N

N

Contribution to the analysis of the design-space of a
distributed transformation engine
Jolan Philippe

» To cite this version:

Jolan Philippe. Contribution to the analysis of the design-space of a distributed transformation engine.
Software Engineering [cs.SE|. Ecole nationale supérieure Mines-Télécom Atlantique, 2022. English.
NNT: 2022IMTA0339 . tel-03998994

HAL Id: tel-03998994
https://theses.hal.science/tel-03998994
Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03998994
https://hal.archives-ouvertes.fr

4 nd

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom

DE DOCTORAT DE

Thése No:

2022IMTA0339

Rapporteurs avant soutenance :

Jesus SANCHEZ CUADRADO Associate professor, Universidad de Murcia, Spain
Professor, University of Ulm, Germany

Matthias TICHY

Composition du Jury :

Président :
Examinateurs :

Dir. de thése :
Co-encadrants de thése :

Thomas LEDOUX

Leen LAMBERS

Jesus SANCHEZ CUADRADO
Matthias TICHY

Antonio VALLECILLO

Gerson SUNYE

Massimo TISI

Héléne COULLON

Professor, Institut Mines-Telecom Atlantique, France
Professor, Brandenburg University of Technology, Germany
Associate professor, Universidad de Murcia, Spain

Professor, University of Ulm, Germany

Professor, University of Malaga, Spain

Associate professor, University of Nantes, France

Associate professor, Institut Mines-Telecom Atlantique, France
Associate professor, Institut Mines-Telecom Atlantique, France

ACKNOWLEDGEMENT

You can do anything

you set your mind to, man

Lose yourself

Eminem

Foremost, I would like to express my sincere gratitude to my advisors Dr. Hélene Coullon,
Dr. Massimo Tisi, and Dr. Gerson Sunyé for these three last years of science. None of this
journey would have been done without their support, their patience and their advice.

I'would like to thank all the members of my jury: Dr. Jesus Sanchez Cuadrado, Pr. Matthias
Tichy, Pr. Antonio Vallecillo, Pr. Leen Lambers, and Pr. Thomas Ledoux for reviewing my
work, attending my defense, and for the interesting questions and discussions that followed
my thesis defense.

I adress a big thank you to the all people I had the chance to work with for all our scientific
collaboration. Thank you to Naomod and Stack teams, and all the Lowcomote contributors.
I hope there will be future occasion to work together, or at least to meet around a drink. I also
want to adress a special thank to my friends Rémi Douence and Théo Le Calvar.

To all my dear A246 office-mates: Thibault, Joachim, Ali and James, I address a big thank
you. “Kudos to our stolen sofa”. I did not only shared an office, but also a place. Thanks to all
the flatmates I had, who supported me at home.

What would be acknowledgement without thanking all those who really supported me
during the writing period: Josselin, Mathieu, Julie, Spencer, Sirine, Hélene, Pierre, Colin.
Thank you guys, all these beers helped a lot.

I would like to address a lovely thank you to my family. Words will never be enough to
express my gratitude to you, my parents.

Before closing these acknowledgement, I would like to thank Louison Grouard, for her
love and support during the final rush of the Ph.D journey. Even at the really end, I thought

about quitting, but you kept my head clear, and focused.

iii

And finally, to my two best friends, Anthony and Benoit, who repeated for the 10 last years
that one day I will be doctor: an infinite amount of love. I dedicate this thesis to both of you.

Thank you my boys.

iv

A Anthony et Benoit

RESUME FRANCAIS

Contexte

L'Ingénierie logicielle basée sur les modeles est devenue une approche populaire. La
modélisation est une activité présente dans tous les domaines scientifiques qui vise a don-
ner une vision simplifiée des entités du monde réel telles que la biologie, les mathématiques,
le génie civil, les lignes de produits ou les disciplines philosophiques [7, 8, 11, 68, 141]. Plus
précisément, le Ingénierie dirigée par les models (IDM) est une approche d’ingénierie logi-
cielle qui met en scene des modeles comme point central pour le développement de logi-
ciels. En génie logiciel, les modeles sont utilisés pour décrire tous les aspects des logiciels et
des systeémes, y compris leurs architectures, leurs actions, leurs composants physiques, leurs
algorithmes ou leurs communications. Pour des raisons de standardisation, I'Object Man-
agement Group (OMG) a défini un langage standard de représentation des modeles nommé
Unified Modeling Language (UML) [145]. Compte tenu des nombreux roles des personnes
impliquées dans la conception d'une application, avoir des modeles centraux partagés par
les acteurs aide vraiment a la compréhension, et constitue une vue de connaissance forte.
Bien sir, il existe de nombreux types de modeles, avec des objectifs différents, et ils n’ont
pas besoin du méme niveau d’expertise. Mais les modeles sont souvent considérés comme
un pont entre les acteurs autour du logiciel. Les modeéles constituent désormais une partie
vivante des projets et sont souvent manipulés comme des entités individuelles.

Les deux principales catégories d’outils de gestion de modele que nous considérons sont
la transformation de modéele et la requéte de modele. D'une part, la transformation de mod-
ele est le processus de conversion d'un ou plusieurs modeles d’entrée en modeles de sor-
tie (modéle-vers-modele) ou en texte (modele-vers-texte). Une transformation de modele
qui produit un modele en sortie peut étre soit une transformation sur place (c’est-a-dire
une modification directe du modele d’entrée) soit une transformation hors place (c’est-a-
dire la production d'un nouveau modele a partir de celui d’entrée). D’autre part, une re-
quéte de modele analyse les modeles source pour calculer la valeur de données souhaitée.
Dans la littérature, il existe une distinction claire entre ces deux opérations, méme si les re-

quétes peuvent s’exprimer sous forme de transformations, et inversement. Nous parlons de

vii

requéte lorsqu’il s’agit d’expression atomique, utilisées pour obtenir un résultat unique, tan-
dis qu’'une transformation de modele est |’exécution de regles de transformation, basées sur
des requétes, par un moteur dédié. Notez qu'’il existe également des moteurs pour exécuter
des requétes sur les modeles.

Les modeles sont utilisés pour représenter des entités réelles, comme des données. Puisque
nous vivons dans un monde entouré de capteurs, nous créons continuellement des informa-
tions, augmentant la taille des données produites. Le traitement de cette énorme quantité
de données s’appelle Big Data. Dans MDE, nous appelons les modeles contenant beaucoup
d’informations des “Very Large Models” (VLMs). Les outils dédiés au traitement des VLMs
ont un besoin important d’opérations automatiques, transparentes, efficaces et évolutives,
pour manipuler, interroger et analyser des modeles. La plupart des opérations de gestion de
modele sont exécutées au moment de la conception, par exemple pour éditer, valider, trans-
former le modele. Le temps nécessaire pour répondre a une commande graphique est un

facteur de qualité d'un outil MDE et influe sur le confort du développeur.

Enoncé du probléme

L'IDM est une méthode puissante pour organiser et traiter théoriquement tout type de
données. Les VLMs posent des défis supplémentaires, en raison de la taille des données
qu’ils représentent. Un probleme de mise a I’echelle se pose lorsqu’'un outil doit manipuler
de grands modéles d’instance de données, par exemple, comme cela se produit aujourd’hui
dans plusieurs domaines d’ingénierie (automobile, aéronautique, civil). En raison de la taille
méme dumodele, il est nécessaire de fournir une solution efficace. Pour améliorer I'efficacité
et la mise a I’echelle des solutions d’'IDM, des recherches récentes sur la gestion de modeles
ont étudié la programmation parallele et concurrente ainsi que des modeles d’exécution
spécifiques pour les langages de gestion de modeles. Ces techniques vont de la mise en
ceuvre d’algorithmes d’exécution spécifiques (par exemple, RETE [74]) a la compilation vers
des modeles de programmation distribués (par exemple, MapReduce [65]). La diversité des
stratégies employées pose plusieurs défis scientifiques.

La plupart des solutions ont été développées indépendamment, sur différentes tech-
nologies et avec des objectifs différents. Les nombreuses solutions n’étant pas formalisées
au sein d'une solution unifiée, il n'est pas possible de faire un comparatif clair et précis de
ces outils. Lintroduction de solutions de parallélisme, qui sont des approches non déter-

ministes, rend encore plus difficile une telle comparaison. Les architectures basées sur le

viii

parallélisme et leurs paradigmes associés (par exemple, le parallélisme des données, le par-
allélisme des taches, 'asynchronisme) sont trop différents pour étre comparés. Compte tenu
de ces criteres, la conception et I'évaluation d'une solution distribuée pour les transforma-
tions de modeles n’est pas triviale et tres difficile.

Ainsi, les challenges adréssés sont les suivants:

1. Une expression dans une regle de transformation peut étre évaluée comme une re-
quéte sur le modele d’entrée de la transformation. Lexécution d’'une requéte sur un
modele dans un moteur distribué dépend vraiment de la stratégie adoptée par |'utilisateur
quil’a définie. Les modeles de programmation basés sur le calcul distribué ne présen-

tent pas les mémes avantages selon le cas d’utilisation et le modéle d’entrée.

2. Les moteurs de transformation existants pour effectuer des transformations de mod-
ele sont congus a partir de différents choix en fonction de leur objectif. Il n'est pas
possible de comparer différents choix de conception dans les moteurs de transfor-
mation mais de le faire en utilisant des moteurs existants. Il y a trop de différences

qui ont un impact sur les performances.

3. La configuration d'un moteur de transformation a un impact sur ses performances.
Les choix d’ingénierie dans le développement d'un moteur de transformation influ-

encent fortement le temps de calcul nécessaire a I’exécution d'une transformation.

Contribution

Cette these contribue a I'analyse des choix de conception dans la conception d'un mo-
teur d’exécution.

Une premiere partie de cette these est centrée sur les modeles de programmation dis-
tribués qui peuvent étre utilisés pour exécuter des requétes sur le modeéle. Les regles de trans-
formation sont définies a 'aide d’expressions qui exécutent des requétes sur les modeles
pour interroger le modele d’entrée afin de vérifier une condition ou d’extraire des informa-
tions pour créer un contenu de sortie. Dans cette contribution, nous proposons d’abord une
implémentation Scala d’OCL, un langage de requéte sur les modeéles. Puis nous avons pro-
posé des implémentations basées sur des modeles de programmation distribuée : primitives
Spark, MapReduce, Pregel et hybrides.

La deuxieme contribution de la thése cible le choix de conception des moteurs de trans-
formation distribués. Nous proposons un raffinement de la spécification CoqTL pour aug-

menter les possibilités de parallélisme. La spécification affinée est validée en prouvant formelle-

ix

ment en Coq I’équivalence entrée/sortie a la spécification CoqTL standard. Cette nouvelle
spécification est implémentée sur Spark et nous évaluons ses performances sur un cluster
distribué. Ces performances incluent les avantages de notre nouvelle solution par rapport a
une implémentation de la spécification CoqTL standard, une analyse du temps de calcul et
une analyse de I’évolutivité potentielle que ce nouveau moteur peut proposer.

Dans la troisieme contribution, nous proposons plusieurs configurations pour SparkTE,
le moteur de transformation distribué précédemment implémenté a partir de la nouvelle
spécification de CoqTL. Les configurations sont basées sur différentes stratégies pour les
étapes de calcul de I'opération de transformation du modele. Nous proposons un modele de
fonctionnalités pour illustrer les nombreuses options dont nous disposons pour I'exécution
de SparkTE. Nous comparons I'impact de choix uniques, mais aussi de configurations com-
pletement modifiées, en expérimentant notre moteur configurable sur un cluster de calcul.

A travers la these, nous présentons et expérimentons nos travaux en utilisant des cas
d’utilisation bien connus sur des modéles conformes a trois méta-modeles. Pour chacun de
ces métamodeles, nous expérimentons une ou plusieurs transformations. Les trois princi-

paux cas sont les suivants.

1. Latransformation Relational2Class, qui mappe les éléments relationnels, c’est-a-dire
les tables, les types et les colonnes, aux éléments de classe, c’est-a-dire les classes, les

types de données et les attributs.

2. Un casderéseausocial, de TTC18 [76]. Ce cas d’utilisation vise a extraire le post le plus
débattu d'un réseau social, en fonction de son activité (nombre de commentaires, et
de likes).

3. Un cas sur Internet Movie Database (IMDb) [92], ot le but est de trouver des couples

d’acteurs et/ou d’actrices qui ont joué ensemble dans plusieurs films.

De plus, nous avons utilisé deux autres cas comme exemple pour illustrer la variabilité des
résultats : (i) une transformation d’identité sur des modéles IMDD [92] et (ii) une requéte sur

des modeles DBLP pour trouver des auteurs actifs qui ont publié dans des revues [10].

Contexte de la these

Les travaux de cette theése ont été financé par le projet Européen intitulé Lowcomote !,qui

arecu un financement du programme de recherche et d'innovation Horizon 2020 de I'Union

1. http://www.lowcomote.eu

européenne dans le cadre de la convention de subvention Marie Skldowska-Curie n°813884.
Le but de ce projet est de former 15 doctorants autour des plateformes low-code. Les plate-
formes low-code (LCDP) servent a concevoir des applications directement via des modeles
en minimisant ainsi la part de programmation textuelle, et en maximisant a la place la pro-
grammation visuelle.

De plus, ce thése a pris place au sein des équipes NaoMod ?(anciennement Atlanmod)
et Stack 3. NaoMod et Stack sont deux équipess du Laboratoire des Sciences du Numérique
de Nantes *(LS2N), localisée sur les campus de 'UFR Sciences et Techniques, et I'IMT At-
lantique de Nantes®. Léquipe Naomod est spécialisée dans I'ingenierie des models dans
la région de Nantes depuis les années 1990, et a proposé de nombreuses technologies, no-
tamment basées sur Eclipse, a destination des développeurs et architectes logiciels, dans
I'optique d’améliorer leur productivité, ainsi que la qualité des applications qu’ils dévelop-
pent. L'équipe Stack est un projet initié par I'INRIA, qui traite des défis liés a la gestion et
I'utilisation avancées des infrastructures de I'informatique utilitaire. Les activités de I'équipe
se concentrent sur la définition d’abstractions et de mécanismes permettant d’opérer les fu-

tures infrastructures massivement géo-réparties (Fog/Edge).

2. https://naomod.github.io/

3. https://stack-research-group.gitlabpages.inria.fr/web/
4. https://www.Is2n.fr/

5. https://www.imt-atlantique.fr

TABLE OF CONTENTS

1 Context 1
1.1 Introduction i e e e e e e e 1
1.2 Problem Statement 2
1.3 Contributions e e e 3
1.4 Outlineofthethesis 5
1.5 Scientific productions e 5

2 Preliminaries 7
2.1 Model transformations e e 7

2.1.1 Modelingconcepts e e 8
2.1.2 Model transformation 10
2.1.3 ATL: an example of transformationlanguage 10
2.2 Distributed computation e 14
2.2.1 Distributed computation and data-distributed programs 14
2.2.2 Architecture ofaSparkcluster 17
223 JobsinSpark. e 18
2.2.4 Sparklibraries 19
2.3 Interactive Theorem Proving 21
2.3.1 Correctionofprograms 21
2.3.2 TheCoqgproofassistant 23

3 State of the Art 29

3.1 Efficiency in model transformation, 29
3.1.1 Data-Parallelism 30
3.1.2 Task-Parallelism. 31
3.1.3 Asynchronism e 32

3.2 Semantics and correctionin MDE Lo Lo Lo L. 35
3.2.1 Correction for model transformations 35
3.2.2 Provingparallel programs 0. 36

xiii

3.3 Multi-parameter and benchmarking 37

3.3.1 Featuremodelsin MDE 37
3.3.2 Multi-strategy based MDEtools 38
Programming Models for Executing Distributed Model Queries 39
4.1 Expressionsin Model Transformations 40
4.2 Motivating Example 41
4.3 OCLexpressionsinSpark 44
4.4 Multi-Strategy Model Management 47
4.4.1 Directnaive implementation 48
4.4.2 Pregelimplementation. 49
4.4.3 MapReduce implementation 50
4.4.4 Discussion on multi-strategy 52
4.5 Challenges in Multi-Strategy Model Management 54
4.5.1 Code-relatedchallenges 54
4.5.2 DevOps-related challenges 55
4.6 Evaluation 56
4.7 Conclusion L 57
Semantics for Executing Certified Model Transformations on Apache Spark 59
5.1 Introduction e e 60
5.2 Motivationand Background Lo Lo Lo L 61
52.1 RunningExample. o .. 61
5.2.2 Objective e e 64
53 Approach Overview i 65
53.1 CoqtoScala 67
5.3.2 Distributed Data Structures 68
5.4 Parallelizable Semantics for CoqTL. 69
5.4.1 Parallelizable CoqTL 70
5.4.2 RefinementProof o .. 72
5.4.3 ImplementationonSpark 75
54.4 Limitations 75
55 Experiments e 76
5.5.1 Evaluation of SparkTEon Use-cases 77
5.5.2 Performance Analysis by Complexity and Datasets 78

Xiv

5.5.3 Performance AnalysisbyPhase 81

56 Conclusion e 83

6 Configurable transformation engine 85
6.1 Introduction e e 85
6.2 Motivatingexample. e 87
6.3 Configurable SparkTE 89
6.4 SparkTEfeaturemodel 91
6.4.1 Modelingapproaches 91

6.4.2 Executionstrategies e 93

6.4.3 Spark-Related Features 95

6.5 Evaluation 96
6.5.1 Featureanalysis 97

6.5.2 Configuration comparison 99

6.5.3 Horizontal scalability. 99

6.6 Conclusion e 101

7 Conclusion 103
7.1 Synthesis 103
7.2 LIMIES . . . o L e e 105
7.2.1 Horizontal scalability. o . 105

7.22 COITECINESS v v vttt e et e e e e e e e e e e e 105

7.2.3 Multi-parameters benchmarking 105

7.24 Inputanalysis e 106

7.2.5 Additional strategies 106

7.3 Perspectives e e e e e 106
7.3.1 Storing models in external database, . 107

7.3.2 Acompiler CoqTLtoScala 107

7.3.3 Cost model for distributed operations 107

7.3.4 Evaluating SparkTE features 108

7.3.5 MonitoringSparkTE 108
Appendices 109

A Efficient Loading of Serializable Models
A.1 Contribution to NeoEMF

A.2 Experimental results

B Multi-Parameter Benchmark Framework
B.1 Research objectives

B.2 Motivatingexample e

B.3 Architecture & approach

B.3.1 Evaluation

B.4 Conclusion

Bibliography

110
110
113

114
114
115
116
117
118

LIST OF FIGURES

2.1
2.2
2.3

2.4

4.1

5.1
5.2

5.3

5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al

B.1

Modelisation hierarchy from real-world things to meta-metamodels.
Structure of a model transformation Lo oL,
A model conforms to the Family metamodel transformed into a model con-

forms to the Person metamodel

Overview of a Spark cluster architecture®
The metamodel of a social network (TTC2018)

Relational and Class diagram metamodels
Global overview of our workflow to execute certified model transformations on
ApacheSpark. e
Distributed computation of a model transformation on SparkTL. ¢ denotes a
column, ¢ a table, a an attribute, and c! a class. Green elements and links illus-
trate the entities created by the transformation in the output.

Relative speedups of SparkTE with sleepingtimes

IMDb Metamodel from [92] e e
Structure of a model transformation using Configurable SparkTE program . . .
Legend for featurediagrams Lo o
SparkTE feature diagram for its modeling solution
SparkTE feature diagram for its execution strategy.
SparkTE feature diagram for communicating data amongnodes.
Comparison of horizontal scalability for the Identity and FindCouples trans-

formationsonIMDbmodels o o .
NeoEMF extension integration in a model-based development environment . .

Global overview of the approach for a multi-parameter benchmark framework

xvii

66

LIST OF TABLES

3.1
3.2

4.1
4.2
4.3
4.4

5.1

5.2

5.3

5.4

5.5

5.6

6.1

Parallelism for model-management in literature. 30
Reactive strategies for model-management in literature. 33
Equivalence between OCL and Spark expressions 44
Equivalence between OCL and Spark expressions 45
Description of used datasets from TTC18 56

Comparison of speed-ups of 5 Scala + Spark implementations with a direct

Scala implementation based on different strategies for the TTC18 query 57

Size (in LOC) of new specification and certification proofs added for each opti-
mization, with proof effort (in man-days). 72
Hardware setup of the two clusters used during experiments. These clusters are

part of the Grid’5000 experimental platform for distributed computing. 76
Description of the three datasets used in the experiments with the number of
elementsandlinks. L Lo 76
Execution times and speedups (relative to 1 core) for the executions with SparkTE

of Relational2Class (R2C), the IMDb findcouple transformation, and the DBLP

case. Experiments respectively conducted with the dataset D1, D4, and D5, on

the cluster paravance. 80
The set of experiments described in Section 5.5.2 with different fictitious pro-
cessing time in the transformation, and different sizes of datasets. The number

of cores used by each benchmark is also indicated, as well as the number of
cores per node (i. e. worker). Finally, the Grid’5000 cluster used for the bench-
markis givenin thelastcolumn. 80
Relative speedups of SparkTE parallel phases on B1, B2 and B3 for sleeping
times equals to 50 ms and 2000 ms. The percentage of the observed speedup
compared to the theoretical ideal speedup is indicated for each result (higher
thebetter). 82

Impact of Spark StorageLevel on a distributed data-structure management . . . 96

xviii

6.2
6.3

6.4
6.5

Al

B.1
B.2

Examples of configurations of SparkTE 97
Computation time of an Identity transformation on a IMDB model with vary-
ing data-structures type for accessing input model links and resolve instanti-
ated trace-links L L 98
Comparison of two running configuration of SparkTE on FindCouples example 99
Horizontal scalability of running Identity on SparkTE with good configuration 100

Loading time of models from TTC18 113
Word count parameters.ot e e e e e e 115
Benchmark results on the word countexample. 118

Xix

ACRONYMS

ATL
BMF
CoC
CPU
EMEF
ETL
IMDb

LHS
MBSE
MDE
MISD
MIMD
MOF
MPI
MQ
MR
OCL
OMG
OOP
PaaS
PIM
PSM
QVT
RDD
RHS
SIMD
SISD
SSSP
UML

ATLAS Transformation Language
Bird-Meertens Formalism
Calculus of Constructions
Central Processing Unit

Eclipse Modeling Framework

Epsilon Transformation Language

Internet Movie Database
Java Virtual Machine
Left Hand Size

Model-Based Software Engineering

Model Driven Engineering

Multiple Instruction Single Data

Multiple Instruction Multiple Data

Meta-Object Facility

Message Passing Interface
Model Query

Model Transformation

Object Constraints Language
Object Management Group
Objct-Oriented Programming
Platform as a Service
Platform-Independent Model
Platform-Specific Model
Query View Transformation
Resilient Distributed Dataset
Right Hand Side

Single Instruction Multiple Data
Single Instruction Single Data
Single Source Shortest Path
Unified Modeling Language
Very Large Model

CHAPTER 1

CONTEXT

Contents
1.1 Introduction o v v v vttt ittt et ettt 1
1.2 ProblemStatementttt ittt e e e 2
1.3 Contributions ottt ittt it i i e e 3
1.4 Outlineofthethesis0 0. 5
1.5 Scientificproductionst i i e 5

1.1 Introduction

Model-Based Software Engineering (MBSE) has become a popular approach. Modeling
is an activity present in all scientific areas which aims at giving a simplified view of real-
world entities such as biology, mathematics, civil engineering, product lines, or philosophic
disciplines [7, 8, 11, 68, 141]. More precisely, Model Driven Engineering (MDE) is a software
engineering approach that stages models as a central point for developing software. In soft-
ware engineering, models are used to describe all the aspects of software and systems in-
cluding their architectures, actions, physical components, algorithms, or communications.
For standardization reasons, the Object Management Group (OMG) defined a standard lan-
guage for representing software systems named Unified Modeling Language (UML) [145].
Considering the many roles of people involved in the conception of an application, having
central models shared by the actors helps comprehension, and constitutes a strong knowl-
edge view. For sure, there exist many types of models, with different purposes, and they do
not need the same level of expertise. But models are often considered as a bridge between
the actors around the software. Models now constitute a living part of projects and are often
manipulated as individual entities.

In the context of MDE, model management tools are software applications that help

organizations manage the development, deployment, and maintenance of models that are

used in the MDE process. These tools typically provide features such as version control, col-
laboration, and tracking of model performance. By using model management tools, orga-
nizations can improve the efficiency and effectiveness of their MDE processes. Examples of
model management tools for MDE include tools such as the Eclipse Modeling Framework
(EMF) [153] and the Meta Object Facility (MOF) [157].

The two main categories of model-management tools we consider are model transforma-
tion (MT) and model query (MQ). On the one hand, model transformation is the conversion
process of one or more input models to output models (model-to-model) or text (model-to-
text). Amodel transformation that produces a model as output can be either an in-place (i. e.,
direct modification of the input model) or an out-place transformation (i. e. production of a
new model from the input one). On the other hand, a model query analyzes source models
to compute the desired data value. In the literature, there is a clear distinction between these
two, even if queries can be expressed as transformations, and vice versa. We name query and
atomic expression, used to obtain a single result, while a model transformation is the full ex-
ecution of rules, based on queries, by a dedicated engine. Note that there also exist engines
to run single queries.

Models are used to represent real-life entities, like data. Since we live in a world sur-
rounded by sensors, we create information continuously, increasing the size of the produced
data. The processing of this huge amount of data is called Big Data. In MDE, we refer to
models containing a lot of information as Very Large Models (VLMs). Tools dedicated to
the treatment of VLMs have a significant need for automatic and transparent efficient and
scalable operations, for manipulating, querying, and analyzing models. Most of the model-
management operations are executed at design time, e.g., for editing, validating, and trans-
forming the model. The required time for responding to a graphical command is a quality

factor of a MDE tool and influences the developer’s comfort.

1.2 Problem Statement

MDE is a powerful method for organizing and theoretically treating every kind of data.
VLMs pose additional challenges, due to the size of the data they represent. A scalability
issue arises when a tool needs to manipulate large instance models of data, e.g., as it hap-
pens today in several (automotive, aeronautics, civil) engineering domains. Because of the
sheer size of the model, providing an efficient solution is necessary. A second scalability issue

arises when there is a need to run a big number of operations in parallel for many users. In

2

the context of a Platform as a Service (PaaS), numerous customers may query models. Hence,
efficient concurrent execution of model management operations is necessary. To improve ef-
ficiency and scalability, recent research on model-management studied parallel and concur-
rent programming as well as specific execution models for model management languages.
These techniques range from implementing specific execution algorithms (e.g., RETE [74])
to compiling toward distributed programming models (e.g., MapReduce [65]). The diversity
of strategies that have been employed poses several scientific challenges.

Most of the solutions have been independently developed, on top of different technolo-
gies, and with different purposes. Since the numerous solutions are not formalized within
a unified solution, it is not possible to give a clear, and precise, comparison of these tools.
The introduction of parallel solutions, which are non-deterministic approaches, makes even
harder such a comparison. The architectures based on parallelism, and their associated paradigms
(e.g, data-parallelism, task-parallelism, asynchronism), are too different to be compared.
Considering these criteria, designing and evaluating a distributed solution for model trans-
formations is not trivial and very challenging.

In this thesis, we adress the following challenges:

1. Anexpression in a transformation rule can be evaluated as a query on the input model
of the transformation. The execution of a query on a model in a distributed engine de-
pends on the strategy adopted by the user who defined it. The programming models
based on distributed computing do not show the same benefits according to the use

case and the input model.

2. The existing engines for performing model transformations are designed from differ-
ent choices according to their purpose. Comparing different design choices in trans-
formation engines but making it using existing engines is not possible. There are too

many differences that impact performance.

3. The configuration of a transformation engine has an impact on its performance. En-
gineering choices in the development of a transformation engine deeply influence

the computation time needed for running a transformation.

1.3 Contributions

This thesis contributes to the analysis of design choices in the design of an execution

engine.

The first part of this thesis is focused on the distributed-based programming models that
can be used to run queries on the model. Transformation rules are defined using expressions,
that run queries on the models for interrogating the input model to either check a condition
or extract information for creating output content. In this contribution, we first propose a
Scala implementation of OCL, a query language on models. Then we proposed implementa-
tions based on distributed programming models: Spark primitives, MapReduce, Pregel, and
hybrids.

The second contribution of the thesis targets the design choice of distributed transforma-
tion engines. We propose a refinement of the CoqTL specification to increase parallelism op-
portunities. The refined specification is validated by formally proving in Coq the input/out-
put equivalence to the standard CoqTL specification. This new specification is implemented
on top of Spark and we evaluate its performance on a distributed cluster. These perfor-
mances include the benefits of our new solution compared to an implementation of the
standard CoqTL specification, an analysis of computation time, and an analysis of the po-
tential scalability this new engine can propose.

In the third contribution, we propose multiple configurations for SparkTE, the distributed
transformation engine previously implemented from the new specification of CoqTL. The
configurations are based on different strategies for the computational steps of the model
transformation operation. We propose a feature model to illustrate the numerous options
we have for the execution of SparkTE. We compare the impact of single choices, but also
of completely changed configurations, by experimenting with our configurable engine on a
computational cluster.

Through the thesis, we present, and experiment, with our work using well-know use cases
on models that conform to three meta-models. For each of these metamodels, we experi-

ment with one or several transformations. The three main cases are the following.

1. The Relational2Class transformation, which maps relational elements, i.e., tables, types,

and columns, to class elements, i.e., classes, datatypes, and attributes.

2. A Social Network case, from TTC18 [76]. This use case aims at extracting the most
debated post in a social network, based on its activity (number of comments, and
likes).

3. A case on the Internet Movie Database (IMDb) [92], where the goal is to find couples
of actors and/or actresses who used to play together in several movies.

In addition, we used two other cases as examples to illustrate the variability of results: (i) an

identity transformation on IMDb models [92] and (ii) a query on DBLP models to find active

4

authors who published in specific journals [10].

1.4 OQOutline of the thesis

This thesis is organized as follows. Chapter 2 presents some background material and key
concepts for the comprehension of the rest of the document. Chapter 3 presents the state of
the art that already targets the problem we are trying to face in this thesis. In Chapter 4, we
present a comparison of model queries, based on several programming models. Chapter 5
proposes two main contributions: a refinement of CoqTL to increase the parallelism oppor-
tunities (Sect. 5.4), and SparkTE, its implementation on top of Spark (Sect. 5.3). In Chapter 6,
we enrich SparkTE with a configuration aspect, to select the different strategies to run trans-
formations on the engine. We finally conclude in Chapter 7 by giving a global summary of
the contributions and their limits and proposing future work as perspectives. Two appen-
dices are presented at the end of the document. (i) Appendix A illustrates how we extended
NeoEMF-IO for loading serializable models distributable on Spark, and Appendix B which

presents an excerpt of benchmarking library for multi-parameter applications.

1.5 Scientific productions

During this thesis, we produced 2 articles: 1 international conference, and 1 international
workshop.
— International conference
— Jolan Philippe, Massimo Tisi, Hélene Coullon, Gerson Sunyé. Executing Certified
Model Transformations on Apache Spark. SLE 2021: 14th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, Oct 2021, Chicago IL,
United States. https://hal.archives-ouvertes.fr/hal-03343942
— International workshop
— Jolan Philippe, Hélene Coullon, Massimo Tisi, Gerson Sunyé. Towards Transparent
Combination of Model Management Execution Strategies for Low-Code Develop-
ment Platforms. 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings, Oct 2020, Montreal
(Virtually), Canada. https://hal.archives-ouvertes.fr/hal-02952952

https://hal.archives-ouvertes.fr/hal-03343942
https://hal.archives-ouvertes.fr/hal-02952952

CHAPTER 2

PRELIMINARIES

Contents
2.1 Modeltransformations. ittt it i e i e 7
2.1.1 Modelingconcepts e 8
2.1.2 Model transformation, 10
2.1.3 ATL: an example of transformation language 10
2.2 Distributedcomputationttt 14
2.2.1 Distributed computation and data-distributed programs 14
2.2.2 Architecture ofa Sparkcluster 17
223 JobsinSpark. e 18
224 Sparklibraries 19
2.3 Interactive TheoremProvingttt eeenns 21
2.3.1 Correctionofprograms 21
2.3.2 TheCoqgproofassistant 23

In this chapter, we present various conceptual and software tools to ease the reading of
the contribution chapters. First, we begin to present what is Model Driven Engineering (Sec-
tion 2.1). We give general concepts and then define what is model transformation and how
it can be defined. Section 2.2 introduce distributed computation and more specially Spark,
a unified engine for data-distributed computation. Finally, an overview of what is correct-
ness of programs is given in Sect. 2.3. In this last section, we introduce Coq, a proof assistant
designed for interactive theorem proving, and Coq-based language for defining model trans-

formations: CoqTL.

2.1 Model transformations

In the 2000s, the Object Management Group (OMG) introduced the concept of Model-

Driven Architecture (MDA). The main goal of MDA is to provide tools for solving issues

7

raised by complex systems. The approach separates the functionalities of a system from
its implementation. It allows users to emancipate the functionalities from the target plat-
form by supplying ‘vendor-neutral interoperability specifications”. MDA promotes the us-
age of Platform-Independent Models (PIM) as primary artifacts to design systems and soft-
ware architectures. These models can then be adapted to a specific platform (i.e., Platform-
Specific Model (PSM)) using successive transformations, refinements, and finally, code gen-
eration [104, 149]. We call this process forward engineering. On the contrary, PIM can be
reconstructed by analyzing PSM. This new PIM can then be used as a basis for code mod-
ernization, maintenance and, enhancement. We call this process reverse engineering [33].
These concepts can be generalized under model transformation, a concept introduced in
Sect. 2.1.2. Model Driven Engineering (MDE) is a more general approach that emerged from
MDA. MDE is not limited to architecture, but also processes, data representation, and anal-
ysis.

In the rest of the section, we first introduce general concepts of MDE about modeling
(Section 2.1.1). Then, in Section 2.1.2, we introduce transformation rules and engines to run
through. Finally, we give an overview of ATL, a language used for expressing model transfor-

mations in Sect. 2.1.3.

2.1.1 Modeling concepts

MDE is a software engineering approach born from the Object Oriented Programming
(OOP) paradigm. OOP is based on the concept of “objects”, which are atomic abstractions
that encapsulate data to describe and substitute real entities. In the Java language, or in its
functional support Scala, the API defines an object with a name and a set of attributes, as an
instance of class. A class gives a more general definition of how objects are structured with
identifiers: a classname, a set of behavior methods, and a set of fields. A class instance, that
is an object, inherits all the features described in the class definition.

In a MDE approach, a set of object definitions is named a model. There exist about ten
of definitions for what is a model [129]. In this thesis, we refer to OMG’s definition: “A model
of a system is a description or specification of that system and its environment for some cer-
tain purpose.”. In other words, a model describes data, and its environment, in a specific
context. In an object-oriented context, a class can be instantiated into an object. In MDE,
the definition of the structure of a model is named a metamodel. A metamodel is an explicit
specification of an abstraction [128, 28]. It is used to define a list of concepts (e.g., structure,

classes), and how these concepts interact with each other. All the metamodels in this the-

conformsTo - - conformsTo - -

M3 - Meta-metamodel MOF Metaclasses
/\ /\
conformsTo conformsTo
M2 - Metamodels UML Classes
A\ A
conformsTo conformsTo
M1 - Models Family Fa.mlly
Model Objects

represer}tationOf— represer}tationOf

v V

MO - Real Object/Data Curie Curie
Family Family
MDE Java API

Figure 2.1 - Modelisation hierarchy from real-world things to meta-metamodels

sis follow the OMG’s Meta-Object Facility (MOF) 1 Then the metamodel can be instantiated
into a model, that conforms to the metamodel abstract syntax and satisfies the metamodel
semantics. The syntax and the semantics of a metamodel definition can itself be viewed as
metamodel, namely meta-metamodel. For instance, UML, which stands for Unified Model-
ing Language, was introduced in the late 90s as a standard language for modeling object-
oriented systems. In UML, the metamodels all conform to the Meta-Object Facility (MOF)
meta-metamodel. This concept can be associated of metaclasses from programming lan-
guages, that are used in reflexive programming.

Figure 2.1 from [95] summarizes the four-level of a metamodeling architecture, with the
example of modeling families:

— The real-world thing is a concrete family, with family members (layer MO0). For in-

1. https://www.omg.org/mof/

stance, the Curie family is composed of Marie, Pierre, and their two daughters: Irene
and Eve. They all were existing people, who lived in the real world.

— The M1 layer groups the family models, which represent the data of the M0 layer. In
the family case, the model states the name and the place of the family members.

— The M2 layer contains metamodels whose models of M1 conform to. For example, the
family model conforms to a UML metamodel describing how a family is constructed.

— Finally, the meta-model from the M2 layer conforms to a meta-metamodel of the

layer M3. For example, a UML metamodel conforms to the MOF meta-metamodel.

2.1.2 Model transformation

Model transformation (MT) is certainly one of the most used concepts in MDE. It is the
conversion process of one or more input models to output models (model-to-model) or text
(model-to-text). A model transformation that produces a model as output can be either an
in-place (i.e., direct modification of the input model) or an out-place transformation (i.e.
production of a new model from the input one). To perform transformations, input content
must be analyzed. Model queries (MQ) analyze source models to compute desired data val-
ues. A query can be used to express a condition on an input element or evaluate content for
the output model.

Even if these transformations can be expressed in any language, transformation engines
mostly use dedicated tools and languages. These tools take advantage of the previously in-
troduced 4-layers. The languages are used to specify the equivalence between a source and
a target metamodel. The transformation can then be applied to a source model, which con-
forms to the source metamodel of the transformation. As output, the target model will con-
form to the target metamodel. Figure 2.2 presents the structure of a model transformation
from a source model to a target model.

As a concrete example of transformation, we can consider a change in the representation
of members of a family. In a Family2Person transformation, we transform all Member of a

Family into Person, either a Male or Female.

2.1.3 ATL: an example of transformation language

Model transformation languages have been designed to help users specify model trans-
formations. Among the numerous proposals [103], the ATLAS Transformation Language (ATL) [98,
99] is a rule-based transformation language. The ATL language specifies transformations in

10

conformsTo

e N
’ .
'

Meta-metamodel '.

\ :

'
'
1
1

Meta-metamodel

conformsTo conformsTo conformsTo

Metamodels R N

Transformation

Source Meta-model Target Meta-model

Meta-model

conformsTo references conformsTo references conformsTo

Models

Source Model Transformation Target Model

source

Figure 2.2 — Structure of a model transformation

11

Source Meta-model Target Meta-model

[0..4] Family [0..4] Person

daughters - Stri sons
9 lastName: String fullName: String

[m]i i[o..ﬂ
mother father ,—Extend$é&—Extends—|

Weloey Female Male
firstName: String
ConformsTo ConformsTo
daughters Curie:Family daughters
mother father
lastName = "Curie"
. Marie:Female Pierre:Male
Y \ Family2Person
Marie:Member | Pierre:Member transformation || f)Name = "Marie Curie” fullName = "Pierre Curie"
[L
firstName = "Marie" | firstName = "Pierre" L | Iréne:Female Eve:Female
v v | fullName = "Iréne Curie" fullName = "Eve Curie"
Iréne:Member Eve:Member
firstName = "Iréne" firstName = "Eve"
Source Model Target Model

Figure 2.3 — A model conforms to the Family metamodel transformed into a model conforms
to the Person metamodel

modules, from a read-only input model. The user defines rules in two parts. First, an input
pattern is defined in the first section of the rule (from clause), as a set of typed elements from
the input model, optionally with a guard condition. Second, an output pattern is declared
in the second section of the rule (to clause). The bindings of values for output elements are
calculated here, using queries on the input model. The query language used in ATL is OMG’s
Object Constraints Language (OCL) [84].

Assuming there exist a helper isFemale that retuns true if a Member is involved in a mother or
daughters relationship, and second helper familyName giving the family name of a Member, the
Family2Person transformation shown in Figure 2.3 can be defined as two rules as illustrated
in Listing 2.1. The first rule Member2Female instantiates a Female from a match Member s, with
s.isFemale() evaluated to true. The fullName attribute of the output Female is binded to a
string value calculated from the firstName and the familyName of the matched input pattern.
The second rule Member2Male follows the same approach.

In ATL, rule matching and rule application are separated into two phases. In the first
phase, all patterns of the rules are matched against the source model(s). For every match,

the target elements are created. Traceability links are also created in this phase. In the second

12

20

21

22

23

module Family2Person;
create OUT : Person from IN : Family;

helper context Family!Member def: familyName : String = ...
helper context Family!Member def: isFemale() : Boolean = ...

rule Member2Female {
from
s : Family!Member (s.isFemale())
to
t : Person!Female (
fullName <- s.firstName + ’ ’ + s.familyName

}

rule Member2Male {
from
s : Family!Member (not s.isFemale())
to
t : Person!Male (
fullName <- s.firstName + ’ ’ + s.familyName

Listing 2.1 — ATL definition of the Family2Person transformation

13

phase, all the bindings for the created target elements are executed.

Several engines exist for performing transformations specified in ATL. For instance, in [112]
Le Calvar et. al. proposed an incremental execution of ATL transformations, while Tisi et. al.
proposed a “call-by-need” approach for evaluating ATL rules in [166]. Each of the solutions is
a different implementation, with its purpose, developed thanks to the ATL toolkit. Additional
implementations for running ATL transformations, based on parallelism, are discussed in
Chapter 3.

2.2 Distributed computation

2.2.1 Distributed computation and data-distributed programs

In the modern computer science world, system architectures are described using Flynn’s

taxonomy [73]. It represents computer architectures with four approaches:

— Single Instruction Single Data (SISD) corresponds to a uniprocessor model. The data
are treated one by one, in sequential order. This architecture is also known as the Von
Neumann architecture [155].

— In a Single Instruction Multiple Data (SIMD) architecture, one operation is applied
to several data. Most of modern processors use SIMD as a vectorial approach. Sin-
gle Program Multiple Data (SPMD) is a variant of this approach. It is very similar to
these two approaches that are not mutually exclusive. SPMD is a much higher level
of abstraction. The processors operate on different subsets of the data, but different
operations may be applied at the same time.

— Multiple Instruction Single Data (MISD) applies successive treatments to data. This
category is usually associated with pipelines and numerical filtering.

— Multiple Instruction Multiple Data (MIMD) is the most used parallel architecture. It
is composed of calculation units with their data to treat. In other words, treatments
are entirely independent. This architecture can be used with two types of memory:
— Different programs at the same time can access the shared memory. Languages

provide libraries to do shared memory parallelism, such as the Pthreads library in
C [130]. This architecture has, however, limitations. All the Central Processing Unit
(CPU) cores access the memory with a shared bus, which represents an obvious
concurrency issue. Critical sections must be defined, and memory accesses must

be restricted.

14

— With distributed memory, each processor has its private memory and is the only
which can access its data. Concrete communications must operate the exchange

of information between processors (e.g., using Message Passing Interface (MPI) [148]).

Modern computers contain all of these architectures but at different levels of their overall
architecture. In a data-parallel approach, data is split and distributed across several compu-
tation units. Then, the same piece of program (from a single basic operation to a complex
function) is applied simultaneously on each part of the data by each processing unit without
synchronization. From the user’s point of view, it follows a SPMD approach. This computa-
tion strategy is the one followed by the parallel algorithmic skeletons [27] on data structures
[63, 30]. Most of the recent frameworks designed for distributed computation on data are
based on a MIMD approach at the framework level, where data is distributed and indepen-
dently receives a single instruction to compute on their owned chunks. In this thesis, we
mostly use Apache Spark [176], which is a framework built with this approach, as a solution
for distributed computation. It is defined as a unified multi-language engine for executing
data engineering on single-node machines or clusters. Each computation node receives a
chunk of data and independently processes an instruction on it. Since the global computa-
tion is driven by a master node, the same instruction is replicated on each node. More details
about Spark architecture is given in Section 2.2.2. Furthermore, additional synchronizations
and communications may be needed between processing units to correctly compute the
overall result. For instance, data may need to be merged into a single result. Additional details
about how merging results is processed in Spark are given in Section 2.2.3. This computation
strategy is the one followed by the parallel algorithmic skeletons [52] on data structures [137,
55]. MapReduce [65] is an example of a programming model, designed for parallelism, that
takes advantage of this strategy. However, MapReduce is mainly adapted and implemented
for distributed arrays or lists, and the approach is not directly suitable for all types of data

structures.

For instance, Pregel [122] is a strategy that aims at easing parallel computations on graphs
by using a vertex-centric approach [125]. In Pregel, graphs are specified by their vertices,
each of them embedding information on their incoming and/or outgoing edges. A Pregel
program is iterative, and is decomposed into three main phases: (i) a computation on top
of a vertex value, (ii) a generation and the sending of output messages through the edges
of the vertex, (iii) and the receipt and merge of incoming messages. This process is simul-
taneously applied to each vertex of a graph (such as a map in the MapReduce model). For

example, solving the Single Source Shortest Path (SSSP) problem could be expressed as il-

15

lustrated in Listing 2.2. The computation is expressed as follows. First, an initial message is
sent to all (line 2) nodes. Then, the vertex program (line 3) checks if the message received
contains a distance small than the current assigned one. The new value of the vertex is the
minimum between the previously assigned shortest distance, and the one received. Note
that this program treats a message that is already a merge of all incoming messages. Line 4
to 10 defines the logic for sending messages along outgoing edges. It is defined as a function
taking a triplet as argument, which contains the source vertex, a target, and the distance be-
tween the source and the target vertices. The function tests if the target vertex is assigned
to a distance that is smaller than the distance assigned to the source plus the distance from
the source to the target vertices. If no, a message is sent with the new distance (line 6). Other-
wise, no message is sent, and the source vertex is halted until the moment the vertex receives

a new message from another vertex.

Listing 2.2 — GraphX code for solving the SSSP problem

| sssp = graph.pregel
> (Double.PositiveInfinity) // Initial message

((id, curr, received) => math.min(curr, received), // Vertex Program
+ triplet => { // Send Message

if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

6 Tterator((triplet.dstId, triplet.srcAttr + triplet.attr))
7 } else {
8 Iterator.empty // No message

11 (m1, m2) => math.min(ml, m2) // Merge Message
|2)

Data-parallelism is adapted and adopted in the case of large datasets. Indeed, to make
profitable the parallel execution of a single computation on data, the data chunks must be
large enough, otherwise, an overhead has to be paid without much benefits from the paral-
lelization effort [3, 53].

Task-distribution Data-distribution is not the only approach for distributing computa-
tion. A task-parallel program focuses on the distribution of tasks instead of data. According
to [144], “a task is a basic unit of programming that an operating system controls” within a

job. This concept is often associated with multi-threading. The grain size of tasks depends

16

on the context of the execution. At the operating system level, tasks may be entire programs
while at the program level, they may be a single request or a single operation. Because of
concurrency, and the limited number of processing units, task executions must be ordered
by considering both priorities, and dependencies across tasks. Ordering tasks in parallel are
similar to the workflow concept. Task-parallelism will be preferred to data-parallelism when
tasks are complex enough, or when the number of tasks is large enough to exploit parallelism

capacities of the underlying parallel architecture (i.e., hardware).

Asynchronism Both data-parallelism and task-parallelism can be defined as synchronous
strategies where synchronizations are explicitly performed through communication patterns
or task dependencies. Asynchronism is another way of programming parallelism where syn-
chronism is not explicitly coded but implicitly handled by an additional mechanism be-
tween processing units. For example, the Linda approach [44], is based on the treatment
of asynchronous tasks or data, shared in a common knowledge base, the “blackboard” [38].
More specifically, in Linda several processes access a shared tuple space representing the
shared knowledge of a system. The processing units interact with the shared space by read-

ing, and/or removing tuples.

2.2.2 Architecture of a Spark cluster

A Spark cluster is composed of a set of machines with specific roles.

— amaster node hosts a driver program, that aims at driving the full distribution of
data and jobs to do among the other computational nodes. The driver program co-
ordinates the sets of processes with a SparkContext, a Java object which contains
all the information about the rest of the cluster (e.g., computational nodes and their
amount of allocated resources, a job name). The main purpose of the driver is to
schedule the tasks that will be submitted to the cluster.

— a set of workers, that are connected to the driver, which concretely compute the
tasks submitted to the driver. Each worker has its number of working threads, pri-
vate memory, and cache. All workers can be independently configured. It is preferable
to keep the driver and the workers in the same cluster for limiting network issues.

Outside the master and worker nodes, an external bf cluster manager can be deployed. Sev-
eral technologies are supported: Apache Mesos [75] (deprecated), Hadoop YARN [172] or
Kubernetes [37]. By default, in a standalone mode, the master program is in charge of man-

aging the rest of the cluster. Note that a single machine can assume several roles. In that case,

17

Worker Node

Executor | cache

SparkContext Cluster Manager

Task Task

Y

/
Worker Node
\

Executor | cache

Task Task

Figure 2.4 — Overview of a Spark cluster architecture 2

different Java Virtual Machines (JVM), that is executing environments for running compiled
Java code with a framed amount of resources (memory, threads), is instantiated: one for each
hosted node. The role of the cluster manager is to allocate the asked amount of resources to
each of the nodes of the cluster, i.e., the driver and worker nodes. A global view of a Spark
cluster is built is illustrated in Fig. 2.4. Additional details about how tasks and jobs are man-

aged in Spark are given in Sect. 2.2.3.

2.2.3 Jobsin Spark

A user program, i.e., the driver program, referred as an application, is built and sub-
mitted to the master node upon the cluster. It is written as a simple Java or Scala program
(both working on the JVM), with amain () functions driving the full computation. Thanks to
the Spark environment, it is possible to distribute the computation on a data-structures us-
ing Resilient Distributed Datasets (RDDs).RDDs are parallelized collections, create
from a collection of data (e.g., a Scala Seq), providing a SPMD view to the user. Indeed, the
use of methods to manipulate a RDD is similar to manipulating a sequential collection of
data, but it will be processed in parallel. There exists two kinds of methods for RDDs:

— A transformation is a function that builds a tree of computation for the data and pro-

duces a new RDD from the existing one. Transformations are lazy, that is they do not

2. https://spark.apache.org/docs/latest/cluster-overview.html, Copyright © 2018 The Apache
Software Foundation, Licensed under the Apache License, Version 2.0

18

https://spark.apache.org/docs/latest/cluster-overview.html

execute any action until we explicitly ask for it. It allows the optimization of the com-
position of functions. Either by transforming a chain of computation into the simplest
one following transformation rules [116] or by optimizing the needed communica-
tions between the nodes during the computation.

— A concrete action triggers the computation on a RDD. Contrary to transformations,
actions do not create new RDDs, but return a value, that will be gathered in themaster
node.

Considering sc, the SparkContext of an application, an example of distributing a list into

a RDD in Scala, and processing a simple calculation of size, can be done as follows.

1 val data = List(1, 2, 3, 4, 5)

> val length = sc.parallelize(data).count

Contrary to other data-distributed frameworks, such as Hadoop MapReduce [66], Spark
is designed to handle real-time data efficiently. Besides submitting applications to a cluster, it
is possible to process data interactively. While Hadoop’s model proposes an execution based
on lifecycles, with a reading-writing at each lap of map-reduce operation, Spark processes all
its computation in memory. In other words, Spark stored all intermediate data in memory,
improving the speed of processing. The main drawback of this approach is the requirement

for a lot of memory, increasing the cluster size.

2.2.4 Sparklibraries

Spark is defined as a “Unified engine for large-scale data analytics”3. It provides sup-
port for several data-distributed approaches, with different purposes (e.g., distributed oper-
ations, data analytics, machine learning) on several languages: Python, SQL, Scala, Java or,
R. Since most the Spark technologies only exist on Scala [133], we only used this language for

running Spark applications.

Scalalibrary. Scala combines object-oriented and functional programming in one concise,
high-level language. In Scala, RDDs are instantiated objects on which methods can be called.
As explained before, the methods are separated into two categories: transformations and
actions. In this thesis, we only use a subset of transformations that are the following:

— The map function takes a function as an argument, and iterates over every element of

a RDD to apply this function.

3. https://spark.apache.org/

19

https://spark.apache.org/

— Spark RDD flatMap is the composition of a map operation called with a function that
produces a collection, and a flatten operation.

— A filter call on a RDD removes all elements that do not validate a predicate passed
as an argument.

— While the union operation concatenates two RDDs into a new RDD containing the
elements of both input RDDs, the intersect operation only keeps elements that are
present in the two RDDs.

— The distinct function returns a new dataset that contains the distinct elements of
the source. In other words, distinct removes duplicated elements in a RDD.

— groupByKey is an operation aiming at grouping elements according to a key value. It
transforms a RDD of pair of ‘key’-‘value’, into a RDD of ‘key’-‘list of values’.

In the rest of the thesis, we also use the following triggering actions:

— collect is a simple action that triggers the computation and gathers the resulting
RDD into a Scala Array on the driver program.

— The count operation simply counts the number of elements contained in a RDD.

— The reduce function takes an associative operation as an argument and uses it to re-
duce the elements into a single value. The fold function is the same operation but
considers an initial value to initiate the reduction with the first element of the RDD

An example of how these transformations and actions can be used in Scala to perform

the computation of the variance value of a set of doubles can be expressed as follows.

1 def variance(values: List[Double], sc: SparkContext): Double = {
2 val X = sc.parallelize(values)
val length = X.count
; val avg = X.fo0ld(0) ((a, b) => a + b).collect / length
val variance = X.map(x => Math.pow((x - avg), 2)).reduce((a, b) => a +
b) / length

6 return variance

GraphX. Besides the core library of Spark, there exist several additional libraries with a
more specific purpose. Among them, GraphX [80] aims at processing large-scale graphs with
vertex-centric and triplet-view approaches. The former is, as described above, a synchronous
approach where vertex program kernels are executed iteratively for a certain number of

rounds. Contrary to a conventional SIMD data-distributed approach, vertices only have a

20

view of their data. Messages are expressly defined to make them communicate informa-
tion. GraphX also proposes a global view of the distributed data through triplets. Triplets
in GraphX are represented as a RDD of tuples, where each triplet describes an edge of the
graph as a tuple of the source id, the source data, the target id, the target data, and the data
associated with the edge (e.g., weight or label). An example of how a GraphX can be used to
represent the Family model (left) of Fig. 2.3 is presented in Listing 2.3.

Listing 2.3 — Example of distributed Family model on GraphX

1 val Curie = new Family("Curie")

val Marie = new Member("Marie")

N

val Pierre = new Member("Pierre")
1 val Irene = new Member("Irene")
s val Eve = new Member ("Eve")
¢ val sc: SparkContext = ...
7 val vertices: RDD[(VertexId, String)] =
8 sc.parallelize(Seq((OL, Curie), (1L, Marie), (2L, Pierre), (3L,
Irene), (4L, Eve)))
5 val edges: RDD[Edge(String)] =
10 sc.parallelize(Seq(Edge(OL, 1L, "mother"), Edge(OL, 2L, "father"),
1 Edge(OL, 3L, "daughters"), Edge(OL, 4L, "daughters")))

2.3 Interactive Theorem Proving

2.3.1 Correction of programs

In modern software developments, different methods are used to get quality-controlled
applications. They are classified as Agile methods and are based on a systems development
life cycle. The work in Agile methods is based on iterations of small increments that min-
imize the amount of planning and design devices of an application. Contrary to waterfall
models, where the build phase and the testing phase are separated, the development testing
is completed in the same iteration as programming. That is, an increment is both a software
component and related tests. More specifically, test-driven development consists of writing
the tests focused on requirements before writing the code. Another Agile approach relative
to tests is continuous integration. With this practice, all the tests are run at each modification

of the source code to check the absence of regression. However, The main cons of tests are

21

their specificity. On one hand, it is straightforward and natural to write and execute tests. On
the other hand, it only verifies the quality of the program for specific cases. In other words,

tests do not cover all the possibilities of execution. According to Edsger W. Dijkstra [142],

“Program testing can be used to show the presence of bugs,

but never to show their absence.”

Formal methods will be preferred to verify the correctness of a program for all possible

inputs and execution.

By construction In correctness-by-construction, the specification is written first and then
transformed step-by-step into an efficient executable program. Each transformation is proved
correct. In other words, the previous and the new models are shown as equivalent. For exam-
ple, the Bird-Meertens Formalism (BMF) (also called Squiggol) [12, 30, 79, 126] is a calculus
that provides rules of equivalence between standard primitives on data structures to get a
more efficient program. Program calculation, in particular of functional programs [29, 78],
is a style of reasoning of correctness-by-construction. Proofs assistants [150] are well suited
to conduct program calculation reasoning on functional languages [159]. SparkTE, which is
presented in this thesis, is a model transformation engine that has been designed using a
correctness-by-construction approach. There also exist similar methods for imperative lan-
guages such as the B-method [43], which models the abstract specification of a program to

obtain a concrete C or Ada executable program.

A posteri verification In a posteri verification, the specification and the program are writ-
ten independently. When they are both finished, a proof of correspondence is made to en-
sure the correctness of the program. The usual approach for doing this kind of verification is
by using a deductive system, also called deductive inference. It consists of the use of axioms,
or inference rules, defined in a semantic [131] to prove properties at a specific moment of
the execution of a program. The most used formal system is the Hoare logic [91], inspired
by Floyd’s works on flowcharts [72]. Hoare logic is based on Hoare triples describing a state
of the computation. This logic can be naturally applied to most sequential imperative pro-
grams. There exist tools to support this kind of verification for the languages, such as Frama-
C for sequential C Programs [57]. CoqTL [163] proofs are conducted following this approach.
On one side, the user can define a transformation using the internal DSL of CoqTL and ex-

press properties on it. The properties are then proved using the Coq proving mechanism.

22

2.3.2 The Coq proof assistant

The proof assistant Coq is based on the mathematical theory CoC (Calculus of Construc-
tions). Coq is divided into three sublanguages:
— Gallina to write Coq terms (functions, types, axioms, etc.). Its syntax is very similar
to OCaml’s;
— Vernacular to control the behavior of the proof assistant;
— LTac, a language of tactics allowing to construct proofs interactively.

Every term of Gallina has a type, and the types are also terms of the language.

Type definitions Every object of Coq has a type, including the types themselves. The types
are defining ordered sorts with as the bottom of the hierarchy. The following inclusions
hold.

Set=<Typey<Types <Typer=...

For any i < j, a Typei is typed by Type; . In implies that the particular case of Set is
typed by Type; with any i. Since set is the type of the “small” datatypes and function types,
cannot directly or indirectly involve other types [97]. As indicated in its original name, Coq
is based on the calculus of construction theory. A definition is made using Definition and is

constructed as follows.
Definitionname:type:=definition.

The pure type system from the CoC has been extended with inductive definitions from
the Calculus of inductive Constructions (CiC). It is possible to write an inductive definition
using the keyword Inductive. For example, natural numbers are defined in the standard li-
brary by:

Inductive nat: =
| 0: nat
| S: nat — nat.

Another type can parametrize the definition of a type. It is very convenient to use param-
eters for polymorphic structures. For example, the lists are defined in Coq by:
Inductive list (A:): =

| nil: list A
| cons:A — list A— listA.

Instead of nil and cons h t, we can respectively use [andh :: t.

23

Functions Coq provides a pattern-matching mechanism for defining functions. By filtering
cases characterized by a pattern, different behaviors can be defined. However, it is important
to notice that all the functions in Coq must be total. In other words, a function must deter-
mine behavior for every constructor of inputs. For example, the functions pred that returns
the predecessor of a natural number can be defined by:
Definition pred (n:nat): nat :=
matchnwith
| 0=0
| Sm=m
end.

Besides, to set a recursive function, the keyword Definition must be replaced by Fixpoint.
Note that Coq only allows definitions of functions that terminate. A recursive function must
have a decreasing argument. The map function on lists can be described as follows.
Fixpoint map (AB: Type) (f: A— B) (1:1list A): listB:=

match 1lwith
[0 =1
| b t=(fh) : (mapABTf t)

end.

Proofs in Coq From definitions, it is possible to define lemmas, properties, or theorems in
Coq with related proof. For example, from the function length on lists, that the number of
elements in the structure, and map defined previously, we define the following property.

Lemmamap_length: VAB (f: A— B) (1: 1ist 4),
length (map £ 1) = length 1.

Proof of this lemma can be written using LTac, the tactic language.

Proof.

intros ABf 1.

inductionlas [| x xs Hx].

+ simpl.reflexivity.

+ simpl.rewrite Hx; reflexivity.
Qed.

Let us analyze this step by step. First, we start the proof using the keyword proof. The

environment of Coq returns a response indicating that there is still one subgoal to prove.

1 subgoal

V (A B: Type)(f: A — B)(1: 1ist A), length(mapAB f 1) = lengthl

24

To start the proof, we need to introduce the variables we will use: intros AB £ 1.

Type
Type
A—B
list A

oo

length (mapAB £ 1) = lengthl

In our lemma, 1 is a list, and then its definition is made by induction. We need to do an
induction on the structure of 1 for solving this proof: inductionlas[| x xs Hx]. This tactic can
be understood such there are two cases separated by |. The first case is the situation of 1
is nill. There is nothing to define here. Otherwise, 1 is cons x xs, and we name the inductive
hypothesis with Hx. The answer of Coq shows two subgoals: one for each possible constructor
of 1.

A: Type
B: Type
f: A— B

length (mapAB f []) = length|]

subgoal 2 is: length (mapAB f (x i1 xs)) = length(x:: xs)

According to the definition Oflength, length[] = 0. Since mapABf [| =[],length(mapAB £ [])
can be simplified by 0 with the tactic simpl. The two expressions will be simplified, and the
environment returns:

A: Type
B: Type
f: A—B

0=0

Because equality is reflexive, the resolution can be finished by reflexivity. There is still

the second subgoal to solve.

A: Type

B: Type

f: A—-B

x: A

xs: listA

Hx: length (map AB f xs) = lengthxs

25

length (mapAB f (x 1 xs)) = length(x:: xs)

Using the simplification with the tactic simp1 the Coq response is the following.

A —B
A
xs: list A

Hobhw =

Hx: length (map AB f xs) = lengthxs

S (length (map AB £ xs)) =S (lengthxs)

The resolution can be finished by using the inductive hypothesis and reflexivity. We

process these two operations using a semi-column by rewrite — Hx; reflexivity.

CoqTL CoqTL[163]is aninternallanguage in Coq, for writing rule-based model-transformations.
Besides, the language is associated with a library to simplify proving transformation cor-
rectness in Coq. The rule definition syntax in CoqTL is inspired from ATL: a from section
describes the input pattern with a guard condition (where clause), while the to section de-
scribes the output to create from the matched pattern. The Family2Person transforma-

tion, expressed with ATL in Listing 2.1, can also be written using CoqTL. Considering the
getFirstName, getFamilyName, and isFemale helpers and two constructors, BuildFemale and BuildMale,
respectively to build a Female and a Family2Person, the Family2Person transformation can be
written as defined in Listing 2.4.

Definition Family2Person :=

transformation from FamilyMetamodel to PersonMetamodel with fm as FamilyMetamodel :=

rule Member2Female
fromelement m class Member
where (isFemale fmm)
to [
output "female"
element f class Female :=

BuildFemale ((getFirstName m) + (getFamilyName fmm))

rule Member2Male
fromelement m class Member

where notb (isFemale fmm)

26

to [
output "male"
element f class Male :=

BuildMale ((getFirstName m) + (getFamilyName fmm))

Listing 2.4 — CoqTL definition of Family2Person transformation

In CoqTL, the semantic of model transformation is designed in order to help users to
prove properties on transformation. CoqTL does not impose a specific schema for writing
theorems, but it is recommended to express them in Hoare-style as follows.

— a transformation, with an input and an output model;
— a post-condition on the source model;
— apre-condition on the target model.

Theoremth_tranformation:

V (sm: SouceModel) (tm: TargetModel), execute tranformation sm=tm —
precondition sm — postcondition tm.

Listing 2.5 — Transformation theorem in CoqTL

A simple theorem to prove for the Family2Person transformation is: if all family mem-

bers have a first name that is not empty, then all output objects in the PersonModel has a
full name that is not empty. This theorem is expressed as follows.

Theorem theorem_tranformation:
V (sm: FamilyModel) (tm: PersonModel),
(* tranformation *)executeFamily2Personsm=tm—
(* precondition *) (V (m:Member), Inm (allModelElements sm)
— (getFirstNamem <> ""%string)) —

(* postcondition *)(V (p:PersonMetamodel_Object), Inp (allModelElements tm)
— (getFullName p <> ""%string)).

Listing 2.6 — Family2Person theorem in CoqTL

Proving properties in CoqTL [49, 48] is eased by an extension of the LTac language of Coq.
Additional tactics and proved general lemmas make automatic certain part of the proof.

27

CHAPTER 3

STATE OF THE ART

Contents
3.1 Efficiency in model transformation 29
3.1.1 Data-Parallelism 30
3.1.2 Task-Parallelism. 31
3.1.3 Asynchronism e e 32
3.2 Semanticsand correctioninMDE 00, 35
3.2.1 Correction for model transformations 35
3.2.2 Provingparallelprograms 36
3.3 Multi-parameter and benchmarking 37
3.3.1 FeaturemodelsinMDE 37
3.3.2 Multi-strategybased MDEtools 38

3.1 Efficiency in model transformation

In this section, we outline the execution strategies that are commonly used to enhance
the efficiency of model-management. The below presented strategies have been identified
with their use in MDE. In this section, we only focus on the strategies, regardless of the cho-
sen language for their implementations. We also give an overview of the existing applications

of these strategies in model-management tools.

Parallelizing computations

Parallelism designates the use of several processing units in order to achieve a global
operation. There exist many kinds of parallel architectures, from multi-cores to clusters of
GPUs. In this section, we focus on the parallelism strategies that are used to take advantage

of parallel architectures.

29

In Table 3.1, we classify how parallelism has been applied to model management in liter-
ature, by the following columns:
— MQ or MT if the whole model query or transformation is parallelized;
— Matching if the work only parallelizes the matching phase of the model query/trans-
formation;
— Performance whether the work pays particular attention to the impact of data distri-
bution or task distribution on performance.
We classify the strategies into three categories: data-parallelism (Section 3.1.1); task-parallelism
(Section 3.1.2), both of them being synchronous strategies; and one example of asynchronous

strategy (Section 3.1.3).

Table 3.1 — Parallelism for model-management in literature.

MQ MT Matching | Perf.

Task-parallelism | [119, 169] [94, 165] [127]
Data-parallelism [118] [14, 107, 168, 56] [107] [15]
Asynchronism [34, 35, 36] [35]

3.1.1 Data-Parallelism

In [118], Madani et al. propose a concurrent version of EVL (Epsilon Validation Language)
to validate model properties. This new proposal for EVL can be executed both on paral-
lel and distributed architectures. In parallel-EVL constraints to validate are set in a pool of
threads, and executed independently. Besides, tasks are decomposed and distributed in a
data-parallel maneer among computational cores.

Benelallam et al. [14] use data-parallelism for distributing models among computational
cores to reduce computation time in the ATL model transformation engine. The MapReduce
version of ATL makes independent transformations of sub-parts of the model by using a
local “match-apply” function. Then, the reduction aims at resolving dependencies between
map outputs. The proposed approach guarantees better performance on basic cases such
as the transformation of a class diagram to a relational schema. In a more recent work [15],
the same authors highlight the good impact of their strategy for data partitioning. Instead
of randomly distributing the same number of elements among the processors, they use a
strategy based on the connectivity of models. In [56], Cuadrado et al. propose A2L, a compiler

for the parallel execution of ATL model transformations, which produces efficient code that

30

can use existing multicore computer architectures, and applies effective optimizations at the
transformation level using static analysis. The execution of the obtained code is in average
22.42x faster than the current ATL implementation.

Distributed computation was also applied to efficiently implement parts of the rule eval-
uation. For example, the Forgy’s RETE algorithm [74] for pattern matching, presented in [171],
that constructs a network to specify patterns and, at runtime, tracks matched patterns, has
been implemented as a parallel solution in [18]. The proposal harness multi-core architec-
tures by, on one side, enabling concurrent execution of pattern matching, and on the other
side, by parallelizing the pattern matching algorithm itself.

[100] illustrates how a model can be considered as a typed graph with inheritance and
containment. Considering a model as a graph data-structure, graph technologies can di-
rectly be applied to models. For instance, Imre et al. efficiently use a parallel graph trans-
formation algorithm on real-world industrial-sized models for model transformation [94].
In [127], Mezei et al. use graph rewriting operations based on task-parallelism to distribute
matching operations in large models in their transformation tool Visual Modeling and Model
Transformation (VMTS). The Henshin framework [9] proposes to extract the matching part
of its transformation rules into vertex-centric code (i.e., Pregel) [107]. Another possibility to
use Pregel in model transformation is by using a DSL, such as [168] for graph transformation.
The proposed compiler transforms the code written with the DSL into an executable Pregel
code. Finally, MapReduce is used in [69] for finding inexact patterns in graphs. The approach
targets graph but it can be easily applied in a MDE context for model validation.

3.1.2 Task-Parallelism

[169] proposes a formal description of parallelism opportunities in OCL. Two main kinds
of operation are targeted: the binary operations that can have their operands evaluated si-
multaneously, and the iterative processes of independent treatments. In [119], Madani et al.
use multi-threading for “select-based” operations in EOL, the OCL-like language of the Ep-
silon framework, for querying models. The extension of the language with parallel features
for selective operations have shown a non-negligible speed-up (up to 6x with 16 cores) in
their evaluations on a model conform to the Internet Movie Database (IMDb) metamodel L.

Next to query evaluation, multi-threading is also used for model transformation. In [165],

Tisi et al. present a prototype of an automatic parallelization for the ATL transformation en-

1. http://www.imdb.com/interfaces

31

http://www.imdb.com/interfaces

gine, based on task-parallelism. To do so, they just use a different thread for each transfor-
mation rule application, and each match, without taking into account concurrency concerns

(e.g., race conditions).

3.1.3 Asynchronism

LinTra is a Linda-based platform for model management and has several types of imple-
mentation. First, on a shared-memory architecture (i.e., the same shared memory between
processors, typically multi-threading solutions), LinTra proposes parallel in-place transfor-
mations [36] and parallel out-place transformations [34]. Both strategies have significant
gains in performance, compared to sequential solutions. Nonetheless, shared memory ar-
chitectures are fine for not too big models. Indeed, since the memory is not distributed,
a too big model could lead to an out-of-memory errors. This phenomenon happens more
concretely in an out-place transformation since two models are involved during the opera-
tion. The first prototype of distributed out-place transformations in LinTra, is presented in
[34], and works with sockets for communicating the machines. This first proposal remains
naive. That is why Burgueno et al. propose a more realistic prototype for transformations on
distributed architecture [35]. But the use of a distributed architecture raises new questions:
how to distribute data and, how to distribute tasks? They applied different strategies mixing
both the evaluation of tasks on a single or on multiple machines, and storing the source and
target models on the same, or on different machines. The study was conducted for the spe-
cific IMDDb test case only, and then does not provide a general conclusion about the benefits
of a such solution.

One can note from Table 3.1 that only two papers of the related work on parallelism in
MDE offer detailed performance analysis according to the data or task distribution. However,
both these papers clearly show that many factors can influence performance such as the size
of models, their reading/writing modes (e.g., in-place), the distribution of the models and

the distribution of the operations to perform on them and so on.

Avoiding computations

Incrementality and laziness, or incremental and on-demand computation, are the main
strategies used in MDE for minimizing the sequence of basic operations needed to perform
a query or transformation. They have been classified as strategies for reactive execution

in [124], since they foster a model of computation where the model-management system

32

reacts to update and request events, (note that the term is only inspired by the reactive pro-
gramming paradigm in the sense of [85], that we will not discuss here).

We classify existing applications of these strategies to model-management tools in the

columns of Table 3.2, depending on their scope:

— MQ or MT if the strategy is applied to the whole model query or transformation;

— Matching if the strategy is only applied to the matching phase (the subgraph isomor-
phism of the pattern to query/transform, over the full model) of the model query/-
transformation;

— Collections if the strategy is only applied to the computation of collections during the

query/transformation.

Table 3.2 — Reactive strategies for model-management in literature.

MQ | MT || Matching | Collection
Incrementality | [41] [112] [20, 171]
Laziness [164] | [166] [31, 174]

Incrementality

Incrementality is an event-based pattern, whose goal is to reduce the number of needed
operations when a change happens within the input model. Instead of applying from scratch
the whole set of operations on the new input model, incrementality allows the system to
apply only the operations impacted by updates. Since the system needs to apply a subset of
operations, a trace to relate the output pieces to input elements is necessary. The approach
leads then to an additional memory cost, with a good trade-off only if changes occur often
enough.

To achieve incremental execution of transformation rules, Calvar et al. designed a com-
piler to transform a code written with ATL [112]. The output program takes advantage of
active operations of the language. The active mechanism works as an observer pattern: the
values are defined as mutable, and changes are notified to an external observer. From there,
it is easy to isolate what part of the model has been changed, and then to deduce what rules
must be operated again. To illustrate their proposal, they applied their evaluation to two
cases including social media models to illustrate the efficiency of the strategy for querying
models that have strong user activity. This is not the single attempt of integrating incremen-

tal aspects in ATL.

33

In [41], Cabot et al. present an incremental evaluation of OCL expressions that are used
to specify elements of a model in ATL. They used such an approach to state the integrity
preservation of models at runtime. Instead of testing the whole integrity of a model every
time it is changed, the proposed system is able to determine when, and how, each constraint
must be verified.

For example, the Forgy’s RETE algorithm [74] for pattern matching, presented in [171],
constructs a network to specify patterns and, at runtime, tracks matched patterns. Instead
of matching a whole pattern, the RETE algorithm will match the subparts of the pattern until
getting a full match.

Research efforts have used incrementality to update the incomplete patterns in the use of
the RETE algorithm, without fully recalculating the matching for all the present candidates.
In MDE, the Eclipse VIATRA framework has an implementation of the RETE algorithm to
achieve an incremental pattern matching [21, 86, 20]. The choice of using an incremental al-
gorithm is due to the focus of the tool. Indeed, the VIATRA platform focuses on event-driven
and reactive transformations thus an efficient solution, for handling multiple changes, has

been chosen.

Laziness

Laziness is also commonly used by model management tools. In general, laziness reduces
computations by removing the ones that are not needed to answer the user requests. Indeed,
by using laziness, pieces of output are calculated only when they are needed by the user. This
“call-by-need” approach is mainly used on big models, known as Very Large Models (VLMs).
Since users may want to get only a part of the output, computing the whole query/transfor-
mation is unnecessary.

In [166], Tisi et al. extended the model transformation mechanism of ATL with laziness.
Elements of the target model are firstly initialized, but their content is generated only when
a user tries to access it. To do so, the model navigation mechanism has a tracking system,
which provides, for a target element, the rules that must be executed. In addition, the track-
ing system keeps the information about already executed rules to avoid recomputation. Other
engines, such as ETL (Epsilon Transformation Language), from the Epsilon framework, im-
plements a similar approach 2.

Besides model transformation, laziness is also used in model querying. In [164], Tisi et

al. redefine OCL features with laziness aspects. For instance, operations of the language

2. https://www.eclipse.org/epsilon/doc/etl/

34

are redefined to be evaluated with a lazy strategy. Also, the work proposes lazy collections
that respect the OCL specification. The latter is similar to the collections proposed by Will-
ink in [174]. The OCL collections are implemented as generic Java classes, with lazy opera-
tors. These approaches aim at tackling OCL related efficiency issues. For example, because
of the OCL collections are immutable, the successive addition of elements in a collection
would create intermediate data structures. More generally, the composition of operation
calls would cause an evaluation of a cascade of operations. The proposed implementation of

a lazy evaluation optimizes such common cases.

3.2 Semantics and correction in MDE

Reasoning on programs is an active field of research. On one hand, work has been done
for reasoning on transformation semantics, either automatically or interactively. On the other
side, research efforts have been dedicated to proving properties on parallel programs. In this
section, we both investigate approaches that have been designed for reasoning on model
transformations(Section 3.2.1), and in a more general context, on distributed computing
(Section 3.2.2). We want to highlight that the goal of our work is to bridge the gap between

certified model transformations and data analytics frameworks, such as Spark.

3.2.1 Correction for model transformations

Automatic proving approach In [40], Buttner et al. provide an automatic translation of
ATL transformations into OCL as a first-order semantics for model transformations. Using
these semantics, transformation correctness can be automatically verified [39] with respect
to non-trivial OCL pre- and postconditions by using SMT solvers (e.g, Z3). This is not the
only attempt of automatic proofs of ATL transformations based on solvers. In [46], Cheng et
al. present a translation validation approach to encode a sound execution semantics for the
ATL specification. Similarly to Buttner approach, they verify an ATL specification against the
specified OCL contracts. To demonstrate their approach, they have developed the VeriATL
verification system using the Boogie2 intermediate verification language, which in turn pro-
vides access to the Z3 theorem prover. They extend their work by developing a formaliza-
tion for EMFTVM [47], the research VM included in ATL, bytecode. This work target MT lan-
guage not having an implementation but having a well-defined execution semantics. Finally,

Oakes et al. propose a method for verifying ATL model transformations by translating them

35

into DSLTrans [132], a transformation language with limited expressiveness. Pre- postcon-
dition contracts are then verified on the resulting DSLTrans specification using a symbolic-

execution property prover.

Interactive theorem proving The techniques that are presented above are based on an au-
tomatic proving mechanism. But proving is not a trivial task, and might require human ex-
pertise that cannot be automated. In [42], Calegari et al. encode ATL model transformations
and OCL contracts into Coq types, propositions and functions to interactively verify whether
the transformation is able to produce target models that satisfy the given OCL contracts.
Stenzel et al. propose a Hoare-style calculus, developed in the KIV prover, to analyze trans-
formations expressed in (a subset of) QVT Operational [154]. UML-RSDS is a tool-set for
developing correct-by-construction model transformations [111]. It chooses well-accepted
concepts in MDE to make their approach more accessible to model transformation devel-
opers. Once the development is achieved, transformations are verified against contracts by
translating both into interactive theorem provers. Poernomo et al. use Coq to specify model
transformations as proofs and take advantage of the Curry-Howard isomorphism to synthe-
size provably correct transformations from those proofs [140]. Their approach is further ex-
tended by Ferndndez and Terrell, who use co-inductive types to encode bi-directional or
circular references [71]. None of these research efforts addresses proving the equivalence of

the sequential and the distributed executions of a transformation.

3.2.2 Proving parallel programs

In this thesis, Chapter 6 proposes a correct-by-construction distributed transformation
engine on top of Spark. The extraction of the parallelizable semantic into executable Scala
code is proceeded by hand. One can argue that we could have chosen any other back-end
language or framework instead of Spark. In particular, some back-ends automatically ex-
tracted from proof assistant, such as Coq, which would enhance the automatic certification
of our pipeline. For instance, we could have chosen to extract Haskell code from CoqTL and
then use the Haskell distributed parallel Haskell (HdpH) language to introduce parallelism
and distribution. Similarly, we could have extracted OCaml code from the CoqTL specifica-
tions and then use the BSML [115] library for parallelization. Note that the optimizations
for enhancing parallelism introduced in this thesis, and proven equivalent to the initial Coq
specification, would be useful for any back-end that introduces parallelism and distribution.

Another approach for obtaining a certified distributed engine could be to specify the engine

36

using the formalism of an existing distributed solution. Several works are based on a deep
embedding of parallel languages or libraries: the syntax and semantics of such languages are
modeled using a proof assistant. If it is convenient to have such a formalization to reason
about meta properties of the considered language, it is less convenient to write programs
than using a shallow embedding as it is done in SyDPaCC [114]. For example, Grégoire and
Chlipala provide a small parallel language and its semantics and prove correct optimizations
of stencil based computations [81]. A subset of Data Parallel C has been formalized using the
Isabelle/HOL proof assistant [64]. The tool generates Isabelle/HOL expressions that repre-
sent the parallel program rather than actual compilable code. The dependent type language
Agda is used by Swierstra to formalize mutable explicitly distributed arrays. He uses this for-
malization to write and reason about algorithms on distributed arrays: a distributed map,
and a distributed sum. It is, of course, possible to reason about distributed collections, such
as RDDs, and consider their distribution using the formalization of BSML in Coq. SyDPaCC
however allows for the extraction of parallel code, but it does not support mutable data struc-

ture.

3.3 Multi-parameter and benchmarking

The configuration of applications is designed to enhance the performances of applica-
tions. In a MDE context, it is mostly used to choose the relevant strategy according to a use
case. As illustrated in Sect 3.1, there exist many strategies for computing queries and trans-
formations. While most of the solutions only implement one single strategy, without any
configurable aspects, there exist analyses of model management solutions, based on prop-
erties, to either choose the right software solution, or the right algorithm within a single ap-

plication.

3.3.1 Feature models in MDE

In [156], Tamura et al. propose a comparison of taxonomies for MT languages based
on classification schemes and highlighted the need of having formalism. Existing work fol-
lowed this approach and proposed different attempts of formal classifications for model-
management operation and more specifically for model transformation. In [5], Amrani et al.
attempt to build a catalog of model transformation intents that describes common uses of

model transformations in MDE and the properties they must or may possess to face case-

37

related challenges. Previous work more focused on the characterization of model transfor-
mation languages. Czarnecki et al. proposed feature diagrams to describe the taxonomy
of model transformation approaches [59, 58]. These work aims at explaining the different
design choices of model transformations to propose categories for classifying use-cases.
In [101, 102] Kahaniet al. classifies MT tools over 6 clear categories of model-to-text and
model-to-model transformations: general, model-level, transformation style, user experi-
ence, collaboration support, and runtime requirements.

Studies have shown that the performance of transformations is relevant but there is a
lack of support for transformation developers without detailed knowledge of the engine to
solve performance issues [83]. In [82], Groner et al. propose a study based on performance
following some main factors: the execution time, the size of the models used, the relevance
of whether a certain execution time is not exceeded in the average case, and the knowledge
of how a transformation engine executes a transformation.

The work mentioned before are very generic, and encompass all kind of model transfor-
mations. Other approaches use a different granularity to focus on a more specific category
of model transformation engine. For instance, [143] only focuses on languages for model-to-
text transformations. In [89], Hidaka et al. clarify and visualize the space of design choices
for bidirectional transformations, in the form of a feature model. Finally, [173] aims at gen-
eralizing compositions of transformation using two internal composition mechanisms for

rule-based transformation languages: module import and rule inheritance.

3.3.2 Multi-strategy based MDE tools

Bergmann et al. have developed the EMF-IncQuery Framework [22], an industrial tool to
compute declarative queries over EMF models, as a part of the model transformation frame-
work VIATRA. The inputs of rules are obtained from a query evaluation that finds matched
patterns within a given model. In [19], they propose two strategies for evaluating pattern
matching. The first is local-based graph pattern matching which starts the matching process
from a single node and extends it step-by-step by neighboring nodes and edges. The second
is an incremental solution: patterns are explicitly stored and incrementally maintained upon
model manipulation. The second solution provides significant memory but increases mem-
ory cost. In [93], Horvath et al. extend initial measurements carried out in [19] to assess the

effects of combining local search-based and incremental pattern matching strategies.

38

CHAPTER 4

PROGRAMMING MODELS FOR
EXECUTING DISTRIBUTED MODEL
QUERIES

Contents
4.1 Expressions in Model Transformations 40
4.2 MotivatingExamplettt ittt 41
4.3 OCLexpressionsinSpark00ttt nnneenns 44
4.4 Multi-Strategy Model Managementcc00teueeen. 47
4.4.1 Directnaive implementation 48
4.4.2 Pregelimplementation. 49
4.4.3 MapReduceimplementation 50
4.4.4 Discussion on multi-strategy 52
4.5 Challenges in Multi-Strategy Model Management 54
45.1 Code-relatedchallenges 54
4.5.2 DevOps-relatedchallenges 55
46 Evaluationttt ittt ittt ittt 56
47 Conclusion v v ittt i i i e e e i e e e e 57

Several choices are made in the design of an execution engine. The programming model
of expressions is one of the most important, since often most of the computation of a rule
is used for expressions. In this chapter we illustrate the variability of existing programming
models, and emphasize the need for a multi-strategy vision for model-management where
strategies can be automatically switched and combined to efficiently address the given model-
management scenario. Furthermore, we stress the need for automatic choice and configu-
ration of strategies to enhance performance of LCDPs. We outline code-related challenges

such an approach and provide hints for technical solutions to these problems.

39

Partie , Chapter 4 — Programming Models for Executing Distributed Model Queries

4.1 Expressions in Model Transformations

A model transformation (MT) definition is composed by rules. Each of them is composed
by two distinct parts: the left-hand side (LHS) defines what must be matched, and the right-
hand side (RHS) what to produce considering the former. This very generic definition can be
found in several level of programming. For instance, the Bird-Meertens formalism [30, 126,
79], proposing equivalence rules between expressions is a basis of term rewriting used in
the optimization of programs [116]. In a MDE context, rules are used to modify an instance
of a model. The LHS of a MT rule is more than a syntactic condition, as it can be in terms
rewriting. Indeed, it matches a set of elements, along side a condition on these elements
and the model itself. This expression, that can be considered as a model query, and must be
computed by the engine, and be evaluated into a boolean value. In the other side, the RHS
describes how are defined a set of new elements. Expressions are used for constructing each

of these new elements.

The adopted strategy for running expressions follow one or several programming models.
While most model-management languages implement a single execution strategy for evalu-
ating an expression, with specific strengths and weaknesses depending on the use case, the
diversity of strategies that have been employed poses several scientific challenges. These
techniques range from implementing specific execution algorithms (e.g., RETE [171]) to
compiling toward distributed programming models [107] (e. g., MapReduce [65]). These pro-
gramming models are sometimes qualified as paradigms in the literature, but this term may
lead to confusion with programming paradigms (functional, logic, etc.). Some existing so-
lutions in MDE offer more than a single execution strategy but the choice is left to the user
which requires expertise. Moreover, it appears that performance for some use cases could
be improved by the combination of different strategies, e. g., after decomposing the model-
management operation. Furthermore, evaluating expressions on very-large models (VLMs)
is challenging. To improve efficiency and scalability, recent research on model-management
studied parallel and concurrent programming as well as specific execution models for model-
management languages. As explained in [136], developing distributed program is challeng-
ing, because of the non-deterministic aspects of the computation. The consequence of the
difficulty to write parallel programs is a lack of parallel programmers and programs remain
error-prone. To tackle these difficulties, there exist programming models to help develop-
ers to write expression that will be evaluated in parallel. Apache Spark proposes several dis-

tibuted programming models including MapReduce [65], and its vertex-centric based ap-

40

4.2. Motivating Example

proach named Pregel [122]. In this chapter, we illustrate the variability of existing distributed
programming models, and emphasize the need for a multi-strategy vision for model-man-
agement, where strategies can be switched and combined to efficiently address the given
model-management scenario. Furthermore, we stress the need for automatic choice and
configuration of strategies to enhance performance. We outline code-related and DevOps

challenges of a such approach and provide hints for technical solutions to these problems.

4.2 Motivating Example

Social network vendors often provide specific development platforms, used by develop-
ers to build apps that extend the functionality of the social network. Some networks are as-
sociated with marketplaces where developers can publish such apps, and end-users can buy
them. Development platforms typically include APIs that allow analyzing and updating the
social network graph.

As arunning example for this chapter, we consider a scenario where a vendor adds a low
code development platform (LCDP) to allow end-users (also called citizen developers in the
LCDP jargon) to implement their own apps. Such LCDP could include a WYSIWG editor for
the app user-interface, and a visual workflow for the behavioral part. In particular, the LCDPs
would need to provide mechanisms, at the highest possible level of abstraction, to express
expressions for updates on the social graph.

In Fig. 4.1 we show the simple metamodel for the social graph that we will use in the
chapter. The metamodel has been originally proposed at the Transformation Tool Contest
(TTC) 2018 [76], and used to express benchmarks for model query and transformation tools.
In this metamodel, two main entities belong to a SocialNetwork. First, the Posts and the
Comments that represent the Submissions, and second, the Users. Each Comment is written by a
User, and is necessarily attached to a Submission (either a Post or another Comment). Besides
commenting, the Users can also like Submissions.

As an example, in this chapter we focus on one particular query, also defined in TTC2018:
the extraction of the three most debated posts in the social network. To measure how debated
is the post, we associate it with a numeric score. The LCDP will have to provide simple and
efficient means to define and compute this score. In a real-world context, finding the most
active and debated posts help identifying trends (e. g., a Twitter ! key concept), understand

the audience, and the evolution of a social network.

1. http://www.twitter.com

41

http://www.twitter.com

Partie , Chapter 4 — Programming Models for Executing Distributed Model Queries

[0..*] users SocialNetwork [0 .. *] posts
«abstract»
Submission
User < P id: String
id: String timestamp: Date
—————————@
name: String [1..1]commented | content: String
[0 .. *] comments 4
[0 .. *] likedBy | Extends: Extends |
Comment Post
[0..*] likes |

Figure 4.1 - The metamodel of a social network (TTC 2018)

We suppose the vendor to include a declarative query language for expressing such com-
putation on the social graph, and storing scores as a derived properties of the graph (i.e. new
properties of the social graph that are computed on demand from other information in the
graph).

In Listing 4.1 we implement the query to get the top-three debated posts in a model con-
forming to the presented metamodel, using the formula defined in TTC2018. The query is
written in OCL, the most used declarative query language in MDE. In particular we use the
ATL flavor of OCL.

In this code, a score of 10 is assigned to the post for each comment that belongs to it.
Comments belong to a post in a recursive manner: a comment belongs to a post if it is at-
tached either to the post itself, or to a comment that already belongs to the post. Then, a
score of 1 is also added every time a belonging comment is liked.

The query is defined using three (attribute) helpers, that can be seen as derived prop-
erties. The first helper, al1Comments (line 7 to 11), collects recursively all the comments of
a Submission. The second helper, countLikes counts how many times a comment that be-
longs to the given post has been liked. Then, the score of a Post is calculated by summing
the result of countLike and the number of its belonging comments multiplied by ten. Finally
the top three posts are obtained by the query topPosts sorting the posts by decreasing score,
and selecting the first three.

The simple declarative query in listing has not been defined with efficiency concerns in
mind. Indeed, since we cannot make assumptions on the background of citizen developers,

our LCDP cannot presume that they will structure the query for satisfying any performance

42

4.2. Motivating Example

Listing 4.1 - An OCL query for the first task of the TTC 2018.

1 query topPosts =

2 SN!Post.allInstances()
—sortedBy(e | -e.score)

| —subSequence (1, 3);

¢ helper context SN!Submission def : allComments =
self.comments

8 —union(self.comments

9 —collect(e | e.allComments)

10 —flatten());

12 helper context SN!Post def : countlikes =
13 self.allComments

14 —collect(el| e.likedBy.size())

15 —sum() ;

17 helper context SN!Post def : score =
18 10*self.allComments—size() + self.countlLikes;

requirement. As a result, when the number of users increases, soon the size of the social
graph makes the computation of this query challenging. First of all, the list Post .allInstances ()
(line 2) becomes too large to manipulate. Especially the full sorting of posts (line 3) seems
prohibitive. Without an efficient mechanism, the naive recomputation of al1Comments each
time it is called, is a further performance waste. If we consider the typical frequency of up-
dates for social network graphs, keeping the list of top posts up-to-date by fully recomputing
this query at each update could consume a significant amount of infrastructure resources.

Moreover, the most efficient way to execute the query does not depend only on the given
query definition and metamodel structure, but on several characteristics of the usage sce-
nario. A technique to optimize a particular use case typically has significant overhead in
other use cases. Factors that can influence this choice in our example can be related to the
model size (e.g. order of magnitude for the number of Users), frequency of updates (e. g.
of new Submissions), average model metrics (e.g. average number of Comments per Post),
acceptable response time for the final query (topPosts), infrastructure constraints and re-
sources (e.g. available memory, CPUs) and so on. In some cases techniques can be com-

bined, further complexifying the search for the optimal solution.

Finally, while in this chapter we will focus exclusively on this example, it is not difficult

43

Partie , Chapter 4 — Programming Models for Executing Distributed Model Queries

OCL | Spark

constant constant

variable variable

e op e e op e

e.field e.field

c.foo(e,...,e) c.foo(e,...,e)

head::tail head::tail

if cd then el else e2 endif | if (cd){ el } else { e2 }
let vl = el1:T1 in e val v1:T1 =el ; e

e | foo(e) e =>foo(e)

Table 4.1 — Equivalence between OCL and Spark expressions

to identify similar issues for update operations (e. g. removal of all information for an un-
subscribing user) or transformation (e. g. for storing the graph in a particular persistence

format).

4.3 OCL expressions in Spark

The basics of the OCL expressions can be directly expressed using simple Scala and Spark
features. In this section, we present Socle, an equivalence between the OCL expression lan-
guage and its Spark direct translation. The full work made on Socle can be publicly found
online?. About types, primitive types are a copy paste from OCL definitions, using Scala
types from its standard library. Collections can either be expressed as Scala collection, imple-
menting the semantics of specific collections on top of Scala sequence, or using Spark RDDs.
While the former solution proposes several semantic on the top of the same Scala structure,
allowing operations on a mutable collection, Spark RDDs are immutable and do not give
control on how the operation are computed. In this section, we describe how Scala Seq and
Spark RDDs can be used as OCL collections, both as OCL Bag, that is a not-ordered collection
allowing duplicates. However, an attempt of proposing the semantics of all the specific OCL
collections also exists in Socle.

In the following, we consider models being either (i) sequential, defined as a EMF model,
or (ii) distributed, defined with a Spark graph as couple of a RDD of vertices, and a RDD of
edges.

2. https://github.com/JolanPhilippe/Socle

44

4.3. OCL expressions in Spark

OCL | Scala | Spark |
c.collect(expr) 1.map(expr) rdd.map (expr)
c.sortedBy (expr) 1.sortBy(expr) | rdd.sortBy(expr)
c.subSequence(i, j) | l.slice(i, j) | undefined

cl.union(c2) 11 ++ 12 rddl.union(rdd2)
c.flatten() l.flatten rdd.flatMap(identity)
c.size() l.size rdd.size

Table 4.2 — Equivalence between OCL and Spark expressions

OCL syntax As illustrated in 4.1, the OCL statements are very similar to the Scala ones.

Expressing basic OCL expressions is then very fluent in Spark.

OCL primitve types Scala primitive types are largely enough for naturally use OCL types.
For all these types, there exist a transparent equivalence between the used functions in OCL
and their call in Scala.

— Integer with scala. Int;

— Real with scala.Double;

— Boolean with scala.Boolean;

— String with scala.String;

— Enumeration with Scala enum types;

— TupleType with the set of Scala classes for tupling: Tuple2, Tuple3 and so on.

OCL collections OCL proposes different collections for storing elements with different se-
mantics. For instance, OCL Set is a not ordered collection without duplication while a Sequence
is ordered and allow duplication. In this part of the work, we consider the used structures as
Set. To do so, we give a Spark equivalence for a subset of OCL collections in 4.2, where ¢
represents a OCL collection, 1 a Scala List and rdd a Spark RDD. The table only gives an

equivalence for the OCL operations used in 4.1.

Additional expressions OCL proposes additional functions to handle a model that we need
equivalences on our model implementation:

— adirect access to elements of a given type (with allInstances);

— an access to the target of a relation using it source and the type of relation.

In a Spark graph, the former is defined with a filtering function on the vertices, while

the second is a filter on the graph triplets, i. e. the set of edges defined as tuples composed

45

Partie , Chapter 4 — Programming Models for Executing Distributed Model Queries

by the source, the target and a label.

TTC18 OCL query With the all proposed equivalences, a proposition of a direct imple-
mentation of the OCL helpers (Listing 4.1) is presented in Listing 4.2. Thanks to the trans-
parency between List and RDD, the same definition can be operated on either a Scala or a
Spark model. The main difference is how elements and relations are accessed, depending on
their type. However, Spark does not allow nested recursive definition. That is why, a function

traversal must be defined to recursvively obtained all the comments of a given submission.

Listing 4.2 — Spark implementation of OCL query for score.

1 def allComments(p: Post): List[Comment] = {
2 def traversal(c: Submission): List[Comment] = {

var res: List[Comment] =

| c match {

5 case comment: Comment => List(comment)
6 case _ => List()

7 }

8 for (comment <- getComments(c, model)) {

9 res = res ++ traversal(comment)

10 }

I res

12 }

13 traversal(p)

s def countLikes(p: Post): Long = {

17 allComments (p) .map (comment => getLikedBy(comment, model).size).sum

2 def score(post: Post): Long = {

21 10 * allComments(post).size + countLikes(post)

46

4.4. Multi-Strategy Model Management

4.4 Multi-Strategy Model Management

Each of the research efforts presented in Tables 3.2 and 3.1 exploit a single strategy for
optimizing model-management operations. Typically, the strategy is applied in an additional
implementation layer for the model-management language, e.g. an interpreter or compiler.

We say that a query or transformation engine performs multi-strategy model manage-
ment if it automatically considers different strategies, instead of a single one, in order to ma-
nipulate models in an efficient way. According to Chap. 3 and to the best of our knowledge,

such approach does not exist in the literature.

In this section, we exemplify the multi-strategy approach by implementing the OCL query
of Listing 4.1 in different ways, using different strategies of parallelism. The goal of this Sec-
tion is not to provide the most efficient solutions for solving the given problem. Instead, it
aims at illustrating the diversity of solutions, that each have its own advantages depending
on the use cases. To do so, we implemented several solutions using different parallel strate-
gies and compared them. Also, this section only illustrates the variability of single solution,
and not their possible combination.

Our prototype is built on top of Spark 3, an engine designed for big data processing. In ad-
dition to parallel features of Spark on data structures, called Resilient Distributed Datasets
(RDDs), the Scala implementation of Spark proposes several APIs including a MapReduce-
style one, an API for manipulating graphs (GraphX [80] that embeds the possibility to de-
fine Pregel programs), and a SQL interface to query data-structures. Because the framework
proposes different parallel execution strategies, we only focused on parallel approaches to
illustrate the need of a multi-strategy approach. Comparing solutions that include laziness
and incrementality aspects is a part of our future works. In our implementation example, we
use GraphX, in addition to its provided Pregel function, and MapReduce features. We repre-
sent instances of SocialNetwork as a GraphX graph where each vertex is a couple of a unique
identifier and an instance of either a User or a Submission (Comment or Post). Edges represent
the links of elements of a model conforming the meta-model presented in Figure 4.1, labeled
by a String name. We keep exactly the same labels from the meta-model for [0..1] or [1..1] re-
lations but we use singular names for [0..*] relations (e. g., one edge “like” for each element of
the “likes” relationship). For the rest of this section, we consider sn a GraphX representation
of a SocialNetwork.

Considering that there exists an implementation for the function score, that will be de-

3. https://spark.apache.org/

47

https://spark.apache.org/

Partie , Chapter 4 — Programming Models for Executing Distributed Model Queries

tailed later in this section, the OCL query topPosts of Listing 4.