
HAL Id: tel-03998577
https://theses.hal.science/tel-03998577v1

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning applied to multi-component imagery for
variety testing problems

Hadhami Garbouge

To cite this version:
Hadhami Garbouge. Deep learning applied to multi-component imagery for variety testing prob-
lems. Image Processing [eess.IV]. Université d’Angers, 2022. English. �NNT : 2022ANGE0045�. �tel-
03998577�

https://theses.hal.science/tel-03998577v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ D’ANGERS
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : (voir liste des spécialités)

Par

« Hadhami GARBOUGE »
« Deep learning applied to multi-component imagery for va-
riety testing problems »

Thèse présentée et soutenue à « INRAe - Angers », le « 29 November 2022»
Unité de recherche : LARIS - Laboratoire Angevin de Recherche en Ingénierie des Systémes
Thèse N° :

Rapporteurs avant soutenance :
Pr Christian GERMAIN IMS, Bordeaux, France
MCF-HDR Frédéric COINTAULT Agrosup, Dijon, France

Composition du Jury :
Président : Pr. Julia BUITINK INRAe, Angers, France
Dir. de thèse : Pr. David ROUSSEAU LARIS-INRAe, Angers, France
Co-encadrant : Dr. Pejman RASTI LARIS-CERADE, Angers, France
Co-encadrant : Dr. Natalia SAPOUKHINA INRAe, Angers, France

Invité(s) :
Philippe VERMEULEN,CRA-W, Gembloux, Belgique
Pierre ROUMET, INRAe, Montpellier, France





ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor, Pr. David
ROUSSEAU for his patience, motivation, immense knowledge and his continuous support
during three years of my Ph.D study and related research,. His guidance helped me in
all the time of research, from my first internship for my master’s degree to the writing of
this thesis. Thank you again for all the opportunities you have given me during the five
years we have worked together.

I greatly appreciate my co-supervisor, Dr. Pejman RASTI, for his excellent feedbacks,
encouragement, and guidance. It was such a pleasure working with you on several research
works. Also, I could never thank my second co-supervisor, Dr. Natalia SAPOUKHINA,
for all your support and advice, especially during the writing of this manuscript. I will
never forget your special hug during my difficult moments.

I am deeply grateful to my previous colleagues from GEVES and my partner in the
INVITE project, Nicolas MASCHER, for helping me install and manage the data acqui-
sition system that I used in my work and Didier DEMILLY for his insightful comments
and suggestions during our monthly meetings.

I would like to extend my sincere thanks to Valérie CADOT from GEVES for the
great year, I enjoyed working under your supervision at GEVES and making great trips
to collect data, I was very pleased to continue collaborating with you on my thesis.

Thanks should go to all my friends and colleagues in INRAe Angers, Polytech Angers,
and especially the ImHorPhen team, including Mouad ZINE EL ABDINE, who shared
the office with me for three years.

I would like to thank the H2020 European project INVITE for financing this PhD.
Also, our partners in the INVITE project, with special thanks to Philippe VERMEULEN
from CRA-W Belgium, for your help in collecting database.

3



I would like to express my sincere gratitude to my mother institute ISET’Com in
Tunisia, for the high level of academic skills they provided to me, especially Dr. Amin
ZRIBI, who offered me the opportunity to start my first steps in scientific research here
in France, also Dr. Belgacem AOUDI for all his recommendations and believing on me
to be able to become Dr. Hadhami.

My father, my all, you left us so early, but you are always present with us in our
hearts. I wish you could be with me on two particular occasions in my life, my wedding
ceremony, and my thesis defense, but ’Alhamdulillah,’ there is a secret I should reveal
today. I hope you are proud of me where you are.

My mother, the best mother in the world, without you, I would never have gotten
here, a huge thanks to you, may God bless you and protect you forever.

My partner, my half, Ismail ’Pa’, I cannot find the right words to say thank you for
leaving ten years of your career in Tunisia, joining me and starting a new life from scratch,
for your patience, and for being with me during difficult and fun moments, and for the
sacrifices you have made to me to pursue, I’m grateful to be Hadhami GARBOUGE OUS-
SAIFI. I am very blessed to have you in my life.

My two brothers, Mohamed Helmi, and my sister Hafidha, you are the best gift in
my life, thank you for always being with me and encouraging me to never give up. I can
not forget my loves Aziz, Ayoub, Adem, Haroun and my new sisters Emna Maamouri,
Karima OUSSAIFI, my brothers Mohamed OUSSAIFI and Mohamed KOCHTAN.

Special thanks to my new family, the OUSSAFI family, I have the pleasure of becom-
ing a member of your family. Especially, my second father Ali and mother Baya for your
hospitality and given love which has encourage me this last period.

I would like to express my sincere gratitude to my cousins, Dr. Malek GARBOUGE
and Mariam GARBOUGE, for their support and help since I decided to continue my
studies here in France.

Many thanks go to all my friends who are considered part of my family: Fatma,

4



Marwa, Maha, Nawel, Angélina, Audrey, Therese, Aladdin, Ibrahim, and Khalil.

Last and foremost, I would like to thank "Allah" for blessing me and helping me to
choose the right path.

5





TABLE OF CONTENTS

1 Introduction 17
1.1 Variety testing specificities . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 DUS: Distinctness, Uniformity and Stability . . . . . . . . . . . . . 19
1.1.2 VCU: Value for Cultivation Use . . . . . . . . . . . . . . . . . . . 19

1.2 A rationale to identify most promising characteristics in DUS protocols . . 20
1.3 Challenges for affordable imaging systems dedicated to most promising

characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 RGB-Depth fusion and machine learning for variety testing 27
2.1 Seedling growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Wheat heading stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Transfer learning for variety testing 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Indoor to greenhouse transfer on seedling growth . . . . . . . . . . . . . . 53

3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Indoor to field transfer on seedling growth . . . . . . . . . . . . . . . . . . 62
3.3.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Synthetic to real transfer on sunflower flowering . . . . . . . . . . . . . . . 70

7



TABLE OF CONTENTS

3.4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Multispectral imaging and machine learning for variety testing 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 The building of optimized multi-spectral camera . . . . . . . . . . . 85
4.2.2 In the field: proposed models for segmentation of spikes and FHB

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Optimized wavelengths selection . . . . . . . . . . . . . . . . . . . . 95
4.3.2 In the field: proposed models for segmentation of spikes and FHB

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusion and Perspectives 103
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Valorization of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 ANNEX A: Machine-learning assisted determination of best acquisition
protocols in variety testing 107
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Conclusion and perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 ANNEX B: RGB-Depth Sensor and network of sensors developed 117
7.1 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Sensor choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.2 Network Description . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Technical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.1 Intel RealSense D435 . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Raspberry Pi 4 Model B . . . . . . . . . . . . . . . . . . . . . . . . 121

8



TABLE OF CONTENTS

7.3 Description of the program . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.2 Saving and loading projects . . . . . . . . . . . . . . . . . . . . . . 126

8 ANNEX C: Original annotated data set produced 128
8.1 Plants emergence in greenhouse : sunflower . . . . . . . . . . . . . . . . . . 128
8.2 Plants emergence in the field . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Rapeseed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2.2 Maize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Wheat height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4 Sunflower : flowering detection . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4.1 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

9



LIST OF FIGURES

1.1 The process of registration of a new variety in the European catalog. . . . 17
1.2 The current practices in variety testing and possible outcome of more nu-

merical practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Overview of the time-lapse collected for this work. Upper row, view of
a full tray with 72 pots from top view. Lower row, a zoom on a single
pot at each stage of development to be detected from left to right: soil,
first appearance of the cotyledon (FA), opening the cotyledons (OC) and
appearance of the first leaf (FL). . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Different types of RGB-Depth fusion architectures tested in this work for
image classification. (a) Image-based RGB-Depth fusion. (b) Feature-
based RGB-Depth fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 (a) CNN architecture of image fusion for RGB-Depth. (b) CNN architec-
ture of features fusion for RGB-Depth. . . . . . . . . . . . . . . . . . . . . 32

2.4 (a) TD-CNN-GRU architecture of image fusion for RGB-Depth. (b) TD-
CNN-GRU architecture of features fusion for RGB-Depth. . . . . . . . . . 34

2.5 (a) Transformer architecture of image fusion for RGB-Depth. (b) Trans-
former architecture of features fusion for RGB-Depth. . . . . . . . . . . . . 35

2.6 Confusion matrix for the best method found in Table 2.5, i.e. CNN. Left
for the RGB images and right for the RGB-Depth images. . . . . . . . . . 38

2.7 Histogram of detection of growth stage change during day and night from
4000 plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 First row: the detection of switch from growth stage A to growth stage B
using only daytime RGB images. Second row: the more precise detection
of switch from growth stage A to growth stage B using the Depth pattern
during the night time as proposed by Algorithm 1. . . . . . . . . . . . . . . 40

2.9 Sources of errors due to the acquisition protocol (a) and instrumentation (b). 42
2.10 Heterogeneity of shape and size in the two events OC and FL for the

different bean varieties used in the training. . . . . . . . . . . . . . . . . . 42

10



LIST OF FIGURES

2.11 Illustration representing the general growth pattern of wheat plant from
emergence to heading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 BBCH growth stages for wheat. . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 The three heading classes in the field. . . . . . . . . . . . . . . . . . . . . . 46

2.14 RGB images (top) and depth maps (bottom) for Chevignon variety at stage
5 with viewing angles of 90° (right) and 45° (left). . . . . . . . . . . . . . . 47

2.15 Confusion matrix for the best method found in Table 2.16, i.e., scattering
transform. Left for the gray-scales images and right for the gray-scales-
Depth late fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 (a) Images from controlled environment on which seedling development is
trained. (b) Images from greenhouse environment on which we want to
test the trained model. The four developmental stages to be detected are
the soil, the first appearance of the cotyledon (FA), the opening of the
cotyledons (OC), the appearance of the first leave (FL). . . . . . . . . . . . 55

3.2 Left panel illustrates the imaging system in controlled environment asso-
ciated with the large database of [59]. Right panel illustrates the imaging
system in an greenhouse environment with a smaller database. We inves-
tigate the possibility of transfer of knowledge from left to right panels. . . . 56

3.3 Example of original indoor images (left), shadows generated with Alg. 2
(middle) and, indoor images with simulated shadows (right). . . . . . . . . 57

3.4 Neural networks architecture tested. (a) Optimized CNN proposed in [59].
(b) Optimized CNN-LSTM model proposed in [59]. (c) Optimized TD-
CNN-GRU proposed here. (d) Transformer adapted from [91]. . . . . . . . 59

3.5 Classification accuracy as a function of number of pots used in train database
after data augmentation and fine tuning. . . . . . . . . . . . . . . . . . . . 60

3.6 Confusion Matrix of CNN after data augmentation and fine tuning training
model using seven pots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Studied problem. Left panel illustrates the imaging system in a controlled
environment associated with the large database. Right panel illustrates the
imaging system under field conditions with a smaller database. . . . . . . . 63

3.8 The imaging system in an outdoor environment (filed). . . . . . . . . . . . 64

11



LIST OF FIGURES

3.9 The four developmental stages to classify are the soil, the first appearance
of the cotyledon (FA) or First leave (FL), the opening of the cotyledons
(OC) or Second leaf (SL), the appearance of the first leave (FL) or Third
leaf (TL). (a) Images from the indoor environment. (b) Images from the
outdoor environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Pipeline of individual plant extraction. . . . . . . . . . . . . . . . . . . . . 66
3.11 Background of the scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.12 Different components of sunflower. . . . . . . . . . . . . . . . . . . . . . . 72
3.13 Simulated sunflower field designed by 3D unity. . . . . . . . . . . . . . . . 73
3.14 Properties of Perception Camera component. . . . . . . . . . . . . . . . . . 74
3.15 Annotated sunflowers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.16 Real images of sunflowers in the field. . . . . . . . . . . . . . . . . . . . . . 76
3.17 YOLO architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.18 Example of result of flowering detection by the best performance (training

on synthetic and transfer learning with fine tuning). . . . . . . . . . . . . . 78

4.1 The acquisition protocol uses a hyperspectral imaging system designed for
field conditions [134]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Global pipeline of building and testing the multispectral camera. A: opti-
mal wavelengths selection in a controlled environment from a hyperspectral
camera. B: Designing and testing of multi-specral camera. C: Wheat spikes
segmentation in the field. D: Fusarium severity estimation in the field. . . 84

4.3 Optimized wavelength selection from the hyperspectral camera in a con-
trolled environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 An illustrative example of the choice of optimal wavelength number based
on the DASS-Seq method: the accuracy of disease detection as a function of
the number of wavelengths used; the curve reaches a horizontal asymptotic
with five wavelengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 The building of the multispectral camera CMS4 and its experiment con-
trolled conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 (a) CMS4 camera without box. (b) CMS4 camera with outdoor box. . . . 88
4.7 Example of images acquired in controlled condition with RGB and CMS4

camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8 The segmentation of the first row of wheat spikes using RGB and multi-

spectral images acquired in the fields environment. . . . . . . . . . . . . . . 91

12



LIST OF FIGURES

4.9 Example of images acquired in the field environment with RGB and CMS4
camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Fusarium detection by machine learning methods on segmented images
acquired in the field environment using the CMS4 camera. . . . . . . . . . 93

4.11 Optimal selected wavelengths for Fusarium detection over four years. . . . 95
4.12 The Dice coefficient as a function of number of images in train database

for fine tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.13 Correlation between severity estimated by the expert based on image and

severity predicted by the KNN model for winter wheat. . . . . . . . . . . . 99
4.14 Correlation between severity estimated by the expert based on image and

severity predicted by the KNN model for durum wheat. . . . . . . . . . . . 100

6.1 Proposed generic pipeline proposed to select best acquisition protocol in
variety testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Datasets and ground truth used to test the pipeline of Figure 6.1. Top
raw: sugar beets observed from top view with various illuminations; Middle
raw: wheat observed from the side view with various angles of the cameras;
Bottom raw: hear observed from top view with various angles of the various
angles of the cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Distribution of Dice coefficient in each cluster for the three datasets pro-
cessed in the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Instances of each cluster in each of three datasets processed in this study. . 116

7.1 Demonstration of the camera network installed in the growth chamber. . . 119
7.2 Intel RealSense D435 camera. . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Raspberry Pi model B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Diagram illustrating the structure of the program, broken down into 3 main

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Example of association of varieties to plants in an experiment from an Excel

file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 The four developmental stages to be detected are the soil, the first ap-
pearance of the cotyledon (FA), the opening of the cotyledons (OC), the
appearance of the first leave (FL). . . . . . . . . . . . . . . . . . . . . . . . 128

13



LIST OF FIGURES

8.2 The four developmental stages to classify are the soil, the first appearance
of the cotyledon (FA) or First leave (FL), the opening of the cotyledons
(OC) or Second leaf (SL), the appearance of the first leave (FL) or Third
leaf (TL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Images of wheat in the field in order to measure the height. (a) RGB image.
(b) Depth image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 (a) Sunflower plant in the field. (b) Bounding boxes around the flower. . . 131
8.5 (a) Bounding boxes of flower detection. (b) Segmentation of flower. . . . . 132

14



LIST OF TABLES

1.1 Most promising characteristics proposed for the four crops taken for illus-
tration. MS: Assessment by measurements and individual records for each
plant or plant parts for the assessment of distinctness; MG: Assessment
by measurement and one record per group of plants or plant parts for the
assessment of distinctness. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Description of the RGB-Depth dataset used in this study. . . . . . . . . . . 30
2.2 Seedling growth stage classification average accuracy and standard devia-

tion when performed over 10 repetitions of CNN model. . . . . . . . . . . . 36
2.3 Seedling growth stage classification average accuracy and standard devia-

tion when performed over 10 repetitions of TD-CNN-GRU model. . . . . . 36
2.4 Seedling growth stage classification average accuracy and standard devia-

tion when performed over 10 repetitions of transformer model. . . . . . . . 36
2.5 Training time of the different deep learning architectures. . . . . . . . . . . 37
2.6 Wheat heading stage classification average accuracy and standard deviation

when performed over ten repetitions. . . . . . . . . . . . . . . . . . . . . . 49

3.1 Tested models in the fully controlled environment. Mean and standard
deviation of the accuracy from 5 different trials for each model. . . . . . . 59

3.2 Performance of CNN in greenhouse conditions. . . . . . . . . . . . . . . . . 60
3.3 Performance of TD-CNN GRU in greenhouse conditions. . . . . . . . . . . 61
3.4 Performance of Transformer in greenhouse conditions. . . . . . . . . . . . . 61
3.5 Datasets used in the study for model training and inference. . . . . . . . . 65
3.6 Performance of CNN model in outdoor datasets of rapeseed. . . . . . . . . 67
3.7 Performance of CNN model in outdoor datasets of maize. . . . . . . . . . . 68
3.8 Confusion matrix for the best results of CNN method for rapeseed. . . . . 68
3.9 Confusion matrix for the best results of CNN method for maize. . . . . . . 69
3.10 Description of the datasets and the performance of each approach. . . . . 78

15



LIST OF TABLES

4.1 The accuracy results of all discrimination methods using a test database
over four years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 The R2 coefficient between the Fusarium severity annotated by experts
and the predicted one using wavelength from the database of four years(
database 2016-2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Results of different classification models for Fusarium disease detection on
wheat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Dice coefficient of different segmentation models of wheat spikes on the
images acquired in field environment. . . . . . . . . . . . . . . . . . . . . . 97

4.5 Results of different models for Fusarium detection on wheat spikes based
on multispectral images acquired in the field environment. . . . . . . . . . 99

7.1 Possible camera candidate for RGB-Depth imaging. . . . . . . . . . . . . . 118

16



Chapter 1

INTRODUCTION

To commercialize a new variety of agricultural or vegetable species in the European
Union, a plant breeder has to follow a process managed by a national authority and del-
egated to an examination office (EO) that will describe and evaluate the variety for its
registration on the national catalog (Figure 1.1). The national catalogs of all the EU
Member States (MS) are compiled by the European Commission to form the Common
Catalog allowing the variety to be marketed throughout the EU. Evaluation results, in-
cluding variety descriptions, also grant Plant Variety Rights (PVR) both at the national
and European level and for specific crops for the certification of seed lots. Depending
on the MS, the legal mandate of a national examination office (EO) covers part or all
of these missions. According to this framework, the EOs run field tests either under the
supervision of their competent national authorities or upon request of the Community
Plant Variety Office (CPVO)[1] in charge of granting PVR on the territory of the EU.

Figure 1.1 – The process of registration of a new variety in the European catalog.

Most of these tests are based on manual measurements performed from visual inspec-
tion. This method has consequences in terms of efficiency because of the time-consuming
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nature of these tests. It is also an issue for the tests’ reproducibility when some charac-
teristics are based on qualitative features, suffering from subjectivity in their assessment.
Improving the efficiency and reproducibility of these observations would be extremely
useful for EOs continuously seeking optimized testing methods implemented in testing
protocols. It could also provide means to assess new characteristics developed in response
to new agricultural constraints, particularly from the perspective of climate change. In
addition, more efficient measurement methods would assist in addressing the challenge
of the constant increase in the number of varieties that must be tested. More repro-
ducible measurements would also contribute to harmonizing practices between European
EOs (supporting, for example, the use of historical data to predict the expected behavior
of varieties toward different climatic scenarios). The described challenges encourage us
to head toward using sensors and numerical practices to progressively replace classical
manual methods of examination whenever there is a need to speed up a measurement
or increase their reproducibility and objectiveness. The trend of using more and more
imaging for plant science started some decades ago and has been extensively reviewed
(see [2, 3] for the most recent ones), including cost-effective strategies [4]. While imaging
modalities used in plant science and variety testing may be similar, the types of measures
in plant science and variety testing differ by their nature or technical aspects. So far, lit-
tle attention from the academic imaging community has focused on these specific aspects
of variety testing. Variety testing is performed among networks of offices and has to be
accessible to breeders. Consequently, measurements should rely on cost-effective technolo-
gies that can easily be replicated. The introduction chapter is organized as follows. After
explaining the variety of testing specificities, we propose a rationale for selecting charac-
teristics that may benefit the most from using low-cost imaging systems. This rationale is
illustrated in crops of significant interest in the food industry, such as wheat, maize, sun-
flowers, and tomato. We then propose possible technologies for the measurement of these
characteristics. We conclude by pointing toward the needs, challenges, and opportunities
for deploying the low-cost imaging system in various testing protocols. Finally, we end
up with a list of our methodological contributions and explain the structure of the PhD
manuscript.
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1.1 Variety testing specificities

1.1.1 DUS: Distinctness, Uniformity and Stability

Two types of evaluation are mainly performed for a variety testing. DUS [5] tests
(for Distinctness, Uniformity, Stability) are conducted to ensure that a new variety is
distinct from existing varieties, that it is sufficiently uniform in its characteristics, and
that the variety is stable with consistent phenotypic characteristics from one generation
to the next. For most species, these tests are harmonized worldwide by UPOV (Union
Pour la Protection des Obtentions Végétales) members. They are carried out according
to standardized technical protocols (CPVO TPs), based on UPOV guidelines, and using
reference plant material provided by the breeders. For example, morphological features
and color are mostly used for agricultural crops and phenological features such as flowering
and ripening phases. Some species are also tested for disease resistance. This produces a
« variety description » (VD) which forms the identity card of the tested variables. The
VDs are also used -as one tool amongst others- to enforce the PVR to which they are
associated. Thanks to the harmonization of the guidelines, the members of the UPOV[6]
convention may (if they wish to) accept DUS reports established by another UPOV
member (meaning that another UPOV member can use a given DUS report established
in one UPOV member as a basis for a decision to grant a PVR, without the breeder having
to pay again for the same field tests but only an administrative fee of Swiss Fr 350). In
terms of data processing, DUS measurements correspond to a classification problem.
Deciding to classify is by nature a non-linear problem. Consequently, it can be done with
non-linear sensors and may not need fully linear and calibrated sensors. What needs to be
calibrated is the performance of the classification, but this classification can be done on
possibly distorted data, provided distortion does not degrade classification performance.
This means that DUS can, by nature, benefit from low-cost imaging systems.

1.1.2 VCU: Value for Cultivation Use

The second type of evaluation is VCU [5] tests (for Value for Cultivation, Use which
are performed for many agricultural crops. These tests aim to evaluate the variety’s
suitability for growing in local agro-climatic conditions and the technical value of the
harvest e.g., protein, oil content,.... To qualify for registration, the new variety must have
an « added value » in the country where it is evaluated. This is established by comparing
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it to a set of existing reference varieties over two testing cycles of 5 to 20 trials per year.
Unlike DUS, VCU measurements are not harmonized among the countries. Also, in
terms of data processing, VCU, corresponds to a regression. It is more demanding in
terms of precision and less likely to benefit from low-cost imaging systems and will not be
addressed in this PhD. This choice here does not mean that VCU would be less important
than DUS, but rather that DUS is more straightforward to address with low-cost systems
than VCU. Also, VCU characteristics have received relatively more attention than DUS
from the imaging community for their applications in yield assessments or their value as
input data in crop models. For all these reasons, we focus more on DUS characteristics
in this PhD.

1.2 A rationale to identify most promising character-
istics in DUS protocols

Assessment of DUS characteristics for each crop is explained in the UPOV Test Guide-
lines. This constitutes thousands of traits. Switching current manual practices to numer-
ical practices will require a lot of time and effort. In this section, we propose a rationale
to select the most promising characteristics to start the work. We first give the different
types of measurement which are performed in DUS.

For the registration of new varieties, two modes of observation are currently performed.
The first is visual observations (V) which rely on the expert’s judgment. It includes
observations where the expert uses reference points (e.g., diagrams, example varieties,
side-by-side comparison) or non-linear charts (e.g., color charts). Visual observations can
also include sensory observations of the experts (smell, taste, and touch). The second
type is the measurement (M), which corresponds to objective observations relative to
calibrated linear scales, e.g., using a ruler, colorimeter, dates, counts, etc. These two
types of observations can be recorded as a single record for a group of plants or parts
of plants (G) or may be recorded as records for many single, individual plants or parts
of plants (S). Therefore four possible combinations are found in DUS protocols: VG:
Visual assessment by a single record per group of plants or plant parts for the evaluation
of distinctness; VS: Visual inspection by individual records for each plant or plant parts;
MS: Assessment by measurements and separate records for each plant or plant parts
for the assessment of distinctness; MG: Assessment by measurement and one record per
group of plants or plant parts of the evaluation of distinctness.
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Based on the four different types of measurement in DUS, we can consider that quan-
titative characteristics are the ones that suffer less from subjectivity in a classical human
visual inspection. They are therefore suitable for translation in automated, sensor-based
protocols, which can be compared with standard protocols. Among these, the most diffi-
cult objective characteristics are those attached to the assessment of dynamical processes
(emergence, time of flowering, ...). The difficulty comes from the fact that evaluation
can currently be carried out only for a fixed and limited number of time points. Having
continuous recording would possibly improve the accuracy of such monitoring. Second,
one can focus on characteristics common to different crops so that the development of
a sensor can serve several usages. Third, characteristics that are laborious to access in
proxy detection, such as plant height, or ear size (especially in the field and for large crops
at the mature stage such as maize), could be assessed much faster with remote sensing
technologies, such as UAVs and high-resolution cameras. At last, the quantification of
characteristics, which could be measured simultaneously with a single snapshot acquisi-
tion, such as diameter, length, number of grains, and shape, would also be accelerated
with imaging systems.

Following the rationale described above, a list of characteristics to be chosen in pri-
ority can be extracted from the UPOV Test Guidelines. For illustration, we applied this
rationale to four crops of significant importance to the food industry and came up with
the shortlist in Table 1.1.

Organ characteristic Description of the characteristic Scale of observation Visual(V)/Measure(M)
Plant Length short ->long MG M

Wheat Ear Length short ->long MS M
Plant Length short ->long MS M

Maize Plant Length short ->long MS M
Ear Length short ->long MS M
Ear Diameter small ->large MS M

Sunflower Time Time of flowering very early ->very late MS / MG M
Plant Natural height very short ->tall MS / MG M

Tomato Plant Height short ->long VG / MS V/M
Fruit Time of flowering early ->late MS M

Table 1.1 – Most promising characteristics proposed for the four crops taken for illustra-
tion.
MS: Assessment by measurements and individual records for each plant or plant parts
for the assessment of distinctness; MG: Assessment by measurement and one record per
group of plants or plant parts for the assessment of distinctness.
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1.3 Challenges for affordable imaging systems dedi-
cated to most promising characteristics

Imaging devices are nowadays largely available at low-cost, and are embedded in con-
nected objects such as smartphones, tablets, or mini-computers which have been largely
reviewed in the recent literature [7, 8, 9, 10, 11, 4, 12, 13, 14, 15, 16]. These imaging
systems and connected objects can be fixed on various devices such as Unmanned aerial
vehicles (UAV), unmanned ground vehicles or connected sticks (see Fig. 1.2). To trans-
late the current variety testing protocols into sensor-driven protocols, it would be more
strategic to provide ergonomic systems directed carried by the variety testers. In this
PhD, we will mostly deal with handy light cameras.

Figure 1.2 – The current practices in variety testing and possible outcome of more nu-
merical practices.

Some affordable sensors are already available for the most-promising characteristics to
be measured in the field. For repeated event measurements (e.g., monitoring of dynamic
traits), time-lapse (TL) camera systems may help as they can acquire images over larger
periods without user interaction. Such cameras are available off-the-shelf like Wild-Vision
cameras [17], originally designed as animal photography traps but also capable of deliv-
ering TL image series forr nature monitoring [18]. Modern DSLR cameras are equipped
with internal TL mode or may be triggered with commercial external intervalometers.
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Finally, mini-computers like Raspberry Pi or micro-controllers like Arduino may also be
used as intervalometers. For length annotation and measurements, there exists a bunch of
applications for smartphones. The application scenarios range from annotation like Im-
ageMeter Pro [19] to measurements of length and areas like in Smart Measure [20], Smart
Measure Tool Kit [21], partly using augmented reality (AR) methods for measurement
and display, e.g. Measure Tools AR ruler [22] and EasyMeasure [23].

The limitation of all these available technologies for variety testing is primarily due to
image processing. Although a wide range of image processing software has been developed,
for an overview, see [24, 25], only a minimal selection of these softwares is exactly following
the protocols of variety testing [26, 27]. Moreover, the available software particularly
dedicated to variety testing [26, 27] only focuses on post-harvest assessments in controlled
environments.

1.4 Contributions

We have highlighted the interest in developing accessible imaging acquisition systems
and image processing algorithms to accelerate and increase the objectivity of assessed
characteristics in variety testing. Considering the massive amount of traits to be measured
in variety testing, we proposed a rationale for selecting the automatable traits for low-
cost sensors. While several low-cost sensors and efficient machine learning algorithms
are available, the remaining challenge is to design ergonomic imaging systems assisted
by a processing software. This Ph.D. was funded by the European project INVITE
H2020(https://www.h2020-invite.eu/). One of this project’s objectives was to propose
ergonomic vectors and sensors with associated software to address numerically some of
the selected characteristics as identified in this introductory chapter. While achieving this
task, our work contributed methodologically to machine learning and instrumentation, as
described in this section.

Most of the recent literature in image processing now relies on artificial intelligence
(AI) approaches like Convolutional Neural Networks (CNNs) deep learning [28]. With this
machine learning technique, both features and decision-making are learned simultaneously.
This approach, which has been successfully applied in all domains of computer vision,
including plant imaging [29, 30, 31], has produced state-of-the-art performances for all
image processing tasks. Standard deep neural networks are now accessible to address
many types of problems like for image classification [32, 33] , for object recognition [34,
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35], for segmentation [36, 37].
Deep learning is now used worldwide in almost all domains of image analysis as an

alternative to traditional purely handcrafted tools. Nevertheless, as recently declared by
Yann Lecun, one of the field pioneers, "Deep learning is not suitable for all applications." A
requirement for good deep learning applications is the possibility to produce an extensive
annotated database (typically at least thousands). This is not the case in all domains.
For instance, assembling thousands of patients in medical imaging is a heavy task. Also
another requirement is to have images including complex structures in which the depth
of the neural network will integrate some context that would not be easily modeled with
simple geometrical shapes. Again, this is not the case in all domains. For instance, in the
industrial vision where manufactured shapes are to be controlled, the variety of shapes
might be minimal and does not systematically require to resort to deep learning, while
some 3D CAD models of the object to be controlled exist and may be helpful for classical
handcrafted tools.

Plant science, in this context, is one of the especially well-adapted applications for deep
learning. Firstly, it involves many biological variables, such as growth, response to biotic
and abiotic stress, and physiology. Secondly, plants display huge variability (e.g., size,
shape, color), and the consideration of all these variables surpasses the human capacity
for software development and response to the needs of plant scientists. Thirdly, thanks to
phenotyping systems or the use of robots in the field, the throughput of image acquisition
is relatively high, so the observed large population of plants can meet the needs of big
data required for effective deep learning.

Deep learning promises to offer universal algorithms for definite informational tasks.
Mainly three informational tasks can be found: classification, object detection, and seg-
mentation. This builds a corpus of ready to be used tools to address variety testing tasks
such as the ones addressed in this PhD: phenological stages determination, which can be
seen as a classification of images in a time series, flowering which can be seen as an object
detection task, and disease rating which can be seen as a segmentation task. Although
codes to address these tasks are now publicly available, some challenges are still rising
when one targets real world implementation.

First, most of the literature on deep learning has been derived from RGB images
corresponding to standard resolution. In plant imaging, one may get interested in adding
more components such as Depth which is very contrasted for plant [9]. Depth comes in
sensors at a low cost and offers interesting LIDAR contrast about the spatial structure of
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the plant. How to fuse the information of such a low-cost Depth map with RGB images in
neural networks for plant imaging is a challenge we address in this PhD. For this purpose,
an entire setup of field and in-door RGB-Depth imaging system has been constructed
from scratch in the PhD. A specificity of plants is their continuous growth. Following
this growth process can be done with time-lapse from fixed cameras. Several families
of neural network architectures have been designed for the process of time-lapse. We
compare and discuss them in the Phd on a variety testing use case. This includes some
methods (transformers [38]) from neural language processing tested for the first time in
plant imaging.

No public data sets were available for a variety testing to benefit from the opportunity
opened by deep learning. While we produced some original annotated data set in this
PhD we also investigated ways to benefit from prior trained models on other annotated
data. Indoor experiments similar to those carried out in the field by variety testing have
been carried out for decades in plant phenotyping centers. We investigated, for the first
time to the best of our knowledge, the possibility of performing transfer learning from
data acquired in a controlled environment to similar data acquired in a non-controlled
environment. When already existing closely-related real data are not available, another
approach can be to use synthetic data set automatically annotated. Some approaches
have been designed with several modeling, or generative models in our laboratory [39].
However, the generation of the synthetic model can be time-consuming, and we inves-
tigated the possibility of taking benefit of virtual environments from video gaming to
perform pretraining.

Finally, the contrast in plant imaging can show subtle spectral details, not optimally
captured by standard RGB images. This is especially the case for plant diseases. From the
literature [40, 41], it is not yet clear if the gain of contrast observed in indoor controlled
conditions is kept in field conditions. We focus on this matter and design a multispectral
imaging and associated machine learning system in an end-to-end fashion for a plant
disease use case in variety testing.

1.5 Structure of the document

The document follows the description of the resolution of the challenges listed in
the previous section. In chapter 2, we investigate the value of RGB-Depth fusion for
two variety testing characteristics: on individual seedlings along time-lapse and small

25



Introduction

parcels of overlapping plants in snapshot images. In Chapter 3, we focus on the question
of transfer learning from indoor data to outdoor conditions illustrated in the seedling
emergence problem of chapter 2. We also investigate a transfer learning from synthetic to
real data on another variety testing characteristic. In chapter 4, we move to other multi-
component images with multispectral images. We present another way of transfer, which
is the transfer from a hyper-spectral camera used indoor to a multispectral camera used in
the field. We propose a global pipeline from the most effective wavelengths to detect wheat
diseases and build a multispectral camera. We point toward perspectives in the conclusion
chapter detailed in the annex A, on the design of automatic acquisition protocol in variety
testing. As a disclaimer, the document includes contributions articulated around various
testing characteristics and addressing the specific challenges identified for the progress
toward more numerical practices. State-of-the-art and most related works are to be found
in each chapter and are not centralized in a bibliographic chapter.
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Chapter 2

LOW COST SENSOR AND RGB-DEPTH

FUSION FOR VARIETY TESTING

In this chapter, we focus on two characteristics prioritized in the introduction chapter.
First, we tackle plant emergence in controlled environment. Second, we tackle the devel-
opment stage of wheat heading in the field. We propose to perform measurements using
a RGB-depth sensors, the Intel® RealSense D435 [42]. The D435 stereo camera is part
of the new D400 series of depth cameras featuring the Intel® RealSense™ D4 vision pro-
cessor. In a very compact and lightweight and rather low-cost format, Intel® RealSense
combined a depth sensor with an RGB sensor. We introduce the implementation and
original algorithms associated with the fusion of the RGB and depth components. The
detail of the sensor and how it was assemble in a network together with the soft developed
to pilot and pre-process the data are described in Annex B; The aim is to investigate on
both characteristics the added value of the depth component by comparison with a sole
RGB image. The study was published in [43].

2.1 Seedling growth
The detection of the seedling growth stages is a fundamental problem in plant sci-

ence. This covers the emergence of seedling from the soil, the opening of cotyledons and
appearance of the first leave which correspond to the earliest stages of development of
plant. The success or failure of these developmental stages and their kinetics have a huge
impact on the evolution of the future plant. Recently, seedling growth monitoring has
received attention from the computer vision community [44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59]. Among these works, the state-of-the-art approach based
on deep learning proposed in [59] has shown the possibility to automatically classify the
stages of development of seedling with RGB sequences of images from top view with an
accuracy higher than 90%.
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One of the limitations of the work proposed in [59] is that the monitoring was done
only during daylight with RGB images. Consequently, any events happening during the
night would be missed and/or possibly estimated with a temporal bias. In this work, we
propose an extension of the work of [59] and investigate the possibility to push forward
the monitoring of the seedling growth during the day and the night. To this purpose,
RGB-Depth camera were used. These technologies have been demonstrated of wide value
in plant phenotyping [9, 60, 7, 61, 62, 63, 64, 65]. The depth images are computed by an
active LIDAR camera operating in infrared (IR). This camera can be activated during day
and night without impact on the development of the plants. As in [59] we selected low-cost
versions of these RGB-Depth cameras. These low-cost constraints are specially important
in plant phenotyping [4] when moving the plants or the camera is not an option and that
replication of cohorts of cameras is to be chosen to monitor large populations of plants.
Low-cost RGB-Depth cameras are also coming with artifacts and noise. Such artifacts and
metrological limitations of low-cost RGB-Depth cameras have been extensively studied
(see [66] for a recent survey). In our case, we rather work at an informational level. We
focus on a classification task, i.e. a nonlinear decision, which is by nature more robust to
noise since it does not have to provide a high-fidelity, metrological, linear estimation. The
hypothesis investigated in this study is that these low-cost RGB-Depth sensors despite
their limited spatial resolution and the presence of artifacts may be of enough value to
enhance the tracking of seedling growth during day and night.

We demonstrate, for the first time, to the best of our knowledge the value of these
RGB-Depth images to monitor the early stages of seedling growth. We investigate fu-
sion strategies between RGB and depth with several neural network architectures. The
underlying motivation to use multimodal data is that complementary information give a
richer representation that may be utilized to create better results than a single modal-
ity. The multimodal fusion research community has made significant progress in the past
decade [67]. Different fusion strategies have been reviewed [68, 69]. Specifically for RGB
and Depth with deep learning architectures, fusion has been extensively studied in the
literature [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. Mainly two types of fusion can
be distinguished. First, images can be stacked at the input: this is the early fusion [70,
71, 72, 73, 74], that we call image fusion. Second, deep features can be independently
extracted and then fused before a classification stage: this is the feature fusion [75, 76, 77,
78]. In this work, we investigate these fusions scenarios that we applied to the important
problem of seedling growth stage monitoring. Since we process sequences of images we
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considered time-dependent neural network architectures. As in [59], we included a base
line convolutional neural network (CNN) and LSTM [82]. We also added TD-CNN GRU
[83] and transformer [38] which were not included in [59].

2.1.1 Materials and methods

• Imaging system and data set

We have conducted similar experiments as the ones described in detail in [59] and shortly
recalled here. A set of minicomputers, connected to RGB-Depth cameras [84], was used
to image seedlings from the top view as illustrated in Fig.2.1. We used, instead of the
RGB cameras of [59], Intel real sense cameras [42] (model D435) which natively produces
registered RGB-Depth pairs of images and calibrated Depth maps. We installed eight of
these RGB-Depth cameras in a growth chamber where cameras followed the growth of
seedlings from top view. During experiment, soil pots were hydrated to saturation for 24h
after which excess water was removed. After 24h, seeds were sown at a depth of 2 cm,
and trays were placed in a growth chamber at 20°C/16°C, with 16h for photoperiod at
200µMm−2s−2. The soil was kept wet throughout the experiments. Each experiment took
one week with a frame rate of 15 minutes. The time lapse program (made in Python)
was implemented on a central minicomputer controlling, via ethernet wires, the eight
minicomputers connected to the RGB-Depth cameras.

Concerning the biological material, seedling growth was recorded for two experiments
using seed lots from different accessions of beans such as Flavert, Red Hawk, Linex,
Caprice, Deezer and Vanilla. Each experiment consisted of 3 trays with 40 pots in which
120 seeds of accessions were sown. There is a similarity between the species in this
experiment and the two species which were used in [59] as all of them consist in dicotyledon
species. The main difference between them comes from the number of varieties in this
experiment which is three times higher than the one in [59].

In total, the database consists of 72 temporal sequences of RGB and depth images of
size 66 × 66 pixels where each temporal sequence consists of 616 individual images. Ex-
ample of images from the database is shown in Fig. 2.1. RGB-Depth temporal sequences
acquired during daylight were annotated by expert in biology while looking at RGB im-
ages. This ground-truth annotation consisted of four classes: soil, first appearance of
the cotyledon (FA), opening of the cotyledon (OC), and appearance of the first leaf (FL).
The algorithms presented in this work for seedling emergence identification following these
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Table 2.1 – Description of the RGB-Depth dataset used in this study.

Species No.of temporal
sequences

Totale No. of
images during
days

Totale No.of
images during
nights

Totale No.of
all images

Training
dataset

Flavert
Red Hawk
Linex
Caprice
Deezer
Vanilla

10
10
10
10
10
10

4240
4240
4240
4240
4240
4240

1920
1920
1920
1920
1920
1920

36960

Validation
dataset

Flavert
Red Hawk
Linex
Caprice
Deezer
Vanilla

1
1
1
1
1
1

424
424
424
424
424
424

192
192
192
192
192
192

3696

Testing
dataset

Flavert
Red Hawk
Linex
Caprice
Deezer
Vanilla

1
1
1
1
1
1

424
424
424
424
424
424

192
192
192
192
192
192

3696

four phases of growth were trained, validated, and tested against this human-annotated
ground-truth. In order to train robust models, we used the cross-validation approach by
considering image sequences of bean varieties in three split of train, validation, and test
dataset. Table 2.1 provides a synthetic view of the data set used for training and testing
of the models. For the training dataset, we applied data augmentation using a simple
horizontal flip on each temporal sequence.

Depth images can contain artifacts with missing values. This can happen on part of
the scene where not enough light is reflected or for objects that are too close or too far
from the camera. While neural networks should be able to cope with such noise, it is
better to correct them to use the capability of these networks on clean data. In order to
correct these artifacts, we applied a classical inpainting technique [85] of depth images to
reduce the noise.

• RGB-Depth Deep learning fusion strategies

We describe here the different neural network architectures tested in this study to fuse
the RGB and Depth for the classification of seedling growth stages as depicted in Fig. 2.2

CNN-based image early fusion learning structure
We first integrated, as in [86], RGB and Depth data stacked in a four-channel as input

to a CNN (see Fig. 2.3.a). The feature extraction block from four-channel input images
is followed by the classification block (shown in Fig. 2.3a). The CNN architecture is the
one of [59, 83] that we shortly recall. The feature extraction block of a CNN model is
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Figure 2.1 – Overview of the time-lapse collected for this work. Upper row, view of a
full tray with 72 pots from top view. Lower row, a zoom on a single pot at each stage
of development to be detected from left to right: soil, first appearance of the cotyledon
(FA), opening the cotyledons (OC) and appearance of the first leaf (FL).

Figure 2.2 – Different types of RGB-Depth fusion architectures tested in this work for
image classification. (a) Image-based RGB-Depth fusion. (b) Feature-based RGB-Depth
fusion.

responsible for extracting features from input images using convolutional layers, whereas
the classification block determines classes. To keep the amount of train parameters low,
we used an AlexNet [32] like CNN structure. This architecture reads as follows: four
convolutional layers with filters of size 3×3 and respective numbers of filters 64, 128, 256,
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and 256 each followed by rectified linear unit (RelU) activations and 2×2 max-pooling;
a fully connected layer with 512 units, ReLU activation and dropout (p=0.5) and a fully
connected output layer for four classes corresponding to each stage with a softmax acti-
vation. This proposed CNN architecture has been optimized on a hold-out set and was
demonstrated in [59] to be optimal by comparison with other standard classical architec-
tures (VGG16, ResNet, DenseNet). The network was trained from scratch since the size
of the input tensor (4 channels and small spatial resolution) was different from existing
pre-trained networks on large RGB data sets.

Figure 2.3 – (a) CNN architecture of image fusion for RGB-Depth. (b) CNN architecture
of features fusion for RGB-Depth.

CNN-based feature fusion learning structure

Our architecture, shown in Fig.2.3.b, is made up of two convolutional network streams
that operate on RGB and Depth data, respectively. The same structure of image fusion
CNN has been developed for each stream of the feature fusion CNN. The feature extractor
part of the CNN architectures of RGB and Depth images consists of four convolutional
layers which have 64, 128, 256, and 256 filters, respectively (similar to the AlexNet like
structure of the previous subsection). The ReLU activation function is considered for
each convolutional layer followed by a max-pooling layer. On the classification part of the
CNN architectures, a fully connected layer with 512 units, and an output layer with four
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neurons corresponding to each event with a softmax activation function.

TD-CNN-GRU-based image and feature fusion learning structure

We demonstrated in [83, 59] the possible added value to embed in controlled envi-
ronment a memory in the process of the sequence of images. We demonstrated in [83],
the superiority of Time dependent CNN with gated recurrent units (TD-CNN-GRU) by
comparison with other memory based methods such as long short term memory (LSTM)
and CNN-LSTM architectures. GRU uses two gates: the update gate and the reset gate
while there are three gates in LSTM. This difference makes GRU faster to train and with
better performance than LSTMs on less training data [87]. The same CNN architecture of
our model in [59] was embedded in our TD-CNN-GRU model where the optimal duration
of the memory was found to be 4 images in [83, 59] corresponding to 1 hour of recording.
Fig.2.4 shows a schematic view of the proposed TD-CNN-GRU for images and feature
fusion respectively.

Transformers-based image and feature fusion learning structure

A last class of neural network dedicated to time series are the transformers. Since
their introduction in [38] they have been shown to outperform recurrent neural networks
such as LSTM and GRU specially in the field of natural language processing as they do
not require that the sequential data be processed in order. Transformers have been shown
suitable to process temporal information carried by single pixels in satellite images time
series [88, 89, 90]. Transformers have recently been extended to the process of images
[91] where images were analysed as a mosaic of subparts of the original images creating
artificial time series. In our case, we directly have meaningful original images which
corresponds to the field of view of the pots. We, therefore, provide the transformer of [91]
with time series of consecutive images of the same pot (we used the same time slot as in
the other spatio-temporal methods). We used 32 transformer layers with batch size 64,
feed forward layer as classification head layer and the size of our patch size was equal to
66× 66 pixels for both architectures of Fig. 2.5.

For all our training, we used the NVDIA DGX station. This station is composed of
4 GPUs and each one of them have a RAM memory of 32 Gb. We used Python version
3.7.8, Tensor-flow version 2.7.0 and Keras library version 2.3.1.

• Accuracy
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Figure 2.4 – (a) TD-CNN-GRU architecture of image fusion for RGB-Depth. (b) TD-
CNN-GRU architecture of features fusion for RGB-Depth.

The performances of the different fusion strategies tested on our dataset were classi-
cally assessed with Accuracy

Accuracy = TP + TN

TP + TN + FP + FN
, (2.1)

where TP, TN, FP, and FN stands for true positive, true negative, false positive, and false
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Figure 2.5 – (a) Transformer architecture of image fusion for RGB-Depth. (b) Transformer
architecture of features fusion for RGB-Depth.

negative).
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2.1.2 Results

• Fusion strategies

The proposed deep learning methods CNN, TD-CNN-GRU, and Transformers with
image or feature RGB-Depth fusion were applied to the produced dataset as described in
the section 2.1.1. The performances are provided in Tables 2-4 and Fig.2.6.

Table 2.2 – Seedling growth stage classification average accuracy and standard deviation
when performed over 10 repetitions of CNN model.

Training Validation Test
RGB 0.95± 0.02 0.91± 0.03 0.88± 0.05
Image fusion RGB-Depth 0.97± 0.02 0.95± 0.02 0.94± 0.04
Features fusion RGB-Depth 0.97± 0.01 0.96± 0.01 0.94± 0.01

Table 2.3 – Seedling growth stage classification average accuracy and standard deviation
when performed over 10 repetitions of TD-CNN-GRU model.

Training Validation Test
RGB 0.87± 0.02 0.85± 0.01 0.80± 0.01
Image fusion RGB-Depth 0.91± 0.01 0.87± 0.02 0.82± 0.01
Features fusion RGB-Depth 0.90± 0.01 0.86± 0.02 0.81± 0.01

Table 2.4 – Seedling growth stage classification average accuracy and standard deviation
when performed over 10 repetitions of transformer model.

Training Validation Test
RGB 0.90± 0.02 0.86± 0.01 0.82± 0.01
Image fusion RGB-Depth 0.96± 0.02 0.91± 0.01 0.88± 0.03
Features fusion RGB-Depth 0.92± 0.03 0.89± 0.02 0.84± 0.01

Tables 2-4 show that all methods performed better when RGB and Depth data are
fused by comparison with the sole use of RGB data. This improvement is obtained both
with image fusion and with feature fusion. This demonstrate the value of RGB-Depth
fusion with a gain of 5% (on average) compared to the use of the sole RGB images. This is
obtained at a reasonable training time of around 1 to 3 hours as detailed in Table 5. The
best results are obtained with the CNN method, i.e. the spatial method by comparison
with the spatio-temporal method. This CNN is showing the best absolute performance,
the smallest training time and also minimum decrease of performance between training,
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Table 2.5 – Training time of the different deep learning architectures.

Model Training time

RGB
CNN 1h00min
Transformer 1h30min
TD-CNN-GRU 3h00min

Image fusion RGB-Depth
CNN 1h15min
Transformer 1h35min
TD-CNN-GRU 3h30min

Features fusion RGB-Depth
CNN 1h20min
Transformer 1h30min
TD-CNN-GRU 3h20min

validation and test. This is in agreement with our previous results found in [83, 59], where
spatio-temporal methods outperformed memoryless spatial ones only when the kinetic of
growth were homogeneous among the dataset. This was not the case in this study.

The confusion matrix of the CNN method is displayed in Fig.2.6 for RGB images
and RGB-Depth images. Interestingly errors with both RGB and RGB-Depth only occur
on adjacent classes along the developmental order. These are situations where even the
human eye can have uncertainty to decide the exact time of switching from one class
to the next one. Remaining errors can thus be considered as reasonable errors. The
confusion matrices also clearly demonstrate that the main gain brought by the Depth
channel is on the stage of opening the cotyledons for which the error are divided by a
factor two. First appearance out of the soil, or the appearance of the first leave produce
very limited variations on the depth. By contrast, the opening of the cotyledons produces
an abrupt variation of the Depth. Therefore, the impact of Depth on the improvement
of the performance of classification on this developmental stage is consistent with this
rationale. Following also this rationale, one can notice that the errors on opening the
cotyledon slightly increase when Depth is added but the overall impact of Depth is on
average beneficial to the global accuracy.

• Detection of event changes at night using depth information

The advantage of using the depth is not limited to enhance the performance during the
day as shown in the previous subsection. Depth is also expected to be specifically useful
during the night since the RGB cameras are then non operating while the Depth images
can still be acquired. If the growth stage switches during the night the RGB imaging
devices detect the switch only on the first frame of the next day time as illustrated in
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Figure 2.6 – Confusion matrix for the best method found in Table 2.5, i.e. CNN. Left for
the RGB images and right for the RGB-Depth images.

Fig.2.8. It is possible to screen for Depth alone during these nights and observe the start
of a growth pattern actually occurring before the beginning of the day. We demonstrate
in this subsection how to take benefit quantitatively of the sole Depth channel during
these nights.

We analyzed the number of switches from one growth stage to another happening
on the first image acquired during the day in the data set of [59] and found out that it
represented 35 percent of the events (see Fig. 2.7). This is similar to what we found
with the dataset of in this work where we had 100 sets of pots from different varieties.
In these frames, we have 115 switches of growth stages with 43 happening during night
time. While some could be triggered by the action of light others could also happen earlier
during the night. To detect a possible change during the night, we quantitatively used
Depth. We designed Algorithm 1 which acts as follows. We first detects nights where a
switch between a growth stage to another growth stage is found in RGB images. During
these nights, the algorithm then detects the depth frame on which the switch is the most
likely to occur. In short, this is obtained by choosing the time where the average spatial
depth is permanently (computed over a sliding window of 4 images=1hour) closer to the
average spatial depth of the next growth stage.

To validate Algorithm 1, we could not establish ground truth during the night. As a
workaround, we used daylight events and applied the depth channel only to the Algorithm
1. Then, we used the annotated ground truth obtained from the RGB images to compute
the performance of Algorithm 1. We found 80% of these 115 switches with a shift of
less than 4 frames on average (standard deviation of 2 frames) by comparison with the
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Algorithm 1: Detection of night events using depth information.
Input:
Snight = Sequences of depth images of a night during which a switch a growth
stage is observed in RGB images.
Sa = Sequences of depth images from the last day before the switch of growth
stage A to B.
Sb = Sequences of depth images from the first day after the switch of growth
stage A to B.
Output: Pt = Precise time of switch of growth stage.

1 DA ← mean(Sa); Spatial average of Sa

2 DB ← mean(Sb); {Spatial average of Sb}
3 DNk ← mean(Snight);{Spatial average of Snight}
4 < MDA > ← mean( DA);{Temporal average of DA}
5 < MDB > ← mean( DB);{Temporal average of DB}
6 GA ← DN - < MDA >;{Difference between DN and < MDA >}
7 GB ← DN - < MDB >; {Difference between DN and < MDB >}
8 bin ← sign (GA - GB); {Binary vector of the sign for the difference between GA

and GB }
9 Idx ← find(bin==1111);{Get the index of first pattern (1111) in the binary

vector. }
10 Pt ← Length(Sa) + Idx; {Add the length of Sa to the index of the first pattern

(1111) to get the precise time }

39



Part , Chapter 2 – RGB-Depth fusion and machine learning for variety testing

Figure 2.7 – Histogram of detection of growth stage change during day and night from
4000 plants.

Figure 2.8 – First row: the detection of switch from growth stage A to growth stage
B using only daytime RGB images. Second row: the more precise detection of switch
from growth stage A to growth stage B using the Depth pattern during the night time as
proposed by Algorithm 1.

manually annotated ground truth. This corresponds to an uncertainty (bias here) of 1
hour which is very reasonable and much lower than the error duration of the night itself
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(8 hours) if no Depth were used.

2.1.3 Discussion

We analyzed the remaining errors of the proposed algorithms and discuss them in this
section together with some open perspectives of the work.

Two main sources of errors can be attached to the acquisition protocol and instrumen-
tation itself. These are illustrated in Fig. 2.9. First, some seedlings growth so fast that
their leaves or cotyledons go out of the observation window (Fig. 2.9a). This causes drop
in depth and change in the RGB pattern. With our current approach, we do focus on
individual pots. For such seedlings growing at early stages outside of their pot, we would
need to either use larger pots or develop tracking algorithms. This falls outside of the
scope of this study which focused on the added value of Depth when fused to RGB for
the detection of early growth stages of seedlings. Another source of errors happens due to
noise on the Depth channel (Fig. 2.9b). Such noises were observed when too much or too
low amount of IR light was reflected on pots. This happens for instance when the plastic
material of the pots has a high reflectance or when some remaining water(absorbing IR) is
present. These noises can be reduced by carefully choosing the material used for the pot
and the watering process. Another type of error comes from the inherent large hetero-
geneity of shapes and sizes of the bean varieties considered in this study and illustrated
in Fig. 2.10. This affects specially the detection of growth stage which shows the tiniest
changes, i.e. the opening of the cotyledons. To solve these errors, one could simply add
more data or use more advanced data augmentation techniques such as zoom, stretch,
color jitter, ... We wanted to provide basic results here which already happen to be of
rather high quality without the use of such approach to robustify the model since the
main goal was the fusion of the RGB and Depth for seedling growth monitoring.

One may wonder about the robustness of the model proposed given the relatively small
size of the plant population considered. First, the overfit measured with the best method
was found to be limited together with the difference of performance between cultivars. It
is important to recall here that the point of the work is to quantify the added value of
RGB-Depth images by comparison with sole RGB. This is what we do on the same data
sets. Interestingly, the performance with RGB images obtained with only 72 samples are
similar to the larger data set used in [59] (90% against 88% here). However, we cannot
ensure a perfect robustness to large change of phenotypic shapes. If such variability
in scale was expected, larger data sets would have to be constituted. The comparison
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Figure 2.9 – Sources of errors due to the acquisition protocol (a) and instrumentation (b).

Figure 2.10 – Heterogeneity of shape and size in the two events OC and FL for the different
bean varieties used in the training.

between RGB and RGB-Depth would remain unchanged.
In this work, we focused on early fusion and feature fusion of RGB and Depth. One

may also consider decision fusion where the classification from the RGB image and the
Depth image would be made. We performed this analysis and found a pure random
decision when the classification was made on Depth alone. Therefore, at the decision
level, no added value of Depth was to be expected on average. Fusion between RGB
and Depth for such small images and low-cost sensors as the one considered in this study
is found to be beneficial on average at earlier stages of processing (image or features).
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However, after analysing the confusion matrix in detail, one could imagine to selectively
using the added value of Depth at the stages of growth where it is expected to be the
most significant. This was found to be between the FA and OC in our case and more
generally when large contrast in Depth happens. On the contrary, one could discard the
use of Depth when the growth process is estimated to lay at stages where no contrast in
Depth is expected (between Soil and FA in our case).

This study could be developed in several other future directions. First, we could revisit
this study with higher resolution Depth sensors [66] to investigate how the reduction of
noise and improvement of resolution in Depth could help to further improve the classifica-
tion results. More advanced stages of development yet still accessible from the top view,
could be investigated without targeting 3D reconstruction [92]. An issue comes with the
possible overlapping between plants. One solution would be to decrease the density of
plants but this would come with a lower throughput for the experiments. Another solu-
tion would be to investigate the possibility to track leaves during their growth in order
to decipher partial occlusions. Here again, RGB depth sensors coupled with advanced
machine learning approaches could be tested to further extend the capability to moni-
tor seedling growth [93]. Last but not least, we can now directly apply the developed
algorithms to analyze biologically in detail the statistical distribution of seedling growth
events at night on large datasets. This may unravel new knowledge on the physiological
impact of light on these growth kinetics in addition to their links with circadian rhythms
[94]. We selected another option for the investigation in the following of the chapter. We
investigate the value of the RGB-Depth sensor of this section for another variety testing
experiment.

2.2 Wheat heading stage

In previous section 2.1, the monitoring of seedling development stages, we focused on
individual plant growth. In more advanced stages, the plants overlap and the individual
tracking becomes complicated. A workaround approach consists of considering an ensem-
ble of touching plants. This group of plants appears as texture to the camera. As stressed
in the introduction chapter, this corresponds to actual observation scale in variety testing
where a parcel scale is rated: height, flowering time, etc. In the following section, we
revisit the question of RGB-Depth fusion of the previous section at this observation scale.
For illustration, we focus on the automatic detection of wheat heading stage.
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The hundreds of millions of tons of wheat produced each year are of different varieties.
The biologists manually evaluate a parcel according to BBCH reference. The BBCH code
(Bundesanstalt, Bundessortenamt und CHemische Industrie) [95] is a scale to identify
the stages of phenological development of a plant. BBCH scale splits the wheat growth
stage into ten principal stages, from germination (stage 0) to Senescence (stage 9), as
we can see in Fig. 2.11. Each principal stage is divided into ten sub-stages. We obtain
a two-digit code composed of the principal stage and the sub-stage (see Table 2.12). A
parcel is considered to have achieved a sub-stage when 50% of the plants have attained
that sub-stage. This part focuses on the wheat heading stage (stage 6 in BBCH code).
The heading is the process whereby the seed head emerges from the sheath of the flag
leaf.

Figure 2.11 – Illustration representing the general growth pattern of wheat plant from
emergence to heading.
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Figure 2.12 – BBCH growth stages for wheat.

2.2.1 Materials and methods

We acquired videos using the Intel real-sense sensor on the field at the same time
as manual evaluation. Two different angles of view have been used, 90° and 45°. The
informational task corresponds to a classification task with RGB or RGB-Depth images
as input and phenological stages as output. Three phenological sub-stages were observable
and corresponded to the sub-stages 51, 55 and 59 according to the BBCH code. In the
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following section we will define them as 3 classes: 1, 5 and 9.

Figure 2.13 – The three heading classes in the field.

• Dataset

The dataset includes 31 videos RGB-Depth acquired at 5 different dates and with two
various view angles: at zenith (90°) and 45° using RGB and depth sensors. The resolution
of the images is 1920x1080 pixels for the RGB and 1280x720 pixels for the depth maps.
From each video, we extract 100 RGB images and 100 depth maps of the same 720x1280
pixels resolution an alignment function function (see Fig. 2.13).

The angles of view provide complementary information. On the one hand, the images
taken at 45° give a closer view of stems with curvatures that contain extensive information.
They allow other parcels to appear in the frame and complicate the analysis of the depth
maps. On the other hand, the proximity of the camera to the plants in the zenith shot
offers a better resolution of the ears.

• Support vector machine for multi-class problems.

Because we operated with a limited database here, we use machine learning with the
classical support vector machines (SVM) for classification. Developed in the 1990s by
Vladimir Vapnik [96, 97], the SVM model, in its simplest version, cannot natively perform
multi-class classification. It provides binary classification and the split of data points into
two classes. The same principle is applied for multi-class classification after splitting the
multi-classification problem into several binary classification problems. The data points
are mapped to high dimensional space to gain mutual linear separation between every two
classes. This approach is called One-to-One. In One-to-One classification, for the N-class
instances dataset, we have to generate the N ∗ (N − 1)/2 binary classifier models.
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Figure 2.14 – RGB images (top) and depth maps (bottom) for Chevignon variety at stage
5 with viewing angles of 90° (right) and 45° (left).

• Textural descriptor selection

The percentage of visible spikes defines the wheat heading stages in variety testing.
However, with the used sensor, the resolution is limited. Furthermore, due to the over-
lapping and limited resolution of our sensors, individual counting is a challenging task.
Therefore, we propose investigating the problem as a pattern or texture recognition. Tex-
ture description is a classical problem in image processing [98]. Repeated shapes in the
image characterize textures. The grains are organized in the spike creating a regular and
repeated pattern.

Several groups of descriptors were implemented to investigate the added value of Depth
on the texture classification task: Haralick features, local binary patterns LBP, and the
scattering transform. However, the color information is not considered in the heading
stages. For this reason, we applied some descriptors to the gray level of RGB images.

Haralicks descriptors called also GLCM [99] are based on grey level co-occurrence
matrices (GLCM). These matrices encode the repetition of greyscale over a specific
distance and direction in the whole image. There are four matrices according to the angles
0°, 45°, 90°, 135°, and 14 statistical indicators(Mean, entropy, variance) are computed for
each one. The average of these statistics in the various directions constitutes the 14

47



Part , Chapter 2 – RGB-Depth fusion and machine learning for variety testing

GLCM descriptors.
LBP was introduced in [100]. In the LBP method, each pixel in the image is associated

with a value to these neighbors, a 0 if they are lower than the central pixel and one if
they are higher [101]. These values are concatenated clockwise or counterclockwise to
get the smallest binary number to ensure invariance by the rotation of the descriptor.
The value is assigned only to the central pixel to create an image based on the relative
variations of the gray levels around this pixel. Therefore, the descriptors are robust to
lighting variations in the image.

The scattering transform generates an invariant representation of a signal as a function
of rotation and scale change. The first application of this descriptor in plant science was
made in [102]. In this study, they presented a convolution network that performs a
decomposition into wavelets using the complex module. The wavelet decomposition is
done at various scales and orientations to build larger image blocks. After several layers,
the images are reduced to their average value to create the descriptor vector.

• Fusion strategies

Similarly to what was done in the previous section on individual seedlings, we present
the results from three fusion strategies: Image, feature, and late. The two first strategies
are the same as the previous work, section 2.1. The image fusion strategy merges RGB and
Depth images before extracting descriptors. As trivially indicated in its name, the second
fusion merges at the features level. Finally, the last strategy (late fusion) is composed
of two independent classifiers, each trained on a different type of data (one in the RGB
image and another in Depth maps). Both of them are used for prediction. If the two
classifiers are in agreement, there is no ambiguity. Otherwise, the highest prediction
score is retained. These fusion strategies were compared with the three types of textural
descriptors independently.

2.2.2 Results

To increase the number of images, the images were divided into two by three, i.e., a
resolution of 240x640 pixels and the different angles of view were mixed. The database
contained 1584 images in total, with 528 images per class. The database was split into
80% for the training and 20% for the test. The descriptors have different dimensions: 14
for the GLCM descriptors, 59 for the local binary patterns, and 417 for the scattering
transform. They were reduced to the lowest dimension (14) using the PCA method
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(Principal Component Analysis).
All the SVM models were trained ten times in a cross-validation mode. For each

training, we calculate the accuracy (Eq.2.1). Then, we computed the average and standard
deviation over the ten folds of the cross-validation. The results are presented in Table
2.6.

Table 2.6 – Wheat heading stage classification average accuracy and standard deviation
when performed over ten repetitions.

GLCM LBP Scatter
transform

Without fusion Gray scale 31.6 ± 1.0 72.6 ± 1.2 78.6 ± 1.3
Depth maps 56.8 ± 1.9 55.1 ± 1.0 57.4 ± 1.8

With fusion
Image fusion 30.8 ± 0.9 70.0 ± 1.7 70.1 ± 1.5
Features fusion 56.0 ± 2.4 72.6 ± 1.3 68.2 ± 1.2
Late fusion 40.1 ± 3.7 71.1 ± 1.3 76.6 ± 1.3

In the result presented in Table 2.6, we first observe the classification performances
on single components. The performance on the gray level component reaches overpasses
70%. This demonstrates that the textural approach, although challenging, at first sight,
provides already interesting results. Based on the results of three descriptors based on
gray level images, the scattering transforms descriptor provides the best results with an
accuracy of around 79%. For the results obtained using the depth maps, as opposed to
the previous results, the three descriptors have almost the same results (around 55%),
but they still are insufficient. According to the fusion of gray-scale information and depth
information performance, the best fusion strategy is the late one. Nevertheless, the fusion
results are lower than those using single-channel information.

• Typical errors of the late fusion.

Fig. 2.15 a shows the confusion matrices obtained with the scattering transform
descriptor based on gray-scale images. The most exciting point in confusion matrices is
that errors are mainly produced in adjacent classes. The visual annotation can also have
uncertainties in deciding between the adjacent classes. The obtained errors can therefore
be considered acceptable errors.

In order to provide guidelines for future research in fusion strategies, we studied the
typical errors provided by the late fusion models. We used in this test 316 images, and
there are 67 images misclassified (see Fig. 2.15.b). The database comprises bearded and
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Figure 2.15 – Confusion matrix for the best method found in Table 2.16, i.e., scattering
transform. Left for the gray-scales images and right for the gray-scales-Depth late fusion.

non-bearded wheat and images taken from different angles. We have identified two error
sources. Around 56.5% of the errors originate in zenith images, and 44.0% come from
bearded varieties with a standard deviation of around 6 for both of them. Based on this
analysis, for the subsequent acquisition, we recommend to chose the 45° angle.

2.2.3 Conclusion

In this chapter, we have demonstrated the added value of Depth when fused with
RGB images for the important problem of detecting seedling growth stage development.
During the daytime, Depth was shown to improve by 5% the classification performances
on average. Also, Depth was shown value to refine the estimation of the switch of growth
stage during the night period. These results were established on different fusion strategies,
including CNN, TD-CNN-GRU, and transformers. These methods were compared to
incorporate the prior information on the order in which the different stages of development
occur. The best classification performance on these types of images was found with our
optimized CNN, which achieved 94% accuracy of detection. In our experiments, all models
and fusion strategies were trained and tested on several genotypes of beans.

We extended the investigation of our RGB-Depth sensor with the possibility of using
a machine learning method to classify the wheat heading stages in the field. We used
the support vector machine (SVM) as a classification method. We tested three different
texture descriptors the scattering transform, Haralick, and local binary. The best results
obtained is around 79 % accuracy using a scatter transform descriptor. This demonstrates
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the feasibility of performing global rating with textural features for this variety testing
traits instead of individual detection. The performance was nevertheless limited to en-
visioning a direct application, and a larger database would be necessary to further push
the application toward usability. Additionally, we investigated three fusion strategies be-
tween the RGB images and the depth information. We found the best fusion method to
be late fusion. However, this fusion did not improve the performance of the best com-
ponent. For this second characteristic of variety testing, contrary to the results shown
for the individual seedling stage in the first section, depth information is not helping the
classification.
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Chapter 3

TRANSFER KNOWLEDGE FROM

CONTROLLED ENVIRONMENT TO NOISY

ENVIRONMENT

3.1 Introduction

The implementation of deep learning models needs a large amount of annotated data.
Nevertheless, having such large datasets is generally challenging in several fields. One of
these domains is variety testing. In the field, the collecting data process is related to the
season of each crop as opposed to what is accessible in controlled environment. For this
reason, there are more large databases acquired in controlled environments than in the
field. In this chapter, we will be interested in the possibility of using such existing extensive
databases to predict limited databases. For illustration, we remain on one of two use case
of the previous chapter. We focus on the classification of the four early development
stages of plants by exploiting our database[59] and the flowering time detection using
a synthetic database. In the first part, we present the validity of the proposed method
of transfer from controlled environments to greenhouses. The second part describes the
same approach, with this time the transfer from indoor to the field. These two studies
were published in [103][104]. In the last part of the chapter, we present another approach
of transfer,with the transfer from synthetic environment to real environment.

3.2 Indoor to greenhouse transfer on seedling growth

Several work around approaches have been proposed to address the bottleneck of
annotation in applied computer vision including the development of ergonomic tools to
speed up annotation, data augmentation, transfer learning, generation of simulated images
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or the use of generative neural networks. These approaches have been applied to the
domain of plant imaging and the communication here is in this trend [105, 39, 106, 107].
We recently developed a spatio-temporal deep learning algorithm to monitor the growth of
seedlings in controlled environment from top-view in RGB images [59]. Here, we propose
an extension of this work by investigating the possibility to transfer this knowledge to
greenhouse environment where the lighting conditions are not controlled and shadow may
occur due to the position of the sun or the presence of clouds passing by. This is to the
best of our knowledge the first trial of this type in plant imaging.

As most related works to our proposal, one can point that the computer vision com-
munity has in recent years addressed the automatic detection and removal of shadows in
RGB images with deep learning [108, 109, 110]. As often encountered when considering
the translation of such literature to other application domains some basic practical issues
may appear. In the current work, the spatial content and resolution from [108, 109, 110]
are clearly different from the one considered in seedling growth. As a consequence direct
transfer learning would very likely fail and would require additional annotated images.
Our proposal here is rather to investigate the possible transfer of knowledge from plant
observed in indoor conditions to greenhouse conditions.

3.2.1 Datasets

• Real indoor and out door data

Two distinct datasets have been produced. The first dataset consists of 449286 images
(600 different pots) from red clover (Trifolium pratense) and alfalfa (Medicago sativa)
which were captured in a fully controlled environment [59]. This dataset or a pre-processed
version of it will serve as training dataset in this study. The second dataset includes
22212 images (36 different pots) captured from sunflower seedling in a non controlled
environment (greenhouse). This second datasets serves as testing dataset in this study.
Both datasets have been recorded with the frame rate of one image every 15 minutes.
Figure 3.1 shows an example of each dataset. Both datasets record the first developmental
stages of growth of seedlings. This includes four stages with the soil, the first appearance
of the cotyledon (FA), the opening of the cotyledons (OC), the appearance of the first
leave (FL).

The objective of the work is to transfer knowledge from a model trained on the first
dataset to the second dataset as illustrated in Figure 3.2. While the species of both
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datasets are different they are both dicotyledons so that they share similar shapes at early
stages of development. Moreover the two cameras share the same spatial resolution. As
visible in Figure 3.1, the color of the crop observed indoor and greenhouse are not exactly
the same. This color discrepancy happened to be none critical to transfer knowledge from
indoor to greenhouse. As done in [59], the plant is filtered from the soil with a standard
thresholding approach to avoid any impact on the difference of soil and surrounding
background. The challenge in the proposed experiment therefore lay in the presence of
shadows which occurs in greenhouse environment only.

Figure 3.1 – (a) Images from controlled environment on which seedling development is
trained. (b) Images from greenhouse environment on which we want to test the trained
model. The four developmental stages to be detected are the soil, the first appearance of
the cotyledon (FA), the opening of the cotyledons (OC), the appearance of the first leave
(FL).

• Simulated greenhouse data

To simulate images acquired in the greenhouse environment from indoor images, we
propose an automatic shadow generator as detailed in Algo. 2. The shadows are randomly
positioned by using a thresholded speckle generator [111, 107]. All sizes of shadow can
be present greenhouse. However, only shadows larger than the typical size of seedling
organs and smaller than a single plant are expected to impact the detection of seedling
development. We adjusted the number of phasors in the speckle generator in order to fit
with this prior knowledge and produce shadows corresponding to the maximum area of
the seedling (40% of the size of the pot in our training dataset). Modulation of maximum
intensity during the day was recorded in the validation dataset. This information was
used to adjust the value of the threshold in the algorithm (found to threshold = 0.5 in
our validation dataset). Each images in the indoor database is then spatially modulated
by the generated shadow with a simple multiplication.
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Figure 3.2 – Left panel illustrates the imaging system in controlled environment associ-
ated with the large database of [59]. Right panel illustrates the imaging system in an
greenhouse environment with a smaller database. We investigate the possibility of trans-
fer of knowledge from left to right panels.

• Proposed Methods

We shortly recall the deep neural networks used in [59] and tested here on the transfer
of knowledge from indoor to greenhouse environmental conditions. We then extend to
other methods, not included in [59] and tested for the first time in plant imaging.

First we included in [59] a basic CNN architecture performing a 4 classes classification
to discriminate between the images of Figure 3.4.(a). The architecture of CNN is com-
posed of five convolutional layers with filters of size 3×3 and respective numbers of filters
64, 128,128, 512 and 512 each followed by rectified linear unit (RelU) activations and 2×2
max-pooling; a fully connected layer with 512 units and ReLU activation, a fully con-
nected output layer with 4 classes corresponding to each event and a softmax activation.
We use cross entropy as loss function and adam as optimizer. The architecture optimized
for this 4 classes task is visible in Figure 3.4 and served as baseline in [59] since it does not
embed any memory about the growth process. We demonstrated in [59] the added value
to embed in controlled environment such a memory and demonstrated the superiority of
a CNN-LSTM (see Figure 3.4.b) by comparison with a sole LSTM architecture (see [59]).
The optimal duration of the memory was found to 4 images in [59] corresponding to 1
hour of recording.

To further enrich the investigation on memory, we added other neural network archi-
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Algorithm 2: Pseudo-code to simulate random shadows
Data: I: Original image, n:number of phases, s:threshold (0, 1).
Result: Iaug: image with shadow

1 l ← height of original image
2 c ← width of original image
3 shadow ← zeros (l,c)
4 Phases ← exp (2 ∗ π ∗Rand(n, n) ∗ i)
5 shadow (1:n,1:n) ← Phases
6 shadow ← FFTshift(IFFT (shadow))
7 shadow ← shadow / (Max(shadow)
8 for i← 1 to l do
9 for j ← 1 to c do

10 if shadow(i, j) < threshold then
11 shadow(i,j) ← threshold

12 Ishadow=I ∗ shadow

Figure 3.3 – Example of original indoor images (left), shadows generated with Alg. 2
(middle) and, indoor images with simulated shadows (right).
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tectures. We tested gated recurrent unit (GRU) networks [112], an alternative to LSTM,
which has been demonstrated empirically to converge faster. GRU uses two gates: the
update gate and the reset gate while there are three gates in LSTM. This difference makes
GRU faster to train and with better performance than LSTMs on less training data [87].
A last class of neural network dedicated to time series are the transformers. Since their
introduction in [38] they have been shown to outperform recurrent neural networks such
as LSTM and GRU specially in the field of natural language processing as they do not
require that the sequential data be processed in order. Transformers have been shown
suitable to process temporal information carried by single pixels in satellite images time
series [88, 89, 90]. Transformers have recently been extended to the process of images [91]
where images were analysed as a mosaic of subparts of the original images creating artifi-
cial time series. In our case, we directly have meaningful subparts of the original images
which corresponds to the field of view of the pots. We therefore provide the transformer
of [91] with time series of consecutive images of the same pot (we used the same time slot
as in the other spatio-temporal methods). We used 32 transformer layers with batch size
64, feed forward layer as classification head layer and the size of our patch size was equal
to 89× 89 pixels.

The performance of the models proposed in [59] for controlled conditions are recalled
in table 3.1 in addition to the three new methods added in this communication CNN-
GRU, TD-CNN-GRU, Transformer. The performance of the TD-CNN-GRU model and
Transformer are found to outperform the other methods in controlled environment. A
possible interpretation is that, in the TD-CNN-GRU and Transformer models, time and
space are stacked and processed at the same time while CNN-LSTM first processes space
and then time in a sequential way. In the following, we investigate how the performances
of the methods shown in table 3.1 evolve when the models are applied in greenhouse
environment. For this experiment we selected the memoryless CNN model and the best
time-dependent neural network models: TD-CNN-GRU and Transformer.

3.2.2 Results

Several transfer of knowledge have been tested from indoor conditions to greenhouse
conditions. First, as baseline we have applied a brute transfer where the models trained
indoor have directly been applied to predict the greenhouse images. The performance with
the CNN model, visible in Tab. 3.2, shows a clear drop although it does not vanishes
to pure randomness. Then, we have used data augmentation based on the simulation of
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(a) CNN (b) CNN-LSTM

(c) TD-CNN-GRU (d) Transformer

Figure 3.4 – Neural networks architecture tested. (a) Optimized CNN proposed in [59]. (b)
Optimized CNN-LSTM model proposed in [59]. (c) Optimized TD-CNN-GRU proposed
here. (d) Transformer adapted from [91].

Table 3.1 – Tested models in the fully controlled environment. Mean and standard devi-
ation of the accuracy from 5 different trials for each model.

Models Accuracy
CNN 0.80 ±0.08
CNN-LSTM 0.90 ±0.08
CNN-GRU 0.91 ±0.06
TD-CNN-GRU 0.96 ± 0.01
Transformer 0.92 ± 0.01

shadows applied on indoor images as presented in section 12 As visible in Table 3.2, this
simple simulation brings a significant increase of 10% to the overall accuracy on the CNN
model. Fine tuning the model trained on these simulated greenhouse data with a small
amount of real greenhouse data improved the performance up to 91% while the model
trained on the same amount of real data produced 70% accuracy on the CNN model.
Interestingly, as demonstrated in Figure 3.5, fine tuning training on data augmented
indoor data with shadow converges to a high plateau of performance with a very small
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number of input plants. This plateau of performance reached with 7 plants produces a
confusion matrix shown in Figure 3.6. Remaining errors are limited to adjacent classes of
seedling development and therefore constitute reasonable errors.

Table 3.2 – Performance of CNN in greenhouse conditions.

Models Train Validation Test Accuracy
Brut transfer 400 200 4 0.53 ±0.02

Data augmentation 800 400 4 0.64 ±0.10
Greenhouse training 26 6 4 0.81± 0.02
Greenhouse training 7 6 4 0.70± 0.03
Fine tuning training 7 6 4 0.91± 0.02

Figure 3.5 – Classification accuracy as a function of number of pots used in train database
after data augmentation and fine tuning.

Similar experiments have been carried with the TD-CNN-GRU model as provided in
Tab. 3.3 and with the Transformer in Tab. 3.4. Indoor classification performances with
these spatio-temporal methods were better than the spatial CNN. However, they appear
to drop when applied to greenhouse data and become less interesting than the pure spatial
CNN approach. The data augmentation approach with the proposed shadow generator
is improving the performance of the TD-CNN GRU and the Transformer by comparison
with a direct brut transfer. Yet, they perform in the end with this data augmentation at
the same level as if they had been trained fully greenhouse.
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Figure 3.6 – Confusion Matrix of CNN after data augmentation and fine tuning training
model using seven pots.

Several parameters could influence the temporal information from indoor to green-
house. Despite similar speed of the seedling development (approximately 72 hours for the
whole process on average) for indoor and greenhouse conditions, the difference of growing
conditions may have influenced the kinetics to pass from one developmental stage to an-
other. Therefore a systematic analysis of the statistics to pass from developmental stage
to another could be interesting to carry out. However, data augmentation with shadow
systematically improved all tested methods. This demonstrates that the presence of these
shadows is a critical limitation when moving from indoor to greenhouse.

Table 3.3 – Performance of TD-CNN GRU in greenhouse conditions.

Models Train Validation Test Accuracy
Brut transfer 400 200 4 0.32 ±0.04

Data augmentation 800 400 4 0.59± 0.04
greenhouse training 26 6 4 0.72 ± 0.04
Fine tuning training 26 6 4 0.74 ± 0.02

Table 3.4 – Performance of Transformer in greenhouse conditions.

Models Train Validation Test Accuracy
Brut transfer 400 200 4 0.23 ±0.03

Data augmentation 800 400 4 0.56± 0.04
greenhouse training 26 6 4 0.74 ± 0.03
Fine tuning training 26 6 4 0.76 ± 0.02
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In this part of the study, we have investigated the possibility of transferring knowledge
from indoor to greenhouse conditions in a plant science application. We have considered
the automatic detection of early stages of seedling development to this purpose. While
in controlled conditions, time dependence was found to bring additional information, we
found that the presence of shadows in greenhouse conditions are destroying this infor-
mation. However, we have demonstrated that the transfer of knowledge from indoor was
possible via the simulation of shadows to be applied to indoor images. We have demon-
strated an interest in training on such simulated data and fine tune on a limited amount
of real data. The proposed approach is of interest in plant science since greenhouse
conditions are important for agricultural practice, while indoor conditions have received
considerable attention via the development of phenotyping platforms.

3.3 Indoor to field transfer on seedling growth

In section 3.2, we have investigated the transfer from fully controlled conditions to the
greenhouse environment [103] on the question of seedling emergence [59]. We propose to
push forward again and extend this study to an entirely uncontrolled environment, i.e., the
field. Connected cameras settled on sticks have been positioned to monitor the emergence
of various cultures in the field. We explore the value of transferring the knowledge gained
in a controlled environment via transfer learning approaches.

3.3.1 Materials and methods

Here, we consider the problem of automated classification of early stages of seedling
development of mono- and dicotyledons plants under field conditions. Figure 3.7 illus-
trates our approach to overcome the time-consuming annotation of the dataset acquired
under the field conditions. Hereinafter, we use "indoor dataset" to designate seedlings
images acquired under controlled conditions and "outdoor dataset" - the seedling images
acquired under field conditions. We applied the model trained on the indoor dataset to
classify the seedling development stages on the outdoor images (Fig.3.7 ). Although such
transfer learning is common in image processing, this is the first transfer from indoor to
outdoor datasets to the best of our knowledge. The previous study [6] investigated the
transfer from fully controlled conditions to the greenhouse environment. In this commu-
nication, we tested three transfer strategies of the model trained on the indoor dataset to
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two outdoor datasets and derived the most appropriate one. First, we introduced three
datasets used for the CNN model training and inference. Second, we performed transfer
strategies of the model trained on two indoor datasets to outdoor datasets of maize and
rapeseed seedlings. Finally, we discussed what constitutes an effective transfer and gave
some recommendations for the image acquisitions that could improve the performance of
automated stage classification of seedling development.

Figure 3.7 – Studied problem. Left panel illustrates the imaging system in a controlled
environment associated with the large database. Right panel illustrates the imaging sys-
tem under field conditions with a smaller database.

The method proposed for the classification of seedling growth stages consists of three
main elements: (1) the imaging system designed to generate the datasets; (2) pre-
processing images to separate plants from the soil; (3) testing transfer strategies of the
knowledge gained by the model on the indoor dataset to the outdoor dataset.

• Imaging system

A group of 21 RGB top-view cameras was implemented in the field for three weeks
in June 2021 to follow the emergence of maize and in September 2021 to monitor the
rapeseed. Cameras were connected to minicomputers to manage the acquisition and
storage of images and the power bank (Fig. 3.8). We configured our cameras with an
interface to acquire images every 30 minutes during the daytime. The distance between
sensors and soil was 1m. It was chosen to track plants in 2 or 3 rows and get images with
a spatial resolution of 3264×2448.

• Datasets

We produced three distinct datasets. The first dataset consisted of 600 temporal se-
quences of RGB images from red clover (Trifolium pratense L.) and alfalfa (Medicago
sativa) which were captured in a fully controlled environment and used before in study
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Figure 3.8 – The imaging system in an outdoor environment (filed).

[59]. Here, this dataset or its pre-processed version served as the training dataset. The
second and third datasets included 57 time-lapse sequences images of size 89×89×3 pixels
captured from rapeseed and maize seedlings in the field. The indoor dataset was recorded
with the frame rate of one image every 15 minutes in the daytime, and outdoor datasets
were taken with a frame rate of one image every 30 minutes. Figure 3.9 shows an example
of each dataset. Table 3.5 summarizes the details of the datasets. The spatial resolu-
tion of the indoor data set was similar to the outdoor dataset. This is essential since
convolutional neural networks are not scale invariant by design. We took images of the
first developmental stages of the growth of seedlings. All resulting image datasets were
manually annotated by plant experts. The ground truth included four stages with the
soil, the first appearance of the cotyledon (FA), the opening of the cotyledons (OC), and
the appearance of the first leaf (FL) for dicotyledons plants (alfalfa and rapeseed) and
the soil, the appearance of the first leaf (FL), the appearance of the second leaf (SL) and
the appearance of the third leaf (TL) for monocotyledons plants (maize). Before applying
the deep learning method for the classification, the raw sequences of images were treated
with the algorithm described in the 3.5.3 part to remove the soil background as in the
previous study [59].

• Individual plant extraction
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Figure 3.9 – The four developmental stages to classify are the soil, the first appearance
of the cotyledon (FA) or First leave (FL), the opening of the cotyledons (OC) or Second
leaf (SL), the appearance of the first leave (FL) or Third leaf (TL). (a) Images from the
indoor environment. (b) Images from the outdoor environment.

Table 3.5 – Datasets used in the study for model training and inference.

Dataset Plant
Species

N° Images N° Plants Environment Train
N° Plants

Validation
N° Plants

Test
N° Plants

Indoor Alfaalfa 449 286 600 controlled 400 200 -

Synthetic Alfaalfa 449 286 600 controlled+simulated shadow 400 200 -

Outdoor Rapeseed 14 022 57 filed 26 6 25

Outdoor Maize 14 592 57 field 26 6 25

We used a color-based object detection method to perform plant/background segmen-
tation in temporal sequences of RGB images (Fig. 3.10a). First, we converted our RGB
images into HSV color space that decomposes the colors into their hue and saturation
components plus the value component. Then, we applied the following lower and upper
boundaries defined empirically: (36, 25, 25) and (86, 255, 255) - to filter the green color
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of vegetation on HSV images and to get binary masks. After, we cleaned the noise on
binary masks, applying mathematical morphological operations opening and closing (Fig.
3.10b). Finally, we applied the resulting binary masks to original RGB images to separate
plants from background pixels. The next step was to extract the individual plants to build
the database. First, we selected the most contrasted image in the last emergence stage,
FL for rapeseed and TL for maize (Fig. 3.10c). Afterward, we designed bounding boxes
around each plant (Fig. 3.10d). Finally, we used the coordinates of bounding boxes for
cropping the area of each plant on temporal sequences of images (Fig. 3.10e).

Figure 3.10 – Pipeline of individual plant extraction.

• Deep learning method

We used a basic CNN architecture from previous studies [59, 103] to classify images
from three datasets presented in Fig. 3.9 into four classes of seedling development stages.
The architecture of CNN was composed of five convolutional layers with filters of size 3×3
and respective numbers of filters 64, 128, 128, 512, and 512 each, followed by rectified
linear unit (RelU) activations and 2×2 max-pooling, a fully connected layer with 512
units and ReLU activation, a fully connected output layer with four classes corresponding
to the development stage and a softmax activation. In addition, we used cross-entropy
as a loss function and Adam as an optimizer.Figure 3.4 presents the model architecture
optimized for the image classification in four classes. We tested different transfer strategies
of knowledge learned from a source, indoor images, to target outdoor images:

1. Direct transfer: training the CNN model from scratch on the indoor dataset and
testing on the outdoor dataset.

2. Data augmentation: we simulated outdoor images from indoor images, adding
automatically generated shadows, as proposed earlier in [113]. After that, we trained
the model from scratch using the indoor dataset and the obtained synthetic dataset.

66



3.3. Indoor to field transfer on seedling growth

3. Fine-tuning: the training does not start from scratch. We took the model’s weights
estimated on synthetic data (2) as initial weights and re-train the model using
outdoor images. Then, the model was tested on the outdoor images.

The results of transfer strategies were compared with the model trained and tested on
the outdoor dataset, named “Reference” in Tables 3.6 and 3.7. The split ratio of datasets
into train, validation and test parts is presented in Table 3.5.

• Evaluation metrics

To evaluate model performance, we used false positive FP, false negative FN, true positive
TP, and true negative TN that constituted the following metrics: recall, precision, F1-
score (Tables 3.8 and 3.9), and accuracy (Tables 2, 3):

Accuracy = TP + TN

TP + TN + FP + FN
, (3.1)

Precision = T P
T P +F P

, (3.2)

Recall = T P
T P +F N

, (3.3)

F1− Score = 2× P recision∗recall
P recision+recall

= 2∗T P
2∗T P +F P +F N

, (3.4)

Table 3.6 – Performance of CNN model in outdoor datasets of rapeseed.

Direct transfer Data augmentation Fine-tuning training Reference

Without background 0.35 ±0.82 0.45 ±0.01 0.83 ±0.02 0.73±0.03

With background 0.35 ±0.03 0.46±0.04 0.85 ±0.01 0.76 ±0.01

3.3.2 Results

First of all, we compared the models trained on images without soil background in
the sequence of images with the models trained on images with soil background. Unlike
previous results [59], removing the background in outdoor images did not improve the
accuracy results Tables ( 3.6 and 3.7 ). Background suppression while keeping the plant
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Table 3.7 – Performance of CNN model in outdoor datasets of maize.

Direct transfer Data augmentation Fine-tuning training Reference

Without background 0.23 ±0.02 0.32 ±0.02 0.79 ±0.02 0.70±0.01

With background 0.30 ±0.01 0.35±0.02 0.81 ±0.02 0.72 ±0.02

Table 3.8 – Confusion matrix for the best results of CNN method for rapeseed.

True
classes

Predicted

Soil FA OC FL Precision Recall F1-Soore

Soil 1775 195 0 0 Soil 0.95 0.90 0.92

FA 102 293 54 0 FA 0.51 0.65 0.57

OC 0 91 1674 354 OC 0.97 0.79 0.87

FL 0 0 2 1610 FL 0.82 1.00 0.90

is a complex task in the outdoor images because the soil is non-uniform. Segmentation
errors might explain this result. In the same tables, we can see that the simple simulation
of shadow in the indoor dataset has a significant increase of around 9% in both outdoor
databases. However, performance values were low compared to the model trained and
tested on outdoor images. Then, we fine-tuned the model with simulated outdoor images
with small real outdoor datasets. The fine-tuning strategy resulted in significant accuracy
improvement, from 72% to 81% for the maize dataset, and from 76% to 85% for the
rapeseed dataset.

Tables 3.8 and 3.9, present the confusion matrix of the best performance of the CNN
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Table 3.9 – Confusion matrix for the best results of CNN method for maize.

True
classes

Predicted

Soil FA OC FL Precision Recall F1-Soore

Soil 1302 197 2 0 Soil 0.88 0.87 0.87

FL 175 1241 59 0 FL 0.66 0.84 0.74

SL 0 425 2115 87 SL 0.92 0.81 0.86

TL 0 23 129 596 TL 0.87 0.80 0.83

model, obtained with fine-tuning strategy on outdoor images. Also, we computed recall,
precision, and F1-score for every class to interpret the results and errors types.

For rapeseed, all classes had good precision and F1-score except the first appearance
class (FA), 30% of images were misclassified in soil class. This error is logical because
detecting the emergence of plants in the field is very difficult.

The comparison of Tables 3.8 and 3.8 revealed that the performance of the classification
of the second class (FA, FL) was better for maize than for rapeseed. It can be explained
by the fact that seeing the first leaf is simpler than seeing a plant’s first appearance. Table
5 shows that around 20% of images in the SL class are incorrectly classified as the FL
class, and we observe the same between classes TL and SL. These errors are due to the
variable lighting during the day, resulting in exposed or underexposed images that may
hide the leaves. This error is not visible for the rapeseed dataset (Table 3.8) since the
dataset was not acquired in the same season (autumn for rapeseed and summer for maize).
Finally, we demonstrated that our approach works for both types of plants: dicotyledon
and monocotyledon.
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3.4 Synthetic to real transfer on sunflower flowering
In the two previous sections (section 3.2 and 3.3), we presented two works of transfer

from a real environment (indoor) to another real environment (greenhouse or field). In
these two approaches we were relying on existing annotated dataset from similar crops
acquired in environments different from the ones met in variety testing. These dataset
may not always be accessible. Another approach to still benefit from transfer learning can
be to generate synthetic dataset automatically annotated [114]. This approach is widely
used already in plant phenotyping based on deep learning (see for some recent proofs of
feasibility [115, 107, 39, 116]). In most of these successful attempts, a specific pipeline of
image generation is specially designed for a given purpose. This pipeline is not generic
and therefore needs to be redone for each use-case. This somehow limits the interest as
the generation of the synthetic and automatically annotated images requires a significant
time of software development. We wanted to test another framework and investigate how
virtual reality gaming environment could offer a framework for the generation of synthetic
annotated data of plants. We selected Unity the 3D engine gaming environment. Unity
includes libraries with hundreds of realistic models. Some libraries are dedicated to plants.
This includes the main crops. We selected one of these models and focus on flowering
sunflower detection for this attempt as it was one of our identified important variety
testing trait to be automated. We describe this pilot investigation with the generation of
the synthetic environment and then the transfer learning experiment.

3.4.1 Material and methods

• Synthetic data

In the following, we first describe how to prepare Unity’s 3D engine (and their Perception
package) to generate automatically annotated synthetic images, then explore how to de-
sign the virtual sunflower field and use the synthetically generated data to bootstrap the
project and get a prototype running.

• Preparation the Unity’s 3D engine

Unity is a cross-platform game engine developing 2D and 3D multiplatform games and
interactive experiences. We need a Unity account and license to start working with Unity
first. After signing up, we need to install Unity Hub, a management tool that will allow us
to switch between versions of Unity. We installed Unity 2019.4.18f1 (LTS) – the current
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"Long Term Support" version of Unity which support the Perception package that we used
in this project to generate perfectly annotated synthetic images. The chosen template for
this project is Universal Render Pipeline (URP). We also installed the Perception Package
through the Unity package manager module and imported it into our project.

• Methodology to design a virtual environment.

— Initial Analysis and Preparation:

Initial analysis and preparation is the first step of building the virtual scene in Unity
3D. This stage includes every preparation task required for completing the virtual scene.
When creating a virtual environment, one of the most crucial requirements will often be
its similarity with the real environment. Therefore, the user must analyze every detail
of the environment, such as the plants, lighting, camera’s positioning, and environment
layout. The best practice is to collect as many references as possible. This includes photos
and videos of the environment, object dimensions, and 2D layout. Appropriate references
will make creating 3D assets and the virtual environment much more straightforward.
The virtual background for our scene includes the terrain, the sky, and the trees in the
background shown in Figure 3.11.

Figure 3.11 – Background of the scene.

As mentioned in [117], the direction and elevation angle of mature sunflower heads
are varied based on the time of the day and the age of the flower. In this project, we also
consider different angles for the head of mature sunflowers positioned randomly. In each
scene, we also consider the portion of the sunflower immature. Automatically by running
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a scrip, we have the evolution from 10 percent to 80 percent of the maturity on sunflowers.
The sun’s position in the sky also follows the daylight pattern, making it possible for us
to simulate the day’s shadow and light. We consider the weather a clear sunny day in all
the scenes.

— Design prefabs of sunflowers:

The main game object in this virtual scene is the 3D sunflower. There are many
free samples of 3D sunflowers in Unity asset stores. We provide a realistic 3D high-poly
sunflower model from the SpeedTree library for this project. However, the structure of
this 3D model does not let us split it into different components. So we create two main
game objects, the body and the head. For the body part, we consider the shading model
of the petals to the "transparent" surface and the rendering face to the "back" by this
trick, we transform the sunflowers into immature.

The second game object is the head; in this one, we consider the transparent shading
for all the materials except the head. We add the "Flower" tag to this object to make it
easier to access in coding. We save both game objects as a prefab.

Figure 3.12, shows the head and body prefabs of sunflower.

Figure 3.12 – Different components of sunflower.

As a reference field, we add 100 body prefabs to the scene that consists of the field and
the trees as a background. This scene is considered as a field of zero percent maturity of
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sunflower. After this stage, we need to write two scripts, one for adding the head on the
top of the sunflower’s body in a random position and slightly different angles and also for
simulating day lighting. At this stage, each time we run the game, we see the sunflower
field with 10 to 80 percent of mature plants randomly positioned.

Figure 3.13 illustrates one example of a virtual environment designed by 3D unity
which simulated the real scene. We consider several images captured in the field with
different backgrounds for creating this virtual environment.

Figure 3.13 – Simulated sunflower field designed by 3D unity.

To use the perception package first, we must add "Ground Truth Renderer Feature"
from the ForwardRenderer.asset to the project. This step prepares the project to render
tailor-made images that will be later used for labeling the generated synthetic data.

We then add the necessary components to the camera to equip it for the Perception
workflow. To do this, we need to add a Perception Camera component to the main camera
through add component feature and then define which types of ground-truth we wish to
generate using this camera. There are seven common labelers for object-detection and
human keypoint labeling tasks such as keypoint labeling, 3D bounding boxes, 2D bounding
boxes, object counts, object information (pixel counts and ids), instance segmentation, and
semantic segmentation. We used 2D bounding boxes, object counts, object information,
and semantic segmentation in this project.

The labeler added to the Perception Camera should know which objects it should label
in the generated dataset. To do that, we should first create label configurations. This
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Figure 3.14 – Properties of Perception Camera component.

way, the labeler looks for specific labels within the scene and ignores the rest.
After adding the labelers and defining the IDLableConfig, the Inspector view of the

Perception Camera component will look like Figure 3.14. The next step is to assign
labels to the sunflower’s head prefab that are supposed to be detected by an eventual
object-detection model and add those labels to the label configurations we have created.

The prefab has a component, namely Labeling. This component is specific to the Per-
ception package and is used to assign object labels. Each object can have multiple labels
assigned and thus appear as different objects to Labelers with different label configura-
tions. At this level, since we enable the visualizations option on our Perception Camera,
we can see a bounding box drawn around the sunflower’s head in the scene and the object
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itself being colored according to its label’s color, as illustrated in Figure 3.15.

Figure 3.15 – Annotated sunflowers.

In this project, we defined a fixed-length scenario to capture 1550 RGB images and
corresponding ground truth by randomly adding sunflowers heads to the scene. The
generated dataset is in the Perception format and contains four types of data, Logs files,
JSON data, RGB images (raw camera output), and semantic segmentation images. All
the bounding box position information is presented in the JSON file format.

• Real data

We have 193 RGB images acquired in the field during the flowering time from a
different parcel. Figure 3.16 shows an example of dataset. The size of image is 900×550
pixels. All images are annotated using a bounding boxes around each flower in images.

• Deep learning method

YOLO (You Only Look Once) is a deep learning method for object detection [118].
This model is based on a neural network that takes an image as input and predicts the
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Figure 3.16 – Real images of sunflowers in the field.

bounding boxes and the class labels for each bounding box. The model works by first
dividing the input image into a grid of cells, where each cell is responsible for predicting
a bounding box. A class prediction is also based on each cell. YOLO is composed of
a total of 24 convolutional layers followed by two fully connected layers. The layers are
separated by their functionality as follows:

1) The first twenty convolutional layers are pre-trained on the ImageNet 1000-class
classification dataset. The layers include 1×1 reduction layers and 3×3 convolutional
layers.

2) The final four convolutional layers followed by two fully connected layers are added
to train the network to detect objects with our database. The final layer predicts class
probabilities and bounding boxes.

Figure 3.17 – YOLO architecture.
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We tested two different transfer strategies. In the first strategy, we trained the YOLO
model using synthetic data. Then, we split the data using 965 images in training, 340
images for validation, and 245 for the test. Furthermore, we test the model directly
in real data. This approach is called direct transfer. In the second strategy, we used
the weights estimated on synthetic data as initial weights and re-train the model using
different numbers of images in the training dataset from real data: 30, 50, 70, 90, 110,
and 37 images in validation and 50 images in the test. This approach is called fine-tuning.
Finally, to evaluate the added value of this second approach, we train the same models
from scratch using real images. Table 3.10 present all the dataset used in a different
approach.

• Evaluation metrics

The mean Average Precision (mAP) is an evaluation metric for Object Detection. The
mAP compares the ground-truth bounding box to the detected box and returns a score.
The higher the score, the more accurate the model is in detecting. The mAP is calculated
by finding the Average Precision(AP) for each class and then average over a number of
classes:

mAP = 1
N

N∑
i=1

API (3.5)

3.4.2 Results

We first tested the performance of the model trained and tested in synthetic data. As
visible in Table 3.10, we get good results with 82% of mAP. Then, we tested the direct
transfer approach. We get 26% as an mAP. As visible in Figure 3.15 and Figure 3.16,
there are some differences in the flower size, and we see more depth in the real image
compared to the synthetic one. Based on the preliminary results in Table 3.10, we can see
an increase in performance by some percent when using the fine-tuning approach. This
is however not systematically the case depending on the amount of real data used for the
fine-tuning. Figure 3.18 shows a representative result of flower detection using our best
model. We can see some error detection mostly related to false detection of small objects.
These would certainly be removable easily by post-processing. Despite not perfect, the
described experiment shows that the Unity environment can be of value for the generation
of automatically annotated data set to boost deep learning training stage.

77



Part , Chapter 3 – Transfer learning for variety testing

Table 3.10 – Description of the datasets and the performance of each approach.

Train Validation Test mAP
Synthetic data 965 340 245 82%

Real Data

Without fine tuning

110 37 50 71%
90 37 50 68%
70 37 50 65%
50 37 50 60%
30 37 50 50%

With fine tuning

110 37 50 73%
90 37 50 72%
70 37 50 64%
50 37 50 55%
30 37 50 45%

Figure 3.18 – Example of result of flowering detection by the best performance (training
on synthetic and transfer learning with fine tuning).

3.5 Conclusion

In this work, we have demonstrated the possibility of using indoor images to transfer
knowledge to deep learning algorithms operating on greenhouse and outdoor images. This
was illustrated quantitatively on a task of seedling emergence for crops in variety testing
trials. To pragmatically quantify the gain brought by our transfer learning approach, we
estimate two weeks of work to annotate the 600 sequences of images acquired in indoor
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conditions (at a speed of around 60 sequences per day). Thanks to transfer learning
from indoor to outdoor environment, the amount of data requested to reach a plateau
of performance was found to be 30 pots. This can be achieved in one day of annotation
work. This study can be used to reduce the time-consuming annotation task. It would
be interesting to extend these results to other informational tasks and a variety of plant
developmental stages. In our approach, the outdoor noise considered was limited to
shadow. However, other sources of noise could also be included to extend the result of
this study. This includes for instance the presence of wind causing motion blur which
could also easily be simulated with data augmentation following the approach presented
in this study. In this chapter, because of chronological constraints during the progress of
the Phd we used RGB images. We have shown in the previous chapter that the depth
was boosting the discriminative value of the images for seedling emergence. We would of
course recommend to use both Depth and transfer learning since the Depth sensors used
in the previous chapter can operate outdoor.

A last attempt of transfer learning was carried out on the detection of sunflower during
flowering. We tested on a preliminary investigation mode, a virtual gaming environment
to generate automatically annotated images. We have described the protocol to gener-
ate easily such virtual environment and hack it for machine learning purposes. We have
shown that some model designed outside any consideration of scientific agronomical pur-
poses could be used to very efficiently design virtual fields. Also, we have shown that a
small benefit of some percent of performance could be obtained via the pre-training on
such virtual environment. While preliminary this approach is promising as it can adapt
to any situation to mimic realistic conditions including variable lighting conditions or
image acquisition setup. Nevertheless, the fixed aspect of the virtual plant available in
the environment seems limiting here and having different stages of development would
certainly help. A way to address this issue could be to connect the structure-function
plant models [119] which incorporate variability and more anatomically relevant features
with 3D engine from gaming. This could constitute an interesting perspective to improve
the synthetic to real transfer learning approach tested here.
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Chapter 4

OPTIMIZED MULTISPECTRAL IMAGING

AND MACHINE LEARNING FOR WHEAT

DISEASE QUANTIFICATION.

4.1 Introduction
In this chapter, we propose the design of a new multi-spectral camera to estimate the

Fusarium area on wheat spikes more objectively and faster in the framework of plant
variety testing. First, we explain the transferring process from a hyperspectral camera to
the new multi-spectral camera. Then, we validate the functionality of the multi-spectral
camera under controlled conditions. Finally, we demonstrate its performance under field
conditions.

In this study, we focus on Fusarium head blight(FHB) infecting wheat spikes. FHB can
cause significant economic losses for a producer, especially since the fungicide treatment,
under optimal application conditions, has only 50 to 75% effectiveness. Moreover, there
is a critical sanitary issue since Fusarium produces mycotoxin deoxynivalenol (DON) in
the grains, threatening both human and animal health [120, 121]. Thus, since the first
of July 2006, the cereal industry has been subject to the European regulation 1881/2006,
which sets maximum levels of deoxynivalenol (DON). Respect for the regulatory limits
has become a new reality for the cereal market. The economic repercussions are heavy
in case of downgrading of non-compliant batches. As a result, selecting wheat varieties
resistant to FHB has become a priority.

The permanent technical committee for plant breeding (CTPS: le Comité Technique
Permanent de la Séléction) encourages the development of resistant varieties by facili-
tating their registration in the Official Catalogue of Species and Varieties of Cultivated
Crops in France and penalizing the susceptible varieties. The current methods of testing
varietal resistance are based on human observation or chemical analysis of wheat spikes.
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However, visual disease scoring is a time-consuming task, giving subjective results since
it depends on the qualification of experts. In parallel to visual disease scoring, chemical
analysis is usually performed, including liquid chromatography coupled to mass spectrom-
etry (HPLC/MS-MS). However, this approach is costly, challenging to implement, and
inadequate for studying many grain samples. Thus, there is still a need to develop more
efficient high-throughput automated phenotyping tools for FHB detection.

Currently, RGB [122, 123, 124, 125] and hyperspectral [agriculture4010032, 126,
127, 128, 129, 130, 131, 132, 133, 134, 133] imaging systems are widely used for FHB
disease detection. It was shown that hyperspectral imaging is more performant than
RGB for FHB detection [41]. Thanks to its high sensitivities, hyperspectral imaging can
be used for disease detection before the emergence of visible symptoms [135]. However,
despite their numerous advantages, the hyperspectral systems are inconvenient for field
conditions. The acquisition protocols are unsuitable for practical implementation. In
[agriculture4010032, 133, 134], they used a big box for the acquisition which the im-
plementation process is very time consuming (see an example in Figure 4.1). In addition,
huge generated data volumes are complicated to process in real time. Thus, our study
aims to design an original light multispectral imaging system prototype adapted to field
conditions, overcoming the weaknesses of hyperspectral systems.

Figure 4.1 – The acquisition protocol uses a hyperspectral imaging system designed for
field conditions [134].
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One of the methods to reduce the amount of data is to select the most discriminating
wavelengths within hyperspectral images [130, 127, 136, 133]. A small dataset is used in
other studies [126, 127, 128]. For example, in [126], they used a dataset containing 86
samples. Where in our study, we selected wavelengths using 1300 images of infected wheat
spikes collected from two experimental sites with distinct weather conditions and acquired
under indoor conditions for four years. To our knowledge, this is the first time that the
optimal wavelength shows stability over four years. Moreover, the selected wavelengths
are used to build a new lightweight multispectral camera suitable to field conditions, sim-
plifying the acquisition protocol by comparison with other studies [agriculture4010032,
133, 134]. We develop models for estimating the percentage of Fusarium detection in the
control and field environments. Furthermore, we proposed a segmentation model of the
first row of spikes associated with our acquisition protocol without physically isolating
the row of interests, as seen in [122].

4.2 Materials and Methods
In this study, we focus on the estimation of the percentage of Fusarium disease. The

building process of the new multispectral camera followed the four steps illustrated in
Figure 4.2. First, the optimal wavelength to detect the Fusarium disease was selected in
a controlled environment from a hyperspectral camera Figure 4.2.A. Then, a multispectral
camera was designed using the selected wavelength and tested 4.2.B in indoor conditions.
Third, segmentation of spikes of wheat was performed in the field Figure 4.2.C. Finally,
Fusarium severity was detected on wheat spikes in the field 4.2.D. In the following sections,
we will describe the steps from part A to part D of the global pipeline. For the rest of
this chapter, we define the percentage of detected Fusarium as the severity :

severity = disease spike area
whole spike area × 100(%). (4.1)
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Figure 4.2 – Global pipeline of building and testing the multispectral camera. A: optimal
wavelengths selection in a controlled environment from a hyperspectral camera. B: De-
signing and testing of multi-specral camera. C: Wheat spikes segmentation in the field.
D: Fusarium severity estimation in the field.
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4.2.1 The building of optimized multi-spectral camera

• Optimal wavelengths selection

In this section, we explain the different phases of the optimal wavelengths selection
(Figure 4.3). A hyperspectral camera (NEO Hyspex VNIR-1800), including 216 wave-
lengths over a spectral range from 400 nm to 1000 nm, was used. The hyperspectral image
acquisitions were realized in a controlled environment and repeated over four years: from
2016 to 2019. We collected spikes from three wheat species, durum wheat, soft wheat,
and triticale, in two different sites in France, Angers and Clermont Ferrand, with distinct
weather conditions. The spikes development stage is between 250°C/d and 550°C/d after
inoculation. We used ten varieties from each wheat species. For each variety, site and
year, five spikes were harvested in the field and placed on a dark background under the
hyperspectral camera at a distance of 30 cm. The obtained database of hyperspectral
images included an overall of 1500 spikes.

Figure 4.3 – Optimized wavelength selection from the hyperspectral camera in a controlled
environment.

The annotation of Fusarium severity in the hyperspectral images was estimated by
two independent approaches. First, pseudo-RGB images have been reconstructed from
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hyperspectral images using three wavelengths associated with the Red, Green, and Blue
channels. The spikes included in each image were segmented using a simple color thresh-
olding algorithm. Then, these reconstructed images were analyzed by three different
experts providing the Fusarium severity in every spike. The Fusarium area was manually
annotated by the expert based on the results of chemical analysis [137] to be sure that
each annotated pixel corresponds to an FHB pixel.

After creating the annotated database, we applied several classical machine learning
methods to select optimal wavelengths. These methods included linear Discriminant
analysis sequential step by step (DASS-Seq), Covariance Selection (CovSel) [138], and
non-sequential linear Discriminant analysis sequential step by step for 2λ or 3λ (DASS
2λ and DASS 3λ).

DASS is ascending discrimination by computing the Mahalanobis distance [139] on
the total covariance. A measure of the distance between the values of observation and the
average of all observations on the independent variables. A large Mahalanobis distance
identifies an observation with extreme values for independent variables. CovSel method is
adapted to the multi-response calibration of spectrometers and can apply to the problem
of discrimination considering indicator variables as responses. The CovSel technique
has been specially designed for spectral bands selected for the treatment of two common
problems, first, the huge number of spectral bands that yield a huge solution space, and
second the strong correlation between them. For each machine learning method, the
training database contained 500.000 healthy pixels and 500.000 infected pixels selected
from 60 images.

After the training, CovSel method and DASS-Seq classified twenty wavelengths
from the most discriminating to the least discriminating one. Then, we compute the ac-
curacy metric of the classification using a test database starting with the first wavelength
and adding one more wavelength at each iteration until we reach all twenty wavelengths.
Then, using a test database, we apply several classification tests. Again, we start the
classification with the images of the first classified wavelength and add one more wave-
length at each test until we reach the final test based on all twenty wavelengths. For each
test, we compute the accuracy metric. Then, we plot the accuracy curve as a function
of the wavelength number used (see Figure 4.4). Finally, we choose the number of wave-
lengths when the curve reaches a horizontal asymptote. Figure 4.4 presents an illustrative
example of an accuracy curve for the DASS-Seq method. In this example, the curve
becomes asymptotic with the first five wavelengths. In consequence, we keep those five
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wavelengths as optimal ones.

Figure 4.4 – An illustrative example of the choice of optimal wavelength number based
on the DASS-Seq method: the accuracy of disease detection as a function of the number
of wavelengths used; the curve reaches a horizontal asymptotic with five wavelengths.

To evaluate the performance of selected wavelengths, we apply two different methods.
In the first evaluation, we compute the accuracy metric between the pixels predicted by
the machine learning models and the pixels annotated by experts. The second one is the
R2, the determination coefficient between the Fusarium severity estimated by experts and
the severity predicted by the models:

R2 = 1−
∑(Yi − Ŷi)2∑(Yi − Yi)2 . (4.2)

The R2 is the proportion of the variance of a dependent variable explained by one or more
independent variables in the regression model. The R2 is expressed as a value between 0
and 1.

• Test of the new multi-spectral camera in controlled conditions

After selecting the optimal wavelengths, we continue in our global pipeline. Now, we
move to the building of the multispectral camera (Figure 4.5). In the commercial cam-
eras, SILIOS company [silios] have a multispectral camera called CMS4 used on field
applications. The CMS4 cameras are mainly designed for high integration of multispec-
tral VIS/NIR systems. These lightweights (less than 170g) and compact (52x62x40mm)
cameras split the image into eight spectral bands plus one B/W channel. These cameras
are designed by hybridizing a Bayer-like mosaic filter on a commercial 4.2 MPixel CMOS
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Figure 4.5 – The building of the multispectral camera CMS4 and its experiment controlled
conditions.

Sensor. The existing version of CMS4 does not include our optimal selected wavelengths.
For that reason, we design a new version of the CSM4 (Figure 4.6) in collaboration with
SILIOS company. The camera is assisted by software to acquire and save images. The
CSM4 camera is covered by a box to be protected in the field.

Figure 4.6 – (a) CMS4 camera without box. (b) CMS4 camera with outdoor box.

• Preliminary test of the CMS4 camera in a controlled environment

We are certainly losing precision from a hyperspectral camera to an optimized mul-
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tispectral camera. For this reason, a preliminary test of our new camera is done under
controlled conditions. We acquired 176 images of wheat spikes under controlled condi-
tions using the CMS4 camera and a high-resolution RGB camera. Similarly to creating
hyperspectral databases, we collected six spikes from ten varieties of three wheat species
on two sites in France on two different dates. Each image has four different layers and a
pseudo-RGB image (see Figure 4.7). After the acquisition, chemical analyses were per-
formed on spikes to confirm the presence of FHB disease. Then, based on the results of
chemical analyses and the help of RGB images, the experts annotated the Fusarium area
and estimated the severity in pseudo-RGB images of the multispectral camera.

Figure 4.7 – Example of images acquired in controlled condition with RGB and CMS4
camera.

A supervised binary classification to estimate the Fusarium severity was implemented
using four different machine learning methods: Bagged Trees, Cubic k-nearest neighbors
(GKNN) [140], Weighted k-nearest neighbors (WKNN) [140], and fine Gaussian Sup-
port Vector Machine (FGSVM) [141]. We use 70% of our annotated data in training and
30% in the test for each method. The performance of all methods was evaluated using
recall, precision, and accuracy metrics [142] along the following equations:

Precision = TP

TP + FP
, (4.3)
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Recall = TP

TP + FN
, (4.4)

Accuracy = TP + TN

TP + TN + FP + FN
, (4.5)

where TP corresponds to the number of disease pixels correctly detected, TN represents
the number of disease pixels incorrectly identified, FN corresponds to the number of
healthy pixels correctly detected, and FP represents the number of healthy pixels detected
as disease pixels.

4.2.2 In the field: proposed models for segmentation of spikes
and FHB detection

Based on the promising results obtained from the CMS4 camera in a controlled en-
vironment, we switched to testing the new camera in the field (part C of the pipeline,
Figure 4.8).

In the field conditions, each row represents a wheat variety. In order to annotate the
variety, the experts compute the average of the severity from twenty spikes. Thanks to
the lightweight CMS4 camera, we can easily install it on the tripod. Then, we placed this
tripod between the rows of wheat spikes and in front of the interested row. Thus, we can
acquire our images with a simple and suitable protocol in the field, unlike other works
that used specific imaging boxes [agriculture4010032, 129, 130, 131, 132, 134, 143].

Before estimating the Fusarium severity in the field, we need to segment the wheat
spikes. Some previous works on spikes detection and segmentation have been proposed
in the literature [122, 123, 134], but they do not focus separately on each row or use a
physical separation of the interested row. Instead, we aim to automatically segment the
first row of spikes in the image using an image processing algorithm, and then we estimate
the Fusarium severity. First, we proposed a segmentation model of the wheat spikes of
the first row. Moreover, we present the benefits of transfer learning from a model trained
with RGB images to a new model for multispectral images. Then, we applied several
classification methods using segmented images to estimate the Fusarium severity.

• Segmentation of wheat spikes in the field

While constructing the new multispectral camera, we acquired high-resolution RGB
images with the same acquisition protocol. We used this data to build and test a first
segmentation model of the spikes. In this part, we present the segmentation of the first row
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of spikes using RGB images. Then the transfer learning process from the segmentation
model trained with RGB images to a model for multi-spectral images.

Figure 4.8 – The segmentation of the first row of wheat spikes using RGB and multi-
spectral images acquired in the fields environment.

— Segmentation of wheat spikes on RGB images

The database includes 220 RGB images acquired in the field environment at two sites.
This database contained several varieties: durum wheat, soft wheat, and triticale. Experts
manually segment all spikes on the first row in the images. Then, we train a standard
U-Net [36] model to be able to segment the spikes automatically. The database is split
in the following way: 120 images in the training dataset, 20 images in validation, and
80 images in the test. Evaluation of the results was computed with the Sørensen-Dice
coefficient [144]:

D = 2|X ∩ Y |
|X|+ |Y | , (4.6)

where X is the predicted segmentation and Y is the ground truth.

— Transfer knowledge from RGB model to multispectral model

To take benefit of the annotated RGB database, we use the weights of the model
trained with RGB images as initial weights for training a segmentation model for multi-
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spectral images. This process is called fine-tuning. In the field condition, we have 160
annotated images acquired with a CMS4 camera (see Figure 4.9). We trained the model
several times using a different number of images in the training database; we used 0, 40,
60, 80, 100, and 120 images. And we used 20 images for validation and 20 images in the
test. As a comparison, we trained from scratch the U-net model using training, validation,
and testing from CMS4.

Figure 4.9 – Example of images acquired in the field environment with RGB and CMS4
camera.

• Fusarium detection in the field using multispectal images

Following the segmentation of spikes, we continue to the last part of the global pipeline,
which is the validation of the multispectral camera in the field condition (see figure 4.10)

The manual annotation of the Fusarium area on segmented images is done. Next, we
apply the same machine learning methods for the estimation of Fusarium severity used in
the previous section of the test of the multispectral camera in controlled conditions (Part
B in the global pipeline). Then, we evaluate the results of Fusarium severity estimation in
two different methods. The first evaluation is based on the pixel annotation of Fusarium
computing the accuracy, recall, and precision. The second evaluation is the correlation
between the severity of Fusarium provided by the expert on image compared to the
severity predicted by our classification models.
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Figure 4.10 – Fusarium detection by machine learning methods on segmented images
acquired in the field environment using the CMS4 camera.

A global view of the produced data set for this study is given in Table 4.2.2. These
data have been used to obtain the following results.
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4.3 Results

4.3.1 Optimized wavelengths selection

Following all methods of selecting the optimized wavelengths to discriminate between
the healthy part and the parts contaminated with Fusarium on wheat spikes presented
in the previous section 4.2.1, the results are provided in Figure 4.11 using four different
databases from four years. We obtain between two to five different wavelengths depending
on the method used. As shown in Figure 4.11, the selected wavelengths are located in the
visible and near-infrared. Moreover, the selected wavelengths are almost similar over the
four years, thus showing the stability of selected wavelengths.

Figure 4.11 – Optimal selected wavelengths for Fusarium detection over four years.

Table 4.1 shown the accuracy results of DASS seq, CovSel, DASS 3λ and DASS
3λ methods using test database over four years. Looking at the results in Table 4.1,
we see almost the same accuracy value on each database. In addition, the results of
the four methods are very close. Moreover, we compute the R2 coefficient between the
Fusarium severity precited and Fusarium severity annotated by three different experts
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Table 4.1 – The accuracy results of all discrimination methods using a test database over
four years.

DASS Seq CovSel DASS 3 λ DASS 2 λ
Database 2016 0.88± 0.01 0.87± 0.01 0.85± 0.01 0.85± 0.01
Database 2016 - 2017 0.87± 0.01 0.86± 0.01 0.86± 0.01 0.85± 0.01
Database 2016 - 2018 0.88± 0.01 0.86± 0.01 0.85± 0.02 0.84± 0.01
Database 2016 - 2019 0.88± 0.02 0.87± 0.01 0.85± 0.01 0.83± 0.02

using the resulting wavelength selected from the database of four years (database 2016-
2019). The R2 results are present in Table 4.2. As a result, we can find the best correlation
with all experts with the DASS-Seq method. Consequently, we have retained these four
wavelengths resulting from the last database of years marked in yellow in Figure 4.1.

Table 4.2 – The R2 coefficient between the Fusarium severity annotated by experts and
the predicted one using wavelength from the database of four years( database 2016-2019).

DASS Seq CovSel DASS 3 λ DASS 2 λ
Expert 1 0.89± 0.01 0.88± 0.01 0.86± 0.01 0.84± 0.01
Expert 2 0.90± 0.01 0.88± 0.01 0.85± 0.01 0.86± 0.01
Expert 3 0.91± 0.01 0.89± 0.01 0.87± 0.01 0.82± 0.01

• Preliminary test of the CMS4 camera in a controlled environment

Following the selection of wavelengths, we build the four wavelengths on an optimized
multispectral camera called CMS4. Now, we move to test the new multispectral camera
CMS4 in the controlled condition. First, we apply pixels classification to each wheat spike
in two classes: Fusarium and healthy. In Table 4.3, we present the precision, recall, and
accuracy for each classification method.

Based on Table 4.3, the weighted KNN method and bagged Trees method provide
the best performance of Fusarium detection. Both methods have an accuracy of more
than 78% with a recall of around 90%. Furthermore, the results prove the ability to keep
a significant performance of Fusarium severity estimation with an accuracy of 80% by
using the optimized wavelengths selected from the hyperspectral camera and built into a
multispectral camera.
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Table 4.3 – Results of different classification models for Fusarium disease detection on
wheat.

Precision Recall Accuracy
Bagged Trees 0.72± 0.01 0.90± 0.02 0.78± 0.02
Cubic KNN 0.68± 0.01 0.87± 0.02 0.72± 0.02
Fine Gaussian SVM 0.69± 0.03 0.77± 0.02 0.72± 0.03
Weighted KNN 0.74± 0.03 0.91± 0.02 0.80± 0.02

4.3.2 In the field: proposed models for segmentation of spikes
and FHB detection

• Wheat spikes segmentation in field conditions

The image acquired in the field include several rows of wheat spikes behind the row
of interest. Our goal is the segmentation of the first row of spikes. We started the
segmentation on RGB images acquired before building the multispectral camera. The
results of the U-Net segmentation model are present in Table 4.4. As visible in the first
line of Table 4.4, we get a promising result. Therefore, we can prove the possibility of
automatic segmenting of spikes in the first row without the need to put an extensive
background behind this row.

Since in the future, we will use the new CMS4 sensors, we need to build a segmentation
model for the multispectral images. To get the benefit of the first segmentation model
based on RGB images, we transfer the final weights of this model as input weights for
the new model for the pseudo-RGB images of the multispectral camera. Ultimately, we
train another model from scratch using the pseudo-RGB images. Table 4.4 illustrates the
performance of these models. As we see in this Table, using fine-tuning, we can improve
segmentation results by 10%. These results are highly suitable to validate our simple
acquisition protocol in the field.

Table 4.4 – Dice coefficient of different segmentation models of wheat spikes on the images
acquired in field environment.

Training Validation Test
RGB 0.83± 0.03 0.79± 0.02 0.75± 0.02
Pseudo-RGB 0.78± 0.01 0.75± 0.02 0.71± 0.02
Fine tuning 0.88± 0.03 0.84± 0.02 0.79± 0.03
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Part , Chapter 4 – Multispectral imaging and machine learning for variety testing

In addition, we want to see the impact of the number of images used on transfer
learning. So, we train several models using a different number of images in training, and
we plot the Dice coefficient as a function of the images used number. Looking at Figure
4.12, we can admit that we obtained a gain of 10% using only 100 multispectral images
in training.

Figure 4.12 – The Dice coefficient as a function of number of images in train database for
fine tuning.

• Fusarium severity estimation in the field using multispectral images

After segmenting spikes of the first row on the multispectral images, we apply a binary
classification method to detect the Fusarium disease in the field environment. Then, we
evaluate our results using two methods. In the first one, we calculate the precision, recall,
and accuracy between the pixels predicted and annotated pixels, as we can see their values
in Table 4.5. In the second method, we compute the R2 correlation coefficient between
the severity estimated by the best machine learning model with the severity estimated
by the expert based on the images. The Figure 4.13 and Figure 4.14 illustrate the R2

coefficient for winter wheat (from V1 to Vn) and durum wheat.
Based on R2 coefficient results are shown in Figure 4.13 and Figure 4.14. We observe

a high correlation from 0.86 to 0.93 between the evaluation of expert and the prediction
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4.4. Discussion and Conclusions

Table 4.5 – Results of different models for Fusarium detection on wheat spikes based on
multispectral images acquired in the field environment.

Precision Recall Accuracy
Bagged Trees 0.74± 0.01 0.90± 0.02 0.78± 0.02
Cubic KNN 0.68± 0.01 0.87± 0.02 0.72± 0.02
Fine Gaussian SVM 0.69± 0.03 0.77± 0.02 0.72± 0.03
Weighted KNN 0.74± 0.03 0.91± 0.02 0.79± 0.03

Figure 4.13 – Correlation between severity estimated by the expert based on image and
severity predicted by the KNN model for winter wheat.

of our model. These results are promising for replacing the manual annotation in the field
with our multispectral camera.

4.4 Discussion and Conclusions
In this chapter, we proposed a global pipeline of building an optimal multispectral

camera for estimating the severity of Fusarium on wheat spikes in the field environment
using a suitable protocol acquisition. First, we acquired hyperspectral images of wheat
spikes from two different places for four years in a controlled environment with the NEO
Hyspex VNIR-1800 camera to select the discriminated wavelengths. Then, we applied

99



Part , Chapter 4 – Multispectral imaging and machine learning for variety testing

Figure 4.14 – Correlation between severity estimated by the expert based on image and
severity predicted by the KNN model for durum wheat.

on four different linear discriminant methods: Discriminant analysis sequential step by
step (DASS-Seq), Covariance Selection CovSel, and non-sequential linear Discriminant
analysis sequential step by step for 2λ or 3λ (DASS 3λ and DASS 3λ) in order to discrim-
inate Fusarium area. The resulting wavelengths are showing the stability over four years.
We demonstrated the possibility of estimating the Fusarium severity of diverse wheat
varieties, even those with distinct species and sizes, using only four wavelengths. Next,
we build a new multispectral sensor called CMS4 using these optimal wavelengths. We
test in the beginning our new camera in controlled conditions using supervised machine
learning methods such as Bagged Trees, Cubic KNN, Fine Gaussian SVM, and Weighted
KNN. The results achieved 80% accuracy between an expert’s manual annotation of the
image and the prediction of machine learning models. Based on these promising results
in controlled conditions, we moved to test the new camera in the field condition. In the
field, the Fusarium severity is based on visual estimating each row of spikes. We acquired
images in the field using a simple acquisition protocol. Next, we started segmenting wheat
spikes of the first row using U-net deep learning method. We showed we could segment
the first row of spikes with a Dice coefficient of more than 0.75. Also, we demonstrated
the gain of 10% of Dice using the transfer learning with fine-tuning method between a
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4.4. Discussion and Conclusions

model trained with RGB images to a segmentation model for multispectral images. We
showed that we could segment the first row of spikes using a simple acquisition proto-
col of images contrarily to other works that previously resorted to specific imaging box
[agriculture4010032, 129, 130, 131, 132, 134, 143].

Afterward, we returned to the primary goal, Fusarium severity estimation on the field
condition. So, we apply Bagged Trees, Cubic KNN, Fine Gaussian SVM, and Weighted
KNN as a binary classification method on the segmented images. We get the best results
with the KNN model with an accuracy of 0.79. This means with almost no loss of
performance from what was obtained in indoor conditions. Moreover, we get a good
correlation between the visual annotation based on the image and the prediction of the
KNN model with a R2 coefficient equal to 0.86 on winter wheat and 0.93 on durum wheat.

Therefore, we can conclude that the new multispectral camera could be very useful
for the quantification of Fusarium in the field. In 2022, we plan to test the CMS4 camera
in nine different places in France to validate our approach on a larger scale. The data is
collected during the 2022 season, and the images are currently being processed.
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Chapter 5

CONCLUSION AND PERSPECTIVES

5.1 Conclusion
In this PhD, we proposed a methodological approach to automate selected traits in

variety testing based on deep learning and computer vision using multi-component images.
There are several hundreds of traits that could be automated in a variety testing. In the

introduction chapter, we have proposed a rationale to select the ones that would benefit
the most from a shift from manual to numerical practices. Based on this selection, we
have developed two multicomponent imaging systems: a network of low-cost RGB-Depth
cameras to monitor seedling emergence or wheat heading and an optimized multispectral
camera to detect wheat diseases.

While designing these elaborated engineering solutions for plant science applications,
we have addressed methodological challenges specific to multicomponent imaging systems.
In chapter 2, we have explored fusion strategies of RGB and Depth information within
deep learning models. The depth was shown to improve the performance of seedling
emergence detection thanks to additional size information and acquisition capabilities
during the night. However, depth was not helpful for the detection of wheat heading
stages.

In chapter 3, we investigated transfer learning approaches from indoor to outdoor
conditions encountered in a variety testing. The transfer learning approach was boosted
by adding simulated shadows to account for the nonuniform lighting that can occur in
the outdoor environment. This was illustrated by detecting development plant stages
using various spatio-temporal deep learning methods. We applied for the first time the
transformer models for plant imaging processing. While these methods are successful
for natural language or image segmentation, they do not outperform the other classical
deep learning methods (LSTM, GRU) when processing a series of developmental images.
Although this would have to be confirmed in more use cases, one can raise that there
might be fundamental reasons for this. In natural language processing, several patterns
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can be found, with words occurring in different orders and having similar meanings.
In developmental biology, an arrow of time imposes a phenomenological order in the
stages of development. This prior knowledge is not natively included in the transformer
approaches. We have finally proposed a last possibility of transfer from synthetic data to
real ones. This was shown on the sunflower during the flowering process. Video gaming
development environments are modified, oriented, and used for transfer learning. Despite
promising preliminary results, more variability in the synthetic objects provided by these
environments are to be provided for higher efficiency of the transfer.

In chapter 4, we proposed a global pipeline to design an optimized multispectral imag-
ing system to detect wheat disease. In addition, we specially investigated the possibility
of transferring the value of the optimized wavelength from indoor to outdoor conditions.

In addition to these methodological contributions, we have provided tools in Annex
B and Annex C. This includes software to process RGB-Depth sequences of images and
original annotated data sets.

5.2 Perspectives

Specific perspectives on each chapter were provided in its conclusion. Consequently,
we provide more generic perspectives here. In this PhD, we developed image processing
pipelines using data produced by low-cost sensors to address several characteristics of high
interest in variety testing (emergence, flowering, disease quantification). These results are
promising but constitute, at this stage, proof of feasibility.

One must keep in mind that the current observation time for one DUS characteristic by
an expert is often shorter than the image acquisition and processing of this characteristic.
Accordingly, the efficiency of the variety examiner should be improved when several DUS
characteristics can be assessed from one image of a pot, plant, or organ. An interesting
perspective would be to develop models capable of extracting several characteristics from
one image. Another one would be to analyze the need for sensors in VCU testing. As men-
tioned in the introduction, the current situation is that VCU testing protocol for species is
not normalized between European countries due to the specific conditions and needs (cli-
mate, soil, diseases...) of each country, which drives local evaluation that differs from one
country to another. One way to support VCU assessment would be to select phenotypic
characteristics which can constitute the input for agronomical models [145]. Such models
have been designed for phenotyping purposes with some high-resolution sensors. From
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this perspective, it would be interesting to analyze the effect of lowering the resolution
while keeping the predictive value of the agronomical models of the literature. Another
way is using sensors and data fusion to identify DUS and VCU characteristics. Those
perspectives open up analytical approaches to be investigated. Last, VCU characteristics
assessment, such as biotic and abiotic stresses on plants and quality of fruits, also need
other types of more expensive imaging systems (fluorescence, multispectral and hyper-
spectral near-infrared, thermal, LIDAR) [146],[147]. Lowering the cost of these imaging
systems could, as we did in this PhD, significantly increase the potential impact of sensor-
based DUS and VCU characteristics assessment and help the seed sector in general. For
vector, we focused on a handy camera in this PhD. More ergonomic alternatives may be
wearable glasses positioned on the head of the testers and leaving both hands free for
manipulation of the plants (as recently done in our laboratory [105]).

The image processing algorithms developed in this PhD have been trained with the
help of powerful GPU-equipped computers. All data have been trained at rest. It would
be interesting to head toward instrumentation that could process the data with possibly
re-training stages in the field. However, most of the deep learning architectures used in
the PhD were very demanding in computation during training. For these reasons, specific
light versions have been designed to run in embedded mode. For variety testing, it would
be imperative to consider such light architectures for smartphone field applications, as
recently stressed in [148]. Currently, the developed models run in jupyter notebooks,
which are not directly usable by non-experts, as is mostly the case in variety testing.

Also, unfortunately, available solutions are currently not accessible within applications
dedicated explicitly to a manual rating in the field for various testing, such as [149]. A
simple and helpful development would thus be to use the existing literature of algorithms
(including our original contributions), which is suited for variety testing, and implement
it in the Internet of Things (IoT) platform [150] to record measurements and meta-data
associated with variety testing. During this PhD, we initially expected to benefit from
data from our parterner around Europe in the framework of the INVITE project. Because
of the COVID-19 pandemic, we mostly had to generate the data ourselves. As a more
collaborative gathering of data starts again, we took time to envision possible difficulties
arising in multi-centric acquisition trials. In such trials, the acquisition protocol may
vary from site to site. This will result in a variety of quality images. A challenging step
is, therefore, to determine how to converge toward a standard acquisition protocol. We
propose a first pilot study in this direction in Annex A.
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5.3 Valorization of the work
Journal Articles

• Hadhami Garbouge, Pejman Rasti and David Rousseau,"Enhancing the Tracking
of Seedling Growth Using RGB-Depth Fusion and Deep Learning", Sensors 21.24
(2021), p.8425.

• Hadhami Garbouge, Valérie Cadot, Fred Serre, Sylvie Roche and David Rousseau
"Optimized multispectral imaging and machine learning for wheat disease quantifi-
cation in variety testing; A lab-to-field perspective.", Sensors(2023). (in progress)

• Hadhami Garbouge, Geoffroy Couasnet and David Rousseau," Detection of seedling
development Software", SoftwareX (2022). (Under review)

International conferences

• Mathis Cordier, Hadhami Garbouge, Salma Samiei, Pejman Rasti, and David Rousseau,
"Growth-data a new tool to characterize spatio-spectral patterns of plant growth",
North American Plant Phenotyping Network(2020).

• Hadhami Garbouge, Salma Samiei, Pejman Rasti and David Rousseau,"Machine-
learning assisted determination of best acquisition protocols in variety testing ", AI
for Agriculture and Food Systems (2021).

• Hadhami Garbouge, Pejman Rasti and David Rousseau,"Deep Learning-Based De-
tection of Seedling Development from Indoor to Outdoor", International Conference
on Systems, Signals and Image Processing (2022), pp. 121–131, Springer

• Hadhami Garbouge, Natalia Sapoukhina, Pejman Rasti and David Rousseau,"Deep
learning-based detection of seedling development from controlled environment to
field", In 31st International Horticultural Congress (IHC), 2022.

• Hadhami Garbouge, Salma Samiei and David Rousseau,"A SIM2REAL transfer ap-
proach based on video gaming environment for sunflower detection", In International
Conference on Computer Vision (ICCV), (2023) (in progress).
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Chapter 6

ANNEX A: MACHINE-LEARNING

ASSISTED DETERMINATION OF BEST

ACQUISITION PROTOCOLS IN VARIETY

TESTING

As a consequence of climate change, there is an urgent need to develop new varieties
capable of facing new climatic scenarios. However, the process of variety selection is
rather long (10 years). To commercialize a new variety of an agricultural or vegetable
species, a plant breeder has to follow a process managed by a national authority and
delegated to an examination office (EO) that will describe and evaluate the variety for
its registration on the national list. Evaluation results including variety descriptions may
also serve for the granting of Plant Variety Rights (PVR). Currently a large majority of
these tests are based on manual measurements performed from visual inspection. This
method has consequences in terms of efficiency due to the time consuming nature of these
tests. It is also an issue for the reproducibility of these tests when some characteristics are
based on qualitative characteristics which may suffer from subjectivity in their assessment.
Improving efficiency and reproducibility of these observations would be extremely useful
for EOs that are continuously seeking for optimized testing methods implemented in
testing protocols. It could also provide means to assess new characteristics developed
in response to new agricultural constraints, particularly in the perspective of climate
change. In addition, more efficient measurement methods would assist in addressing the
challenge of the constant increase in the number of varieties that have to be tested. The
described challenges encourage to head toward the use of sensors and numerical practices
to progressively replace classical manual methods of examination whenever there is a
need to speed up measurement or increase their reproducibility and objectiveness [151].
The trend of using more and more imaging for plant science has started some decades
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ago and has been extensively reviewed [2, 3] for most recent ones, including with cost-
effective strategies [4]. While imaging modalities used in plant science and variety testing
may be similar, the types of measures in plant science and variety testing differ either
by their nature and technical aspects. So far, few attention from the academic imaging
community focus on these specific aspects of variety testing. This ongoing numerical
transition is currently encouraged at the European level via collaborative networking
projects (including https://www.h2020-invite.eu/).

There are several challenges to address in order to reach common numerical practices
in variety testing. One of them lays right at the level of image acquisition. How to define
optimal protocols of acquisition which would be shared and strictly followed by several
countries? A Top-down approach would consists in letting engineers propose a strict
protocol including the brand and set up of a camera, lighting mode, vector on which
to fix the camera, position of the imaging setup toward the targeted crops, ... Such a
rigid approach would by sure normalize the practices, but would run the risk to face non-
compliant behaviors among the local experts in charge of image acquisition since it may
not systematically be applicable due to local environmental constraints not envisioned
before-hand. Another bottom-up approach would consists in letting the local experts of
all interested nations discuss before-hand with engineers to define a common protocol. A
risk here is to have a low convergence of these discussions. We believe that another option
is possible to help this process of selection of best acquisition protocol.

We propose in this communication to consider the situation where existing datasets
gathered in several places for the same purposes are fed to an algorithm capable of iden-
tifying automatically the best images for a final measurement. This methodology is
illustrated on three datasets. We finally discuss the perspectives opened by this first pilot
trial which could be extended and enriched in many ways.

6.1 Method

We assume a dataset constituted of raw images is acquired with various acquisition
protocols for the same purpose and the associated ground truth (binary masks for seg-
mentation for instance (e.g. binary masks for segmentation)) exists. We propose the
following method to automatically detect the best imaging conditions for acquisition pro-
tocols inside this dataset (See Figure 6.1). At the first step, we split the dataset to the
train and the test. These datasets are composed of balanced (uniform) images from the
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different acquisition protocols. In the second step, handcrafted features corresponding
to the expected optical quality of the acquired images are computed and a clustering
method is applied on these features. The clustering method includes two classes for the
expected good and bad quality of images. A statistical test is then made to decide if the
distribution of the quality metric inside each cluster can be considered distinct or not.
Finally in step 3, based on the results of the statistical test, a recommendation setting of
the optical parameters are generated for the users.

We did not identified clear most related work from the computer vision community
on this problem. Ideally, we would like to come up with a caption associated to an image
were the expected quality of the image would be directly indicated to the technician in
the field if acquisition parameters (focal, focus, angle, light, ...) are not in agreement with
the reference dataset.

Figure 6.1 – Proposed generic pipeline proposed to select best acquisition protocol in
variety testing.

6.1.1 Dataset

We implemented the generic pipeline of Figure 6.1 and tested it on three datasets
shown in Figure 6.2. The first dataset includes 213 images (150 in training and 63 in test)
of a sugar beets acquired under various illuminations including overexposed (i.e. where
the sensor is saturating) conditions. The purpose of this dataset is the segmentation of the
leaves from the soil. The percentage of coverage of the soil at a given date is an important
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trait in variety testing. The second dataset includes 190 images( 160 in training and 30
in test) of wheat observed for side view. The task is the segmentation of the spikes from
the first raw of the micro-parcel. The last dataset is taken from the global wheat data
challenge [152] with a subset of 3422 images (2758 images in training and 664 in test) of
wheat ears observed from top view in the field. The task is to segment the ears. Here
again the angle of view may vary from top view (90 degrees) to 45 degrees from top view.
Images from these three datasets have been manually annotated to produce binary masks
of the objects to be segmented.

6.1.2 Algorithms

We now provide more details about the specific algorithms used in the generic pipeline
of Figure 6.1. The three considered datasets being dedicated to segmentation, we used
a standard U-Net neural network architecture [36] for the image processing algorithm
of step 1. The evaluation metric was chosen as the Sørensen-Dice coefficient D of the
segmentation

D = 2|X ∩ Y |
|X|+ |Y | (6.1)

where X is the predicted segmentation and Y the ground truth.
The features extracted were selected to test the impact of variations of acquisition

conditions on the final result. The sugar beet dataset were acquired under various spatial
illumination including risks of image saturation and low exposure. We proposed for this
dataset to simply count the percentage of pixels having low values, arbitrarily chosen
from 0-30 after RGB to gray conversion, and the pixels close to saturation level, arbitrarily
chosen from 227-255. An image with correct exposition is expected to have low percentage
of pixels in these saturation part of its input-output characteristic. Wheat from side view
were acquired under various angles of the camera toward the ground. To probe this
optical parameter, we included an estimation of the depth from RGB monocular view
(arbitrarily chosen from [153] among many deep learning variants from the literature)
and simply computed the standard deviation of the estimated depth map. An image with
low standard deviation in this depth map is expected to be acquired with an angle of 90
degree from the main vertical axis of the wheat heads. Last, to also probe the angle of
view, the percentage of vegetation was computed from a standard semantic segmentation
such as the one used in [154]. A high percentage of vegetation indicates a side or top view
with low part due to the sky or additional non plant items (humans, tractors, ...). These
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three simple features were applied on each images to feed the clustering method.
Image quality control by binary clustering (K-means with K=2) is applied to test the

hypothesis of the quality of images based on the defined acquisition protocol. All features
were normalized to 1 to avoid distortion effects when using Euclidean distance in the
K-Means algorithm. A Wilcoxon rank-sum test [155] was applied on the distribution of
the Dice coefficient inside each cluster. The null-hypothesis was chosen as the equality
of the medians. This null hypothesis is validated at the default 5% on the P-Value. A
recommendation of specific care about the tested optical parameter is finally recorded
based on the result of this test.

6.2 Results
The distribution of the Dice coefficient in each cluster produced by the K-Means

algorithm are displayed in Figure 6.3 for the three tested data sets. The P-value indicates
in all these cases that hypothesis H0 can be rejected. This indicates that the optical
parameters tested (Illumination for dataset 1 and 3, Orientation for dataset 2) have an
impact on the quality of the segmentation performance. Interestingly, when gazing at
the image in each cluster (see Figure 6.4) the clustering indeed corresponds to uniform
optical conditions, i.e. saturated or well exposed images in dataset 1 and 3 and uniform
angle of view is dataset 2. On could use the result of such an experiment to identify the
most important optical parameters and define in a data driven way the best practices.
Here the experiment indicates to avoid saturation and favor side view or 45 degree view
rather than top view. One can also notice that the distribution of the Dice coefficients
are overlapping in the three conditions. This means that despite a statistically grounded
difference in the performance in each cluster the difference is limited and could probably
be reduced again by extending significantly the size of the training data sets with optical
parameters in the range of what was included in the first. With both analysis our pipeline
of Figure 6.1 provides fruitful feedback and strategy to define the best acquisition protocol
depending on the size of the dataset and the associated effort of image annotation.

6.3 Conclusion and perspective
In this communication, we have introduced the problem of normalization of acquisi-

tion protocol in variety testing. We believe that machine learning can help to define the
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best protocol in a reverse engineering mode. In this pilot study, first we proposed a su-
pervised approach where handcrafted features correlated to optical parameters were used
to cluster images. The approach was then successfully illustrated on datasets dedicated
to segmentation tasks.

The work could be extended in many ways. While the problem appears to us original
and challenging for computer vision some clear limitations can be underlined on the way
we tackled it so far. Because we have chosen a supervised approach, we have to deliver
a similar amount of data for all the tested variants of the protocol. This may seem
problematic since we especially do not completely specify the protocol itself but rather
propose to dive into the dataset to select the best practices. Also, annotation of the
images has to be done on the whole dataset while we suspect that some of these data has
insufficient quality. This appears as a loss of time. We can expect that expert that will
do the annotation, will, by common sense, be able to identify the quality of the images
by themselves and may not in the end have to wait for the answer of our algorithm to
sort out the good from the bad quality images. One could envision heading toward a fully
unsupervised and end-to-end approach. Variational auto-encoders (VAE) [156] could be
used to produce a latent space where the clustering would operate. A possible limitation
is that this latent space would still depend on the composition of the initial dataset. What
would happen if among all the protocols, the best one was represented with few images
only. This last remark rely on the fact that in the implementation presented in this
communication the datasets were limited. A direction would be to bet on unsupervised
algorithms trained on huge dataset purposely acquired in diverse conditions in order to
ensure from the data rather than from the protocol itself sufficient robustness.

Another direction would be to investigate the possible use of synthetic plants posi-
tioned in virtual environment such as the one used for video gaming conception. There
are models of virtual plants for almost all crops of interest and the libraries are contin-
uously growing. The production of these models benefit from extensive use of L-System
grammars [157, 158, 159] to simply but very realistically produce in-silico plant models.
Optical parameters such as lighting, angle, optics, depth of field, exposure, resolution of
the cameras can automatically be simulated in virtual environment. Annotation of the
plants themselves can also be automated since the ground truth is created by the com-
puter directly. The selection of the optimal acquisition protocols would in this case be
more direct since the optical parameters would directly be known and not only correlated
with handcrafted features. Our group has expertise in this field of digital twin [39, 106]
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and we are working in this direction to overcome some of the mentioned limitations of
our proposed approach.
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.
Figure 6.2 – Datasets and ground truth used to test the pipeline of Figure 6.1. Top
raw: sugar beets observed from top view with various illuminations; Middle raw: wheat
observed from the side view with various angles of the cameras; Bottom raw: hear observed
from top view with various angles of the various angles of the cameras.



Figure 6.3 – Distribution of Dice coefficient in each cluster for the three datasets processed
in the study.



Figure 6.4 – Instances of each cluster in each of three datasets processed in this study.



Chapter 7

ANNEX B: USER INTERFACE FOR

IMAGE PROCESSING AND ANALYSIS

7.1 Imaging system

7.1.1 Sensor choice

In this PhD, we have designed a network of affordable multi-component cameras to be
deployed in growth chamber. This network has been used in Chapter 2 and we described
its design in this annex. We started with a selection of a camera, as visible in Table 7.1.
After testing some of the RGB-Depth solutions, we chose to work with Intel RealSense
D435 (Figure 7.2). The D435 stereo camera is part of the new D400 series of depth
cameras featuring the Intel® RealSense™ D4 vision processor. In a very compact and
lightweight and rather low-cost format, Intel® RealSense combined a depth sensor with
an RGB sensor and IR sensor. This camera was also used for outdoor investigation in
Chapter 3.
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7.1.2 Network Description

We installed eight cameras to follow the experiment table’s total surface in the in-
dividual room. Each camera is managed by a mini-computer, Raspberry Pi Model B
(Figure 7.3). The Raspberry was equipped with PoE (Power on Ethernet) HAT. All the
mini-computer were related to a local network, as shown in Figure 7.1. The local network
is installed using a TP-Link router. Thanks to the local network, each camera can upload
the acquired images to the server. The server is equipped with a Raspberry and a Hard
Disk for data storage.

Figure 7.1 – Demonstration of the camera network installed in the growth chamber.

The server was then connected to our INRAe network. This allowed us to transfer
the data to the biologists and to access to all cameras remotely. In addition, we also had
a Raspberry Pi 4 with a second 4TB hard drive (identical to the one listed above) that
took care of backing up the images daily. We performed these backups via Python scripts
executed every night at the same scheduled time through the Raspberry Crontab. Plus,
we have two notifications. In the first one, the server checked the file of each camera
every two hours. If it didn’t receive new images, it sent an mail. The second one, the
server should send an email every day containing the situation of the cameras to be sure
it didn’t encountered any problem.

Such a room is thus composed of the following material for an approximate price of
few keuros:
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— Server : Raspberry Pi 4 Model B 2GB RAM ×1

— Clients : Raspberry Pi 4 Model B 2GB RAM ×8

— Raspberry power supply : PoE (Power on Ethernet) HAT ×8

— Ethernet switch : Netgear PoE+ Gigabit Ethernet Switch Model GS116LP ×1

— Raspberry case : The PiHut PoE+ HAT Case for Raspberry Pi 4 v2.0 ×9

— Battery backup : APC Back-UPS CS 650VA, 230V ×1

— SD cards : OKdo Micro SDHC cards 32Go class 10 pour Raspberry Pi (pre-
installed operating system) ×9

— Cameras : Intel Realsense D435 ×8

— Rooter : TP-Link Archer C9 ×1

— Data storage : External hard drive LaCie Rugged USB-C 4TB ×1

7.2 Technical specifications
In this section, we will give some non-exhaustive technical specifications on the hard-

ware that may be important and directly impact the data processed and analyzed by
the software. We will not detail all the possible configurations of the hardware used but
rather the parameters we used.

7.2.1 Intel RealSense D435

Global camera settings :

— Dimensions length × depth × height) : 90mm × 25mm × 25mm

— Acquisition frequency : 4 images per hour (1 image taken every 15 minutes)

— Output : USB-C 3.1 Gen 1 port

— Effective distance : from 0.3 to 3 meters (recommended min 0.5)

Settings used for RGB image capture :

— Resolution : 1920× 1080 pixels

— Image format : PNG RGB images

— Field of Vue (H × V) : 69.4◦ × 42.5◦

Settings used for depth image capture :
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Figure 7.2 – Intel RealSense D435 camera.

— Resolution : 1920× 1080 pixels

— Image format : PNG 16-bits

— Field of Vue (H × V) : 87◦ × 58◦

Settings used for infra-red image capture :

— Resolution : 1280× 720 pixels

— Image format : PNG 8-bits

— Field of Vue (H × V) : 90◦ × 63◦

7.2.2 Raspberry Pi 4 Model B

The Raspberry we used in our systems is Raspberry Pi 4 Model B, which comes in
several versions depending on the amount of RAM required. In our case, we initially chose
the model with 2GB of RAM, but this seems limited for this use. That’s why, during the
following installations, we chose the version with 4GB of RAM. Here are the technical
specifications of these models:

— CPU : Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @
1.5GHz

— Mémoire vive : 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (4GB minimum is
recommended)
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Figure 7.3 – Raspberry Pi model B.

— Carte réseau : 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
Gigabit Ethernet

— USB ports : USB 3.0 ports ×2, USB 2.0 ports ×2

— GPIO ports : Raspberry Pi standard 40 pin GPIO header (fully backwards com-
patible with previous boards)

— HDMI ports : micro-HDMI ports ×2 (up to 4kp60 supported)

7.3 Description of the program
In this part, we present the different functionalities of the program we developed for our

experiments and how it works. Consequently, we will start by presenting the program’s
structure, which can be divided into three main steps using an illustration diagram.

7.3.1 Program structure

As shown in the diagram below (figure 7.4), the program works in 3 steps: data import
(image sets and associated Excel files), image processing, and finally, data analysis (feature
extraction and/or predictions). We detail these 3 points in the following subsections and
the nature of the data processed by the program.
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Figure 7.4 – Diagram illustrating the structure of the program, broken down into 3 main
steps.

• Import Data

At the beginning of the experiment, the plants are installed in rooms whose environ-
ment can be controlled, with Raspberry equipped with cameras allowing the acquisition
of color and depth images every 15 minutes. In parallel to these images, an Excel file is
provided for each tray containing plants, in which the tray configuration is represented
(same number of rows and columns) and each cell is a value associated with the corre-
sponding plant of the tray. This file has as many sheets we want to associate variables
to the plants (for example, variety, the quantity of water given, etc.). Each sheet name
will be the name of the associated variable, and on each sheet is represented the same
tray containing the values of the variable associated with the corresponding plants (see
figure 7.5).

Before importing the Excel file containing the variables associated with the experi-
ment’s plants, the color and depth images of the plants taken every 15 minutes must be
imported. To do this, we simply place them in 2 sub-folders named "Color" and "Depth"
in any folder on the computer and then indicate where the latter is located after clicking
on the button "Image directory". Once this is done, it remains to indicate in the same
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Figure 7.5 – Example of association of varieties to plants in an experiment from an Excel
file.

way the location of the Excel file(s) with a button "Import Excel File". A dedicated area
of the interface will display the images loaded by the software, and navigation buttons
allow to navigate between the images and between the data sets "color" and "depth". The
import of the Excel file allows the software to know the number of trays present on the
images (number of Excel files imported), the number of rows and columns present on each
of the trays, and the variables to be associated with each of the plants.

• Image processing

Once the images and Excel files are imported, the program should determine the
location of each tray and plant it on the image. For this operation, there are two methods:
an automatic detection method based on "template matching" and a manual method in
case of failure of the first method. Just click on the button "Search trays" to use the
automatic tray detection. Otherwise, we have to manually select the tray on the image
and click on the button "Add label". If the software has never registered the tray type, the
"template matching" algorithm will not detect it, but it is possible to select it manually and
save it as a future template by simply clicking on "Add tray template". Once the tray(s)
are selected, the manipulation for the selection of the plants is the same, except that the
corresponding buttons are the "Search plants" for automatic detection, and the button
"Add label" remains the same to add the selection (once one of the trays is finished), and
to save a selection of plant as a template it is necessary this time to use the button "Add
plant template". Once the trays and plants have been selected, the program associates
with each of them a unique label visible on the displayed image. It is also possible to save
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this image to have a trace of the notation. The user then has to start the measurement
by clicking on the button "Start measures". For each plant selection zone, the program
will then calculate the average measurement of this zone from the depth images. The
program has different functionalities at this stage, so it is possible to:

— Noise reduction : application of an algorithm called "inpainting" to fill the missing
pixels on the depth images related to noise.

— Export of the coordinates of the selection areas : It is possible to export the
list of coordinates of the selection zones of each tray and each plant in the format
csv (File → Export coordinates).

— Export of the displayed image : It is possible to save the image displayed by
the software, allowing the user to have a visual plan of the identifiers of each plant
and each tray (File → Export displayed image).

— Export of measurements : It is possible to export the measurements made on
the depth images in the format csv (File → Export measures).

— Saving image stacks : The program cuts the images on each plant selection zone
during the measurements. It is possible to save for each plant a set of RGB and
Depth images containing the temporal sequence of images cut on the selection area
of the plant. These image stacks will be helpful in making predictions using neural
networks that take this type of data as input.

• Image analysis

As can be seen in the diagram illustrating the overall structure of the program (fig-
ure 7.4), the data analysis can be separated into two parts: feature extraction and stage
prediction. These two functionalities are independent and do not use the same types of
input data. The feature extraction is based exclusively on the measurements made dur-
ing the image processing, while the predictions are made via convolution neural networks
using color and depth image stacks as input. We will therefore present these two types of
analysis separately in this section.

Feature extraction As said before, the features are calculated from the measurements
made on the depth images. These measurements give us the heights (between the plateau
and the highest point of the plant) throughout the experiment in pixel value (average
value calculated on each selection area). We thus obtain a growth curve from which we
can extract the desired features, which are :
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— The final height of the plant

— Daily slope (average daily growth rate)

— Daily harmonic distortion rate

— Daily minimum amplitude of the circadian cycles

— Daily maximum amplitude of the circadian cycles

To export these different features, simply go to the menu "File → Export features" after
having made the measurements on the images, then indicate the destination path.

Predictions of the stages of evolution When processing the images, image stacks
are created for each plant, one with the color images, one with the depth images, and a
third composed of the depth images retouched by the inpainting algorithm. By importing
the color image stacks only or the depth image stacks retouched to reduce noise. Once
loaded, these image stacks are sent to a convolution neural network which will, at each
image of the stack, predict the stage of evolution in which the plant. There are four stages
of evolution, each associated with a label :

0. Soil

1. Germination

2. Opening of the cotyledons

3. Appearance of the first leaf

Once the predictions are calculated, they are exported in the format csv accompanied by
the plates and identifiers of plants as well as a variable indicating for each image of the
stacks if the image was taken by day or night.

7.3.2 Saving and loading projects

We have previously presented the different functionalities of the program, except for
one: saving and loading an existing project. Indeed, the processes carried out by the
interface can take more or less time depending on the number of images contained in an
experiment. If the user has to restart the processes from scratch for the same experiment
as soon as he needs new data or because he forgot to export the measurements, it can
quickly become a waste of time. We, therefore, decided to add the possibility of saving
the project’s current state so that the user can resume it later without starting over. This
system works as in most programs, the user can save via the menu "File → Save project"

126



or "File → Save project as..." or by using the shortcuts "Ctrl + S" and "Ctrl + Shift +
S". To load a project, simply use the menu "File → Load project".
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Chapter 8

ANNEX C: ANNOTATED DATASETS,
MACHINE AND DEEP LEARNING

MODELS

8.1 Plants emergence in greenhouse : sunflower

Figure 8.1 – The four developmental stages to be detected are the soil, the first appearance
of the cotyledon (FA), the opening of the cotyledons (OC), the appearance of the first
leave (FL).

• Date of acquisition: 13/02/2020 to 01/03/2020

• Location: l’Anjouère, GEVES, France

• Image number: 36 plants / 1398 RGB images and 1398 depth images for each
plant

• Sensor description : Microsoft Kinect V2

• Vector : Top view with a fixed vector

• standard reference measurements: Manuel annotation based in images

• Potential use of the image set : The dataset was obtained to count the plants
after emergence as a preparatory work to detect and count young plants after emer-
gence in the field.
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• Machine and deep learning models: CNN model

8.2 Plants emergence in the field

Figure 8.2 – The four developmental stages to classify are the soil, the first appearance
of the cotyledon (FA) or First leave (FL), the opening of the cotyledons (OC) or Second
leaf (SL), the appearance of the first leave (FL) or Third leaf (TL).

8.2.1 Rapeseed

• Date of acquisition: 09/09/2020 to 30/03/2020

• Location: l’Anjouère, GEVES, France

• Image number: 57 plants / 14022 RGB images

• Sensor description :

• Vector : Top view with a fixed vector

• standard reference measurements: Manuel annotation based in images

• Potential use of the image set : The dataset was obtained to count the plants
after emergence as a preparatory work to detect and count young plants after emer-
gence in the field.

• Machine and deep learning models: CNN model

8.2.2 Maize

• Date of acquisition: 5/06/2021 to 26/06/2020
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• Location: l’Anjouère, GEVES, France

• Image number: 57 plants / 14592 RGB images

• Sensor description :

• Vector : Top view with a fixed vector

• standard reference measurements: Manuel annotation based in images

• Potential use of the image set : The dataset was obtained to count the plants
after emergence as a preparatory work to detect and count young plants after emer-
gence in the field.

• Machine and deep learning models: CNN model

8.3 Wheat height

Figure 8.3 – Images of wheat in the field in order to measure the height. (a) RGB image.
(b) Depth image.

• Date of acquisition: 15/06/2021

• Location: l’Anjouère, GEVES, France

• Videos number: 13 RGB and 13 Depth for each plant

• Sensor description : Intel RealSense D435

• Vector : Camera mounted on a Stick

• Standard reference measurements: measurements of the height on several
plants of the plot with a metre stick and then we take the average of measurements

• Potential use of the image set : Plant length determination according UPOV
and CPVO n°13 ; classification as “very short, short, medium, long, very long”
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8.4 Sunflower : flowering detection

8.4.1 Real data

Figure 8.4 – (a) Sunflower plant in the field. (b) Bounding boxes around the flower.

• Date of acquisition: 5/07/2021

• Location: l’Anjouère, GEVES, France

• Images number: 197 RGB

• Sensor description : Nikon camera

• Vector : Hand

• Standard reference measurements: coordinates of bounding boxes

• Potential use of the image set : Detection of flowering time

• Machine and deep learning models: YoLo model

8.4.2 Synthetic data

• Images number: 1550 RGB

• Standard reference measurements: coordinates of bounding boxes of flower
and segmentation of flower.

• Machine and deep learning models: YoLo model
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Figure 8.5 – (a) Bounding boxes of flower detection. (b) Segmentation of flower.
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Titre : Deep learning appliqué à l’imagerie multicomposante pour des problématiques de test
de variétés

Mot clés : Tests des variétés végétales, vision par ordinateur, apprentissage profond, Depth-

RGB, fusion, transfer, imagerie à faible coût.

Résumé : La thèse propose des contributions
méthodologiques originales basées sur la vi-
sion par ordinateur et des méthodes appren-
tissage automatique pour le domaine de tests
des variétés. Les systèmes d’imagerie pour
les plantes sont développée ces dernières an-
nées en direction du phénotypage pour des
expérimentations en milieu contrôlé ainsi que
pour le domaine de l’agriculture. Le domaine
de tests des variétés consiste à réaliser des
mesures pour valider la qualité et l’originalité
de toute nouvelle variété avant d’autoriser sa
commercialisation. Jusqu’ici, il a été peu étu-
dié au moyen d’outils numériques et les tests
actuels sont essentiellement le résultat des
inspections visuelles. Les travaux de la thèse
se sont concentrés sur le test des variétés
pour des grandes cultures. Sur un plan mé-
thodologique, nous investiguons l’usage des
systèmes d’imageries multicomposantes avec
des capteurs à bas-coût et des méthodes
d’apprentissage par réseaux de neurones pro-
fonds.
Dans une première partie, nous explorons le
potentiel de capteurs multicomposantes RGB-
Depth en test des variétés qui fournissent une
information de trichromacie et de distance des
plantes à la caméra. Les fusions précoce, in-
termédiaire et tardive de ces composantes
dans un réseau de neurones par convolution
ou à mémoire locale ou de type « transfor-
mer » sont examinées. Nous montrons la va-
leur ajoutée de la carte de distance notam-
ment pour estimer les cinétiques des stades
de développement individuels de plantules le
jour comme la nuit. Ensuite, nous explorons
les mêmes approches d’imagerie RGB-Depth
pour la détection de stades de développement

collectifs dans des petites parcelles sous la
forme de textures.
Dans une seconde partie, nous abordons la
question du possible transfert de connais-
sance de traits mesurés en milieux contrô-
lés (chambre de culture, phytotron) vers des
milieux moins contrôlés (serres ou champs).
Nous revisitons pour ce faire la détection de
stades de développement de plantules. Une
méthode d’augmentation de données simulant
des ombres est proposée et montre son in-
térêt pour des approches d’apprentissage par
transfert en serres comme au champ. Une ou-
verture vers l’usage de données de synthèse
pour de l’apprentissage par transfert est pro-
posée.
Dans une troisième partie, nous développons
une imagerie multispectrale optimisée pour la
détection et quantification de pathologies dans
des tests de résistance aux maladies. Chaque
étape est détaillée et validée sur des expé-
rimentations qui s’étalent sur plus de trois
saisons. Un pipeline complet est présenté
incluant à nouveau des éléments d’appren-
tissage profond et d’apprentissage machine
classique. Une ouverture vers la détermina-
tion automatique de protocole d’acquisition est
proposée en annexe.
En plus de nos contributions méthodolo-
giques, nous avons fourni des outils informa-
tiques. Nous avons développé un logiciel pour
traiter les séquences d’images RGB-Depth
pour détection des stades de développement,
mesurés la hauteur des plantes en temps réel,
séparés les génotypes automatiquement, etc.
Et aussi nous avons mis en disposition des
bases de données annotées et des modèles
entrainés.
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Title: Deep learning applied to multi-component imagery for variety testing problems

Keywords: Variety testing, computer vision, deep learning, Depth-RGB, fusion, transfer, low

cost imaging.

Abstract: The thesis proposes original
methodological contributions based on com-
puter vision and machine learning techniques
to the variety testing research. Variety testing
consists in performing measurements to vali-
date the quality and originality of any new vari-
ety before allowing its commercialization. The
current tests are essentially the result of vi-
sual inspections, and digital phenotyping is not
common. The work of this PhD has focused
on developing automated variety testing meth-
ods for crops. We build new multicomponent
imaging systems based on low-cost sensors
and deep learning networks.
In the first part, we explore the potential of
multi-component RGB-Depth sensors in va-
riety testing, which provide trichromacy and
distance informations from the plants to the
camera. Early, intermediate, and late fusions
on these components are examined using a
convolutional, local memory and transformer
neural network. We demonstrate the benefits
of the distance map, especially for estimating
the kinetics of the individual developmental
stages of seedlings during the daytime and
nighttime. Then, we explore the same ap-
proaches of RGB-Depth imaging for detecting
developmental stages in small plots as tex-
tures.
In the second part, we address the issue of the

possible transfer learning of traits measured
in controlled environments (growth chamber,
phytotron) to less controlled environments
(greenhouses or fields). To do so, we revisit
the detection of seedling development stages.
Furthermore, a data augmentation method
simulating shadows is proposed and shows
interest in transfer learning approaches in
greenhouses and the field. Lastly, using syn-
thetic data for transfer learning is proposed.

In the third part, we develop an optimized
multispectral camera for detecting and quan-
tifying disease in plant resistance tests. Each
step is detailed and validated on an image
dataset acquired during three seasons. A
global pipeline is presented, including deep
learning and classical machine learning meth-
ods. An opening toward the automatic deter-
mination of acquisition protocol is proposed in
Annex A.

Additionally to our methodological contri-
butions, we provided various computer tools.
We developed software to process RGB-
Depth image sequences for stage detection,
measuring plant heights in real-time, etc. Fur-
thermore, we provided annotated databases
and generated trained models.
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