition of lhb𝑜 supports

an easy translation to DATALOG rules, and the same holds for the union of two

relations, or their composition. We used Clingo [39] to run DATALOG programs.

The Figure 4.5 presents the general schema of the algorithm we used in our

experiments to check SC using CCM-based approach.

Figure 4.6 reports on the running time of the three algorithms while increasing

the number of operations or cpus. All the histories considered in this experiment

satisfy SC. This is intended because valid histories force our algorithms to enu-
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Figure 4.5 � The general schema of the SC checking procedure using CCM

merate extensions of the partial store order (SC violations may be detected while

checking CCM). The graph on the left pictures the evolution of the running time

when increasing the number of operations from 100 to 500, in increments of 100

(while using a constant number of 4 cpus). For each number of operations, we

have considered 200 histories and computed the average running time. The graph

on the right shows the running time when increasing the number of cpus from 2

to 6, in increments of 1. For 𝑥 cpus, we have limited the number of operations

to 50𝑥. As before for each number of cpus, we have considered 200 histories

and computed the average running time. As it can be observed, our algorithms

scale much better than the SAT encoding and interestingly enough, the di�erence

between an explicit enumeration of pww extensions and one using a SAT solver

is not signi�cant. Note that even small improvements on the average running

time provide large speedups when taking into account the whole testing process,

i.e., checking consistency for a possibly large number of (randomly-generated)

executions. For instance, the work on McVerSi [33], which focuses on the com-

plementary problem of �nding clients that increase the probability of uncovering

bugs, shows that exposing bugs in some realistic cache coherence implementations

requires even 24 hours of continuous testing.

Since the bottleneck in our algorithms is given by the enumeration of pww ex-

tensions, we have measured the percentage of pairs of writes that are not ordered

by pww. Thus, we have considered a random sample of 200 histories (with 200
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(a) Checking SC while varying the
number of operations.

(b) Checking SC while varying the
number of cpus.

Figure 4.6 � Checking SC for valid histories.

operations per history) and evaluated this percentage to be just 6.6%, which is

surprisingly low. This explains the net gain in comparison to a SAT encoding of

SC, since the number of pww extensions that need to be enumerated is quite low.

As a side remark, using CCv instead of CCM in the algorithms above leads to a

drastic increase in the number of unordered writes. For the same random sample

of 200 histories, we conclude that using CCv instead of CCM leaves 57.75% of

unordered writes in average which is considerably bigger than the percentage of

unordered writes when using CCM.

We have also evaluated our algorithms on SC violations. These violations

were generated by reordering statements from theMI implementation, e.g., swap-

ping the order of the actions s_store_hit and p_profileHit in the transition

transition(M, Store). As an optimization, our implementation checks grad-

ually the weaker variations of causal consistency CC and CCv before checking

CCM. This is to increase the chances of returning in the case of a violation (a

violation to CC/CCv is also a violation to CCM and SC). We have considered

1000 histories with 100 to 400 operations and 2 to 8 cpus, equally distributed

in function of the number of cpus. Figure 4.7 reports on the evolution of the

average running time. Since these histories happen to all be CCM violations,

SC-CCM+Enum and SC-CCM+SAT have the same running time. As an eval-

uation of our optimization, we have found that 50% of the histories invalidate

weaker variations of causal consistency, CC or CCv.
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Figure 4.7 � Checking SC for invalid histories while increasing the number of
cpus.

4.1.5 Discussion

To summarize, the approach we have presented above (let's call it Gradual

Consistency Checking, GCC for short) consists in using weaker consistency mod-

els that are known to be polynomially checkable, such as causal consistency, in

two ways. First, �nding violations for the weaker models allows to detect e�-

ciently some of the SC violations. This can be useful since many violations are

already violations for much weaker consistency models. Second, and this is the

important point, we used weak consistency models for which checking confor-

mance is based on computing, by a polynomial time �xpoint calculation, a set of

order constraints on writes, and these constraints are included in every store order

witnessing SC conformance, if any. So, computing these constraints reduces the

number of pairs of writes for which an order must be found non-deterministically.

We proposed for that a model called Convergence Causal Memory (CCM) that is

stronger than all known variants of causal consistency, constructed by combining

the constraints imposed by CCv [20] and CM [11, 54]. We have shown exper-

imentally that using CCM allows to improve drastically the performance of SC

checking w.r.t. a straightforward enumerative approach (using a reduction of the

problem to SAT).

As we have seen in related work (Section 1, Chapter 1), another approach

for tackling the issue of e�cient SC checking has been introduced recently in

[7] and [18]. In these two papers, the authors prove the interesting fact that

when the number of threads is �xed, the problem of verifying SC conformance
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of a single execution is polynomial time in the size of the execution. For that,

they provide algorithms for solving this problem based on clever exploring the

interleavings of operations of the execution, exploiting the speci�c properties of

SC. This approach too, let us call it bounded-thread consistency checking (BTCC,

for short), allows to obtain important performance gains w.r.t. the enumerative

approach.

However, several questions can be asked concerning the two approaches de-

scribed above.

1. As mentioned above, GCC is based on computing a set of constraints on

write operations that must be included in all store orders witnessing SC.

The computation of these constraints actually uses saturation rules that

consist, roughly speaking, in adding store order constraints when their re-

verse introduces new con�icts between reads and writes such that the in-

duced happen-before relation is cyclic. Saturation-based computations can

be done in polynomial time. A natural question is how far this approach

can be pushed i.e., is there any stronger consistency model (stronger that

CCM and still weaker than SC) that can be used in this approach? This

question leads to the following one: Given an execution that is SC, let us

call the SC-kernel of this execution the intersection of all store order re-

lations allowing to establish that the execution is SC (i.e., for which the

induced happen-before relation is acyclic). Then, is it possible to compute

the SC-kernel of any execution using saturation?

2. BTCC exploits in an essential way the fact that the number of threads

is �xed. While this approach reduces the complexity in the number of

operations, which is important for scalability when the size of executions

increases, it does not avoid the fact that the time complexity increases ex-

ponentially in the number of threads. So, natural questions is how BTCC

scales when both the number of operation and the number of threads in-

creases, and how it compares in this respect with the GCC approach?

3. Another natural question is, since the two approaches use di�erent

paradigms, whether it would be useful to combine them to get the best

of the two.

The next section explores these questions and brings answers to them.
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4.2 Approach 2: Checking Sequential Consistency

using wSC

In this section, we introduce a new model called weak SC as a saturation-based

approximation of SC. We �rst prove an interesting result which states that wSC

is strictly stronger than CCM and weaker than SC. Then, we show that the wSC

saturation rule does not compute the whole SC-kernel in general. We analyze

the reason of this by providing several families of counterexamples. We show

that there are order constraints that must be imposed on pairs of writes to avoid

happen-before cycles including not only one con�ict (as wSC saturation does),

but several (actually any number) of con�icts involving an arbitrary number of

writes. Moreover, we show that in order to impose an order constraint on pairs

of writes, in some cases it is necessary to enumerate the possible order of several

other pairs of writes, and the number of these pairs can be arbitrarily high.

This shows that the design of a saturation-based schema for computing the SC-

kernel would require the addition of an unbounded number of saturation rules.

This leaves open the theoretical question whether there is a way to compute in

polynomial time the SC-kernel of an SC execution).

Nevertheless, even if the wSC saturation does not always capture the SC-

kernel, an interesting question is how far is wSC saturation from computing the

SC-kernel in practice? We show experimentally that, surprisingly, for executions

of real protocols 1, wSC allows to compute the full SC-kernel in most of the cases

(more than 74% of the executions), and in general it computes almost the whole

SC-kernel (around 99.9% of it). Interestingly, the experiments also show that

CCM computes 100% of the SC-kernel for only 0.7% of the executions of the

considered benchmark. This shows that the saturation rule we consider for wSC

is very powerful and e�cient in practice, despite its simplicity (and that it is

theoretically not complete as discussed above).

The experimental results, show that wSC leads to a more e�cient gradual

consistency checking than CCM, and that it scales much better compared to

the bounded-thread consistency checking algorithm when the number of threads

(and therefore the number of operations as well) increases, while bounded-thread

1. We consider the same 4 protocols from the Gem5 platform that we used in the first
section.
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consistency checking is in general more e�cient for small number of threads.

This leads us to de�ne an algorithm using saturation to enhance bounded-thread

consistency checking. The obtained algorithm take advantage of both techniques

and is shown to be very e�cient and scalable.

Section 4.2.1 presents wSC. Section 4.2.2 introduces our results about the SC

kernel. Section 4.2.3 presents our algorithms for verifying SC while experimental

results are drown in Section 4.2.5.

4.2.1 Weak Sequential Consistency

We de�ne our new consistency model obtained by computing a store order

using a simple saturation rule. This amounts in using induction in order to de�ne

the store order unlike the SC case where it is existentially quanti�ed. Formally,

let st and hb be the smallest relations such that

st = ((hbWR ∘ wr−1) ∪ hbWW)+

hb = (po ∪ wr ∪ st ∪ rw[st])+

rw[st] = wr−1 ∘ st

The hbWW is the projection of hb on pairs of writes on the same variable and

hbWR is the projection of hb on pairs of writes and reads on the same variable.

Then,

Definition 16 a history ⟨𝑂, po,wr⟩ is conform to weak sequential consistency

(wSC) if the hb relation is acyclic.

To illustrate this de�nition, consider the next examples.

Example 28 Figure 4.8a shows a history which satisfies wSC. To show this, one

can consider a partial store order 𝑠𝑡 where the writes write(𝑧, 1) and write(𝑧, 2)

are not ordered.

Example 29 The Figure 4.8b presents a history that does not satisfies wSC.

Since rw[𝑠𝑡] is included in hb, read(𝑦, 0) is visible to write(𝑦, 2) then write(𝑥, 1)

precedes read(𝑥, 2) in hb. Thus, write(𝑥, 2) should be executed before write(𝑥, 1).

Similarly write(𝑥, 2) precedes read(𝑥, 1) in hb as well and write(𝑥, 1) should be

executed before write(𝑥, 2). Therefore, we get a cycle in hb.
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𝑡0:
read(𝑧, 2)
write(𝑦, 2)
read(𝑥, 1)

𝑡1:
write(𝑥, 1)
write(𝑦, 1)
write(𝑧, 1)

𝑡2:
write(𝑡, 1)
write(𝑠, 1)
write(𝑧, 2)

𝑡3:
read(𝑧, 2)
write(𝑥, 2)
read(𝑦, 1)

𝑡4:
read(𝑧, 1)
write(𝑡, 2)
read(𝑠, 1)

𝑡5:
read(𝑧, 1)
write(𝑠, 2)
read(𝑡, 1)

(a) wSC but not SC
𝑡0:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑡1:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(b) CCM but not wSC nor SC

Figure 4.8 � Comparison of CCM, wSC and SC consistency models.

We prove that wSC is stronger than CCM (which is already stronger that all

known variants of causal consistency).

Lemma 9 If a history satisfies wSC, then it satisfies CCM.

Proof 9 Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying wSC i.e., po∪wr∪ st∪ rw[st]

is acyclic. We prove that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb (hence the history

satisfies also CCM).

Let us show that for every operation 𝑜 in ℎ, lhb𝑜 ⊆ hb. For that, we show that

hb satisfies the two properties of lhb𝑜:

� If (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co, and (𝑜2, 𝑜) ∈ co then (𝑜1, 𝑜2) ∈ hb trivially

holds (since co ⊆ hb), and

� If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ hb and (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr then

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ (hb ∘wr−1) and hence (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈
st and (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb.

Thus, we have lhb𝑜 ⊆ hb and hence lhb ⊆ hb.

Let us now show that pww = (lhbWW ∪ cf[lhb])+ ⊆ st. It is easy to see that

lhbWW ⊆ hbWW (since lhb ⊆ hb). By definition, we have also that cf[lhb] =

(lhbWR ∘ wr−1) and hence cf[lhb] ⊆ (hbWR ∘ wr−1). This implies that pww =

(lhbWW ∪ cf[lhb])+ ⊆ st = ((hbWR ∘ wr−1) ∪ hbWW)+.
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𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
ℎ𝑏𝑖

𝑠𝑡′𝑖

𝑤𝑟

Figure 4.9 � Partial store order 𝑠𝑡′𝑖 used to de�ne wSC consistency model.

Finally, we can deduce that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb = (po ∪ wr ∪
st ∪ rw[st])+. �

The reverse of this lemma does not hold. For example,

Example 30 Figure 4.8b presents a history that satisfies CCM but not wSC.

A possible partial store order for CCM is to consider that the writes of each

thread are not visible to the other thread. This history does not satisfy wSC (See

Example 29).

Then,

Lemma 10 wSC is strictly stronger than CCM.

We prove now that wSC is weaker than SC. For that, we need to consider the

subrelations of st and hb obtained by iterative least �x-point calculation. Let

st =
⋃︀

𝑖 𝑠𝑡𝑖 and hb =
⋃︀

𝑖 ℎ𝑏𝑖 where 𝑠𝑡𝑖 = (hbiWW∪𝑠𝑡′𝑖)+ and 𝑠𝑡′𝑖 (Fig.4.9) is de�ned

by:

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑠𝑡′𝑖 i� (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏𝑖 and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr

where, for every 𝑖 ≥ 0, ℎ𝑏𝑖 is de�ned by:

ℎ𝑏0 = (po ∪ wr)+

ℎ𝑏𝑖+1 = (ℎ𝑏𝑖 ∪ 𝑠𝑡𝑖 ∪ rw[𝑠𝑡𝑖])
+

We now show that the partial store order 𝑠𝑡𝑖 is included in any store order ww

witnessing for SC satisfaction.

Lemma 11 Let ℎ = ⟨𝑂, po,wr⟩ be a history and ww be a total store order such

that po∪wr∪ww∪ rw is acyclic. Then, 𝑠𝑡𝑖 ⊆ ww and ℎ𝑏𝑖 ⊆ (po∪wr∪ww∪ rw)+.
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Proof 10 Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying SC i.e., there exists

a store order ww such that po ∪ wr ∪ ww ∪ rw is acyclic. We show that

ℎ𝑏𝑖 ⊆ (po∪wr ∪ww ∪ rw)+ and 𝑠𝑡𝑖 ⊆ ww for all ww such that po∪wr ∪ww ∪ rw
is acyclic. The proof is by induction on the index 𝑖 of ℎ𝑏𝑖 and 𝑠𝑡𝑖.

Base-Case (i=0). We have ℎ𝑏0=(po ∪ wr)+ is included in (po ∪ wr ∪ ww ∪
rw)+. Since ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏0

and there exists a read(𝑥, 𝑣′) such that (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise, assuming by contradiction that

(write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ ww, we get (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw. Since

write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, this implies that there

is a cycle in (po ∪ wr ∪ ww ∪ rw)+ which is a contradiction. So, we have

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Thus, 𝑠𝑡′0 is included in ww and hence 𝑠𝑡0 =

(hb0WW ∪ 𝑠𝑡′0)
+ is also included in ww (since (hb0WW ⊆ ww otherwise it leads to

a contradiction since ℎ𝑏0 ⊆ (po ∪ wr ∪ ww ∪ rw)+ and (po ∪ wr ∪ ww ∪ rw)+ is

acyclic).

Induction Step. Assume that for all ww, ℎ𝑏𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw)+ and 𝑠𝑡𝑖 ⊆
ww. Now, let’s show that this holds for 𝑖 + 1 as well. By induction hypothesis,

𝑠𝑡𝑖 ⊆ ww, so using the definition of rw[𝑠𝑡𝑖] we have rw[𝑠𝑡𝑖] ⊆ rw. Then, ℎ𝑏𝑖+1 =

(ℎ𝑏𝑖 ∪ 𝑠𝑡𝑖 ∪ rw[𝑠𝑡𝑖])
+ ⊆ (po ∪ wr ∪ ww ∪ rw)+. Now, let’s show that 𝑠𝑡′𝑖+1 ⊆

ww. If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ ℎ𝑏𝑖 and (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise, using the same argument in the base

case, we get that (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw and a contradiction of the fact

that (po ∪ wr ∪ ww ∪ rw)+ is acyclic. Hence, if (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑠𝑡′𝑖+1

then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww and so 𝑠𝑡′𝑖+1 ⊆ ww. Furthermore, we have

hbi+1WW ⊆ ww since ℎ𝑏𝑖+1 ⊆ (𝑝𝑜 ∪ wr ∪ ww ∪ rw)+ (otherwise it leads to a

contradiction of the fact that (𝑝𝑜 ∪ wr ∪ ww ∪ rw)+ is acyclic). Since 𝑠𝑡𝑖+1 =

(hbi+1WW ∪ 𝑠𝑡′𝑖+1)
+, 𝑠𝑡′𝑖+1 ⊆ ww and hbi+1WW ⊆ ww, we get that 𝑠𝑡𝑖+1 ⊆ ww

(since ww is a total store order). �

As an immediate corollary of Lemma 11, we get:

Lemma 12 If a history satisfies SC, then it satisfies wSC.

Proof 11 The proof is by contradiction. Assume that a history ℎ = ⟨𝑂, po,wr⟩
satisfies SC and it does not satisfy wSC. Since ℎ satisfies SC, there exists a total
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store order ww such that po∪wr∪ww∪rw is acyclic. Since ℎ does not satisfy wSC,

this means that ℎ𝑏 is cyclic. Since hb =
⋃︀

𝑖 ℎ𝑏𝑖 and ℎ𝑏𝑖 ⊆ (po ∪ wr ∪ ww ∪ rw)+

(from Lemma 11), we can deduce that (po∪wr∪ww∪ rw)+ is also cyclic and this

constitutes a contradiction. �

The reverse of the above lemma doesn't hold. For instance,

Example 31 Figure 4.8a shows a history which satisfies wSC (the reason has

been shown above in example 28) but it is not SC. Since there is no valid store

order for the writes write(𝑧, 1) and write(𝑧, 2), this history does not satisfy SC.

In fact, since 𝑤𝑤 is a total order, let’s try the two possible cases:

� If write(𝑧, 1) happens-before write(𝑧, 2) in the total order ww, then write(𝑦, 1)

precedes write(𝑦, 2) in po ∪ wr ∪ ww. Since, read(𝑦, 1) reads its value from

write(𝑦, 1), we get a rw relation between read(𝑦, 1) and write(𝑦, 2). In the

same way, write(𝑥, 1) precedes write(𝑥, 2) in po∪wr∪ww, then, we get a rw

between read(𝑥, 1) (which takes its value from write(𝑥, 1)) and write(𝑥, 3).

Thus, we get a cycle in po ∪ wr ∪ ww ∪ rw.

� If write(𝑧, 2) precedes write(𝑧, 1) in ww, then write(𝑡, 1) precedes write(𝑡, 2)

in po ∪ wr ∪ ww. Since, read(𝑡, 1) takes its value from write(𝑡, 1), read(𝑡, 1)

should precede write(𝑡, 2) in read-write relation rw. Similarly, read(𝑠, 1)

should precede write(𝑠, 2) in rw. Then, we get a cycle in po∪wr ∪ww ∪ rw.

Both cases are not possible (i.e., lead to a cycle in po ∪ wr ∪ ww ∪ rw), then

the history is not allowed by SC.

Thus,

Lemma 13 SC is strictly stronger than wSC.

The Figure 4.10 completes the Figure 4.3 by the relationships between the

consistency models studied in this section. In this chapter, we have proposed

CCM that is strictly stronger than all known causal consistency models (CC,

CCv and CM) and strictly weaker than SC. We have also introduced wSC that is

strictly stronger than CCM (and explicitly strictly stronger than CC, CCv and

CM) and strictly weaker than SC.
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Figure 4.10 � Relationships between consistency models: CC, CCv, CM, CCM,
wSC and SC

.

4.2.2 The Sequential Consistency Kernel

Given a history ℎ = ⟨𝑂, po,wr⟩ that satis�es SC, we de�ne the Sequential

Consistency Kernel (SC-Ker for short) of ℎ as the intersection of all store order

orders allowing to establish the SCness of ℎ. We know already, from the previous

section (Lemma 11), that the store order st, computed by the wSC saturation

procedure, is included in any total store order ww such that po ∪ wr ∪ ww ∪ rw

is acyclic. This means that the computed st is always a subset of SC-Ker. Then,

the question is whether the computed store order st is equal to SC-Ker or not.

In the following, we show that the saturation procedure of wSC may in some

cases not be able to compute the SC-Ker (but rather a strict subset of it). To

see why, consider the history given in Figure 4.11.

Figure 4.11 � SC-Kernel counter example

The wSC rules do not generate any st relation and therefore the saturation
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procedure of wSC returns that the store order st is empty while the happens-

before relation hb is equal to (po∪wr)+. However, any total store order ww that

allows to show the SCness of this history should order write(𝑥, 4) before write(𝑥, 2)

(and hence the pair (write(𝑥, 4),write(𝑥, 2)) is in the SC-Ker). We prove that

(write(𝑥, 4),write(𝑥, 2)) belongs to the SC-Ker by contradiction. Assume that

(write(𝑥, 4),write(𝑥, 2)) is not in SC-Ker. Then, there is a total store order ww

such that (1) (write(𝑥, 2),write(𝑥, 4)) is in ww (represented in Figure 4.11 by a

dashed arrow) and (2) (po∪wr ∪ww ∪ rw)+ is acyclic (since the history ℎ is SC).

However, if (write(𝑥, 2),write(𝑥, 4)) is in ww then the relation (po∪wr∪ww∪rw)+

is not acyclic (as shown in Figure 4.11 by the dashed arrows) and which is a

contradiction.

One way to overcome this problem is to include such a pattern in the de�nition

of the total order 𝑠𝑡′𝑖 used in the saturation procedure. Thus, the new de�nition

of 𝑠𝑡′𝑖 is updated as follows: (write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ 𝑠𝑡′𝑖 if and only if one of

the following cases holds:

� (write(𝑥, 𝑣′), read(𝑥, 𝑣)) ∈ ℎ𝑏𝑖 and (write(𝑥, 𝑣), read(𝑥, 𝑣)) ∈ wr, or

� (write(𝑧, 𝑣𝑧),write(𝑥, 𝑣)), (write(𝑦, 𝑣𝑦),write(𝑥, 𝑣)),

(write(𝑥, 𝑣′),write(𝑦, 𝑣′𝑦)), (write(𝑦, 𝑣′𝑦), read(𝑧, 𝑣𝑧)),

(write(𝑥, 𝑣′),write(𝑧, 𝑣′𝑧)), (write(𝑧, 𝑣′𝑧), read(𝑦, 𝑣𝑦)) are in ℎ𝑏𝑖 and

(write(𝑧, 𝑣𝑧), read(𝑧, 𝑣𝑧)), (write(𝑦, 𝑣𝑦), read(𝑦, 𝑣𝑦)) are in wr.

Observe that the pattern added to 𝑠𝑡′𝑖 contains six write operations. Unfortu-

nately, this pattern is not enough to allow us to capture the SC-Ker. In fact, we

can construct a family of counter-examples (see Figure 4.12) such that in order

to capture all of them, we need to add to the relation 𝑠𝑡′𝑖 patterns involving a

strictly increasing number of writes (which is not feasible in practice).

One way to address the problem raised by the family of counter-examples

given in Figure 4.12 is to guess for a given pair of writes write(𝑥, 𝑣) and

write(𝑥, 𝑣′) that are not related by the computed store relation st (i.e.,

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) and (write(𝑥, 𝑣′),write(𝑥, 𝑣)) are not in st) one possible

order and check if it can make the history ℎ infeasible under SC and if it is the

case we add the other order to st. For instance, in the history given in Figure 4.11,

one would guess that the (write(𝑥, 2),write(𝑥, 4)) is in st. This guess makes the

history infeasible under SC due to the existence of a cycle in (po∪wr∪ww∪ rw)+

and hence (write(𝑥, 4),write(𝑥, 2)) is added to st. Observe that this still results
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Figure 4.12 � SC-Kernel counter examples with cycles involving an arbitrary
number of writes

in a saturation procedure which works in polynomial time since, at any time, we

guess the order of at most two unrelated writes.

So the question is whether this extended saturation procedure calculates the

SC-Ker. Alas, this is not true. Consider the history given in Figure 4.13. The

previous saturation procedure of wSC (augmented with the guessing of the order

of one pair of writes) results in an empty store order st. However, this history

satis�es SC and (write(𝑥, 1),write(𝑥, 2)) and (write(𝑡, 2),write(𝑡, 1)) are in SC-Ker.

In fact, ordering write(𝑥, 2) before write(𝑥, 1) and write(𝑡, 2) before write(𝑡, 1)

creates a happens-before cycle in the top-left block of Figure 4.13 (in similar

manner to the example given in Figure 4.11). While ordering write(𝑥, 2) before

write(𝑥, 1) and write(𝑡, 1) before write(𝑡, 2) creates a happens-before cycle in the

top-right block of Figure 4.13. Finally, ordering write(𝑥, 1) before write(𝑥, 2) and

write(𝑡, 1) before write(𝑡, 2) creates a happens-before cycle in the top-middle block

of Figure 4.13.

This shows the necessity of augmenting the saturation procedure with the

enumeration of the order between two pairs of writes in order to compute the

SC-Ker. Even worst, we can easily extend the history given in Figure 4.13 in

order to force the enumeration of the order between several pairs of writes in

order to be able to compute the SC-Ker. The main idea is to add a number of

blocks (in similar manner to the examples given in Figure 4.11 and Figure 4.12)

to forbid all order combinations between certain pairs of write except one.
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Figure 4.13 � SC-Kernel counter requiring the enumeration of the possible order
between two pairs of writes

4.2.3 Algorithms for checking SC conformance

We de�ne in this section algorithms for SC checking that exploit the partial

store order st computed by the wSC saturation. Following the approach of grad-

ual consistency checking (GCC) we have seen in the �rst part of this chapter, we

start by checking that the given history is wSC. If not, then we conclude that it

is not SC neither (by Lemma 12). If yes, we exploit st in order to enhance the

SC veri�cation of the history. This veri�cation amounts in �nding a total store

order extending st. To solve this problem we adopt two approaches, one is based

on reducing the SC veri�cation problem to SAT, and the second one is based on

using the bounded-thread approach of [7, 18] implemented in the DBCOP tool.

Both of these approaches are enhanced by the fact that they will receive the st

constraints in order to reduce their search space. The two so obtained algorithms

are called wSC+ENUM and wSC+DBCOP.

The algorithm wSC+ENUM uses an encoding of SC conformance of a given

history (de�ned with its po and wr constraints) as the satisfaction of a boolean

formula. The latter expresses the constraints on the relations involved in the

de�nition of SC, including the fact that the store oder ww is a total order relation

(so every pair of writes must be order in one direction or the other), and that the

happen-before relation is transitive and acyclic. Moreover, the order constraints

corresponding to the relation st computed for wSC are added to the formula.

Hence,

Theorem 6 Algorithm 4 returns true iff the input history ℎ satisfies SC.
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Algorithm 4: Checking SC conformance: wSC+ENUM algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies SC

1 if po ∪ wr ∪ st ∪ rw[st] is cyclic then

2 return false;

3 foreach ww ⊃ st do
4 if po ∪ wr ∪ ww ∪ rw[ww] is acyclic then

5 return true;

6 return false;

Algorithm 5: Checking SC conformance: wSC+DBCOP algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies SC

1 if po ∪ wr ∪ st ∪ rw[st] is cyclic then

2 return false;

3 if DBCOP(po,wr, st) then
4 return true;

5 return false;

The algorithm wSC+DBCOP is based on the algorithm implemented in DB-

COP [18]. Given a history (again de�ned by its po and wr relations), DBCOP

searches for an interleaving of all the operations of the history that respects the

constraints imposed by SC. Then, wSC+DBCOP is an adaptation of DBCOP

that exploits st in addition to po and wr as �xed constraints during its search.

Hence,

Theorem 7 Algorithm 5 returns true iff the input history ℎ satisfies SC.

For our experiments in next section, we compare wSC+ENUM and

wSC+DBCOP to each other, to DBCOP, and also to CCM+ENUM which is

the analogous of wSC+ENUM using CCM saturation instead of wSC saturation.

CCM+ENUM is the algorithm de�ned in the �rst SC checking approach (Section

4.1).

4.2.4 Complexity

Notice that at each step of the calculation of hb and st, at least one pair of

operations is added to one of these two relations and that the number of such
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pairs is polynomially bounded (in the size of the computation), there can be at

most 𝑛2 edges where n is the number of operations in the computation. As we

have seen in the hb and st saturation rules, it involves 3 operations (𝒪(𝑛3)).

Thus, the acyclicity of hb can be decided in polynomial time. Then,

Theorem 8 Checking whether a history ℎ satisfies wSC is polynomial time

(𝒪(𝑛5)) in the size of the history.

4.2.5 Experimental Evaluation

We show in this section an evaluation of the e�ciency of our approach and its

scalability. We �rst report on the e�ciency of the wSC saturation in computing

the SC-kernel. Then, we present an evaluation of the approach in checking SC

conformance by taking into account two dimensions: the number of operations

and the number of threads. The evaluation examines the case of valid histories

(that satisfy SC), the case of histories that violate SC, and the case where both

types of histories are considered. Alike the �rst section, experiments are done by

considering histories that are generated by running random clients (ruby random

tester [6]) on realistic cache coherence protocols within the Gem5 simulator [17] in

system emulation mode. We used 4 cache coherence protocols included in Gem5:

MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base. We use

another implementation of CCM+ENUM which is more e�cient compared to the

Datalog based approach we have considered in the Section 4.1.

The Figure 4.14 shows the general schema of the wSC-based testing procedure

we used in our experiments to check SC.

Capacity of ordering the set of writes

We evaluate the capacity of CCM and wSC in computing store order con-

straints that must be part of any store order witnessing SCness. In fact, we know

that their saturation procedures compute subsets of the SC-kernel of SC histo-

ries. The questions we address is what is the computed proportion of this set,

and what is the proportion of the set of pairs of writes in the execution that are

not ordered by saturation (including those that are outside the SC-kernel when

the history is SC).

We found that wSC computes the SC-kernel in 74.24% of the tested execu-
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Figure 4.14 � The general schema of the SC checking procedure using wSC

tions, and that for the rest of the executions, it computes in average 99.97% of

their kernel. As for CCM, we found that it computes the SC-kernel only in 0.7%

of the same set of executions.

We also found that wSC saturation puts 98.51% of the pairs of writes of an

execution in average, and that CCM order in average 97,89% of the pairs of

writes.

This is interesting since in terms of coverage of the sets of pairs of write, CCM

is not far from wSC, however, only for very few execution it can cover fully its

SC-kernel.

SC conformance checking: Valid histories

We consider in this section the case of executions that satisfy SC. The experi-

ments are made by varying the number of operations and the number of threads.

For each value of number of operations, of threads, respectively, we have tested

200 histories and computed the running time average.

Figure 4.15 reports the running time of the 4 algorithms wSC+ENUM,

CCM+ENUM, DPCOP, and wSC+DBCOP while increasing the number of op-

erations from 200 to 800, in increments of 100 with a �xed number of 6 threads.

It shows that for a �xed, relatively small number of threads, DBCOP has the

best performances, while wSC+ENUM good performances and is clearly supe-

rior than CCM+ENUM. This is due partly to the di�erence in the coverage of
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Figure 4.15 � Checking SC for valid histories while varying the number of
operations.

store order constraints, but only because the di�erence between the two coverage

percentages is not big in average (98.51% vs 97,89%). So, here the complexity of

the saturation technique plays also in important role: for CCM, the saturation

schema requires computing local happen-before relation for each operation, which

is very expensive compared with the much simpler saturation schema in wSC.

Figure 4.16 reports the running time while increasing the number of threads

from 4 to 16, in increments of 4. We have considered 50 operations per thread.

Notice that increasing the number of threads increases the global number of op-

erations too. Figure 4.16(a) shows that the performances of DBCOP degrade

quickly beyond 8 threads, while the other algorithms exploiting saturation are

more scalable, wSC+ENUM being better than CCM+ENUM, wSC+DBCOP

achieving the best performances. Figure 4.16(b) is a zoom of Figure 4.16(a) for

a smaller time scale in order to examine more closely the separation between

CCM+ENUM, wSC+ENUM, and wSC+DBCOP. It can be seen that the combi-

nation of wSC saturation with DBCOP leads to an e�cient procedure that takes

advantage from the DBCOP strategy for small number of threads, and exploits

wSC saturation to stay scalable when both the number of threads and operations

increase.

SC conformance checking: Valid and invalid histories

We now consider a set of histories containing 50% of violations. The vio-

lations are generated by randomly changing the write-read relation: for some

number of reads chosen randomly, we modify their return value by choosing the

one written by a write operation taken randomly in the execution within some
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(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Figure 4.16 � Checking SC for valid histories while varying the number of
threads.

(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Figure 4.17 � Checking SC for a set of 50% of valid and 50% of invalid
histories.

bounded distance from the considered read. As in the previous paragraph, we

consider histories with 4 to 16 threads and we test 200 histories for each num-

ber of threads. The results shown in Figure 4.17b and Figure 4.17a show that

the considered algorithms behave and compare in the case with mixed types of

histories similarly to the case with only valid histories.

SC conformance checking: Invalid histories

We consider now the case of only violations. We consider histories with 4

to 16 threads and 50 operations per thread. For each number of threads, we

consider 100 histories and compute the average running time. Since all found
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(a) Comparison of wSC, CCM and
DBCOP.

(b) Comparison of wSC and CCM.

Figure 4.18 � Checking SC for invalid histories.

violations are already wSC violations, we only compare the saturation steps wSC

and CCM with DBCOP. Figure 4.18b shows that clearly wSC is more e�cient

than CCM. In addition, wSC captures more SC violations: 1,25% of the violations

are not captured by CCM. Figure 4.18 shows that wSC has better performance, by

factors of 70 times (in the 8 threads case) and higher, compared to DBCOP (the

latter crashes when the number of threads is large) while wSC is very e�cient,

it terminates in less than 8 seconds for all the tested histories. This shows the

superiority of saturation in detecting quickly consistency violations, and it scales

very well when increasing the number of threads (and therefore the total number

of operations as well).

4.3 Conclusion

We have proposed two approaches for checking SC conformance. The idea

over these approaches is to avoid an explicit enumeration of the exponential

number of possible total orders between writes in order to solve these problem.

Our approach is to de�ne weaker criteria that are as strong as possible but still

polynomial time checkable. Morally, the approach consists in being able to cap-

ture an �as large as possible� partial order on writes that can be computed in

polynomial time (using a least �xpoint calculation), and which is a subset of any

total order witnessing SC conformance. Then, the �rst idea was to exploit the

existing causal consistency models and combine them in order to come out with a

strong causal consistency variant (CCM) which is polynomially checkable and still
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weaker than SC. The experiments con�rmed that this approach allows to reduce

signi�cantly the number of pairs of writes for which an order should be found

in order to establish SC conformance in an enumerative way. However, we have

shown that this approach can be pushed more and we have introduced another

consistency model (wSC) which is stronger than CCM, polynomially checkable

and weaker than SC. Our experimental results showed that in practice (1) this

allows to catch very quickly almost all SC-violations, and (2) our method allows

to compute almost always the whole SC-kernel (around 99.9% of it), and leaves

only a very small number of store order constraints to be found in order to check

SC-ness. We considered two ways for �nding the remaining constraints: either

using SAT-solving, or using the search procedure of DBCOP. The latter option,

exploiting saturation to enhance DBCOP, is the best one experimentally, leading

to a performant and scalable algorithm. An interesting question is whether this

approach can be generalized in order to cover other consistency models for which

the conformance veri�cation problem is NP-hard.

We address this problem in the next chapter and propose similar approaches

for checking Total Store Order (TSO) conformance.
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TOTAL STORE ORDERING VERIFICATION

In this chapter, we address the problem of verifying that an execution is con-

form to the TSO consistency model. This problem is known to be NP-complete

[41, 38] as the SC checking problem. This similarity is due to the fact that in

order to justify that the execution is consistent, one has to �nd a total order

between the writes which explains the read operations happening along the com-

putation. It can be proved that one cannot avoid enumerating all the possible

total orders between writes, in the worst case.

For the case of TSO, we proceed in the same way as for SC, but we consider

di�erent intermediary polynomial time checkable criteria. This is due to the

fact that some constraints need to be relaxed under TSO in order to take into

account the program order relaxations of TSO (ppo and po-loc), that allow reads

to overtake writes. As we have seen in the �rst chapter, a history ⟨𝑂, po,wr⟩
satis�es TSO if there exists a store order ww such that po-loc ∪ wr𝑒 ∪ ww ∪ rw

and ppo ∪ wr𝑒 ∪ ww ∪ rw are both acyclic.

Our �rst approach is based on a weakening of CCM called weak CCM

(wCCM), that is weaker than TSO and polynomial time checkable. Then, given a

history, if it is a violation of wCCM then the history is not conform to TSO as well

(TSO is stronger than wCCM). Otherwise, if the history satis�es wCCM, we try

to �nd an extension of the computed partial store order (the order between writes

imposed by wpww) that can witness for TSO satisfaction. The soundness of this

extension is implied by the fact the constraints imposed by wCCM on the writes
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order are included in any total store order witnessing for TSO conformance.

Our experiments show a signi�cant improvement of TSO checking perfor-

mance when we use wCCM as an upper-approximation of TSO w.r.t. a standard

enumeration using a SAT solver. However, an interesting question is whether

wCCM is the strongest consistency model we can use in this approach.

Similarly to SC, our second approach extends this idea by proposing a new

consistency model, called weak TSO (wTSO), that is stronger than wCCM,

weaker than TSO and the most important point is that it is checkable in polyno-

mial time.

Our second approach relies on the mentioned (new) consistency model called

weak Total Storing Order (wTSO, for short) that is based on a simple saturation

rule for imposing constraints on store order. The idea is to apply the saturation

rule to a pair of writes in order to avoid a cycle in the happen-before relation

involving a con�ict including one of the writes. The proposed saturation rule in

wTSO is more simpler compared to the one used for wCCM. Furthermore, we

prove that wTSO is stronger than wCCM. While the �rst part of this chapter is

published in [69], the second part is an extension of the work published in [65].

This chapter is structured in two sections. The �rst section (Section 5.1) is

dedicated to the TSO checking approach which is based on using wCCM as an

upper-approximation of TSO. We �rst de�ne the wCCM consistency model and

its related relations. Then, we show that wCCM is weaker than TSO. Afterwards,

we present our algorithm for checking TSO conformance and evaluate it using

the same real executions used in the SC case. The second section (Section5.2)

presents wTSO based approach for checking TSO. First, we de�ne the wTSO

consistency model. Then, we prove that wTSO is stronger than wCCM and

weaker TSO, and discuss the wTSO checking complexity. Finally, we present our

algorithm for checking TSO using wTSO based approximation and evaluate it on

real executions.

5.1 Approach 1: wCCM-based TSO verification

We de�ne a polynomial time checkable criterion, called weak convergent causal

memory (wCCM, for short), based on a (di�erent) variation of causal consistency

that is suitable for the case of TSO. This allows to reduce the number of pairs of
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writes for which an order must be guessed in order to establish the conformance

to TSO.

The case of TSO requires the de�nition of a new intermediary consistency

model because CCM is based on a causality order that includes the program

order po which is relaxed in the context of TSO, compared to the SC model.

Indeed, CCM is not weaker than TSO as shown by the history in Figure 5.1a

(note that this does not imply that other variations of causal consistency, CC and

CCv, are also not weaker than TSO). This history satis�es TSO because, based

on its operational model, the operation write(𝑥, 2) of thread 𝑡1 can be delayed

(pending in the store bu�er of 𝑡1) until the end of the execution. Therefore,

after executing read(𝑧, 0), all the writes of thread 𝑡0 are committed to the main

memory so that thread 𝑡1 can read 1 from 𝑦 and 2 from 𝑥 (it is obliged to read

the value of 𝑥 from its own store bu�er).

This history is not admitted by CCM because it is not admitted by the weaker

causal consistency variation CM. Figure 5.6b presents a history admitted by CCM

but not by TSO. Indeed, under TSO, both 𝑡2 and 𝑡3 should observe the writes

performed by 𝑡0 and 𝑡1, respectively, on variable 𝑥 and variable 𝑦 in the same

order. However, it does not, because 𝑡2 sees the write on variable 𝑥 before the

write on variable 𝑦 (since it reads 0 from 𝑦) and 𝑡3 sees the write on 𝑦 before the

write on 𝑥 (since it reads 0 from 𝑥). This history is admitted by CCM since the

two writes are causally independent and they concern di�erent variables.

We mention that TSO and CM are also incomparable. As we have seen in

the chapter 2, the history in Figure 5.1b is allowed by CM, but not by TSO. The

history in Figure 5.1a is admitted by TSO, but not by CM. Then, CM and CCM

cannot be used to approximate TSO.

Next, we de�ne the weakening of CCM, called weak convergent causal memory

(wCCM), which is also weaker than TSO. The wCCM model is actually based on

causality relations induced by the relaxed program orders ppo and po-loc instead

of po, and the external write-read relation instead of the full write-read relation.

Section 5.2.1 introduces wCCM while Section 5.1.2 is dedicated to our algo-

rithm for verifying TSO based on wCCM. Section 5.1.4 presents the experimental

results.
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𝑡1:
write(𝑧, 1)
write(𝑥, 1)
write(𝑦, 1)

𝑡2:
write(𝑥, 2)
read(𝑧, 0)
read(𝑦, 1)
read(𝑥, 2)

(a) TSO but not CM nor CCM

𝑡0:
write(𝑥, 1)
read(𝑥, 2)

𝑡1:
write(𝑥, 2)
read(𝑥, 1)

(b) CM but not CCv nor wCCM nor
TSO

𝑡0:
write(𝑥, 1)

𝑡1:
write(𝑦, 1)

𝑡2:
read(𝑥, 1)
read(𝑦, 0)

𝑡3:
read(𝑦, 1)
read(𝑥, 0)

(c) wCCM and CCM but not TSO.

Figure 5.1 � Comparison of CM, wCCM, CCM and TSO consistency models.

5.1.1 Weak Convergent Causal Memory

First, we de�ne two causality relations relative to the partial program orders in

the de�nition of TSO and the external write-read relation: For 𝜋 ∈ {ppo, po-loc},
let co𝜋 = (𝜋 ∪ wr𝑒)

+. We also consider a notion of con�ict that is de�ned in

terms of the external write-read relation as follows: For a given relation 𝑅, let

cf𝑒[𝑅] = 𝑅WR ∘ wr−1
𝑒 (Figure 5.2a) .

Then, given a history ⟨𝑂, po,wr⟩, we de�ne for each operation 𝑜 two happens-

before relations lhbppo𝑜 and lhbpo-loc𝑜 . The de�nition of these relations is similar

to the one of lhb𝑜 (from causal memory (CM)), the di�erences being that po

is replaced by ppo and po-loc respectively, co is replaced by coppo and copo-loc

respectively, and wr is replaced by wr𝑒. Therefore, for 𝜋 ∈ {ppo, po-loc}, lhb𝜋𝑜 is

the smallest transitive relation such that:

1. (𝑜1, 𝑜2) ∈ lhb𝜋𝑜 if (𝑜1, 𝑜2) ∈ co𝜋, (𝑜1, 𝑜) ∈ co𝜋, and (𝑜2, 𝑜) ∈ (co𝜋)*, and

2. (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ lhb𝜋𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ lhb𝜋𝑜 , and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and (read(𝑥, 𝑣′), 𝑜) ∈ 𝜋*, for some read(𝑥, 𝑣′)

(Figure 5.2c).

Let lhb𝜋 = (
⋃︀

𝑜∈𝑂 lhb𝜋𝑜 )+, for 𝜋 ∈ {ppo, po-loc}, and let wlhb = (lhbppo𝑜 ∪
lhbpo-loc𝑜 )+. Then, the weak partial store order is de�ned as follows:

wpww = (wlhbWW ∪ cf𝑒[lhb
po-loc] ∪ cf𝑒[lhb

ppo])+

Then,

Definition 17 A history ⟨𝑂, po,wr⟩ satisfies weak Convergent Causal Memory
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𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑅

cf𝑒[𝑅]

wr𝑒

(a) Conflict order cf[R]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑤𝑟

𝑤𝑝𝑤𝑤

𝑟𝑤[𝑤𝑝𝑤𝑤]

(b) Read-write rw[wpww]

𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟

𝑜

𝑙ℎ𝑏𝜋
𝑜

𝑙ℎ𝑏𝜋𝑜

𝑤𝑟

𝜋*

(c) Local happen-before lhb𝜋𝑜

Figure 5.2 � De�nitions of relations used to de�ne wCCM
consistency model.

(wCCM) if both relations:

ppo ∪ wr𝑒 ∪ wpww ∪ rw[wpww] and po-loc ∪ wr𝑒 ∪ wpww ∪ rw[wpww]

are acyclic.

As we have seen, the external write-read relation wr𝑒 is a restriction of the write-

read relation to pairs that are not in the same thread, i.e., wr𝑒 = wr ∩ {(𝑜, 𝑜′) |
(𝑜, 𝑜′) ̸∈ po and (𝑜′, 𝑜) ̸∈ po}. The read-write relation rw[𝑤𝑝𝑤𝑤] induced by

wpww (Figure 5.2b) is de�ned by rw[𝑤𝑝𝑤𝑤] = wr−1 ∘ 𝑤𝑝𝑤𝑤.
To exemplify, consider the following examples.

Example 32 The history in Figure 5.1c is allowed by wCCM. The reason is that

the two writes (write(𝑥, 1) and write(𝑦, 1)) are not causally related and they are

written in different variables 𝑥 and 𝑦.

Example 33 The history in Figure 5.1b does not satisfy wCCM. Since write(𝑥, 1)

precedes read(𝑥, 2) in po-loc and read(𝑥, 2) in 𝑡0 takes its value from write(𝑥, 2)

in the 𝑡1 (i.e., (write(𝑥, 2),write(𝑥, 2)) ∈ wr𝑒), write(𝑥, 1) should precede

write(𝑥, 2) in cf𝑒 relation. Similarly, since write(𝑥, 2) precedes read(𝑥, 1) in

po-loc and read(𝑥, 1) in 𝑡1 takes its value from write(𝑥, 1) in the 𝑡0 (i.e.,

(write(𝑥, 1),write(𝑥, 1)) ∈ wr𝑒), write(𝑥, 2) should precede write(𝑥, 1) in cf𝑒 re-

lation. Then, we get a cycle in cf𝑒 and the history is not wCCM.

–97–



Chapter 5. Total Store Ordering Verification

We prove that TSO is stronger than wCCM.

Lemma 14 If a history satisfies TSO, then it satisfies wCCM.

Proof 12 Let ℎ = ⟨𝑂, po,wr⟩ be a history satisfying TSO. Then, there exists a

store order ww such that po-loc∪wr𝑒 ∪ww ∪ rw and ppo∪wr𝑒 ∪ww ∪ rw are both

acyclic. The fact that

lhbpo-loc ⊆ (po-loc ∪ wr𝑒 ∪ ww ∪ rw)+ and lhbppo ⊆ (ppo ∪ wr𝑒 ∪ ww ∪ rw)+

can be proved by structural induction like in the case of SC (the step of the proof

showing that lhb ⊆ po ∪ wr ∪ ww ∪ rw[ww]). Then, since ww is a total order

on writes on the same variable, we get that the projection of wlhb (the transitive

closure of the union of lhbpo-loc and lhbppo) on pairs of writes on the same variable

is included in ww. Therefore, wlhbWW ⊆ ww. Then, since cf𝑒[𝑅
𝜋] ⊆ 𝑅𝜋 for each

𝑅𝜋 = (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+ with 𝜋 ∈ {ppo, po-loc} and since each cf𝑒[𝑅
𝜋] relates

only writes on the same variable, we get that each cf𝑒[𝑅
𝜋] is included in ww. This

implies that wpww ⊆ ww.

Finally, since wpww ⊆ ww, we get that (𝜋 ∪ wr ∪ wpww ∪ rw[wpww])+ ⊆
(𝜋 ∪wr ∪ww ∪ rw[ww])+, for each 𝜋 ∈ {ppo, po-loc}. In each case, the acyclicity

of the latter implies the acyclicity of the former. Therefore, ℎ satisfies wCCM. �

The reverse of the above lemma does not hold. Indeed, it can be easily seen

that wCCM is weaker than CCM (since wpww is included in pww). The following

example shows a history that satis�es CCM (then wCCM as well) but not TSO.

Example 34 The history in Figure 5.6b satisfies CCM but not TSO (as ex-

plained before) then it satisfies wCCM but not TSO (wCCM is strictly weaker

than CCM).

Then,

Lemma 15 TSO is strictly stronger than wCCM.

We now compare wCCM to CM.

wCCM compared to CM: Consider the following examples,

Example 35 The history in Figure 5.6b is allowed by wCCM (since it is allowed

by TSO, as explained in the beginning of the section), but not by CM.
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Example 36 Since CCM is stronger than CM, the history in Figure 5.1b satisfies

CM but not wCCM (As we have seen above).

Then,

Result 2 wCCM and CM are incomparable.

The relationships between the consistency models that we have seen above are

summarized in Figure 5.3. Establishing the precise relation between CC/CCv

and TSO is hard because of the fact that CC and CCv are de�ned using one

acyclicity condition while TSO is based on two acyclicity conditions. We believe

that CC and CCv are weaker than TSO, but we do not have a formal proof.

Figure 5.3 � Relationships between consistency models: CC, CCv, CM, CCM,
wSC, wCCM, TSO and SC.

5.1.2 An Algorithm for Checking TSO conformance using

wCCM

The wCCM-based algorithm for checking TSO conformance for a given history

is presented in Algorithm 6. It starts by checking whether the history violates

the weaker consistency model wCCM. If yes, it returns false. If not, it starts

enumerating the orders between the writes that are not related by the weak partial

store order wpww until it founds one that allows establishing TSO conformance.

So, in this case it returns true. Otherwise, if no valid total order is found, it

returns false. This enumeration can be done either using standard enumeration

or using a SAT solver.

Theorem 9 Algorithm 6 returns true iff the input history ℎ satisfies TSO.
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Algorithm 6: Checking TSO conformance: wCCM+ENUM algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies TSO

1 if ppo ∪ wr𝑒 ∪ wpww ∪ rw[wpww] or po-loc ∪ wr𝑒 ∪ pww ∪ rw[wpww] is cyclic then

2 return false;

3 foreach ww ⊃ wpww do

4 if ppo ∪ wr𝑒 ∪ ww ∪ rw[ww] and po-loc ∪ wr𝑒 ∪ ww ∪ rw[ww] are acyclic then

5 return true;

6 return false;

5.1.3 Complexity

It can be seen that similarly to pww, the weak partial store order wpww can be

computed in polynomial time (in the size of the input history). In fact, the lhb𝜋

relations (for each 𝜋 ∈ {ppo, po-loc}) can be computed in at most a quadratic

number of iterations (using a least �x-point calculation for instance). the cf𝑒 can

be computed using a least �x-point calculation as well, and the acyclicity of:

ppo ∪ wr𝑒 ∪ wpww ∪ rw[wpww] and po-loc ∪ wr𝑒 ∪ wpww ∪ rw[wpww]

can be decided in polynomial time. Thus,

Theorem 10 Checking whether a history satisfies wCCM is polynomial time

(𝒪(𝑛5)) in the size of the history.

5.1.4 Experimental Evaluation

In order to evaluate the e�ciency and scalability of the proposed approach,

we have implemented the TSO algorithms we introduced above and use them in

experiments to check the TSO conformance. We have investigated their running

time, compared to a standard encoding of TSO model into boolean satis�ability,

on a set of histories generated by running random clients on realistic cache co-

herence protocols implemented in the Gem5 simulator [17]. Similarly to SC, we

have used the following cache coherence protocols: MI,MEOSI Hammer,MESI

Two Level, and MEOSI AMD Base. The parameters of these random clients

are the number of cpus (threads) and the total number of read/write operations.

We ensure that all the histories are di�erentiated i.e., writes on the same variable

are unique.
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Figure 5.4 � The general schema of the TSO checking procedure using wCCM

We have compared two variations of our algorithms for checking TSO with

a standard encoding of TSO into boolean satis�ability (named TSO-SAT). The

two variations di�er in the way in which the partial store order wpww imposed

by wCCM is completed to a total store order ww as required by TSO: either

using standard enumeration (named TSO-CCM+Enum) or using a SAT solver

(named TSO-CCM+SAT).

Similarly to pww in the case of CCM, the computation of the partial store

order wpww is done using an encoding of its de�nition into a DATALOG program.

The inductive de�nition of wlhb𝑜 supports an easy translation to DATALOG

rules, and the same holds for the union of two relations, or their composition.

The obtained Datalog programs were run using Clingo [39].

The Figure 5.4 shows the general schema of the testing procedure that we

used in these experiments to check TSO using wCCM.

We have evaluated our TSO algorithms on the same set of histories used for

SC in Figure 4.6. Since these histories satisfy SC, they satisfy TSO as well. Our

algorithms scale much better than the SAT encoding. However, di�erently from

SC, the enumeration of wpww extensions using a SAT solver outperforms the

explicit enumeration. Since this di�erence was more negligible in the case of SC,

it seems that the SAT variation is generally better.
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(a) Checking TSO while varying the
number of operations.

(b) Checking TSO while varying the
number of cpus.

Figure 5.5 � Checking TSO for valid histories.

5.1.5 Discussion

We have presented an approach for verifying TSO by generalizing the �rst

SC veri�cation approach introduced in Section 4.1 (Chapter 4). The approach

consists in using a weak consistency model called wCCM that is checkable in

polynomial time to approximate TSO. This approach allows computing a set of

orders between writes on the same variable that is included in any store order

that witnesses for TSO conformance, if it exists. In addition, it allows detecting

TSO violations early (i.e., violations that are already wCCM violations) and in

only polynomial time. Our Experiment results show that using wCCM allows to

improve the TSO checking performance w.r.t. an explicit enumeration using a

reduction of the problem to SAT. Now, the question again is how far this approach

can be pushed? or can we found a stronger consistency model that can be used

to approximate TSO in a more e�cient way?

The following section investigates this question.

5.2 Approach 2: wTSO-based TSO verification

In this section we introduce a new saturation-based consistency model called

weak Total Store Ordering (wTSO) used to approximate TSO. First of all, we

prove that wTSO is strictly stronger than wCCM and weaker than TSO. The

experimental results show that wTSO scales much better than wCCM when both

the number of threads and the number of operations increase. Section 5.2.1
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introduces wTSO. Then, Section 5.1.2 describes our wTSO-based algorithm for

checking TSO. The complexity of our approach is discussed in the Section 5.2.3.

Finally, the experiment results are shown in the Section 5.2.4.

5.2.1 Weak Total Store Ordering

We propose a new consistency model called weak Total Store Ordering

(wTSO). This new model computes a partial store order using a simpler sat-

uration rule compared to the one used in wCCM.

Formally, for 𝜋 ∈ {ppo, po-loc}, let wst and whb𝜋 be the smallest relations

such that

wst = ((whb𝜋WR ∘ wr
−1) ∪ whb𝜋WW)+

whb𝜋 = (𝜋 ∪ wr𝑒 ∪ wst ∪ rw[wst])+

rw[wst] = wr−1 ∘ wst

Where, whb𝜋WW, resp. whb
𝜋
WR, is the projection of whb

𝜋, resp. whb𝜋, on pairs

of writes, resp. on pairs of writes and reads, on the same variable parameterized

by 𝜋. The external write-read is wr𝑒 = wr∩{(𝑜, 𝑜′) | (𝑜, 𝑜′) ̸∈ po and (𝑜′, 𝑜) ̸∈ po}.
Then,

Definition 18 A history ⟨𝑂, po,wr⟩ satisfies weak Total Store Ordering (wTSO)
if both whbppo and whbpo-loc are acyclic.

To illustrate, consider the following examples,

Example 37 The Figure 5.6a presents a history which is conform to wTSO.

To show this, one can consider that the writes write(𝑧, 3) and write(𝑧, 4) are not

related by the partial store order 𝑤𝑠𝑡. Roughly, the wTSO saturation rules does

not impose any order for this pair of writes (write(𝑧, 3) and write(𝑧, 4)).

Example 38 The Figure 5.6b presents a history which does not satisfy wTSO.

Since read(𝑦, 0) in 𝑡2 returns the initial value 0, it should precede all writes in the

variable 𝑦, so read(𝑦, 0) should precede write(𝑦, 1) in read-write relation. Simi-

larly, since read(𝑥, 0) in 𝑡3 returns the initial value 0, it should precede write(𝑥, 1)

in read-write relation rw[wst]. Then, we get a cycle in rw[wst] ∪ wr𝑒.
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𝑡0:
write(𝑥, 1)
write(𝑦, 1)
write(𝑧, 3)
write(𝑡, 1)

𝑡1:
write(𝑥, 2)
write(𝑦, 2)
write(𝑧, 4)
write(𝑡, 2)

𝑡2:
read(𝑡, 1)
write(𝑥, 4)
write(𝑡, 3)

𝑡3:
read(𝑡, 1)
write(𝑦, 4)
write(𝑡, 4)

𝑡4:
read(𝑡, 2)
write(𝑥, 3)
write(𝑡, 5)

𝑡5:
read(𝑡, 2)
write(𝑦, 3)
write(𝑡, 6)

𝑡6:
read(𝑡, 3)
read(𝑦, 2)

𝑡7:
read(𝑡, 4)
read(𝑥, 2)

𝑡8:
read(𝑡, 5)
read(𝑦, 1)

𝑡9:
read(𝑡, 6)
read(𝑥, 1)

(a) wTSO but not TSO
𝑡0:
write(𝑥, 1)

𝑡1:
write(𝑦, 1)

𝑡2:
read(𝑥, 1)
read(𝑦, 0)

𝑡3:
read(𝑦, 1)
read(𝑥, 0)

(b) wCCM but not wTSO nor TSO.

Figure 5.6 � Comparison of wTSO and TSO consistency models.

We prove that wTSO is stronger than wCCM.

Lemma 16 If a history satisfies wTSO, then it satisfies wCCM.

Proof 13 Let ℎ = ⟨𝑂, po,wr⟩ be a history which satisfies wTSO i.e., ppo∪wr𝑒∪
wst ∪ rw[wst] and po-loc ∪ wr𝑒 ∪ wst ∪ rw[wst] are both acyclic. We show that for

𝜋 ∈ {ppo, po-loc}, (𝜋 ∪ wr𝑒 ∪ wpww ∪ rw[wpww])+ ⊆ whb𝜋 (the history satisfies

wCCM as well). Let co𝜋 = (𝜋 ∪ wr𝑒)
+.

Let’s prove that lhb𝜋𝑜 ⊆ whb𝜋 for every operation 𝑜 in ℎ. To do, we prove that

whb𝜋 fulfill the two requirements of lhb𝜋𝑜 :

� If (𝑜1, 𝑜2) ∈ co𝜋, (𝑜1, 𝑜) ∈ co𝜋, and (𝑜2, 𝑜) ∈ co𝜋 then (𝑜1, 𝑜2) ∈ whb𝜋 (the

reason is that co𝜋 ⊆ whb𝜋), and

� If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ whb𝜋 and (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr then

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ (whb𝜋∘wr−1) and then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈
wst and (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ whb𝜋.

Therefore, we get lhb𝜋𝑜 ⊆ whb𝜋 and then wlhb ⊆ whb𝜋.

Let us now show that wpww = (wlhbWW ∪ cf𝑒[lhb
po-loc] ∪ cf𝑒[lhb

ppo])+ ⊆ wst.
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𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′)

𝑟
𝑤ℎ𝑏𝜋

𝑖

𝑤𝑠𝑡′𝑖

𝑤𝑟

Figure 5.7 � Partial store order 𝑤𝑠𝑡′𝑖 used to de�ne wTSO consistency model

It can be see that wlhbWW ⊆ whb𝜋WW (since wlhb ⊆ whb𝜋 for 𝜋 ∈
{ppo, po-loc}). By definition, cf𝑒[lhb

𝜋] = lhb𝜋WR ∘ wr−1
𝑒 and then cf𝑒[lhb

𝜋] ⊆
(whb𝜋WR ∘ wr−1). This implies that wpww = (wlhbWW ∪ cf𝑒[lhb

po-loc] ∪
cf𝑒[lhb

ppo])+ ⊆ wst = ((whb𝜋WR ∘ wr−1) ∪ whb𝜋WW)+.

Finally, we can deduce that for 𝜋 ∈ {ppo, po-loc}, (𝜋 ∪ wr𝑒 ∪ wpww ∪
rw[wpww])+ ⊆ whb𝜋 = (𝜋 ∪ wr𝑒 ∪ wst ∪ rw[wst])+. �

The reverse of this lemma does not hold. Take the following example for

instance,

Example 39 Figure 5.6b presents a history that satisfies wCCM but not wTSO

(the reason was explained before in the examples 32 and 38).

Then,

Lemma 17 wTSO is strictly stronger than wCCM.

We show now that wTSO is weaker than TSO. Let's de�ne sub relations of

wst and whb𝜋 that are gotten using iterative least �x-point computation.

Let wst =
⋃︀

𝑖 𝑤𝑠𝑡𝑖 and for 𝜋 ∈ {ppo, po-loc}, whb𝜋 =
⋃︀

𝑖 𝑤ℎ𝑏
𝜋
𝑖 where 𝑤𝑠𝑡𝑖 =

(whb𝜋i WW ∪ 𝑤𝑠𝑡′𝑖)
+ and 𝑤𝑠𝑡′𝑖 (Figure 5.7) is de�ned as follows:

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑤𝑠𝑡′𝑖 i� (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ 𝑤ℎ𝑏𝜋𝑖 and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr

where, for 𝜋 ∈ {ppo, po-loc} and for every 𝑖 ≥ 0, 𝑤ℎ𝑏𝜋𝑖 is de�ned by:

𝑤ℎ𝑏𝜋0 = (𝜋 ∪ wr𝑒)
+

𝑤ℎ𝑏𝜋𝑖+1 = (𝑤ℎ𝑏𝜋𝑖 ∪ 𝑤𝑠𝑡𝜋𝑖 ∪ rw[𝑤𝑠𝑡𝜋𝑖 ])+

We now prove that the partial store order 𝑤𝑠𝑡𝑖 is a part of any store order

ww that witnesses for TSO conformance.
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Lemma 18 Let ℎ = ⟨𝑂, po,wr⟩ be a history and ww be a total store order such

that po-loc ∪ wr𝑒 ∪ ww ∪ rw and ppo ∪ wr𝑒 ∪ ww ∪ rw are both acyclic. Then,

𝑤𝑠𝑡𝑖 ⊆ ww and 𝑤ℎ𝑏𝜋𝑖 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+.

Proof 14 Let ℎ = ⟨𝑂, po,wr⟩ be a history that is conform to TSO i.e., there ex-

ists a total order ww such that (ppo∪wr𝑒∪ww ∪ rw) and (po-loc∪wr𝑒∪ww ∪ rw)
are acyclic. We prove that, for 𝜋 ∈ {ppo, po-loc}, 𝑤ℎ𝑏𝜋𝑖 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+

and 𝑤𝑠𝑡𝜋𝑖 ⊆ ww for all ww such that (𝜋∪wr𝑒 ∪ww ∪ rw) is acyclic. We show this

using the induction on the index 𝑖 of 𝑤ℎ𝑏𝜋𝑖 and 𝑤𝑠𝑡𝑖.

Base-Case. The 𝑤ℎ𝑏𝜋0=(𝜋 ∪ wr𝑒)
+ is included in (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+. Con-

sidering 𝑤ℎ𝑏𝜋0 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+, if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ 𝑤ℎ𝑏𝜋0

and there exists a read(𝑥, 𝑣′) such that (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise, assuming by contradiction that

(write(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ ww, then (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw. On the other

hand, considering write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ 𝑤ℎ𝑏𝜋0 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+,

we get a cycle in (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+ which is a contradiction. Therefore,

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww.

Thus, 𝑤𝑠𝑡′0 is included in ww, then 𝑤𝑠𝑡0 = (whb𝜋0WW∪𝑤𝑠𝑡′0)+ is also included

in ww (the reason is that whb𝜋0WW ⊆ ww). Otherwise, it leads to a contradiction

with the fact that 𝑤ℎ𝑏𝜋0 ⊆ (𝜋∪wr𝑒∪ww∪ rw)+ and (𝜋∪wr𝑒∪ww∪ rw)+ is acyclic

for 𝜋 ∈ {ppo, po-loc}.
Induction Step. Suppose that for all ww, 𝑤ℎ𝑏𝜋𝑖 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+

and 𝑤𝑠𝑡𝑖 ⊆ ww. We prove that this holds for 𝑖 + 1 as well. By induction hy-

pothesis, 𝑤𝑠𝑡𝑖 ⊆ ww, so using the definition of rw[𝑤𝑠𝑡𝑖] we have rw[𝑤𝑠𝑡𝑖] ⊆
rw. Then, 𝑤ℎ𝑏𝜋𝑖+1 = (𝑤ℎ𝑏𝜋𝑖 ∪ 𝑤𝑠𝑡𝑖 ∪ rw[𝑤𝑠𝑡𝑖])

+ ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+.

Now, let’s prove that 𝑤𝑠𝑡′𝑖+1 ⊆ ww. If (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ 𝑤ℎ𝑏𝜋𝑖 and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww. Otherwise,

using the same argument above (in the base case), (read(𝑥, 𝑣′),write(𝑥, 𝑣)) ∈ rw

which is a contradiction with the fact that (𝜋∪wr𝑒∪ww ∪ rw)+ is acyclic. There-

fore, if (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ 𝑤𝑠𝑡′𝑖+1 then (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ ww and

then 𝑤𝑠𝑡′𝑖+1 ⊆ ww. Moreover, whb𝜋i+1WW ⊆ ww since 𝑤ℎ𝑏𝜋𝑖+1 ⊆ (𝜋∪wr𝑒∪ww∪rw)+

(Otherwise it leads to a contradiction with the fact that (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+ is

acyclic). Since 𝑤𝑠𝑡𝑖+1 = (whb𝜋i+1WW ∪ 𝑤𝑠𝑡′𝑖+1)
+, 𝑤𝑠𝑡′𝑖+1 ⊆ ww and whb𝜋i+1WW ⊆

ww, we get 𝑤𝑠𝑡𝑖+1 ⊆ ww (since ww is a total store order). �

Then, as an immediate corollary of Lemma 18, we get:
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Lemma 19 If a history satisfies TSO, then it satisfies wTSO.

Proof 15 The proof is by contradiction. Assume that a history ℎ = ⟨𝑂, po,wr⟩
satisfies TSO and it does not satisfy wTSO.

The history ℎ is conform to TSO means that there exists a total store order ww

such that ppo∪wr𝑒∪ww∪ rw and po-loc∪wr𝑒∪ww∪ rw are acyclic. Considering

that ℎ does not satisfy wTSO i.e., 𝑤ℎ𝑏ppo or 𝑤ℎ𝑏po-loc or both of them are cyclic.

Since, for 𝜋 ∈ {ppo, po-loc}, whb𝜋 =
⋃︀

𝑖 𝑤ℎ𝑏
𝜋
𝑖 and 𝑤ℎ𝑏𝜋𝑖 ⊆ (𝜋 ∪ wr𝑒 ∪ ww ∪ rw)+

(from Lemma 18), we can deduce that (𝜋∪wr𝑒∪ww∪ rw)+ is also cyclic and thus

we get a contradiction. �

The reverse of the above lemma doesn't hold. For instance,

Example 40 Figure 5.6 shows a history which satisfies wTSO (The reason was

shown in example 37) but not TSO. Since there is no valid store order for the

writes write(𝑧, 3) and write(𝑧, 4), this history does not satisfy TSO. In fact, con-

sider the two possible cases:

� If write(𝑧, 3) precedes write(𝑧, 4) in ww, then write(𝑦, 1) precedes write(𝑦, 3)

in ppo ∪ wr𝑒 ∪ ww. Since, read(𝑦, 1) reads its value from write(𝑦, 1), we

get a rw between read(𝑦, 1) and write(𝑦, 3). Similarly, write(𝑥, 1) precedes

write(𝑥, 3) in ppo∪wr𝑒 ∪ww and read(𝑥, 1) reads its value from write(𝑥, 1),

then, we get a rw between read(𝑥, 1) and write(𝑥, 3). Thus, we get a cycle

in ppo ∪ wr𝑒 ∪ ww ∪ rw.

� If write(𝑧, 4) happens before write(𝑧, 3) in ww, then write(𝑦, 2) precedes

write(𝑦, 4) in ppo ∪ wr𝑒 ∪ ww. Since, read(𝑦, 2) reads its value from

write(𝑦, 2), we get a rw between read(𝑦, 2) and write(𝑦, 4). Similarly, we

get a rw between read(𝑥, 2) and write(𝑥, 4). Thus, we get a cycle in

ppo ∪ wr𝑒 ∪ ww ∪ rw.

Both of these cases lead to a cycle in ppo ∪ wr𝑒 ∪ ww ∪ rw, so the history is

not allowed under TSO model.

Then,

Lemma 20 TSO is strictly stronger than wTSO.

The Figure 5.8 presents the whole image of the relationships between the

consistency models studied in this thesis. In this chapter, we have introduced
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wCCM which is strictly weaker than CCM, incomparable with CM and strictly

weaker than TSO. We have also introduced wTSO that is strictly stronger than

wCCM and strictly weaker than TSO.

Figure 5.8 � Relationships between all consistency models considered in this the-
sis.

5.2.2 An Algorithm for checking TSO conformance using

wTSO

In this section, we de�ne an algorithm for checking TSO conformance which

completes the partial store order wst, computed by the wTSO saturation rules,

to a total store order. Following the SC veri�cation approaches and the TSO

veri�cation approach that we have presented in Section 5.1, we start by checking

that the given history satis�es wTSO. If not, then we conclude that it is not

TSO as well (by Lemma 19). If yes, we exploit wst in order to enhance the TSO

veri�cation of the history. Then, we use the SAT solver to �nd a total store

order extending wst. It starts enumerating the orders between the writes that

are not related by the wst order until it founds one that allows establishing TSO

satisfaction, so in this case it returns true. Otherwise, it returns false. Hence,

Theorem 11 Algorithm 7 returns true iff the input history ℎ satisfies TSO.

5.2.3 Complexity

Since at each step of the computation of whb𝜋 (𝜋 ∈ {ppo, po-loc}) and wst,

we enumerate over three operations (𝒪(𝑛3)) and at least one pair of operations is

–108–



Chapter 5. Total Store Ordering Verification

Algorithm 7: Checking TSO conformance: wTSO+ENUM algorithm.
Input: A history ℎ = ⟨𝑂, po,wr⟩
Output: true iff ℎ satisfies TSO

1 if ppo ∪ wr𝑒 ∪ wst ∪ rw[wst] or po-loc ∪ wr𝑒 ∪ wst ∪ rw[wst] is cyclic then

2 return false;

3 foreach ww ⊃ wst do
4 if ppo ∪ wr𝑒 ∪ ww ∪ rw[ww] and po-loc ∪ wr𝑒 ∪ ww ∪ rw[ww] are acyclic then

5 return true;

6 return false;

added to one of these two relations and the number of such pairs is polynomially

bounded (in the size of the computation), at most 𝑛2 edges where n is the com-

putation size. Then, the acyclicity of whb𝜋 can be decided in polynomial time.

Hence,

Theorem 12 Checking whether a history ℎ satisfies wTSO is polynomial time

(𝒪(𝑛5)) in the size of the history.

5.2.4 Experimental Evaluation

The Figure 5.9 presents the approach that we propose to check TSO confor-

mance based on wTSO.

Figure 5.9 � The general schema of the TSO checking procedure using wTSO

Since wTSO is strictly stronger than wCCM, we believe that the implemen-

tation of this procedure (Figure 5.9) will outperform the one based on wCCM.
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(a) Checking wTSO and wCCM while
varying the number of operations.

(b) Checking wTSO and wCCM while
varying the number of cpus.

Figure 5.10 � Checking wTSO and wCCM for valid histories.

The reason is that in addition of capturing more violations using wTSO ( because

wTSO is strictly stronger than wCCM), it allows computing a large subset of the

total order witnessing for TSO conformance, if any. The adaptation of DBCOP

to the case of TSO is non-trivial. This is left for future work.

We have implemented the wTSO and wCCM checking algorithms and com-

pare them using a set of histories generated using Gem5 [17]. The Figure 5.10

presents the results of this comparison. The �gure 5.10a presents the e�ect of

increasing the number of operations from 200 to 800 on runtime for a �xed num-

ber of processes (6 processes per trace). The �gure 5.10b shows the e�ect of

increasing the number of processes from 4 to 16. We have tested 150 histories for

each case and computed the average runtime.

As expected, the results shown in Figure 5.10 con�rm that wTSO has better

performance compared to wCCM, by factors of 5 times in the case of 16 threads

(Figure 5.10b). Notice that all the histories that we have tested were valid w.r.t.

wTSO and wCCM.

5.3 Conclusion

We have introduced two approaches for tackling the problem of checking TSO

conformance. The idea is to avoid falling in a systematic way in the worst case

i.e., an explicit enumeration of the exponential number of possible total orders

between writes. These approaches consists in de�ning weaker consistency models

that are as strong as possible but still polynomial time checkable. These models
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allow capturing a large subset of the partial order on writes which can be com-

puted using a least �x point calculation (i.e., in polynomial time), and that is a

subset of any total order witnessing TSO conformance.
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CHAPTER 6

CONCLUSIONS

In this �nal chapter, we summarize the results of this thesis and discuss some

possible extensions of the works presented in the chapters above.

Summary

In this thesis, we focused in the veri�cation problem of concurrent/distributed

systems. The main contribution is the proposition of an e�cient approach for

verifying consistency which is generically applicable to a wide spectrum of con-

sistency models for which the problem of veri�cation is known to be NP-hard.

Indeed, we proposed dynamic veri�cation approaches with respect to some well

known consistency models.

The �rst part of this thesis was dedicated to the veri�cation of weak con-

sistency models e.g., causal consistency in its di�erent variants: weak causal

consistency, causal convergence, and causal memory. This work is based on a

characterization of the set of all histories that are causal consistency violations

called bad-patterns. These bad-patterns de�ne a small set of operations occur-

ring in some particular order. We proposed a polynomial reduction of these

bad-patterns to a problem of solving Datalog queries. The proposed approach

allows to improve the complexity of checking causal consistency problem (from

𝒪(𝑛5) to 𝒪(𝑛3)). The experiments on real distributed databases showed the

e�ciency and scalability of the proposed approach.
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The second part of the thesis focused on the veri�cation of strong consistency

models e.g., Sequential consistency (SC) and Total Store Ordering models (TSO

is a relaxation of SC).

First of all, we built on the causal consistency veri�cation approach to de�ne

a gradual approach for checking SC. In fact, this approach is based on a strong

variant of causal consistency (stronger than weak causal consistency, causal con-

vergence, and causal memory) called convergent causal memory (CCM) which

allows e�ciently approximating SC model. Afterwards, we extended this ap-

proach to de�ne a more simpler and natural approximation for SC called weak

sequential consistency (wSC). The experiment results, obtained using realistic

cache coherence protocols, showed that both approaches perform good results

compared to an encoding of SC into boolean satis�ability. Furthermore, the

wSC-based approach outperforms the CCM-based approach. This is due to the

fact that wSC is stronger than CCM and to the fact that CCM uses more compli-

cated saturation rules compared to the simpler ones used in wSC. A combination

of wSC with an existent approach called DBCOP led to the best results.

Second, we addressed the problem of verifying the TSO model which is weaker

than SC. In fact, these SC veri�cation approaches were generalized to cover the

TSO case. Since SC and TSO use di�erent relations, the generalization of these

approaches was not trivial. Our focus in this stage was de�ning suitable approxi-

mations for TSO. Indeed, we de�ned two TSO veri�cation approaches, one based

on a criterion called wCCM and another based on wTSO criterion. Similarly

to the SC case, the experiments performed using real cache coherence protocols

proved that the two approaches are more e�cient and more scalable compared

to the standard SAT encoding of TSO. In addition, the wTSO has better perfor-

mances compared to wCCM.

Future Work

In terms of future work, several extensions of the work we have introduced in

this thesis are possible. Next, we summarized some possible directions.

1. In chapter 3, we proposed a reduction of the causal consistency veri�cation

problem to a problem of solving Datalog queries. It will be interesting to

see how a similar approach can be used to solve the veri�cation problem
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for other polynomially checkable consistency models such as consistency

models for transactions i.e., Read Committed, Read Atomic, and Causal

consistency for transactions.

2. Since the approach we proposed to check strong consistency models was ap-

plicable for two consistency models SC and TSO (Chapter 4 and Chapter

5), an interesting problem for future work is the application of this ap-

proach to other correctness criteria that are hard to check (the problem of

veri�cation is NP-hard). The consistency models for transactions are good

candidates to explore i.e., Pre�x consistency, Snapshot isolation, and Seri-

alizability. Actually, the latter is the analogous of Sequential consistency

in transactional programs context. Therefore, it can be a starting point for

an eventual adaptation.

3. Another direction could be the adaptation of DBCOP to the case of TSO.

The idea is to propose a similar approach to BTTC (de�ned in [7] and [18]),

which is e�cient in the case of a �xed number of threads. In addition, the

combination of a such approach with wTSO may result a more e�cient

approach for checking TSO.

4. In Section 4.2.2 of the chapter 4, we introduced the notion of SC kernel (SC-

Ker) and we proved some interesting results about it. One of these results

is that neither wSC nor an extended saturation procedure can calculate the

SC-Ker. So, a question for future work would be whether there is a way

for computing the SC-kernel of a given SC execution in polynomial time.

Furthermore, it will be interesting to explore the TSO kernel as well.
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APPENDIX A

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

L'évolution de notre société moderne, basée sur le développement spectacu-

laire des technologies de l'information et de la communication, est étroitement

liée avec notre besoin croissant de services automatisés qui sont devenus cru-

ciaux dans tous les secteurs de notre vie (communication, commerce, �nance,

transport, santé, loisirs, énergie, etc). Avec l'émergence de l'Internet of Things

et du Cloud Computing, il y aura de plus en plus d'objets connectés de toutes

sortes, communiquant et interagissant à travers des réseaux à grande échelle,

ayant accès à des ressources en mémoire et en puissance de calcul virtuellement

illimitées. Le déploiement de ces systèmes fortement distribués et la maitrise de

leur complexité posent d'énormes dé�s scienti�ques et technologiques. La quête

de la performance pousse les concepteurs et les développeurs des systèmes infor-

matiques à avoir recours à di�érentes sortes d'optimisations, et en particulier à

de plus en plus de parallélisation et de distribution, avec un usage parcimonieux

de la synchronisation. L'idée générale est de chercher à augmenter le débit du

système, de rendre les données disponibles et rapidement accessibles aux clients,

et d'éviter les attentes dues aux actions bloquantes. Cela se produit en fait à

tous les niveaux des systèmes informatiques, du niveau le plus bas qui est celui

des architectures matérielles multi-c÷urs au niveau le plus élevé qui est celui des

applications réparties qui s'exécutent sur des infrastructures en réseau, y compris

les bases de données distribuées géo-répliquées. Ces optimisations ainsi que le

caractère distribué des calculs, tendent à réordonner les actions e�ectuées par
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chacune des composantes d'un système. Cela peut être dû par exemple au fait

que les actions les plus coûteuses sont repoussées, ou exécutées en parallèle, a�n

de permettre aux actions les plus rapides (ou urgentes) d'être exécutées en pre-

mier. Cela peut aussi être dû à la latence des communications et au fait que les

messages peuvent suivre des chemins di�érents à travers des réseaux de grande

taille. Un système peut alors avoir des comportements vis -à-vis des programmes

clients qui ne sont pas possibles lorsque toutes les actions du système sont exé-

cutées instantanément et de manière atomique, et sont visibles immédiatement

à tous les processus dans le système, ce qui correspond au modèle dit de �con-

sistance forte� (strong consistency). En fait, la consistance forte est en général

di�cile à assurer de manière acceptable du point de vue de la performance, et la

majorité des systèmes utilisés en pratique (aussi bien les micro-processeurs mod-

ernes, que les plateformes pour le Cloud Computing) implémentent des modèles

de consistance faibles. L'a�aiblissement des garanties de consistance qu'un sys-

tème assure aux programmes clients peut a�ecter la correction de ces derniers.

Par exemple, si un système implémentant une base de données distribuée n'est

pas fortement consistent, cela implique que les informations sur les di�érents

repliques peuvent être di�érentes de certains instants puisque les mises à jours

ne sont pas immédiatement visibles partout dans le système. Ceci peut impacter

la correction des applications utilisant ce système aussi bien du point de vue de

la sûreté que de la sécurité. Par exemple, deux opérations sur un compte pour-

raient s'e�ectuer en parallèle et retirer deux fois la même somme disponible avant

leurs executions si les mises à jour ne sont pas visibles immédiatement. Aussi, si

les politiques d'accès aux informations dans une base de données distribuée sont

mises à jour de manière faiblement consistante, ce qui veut dire qu'elles peuvent

être di�érentes à un moment donné d'un site à l'autre, cela peut entrainer des

fuites d'informations qui sont censées être protégées.

Un des problèmes importants est alors d'assurer la correction de programmes

(clients) qui vont s'exécuter sur des infrastructures qui implémentent un modèle

de consistance faible. En e�et, les systèmes concurrents et distribués sont no-

toirement di�ciles à concevoir et à programmer de manière correcte. Cela est

dû au grand nombre et à la complexité des interactions entre leurs composantes.

Cette di�culté est d'autant plus grande lorsque ces systèmes doivent être exécutés

selon un modèle de consistance faible qui permet encore plus de comportements

–124–



Appendix A. Synthèse de la thèse en Français

complexes, non intuitifs, et extrêmement di�ciles à appréhender. Il est donc im-

portant de disposer de méthodes et d'outils pour la véri�cation automatique de

programmes concurrents sur des modèles de consistance faibles, tenant compte

aussi bien des propriétés de sureté que des propriétés de sécurité. Un deuxième

problème important est celui de véri�er qu'un système qui est supposé assurer

un service selon un modèle de consistance donné, est correctement implémenté.

En e�et, il est important de véri�er que les garanties en consistance (pour les

clients) sont bien assurées par l'implémentation, ceci est un problème crucial,

notamment en ce qui concerne les librairies d'objets et de structures de données

distribuées géo-répliquées, qui sont les briques de base pour la construction des

infrastructures modernes pour le Cloud Computing. Le but de cette thèse est

d'étudier les deux problèmes de véri�cation mentionnés ci-dessus et d'apporter

des solutions générales et e�caces pour les résoudre. Les solutions proposées

sont génériquement applicables à un large spectre de modèles de consistance, en

particulier ceux adoptés pour le raisonnement sur les systèmes distribués avec

réplication. Nous résumons brièvement les contributions de notre thèse:

� Premièrement, nous avons considéré le problème de véri�er qu'une execu-

tion est conforme à un modèle de consistance faible. Nous avons proposé

une approche pour véri�er les modèles de consistance causale en utilisant

une réduction polynomiale de ce problème au problème de la résolution des

requêtes Datalog. Par la suite, nous avons implémenté notre approche dans

un outil e�cace pour tester les systèmes distribués.

� Ensuite, nous avons abordé le problème de la véri�cation des modèles de

la consistance forte. Nous avons considéré le modèle fondamental connu

sous le nom de la consistance séquentielle (SC) et nous avons proposé une

approche graduelle pour véri�er la conformité d'un execution donnée à ce

modèle. Cette approche est basée sur un renforcement de tous les modèles

de la consistance causale connus qui est encore véri�able en temps poly-

nomial. Ensuite, nous avons amélioré cette approche en proposant une

autre approximation de SC, qui est plus naturelle et plus e�cace et qui est

également véri�able en temps polynomial.

� En�n, nous avons considéré le problème de la véri�cation d'un autre modèle

de la consistance forte appelé "Total Store ordering" (TSO), qui est un af-

faiblissement de SC. En e�et, nous avons généralisé les approches SC pour
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couvrir le modèle TSO en proposant des modèles adaptés pour approximer

TSO. Les généralisations suggérées des approches mentionnées ci-dessus ne

sont pas triviales. En particulier, vu que ces deux modèles (SC et TSO) con-

sidèrent di�érents types de relations, ce dernier a�aibli certaines relations

considérées dans le premier.
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Systems (NETYS) » depuis 2017 jusqu’à 2019. 

  Membre de comité d’organisation de la 6 ème édition des « Ateliers de communication et la journée 

interculturelle Maroc-Américaine » en 2014 à la FST Er-rachidia, Maroc. 

 

Publications scientifiques 

 Zennou, R., Biswas, R., Bouajjani, A. et al. Checking causal consistency of distributed 

databases. Computing (2021). [Extended version of NETYS’2019 paper]. 

https://doi.org/10.1007/s00607-021-00911-3 

 Zennou R., Atig M.F., Biswas R., Bouajjani A., Enea C., Erradi M. (2020) Boosting Sequential 

Consistency Checking Using Saturation. In: Hung D.V., Sokolsky O. (eds) Automated 



 

 
 

Technology for Verification and Analysis. ATVA 2020 (classe A). Lecture Notes in Computer 

Science, vol 12302. Springer, Cham. https://doi.org/10.1007/978-3-030-59152-6_20 

 Zennou R., Bouajjani A., Enea C., Erradi M. (2019) Gradual Consistency Checking. In: Dillig I., 

Tasiran S. (eds) Computer Aided Verification. CAV 2019 (classe A*). Lecture Notes in Computer 

Science, vol 11562. Springer, Cham. https://doi.org/10.1007/978-3-030-25543-5_16 

 Zennou R., Biswas R., Bouajjani A., Enea C., Erradi M. (2019) Checking Causal Consistency of 

Distributed Databases. In: Atig M., Schwarzmann A. (eds) Networked Systems. NETYS 2019. 

Lecture Notes in Computer Science, vol 11704. Springer, Cham. [Best Student Paper Award] 

https://doi.org/10.1007/978-3-030-31277-0_3 

 

Langues 

     Tamazight : Maternelle Arabe : Courant Français : Courant Anglais : Scientifique 

 

Centres d’intérêts 

 La Cyber Security et les nouvelles technologies vis-à-vis des défis de sécurité. 

 Recherche scientifique et innovation. 

 Volontariat (Secouriste volontaire à la croix rouge Maroc 2011). 

 Lecture, Voyage, Football. 

 

 


