
HAL Id: tel-03998632
https://theses.hal.science/tel-03998632v1

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Mining-based tools to support library update
Oleksandr Zaytsev

To cite this version:
Oleksandr Zaytsev. Data Mining-based tools to support library update. Machine Learning [cs.LG].
Université de Lille, 2022. English. �NNT : 2022ULILB028�. �tel-03998632�

https://theses.hal.science/tel-03998632v1
https://hal.archives-ouvertes.fr

Université de Lille, Faculté des sciences et technologies

Département de formation doctorale en informatique École doctorale MADIS Lille

UFR IEEA

Outils basés sur l’exploration de

données pour soutenir la mise à jour

des bibliothèques

(Data Mining-based Tools to Support Library Update)

THÈSE

présentée et soutenue publiquement le

pour l’obtention du

Doctorat de l’Université de Lille

(spécialité informatique)

par

Oleksandr ZAITSEV

Composition du jury

Président : Olga KOUCHNARENKO Professeur, Université de Franche-Comté

Rapporteurs : Romain ROBBES Associate Professor,
Free University of Bozen-Bolzano

Coen de ROOVER Associate Professor,
Vrije Universiteit Brussel

Directeur de thèse : Stéphane DUCASSE Directeur de Recherche, INRIA Lille

Co-Encadrant de thèse : Nicolas ANQUETIL Mâıtre de Conferences, Université de Lille

Centre de Recherche en Informatique, Signal, et Automatique de Lille — UMR 9189 CRIStAL

INRIA Lille - Nord Europe

i

I want to thank my parents, who encouraged and supported me throughout my
studies. And all my friends who turned this into a pleasant journey. I am also
grateful to the Arolla software company for sponsoring my PhD and the RMoD
team of Inria for providing me with the best working environment during those four
years. In particular, to my supervisors, Stéphane Ducasse and Nicolas Anquetil,
for their guidance, wisdom, and patience.

But above all, I want to dedicate this thesis to the Armed Forces of Ukraine. To
soldiers and partisans who heroically fight for our freedom as I write those lines.
Medics and volunteers for all the tireless work they have not stopped since the first
minutes of the war. To all our foreign friends and allies for the incredible support
they are providing my people in our darkest hour. To everyone who believes in our
victory and everyone who makes it possible.

Glory to Ukraine!

iii

Abstract
Modern software can be characterized by a high degree of reuse of external arti-
facts. Applications depend on multiple libraries and frameworks, which in turn
can also depend on other libraries and frameworks. Like any other software, li-
braries evolve. New versions are released, often incompatible with the previous
ones. This forces client applications that depend on those libraries to update their
code in response to library evolution.

Updating the dependencies can be a difficult and time consuming task for client
developers. It involves repetitive operations and requires knowledge about the
changes that were made to the library. Knowledge that can be shared by library
developers or extracted by automated tools from source code or commit history.

In recent years, multiple approaches have been proposed to mine the data or
apply machine learning techniques and extract knowledge about library update in
the forms of rules. However, most of those approaches only focus on client devel-
opers and do not consider the expertise of library developers. They consider only
simple method-to-method replacements and are only designed for statically-typed
programming languages.

In this thesis, we address this gap in literature with five main contributions: (1) a
survey of library and client developers from two industrial companies and an open-
source community; (2) first detailed documentation of the Deprewriter approach
and tool in Pharo which introduces deprecations that dynamically update client
code with transformation rules; (3) a study of how Deprewriter was adopted by the
Pharo community through the analysis of source code in Pharo 8 and a developer
survey; (4) DepMiner — a novel approach to infer the rules for Deprewriter based
on the commit history of a project; (5) a generalization of DepMiner as a new
holistic approach to support library developers in the task of library update.

The results of the research reported in this thesis will advance the field of au-
tomated library update by exploring the perspective of library developers and the
context of the dynamically-typed languages that were often overlooked in the pre-
vious studies.

Keywords: software evolution, library update, library migration, data mining.

v

Résumé
Les logiciels modernes peuvent être caractérisés par un haut degré de réutilisa-
tion d’artefacts externes. Les applications dépendent de plusieurs bibliothèques
et frameworks, qui peuvent à leur tour dépendre d’autres bibliothèques et frame-
works. Comme tout autre logiciel, les bibliothèques évoluent. Elles publient de
nouvelles versions, souvent incompatibles avec les précédentes. Cela oblige les
applications clientes qui dépendent de ces bibliothèques à mettre à jour leur code
en réponse à l’évolution des bibliothèques.

La mise à jour des dépendances peut être une tâche difficile et chronophage
pour les développeurs clients. Elle implique des opérations répétitives et nécessite
la connaissance des modifications apportées à la bibliothèque. Ces connaissances
peuvent être partagées par les développeurs de la bibliothèque ou extraites par des
outils automatisés à partir du code source ou de l’historique des livraisons.

Ces dernières années, de nombreuses approches ont été proposées pour ex-
ploiter les données ou appliquer des techniques d’apprentissage automatique et
extraire des connaissances sur les mises à jour des bibliothèques sous forme de
règles. Cependant, la plupart de ces approches se concentrent uniquement sur les
développeurs des applications clients et ne prennent pas en compte l’expertise des
développeurs de bibliothèques. Elles ne considèrent que les remplacements simples
de méthode à méthode et ne sont conçues que pour les langages de programmation
à typage statique.

Dans cette thèse, nous abordons cette lacune dans la littérature avec cinq con-
tributions principales : (1) une enquête auprès des développeurs de bibliothèques
et de clients de deux entreprises industrielles et d’une communauté open-source ;
(2) la première documentation détaillée de l’approche et de l’outil Deprewriter
dans Pharo qui introduit des dépréciations qui mettent automatiquement à jour le
code client avec des règles de transformation ; (3) une étude de la façon dont De-
prewriter a été adopté par la communauté Pharo à travers l’analyse du code source
dans Pharo 8 et une enquête auprès des développeurs ; (4) DepMiner — une nou-
velle approche pour déduire les règles de Deprewriter à partir de l’historique des
livraisons d’un projet ; (5) une généralisation de DepMiner comme une nouvelle
approche holistique pour aider les développeurs de bibliothèques dans la tâche de
mise à jour des bibliothèques.

Les résultats rapportés dans cette thèse font progresser le domaine de la mise
à jour automatique des bibliothèques en explorant la perspective des développeurs
de bibliothèques et le contexte des langages à typage dynamique qui ont souvent
été négligés dans les études précédentes.

Mots-clés : évolution des logiciels, mise à jour des bibliothèques, migration des
bibliothèques, exploration des données.

Contents

1 Introduction 1
1.1 Software Evolution and Breaking Changes 1
1.2 Library Update . 2
1.3 Problems . 2
1.4 Contributions . 3
1.5 Why Pharo? . 3
1.6 Structure of the Thesis . 4
1.7 List of Publications . 5

2 Background 7
2.1 What is Library Update . 7
2.2 Deprecations . 8
2.3 Scope of the Problem . 11
2.4 Motivating Examples . 12

3 State of the Art 17
3.1 Empirical Studies of Library Evolution 17
3.2 Code Transformation and Deprecations 20
3.3 Tools to Support Library Update 20
3.4 Chapter Conclusion . 25

4 How Libraries Evolve: Developer Survey of Library Update 27
4.1 Introduction . 27
4.2 Survey Design . 28
4.3 Describing the Population . 29
4.4 Results of the Library Developer Survey 32
4.5 Results of the Client Developer Survey 38
4.6 Threats to Validity . 41
4.7 Chapter Conclusion . 43

5 Deprewriter: Transforming Deprecations 45
5.1 Introduction . 45
5.2 Problem: Replacing Deprecated Method Calls 48
5.3 Example: Rewriting Deprecations In Action 50
5.4 Deprewriter . 53
5.5 Implementation . 58
5.6 Sketches of Possible Alternative Implementations 60

viii Contents

5.7 Analysis of Deprecated Methods in Pharo 8 64
5.8 User Survey . 70
5.9 Limitations and Discussion . 75
5.10 Chapter Conclusion . 79

6 DepMiner: Helping Library Developers to Deal with Breaking Changes 81
6.1 Introduction . 81
6.2 Why Support Library Developers? 83
6.3 DepMiner Approach . 84
6.4 Evaluation . 87
6.5 Limitations of Our Approach . 92
6.6 Chapter Conclusion . 93

7 First Steps Towards a Holistic Approach 95
7.1 Introduction . 95
7.2 Different Types of Support . 97
7.3 The Shortcomings of Existing Approaches 99
7.4 Understanding the Needs of Library Developers 101
7.5 Overcoming the Limitations of DepMiner 103
7.6 Holistic Approach to Deal with Breaking Changes 106
7.7 Chapter Conclusion . 108

8 Case Studies of Challenging Library Update Problems 109
8.1 Introduction . 109
8.2 Case 1: Reassigning the Existing Name 110
8.3 Case 2: Circular Renaming . 111
8.4 Case 3: Modifying Abstract Hooks 112
8.5 Case 4: Cleaning Up Spurious Objects 115
8.6 Case 5: When String Literals are Used as Identifiers 118
8.7 Chapter Conclusion . 119

9 Conclusion 121
9.1 Summary . 121
9.2 Contributions . 123
9.3 Future Work . 124

A Pharo syntax in a nutshell 127

B Transformation Rules of Deprewriter Extracted from Pharo 8 129

Bibliography 131

List of Figures

2.1 Library update is the process of updating the client system in re-
sponse to library evolution. It has two groups of actors: library
developers who release the new version of a library, and client de-
velopers who might need to update their code accordingly if they
are to use the new version. 8

2.2 Deprecation warning in Eclipse. 10

4.1 The types of software developed by the library developers who
took part in our study. 30

4.2 The types of software developed by the client developers who took
part in our study. 31

4.3 Do you think that breaking changes in your releases have big im-
pact on clients? . 33

4.4 How much time do you think client developers need to update to
the new version of your library? 33

4.5 What are your primary reasons for introducing breaking changes? 34
4.6 How important is it for you to maintain backward compatibility? . 35
4.7 How important is it for you to encourage clients to update to the

latest version? . 36
4.8 How much are you affected by the evolution of your dependencies?

(e.g., when one of your dependencies releases a new version or
drops support for the old one) . 38

4.9 How much time does it usually take you to update your dependencies? 39
4.10 Try to estimate how often do you have to deal with the task of

updating dependencies . 39

5.1 The limitations of static analysis. An analyzer cannot statically
determine which call to log: corresponds to the deprecated method. 49

5.2 Two stages of rewriting deprecation: declaration and execution . . 54
5.3 The method deprecated: transformWith: 59
5.4 Method transform:— the core of the rewriting behavior. 61
5.5 Java pseudo-code showing how to identify caller method by only

using existing exception support. 63
5.6 A simple hook and template situation where the default hook method

is deprecated. 75

6.1 Screenshot of the DepMiner tool. 87

x List of Figures

7.1 Mining the local subset of commits around the commit ci that in-
troduced a breaking change. 104

7.2 Holistic approach to help library developers identify breaking changes
before the release and reduce their negative effect on client systems. 107

8.1 Reassigning the existing name b to a different software artifact. In
this example, a is renamed to b and in parallel b is renamed to c. . 110

8.2 Circular renaming is a particularly challenging case when the names
of two software artifacts are being swapped: a is renamed to b and
at the same time b is renamed to a. 112

8.3 In v1.0, library used to provide an abstract hook read() that was
meant to be implemented by clients. In v2.0, this hook was re-
named to readFile(). But the client system still provides the imple-
mentation for the old method read(). Now the client implementa-
tion will never be called. 113

8.4 Yellow classes belong to the library and green classes are clients.
This system follows the Template Method design pattern — client
systems are expected to provide implementations for the methods
that are called by the library. When those abstract hooks methods
in the library get renamed, the clients must also rename their im-
plementations. However, the current deprecation mechanism does
not allow one to deprecate the hooks and notify the client, because
in this case it is a library that makes calls to client methods, and not
a client who calls the methods of a library. 114

8.5 To position a submorph inside a parent morph, client provides four
parameters: bottomFraction, rightFraction, bottomOffset, and rightOff-
set. All four are numbers. They can represent percentages (in the
case of fractions), or be negative (in the case of offsets). 116

8.6 This way of positioning a submorph requires only two arguments:
fractions and offsets. Both of them are rectangles, which introduces
two problems: (1) the offsets rectangle can have negative sides,
(2) the sides of a fractions rectangle are percentages. Both issues
violate the nature of a rectangle and turn it from a geometrical ob-
ject into a simple data structure that is used for storing and passing
numbers around. 117

List of Tables

3.1 Empirical studies of library evolution characterized by two criteria:
is it based on a developer survey, on source code analysys, or both?;
does it explore the client perspective, the library perspective, or both? 18

3.2 Related approaches classified by type of input: hist = commit his-
tory, 2v = 2 versions of source code, doc = documentation, L =
library, C = migrated clients, T = unit tests of the library, and tech-
nique: TS = textual similarity, SS = structural similarity, CD = call
dependency. 21

4.1 When updating a dependency is easy, what makes it easy? Second
column is the number of developers who mentioned this factor in
an open question. 40

4.2 When updating a dependency is hard, what makes it hard? (only
factors that were mentioned by at least 2 developers). 41

5.1 Six deprecation selectors available in Pharo 8 together with number
of senders. 65

5.2 Different scenarios that may require method deprecation 67

5.3 Survey: "What kind of software do you maintain?" 70

5.4 Survey: "How often do you migrate your software to newer ver-
sions of its dependencies?" . 71

5.5 Survey: "Do you know Pharo’s support for automatic deprecation
rewritings?" and "Did automatic deprecation rewritings help you
in a migration?" . 71

5.6 Survey: "Did you write your own automatic deprecation transfor-
mation rules to help migrate your users?" 73

5.7 Survey: "How easy it was to write a rewrite rule?" 74

5.8 Survey: What are the configurations of Deprewriter preferred by
the developers? . 74

6.1 Selected software projects . 89

6.2 Association rules mined from the commit history 90

6.3 Number of recommended deprecations accepted by developers . . 90

6.4 Number of missing rules accepted by developers 91

xii List of Tables

7.1 Different scenarios that occur when dealing with a breaking change.
The columns differentiate cases when a removed method has or
does not have a replacement as well as the automatability of the
replacement. The rows describe the willingness of the library de-
veloper to deprecate a method. 102

7.2 Refactoring operations that we consider in our analysis and the
conditions to detect them. In the examples, method A.m() is re-
placed with method B.m′(). The first two operations are Name
refactorings, because they affect the name of a method or its sig-
nature, and the last three are Location refactorings, because they
move the method to a different class or package. 105

B.1 Examples of the transformation rules extracted from Pharo 8. . . . 130

CHAPTER 1

Introduction

Contents
1.1 Software Evolution and Breaking Changes 1

1.2 Library Update . 2

1.3 Problems . 2

1.4 Contributions . 3

1.5 Why Pharo? . 3

1.6 Structure of the Thesis . 4

1.7 List of Publications . 5

1.1 Software Evolution and Breaking Changes

The important characteristic of modern software development is a high degree of
reuse of software artefacts. Software applications depend on multiple external
libraries and frameworks, they can also communicate with microservice compo-
nents [Baldassarre 2005]. For simplicity, in this thesis, we will generally refer to
all reusable software as libraries and the developers who manage them as library
developers. We will also refer to the software that depends on a given library as its
client system that is managed by the client developers.

To facilitate the communication between the library and its client systems, the
library developers define an Application Programming Interface (API) — a set
of public classes, methods and fields that are meant to be used by clients. By
an unspoken agreement, library developers are expected to keep the API stable
and client developers are expected to use only the public API. This is an implicit
contract enforced by encapsulation. In practice, however, both parties often violate
the agreement.

Every software has to evolve [Lehman 1996, Demeyer 2002, Mens 2004]. This
includes reusable libraries. There are two types of changes that can happen during
library evolution:

2 Chapter 1. Introduction

1. Non-breaking changes (backward compatible) — do not modify the API and
therefore do not affect the clients, unless client developers break the contract
and use the private functionality.

2. Breaking changes (backward incompatible) — change certain parts of the
API, which may break the client code and force client developers to update
their systems.

Breaking changes in a library can also propagate from one client to another in
what is known as the ripple effect [Yau 1978]. Breaking changes in the library
may result in breaking changes in their client systems, which in turn will affect all
clients of those clients [Robbes 2012a].

1.2 Library Update
The process of changing the client system in response to breaking changes in one
of its dependencies is called the library update. It happens when a library releases
a new version which is no longer compatible with the previous one. In this case,
client developers who used the old version have a choice. They can continue using
the old version, thus missing out on the new features and risking that, at some
point, the support for the outdated library will be dropped. Or they can update their
system to use the latest version.

In practice, library update in the presence of breaking changes can be hard and
time consuming for the client developers. If functionality was removed, they need
to know how to replace it. If the API has changed (e.g., a class was renamed or
an argument was added to a method), they need to understand how to use the new
API. To ease this process and encourage their clients to update, library developers
try to support them through documentation, communication channels such as on-
line forums, or by introducing deprecations. Instead of immediately removing the
functionality, library developers mark it as deprecated (to be removed) and only
remove it in some future release. This gives their clients more time to update.

Both library and client developers could benefit from automated tools that
would guide them in the process of library update. The implementation of such
tools based on data mining techniques that extract knowledge from source code
and commit history is the main focus of this thesis.

1.3 Problems
In this thesis, we study how can we support library and client developers in the pro-
cess of library update by building tools. Specifically, we address three problems:

1.4. Contributions 3

1. Empirical problem. Understand how library update happens in practice and
how it is perceived by both library and client developers. What problems do
they face? What support do they need? We address this problem in Chapter 4.

2. Modeling problem. What is the language that would allow one to express the
information on how to update the dependency and could be used to transform
the source code? (Chapter 5).

3. Automation problem. How can one automate the process of recommending
transformations based on the data that is available: source code, commit
history, etc.? (Chapters 6 and 7).

1.4 Contributions

The main contributions of this thesis are:

• A survey of library and client developers from two industrial companies and
an open-source community (Chapter 4).

• A first detailed documentation of the Deprewriter approach and tool in Pharo
which introduces deprecations that dynamically update client code with trans-
formation rules (Chapter 5).

• A study of how Deprewriter was adopted by the Pharo community through
the analysis of source code in Pharo 8 and a developer survey (Chapter 5).

• DepMiner — a novel approach to infer the rules for Deprewriter based on
the commit history of a project (Chapter 6).

• A generalization of DepMiner as a new holistic approach to support library
developers in the task of library update (Chapter 7).

1.5 Why Pharo?

Most contributions of this thesis are based on Pharo1 [Black 2009] — an open-
source dynamically-typed reflective object-oriented programming language inspired
by Smalltalk. It is also an IDE written entirely in itself. That being said, our find-
ings are not limited to Pharo exclusively and can be applicable to other program-
ming languages such as Java, JavaScript, or Python.

We focus on Pharo because:
1https://pharo.org

https://pharo.org

4 Chapter 1. Introduction

1. Through our team, we have access to the Pharo community, including the
core developers of Pharo and many of its most popular libraries.

2. Pharo provides reflective tools for analysing the language from within itself.
This makes it easy to query the code, access method calls, extract depreca-
tions, rewrite the code, etc.

For those readers who are not familiar with Pharo, we provide a short introduc-
tion to its syntax in Appendix A.

1.6 Structure of the Thesis

The thesis is organised as follows:

• In Chapter 2, we discuss the problem of library update, define the scope for
this thesis and the terminology use in it. We also present several motivating
examples to show why library update can be difficult and how developers can
be supported by the tools.

• In Chapter 3, we discuss the state of the art.

• In Chapter 4, we present the results of our survey of library and client devel-
opers from two industrial companies and Pharo open-source comunity.

• In Chapter 5, we present the Deprewriter approach. We also explain how this
approach is implemented in Pharo and propose several alternative ways to
implement it in other programming languages. We analyse the source code
of Pharo 8 and perform a developer survey to understand how Deprewriter
was adopted by the community.

• In Chapter 6, we present DepMiner — the data mining approach that au-
tomatically infers transformation rules from the commit history and helps
library developers deal with breaking changes.

• In Chapter 7, we present a holistic approach to support library developers in
the task of library update. This is an improvement and a generalization of
DepMiner presented in the previous chapter.

• In Chapter 8, we discuss the challenging scenarios of library update that go
beyond simple method-to-method replacements.

• In Chapter 9, we conclude this thesis and discuss the future work.

1.7. List of Publications 5

1.7 List of Publications

Below is the list of papers that were published in the context of this thesis. We
group them into three categories: journal, conference, and workshop papers. We
also add a technical reports category which contains the work that was not peer-
reviewed. The papers inside each category are presented in reverse chronological
order.

Journal Papers

• Nicolas Anquetil, Julien Delplanque, Stéphane Ducasse, Oleksandr Zait-
sev, Christopher Fuhrman, and Yann-Gaël Guéhéneuc. What Do Developers
Consider Magic literals? A Smalltalk Perspective. Information and Software
Technology, IST, 2022 [Anquetil 2022].

• Stéphane Ducasse, Guilermo Polito, Oleksandr Zaitsev, Markus Denker,
and Pablo Tesone. Deprewriter: On the fly rewriting method deprecations.
Journal of Object Technology, JOT, 2022 [Ducasse 2022].

Conference Papers

• Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, and Arnaud Thiefaine.
How Libraries Evolve: A Survey of Two Industrial Companies and an Open-
Source Community. 29th Asia-Pacific Software Engineering Conference,
APSEC (industrial track), 2022 [Zaitsev 2022b].

• Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, and Arnaud Thiefaine.
DepMiner: Automatic Recommendation of Transformation Rules for Method
Deprecation. International Conference on Software and Systems Reuse,
ICSR, 2022 [Zaitsev 2022a].

• Oleksandr Zaitsev, Stéphane Ducasse, Alexandre Bergel, and Mathieu Eveil-
lard. Suggesting Descriptive Method Names: An Exploratory Study of Two
Machine Learning Approaches. International Conference on the Quality of
Information and Communications Technology, QUATIC, 2020 [Zaitsev 2020b].

Workshop Papers

• Oleksandr Zaitsev, Sebastian Jordan Montaño, and Stéphane Ducasse. How
Fast is AI in Pharo? Benchmarking Linear Regression. International Work-
shop of Smalltalk Technologies, IWST, 2022 [Zaitsev 2022c].

6 Chapter 1. Introduction

• Julien Delplanque, Stéphane Ducasse, and Oleksandr Zaitsev. Magic Lit-
erals in Pharo. International Workshop of Smalltalk Technologies, IWST,
2019 [Delplanque 2019].

Technical Reports
• Oleksandr Zaitsev, Stéphane Ducasse, and Nicolas Anquetil. Characteriz-

ing Pharo Code: A Technical Report. https://hal.inria.fr/hal-02440055/, 2020
[Zaitsev 2020a].

https://hal.inria.fr/hal-02440055/

CHAPTER 2

Background

Contents
2.1 What is Library Update . 7

2.2 Deprecations . 8

2.3 Scope of the Problem . 11

2.4 Motivating Examples . 12

In this chapter, we explain the process of library evolution, define the terminol-
ogy that we use to refer to all of its objects and actors, and discuss the spectrum of
problems that arise in this field. Inside this spectrum, we define the specific scope
of problems addressed in this thesis. We finish this chapter with several motivating
examples that demonstrate different scenarios of library update, explain why it can
be hard, and how automatic tools can be used to support developers in those cases.

2.1 What is Library Update
Modern software depends on many reusable components such as libraries, frame-
works, microservices, etc. [Baldassarre 2005]. For simplicity, in this work, we will
refer to all reusable components as libraries and the software that depends on them
as client systems. We refer to all developers who maintain a given library as library
developers and all developers who depend on that library as client developers (or
simply clients). It should be noted that those terms are relative: library developers
are also clients of all the libraries that they use.

Like any other software, libraries evolve and release new versions [Demeyer 2002,
Lehman 1996, Mens 2004]. Ideally, this process would only involve adding new
functionality on top of the existing one and leaving the Application Programming
Interface (API) unchanged. In practice however, library developers often introduce
breaking changes — the changes to the API that break backward compatibility. In
response to the breaking changes, the client systems that depended on the old ver-
sion of a library must be changed if they are to use the new version. This process
of changing client software in response to library evolution is called the library
update. It should not to be confused with library migration — the process of

8 Chapter 2. Background

Client
System

Updated
Client

System

Library Update

Client
Developer

Library
v2.0

depends

Library
v1.0

Library Evolution

Library
Developer

depends

Figure 2.1: Library update is the process of updating the client system in response
to library evolution. It has two groups of actors: library developers who release the
new version of a library, and client developers who might need to update their code
accordingly if they are to use the new version.

changing a dependency from one library to a different library. For example, updat-
ing the dependency from Struts v1.0.2 to v1.2.9 is library update, but changing the
dependency from EasyMock to Mockito is library migration. Unfortunately, there
is no universal agreement on terminology: in literature, those two terms are often
used interchangeably.

The process of library update is illustrated in Figure 2.1. In this example, a
library evolves from version v1.0 to v2.0. If this release contains breaking changes,
then the client system must be updated if it is to use the new version. This task can
be hard and time consuming for client developers.

To make library update easier for their clients and encourage them to update,
library developers adopt different practices such as avoiding breaking changes al-
together, deprecating functionality before removing it, or documenting the changes
in the new release. We will explore the adoption of those practices in Chapter 4.

2.2 Deprecations

When certain parts of the API from version n must be modified in version n + 1,
this may break compatibility and cause problems for the clients. For example, if
an interface has to be removed, a class must be renamed, or a method must receive

2.2. Deprecations 9

additional arguments. Instead of introducing those breaking changes immediately
into the new release, library developers can release an intermediate version n + 1

in which they label certain elements of the API as “deprecated”, thus informing
clients that those elements will be changed or removed in the subsequent release
n + k [Brito 2018a, Brito 2018b]. Client systems that use a deprecated feature
receive a deprecation warning which gives developers time to update their code
and adapt to the forthcoming changes.

Besides notifying that the method should not be used, library developers can
also inform clients of the alternatives in the new API that can be used instead (we
refer to them as replacements) using one or multiple practices:

– Replacement messages. Developers can supply deprecations with textual
messages that suggest a replacement for an obsolete item (e.g., a comment
or a warning message “Method x() is deprecated, use y() instead”).

– Annotations with references. Some programming languages provide annota-
tions that can be added to method definitions and reference the replacement
in source code (e.g., in Java, the @Deprecated annotation or @deprecated
Javadoc tag, combined with @link or @see tags).

– Transformation rules. Several research artifacts allow library developers to
write transformation rules that will be used to update client code. In Chap-
ter 5, we will present an approach in Pharo that allows to add transformation
rules to method deprecations and apply them when deprecation warning is
signalled.

In the listing below1, we show an example of a method Worker.calculate() being
deprecated in Java. In this case, library developers used both the @Deprecated
annotation (line 13) and the @deprecated JavaDoc tag (line 4). They also provided
a replacement message on line 7, informing clients that Utils.calculatePeriod() should
be used instead and referencing the specific method in the system using the @link
tag. As can be seen in Figure 2.2, an IDE (in this case, Eclipse) will show a warning
whenever the deprecated method is invoked, nonetheless, the client system will
continue working.

1 public class Worker {

2 /**

3 * Calculate period between versions

4 * @deprecated

5 * This method is no longer acceptable

6 * to compute time between versions.

7 * <p> Use {@link Utils#calculatePeriod(Machine)}

1Example taken from https://www.baeldung.com/java-deprecated. Accessed: 16-05-2022.

https://www.baeldung.com/java-deprecated

10 Chapter 2. Background

8 * instead.

9 *

10 * @param machine instance

11 * @return computed time

12 */

13 @Deprecated

14 public int calculate(Machine machine) {

15 return machine.exportVersions ().size() * 10;

16 }

17 }

Figure 2.2: Deprecation warning in Eclipse.

In the listing below, we present the same method deprecation written in Pharo.
The first line defines the method signature. Lines 2-4 contain the comment which
explains that the method is deprecated and should not be used. Line 6 defines the
method deprecation with a warning message that contains a replacement message
“Use Utils >> calculatePeriod instead”. Finally, line 7 contains the body of the
method which will be executed even after the warning is signalled.

1 Worker >> calculate: machine

2 "Calculate period between versions

3 This method is no longer acceptable

4 to compute time between versions."

5
6 self deprecated: 'Use Utils >> calculatePeriod instead '.

7 ↑ machine exportVersions size * 10

As we will see in Chapter 3, in practice, library developers often decide to re-
move functionality without deprecation. Hora et al., [Hora 2015] report that 59
out of 118 API changes that they analysed are a missed deprecation opportunity.
According to Brito et al., [Brito 2019], the most common reason for that is the fear
of increasing the maintenance effort (e.g., library developers believe that the break-
ing change will not affect many clients and deprecations will only add complexity
and maintenance issues). Several large-scale studies of popular software projects
have revealed that the proportion of deprecations that do not contain a helpful re-
placement message (in the form of a comment, string, annotation, etc.) is 33% for
Java, 22% for C# [Brito 2018b], and 33% for JavaScript [Nascimento 2020]. This

2.3. Scope of the Problem 11

suggests that there is a need for automated tools to support library developers in
writing deprecations with replacement messages.

2.3 Scope of the Problem

The general problem of library update can be approached from different perspec-
tives. For example, we can support library or client developers, propose changes
before the library is released or after that. In this section, we attempt to systematise
different aspects of the library update problem and specify a clear scope for this
thesis.

Library or client developers? First of all, library update can be approached
from the perspective of the developers who are being supported. We can develop
tools for client developers who need to update their code and use the new version
of a library, or for library developers, who want to make it easy for their clients to
update. In this thesis, we focus both on library and client developers, but we pay
more attention to the perspective of library developers because it was less explored
in the literature (see Chapter 3).

Before or after the release? Library update can also be approached from two
temporal angles: before the release, when the library and the client system are
being developed, or after the release, when all changes have been made and the
client system needs to be updated. To approach this problem before the release,
one must improve the architecture of a library, provide abstraction layers to reduce
the volatility of the API. From the client side, the architecture can also be improved
by reducing the coupling with external libraries and making sure that changes in
dependencies have small effect on the system. In this work, we do not focus on the
architectural issues. We are only concerned with what happens when the library
releases a new version with breaking changes and the client system has to react.

Type of missing API elements. Breaking changes can affect different parts of
library API. Those can be methods, classes, interfaces, fields, etc. In this thesis, we
focus on breaking changes that affect methods.

There are three specific aspects of the library update problem that we address
in this thesis:

1. Empirical problem. Understand how library update happens in practice and
how it is perceived by both library and client developers. What problems do
they face? What support do they need? (Chapter 4).

12 Chapter 2. Background

2. Modeling problem. What is the language that would allow one to express the
information on how to update the dependency and could be used to transform
the source code? (Chapter 5).

3. Automation problem. How can one automate the process of recommending
transformations based on the data that is available: source code, commit
history, etc.? (Chapters 6 and 7).

2.4 Motivating Examples
In this section, we provide several examples to demonstrate the problem of library
update from the perspective of library and client developers. We demonstrate why
it can be hard for developers to understand changes in the library. We also discuss
how developers could be supported with transforming deprecations and the tools
that extract knowledge from commit history in the form of rules. In this thesis,
we focus primarily on dynamically-typed programming languages. This is why
we demonstrate code written in Python in the first two examples, and in the third
example, we use Pharo. The consequences of dynamic typing will become evident
in Example 2.

2.4.1 Example 1: Perspective of a client developer
Consider a software library ailib that provides different algorithms for artificial in-
telligence (AI), machine learning and data mining. Developer Alice uses this ailib
to train a linear regression model — machine learning algorithm for modelling the
relationship between a set of input variables X and an output variable y. Alice uses
this algorithm to estimate the salary of employees in a company based on their age
and gender.

In the code listing below, we present an example of the script that Alice wrote to
train her model using ailib v1.0. First, Alice loaded the data using readData function
(line 4) that accepted two arguments: path to the file and type of file to be read,
in this case, CSV. Then she instantiated an object of LinearRegression class (line 6)
and trained the model using its train method (line 7) which accepted two arguments:
the data and the name of the output column y. All other columns of the data table
will be used as input variables X . Finally, Alice used the predict method of the
model (line 9) to estimate the salary of a new employee.

1 from ailib.models import LinearRegression

2 from ailib.data import readData

3
4 data = readData(’dataset.csv’, type=’CSV’)

5

2.4. Motivating Examples 13

6 model = LinearRegression ()

7 model.train(data , ycolumn=’salary ’)

8
9 salary = model.predict ([26, ’female ’])

When the new version of ailib was released, Alice tried to update her depen-
dency but this broke her code. It turns out that, in ailib v2.0, the following changes
were introduced:

1. Rename LinearRegression to AILinearRegression.

2. Replace method readData(file, type) with a more specific method readCsv(file).

3. Replace method train(data, ycolumn) with method fit(x, y) that accepts two
arguments: an input matrix x and an output vector y.

4. Change method predict in such a way that instead of accepting only one ob-
servation as input, it now accepts a collection of observations and predicts
the outputs for all of them.

To use ailib v2.0, Alice is expected to rewrite her code in the following way:

1 from ailib.models import AILinearRegression

2 from ailib.data import readCsv

3
4 trainData = readCsv(’dataset.csv’)

5
6 x = trainData.columns ([’age’, ’gender ’])

7 y = trainData.column(’salary ’)

8
9 newX = [[26, ’female ’]]

10
11 model = AILinearRegression ()

12 model.fit(x, y)

13
14 salaries = model.predict(newX)

15 salary = salaries [0]

However, Alice does not know any of that. From her point of view, the code that
worked fine on ailib v1.0, suddenly broke on v2.0 with two error messages: ’Error:
class LinearRegression was not found’ and Error: function readData was not found’.
Alice needs support from the library developers that would help her understand (1)
what changes were made to ailib in v2.0 and (2) how must she change her code to
react to those changes. Such a support can come in the form of documentation,
release notes, or deprecations. If support is not available, Alice might have to read

14 Chapter 2. Background

the source code of the library or find other clients that have already updated. As we
will discuss in Chapter 3, many automated tools have been proposed to help Alice
in this difficult task.

2.4.2 Example 2: Perspective of a library developer

Now we will look at the same example from the perpective of the library developer
Bob who is preparing the release of ailib v2.0. Bob is aware that the upcoming
release will contain multiple breaking changes. He knows that it is important to
support the clients and make the process of updating from v1.0 to v2.0 as simple
as possible (in Chapter 4, we will discuss the motivation of library developers to
support their clients).

Bob himself has renamed the class LinearRegression to AILinearRegression. He
documented this change and added a deprecation that would give his clients time to
update without breaking their code. Replacing all references to LinearRegression in
client code to AILinearRegression is a simple repetitive operation that could be auto-
mated. Bob could benefit from a tool that would allow him to “replay” this rename
refactoring operation on the code of his clients or a deprecation mechanism that
would automatically rewrite client code whenever the client attempts to instantiate
a deprecated class (a similar mechanism for deprecated methods will be presented
in Chapter 5).

While preparing the release, Bob also notices that the function readData as well
as the method fit, that were often referenced in documentation and tutorials, no
longer exist in ailib v2.0. Bob was not the one who introduced those changes. It was
done by one of the other 100 developers who contributed to ailib. Now Bob needs
to search the source code to understand (1) why were those methods removed, and
(2) what are the replacements that he could propose to the clients. Those questions
are similar to the ones asked by Alice in the previous example. The difference
is that Bob has better knowledge of the source code of ailib and access to other
developers of this library. He also has the responsibility to document all missing
methods, and not only those that are used by Alice. In this case, Bob could also
benefit from an automated tool that would identify the missing methods in the API
and recommend replacements. When possible, those recommendations could be
expressed in the form of rules that would be used by Bob to automatically update
the client code. We will discuss such tools in Chapters 6 and 7.

The first two breaking changes require simple updates of client code that could
be automated. For example, replacing all references to LinearRegression class with
AILinearRegression, or replacing all method calls readData(file, type=’CSV’) with
readCsv(file). However, the other two breaking changes require more complex mod-
ifications to the client code. To replace the method calls to train(data, ycolumn) with
fit(x, y), one must first construct matrix x and vector y from the data object. Method

2.4. Motivating Examples 15

predict was also changed to accept a collection of observations instead of a sin-
gle observation. In statically-typed languages such as Java, this would result in the
change of signature of the method — because the types of arguments have changed.
However, Python is a dynamically-typed language, which means that the signature
of method predict was not affected by the breaking change. Nonetheless, the clients
have to change the logic of using this method: instead of applying it to one obser-
vation at a time, they now have to predict the output for the entire dataset. Those
kinds of challenging library update scenarios will be discussed in Chapter 8.

2.4.3 Example 3: The case from a real open-source project
The version v8.0 of the Pharo project2 contained a method insertCompletion of class
NECMenuMorph. After a year and a half of adding new features and fixing bugs,
the community decided to release a new version — Pharo v9.0. However, in this
version the method insertCompletion was no longer present. It was removed without
deprecation and this change was not documented.

Core developer X who was preparing the release, noticed that insertCompletion
was missing and decided to document this breaking change and suggest a replace-
ment to the clients who might be affected by it. However, during one and a half
year of development, the Pharo project had more than 100 contributors who have
removed 11,862 methods and added 13,277 methods. This made it difficult for X to
understand why was this particular method removed or what was a good replace-
ment for it.

Using the prototype tool implementing the approach that we present in Chap-
ter 7, developer X could find all public methods that were present in Pharo v8.0
but no longer exist in v9.0. X was informed that a particular method NECMenu-
Morph.insertCompletion() was removed by developer Y on February 15, 2020 in
commit a52462a. Our tool suggested that the removal was caused by a combination
of three refactoring operations. First, Y moved this method to CompletionEngine
class. Then, he renamed the method to replaceCompletionWith(). Finally, on the next
day, Y renamed this method again to replaceTokenInEditorWith(). Therefore, our tool
could suggest X that the missing method NECMenuMorph.insertCompletion() was re-
placed in the new version by CompletionEngine.replaceTokenInEditorWith(). Using
this information, developer X could document the breaking change and suggest
replacement to the clients.

2Pharo is a programming language but it is also an IDE written entirely in itself. This can be
a source of confusion. In this thesis, we will often refer to Pharo as an open-source project that is
implemented in the Pharo programming language, and hosted at https://github.com/pharo-project/
pharo.

https://github.com/pharo-project/pharo
https://github.com/pharo-project/pharo

CHAPTER 3

State of the Art

Contents
3.1 Empirical Studies of Library Evolution 17

3.2 Code Transformation and Deprecations 20

3.3 Tools to Support Library Update 20

3.4 Chapter Conclusion . 25

In this Chapter, we discuss the state of the art in the field of library update.
Based on the three aspects of the library update problem that we defined in Sec-
tion 2.3, we split this overview into three parts:

1. Empirical studies of library evolution — case studies of library evolution,
breaking changes and their effect on client systems either by means of code
analysis or the surveys of library or client developers.

2. Code transformation and deprecations — what is the language that can be
used to express code transformations with rules for library update?

3. Tools to support library update — in this section, we discuss the automated
tools that were proposed to support library and client developers in the task
of library update or library migration.

3.1 Empirical Studies of Library Evolution
We start by overviewing the existing empirical studies on library evolution and
discussing their shortcomings. In Table 3.1, we systematise the related studies
using two criteria:

• Developer survey or code analysis? In literature, there are two main tech-
niques for studying library evolution and its effect on clients:

1. Analysing the source code of the evolving libraries and/or client sys-
tems; i.e., “How do libraries change, and how do those changes prop-
agate?”

18 Chapter 3. State of the Art

Table 3.1: Empirical studies of library evolution characterized by two criteria: is it
based on a developer survey, on source code analysys, or both?; does it explore the
client perspective, the library perspective, or both?

Paper Dev.
survey

Code
analysis

Client
persp.

Library
persp.

[Robbes 2012a] no yes yes no
[Jezek 2015] no yes yes yes
[Hora 2015] no yes yes no
[Bogart 2016] yes no yes yes
[Sawant 2016] no yes yes no
[Xavier 2017a] no yes yes yes
[Xavier 2017b] yes no no yes
[Hora 2018] no yes yes no
[Kula 2018a] yes yes yes no
[Kula 2018b] no yes no yes
[Brito 2019] yes no yes yes

Our study (Chapter 4) yes no yes yes

2. Surveying the developers to explore the human side of library evolution;
i.e. “How do developers perceive this process?”

• Client or library perspective? Library evolution can be explored from the
perspective of libraries or from the perspective of their clients. Some studies
(like this one) explore both sides.

Studies that analyse source code. There have been multiple studies of the ripple
effect caused by breaking changes and how it propagates through client systems.
Robbes et al., [Robbes 2012a] studied the reaction of clients in Pharo ecosys-
tem to the deprecation of API elements in their dependencies. They conclude
that many clients do not react to library deprecations and when they do react,
they often do not apply adaptations to the entire project at once, leaving it in-
consistent. Sawant et al., [Sawant 2016] performed a partial replication of this
study on Java projects, considering almost 10 times more client systems. They ar-
rive to the same conclusions as the ones derived from Pharo ecosystem. Hora et
al., [Hora 2015, Hora 2018] extended the study of Robbes et al., [Robbes 2012a]
by exploring the changes in non-deprecated API elements. They report that half
of the analysed API changes are missed deprecation opportunities and suggest that
recommender tools can be built to help library developers introduce those depreca-
tions. They also observe that most API changes can be implemented as rules and

3.1. Empirical Studies of Library Evolution 19

suggest that those rules can be used to help client developers automatically update
their code. Jezek et al., [Jezek 2015] studied the evolution of Java libraries both
from library and client perspectives. They report that breaking changes are very
frequent (80% of version updates break compatibility), however, this causes few
actual problems in real client systems. Xavier et al., [Xavier 2017a] performed a
large-scale analysis of Java libraries and their clients to understand how frequent
are breaking changes, how do they evolve over time, and how do they impact the
clients. They discovered that on the median, 15% of all changes in a library are
breaking changes and their frequency increases over time. However, they also
report that most breaking changes do not have big impact on client systems and ex-
plain this with a hypothesis that library developers try not to break highly impactful
API elements. Kula et al., [Kula 2018a, Kula 2018b] performed two studies: one
on the client side and another one on the library side. In their first study they report
that most client systems rarely update their libraries and 81.5% of client systems
choose to remain with the older popular version of the library. In their second
study, Kula et al., [Kula 2018b] explored the evolution of libraries and found that
many breaking changes happen in non client-used API and non API classes, thus
the client-used API are less likely to be broken.

Developer surveys. Bogart et al., [Bogart 2016] performed a case study by in-
terviewing developers of three software ecosystems to understand how developers
make decisions about changes and document the practices that are used in those
communities. In the same study where Kula et al., [Kula 2018a] discovered that
most client systems have outdated dependencies, they performed a survey of client
developers and found that 69% of them are unaware of their vulnerable depen-
dency. They also report that developers are reluctant to update because they per-
ceive it as extra workload. Xavier et al., [Xavier 2017b] performed a survey of
seven core developers from popular Java libraries. Based on this survey, they pro-
pose a list of five reasons that motivate breaking changes: library simplification,
refactoring, bug fix, dependency changes, and project policy. They report that all
surveyed developers are aware of the effect of breaking changes on clients. In
their follow-up study, Brito et al., [Brito 2019] conducted a larger survey of 56 li-
brary developers through a firehouse interview. According to their study, the most
common reason for introducing breaking changes are the need to implement new
features (32%), API simplification (29%), and improving maintainability (24%). In
the same study, Brito et al., [Brito 2019] also explored the actual impact of breaking
changes on clients by analysing the questions published on StackOverflow. They
report that 45% of all posts related to breaking changes are client developers asking
how to overcome the negative effect of those changes on their code.

20 Chapter 3. State of the Art

Shortcomings of the existing studies. Most surveys that we discussed either tar-
geted specific developers and asked them about breaking changes or vulnerable de-
pendencies that were detected by authors [Brito 2019, Kula 2018a, Xavier 2017b],
or analysed the questions related to breaking changes that were published on Stack-
Overflow [Brito 2019]. To the best of our knowledge, Bogart et al., [Bogart 2016]
are the only authors that collected diverse population of developers and asked them
general questions about the process of library evolution and the practices that they
use. However, that study only focused on library developers. Also, no survey has
asked client developers about what makes the process of library update hard and
what support do they expect from library developers to make this process easier.

3.2 Code Transformation and Deprecations
Robbes et al., [Robbes 2012b] studied the impact of API changes, and in particular
deprecations, on Pharo and Squeak ecosystems. They found out that the majority
of client systems are updated over a day, but in some cases the update takes longer
and is performed only partially. Sawant et al., [Sawant 2016] extended this study to
Java. Despite collecting a larger dataset from Java ecosystem, authors report simi-
lar results to those of Pharo. Hora et al., [Hora 2015,Hora 2018] complemented the
previous studies by analysing the impact of API evolution on Pharo ecosystem, but
focusing only on those changes which are not related to deprecations. They claim
that API changes have large impact on the ecosystem and most of the changes that
they found can be implemented as rules in static analysis tools. Several authors
have also explored the effectiveness of deprecation messages. Large-scale empiri-
cal studies of software written in Java and C# [Brito 2016, Brito 2018b] as well as
JavaScript [Nascimento 2020] revealed that a large portion of deprecations in those
languages (22-33%) is not supported with replacement messages. In their study
of Pharo ecosystem, Robbes et al., [Robbes 2012b] also showed that, at that time,
almost 50% of deprecation messages did not help identify the correct replacement.

3.3 Tools to Support Library Update
In this section, we provide an overview of the previous approaches that have been
proposed to support developers in the problem of library update. We also dis-
cuss approaches that deal with library migration because those two problems are
closely related, and the same techniques can often be applied to both problems. In
Table 3.2, we summarise the related approaches and compare them based on three
features:

• the problem that they solve: library update or library migration;

3.3. Tools to Support Library Update 21

• the type of input from which they extract the information: exp(L) — ex-
pert knowledge of library developers, 2v(L) — two versions of library code,
hist(C) — commit history of a client system that was already migrated, etc.;

• the technique that they use to match API entities: textual similarity (TS) of
method signatures, comments, or documentation, structural similarity (SS)
of source code, or call dependency (CD) — analysis of changes in the call
sites of the API entities.

Table 3.2: Related approaches classified by type of input: hist = commit history,
2v = 2 versions of source code, doc = documentation, L = library, C = migrated
clients, T = unit tests of the library, and technique: TS = textual similarity, SS =
structural similarity, CD = call dependency.

Paper Problem Persp. Type of Input Technique
[Chow 1996] update library exp(L) —
[Henkel 2005] update library exp(L) —
[Kim 2007] update — 2v(L) TS
[Xing 2007] update client 2v(L) SS, TS
[Dagenais 2008] update client hist(L) CD
[Schäfer 2008] update client 2v(C,T) CD
[Wu 2010] update client 2v(L) CD, TS
[Nguyen 2010] update client 2v(L,C,T) CD, TS, SS
[Meng 2012] update client hist(L) CD
[Teyton 2013] migration client hist(C) CD
[Hora 2014] update client hist(L) CD
[Pandita 2015] migration client 2v(L) TS
[Alrubaye 2019] migration client hist(C), doc(L) CD, TS
[Alrubaye 2020] migration client doc(L) CD, TS
Our study (Chapter 5) update library exp(L) —
Our study (Chapter 6) update library hist(L), exp(L) CD
Our study (Chapter 7) update library hist(L), exp(L) CD

Sources of information. The approaches that we discuss in this section are based
on knowledge extraction techniques that mine the information about library update
or migration from documentation, commit history, source code, the expertise of
library developers, etc. To systematise those approaches we identify eight sources
of information that can be used as input for proposed mining techniques. The short
symbolic notation will be used in Table 3.1 to compare the different state of the art
approaches based on their type of input.

22 Chapter 3. State of the Art

exp(L) — expert knowledge provided by library developers. It can take the form
of a library update script (a set of manually written library update rules),
recorded and documented changes that were made to library’s API and can
be “replayed” on the client code, etc. [Chow 1996, Henkel 2005]

doc(L) — documentation of a library. Can be used to find a mapping between
classes, methods, or fields by comparing their descriptions between two ver-
sions of the documentation [Alrubaye 2019, Alrubaye 2020].

hist(L) — commit history of a library. Commits are a source of very granular and
detailed information that completely describes library evolution. It can be
used either to mine changes that affected the API and apply them to client
code or to detect the locations in source code where library uses its own API
and observe how the invocations in these locations changed as API evolved
[Dagenais 2008, Meng 2012, Hora 2014].

2v(L) — two versions of library code. By comparing the source and target ver-
sions of library code, one can map similar entities (classes, methods, etc.)
and either generate replacement rules or use this mapping to support other
approaches [Kim 2007, Xing 2007, Wu 2010, Nguyen 2010, Pandita 2015].

hist(C) — commit history of a client system that has already been updated. It
describes the changes that were performed on client systems as they were
updated to the new version of a library [Teyton 2013, Alrubaye 2019].

2v(C) — two versions of code of a client system that has already been updated.
Although it is less granular than the commit history, by comparing two ver-
sions of client code before and after the library update, one can build the diff
and infer the changes that were made [Schäfer 2008, Nguyen 2010].

hist(T) — commit history of the library’s unit tests. Inside its unit tests, the library
invokes its own API attempting to mimic its most common use cases. As
API evolves, tests must be updated and provided that the library has good test
coverage, by learning from test evolution, one can generate the library update
rules that will cover a wide range of API use cases. Often the commit history
of a library includes the commit history of unit tests: hist(T) ⊂ hist(L), but
this is not always the case.

2v(T) — two versions of the library’s unit tests. As an alternative to analysing
the evolution of tests throughout the entire commit history, one can compare
only the tests in the source and target versions of the library. Once again, it
is often the case that 2v(T) ⊂ 2v(L) [Schäfer 2008, Nguyen 2010].

3.3. Tools to Support Library Update 23

Expert-guided library update. The first studies of how to support client de-
velopers in updating their systems to the new versions of evolving libraries were
based on collecting the expertise of library developers in the form of transforma-
tion rules and applying them to client code in a semi-automatic manner. Chow
and Notkin [Chow 1996] proposed library developers to annotate changed func-
tions with transformation rules that can be applied to client code. They designed a
language for expressing code transformations and implemented a semi-automatic
tool that applies transformations to AST and generates the modified source code.
Henkel et al. [Henkel 2005] decided to reduce the added cost for library developers.
They proposed to support the API evolution by recording the refactorings as they
are performed on the library and “replaying” the recorded changes on the client
codebase.

Deprecation messages are among the most common ways for library developers
to recommend replacements for the removed functionality. Modern programming
languages provide powerful support for annotating deprecated elements of API
with references to the possible replacements. In their large-scale empirical study
of deprecation messages in Java and C# projects, Brito et al. [Brito 2018b] reported
that 66.7% of Java deprecations and 77.8% C# deprecations contain replacement
messages.

Automatic library update and migration. In recent years, many approaches
have been proposed that do not require the direct involvement of library developers.
Those approaches extract all necessary information from the source code, commit
history, or code documentation. Kim et al. [Kim 2007] proposed to find matches
between the two versions of API by calculating textual similarities of method sig-
natures collected from the source code of the two versions of the library. They de-
fined a set of low-level API transformations (e.g., package replacement, argument
deletion, etc.) and performed a rule-based matching to find a mapping between the
two versions of library API. Xing et al. [Xing 2007] proposed a Diff-CatchUp tool
that compares two versions of the library’s source code, detects changes to the API,
and proposes transformation rules together with working usage examples. Unlike
Kim et al., they calculated the structural similarity of source code and not only the
textual similarity of method signatures. Unlike previous automatic approaches to
library update, which compared two versions of library’s source code, the novel
SemDiff tool proposed by Dagenais and Robillard [Dagenais 2011] extracted the
necessary information on a more granular level from the commit history of a li-
brary. It recommended changes to client systems based on how the library reacted
to its own evolution. SemDiff could recognise changes that were more complex
than simple refactorings, for example, method additions and deletions, and recom-
mended multiple replacements for methods that no longer existed in API, supplying
each one with a confidence score.

24 Chapter 3. State of the Art

Schäfer et al. [Schäfer 2008] were the first authors who proposed mining li-
brary update rules from already updated client systems. They used the library’s
unit tests as an additional source of information. Unit tests describe the use cases
of the library’s API and therefore, can be treated as one of the clients that must re-
act to API changes. Schäfer et al. generated rules for the library changes that were
caused not only by refactorings but also by conceptual changes (changed or re-
placed concepts, altering the responsibilities of the building blocks, removing cer-
tain behaviour, etc.). They used the A-Priori algorithm to mine the transformation
rules from two versions of client code; however, their approach was only suitable
for generating one-to-one rules. Wu et al. [Wu 2010] proposed a hybrid approach
called AURA (AUtomatic change Rule Assistant) that combined call dependency
and text similarity analyses. They compared their solution to three previous ap-
proaches by Dagenais et al. [Dagenais 2008], Kim et al. [Kim 2007], and Schäfer
et al. [Schäfer 2008] and reported 58.07% higher recall and a similar precision.
Nguyen et al. [Nguyen 2010] proposed a tool for library update (LibSync) that
first uses the textual and structural similarities to find the mapping of the library
functions and then extracts the usage graphs from already updated client systems
and mines the transformations that need to be made to the client code. Meng et
al. [Meng 2012] proposed a history-based matching approach HiMa which com-
pares consecutive revisions of a library obtained from its commit history and sup-
plies this information with the analysis of commit messages to generate transfor-
mation rules for client systems.

Teyton et al. [Teyton 2013] turned to the problem of library migration — re-
placing client dependency on a third-party library in favour of a competing library.
They adopted and improved the approach of Schäfer et al. [Schäfer 2008], but ex-
tracted method call changes from a commit history of clients that were already
migrated. Hora et al. [Hora 2014] proposed a similar approach to find method
mappings between different releases of the same library. They analysed the com-
mit history of a library to detect frequent method call replacements. This way,
they mined the transformation rules by learning from how the library adapts to the
changes of its own API.

The most recent research has focused on the problem of library migration. Pan-
dita et al. [Pandita 2015] computed the textual similarity of documentation of the
API entities from different external libraries and recommended the entities that
were most similar to one another as possible replacements. They built a tool called
TMAP (Text Mining based approach to discover likely API mappings) and used
it to discover mappings from Java to C# API and from Java ME to Android API.
Alrubaye et al. [Alrubaye 2019] mined the commit history of client systems that
were already migrated from one third-party library to a different one and generated
mappings for method replacements. They improved their results by calculating the
textual similarity of method descriptions taken from library documentation. In their

3.4. Chapter Conclusion 25

next study, Alrubaye et al. [Alrubaye 2020] proposed a novel machine learning ap-
proach, RAPIM, for the task of library migration. They extracted features such as
the similarity of method signatures and documentation, represented them as numer-
ical vectors, and trained a machine learning classifier to label method mappings as
“valid” or “invalid”.

Shortcomings of existing studies. The first studies on library update were fo-
cused on the perspective of library developers. However, they only allowed them
to record the changes or express rules, without proposing automated tools to guide
them through this process by extracting knowledge from source code or the commit
history. The following studies proposed such knowledge extraction tools for client
developers, considering only the case when library developers are not available and
their expertise cannot be utilised. In our work, we propose to build the tools for
library developers that would help them understand the changes that were made
to the library, document those changes, and propose replacements to the client.
Another shortcoming is that most existing studies focus on statically-typed pro-
gramming languages such as Java. This means that when they mine the rules for
method replacements, they often have more information about the type of argu-
ments, return type, and the type of object from which the method is invoked. To
the best of our knowledge, the work that we present in Chapters 6 and 7 is the first
attempt to target specifically the dynamically-typed programming languages such
as Pharo, Python, Ruby, etc.

3.4 Chapter Conclusion
In this chapter, we overviewed the literature in the field of library update. This in-
cluded the discussion of empirical studies of library evolution from the perspective
of library an client developers, the studies on code transformation and deprecations
that are related to our study on transforming deprecations (see Chapter B), and
the studies that propose the tools to guide library or client developers in the pro-
cess of library update. We identified several shortcomings of existing studies: (1)
most existing studies focus only on the problems of client developers; (2) they do
not consider the context of dynamically-typed programming languages; (3) most
studies only consider simple method-to-method transformations. In the rest of this
thesis, we will address those shortcomings and try to fill this gap in the literature.

CHAPTER 4

How Libraries Evolve: Developer
Survey of Library Update

Contents
4.1 Introduction . 27

4.2 Survey Design . 28

4.3 Describing the Population . 29

4.4 Results of the Library Developer Survey 32

4.5 Results of the Client Developer Survey 38

4.6 Threats to Validity . 41

4.7 Chapter Conclusion . 43

4.1 Introduction

The evolution of software libraries is a process that requires a joint effort of two
groups of developers: the effort of client developers to update their dependencies to
the latest versions and the effort of library developers to make the update process
simple and clear.

To build better tools for library update and efficiently automate parts of this
process, it is important to understand the behavior of both library and client de-
velopers, the practices that they adopt, the problems that they encounter. As we
discussed in Chapter 3, several empirical studies were performed, based either
on the analysis of source code [Hora 2015, Hora 2018, Jezek 2015, Kula 2018a,
Kula 2018b, Robbes 2012a, Sawant 2016, Xavier 2017a] or surveying the develop-
ers [Kula 2018a, Bogart 2016, Brito 2019, Xavier 2017b]. However, those studies
either focus only on one group of developers (library or client) or ask questions
about specific breaking changes found in the code. Also, to the best of our knowl-
edge, no previous study has explored the type of help that library developers can
provide to their clients.

28 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

In this chapter, we present the results of two surveys: one of library developers
and another one of client developers. Participants came from different backgrounds
(open-source or industry) and different projects, the questions were general and
not related to specific libraries or issues. Our study involved 18 library developers
and 37 client developers. Although this population might be too small to claim
statistical significance, it is comparable to other surveys in this field (e.g., Bogart et
al., [Bogart 2016] surveyed 28 developers, Xavier et al., [Xavier 2017b] — 7 dev.,
Kula et al., [Kula 2018b] — 16 dev., and Brito et al., [Brito 2019] — 102 dev.).
The focus of our study is the perception of the impact of library evolution from
different perspectives and the type of support that library developers can provide
to help their clients. The results have been published at the technical track of the
Asia-Pacific Software Engineering Conference (APSEC 2022) [Zaitsev 2022b].

The main contributions presented in this chapter are:

1. We performed two surveys: of library and client developers from two indus-
trial companies and the Pharo open-source community.

2. We were the first ones to ask client developers about the type of support that
they need from library developers.

3. We confirmed the results of the previous studies [Xavier 2017a, Brito 2019,
Xavier 2017b] on the motivation of library developers to introduce breaking
changes and their perception of impact.

The rest of this chapter is structured in the following way: In Section 4.2,
we discuss the methodology of this study and list the research questions. In Sec-
tion 4.3, we describe the population of developers who were selected for this sur-
vey. In the following two sections, we present the results from both of our surveys:
first the library developer survey in Section 4.4 and then the client developer sur-
vey in Section 4.5. In Section 4.6, we discuss the threats to validity. Finally, in
Section 4.7 we present the conclusions.

4.2 Survey Design

To address the shortcomings of the previous studies, we propose to conduct a sur-
vey of two groups: library and client developers. Each group should include de-
velopers from different projects and different backgrounds (e.g., open-source and
industry). The survey must ask general questions about the experiences and prac-
tices of developers and not be restricted to specific cases of breaking changes.

In our study, we consider the following research questions:

4.3. Describing the Population 29

Library Developer Survey.

• RQ.1 How do library developers perceive the impact of library evolution on
their clients?

• RQ.2 Why do library developers introduce breaking changes?

• RQ.3 How motivated are library developers to support their clients?

• RQ.4 How do library developers help their clients to update?

Client Developer Survey.

• RQ.5 How do client developers perceive impact of library evolution on their
systems?

• RQ.6 What makes library update easy and what makes it hard?

Considering the relatively small population size, we did not perform statistical
tests and derived conclusions from simple descriptive statistics. These conclusions
lay out the paths for the follow-up investigations.

4.3 Describing the Population
We conducted a survey of developers from two industrial companies (Arolla and
Berger-Levrault) and the Pharo open-source community. Both Arolla and Berger-
Levrault are medium size software companies. The key difference is that Arolla
is a consulting company where each developer works on a different project and
Berger-Levrault is an international software company with multiple teams where
developers work on their projects together. We selected those companies because
of convenience: our research lab is part of the Pharo Consortium and many of our
colleagues are members of the Pharo community. We also have common research
projects with Berger-Levrault, and Arolla is the company that sponsored my PhD.

Developers selection. For Pharo and Arolla, we sent emails to the mailing lists
and messages to the official online forums of each community. For Berger-Levrault,
we contacted the director of research and asked him to spread the survey among his
developers. In all three cases, participation was optional and all participants were
informed that the survey would be anonymous. We asked every software developer
(no matter what type of programming they do) to fill the client developer survey.
As for the library developer survey, we explicitly asked it to be filled only by those
developers who work on libraries, frameworks, microservices, or any tools that

30 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

have API, several versions, and some users. Developers were free to answer both
surveys. In general the libraries that client developers in our study use are not the
same as the ones that library developer participants maintain.

Library Developers. We received the answers of 18 library developers, 11 of
them belong to the Pharo open-source community, four are from Arolla, and one
from Berger-Levrault. Two participants decided not to specify the community to
which they belong. It should be noted that getting library developers in companies
is rarer than library users. This proportion is different in the context of open-
source because many open-source projects are proposing libraries to other devel-
opers (whose code may often be closed source).

We asked developers to evaluate their level of expertise as either Absolute
Novice (0 dev.), Beginner (0 dev.), Intermediate (3 dev., 18%), Advanced (9 dev.,
53%), or Expert (5 dev., 29%). Twelve developers work on open-source projects,
five developers work on closed-source projects, and one developer works on both.
We asked developers to specify the kind of software that they develop. Their an-
swers can be seen in Figure 4.1: fifteen paticipants develop libraries, ten developers
work on frameworks, four work on SDK, and four on microservices. Three devel-
opers selected "Other" as their type of project.

Figure 4.1: The types of software developed by the library developers who took
part in our study.

We also asked library developers to specify approximately how many client
developers (users) they have. The estimates scattered among the following options:
1 to 10 clients (6 dev., 33%), 11 to 50 clients (5 dev., 28%), 51 to 100 clients (3
dev., 7%), 101 to 500 clients (4 dev., 22%). No library developer in our survey
claimed to have more than 500 clients.

As will be discussed in Section 4.6, we acknowledge that the relatively small
size of libraries developed by the participants of our survey may pose a threat to

4.3. Describing the Population 31

Figure 4.2: The types of software developed by the client developers who took part
in our study.

external validity. But we also consider this to be a novelty because the surveys that
only focus on large or popular open-source libraries are also biased by their size.

Client Developers. We received 37 answers from client developers, 22 of which
were from the Pharo community, five from Arolla, and four from Berger-Levrault.
Also, four developers preferred not to specify their affiliation, and other two de-
velopers listed other open-source communities that they belong to. As can be seen
in Figure 4.2, our selection covers a variety of domains by the types of projects
that client developers work on. They range from library, frameworks, web, desktop
applications but also tool development and even compiler ones. As we mentioned
before, the developers in our study were free to participate in both surveys. This
and the fact that most respondents come from the open-source community, may ex-
plain that 22 out of 37 client developers also develop libraries. We further discuss
this in Section 4.6. We asked client developers to evaluate their level of expertise as
either Absolute Novice (0 dev.), Beginner (2 dev., 6%), Intermediate (6 dev., 18%),
Advanced (18 dev., 53%), or Expert (8 dev., 24%). We also asked client developers
to specify approximately how many dependencies they have. The most popular
answers were 1 to 10 (15 dev., 42%) and 11 to 50 (16 dev., 44%). Four developers
said that they have between 51 and 100 dependencies and one developer claimed
to have more than 100 dependencies.

32 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

4.4 Results of the Library Developer Survey

Now we present the results of the survey following the research questions men-
tioned before. To answer research questions that are rather general, we had to ask
specific questions in our questionaires. That is why, each research question in our
study is associated with one or more survey questions. In this section, we discuss
the results of a library developer survey and in Section 4.5, we will present the
resuts of a survey of client developers.

4.4.1 RQ.1 - How do library developers perceive the impact of
library evolution on their clients?

To answer this research question, we asked two questions in our survey: one to
assess their perception of the impact of breaking changes on client systems and
one to understand how they estimate the time that clients need to update. The
answers are presented in Figures 4.3 and 4.4.

As can be seen in the figures, both questions were answered by all 18 library
developers who took part in this survey. Nine of them believe that the impact of
breaking changes on their clients is moderate, six (33%) that it is big, and two
(11%) that it is very big. One developer (6%) assessed the impact as very small.

As for the time that is needed to update the client systems to the new versions
of their libraries, opinions of library developers are different. When presented with
a five-option scale between less than an hour and a week or more, the estimates
scattered among them with less than an hour being the most popular option, se-
lected by seven developers (39%), and a week or more being the least popular one,
selected by one developer (6%). We hypothesise that different answers to this ques-
tion are caused by different complexity of changes in library releases. Some library
updates are simple and can be done in less than an hour. Others are hard and may
require a week or more.

The answers to the second question about the time to update could have been
influenced by Deprewriter [Ducasse 2022] — the automatic deprecation update
mechanism that is used by the Pharo community. It allows library developers to
annotate method deprecations with transformation rules that will be used to auto-
matically rewrite the call-sites in the client code. This mechanism considerably
eases the update of deprecated methods. Since many of the library developers an-
swering the survey were members of the Pharo community, this is a factor to take
into account. Deprewriter will be presented and discussed in Chapter 5.

4.4. Results of the Library Developer Survey 33

Figure 4.3: Do you think that breaking changes in your releases have big impact
on clients?

Figure 4.4: How much time do you think client developers need to update to the
new version of your library?

34 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

Summary:

• Most library developers in our survey agree that the impact of breaking
changes on their clients is not small: 50% believe that the impact is
moderate, 44% say that the impact is big or very big.

• Library developers had different opinions on how long it takes their
clients to update. The most common estimate is less than an hour
(39%) but some developers claim that it can take multiple days.

4.4.2 RQ.2 - Why do library developers introduce breaking changes?
This question has previously been answered by Brito et al., [Brito 2019] using
the firehouse interview (sending an email to the developer as soon as the breaking
change was detected). They reported that the most common reasons for introduc-
ing breaking changes are the need to implement new features (32%), API simpli-
fication (29%), and improving maintainability (24%). To verify those results, we
asked a similar question in our survey of library developers. This was a checkbox
question and the list of options was the same as the factors identified by Brito et
al., [Brito 2019]. We also added an “Other” option and an optional open text field
to identify additional factors. All 18 library developers answered this question. As
can be seen in Figure 4.5, 12 developers identified implementing a new feature as
a primary reason for introducing breaking changes; 11 developers identified API
simplification and 11 developers selected improving maintainability; six develop-
ers selected bug fixing. This confirms the results that were previously reported by
Brito et al., [Brito 2019]. Two developers also provided additional reasons: re-
search transfer and performance.

Figure 4.5: What are your primary reasons for introducing breaking changes?

We also asked developers an open question: “Were there specific scenarios
when you had to sacrifice backward compatibility to introduce important changes?

4.4. Results of the Library Developer Survey 35

Can you describe them briefly?”. We received 15 answers to this question. In addi-
tion to the four reasons listed above, three developers wrote that breaking changes
are caused by system redesign and architectural changes, two developers men-
tioned refactorings. Also, three developers wrote that breaking changes in their
APIs were caused by changes in their dependencies — a process that is known
as the ripple effect, when a change in one library can impact other libraries that
depend on it and propagate through the ecosystem from client to client. Two devel-
opers mentioned security issues related to authentication and one developer wrote
that they break the API when they need to improve names or remove features that
are not used.

Summary: The most common reasons for introducing breaking changes are
the implementation of new features (12 dev. out of 18), API simplification
(11 dev.), and improving maintainability (11 dev.), bug fixing was selected
by six developers. This confirms the results of the previous study conducted
by Brito et al., [Brito 2019]. Among other reasons mentioned by developers
are architectural changes, refactorings, security issues, and changes in other
libraries.

4.4.3 RQ.3 - How motivated are library developers to support
their clients?

As we discussed in Chapter 3, recently there were many studies that proposed
automated tools to support developers in the process of library update. Some of
those approaches are designed for client developers, while others are for library
developers. For the second group of approaches, it is important to understand what
is the motivation of library developers to support their clients.

Figure 4.6: How important is it for you to maintain backward compatibility?

To answer this question, we asked library developers two questions: “How

36 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

important is it for you to maintain backward compatibility?” and “How important
is it for you to encourage clients to update to the latest version?”. Those questions
are different, because, as we seen in Section 4.4.2, library developers have many
good reasons to introduce breaking changes (and thus break compatibility) even if
they want their clients to update easily.

In Figure 4.6, we present the answers to the first question. Four developers
(22%) specified that it is of little importance. For five developers (28%), backward
compatibility is of average importance. Eight of the surveyed developers (44%)
stated that it is very important for them, and for one developer it is absolutely
essential to be backward compatible.

In Figure 4.7, we present the answers to the second question. Only one library
developer specified that encouraging clients to update is of little importance. For
five developers (28%) it is of average importance, for eight developers (44%) it is
very important, and for four developers (22%) it is absolutely essential.

Figure 4.7: How important is it for you to encourage clients to update to the latest
version?

Summary:

• Maintaining backward compatibility is very important or absolutely
essential for 50% of surveyed library developers.

• Encouraging clients to update is very important or absolutely essential
for 66% of surveyed library developers.

4.4.4 RQ.4 - How do library developers help their clients to up-
date?

To understand what library developers do to help their clients, we asked two ques-
tions in our survey. First, a checkbox question (multiple selection) intended to

4.4. Results of the Library Developer Survey 37

understand the software development practices adopted before the release: “What
software development practices do you use to improve the stability of your API?”.
Second, an open question about the practices after the release: “When you are
forced to break backward compatibility, what do you do to reduce the negative
impact on users?”.

The first question was answered by all 18 developers. We gave them three
options: weak coupling (selected by 15 dev.), abstraction layer (13 dev.), and mi-
croservice architecture (5 dev.). In the “Other” section of this question, developers
mentioned three more practices: “design patterns”, “automatic transformation of
deprecated methods”, and “independent software that checks the stability of the
API and the continuity of its expected behaviour”.

The open question was answered by 16 out of 18 surveyed developers. We
analysed their responses and identified four practices that library developers use to
reduce the negative effect of breaking changes on their clients:

• Documentation (8 dev.), including migration guide (4 dev.), release notes
(1 dev.), and deprecation comments (1 dev.).

• Deprecation (4 dev.).

• Automation (4 dev.), including rewriting deprecations (2 dev.).

• Communication (3 dev.): including communication before making the change
(1 dev.) and live workshops to help clients update (1 dev.).

Two developers explicitly said that they do nothing to help client developers.
One developer, who mentioned that he/she uses the tools for automatic adaptation
of source code, has also expressed discontent with such automation techniques:
“. . . usually, the devs prefers to see exactly how the code will be modified in the
context of the application. When the change requires actions on many parts of the
software, manually going through all the modications by hand help to put again
"in context" the impact of the modification”.

Summary:

• Among library developers who answered our survey, the most popular
practices to improve the stability of API are weak coupling (18 dev.)
and abstraction layer (15 dev.). Developers also mentioned the mi-
croservice architecture, design patterns, and automation tools such as
rewriting deprecations and API stability checks.

• The most common practices to support clients after the introduction
of breaking changes are: documentation (8 dev.), deprecation (4 dev.),
automation (4 dev.), and communication (3 dev.).

38 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

4.5 Results of the Client Developer Survey

In this section we present and discuss the results of the survey of client developers.
As before, each research question is associated with one or more survey questions.

4.5.1 RQ.5 - How do client developers perceive impact of li-
brary evolution on their systems?

We asked the client developers two questions that mirror the questions that were
answered by library developers and discussed in Section 4.4.1. Each question was
answered by 36 out of 37 client developers that took part in our survey.

First, we asked client developers to estimate, how much they are affected by
the evolution of their dependencies. Notice that this question is slightly different
from the library developer question in which we asked about the impact of breaking
changes. As can be seen in Figure 4.8, the answers are almost equally distributed
around the midpoint somewhat affected (14 dev.): 11 developers answered that they
are affected a little, 10 developers — significantly affected, one developer claims
to be affected to a great extent.

Figure 4.8: How much are you affected by the evolution of your dependencies?
(e.g., when one of your dependencies releases a new version or drops support for
the old one)

Then we asked client developers to estimate how long it usually takes them
to update a dependency. As can be seen in Figure 4.9, the answers are scattered
between “less than an hour” and “several days”. Only one developer answered
“one week or more”. This trend is similar to the one we observed in Section 4.4.1.
Again, we hypothesise that the different answers are caused by different complexity
of changes in libraries on which clients depend.

Finally, we asked client developers to estimate how often they have to deal
with the task of updating dependencies. As can be seen in Figure 4.10, out of

4.5. Results of the Client Developer Survey 39

36 client developers who answered this question, 17 (47%) have to update their
dependencies three times a year or more often, 10 (28%) have to do it twice a year.

Figure 4.9: How much time does it usually take you to update your dependencies?

Figure 4.10: Try to estimate how often do you have to deal with the task of updating
dependencies

The other two options: once a year and less often each have three developers
who selected them. Also, three developers stated that they do not update their
dependencies regularly.

40 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

Summary:

• Most client developers in our study do not think that they are greatly
affected by library evolution.

• The time required to update a library dependency can be different:
from less than an hour to several days. Only one developer claimed
that it may take a week or more.

• In our study, 27 out of 36 client developers have to update their depen-
dencies at least twice a year; 17 developers do it three times a year or
more often.

4.5.2 RQ.6 - What makes library update easy and what makes
it hard?

To answer this research question, we asked client developers two open questions
in the survey: “When updating a dependency is easy, what makes it easy?” and
“When updating a dependency is hard, what makes it hard?”. Each question was
answered by 34 out of 37 client developers who took part in the survey. We anal-
ysed their answers and summarise them in Tables 4.1 and 4.2.

Table 4.1: When updating a dependency is easy, what makes it easy? Second
column is the number of developers who mentioned this factor in an open question.

Factor dev.
Documentation 15
Absence of breaking changes 11
Test coverage 6
Tool support 5
Deprecations 4
Simple breaking changes 4
Community support 3

According to our respondents, the main factors that make library update easy
are good documentation (mentioned by 15 developers, 44%) and the absence of
breaking changes (11 dev., 32%). Other factors include test coverage of client
code, tool support such as dependency managers and automated code rewriting,
deprecations that are introduced before removing functionality, simple breaking
changes such as method renaming, and community support. The most commonly
mentioned factors that make library update hard are breaking changes (mentioned

4.6. Threats to Validity 41

by 11 developers, 32%), absent or bad documentation (10 dev., 29%), indirect de-
pendencies to other libraries that can result in version conflicts (7 dev., 21%), and
big changes to the API that force clients to change the logic of how the library is
used (7 dev., 21%). Other factors that were mentioned 2-4 times are poor test cov-
erage of client code, removed functionality, changed hooks and abstract classes,
absence of community support, and behavioral changes. There are also factors that
were mentioned only once: strong coupling, expertise required, security issues,
naming collisions with other libraries, absence of deprecations, bugs and compila-
tion errors. We did not include those factors in Table 4.2.

Table 4.2: When updating a dependency is hard, what makes it hard? (only factors
that were mentioned by at least 2 developers).

Factor dev.
Breaking changes 11
Absent or bad documentation 10
Indirect dependencies 7
Big changes to the API 7
Poor tests coverage 4
Removed functionality 3
Changed hooks or abs. classes 3
No community support 2
Behavioral changes 2

Summary: The two most important factors affecting the complexity of li-
brary update are breaking changes and documentation.

• 11 out of 37 client developers in our study mentioned that breaking
changes make updating hard, and also 11 developers mentioned that
their absence makes it easy;

• 15 developers mentioned that good documentation makes updating
easy, and 10 developers mentioned that missing or misleading docu-
mentation makes it hard.

4.6 Threats to Validity

We discuss the four types of validity threats that were presented by Wohlin et
al., [Wohlin 2000]: internal, external, construct, and conclusion validity.

42 Chapter 4. How Libraries Evolve: Developer Survey of Library Update

Internal Validity
• We did not ask the participants to focus on a single project but rather to

answer the questions based on their general experience. This makes it hard
to further analyse the contexts that led to certain situations/decisions.

• Some questions in our survey are hard to answer generally. The answers
can vary depending on the project that developer has in mind or specific
situations on the client side. For example, when we asked how much time it
takes for clients to update, the answer could depend on how much of the API
was used by a particular client.

• The transforming deprecation mechanism of Pharo [Ducasse 2022] may have
affected how Pharo developers answered this survey.

• Inside the three mentioned communities, the surveys were public and par-
ticipation was optional. This means that many library developers could also
have answered the client developer survey. We can not verify this because
the surveys were fully anonymous and we did not want to restrict participa-
tion to only one survey because each library developer might also be a client
developer for other libraries.

External Validity
• For convenience, in this study we surveyed developers from an open-source

community that we (authors of the study) are part of, and two industrial com-
panies that collaborate with our research group. The participation was op-
tional, which means that the developers who responded to our call might be
the ones who know us personally and have interest in our research. This
might have introduced a bias.

• The library developers in our survey are responsible for libraries with no
more than 500 clients. Those libraries can be considered small compared to
the top-1000 libraries in NPM and Maven. This means that our study may
not be representative of the large libraries and frameworks, but more focused
on the smaller libraries that are also more common. Although, we list it as a
threat, we also believe this to be a novelty of our study because most related
work focuses only on large libraries, which introduces a bias on their side.

Construct Validity
• Some research questions in this survey can not be fully expressed with spe-

cific survey questions. For example, to measure the impact of library evo-
lution on clients, we ask questions about the perception of this impact (too
general) and another question about the time it takes to update (too specific).

4.7. Chapter Conclusion 43

• To save the time of our participants, most questions in our survey were not
open but contained a list of options to choose from. This poses a threat
to construct validity because developers were limited and biased by those
options. To address this threat, we tried to provide a diverse list of options
for each question, taking inspiration from the literature (e.g., the options for
RQ2 were the same as the ones identified by Brito et al., [Brito 2019]) or by
discussing them with our colleague developers.

• The perception of the impact of breaking changes may tell us about the way
client uses the library rather than the actual impact.

Conclusion Validity

• The population size is relatively small. Our study involved 18 library de-
velopers and 37 client developers. Although it is comparable to other sur-
veys in this field (e.g., Bogart et al., [Bogart 2016] surveyed 28 developers,
Xavier et al., [Xavier 2017b] — 7 dev., Kula et al., [Kula 2018b] — 16 dev.,
and Brito et al., [Brito 2019] — 102 dev.), this population might be too small
to claim statistical significance.

• Considering the relatively small population size, we did not perform statisti-
cal tests and derived conclusions from simple descriptive statistics.

4.7 Chapter Conclusion
In this chapter, we presented the results of a first general survey of the percep-
tion of library evolution by both client developers (who need to update their soft-
ware to new versions of libraries they use) and library developers (who produce
new versions of libraries). The survey involved software developers from two in-
dustrial companies: Arolla and Berger-Levrault, and one open-source community:
Pharo. We have confirmed the results of a previous study performed by Brito et
al., [Brito 2019] who reported that the most common reasons for introducing break-
ing changes are the addition of new features, API simplification, and maintainabil-
ity improvement. We have also identified what makes library update easy and what
makes it hard for clients, and the kind of support library developers can provide
them. The survey results presented in this chapter can help better understand the
process of library update from the perspective of library and client developers.

CHAPTER 5

Deprewriter: Transforming
Deprecations

Contents
5.1 Introduction . 45

5.2 Problem: Replacing Deprecated Method Calls 48

5.3 Example: Rewriting Deprecations In Action 50

5.4 Deprewriter . 53

5.5 Implementation . 58

5.6 Sketches of Possible Alternative Implementations 60

5.7 Analysis of Deprecated Methods in Pharo 8 64

5.8 User Survey . 70

5.9 Limitations and Discussion . 75

5.10 Chapter Conclusion . 79

In this chapter, we discuss the powerful mechanism of transforming depreca-
tions that is supported by Pharo. It allows library developers to annotate method
deprecations with transformation rules which can be automatically applied to client
code. The technique of transforming deprecations existed in Pharo for several
years. However, it was not well documented. Besides, only part of this functional-
ity was used by the community and only in a small circle of people. To that end,
we have published a paper in the Journal of Object Technologies [Ducasse 2022]
in which we document the transforming deprecations in Pharo, study how it is used
in practice, and identify the limitations that can be addressed in the future versions.
In this chapter, we introduce Deprewriter and present our findings.

5.1 Introduction
Deprecations are reported to client developers in many different ways. Some
deprecations are just listed in the documentation of the new release, written in

46 Chapter 5. Deprewriter: Transforming Deprecations

prose. Other deprecations are integrated into the source code (e.g., in the form
of annotations); thus, compilers and IDEs will report them to the client devel-
oper [Brito 2018a]. However, it is up to the developers of client applications to
manually transform and update their code to the new APIs [Kim 2007]. Some static
analysis tools support such migrations, although dynamically-typed languages and
the use of reflective features produce either too many or too few rewritings because
of known limits of static analyses. Client developers are left to manually identify
and rewrite deprecated call sites, a costly activity that leads to bug introduction.

In this chapter, we discuss Deprewriter (which stands for DEPrecation REWRITER):
a method deprecation approach that automatically rewrites the callers of the depre-
cated APIs during the program execution of client application. Runtime informa-
tion helps to distinguish the real deprecated method calls from the invocations of
other method with the same name. Since 2016, Deprewriter is used in production
in the Pharo distributions: Pharo 6, 7, 8, and 9 alpha.

Using Deprewriter:

1. Library developers annotate the deprecated methods with transformation rules.

2. Then, when clients of the deprecated API execute their program, Deprewriter
dynamically rewrites the source code of the methods that have called the
deprecated APIs.

When a deprecated method is executed, Deprewriter walks the execution stack
to find the caller method and the call site from which the deprecated method is in-
voked. Then it uses a program transformation engine to rewrite the call site’s source
code. Finally, the execution of the deprecated method continues. All changes are
done automatically. These changes are editable in the IDE, just like any other
change performed interactively by the programmer. Developers can review such
automatic changes, modify them and commit a potentially further adapted version
of their updated code. As Deprewriter is integrated into the IDE, its usage does not
impose the need for new abilities on client developers.

The implementation of Deprewriter in Pharo is based on call-stack reification
and navigation [Rivard 1996], dynamic program update, and tree matching rewrit-
ing [Roberts 1996, Roberts 1997], however the approach is generic enough to be
implemented using different mechanisms as explained in Section 5.6.

As we have discussed in Chapter 3, in recent years, many studies have shown
how the library update rules can be extracted from source code [Kim 2007,Xing 2007,
Schäfer 2008,Wu 2010,Nguyen 2010,Pandita 2015] and the commit history [Dage-
nais 2008,Meng 2012,Teyton 2013,Hora 2014,Alrubaye 2019]. These approaches
support the developers of client applications and help them update their systems to
the latest versions of the external libraries without relying on the library developers

5.1. Introduction 47

to provide a set of rules. The Deprewriter approach, which we present in this chap-
ter, focuses on supporting library and client developers in the process of library
evolution. Deprewriter allows library developers to annotate deprecated methods
with transformation rules that are used to update client systems either fully auto-
matically or semi-automatically. Our approach is related to the one of Chow and
Notkin [Chow 1996], who designed a language for expressing code transformations
in C. They implemented a semi-automatic tool that allows library developers to
annotate changed functions with transformation rules which later are applied stati-
cally to update the client code. The Deprewriter approach is better suited for highly
polymorphic object-oriented languages because it dynamically identifies call sites
that need to be updated.

After describing the approach, we answer two categories of research questions:
the first category is about the use and flexibility of the rewriting deprecations as
used by library developers (e.g., the Pharo consortium) and the second category is
about the perception by the users of rewriting deprecations (both library and client
developers). We then present two validations: an analysis of the Deprewriter rules
used in the deprecations of Pharo 8 and a user study.

First, we studied the 367 deprecations (not only rewriting ones) in Pharo 8,
among which we found and analyzed 218 rewriting deprecations. This helped us
understand how Deprewriter is used in practice and identify its limitations. Sec-
ond, we performed a user survey and collected information about 46 practitioners,
both library developers who write the deprecation rules for Deprewriter and client
developers who use the libraries with deprecated source code. Of all 46 persons,
28 (61%) report that rewriting deprecations helped them while 10 (22%) state the
inverse and 8 (17%) are uncertain. Additionally, by analysing the answers to the
open questions, we conclude that most developers who took part in our survey
consider Deprewriter to be beneficial in their work. They also acknowledge the
advantages of using unit tests to exercise automatic deprecations, concluding that
having a good test coverage helps with library update.

This chapter is based on a paper that we published in the Journal of Object
Technologies [Ducasse 2022]. Its key contributions are:

• First thorough description of the run-time deprecation rewriting approach.

• Analysis of the 367 existing deprecations (rewriting or not) of Pharo 8.

• Identification of 33 non-rewriting deprecations that can be turned into rewrit-
ing ones.

• Report on an open survey of developers who use Deprewriter either as client,
or library developers, or both.

48 Chapter 5. Deprewriter: Transforming Deprecations

The rest of this chapter is structured in the following way: In Section 5.2, we
discuss the challenges of automatically rewriting code in dynamically-typed lan-
guages. In Section 5.3, we present Deprewriter from the perspective of the library
and client developers. Section 5.4 describes the architecture and a high-level view
of the mechanisms used. It also defines the validity conditions for the transforma-
tion rules and discusses different scenarios that can be handled by Deprewriter. In
Section 5.5, we discuss the key aspects of the current implementation. Since our
approach is not bound to Pharo, Section 5.6 presents sketches of implementation
using, for example, AOP. As validation of the approach, Section 5.7 presents an
analysis of the rewriting and non-rewriting deprecations in Pharo 8. Section 5.8
presents the second part of the evaluation: we report the results of a survey that
was completed by 46 Pharo developers. In Section 5.9, we discuss the limitations
of our approach and the future work.

5.2 Problem: Replacing Deprecated Method Calls

5.2.1 The Difficulties of Dealing With Deprecated Methods

Deprecations are a powerful tool for reducing the negative effect of breaking changes
on client systems. They inform clients that the feature will be removed and give
them time to react. Nonetheless, it is not always evident to client developers what
kind of reaction is expected of them. For example, consider a client system that
calls a method name() to access the name of a product. At a certain point, de-
veloper of this system receives a deprecation warning informing him or her that
method name() is obsolete and will be removed in the upcoming release of the
library. Now it is not clear to the client developer, (1) why will this method be re-
moved and (2) what is the new way of accessing the name of a product. If method
was renamed then what is the new name that should be used instead? Perhaps, the
name of a product should now be accessed as a property of a more complex object
or through an HTTP request. Or maybe the products in the new version of a library
do not have names.

Library developers who introduce the deprecation usually know the answers to
those questions (the case when library developers do not know the answers will be
discussed in Chapter 6). They can share this information with client developers in
a form of deprecation messages, comments, or docummentation. We identify three
different scenarios:

1. Deprecated method can be replaced with one or more other methods and this
replacement can be automated.

2. Replacement exists but it is complex and cannot be applied automatically.

5.2. Problem: Replacing Deprecated Method Calls 49

For example, it has to be adapted to each specific case.

3. The deprecated method should not be used and there is no replacement.

The most common type of breaking changes are small structural changes such
as method renamings [Dig 2006b]. Therefore, in most cases, replacements exist
and they are automatable, for example: “Method a() is deprecated, use b() instead.”
In those cases, client developers could benefit from transformation rules in the form
a → b that could be used to automatically rewrite their code. In this chapter, we
will present such a technique.

5.2.2 Static Analysis for Dynamically-Typed Languages
Static analyzers are useful to identify and transform the callers of deprecated meth-
ods in the context of programming languages with static type information. How-
ever, the same techniques do not yield precise results in dynamically-typed lan-
guages such as Python, Ruby, Javascript, or Pharo [Suzuki 1981, Milner 1978].
Such languages do not have static type information that can be used by static ana-
lyzers. For example, consider Figure 5.1 showing the log: methods coming from
two different libraries: a logging library and a math library, and finally the client
class User that calls both methods. The maintainers of the logging library decide
to deprecate their log: method in favor of a version with an extra argument for the
logging level. However, the math log: method remains unchanged. In such a case,
a deprecation warning should be signalled only for the logger usages and not for
the math usages.

Math >> log: aNumber

"logarithm implementation"

Logger >> log: aMessage

"Deprecated in favor of log:level:"

User >> main

m := Math new.

logger := Logger new.

logger log: (m log: 8)

Figure 5.1: The limitations of static analysis. An analyzer cannot statically deter-
mine which call to log: corresponds to the deprecated method.

Due to the absence of precise type information, a static analyzer cannot deter-
mine which of all the existing calls to log: corresponds to the deprecated method.

50 Chapter 5. Deprewriter: Transforming Deprecations

As shown in the example, a single client method might have many calls to log:.
To fix the client code, not only does one need to identify the caller method but the
correct call sites inside the method.

This situation is exacerbated in presence of highly overridden methods. For
instance, in Pharo 8, the method name is called 3109 times and implemented in 346
classes, isEmpty has 1595 callers and 103 implementors. In addition, inheritance
and polymorphism across different hierarchies produce code where a single method
call can invoke multiple implementations during execution.

The research community has proposed to use type inference for dynamically-
typed languages [Suzuki 1981, Furr 2009, Ren 2016, Spoon 2004, Pluquet 2009,
Passerini 2014] or to use dynamic type information collected by the virtual ma-
chine to get concrete types [Milojković 2016]. Such type inferencers often do
not cover the whole language [Suzuki 1981] or are not applicable to large code-
bases [Spoon 2004]. Type speculation combined with runtime statistics is used
to implement speculative just in time compilers and speculative optimizers [Höl-
zle 1991]. However, when such information is not available, polymorphic methods
force developers to manually identify and replace the deprecated calls, leading to
the introduction of bugs.

Deprewriter, that will be presented in the following sections, uses runtime in-
formation to identify the correct call sites to rewrite. It is based on call-stack navi-
gation and program transformation at runtime.

5.3 Example: Rewriting Deprecations In Action

We start with an example showing how late-bound program transformations are
applied to method deprecations. In this section, we illustrate two scenarios of using
Deprewriter: from the perspective of a library developer and from the view of a
client developer.

5.3.1 Library Developer Perspective

In this section, we explain what a library developer should do to deprecate a method.
Library developers can mark the given method as deprecated by calling the special
method deprecated:transformWith: from anywhere inside the method body. This
method has two arguments. The first one is a string explaining the deprecation. It
will be displayed to the client of the library when the deprecation warning is sig-
nalled or logged if the deprecation is applied silently. The second argument is a
transformation rule that will be used to automatically rewrite the call sites of the
deprecated method.

5.3. Example: Rewriting Deprecations In Action 51

In the following code listing, we demonstrate the deprecation of the method
log: of Logger class from the previous example:

1 Logger >> log: aMessage

2
3 "The deprecation definition"

4 self

5 deprecated: 'use #log:level: instead '

6 transformWith: '`@rec log: `@argument '
7 -> '`@rec log: `@argument level: #info'.

8
9 "The body of the method"

10 ↑ self log: aMessage level: #info

• Line 1 defines the signature of the deprecated method.

• Lines 4 to 7 define the deprecation and its companion transformation rule

– Line 5 defines the text that will be used to log the deprecation or to
display it to the programmer.

– Line 6 starts the definition of the transformation rule delimited by the
keyword transformWith:. The antecedent of a rule identifies the AST
node that will be replaced. The string ‘@rec log: ‘@argument defines
variables for the receiver and the parameters of the deprecated call. The
antecedent should match the method signature (same name and number
of parameters). Here, the developer named the two variables rec and
argument using ‘@.

– Line 7 defines the consequent of a rule, i.e., the resulting AST nodes
of the transformation. It specifies that nodes matching the antecedent
should be replaced by the nodes of the consequent expression with the
matched variables expanded. In this case, any expression e.g., expr1
log: expr2 will be rewritten to expr1 log: expr2 level: #info.

• Finally, after the deprecation definition, Line 10 calls the method from the
new API. It can also contain the body of the old method. It is up to developers
to decide if they want to keep the old deprecated call or immediately invoke
the new API. Practically, calling the new API is better since it reduces the
number of calls to the old deprecated functionality.

Transformation rules are written using the domain specific language (DSL) of
an embedded parse-tree rewriter, which is part of the Refactoring Engine devel-
oped by J. Brant and D. Roberts [Roberts 1996,Roberts 1997,Roberts 1999,Reng-
gli 2010a]. This DSL and its syntax are not part of the contributions of our article

52 Chapter 5. Deprewriter: Transforming Deprecations

nor of this thesis. We only documented it and used it in our study. The language for
expressing transformation rules will be discussed in more detail in Section 5.4.2.

5.3.2 Client Developer Perspective

From the perspective of a client developer who uses the deprecated API, the pro-
cess is simple. Developers execute their application, for example, by invoking the
main program or by running its tests. At runtime, calls to deprecated methods are
rewritten using the transformation rules, and then the application continues its exe-
cution. In all cases, the deprecated method is invoked and executed normally. Code
transformation of the client method happens as a side effect of its execution.

Although library developers are free to place the deprecation in any part of the
method body, the most common practice is to place deprecation at the very top of
the method, before the rest of its body. In this case, at runtime, when the deprecated
method is executed, the following steps occur:

1. Deprewriter is called before the rest of the method’s body is executed.

2. It accesses the caller method and the exact call site from where the deprecated
method was invoked — Pharo implementation introspects the call stack, but
alternate approaches such as AOP are possible (see Section 5.6).

3. It then triggers code rewriting using as input the transformation rule, the
method to rewrite, and the position of the call site in the source code. The
caller method is recompiled on the fly.

4. Once Deprewriter rewrites the caller’s call site, the execution continues in
the body of the deprecated method. Another good practice is to use this to
call the new non-deprecated code.

In the Logger example (see the code listing in Section 5.3.1), as soon as the
client system calls method Logger >> log:, three things happen: (1) the depreca-
tion warning is signaled (warnings can be disabled); (2) the transformation rule
rewrites the client code at the call site and replaces the method call to log: with a
call to log:level:, then the method is recompiled; (3) execution of the log: method
is resumed, and the last line ^ self log: aMessage level: #info is executed, thus
calling the correct method.

All automatic code transformations are applied to the original source code. Fi-
nally, developers can review the changes and decide which ones to keep and version
them using traditional tools.

By default, transformations are applied to client code automatically. However,
Deprewriter is configurable to only show a warning instead.

5.4. Deprewriter 53

5.4 Deprewriter
The approach of Deprewriter has the responsibility to perform three main tasks.

• Detect the call sites of the deprecated methods (Section 5.5.1).

• Provide a way for the library developers to express the transformation rules
and then apply these rules to the identified call sites (Section 5.4.2).

• Provide a way for the client developers to select the automation level of the
transformations. We consider a key point of Deprewriter the ability to con-
figure how much it is affecting the programming ways of the client devel-
oper (Section 5.4.3).

5.4.1 General Architecture in a Nutshell

Our approach works as follows (See Figure 5.2):

1. Library developer deprecates a method and provides a transformation rule,
as shown by (Step 1) in the figure.

2. During the execution of a client system, the deprecated method is invoked
and it raises an exception (Step 2).

3. Deprewriter captures the exception (Step 3).

4. When configured to rewrite on the fly, Deprewriter identifies the call site in
the caller method and rewrites it using the transformation rule (Step 4).

5. The execution of the deprecated (halted by exception) method is resumed.
The body of the deprecated method is executed (Step 5): one common prac-
tice is to simply call the new API.

6. From then on, the next execution of the rewritten method will execute the
transformed code, and as such, the deprecated method will not be invoked
from that call site anymore.

We further discuss the key implementation points in Section 5.5.

5.4.2 Transformation Engine

To transform methods invoking the deprecated API, we use parse tree pattern
rewriting as implemented in ParseTreeRewriter developed by J. Brant and D. Roberts
as part of the Refactoring Browser [Roberts 1996, Roberts 1997, Roberts 1999].

54 Chapter 5. Deprewriter: Transforming Deprecations

Figure 5.2: Two stages of rewriting deprecation: declaration and execution. At
execution, deprecated method callers are rewritten and execution continues.

Note that we used this mechanism as it is available and allows developers to ex-
press transformations in a syntax close to the ones they are used to. Having a parse
tree matcher is not central to our approach: alternate solutions to express the rules
and edit the caller methods could be applied.

ParseTreeRewriter is a tree pattern matcher. First it identifies the node to be
transformed (source) and then how such node should be recombined during the
transformation (target). We briefly present the key aspects of the parse tree matcher.
The backquote character ‘ creates a variable. Several options following the variable
declaration can be used to specify the search:

• ‘ defines a variable. ‘receiver foo matches “x foo”, “OrderedCollection
foo”, or “self foo”.

• ‘@ matches any subtrees. ‘@rec foo matches “self foo” (with rec = self),
“self size foo” (with rec = self size) or “(x at: 2)foo” (with rec = (x

at: 2)).

• ‘. matches any language statement (assignment, return, messages,...).

• ‘# matches literals (string, boolean, number, symbol in Pharo). ‘#lit size

matches “3 size”, “’foo’ size”, “true size”.

• { } is used to match the enclosed code (see line 4 in the code below).

The following unit test of class RBParseTreeRewriter illustrates a simple exam-
ple showing how three-element dynamic arrays (delimited by { and }) are rewritten
as static literal arrays.

5.4. Deprewriter 55

Lines 3 to 8 configure the rewriter. The first argument of the call to replace:with:,
the expression {‘@first. ‘@second. ‘@third} specifies the kind of dynamic array
that we want to transform. The second argument defines the creation of a static
array with the same elements.

Lines 10 to 13 check that the rewriter can effectively transform the code and
reformat the dynamic array: here {(1 @ 255). (Color lightMagenta). 3}

Finally lines 15 to 20 verify that the result is correct.

1 testRewriteDynamicArray

2 | newSource |

3 rewriter := RBParseTreeRewriter new

4 replace: '{`@first. `@second. `@third}'
5 with: 'Array

6 with: `@first
7 with: `@second
8 with: `@third '.
9

10 newSource := (rewriter executeTree:

11 (self parseRewriteExpression:

12 ' {(1 @ 255). (Color lightMagenta). 3}'))

13 ifTrue: [rewriter tree formattedCode].

14
15 self

16 assert: newSource

17 equals: 'Array

18 with: 1 @ 255

19 with: Color lightMagenta

20 with: 3'.

One particular aspect of ParseTreeRewriter is that it extends the syntax of the
language. Programmers can simply take their code, annotate it with the specific
characters, and they obtain a transformation rule. The Pharo consortium decided
to use this aspect to ease the adoption by practitioners so that they do not have to
learn another language or framework to deprecate their code [Rizun 2015]. Alter-
nate extensible solutions have been proposed to support programmers during the
definition of transformation patterns [Rizun 2016], but they require the use of a
tool to help generating the rules.

5.4.3 Configuring the rewriting process
The user has the possibility to configure the rewriting process:

• Automatic rewriting — all the rewriting deprecations will automatically rewrite
their callers.

56 Chapter 5. Deprewriter: Transforming Deprecations

• Warning — developers are warned interactively that their code is invoking
deprecated methods, but the caller will not be automatically rewritten.

• Doing nothing — with this configuration, the deprecated methods are exe-
cuted normally, with no warning nor rewriting.

• Logging — developers can log the deprecated calls (and transformations
done). This option can be combined with other three options.

5.4.4 The Validity of Transformation Rules
Over the years, Pharo codebase has accumulated many transformation rules. But
since there was no good documentation of deprecation rewritings, some of those
rules make little sense and can be considered invalid. In this section, we define the
validity conditions for transformation rules that appear in deprecations:

1. The antecedent must capture a single message send which must be the
same as the deprecated selector. Transformation rules are arguments of
the deprecation messages. Every rule is expected to replace the deprecated
message send, captured by the expression in the antecedent, with the valid
replacement that is defined by the consequent. Therefore, the antecedent
must capture exactly one message which must be the same as the one that is
being deprecated. In other words, the left-hand side expression of a transfor-
mation rule must always be in the form ‘@rec deprecatedSelector: ‘@arg

(with any number of arguments).

2. Neither antecedent nor consequent can be empty. If the antecedent is
empty, then the transformation rule cannot capture anything and will never
be applied. In addition, a consequent cannot be empty because we do not
consider it as a good practice to automatically delete method calls from the
client code without replacement.

3. Antecedent and consequent must be different. If they are not, then the
transformation rule has no effect because it replaces the captured message
send with exactly the same message send.

5.4.5 Deprecation Scenarios and How they are Supported
In this section, we discuss multiple scenarios that can lead to deprecations. For
every scenario, we specify whether or not it can be handled by Deprewriter and
explain the cases when additional information is required to automatically rewrite
the client code. The list is not exhaustive but it covers the majority of scenarios
that we have encountered in practical applications (see Section 5.7) and partially

5.4. Deprewriter 57

inspired by the lists of refactoring operations that were analysed by Murphy-Hill et
al., [Murphy-Hill 2011] and Dig et al., [Dig 2006b].

Rename method — method renaming is the most common refactoring opera-
tion [Murphy-Hill 2009]. If the renamed method is part of a public API, it is
a good practice to add a deprecated method with oldMethodName that calls the
newMethodName. Renamed methods retain the same received and same list of
arguments. This means that the deprecations introduced as part of method
renaming can always be supported with transformation rules in the form
‘@receiver oldMethodName: ‘@arguments → ‘@receiver newMethodName:

‘@arguments.

Remove argument(-s) — similar to renaming1, when one or multiple arguments
are removed from a method, the old method name can be deprecated. This
scenario can always be supported with a transformation rule in the form
‘@receiver oldMethodName: ‘@oldArguments→ ‘@receiver newMethodName:

‘@newArguments where ‘@newArguments is a subset of ‘@oldArguments.

Add argument(-s) — this scenario is similar to the previous one, however, the
‘@newArguments is a superset of the ‘@oldArguments. To create a transfor-
mation rule that could automatically update method calls in the client code,
developers who introduce the deprecation must provide default values for the
new arguments. In many cases this is not possible.

Change receiver — when the receiver is changed it means that either the method
was moved to a different class (if method name is the same) or that another
method from a different class is called instead (if method name is different).
This scenario can be handled by a rule only if new receiver is one of the argu-
ments of the old method call, a literal value, or a global variable (e.g., a class
name). In other cases, when new receiver must be instantiated, transforma-
tion rules are not enough to automatically rewrite the client code. Here is an
example of changing the receiver with a transformation rule: ‘@gradebook

gradeOf: ‘@student → ‘@student grade. A possible side effect of such a
replacement is that a receiver can be initialized and never used.

Split method — a method call needs to be replaced with two or more method
calls. Each method can be called from the return value of the previous
method: f().g().h(), sent as an argument to the previous method: f(g(h())),
or sent as a cascade message — a special syntax in Pharo that allows one
to send multiple messages to the same receiver [Black 2009]. For example,

1Since in Pharo arguments are inserted between the parts of a method name, it is not possible to
change the number of arguments without also changing the name of a method.

58 Chapter 5. Deprewriter: Transforming Deprecations

‘@receiver evaluate: ‘@argument→ ‘@receiver statements: ‘@argument;

evaluate (both messages in consequent are sent to the same receiver). The
split method scenario can be handled with a transformation rule if all re-
ceivers and arguments in the consequent appear in the antecedent or are lit-
eral values or global variables.

Delete method — it is common to delete a method without replacement. In this
case, the method can be deprecated but there is no transformation rule that
can rewrite the client code.

Push down — if the method is pushed down into the subclass, it may be depre-
cated in the superclass, however, one can not automatically rewrite the callers
because it is not clear which of the subclasses should be instantiated instead
(as well as how to instantiate the subclass).

Deprecate class — when the class is deprecated, all of its methods can be dep-
recated as well. In this case, the transformation rule can not be introduced
because it is not only the method call that must be replaced but also the code
that instantiates the receiver.

Complex replacement — in addition to the scenarios described above, there are
also more complex situations when a method deprecation would require client
developers to introduce changes into multiple locations in their code (can not
be handled with the current implementation of Deprewriter) or to replace a
method call with a more complex expression that may include block clo-
sures, streams, etc. (can be handled if all the variables are known). It is also
possible that a complex replacement requires client developers to make extra
decisions and introduce different fixes depending on the specific situation.

5.5 Implementation
We present the key points of the Pharo implementation of the automatic rewriting.
However, since the general idea can be applied to other languages, in Section 5.6,
we also present some sketches of possible implementations using exception or AOP
[Kiczales 2001, Colyer 2005, Chern 2007].

5.5.1 Call Site Identification using Stack Reification
The call site identification is performed using the reflective capabilities of Pharo
to access the execution stack as a chain of linked objects. Pharo’s thisContext

pseudo-variable creates on the fly an object representing the current C stack frame.
This object is causally-connected to the C stack frame [Smith 1984]. Each stack

5.5. Implementation 59

frame has the knowledge of how to traverse the stack to create on the fly the caller
(“parent”) stack frame. This gives us access to the whole chain of stack frames.
Using this feature, we access the stack frame of the caller of the deprecated method.
Also, the reified stack frame has the responsibility to resolve its activating method.
By using this, we are able to access the method to rewrite and its source code.

Deprecation is a Warning. As shown in Listing 5.3, the execution of a depre-
cated method will invoke the method deprecated: transformWith: with two argu-
ments: anExplanationString and aRule. This method creates an exception, config-
ures it (passes as argument the sender of the deprecated method and the transforma-
tion rule) and invokes the method transform. The expression thisContext sender

reifies the execution stack frame using the special variable thisContext, and it re-
turns the call-stack frame of the caller of the current call. An important point is
that the Deprecation class is a subclass of Warning. Warnings do not stop program
execution. They just execute the default signal method when signalled, and then
the program execution continues.

It means that in our case, the program executes, a deprecation is raised, and dur-
ing the exception execution, the caller method is rewritten: when the deprecation
warning finishes its execution, the program execution continues as normal, execut-
ing the body of the deprecated method. The rewriting happens as a side effect, as
we do not perform the on-stack replacement. The rewritten method will be used
for the next execution.

1 Object >> deprecated: anExplanationString transformWith: aRule

2 Deprecation new

3 context: thisContext sender;

4 explanation: anExplanationString;

5 rule: aRule;

6 transform

Figure 5.3: The method deprecated: transformWith:

Rewriting steps. The transform method does the following (Listing 5.4):

• Lines 3-4: check if the deprecation has been configured to transform the
caller or not. If the user wants a deprecation exception to be managed nor-
mally, the transformation does not happen. The exception is signaled.

• Line 6: the caller method is identified. Given the method that invoked the
deprecated:transformWith:, the method contextOfSender will find the stack
element representing the caller.

60 Chapter 5. Deprewriter: Transforming Deprecations

• Line 7: ignore code snippets because during the execution they are mapped
to anonymous methods. Deprewriter does not rewrite snippets.

• Line 9: get the program node of the AST representing the caller of the dep-
recated method.

• Lines 11-12: the transformation rule (called a rewrite rule here) is created
based on the specifications of the deprecation.

• Lines 14-15: check if the rule can be applied to the node by calling the
method executeTree:. When the node cannot be rewritten, the default ex-
ception is raised.

• Lines 17-21: if the node can be rewritten, it is replaced by the corresponding
expression and the method is recompiled. At this point, the currently exe-
cuted method is still on the stack, and it continues its execution. This means
that the rewritten code will only be executed on the next execution.

Note that if we have two calls to the same deprecated method in one method,
we will execute this method twice to replace both cases. The implementation is
relatively simple. It assembles existing functionality available in the language:
exception mechanism, call-stack reification, and a parse tree rewriting engine.

5.6 Sketches of Possible Alternative Implementations

The approach presented in this chapter requires two main features to be imple-
mented in alternative languages and environments: (1) being able to detect the
caller method of a deprecated one, and (2) being able to update the code of the
caller method to use the newer versions of deprecated methods.

To show the generality of our proposed solution, in this section, we present
possible alternative implementations for both required technical features. Each
subsection presents different alternatives to the one used by our implementation.
They are presented in order from more specific and powerful to more simple but
still useful and generally available.

5.6.1 Caller Method Detection

When a deprecated method is called, our approach needs to identify the method that
has called the deprecated method. Once the caller method is correctly identified, it
is updated using the transformation rule expressed in the deprecated method.

5.6. Sketches of Possible Alternative Implementations 61

1 Deprecation >> transform

2 | node rewriteRule aMethod |

3 self shouldTransform

4 ifFalse: [↑ self signal].

5
6 aMethod := self contextOfSender method.

7 aMethod isDoIt ifTrue: [↑ self].

8
9 node := self contextOfSender sourceNodeExecuted.

10
11 rewriteRule := self rewriterClass new

12 replace: rule key with: rule value.

13
14 (rewriteRule executeTree: node)

15 ifFalse: [↑ self signal].

16
17 node replaceWith: rewriteRule tree.

18
19 aMethod origin

20 compile: aMethod ast formattedCode

21 classified: aMethod protocol.

Figure 5.4: Method transform: — the core of the rewriting behavior.

62 Chapter 5. Deprewriter: Transforming Deprecations

Call-Stack Reification. Our proposed solution is implemented based on the call-
stack reification [Rivard 1996] mechanism that is present in Pharo. This mecha-
nism allows the inspection and manipulation of the current execution stack. By
inspecting the current call-stack, we identify the caller method. The availability of
this technique produces a cleaner and simpler implementation but it is not required
to implement our approach as we show with the subsequent implementations be-
low.

Aspect-Oriented Programming Pointcuts. The Aspect-Oriented Programming
(AOP) [Kiczales 1997] pointcuts have the ability to mark deprecated methods to
execute caller update logic. AOP pointcuts identify the deprecated methods in a
declarative way, without needing to modify their source code. This information
is expressed in metadata that is read by the AOP framework. The methods are
modified by the AOP framework during the weaving process, without modifying
the original source code. Also, AOP frameworks allow developers to mark method
call-sites (e.g., making a pointcut every time a given method is called), by doing
so it is possible to identify all calling sites to a deprecated method. This technique
can replace our inspection of the current call-stack.

Exceptions with Stack Trace Information. As we mentioned earlier, having
high-level support for inspecting the call-stack is not needed for implementing our
approach. It is possible to identify the caller method using exception handling and
logging. The signalled exception will capture the current stack trace information,
which would allow to extract the caller method. Listing 5.5 presents a possible
pseudo-code Java implementation that throws an exception and processes the stack
trace information to extract the method caller (even if it is a String representation).

5.6.2 Caller Method Update

Once the caller method is identified, this method should be modified following the
transformation rule in the deprecated method.

Modifying the Source Code. Our current implementation uses tree matching
rewriting [Roberts 1996, Roberts 1997]. Although using tree matching rewriting
allows us to write a rich set of possible deprecation rules, it is not necessary to
implement our approach. Caller method source code might be modified by just
manipulating strings. A simpler approach might use regular expression matching
and replacing.

5.6. Sketches of Possible Alternative Implementations 63

public class CallerIdentifier {

public void identifyCaller(String aMethodName){

Exception fakeException;

StackTraceElement [] stackTrace;

/* We throw an exception and we catch

it in the same method , by doing so,

we force the creation of the exception

and the logging of the current

stack trace. */

try {

throw new Exception ();

} catch (Exception e) {

fakeException = e;

}

stackTrace = fakeException.getStackTrace ();

/* With the information of the stack

we obtain the calling method.

Even if the information is present

as a string , caller identification

is a feasible operation */

return this.lookupCallerOf(aMethodName , stackTrace);

}

}

Figure 5.5: Java pseudo-code showing how to identify caller method by only using
existing exception support.

64 Chapter 5. Deprewriter: Transforming Deprecations

Dynamic Software Update Support in Languages. Once the source code is
modified, we update the caller method with the new implementation. We use the
dynamic software update (DSU) [Sandewall 1978] support that is present in Pharo.
This ability to modify running program is not only present in Pharo but it is present
in other dynamic languages (e.g., Lisp, Javascript, Ruby, Python).

Dynamic Software Support in Tools. In the scenario we are using a language
that does not natively support DSU. However, we are still able to use existing DSU
tools for these languages. These tools manage the update of executing code al-
lowing us to modify the caller method. Such tools exist in numerous languages
and environments ranging from low-level languages as C (e.g., Kitsune [Hay-
den 2012], Ginseng [Neamtiu 2006]) to object-oriented languages running in a
VM like Java (e.g., JRebel [ZeroTurnAround 2012], Rubah [Pina 2013]).

Original Source Code Rewriting. If there is no support for dynamic update of
the running application, our approach is still applicable: A possible implementa-
tion is one that updates the source code of the application and recompiles it to be
executed during the next execution of the application. This possible implementa-
tion might be integrated as an IDE plugin. By doing so, users take advantages of
the approach as their application is automatically migrated when the tests are run
in the IDE.

5.7 Analysis of Deprecated Methods in Pharo 8
Deprewriter has been introduced into Pharo at version 6.0 (in 2017). During the last
four years, it has been used by the Pharo community to supply method deprecations
with rules that can automatically rewrite client code. To better understand how the
Deprewriter is used in practice, we have analysed the 367 method deprecations
collected from Pharo v8.0,2 the latest stable version of the Pharo Project.3

Here are the research questions we want to answer:

RQ1 Adoption. How widely adopted are the rewriting deprecations?

RQ2 Flexibility. What are the different types of deprecation scenarios that can
be supported by Deprewriter?

2The source code of Pharo v8.0 was loaded from an open source repository https://github.com/
pharo-project/pharo at commit bbcdf97

3Pharo is a programming language and an IDE written entirely in itself. This can be a source
of confusion. In this section, we analyse how rewriting deprecations, introduced into Pharo (an
open-source project with over 140 contributors), were used by its developers to deprecate methods
in other parts of the same project. In other words, we study how Pharo developers use the rewriting
functionality of Pharo to deprecate methods in Pharo.

https://github.com/pharo-project/pharo
https://github.com/pharo-project/pharo

5.7. Analysis of Deprecated Methods in Pharo 8 65

RQ3 Limitations. What are the more complex scenarios that can not be sup-
ported by the current implementation of the Deprewriter?

In this section, we report the results of our analysis.

Cleaning the Data. Before analysing the deprecated methods, we performed sev-
eral data cleaning steps to only retain those deprecations that are relevant. First, we
have removed 8 deprecated methods that were used only for testing (for example,
deprecatedMethod1, deprecatedMethod2). We also removed 2 deprecations that
contained an invalid transformation rule, based on the validity criteria discussed in
Section 5.4.4. Finally, we have found one case that was not a real method depre-
cation but a workaround to deprecate a pragma (a static method annotation; Pharo
does not support pragma deprecation). As a result of this step, out of 378 depre-
cated methods found in the Pharo 8 image, only 367 were retained for analysis.

RQ1. How widely adopted are the rewriting deprecations? To answer this
question, we compute the proportion of method deprecations in Pharo v8.0 that
contain transformation rules and the number of different people who introduced
them into the source code.

Table 5.1: Six deprecation selectors available in Pharo 8 together with number of
senders.

Type Deprecation selector Introduced Senders
Non-rewriting
(149)

deprecated: ≤Pharo 2 113
deprecated: on: in: ≤Pharo 2 36

Rewriting (218)
deprecated: on: in: transformWith: Pharo 6 4
deprecated: transformWith: Pharo 6 214
deprecated: on: in: transformWith: when: Pharo 7 0
deprecated: transformWith: when: Pharo 7 0

Total: 367

In Pharo, there are six selectors that can be used to deprecate a method. In Ta-
ble 5.1, we provide the list of those selectors along with the Pharo version in which
they were introduced and the number of senders (the number of times the selector
is used) in Pharo v8.0. The first two selectors exist in Pharo since v2. They allow
developers to mark a method as deprecated and provide an explanation message
that will be displayed in a warning dialog when a deprecated method is invoked.
The second selector also allows one to specify the date and library version at which
the method was deprecated. Method deprecations that are declared with those two
selectors do not contain a transformation rule, which is why we call them the non-
rewriting deprecations. Those deprecations are similar to the ones declared in Java

66 Chapter 5. Deprewriter: Transforming Deprecations

using the @Deprecated annotation or the @deprecated Javadoc tag. The other
four selectors were introduced in later versions of Pharo. They allow developers to
specify the correct replacement for a deprecated method call in a form of a trans-
formation rule that can automatically rewrite the call-sites inside the client code.
We call deprecations that were declared with those selectors the rewriting depre-
cations. The last two rewriting selectors also allow one to specify the condition
that will be checked before applying the transformation rule. As can be seen in
Table 5.1, out of the 367 deprecated methods that we found in Pharo 8, 149 depre-
cations are non-rewriting (41%), and 218 are rewriting (59%). This means that the
majority of method deprecations in Pharo contain the transformation rules.

For every method deprecation, we found the commit in which it was introduced
into the project. This allowed us to identify the author of each deprecation. 16 out
of 367 deprecations remain in Pharo since before v6.0.0. They were introduced
with a different version control system, which makes it hard to identify the authors.
By analysing the other 351 deprecations, we have found that they were introduced
by 15 different developers. Rewriting deprecations were introduced into the Pharo
project by 8 different developers.

RQ2. What are the different types of deprecation scenarios that can be sup-
ported by Deprewriter? To answer this question, we analyzed the 218 rewriting
deprecations that we have extracted from Pharo v8.0. Each one of those depre-
cations contains a transformation rule in the form antecedent → consequent. The
antecedent is a left-hand side of the rule, which is an expression that matches the
piece of deprecated code that needs to be replaced. The consequent is the right-
hand side of the rule which defines the replacement.

We classified the transformation rules according to the deprecation scenarios
proposed in Section 5.4.5. The summary of this classification is presented in Ta-
ble 5.2. The first column of the table contains the list of scenarios and the second
column specifies whether the deprecation from each scenario can be supplied with
a transformation rule. The option yes* means that in some cases it is possible to
express the replacement with a transformation rule, while in the other cases, addi-
tional information or a manual fix may be needed. The third column of the table
contains the number of rewriting deprecations corresponding to each scenario that
were found in Pharo 8. The last two columns of the table will be discussed in the
rest of this section.

One can see that Rename method is the most common scenario for which the
developers of the Pharo Project use transformation rule. Out of 218 rewriting dep-
recations 179 (82%) express method renaming. Developers also use transforming
deprecations for other scenarios. This includes 28 Split method rules that replace a
method call with multiple ones and 5 complex rules, all of which replace a method
call with an expression containing a block closure. Examples of the transformation

5.7. Analysis of Deprecated Methods in Pharo 8 67

Table 5.2: Different scenarios that may require method deprecation. In the second
column, we specify if this scenarios can be expressed with a transformation rule.
"yes*" means that in some cases the rule is possible, but in other cases, additional
information may be required. The third column contains the number of rewriting
deprecations found in Pharo image. The fourth column contains the number of
non-rewriting deprecations related to each scenario — the ones that do not contain
transformation rules. The last column contains the number of rules that we intro-
duced and submitted as pull requests.

Deprecation
Scenario

Can be
expressed

with a rule?

Rewriting
depreca-

tions

Non-
rewriting

deprecations

Rules
introduced

by us
Rename method yes 179 24 24
Remove argument(-s) yes 3 1 1
Add argument(-s) yes* 1 7 1
Change receiver yes* 2 0 0
Split method yes* 28 5 5
Delete method no — 52 —
Push down no — 13 —
Deprecate class no — 4 —
Complex
replacement

yes* 5 43 2

Total: 218 149 33

68 Chapter 5. Deprewriter: Transforming Deprecations

rules that we have collected from Pharo 8 can be found in Table B.1 in Appendix B.
Such a diverse collection of rules demonstrates the flexibility of Deprewriter.

RQ3. What are the more complex scenarios that can not be supported by
the current implementation of the Deprewriter? In this section, we explore
the non-rewriting deprecations and try to understand (1) if some of them can be
automated using Deprewriter; (2) what makes deprecations hard to automate. In
the fourth column of Table 5.2, we present the number of non-rewriting depreca-
tions that we found in Pharo 8, classified by the deprecation scenarios presented in
Section 5.4.5. Those deprecations were introduced into the image without a trans-
formation rule. We analysed each one of them to see if a rule is impossible in that
case or if it could be added but the developers who deprecated the method missed
the opportunity to write a rule. For each non-rewriting deprecation that could have
a rule, we introduced it. The fifth column of the table presents the number of rules
that we introduced to turn non-rewriting deprecations into the rewriting ones.

As can be seen in the table, 69 non-rewriting deprecations belong to either the
Delete method, Push down, or Deprecate class scenario, which means that the re-
moved method does not have a replacement and the transformation rule can not
be introduced. Those are 46% of all non-rewriting deprecations and 19% of all
deprecations that we found in the Pharo Project. In Section 5.4.5, we claimed that
Method rename and Remove argument(-s) scenarios can always be supported by
rules. This can be seen in Table 5.2. We proposed rules for all non-rewriting dep-
recations from those categories. We could also introduce a rule for one deprecation
out of 7 that belong to the Add argument(-s) category. In that case, we used an
empty literal value as default argument. In other 6 cases, default argument is either
impossible or must be defined by the experts.

As can be seen in Table 5.2, for 2 out of 43 non-rewriting deprecations that rep-
resent the complex replacement we introduced a transformation rule thus turning
them into rewriting deprecations. The other 41 complex deprecations are of par-
ticular interest for our study because they are the non-trivial scenarios that indicate
the limitations of Deprewriter. 4 of those deprecations require clients to override
an abstract hook method and 1 deprecation requires client to implement a subclass.
The current implementation of Deprewriter only deals with method calls and the
support for object oriented rewriting could be an important direction of our future
work. 3 deprecations propose different replacements to the clients depending on
certain conditions. 17 deprecations require complex changes in multiple locations
of client code (e.g., initialization of objects that will be passed as arguments, re-
moving the initialization of objects that are no longer needed, different treatment
of return values, etc.). Such replacements are not easy to automate. They must be
performed manually by client developers. Finally, 16 non-rewriting deprecations
were either poorly documented or had very complicated replacement instructions

5.7. Analysis of Deprecated Methods in Pharo 8 69

that require an expert to understand and apply them.

Pull Requests with Proposed Rules. Out of 149 non-rewriting deprecations, we
have identified 33 cases (22%) when the transformation rule was possible but de-
velopers missed the opportunity to introduce it. We added the rules to those depre-
cations and submitted them as pull requests to the development version of Pharo 9.
Out of those 33 deprecated methods, 10 have already been removed from Pharo 9,
six methods have already been supplied with the transformation rules (same as
the ones we proposed), and one deprecation had been reverted (method that was
marked as deprecated will not be removed after all). The other 16 transformation
rules that we submitted as pull requests were merged into Pharo 9.4

Analysis Conclusion. The analysis presented in this section demonstrates how
developers use transforming deprecations in real cases of library evolution. It also
helps us identify the strengths and limitations of Deprewriter. Below we list the
main conclusions of our analysis.

• Adoption of transforming deprecations by developers. Out of 367 dep-
recated methods that we found in Pharo 8, 218 methods (59%) use transfor-
mation rules to automatically rewrite their callers. Those deprecations were
introduced by 8 out of 15 developers who deprecated methods in Pharo 8.
This demonstrates that the technology that we discuss in this chapter has
already been adopted and used by the community.

• Flexibility of transforming deprecations. The analysis shows various sce-
narios of method deprecations that can be supported with Deprewriter. In
most cases, developers use the tool to deprecate methods that were renamed.
They also use it to express more complex rules such as removed or added
arguments, splitting one method into multiple methods, etc.

• Limitations of transforming deprecations. We have identified several sit-
uations that can not be covered by the Deprewriter or can not be expressed
by the language of transformation rules. Those cases can help us understand
how we can improve the mechanism for expressing and applying the rules.
The most interesting case is the lack of support for object-oriented rewrit-
ing (overriding abstract methods, introducing subclasses, adding methods,
etc.). We will further discuss the challenging scenarion of library update in
Chapter 8. The limitations of the language of code transformations can be
addressed in the future work.

4Pharo is an open source project with more than 150 contributors. Each pull request must be
approved by one or multiple reviewers who are members of the core team and are different from
the person submitting the PR.

70 Chapter 5. Deprewriter: Transforming Deprecations

5.8 User Survey

Making a sound evaluation of Deprewriter is difficult because it is often applied to
the private code of developers using Pharo. In addition, developers can have differ-
ent development processes. To understand how Deprewriter is used and perceived
by developers in the Pharo ecosystem, we performed an open survey. We dis-
tributed the survey through the mailing list of the Pharo open-source community
(developers programming in Pharo); participation was optional and anonymous.
We did not select the participants based on their practices or use of Deprewriter.
From that perspective, they could either know or not about the existence of De-
prewriter, and be either client or library developers.

With this survey, we set the following research questions:

RQ4 How is Deprewriter used by client developers who are affected by depreca-
tion rewriting?

RQ5 How is it used by the developers who introduced the rewriting deprecations
into their systems?

RQ6 What are the configurations of Deprewriter that are preferred by users?

We received the answers from 46 developers.

Population Characterization. We asked developers to characterize their devel-
opment effort into application, library and frameworks (framework implying some
sort of extensibility). The two last choices embed the idea that the developed soft-
ware is used by other developers. Hence library and framework developers present
more concerns about change impact. Table 5.3 shows that we have a large part
of participants making applications (93%, 43 out of 46), and we still have many
working on library development (71%, 33 out of 46). In addition, 32 reported to
do application and library development. Such numbers are not surprising; because
library developers are sensitive to deprecations and the impact of their changes. So,
it is normal that they got a stronger incentive to participate in the survey than the
developers of client applications.

Table 5.3: Survey: "What kind of software do you maintain?"

Development type Yes No Uncertain
application 43 (93%) 0 3 (7%)
library 33 (71%) 6 (13%) 7 (15%)
framework 24 (52%) 13 (28%) 9 (19%)

5.8. User Survey 71

Then we asked how often they migrate their software. A release cycle of Pharo
is one to one and a half years. And, this is a main source of migration. The data
in Table 5.4 show that 58% of developers (27 out of 46) are often migrating their
code to newer versions of Pharo. A couple of developers mentioned in the optional
comments that they always migrate to bleeding-edge versions.

Table 5.4: Survey: "How often do you migrate5 your software to newer versions of
its dependencies?"

Frequ Very Often From time Not Never
ency often to time often

8 (17%) 19(41%) 13 (28%) 6 (13%) 0

RQ4. How is Deprewriter used by client developers who are affected by dep-
recation rewriting? We asked several questions about the migration and the per-
ception of the current automatic migration approach based on rewriting depreca-
tions. The first set of questions focuses on rewriting deprecations from a client
developer perspective.

• To the question ’Do you see value in having tools to help with code migra-
tions?’: Unsurprisingly, all the participants agreed that they see a value.

• To the question ’Do you know Pharo’s support for automatic deprecation
rewritings?’ 35 (76%) reported that they knew the existence of rewriting
deprecation, 4 did not, and 7 were not certain.

• ’Did automatic deprecation rewritings help you in a migration?’ This ques-
tion is an important one. Table 5.5 shows that 28 (60%) participants of 46
acknowledged that the rewriting deprecations helped them, while 10 men-
tioned otherwise and 8 are uncertain.

Table 5.5: Survey: "Do you know Pharo’s support for automatic deprecation
rewritings?" and "Did automatic deprecation rewritings help you in a migration?"

Yes No Uncertain
Knowing deprewriter 35 (76%) 4 (8%) 7 (15%)
Did it help migrating? 28 (60%) 10 (21%) 8 (17%)

We then proposed open questions to be able to understand more precisely what
the practitioners meant. We present verbatim some of the answers that were added

5At the time of performing this survey, we did not yeat adopt the terminology that was presented
in Chapter 2. In the survey questions, we referred to library update as "migration".

72 Chapter 5. Deprewriter: Transforming Deprecations

in the comment field related to the question ’How did automatic deprecation rewrit-
ings help you in a migration?’. We selected the most representative or critical ones
as well as the ones suggesting improvements.

• ’I help me to migrate API in the case where old and new API are overlap-
ping.’

• ’My software migrated on its own without me having to do anything! If
anything, maybe it’s too invisible. Packages show up dirty without a clear
cause6. Although I can’t think of an obvious solution except maybe a warning
with a setting, like deprecations themselves.’

• ’They are useful to find all places where a deprecated method is really called.
Just they can also be a bit annoying. Especially as they are done automati-
cally, sometimes, I was seeing code changes, and I was not sure if I did that
or if it was done by an automated refactoring.’

• ’It shows the right way to use the new API.’

• ’I observed it when loading an old package. It was cool. Too often, we lose
code from rot as the base image moves in a new direction, and we have old
code that will no longer load.’

• ’Running the tests transformed the code to the new protocol’

• ’I often can afford to immediately delete an old method and rewrite all users
to a new one. From time to time, I use rewrite method to change callers of a
method with a common name. In other words, I use it in cases where simple
method rename action is difficult to filter by a scope.’

• ’I remember the automatic rewritings of some Spec2 (or Spec?) rules that mi-
grated my tool without efforts from my side other than code reviewing quite
fast before creating the commits. Given that Iceberg supports creating com-
mits from part of the working copy changes, it was easy for me to untangle
the changeset between migration changes vs. intended changes (e.g., fixing
a bug).’

Analyzing such comments, three main points are noticeable.

• First, the majority of surveyed users appreciate the automation offered by the
process.

6In Pharo, a package is called "dirty" when it has been modified and has not been committed yet
to a version control system such as Git.

5.8. User Survey 73

• Second, some users would like to have more control over the process. It
is true that getting a package with changes that are done automatically is
surprising without a priori notice.

• Third, and more interesting, some users understand the main strength of De-
prewriter: the approach helps them to deal with heavily used (megamorphic)
methods and that the deprecation transformation at runtime provides a pre-
cise scope that only rewrites the executed method.

Table 5.6: Survey: "Did you write your own automatic deprecation transformation
rules to help migrate your users?"

Yes No Uncertain
Did you write rules? 16 (35%) 23 (50%) 7 (15%)

RQ5. How is Deprewriter used by the developers who introduced the rewrit-
ing deprecations into their systems? We also asked the practitioners about their
experience introducing the rewriting deprecations.

• To the question ’Did you write your own automatic deprecation transforma-
tion rules to help migrate your users?: 16 participants out of 46 answered
yes" (34.8%), while 23 answered "no" (50%) and 7 (15.2%) did not answer
the question, which we interpret as no (See Table 5.6). The high percentage
of writers is probably related to the fact that developers replying to this sur-
vey were already interested in the topic. Nevertheless, it is surprising to see
that developers outside the core team (which is composed of 12 people) are
writing deprecations for their own libraries because neither documentation
nor announcement have been made about Deprewriter prior to our journal
article [Ducasse 2022].

• To the question ’How easy was it to write a rewrite rule?’, two participants
found the expressions very easy, one easy, nine medium, and one difficult,
27 did not answer (see Table 5.7). The other three out of 16 participants who
mentioned that they write transformation rules, did not report the difficulty
level.

• To the question ’Can you tell us about the cases where you found it impos-
sible to use automatic deprecations?’, four developers indicated that they
need support for rewriting on the level of class deprecations, four develop-
ers wrote that they need object-oriented rewriting that we have discussed in
the previous section (rewriting implementors of deprecated abstract hooks,

74 Chapter 5. Deprewriter: Transforming Deprecations

introducing subclasses, etc.), two developers requested conditional rewrit-
ing. Those answers demonstrate the limitations of Deprewriter that can be
targeted in the future work (see Section 5.9).

Table 5.7: Survey: "How easy it was to write a rewrite rule?"

Very Easy Medium Difficult No
easy Answer

How easy? 2 (4%) 7 (15%) 9 (20%) 1 (2%) 27 (59 %)

RQ6. What are the configurations of Deprewriter that are preferred by users?
The next series of questions is related to the default configuration of the automatic
rewriter. It should be noticed that the two first questions are not opposite of each
other. The deprecation can rewrite and transform the callers while at the same time
notify the users with a warning. The default setting proposed in Pharo is to silently
rewrite code. This decision is probably not good to communicate with the users, as
some have reported in previous feedback.

• To the question ’A setting allows you to control if a deprecated call is auto-
matically rewritten or not. Do you think automatic deprecations should be
rewritten by default?’: 22 on 46 (47%) report that the default behavior to
rewrite the deprecated calls at execution is good, 14 (30%) think the inverse
and 10 are uncertain (See Table 5.8).

• To the question ’Another setting controls whether a deprecation should raise
a warning or not when found at runtime. Do you think automatic depreca-
tions should raise a warning by default?’ 24 of 46 (52%) report that raising
a warning by default is important, 12 (26%) think the inverse, and 10 (21%)
are uncertain (See Table 5.8).

• To the question What is your most frequent setup? Developers use a mix of
configurations. No clear choice jumped out.

Table 5.8: Survey: What are the configurations of Deprewriter preferred by the
developers?

Yes No Uncertain
Rewriting by default 22 (47%) 14 (30%) 10 (21%)
Raising a warning 24 (52%) 12 (26%) 10 (21%)

5.9. Limitations and Discussion 75

Survey Conclusion. The survey shows that the developers from Pharo commu-
nity are familiar with the basic functionality of the Deprewriter and appreciate the
automatic rewriting of method calls. Developers report that they need better docu-
mentation that would inform them on how to write better transformation rules.7 A
better default configuration also is desired, and some tooling easing the understand-
ing of the automatic recompilation should help make the process less mysterious to
the users. Finally, a survey demonstrates several shortcomings of Deprewriter that
can be targeted in the future work (see Section 5.9).

5.9 Limitations and Discussion

5.9.1 Limitations in Presence of Extensibility

The approach presented in this chapter, works well for method-level API changes.
It has two main limitations: it does not support hook (in the sense of Hook-
Template Design pattern) changes and intertwined changes that should be done in
isolation. In addition, it does not support class nor instance variables deprecation.
We illustrate the situations:

Deprecation of hook methods. Often a framework requests that a programmer
overrides a given abstract method or method with a default [Alpert 1998]. Such
a method is often not directly used by the framework user but by the framework
internal logic following the Hollywood principle. For example the hook() method
in Figure 5.6 is only called by the method template() and should be overridden in
subclasses.

template
hook

Root

hook
User1

hook
User2

template
 …
 self hook
 …

hook
 …
 deprecated
 hook -> hook2
 …

Figure 5.6: A simple hook and template situation where the default hook method is
deprecated.

7At the time we performed the study presented in this chapter, no accurate documentation was
available, only some unit tests.

76 Chapter 5. Deprewriter: Transforming Deprecations

There are two problems with deprecating hooks:

• First, the fact that the redefinition of the hook in a subclass may simply not
invoke the original hook definition in the superclass containing the depreca-
tion declaration. In Figure 5.6, the method User1.hook() may not perform
a super call to execute Root.hook(). Therefore the runtime rewriting is not
executed and performed.

• The migration requires that redefined hook methods defined by the user
should be renamed to follow the new name of the hook method. In Figure 5.6,
deprecating hook() into hook2() should lead to the renaming of Root.hook()
into Root.hook2() and User1.hook() into User1.hook2() and User2.hook()

into User2.hook2().

Deprewriter does not handle this situation. In the context of library update,
Schäfer et al., [Schäfer 2008] proposed an approach to mine changes in the clients
of a framework, including the changes in subclasses, abstract hooks, etc. Their
work can serve as inspiration for detecting outdated overrides in client system and
rewriting them with transformation rules.

Deprecation of Polymorphic Methods. Since Deprewriter renames call-sites
based on callee-side deprecations, the developer must take special care of poly-
morphic call-sites to avoid incorrect rewrites. A polymorphic call-site is a call-site
where many potential methods may be invoked, depending on the type of the re-
ceiver object. Indeed, there could exist the situation where a call-site targets during
execution many methods, and that not all those methods are consistently depre-
cated. In that case, the first execution of a rewriting deprecation will rewrite the
call site, breaking the compatibility with other, seemingly polymorphic, yet non-
deprecated code. In our current solution, it is up to the developer to deprecate all
potential called methods of polymorphic call-sites.

Deprecating Intertwined Changes as Separated Single Changes. Some changes
may be intertwined in the sense that a resulting transformations may be confused
with another method to be migrated. For example, as we will discuss in Section 8.2,
in Commander,8 a command design pattern framework, the following replacements
were necessary: basicName should be renamed as name, and name as dynamicName.
However, basicName should not be replaced with dynamicName. Right now, our ap-
proach applies transformation rules one by one without a notion of a larger context.
And, they cannot handle this case since, for a given basicName message, it will be
rewritten down to dynamicName.

8https://github.com/pharo-spec/Commander2

5.9. Limitations and Discussion 77

Runtime Coverage. Deprewriter will only rewrite methods that are executed. If
a deprecated method call is not covered by runtime nor by unit tests, it will not be
rewritten. In that case, the only resort is static analysis and in such a case, devel-
opers get exposed to the limitations described in Section 5.2.2. Static analysis may
introduce runtime bugs, while not executing methods may leave them outdated.

Class Deprecation. The deprecation of classes is a feature that has been intro-
duced in Pharo 8 but got rather unnoticed. Its implementation and effective use
should be documented and evaluated. Prior to it, developers followed an ad-hoc
pattern. They defined the new class and let the deprecated class as a subclass of this
new class. Deprecating the usage of a class is definitively more than that behavior,
and it should be further studied. Deprewriter does not support class deprecation.

5.9.2 About the Rewriting Logic

Syntax. The definition of transformation rules is a bit verbose. It forces the de-
veloper to provide an antecedent that is exactly the one of the deprecated method,
while it could use the method signature. This can lead to mistakes due to mismatch
between the method signature and the rule antecedent. This can be solved using
some compile-time code manipulations. It is an improvement that we will address
in the future.

About Continuing the Deprecated Execution. Our solution does implement
call-stack replacement of deprecated method calls. When a deprecated method
is reached, its call-site in the caller method is rewritten and the execution of the
deprecated method continues. Indeed, the replacement(s) specified in the rewrite
transformation are not called just after the deprecation transformation is applied.
Because of this limitation, developers must re-run their tests to verify that the
rewriting did not break them.

A future work is to investigate if it is possible to perform on-stack replacement
and support execution of the new method from the deprecated call-site. However,
this is challenging: the number and types of the arguments may differ between
the old and new versions. New arguments may need to be computed, and old
arguments removed. A deeper analysis is required to know which elements on the
stack should stay or be replaced by other elements (potentially resulting from other
messages sent).

About AOP and Automatic Deprecations. The way in which deprecations and
deprecation transformations are expressed are orthogonal to our approach. In our
current implementation, we have decided to add deprecation annotations next to

78 Chapter 5. Deprewriter: Transforming Deprecations

the deprecated methods to make it simpler to manage. However, as mentioned
in Section 5.6, our approach is also implementable using AOP frameworks: it is
feasible to instrument the deprecated methods through weaving.

5.9.3 Discussing Survey Results

In this section, we discuss the factors that might have affected the result of the
survey. We have identified a number of characteristics of the Pharo community and
the way the survey has been done.

We consider that these elements do not affect the validity of the presented sur-
vey nor the validity of the proposed solution. However, these should be taken in
account.

As the application of a tool and its perception by the community is affected
by the culture and nature of the community, language, and platform; the presented
result might not produce the same results when extrapolated to other languages and
communities.

Integration with other Tools. The presented approach is integrated with the
other tools existing in Pharo. The effects of Deprewriter are visible through all
other tools in the IDE. For example, the versioning system tool is able to correctly
identify the changes performed by Deprewriter and show them to the user to com-
mit them. This natural integration with the tools may minimize the negative impact
of the users seeing their code rewritten by its execution.

Integration in Different Versions. The tool has been integrated in Pharo 6, 7,
8, and 9 alpha. This might have minimized the impact of self-changing code to
the users. The users are not surprised by the error messages or the modification
appearing in the code, as they have internalized that this is normal behavior of
Pharo. This might explain the high percentage of positive answers and the lack of
answers describing it as surprising.

High Occurrence of Deprecations. The tool and its analysis have been applied
on Pharo as shipped by the consortium. The Pharo community presents the char-
acteristics of the continuous evolution of its APIs and implementations. The high
occurrence of deprecations is an example of this, also the users of Pharo are used
to find more and newer features in it. Pharo users not only are used to these mi-
grations, but also they want to keep using the latest versions, even some using the
version currently under development. So, this may explain the need for an auto-
matic tool and the general good reception of it from the users.

5.10. Chapter Conclusion 79

Bias for the Topic. The survey was open, and developers replied to it based on
their time and free will. Therefore, it probably attracted developers that were con-
cerned by the problems or that already used the deprecation mechanisms. This
would explain some high percentage of positive answers.

Lack of Tool and Knowledge. The usability of the rewrite engine may be a con-
cern because there is no up to date documentation nor a dedicated tool to support
the definition of rewriting deprecations. Developers proceed often by copy and
paste existing deprecations and limit themselves to simple rewriting. It is our fu-
ture plan to evaluate the impact of such tooling on the rule expressions.

Openness and Discoverability. Pharo users are used to discover tools, how they
should be used, and their inner-workings by exploring the implementation, existing
uses, and tests. This is a product of the open nature of Pharo, as all the code of the
system and libraries is accessible from the IDE. This culture may have limited the
fact that the tool did not have any proper documentation and that such absence of
documentation hampered its use by unfamiliar developers.

5.10 Chapter Conclusion
In this chapter, we presented a solution developed in joint work with the Pharo
consortium to support deprecation for API changes within a dynamically-typed
language and its ecosystem. The library developer annotates the changed method
with a transformation rule. During client program execution, Deprewriter uses the
rule to find the call site of the deprecated method, then it rewrites and recompiles
on the fly the method that called the deprecated method. Client developers can then
assess the produced changes and version their updated code.

We presented an analysis of the 367 deprecations available in Pharo 8. Among
them, we analyzed 218 rewriting deprecations to understand how they were used.
Finally, we performed a user survey to understand the use pattern among developers
programming in Pharo. We collected information from 46 software developers:
some knew Deprewriter and used it to rewrite their code, others wrote rewriting
deprecations, and finally, some developers were not aware of Deprewriter. 28 out
of 46 (60%) developers reported that the rewriting deprecations helped them, while
10 stated the inverse and 8 were uncertain.

Deprewriter only supports the deprecation of methods, and in the future, we
would like to propose a solution for classes and instance variables, as well as offer
solutions for the limitations of the Deprewriter approach which we discussed in
Section 5.9.

CHAPTER 6

DepMiner: Helping Library
Developers to Deal with Breaking

Changes

Contents
6.1 Introduction . 81

6.2 Why Support Library Developers? 83

6.3 DepMiner Approach . 84

6.4 Evaluation . 87

6.5 Limitations of Our Approach . 92

6.6 Chapter Conclusion . 93

6.1 Introduction

In Chapter 5, we have discussed Deprewriter [Ducasse 2022] — a powerful depre-
cation engine provided by Pharo. It allows library developers to add transformation
rules to their method deprecations specifying the replacements. When a depre-
cated method is invoked, Deprewriter identifies the call-site at run-time and uses
the rule to update the client code without interrupting its execution [Roberts 1996,
Roberts 1997, Renggli 2010b].

However, developers of real projects do not always follow good deprecation
practices. They tend to introduce breaking changes to the APIs by renaming or re-
moving certain classes, methods, or fields without deprecating them first [Xavier 2017a,
Xavier 2017b,Brito 2020]. Also, as we have mentioned in Chapter 3, several large-
scale studies of popular software projects have revealed that the proportion of dep-
recations that contain a helpful replacement message (in a form of comment, string,
annotation, etc.) is only 66.7% for Java, 77.8% for C# [Brito 2018b], and 67% for
JavaScript [Nascimento 2020].

82 Chapter 6. DepMiner

In this chapter, we will be dealing with one aspect of the library update prob-
lem: automatically infering the replacements for deprecated methods, based on
the commit history. As we have discussed in Chapter 3, multiple approaches have
been proposed to support client developers in this task. Dig et al., [Dig 2006a]
proposed to detect refactorings between the two versions of the library based of
the textual similarity of source code and the similarity of references. Schaffer et
al. [Schäfer 2008], Dagenais et al., [Dagenais 2008], and Hora et al. [Hora 2014]
mined frequent method call replacements in the commit history of a library to learn
how it adapted to its own changes. Pandita et al., [Pandita 2015] and Alrubaye et
al., [Alrubaye 2019] used a similar technique to help client developers replace de-
pendencies to one library with dependencies to another one. Teyton et al. [Tey-
ton 2013] and Brito et al., [Brito 2018b] recommend replacements by learning
from client systems that have already updated their code.

We look at the problem from the perspective of library developers. We propose
an approach and a tool called DepMiner to help them identify breaking changes
before the release, understand when and by whom they were introduced, and find
the potential replacements that could be suggested to the clients. We propose rec-
ommendations in the form of transformation rules that can be used by Pharo’s
Deprewriter. Inspired by the existing approaches that were proposed to support the
client developers [Schäfer 2008,Dagenais 2008,Hora 2014], our approach is based
on the frequent method call analysis. The main differences are: (a) we recommend
replacements before the release which makes it impossible to rely on the clients
that were already updated; (b) Pharo is a dynamically-typed language, which means
that we can not rely on type information when analyzing method call replacements;
(c) Pharo has no explicit method visibility (i.e., public or private specifiers), which
makes it hard to define the API. DepMiner can be extended to work with other in-
creasingly popular dynamically-typed languages such as JavaScript, Python, Ruby,
etc.

To evaluate our approach, we applied DepMiner to 5 diverse open-source projects
that were implemented in Pharo and suggested its recommendations to the develop-
ers of those projects. 138 recommendations generated by our tool were confirmed
by developers. 63 generated deprecations were accepted as pull requests into the
projects.

The contributions of the work presented in this chapter are the following:

1. We proposed an approach to recommend transformation rules for Deprewriter
based on the commit history.

2. We implemented our approach as an open-source tool for Pharo.

3. We performed a first evaluation of our approach with developers of five open-
source project.

6.2. Why Support Library Developers? 83

The results presented in this chapter were published at the International Con-
ference on Software Reuse (ICSR 2022) [Zaitsev 2022a].

The rest of this chapter is structured as follows. In Section 6.2, we discuss the
problem of supporting library developers and the challenges that arise when dealing
with this problem in Pharo. In Section 6.3, we describe our proposed approach
and explain the underlying data mining algorithm. In Section 6.4, we evaluate
our approach by comparing the generated transformation rules to the ones that are
already present in the source code and by performing a developer study. Finally, in
Section 6.5, we explain the limitations of our approach.

6.2 Why Support Library Developers?

In Chapter 5, we discovered that out of 367 valid deprecations in Pharo 8, 149
deprecations (41%) do not contain transformation rules. Out of those 149 non-
transforming deprecations, 33 (22%) can have a simple transformation rule that can
be generated automatically; 47 deprecations (32%) require developers with project
expertise to provide extra information (additional argument, default value, etc.) and
write a rule manually; the other 69 deprecations (46%) do not have a replacement
and can not be expressed with a transformation rule. This indicates that develop-
ers do not always write transformation rules for their deprecations even when it is
possible. Similar trends can be observed in other programming languages. As we
mentioned earlier, according to large-scale studies of software systems, the propor-
tion of deprecations that do not contain a helpful replacement message (in a form
of comment, string, annotation, etc.) is 33% for Java, 22% for C# [Brito 2018b],
and 33% for JavaScript [Nascimento 2020].

Those observations demonstrate the need for an automated tool to recommend
the replacement messages for method deprecations. There are two main challenges
when implementing such a tool for dynamically-typed programming languages:

Challenge 1: Absence of method visibility. Languages like Java and C++ have
public, private, and protected keywords that can help identify methods that are meant
to be used by clients and can be considered as part of the API. However, in lan-
guages like Python or Pharo all methods are public [Schärli 2004]. Sometimes
Python developers use underscores at the beginning of method names to mark
them as “private” but it is more of a good practice than a strict requirement and
this practice is not always followed. Although Pharo developers often adopt dif-
ferent practices to mark methods as private, none of those practices are universally
adopted by the Pharo community.

84 Chapter 6. DepMiner

Challenge 2: Absence of static type information. Pharo is a dynamically-typed
programming language [Suzuki 1981, Milner 1978]. The absence of static type in-
formation complicates the task of identifying correct method mappings between
the old and the new version because it is not easy to map method calls in the source
code to the actual method implementations. We also do not know the argument
types. This has an important implication that we can get a combinatorial explo-
sion when analysing a sequence of messages. The research community has pro-
posed type inference for dynamically-typed languages [Suzuki 1981, Furr 2009,
Ren 2016, Spoon 2004, Pluquet 2009, Passerini 2014] or use dynamic type infor-
mation collected by the Virtual Machine to get concrete types [Milojković 2016].
But such type inferencers often do not cover the full language [Suzuki 1981] or are
not applicable to large code bases [Spoon 2004]. In this study, we do not perform
type inference and consider that the type information is missing, which constitutes
a challenge for the data mining algorithm.

6.3 DepMiner Approach
We propose to assist library developers in the task of detecting the missed depreca-
tion opportunities and finding proper replacements for the deprecated methods by
mining frequent method call replacements from the commit history. Our approach
consists of four steps:

1. Identifying the methods that belong to the old API and the new API of the
project.

2. Collecting the database of method call replacements from the commit history.

3. Mining frequent method call replacements using the A-Priori algorithm for
frequent itemsets mining.

4. Generating deprecations with transformation rules.

Identifying Methods of the Old and the New API. As we have discussed in
Section 6.2 (Challenge 1), all methods in Pharo are public in the sense that clients
can access them, however not all of those methods are meant to be used. To deal
with this challenge, we define several categories of methods in Pharo that can be
considered private: (a) initialize methods — they act like constructors in Pharo; (b)
unit test methods, including setUp, tearDown, and methods of mock classes; (c) ex-
ample methods; (d) baseline methods — define project structure and dependencies;
(e) help methods — a form of documentation; (f) methods in “private” protocols1

1Methods in Pharo are organised into protocols — named categories that facilitate navigation
through source code.

6.3. DepMiner Approach 85

— any protocol that includes the word “private”. We implemented heuristics to
infer the visibility of methods in Pharo and released them in a public repository2.
With that information, we define two sets of methods: APIold — “public” methods
in the old version, and APInew — “public” methods in the new version.

Collecting Method Changes from the Commit History. Given the history of
commits between the old version and the new version, we extract method changes
from every commit. A method change describes how one specific method was
changed by a given commit. For each method change, we parse the source code
of a method before and after it was changed and extract a set of method calls from
each version. As a difference between those two sets, we get the sets of deleted
and added method calls for every method change. We remove all deleted method
calls that were not part of APIold and all added method calls that are not part of
APInew. Because Pharo is a dynamically-typed language, we do not know which
implementation of a method will be executed (see Section 6.2, Challenge 2). As a
result, many method calls in our dataset are false positives, because they call the
method with the same name as the one in APIold or APInew, but in reality that
method is called from a different library (e.g., methods such as add() or asString()
can be implemented by different classes). To deal with this problem and reduce the
noise in our data, we choose a threshold K and remove all method changes that
have more than K added or more than K deleted method calls (by experimenting
with different values of K, for this project we selected K = 3). We also removed
all calls to highly polymorphic methods such as = and printOn:. Finally, we removed
all method changes for which either the set of deleted or the the set of added calls
was empty.

Mining Frequent Method Call Replacements. After collecting the dataset of
method changes from the commit history, we apply a data mining algorithm for
market basket analysis to find all frequent subsets of method call replacements.
This technique was inspired by the work of Schäfer et al., [Schäfer 2008], Hora et
al., [Hora 2014], and Dagenais et al., [Dagenais 2011] who proposed similar history-
based approaches to support the clients of Java libraries. In terms of market bas-
ket analysis, each method change can be represented as a transaction or an item-
set. To do that, we merge the sets of added and deleted calls in a method into a
single set. For example, {deleted(isEmpty), deleted(not), deleted(add), added(new),
added(isNotEmpty) }. By selecting a minimum support threshold minsup, we can
use a data mining algorithm such as A-Priori, Eclat, or FP-Growth to find all com-
binations of method calls that appear in different method changes at least minsup

times (frequent itemsets). In this study, we decided to use the A-Priori algorithm

2https://github.com/olekscode/VisibilityDeductor

https://github.com/olekscode/VisibilityDeductor

86 Chapter 6. DepMiner

because it is well-known and easy to implement. Then we construct association
rules by putting all deleted method calls into the antecedent (left hand side) and
all added method calls into the consequent (right hand side). We remove the rules
with empty antecedent or empty consequent. For each association rule I → J , we
calculate its confidence — the probability that a set of deleted calls I appear jointly
with added calls J and not with something else:

confidence(I → J) =
support(I ∪ J)

support(I)

We select a confidence threshold minconf and filter out all association rules
that do not reach this threshold. The current implementation of Deprewriter sup-
ports only one-to-one (one antecedent, one consequent) and one-to-many rules (one
antecedent, several consequents) — the ones that define the replacement of one
method call (the method from the old API that is being deprecated) with one or
more method calls. In other words, we use Deprewriter to replace the calls to one
deprecated method at a time. Therefore, we remove all many-to-one and many-to-
many rules from the collection of association rules.

Generating Recommendations. Based on two sets of methods, APIold and APInew,
and the collection of association rules Assoc, mined from the method changes, we
can now provide recommendations to library developers:

1. Proposed deprecations — we find all methods of the old API that were
deleted without being deprecated (every method m such that m ∈ APIold
and m /∈ APInew). If we can find at least one association rule in Assoc

that defines the replacement for a given method m, then we recommend to
reintroduce m into the new version of a project with deprecation and a trans-
formation rule if it can be generated.

2. Transformation rules for existing deprecations — first we identify all
manually deprecated methods from APInew that do not contain a transfor-
mation rule. For every such method m, if we can find at least one association
rule a ∈ Assoc that defines the replacement for m, we recommend to in-
sert the transformation rule into the deprecation of m either automatically
(in case the transformation rule can be inferred from a, as we will discuss
below) or semi-automatically (in case we can only show the association rule
a to developers and ask them to write a transformation rule manually).

Transformation rules of the form ‘@rec selector1: ‘@arg → ‘@rec selector2:
‘@arg can be generated automatically from the association rule such as {selector1:} →
{selector2:} only if:

6.4. Evaluation 87

Figure 6.1: Screenshot of the DepMiner tool.

• association rule is one-to-one (one deleted method call replaced with one
added method call),

• deleted and added method calls have the same number of arguments,

• deleted and added method calls are defined in the same class (and therefore
can have the same receiver).

If one of those conditions is not satisfied, the transformation rule can not be gen-
erated and must be written manually by a developer. In those cases, we only show
to developers the association rule together with the examples of method changes in
which those rules appeared and ask them to write a transformation rule manually.

6.4 Evaluation

We have implemented our approach in a prototype tool for Pharo called DepMiner.3

We have applied DepMiner to several open-source projects and asked core devel-
opers of those projects to review the recommendations produced by DepMiner.

6.4.1 Evaluation Setup

Selected projects. For this study, we have selected five open-source projects:

3https://github.com/olekscode/DepMiner

https://github.com/olekscode/DepMiner

88 Chapter 6. DepMiner

• Pharo4 — a large and mature system with more than 150 contributors, con-
taining the language core, the IDE, and various libraries.

• Moose Core5 — Moose is a large platform for data and source code analysis.
It consists of multiple repositories. In this study, we focus only on the core
repository of Moose.

• Famix6 — generic library that provides an abstract representation of source
code in multiple programming languages. Famix is part of the Moose project.

• Pillar7 — a markup syntax and tool-suite to generate documentation, books,
websites and slides.

• DataFrame8 — a specialized collection for data analysis that implements a
rich API for querying and transforming datasets.

We selected such projects because: (1) we were able to interview and ask main-
tainers to validate the proposed deprecations, (2) the projects evolved over several
versions and are still under active development, (3) we wanted to compare the
performance of DepMiner on the projects with different maturity and complexity
levels.

We classify the projects selected for this study into three types (see Table 6.1):

• Tool — a project that is designed for the end users (in the experiment:
Moose, Pillar). For example, a text editor, a website, or a smartphone app.
In many cases, APIs of those projects do not change that much (e.g. poorly
named method that is not called by external projects might not be renamed)
and when they do change, deprecations are rarely introduced.

• Library — a project that is supposed to be used as dependency by other
projects (in the experiment: Famix, DataFrame). For example, a data struc-
ture, a networking library, or a library for numeric computations. Projects of
this type must have a stable API and good versioning. They are most likely
to introduce deprecations.

• SDK — a special type of project that describes Pharo. It is a combination of
multiple different projects. Pharo has many users and even small changes to
API can break software that is built with Pharo. This means that deprecations
are very important for this type of projects.

4https://github.com/pharo-project/pharo
5https://github.com/moosetechnology/Moose
6https://github.com/moosetechnology/Famix
7https://github.com/pillar-markup/pillar
8https://github.com/PolyMathOrg/DataFrame

https://github.com/pharo-project/pharo
https://github.com/moosetechnology/Moose
https://github.com/moosetechnology/Famix
https://github.com/pillar-markup/pillar
https://github.com/PolyMathOrg/DataFrame

6.4. Evaluation 89

Table 6.1: Selected software projects

Project Type Old version New version Commits
Pharo SDK v8.0.0 af41f85 3,465
Moose Core Tool v7.0.0 v8.0.0 1,519
Famix Library a5c90ff v1.0.1 948
Pillar Tool v8.0.0 v8.0.12 508
DataFrame Library v1.0 v2.0 225

Two versions of each project. To mine the repetitive changes and propose dep-
recations, we must first select two versions of each project: the new version for
which we will propose the deprecations and the old version to which we compare
the new version of the project. All patterns will then be mined from the slice of
the commit history between those two versions. Table 6.1 lists the two versions of
each project that we have loaded as well as the number of commits between those
two versions.

Mining frequent method call replacements. We used DepMiner to mine fre-
quent method call replacements from the histories of those projects and recommend
deprecations with transformation rules. In Table 6.2, we report the minimum sup-
port and minimum confidence thresholds that were used to initialize the A-Priori
algorithm. The minimum support threshold for each project was selected experi-
mentally. We started with a large support threshold = 15 (meaning that we are only
interested in replacements that happened at least 15 times) and decreased it until the
number of generated recommendations seemed sufficiently large. The confidence
threshold was selected based on the number of method changes and the number of
rules that DepMiner generated for a selected support value. For Pharo and Famix
we can expect rules with confidence of at least 0.4. For other projects, we limit
confidence to 0.1. In the last two columns of Table 6.2, we present the number of
association rules (frequent method call replacements) that were found by DepMiner
given the settings discussed above, and the number of rules that can automatically
generate the transformation rules of the form ’@rec deletedSelector: ’@arg → ’@rec
addedSelector: ’@arg (only one-to-one rules where deleted and added selectors have
the same number of arguments).

6.4.2 Evaluation by Project Developers

We have performed a first developer study of our tool involving the core developers
from each project listed in Section 6.4.1. We asked 4 developers with different
areas of expertise to validate the recommendations generated for Pharo and one
developer for each of the other 4 projects (two developers had expertise in two

90 Chapter 6. DepMiner

Table 6.2: Association rules mined from the commit history

Project Min sup. Min conf. Assoc. rules Transforming
Pharo 5 0.4 377 152
Moose Core 2 0.1 88 40
Famix 4 0.4 149 60
Pillar 2 0.1 49 16
DataFrame 5 0.1 22 7

projects each so in total, our study involved 6 developers).
To each developer, we showed the pretrained DepMiner tool with recommended

methods to deprecate and recommended transformation rules to insert into the ex-
isting deprecations. The developers had to select the changes which, in their opin-
ion, should be merged into the project. DepMiner allows its users to browse mul-
tiple version of the project as well as the commits history. Each recommendation
is supported by the list of commits in which the given method call replacement has
appeared. This allowed developers who participated in our study to make an in-
formed decision. For the Pharo project we considered a recommendation accepted
if it was accepted by at least one developer (because different developers might
know different parts of the whole system).

Proposed deprecations. Table 6.3 reports the numbers of deprecations that were
recommended to developers for each project (column Recommended), the number
of those recommendations that were accepted (column Accepted), and the num-
ber of those accepted recommendations that contain an automatically generated
transformation rule (column Transforming). Each recommended deprecation is a
method that was deleted from the project without being deprecated first and which
we propose to re-introduce with the recommended replacement.

Table 6.3: Number of recommended deprecations accepted by developers

Project Recommended Accepted Transforming
Pharo 113 61 56
Moose Core 33 1 1
Famix 87 68 28
Pillar 1 0 0
DataFrame 11 4 4

One can see that DepMiner was very effective in generating recommendations
for Pharo (113 recommendations, 61 accepted), Famix (87 recommendations, 68
accepted), and DataFrame library (11 recommendations, 4 accepted) but rather in-

6.4. Evaluation 91

effective on Moose Core (33 recommendations, 1 accepted) and Pillar (1 recom-
mendation, 0 accepted).

The different performance on those projects can not be explained by their size.
For example, the DataFrame project is the smallest one on our list, but out of 11
deprecations generated by DepMiner, 4 deprecations were accepted. On the other
hand, for the Pillar project, which is 10 times larger in terms of the number of
methods, only 1 deprecation was generated and it was not accepted. Further study
is required to explain the differences between DataFrame and Pillar, but we can
speculate that bad performance on Pillar is caused by the low variability of API.
Methods of DataFrame were often renamed, removed, or reorganised, which was
reflected in test cases and picked up by DepMiner. On the other hand, the API
of Pillar remained stable even though new functionality was added to it and many
bugs were fixed.

Missing rules. The other type of recommendations that we showed to develop-
ers were transformation rules for existing non-transforming deprecations. Table 6.4
reports the number of existing deprecations that are missing a transformation rule,
the number of recommendations that DepMiner managed to generate for those dep-
recations, and finally the number of recommendations that were accepted by devel-
opers.

Table 6.4: Number of missing rules accepted by developers

Project Missing Recommended Accepted
Pharo 189 6 2
Moose Core 2 0 0
Famix 27 2 2
Pillar 0 0 0
DataFrame 0 0 0

Deprecations that were introduced without a transformation rule represent ei-
ther complicated cases for which the transformation rule can not be provided (e.g.
method was deleted without replacement) or simple cases for which developers
forgot to write a rule. As we could see in Chapter 5, for 22% of non-transforming
deprecations the transformation rule could be generated automatically (assuming
that we know the correct replacement), the other 78% of non-transforming depre-
cations require a complex rule that must be written manually. DepMiner proposed
6 transformation rules for existing non-transforming deprecations in Pharo (2 of
which were accepted) as well as 2 transformation rules for Famix (both were ac-
cepted).

Depminer was able to find only 2 transformation rules for 189 non-transforming
deprecations in Pharo 9. By contrast, as we reported in Chapter 5, human devel-

92 Chapter 6. DepMiner

opers found 33 rules out of 149 non-transforming deprecations in Pharo 8. In the
next chapter, we will propose an improvement to this approach.

Pull Requests. Out of 5 projects that we used in our study, only Pharo Project was
preparing an upcoming release. We applied DepMiner to the latest commit of the
development version of Pharo and this allowed us to submit the recommendations
that were confirmed by developers as pull requests. All 61 confirmed deprecations
and 2 confirmed transformation rules for existing deprecations were merged into
the v9.0.0 release of Pharo.

6.5 Limitations of Our Approach

Unused/untested methods. Our approach is based on library’s usage of its own
API. This means that we can not infer anything for methods that are not used by
the library itself but only intended for clients. Test cases play the role of clients of
the library’s API, so for the methods that are well tested, we can have enough input
to identify the correct replacement for them. But if a method is not used by the
library and not covered by test, then its deletion or renaming will not be reflected
anywhere else in the source code. To overcome this limitation, one can combine
the DepMiner approach for mining frequent method call replacements with the
detection of refactorings (see Chapter 7).

Searching the entire commit history. As all previous studies of library update
through mining frequent method call replacements that we discussed in Chapter 3,
DepMiner approach mines the entire commit history to find replacements for the
method that was removed. One can overcome this limitation by identifying the
commit in which the given method was removed and then only searches for method
call replacements in the smaller subset of neighboring commits (see Chapter 7).

Unordered set of method calls. Our tool is based on mining method call re-
placement by comparing the set of calls that were deleted from the source code of
a modified method to the set of calls that were added to it. We do not take into
account the order of method calls, the distance between them or how they are com-
posed: a().b() or a(b()). This is a limitation of our approach because: (1) sometimes
deleted and added method calls are located far away in source code and not related
to each other; (2) if one method call is being replaced with two or more method
calls, we do not know how they should be composed. Overcoming this limitation
is beyond the scope of this thesis.

6.6. Chapter Conclusion 93

Reflective operations. Modern programming languages offer reflective opera-
tions [Richards 2011, Callau 2011]. They allow developers to invoke methods
programmatically and create generic and powerful tools. However, since some
methods can be invoked reflectively for example passing the name of the method
to be invoked in a variable, when a different argument is passed to a reflective call,
our tool cannot identify such change. Most static analysers ignore such case [Bod-
den 2011]. Overcoming this limitation is beyond the scope of this thesis.

6.6 Chapter Conclusion
Method deprecation is a powerful technique for supporting the evolution of soft-
ware libraries and informing client developers about the upcoming breaking changes
to the API. In this chapter, we presented an approach to mine the frequent method
call replacements from the commit history of a library and use them to recommend
method deprecations and transformation rules. We implemented our approach for
the Pharo IDE in a tool called DepMiner. We applied our tool to five open-source
projects and asked 6 core developers from those projects to accept or reject the
recommended changes. In total, 134 proposed deprecations were accepted by de-
velopers as well as 4 transformation rules for the existing deprecations. 61 new
deprecations and 2 transformations rules for existing deprecations were integrated
into the Pharo project.

CHAPTER 7

First Steps Towards a Holistic
Approach

Contents
7.1 Introduction . 95

7.2 Different Types of Support . 97

7.3 The Shortcomings of Existing Approaches 99

7.4 Understanding the Needs of Library Developers 101

7.5 Overcoming the Limitations of DepMiner 103

7.6 Holistic Approach to Deal with Breaking Changes 106

7.7 Chapter Conclusion . 108

7.1 Introduction
Library developers can reduce the negative effect of breaking changes with dep-
recations [Robbes 2012a, Sawant 2016] and clear documentation that explains all
API inconsistencies and suggests replacements. However, changes are not always
documented at the same time when they are introduced. Different developers at
different stages of library evolution can rename methods, move them to a differ-
ent class, merge or split classes, reorganize packages, etc. Those changes affect the
API but they are often documented at the end of the library release cycle by the per-
son who cleans up the code and writes the release notes. At that point, it can be hard
to remember all the changes, understand them, and find replacements. Especially
in large open-source libraries that change very fast and have many contributors.

As we have discussed in Chapter 3, various approaches have been proposed
to help client developers identify the replacements for public methods that are no
longer present in the new version of a software library [Kim 2007, Xing 2007,
Schäfer 2008, Wu 2010, Dagenais 2011, Meng 2012, Teyton 2013, Hora 2014]. In
our work, we focus on how we can help the library developers to support their
clients and reduce the negative effect of breaking changes before releasing the new

96 Chapter 7. First Steps Towards a Holistic Approach

version of a library. The DepMiner tool that we presented in Chapter 6, recom-
mended transformation rules and generated method deprecations that library de-
velopers could insert into their code.

Our approach was based on the assumption that library developers are always
willing to deprecate methods instead of directly breaking backward compatibility.
However, as we have discovered while conducting the DepMiner experiment and
discussing with library developers from different open-source projects of Pharo
ecosystem, this is not always the case. There are situations when a transformation
rule exists but library developers prefer not to deprecate the method but remove
it directly. In Section 6.5, we have also identified several shortcomings of the
DepMiner approach, including: (1) inability of DepMiner to find replacements for
methods that are not used internally and not tested; (2) the inefficiency of searching
the entire commit history for method call replacements that were caused by the
removal of a specific method.

In this chapter, we discuss the first steps towards developing a more general
approach to help library developers support their clients. An approach that takes
into account different types of actions that library developers can take depending
on the specific scenario. We also propose the ways to overcome the two limitations
of DepMiner that were mentioned above. Implementation and validation of the
holistic approach will be the focus of our future work.

The main contributions presented in this chapter are:

1. Identification of the six responses that library developers can have to break-
ing changes.

2. Discussion of the possible adaptations of the DepMiner approach that would
overcome some of its limitations and improve its efficiency in detecting re-
placements for removed methods.

The rest of this chapter is structured as follows. In Section 7.2, we discuss the
different strategies of library developers to reduce the negative effect of breaking
changes and two families of approaches that have been proposed to support devel-
opers in the task of library update. In Section 7.3, we discuss the shortcomings
of existing approaches. In Section 7.4, we present our first contribution — the
breakdown of different scenarios and different actions that can be taken by library
developers to reduce the effect of breaking changes. In Section 7.5, we present
our second contribution — the adaptations of the DepMiner approach to mine re-
placements for the API-breaking methods. In Section 7.6, we describe the holistic
approach to help library developers deal with breaking changes.

7.2. Different Types of Support 97

7.2 Different Types of Support

In this section, we discuss the strategies that library developers use to reduce the
negative effect of breaking changes on clients. Then we review several approaches
that were used to help client developers update their software to the new version of
a library that was released with breaking changes.

7.2.1 Strategies of Library Developers to Reduce the Negative
Effect of Breaking Changes

Based on the analysis of Java libraries, Xavier et al., [Xavier 2017a] report that on
median 14.78% of all API changes break compatibility with clients. As indicated
by the study of the StackOverflow questions reported by Brito et al., [Brito 2019],
breaking changes have an important impact on the API clients as 45% of the anal-
ysed questions related to breaking changes are from client developers trying to
overcome their negative effects. The process of updating the client application to
the new version of a library can be error-prone and time consuming. To help client
developers in this task, library developers use several strategies to reduce the neg-
ative impact of breaking changes:

Strategy 1: Deprecations. Instead of removing a method in release n, it is marked
as deprecated (“to be removed”) and only actually removed in a future release
n+k. Client systems that use the deprecated method receive a deprecation warning
which gives developers time to update their code. Besides notifying that the method
should not be used, library developers can also inform clients of the alternatives in
the new API that can be used instead (we refer to them as “replacements”) using
one or multiple practices:

– Replacement messages. Developers can supply deprecations with messages
that suggest a replacement for an obsolete item (e.g., a comment or a warning
message “Method x() is deprecated, use y() instead”).

– Annotations with references. Some programming languages provide anno-
tations that can be added to deprecations and reference the replacement in
source code (e.g., in Java, the @Deprecated annotation or @deprecated Javadoc
tag, combined with @link or @see tags).

– Transformation rules. The Deprewriter approach, that we discussed in Chap-
ter 5, allows library developers to add transformation rules to method depre-
cations that will be used to automatically fix the client code.

98 Chapter 7. First Steps Towards a Holistic Approach

Adoption: In practice, library developers often decide to remove functional-
ity without deprecation. Hora et al., [Hora 2015] report that 59 out of 118 API
changes that they analysed are a missed deprecation opportunity. According to
Brito et al., [Brito 2019], the most common reason for that is the fear of increasing
the maintenance effort (e.g., developers believe that the breaking change will not
affect many clients and deprecations will only add complexity and maintenance
issues). Several large-scale studies of popular software projects have revealed that
the proportion of deprecations that do not contain a helpful replacement message
(in the form of a comment, string, annotation, etc.) is 33% for Java, 22% for
C# [Brito 2018b], and 33% for JavaScript [Nascimento 2020].

Strategy 2. Documenting the breaking changes. It is a good practice to docu-
ment the breaking change in the release notes, explain why the functionality was
removed, and suggest a replacement or workaround that can be applied by client
developers to fix their code.

Adoption: In our survey of library evolution (see Chapter 4), library develop-
ers identified documentation as the most common practice that they use to support
client developers. Client developers in our survey identified documentation as the
most important factor that makes library update easy and the absence of documen-
tation as the main factor that makes library update hard.

7.2.2 Automated Tools to Support Developers

As we have discussed in Chapter 3, in recent years many approaches have been
proposed to support client developers in the process of library update by analysing
source code and mining the commit history. In this thesis, we claim that similar
techniques can be proposed to help library developers better support their clients.
We take a closer look at two families of approaches:

1. Detecting the refactorings. According to Dig et al., [Dig 2006b], more than
80% of breaking changes are refactorings. Many of those refactorings, if
detected correctly, can suggest a specific replacement for the removed func-
tionality on the client side. Dig et al., [Dig 2006a] proposed an algorithm
to detect refactorings between the two versions of the library based of the
textual similarity of source code and the similarity of references.

2. Analysing frequent method call replacements. There are several approaches
to deal with the remaining 20% of breaking changes that are more com-
plex than those caused by the common refactoring operations. Dagenais et
al., [Dagenais 2011] and Hora et al., [Hora 2014] mine the commit history

7.3. The Shortcomings of Existing Approaches 99

to analyse how the self-usage of library changed when a method was re-
moved. Other approaches extract information from already updated client
systems [Schäfer 2008, Teyton 2013].

The DepMiner approach, that we presented in Chapter 6, is based only on the
analysis of frequent method call replacements. This leads to the limitations of our
approach that were mentioned above and will be discussed in more detail in the
following section. In this chapter, we propose to improve the DepMiner approach
by combining the analysis of frequent method call replacements with the detec-
tion of refactorings. Such a combination was inpired by the work of Dagenais et
al., [Dagenais 2011].

7.3 The Shortcomings of Existing Approaches

There are several aspects that are often overlooked by the studies that focus on
recommending replacements. In this section, we first mention two shortcomings
of DepMiner that will be addressed in the rest of this chapter. Then we discuss the
shortcomings of the rule-based approaches to support developers in the problem of
library update.

Limitations of the DepMiner approach. The approach that we presented in
Chapter 6, suffers from several limitations that we discussed in Section 6.5. Some
of those limitations, such as reflective operations or the order of method calls are
outside the scope of this thesis. The other two limitations will be addressed in this
chapter:

1. Unused/untested method. The idea of mining frequent method call replace-
ments is based on the assumption that after renaming or removing a method,
the library reacts to this change by updating all references to that method in
its own code. While this assumption holds for the methods that are used in-
ternally or covered by unit tests, there are also methods that are only meant
for clients and never used by the library itself. The replacements for such
methods can not be identified by the analysis of frequent method call re-
placement. To overcome this limitation, we propose to extend the DepMiner
approach with the detection of refactoring operations.

2. Searching the entire commit history. Like many similar approaches, Dep-
Miner searches for frequent method call replacements through the entire
commit history. However, if we assume that those replacements are caused
by a specific breaking change that was introduced in commit C, then it is

100 Chapter 7. First Steps Towards a Holistic Approach

more likely that the effect of this change will occur in the neighbouring com-
mits (the ones that come just before or after commit C). We propose to
improve the precision of DepMiner by searching a smaller local subset of
commits.

Shortcomings of the rule-based studies. Most studies that we discussed in Chap-
ter 3, as well as the DepMiner approach, are based on mining rules that can be
applied to client code and replace one or multiple method calls with other method
calls. Such rule-based approaches suffer from the following shortcomings:

1. Not every breaking change has a replacement. Although the majority of
changes in software libraries are due to refactorings [Dig 2006b], there are
situations when libraries stop performing certain operations either because
they are delegated to other external libraries or because the functional respon-
sibilities of the library are reduced or changed. For example, DataFrame v1.0
provided methods for visualizing data frames: barplot, scatterplotMatrix, etc.
In version v2.0, developers decided to drop support for visualizations. And
now, even though the same visualizations can be created using an external
library, there are no replacements for the removed methods in the DataFrame
project.

2. Developers may not want to deprecate or document. There are situations
when library developers do not want to deprecate a public method that was
removed. We witnessed multiple such cases while performing the DepMiner
experiment described in Chapter 6: even though the transformation rule pro-
posed by our tool was correct, developers did not want to introduce the dep-
recation. They believed that the removed method is not supposed to be used
by clients and that adding a deprecation would only increase the complexity
of the code.

3. Some replacements can be hard to express with rules. Although many break-
ing changes can be expressed in the form of transformation rules such as
the ones described in Chapter 5, there are also changes during library evolu-
tion that require more complex changes to the client code. For example, if
a method is moved to a different class, then not only the method calls must
be replaced, but also the code that instantiates the receiver. Creating an in-
stance of a class is not always an easy task. If an extra argument was added
to the method call, client developers must provide a value for that argument.
There are also breaking changes that are not caused by refactorings but by
a complex combination of architectural and functional changes in the source
code of the library. In Chapter 8, we will report several challenging cases of
library update and discuss them in more detail.

7.4. Understanding the Needs of Library Developers 101

The shortcomings listed above make it difficult to apply rule-based tools for
library update to certain scenarios of library update. In those cases, library de-
velopers can rely on different strategies to support their clients, for example, by
documenting those changes, writing examples, and tutorials to help clients to up-
date. They can still benefit from the automated tools that extract knowledge from
the commit history, but the recommendations produced by those tools should be
more generic than method-to-method replacement rules.

7.4 Understanding the Needs of Library Developers

In the work that was described in Chapter 6, we proposed an approach to generate
deprecations with transformation rules. We conducted a study involving library
developers of five open source projects from the Pharo ecosystem. We have no-
ticed that multiple recommendations generated by our tool, although correct, were
rejected by library developers because they did not want to deprecate the given
method. Thus, by observing the behaviour of developers in this study and dis-
cussing with them the reasons for accepting or rejecting certain recommendations,
we have identified 6 possible scenarios that suggest the possible responses of li-
brary developers to breaking changes related to public methods.

We present those scenarios in Table 7.1. They are based on two factors:

1. Does the library developer want to deprecate a method? In some cases,
developers can mark the method as deprecated before removing it. This dep-
recated method may then be supplied with a comment or a transformation
rule that would help clients to update their code. In other cases, library de-
velopers prefer not to deprecate the affected method. When this happens, the
support must be placed elsewhere, for example in project documentation or
release notes.

2. What kind of replacement exists for the affected method? Some public meth-
ods that are affected by library evolution can be replaced with other methods
in the new version (for example, if a method was renamed or split in two).
It also happens that methods are removed without replacement (for example,
if the functionality is dropped). Some replacements can be expressed with
rules that can be used to automatically update client code — we call those
replacements automatable. Other replacements are more complex and can
not be expressed with rules — we call them non-automatable replacements.

Depending on the scenario, we suggest one of the following six responses to
breaking changes:

102 Chapter 7. First Steps Towards a Holistic Approach

Table 7.1: Different scenarios that occur when dealing with a breaking change.
The columns differentiate cases when a removed method has or does not have a
replacement as well as the automatability of the replacement. The rows describe
the willingness of the library developer to deprecate a method.

Method has an
automatable
replacement

Method has a
non-automatable
replacement

Method has no
replacement

Developer
wants to
deprecate

Deprecation with a
transformation rule

Deprecation with a
replacement
message

Deprecation
without a
replacement
message

Developer
does not
want to
deprecate

Library update
script with
transformation
rules

Documentation with
replacement
instructions

Documentation: list
of breaking
changes

• Add a deprecation with transformation rule. If developers agree to deprecate
the public method that needs to be removed, and a replacement on the client
code is automatable (can be expressed as a rule), then the most effective way
to support the clients would be to write a transforming deprecation that would
automatically rewrite client code when a deprecation warning is signalled
(see Chapter 5).

• Provide a library update script with transformation rules. If an automatable
replacement exists but library developers prefer to remove the method di-
rectly without deprecating it first, then the transformation rule can be sent to
clients in the form of a library update script — a piece of code that could be
executed by clients and update their system using the rules.

• Deprecate the method with a replacement message. If a replacement for a
method exists but it is not automatable, library developers can add a depre-
cation message in the form of a comment or a string, suggesting the replace-
ment to the clients and referencing relevant examples.

• Add replacement instructions to documentation. If library developers decide
not to deprecate, they can place the instructions on how to update into the
documentation of a library or its release notes.

• Deprecate the method without a replacement message. In case there is no
replacement for the obsolete method, library developers can deprecate it and

7.5. Overcoming the Limitations of DepMiner 103

explain in the comment or deprecation string the reasons why it was removed.

• Add the list of breaking changes to the documentation. In case the method
was removed without a replacement and library developers refuse to depre-
cate it, they can still help their clients by clearly listing this breaking change
in the documentation.

7.5 Overcoming the Limitations of DepMiner

In this section, we propose a way to overcome two limitations of DepMiner that
were discussed in Section 7.3.

7.5.1 Finding a Local Subset of Relevant Commits

The first limitation of DepMiner is that it searches the entire commit history to
find the frequent method call replacements caused by a breaking change, instead of
searching a local subset of commits in which this change happened. This is also the
limitation of the related approaches that were discussed in Chapter 3 [Schäfer 2008,
Teyton 2013, Hora 2014].

To overcome this limitation, we propose to conduct a more local search by
considering only the commit ci in which the method was removed, as well as k

previous and k next commits (see Figure 7.1).

C = {ci−k, . . . , ci, . . . , ci+k}

Parameter k, which defines the size of a subset of commits, can be adjusted
by the library developers to control the number of false positive and false negative
recommendations for every given project.

We hypothesise that, when a breaking change takes place, it is performed either
in a single commit or in a group of consecutive commits. This allows us to reduce
the number of potential candidates and the search complexity. If a method was re-
moved by a refactoring that was performed using a refactoring tool provided by the
IDE, the replacement will typically be added at the same time as the method is re-
moved. All references to the old method should also be replaced by the refactoring
tool at the same time. It is also possible that the method is removed and committed,
then the replacement is introduced and the references are updated in the following
commits. Finally, developers may be following a good practice of introducing the
replacement first before removing the old method. To capture situations like that,
we also search for candidate replacements in k previous commits.

104 Chapter 7. First Steps Towards a Holistic Approach

Previous
Approaches

ci

Search the entire commit history

We propose

ci

Search local subset of commits

ci-k ci+k

Figure 7.1: Mining the local subset of commits around the commit ci that intro-
duced a breaking change.

7.5.2 Detecting Refactorings that Removed a Method
The second limitation of DepMiner is its inability to recommend replacements for
methods that are not used internally by the library and not covered by unit tests.
When those methods are removed, there are no method calls in the library that
need to be updated, and therefore the mining of frequent method call replacements
will produce no results. To overcome this challenge, we propose to combine the
DepMiner approach with the technique to detect refactoring operations in the com-
mit history that is similar to the one proposed by Dig et al., [Dig 2006a]. This
combination is inspired by the work of Dagenais et al., [Dagenais 2011].

Most breaking changes are caused by refactoring operations such as renaming,
adding an argument, moving method to a different class, etc. [Dig 2006b]. Those
changes can be detected in the commit history. For example, if a method a() was
renamed to b(), there will be a commit that removed method a() and added method
b() with same (or almost same) source code.

For every API-breaking method m(), one must find the commit ci that removed
it and a surrounding subset of commits C (see Section 7.5.1), then do the following:

1. Find candidate replacements. Find all methods that were added by a com-
mit in C. Compute textual similarity between the removed method m() and
each of the added methods. Select added methods that pass the similarity
threshold T as candidate replacements for m().

2. Detect the possible refactorings. For every candidate replacement m′(), find
a refactoring R that explains the m → m′ replacement. In Table 7.2, we
present the list of considered refactorings.

In Table 7.2, we present the list of refactoring operations that we propose to
consider together with the conditions that can be used to detect them. Conditions

7.5. Overcoming the Limitations of DepMiner 105

Table 7.2: Refactoring operations that we consider in our analysis and the con-
ditions to detect them. In the examples, method A.m() is replaced with method
B.m′(). The first two operations are Name refactorings, because they affect the
name of a method or its signature, and the last three are Location refactorings, be-
cause they move the method to a different class or package.

Category Refactoring Condition Automatable?

Name

Rename Method (RM) m and m′ have different names
but same return type, number of
arguments, and argument types

Yes

Change Signature (CS) m and m′ have different
signatures (return types, number
of arguments, or type of
arguments)

No

Location

Rename Class (RC) if method A.m() was removed by
commit ci and B.m′() was added
by commit cj , then ci must
remove the class A and cj must
add the class B1

Yes

Push Down (PD) B is the subclass of A No

Move Method (MM) A and B are not connected by
class hierarchy

No

must be checked in the same order in which they appear in the table. Those are
the same refactorings that were analysed by Dig et al., [Dig 2006a] except the Pull
Up refactoring which does not break backward compatibility and therefore should
not be considered in the context of library update. In this case, for a given API-
breaking method A.m() and every candidate replacement method B.m′(), we try
to find the refactoring(-s) that could have caused the A.m → B.m′ replacement.

The first two refactorings belong to the Name category because they affect the
name of a method or its signature. The other three refactorings belong to the Lo-
cation category because they move a method to a different class or package. Two
refactorings from different categories can be combined in the same commit. For
example, a method can be moved to a different class and then renamed (MM+RM)
or pulled down into a subclass and have one of its arguments removed (PD+CS).
On the other hand, two refactorings from the same category cannot be detected in
a single commit because then they are indistinguishable from a single refactoring.
For example, if method a is renamed to b and b is renamed to c in the same commit,
then we will only see the a → c renaming. If method a is moved from class A

106 Chapter 7. First Steps Towards a Holistic Approach

to class B and then pushed down into a subclass C in the same commit, then we
will only see the Move Method(A.a → C.a) refactoring. So in addition to the 5
refactoring operations listed above, we also consider the 6 valid combinations of
those refactorings: RC+RM, RC+CS, PD+RM, PD+CS, MM+RM, and MM+CS.

Our approach is similar to the one proposed by Dig et al., [Dig 2006a]. How-
ever, unlike authors who compare two versions of source code, we propose to anal-
yse more granular changes by comparing every pair of subsequent commits in the
history of a project. This would allow not only to propose the replacement for a
removed method, but also to explain why and when each change was made, provid-
ing exact references from the commit history that can help the library developers
to make an informed decision.

7.6 Holistic Approach to Deal with Breaking Changes
In this Section, we propose a roadmap for a holistic approach to support library
developers dealing with breaking changes (see Figure 7.2). It is based on the Dep-
Miner modified with the two improvements proposed in Section 7.5 and used to
guide library developers respond to breaking changes in one of the six ways that
we proposed in Section 7.4.

Below are the steps of our approach:

1. Collect the data. Collect the history of changes between those versions and
the list of public methods in each version.

2. Detect breaking changes. Compare two versions of the API to find the meth-
ods that were part of the old version but are no longer present in the new
version of the library.

For every missing method A.m():

3. Find replacements.

– In the history of changes, find the last commit ci that removed method
A.m(). Select ci together with k previous and k next commits into a
subset of relevant commits: C = {ci−k, . . . , ci, . . . , ci+k}.

– Analyse C to find possible replacements for A.m() using the combina-
tion of two strategies: detecting the refactorings that removed A.m()

and mining frequent method call replacements to understand how the
library itself reacted to the removal of A.m().

– For every replacement method B.m′(), check if it is part of the new
API. If yes — recommend B.m′() as a valid replacement for A.m(). If

7.6. Holistic Approach to Deal with Breaking Changes 107

commit
history

old
API

new
API

high-level
changes

diff

Detect
refactorings

Mine frequent
method call

replacements

Insights:

- Public method A.m() is
missing in v2.0
- It was removed by Bob in
commit bbf21a1

Potential replacements:
(a) Rename(m -> n) then
 Rename(n -> p)
(b) Move(A -> B)

Removed
public methods

Step 1: Collect data Step 2: Detect breaking changes

Step 3: Suggest replacements

Library
Developer

Generator

Step 4: Review recommendations Step 5: Generate deprecations or documentation

Software Library

v1.0

v2.0

method 2

method 3

method 4

method 5

method 1

for
each

pull
requests

Deprecation

Documentation

local
subset of
commits

missing
method is in

new API ?
replacement yes

no

replacement is the new missing method

decisions

Figure 7.2: Holistic approach to help library developers identify breaking changes
before the release and reduce their negative effect on client systems.

108 Chapter 7. First Steps Towards a Holistic Approach

no — add B.m′() to the sequence of replacements and repeat this step,
now considering B.m′() as a missing method.

4. Review recommendations. Present the breaking change and the proposed re-
placements to library developers. Ask them to validate the recommendations
and select the appropriate response to handle the breaking change, based on
Table 7.1.

5. Generate deprecation or documentation. If developer wants to deprecate the
method, generate the deprecation, otherwise add this method to the list of
breaking changes in the release notes. If replacement exists, generate the
replacement message. If replacement is automatable, generate the transfor-
mation rule.

The development and validation of such an approach will be the focus of the
future work.

7.7 Chapter Conclusion
In this chapter, we discussed the first steps towards developing a holistic approach
to help library developers support their clients. We have discussed the needs of li-
brary developers and identified six responses that they can have to breaking changes
in their systems. We have also proposed the adaptations to the DepMiner approach
that would allow to overcome some of its limitations. Finally, we have proposed
the first sketch of a holistic approach to support library developers. Implementation
and validation of such an approach will be the focus of our future work.

CHAPTER 8

Case Studies of Challenging Library
Update Problems

Contents
8.1 Introduction . 109

8.2 Case 1: Reassigning the Existing Name 110

8.3 Case 2: Circular Renaming . 111

8.4 Case 3: Modifying Abstract Hooks 112

8.5 Case 4: Cleaning Up Spurious Objects 115

8.6 Case 5: When String Literals are Used as Identifiers 118

8.7 Chapter Conclusion . 119

8.1 Introduction
In addition to the survey that we presented in the previous chapter, we have dis-
cussed with the developers from Pharo community to collect the case studies of
challenging library update scenario. Those are the situations that are hard to han-
dle with current deprecation mechanisms or hard to automate with rules that could
be applied to client code (such as the Deprewriter rules that we presented in Chap-
ter 5).

What do we consider a “challenging” scenario? Most studies of library update
that were discussed in Chapter 3, as well as our studies that will be presented in
Chapters 6 and 7, focus on the simple case of method-to-method mapping. In
this model, two versions of a library can be represented as a collection of public
methods and the main question of the library update problem is how to find the
mapping between a public method in the old version and public methods in the
new version. The basic assumption is that by replacing one method call with a
new method call, we can overcome the negative effect of a breaking change and fix
the client code. Although, in many cases, this is true, there are also scenario that

110 Chapter 8. Case Studies of Challenging Library Update Problems

go beyond method call replacements. In this chapter, we try to document some of
those scenario for the purpose of future research.

How did we collect the scenario? We started by documenting several cases of
library update problem that were encountered by our colleagues. Then we wrote
an email to the mailing list of Pharo open-source community, asking developers to
report their experience with library update. We also added an open question about
challenging library update scenario to the survey that we discussed in Chapter 4.

8.2 Case 1: Reassigning the Existing Name
Description. This situation occurs when the name that is already used for one
software artifact has to be reassigned to another one. For example, “Rename a to
b” and then in parallel “Rename b to c” (see Figure 8.1). In this case, we assume
that a ̸= c. The more challenging scenario when a = c and thus two names are
being swapped will be discussed in Section 8.3.

a

b

b

c

Library v1.0 Library v2.0

Figure 8.1: Reassigning the existing name b to a different software artifact. In this
example, a is renamed to b and in parallel b is renamed to c.

Example. The example of such renaming was found in Commander21 — a second
iteration of a Pharo library that models application actions as first class objects
following the Command design pattern. In the old version of this library, class
CmCommand had two methods for getting the name of command:

• basicName — accessor for the name of command stored as a string. For
example, the command ’Switch’ can be used to turn on the lights if they are
off and turn off the lights if they are on.

1https://github.com/pharo-spec/Commander2

https://github.com/pharo-spec/Commander2

8.3. Case 2: Circular Renaming 111

• name — the hook that is called to generate the name dynamically. By over-
riding this method, developers can extend the command name with contex-
tual information. The ’Switch’ command from the previous example can have
a dynamic name ’Switch(on)’ that specifies if the lights will be turned on or
off.

On August 14, 2019, method name was renamed to dynamicName and method
basicName was renamed to name. This was a breaking change that could affect
many clients who used the above-mentioned methods.

Why is it challenging? Below are the reasons why the case of reassigning the ex-
isting name can be challenging in the contect of library update, both for developers
and for the automated tools:

• Most automated tools that are proposed in the related studies, apply transfor-
mation rules in an arbitrary order. This situation presents a scenario when
the order of applying rewriting rules matters. All references to b must be
replaced with c before a is replaced with b.

• In the context of dynamic rewriting, this is especially challenging because
we do not have access to all references at once. For example, consider a
situation when at runtime a tool encounters a reference to b. Is it the old
reference that should be replaced with c? Or was this piece of code already
rewritten by the rule a → b?

• It is also hard because deprecation warning will never be signalled for b.

How can it be fixed?

• Static rewriting. If it is possible to access all references to a and b in the
client system, they can be rewritten statically. In this case, the tool can first
apply the b → c rule thus rewriting all references to b, and then apply the a
→ b rule.

• Logging rewritten locations. If it is not possible to rewrite all calls statically,
then the tool can log all references that were already rewritten.

8.3 Case 2: Circular Renaming
Description. This is a special case of reassigning the existing name when the
names of two software artifacts are being swapped: “Rename a to b” and “Rename
b to a” (see Figure 8.2). Although this case is rarer than the previous one, it is
particularly challenging for automated tools and therefore deserves to be discussed.

112 Chapter 8. Case Studies of Challenging Library Update Problems

a

b

b

a

Library v1.0 Library v2.0

Figure 8.2: Circular renaming is a particularly challenging case when the names of
two software artifacts are being swapped: a is renamed to b and at the same time b
is renamed to a.

Why is it challenging? Most refactoring tools, as well as manual rewriting per-
formed by developes, apply transformations one rule at a time. In case of circular
renaming, there are two rules that cancel each other. They can be applied over and
over to the same place in source code, first replacing a with b, then replacing that
b with a, and so on. The tool must remember which locations have already been
rewritten, or apply all rules simultaneously.

How can it be fixed?

• If it is possible to access all references to a and b in the project they can be
rewritten simultaneously.

• Otherwise, the tool can introduce a temporary name temp and then perform
renaming in three steps: (1) a → temp, (2) b → a, (3) temp → b. However,
this also requires that all references to a are replaced with temp before the
first refence to b is replaced with a.

• If it is not possible to access all references at once (for example, in the con-
text of dynamically-typed languages), the tool can keep a log of locations in
source code that have already been rewritten.

8.4 Case 3: Modifying Abstract Hooks
Description. Most approaches to library update view the library as a collection
of methods that are invoked by clients. Hovewer, some libraries also provide hooks
— abstract methods that should be overriden by clients, as in the Template Method
design pattern [Gamma 1995]. In this case, it is not the client who invokes the

8.4. Case 3: Modifying Abstract Hooks 113

library, but the library that calls a method provided by the client system. This
situation is related to the Reuse Contract [Steyaert 1996]. We illustrate this scenario
in Figure 8.3.

FileReader

read()

FileReader

readFile()

CSVFileReader

read()

renamed

Library v1.0 Library v2.0

Client

CSVFileReader

read()

Client

Figure 8.3: In v1.0, library used to provide an abstract hook read() that was meant
to be implemented by clients. In v2.0, this hook was renamed to readFile(). But the
client system still provides the implementation for the old method read(). Now the
client implementation will never be called.

Example. In older versions of Pharo, the OSPlatform class provided an abstract
method ffiModuleName: that was implemented by concrete classes MacOSPlatform,
UnixPlatform, and WinPlatform to specify the name of a dynamic library used for FFI
calls on the given platform. For example, ’libgit2.dll’, ’libgit2.so’, and ’libgit2.dylib’ are
used to make calls to LGit library on Win32, Unix, and MacOS platform respectively,
and ’libc.so.6’ is used to make calls to the LibC library on Unix platform. Each one of
those implementations of ffiModuleName was a template method [Alpert 1998] that
called a corresponding platform-specific method — macModuleName, unixModule-
Name, or win32ModuleName — that should be implemented by all subclasses of the
FFILibrary. In Figure 8.4, yellow classes represent library code while the classes
of the client system are green: LibC and LGitLibrary are two implementations of
FFILibrary that are provided by client systems.

In Pharo 8, all those ...ModuleName methods were renamed to ...LibraryName.
For example, OSPlatform.ffiModuleName: was renamed to OSPlatform.ffiLibraryName:,
FFILibrary.macModuleName was renamed to FFILibrary.macLibraryName, etc.

As a result, template methods of MacPlatform, UnixPlatform, and WinPlatform call
the new methods macLibraryName, unixLibraryName, and winLibraryName instead of
the old ones. The clients are expected to rename ...ModuleName to ...LibraryName in

114 Chapter 8. Case Studies of Challenging Library Update Problems

Pharo 8

Pharo 7

ffiModuleName: aLibrary
 ^ aLibrary win32ModuleName

OSPlatform

ffiModuleName:

MacOSPlatform

ffiModuleName:

UnixPlatform

ffiModuleName:

WinPlatform

ffiModuleName:

ffiModuleName: aLibrary
 ^ aLibrary unixModuleName

ffiModuleName: aLibrary
 ^ aLibrary macModuleName

FFILibrary

macModuleName
unixModuleName
win32ModuleName

LibC

macModuleName
unixModuleName
win32ModuleName

LGitLibrary

macModuleName
unixModuleName
win32ModuleName

ffiModuleName: aLibrary
 ^ aLibrary win32LibraryName

OSPlatform

ffiLibraryName:

MacOSPlatform

ffiLibraryName:

UnixPlatform

ffiLibraryName:

WinPlatform

ffiLibraryName:

ffiModuleName: aLibrary
 ^ aLibrary unixLibraryName

ffiModuleName: aLibrary
 ^ aLibrary macLibraryName

FFILibrary

macLibraryName
unixLibraryName
win32LibraryName

LibC

macModuleName
unixModuleName
win32ModuleName

LGitLibrary

macModuleName
unixModuleName
win32ModuleName

Figure 8.4: Yellow classes belong to the library and green classes are clients. This
system follows the Template Method design pattern — client systems are expected
to provide implementations for the methods that are called by the library. When
those abstract hooks methods in the library get renamed, the clients must also re-
name their implementations. However, the current deprecation mechanism does
not allow one to deprecate the hooks and notify the client, because in this case it is
a library that makes calls to client methods, and not a client who calls the methods
of a library.

8.5. Case 4: Cleaning Up Spurious Objects 115

their subclasses of FFILibrary, such as LibC and LGitLibrary. But it is not possible to
deprecate these methods and warn clients who did not perform the renaming.

Why is it challenging? The standard deprecation mechanism works in such way
that the old methods of the library are marked as deprecated and clients receives a
deprecation warning when they call those methods. In this case, however, clients
do not call any methods of the library. It is the library that calls certain methods of
the client. Two client classes in our example — LibC and LGitLibrary — are com-
pletely unaware that the hook methods from their superclass, which they override,
were renamed. As a result, the clients will only notice that renaming took place
when library calls the abstract methods macLibraryName, unixLibraryName, and win-
LibraryName and raise an exception.

How can it be fixed? One way of overcoming this challenge would be to install a
smart deprecation into the abstract hook that needs to be implemented. This depre-
cation could check if the caller provides the method with old name, and if yes, the
deprecation warning will appear suggesting to rename that method. This approach
could also be used to automatically rewrite the client code, with a technique similar
to the one that will be discussed in Chapter 5.

8.5 Case 4: Cleaning Up Spurious Objects
Description. Some methods accept input through complex objects that contain
multiple values as attributes. For example, a method can access a Point object that
contains two values, x and y. The problem arises when such a method needs to be
refactored to accept the values directly and not through an object. For example, a
method distance(point1, point2) can be replaced with distance(x1, y1, x2, y2). In this
case, to update the client code one needs to change not only the method call but
also the place where Point objects are created.

Example. We discovered this scenario in the deprecation of the fraction:offset:
group of methods from Morphic [Ducasse 2017] graphics library.

LayoutFrame is a basic data structure for Morphic graphics that defines a trans-
formation frame relative to some rectangle. It can be used to define an area of a
parent widget occupied by the child widget. This area is defined by two sets of
numbers: fractions — the fractional distance (between 0 and 1) to place the morph
in its owner’s bounds, and offsets — the fixed pixel offset to apply after fractional
positioning (for example, "10 pixel right of the center of the owner").

The old version of Morphic provided a flexible API that allowed clients to ini-
tialize a LayoutFrame in two different ways. One way required 4 arguments: botto-

116 Chapter 8. Case Studies of Challenging Library Update Problems

mOffset, rightOffset, bottomFraction, and rightFraction. The other way involved repre-
senting fractions and offsets as two rectangle objects.

In the code listing below, we demonstrate, how the method bottomFraction: right-
Fraction: bottomOffset: rigthOffset: can be used to position a submorph inside a par-
ent morph (think of it as positioning a child widget inside a parent widget). The
parent morph in this example is 300 pixels wide and 200 pixels high. The child
morph has 40% of its parent’s width and 25% of its height. The center of a child
morph is positioned 46 pixels to the bottom and 71 pixels to the left (negative right-
offset of -71 pixels) from the center of a parent morph. The result can be seen in
Figure 8.5.

frame := LayoutFrame identity

bottomFraction: 0.25;

rightFraction: 0.4;

bottomOffset: 46;

rigthOffset: -71;

yourself.

300 px

20
0

px

-71

46

bo
tto

m
O
ffs

et

rightOffset

0.4

0.
25

bo
tto

m
Fr

ac
tio

n

rightFraction

Figure 8.5: To position a submorph inside a parent morph, client provides four
parameters: bottomFraction, rightFraction, bottomOffset, and rightOffset. All four are
numbers. They can represent percentages (in the case of fractions), or be negative
(in the case of offsets).

In the next listing, we demonstrate the other method fractions: offsets: that did
the same thing but accepted two arguments: the fraction and the offset rectangles.
The sides of those rectangles corresponded to the values of fractions and offsets.
The visualization of this can be seen in Figure 8.6.

fractionRectangle := 0@0 extent: 0.4@0.25.

offsetRectangle := 0@0 extent: 46@(-71).

frame := LayoutFrame

8.5. Case 4: Cleaning Up Spurious Objects 117

fractions: fractionRectangle

offsets: offsetRectange.

300 px

20
0

px

50
 p

x

offsets
(a Rectangle)

-71

46

120 px

fractions
(a Rectangle)

0.4

0.
25

Figure 8.6: This way of positioning a submorph requires only two arguments: frac-
tions and offsets. Both of them are rectangles, which introduces two problems: (1)
the offsets rectangle can have negative sides, (2) the sides of a fractions rectangle
are percentages. Both issues violate the nature of a rectangle and turn it from a
geometrical object into a simple data structure that is used for storing and passing
numbers around.

This is a misuse of Rectangle class which was intended to represent a geomet-
rical object but now it is used as a value holder. As a result, in the example above,
user creates a rectangle with negative width, which can create all sorts of problems.

Those were the considerations that lead to the removal of method fractions:
offsets: in the recent version of Morphic. However, as we will see, automatically
rewriting the call-sites of this method is not an easy task.

Why is it challenging?

• It can be difficult to find the part of client code where objects are created.
They may be initialized just before the method call, or passed by argument
from a different method.

• Those objects can also be used elsewhere in the client system. So before
deleting them, one must make sure to check all the references.

How can it be fixed? In the following listing, we show how the fractions:offsets:
method can be deprecated informing client developers that they should use the
method with four arguments instead.

118 Chapter 8. Case Studies of Challenging Library Update Problems

LayoutFrame >> fractions: fractionsOrNil offsets: offsetsOrNil

| fractions offsets |

self deprecated: 'Do not use this method.

It forces to create spurious objects (rectangle or points)

for nothing. Use bottomFraction: rightFraction:

bottomOffset:

rigthOffset: instead '.

fractions := fractionsOrNil ifNil: [0@0 extent: 0@0].

offsets := offsetsOrNil ifNil: [0@0 extent: 0@0].

↑ self

topFraction: fractions top offset: offsets top;

leftFraction: fractions left offset: offsets left;

bottomFraction: fractions bottom offset: offsets bottom;

rightFraction: fractions right offset: offsets right

In this case, rewriting client code is a challenging task that goes beyond the
scope of this thesis. This problem could be addressed in the future work.

8.6 Case 5: When String Literals are Used as Identi-
fiers

Description. In this situation, instead of rewriting the identifier name, library
developers need to rewrite string literals that are used by clients. This typically
occurs when library provides access to certain objects by a string identifier: icons,
files, columns of a dataset, etc. The language of transformation rules must be
flexible enough to allow for pattern matching inside string literals.

Example. In this example, clients of the library can access icons using the icon-
Named: method which accepts one argument — the name of the icon:

ClyTestResultProperty >> createIcon

allCount = 0 ifTrue: [↑ self iconNamed: #testNotRunIcon].

In the old version all icon names ended with word ’Icon’. This was redundant,
so in the new version, all icon names were changed to drop the word ’Icon’ from the
end:.

ClyTestResultProperty >> createIcon

allCount = 0 ifTrue: [↑ self iconNamed: #testNotRun].

8.7. Chapter Conclusion 119

Now all matches of ’‘@rec iconNamed: #*Icon’ must be rewritten as ’‘@rec icon-
Named: #*’.

Why is it challenging? This goes beyond the pattern matching scenarios that
are performed by tools such as Deprewriter (see Chapter 5). Those tools and the
language that they use must be extended to support the pattern matching and trans-
formation inside string literals.

How can it be fixed? Although Deprewriter can be extended to handle string
transformations, the implementation and validation of such an extension goes be-
yond the scope of this thesis. It could be the focus of the future work.

8.7 Chapter Conclusion
In this chapter, we presented several case studies of challenging scenarios of library
update. This is not an exhaustive list, we have only documented several challenging
case studies that were reported to us by the Pharo community. Those scenarios can
serve as examples of how to extend the language and tools for automatic code
transformation. They can also be addressed in the future work on automatic library
update.

CHAPTER 9

Conclusion

Contents
9.1 Summary . 121

9.2 Contributions . 123

9.3 Future Work . 124

9.1 Summary
Modern software often depends on multiple external libraries and frameworks,
which in turn can also depend on other libraries and frameworks. Like any other
software, libraries evolve. They release new versions, often incompatible with the
previous ones. This forces client applications that depend on those libraries to up-
date their code in response to library evolution — a process that is known as library
update.

Updating the dependencies can be a difficult and time consuming task for client
developers. It involves repetitive operations and requires knowledge about the
changes that were made to the library. In recent years, multiple approaches have
been proposed to mine the data or apply machine learning techniques and extract
knowledge about library update in the form of rules. However, most of those ap-
proaches focus on client developers and do not consider the expertise of library
developers. They consider only simple method-to-method replacements and are
only designed for statically-typed programming languages.

In this thesis, we address these shortcomings in the literature by exploring the
problem of library update from the perspective of library developers and in the
context of dynamically-typed programming languages. Below, we summarize the
work that we presented in each chapter.

Chapter 2 presents the background that is necessary for understanding the re-
search presented in this thesis. We explained the process of library evolution,
defined the terminology that we use to refer to all of its objects and actors, and
discussed the spectrum of problems that arise in this field. Inside that spectrum, we

122 Chapter 9. Conclusion

defined the specific scope of problems that are addressed in this thesis. We finished
the chapter with several motivating examples that demonstrate different scenarios
of library update, explain why it can be hard, and how automatic tools can be used
to support library and client developers in those cases.

Chapter 3 contains an overview of the literature in the field of library update.
It includes the discussion of empirical studies of library evolution from the per-
spective of library and client developers, the studies on code transformation and
deprecations that are related to our work on transforming deprecations, and the
studies that propose the tools to guide library or client developers in the process
of library update. We identified several shortcomings of existing studies that are
addressed in the following chapters of this thesis.

Chapter 4 presents the results of two surveys: one of library developers and
another one of client developers. The surveys involved software developers from
two industrial companies, Arolla and Berger-Levrault, and one open-source com-
munity, Pharo. The questions were general and not related to specific libraries or
issues. The focus of the study, presented in this chapter, is the perception of the
impact of library evolution from different perspectives and the type of support that
library developers can provide to help their clients.

Chapter 5 contains the discussion of Deprewriter — a mechanism of transform-
ing deprecations that is supported by Pharo. It allows library developers to annotate
method deprecations with transformation rules which can be automatically applied
to client code. After describing the approach, we answered two categories of re-
search questions: the first category is about the use and flexibility of the rewriting
deprecations as used by library developers and the second category is about the
perception of external users of the rewriting deprecations. We then presented two
validations: an analysis of the Deprewriter rules used in the deprecations of Pharo 8
and a user study.

Chapter 6 presents an approach and a tool called DepMiner that helps library
developers identify breaking changes before the release, understand when and by
whom they were introduced, and find the potential replacements that could be sug-
gested to the clients. The tool generates recommendations in the form of trans-
formation rules that can be used by Pharo’s Deprewriter. Inspired by the existing
approaches that were proposed to support the client developers, our approach is
based on the frequent method call analysis. We implemented our approach as a
tool for Pharo IDE, applied it to five open-source projects, and asked 6 core devel-
opers from those projects to accept or reject the recommended changes. In total,

9.2. Contributions 123

134 proposed deprecations were accepted by developers as well as 4 transforma-
tion rules for the existing deprecations. 61 new deprecations and 2 transformations
rules for existing deprecations were integrated into the Pharo project.

Chapter 7 presents the first steps towards developing a holistic approach to help
library developers support their clients. We have discussed the needs of library
developers and identified six ways how they can respond to breaking changes in
their systems. We have also proposed adaptations to the DepMiner approach that
would allow to overcome some of its limitations. Finally, we have proposed the
first sketch of a holistic approach to support library developers. Implementation
and validation of such an approach can be the focus of future work.

Chapter 8 presents several case studies of challenging scenarios of library update
that were reported to us by the Pharo community. Those are the situations that are
hard to handle with current deprecation mechanisms or hard to automate with rules
that could be applied to client code. Those scenarios can serve as examples of how
to extend the language and tools for automatic code transformation. They should
also be addressed in future work on automatic library update.

9.2 Contributions

The main contributions of this thesis are:

• A survey of library and client developers from two industrial companies and
an open-source community;

• First detailed documentation of the Deprewriter approach and tool in Pharo
which introduces deprecations that dynamically update client code with trans-
formation rules;

• A study of how Deprewriter was adopted by the Pharo community through
the analysis of source code in Pharo 8 and a developer survey;

• DepMiner — a novel approach to infer the rules for Deprewriter based on
the commit history of a project;

• A generalization of DepMiner as a new holistic approach to support library
developers in the task of library update.

124 Chapter 9. Conclusion

9.3 Future Work
In this section, we present the open issues that were not addressed in this thesis.
These open issues provide opportunities to continue our research concerning the
data mining-based tools to support library update.

Overcoming the limitations of DepMiner. In Section 6.5, we discussed several
shortcomings of the DepMiner approach and tool that supports library developers
by mining frequent method call replacements from the commit history and gener-
ating transformation rules for method deprecations. In Section 7.5, we proposed a
way to overcome two of those shortcomings:

• Unused/untested methods. DepMiner is based on detecting the changes in
how the library uses its own API. Therefore, it is ineffective for the meth-
ods that are not used internally by the library and not covered by unit tests.
To overcome this limitation, we propose to combine the mining of frequent
method call replacements with an approach to detect refactoring operations
in the commit history (see Section 7.5.1 for more details).

• Searching the entire commit history. To detect the response of library to its
own changes, DepMiner searches the entire commit history. We propose
to improve its performance by identifying the specific commit in which the
breaking change was introduced and only analysing the neighboring commits
to detect how library reacts to that change (see Section 7.5.2 for more details).

Implementing a holistic approach to support library developers. By discussing
with library developers and observing their reaction to recommendations proposed
by DepMiner, we concluded that recommending the correct replacement for re-
moved functionality is not always enough to help library developers support their
clients. We identified six responses that library developers can have to breaking
changes, based on whether or not they want to deprecate and whether or not the
automatable replacement can be found (see Section 7.4). Based on those six sce-
narios, a more general approach can be developed to support the developers of
evolving libraries: documentation, deprecations, library update script, etc. In Sec-
tion 7.6, we proposed a blueprint for such a holistic approach.

Dealing with circular renaming. In Chapter 8, we have presented multiple case
studies of the challenging library update problem that were reported to us by the
Pharo community. The first of those scenarios involved reassigning the existing
name to a different entity a → b, b → c (see Section 8.2) and a more challenging
case when both names are being exchanged a → b, b → a (see Section 8.3).

9.3. Future Work 125

Such transformations can cause collisions. They are especially challenging in
dynamically-typed programming languages because it is difficult to find all ref-
erences to a given method statically. We proposed two ways to overcome this
challenge: using a temporary name or logging all locations in source code where
transformations have already been applied.

Rewriting abstract hooks. Another challenging scenario arises when library de-
velopers need to introduce a breaking change into an abstract hook (for example,
rename it). An abstract hook is a method that needs to be implemented by clients.
In this case, clients do not call the library, but instead the library calls the implemen-
tation of a client. The traditional deprecation mechanisms do not cover this case. It
is also overlooked in the related works that propose to support developers through
automatic rewriting of client code. We discussed this scenario in Section 8.4 and
proposed to overcome it by installing a transforming deprecation into the abstract
hook itself. When the client method is not present, the hook would be invoked on
the library side. This could trigger the rewriting methanism.

Removing spurious objects. In Section 8.5, we discussed the situation when
methods that accept complex objects as arguments need to be refactored in such a
way that those complex arguments are decomposed or removed. Rewriting client
code in this case can leave spurious objects. Removing such objects is challenging
because it can be hard to find the part of client code where the object is created
and hard to make sure that the object is not used elsewhere (see Section 8.5 for a
detailed example). Such code transformations go beyond the scope of this thesis.

Rewriting literals. The final challenging scenario that we reported in Section 8.6
involves rewriting string literals based on a given pattern. In this thesis, we focused
on rewriting method calls. The Deprewriter tool that we presented in Chapter 5
allows library developers to dynamically rewrite the calls to deprecated methods.
However, the language of code transformations that is used by Deprewriter can be
extended to find and rewrite string literals in client code based on a given pattern.

APPENDIX A

Pharo syntax in a nutshell

To help readers follow the code snippets we present briefly the syntax of Pharo.1

In Pharo everything is an object that receives messages. Literal objects are created
by the parser: strings, symbols, numbers, booleans, nil, literal arrays are literal
objects. Other objects are created by sending message new to a class. In addition,
lexical closures are defined using [:param | body] syntax.

The following table lists the reserved syntactic constructs of the language.

Literal objects & reserved syntactic constructs
"comment"
true, false the Boolean objects

nil the undefined object
’string’ sequence of characters

#symbol unique string
$a a character

12 2r1100 16rC twelve (decimal, binary, hexa)
3.14 1.2e3 floating-point numbers

#(#abc 123) literal array with the symbol #abc and the number 123
{ ’abc’ . 3 + 2} dynamic array built from 2 expressions
#[123 21 255] byte array

| foo bar | declaration of two temporary variables
var := expr assignment
exp1. exp2 period - statement separator

[: param | expr] lexical closure with a parameter
self and super receiver of the message with different method lookups

a unary Unary message sent to a
a + b Binary message sent to a with b as argument

a at: #key put: val keyword-based messages equivalent to a.atput(#key,val) in C
a foo ; bar message cascade (;). All messages (foo, bar) are sent to the cascade

receiver (i.e.,a)
<message> method annotation

^ expr caret - return/answer a result from a method

Messages are central to Pharo syntax. All control flow behavior (conditional,
loops, iterators) are expressed using messages sent to objects or closures. There
are three kind of messages: unary, binary, and keyword-based messages: Unary
messages are messages without argument (e.g., dict keys, x class). Binary mes-
sages are messages with one argument and a non alphanumerical selector (e.g.,

1For a more detailed introduction into the syntax of Pharo, please visit https://pharo.org/
documentation.html

https://pharo.org/documentation.html
https://pharo.org/documentation.html

128 Appendix A. Pharo syntax in a nutshell

1+2, 1/10). Keyword-based messages are messages with one or more arguments.
The arguments are placed within the selector: aDict at: #key put: 33 will ex-
ecute the method whose selector is at:put:. The equivalent in C-like syntax is
aDict.atPut(#key,33). Unary messages takes precedence over binary, and binary
over keyword-based messages. Here is the definition of the method slowFactorial

defined on the Integer class.

Integer >> slowFactorial [

"Answer the factorial of the receiver."

self = 0 ifTrue: [↑ 1].

self > 0 ifTrue:

[↑ self * (self - 1) slowFactorial]

]

APPENDIX B

Transformation Rules of
Deprewriter Extracted from Pharo 8

In this appendix, we present examples of transformation rules that we found in
Pharo 8. We classify those rules into 6 categories according to the scenario that led
to their introduction. Those are four refactoring scenarios (Rename Method, Re-
move Argument, Add Argument, Split Method), one scenario that involved changing
the receiver of the method, and one scenario that describes a complex replacement
that does not fit any of the above mentioned categories. The examples can be found
on the following page in Table B.1.

130 Appendix B. Deprewriter Rules

Table B.1: Examples of the transformation rules extracted from Pharo 8.

Scenario Antecedent Consequent

Rename
method

‘@receiver getAction ‘@receiver action

‘@receiver selectedPage:
‘@statements1

‘@receiver selectPage:
‘@statements1

‘@receiver keyword: ‘@arg1
arguments: ‘@arg2

‘@receiver selector: ‘@arg1
arguments: ‘@arg2

Remove
argument

‘@receiver interpretASpec:
‘@statements1 model: ‘@statements2
selector: ‘@statements3

‘@receiver interpretASpec:
‘@statements1 presenter:
‘@statements2

‘@receiver addSelector:
‘@statements1 withMethod:
‘@statements2 notifying:
‘@statements3

‘@receiver addSelector:
‘@statements1 withMethod:
‘@statements2

Add arg. ‘@receiver getEnv: ‘@arg ‘@receiver at: ‘@arg ifAbsent: [nil
]

Change
receiver

‘@receiver write: ‘@statements1 ‘@statements1 putOn: ‘@receiver

‘@rec asIcon self iconNamed: ‘@rec
‘@receiver openNativeBrowserOn:
‘@arg

NativeBrowserOpenVisitor
openOn: ‘@arg

Split method

‘@receiver listItems ‘@receiver model items

‘@receiver commentsAt: ‘@argument (‘@receiver compiledMethodAt:
‘@argument) comments

‘@receiver evaluate: ‘@statements1 in:
‘@statements2 to: ‘@statements3
notifying: ‘@statements4 ifFail:
‘@statements5

‘@receiver source:
‘@statements1; context:
‘@statements2; receiver:
‘@statements3; requestor:
‘@statements4; failBlock:
‘@statements5; evaluate

Complex
replacement

‘@receiver
whenSelectionIndexChanged:
‘@argument

‘@receiver selection
whenChangedDo: [:selection |
‘@argument value: selection
selectedIndex]

‘@receiver
whenSelectedItemChangedDo:
‘@argument

‘@receiver
whenSelectionChangedDo: [
:selection | ‘@argument cull:
selection selectedItem]

Bibliography

[Alpert 1998] Sherman R. Alpert, Kyle Brown and Bobby Woolf. The design
patterns Smalltalk companion. Addison Wesley, Boston, MA, USA, 1998.
75, 113

[Alrubaye 2019] Hussein Alrubaye and Ali Mkaouer Mohamed Wiemand Ouni.
On the Use of Information Retrieval to Automate the Detection of Third-
Party Java Library Migration at the Method Level. In ICPC’19, 2019. 21,
22, 24, 46, 82

[Alrubaye 2020] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov,
Leon Reznik, Ali Ouni and Jason Mcgoff. Learning to recommend third-
party library migration opportunities at the API level. Journal of Applied
Software Computing, pages 106–140, 2020. 21, 22, 25

[Anquetil 2022] Nicolas Anquetil, Julien Delplanque, Stéphane Ducasse, Olek-
sandr Zaitsev, Christopher Furhman and Yann-Gael Guéhéneuc. What do
developers consider magic literals? A smalltalk perspective. Information
and Software Technology, 2022. 5

[Baldassarre 2005] Maria Teresa Baldassarre, Alessandro Bianchi, Danilo
Caivano and Giuseppe Visaggio. An industrial case study on reuse ori-
ented development. In 21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 283–292. IEEE, 2005. 1, 7

[Black 2009] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pol-
let, Damien Cassou and Marcus Denker. Pharo by example. Square Bracket
Associates, Kehrsatz, Switzerland, 2009. 3, 57

[Bodden 2011] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati and Mira
Mezini. Taming reflection: Aiding static analysis in the presence of re-
flection and custom class loaders. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages 241–250,
New York, NY, USA, 2011. ACM. 93

[Bogart 2016] Christopher Bogart, Christian Kästner, James Herbsleb and Ferdian
Thung. How to break an API: cost negotiation and community values in
three software ecosystems. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
pages 109–120, 2016. 18, 19, 20, 27, 28, 43

http://dx.doi.org/10.1016/j.infosof.2022.106942
http://dx.doi.org/10.1016/j.infosof.2022.106942
http://dx.doi.org/10.1016/j.infosof.2022.106942
http://dx.doi.org/10.1016/j.infosof.2022.106942
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1985793.1985827
http://dx.doi.org/10.1145/1985793.1985827

132 Bibliography

[Brito 2016] Gleison Brito, Andre Hora, Marco Tulio Valente and Romain
Robbes. Do developers deprecate APIs with replacement messages? A
large-scale analysis on Java systems. In International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 360–369.
IEEE, 2016. 20

[Brito 2018a] Aline Brito, Laerte Xavier, André C. Hora and Marco Tulio Valente.
APIDiff: Detecting API breaking changes. International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 507–
511, 2018. 9, 46

[Brito 2018b] Gleison Brito, Andre Hora, Marco Tulio Valente and Romain
Robbes. On the use of replacement messages in API deprecation: An em-
pirical study. Journal of Systems and Software, vol. 137, pages 306–321,
2018. 9, 10, 20, 23, 81, 82, 83, 98

[Brito 2019] Aline Brito, Marco Tulio Valente, Laerte Xavier and Andre Hora.
You broke my code: understanding the motivations for breaking changes in
APIs. Empirical Software Engineering, pages 1–35, 2019. 10, 18, 19, 20,
27, 28, 34, 35, 43, 97, 98

[Brito 2020] Aline Brito, Marco Tulio Valente, Laerte Xavier and Andre Hora.
You broke my code: understanding the motivations for breaking changes in
APIs. Empirical Software Engineering, vol. 25, no. 2, pages 1458–1492,
2020. 81

[Callau 2011] Oscar Callau, Romain Robbes, David Rothlisberger and Eric Tan-
ter. How developers use the dynamic features of programming languages:
the case of Smalltalk. In Mining Software Repositories International Con-
ference (MSR’11), 2011. 93

[Chern 2007] Rick Chern and Kris De Volder. Debugging with Control-flow
Breakpoints. In International Conference on Aspect-Oriented Software De-
velopment (AOSD’07), pages 96–106, New York, NY, USA, 2007. ACM.
58

[Chow 1996] Kingsum Chow and David Notkin. Semi-automatic update of ap-
plications in response to library changes. In International Conference on
Software Maintenance (ICSM), volume 96, page 359, 1996. 21, 22, 23, 47

[Colyer 2005] A. Colyer and Clement A. Aspect-oriented programming with As-
pectJ. IBM Systems Journal, vol. 44, no. 2, pages 301–308, 2005. 58

http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1147/sj.442.0301
http://dx.doi.org/10.1147/sj.442.0301
http://dx.doi.org/10.1147/sj.442.0301

Bibliography 133

[Dagenais 2008] Barthélémy Dagenais and Martin P. Robillard. Recommending
adaptive changes for framework evolution. In International Conference on
Software Engineering (ICSE’08), pages 481–490, New York, NY, USA,
2008. ACM. 21, 22, 24, 46, 82

[Dagenais 2011] Barthélémy Dagenais and Martin P Robillard. Recommending
adaptive changes for framework evolution. ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 4, pages 1–35, 2011.
23, 85, 95, 98, 99, 104

[Delplanque 2019] Julien Delplanque, Stéphane Ducasse and Oleksandr Zaitsev.
Magic Literals in Pharo. In International workshop of Smalltalk Technolo-
gies, 2019. 6

[Demeyer 2002] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz. Object-
oriented reengineering patterns. Morgan Kaufmann, 2002. 1, 7

[Dig 2006a] Danny Dig, Can Comertoglu, Darko Marinov and Ralph Johnson.
Automated Detection of Refactorings in Evolving Components. In ECOOP,
pages 404–428, 2006. 82, 98, 104, 105, 106

[Dig 2006b] Danny Dig and Ralph Johnson. How do APIs evolve? A story of
refactoring. Journal of Software Maintenance and Evolution: Research
and Practice (JSME), vol. 18, no. 2, pages 83–107, April 2006. 49, 57, 98,
100, 104

[Ducasse 2017] Stéphane Ducasse, Dmitri Zagidulin, Nicolai Hess, Dimitris
Chloupis Originally written by A. Black, S. Ducasse, O. Nierstrasz, D. Pol-
let with D. Cassou and M. Denker. Pharo by example 5. Square Bracket
Associates, 2017. 115

[Ducasse 2022] Stéphane Ducasse, Guillermo Polito, Oleksandr Zaitsev, Marcus
Denker and Pablo Tesone. Deprewriter: On the fly rewriting method dep-
recations. Journal of Object Technologies (JOT), vol. 21, no. 1, 2022. 5,
32, 42, 45, 47, 73, 81

[Furr 2009] Michael Furr, Jong hoon (David) An, Jeffrey S. Foster and Michael
Hicks. Static Type Inference for Ruby. In Symposium on Applied Comput-
ing (SAC’09), 2009. 50, 84

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.
Design patterns: Elements of reusable object-oriented software. Addison-
Wesley, 1995. 112

http://dx.doi.org/10.1145/1368088.1368154
http://dx.doi.org/10.1145/1368088.1368154
http://dx.doi.org/10.1145/1368088.1368154
http://dx.doi.org/10.1145/1368088.1368154
http://dx.doi.org/10.5381/jot.2022.21.1.a1
http://dx.doi.org/10.5381/jot.2022.21.1.a1
http://dx.doi.org/10.5381/jot.2022.21.1.a1

134 Bibliography

[Hayden 2012] Christopher M Hayden, Edward K Smith, Michail Denchev,
Michael Hicks and Jeffrey S Foster. Kitsune: Efficient, general-
purpose dynamic software updating for C. In International Conference
on Object-Oriented Programming Systems Languages and Applications
(OOPSLA’12), pages 249–264, 2012. 64

[Henkel 2005] Johannes Henkel and Amer Diwan. CatchUp!: capturing and re-
playing refactorings to support API evolution. In Proceedings International
Conference on Software Engineering (ICSE 2005), pages 274–283, 2005.
21, 22, 23

[Hölzle 1991] Urs Hölzle, Craig Chambers and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With Polymorphic Inline
Caches. In P. America, editeur, Proceedings ECOOP ’91, volume 512 of
LNCS, pages 21–38, Geneva, Switzerland, July 1991. Springer-Verlag. 50

[Hora 2014] Andre Hora, Anne Etien, Nicolas Anquetil, Stéphane Ducasse and
Marco Túlio Valente. APIEvolutionMiner: Keeping API Evolution un-
der Control. In Proceedings of the Software Evolution Week (CSMR-
WCRE’14), 2014. 21, 22, 24, 46, 82, 85, 95, 98, 103

[Hora 2015] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien,
Stéphane Ducasse and Marco Túlio Valente. How Do Developers React
to API Evolution? The Pharo Ecosystem Case. In International Confer-
ence on Software Maintenance (ICSM’15), pages 251–260, 2015. 10, 18,
20, 27, 98

[Hora 2018] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil,
Anne Etien and Stéphane Ducasse. How do Developers React to API Evo-
lution? a Large-Scale Empirical Study. Software Quality Journal, vol. 26,
pages 161–191, March 2018. 18, 20, 27

[Jezek 2015] Kamil Jezek, Jens Dietrich and Premek Brada. How Java APIs
break–an empirical study. Information and Software Technology, vol. 65,
pages 129–146, 2015. 18, 19, 27

[Kiczales 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier and John Irwin. Aspect-
Oriented Programming. In Mehmet Aksit and Satoshi Matsuoka, editeurs,
European Conference on Object-Oriented Programming (ECOOP’97),
pages 220–242. Springer-Verlag, June 1997. 62

[Kiczales 2001] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm and William G. Griswold. An overview of AspectJ. In European

http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1109/ICSM.2015.7332471
http://dx.doi.org/10.1109/ICSM.2015.7332471
http://dx.doi.org/10.1109/ICSM.2015.7332471
http://dx.doi.org/10.1109/ICSM.2015.7332471
http://dx.doi.org/10.1007/s11219-016-9344-4
http://dx.doi.org/10.1007/s11219-016-9344-4
http://dx.doi.org/10.1007/s11219-016-9344-4
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381

Bibliography 135

Conference on Object-Oriented Programming (ECOOP’ 01), numéro 2072
de LNCS, pages 327–353. Springer Verlag, 2001. 58

[Kim 2007] Miryung Kim, David Notkin and Dan Grossman. Automatic infer-
ence of structural changes for matching across program versions. In Inter-
national Conference on Software Engineering (ICSE’07), pages 333–343.
IEEE, 2007. 21, 22, 23, 24, 46, 95

[Kula 2018a] Raula Gaikovina Kula, Daniel M German and Ali Ouni andTakashi
Ishio andKatsuro Inoue. Do developers update their library dependencies?
Empirical Software Engineering, vol. 23, pages 384–417, 2018. 18, 19, 20,
27

[Kula 2018b] Raula Gaikovina Kula, Ali Ouni, Daniel M German and Katsuro In-
oue. An empirical study on the impact of refactoring activities on evolving
client-used APIs. Information and Software Technology, vol. 93, pages
186–199, 2018. 18, 19, 27, 28, 43

[Lehman 1996] Manny Lehman. Laws of Software Evolution Revisited. In Euro-
pean Workshop on Software Process Technology, pages 108–124, Berlin,
1996. Springer. 1, 7

[Meng 2012] Sichen Meng, Xiaoyin Wang, Lu Zhang and Hong Mei. A history-
based matching approach to identification of framework evolution. In In-
ternational Conference on Software Engineering (ICSE), pages 353–363.
IEEE, 2012. 21, 22, 24, 46, 95

[Mens 2004] Tom Mens, Juan F. Ramil and Michael W. Godfrey. Analyzing the
Evolution of Large-Scale Software: Issue Overview. Journal of Software
Maintenance and Evolution: Research and Practice, vol. 16, no. 6, pages
363–365, November 2004. 1, 7

[Milner 1978] Robin Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences, vol. 17, pages 348–375, 1978.
49, 84

[Milojković 2016] Nevena Milojković, Clément Béra, Mohammad Ghafari and
Oscar Nierstrasz. Inferring Types by Mining Class Usage Frequency
from Inline Caches. In International Workshop on Smalltalk Technologies
IWST’16, Prague, Czech Republic, August 2016. 50, 84

[Murphy-Hill 2009] Emerson Murphy-Hill, Chris Parnin and Andrew P. Black.
How We Refactor, and How We Know It. In International Conference on
Software Engineering (ICSE), pages 287–297, 2009. 57

http://dx.doi.org/10.1145/2991041.2991047
http://dx.doi.org/10.1145/2991041.2991047
http://dx.doi.org/10.1145/2991041.2991047
http://dx.doi.org/10.1145/2991041.2991047

136 Bibliography

[Murphy-Hill 2011] Emerson Murphy-Hill, Chris Parnin and Andrew P Black.
How we refactor, and how we know it. IEEE Transactions on Software
Engineering, vol. 38, no. 1, pages 5–18, 2011. 57

[Nascimento 2020] Romulo Nascimento, Aline Brito, Andre Hora and Eduardo
Figueiredo. JavaScript API deprecation in the wild: A first assessment. In
International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 567–571. IEEE, 2020. 10, 20, 81, 83, 98

[Neamtiu 2006] Iulian Neamtiu, Michael W. Hicks, Gareth Stoyle and Manuel
Oriol. Practical dynamic software updating for C. In Programming Lan-
guage Design and Implementation (PLDI), pages 72–83, 2006. 64

[Nguyen 2010] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Anh Tuan
Nguyen, Miryung Kim and Tien N Nguyen. A graph-based approach to
API usage adaptation. In Conference on Object-Oriented Programming,
Systems and Applications (OOPSLA’10), pages 302 – 321, 2010. 21, 22,
24, 46

[Pandita 2015] Rahul Pandita, Raoul Praful Jetley, Sithu D Sudarsan and Laurie
Williams. Discovering likely mappings between APIs using text mining. In
International Working Conference on Source Code Analysis and Manipu-
lation (SCAM), pages 231–240. IEEE, 2015. 21, 22, 24, 46, 82

[Passerini 2014] Nicolás Passerini, Pablo Tesone and Stéphane Ducasse. An ex-
tensible constraint-based type inference algorithm for object-oriented dy-
namic languages supporting blocks and generic types. In International
Workshop on Smalltalk Technologies (IWST’14), August 2014. 50, 84

[Pina 2013] Luis Pina and Michael Hicks. Rubah: Efficient, General-purpose Dy-
namic Software Updating for Java. In International Workshop on Hot Top-
ics in Software Upgrades (HotSWUp), 2013. 64

[Pluquet 2009] Frédéric Pluquet, Antoine Marot and Roel Wuyts. Fast type re-
construction for dynamically typed programming languages. In Dynamic
Languages Symposium (DLS), pages 69–78, New York, NY, USA, 2009.
ACM. 50, 84

[Ren 2016] Brianna M. Ren and Jeffrey S. Foster. Just-in-time Static Type Check-
ing for Dynamic Languages. In Conference on Programming Language
Design and Implementation (PLDI), 2016. 50, 84

[Renggli 2010a] Lukas Renggli. Dynamic Language Embedding With Homoge-
neous Tool Support. PhD thesis, University of Bern, October 2010. 51

http://dx.doi.org/10.1145/1133255.1133991
http://dx.doi.org/10.1145/1133255.1133991
http://dx.doi.org/10.1145/1133255.1133991
http://dx.doi.org/10.1145/1640134.1640145
http://dx.doi.org/10.1145/1640134.1640145
http://dx.doi.org/10.1145/1640134.1640145
http://dx.doi.org/10.1145/1640134.1640145

Bibliography 137

[Renggli 2010b] Lukas Renggli, Tudor Gîrba and Oscar Nierstrasz. Embedding
Languages Without Breaking Tools. In Theo D’Hondt, editeur, Proceed-
ings of the 24th European Conference on Object-Oriented Programming
(ECOOP’10), volume 6183 of LNCS, pages 380–404. Springer-Verlag,
2010. 81

[Richards 2011] Gregor Richards, Christian Hammer, Brian Burg and Jan Vitek.
The Eval that Men Do: A Large-scale Study of the Use of Eval in JavaScript
Applications. In Proceedings of Ecoop 2011, 2011. 93

[Rivard 1996] Fred Rivard. Smalltalk: a Reflective Language. In Proceedings of
REFLECTION’96, pages 21–38, April 1996. 46, 62

[Rizun 2015] Markiyan Rizun, Jean-Christophe Bach and Stéphane Ducasse.
Code Transformation by Direct Transformation of ASTs. In International
Workshop on Smalltalk Technologies (IWST), 2015. 55

[Rizun 2016] Markiyan Rizun, Gustavo Santos, Stéphane Ducasse and Camille
Teruel. Phorms: Pattern Combinator Library for Pharo. In International
Workshop on Smalltalk Technologies IWST’16, Prague, Czech Republic,
August 2016. 55

[Robbes 2012a] Romain Robbes, Mircea Lungu and David Röthlisberger. How Do
Developers React to API Deprecation?: The Case of a Smalltalk Ecosys-
tem. In International Symposium on the Foundations of Software Engi-
neering (FSE), pages 56:1–56:11, New York, NY, USA, 2012. ACM. 2,
18, 27, 95

[Robbes 2012b] Romain Robbes, David Röthlisberger and Éric Tanter. Exten-
sions during software evolution: do objects meet their promise? In Euro-
pean Conference on Object-Oriented Programming (ECOOP), pages 28–
52, Berlin, Heidelberg, 2012. Springer-Verlag. 20

[Roberts 1996] Don Roberts, John Brant, Ralph E. Johnson and Bill Opdyke. An
Automated Refactoring Tool. In Proceedings of ICAST ’96, April 1996.
46, 51, 53, 62, 81

[Roberts 1997] Don Roberts, John Brant and Ralph E. Johnson. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Systems (TAPOS), vol. 3,
no. 4, pages 253–263, 1997. 46, 51, 53, 62, 81

[Roberts 1999] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois, 1999. 51, 53

http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1007/978-3-642-14107-2_19
http://dx.doi.org/10.1145/2991041.2991057
http://dx.doi.org/10.1145/2991041.2991057
http://dx.doi.org/10.1145/2991041.2991057
http://dx.doi.org/10.1145/2393596.2393662
http://dx.doi.org/10.1145/2393596.2393662
http://dx.doi.org/10.1145/2393596.2393662
http://dx.doi.org/10.1145/2393596.2393662
http://dx.doi.org/10.1145/2393596.2393662
http://dx.doi.org/10.1007/978-3-642-31057-7_3
http://dx.doi.org/10.1007/978-3-642-31057-7_3
http://dx.doi.org/10.1007/978-3-642-31057-7_3
http://dx.doi.org/10.1007/978-3-642-31057-7_3

138 Bibliography

[Sandewall 1978] Erik Sandewall. Programming in an Interactive Environment:
The “Lisp” Experience. ACM Comput. Surv., vol. 10, no. 1, pages 35–71,
March 1978. 64

[Sawant 2016] Anand Ashok Sawant, Romain Robbes and Alberto Bacchelli. On
the reaction to deprecation of 25,357 clients of 4+1 popular Java APIs.
In International Conference on Software Maintenance and Evolution (IC-
SME), pages 400–410. IEEE, 2016. 18, 20, 27, 95

[Schäfer 2008] Thorsten Schäfer, Jan Jonas and Mira Mezini. Mining framework
usage changes from instantiation code. In International Conference on
Software Engineering (ICSE), pages 471–480, New York, NY, USA, 2008.
ACM. 21, 22, 24, 46, 76, 82, 85, 95, 99, 103

[Schärli 2004] Nathanael Schärli, Andrew P. Black and Stéphane Ducasse. Object-
oriented Encapsulation for Dynamically Typed Languages. In Proceedings
of 18th International Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA’04), pages 130–149, October
2004. 83

[Smith 1984] Brian Cantwell Smith. Reflection and Semantics in Lisp. In Pro-
ceedings of POPL’84, pages 23–3, 1984. 58

[Spoon 2004] S. Alexander Spoon and Olin Shivers. Demand-Driven Type Infer-
ence with Subgoal pruning: Trading Precision for Scalability. In Proceed-
ings of ECOOP’04, pages 51–74, 2004. 50, 84

[Steyaert 1996] Patrick Steyaert, Carine Lucas, Kim Mens and Theo D’Hondt.
Reuse Contracts: Managing the Evolution of Reusable Assets. In Pro-
ceedings of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA’96, pages 268–
285. ACM Press, 1996. 113

[Suzuki 1981] Norihisa Suzuki. Inferring types in Smalltalk. In Symposium on
Principles of Programming Languages (POPL’81), pages 187–199, New
York, NY, USA, 1981. ACM Press. 49, 50, 84

[Teyton 2013] Cédric Teyton, Jean-Rémy Falleri and Xavier Blanc. Automatic dis-
covery of function mappings between similar libraries. In Working Con-
ference on Reverse Engineering (WCRE), pages 192–201. IEEE, 2013. 21,
22, 24, 46, 82, 95, 99, 103

http://dx.doi.org/10.1145/356715.356719
http://dx.doi.org/10.1145/356715.356719
http://dx.doi.org/10.1145/356715.356719
http://dx.doi.org/10.1145/1368088.1368153
http://dx.doi.org/10.1145/1368088.1368153
http://dx.doi.org/10.1145/1368088.1368153
http://dx.doi.org/10.1145/1368088.1368153
http://dx.doi.org/10.1145/1028976.1028988
http://dx.doi.org/10.1145/1028976.1028988
http://dx.doi.org/10.1145/1028976.1028988
http://dx.doi.org/10.1145/1028976.1028988
http://dx.doi.org/10.1145/1028976.1028988
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/236337.236363
http://dx.doi.org/10.1145/236337.236363
http://dx.doi.org/10.1145/236337.236363
http://dx.doi.org/10.1145/236337.236363
http://dx.doi.org/10.1145/567532.567553
http://dx.doi.org/10.1145/567532.567553
http://dx.doi.org/10.1145/567532.567553

Bibliography 139

[Wohlin 2000] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Bjöorn Regnell and Anders Wesslén. Experimentation in software engi-
neering: an introduction. Kluwer Academic Publishers, Norwell, MA,
USA, 2000. 41

[Wu 2010] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol and Miryung Kim.
Aura: a hybrid approach to identify framework evolution. In International
Conference on Software Engineering (ICSE), volume 1, pages 325–334.
IEEE, 2010. 21, 22, 24, 46, 95

[Xavier 2017a] Laerte Xavier, Aline Brito, Andre Hora and Marco Tulio Valente.
Historical and impact analysis of API breaking changes: A large-scale
study. In International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 138–147. IEEE, 2017. 18, 19, 27, 28, 81,
97

[Xavier 2017b] Laerte Xavier, Andre Hora and Marco Tulio Valente. Why do we
break APIs? first answers from developers. In International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 392–
396. IEEE, 2017. 18, 19, 20, 27, 28, 43, 81

[Xing 2007] Eleni Xing ZhenchangandStroulia. API-evolution support with diff-
catchup. IEEE Transactions on Software Engineering, vol. 33, pages 818
– 836, 2007. 21, 22, 23, 46, 95

[Yau 1978] Stephen S. Yau, J. S. Collofello and T. MacGregor. Ripple effect anal-
ysis of software maintenance. In The IEEE Computer Society’s Second
International Computer Software and Applications Conference, pages 60–
65. IEEE Press, nov 1978. 2

[Zaitsev 2020a] Oleksandr Zaitsev, Stéphane Ducasse and Nicolas Anquetil.
Characterizing Pharo Code: A Technical Report. Technical report, In-
ria Lille Nord Europe - Laboratoire CRIStAL - Université de Lille ; Arolla,
January 2020. 6

[Zaitsev 2020b] Oleksandr Zaitsev, Stéphane Ducasse, Alexandre Bergel and
Mathieu Eveillard. Suggesting Descriptive Method Names: An Exploratory
Study of Two Machine Learning Approaches. In International Conference
on the Quality of Information and Communications Technology, pages 93–
106. Springer, 2020. 5

[Zaitsev 2022a] Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil and Ar-
naud Thiefaine. DepMiner: Automatic Recommendation of Transformation

140 Bibliography

Rules for Method Deprecation. In ICSR 2022-20th International Confer-
ence on Software and System Reuse, 2022. 5, 83

[Zaitsev 2022b] Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil and Ar-
naud Thiefaine. How Libraries Evolve: A Survey of Two Industrial Com-
panies and an Open-Source Community. In 29th Asia-Pacific Software
Engineering Conference, 2022. 5, 28

[Zaitsev 2022c] Oleksandr Zaitsev, Jordan Monta no Sebastian and Stéphane
Ducasse. How Fast is AI in Pharo?
Benchmarking Linear Regression. In IWST 2022-International Workshop
on Smalltalk Technologies, 2022. 5

[ZeroTurnAround 2012] ZeroTurnAround. What developers want: The
end of application Redeployes. http://files.zeroturnaround.com/pdf/

JRebelWhitePaper2012-1.pdf, 2012. 64

http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf

	Introduction
	Software Evolution and Breaking Changes
	Library Update
	Problems
	Contributions
	Why Pharo?
	Structure of the Thesis
	List of Publications

	Background
	What is Library Update
	Deprecations
	Scope of the Problem
	Motivating Examples

	State of the Art
	Empirical Studies of Library Evolution
	Code Transformation and Deprecations
	Tools to Support Library Update
	Chapter Conclusion

	How Libraries Evolve: Developer Survey of Library Update
	Introduction
	Survey Design
	Describing the Population
	Results of the Library Developer Survey
	Results of the Client Developer Survey
	Threats to Validity
	Chapter Conclusion

	Deprewriter: Transforming Deprecations
	Introduction
	Problem: Replacing Deprecated Method Calls
	Example: Rewriting Deprecations In Action
	Deprewriter
	Implementation
	Sketches of Possible Alternative Implementations
	Analysis of Deprecated Methods in Pharo 8
	User Survey
	Limitations and Discussion
	Chapter Conclusion

	DepMiner: Helping Library Developers to Deal with Breaking Changes
	Introduction
	Why Support Library Developers?
	DepMiner Approach
	Evaluation
	Limitations of Our Approach
	Chapter Conclusion

	First Steps Towards a Holistic Approach
	Introduction
	Different Types of Support
	The Shortcomings of Existing Approaches
	Understanding the Needs of Library Developers
	Overcoming the Limitations of DepMiner
	Holistic Approach to Deal with Breaking Changes
	Chapter Conclusion

	Case Studies of Challenging Library Update Problems
	Introduction
	Case 1: Reassigning the Existing Name
	Case 2: Circular Renaming
	Case 3: Modifying Abstract Hooks
	Case 4: Cleaning Up Spurious Objects
	Case 5: When String Literals are Used as Identifiers
	Chapter Conclusion

	Conclusion
	Summary
	Contributions
	Future Work

	Pharo syntax in a nutshell
	Transformation Rules of Deprewriter Extracted from Pharo 8
	Bibliography

