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RÉSUMÉ FRANÇAIS

Contexte

L’Ingénierie logicielle basée sur les modèles est devenue une approche populaire. La

modélisation est une activité présente dans tous les domaines scientifiques qui vise à don-

ner une vision simplifiée des entités du monde réel telles que la biologie, les mathématiques,

le génie civil, les lignes de produits ou les disciplines philosophiques [7, 8, 11, 68, 141]. Plus

précisément, le Ingénierie dirigée par les models (IDM) est une approche d’ingénierie logi-

cielle qui met en scène des modèles comme point central pour le développement de logi-

ciels. En génie logiciel, les modèles sont utilisés pour décrire tous les aspects des logiciels et

des systèmes, y compris leurs architectures, leurs actions, leurs composants physiques, leurs

algorithmes ou leurs communications. Pour des raisons de standardisation, l’Object Man-

agement Group (OMG) a défini un langage standard de représentation des modèles nommé

Unified Modeling Language (UML) [145]. Compte tenu des nombreux rôles des personnes

impliquées dans la conception d’une application, avoir des modèles centraux partagés par

les acteurs aide vraiment à la compréhension, et constitue une vue de connaissance forte.

Bien sûr, il existe de nombreux types de modèles, avec des objectifs différents, et ils n’ont

pas besoin du même niveau d’expertise. Mais les modèles sont souvent considérés comme

un pont entre les acteurs autour du logiciel. Les modèles constituent désormais une partie

vivante des projets et sont souvent manipulés comme des entités individuelles.

Les deux principales catégories d’outils de gestion de modèle que nous considérons sont

la transformation de modèle et la requête de modèle. D’une part, la transformation de mod-

èle est le processus de conversion d’un ou plusieurs modèles d’entrée en modèles de sor-

tie (modèle-vers-modèle) ou en texte (modèle-vers-texte). Une transformation de modèle

qui produit un modèle en sortie peut être soit une transformation sur place (c’est-à-dire

une modification directe du modèle d’entrée) soit une transformation hors place (c’est-à-

dire la production d’un nouveau modèle à partir de celui d’entrée). D’autre part, une re-

quête de modèle analyse les modèles source pour calculer la valeur de données souhaitée.

Dans la littérature, il existe une distinction claire entre ces deux opérations, même si les re-

quêtes peuvent s’exprimer sous forme de transformations, et inversement. Nous parlons de
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requête lorsqu’il s’agit d’expression atomique, utilisées pour obtenir un résultat unique, tan-

dis qu’une transformation de modèle est l’exécution de règles de transformation, basées sur

des requêtes, par un moteur dédié. Notez qu’il existe également des moteurs pour exécuter

des requêtes sur les modèles.

Les modèles sont utilisés pour représenter des entités réelles, comme des données. Puisque

nous vivons dans un monde entouré de capteurs, nous créons continuellement des informa-

tions, augmentant la taille des données produites. Le traitement de cette énorme quantité

de données s’appelle Big Data. Dans MDE, nous appelons les modèles contenant beaucoup

d’informations des “Very Large Models” (VLMs). Les outils dédiés au traitement des VLMs

ont un besoin important d’opérations automatiques, transparentes, efficaces et évolutives,

pour manipuler, interroger et analyser des modèles. La plupart des opérations de gestion de

modèle sont exécutées au moment de la conception, par exemple pour éditer, valider, trans-

former le modèle. Le temps nécessaire pour répondre à une commande graphique est un

facteur de qualité d’un outil MDE et influe sur le confort du développeur.

Énoncé du problème

L’IDM est une méthode puissante pour organiser et traiter théoriquement tout type de

données. Les VLMs posent des défis supplémentaires, en raison de la taille des données

qu’ils représentent. Un problème de mise à l’echelle se pose lorsqu’un outil doit manipuler

de grands modèles d’instance de données, par exemple, comme cela se produit aujourd’hui

dans plusieurs domaines d’ingénierie (automobile, aéronautique, civil). En raison de la taille

même du modèle, il est nécessaire de fournir une solution efficace. Pour améliorer l’efficacité

et la mise à l’echelle des solutions d’IDM, des recherches récentes sur la gestion de modèles

ont étudié la programmation parallèle et concurrente ainsi que des modèles d’exécution

spécifiques pour les langages de gestion de modèles. Ces techniques vont de la mise en

œuvre d’algorithmes d’exécution spécifiques (par exemple, RETE [74]) à la compilation vers

des modèles de programmation distribués (par exemple, MapReduce [65]). La diversité des

stratégies employées pose plusieurs défis scientifiques.

La plupart des solutions ont été développées indépendamment, sur différentes tech-

nologies et avec des objectifs différents. Les nombreuses solutions n’étant pas formalisées

au sein d’une solution unifiée, il n’est pas possible de faire un comparatif clair et précis de

ces outils. L’introduction de solutions de parallélisme, qui sont des approches non déter-

ministes, rend encore plus difficile une telle comparaison. Les architectures basées sur le
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parallélisme et leurs paradigmes associés (par exemple, le parallélisme des données, le par-

allélisme des tâches, l’asynchronisme) sont trop différents pour être comparés. Compte tenu

de ces critères, la conception et l’évaluation d’une solution distribuée pour les transforma-

tions de modèles n’est pas triviale et très difficile.

Ainsi, les challenges adréssés sont les suivants:

1. Une expression dans une règle de transformation peut être évaluée comme une re-

quête sur le modèle d’entrée de la transformation. L’exécution d’une requête sur un

modèle dans un moteur distribué dépend vraiment de la stratégie adoptée par l’utilisateur

qui l’a définie. Les modèles de programmation basés sur le calcul distribué ne présen-

tent pas les mêmes avantages selon le cas d’utilisation et le modèle d’entrée.

2. Les moteurs de transformation existants pour effectuer des transformations de mod-

èle sont conçus à partir de différents choix en fonction de leur objectif. Il n’est pas

possible de comparer différents choix de conception dans les moteurs de transfor-

mation mais de le faire en utilisant des moteurs existants. Il y a trop de différences

qui ont un impact sur les performances.

3. La configuration d’un moteur de transformation a un impact sur ses performances.

Les choix d’ingénierie dans le développement d’un moteur de transformation influ-

encent fortement le temps de calcul nécessaire à l’exécution d’une transformation.

Contribution

Cette thèse contribue à l’analyse des choix de conception dans la conception d’un mo-

teur d’exécution.

Une première partie de cette thèse est centrée sur les modèles de programmation dis-

tribués qui peuvent être utilisés pour exécuter des requêtes sur le modèle. Les règles de trans-

formation sont définies à l’aide d’expressions qui exécutent des requêtes sur les modèles

pour interroger le modèle d’entrée afin de vérifier une condition ou d’extraire des informa-

tions pour créer un contenu de sortie. Dans cette contribution, nous proposons d’abord une

implémentation Scala d’OCL, un langage de requête sur les modèles. Puis nous avons pro-

posé des implémentations basées sur des modèles de programmation distribuée : primitives

Spark, MapReduce, Pregel et hybrides.

La deuxième contribution de la thèse cible le choix de conception des moteurs de trans-

formation distribués. Nous proposons un raffinement de la spécification CoqTL pour aug-

menter les possibilités de parallélisme. La spécification affinée est validée en prouvant formelle-
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ment en Coq l’équivalence entrée/sortie à la spécification CoqTL standard. Cette nouvelle

spécification est implémentée sur Spark et nous évaluons ses performances sur un cluster

distribué. Ces performances incluent les avantages de notre nouvelle solution par rapport à

une implémentation de la spécification CoqTL standard, une analyse du temps de calcul et

une analyse de l’évolutivité potentielle que ce nouveau moteur peut proposer.

Dans la troisième contribution, nous proposons plusieurs configurations pour SparkTE,

le moteur de transformation distribué précédemment implémenté à partir de la nouvelle

spécification de CoqTL. Les configurations sont basées sur différentes stratégies pour les

étapes de calcul de l’opération de transformation du modèle. Nous proposons un modèle de

fonctionnalités pour illustrer les nombreuses options dont nous disposons pour l’exécution

de SparkTE. Nous comparons l’impact de choix uniques, mais aussi de configurations com-

plètement modifiées, en expérimentant notre moteur configurable sur un cluster de calcul.

A travers la thèse, nous présentons et expérimentons nos travaux en utilisant des cas

d’utilisation bien connus sur des modèles conformes à trois méta-modèles. Pour chacun de

ces métamodèles, nous expérimentons une ou plusieurs transformations. Les trois princi-

paux cas sont les suivants.

1. La transformation Relational2Class, qui mappe les éléments relationnels, c’est-à-dire

les tables, les types et les colonnes, aux éléments de classe, c’est-à-dire les classes, les

types de données et les attributs.

2. Un cas de réseau social, de TTC18 [76]. Ce cas d’utilisation vise à extraire le post le plus

débattu d’un réseau social, en fonction de son activité (nombre de commentaires, et

de likes).

3. Un cas sur Internet Movie Database (IMDb) [92], où le but est de trouver des couples

d’acteurs et/ou d’actrices qui ont joué ensemble dans plusieurs films.

De plus, nous avons utilisé deux autres cas comme exemple pour illustrer la variabilité des

résultats : (i) une transformation d’identité sur des modèles IMDb [92] et (ii) une requête sur

des modèles DBLP pour trouver des auteurs actifs qui ont publié dans des revues [10].

Contexte de la thèse

Les travaux de cette thèse ont été financé par le projet Européen intitulé Lowcomote 1,qui

a reçu un financement du programme de recherche et d’innovation Horizon 2020 de l’Union

1. http://www.lowcomote.eu
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européenne dans le cadre de la convention de subvention Marie Skldowska-Curie n°813884.

Le but de ce projet est de former 15 doctorants autour des plateformes low-code. Les plate-

formes low-code (LCDP) servent à concevoir des applications directement via des modèles

en minimisant ainsi la part de programmation textuelle, et en maximisant à la place la pro-

grammation visuelle.

De plus, ce thèse a pris place au sein des équipes NaoMod 2(anciennement Atlanmod)

et Stack 3. NaoMod et Stack sont deux équipess du Laboratoire des Sciences du Numérique

de Nantes 4(LS2N), localisée sur les campus de l’UFR Sciences et Techniques, et l’IMT At-

lantique de Nantes 5. L’équipe Naomod est spécialisée dans l’ingenierie des models dans

la région de Nantes depuis les années 1990, et a proposé de nombreuses technologies, no-

tamment basées sur Eclipse, a destination des développeurs et architectes logiciels, dans

l’optique d’améliorer leur productivité, ainsi que la qualité des applications qu’ils dévelop-

pent. L’équipe Stack est un projet initié par l’INRIA, qui traite des défis liés à la gestion et

l’utilisation avancées des infrastructures de l’informatique utilitaire. Les activités de l’équipe

se concentrent sur la définition d’abstractions et de mécanismes permettant d’opérer les fu-

tures infrastructures massivement géo-réparties (Fog/Edge).

2. https://naomod.github.io/
3. https://stack-research-group.gitlabpages.inria.fr/web/
4. https://www.ls2n.fr/
5. https://www.imt-atlantique.fr
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CONTEXT
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Scientific productions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Introduction

Model-Based Software Engineering (MBSE) has become a popular approach. Modeling

is an activity present in all scientific areas which aims at giving a simplified view of real-

world entities such as biology, mathematics, civil engineering, product lines, or philosophic

disciplines [7, 8, 11, 68, 141]. More precisely, Model Driven Engineering (MDE) is a software

engineering approach that stages models as a central point for developing software. In soft-

ware engineering, models are used to describe all the aspects of software and systems in-

cluding their architectures, actions, physical components, algorithms, or communications.

For standardization reasons, the Object Management Group (OMG) defined a standard lan-

guage for representing software systems named Unified Modeling Language (UML) [145].

Considering the many roles of people involved in the conception of an application, having

central models shared by the actors helps comprehension, and constitutes a strong knowl-

edge view. For sure, there exist many types of models, with different purposes, and they do

not need the same level of expertise. But models are often considered as a bridge between

the actors around the software. Models now constitute a living part of projects and are often

manipulated as individual entities.

In the context of MDE, model management tools are software applications that help

organizations manage the development, deployment, and maintenance of models that are
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used in the MDE process. These tools typically provide features such as version control, col-

laboration, and tracking of model performance. By using model management tools, orga-

nizations can improve the efficiency and effectiveness of their MDE processes. Examples of

model management tools for MDE include tools such as the Eclipse Modeling Framework

(EMF) [153] and the Meta Object Facility (MOF) [157].

The two main categories of model-management tools we consider are model transforma-

tion (MT) and model query (MQ). On the one hand, model transformation is the conversion

process of one or more input models to output models (model-to-model) or text (model-to-

text). A model transformation that produces a model as output can be either an in-place (i. e.,

direct modification of the input model) or an out-place transformation (i. e. production of a

new model from the input one). On the other hand, a model query analyzes source models

to compute the desired data value. In the literature, there is a clear distinction between these

two, even if queries can be expressed as transformations, and vice versa. We name query and

atomic expression, used to obtain a single result, while a model transformation is the full ex-

ecution of rules, based on queries, by a dedicated engine. Note that there also exist engines

to run single queries.

Models are used to represent real-life entities, like data. Since we live in a world sur-

rounded by sensors, we create information continuously, increasing the size of the produced

data. The processing of this huge amount of data is called Big Data. In MDE, we refer to

models containing a lot of information as Very Large Models (VLMs). Tools dedicated to

the treatment of VLMs have a significant need for automatic and transparent efficient and

scalable operations, for manipulating, querying, and analyzing models. Most of the model-

management operations are executed at design time, e.g., for editing, validating, and trans-

forming the model. The required time for responding to a graphical command is a quality

factor of a MDE tool and influences the developer’s comfort.

1.2 Problem Statement

MDE is a powerful method for organizing and theoretically treating every kind of data.

VLMs pose additional challenges, due to the size of the data they represent. A scalability

issue arises when a tool needs to manipulate large instance models of data, e.g., as it hap-

pens today in several (automotive, aeronautics, civil) engineering domains. Because of the

sheer size of the model, providing an efficient solution is necessary. A second scalability issue

arises when there is a need to run a big number of operations in parallel for many users. In
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the context of a Platform as a Service (PaaS), numerous customers may query models. Hence,

efficient concurrent execution of model management operations is necessary. To improve ef-

ficiency and scalability, recent research on model-management studied parallel and concur-

rent programming as well as specific execution models for model management languages.

These techniques range from implementing specific execution algorithms (e.g., RETE [74])

to compiling toward distributed programming models (e.g., MapReduce [65]). The diversity

of strategies that have been employed poses several scientific challenges.

Most of the solutions have been independently developed, on top of different technolo-

gies, and with different purposes. Since the numerous solutions are not formalized within

a unified solution, it is not possible to give a clear, and precise, comparison of these tools.

The introduction of parallel solutions, which are non-deterministic approaches, makes even

harder such a comparison. The architectures based on parallelism, and their associated paradigms

(e.g, data-parallelism, task-parallelism, asynchronism), are too different to be compared.

Considering these criteria, designing and evaluating a distributed solution for model trans-

formations is not trivial and very challenging.

In this thesis, we adress the following challenges:

1. An expression in a transformation rule can be evaluated as a query on the input model

of the transformation. The execution of a query on a model in a distributed engine de-

pends on the strategy adopted by the user who defined it. The programming models

based on distributed computing do not show the same benefits according to the use

case and the input model.

2. The existing engines for performing model transformations are designed from differ-

ent choices according to their purpose. Comparing different design choices in trans-

formation engines but making it using existing engines is not possible. There are too

many differences that impact performance.

3. The configuration of a transformation engine has an impact on its performance. En-

gineering choices in the development of a transformation engine deeply influence

the computation time needed for running a transformation.

1.3 Contributions

This thesis contributes to the analysis of design choices in the design of an execution

engine.
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The first part of this thesis is focused on the distributed-based programming models that

can be used to run queries on the model. Transformation rules are defined using expressions,

that run queries on the models for interrogating the input model to either check a condition

or extract information for creating output content. In this contribution, we first propose a

Scala implementation of OCL, a query language on models. Then we proposed implementa-

tions based on distributed programming models: Spark primitives, MapReduce, Pregel, and

hybrids.

The second contribution of the thesis targets the design choice of distributed transforma-

tion engines. We propose a refinement of the CoqTL specification to increase parallelism op-

portunities. The refined specification is validated by formally proving in Coq the input/out-

put equivalence to the standard CoqTL specification. This new specification is implemented

on top of Spark and we evaluate its performance on a distributed cluster. These perfor-

mances include the benefits of our new solution compared to an implementation of the

standard CoqTL specification, an analysis of computation time, and an analysis of the po-

tential scalability this new engine can propose.

In the third contribution, we propose multiple configurations for SparkTE, the distributed

transformation engine previously implemented from the new specification of CoqTL. The

configurations are based on different strategies for the computational steps of the model

transformation operation. We propose a feature model to illustrate the numerous options

we have for the execution of SparkTE. We compare the impact of single choices, but also

of completely changed configurations, by experimenting with our configurable engine on a

computational cluster.

Through the thesis, we present, and experiment, with our work using well-know use cases

on models that conform to three meta-models. For each of these metamodels, we experi-

ment with one or several transformations. The three main cases are the following.

1. The Relational2Class transformation, which maps relational elements, i.e., tables, types,

and columns, to class elements, i.e., classes, datatypes, and attributes.

2. A Social Network case, from TTC18 [76]. This use case aims at extracting the most

debated post in a social network, based on its activity (number of comments, and

likes).

3. A case on the Internet Movie Database (IMDb) [92], where the goal is to find couples

of actors and/or actresses who used to play together in several movies.

In addition, we used two other cases as examples to illustrate the variability of results: (i) an

identity transformation on IMDb models [92] and (ii) a query on DBLP models to find active
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authors who published in specific journals [10].

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 presents some background material and key

concepts for the comprehension of the rest of the document. Chapter 3 presents the state of

the art that already targets the problem we are trying to face in this thesis. In Chapter 4, we

present a comparison of model queries, based on several programming models. Chapter 5

proposes two main contributions: a refinement of CoqTL to increase the parallelism oppor-

tunities (Sect. 5.4), and SparkTE, its implementation on top of Spark (Sect. 5.3). In Chapter 6,

we enrich SparkTE with a configuration aspect, to select the different strategies to run trans-

formations on the engine. We finally conclude in Chapter 7 by giving a global summary of

the contributions and their limits and proposing future work as perspectives. Two appen-

dices are presented at the end of the document. (i) Appendix A illustrates how we extended

NeoEMF-IO for loading serializable models distributable on Spark, and Appendix B which

presents an excerpt of benchmarking library for multi-parameter applications.

1.5 Scientific productions

During this thesis, we produced 2 articles: 1 international conference, and 1 international

workshop.

— International conference

— Jolan Philippe, Massimo Tisi, Hélène Coullon, Gerson Sunyé. Executing Certified

Model Transformations on Apache Spark. SLE 2021: 14th ACM SIGPLAN Inter-

national Conference on Software Language Engineering, Oct 2021, Chicago IL,

United States. https://hal.archives-ouvertes.fr/hal-03343942
— International workshop

— Jolan Philippe, Hélène Coullon, Massimo Tisi, Gerson Sunyé. Towards Transparent

Combination of Model Management Execution Strategies for Low-Code Develop-

ment Platforms. 23rd ACM/IEEE International Conference on Model Driven En-

gineering Languages and Systems: Companion Proceedings, Oct 2020, Montreal

(Virtually), Canada. https://hal.archives-ouvertes.fr/hal-02952952
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CHAPTER 2

PRELIMINARIES

Contents

2.1 Model transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Modeling concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Model transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 ATL: an example of transformation language . . . . . . . . . . . . . . . . 10

2.2 Distributed computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Distributed computation and data-distributed programs . . . . . . . . 14

2.2.2 Architecture of a Spark cluster . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Jobs in Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Spark libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Interactive Theorem Proving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Correction of programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 The Coq proof assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter, we present various conceptual and software tools to ease the reading of

the contribution chapters. First, we begin to present what is Model Driven Engineering (Sec-

tion 2.1). We give general concepts and then define what is model transformation and how

it can be defined. Section 2.2 introduce distributed computation and more specially Spark,

a unified engine for data-distributed computation. Finally, an overview of what is correct-

ness of programs is given in Sect. 2.3. In this last section, we introduce Coq, a proof assistant

designed for interactive theorem proving, and Coq-based language for defining model trans-

formations: CoqTL.

2.1 Model transformations

In the 2000s, the Object Management Group (OMG) introduced the concept of Model-

Driven Architecture (MDA). The main goal of MDA is to provide tools for solving issues
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raised by complex systems. The approach separates the functionalities of a system from

its implementation. It allows users to emancipate the functionalities from the target plat-

form by supplying ‘vendor-neutral interoperability specifications”. MDA promotes the us-

age of Platform-Independent Models (PIM) as primary artifacts to design systems and soft-

ware architectures. These models can then be adapted to a specific platform (i.e., Platform-

Specific Model (PSM)) using successive transformations, refinements, and finally, code gen-

eration [104, 149]. We call this process forward engineering. On the contrary, PIM can be

reconstructed by analyzing PSM. This new PIM can then be used as a basis for code mod-

ernization, maintenance and, enhancement. We call this process reverse engineering [33].

These concepts can be generalized under model transformation, a concept introduced in

Sect. 2.1.2. Model Driven Engineering (MDE) is a more general approach that emerged from

MDA. MDE is not limited to architecture, but also processes, data representation, and anal-

ysis.

In the rest of the section, we first introduce general concepts of MDE about modeling

(Section 2.1.1). Then, in Section 2.1.2, we introduce transformation rules and engines to run

through. Finally, we give an overview of ATL, a language used for expressing model transfor-

mations in Sect. 2.1.3.

2.1.1 Modeling concepts

MDE is a software engineering approach born from the Object Oriented Programming

(OOP) paradigm. OOP is based on the concept of “objects”, which are atomic abstractions

that encapsulate data to describe and substitute real entities. In the Java language, or in its

functional support Scala, the API defines an object with a name and a set of attributes, as an

instance of class. A class gives a more general definition of how objects are structured with

identifiers: a classname, a set of behavior methods, and a set of fields. A class instance, that

is an object, inherits all the features described in the class definition.

In a MDE approach, a set of object definitions is named a model. There exist about ten

of definitions for what is a model [129]. In this thesis, we refer to OMG’s definition: “A model

of a system is a description or specification of that system and its environment for some cer-

tain purpose.”. In other words, a model describes data, and its environment, in a specific

context. In an object-oriented context, a class can be instantiated into an object. In MDE,

the definition of the structure of a model is named a metamodel. A metamodel is an explicit

specification of an abstraction [128, 28]. It is used to define a list of concepts (e.g., structure,

classes), and how these concepts interact with each other. All the metamodels in this the-
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Figure 2.1 – Modelisation hierarchy from real-world things to meta-metamodels

sis follow the OMG’s Meta-Object Facility (MOF) 1. Then the metamodel can be instantiated

into a model, that conforms to the metamodel abstract syntax and satisfies the metamodel

semantics. The syntax and the semantics of a metamodel definition can itself be viewed as

metamodel, namely meta-metamodel. For instance, UML, which stands for Unified Model-

ing Language, was introduced in the late 90s as a standard language for modeling object-

oriented systems. In UML, the metamodels all conform to the Meta-Object Facility (MOF)

meta-metamodel. This concept can be associated of metaclasses from programming lan-

guages, that are used in reflexive programming.

Figure 2.1 from [95] summarizes the four-level of a metamodeling architecture, with the

example of modeling families:

— The real-world thing is a concrete family, with family members (layer M0). For in-

1. https://www.omg.org/mof/
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stance, the Curie family is composed of Marie, Pierre, and their two daughters: Irène

and Ève. They all were existing people, who lived in the real world.

— The M1 layer groups the family models, which represent the data of the M0 layer. In

the family case, the model states the name and the place of the family members.

— The M2 layer contains metamodels whose models of M1 conform to. For example, the

family model conforms to a UML metamodel describing how a family is constructed.

— Finally, the meta-model from the M2 layer conforms to a meta-metamodel of the

layer M3. For example, a UML metamodel conforms to the MOF meta-metamodel.

2.1.2 Model transformation

Model transformation (MT) is certainly one of the most used concepts in MDE. It is the

conversion process of one or more input models to output models (model-to-model) or text

(model-to-text). A model transformation that produces a model as output can be either an

in-place (i.e., direct modification of the input model) or an out-place transformation (i.e.

production of a new model from the input one). To perform transformations, input content

must be analyzed. Model queries (MQ) analyze source models to compute desired data val-

ues. A query can be used to express a condition on an input element or evaluate content for

the output model.

Even if these transformations can be expressed in any language, transformation engines

mostly use dedicated tools and languages. These tools take advantage of the previously in-

troduced 4-layers. The languages are used to specify the equivalence between a source and

a target metamodel. The transformation can then be applied to a source model, which con-

forms to the source metamodel of the transformation. As output, the target model will con-

form to the target metamodel. Figure 2.2 presents the structure of a model transformation

from a source model to a target model.

As a concrete example of transformation, we can consider a change in the representation

of members of a family. In a Family2Person transformation, we transform all Member of a

Family into Person, either a Male or Female.

2.1.3 ATL: an example of transformation language

Model transformation languages have been designed to help users specify model trans-

formations. Among the numerous proposals [103], the ATLAS Transformation Language (ATL) [98,

99] is a rule-based transformation language. The ATL language specifies transformations in

10



Meta-metamodel

Source Meta-model Target Meta-model

Source Model Target Model

Transformation 

Meta-model

Transformation

conformsTo conformsTo

conformsTo conformsTo conformsTo

conformsTo

conformsTo

source target

references references

Models

Metamodels

Meta-metamodel

Figure 2.2 – Structure of a model transformation
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Figure 2.3 – A model conforms to the Family metamodel transformed into a model conforms
to the Person metamodel

modules, from a read-only input model. The user defines rules in two parts. First, an input

pattern is defined in the first section of the rule (from clause), as a set of typed elements from

the input model, optionally with a guard condition. Second, an output pattern is declared

in the second section of the rule (to clause). The bindings of values for output elements are

calculated here, using queries on the input model. The query language used in ATL is OMG’s

Object Constraints Language (OCL) [84].

Assuming there exist a helper isFemale that retuns true if a Member is involved in a mother or

daughters relationship, and second helper familyName giving the family name of a Member, the

Family2Person transformation shown in Figure 2.3 can be defined as two rules as illustrated

in Listing 2.1. The first rule Member2Female instantiates a Female from a match Member s, with

s.isFemale() evaluated to true. The fullName attribute of the output Female is binded to a

string value calculated from the firstName and the familyName of the matched input pattern.

The second rule Member2Male follows the same approach.

In ATL, rule matching and rule application are separated into two phases. In the first

phase, all patterns of the rules are matched against the source model(s). For every match,

the target elements are created. Traceability links are also created in this phase. In the second

12



1 module Family2Person;
2 create OUT : Person from IN : Family;
3

4 helper context Family!Member def: familyName : String = ...
5 helper context Family!Member def: isFemale() : Boolean = ...
6

7 rule Member2Female {
8 from
9 s : Family!Member (s.isFemale())

10 to
11 t : Person!Female (
12 fullName <- s.firstName + ’ ’ + s.familyName
13 )
14 }
15

16 rule Member2Male {
17 from
18 s : Family!Member (not s.isFemale())
19 to
20 t : Person!Male (
21 fullName <- s.firstName + ’ ’ + s.familyName
22 )
23 }

Listing 2.1 – ATL definition of the Family2Person transformation
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phase, all the bindings for the created target elements are executed.

Several engines exist for performing transformations specified in ATL. For instance, in [112]

Le Calvar et. al. proposed an incremental execution of ATL transformations, while Tisi et. al.

proposed a “call-by-need” approach for evaluating ATL rules in [166]. Each of the solutions is

a different implementation, with its purpose, developed thanks to the ATL toolkit. Additional

implementations for running ATL transformations, based on parallelism, are discussed in

Chapter 3.

2.2 Distributed computation

2.2.1 Distributed computation and data-distributed programs

In the modern computer science world, system architectures are described using Flynn’s

taxonomy [73]. It represents computer architectures with four approaches:

— Single Instruction Single Data (SISD) corresponds to a uniprocessor model. The data

are treated one by one, in sequential order. This architecture is also known as the Von

Neumann architecture [155].

— In a Single Instruction Multiple Data (SIMD) architecture, one operation is applied

to several data. Most of modern processors use SIMD as a vectorial approach. Sin-

gle Program Multiple Data (SPMD) is a variant of this approach. It is very similar to

these two approaches that are not mutually exclusive. SPMD is a much higher level

of abstraction. The processors operate on different subsets of the data, but different

operations may be applied at the same time.

— Multiple Instruction Single Data (MISD) applies successive treatments to data. This

category is usually associated with pipelines and numerical filtering.

— Multiple Instruction Multiple Data (MIMD) is the most used parallel architecture. It

is composed of calculation units with their data to treat. In other words, treatments

are entirely independent. This architecture can be used with two types of memory:

— Different programs at the same time can access the shared memory. Languages

provide libraries to do shared memory parallelism, such as the Pthreads library in

C [130]. This architecture has, however, limitations. All the Central Processing Unit

(CPU) cores access the memory with a shared bus, which represents an obvious

concurrency issue. Critical sections must be defined, and memory accesses must

be restricted.
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— With distributed memory, each processor has its private memory and is the only

which can access its data. Concrete communications must operate the exchange

of information between processors (e.g., using Message Passing Interface (MPI) [148]).

Modern computers contain all of these architectures but at different levels of their overall

architecture. In a data-parallel approach, data is split and distributed across several compu-

tation units. Then, the same piece of program (from a single basic operation to a complex

function) is applied simultaneously on each part of the data by each processing unit without

synchronization. From the user’s point of view, it follows a SPMD approach. This computa-

tion strategy is the one followed by the parallel algorithmic skeletons [27] on data structures

[63, 30]. Most of the recent frameworks designed for distributed computation on data are

based on a MIMD approach at the framework level, where data is distributed and indepen-

dently receives a single instruction to compute on their owned chunks. In this thesis, we

mostly use Apache Spark [176], which is a framework built with this approach, as a solution

for distributed computation. It is defined as a unified multi-language engine for executing

data engineering on single-node machines or clusters. Each computation node receives a

chunk of data and independently processes an instruction on it. Since the global computa-

tion is driven by a master node, the same instruction is replicated on each node. More details

about Spark architecture is given in Section 2.2.2. Furthermore, additional synchronizations

and communications may be needed between processing units to correctly compute the

overall result. For instance, data may need to be merged into a single result. Additional details

about how merging results is processed in Spark are given in Section 2.2.3. This computation

strategy is the one followed by the parallel algorithmic skeletons [52] on data structures [137,

55]. MapReduce [65] is an example of a programming model, designed for parallelism, that

takes advantage of this strategy. However, MapReduce is mainly adapted and implemented

for distributed arrays or lists, and the approach is not directly suitable for all types of data

structures.

For instance, Pregel [122] is a strategy that aims at easing parallel computations on graphs

by using a vertex-centric approach [125]. In Pregel, graphs are specified by their vertices,

each of them embedding information on their incoming and/or outgoing edges. A Pregel

program is iterative, and is decomposed into three main phases: (i) a computation on top

of a vertex value, (ii) a generation and the sending of output messages through the edges

of the vertex, (iii) and the receipt and merge of incoming messages. This process is simul-

taneously applied to each vertex of a graph (such as a map in the MapReduce model). For

example, solving the Single Source Shortest Path (SSSP) problem could be expressed as il-
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lustrated in Listing 2.2. The computation is expressed as follows. First, an initial message is

sent to all (line 2) nodes. Then, the vertex program (line 3) checks if the message received

contains a distance small than the current assigned one. The new value of the vertex is the

minimum between the previously assigned shortest distance, and the one received. Note

that this program treats a message that is already a merge of all incoming messages. Line 4

to 10 defines the logic for sending messages along outgoing edges. It is defined as a function

taking a triplet as argument, which contains the source vertex, a target, and the distance be-

tween the source and the target vertices. The function tests if the target vertex is assigned

to a distance that is smaller than the distance assigned to the source plus the distance from

the source to the target vertices. If no, a message is sent with the new distance (line 6). Other-

wise, no message is sent, and the source vertex is halted until the moment the vertex receives

a new message from another vertex.

Listing 2.2 – GraphX code for solving the SSSP problem

1 sssp = graph.pregel

2 (Double.PositiveInfinity) // Initial message

3 ( (id, curr, received) => math.min(curr, received), // Vertex Program

4 triplet => { // Send Message

5 if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {

6 Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))

7 } else {

8 Iterator.empty // No message

9 }

10 },

11 (m1, m2) => math.min(m1, m2) // Merge Message

12 )

Data-parallelism is adapted and adopted in the case of large datasets. Indeed, to make

profitable the parallel execution of a single computation on data, the data chunks must be

large enough, otherwise, an overhead has to be paid without much benefits from the paral-

lelization effort [3, 53].

Task-distribution Data-distribution is not the only approach for distributing computa-

tion. A task-parallel program focuses on the distribution of tasks instead of data. According

to [144], “a task is a basic unit of programming that an operating system controls” within a

job. This concept is often associated with multi-threading. The grain size of tasks depends
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on the context of the execution. At the operating system level, tasks may be entire programs

while at the program level, they may be a single request or a single operation. Because of

concurrency, and the limited number of processing units, task executions must be ordered

by considering both priorities, and dependencies across tasks. Ordering tasks in parallel are

similar to the workflow concept. Task-parallelism will be preferred to data-parallelism when

tasks are complex enough, or when the number of tasks is large enough to exploit parallelism

capacities of the underlying parallel architecture (i.e., hardware).

Asynchronism Both data-parallelism and task-parallelism can be defined as synchronous

strategies where synchronizations are explicitly performed through communication patterns

or task dependencies. Asynchronism is another way of programming parallelism where syn-

chronism is not explicitly coded but implicitly handled by an additional mechanism be-

tween processing units. For example, the Linda approach [44], is based on the treatment

of asynchronous tasks or data, shared in a common knowledge base, the “blackboard” [38].

More specifically, in Linda several processes access a shared tuple space representing the

shared knowledge of a system. The processing units interact with the shared space by read-

ing, and/or removing tuples.

2.2.2 Architecture of a Spark cluster

A Spark cluster is composed of a set of machines with specific roles.

— a master node hosts a driver program, that aims at driving the full distribution of

data and jobs to do among the other computational nodes. The driver program co-

ordinates the sets of processes with a SparkContext, a Java object which contains

all the information about the rest of the cluster (e.g., computational nodes and their

amount of allocated resources, a job name). The main purpose of the driver is to

schedule the tasks that will be submitted to the cluster.

— a set of workers, that are connected to the driver, which concretely compute the

tasks submitted to the driver. Each worker has its number of working threads, pri-

vate memory, and cache. All workers can be independently configured. It is preferable

to keep the driver and the workers in the same cluster for limiting network issues.

Outside the master and worker nodes, an external bfcluster manager can be deployed. Sev-

eral technologies are supported: Apache Mesos [75] (deprecated), Hadoop YARN [172] or

Kubernetes [37]. By default, in a standalone mode, the master program is in charge of man-

aging the rest of the cluster. Note that a single machine can assume several roles. In that case,
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Figure 2.4 – Overview of a Spark cluster architecture 2

different Java Virtual Machines (JVM), that is executing environments for running compiled

Java code with a framed amount of resources (memory, threads), is instantiated: one for each

hosted node. The role of the cluster manager is to allocate the asked amount of resources to

each of the nodes of the cluster, i.e., the driver and worker nodes. A global view of a Spark

cluster is built is illustrated in Fig. 2.4. Additional details about how tasks and jobs are man-

aged in Spark are given in Sect. 2.2.3.

2.2.3 Jobs in Spark

A user program, i.e., the driver program, referred as an application, is built and sub-

mitted to the master node upon the cluster. It is written as a simple Java or Scala program

(both working on the JVM), with a main() functions driving the full computation. Thanks to

the Spark environment, it is possible to distribute the computation on a data-structures us-

ing Resilient Distributed Datasets (RDDs). RDDs are parallelized collections, create

from a collection of data (e.g., a Scala Seq), providing a SPMD view to the user. Indeed, the

use of methods to manipulate a RDD is similar to manipulating a sequential collection of

data, but it will be processed in parallel. There exists two kinds of methods for RDDs:

— A transformation is a function that builds a tree of computation for the data and pro-

duces a new RDD from the existing one. Transformations are lazy, that is they do not

2. https://spark.apache.org/docs/latest/cluster-overview.html, Copyright © 2018 The Apache
Software Foundation, Licensed under the Apache License, Version 2.0
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execute any action until we explicitly ask for it. It allows the optimization of the com-

position of functions. Either by transforming a chain of computation into the simplest

one following transformation rules [116] or by optimizing the needed communica-

tions between the nodes during the computation.

— A concrete action triggers the computation on a RDD. Contrary to transformations,

actions do not create new RDDs, but return a value, that will be gathered in the master
node.

Considering sc, the SparkContext of an application, an example of distributing a list into

a RDD in Scala, and processing a simple calculation of size, can be done as follows.

1 val data = List(1, 2, 3, 4, 5)

2 val length = sc.parallelize(data).count

Contrary to other data-distributed frameworks, such as Hadoop MapReduce [66], Spark

is designed to handle real-time data efficiently. Besides submitting applications to a cluster, it

is possible to process data interactively. While Hadoop’s model proposes an execution based

on lifecycles, with a reading-writing at each lap of map-reduce operation, Spark processes all

its computation in memory. In other words, Spark stored all intermediate data in memory,

improving the speed of processing. The main drawback of this approach is the requirement

for a lot of memory, increasing the cluster size.

2.2.4 Spark libraries

Spark is defined as a “Unified engine for large-scale data analytics” 3. It provides sup-

port for several data-distributed approaches, with different purposes (e.g., distributed oper-

ations, data analytics, machine learning) on several languages: Python, SQL, Scala, Java or,

R. Since most the Spark technologies only exist on Scala [133], we only used this language for

running Spark applications.

Scala library. Scala combines object-oriented and functional programming in one concise,

high-level language. In Scala, RDDs are instantiated objects on which methods can be called.

As explained before, the methods are separated into two categories: transformations and

actions. In this thesis, we only use a subset of transformations that are the following:

— The map function takes a function as an argument, and iterates over every element of

a RDD to apply this function.

3. https://spark.apache.org/
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— Spark RDD flatMap is the composition of a map operation called with a function that

produces a collection, and a flatten operation.

— A filter call on a RDD removes all elements that do not validate a predicate passed

as an argument.

— While the union operation concatenates two RDDs into a new RDD containing the

elements of both input RDDs, the intersect operation only keeps elements that are

present in the two RDDs.

— The distinct function returns a new dataset that contains the distinct elements of

the source. In other words, distinct removes duplicated elements in a RDD.

— groupByKey is an operation aiming at grouping elements according to a key value. It

transforms a RDD of pair of ‘key’-‘value’, into a RDD of ‘key’-‘list of values’.

In the rest of the thesis, we also use the following triggering actions:

— collect is a simple action that triggers the computation and gathers the resulting

RDD into a Scala Array on the driver program.

— The count operation simply counts the number of elements contained in a RDD.

— The reduce function takes an associative operation as an argument and uses it to re-

duce the elements into a single value. The fold function is the same operation but

considers an initial value to initiate the reduction with the first element of the RDD

An example of how these transformations and actions can be used in Scala to perform

the computation of the variance value of a set of doubles can be expressed as follows.

1 def variance(values: List[Double], sc: SparkContext): Double = {

2 val X = sc.parallelize(values)

3 val length = X.count

4 val avg = X.fold(0)((a, b) => a + b).collect / length

5 val variance = X.map(x => Math.pow((x - avg), 2)).reduce((a, b) => a +

b) / length

6 return variance

7 }

GraphX. Besides the core library of Spark, there exist several additional libraries with a

more specific purpose. Among them, GraphX [80] aims at processing large-scale graphs with

vertex-centric and triplet-view approaches. The former is, as described above, a synchronous

approach where vertex program kernels are executed iteratively for a certain number of

rounds. Contrary to a conventional SIMD data-distributed approach, vertices only have a
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view of their data. Messages are expressly defined to make them communicate informa-

tion. GraphX also proposes a global view of the distributed data through triplets. Triplets

in GraphX are represented as a RDD of tuples, where each triplet describes an edge of the

graph as a tuple of the source id, the source data, the target id, the target data, and the data

associated with the edge (e.g., weight or label). An example of how a GraphX can be used to

represent the Family model (left) of Fig. 2.3 is presented in Listing 2.3.

Listing 2.3 – Example of distributed Family model on GraphX

1 val Curie = new Family("Curie")

2 val Marie = new Member("Marie")

3 val Pierre = new Member("Pierre")

4 val Irene = new Member("Irene")

5 val Eve = new Member("Eve")

6 val sc: SparkContext = ...

7 val vertices: RDD[(VertexId, String)] =

8 sc.parallelize(Seq((0L, Curie),(1L, Marie),(2L, Pierre),(3L,

Irene),(4L, Eve)))

9 val edges: RDD[Edge(String)] =

10 sc.parallelize(Seq(Edge(0L, 1L, "mother"), Edge(0L, 2L, "father"),

11 Edge(0L, 3L, "daughters"), Edge(0L, 4L, "daughters")))

2.3 Interactive Theorem Proving

2.3.1 Correction of programs

In modern software developments, different methods are used to get quality-controlled

applications. They are classified as Agile methods and are based on a systems development

life cycle. The work in Agile methods is based on iterations of small increments that min-

imize the amount of planning and design devices of an application. Contrary to waterfall

models, where the build phase and the testing phase are separated, the development testing

is completed in the same iteration as programming. That is, an increment is both a software

component and related tests. More specifically, test-driven development consists of writing

the tests focused on requirements before writing the code. Another Agile approach relative

to tests is continuous integration. With this practice, all the tests are run at each modification

of the source code to check the absence of regression. However, The main cons of tests are

21



their specificity. On one hand, it is straightforward and natural to write and execute tests. On

the other hand, it only verifies the quality of the program for specific cases. In other words,

tests do not cover all the possibilities of execution. According to Edsger W. Dijkstra [142],

“Program testing can be used to show the presence of bugs,

but never to show their absence.”

Formal methods will be preferred to verify the correctness of a program for all possible

inputs and execution.

By construction In correctness-by-construction, the specification is written first and then

transformed step-by-step into an efficient executable program. Each transformation is proved

correct. In other words, the previous and the new models are shown as equivalent. For exam-

ple, the Bird-Meertens Formalism (BMF) (also called Squiggol) [12, 30, 79, 126] is a calculus

that provides rules of equivalence between standard primitives on data structures to get a

more efficient program. Program calculation, in particular of functional programs [29, 78],

is a style of reasoning of correctness-by-construction. Proofs assistants [150] are well suited

to conduct program calculation reasoning on functional languages [159]. SparkTE, which is

presented in this thesis, is a model transformation engine that has been designed using a

correctness-by-construction approach. There also exist similar methods for imperative lan-

guages such as the B-method [43], which models the abstract specification of a program to

obtain a concrete C or Ada executable program.

A posteri verification In a posteri verification, the specification and the program are writ-

ten independently. When they are both finished, a proof of correspondence is made to en-

sure the correctness of the program. The usual approach for doing this kind of verification is

by using a deductive system, also called deductive inference. It consists of the use of axioms,

or inference rules, defined in a semantic [131] to prove properties at a specific moment of

the execution of a program. The most used formal system is the Hoare logic [91], inspired

by Floyd’s works on flowcharts [72]. Hoare logic is based on Hoare triples describing a state

of the computation. This logic can be naturally applied to most sequential imperative pro-

grams. There exist tools to support this kind of verification for the languages, such as Frama-

C for sequential C Programs [57]. CoqTL [163] proofs are conducted following this approach.

On one side, the user can define a transformation using the internal DSL of CoqTL and ex-

press properties on it. The properties are then proved using the Coq proving mechanism.
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2.3.2 The Coq proof assistant

The proof assistant Coq is based on the mathematical theory CoC (Calculus of Construc-

tions). Coq is divided into three sublanguages:

— Gallina to write Coq terms (functions, types, axioms, etc.). Its syntax is very similar

to OCaml’s;

— Vernacular to control the behavior of the proof assistant;

— LTac, a language of tactics allowing to construct proofs interactively.

Every term of Gallina has a type, and the types are also terms of the language.

Type definitions Every object of Coq has a type, including the types themselves. The types

are defining ordered sorts with Set as the bottom of the hierarchy. The following inclusions

hold.

Set ≤ T y pe0 ≤ T y pe1 ≤ T y pe2 ≤ . . .

For any i < j , a Typei is typed by T y pe j . In implies that the particular case of Set is

typed by T y pei with any i . Since Set is the type of the “small” datatypes and function types,

cannot directly or indirectly involve other types [97]. As indicated in its original name, Coq

is based on the calculus of construction theory. A definition is made using Definition and is

constructed as follows.

Definition name : type := definition.

The pure type system from the CoC has been extended with inductive definitions from

the Calculus of inductive Constructions (CiC). It is possible to write an inductive definition

using the keyword Inductive. For example, natural numbers are defined in the standard li-

brary by:

Inductive nat: Set :=

| O: nat
| S: nat → nat.

Another type can parametrize the definition of a type. It is very convenient to use param-

eters for polymorphic structures. For example, the lists are defined in Coq by:

Inductive list (A: Type): Type :=

| nil: list A
| cons: A → list A → list A.

Instead of nil and cons h t, we can respectively use [] and h :: t.
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Functions Coq provides a pattern-matching mechanism for defining functions. By filtering

cases characterized by a pattern, different behaviors can be defined. However, it is important

to notice that all the functions in Coq must be total. In other words, a function must deter-

mine behavior for every constructor of inputs. For example, the functions pred that returns

the predecessor of a natural number can be defined by:

Definition pred (n: nat): nat :=

match n with
| O ⇒ O
| S m ⇒ m

end.

Besides, to set a recursive function, the keyword Definition must be replaced by Fixpoint.

Note that Coq only allows definitions of functions that terminate. A recursive function must

have a decreasing argument. The map function on lists can be described as follows.

Fixpoint map (A B: Type) (f: A→ B) (l: list A): list B :=

match l with
| [] ⇒ []

| h :: t ⇒ (f h) :: (map A B f t)

end.

Proofs in Coq From definitions, it is possible to define lemmas, properties, or theorems in

Coq with related proof. For example, from the function length on lists, that the number of

elements in the structure, and map defined previously, we define the following property.

Lemma map_length: ∀ A B (f: A→ B) (l: list A),

length (map f l) = length l.

Proof of this lemma can be written using LTac, the tactic language.

Proof.

intros A B f l.

induction l as [| x xs Hx].

+ simpl. reflexivity.

+ simpl. rewrite Hx; reflexivity.

Qed.

Let us analyze this step by step. First, we start the proof using the keyword Proof. The

environment of Coq returns a response indicating that there is still one subgoal to prove.

1 subgoal
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀ (A B: Type)(f: A → B)(l: list A), length (map A B f l) = length l
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To start the proof, we need to introduce the variables we will use: intros A B f l.

A: Type
B: Type
f: A → B
l: list A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

length (map A B f l) = length l

In our lemma, l is a list, and then its definition is made by induction. We need to do an

induction on the structure of l for solving this proof: induction l as [ | x xs Hx]. This tactic can

be understood such there are two cases separated by | . The first case is the situation of l

is nill. There is nothing to define here. Otherwise, l is cons x xs, and we name the inductive

hypothesis with Hx. The answer of Coq shows two subgoals: one for each possible constructor

of l.

A: Type
B: Type
f: A → B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

length (map A B f []) = length []

subgoal 2 is: length (map A B f (x :: xs)) = length (x :: xs)

According to the definition of length, length [] = 0. Since map A B f [] = [] , length (map A B f [])

can be simplified by 0 with the tactic simpl. The two expressions will be simplified, and the

environment returns:

A: Type
B: Type
f: A → B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 = 0

Because equality is reflexive, the resolution can be finished by reflexivity. There is still

the second subgoal to solve.

A: Type
B: Type
f: A → B
x: A
xs: list A
Hx: length (map A B f xs) = length xs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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length (map A B f (x :: xs)) = length (x :: xs)

Using the simplification with the tactic simpl the Coq response is the following.

A: Type
B: Type
f: A → B
x: A
xs: list A
Hx: length (map A B f xs) = length xs
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S (length (map A B f xs)) = S (length xs)

The resolution can be finished by using the inductive hypothesis and reflexivity. We

process these two operations using a semi-column by rewrite → Hx; reflexivity.

CoqTL CoqTL [163] is an internal language in Coq, for writing rule-based model-transformations.

Besides, the language is associated with a library to simplify proving transformation cor-

rectness in Coq. The rule definition syntax in CoqTL is inspired from ATL: a from section

describes the input pattern with a guard condition (where clause), while the to section de-

scribes the output to create from the matched pattern. The Family2Person transforma-

tion, expressed with ATL in Listing 2.1, can also be written using CoqTL. Considering the

getFirstName, getFamilyName, and isFemale helpers and two constructors, BuildFemale and BuildMale,

respectively to build a Female and a Family2Person, the Family2Person transformation can be

written as defined in Listing 2.4.

Definition Family2Person :=

transformation from FamilyMetamodel to PersonMetamodel with fm as FamilyMetamodel :=

rule Member2Female
from element m class Member
where (isFemale fm m)

to [

output "female"
element f class Female :=

BuildFemale ((getFirstName m) + (getFamilyName fm m))

];

rule Member2Male
from element m class Member
where notb (isFemale fm m)
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to [

output "male"
element f class Male :=

BuildMale ((getFirstName m) + (getFamilyName fm m))

]

Listing 2.4 – CoqTL definition of Family2Person transformation

In CoqTL, the semantic of model transformation is designed in order to help users to

prove properties on transformation. CoqTL does not impose a specific schema for writing

theorems, but it is recommended to express them in Hoare-style as follows.

— a transformation, with an input and an output model;

— a post-condition on the source model;

— a pre-condition on the target model.

Theorem th_tranformation:

∀ (sm: SouceModel) (tm: TargetModel), execute tranformation sm = tm →
precondition sm → postcondition tm.

Listing 2.5 – Transformation theorem in CoqTL

A simple theorem to prove for the Family2Person transformation is: if all family mem-

bers have a first name that is not empty, then all output objects in the PersonModel has a

full name that is not empty. This theorem is expressed as follows.

Theorem theorem_tranformation:

∀ (sm: FamilyModel) (tm: PersonModel),

(* tranformation *) execute Family2Person sm = tm →
(* precondition *) (∀ (m: Member), In m (allModelElements sm)

→ (getFirstName m <> ""%string)) →
(* postcondition *) (∀ (p: PersonMetamodel_Object), In p (allModelElements tm)

→ (getFullName p <> ""%string)).

Listing 2.6 – Family2Person theorem in CoqTL

Proving properties in CoqTL [49, 48] is eased by an extension of the LTac language of Coq.

Additional tactics and proved general lemmas make automatic certain part of the proof.
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3.1 Efficiency in model transformation

In this section, we outline the execution strategies that are commonly used to enhance

the efficiency of model-management. The below presented strategies have been identified

with their use in MDE. In this section, we only focus on the strategies, regardless of the cho-

sen language for their implementations. We also give an overview of the existing applications

of these strategies in model-management tools.

Parallelizing computations

Parallelism designates the use of several processing units in order to achieve a global

operation. There exist many kinds of parallel architectures, from multi-cores to clusters of

GPUs. In this section, we focus on the parallelism strategies that are used to take advantage

of parallel architectures.
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In Table 3.1, we classify how parallelism has been applied to model management in liter-

ature, by the following columns:

— MQ or MT if the whole model query or transformation is parallelized;

— Matching if the work only parallelizes the matching phase of the model query/trans-

formation;

— Performance whether the work pays particular attention to the impact of data distri-

bution or task distribution on performance.

We classify the strategies into three categories: data-parallelism (Section 3.1.1); task-parallelism

(Section 3.1.2), both of them being synchronous strategies; and one example of asynchronous

strategy (Section 3.1.3).

Table 3.1 – Parallelism for model-management in literature.

MQ MT Matching Perf.

Task-parallelism [119, 169] [94, 165] [127]

Data-parallelism [118] [14, 107, 168, 56] [107] [15]

Asynchronism [34, 35, 36] [35]

3.1.1 Data-Parallelism

In [118], Madani et al. propose a concurrent version of EVL (Epsilon Validation Language)

to validate model properties. This new proposal for EVL can be executed both on paral-

lel and distributed architectures. In parallel-EVL constraints to validate are set in a pool of

threads, and executed independently. Besides, tasks are decomposed and distributed in a

data-parallel maneer among computational cores.

Benelallam et al. [14] use data-parallelism for distributing models among computational

cores to reduce computation time in the ATL model transformation engine. The MapReduce

version of ATL makes independent transformations of sub-parts of the model by using a

local “match-apply” function. Then, the reduction aims at resolving dependencies between

map outputs. The proposed approach guarantees better performance on basic cases such

as the transformation of a class diagram to a relational schema. In a more recent work [15],

the same authors highlight the good impact of their strategy for data partitioning. Instead

of randomly distributing the same number of elements among the processors, they use a

strategy based on the connectivity of models. In [56], Cuadrado et al. propose A2L, a compiler

for the parallel execution of ATL model transformations, which produces efficient code that
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can use existing multicore computer architectures, and applies effective optimizations at the

transformation level using static analysis. The execution of the obtained code is in average

22.42x faster than the current ATL implementation.

Distributed computation was also applied to efficiently implement parts of the rule eval-

uation. For example, the Forgy’s RETE algorithm [74] for pattern matching, presented in [171],

that constructs a network to specify patterns and, at runtime, tracks matched patterns, has

been implemented as a parallel solution in [18]. The proposal harness multi-core architec-

tures by, on one side, enabling concurrent execution of pattern matching, and on the other

side, by parallelizing the pattern matching algorithm itself.

[100] illustrates how a model can be considered as a typed graph with inheritance and

containment. Considering a model as a graph data-structure, graph technologies can di-

rectly be applied to models. For instance, Imre et al. efficiently use a parallel graph trans-

formation algorithm on real-world industrial-sized models for model transformation [94].

In [127], Mezei et al. use graph rewriting operations based on task-parallelism to distribute

matching operations in large models in their transformation tool Visual Modeling and Model

Transformation (VMTS). The Henshin framework [9] proposes to extract the matching part

of its transformation rules into vertex-centric code (i.e., Pregel) [107]. Another possibility to

use Pregel in model transformation is by using a DSL, such as [168] for graph transformation.

The proposed compiler transforms the code written with the DSL into an executable Pregel

code. Finally, MapReduce is used in [69] for finding inexact patterns in graphs. The approach

targets graph but it can be easily applied in a MDE context for model validation.

3.1.2 Task-Parallelism

[169] proposes a formal description of parallelism opportunities in OCL. Two main kinds

of operation are targeted: the binary operations that can have their operands evaluated si-

multaneously, and the iterative processes of independent treatments. In [119], Madani et al.

use multi-threading for “select-based” operations in EOL, the OCL-like language of the Ep-

silon framework, for querying models. The extension of the language with parallel features

for selective operations have shown a non-negligible speed-up (up to 6x with 16 cores) in

their evaluations on a model conform to the Internet Movie Database (IMDb) metamodel 1.

Next to query evaluation, multi-threading is also used for model transformation. In [165],

Tisi et al. present a prototype of an automatic parallelization for the ATL transformation en-

1. http://www.imdb.com/interfaces
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gine, based on task-parallelism. To do so, they just use a different thread for each transfor-

mation rule application, and each match, without taking into account concurrency concerns

(e.g., race conditions).

3.1.3 Asynchronism

LinTra is a Linda-based platform for model management and has several types of imple-

mentation. First, on a shared-memory architecture (i.e., the same shared memory between

processors, typically multi-threading solutions), LinTra proposes parallel in-place transfor-

mations [36] and parallel out-place transformations [34]. Both strategies have significant

gains in performance, compared to sequential solutions. Nonetheless, shared memory ar-

chitectures are fine for not too big models. Indeed, since the memory is not distributed,

a too big model could lead to an out-of-memory errors. This phenomenon happens more

concretely in an out-place transformation since two models are involved during the opera-

tion. The first prototype of distributed out-place transformations in LinTra, is presented in

[34], and works with sockets for communicating the machines. This first proposal remains

naive. That is why Burgueno et al. propose a more realistic prototype for transformations on

distributed architecture [35]. But the use of a distributed architecture raises new questions:

how to distribute data and, how to distribute tasks? They applied different strategies mixing

both the evaluation of tasks on a single or on multiple machines, and storing the source and

target models on the same, or on different machines. The study was conducted for the spe-

cific IMDb test case only, and then does not provide a general conclusion about the benefits

of a such solution.

One can note from Table 3.1 that only two papers of the related work on parallelism in

MDE offer detailed performance analysis according to the data or task distribution. However,

both these papers clearly show that many factors can influence performance such as the size

of models, their reading/writing modes (e.g., in-place), the distribution of the models and

the distribution of the operations to perform on them and so on.

Avoiding computations

Incrementality and laziness, or incremental and on-demand computation, are the main

strategies used in MDE for minimizing the sequence of basic operations needed to perform

a query or transformation. They have been classified as strategies for reactive execution

in [124], since they foster a model of computation where the model-management system
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reacts to update and request events, (note that the term is only inspired by the reactive pro-

gramming paradigm in the sense of [85], that we will not discuss here).

We classify existing applications of these strategies to model-management tools in the

columns of Table 3.2, depending on their scope:

— MQ or MT if the strategy is applied to the whole model query or transformation;

— Matching if the strategy is only applied to the matching phase (the subgraph isomor-

phism of the pattern to query/transform, over the full model) of the model query/-

transformation;

— Collections if the strategy is only applied to the computation of collections during the

query/transformation.

Table 3.2 – Reactive strategies for model-management in literature.

MQ MT Matching Collection

Incrementality [41] [112] [20, 171]

Laziness [164] [166] [31, 174]

Incrementality

Incrementality is an event-based pattern, whose goal is to reduce the number of needed

operations when a change happens within the input model. Instead of applying from scratch

the whole set of operations on the new input model, incrementality allows the system to

apply only the operations impacted by updates. Since the system needs to apply a subset of

operations, a trace to relate the output pieces to input elements is necessary. The approach

leads then to an additional memory cost, with a good trade-off only if changes occur often

enough.

To achieve incremental execution of transformation rules, Calvar et al. designed a com-

piler to transform a code written with ATL [112]. The output program takes advantage of

active operations of the language. The active mechanism works as an observer pattern: the

values are defined as mutable, and changes are notified to an external observer. From there,

it is easy to isolate what part of the model has been changed, and then to deduce what rules

must be operated again. To illustrate their proposal, they applied their evaluation to two

cases including social media models to illustrate the efficiency of the strategy for querying

models that have strong user activity. This is not the single attempt of integrating incremen-

tal aspects in ATL.

33



In [41], Cabot et al. present an incremental evaluation of OCL expressions that are used

to specify elements of a model in ATL. They used such an approach to state the integrity

preservation of models at runtime. Instead of testing the whole integrity of a model every

time it is changed, the proposed system is able to determine when, and how, each constraint

must be verified.

For example, the Forgy’s RETE algorithm [74] for pattern matching, presented in [171],

constructs a network to specify patterns and, at runtime, tracks matched patterns. Instead

of matching a whole pattern, the RETE algorithm will match the subparts of the pattern until

getting a full match.

Research efforts have used incrementality to update the incomplete patterns in the use of

the RETE algorithm, without fully recalculating the matching for all the present candidates.

In MDE, the Eclipse VIATRA framework has an implementation of the RETE algorithm to

achieve an incremental pattern matching [21, 86, 20]. The choice of using an incremental al-

gorithm is due to the focus of the tool. Indeed, the VIATRA platform focuses on event-driven

and reactive transformations thus an efficient solution, for handling multiple changes, has

been chosen.

Laziness

Laziness is also commonly used by model management tools. In general, laziness reduces

computations by removing the ones that are not needed to answer the user requests. Indeed,

by using laziness, pieces of output are calculated only when they are needed by the user. This

“call-by-need” approach is mainly used on big models, known as Very Large Models (VLMs).

Since users may want to get only a part of the output, computing the whole query/transfor-

mation is unnecessary.

In [166], Tisi et al. extended the model transformation mechanism of ATL with laziness.

Elements of the target model are firstly initialized, but their content is generated only when

a user tries to access it. To do so, the model navigation mechanism has a tracking system,

which provides, for a target element, the rules that must be executed. In addition, the track-

ing system keeps the information about already executed rules to avoid recomputation. Other

engines, such as ETL (Epsilon Transformation Language), from the Epsilon framework, im-

plements a similar approach 2.

Besides model transformation, laziness is also used in model querying. In [164], Tisi et

al. redefine OCL features with laziness aspects. For instance, operations of the language

2. https://www.eclipse.org/epsilon/doc/etl/
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are redefined to be evaluated with a lazy strategy. Also, the work proposes lazy collections

that respect the OCL specification. The latter is similar to the collections proposed by Will-

ink in [174]. The OCL collections are implemented as generic Java classes, with lazy opera-

tors. These approaches aim at tackling OCL related efficiency issues. For example, because

of the OCL collections are immutable, the successive addition of elements in a collection

would create intermediate data structures. More generally, the composition of operation

calls would cause an evaluation of a cascade of operations. The proposed implementation of

a lazy evaluation optimizes such common cases.

3.2 Semantics and correction in MDE

Reasoning on programs is an active field of research. On one hand, work has been done

for reasoning on transformation semantics, either automatically or interactively. On the other

side, research efforts have been dedicated to proving properties on parallel programs. In this

section, we both investigate approaches that have been designed for reasoning on model

transformations(Section 3.2.1), and in a more general context, on distributed computing

(Section 3.2.2). We want to highlight that the goal of our work is to bridge the gap between

certified model transformations and data analytics frameworks, such as Spark.

3.2.1 Correction for model transformations

Automatic proving approach In [40], Buttner et al. provide an automatic translation of

ATL transformations into OCL as a first-order semantics for model transformations. Using

these semantics, transformation correctness can be automatically verified [39] with respect

to non-trivial OCL pre- and postconditions by using SMT solvers (e.g, Z3). This is not the

only attempt of automatic proofs of ATL transformations based on solvers. In [46], Cheng et

al. present a translation validation approach to encode a sound execution semantics for the

ATL specification. Similarly to Buttner approach, they verify an ATL specification against the

specified OCL contracts. To demonstrate their approach, they have developed the VeriATL

verification system using the Boogie2 intermediate verification language, which in turn pro-

vides access to the Z3 theorem prover. They extend their work by developing a formaliza-

tion for EMFTVM [47], the research VM included in ATL, bytecode. This work target MT lan-

guage not having an implementation but having a well-defined execution semantics. Finally,

Oakes et al. propose a method for verifying ATL model transformations by translating them
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into DSLTrans [132], a transformation language with limited expressiveness. Pre- postcon-

dition contracts are then verified on the resulting DSLTrans specification using a symbolic-

execution property prover.

Interactive theorem proving The techniques that are presented above are based on an au-

tomatic proving mechanism. But proving is not a trivial task, and might require human ex-

pertise that cannot be automated. In [42], Calegari et al. encode ATL model transformations

and OCL contracts into Coq types, propositions and functions to interactively verify whether

the transformation is able to produce target models that satisfy the given OCL contracts.

Stenzel et al. propose a Hoare-style calculus, developed in the KIV prover, to analyze trans-

formations expressed in (a subset of) QVT Operational [154]. UML-RSDS is a tool-set for

developing correct-by-construction model transformations [111]. It chooses well-accepted

concepts in MDE to make their approach more accessible to model transformation devel-

opers. Once the development is achieved, transformations are verified against contracts by

translating both into interactive theorem provers. Poernomo et al. use Coq to specify model

transformations as proofs and take advantage of the Curry-Howard isomorphism to synthe-

size provably correct transformations from those proofs [140]. Their approach is further ex-

tended by Fernández and Terrell, who use co-inductive types to encode bi-directional or

circular references [71]. None of these research efforts addresses proving the equivalence of

the sequential and the distributed executions of a transformation.

3.2.2 Proving parallel programs

In this thesis, Chapter 6 proposes a correct-by-construction distributed transformation

engine on top of Spark. The extraction of the parallelizable semantic into executable Scala

code is proceeded by hand. One can argue that we could have chosen any other back-end

language or framework instead of Spark. In particular, some back-ends automatically ex-

tracted from proof assistant, such as Coq, which would enhance the automatic certification

of our pipeline. For instance, we could have chosen to extract Haskell code from CoqTL and

then use the Haskell distributed parallel Haskell (HdpH) language to introduce parallelism

and distribution. Similarly, we could have extracted OCaml code from the CoqTL specifica-

tions and then use the BSML [115] library for parallelization. Note that the optimizations

for enhancing parallelism introduced in this thesis, and proven equivalent to the initial Coq

specification, would be useful for any back-end that introduces parallelism and distribution.

Another approach for obtaining a certified distributed engine could be to specify the engine
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using the formalism of an existing distributed solution. Several works are based on a deep

embedding of parallel languages or libraries: the syntax and semantics of such languages are

modeled using a proof assistant. If it is convenient to have such a formalization to reason

about meta properties of the considered language, it is less convenient to write programs

than using a shallow embedding as it is done in SyDPaCC [114]. For example, Grégoire and

Chlipala provide a small parallel language and its semantics and prove correct optimizations

of stencil based computations [81]. A subset of Data Parallel C has been formalized using the

Isabelle/HOL proof assistant [64]. The tool generates Isabelle/HOL expressions that repre-

sent the parallel program rather than actual compilable code. The dependent type language

Agda is used by Swierstra to formalize mutable explicitly distributed arrays. He uses this for-

malization to write and reason about algorithms on distributed arrays: a distributed map,

and a distributed sum. It is, of course, possible to reason about distributed collections, such

as RDDs, and consider their distribution using the formalization of BSML in Coq. SyDPaCC

however allows for the extraction of parallel code, but it does not support mutable data struc-

ture.

3.3 Multi-parameter and benchmarking

The configuration of applications is designed to enhance the performances of applica-

tions. In a MDE context, it is mostly used to choose the relevant strategy according to a use

case. As illustrated in Sect 3.1, there exist many strategies for computing queries and trans-

formations. While most of the solutions only implement one single strategy, without any

configurable aspects, there exist analyses of model management solutions, based on prop-

erties, to either choose the right software solution, or the right algorithm within a single ap-

plication.

3.3.1 Feature models in MDE

In [156], Tamura et al. propose a comparison of taxonomies for MT languages based

on classification schemes and highlighted the need of having formalism. Existing work fol-

lowed this approach and proposed different attempts of formal classifications for model-

management operation and more specifically for model transformation. In [5], Amrani et al.

attempt to build a catalog of model transformation intents that describes common uses of

model transformations in MDE and the properties they must or may possess to face case-
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related challenges. Previous work more focused on the characterization of model transfor-

mation languages. Czarnecki et al. proposed feature diagrams to describe the taxonomy

of model transformation approaches [59, 58]. These work aims at explaining the different

design choices of model transformations to propose categories for classifying use-cases.

In [101, 102] Kahaniet al. classifies MT tools over 6 clear categories of model-to-text and

model-to-model transformations: general, model-level, transformation style, user experi-

ence, collaboration support, and runtime requirements.

Studies have shown that the performance of transformations is relevant but there is a

lack of support for transformation developers without detailed knowledge of the engine to

solve performance issues [83]. In [82], Groner et al. propose a study based on performance

following some main factors: the execution time, the size of the models used, the relevance

of whether a certain execution time is not exceeded in the average case, and the knowledge

of how a transformation engine executes a transformation.

The work mentioned before are very generic, and encompass all kind of model transfor-

mations. Other approaches use a different granularity to focus on a more specific category

of model transformation engine. For instance, [143] only focuses on languages for model-to-

text transformations. In [89], Hidaka et al. clarify and visualize the space of design choices

for bidirectional transformations, in the form of a feature model. Finally, [173] aims at gen-

eralizing compositions of transformation using two internal composition mechanisms for

rule-based transformation languages: module import and rule inheritance.

3.3.2 Multi-strategy based MDE tools

Bergmann et al. have developed the EMF-IncQuery Framework [22], an industrial tool to

compute declarative queries over EMF models, as a part of the model transformation frame-

work VIATRA. The inputs of rules are obtained from a query evaluation that finds matched

patterns within a given model. In [19], they propose two strategies for evaluating pattern

matching. The first is local-based graph pattern matching which starts the matching process

from a single node and extends it step-by-step by neighboring nodes and edges. The second

is an incremental solution: patterns are explicitly stored and incrementally maintained upon

model manipulation. The second solution provides significant memory but increases mem-

ory cost. In [93], Horvath et al. extend initial measurements carried out in [19] to assess the

effects of combining local search-based and incremental pattern matching strategies.
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Several choices are made in the design of an execution engine. The programming model

of expressions is one of the most important, since often most of the computation of a rule

is used for expressions. In this chapter we illustrate the variability of existing programming

models, and emphasize the need for a multi-strategy vision for model-management where

strategies can be automatically switched and combined to efficiently address the given model-

management scenario. Furthermore, we stress the need for automatic choice and configu-

ration of strategies to enhance performance of LCDPs. We outline code-related challenges

such an approach and provide hints for technical solutions to these problems.
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Partie , Chapter 4 – Programming Models for Executing Distributed Model Queries

4.1 Expressions in Model Transformations

A model transformation (MT) definition is composed by rules. Each of them is composed

by two distinct parts: the left-hand side (LHS) defines what must be matched, and the right-

hand side (RHS) what to produce considering the former. This very generic definition can be

found in several level of programming. For instance, the Bird-Meertens formalism [30, 126,

79], proposing equivalence rules between expressions is a basis of term rewriting used in

the optimization of programs [116]. In a MDE context, rules are used to modify an instance

of a model. The LHS of a MT rule is more than a syntactic condition, as it can be in terms

rewriting. Indeed, it matches a set of elements, along side a condition on these elements

and the model itself. This expression, that can be considered as a model query, and must be

computed by the engine, and be evaluated into a boolean value. In the other side, the RHS

describes how are defined a set of new elements. Expressions are used for constructing each

of these new elements.

The adopted strategy for running expressions follow one or several programming models.

While most model-management languages implement a single execution strategy for evalu-

ating an expression, with specific strengths and weaknesses depending on the use case, the

diversity of strategies that have been employed poses several scientific challenges. These

techniques range from implementing specific execution algorithms (e. g., RETE [171]) to

compiling toward distributed programming models [107] (e. g., MapReduce [65]). These pro-

gramming models are sometimes qualified as paradigms in the literature, but this term may

lead to confusion with programming paradigms (functional, logic, etc.). Some existing so-

lutions in MDE offer more than a single execution strategy but the choice is left to the user

which requires expertise. Moreover, it appears that performance for some use cases could

be improved by the combination of different strategies, e. g., after decomposing the model-

management operation. Furthermore, evaluating expressions on very-large models (VLMs)

is challenging. To improve efficiency and scalability, recent research on model-management

studied parallel and concurrent programming as well as specific execution models for model-

management languages. As explained in [136], developing distributed program is challeng-

ing, because of the non-deterministic aspects of the computation. The consequence of the

difficulty to write parallel programs is a lack of parallel programmers and programs remain

error-prone. To tackle these difficulties, there exist programming models to help develop-

ers to write expression that will be evaluated in parallel. Apache Spark proposes several dis-

tibuted programming models including MapReduce [65], and its vertex-centric based ap-
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proach named Pregel [122]. In this chapter, we illustrate the variability of existing distributed

programming models, and emphasize the need for a multi-strategy vision for model-man-

agement, where strategies can be switched and combined to efficiently address the given

model-management scenario. Furthermore, we stress the need for automatic choice and

configuration of strategies to enhance performance. We outline code-related and DevOps

challenges of a such approach and provide hints for technical solutions to these problems.

4.2 Motivating Example

Social network vendors often provide specific development platforms, used by develop-

ers to build apps that extend the functionality of the social network. Some networks are as-

sociated with marketplaces where developers can publish such apps, and end-users can buy

them. Development platforms typically include APIs that allow analyzing and updating the

social network graph.

As a running example for this chapter, we consider a scenario where a vendor adds a low

code development platform (LCDP) to allow end-users (also called citizen developers in the

LCDP jargon) to implement their own apps. Such LCDP could include a WYSIWG editor for

the app user-interface, and a visual workflow for the behavioral part. In particular, the LCDPs

would need to provide mechanisms, at the highest possible level of abstraction, to express

expressions for updates on the social graph.

In Fig. 4.1 we show the simple metamodel for the social graph that we will use in the

chapter. The metamodel has been originally proposed at the Transformation Tool Contest

(TTC) 2018 [76], and used to express benchmarks for model query and transformation tools.

In this metamodel, two main entities belong to a SocialNetwork. First, the Posts and the

Comments that represent the Submissions, and second, the Users. Each Comment is written by a

User, and is necessarily attached to a Submission (either a Post or another Comment). Besides

commenting, the Users can also like Submissions.

As an example, in this chapter we focus on one particular query, also defined in TTC2018:

the extraction of the three most debated posts in the social network. To measure how debated

is the post, we associate it with a numeric score. The LCDP will have to provide simple and

efficient means to define and compute this score. In a real-world context, finding the most

active and debated posts help identifying trends (e. g., a Twitter 1 key concept), understand

the audience, and the evolution of a social network.

1. http://www.twitter.com
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SocialNetwork

Post

«abstract»
Submission

id: String
timestamp: Date
content: String

Comment

Extends Extends

[0 .. *] posts

User

id: String
name: String

[0 .. *] users

[0 .. *] comments
[1 .. 1] commented

[0 .. *] likes

[0 .. *] likedBy

Figure 4.1 – The metamodel of a social network (TTC 2018)

We suppose the vendor to include a declarative query language for expressing such com-

putation on the social graph, and storing scores as a derived properties of the graph (i.e. new

properties of the social graph that are computed on demand from other information in the

graph).

In Listing 4.1 we implement the query to get the top-three debated posts in a model con-

forming to the presented metamodel, using the formula defined in TTC2018. The query is

written in OCL, the most used declarative query language in MDE. In particular we use the

ATL flavor of OCL.

In this code, a score of 10 is assigned to the post for each comment that belongs to it.

Comments belong to a post in a recursive manner: a comment belongs to a post if it is at-

tached either to the post itself, or to a comment that already belongs to the post. Then, a

score of 1 is also added every time a belonging comment is liked.

The query is defined using three (attribute) helpers, that can be seen as derived prop-

erties. The first helper, allComments (line 7 to 11), collects recursively all the comments of

a Submission. The second helper, countLikes counts how many times a comment that be-

longs to the given post has been liked. Then, the score of a Post is calculated by summing

the result of countLike and the number of its belonging comments multiplied by ten. Finally

the top three posts are obtained by the query topPosts sorting the posts by decreasing score,

and selecting the first three.

The simple declarative query in listing has not been defined with efficiency concerns in

mind. Indeed, since we cannot make assumptions on the background of citizen developers,

our LCDP cannot presume that they will structure the query for satisfying any performance
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Listing 4.1 – An OCL query for the first task of the TTC 2018.

1 query topPosts =
2 SN!Post.allInstances()
3 →sortedBy(e | -e.score)
4 →subSequence(1, 3);
5

6 helper context SN!Submission def : allComments =
7 self.comments
8 →union(self.comments
9 →collect(e | e.allComments)

10 →flatten());
11

12 helper context SN!Post def : countLikes =
13 self.allComments
14 →collect(e| e.likedBy.size())
15 →sum();
16

17 helper context SN!Post def : score =
18 10*self.allComments→size() + self.countLikes;

requirement. As a result, when the number of users increases, soon the size of the social

graph makes the computation of this query challenging. First of all, the list Post.allInstances()

(line 2) becomes too large to manipulate. Especially the full sorting of posts (line 3) seems

prohibitive. Without an efficient mechanism, the naive recomputation of allComments each

time it is called, is a further performance waste. If we consider the typical frequency of up-

dates for social network graphs, keeping the list of top posts up-to-date by fully recomputing

this query at each update could consume a significant amount of infrastructure resources.

Moreover, the most efficient way to execute the query does not depend only on the given

query definition and metamodel structure, but on several characteristics of the usage sce-

nario. A technique to optimize a particular use case typically has significant overhead in

other use cases. Factors that can influence this choice in our example can be related to the

model size (e. g. order of magnitude for the number of Users), frequency of updates (e. g.

of new Submissions), average model metrics (e. g. average number of Comments per Post),

acceptable response time for the final query (topPosts), infrastructure constraints and re-

sources (e.g. available memory, CPUs) and so on. In some cases techniques can be com-

bined, further complexifying the search for the optimal solution.

Finally, while in this chapter we will focus exclusively on this example, it is not difficult
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OCL Spark

constant constant
variable variable
e op e e op e
e.field e.field
c.foo(e,...,e) c.foo(e,...,e)
head::tail head::tail
if cd then e1 else e2 endif if (cd){ e1 } else { e2 }
let v1 = e1:T1 in e val v1:T1 = e1 ; e
e | foo(e) e => foo(e)

Table 4.1 – Equivalence between OCL and Spark expressions

to identify similar issues for update operations (e. g. removal of all information for an un-

subscribing user) or transformation (e. g. for storing the graph in a particular persistence

format).

4.3 OCL expressions in Spark

The basics of the OCL expressions can be directly expressed using simple Scala and Spark

features. In this section, we present Socle, an equivalence between the OCL expression lan-

guage and its Spark direct translation. The full work made on Socle can be publicly found

online 2. About types, primitive types are a copy paste from OCL definitions, using Scala

types from its standard library. Collections can either be expressed as Scala collection, imple-

menting the semantics of specific collections on top of Scala sequence, or using Spark RDDs.

While the former solution proposes several semantic on the top of the same Scala structure,

allowing operations on a mutable collection, Spark RDDs are immutable and do not give

control on how the operation are computed. In this section, we describe how Scala Seq and

Spark RDDs can be used as OCL collections, both as OCL Bag, that is a not-ordered collection

allowing duplicates. However, an attempt of proposing the semantics of all the specific OCL

collections also exists in Socle.

In the following, we consider models being either (i) sequential, defined as a EMF model,

or (ii) distributed, defined with a Spark graph as couple of a RDD of vertices, and a RDD of

edges.

2. https://github.com/JolanPhilippe/Socle
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OCL Scala Spark

c.collect(expr) l.map(expr) rdd.map(expr)
c.sortedBy(expr) l.sortBy(expr) rdd.sortBy(expr)
c.subSequence(i, j) l.slice(i, j) undefined
c1.union(c2) l1 ++ l2 rdd1.union(rdd2)
c.flatten() l.flatten rdd.flatMap(identity)
c.size() l.size rdd.size

Table 4.2 – Equivalence between OCL and Spark expressions

OCL syntax As illustrated in 4.1, the OCL statements are very similar to the Scala ones.

Expressing basic OCL expressions is then very fluent in Spark.

OCL primitve types Scala primitive types are largely enough for naturally use OCL types.

For all these types, there exist a transparent equivalence between the used functions in OCL

and their call in Scala.

— Integer with scala.Int;

— Real with scala.Double;

— Boolean with scala.Boolean;

— String with scala.String;

— Enumeration with Scala enum types;

— TupleType with the set of Scala classes for tupling: Tuple2, Tuple3 and so on.

OCL collections OCL proposes different collections for storing elements with different se-

mantics. For instance, OCL Set is a not ordered collection without duplication while a Sequence

is ordered and allow duplication. In this part of the work, we consider the used structures as

Set. To do so, we give a Spark equivalence for a subset of OCL collections in 4.2, where c

represents a OCL collection, l a Scala List and rdd a Spark RDD. The table only gives an

equivalence for the OCL operations used in 4.1.

Additional expressions OCL proposes additional functions to handle a model that we need

equivalences on our model implementation:

— a direct access to elements of a given type (with allInstances);

— an access to the target of a relation using it source and the type of relation.

In a Spark graph, the former is defined with a filtering function on the vertices, while

the second is a filter on the graph triplets, i. e. the set of edges defined as tuples composed
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by the source, the target and a label.

TTC18 OCL query With the all proposed equivalences, a proposition of a direct imple-

mentation of the OCL helpers (Listing 4.1) is presented in Listing 4.2. Thanks to the trans-

parency between List and RDD, the same definition can be operated on either a Scala or a

Spark model. The main difference is how elements and relations are accessed, depending on

their type. However, Spark does not allow nested recursive definition. That is why, a function

traversal must be defined to recursvively obtained all the comments of a given submission.

Listing 4.2 – Spark implementation of OCL query for score.

1 def allComments(p: Post): List[Comment] = {

2 def traversal(c: Submission): List[Comment] = {

3 var res: List[Comment] =

4 c match {

5 case comment: Comment => List(comment)

6 case _ => List()

7 }

8 for (comment <- getComments(c, model)) {

9 res = res ++ traversal(comment)

10 }

11 res

12 }

13 traversal(p)

14 }

15

16 def countLikes(p: Post): Long = {

17 allComments(p).map(comment => getLikedBy(comment, model).size).sum

18 }

19

20 def score(post: Post): Long = {

21 10 * allComments(post).size + countLikes(post)

22 }
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4.4 Multi-Strategy Model Management

Each of the research efforts presented in Tables 3.2 and 3.1 exploit a single strategy for

optimizing model-management operations. Typically, the strategy is applied in an additional

implementation layer for the model-management language, e.g. an interpreter or compiler.

We say that a query or transformation engine performs multi-strategy model manage-

ment if it automatically considers different strategies, instead of a single one, in order to ma-

nipulate models in an efficient way. According to Chap. 3 and to the best of our knowledge,

such approach does not exist in the literature.

In this section, we exemplify the multi-strategy approach by implementing the OCL query

of Listing 4.1 in different ways, using different strategies of parallelism. The goal of this Sec-

tion is not to provide the most efficient solutions for solving the given problem. Instead, it

aims at illustrating the diversity of solutions, that each have its own advantages depending

on the use cases. To do so, we implemented several solutions using different parallel strate-

gies and compared them. Also, this section only illustrates the variability of single solution,

and not their possible combination.

Our prototype is built on top of Spark 3, an engine designed for big data processing. In ad-

dition to parallel features of Spark on data structures, called Resilient Distributed Datasets

(RDDs), the Scala implementation of Spark proposes several APIs including a MapReduce-

style one, an API for manipulating graphs (GraphX [80] that embeds the possibility to de-

fine Pregel programs), and a SQL interface to query data-structures. Because the framework

proposes different parallel execution strategies, we only focused on parallel approaches to

illustrate the need of a multi-strategy approach. Comparing solutions that include laziness

and incrementality aspects is a part of our future works. In our implementation example, we

use GraphX, in addition to its provided Pregel function, and MapReduce features. We repre-

sent instances of SocialNetwork as a GraphX graph where each vertex is a couple of a unique

identifier and an instance of either a User or a Submission (Comment or Post). Edges represent

the links of elements of a model conforming the meta-model presented in Figure 4.1, labeled

by a String name. We keep exactly the same labels from the meta-model for [0..1] or [1..1] re-

lations but we use singular names for [0..∗] relations (e. g., one edge “like” for each element of

the “likes” relationship). For the rest of this section, we consider sn a GraphX representation

of a SocialNetwork.

Considering that there exists an implementation for the function score, that will be de-

3. https://spark.apache.org/
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tailed later in this section, the OCL query topPosts of Listing 4.1 can be rewritten using Spark,

as presented in Listing 4.3.

Listing 4.3 – Spark implementation of a query from TTC 2018.

1 sn.vertices.filter(v => v.isInstanceOf[Post])

2 .sortBy(score(_._2), ascending=false)

3 .collect.take(3)

First, the SN!Post.allInstances() statement of the OCL specification is translated into

the application of a filtering function on the vertices of the graph sn (line 1). A sorting with a

decreasing order is then applied to the score values (computed by the score function) of

each vertex. The projection _._2 returns the second element of the vertex values, that is

an instance of Post, while _._1 would have returned its identifier within the graph. At the

end of line 2, the current structure is still a RDD. Because of the small number of values we

aim at finally obtaining, the structure is converted into a sequential array of values (func-

tion collect), from which we get the first three values. We can notice the similar structure

between the Spark and OCL queries. Hence, the global query can almost be directly trans-

lated from one language to the other. However, the scoring function can be implemented

in many different ways with many different strategies. We illustrate this through three im-

plementations in the rest of this section: direct-naive, pregel, and highly-parallel. Then we

discuss these three implementations and open to the multi-strategy approach.

4.4.1 Direct naive implementation

The first implementation, namely direct-naive, shown in Listing 4.4, directly follows the

OCL helpers from Listing 4.1. The first auxiliary function countLikes, corresponding to the

homonym helper, sums the number of "like" relations for each comment of a given post

(lines 17 to 21). The second auxiliary function score (lines 23 and 24) is also a direct Spark

translation from the OCL query. It uses parallelism, coupled with the lazy evaluation pro-

vided by Spark. Indeed, the execution of operations on RDDs is not started until an action

is triggered. In our example, collect and count are these actions. Finally, the allComments

function is defined recursively using GraphX features. The direct-naive implementation of

score uses three functions that are inspired by functional languages: filter which removes

all the elements of a list that do not respect a given predicate; map that applies a function to
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Listing 4.4 – Direct implementation of score.

1

2 def allComments (p : Post) = {
3 // recursive function
4 def getComments (co : Comment) : List[Comment] =
5 List(co).union(sn.triplets
6 .filter(t => t.srcAttr == co
7 & t.attr == "comment")
8 .flatMap(_.dstAttr compose getComments).collect)
9

10 sn.triplets
11 .filter(t => t.srcAttr == p & t.attr == "comment")
12 .flatMap(_.dstAttr compose getComments).collect
13 }
14

15 def countLikes (p: Post) =
16 allComments(p)
17 .map(c => sn.triplets.filter
18 (t => t.attr == "like" & t.dstAttr == c)
19 .count).sum
20

21 def score (p : Post) =
22 10 * allComments(p).size + countLikes(p)

every element; and flatMap which is a composition of map and flatten. The latter is equiv-

alent to flatten from Listing 4.1. The implementation first gets the direct comments of a

post (lines 10 and 11), and, using an auxiliary function getComments, recursively gets all the

belonging comments (lines 13 and 14). The method flatMap of lines 8 and 13 transforms the

list of lists, into a list of comments.

4.4.2 Pregel implementation

The second solution, namely pregel, proposed in Listing 4.5, is a Pregel-based implemen-

tation. The main idea of this solution is, starting from a Post, counting the number of com-

ments and the number of likes for these comments by propagating messages through edges

of the graph by using Pregel. To do so, we declare two variables, nbComments, and nbLikes,

that can be seen as aggregators, i.e., global accumulator of values. The propagation is pro-

cessed using the Pregel support of GraphX that works as follows. At each iteration, the func-

tion mer g eM sg accumulates into a single value the incoming messages (line 20), that are
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stored in a iterable structure, from the previous iteration (with an initial message defined

for the first iteration). This value is used by v pr og with the previous vertex vn to generate

the new vertex data vn+1. With this value, messages are generated with send M sg and sent

to vertices through edges for the next iteration. Because the stucture which stores the mes-

sage must be iterable, all the messages must be of type Iterator. An empty message is then

produced by Iterator.empty. The program stops when no message is produced for the next

iteration. In our implementation, messages are tuples of two values. The first one is an in-

teger value for specifying which vertices should compute and send messages. Besides, if the

integer is negative, then all the vertices should compute. The second one aims at precising

what value must be incremented (either the number of comments (false), or likes (true)).

The initial step of the execution questions the model to get the id of the vertex containing the

Post we want to score (line 3 and 4). This identifier is added to every vertex to provide them

a global view on the computation status (line 6). Then, messages are propagated through

the edges to belonging comments of computed vertices, or to the users who likes the scoped

comment (line 13 to 19). At the message reception, the computation will increment the ag-

gregator according to the second value of the message (line 9 to 11). After the execution of

the pregel function, a score value is calculated using nbComments and nbLikes.

4.4.3 MapReduce implementation

Listing 4.6 illustrates a solution with a higher level of parallelism, namely highly-parallel,

that uses a MapReduce approach. The purpose of this third solution is to process as much

as possible operations in parallel in a first time, and then go through the graph to reduce

these values. The first step counts the number of direct sub-comments, and the number of

likes, for each element of the model, using a map and reduce-by-key composition (line 3 to

7). Because the number of likes has not the same importance than the number of belonging

comments in the score calculation, two keys are created for a single element: one for count-

ing each property (i.e., number of comments and number of likes). Then a graph-traversal

operation calculates the total number of belonging comments and likes for a given post.

However, the keys are only created if a comment, or a like, exists. Then, to initialize values, we

use a composition of find that returns an option, and getOrElse in the case of the absence

of the key. The latter returns the value of the option if it exists, and a default value otherwise

We do not expect to gain performances with this approach because the operations are not

costly enough. However, having a highly parallel approach largely increase the scalability of

the program.
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Listing 4.5 – Pregel implementation of score.

1 def score(p: Post) = {
2 var nbComment, nbLike = 0L // Aggregators
3 val fstId = sn.vertices
4 .filter(v => v._2 == p).first._1
5

6 sn.mapVertices((_, v) => (fstId, v)).pregel
7 (initialMsg = (fstId, false))
8 (vprog = (id, value, merged) =>
9 if (merged_msg._1 == id || merged_msg._1 < 0)

10 if (merged_msg._2) nbLike += 1L
11 else nbComment += 1L
12 (merged_msg._1, value._2),
13 sendMsg = t =>
14 if (t.srcId == fstId | t.srcAttr._1 == -1L)
15 if (t.attr == "comment")
16 Iterator((triplet.dstId, (-1L, false)))
17 if (t.attr == "likedBy")
18 Iterator((t.dstId, (-1L, true)))
19 Iterator.empty,
20 mergeMsg = (m, _) => m)
21

22 10 * nbComment + nbLike
23 }
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4.4.4 Discussion on multi-strategy

First, the complexity of the solutions direct-naive and pregel can be compared. On the

one hand, the complexity on time of the direct implementation of the OCL query, can be

given as the sum of the complexity of allComments and countLikes. Considering n the num-

ber of nodes, these two complexities are defined as follows. First, allComments is a depth-

first search of complexity O(n +m) with m the number of comment edges (i.e., the depth of

belonging comments). Second, countLikes is composed by a depth-first search, and the map

of a function whose complexity is O(n). Then, the complexity of the mapping part is given

by O(n2). Since the complexity of the sum operation is negligible, we do not consider it in

the calculation of the global complexity. By summing these values, we obtain a complexity

of O(n2 +m) for the direct implementation of the scoring function. On the other hand, the

Pregel implementation complexity is bounded by O(n2), in the case of all comments are all

belonging to the same post. Naturally, the second solution will be preferred since its com-

plexity is lower. However, if the model has a small depth of belonging comments (i.e., a small

value for m), the two solutions are not significantly different.

The Pregel solution has nonetheless an important weakness. Indeed, for optimization

reasons, v pr og is only applied to vertices that have received messages from the previous

step. Then, considering the case where the comments are all commented once, the v pr og

function will be applied to only one vertex. Hence, the parallelism level strongly depends

on the number of siblings of each comment. With Pregel, only active vertices, i.e., vertices

which received a message from the previous iteration, compute the vprog function. Thus, the

number of operations concurrently executed in Pregel varies from the less to the most com-

mented and liked element. On the contrary, the highly parallel implementation executes the

processing operations on every elements of the model. In the latter, the parallelism level of

graph-traversal has the same limitation than the Pregel implementation, but always process

a less complex operation (i.e., a reduction as a sum of integer values).

The three above parallel approaches can solve the same problem, but their efficiency

depends on external parameters. For executing the topPosts query, a multi-strategy engine

would compile it to:

— the direct-naive implementation if the depth of belonging comments is small;

— the pregel solution if the environnement has few resources for parallelism;

— the highly-parallel solution if the score computation needs big calculation on the ver-

tices themselves.

As mentioned at the beginning of the Section, our proposed solutions do not claim to

52



4.4. Multi-Strategy Model Management

Listing 4.6 – Highly parallel implementation of score.

1 def score(p: Post) = {
2 // number of likes and comments per element
3 val scores = sn.triplets
4 .filter(t => t.attr == "likedBy"
5 | t.attr == "comment")
6 .map(t => ((t.attr, t.srcAttr), 1L))
7 .reduceByKey((a,b) => a + b).collect
8

9 def getScore(s: Submission) = {
10 val default = ((_,_), 0L)
11 var nbLike = // 0 if s is not liked
12 scores.find(e => e._1._2 == s
13 & e._1._1 == "likedBy")
14 .getOrElse(default)._2
15 var nbComment = // 0 if s is not commented
16 scores.find(e => e._1._2 == s
17 & e._1._1 == "comment")
18 .getOrElse(default)._2
19 // recursive call
20 val subScores = sn.triplets
21 .filter(t => t.srcAttr == s
22 & (t.attr == "likedBy"
23 |t.attr == "comment"))
24 .map(_.dstAttr compose getScore).collect
25 // sum of all score from belonging comments
26 for (score <- subScores) {
27 nbLike += score._1
28 nbComment += score._2
29 }
30 (nbLike, nbComment)
31 }
32 val score_p = getScore(p)
33 10L * score._1 + score._2
34 }
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be the most efficient ones. They are based on three parallelism strategies to illustrate the

variability of possible solutions for a given problem. Considering the all presented strategies

of Section 3.1.3, a more robust solution could include reactive aspects. For this particular

example, mixing incrementality and parallelism would avoid useless calculations when the

score of a single post has changed. For instance, the independent scores could be calculated

once using parallelism, and, when a change occur, use incrementality to avoid the recompu-

tation of unchanged elements. Considering a possible deletion of a part of the model (e.g.,

deletion of a user, and then of all his posts, and comments), laziness could be incorporated

to the solution, to only recompute potential new most-debated posts.

4.5 Challenges in Multi-Strategy Model Management

In the perspective of low-code platforms, a multi-strategy engine should be fully auto-

mated, from the automatic strategy selection to the automatic configuration and deploy-

ment on distributed infrastructures. Our approach is different from the multi-strategy ap-

proach proposed in [4] which is focused on languages and their salient features. The con-

ception of a multi-strategy engine leads to many scientific challenges that we divide in two

parts in the rest of this section: the challenges related to the code and the challenges related

to DevOps.

4.5.1 Code-related challenges

A first scientific challenge that arises from the multi-strategy approach is the automatic

and transparent selection of the most adapted strategy for a given model-management oper-

ation. The motivating example of Section 4.2 shows the large variability to take into account

to make the right choice. We divide this variability in different properties that should be con-

sidered:

— properties on the input model: size, meta-model, topology, etc.;

— properties on the operation to perform: update, launch, request, read or write, the

frequency of the operation, etc.;

— properties on the available infrastructures: type of frameworks compatible or already

deployed on the infrastructure;

This variability results in a combinatorial choice that could be solved by using constraint

programming, or by leveraging machine learning techniques to automatically learn how to
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associate these properties together.

The second challenge related to the code aspect is that an initial code written with a

MDE solution may need to be rewritten to follow the chosen execution strategy, while guar-

anteeing the same expected output. In other words, a code rewriting or code generation chal-

lenge is raised by the multi-strategy approach. In particular, formal semantics for the model-

management engine may be of high importance to guarantee a correct output code [163].

As example, Listings 4.4, 4.5, and 4.6 described in Section 4.4 all present a different way

of writing a code from the initial OCL solution shown in Listing 4.1. The complexity and the

level of parallelism of the solutions have been discussed in Section 4.4.

4.5.2 DevOps-related challenges

In the context of low-code platforms, automatically handling the strategy selection and

the code generation is not the only concern. Once generated, the code must be deployed

and run on complex distributed infrastructures. These tasks should be as transparent as the

previous code-related challenges. Hence, a first challenge is automatically handling the de-

ployment of a set of model operations that potentially use different strategies, onto the as-

sociated infrastructures that could themselves be very heterogeneous (e. g. different public

Cloud solutions such as AWS, or private Clouds, hybrid Clouds, etc.). This complexity should

be handled at the LCDP level, which requires safe and efficient deployments [45, 54].

Furthermore, choosing a given strategy, often involves deploying code on existing frame-

works or platforms that implement that strategy. For instance, when choosing the MapRe-

duce (respectively Pregel) strategy, Hadoop 4 (resp. Giraph 5 or Spark 6) should be used to

benefit from efficient implementation. All these frameworks are highly configurable, e. g.,

MapReduce has more than one hundred parameters [109]). Because of their large number of

parameters, finding their optimal configuration is a difficult problem. This additional layer

of configuration represents an additional combinatorial challenge. Several solutions could

provide a good trade-off. For instance, instead of providing a full configuration for the tools,

which is very costly, a performance prediction built from configuration samples could be

used. This solution has been adopted by Pereira et al. [2]. Another approach would be to

make a full cost estimation but only considering critical parameters. For example, give the

right level of parallelism by providing an approximation of the optimal number of mapper

4. http://hadoop.apache.org/
5. https://giraph.apache.org/
6. http://spark.apache.org/
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Dataset
#users #posts #comments #likes

1 889 1064 118 24
2 1845 2315 190 66
3 2270 5056 204 129
4 5518 9220 394 572
5 10929 18872 595 1598
6 18083 39212 781 4770

Table 4.3 – Description of used datasets from TTC18

and reducer in a MapReduce job 7. More formal approaches can also be used to estimate the

cost of parallel programs (e.g., cost model for GraphX [108]), and compare the different so-

lution using additional parameters such as hardware configuration (e.g., the bridging Bulk

Synchronous Parallel cost model [170]).

Using formal approaches to estimate the cost of a parallel program such as BSP cost

model [170] or Pregel cost estimation [108].

Finally, as for the combinatorial problem of choosing the right strategy, machine learning

techniques could be adopted [123].

4.6 Evaluation

This section gives an overview of the different strategies we use to implement the query to

solve the problem presented in Section 4.2. We experiment our five parallel implementations

of the TTC18 query. The experiments have been conducted on a shared memory machine

with a Intel Core i7-8650U having 8 cores at 1.90GHz and a memory of 32GB. The machine

was running Ubuntu 16.04 LTS. We use Java 8, Scala 2.12 with Spark 3.1.0. The used model

and theirs respective sizes is described in Table 4.3. The used models are described in 4.3:

The smallest model is composed 2071 elements and 2163 links while the biggest is made

with 58076 elements and 111197 elements. Models have been loaded using the NeoEMF I/O

module, as presented in Appendix A. Each speed-up on Table 4.4 is the mean of a series of 30

measures.

The first observation we can made is a Spark solution does not suit with small models.

The Spark overhead is constant for a given executing environment and the time for memory

allocation grows lower than the time to compute on bigger datasets. Thus dealing with small

7. http://wiki.apache.org/hadoop/HowManyMapsAndReduces
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Dataset
OCL

(Scala)
OCL

(Spark) Pregel MapReduce
OCL

+ Pregel
MapReduce

+ Pregel

1 1x 0.39x 0.36x 0.46x 0.44x 0.46x
2 1x 0.51x 0.68x 0.85x 0.66x 0.71x
3 1x 0.27x 0.35x 2.34x 0.15x 2.96x
4 1x 4.25x 5.21x 4.17x 4.68x 4.03x
5 1x 4.68x 2.83x 2.39x 1.97x 3.91x
6 1x 4.07x 4.12x 4.58x 5.17x 3.27x

Table 4.4 – Comparison of speed-ups of 5 Scala + Spark implementations with a direct Scala
implementation based on different strategies for the TTC18 query

model does not necessitate a long enough computation for making worth the use of Spark

(e.g., on dataset 1 and 2). Because shared chunks among nodes by Spark have a constant size,

additional experiments have shown that running expression evaluation on models with very

few elements can lead to an approximate speed up of 1 for the OCL Spark implementation.

Since these results are not certain, and obtain results not constant enough, we have decided

to not show them here.

Secondly, we see that there is no single strategy outperforming the others. Evaluating the

expressions on the 3rd dataset highlights MapReduce-based solutions as the best. Moreover,

they are the only ones which lead to a speedup while the other largely increase the computa-

tion time. In another case, like for the 4th and 6th datasets, the evaluated performances are

closed to each other, showing that, for these cases, all solutions show equivalent speedup.

Finally, using the basic Spark implementation of the OCL query on the 5th dataset is the best

solution.

4.7 Conclusion

In this chapter, we made an overview of what, and how, execution strategies can be used

in expressions. In the context of developing low-code platforms for managing models, these

strategies might be used for optimizing performances. However, a wrong use of a program-

ming model can have a bad impact on calculation efficiency. The motivating example pre-

sented in Section 4.2 and the implementations of Section 4.4 illustrate that by using different

strategies and different combinations of computational models for a given input model, dif-

ferent advantages could be observed, such as complexity, and parallelism level. Different

computational models may be chosen, according to different properties: the type of input
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model, its size, its topology, the type of computation to perform, and the available infras-

tructure. The future goal of a such prototype is to drive a complete study of how expressions

can be used and combined, and to classify them depending on use cases.
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The existing engines for performing model transformations are designed from different

choices according to their purpose. We want to compare different design choices in trans-

formation engines but making it using existing engines is not possible. There are too many

differences that can impact performance. Hence we have developed a new engine, namely,
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SparkTE for CoqTL, a transformation language defined with Coq. In this chapter we present

the architecture of the engine and evaluate three design choices.

5.1 Introduction

In model-driven engineering, model management frameworks propose dedicated lan-

guages to transform models, like the AtlanMod Transformation Language [99] (ATL) or the

Epsilon Transformation Language [106] (ETL). Good scalability and facilities for formal rea-

soning are among the intended benefits for users of model-transformation languages. Re-

searchers have proposed transformation engines designed to effectively perform computa-

tionally or memory-intensive transformations [105]. For instance, transformation languages

have been equipped with implicit parallel/distributed modes of execution to automatically

multiply the number of resources allocated to a transformation [16, 106]. To achieve this,

some engines have been built on top of distributed programming frameworks (e. g. Apache

Hadoop in [16]). However, comparing these different solutions does not make sense. First

of all, the main goal is not the same. One can address scalability while the other is focused

on how deal with frequent modifications. Also, the used technology differs (the choice of lan-

guage, or running environment), making biased comparisons. Moreover, the community has

extensively worked at formal reasoning and verification tools for model transformation lan-

guages. Among these solutions, the CoqTL language [163] allows users to write transforma-

tion rules, define contracts and certify the transformation against them, within the Coq proof

assistant [158]. Coq programs are not designed for being executed. They are only based on

formalism. They represent a good starting point for comparing different execution models.

These executions are specified with different semantics, independently of any technologies.

This pure proposal allows a comparison between semantics themselves. Indeed, indepen-

dently of the execution environment, proposing different pure semantics that proven equiv-

alent, allow a comparison and highlights the impacts of how are defined a transformation

engine.

In this chapter, we introduce a transformation engine that addresses at the same time dis-

tribution and certification, with different execution semantics. This is not trivial. Distributed

programming typically involves non-deterministic execution order, complicating the proof

of properties on parallel programs. Interactive theorem proving is already a very costly activ-

ity on sequential model transformations. Certifying transformations by formal reasoning on

the complexities of modern distributed frameworks would require unmanageable proofs.
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We propose a solution to allow users to certify transformations in Coq and execute them

over a modern data-analytics framework. The core of our proposal is SparkTE, a distributed

implementation of the CoqTL specification, built on top of Apache Spark, a widely-deployed

framework. Besides scalability, Spark provides an ecosystem of libraries, e. g. for connec-

tion to heterogenous data sources. Importantly, the Spark programming interface mirrors a

functional/higher-order model of programming. This is a key property for our solution, since

it enables a straightforward and high-confidence extraction of parallel code from functional

Coq specifications.

Notice that we designed the parallelizable specification for a specific data analytic frame-

work, and targeting another back-end solution would necessitate additional manual changes.

This chapter presentes two main contributions:

— A refinement of the standard CoqTL specification, including three major optimiza-

tions to increase parallelism opportunities. The refined specification, here named

Parallelizable CoqTL, is written in Coq, and is validated by formally proving in Coq

the input/output equivalence to the standard CoqTL specification.

— A transformation engine that implements Parallelizable CoqTL on top of Apache Spark,

named SparkTE. By evaluating the performance of a simple case study, we assess the

speedup that SparkTE can reach.

5.2 Motivation and Background

5.2.1 Running Example

We choose a simple transformation as a running case to illustrate the approach and per-

form preliminary performance assessments. Listing 5.1 shows an excerpt of the code of a

CoqTL transformation named Relational2Class, which ideally reverse-engineers class di-

agrams from given relational schemas, and Figure 5.1 shows its source and the target meta-

models. The transformation is a simplified inverse of the well-known Class2Relational trans-

formation [165], often used in the community for exemplifying new contributions. We choose

the inverse direction because it is representative of reverse-engineering transformations,

where scalability problems frequently arise [15].

The transformation is written in CoqTL, an internal DSL for model transformation within

the Coq theorem prover. The transformation primitives are newly-defined keywords (by the

notation definition mechanism of Coq), while all expressions are written in Gallina, the func-
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Typable

name: String

Column

name: String

Table

Type

Extends Extends

*attr

owner

type

1

foreign
key

Classifier

name: String

ClassDatatype

Extends Extends

*attr

owner

type
1

Attribute

name: String
multivalued: Boolean

Figure 5.1 – Relational and Class diagram metamodels

tional language used in Coq. The CoqTL semantics is heavily influenced by ATL [99] (notably

in the distinction between a match/instantiate and an apply function), and its original de-

sign choices focus on simplifying proof development.

In Listing 5.1, the Relational2Class transformation is defined via four rules, composed

of two parts: (i) a matching section (type and guard condition) and (ii) an output section,

which contains a definition for created target elements and optional references. To keep a

trace of which expression is used for mapping a source to a target element, each element of

the output section of the rules is named.

The first rule (lines 5–11) maps all relational Types to class-diagram Datatypes. We spec-

ify that a datatype is constructed using BuildDataType with the same id and the same name
as the matched type (line 10). The Table2Class rule (lines 5–11) translates all tables to a

corresponding class, with the exception of tables that persist multivalued attributes. To fil-

ter these tables, a guard condition, introduced by the when keyword, calls a user-defined

isClassTable function (line 14), that we will discuss later. The created target class is con-

structed from the id and the name of a matched table (line 18). The third rule (lines 21–

40) generates Attributes and links them to Classifiers. Columns are transformed into

single-valued Attributes by a call to BuildAttribute with the last parameter (multivalued)
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1 Definition Relation2Class :=
2 transformation from RelationalMetamodel to
3 ClassMetamodel with m as RelationalModel :=
4

5 rule Type2Datatype
6 from element t class Type
7 to [
8 output "type"
9 element dt class Datatype :=

10 BuildDataType (getTypeId t) (getTypeName t)
11 ];
12

13 rule Table2Class
14 from element t class Table when isClassTable t
15 to [
16 output "class"
17 element c class Class :=
18 BuildClass (getTableId t) (getTableName t)
19 ];
20

21 rule Column2Attribute
22 from element c class Column when
23 isClassTable (getOwner c m)
24 to [
25 output "svattr"
26 element a class Attribute := BuildAttribute
27 (getColumnId c) (getColumnName c) false ;
28 links [
29 reference AttributeType :=
30 ty <- getColumnType c m;
31 dt <- resolve Relational2Class m "type"
32 DataType [[ ty ]];
33 return BuildAttributeType a dt;
34 reference AttributeClass :=
35 ta <- getColumnTable c m;
36 cl <- resolve Relational2Class m "class"
37 Class [[ ta ]];
38 return BuildAttributeClass a cl
39 ]
40 ];
41

42 rule MVAttributeTable2Attribute
43 from
44 element t class Table; element o class Table
45 when isMVAttributeTable t o
46 to [
47 output "mvattr"
48 element a class Attribute := ...
49 ]

Listing 5.1 – Excerpt of the Relational2Class Transformation in CoqTL
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Lemma tr_r2c_inverse: ∀ (m : ClassModel),
execute Relational2Class (execute Class2Relational m)

= m.

Listing 5.2 – The tr_tracePattern_source lemma

equal to false (line 27). Again, columns that are contained by tables that persist multi-

valued attributes are not transformed, thanks to a guard isClassTable (line 14). Addition-

ally, two links are defined for the generated Attribute. First, a link from the target Attribute
to its type (lines 29–33). The corresponding type is defined in BuildAttributeType by re-

solving the output of the Type of the source Column (line 32). The second reference, from the

Attribute to its owner (lines 34–38), is defined in the same manner (i. e., by resolving the

output of the owner Table of the source Column) (line 37). MVAttributeTable2Attribute
(line 42–49), that is the last rule of our transformation, matches two tables: a table t gen-

erated from a multi-valued attribute and the table o that corresponds to its owner. The two

references are built as in the Column2Attribute rule: one reference to the type of the at-

tribute and one to its owner.

Once the transformation has been defined in CoqTL, it is possible to prove that it has a

given property, e. g. it respects a given contract. For instance, CoqTL users can interactively

prove properties of Relational2Class and Class2Relational, by proving the lemma in

Listing 5.2 using Coq tactics. Several strategies are possible to distinguish tables that were

generated from classes, from tables that correspond to multivalued attributes. These strate-

gies would correspond to different implementations of the functions isClassTable and

isMVAttributeTable. In our simple example, we assume that Class2Relational translates

multivalued attributes into tables with a specific name pattern (e.g., name of the owner class

followed by an underscore and the name of the multivalued attribute). Under this assump-

tion isClassTable and isMVAttributeTable just contain a string check, with constant

complexity. In the experimentation (Section 5.5) we will introduce more computational time

in these functions to simulate increasing complexity, to better estimate the potential paral-

lelization of our solution.

5.2.2 Objective

CoqTL includes an executable semantics for the transformation engine. An implemen-

tation of the engine in OCaml or Haskell can be automatically obtained by the standard ex-

traction mechanism of Coq. However, since the executable semantics is designed to be rea-
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soned about in proof terms, it is kept very simple (the core semantics is formalized in 196

Coq LOC) and does not include any efficiency optimization. This has a significant impact on

the performance of the extracted engine for CoqTL. For instance , the execution of the Re-

lational2Class transformation on a sequential version of the CoqTL engine for a model of a

thousand of model elements takes more than 4 hours on a recent laptop (Intel Core i7-8650U

CPU @ 1.90 GHz, 32 GB of RAM).

Considering the size of realistic code-bases for reverse-engineering projects, we aim for

a solution that allows users to deploy and run the transformation on a state-of-the-art dis-

tributed data-analytics framework. Such frameworks are often already deployed in compa-

nies that perform large computations, or in their cloud-based services portfolio.

Apache Spark is a data-analytics framework aiming at querying or manipulating large-

scale data. In a local mode, the computation is run using a single machine, while in a cluster

mode a master dispatches some partitions and tasks to several other additional machines:

the workers. Such architecture allows to use more resources (memory, number of proces-

sors) which lead to the opportunity of running computations on larger datasets. The data-

parallel approach promoted by Spark consists in using a specific data structure called RDDs

(Resilient Distributed Dataset) that is partitioned by the master. Partitions are distributed

among the workers as well as tasks to execute on RDDs. A task in Spark is a set of opera-

tions performed on a RDD. Spark supports several programming paradigms. The use of these

paradigm for model-management operations has been investigated in [139]. In this chapter,

we use Spark with the MapReduce paradigm [110].

We aim at designing a solution that executes on Spark a CoqTL transformation (like

Relational2Class), certified against a contract. On the performance side, we aim at im-

proving two kinds of scalability: 1) The capacity of scaling with additional computational re-

sources, referred to as vertical scalability; 2) The capacity of dealing with increasing datasets,

referred to as horizontal scalability. On the reliability side, while the whole execution stack

can not be certified end-to-end (e. g. the formal semantics of Apache Spark is not available),

we aim nonetheless to produce a solution that gives users high confidence that the proved

contract will hold on the distributed transformation.

5.3 Approach Overview

Figure 5.2 shows the global workflow of our approach, separating the formal part, written

in Coq (left side), from the executable engine in Scala and Spark (right side). Starting from
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Figure 5.2 – Global overview of our workflow to execute certified model transformations on
Apache Spark.

the Coq part, the workflow must be interpreted as follows.

The CoqTL language allows users to define model transformations, theorems on their be-

havior and machine-checked proofs of these theorems in Coq. These transformations can be

executed directly on the executable CoqTL specification. We introduce Parallelizable CoqTL,

a refinement of the executable CoqTL specification that increases its parallelization opportu-

nities. We use the Coq theorem prover to prove that this new specification is a refinement of

the original one (see Section 5.4.2). This entails that, for a given source model, any transfor-

mation produces the same output model when it runs on standard CoqTL or Parallelizable

CoqTL. The Parallelizable CoqTL specification is written in Gallina, the functional language

used in Coq.

Then we provide an implementation of Parallelizable CoqTL in Scala. To obtain the Scala

implementation, that we name ScalaTE, we manually extract the Gallina functions into cor-

responding Scala functions. Section 5.3.1 details this extraction.

ScalaTE uses data structures that are the direct correspondent of Gallina data structures

(e. g. Scala List for Gallina list). In a final step we replace these data structures with dis-

tributed data structures (RDDs) from the Spark library, as described in Section 5.3.2. We

name the resulting distributed engine SparkTE.

To run a transformation on SparkTE, the CoqTL transformation rules (e. g., Listing 5.1)

have to be translated into their corresponding Scala version. We currently perform this step

manually, but its automatization is possible and left for future work. Since Spark does not

change the functional interface of standard Scala, the obtained Scala transformation can

run on both ScalaTE and SparkTE.
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Fixpoint tuples_of_length_n {A :Type} (s1: list A)
(n : nat): list (list A) :=
match n with
| 0 ⇒ nil::nil
| S n ⇒ prod_cons s1 (tuples_of_length_n s1 n)
end.

Listing 5.3 – CoqTL definition for generating all combination of elements

Listing 5.4 – Extracted Scala code from the Coq function tuples_of_length_n
1 def tuples_of_length_n[A] (s1: List[A], n: Int)
2 : List[List[A]] =
3 n match {
4 case 0 =>
5 List(List())
6 case n1 =>
7 prod_cons(s1, tuples_of_length_n(s1, n1-1))
8 }

5.3.1 Coq to Scala

The Coq environment includes an extraction mechanism targeting ML languages: OCaml,

Haskell, or Scheme. Although an automatic extractor to Scala is available [67], it supports

only a subset of Gallina on an outdated version of Coq. Hence, we opted to perform the ex-

traction manually. We perform manual extraction at two levels: first to create the core engine

(gallina2scala in Fig. 5.2), then to obtain Scala rules representing a CoqTL transformation

(coqtl2scala).

Gallina to Scala The executable CoqTL specification can be seen as a functional program

that interprets the transformation code. We produce a literal translation of this interpreter in

Scala.

For extracting Scala code from Parallelizable CoqTL we translate Gallina types and (pure)

functions into their correspondent types and pure functions in Scala. Listings 5.3 and 5.4

show an example of CoqTL executable specification (in Gallina) and its implementation in

SparkTE (in Scala). The example well illustrates the one-to-one translation among types and

functions that we adopt for all the extraction.

We implicitly assume that Scala functions (e. g., flatMap for Scala List) implement the

same semantics than their Gallina correspondent (e. g., flat_map for Gallina list).
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Listing 5.5 – Scala implementation for the Table2Class rule

1 new RuleImpl (
2 name = "Table2Class",
3 types = List(RelationalMetamodel.TABLE),
4 from = (m, l) => {
5 val t = l.head
6 Some(t.isClassTable)
7 },
8 to = List (
9 new OutputPatternElementImpl(

10 name = "class",
11 elementExpr = (i, m, l) =>
12 if (l.isEmpty) None else {
13 val t = l.head.asInstanceOf[RelationalTable]
14 Some(new ClassClass(t.getId, t.getName,
15 multivalued=false))}
16 )))

CoqTL to Scala The CoqTL parser translates the concrete syntax of the transformation

(e. g., from Listing 5.1) into Coq code to construct an abstract syntax tree. Obtaining the

same transformation in Scala requires constructing the same abstract syntax tree as Scala

objects. Note that Scala constructors for the abstract syntax are the literal translation of the

corresponding Gallina constructors in CoqTL.

Listing 5.5 shows the translation of the Table2Class rule from Listing 5.1. The rule con-

structor (RuleImpl) requires a name, a list of types for an input pattern (the types argu-

ment), a guard condition (the from function), a list of output pattern elements (the to argu-

ment). Each output pattern element has a name, and a function for creating output elements

from input pattern elements. While not shown in this example, it can be also accompanied

by a list of functions for creating links in the output model.

As illustrated by the example, the only non-trivial part of this extraction is the transla-

tion of the body of expressions for guards and output element creation (e. g. the body of the

anonymous functions in Listing 5.5). An automatic compiler from CoqTL rules to Scala is a

part of future work (Section 5.6).

5.3.2 Distributed Data Structures

Spark RDDs are data structures that are automatically partitioned and resulting in the

distribution of the computation operations on a Scala sequence (e. g., List) of serializable
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Figure 5.3 – Distributed computation of a model transformation on SparkTL. c denotes a col-
umn, t a table, a an attribute, and cl a class. Green elements and links illustrate the entities
created by the transformation in the output.

elements. From a user point of view, RDDs can be manipulated as lists, using the same prim-

itive functions, and parallelism is implicit. The advantage of using such abstraction for paral-

lelism is the semantics preservation of the operations on the distributed structures. Because

of the popularity of Spark and its support, we assume the correctness of parallel operations

on the data.

An efficient use of RDDs requires an effective partitioning of data. For instance, to take

advantage of the internal multi-threading mechanism, it is typically recommended in Spark

to assign four data partitions to each core. Each independent computation of a partition

is referred as a task. The Spark task scheduler makes the distribution following a round-

robin approach, optimizing load-balancing: once a task is ended on a core, a new one can

be assigned from the waiting list. Section 5.4 gives more detail about how we use RDDs in

SparkTE.

5.4 Parallelizable Semantics for CoqTL

The execute function shown in Listing 5.6 is the entry point of the transformation exe-

cution in the standard CoqTL semantics.

First, the allTuples function (line 3) produces all the tuples of elements that can be pos-

sibly matched by the rules. allTuples computes a list of
∑A

a=0 na tuples, with n the number

of elements in the input model, and A the maximum arity of the transformation rules.

Then, the instantiatePattern function (line 5) tests each tuple to find if it matches

with any rule and for each match it constructs the corresponding output pattern elements.
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Definition execute (tr: Transformation) (sm: SourceModel)
: TargetModel :=
let tuples := allTuples tr sm in
let elements :=

flat_map (instantiatePattern tr sm) tuples in
let links := flat_map (applyPattern tr sm) tuples in
Build_Model elements links.

Listing 5.6 – execute function in the base CoqTL specification

Definition execute (tr: Transformation) (sm : SourceModel)
(sm : SourceMetamodel) : TargetModel :=
let tuples := allTuplesByRule tr sm mm in
let (elements, tls) :=

flat_map (tracePattern tr sm mm) tuples in
let links :=

flat_map (fun sp ⇒ applyPatternTraces tr sm sp tls)
(allSourcesPattern tls) in

Build_Model elements links.

Listing 5.7 – execute function in the Parallelizable CoqTL specification

Internally it iterates on each rule, executes their guard function and if the result is positive,

executes the element creation function for each output pattern element of that rule. The

resulting elements are gathered by the flat_map in a single output list.

Finally, the applyPattern (line 6) function is executed on each tuple to create target

links. Similarly to the function instantiatePattern, the function internally iterates on all

rules and checks if the rule matches the given pattern. In a positive case, the element creation

functions for that rule are executed and then the link creation functions. The resulting links

are gathered by the flat_map in a single output list.

5.4.1 Parallelizable CoqTL

Parallelizable CoqTL contains three optimizations to the base CoqTL specification:

— To increase parallelization, the algorithm is split into two consecutive phases, instan-

tiate and apply, that are built on parallelizable functional patterns (flat_map);

— To improve load balancing of the instantiate phase, only possibly useful tuples are

generated and then distributed;

— To improve load balancing of the apply phase, a set of trace links is produced by the

instantiate phase and the apply phase iterates only on those trace links.
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Note that similar optimizations (among others) are already implemented in well-known

transformation engines, like ATL [99] or ETL [106]. Differently from previous work, in this

chapter we formalize the optimizations, interactively prove that they do not affect the trans-

formation output and assess their impact on distributed execution.

The entry point of Parallelizable CoqTL, is presented in Listing 5.7. Figure 5.3 illustrates

the global behavior on a minimal example with one table and one column.

Optimization 1: Two phases In standard CoqTL the applyPattern function performs all

the computation of the links generated by a matched input pattern, by the rule that matches

it. However the computation of the links of a rule is not independent from the computation

of other rules. This dependency is caused by the resolve function (e. g., lines 32 and 37

in Listing 5.1) that searches for the output of another rule in order to set the target of the

created link. In general, because of this dependency, two executions of the apply function

can not be run in parallel, without replicating some matching and instantiation within each

call to resolve. 1

We refactor the computation to split it in two phases, similarly to ATL [99]. This is visible

in Listing 5.7. In the first phase (lines 5) we compute the tuples and we run the matching and

instantiation by a new function named tracePattern. The first phase produces the list of

generated elements, and trace links connecting them to their corresponding source patterns.

Differently from Listing 5.6, here the second phase (line 8)) can only start computing output

links after the full first phase has finished computing the trace links, since the flat_map
expects the tls structure as parameter.

In Listing 5.7 every execution of tracePattern can be run in parallel. When the first

phase is over, every execution of applyPatternTraces can be run in parallel too, since the

calls to resolve can be computed immediately on the trace-link structure. This greatly im-

proves the parallelization of the algorithm.

Optimization 2: Tuple generation by rule Matching a pattern to a rule happens in two

consecutive steps. First, the types of the pattern are checked against the types expected by

the rule. Then, if the types are correct, a guard condition is evaluated. The type checking is

very fast, hence it acts as a first filtering. Instead the evaluation of the guard condition can

1. This is exactly how the standard CoqTL specification computes resolve. This simple solution keeps the
specification compact and has no negative impact on proofs. However it has a big impact on performance and
parallelization.
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Table 5.1 – Size (in LOC) of new specification and certification proofs added for each opti-
mization, with proof effort (in man-days).

Optimization Spec. size Cert. size Proof effort

twoPhases 69 484 10

byRule 42 487 7

iterateTraces 69 520 4

potentially be very long, or navigate large parts of the model. So it is executed only for the

few tuples that pass the type check.

Since the tuples that require an evaluation of the guard condition are a small subset of

all the possible tuples, arbitrarily distributing all tuples among the cores can potentially lead

to imbalanced partitions. In particular it would not be uncommon to have partitions that do

not require any guard evaluation, opposed to partitions that need to evaluate several expen-

sive guards. In such cases, idle workers would wait for the synchronization barrier of Spark

to start new computations. The imbalance impacts the scalability of the program.

To limit imbalance, in the initial sequential tuple generation phase, we generate only tu-

ples whose type matches with at least one rule of the transformation. This is shown in List-

ing 5.7 by the use of the allTuplesByRule for tuple generation (line 2). allTuplesByRule
iterates on rules and produces only combinations of elements of the types listed in the rule

input pattern. This improves load balancing of the first phase since all the produced tuples

require a guard evaluation.

Optimization 3: Apply iterates on traces Executing the apply phase on the tuples gener-

ated by allTuplesByRule would cause an imbalance among partitions, similar to the one

discussed in Optimization 2. Indeed, among these tuples only very few have passed the guard

condition in the first step. A partitioning of allTuplesByRule would produce partitions that

do not require any computation, together with partitions that need to evaluate several ex-

pensive link creation functions. In this optimization we make the apply phase iterate only

over the source patterns that passed the guard evaluation in the instantiate phase. We re-

trieve these patterns by collecting them from the list of trace links. This is performed by the

function allSourcePatterns at line 8 of Listing 5.7.

5.4.2 Refinement Proof
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Lemma exe_preserv :
∀ (tr: Transformation) (sm : SourceModel),

twophases.execute tr sm = execute tr sm.

Lemma In_by_rule :
∀ (sp: list SourceModelElement) (tr: Transformation)

(sm: SourceModel),
In sp (allTuplesByRule tr sm)
→ In sp (allTuples tr sm).

Lemma In_by_rule_instantiate :
∀ (sp: list SourceModelElement) (tr: Transformation)

(sm: SourceModel),
In sp (allTuples tr sm)
∧ instantiatePattern tr sm sp <> nil
→ In sp (allTuplesByRule tr sm).

Lemma In_by_rule_apply : ...

Lemma tr_tracePattern_source:
∀ (tr: Transformation) (sm : SourceModel)

(tl : TraceLink) (sp: list SourceModelElement),
In tl (tracePattern tr sm sp)
→ sp = TraceLink_getSourcePattern tl.

Listing 5.8 – Certifying optimizations lemmas
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Besides the executable functional specification, CoqTL is also described by an axiomatic

specification. Certifying against the axiomatic specification involves providing 10 types, 27

semantics functions and proving 15 theorems. The specification is fully illustrated in [49],

together with a proof that engines implementing the executable specification certify against

the axiomatic one.

We prove that engines implementing Parallelizable CoqTL certify the axiomatic specifi-

cation, too. For this step, we naturally reuse the types, functions and certification proofs of

the base executable specification that are not impacted by the optimization. Each optimiza-

tion is proved independently. Table 5.1 shows the size (in lines of code) of new specifications

and proofs required for describing and certifying each optimization, plus the human effort

(in man-days) to complete the proofs. The refined specifications and their proofs are avail-

able online 2. All the discussed lemmas below can be found in Listing 5.8.

The key step for certifying the twoPhases optimization, is proving that it does not change

the output of the full transformation (exe_preserv). This proof has two parts: 1) for the

instantiation phase, we prove that the additional computation of the trace, does not have

any effect on the computation of the instantiated elements; 2) for the apply phase we need to

prove that the new apply function is equal to the old one. Coq is able to prove automatically

the second step, by full unfolding and simplification of the old and new apply functions. Note

that in this proof we use the axiom of functional extensionality (two functions are equal if

their values are equal at every argument), notably to compare the body of inner anonymous

functions.

The byRule optimization changes the order of the element and link creation in the trans-

formation output, hence a lemma similar to exe_preserv would not hold. We prove its

equivalence in two steps: 1) we prove that tuples computed by rule are a subset of the all tu-

ples (In_by_rule), 2) we prove that tuples computed by rule include all tuples that produce

elements or links (In_by_rule_instantiate). The second step is the most challenging and

is performed by case analysis on matchPattern: given any pattern, if the pattern does not

match then it cannot produce anything, if it matches then it is one of the patterns generated

by the rule allTuplesByRule.

The iterateTraces optimization does not change any function in the instantiate phase,

hence we can easily prove a similar theorem to (exe_preserv), but limited to the result of

instantiate. The apply phase does not change the computation of a single link, but skips

some source patterns, and produces links in a different order w.r.t. the base version. To prove

2. https://github.com/atlanmod/SparkTE_public/
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that the same links are generated, we proceed by case analysis on the trace generated for a

given source pattern: 1) if the instantiate phase did not generate any trace for that pattern,

then the standard apply phase would not have produced any corresponding link; 2) if there

is a trace, then the apply phase applies the same function to the same source pattern, hence

producing the same output (tr_tracePattern_source).

5.4.3 Implementation on Spark

Distributed computation of our Spark implementation revolves around the use of RDDs.

First, the input patterns, represented as a list of tuples, are distributed with an RDD among

cores. Each core independently applies the instantiate function to every tuple of its partition.

Implicit communications are operated by Spark to scatter the tuples from the master process

to the workers. After the computation, the resulting elements and their trace-links are all

gathered to the master process.

For the second phase, the trace-links are distributed with an RDD. Each core is in charge

of generating the links for a partition of output elements and their associated applied rule.

Since this second phase needs a global knowledge of the trace-links to resolve output ele-

ments, we used a broadcast communication to share the whole set of trace-links to all cores.

A global view of where RDDs are used and what communications are operated is illus-

trated in Figure 5.3.

5.4.4 Limitations

SparkTE implements the complete CoqTL specification but some limitations remain.

First, all the translations from Coq to Scala are manual. In particular, the transformation

rules need to be manually translated by the user. However the correspondence between the

abstract syntax in CoqTL and ScalaTE/SparkTE makes the translation of the rule structure

trivial. Hence, our solution reduces the complex problem of translating to Scala a CoqTL

transformation, into a simpler problem: translating to Scala separately each side-effect-free

expression for guards, output pattern elements creation, and output pattern links creation.

While simpler, this task is still tedious and error prone, hence we aim at making the transla-

tion fully automatic in future work.
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Table 5.2 – Hardware setup of the two clusters used during experiments. These clusters are
part of the Grid’5000 experimental platform for distributed computing.

Cluster CPU RAM Netw.

Rennes 2× 8 cores/CPU 128GB 2×
paravance Intel Xeon E5-2620 10Gbps

Nancy 2× 18 cores/CPU 96 GB 2×
gros Intel Xeon Gold 5220 25Gbps

Table 5.3 – Description of the three datasets used in the experiments with the number of
elements and links.

Dataset D1 D2 D3 D4 D5

model type Relational IMDb DBLP

elements 150 300 600 440 700

links 290 580 1060 1968 1886

5.5 Experiments

In the previous sections, we have presented the three optimizations adopted for Paral-

lelizable CoqTL to increase the efficiency and propensity to parallelization of the extracted

engine. In this section, we evaluate the performance of SparkTE and the quality of its speedup

compared to the ideal speedup that divides the execution time by the number of cores (rel-

ative to a reference version). As none of the contributions of the related work have studied

the use of Spark for parallel transformations, we restrict our comparisons to this theoretical

ideal speedup. All jobs are run with Spark in a standalone mode.

The first subsection presents the results we get from the use-case previously described

in Section 5.2.1, i. e. the Relational2Class transformation, and similar experiments on two

additional cases.

We show that the three optimizations introduced in Section 5.4 improve significantly the

performance of the transformation in Spark. The results also show a relatively poor speedup

compared to the ideal one, but that can be improved when having more complex operations

within the transformation. To investigate this result, the second subsection illustrates that a

speedup close to the ideal can be observed with a high number of cores if the computation

time and the size of the dataset is big enough to offset the overheads of Spark. Finally, a

performance analysis by phase is presented to show the very good speedup obtained by the
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parallelized steps of SparkTE.

All results presented in this section have been executed ten times on the same hardware

configuration, and an average is presented. The standard deviation of our measurements

are never higher than 10 % of the total execution time, thus guaranteeing our results to be

stable, and the average to be meaningful. Furthermore, all our experiments have been con-

ducted on the French experimental platform for distributed computing Grid’5000. Grid’5000

is made of geographically distributed clusters of machines in France, each one with its spe-

cific hardware setup. This platform also facilitates the reproducibility of the experiments by

offering a way to build the same environment for any researcher. However, Grid’5000 makes

us dependent on available machines (i. e. nodes) for provisioning which is why we use two

different clusters of Grid’5000 in our experiments. For each experiment the number of ma-

chines and the number of cores are specified. One can note that the number of machines

that is specified correspond to the number of workers instantiated in Spark and that one

additional dedicated machine is provisioned to host the master of Spark. All our codes, raw

results, and analysis scripts are publicly available online. 3

5.5.1 Evaluation of SparkTE on Use-cases

In this section we apply our running example to a first model, denoted D1 in Table 5.3.

We also consider two additional transformations: the IMDb case [92], aiming at finding cou-

ples of actors who recurrently played together, and queries on a DBLP model to find active

authors who published in specific journals [10]. We run the two additional transformations

on model instances from the IMDb and DBLP metamodel, respectively denoted D4 and D5

in Table 5.3.

The transformations specified in CoqTL, subsequently translated to Scala and Spark, are

always correctly computed by SparkTE, i. e. with the expected output of the transformation,

for all our experiments.

We have used from 1 to 2 machines of the cluster paravance detailed in Table 5.2. Ta-

ble 5.4 presents the execution times and speedups of the three transformations from 1 to 8

cores with 1 and 2 machines. Notice that proofs of lemmas are Coq programs executed on

the specification only and are not a part of the target computation, and are not considered

in the evaluation performance. The results show a relatively poor speedup. It is caused by

the lack of complexity in the operations used in the guard condition, the instantiate function

3. https://github.com/atlanmod/SparkTE_public
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and the apply function.

This phenomenon will be confirmed in the performance analysis of the next subsection.

Spark’s overheads are more particularly observable with the poor speedup measured with

2 cores. Indeed, in this case the gain of parallelizing with Spark is completely swallowed

by the overheads, but then an improvement is obtained with 4 cores. Overall the obtained

speedup is not satisfying as the speedup for 8 cores is almost the same as with 4 cores, and

far from the expected ideal speedup of 8. We will show in the next subsection that Spark’s

overheads can be almost fully compensated by increasing the computation time of the trans-

formation and/or the size of the dataset. The additional cases show that the performance of

the approach depends on the computation time of the rules. In the IMDb case, the better

growing speedup is caused both by the rules themselves that have a high-level of complex-

ity, and the high connectivity of the input model. On the contrary, in the case of the DBLP

transformation, the rules with a low computational cost lead to a poor speed-up. We will

show in the next subsection that Spark’s overhead is fully compensated by high computation

time of the transformation and/or large size of the dataset.

One problem with computation on large models is the lack of memory. Distributed so-

lutions, such as the one we propose here, allow users to increase the resources allocated to

a transformation. For instance, a fixed allocated memory for one core is not enough for pro-

cessing the DBLP example, causing disk operations which drastically slow the computation.

This phenomenon disappears with 2 cores, and we observe a hyper speedup.

Finally, we want to show the performance gain obtained thanks to our three optimiza-

tions. To this purpose, we execute the same naive transformation on the direct implementa-

tion of the CoqTL specification (without optimizations). On 1 core naive is computed in 27 s

by SparkTE and in 52 s by the CoqTL implementation.

5.5.2 Performance Analysis by Complexity and Datasets

In the previous subsection, we have shown that the performance of SparkTE is enhanced

by our three optimizations in terms of execution time and speedup. However, compared to

the ideal speedup our use-cases are disappointing. In this subsection, we demonstrate that

these results are due to the small computation time in the transformation and the small size

of the dataset.

Experimental setup. To this purpose, we have built a version of the transformation with

additional fictitious processing time in the different phases and steps. More precisely, we in-

corporate sleeping functions to different parts of the rule evaluation: the guard condition to
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Figure 5.4 – Relative speedups of SparkTE with sleeping times
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Table 5.4 – Execution times and speedups (relative to 1 core) for the executions with SparkTE
of Relational2Class (R2C), the IMDb findcouple transformation, and the DBLP case. Experi-
ments respectively conducted with the dataset D1, D4, and D5, on the cluster paravance.

♯ cores (♯ machines) 1 (1) 2 (1) 4 (2) 8 (2)

R2C
time (s) 27.02 32.50 13.17 11.91

speedup 1.00 0.84 2.13 2.31

IMDb
time (s) 38.35 22.01 18.33 11.61

speedup 1.00 1.74 2.09 3.30

DBLP
time (s) 0.83 0.35 0.56 0.84

speedup 1.00 2.37 1.49 0.99

Table 5.5 – The set of experiments described in Section 5.5.2 with different fictitious process-
ing time in the transformation, and different sizes of datasets. The number of cores used by
each benchmark is also indicated, as well as the number of cores per node (i. e. worker). Fi-
nally, the Grid’5000 cluster used for the benchmark is given in the last column.

Benchmark B1 B2 B3

dataset D1 D2 D3
sleeping {0,50,120,250,500,1000,2000} same as B1 same as B1
♯ cores {1,2,4,8,16,32} {4,8,16,32,64,128} same as B2

♯ machines {1,2,4} {1,2,4,8} same as B2
♯ cores per node 4 to 8 4 to 16 same as B2

cluster paravance gros gros

simulate complex checking functions; the instantiate part to simulate complex instantiation

of element; and the apply function to simulate a long resolution for links. As we discussed

in Section 5.2, user-defined functions can have several implementations with different com-

plexities. Proposing an evaluation based on the computation time of these functions offers

an infinite set of benchmarks to accurately estimate the speedup of SparkTE. Furthermore,

we additionally vary the size of the dataset in the obtained benchmarks.

Table 5.5 summarizes the set of benchmarks explained hereafter. The first benchmark

(B1) uses the same data introduced in the previous subsection on (D1) with 1, 2, and 4 ma-

chines, and up to 8 cores per machine on the paravance cluster of Grid’5000. We compare the

computation time of the transformation on 2, 4, 8, 16, and 32 cores relative to the execution

time on 1 core. The second and third benchmarks, (B2) and (B3), illustrate both the hori-

zontal scalability and the vertical scalability of SparkTE by increasing the size of the dataset

80



5.5. Experiments

with (D2) and (D3) detailed in Table 5.3, and the number of machines (i. e. nodes, workers)

and cores detailed in Table 5.5. The two benchmarks are evaluated on 1 to 4 machines, up

to 16 cores per machine. As increasing the size of the dataset and the fictitious sleeping time

also increases the total execution time of experiments, we compute our speedup relative to

4 cores instead of 1. As a result, the ideal speedup for 16 cores, for instance, is 4. Experiments

on (B2) and (B3) are conducted on the gros cluster of Grid’5000. Furthermore, as indicated

in Table 5.5, the three benchmarks are evaluated on the following sleeping times: 0, 50, 100,

250, 500, 1000, and 2000 ms. Finally, for the three benchmarks the overall execution time is

measured, thus including some small sequential parts of the code, and the broadcast phase.

Results. Figures 5.4a, 5.4b, and 5.4c show the speedups observed for each benchmark ac-

cording to the sleeping time and compared to the theoretical ideal speedup. When increasing

the sleeping time, i. e. the execution time of the transformation, the speedup is enhanced and

is closer to the ideal one. By increasing the size of the dataset, one can note a slight increase

of the speedup by comparing B2 and B3 results respectively in Figure 5.4b and Figure 5.4c.

Indeed, in Figure 5.4b, at 128 cores, more than half of the points are below the 50 % optimal

value, while in Figure 5.4c only two points are below this theoretical value. In other words,

at 128 cores, (D2) needs a sleeping time of 500 ms to reach 50 % from optimal speedup while

(D3) only needs a sleeping time of 120 ms.

5.5.3 Performance Analysis by Phase

This third subsection aims at analyzing the impact of the two phases on the global speedup

of the program. To do so, we processed the same benchmark as before (i. e., (B1), (B2) and

(B3)), but with additional counters within the program to record the computation time of

each distinct part: (1) the tuples generation; (2) the instantiate phase; (3) the broadcast in-

termediate step; and (4) the apply phase.

Results Our results on the three benchmarks show that the total computation time is mainly

driven by the parallel parts. Indeed, in the case of the biggest dataset, with a sleeping time

of 0 ms, the sequential part represents only 3.5 % of the total computation time which is the

maximum percentage of the sequential parts. For instance, at the opposite extreme, i. e. in

the case of the smallest dataset, with a sleeping time of 2000 ms, the sequential part repre-

sents less than 1 % of the total execution time. Hence, in the following, we restrict our analysis

to the speedup of the parallel parts.

Table 5.6 illustrates the impact of each phase, by comparing their relative speedup to
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Table 5.6 – Relative speedups of SparkTE parallel phases on B1, B2 and B3 for sleeping times
equals to 50 ms and 2000 ms. The percentage of the observed speedup compared to the the-
oretical ideal speedup is indicated for each result (higher the better).

Cores
Instantiate

phase (50ms)
Apply

phase (50ms)
Instantiate

phase (2000ms)
Apply

phase (2000ms)

B1

1 1 (100%) 1 (100%) 1 (100%) 1 (100%)
2 1.48 (74%) 1.62 (81%) 1.81 (90.5%) 1.87 (93.5%)
4 2.40 (60%) 1.83 (45.75%) 3.21 (80.25%) 3.85 (96.25%)
8 3.40 (42.5%) 4.50 (56.25%) 5.78 (72.25%) 7.15 (89.375%)

B2

4 1 (100%) 1 (100%) 1 (100%) 1 (100%)
8 1.68 (84%) 1.90 (95%) 1.83 (91.5%) 1.99 (99.5%)

16 2.39 (59.75%) 3.18 (79.5%) 3.30 (82.5%) 3.84 (96%)
32 2.74 (34.25%) 4.66 (59.25%) 5.86 (73.25%) 7.07 (88.375%)
64 3.17 (19.813%) 7.34 (45.875%) 10.87 (67.938%) 12.34 (77.125%)

128 3.33 (10.406%) 8.87 (27.719%) 20.92 (65.375%) 24.70 (77.188%)

B3

4 1 (100%) 1 (100%) 1 (100%) 1 (100%)
8 1.75 (87.5%) 1.97 (98.5%) 1.80 (90%) 1.99 (99.5%)

16 3.04 (76%) 3.68 (92%) 3.31 (82.75%) 3.95 (98.75%)
32 4.58 (57.25%) 6.47 (80.875%) 5.97 (74.625%) 7.87 (98.375%)
64 7.00 (43.75%) 11.47 (71.688%) 10.59 (66.188%) 15.04 (94%)

128 8.17 (25.531%) 15.86 (49.563%) 19.94 (62.312%) 30.14 (94.188%)

the optimal one. For reading convenience, we only show the results for sleeping times equal

to 50 ms and 2000 ms. Table 5.6 confirms our previous assumption about the overhead of

Spark that can be offset by increasing the computation time (i. e. sleeping duration) or the

size of the dataset. Also, one can note that the apply phase offers better scalability than the

instantiate phase. This result can be explained by the remaining imbalance on the tuples

distribution. Let us remind first that the first instantiate phase is composed of two steps: (1)

a guard condition; (2) the instantiation of the tuples that have satisfied this condition. Hence,

even if the partitions are better balanced by our second optimization (see Section 5.4.1), not

all the tuples are necessarily computed. As a matter of fact, the guard condition is always

evaluated, but not the instantiation that depends on the result of the guard condition. On the

contrary, in the apply phase apply patterns to all entries which are nearly perfectly balanced.
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5.6 Conclusion

In this chapter, we presented a refinement of the CoqTL specification, designed for op-

timizing the parallel execution of model transformations on Spark. We have illustrated the

benefits and the scalability of our proposed optimizations through the Relational2Class ex-

ample.

In future work, we plan to continue experiments with other use cases (e. g., the IMDB

case study). We plan to write a compiler from CoqTL to Scala, to automatically obtain an ex-

ecutable transformation from a Coq specification. Finally, we will study other optimizations,

leveraging the vertex-centric paradigm supported by Spark (i. e., GraphX), and the integra-

tion with persistence solution (e. g., HDFS).
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In the previous chapters we have covered two cases where designing choices had a deep

impact on performances on model management operations. In the chapter, we enrich this

concept by proposing multiple configurations in SparkTE, based on different strategies for

the computational steps of the model transformation operation. Contrary to previous work

on SparkTE, to deeply explore performance impacts, we do not deal on correctness anymore.

6.1 Introduction

Multi-objective parameter optimization is a transversal research question across soft-

ware engineering disciplines. It has been a concern in the compilation community, with, for
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Movie
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Person

name: String

Actor

Extends Extends

Extends Extends

Actress
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MOVIE
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[0..*] commonMovies
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[0..*] movies

[0..*] persons

Figure 6.1 – IMDb Metamodel from [92]

example, the automatic configuration of GCC [135]. The operations research field has pro-

posed multiple approaches over the last decades to solve such optimization problems [51],

and state of the art tools such as OpenTuner [6] have been developed to practically address

them. These optimization problems are also a key concern in the Software Product Lines

community [147], where feature models represent multiple variations or configurations of

products. Choosing the optimal product satisfying both the feature model’s constraints and

user-specific requirements is an active topic of research, and has been recently tackled with

evolutionary many-objective optimization algorithms [90], sometimes combined with SAT

solvers [87].

In the MDE area, efforts have been dedicated to classify transformation engine features [5,

143, 89]. On one side, there are languages with multiple engines (e.g., ATL [112, 166, 15, 165,

113], Epsilon [77, 117, 119]). On the other side, a user could expect a single engine, with sev-

eral strategies according to different purposes. Only few attempts target such approaches for

a single feature (e.g., pattern matching in [19, 93]).

In this chapter, we propose Configurable SparkTE, a configurable transformation en-

gine, as an extension of SparkTE, based on multiple implementations for the engine features.

The proposed configurations target model exploration strategies, execution strategies, and

Spark related features.
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6.2 Motivating example

The example that we have selected to illustrate the approach and perform preliminary

performance assessments uses the “Movie Database” (IMDb), proposed in the Transforma-

tion Tool Contest (TTC) 2014 [92]. Listing 6.1 shows an excerpt of the code of a CoqTL trans-

formation named FindCouples, and Figure 6.1 shows its related metamodel. For keeping

clarity, the transformation is written with the transformation language proposed in CoqTL.

In Listing 6.1, the FindCouples transformation on the IMDb model is defined via four

rules, composed of two parts: (i) a matching section (type and guard condition) and (ii) an

output section, which contains a definition for created target elements and optional refer-

ences. To keep a trace of which expression is used for mapping a source to a target element,

each element of the output section of the rules is named

The first rule, Movie2Movie (lines 5–18) simply re-instantiate movies within the output

model. Output Actors and Actresses of the constructed movie are resolved to create a

MoviePersons reference.

The second and third rules aim at copying Person instances from the input model. The

Actor2Actor rule (lines 20–32) constructs a new Actor with BuildActor using the name

of the input actor. One link to the list of movies the actor played in is created in reference

section. The Actress2Actress (line 34) rule is defined in the same manner, replacing the

matched Actor by an instance of type Actress.

The last rule (lines 37–51) matches Person and iterate on all potential candidate it can

form a Couple with. For each candidate, if the guard condition areCouple is evaluated to

true for two given persons, a new instance of Couple is constructed, with a computed aver-

age rating from all common movies.

Additionally, two links are defined for the generated Couple: one for each member of the

group.

Found couples are created thanks to the Persons2Couple rule, which matches two per-

sons who are potentially forming a couple. If the guard condition areCouple is evaluated to

true for two given persons, a new instance of Couple is created. Two links are created, re-

spectively for the persons forming the couple. In this use case, a couple is defined as a tuple

of two persons who played in at least three common movies. Coq and Scala examples of how

this condition is checked are presented in Listing 6.2 and Listing 6.3.
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1 Definition FindCouples :=
2 transformation from MovieMetamodel to MovieMetamodel
3 with m as MovieModel :=
4

5 rule Movie2Movie
6 from element mv class Movie
7 to [
8 output "movie"
9 element mv1 class Movie :=

10 BuildMovie (getTitle mv) (getRating mv) (getYear mv) (getMovieType mv);
11 links [
12 reference MoviePersons :=
13 p <- getMoviePersons mv;
14 actors <- resolve FindCouples m "person" Actor [p];
15 actress <- resolve FindCouples m "person" Actress [p];
16 return BuildMoviePersons mv1 (actors ++ actress)
17 ]
18 ]
19

20 rule Actor2Actor
21 from element a0 class Actor :=
22 to [
23 output "person"
24 element a1 class Actor :=
25 BuildActor (getName a1);
26 links [
27 reference PersonMovies :=
28 mv0 <- getPersonMovie p;
29 mv1 <- resolve FindCouples m "movie" Movie [mv0];
30 return BuildPersonMovie p mv1
31 ]
32 ]
33

34 rule Actress2Actress
35 from ... (* same than Actor2Actor *)
36

37 rule Persons2Couple
38 from element p1 class Actor;
39 for p2 in candidate m p1 when areCouple (getPerson p1) (getPerson p2)
40 to [
41 element c class Couple :=
42 mvs <- commonMovies (getPerson p1) (getPerson p2);
43 rate <- (fold + (map (mv => getRating mv) mvs)) / (length mvs);
44 BuildCouple rate;
45 links [
46 reference CouplePersonP1 :=
47 BuildCouplePersonP1 c (resolve FindCouples m "person" Person [[p1]]);
48 reference CouplePersonP2 :=
49 BuildCouplePersonP2 c (resolve FindCouples m "person" Person [[p2]])
50 ]
51 ]

Listing 6.1 – Excerpt of the FindCouples Transformation in CoqTL
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Definition areCouple (m: moviesModel) (p1: Person) (p2: Person) :=
let mv1 := Person_getMovies p1 m in
let mv2 := Person_getMovies p2 m in
match mv1, mv2 with

| Some (h1:: t1), Some (h2:: t2) ⇒
NatUtils.geb (length (intersect (h1::t1) (h2::t2) beq_Movie)) 3

| _, _ ⇒ false
end.

Listing 6.2 – CoqTL definition for checkings if two persons are a couple

Listing 6.3 – Extracted Scala code from the Coq function areCouple
1 def areCouple( p1: Person, p2: Person, model: MovieModel): Boolean = {
2 val mv1 = MovieMetamodel.getMovies(model, p1)
3 val mv2 = MovieMetamodel.getMovies(model, p2)
4 (mv1, mv2) match {
5 case (Some(h1::t1), Some(h2::t2)) =>
6 intersect(p1_movies, p2_movies) >= 3
7 case _ => false
8 }
9 }

6.3 Configurable SparkTE

SparkTE was designed from Parallelizable CoqTL, a Coq specification defined from

CoqTL. The engine proposes a single execution program, taking a source model, that con-

forms to a source metamodel, as input and producing a target model as output, that con-

forms to a target metamodel. Thanks to the proposed workflow, SparkTE can execute certi-

fied model transformation on Apache Spark. However, certifying software has a cost. Indeed,

because of correction needs, SparkTE cannot really take advantage of the execution environ-

ment, i.e., the JVM, nor the framework it is designed with, i.e, Apache Spark. To tackle this

lack of performance, we propose Configurable SparkTE, a transformation engine based

on SparkTE that also considers a configuration conforms to a feature metamodel as input.

The input of Configurable SparkTE programs remains the same, and produces the same out-

put as SparkTE. Figure 6.2 illustrates the structure of a model transformation using Config-

urable SparkTE. The main difference with SparkTE is the absence of formal semantics, mak-

ing the new engine not running certified model transformation. It would be possible to prove

the semantic equivalence, for each feature, between all the proposed options, but proving is

a long and tedious task. Proposing a fully proven equivalent configurable engine represent a

part of future work.
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Figure 6.2 – Structure of a model transformation using Configurable SparkTE program
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Figure 6.3 – Legend for feature diagrams
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OnDisk

File

XMIFile JSonFile

InMemory

Figure 6.4 – SparkTE feature diagram for its modeling solution

6.4 SparkTE feature model

Next to a correct implementation of Parallelizable CoqTL in SparkTE, using functional

structures (e. g. Li st ) and pure functional features, we introduced additional solutions in

SparkTE. Firstly, the representation of the model and its navigation present several approaches,

based on different data structures and different approaches for representing links. Secondly,

each part of the execution might follow a different strategy. As illustrated previously in the

new specification of CoqTL, the instantiation of elements and links might depend on the

purpose: having a solution for reasoning, or a solution for increasing parallelism opportuni-

ties. Finally, since SparkTE is based on Spark, some features are Spark-related. We discuss the

latest later in the section. The legend that stands for all the feature diagrams of this Section

follows the legend of Figure 6.3.

6.4.1 Modeling approaches

In SparkTE, models follow a very generic specification stating that models must only im-

plement two functions: one to get elements, and one to get links. The concrete implemen-

tation is a couple of two sets: one for the elements, and one for the links. Figure 6.4 gives an

overview of the features described below.
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Links in SparkTE models can either be represented as a tuple of elements with a label,

or only using their IDs. The latest stores less information and does not duplicate the objects

during the distribution, only their IDs, but it leads to the need of resolution when users want

to access the content of the objects from a link.

To tackle memory issues that can be faced when dealing with very large models (VLM),

it is possible to distribute these two sets using RDDs and create a graph by GraphX. Once

the model is distributed, it can be transparently queried by the user, using expressions as

explained in Section 4.4.

On the one hand, the sequential solution offers two possible ways to navigate among the

links of the model. First, links can be reached by iteration on the full set. This operation only

shows benefits on very small model, since the browse of data is made instantly.

1 def iterateOnList(model: SourceModel, source: Id, type_: String): Link = {

2 for (link in model.getAllLinks){

3 if (link.type == type_ && link.source == source)

4 return link

5 }

6 throw new Exception(...)

7 }

8

9 def accessOnHashMap(model: SourceModel, source: Id, type_: String): Link =

10 model.getLinks.get(source).get(type_)

A second approach is to store links in a H ashM ap, using elements and types of links as

keys. Accesses are direct, but creating such a structure requires additional operations with

a CPU cost. It necessitates the composition of several groupBy and map operations. A Scala

snippet to instantiate a map, from a list of links, is the following.

1 def makeMap(allModeLinks: List[Link])

2 : immutable.Map[Id, Map[String, List[Link]]] =

3 allModelLinks.groupBy(link => link.getSource)

4 .map(t => (t._1, t._2.groupBy(link => link.getType)))

Also, in Scala, H ashM ap keys are managed in a non-linear structure (a tree). It aims at

improving the speed of accessing data, but requires an additional amount of memory.

On the other hand, distributed models take advantage of the distributed graph structure

and allow the user to use several computational models for link navigation. It can either be

using Pregel iteration, with the propagation of messages to get only a subset of links, or by
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Figure 6.5 – SparkTE feature diagram for its execution strategy.

filtering the distributed set of edges represented as tr i pl et s composed by a source, a label,

and a target. Note that in the distributed case, links are represented by edges, are always

built from the IDs of elements. However, their representation as triplets in Spark gives direct

access both to the element ID, and the element itself.

Finally, the model can be stored at different level on the machine. In a sequential im-

plementation of the model, i. e. when the model is fully duplicated on each computational

node, the storage must be explicitly handled. SparkTE supports two modes: the model can be

fully loaded in memory or kept on disk using XMI or JSON files. Distributed data with Spark

can be natively stored at different levels by specifying a Stor ag eLevel . This approach is dis-

cussed later. In future work, we consider storing the model in a remote database, for limiting

the amount of data loaded in memory, but this approach would increase computation time

because of the necessary communications.

6.4.2 Execution strategies

Section 5.4 has shown there exist semantics for performing a model transformation in

SparkTE. In the implementation of Parallelizable CoqTL, we put a lot of importance on cor-

rectness. In the following features, we do not consider correctness aspects, but only focus on

performances. Figure 6.5 gives an overview of the features described below.

The first feature, the tuples generation, can follow different strategies. As explained be-

fore, generating all the tuples is not always necessary. However, it tackles imbalance in the

distribution of data since all tuples have the same weight. In the other case, generating the

tuples from the types of the rules, reduces the total number of tuples. Note that if several

rules have the same input types, duplicates might be found in the generated tuples. As an

option, we also propose to add a distinct operation which might add an additional cost of

computation. Lastly, if the input models are very large, tuples can be generated using a Carte-

sian product of RDDs. This approach starts to be very inefficient for tuples of size bigger than
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2.

The second feature is the choice of the type of structure used for storing the generated

trace-links at the end of the instantiate phase. These trace-links will be used to resolve output

elements in the apply phase, to create links. We propose three data structures:

— a List, that is naturally made by construction during the instantiate phase. This ap-

proach is simple but terribly inefficient since elements cannot be accessed by index.

Resolution is conducted by exploring the full list;

— an Array, that is collected from the RDDs during the distribution of computation in

the instantiate phase. As for lists, the resolution is costly and inefficient since the in-

dex of the array does not consider the stored elements, only their positions. However,

Java uses less memory for storing an array instead of a list;

— a HashMap with the input element as keys, and a list of output tuples as value, each

containing a rule name, a pattern name, and a list of output patterns. This solution is

the fastest to use, but necessitates additional computation to build, and more mem-

ory for storing the keys.

By default, all these structures store the concrete elements and their associated output. It is

also possible to only consider the identifiers of the elements to save memory.

To improve the balance of computation, the trace-links can additionally store the name

of the used rules to build output elements. Instead of distributing only the input patterns in

the apply phase, SparkTE distributes couples of pattern and rule. This solution reduces im-

balance in the case where a single pattern matches several rules. Instead of having one node

dealing with all the output of this pattern, several nodes can manage to create its related out-

put links. Concretely, a trace-link stores an additional string corresponding to the rule name,

increasing the needed memory allocated for the trace-links, but also reducing imbalance in

some cases.

Finally, the second part of the computation, designed in the apply phase, can be exe-

cuted from trace-links or from scratch, as described in Section 5.4. The first solution re-

duces the global amount of computation by avoiding a second instantiation of output ele-

ments. However, it imposes a synchronization barrier called by a gather operation to collect

all trace-links in the master node. Depending on the available amount of memory on the

master node, this solution can slow down the computation. Recomputing the full links from

scratch, including the application of instantiate part of rules to input patterns, allows a fully

distributed computation. This approach takes advantage of the large amount of computa-

tional resources available in a cluster. The two approaches might lead to duplicate results.
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Figure 6.6 – SparkTE feature diagram for communicating data among nodes.

That is why we also propose to apply a distinct operation on the resulting links. It adds more

computation time but reduces the size of the result.

6.4.3 Spark-Related Features

Spark has more than 200 parameters to configure an execution environment. Existing

work has illustrated how challenging it is to configure such an environment [109]. In SparkTE,

we propose two internal configurations of Spark (Figure 6.6):

— The storage level of the distributed structures varies according to the available re-

sources. Indeed, a small amount of memory would force a user to prefer disk usage

instead of keeping all the data in memory. Spark proposes to define, for each RDD, a

storage level that can be: only memory, only disk, or a hybrid solution. The latest fa-

vor memory usage, but start swapping on disk to avoid out-of-memory errors. In ad-

dition, it is possible to duplicate the data on several nodes (up to 3), ensuring higher

fault tolerance and reliability. Finally, a user can specify Spark to serialize the content

of RDDs on nodes to reduce its size. This additional computation increases the dis-

tribution time of data (caused by serialization operations), but profits to machines

with a small amount of memory. Table 6.1 shows a summary of all the impacts of

StorageLevel.

— Communications in Spark are mostly implicit. Contrary to other libraries (e. g. MPI [148]),

the library gives a very high level of abstraction, where managing parallelism details

such as the concrete distribution of chunks among nodes or the concrete commu-

nication is not doable from the user perspective. More generally, all the underlying

computations are optimized by taking advantage of functional composition equiva-

lences [79]. However, the broadcast and the gather operations, that is sending data to

all nodes and getting back all the results into a single node, are managed from the user

perspective. The first can be implicit (by calling a variable from the sequential scope
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StorageLevel Space used CPU time In memory On-disk Serialized
MEMORY_ONLY High Low Yes No No

MEMORY_AND_DISK High Medium Some Some Some
DISK_ONLY Low High No Yes Yes

Table 6.1 – Impact of Spark StorageLevel on a distributed data-structure management

in a RDD) or explicit using the br oadcast Spark operator. An additional solution is

to use the j oi n operators on RDDs, to duplicate the content of a RDD on each node.

The bor adcast operation is preferred for small amount of data to share, while the

j oi n operator is designed for larger amount of data. The second is usually processed

by calling a col l ect operation at the end of a chain of distributed computation. This

operation simply gathers all results into an array on the master node of the cluster. It

is also possible to use a reduction operation, called f ol d , to gather results in parallel

into a single value. The latter can also be used as a collect operation.

6.5 Evaluation

In the previous sections, we introduced a parametrizable transformation engine propos-

ing different options for its features. These new strategies for navigating data, and conduct-

ing a model transformation, aims at improving the performance of SparkTE. Contrary to the

strict implementation of Parallelizable CoqTL semantic, the new implementation does

not target an engine fully based on correctness. As expected, the results presented in this

section show significant improvement in performance. First, some of the additional features

decrease the total computation time of a transformation. Second, as a side-effect, the better

performance provided by the combination of new features lead to a better horizontal scala-

bility, that is the capacity of dealing with models that have an increasing size. In this section,

we target models conforms to the IMDB metamodel presented in Figure 6.1. To evaluate the

performance of SparkTE parametrized with a given configuration, we perform two transfor-

mations on IMDB models:

— A Identity transformation, where the output model is simply a copy of the input

model. This transformation has low complexity, and is used to show the horizontal

scalability capacity of SparkTE on VLMs.

— The FindCouples transformation, presented in Listing 6.1. This transformation uses

costly operations
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Feature Configuration 0 (C0) Configuration 1 (C1) Configuration 2 (C2)

ModelImplementation Sequential Sequential Sequential
LinksById false false false

DynamicLinkNavigation undefined IterateOnList AccessOnHashMap
ModelStorage InMemory InMemory InMemory

TuplesGeneration ByRuleTuples ByRuleTuples ByRuleTuples
Distributively false false false

DistinctTuples false false true

TraceLinksNavigation undefined ResolveList ResolveHashMap
byId false false false

withRule false false true
DistinctLinks false false true

GatheringVariable Collect Collect Collect
VariableSharing Broadcast Broadcast Broadcast

StorageLevel MEMORY_ONLY MEMORY_ONLY MEMORY_AND_DISK

Table 6.2 – Examples of configurations of SparkTE

All the experiments of the current Section have been run on the cluster gros (Nancy),

from the G5k architecture: 2× 18 cores/CPU, Intel Xeon Gold 5220, 96GB of memory, with a

network speed of 2× 25Gbps.

Table 6.2 sets three different configuration environment, set from the feature models

(Fig 6.4, 6.5 and 6.6), for running a model transformation on Configurable SparkTE. Run-

ning all possible transformations is however not realistic. In this section, we only focus on

some features, or on the comparison of two possible configurations. Appendix B gives an at-

tempt of the design of a benchmark for running experiments for distributed multi-parameter

applications.

6.5.1 Feature analysis

Links and trace-links navigation In this section, we apply our running example to a first

model, with a fixed size of 100024 elements and 251732 links. We used 4 executors, with

4 cores each, to run the Identity transformation, on a in-memory model, with the con-

figuration C0 of Table 6.2. We make varying the DynamicLinkNavigation feature, between

IterateOnList and AccessOnHashMap, and the TraceLinksNavigation strategy between Re-

solveList and ResolveHashMap. The purpose of the experiment is an analysis of the impact

on computation time of using one solution instead of another one. Table 6.3 illustrates the

performance difference while using different data-structures for accessing input model links
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DynamicLinksNavigation TraceLinksNavigation
Computation

time
Instantiate

phase
Apply
phase

IterateOnList ResolveList 1636 sec 3 sec 1633 sec
IterateOnList ResolveHashMap 1584 sec 3 sec 1581 sec
AccessOnHashMap ResolveList 233 sec 6 sec 227 sec
AccessOnHashMap ResolveHashMap 12 sec 6 sec 6 sec

Table 6.3 – Computation time of an Identity transformation on a IMDB model with varying
data-structures type for accessing input model links and resolve instantiated trace-links

and resolve instantiated trace-links in the apply phase.

Since any of the links nor the trace-links are queried in the instantiate phase, its compu-

tation time remains almost the same. The slight difference is due on the construction of a

map for the trace-links, that will be used in the second computation phase: the apply phase.

However, in the second phase, where output links are created, the engine queries both the

links and the trace-links. The results show that using ResolveList or ResolveHashMap on the

trace-links has no significant impact on the computation time of the apply phase while us-

ing a list for accessing input links. However, accessing links using a map largely decreases the

computation time of the second phase. In addition, coupling the ResolveHashMap strategy

with AccessOnHashMap also shows significant benefits which was not the case with cou-

pling the ResolveHashMap and IterateOnList.

Spark-related features In additional experiments, we switched options for Spark-related

features. We conducted the same experiments as above, using the same model, the same

Identity transformation, and the same computational environment (gros cluster on G5k).

As solutions for navigating links and trace-links, we used AccessOnHashMap and Resolve-

HashMap. On one side, we experimented the impact of switching communication primitives

of Spark both for sharing data, i.e., the use of br oadcast (implicit or explicit) or the use of

j oi n, and for gathering data, i.e., use of col l ect or f old . Similarly, we conducted experi-

ments changing the StorageLevel mode of RDDs. Any of these results have shown significant

differences. This absence of difference is unexpected, especially for the StorageLevel option.

Further investigation is a part of future work.
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#elements #links
Running time

(Configuration 1)
Running time

(Configuration 2)

1000 3000 9.799 sec 4.978 sec
2500 7300 81.047 sec 7.803 sec
5000 15000 882.708 sec 19.127 sec
7500 22000 > 2h 36.928 sec
10000 45000 Timeout error 65.198 sec

Table 6.4 – Comparison of two running configuration of SparkTE on FindCouples example

6.5.2 Configuration comparison

In this section, we compare two specific configurations. The first, referred as C1, corre-

sponds to the SparkTE implementation, the one described in Chapter 5. The second, C2, is

the one promising the best performance for the FindCouples transformation, according to

the previous experiments. To run the experiment, 2 machines from the cluster gros have

been used, with 4 working cores each. The experiment has been conducted on several mod-

els, from 1000 elements and 3000 links, to 10000 elements and 45000 links. These models

correspond to real data from the IMDb database.

The results have shown that, with slight modifications, a new configuration might have a

deep impact on performance. This gap is highly illustrated with larger models, as shown in

Table 6.4.

First, we observe that running the transformation with the first configuration is always

longer than running the same transformation with configuration 2. For a model of 1000 ele-

ments, it takes 2 times longer to end the transformation with C1. For a larger model, with for

instance 10000 elements, it is not even possible to run the transformation using C1 without

a timing error. In theory, no error should happen, the computation would just take a very

long time, but the machine allocation in G5k is limited by time. Secondly, we observe that

the computation time grows faster with C1 for increasing size models. We further discuss

horizontal scalability below.

6.5.3 Horizontal scalability

Considering the configuration C2, which has shown the best performance results, we

conducted experiments to evaluate its horizontal scalability, that is the capacity of the engine

to deal with models with increasing size. To have pure results, that are not impacted by the
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Partie , Chapter 6 – Configurable transformation engine

Size 100k elements 1M elements 2M elements
Computation time 21 sec 228 sec 432 sec

Table 6.5 – Horizontal scalability of running Identity on SparkTE with good configuration
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Figure 6.7 – Comparison of horizontal scalability for the Identity and FindCouples transfor-
mations on IMDb models

complexity of the transformation, we ran the Identity transformations on IMDb models

of different sizes from 100k elements, to 2M elements. The resulting computation time are

presented in Table 6.5.

The experiment shows perfect horizontal scalability for the Identity transformation. If

we consider a more complex transformation, such as the FindCouples transformation, we

observe an impacted horizontal scalability. Indeed, in Table 6.4, we observe that increasing

the input model size, also decreases the horizontal scalability of the engine. The FindCouples
transformation aims at comparing actors two-by-two to find who are forming a couple. The

complexity the transformation is exponential on the number of actors, then it is expected

to observe a largely decreasing scalability for such an example. Figure 6.7 illustrates the dif-

ference of the two horizontal scalability results for the two transformations. The scalability

values are relative to the computation time of the transformations on a model of 1000 ele-

ments.
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6.6 Conclusion

In this chapter, we proposed a configurable transformation engine designed on top of

Spark, namely Configurable SparkTE. We have proposed the feature diagram for all proposed

options, and have illustrated the benefits of the new proposed implementation, compared to

the previous version of SparkTE. Finally, we have analyzed the impact of some engineering

choices in the space-design of a transformation engine.

In future work, we plan to continue experiments by providing a complete analysis of the

Configurable SparkTE features. We would like to compare all possible configurations, or at

least a significant subset, to highlight the impact of the implementation choices, individu-

ally or combined. Finally, we want to face the configurable aspects of different kinds of in-

put: different input models with different topologies (size, depth, connectivity), and different

transformations.
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CHAPTER 7

CONCLUSION
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7.1 Synthesis

Model transformation is an important technique in the domain of Model-Driven En-

gineering. It allows the automatic mapping between two different representations of data.

Two main components are involved in the model transformation. First, languages have been

designed to express transformation rules to help users to write such a mapping. Second,

engines compute the transformations as defined in the rules. Due to the always increasing

amount of data, transforming models becomes challenging, and necessitates new strategies

to tackle the lack of scalability. Among these strategies, parallelism and distributed computa-

tion have been revealed as an efficient solution, proposing to allocate additional resources to

the execution of a transformation. Solutions have been designed for this purpose. However
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these solutions are not comparable, and doing so necessitates an expertise in all of them.

Also, designing his own transformation engine requires a global knowledge of existing fea-

tures to propose an adequate software solution.

In this thesis, we proposed to contribute to the analysis of the design-space of a dis-

tributed transformation engine, namely SparkTE. SparkTE is a transformation engine, de-

signed from a formal specification, CoqTL, on top of Apache Spark, a multi-language engine

for executing data engineering. Our proposal gives an analysis at the different levels of the

conception of our transformation engine.

First, we evaluated different programming models based on the distribution for evaluat-

ing queries on models. Queries are the concrete execution of expressions written in trans-

formation rules to interrogate a model to either check a condition, or extract information

for creating output content. We initially proposed a general implementation for a constraint

language, based on a skeletal approach, and additional executions for a specific query, tak-

ing advantage of several programming models: MapReduce, Pregel, and hybrid solutions.

The results have shown major performance differences, depending on the input model size

and topology.

Second, we have studied the semantics of a transformation engine. From CoqTL, an in-

ternal DSL aiming at reasoning on model transformations, we proposed Parallelizable Co-

qTL. Our new specification aims at refining the former formalization to enhance paralleliza-

tion opportunities in its implementation, and proposes three optimizations. These opti-

mizations make the transformation defined as two highly-parallelized phases, with the sec-

ond reusing results from the first. We formally verified that the transformation semantic in

Parallelizable CoqTL preserves the one previously defined in CoqTL. We extracted, by-hand,

the Coq code of our specification, to obtain a Scala transformation engine, preserving the se-

mantic formally defined in the Coq definition. Finally, by replacing sequential lists with dis-

tributed structures, i.e., Spark RDDs, we obtained SparkTE, a transformation engine propos-

ing distributed execution without sacrificing correctness. We studied the impact of the three

design choices we made, and results have shown a gain of performance and promised scal-

ability for long computation on small models.

We also have conducted a design-space analysis by proposing a parametrized version

of SparkTE. Sacrifying correctness, we have been able to propose alternative execution for

model transformations that proposes better perfomance by reducing the global computa-

tion time. We have studied and optimized the scalability of the transformation engine, by

switching between configurations defined in a feature diagram.
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7.2 Limits

Several limits were encountered during the research presented in this thesis, which should

be considered in future works. We describe them in what follows.

7.2.1 Horizontal scalability

At the initial computation phase, the full model is stored on a single node, which means

it needs to be either distributed, or fully communicated to share its content with other com-

putational nodes. In both cases, a part of the performance really depends on the capacity of

the master node to deal with a large amount of data. In theory, having an already distributed

model as input would allow SparkTE to deal with models of infinite size. Besides, having an

external solution for storing models, for instance distributed, would limit the memory over-

flow which leads to swapping with disk operations.

7.2.2 Correctness

Our approach also presents correctness weaknesses. Proving is a long and difficult task.

It necessitates expertise to first formalize, and then prove properties. Coq proposes a proven

extraction mechanism to obtain ML (e.g., Scheme, Haskell, OCaml) programs from Coq code.

The extracted code formally respects the semantics of Coq code, and then the target code

verifies all the defined properties in the Coq part. In our approach, we translated the Coq

code to Scala code by hand. The only advantage of this approach is purely stylish: we have

introduced OOP aspects, to ease the development of SparkTE. Also, since we only use pure

functional features for the target engine, we did not change the semantics of the extracted

code. A second limit of the correctness of SparkTE is that all the modifications that have

been processed to obtain a parametrizable engine have not been formalized and proven not

changing the semantics of the initial engine. Besides, some features are not included in the

formalization (e.g., distributed aspects, non-linear structure usage) and would necessitate

additional work to have a fully proven correct workflow.

7.2.3 Multi-parameters benchmarking

The number of options for each feature makes full experimentation of Configurable SparkTE

impossible. Indeed, considering only the presented discrete features, the number of possi-

ble configurations is already around 100000. In addition, to have full experimentation, other
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parameters must be considered: the input model size, and the execution environment (e.g.,

number of machines, allocated resources). On one side, we cannot experiment all the com-

binations to see their synergies. On the other side, we do not provide a solution for giving the

best configuration for a given input.

7.2.4 Input analysis

We have shown that the transformation complexity and the model size have a deep im-

pact on the scalability. Our analysis has been limited to: running a complex transformation

on a small model shows good vertical scalability, while running a simple transformation on

a large model shows good horizontal scalability. A deep analysis of both the input model and

the complexity of transformation would allow us to determine what configuration, and what

solution is the most adapted to the current execution.

7.2.5 Additional strategies

Our approach is built upon data-distribution and parallelism to enhance the perfor-

mances of a model transformation on very large models. We have described additional so-

lutions (e.g., incrementality, laziness) that improve performances for costly operations, but

we did not integrate them to our solution. By default, Spark already proposes laziness as-

pects, thanks to its transformation-action mechanism but we did not analyzed its impact.

Incrementality is not very suitable for data-distribution, since small modifications lead to

small recomputation, which might be not worth it to execute on a large scale architecture.

However, it could have been integrated as a side feature, proposing sequential operations

for small model management operations. Finally, our solution only targets data-distributed

approaches for performing a model transformation. No task-parallelism, nor asynchronism

was considered as a solution. To have a complete analysis of performant transformation en-

gines, these other approaches must be integrated, and compared.

7.3 Perspectives

We mention along the thesis possible perspectives for our future work. In what follows

we sum up these perspectives.

106



7.3.1 Storing models in external database

The first perspective concerns the external storage of the models. Transforming VLMs is

challenging. To tackle the scalability problems described in Section 7.2.1, we plan to use an

external solution for storing the model. A first approach will be to use a database for storing

the model. Doing so would not overload the memory of the master node of the Spark clus-

ter on which a SparkTE program is running. Besides, some treatments could be processed

on the database server side, like for instance the generation of possible input patterns as

tuples for the instantiate phase of the transformation. Thanks to the numerous connector

that have been developed for Spark, that are Spark APIs for interacting with data source, we

could experiment different external solutions, including distributed databases [23, 177]. Our

solution would work like NeoEMF [61, 63], as an interface between a modeling solution and

an external data source. The advantage of using such a solution is the structural proper-

ties of databases, which can easily represent model elements and their relations. Data ware-

houses [24] are a second targeted option for storing models. Contrary to databases, the con-

tent of data warehouses is not necessarily structured, but promises very good performance.

For instance, Meta efficiently used Hive [162, 161] for its social network Facebook [160].

7.3.2 A compiler CoqTL to Scala

In future work, we plan to write a compiler from CoqTL to Scala, to automatically ob-

tain an executable transformation from a Coq specification. So far, the extraction is made by

hand, but existing solutions such as [67] can be a basis of this future work. Concretely, our

compiler would need (i) a translation of Coq classes into Scala interfaces, (ii) a functional

proof of equivalence between Coq and Scala definitions for functions, (iii) the extraction of

Coq semantics definition into Scala definitions.

7.3.3 Cost model for distributed operations

To evaluate a model transformation solution, we plan to propose an evaluation of model

operation complexity with a baseline where transformation primitives are evaluated, and

combined to deduce a global complexity for a given transformation. Then, depending on

the target engine, the global complexity can be different. It is doable to compare sequential

engines (e.g, formalized in Coq, like it is done with CoqTL). It is also possible to compare the

parallelizable semantics of engines, but expressed in a sequential manner. However, there is

a gap between the sequential analysis and the parallel analysis that represent a part of our
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future work. There exist cost models for evaluating parallel tasks (e.g., BSP [170], Amdhal’s

laws [3]), that could be combined with the rule complexity evaluation to be able to compare

two distributed operations. Our future analysis will separate the transformation complexity

and the engine complexity, to propose a clear decision process for picking the right transfor-

mation semantics which is independent from the used engine.

7.3.4 Evaluating SparkTE features

This fourth perspective is the consequence of the previous one. Evaluating SparkTE fea-

tures will be eased by the provision of the complexity of model transformation operations. To

compare all possible configurations of Configurable SparkTE, we first want to compare fea-

tures independently, but the consequence of combining some of them by evaluating their

synergy. Ideally, we want to run the cartesian product of all the options for the parameters,

and group by results by pair, triplets, etc. From these results, and by conducting deep sta-

tistical analysis, we plan to provide an automatic configuration, and reconfiguration, of our

engine. First, we will be able to give an order to the parameters of the engine according to

the impact they have on the engine performance. Second, using game-based strategies (e.g.,

Monte-Carlo approach [32]), we will find the best configuration input for our distributed

transformation engine.

7.3.5 Monitoring SparkTE

Finally, we want to open our engine analysis to other perspectives. We plan to conduct

monitoring of SparkTE jobs activity at different levels:

— Memory consumption: The computation time depends on many factors including

memory consumption. Since we are using distributed architectures for running model

transformations, analyzing precisely the memory usage of our jobs would allow better

resource management within a running cluster.

— Energy consumption: Considering the current ecological challenges our world is fac-

ing, stressing the impact of running large computations must be addressed [120]. For

instance, we could evaluate heat production using sensors [60]. Besides, model-based

approaches could be used for contributing to energy-aware software engineering in

the context of model transformation [25, 26].
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APPENDIX A

EFFICIENT LOADING OF SERIALIZABLE

MODELS

Handling very large models rapidly become challenging due to the capacity of tools to

deal properly with a big amount of data. While several solutions to persist EMF models exist,

most of them do not allow partial model unloading and cannot handle models that exceed

the available memory. Furthermore, these solutions do not take advantage of the graph na-

ture of the models: most of them rely on relational databases, which are not fully adapted to

store and query graphs. Neo4EMF [17] is a persistence layer for EMF that relies on a graph

database and implements an unloading mechanism. The main purpose of NeoEMF is to

face scalability issues on large-scale models [62]. On the side, additional modules allow de-

velopers to use additional persistence solutions. For instance, NeoEMF I/O deals with file

solutions, as the standard XML Metadata Interchange (XMI) files. Moreover, distributed so-

lutions whose purpose is to access and interact efficiently with large-scale models, take ad-

vantage of clustering several machines largely increasing the quantity of resources allocated

to a computation. The multi-language engine for executing data engineering Apache Spark,

distribute objects by streaming

We proposed an extension of NeoEMF for dynamically loading objects, independently

of EMF artifacts. Figure A.1 gives an overview of how we defined a side ecosystem to load

models using the NeoEMF I/O module.

A.1 Contribution to NeoEMF

Figure A.1 describes the integration of NeoEMF in modeling solutions ecosystem. Stan-

dard modeling users use model-based applications which provide high-level modeling fea-

tures such as a graphical interface, interactive console, or query editor. These features inter-

nally rely on EMF’s Model Access API to navigate models, perform CRUD operations, check

constraints, etc. Modelers might also want to distribute their computations to improve per-
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formances and increase computing capacity. Depending on the targeted solution, the input

differs in how it is interpreted by the engine. Indeed, most Java frameworks for distributed

computing deal with objects who must implement the java.io.Serializable interface. For

instance, SparkTE [138], a model transformation engine based on Spark 1, designed in the

context of the Lowcomote project, deals with Java serialized elements for communicating

between computational nodes. In the other case, that is using model-based tools using EMF

modeling solution, EMF delegates the operations to a persistence manager using its Persis-

tence API, which is in charge of the serialization/deserialization of the model.

Advanced User

& Developer

NeoEMF I/O

Standard

Modeling User

NeoEMF Core


/Graph     /Map     /Column


Modeling Solution (Serializable) EMF


Model-Based Tools


Distributed Model-
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SparkTE)

Model Access API

Persistence API

Backend API

.XMI Blueprints MapDB HBase/
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Figure A.1 – NeoEMF extension integration in a model-based development environment

Once the core component has received the modeling operation to perform, it forwards

the operation to the appropriate database driver (Map, Graph, or Column), which is in charge

of handling the low-level representation of the model. These connectors translate model-

ing operations into Backend API calls, store the results, and reify database records into EMF

EObjects when needed. Our contribution aims at providing EventListener4Serializable an

abstract class in the NeoEMF I/O module, that is completely independent of EMF core com-

ponents. A NeoEMF EventListener defines the behavior for parsing elements as they are

read during in file reading. To use the features of our new listener, a user define two behav-

ior: (i) one for element, overriding createElement and (ii) for links overriding createLink. An

overview of this listener and a concrete implementation for the case presented in Section 4.2

are respectively presented in Listing A.1 and Listing A.2.

Listing A.1 – EventListener4Serializable interface

1. https://spark.apache.org
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1 abstract class EventListener4Serializable[E <: Serializable, L <: Serializable]

2 extends EventListener {

3 ...

4 def createElement(classname: String, id: Long): E

5 def createLink(referenceName: String, parentId: Long, targetIds: List[Long]): L

6 }

Labels for class names and reference names are defined as constants, corresponding to

the names that are used in the metamodel. Also to allow both the distribution of elements

and links, to have a Spark distributed graph, links must be defined as a triplet of a source id,

a label and a target id. The links structure is independent of elements, but must use valid ids,

existing in the rest of the model.

Listing A.2 – An example usage of EventListener4Serializable for TTC18 case

1 class SocialNetworkListener

2 extends EventListener4Serializable[SocialNetworkElement,SocialNetworkLink] {

3

4 override def createElement(classname: String, id: Long)

5 : SocialNetworkElement = {

6 classname match {

7 case USER => new SocialNetworkUser(id)

8 case POST => new SocialNetworkPost(id)

9 case COMMENT => new SocialNetworkComment(id)

10 case _ =>

11 }

12 }

13

14 override def createLink(referenceName: String, parentId: Long, targetIds:

List[Long])

15 : SocialNetworkLink = {

16 referenceName match {

17 case COMMENT_LIKEDBY => new CommentLikedBy(parentId, targetIds)

18 case COMMENT_POST => new CommentPost(parentId, targetIds.head)

19 case COMMENT_SUBMISSION => new CommentSubmission(parentId, targetIds.head)

20 case SUBMISSION_COMMENTS => new SubmissionComments(parentId, targetIds)

21 case SUBMISSION_SUBMITTER => new SubmissionSubmitter(parentId,

targetIds.head)
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22 case USER_FRIENDS => new UserFriends(parentId, targetIds)

23 case USER_LIKES => new UserLikes(parentId, targetIds)

24 case USER_SUBMISSIONS => new UserSubmissions(parentId, targetIds)

25 case _ =>

26 }

27 }

28 }

A.2 Experimental results

This section presents the time it takes for loading models with different sizes and com-

plexity. These times are compared to rhe times to load the same models using the native

EMF resource loader. The experiments have been conducted on a shared memory machine

with a Intel Core i7-8650U having 8 cores at 1.90GHz and a memory of 32GB. The machine

was running Ubuntu 22.04 LTS. We use Java 13, Scala 2.12 with Spark 3.1.0. The used model

and their respective sizes are described in Table A.1. The smallest model is composed 1274

elements and 2163 links while the biggest is made with 859114 elements and 1589908 links.

Each recorded timing is the average of 30 executions.

Dataset Loading time
id #elements #links #users #posts #comments #likes ext. NeoEMF native EMF
1 1274 2163 80 554 640 6 61ms 69ms
2 2071 3548 889 1064 118 24 93ms 184ms
3 4350 7594 1845 2315 190 66 146ms 450ms
4 7530 14422 2270 5056 204 129 270ms 878ms
5 15132 27886 5518 9220 394 572 413ms 3921ms
6 30396 56261 10929 18872 595 1598 491ms 19473ms
7 58076 111197 18083 39212 781 4770 1858ms 82535ms
8 115121 218823 37228 76735 1158 13374 2699ms 389953ms
9 224816 424901 1678 74668 148470 36815 3700ms 1711354ms

10 443323 812515 2606 167299 273418 102276 8863ms > 5 minutes
11 859114 1589908 3699 314510 540905 2684 19201ms > 15 minutes

Table A.1 – Loading time of models from TTC18

Our solution clearly outperforms EMF native loading mechanism. Because we only pass

through the file once, loading elements as they are read, the computation time is propor-

tional to the size of the file. On the contrary, EMF concretely resolves references making its

loading mechanism time depending on the topology of the input model.
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APPENDIX B

MULTI-PARAMETER BENCHMARK

FRAMEWORK

Every non-trivial application has a large number of parameters, each of them having

varying sizes of value sets, i.e., different numbers of values for those parameters. Some of

these parameters influence the performance of the application, i.e., execution time, mem-

ory, disk or network use, which is of interest to the application’s users. They would like to

have the application finish in the shortest time, use the least amount of memory or limit the

network traffic to a certain extent. Often these goals are conflicting with each other, however,

finding the best parametrization is crucial to improve the user experience of the application.

(Best parametrization is a concrete binding of the parameters to values with which the ap-

plication has the best performance.)

To make the general goal more specific, we focused our research on Spark applications,

i.e., software that can be deployed on a Spark cluster. SparkTE, that was introduced in Chap-

ter 5, is such an application.

B.1 Research objectives

Finding the best parametrization in a naive way is a time-consuming endeavor, due to

the exponential number of combinations that have to be checked (cross-product of the pa-

rameter value sets). A way to reduce these combinations is to use good filter functions that

remove the unnecessary combinations, e.g., those who do not have an influence on the op-

timization goal or might yield equivalent results. Another way is to leverage the easy access

to the large amount of computational capacity in the cloud, so we can yield the benchmark

results faster by being able to test more parametrizations in parallel. However, this approach

has high cost implications that we have to pay. To summarize, our research objectives are:

RO1 develop a multi-parameter benchmark framework to find the best parametrization

of a Spark application according to a goal (i.e., execution time, memory or network
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use),

RO2 use cloud infrastructure to test the parameter combinations to yield the results the

fastest.

B.2 Motivating example

Let’s take a simple word count application that counts the number of occurrences of each

word in a text (corpus), illustrated by Listing B.1: Line 1 reads the file into a RDD in Spark.

After that, in line 2, it splits the content of the file by white space, groups the words by occur-

rence and returns them in a descending order of occurrence. Finally, line 3 prints the most

frequent word to the standard output. The parameters of the application are: the name of

the file (filename), the replication factor (replication, on how many nodes the RDD will

be copied on the cluster), the number of partitions (partition, how many RDDs the file’s

content will be split into).

Listing B.1 – Word count example Spark application.

1 val file: RDD[String] = nFile(filename, replicate, spark, partition)

2 val res = file.flatMap(line => line.split(" ")).map(word =>

(word.replaceAll("[-+.^:,;)(_]", ""), 1)).reduceByKey(_ +

_).sortBy(e => e._2, ascending = false).collect()

3 println(res(0))

In our example, we used a corpus with 857116 words (bible.txt), experimented with

replication factors 1-2 and number of partitions 1-3, as shown in Table B.1. We measured

both the execution time and the memory use of the application in six different scenarios to

check all possible combinations of replication and partition.

File name Replication factor Number of partitions
bible.txt 1, 2 1, 2, 3

Table B.1 – Word count parameters.
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Figure B.1 – Global overview of the approach for a multi-parameter benchmark framework

B.3 Architecture & approach

Figure B.1 provides an overview of our benchmark approach. It takes as input:

— the Spark application to benchmark,

— the ordered set of parameters with their value sets, and some constraints describing

the prohibited combinations of the parameter values (e. g. Parameter A cannot have

value a’, if Parameter B has value b’),

— the benchmark framework parameters: Spark cluster configuration, the number of

warm-up and measurement rounds with each combination and the number of pa-

rameter combinations we want to benchmark.

We need the input parameters to be sorted by priority, i. e. the parameter that has the

highest impact on the measurement goal (e. g. memory use, execution time or network traf-

fic) should have the highest priority. Although several methods exist which help decide the

prioritization (e. g. in an empirical way by learning from previous measurements, following

theoretical assumptions, following industrial or research best practices), but it was out of

the scope of our research to decide which is the best way to set the priorities. In our case, we

used the experiences gained from previous measurements to decide the priorities among

the parameters.

After the prioritization, we built a Monte Carlo tree to perform a Monte Carlo tree-like

search [32] on the different combinations of the parameter values. During the construction

of the tree, we removed those nodes that would give a forbidden combination of the param-

eter values (due to the constraints defined between the parameters in the input step).
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In each benchmark round, we (1) select the next parametrization from the tree, (2) de-

ploy the application with this parametrization on the cluster, (3) run the application and

collect the metrics, (4) save the parametrization with the measured metrics, (5) when we

have enough data collected then we save the concrete value (binding) of the parameter that

yielded the best result for the given metric, and (6) update the tree with this information and

move on to get the next parametrization. In order to avoid concluding results from just one

measurement, each parametrization is measured in m number of measurement rounds, pre-

ceded by n number of warm-up rounds. The average of the metrics values measured in the

m number of measurement rounds will be the metrics values saved for that parametriza-

tion. We repeat the benchmark loop until we experimented with all valid combinations of

the parameters, or the number of combinations we wanted to benchmark. Finally, this al-

gorithm returns the best parameter binding(s) for the given metrics and a CSV table with all

measurement results.

Comparing benchmark results when multiple metrics are measured is a difficult task.

Therefore, we give the opportunity to the user to define the comparison function to com-

pare which measurement result is better in these cases. In our example (Section B.2), we

measured both the execution time and the memory use of the application. However, we gave

higher weight to the execution use, i. e. the lower it is the better, despite possibly yielding a

higher memory use.

The benchmark framework is independent from the execution environment (computa-

tion cluster), on which the application is deployed in Spark. In the following subsection, we

introduce a cloud infrastructure, Grid’5000 that can be used to run the benchmark on.

B.3.1 Evaluation

On G5k, we booked a single node with 64 GB RAM and Intel Xeon E5-2660 CPU at the

Nantes site of the cluster and installed Spark on it. After that, we run the benchmark workflow

on the motivating example (Section B.2) that concluded the following measurement results:

From the results in Table B.2, we can conclude that replication factor 1 with 2 partitions

is the best parametrization of the running example in the given deployment environment,

because it yields the shortest execution time (32 ms) despite a larger memory use (3267 MB)

than the smallest one (3156 MB).
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File name Replication factor # partitions Memory use (MB) Execution time (ms)

bible.txt

1 1 3156 33
1 2 3267 32
1 3 3494 44
2 1 3878 44
2 2 3436 43
2 3 3334 44

Table B.2 – Benchmark results on the word count example.

B.4 Conclusion

We introduced a multi-parameter benchmark framework to find the best parameteriza-

tion of a Spark application. We used a cloud infrastructure (G5k) to test the parameter com-

binations and found the best parametrization for our motivating example application. The

prototype implementation of the framework is available on GitHub 1.

As future work, we are planning to extend the framework so that it is able to run the mea-

surements in parallel, on different machines in the cluster. Thereby speeding up the over-

all execution time of the benchmark workflow. Besides, we will experiment with different

applications and advertise the framework for a broader audience in the MDE and software

engineering communities so that other software engineers can also benefit from our work.

1. https://github.com/lowcomote/multi-parameter-benchmark

118

https://github.com/lowcomote/multi-parameter-benchmark


BIBLIOGRAPHY

[1] Mathieu Acher et al., « Learning very large configuration spaces: What matters for

Linux kernel sizes », PhD thesis, Inria Rennes-Bretagne Atlantique, 2019.

[2] Juliana Alves Pereira et al., « Sampling Effect on Performance Prediction of Config-

urable Systems: A Case Study », in: Proceedings of the ACM/SPEC International Con-

ference on Performance Engineering, ICPE ’20, Edmonton AB, Canada: Association

for Computing Machinery, 2020, pp. 277–288, ISBN: 9781450369916, DOI: 10.1145/
3358960.3379137, URL: https://doi.org/10.1145/3358960.3379137.

[3] G. M. Amdahl, « Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities », in: IEEE Solid-State Circuits Society Newsletter 12.3 (2007),

pp. 19–20, ISSN: 1098-4232, DOI: 10.1109/N-SSC.2007.4785615.

[4] Moussa Amrani et al., « Towards a Formal Specification of Multi-paradigm Modelling »,

in: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems Companion, MODELS Companion 2019, Munich, Germany, September

15-20, 2019, ed. by Loli Burgueño et al., IEEE, 2019, pp. 419–424, DOI: 10 . 1109 /
MODELS-C.2019.00067, URL: https://doi.org/10.1109/MODELS-C.2019.00067.

[5] Moussa Amrani et al., « Towards a Model Transformation Intent Catalog », in: Proceed-

ings of the First Workshop on the Analysis of Model Transformations, AMT ’12, Inns-

bruck, Austria: Association for Computing Machinery, 2012, pp. 3–8, ISBN: 9781450318037,

DOI: 10.1145/2432497.2432499, URL: https://doi.org/10.1145/2432497.
2432499.

[6] Jason Ansel et al., « Opentuner: An extensible framework for program autotuning »,

in: Proceedings of the 23rd international conference on Parallel architectures and com-

pilation, 2014, pp. 303–316.

[7] Ralf Ansorg and Lars Schwabe, « Domain-Specific Modeling as a Pragmatic Approach

to Neuronal Model Descriptions », in: Brain Informatics, ed. by Yiyu Yao et al., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 168–179, ISBN: 978-3-642-15314-3.

xxi

https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1109/N-SSC.2007.4785615
https://doi.org/10.1109/MODELS-C.2019.00067
https://doi.org/10.1109/MODELS-C.2019.00067
https://doi.org/10.1109/MODELS-C.2019.00067
https://doi.org/10.1145/2432497.2432499
https://doi.org/10.1145/2432497.2432499
https://doi.org/10.1145/2432497.2432499


[8] Danilo Ardagna et al., « MODAClouds: A model-driven approach for the design and

execution of applications on multiple Clouds », in: 2012 4th International Workshop

on Modeling in Software Engineering (MISE), 2012, pp. 50–56, DOI: 10.1109/MISE.
2012.6226014.

[9] Thorsten Arendt et al., « Henshin: Advanced Concepts and Tools for in-place EMF

Model Transformations », in: International Conference on Model Driven Engineering

Languages and Systems, Springer, 2010, pp. 121–135.

[10] University of Malaga Atenea team, Lintra, http://atenea.lcc.uma.es/projects/
LinTra.html, 2018.

[11] Salman Azhar, « Building Information Modeling (BIM): Trends, Benefits, Risks, and

Challenges for the AEC Industry », in: Leadership and Management in Engineering 11

(July 2011), pp. 241–252, DOI: 10.1061/(ASCE)LM.1943-5630.0000127.

[12] R.C. Backhouse, An Exploration of the Bird-Meertens Formalism, Computing science

notes, University of Groningen, Department of Mathematics and Computing Sci-

ence, 1988, URL: https://books.google.fr/books?id=zFqWGwAACAAJ.

[13] Ioannis Ballas et al., « On Exploring the Optimum Configuration of Apache Spark

Framework in Heterogeneous Clusters », in: 25th Pan-Hellenic Conference on Infor-

matics, PCI 2021, Volos, Greece: Association for Computing Machinery, 2021, pp. 250–

253, ISBN: 9781450395557, DOI: 10.1145/3503823.3503870, URL: https://doi.
org/10.1145/3503823.3503870.

[14] Amine Benelallam, Abel Gómez, and Massimo Tisi, « ATL-MR: model transformation

on MapReduce », in: Proceedings of the 2nd International Workshop on Software En-

gineering for Parallel Systems, SEPS SPLASH 2015, Pittsburgh, PA, USA, October 27,

2015, ed. by Ali Jannesari et al., ACM, 2015, pp. 45–49, ISBN: 978-1-4503-3910-0, DOI:

10.1145/2837476.2837482, URL: https://doi.org/10.1145/2837476.2837482.

[15] Amine Benelallam et al., « Distributing relational model transformation on MapRe-

duce », in: Journal of Systems and Software 142 (2018), pp. 1–20, ISSN: 0164-1212, DOI:

10.1016/j.jss.2018.04.014, URL: https://doi.org/10.1016/j.jss.2018.
04.014.

[16] Amine Benelallam et al., « Efficient model partitioning for distributed model trans-

formations », in: Proceedings of the 2016 ACM SIGPLAN International Conference on

Software Language Engineering, Amsterdam, The Netherlands, October 31 - November

xxii

https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.1109/MISE.2012.6226014
http://atenea.lcc.uma.es/projects/LinTra.html
http://atenea.lcc.uma.es/projects/LinTra.html
https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127
https://books.google.fr/books?id=zFqWGwAACAAJ
https://doi.org/10.1145/3503823.3503870
https://doi.org/10.1145/3503823.3503870
https://doi.org/10.1145/3503823.3503870
https://doi.org/10.1145/2837476.2837482
https://doi.org/10.1145/2837476.2837482
https://doi.org/10.1016/j.jss.2018.04.014
https://doi.org/10.1016/j.jss.2018.04.014
https://doi.org/10.1016/j.jss.2018.04.014


1, 2016, ed. by Tijs van der Storm, Emilie Balland, and Dániel Varró, SLE 2016, ACM,

2016, pp. 226–238, ISBN: 978-1-4503-4447-0, DOI: 10.1145/2997364.2997385, URL:

http://dl.acm.org/citation.cfm?id=2997385.

[17] Amine Benelallam et al., « Neo4EMF, a scalable persistence layer for EMF models », in:

European Conference on Modelling Foundations and Applications, vol. 8569, Lecture

Notes in Computer Science, Springer, 2014, pp. 230–241.

[18] Gábor Bergmann, István Ráth, and Dániel Varró, « Parallelization of graph transfor-

mation based on incremental pattern matching », in: Electronic Communications of

the EASST 18 (2009).

[19] Gábor Bergmann et al., « Efficient model transformations by combining pattern match-

ing strategies », in: International Conference on Theory and Practice of Model Trans-

formations, Springer, 2009, pp. 20–34.

[20] Gábor Bergmann et al., « Incremental evaluation of model queries over EMF mod-

els », in: International conference on model driven engineering languages and systems,

Springer, 2010, pp. 76–90.

[21] Gábor Bergmann et al., « Incremental Pattern Matching in the Viatra Model Transfor-

mation System », in: Proceedings of the Third International Workshop on Graph and

Model Transformations, GRaMoT ’08, Leipzig, Germany: Association for Computing

Machinery, 2008, pp. 25–32, ISBN: 9781605580333, DOI: 10.1145/1402947.1402953,

URL: https://doi.org/10.1145/1402947.1402953.

[22] Gábor Bergmann et al., « Integrating Efficient Model Queries in State-of-the-Art EMF

Tools », in: Proceedings of the 50th International Conference on Objects, Models, Com-

ponents, Patterns, TOOLS’12, Prague, Czech Republic: Springer-Verlag, 2012, pp. 1–

8, ISBN: 9783642305603, DOI: 10 . 1007 / 978 - 3 - 642 - 30561 - 0 _ 1, URL: https :
//doi.org/10.1007/978-3-642-30561-0_1.

[23] Philip A Bernstein and Nathan Goodman, « Concurrency control in distributed database

systems », in: ACM Computing Surveys (CSUR) 13.2 (1981), pp. 185–221.

[24] Philip A Bernstein and Erhard Rahm, « Data warehouse scenarios for model manage-

ment », in: International Conference on Conceptual Modeling, Springer, 2000, pp. 1–

15.

xxiii

https://doi.org/10.1145/2997364.2997385
http://dl.acm.org/citation.cfm?id=2997385
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1007/978-3-642-30561-0_1
https://doi.org/10.1007/978-3-642-30561-0_1
https://doi.org/10.1007/978-3-642-30561-0_1


[25] Thibault Béziers La Fosse et al., « Characterizing a source code model with energy

measurements », in: Workshop on Measurement and Metrics for Green and Sustain-

able Software Systems (MeGSuS), 2018.

[26] Thibault Béziers la Fosse et al., « Annotating executable DSLs with energy estima-

tion formulas », in: Proceedings of the 13th ACM SIGPLAN International Conference

on Software Language Engineering, 2020, pp. 22–38.

[27] Jean Bézivin, « On the unification power of models », in: Software & Systems Modeling

4.2 (2005), pp. 171–188.

[28] Jean Bézivin and Olivier Gerbé, « Towards a Precise Definition of the OMG/MDA Frame-

work », in: Proceedings of the 16th IEEE International Conference on Automated Soft-

ware Engineering, ASE ’01, USA: IEEE Computer Society, 2001, p. 273.

[29] R. Bird and O. de Moor, Algebra of Programming, Prentice-Hall international series in

computer science, Prentice Hall, 1997, ISBN: 9780135072455, URL: https://books.
google.fr/books?id=P5NQAAAAMAAJ.

[30] Richard S. Bird, « The promotion and accumulation strategies in transformational

programming », in: ACM Transactions on Programming Languages and Systems (TOPLAS)

6.4 (1984), pp. 487–504.

[31] Gerth Stølting Brodal and Rolf Fagerberg, « Cache Oblivious Distribution Sweeping »,

in: Automata, Languages and Programming, 29th International Colloquium, ICALP

2002, Malaga, Spain, July 8-13, 2002, Proceedings, ed. by Peter Widmayer et al., vol. 2380,

Lecture Notes in Computer Science, Springer, 2002, pp. 426–438, DOI: 10.1007/3-
540-45465-9\_37, URL: https://doi.org/10.1007/3-540-45465-9%5C_37.

[32] Cameron Browne et al., « A Survey of Monte Carlo Tree Search Methods », in: IEEE

Trans. Comput. Intell. AI Games 4.1 (2012), pp. 1–43, DOI: 10.1109/TCIAIG.2012.
2186810, URL: https://doi.org/10.1109/TCIAIG.2012.2186810.

[33] Francesco Buonamici et al., « Reverse engineering modeling methods and tools: a

survey », in: Computer-Aided Design and Applications 15.3 (2018), pp. 443–464.

[34] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo, « A Linda-based platform

for the parallel execution of out-place model transformations », in: Information &

Software Technology 79.C (Nov. 2016), pp. 17–35, ISSN: 0950-5849, DOI: 10.1016/j.
infsof.2016.06.001, URL: https://doi.org/10.1016/j.infsof.2016.06.001.

xxiv

https://books.google.fr/books?id=P5NQAAAAMAAJ
https://books.google.fr/books?id=P5NQAAAAMAAJ
https://doi.org/10.1007/3-540-45465-9\_37
https://doi.org/10.1007/3-540-45465-9\_37
https://doi.org/10.1007/3-540-45465-9%5C_37
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1016/j.infsof.2016.06.001
https://doi.org/10.1016/j.infsof.2016.06.001
https://doi.org/10.1016/j.infsof.2016.06.001


[35] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo, « Towards Distributed Model

Transformations with LinTra », in: Jornadas de Ingeniería del Software y Bases de Datos

(2016), pp. 1–6, URL: http://hdl.handle.net/10630/12091.

[36] Loli Burgueño et al., « Parallel In-place Model Transformations with LinTra », in: Pro-

ceedings of the 3rd Workshop on Scalable Model Driven Engineering part of the Soft-

ware Technologies: Applications and Foundations (STAF 2015) federation of confer-

ences, L’Aquila, Italy, July 23, 2015. Ed. by Dimitris S. Kolovos et al., vol. 1406, CEUR

Workshop Proceedings, CEUR-WS.org, 2015, pp. 52–62, URL: http://ceur-ws.org/
Vol-1406/paper6.pdf.

[37] Brendan Burns et al., Kubernetes: up and running, O’Reilly Media, Inc., 2022.

[38] Frank Buschmann et al., Pattern-Oriented Software Architecture - Volume 1: A Sys-

tem of Patterns, Wiley Publishing, 1996, pp. 71–95, ISBN: 0471958697-9780471958697,

URL: https://ff.tu- sofia.bg/~bogi/knigi/SE/Wiley%20- %20Pattern-
Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%
20of%20Patterns.pdf.

[39] Fabian Büttner, Marina Egea, and Jordi Cabot, « On verifying ATL transformations

using ’off-the-shelf‘ SMT solvers », in: International Conference on Model Driven En-

gineering Languages and Systems, Springer, 2012, pp. 432–448.

[40] Fabian Büttner et al., « Verification of ATL transformations using transformation mod-

els and model finders », in: International Conference on Formal Engineering Methods,

Springer, 2012, pp. 198–213.

[41] Jordi Cabot and Ernest Teniente, « Incremental integrity checking of UML/OCL con-

ceptual schemas », in: Journal of Systems and Software 82.9 (2009), pp. 1459–1478,

DOI: 10.1016/j.jss.2009.03.009, URL: https://doi.org/10.1016/j.jss.
2009.03.009.

[42] Daniel Calegari et al., « A Type-Theoretic Framework for Certified Model Transfor-

mations », English, in: 13th Brazilian Symposium on Formal Methods, Natal, Brazil:

Springer, 2011, pp. 112–127, ISBN: 978-3-642-19828-1, DOI: 10.1007/978-3-642-
19829-8_8.

[43] Dominique Cansell and Dominique Mery, « Foundations of the B Method. », in: Com-

puters and Informatics 22 (Jan. 2003), 31 p.

xxv

http://hdl.handle.net/10630/12091
http://ceur-ws.org/Vol-1406/paper6.pdf
http://ceur-ws.org/Vol-1406/paper6.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf
https://ff.tu-sofia.bg/~bogi/knigi/SE/Wiley%20-%20Pattern-Oriented%20Software%20Architecture%20-%20Volume%201,%20A%20System%20of%20Patterns.pdf
https://doi.org/10.1016/j.jss.2009.03.009
https://doi.org/10.1016/j.jss.2009.03.009
https://doi.org/10.1016/j.jss.2009.03.009
https://doi.org/10.1007/978-3-642-19829-8_8
https://doi.org/10.1007/978-3-642-19829-8_8


[44] Nicholas Carriero and David Gelernter, « Linda in Context », in: Commun. ACM 32.4

(1989), pp. 444–458, ISSN: 0001-0782, DOI: 10.1145/63334.63337, URL: https://
doi.org/10.1145/63334.63337.

[45] Maverick Chardet et al., « Madeus: A formal deployment model », in: 4PAD 2018 -

5th International Symposium on Formal Approaches to Parallel and Distributed Sys-

tems (hosted at HPCS 2018), Orléans, France, July 2018, pp. 1–8, URL: https://hal.
inria.fr/hal-01858150.

[46] Zheng Cheng, Rosemary Monahan, and James F Power, « A sound execution seman-

tics for ATL via translation validation », in: International Conference on Theory and

Practice of Model Transformations, Springer, 2015, pp. 133–148.

[47] Zheng Cheng, Rosemary Monahan, and James F Power, « Formalised EMFTVM byte-

code language for sound verification of model transformations », in: Software & Sys-

tems Modeling 17.4 (2018), pp. 1197–1225.

[48] Zheng Cheng and Massimo Tisi, « Deep specification and proof preservation for the

CoqTL transformation language », in: Software and Systems Modeling (2022), pp. 1–

22.

[49] Zheng Cheng, Massimo Tisi, and Joachim Hotonnier, « Certifying a Rule-Based Model

Transformation Engine for Proof Preservation », in: ACM/IEEE 23rd International Con-

ference on Model Driven Engineering Languages and Systems, Montreal, Canada, Oct.

2020, DOI: 10 . 1145 / 3365438 . 3410949, URL: https : / / hal . inria . fr / hal -
02907622.

[50] Avery Ching et al., « One Trillion Edges: Graph Processing at Facebook-scale », in:

Proc. VLDB Endow. 8.12 (Aug. 2015), pp. 1804–1815, ISSN: 2150-8097, DOI: 10.14778/
2824032.2824077, URL: http://dx.doi.org/10.14778/2824032.2824077.

[51] CA Coello Coello, « Evolutionary multi-objective optimization: a historical view of the

field », in: IEEE computational intelligence magazine 1.1 (2006), pp. 28–36.

[52] Murray Cole, « Algorithmic skeletons : a structured approach to the management of

parallel computation », PhD thesis, University of Edinburgh, UK, 1988, URL: http:
//hdl.handle.net/1842/11997.

xxvi

https://doi.org/10.1145/63334.63337
https://doi.org/10.1145/63334.63337
https://doi.org/10.1145/63334.63337
https://hal.inria.fr/hal-01858150
https://hal.inria.fr/hal-01858150
https://doi.org/10.1145/3365438.3410949
https://hal.inria.fr/hal-02907622
https://hal.inria.fr/hal-02907622
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
http://dx.doi.org/10.14778/2824032.2824077
http://hdl.handle.net/1842/11997
http://hdl.handle.net/1842/11997


[53] Hélène Coullon, Julien Bigot, and Christian Pérez, « Extensibility and Composability

of a Multi-Stencil Domain Specific Framework », in: International Journal of Parallel

Programming (Nov. 2017), DOI: 10.1007/s10766-017-0539-5, URL: https://hal.
archives-ouvertes.fr/hal-01650998.

[54] Hélène Coullon, Claude Jard, and Didier Lime, « Integrated Model-checking for the

Design of Safe and Efficient Distributed Software Commissioning », in: IFM 2019 -

15th International Conference on integrated Formal Methods, Integrated Formal Meth-

ods, Bergen, Norway, Dec. 2019, pp. 120–137, URL: https://hal.archives-ouvertes.
fr/hal-02323641.

[55] Hélène Coullon and Sébastien Limet, « The SIPSim implicit parallelism model and

the SkelGIS library », in: Concurrency and Computation: Practice and Experience 28.7

(2016), pp. 2120–2144, DOI: 10.1002/cpe.3494, URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.3494.

[56] Jesús Sánchez Cuadrado et al., « Efficient execution of ATL model transformations

using static analysis and parallelism », in: IEEE Transactions on Software Engineering

(2020).

[57] Pascal Cuoq et al., « Frama-c », in: International conference on software engineering

and formal methods, Springer, 2012, pp. 233–247.

[58] K. Czarnecki and S. Helsen, « Feature-based survey of model transformation approaches »,

in: IBM Systems Journal 45.3 (2006), pp. 621–645, DOI: 10.1147/sj.453.0621.

[59] Krzysztof Czarnecki and Simon Helsen, « Classification of model transformation ap-

proaches », in: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in

the Context of the Model Driven Architecture, vol. 45, 3, USA, 2003, pp. 1–17.

[60] Georges Da Costa et al., « Energy-and heat-aware HPC benchmarks », in: 2013 Inter-

national Conference on Cloud and Green Computing, IEEE, 2013, pp. 435–442.

[61] Gwendal Daniel, « NeoEMF: a multi NoSQL Persistence Framework for Very Large

Models », in: ().

[62] Gwendal Daniel et al., « Improving Memory Efficiency for Processing Large-Scale Mod-

els », in: vol. 1206, July 2014.

[63] Gwendal Daniel et al., « NeoEMF: A multi-database model persistence framework for

very large models », in: Science of Computer Programming 149 (2017), pp. 9–14.

xxvii

https://doi.org/10.1007/s10766-017-0539-5
https://hal.archives-ouvertes.fr/hal-01650998
https://hal.archives-ouvertes.fr/hal-01650998
https://hal.archives-ouvertes.fr/hal-02323641
https://hal.archives-ouvertes.fr/hal-02323641
https://doi.org/10.1002/cpe.3494
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3494
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3494
https://doi.org/10.1147/sj.453.0621


[64] Matthias Daum, « Reasoning on data-parallel programs in Isabelle/Hol », in: C/C++

Verification Workshop, vol. 63, Citeseer, 2007.

[65] Jeffrey Dean and Sanjay Ghemawat, « MapReduce: Simplified Data Processing on

Large Clusters », in: Proceedings of the 6th Conference on Symposium on Operating

Systems Design & Implementation - Volume 6, OSDI’04, San Francisco, CA: USENIX

Association, 2004, pp. 137–149, URL: http://dl.acm.org/citation.cfm?id=
1251254.1251264.

[66] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz, « Efficient Big Data Processing in Hadoop

MapReduce », in: Proc. VLDB Endow. 5.12 (Aug. 2012), pp. 2014–2015, ISSN: 2150-

8097, DOI: 10.14778/2367502.2367562, URL: https://doi.org/10.14778/
2367502.2367562.

[67] Youssef El Bakouny and Dani Mezher, « Scallina: Translating Verified Programs from

Coq to Scala », in: Programming Languages and Systems, ed. by Sukyoung Ryu, Cham:

Springer International Publishing, 2018, pp. 131–145, ISBN: 978-3-030-02768-1.

[68] Jean-marie Favre, « Megamodeling and etymology - a story of words: From MED to

MDE via MODEL in five milleniums », in: In Dagstuhl Seminar on Transformation

Techniques in Software Engineering, number 05161 in DROPS 04101. IFBI, 2005.

[69] Péter Fehér et al., « A MapReduce-based approach for finding inexact patterns in

large graphs », in: 2015 3rd International Conference on Model-Driven Engineering

and Software Development (MODELSWARD), IEEE, 2015, pp. 205–212.

[70] Ayat Fekry et al., « To Tune or Not to Tune? In Search of Optimal Configurations for

Data Analytics », in: Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, KDD ’20, Virtual Event, CA, USA: Association

for Computing Machinery, 2020, pp. 2494–2504, ISBN: 9781450379984, DOI: 10.1145/
3394486.3403299, URL: https://doi.org/10.1145/3394486.3403299.

[71] Maribel Fernández and Jeffrey Terrell, « Assembling the Proofs of Ordered Model Trans-

formations », in: 10th International Workshop on Formal Engineering approaches to

Software Components and Architectures, Rome, Italy: EPTCS, 2013, pp. 63–77, DOI:

10.4204/EPTCS.108.5.

[72] Robert W Floyd, « Assigning meanings to programs », in: Program Verification, Springer,

1993, pp. 65–81.

xxviii

http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.14778/2367502.2367562
https://doi.org/10.14778/2367502.2367562
https://doi.org/10.14778/2367502.2367562
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.4204/EPTCS.108.5


[73] Michael J. Flynn, « Some Computer Organizations and Their Effectiveness », in: IEEE

Transactions on Computers C-21.9 (1972), pp. 948–960, DOI: 10.1109/TC.1972.
5009071.

[74] Charles L. Forgy, « Rete: A Fast Algorithm for the Many Pattern/Many Object Pat-

tern Match Problem », in: Artificial Intelligence 19.1 (1982), pp. 17–37, DOI: 10.1016/
0004-3702(82)90020-0.

[75] Michael Frampton, « Apache mesos », in: Complete Guide to Open Source Big Data

Stack, Springer, 2018, pp. 97–137.

[76] Antonio García-Domínguez, Georg Hinkel, and Filip Krikava, eds., Proceedings of the

11th Transformation Tool Contest, co-located with the 2018 Software Technologies: Ap-

plications and Foundations, TTC@STAF 2018, Toulouse, France, June 29, 2018, vol. 2310,

CEUR Workshop Proceedings, CEUR-WS.org, 2019, URL: http://ceur- ws.org/
Vol-2310.

[77] Marzieh Ghorbani, Mohammadreza Sharbaf, Bahman Zamani, et al., « Incremental

Model Transformation with Epsilon in Model-Driven Engineering », in: Acta Infor-

matica Pragensia 11.2 (2022), pp. 179–204.

[78] Jeremy Gibbons, « Calculating functional programs », in: Algebraic and Coalgebraic

Methods in the Mathematics of Program Construction, Springer, 2002, pp. 151–203.

[79] Jeremy Gibbons, « The School of Squiggol: A History of the Bird-Meertens Formalism.

In Formal Methods », in: FM 2019 International Workshops: Porto, Portugal, October

7-1, 2019, Revised Selected Papers, Part II, 2019, pp. 35–53, DOI: https://doi.org/
10.1007/978-3-030-54997-8_2.

[80] Joseph E. Gonzalez et al., « GraphX: Graph Processing in a Distributed Dataflow Frame-

work », in: 11th USENIX Symposium on Operating Systems Design and Implementa-

tion, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, ed. by Jason Flinn and Hank

Levy, USENIX Association, 2014, pp. 599–613, URL: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/gonzalez.

[81] Thomas Grégoire and Adam Chlipala, « Mostly automated formal verification of loop

dependencies with applications to distributed stencil algorithms », in: Journal of Au-

tomated Reasoning 62.2 (2019), pp. 193–213.

xxix

https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/0004-3702(82)90020-0
http://ceur-ws.org/Vol-2310
http://ceur-ws.org/Vol-2310
https://doi.org/https://doi.org/10.1007/978-3-030-54997-8_2
https://doi.org/https://doi.org/10.1007/978-3-030-54997-8_2
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez


[82] Raffaela Groner et al., « A Survey on the Relevance of the Performance of Model Trans-

formations », in: Software Engineering 2022, ed. by Lars Grunske, Janet Siegmund,

and Andreas Vogelsang, Bonn: Gesellschaft für Informatik e.V., 2022, pp. 35–36, DOI:

10.18420/se2022-ws-008.

[83] Raffaela Groner et al., « An Exploratory Study on Performance Engineering in Model

Transformations », in: Software Engineering 2021, ed. by Anne Koziolek, Ina Schaefer,

and Christoph Seidl, Bonn: Gesellschaft für Informatik e.V., 2021, pp. 51–52, DOI: 10.
18420/SE2021_14.

[84] Object Management Group, Object Constraint Language, OCL, Version 2.4, 2015, URL:

https://www.omg.org/spec/OCL/2.4/PDF.

[85] D. Harel and A. Pnueli, « On the Development of Reactive Systems », in: Logics and

Models of Concurrent Systems, Berlin, Heidelberg: Springer-Verlag, 1989, pp. 477–498,

ISBN: 0387151818.

[86] Ábel Hegedüs et al., « Ecore to Genmodel case study solution using the Viatra2 frame-

work », in: Transformation Tool Contest 2010 1-2 July 2010, Malaga, Spain (2010),

p. 187.

[87] Christopher Henard et al., « Combining multi-objective search and constraint solving

for configuring large software product lines », in: 2015 IEEE/ACM 37th IEEE Interna-

tional Conference on Software Engineering, vol. 1, IEEE, 2015, pp. 517–528.

[88] Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu, « A Survey on Automatic Pa-

rameter Tuning for Big Data Processing Systems », in: ACM Comput. Surv. 53.2 (Apr.

2020), ISSN: 0360-0300, DOI: 10.1145/3381027, URL: https://doi.org/10.1145/
3381027.

[89] Soichiro Hidaka et al., « Feature-based classification of bidirectional transformation

approaches », in: Software & Systems Modeling 15.3 (2016), pp. 907–928.

[90] Robert M Hierons et al., « SIP: Optimal product selection from feature models using

many-objective evolutionary optimization », in: ACM Transactions on Software Engi-

neering and Methodology (TOSEM) 25.2 (2016), pp. 1–39.

[91] Charles Antony Richard Hoare, « An axiomatic basis for computer programming », in:

Communications of the ACM 12.10 (1969), pp. 576–580.

[92] Tassilo Horn, Christian Krause, and Matthias Tichy, « The TTC 2014 Movie Database

Case. », in: TTC@ STAF, Citeseer, 2014, pp. 93–97.

xxx

https://doi.org/10.18420/se2022-ws-008
https://doi.org/10.18420/SE2021_14
https://doi.org/10.18420/SE2021_14
https://www.omg.org/spec/OCL/2.4/PDF
https://doi.org/10.1145/3381027
https://doi.org/10.1145/3381027
https://doi.org/10.1145/3381027


[93] Akos Horváth et al., « Experimental assessment of combining pattern matching strate-

gies with VIATRA2 », in: International Journal on Software Tools for Technology Trans-

fer 12.3 (2010), pp. 211–230.

[94] Gábor Imre and Gergely Mezei, « Parallel Graph Transformations on Multicore Sys-

tems », in: Multicore Software Engineering, Performance, and Tools, ed. by Victor Pankratius

and Michael Philippsen, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 86–

89, ISBN: 978-3-642-31202-1.

[95] Javier Luis Cánovas Izquierdo et al., « API2MoL: Automating the building of bridges

between APIs and Model-Driven Engineering », in: Information and Software Tech-

nology 54.3 (2012), pp. 257–273.

[96] Benedek Izsó et al., « MONDO-SAM: A framework to systematically assess MDE scal-

ability », in: CEUR Workshop Proceedings 1206 (Jan. 2014), pp. 40–43.

[97] Bart Jacobs, « The Essence of Coq as a Formal System », in: Online manuscript (2013).

[98] Frédéric Jouault and Ivan Kurtev, « Transforming models with ATL », in: International

Conference on Model Driven Engineering Languages and Systems, Springer, 2005, pp. 128–

138.

[99] Frédéric Jouault et al., « ATL: A model transformation tool », in: Sci. Comput. Program.

72.1-2 (2008), Special Issue on Second issue of experimental software and toolkits

(EST), pp. 31–39, ISSN: 0167-6423, DOI: 10. 1016/ j. scico.2007 .08 .002, URL:

https://doi.org/10.1016/j.scico.2007.08.002.

[100] Stefan Jurack and Gabriele Taentzer, « A Component Concept for Typed Graphs with

Inheritance and Containment Structures », in: Graph Transformations - 5th Interna-

tional Conference, ICGT 2010, Enschede, The Netherlands, September 27 - - October 2,

2010. Proceedings, ed. by Hartmut Ehrig et al., vol. 6372, Lecture Notes in Computer

Science, Springer, 2010, pp. 187–202, DOI: 10.1007/978-3-642-15928-2\_13, URL:

https://doi.org/10.1007/978-3-642-15928-2%5C_13.

[101] Nafiseh Kahani and James R Cordy, « Comparison and evaluation of model transfor-

mation tools », in: Queen’s University, Kingston, Tech. Rep. (2015).

[102] Nafiseh Kahani et al., « Survey and classification of model transformation tools », in:

Software & Systems Modeling 18.4 (2019), pp. 2361–2397.

[103] Nafiseh Kahani et al., « Survey and classification of model transformation tools », in:

Software & Systems Modeling 18.4 (2019), pp. 2361–2397.

xxxi

https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/978-3-642-15928-2\_13
https://doi.org/10.1007/978-3-642-15928-2%5C_13


[104] Stuart Kent, « Model driven engineering », in: International conference on integrated

formal methods, Springer, 2002, pp. 286–298.

[105] Dimitris S Kolovos, Richard F Paige, and Fiona AC Polack, « Scalability: The holy grail

of model driven engineering », in: ChaMDE 2008 Workshop Proceedings: International

Workshop on Challenges in Model-Driven Software Engineering, 2008, pp. 10–14.

[106] Dimitris S. Kolovos, Richard F. Paige, and Fiona A. C. Polack, « The Epsilon Object Lan-

guage (EOL) », in: Proceedings of the Second European Conference on Model Driven

Architecture: Foundations and Applications, ECMDA-FA’06, Bilbao, Spain: Springer-

Verlag, 2006, pp. 128–142, ISBN: 3540359095, DOI: 10.1007/11787044_11.

[107] Christian Krause, Matthias Tichy, and Holger Giese, « Implementing Graph Trans-

formations in the Bulk Synchronous Parallel Model », in: Fundamental Approaches

to Software Engineering, ed. by Stefania Gnesi and Arend Rensink, Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2014, pp. 325–339, ISBN: 978-3-642-54804-8, DOI:

10.1007/978-3-642-54804-8_23.

[108] Rohit Kumar, Alberto Abelló, and Toon Calders, « Cost Model for Pregel on GraphX »,

in: Advances in Databases and Information Systems - 21st European Conference, AD-

BIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings, ed. by Marite Kirikova

and George A. Norvaag Kjetiland Papadopoulos, vol. 10509, Lecture Notes in Com-

puter Science, Springer, 2017, pp. 153–166, DOI: 10.1007/978-3-319-66917-5\_11,

URL: https://doi.org/10.1007/978-3-319-66917-5%5C_11.

[109] Palden Lama and Xiaobo Zhou, « AROMA: automated resource allocation and config-

uration of MapReduce environment in the cloud », in: 9th International Conference

on Autonomic Computing, ICAC’12, San Jose, CA, USA, September 16 - 20, 2012, ed.

by Dejan S. Milojicic, Dongyan Xu, and Vanish Talwar, ACM, 2012, pp. 63–72, ISBN:

978-1-4503-1520-3, DOI: 10.1145/2371536.2371547, URL: https://doi.org/10.
1145/2371536.2371547.

[110] Ralf Lammel, « Google’s MapReduce programming model - Revisited », in: Science of

Computer Programming 70.1 (2008), pp. 1–30, ISSN: 0167-6423, DOI: https://doi.
org/10.1016/j.scico.2007.07.001, URL: http://www.sciencedirect.com/
science/article/pii/S0167642307001281.

[111] Kevin Lano, T. Clark, and S. Kolahdouz-Rahimi, « A framework for model transforma-

tion verification », English, in: Formal Aspects of Computing 27.1 (2014), pp. 193–235,

ISSN: 0934-5043, DOI: 10.1007/s00165-014-0313-z.

xxxii

https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1007/978-3-319-66917-5\_11
https://doi.org/10.1007/978-3-319-66917-5%5C_11
https://doi.org/10.1145/2371536.2371547
https://doi.org/10.1145/2371536.2371547
https://doi.org/10.1145/2371536.2371547
https://doi.org/https://doi.org/10.1016/j.scico.2007.07.001
https://doi.org/https://doi.org/10.1016/j.scico.2007.07.001
http://www.sciencedirect.com/science/article/pii/S0167642307001281
http://www.sciencedirect.com/science/article/pii/S0167642307001281
https://doi.org/10.1007/s00165-014-0313-z


[112] Théo Le Calvar et al., « Efficient ATL Incremental Transformations », in: Journal of Ob-

ject Technology 18.3 (July 2019), The 12th International Conference on Model Trans-

formations, 2:1–17, ISSN: 1660-1769, DOI: 10.5381/jot.2019.18.3.a2, URL: https:
//doi.org/10.5381/jot.2019.18.3.a2.

[113] Théo Le Calvar et al., « Transformation de modèles et programmation par contraintes

avec ATLC », in: June 2019, URL: https://doi.org/10.1145/1402947.1402953.

[114] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson, « Calculating parallel pro-

grams in Coq using list homomorphisms », in: International Journal of Parallel Pro-

gramming 45.2 (2017), pp. 300–319.

[115] Frédéric Loulergue, Frédéric Gava, and David Billiet, « Bulk Synchronous Parallel ML:

Modular Implementation and Performance Prediction », in: Computational Science

– ICCS 2005, ed. by Vaidy S. Sunderam et al., Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2005, pp. 1046–1054, ISBN: 978-3-540-32114-9.

[116] Frédéric Loulergue and Jolan Philippe, « Automatic Optimization of Python Skeletal

Parallel Programs », in: 19th International Conference on Algorithms and Architectures

for Parallel Processing (ICA3PP), Melbourne, Australia, Dec. 2019, DOI: 10.1007/978-
3-030-38991-8\_13, URL: https://hal.archives-ouvertes.fr/hal-02317123.

[117] Sina Madani, Dimitrios S Kolovos, and Richard F Paige, « Parallel model validation

with epsilon », in: European Conference on Modelling Foundations and Applications,

Springer, 2018, pp. 115–131.

[118] Sina Madani, Dimitris Kolovos, and Richard Paige, « Distributed model validation

with Epsilon », in: vol. 20, Oct. 2021, pp. 1689–1712, DOI: 10.1007/s10270- 021-
00878-x.

[119] Sina Madani, Dimitris S. Kolovos, and Richard F. Paige, « Towards Optimisation of

Model Queries: A Parallel Execution Approach », in: Journal of Object Technology 18.2

(July 2019), ed. by Benoit Combemale and Ali Shaukat, The 15th European Confer-

ence on Modelling Foundations and Applications, 3:1–21, ISSN: 1660-1769, DOI: 10.
5381/jot.2019.18.2.a3, URL: http://www.jot.fm/contents/issue_2019_02/
article3.html.

[120] Matthias Maiterth et al., « Power aware high performance computing: Challenges and

opportunities for application and system developers—Survey & tutorial », in: 2017 In-

xxxiii

https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1007/978-3-030-38991-8\_13
https://doi.org/10.1007/978-3-030-38991-8\_13
https://hal.archives-ouvertes.fr/hal-02317123
https://doi.org/10.1007/s10270-021-00878-x
https://doi.org/10.1007/s10270-021-00878-x
https://doi.org/10.5381/jot.2019.18.2.a3
https://doi.org/10.5381/jot.2019.18.2.a3
http://www.jot.fm/contents/issue_2019_02/article3.html
http://www.jot.fm/contents/issue_2019_02/article3.html


ternational Conference on High Performance Computing & Simulation (HPCS), IEEE,

2017, pp. 3–10.

[121] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky, « Trace-based verification of

imperative programs with I/O », in: Journal of Symbolic Computation 46.2 (2011),

pp. 95–118.

[122] Grzegorz Malewicz et al., « Pregel: A System for Large-scale Graph Processing », in:

Proceedings of the 2010 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’10, Indianapolis, Indiana, USA: ACM, 2010, pp. 135–146, ISBN: 978-

1-4503-0032-2, DOI: 10.1145/1807167.1807184, URL: http://doi.acm.org/10.
1145/1807167.1807184.

[123] Hugo Martin et al., « Machine Learning and Configurable Systems: A Gentle Intro-

duction », in: Proceedings of the 23rd International Systems and Software Product Line

Conference - Volume A, SPLC ’19, Paris, France: Association for Computing Machin-

ery, 2019, pp. 325–326, ISBN: 9781450371384, DOI: 10.1145/3336294.3342383, URL:

https://doi.org/10.1145/3336294.3342383.

[124] Salvador Martínez Perez, Massimo Tisi, and Rémi Douence, « Reactive model trans-

formation with ATL », in: Sci. Comput. Program. 136 (2017), pp. 1–16, ISSN: 0167-6423,

DOI: 10.1016/j.scico.2016.08.006, URL: https://doi.org/10.1016/j.scico.
2016.08.006.

[125] Robert Ryan McCune, Tim Weninger, and Greg Madey, « Thinking like a vertex: a sur-

vey of vertex-centric frameworks for large-scale distributed graph processing », in:

ACM Computing Surveys (CSUR) 48.2 (2015), pp. 1–39.

[126] Lambert Meertens, « Algorithmics : towards programming as a mathematical activ-

ity », in: In Proceedings of CWI Symposium on Mathematics and Computer Science,

1986, pp. 289–334.

[127] Gergely Mezei et al., « Towards truly parallel model transformations : A distributed

pattern matching approach », in: May 2009, pp. 403–410, DOI: 10.1109/EURCON.
2009.5167663.

[128] Martin Monperrus, Antoine Beugnard, and Joël Champeau, « A Definition of ”Ab-

straction Level” for Metamodels », in: 7th IEEE Workshop on Model-Based Develop-

ment for Computer Based systems, update for BASE on Sep 20 2018, San Francisco,

United States, 2009, DOI: 10.1109/ECBS.2009.41.

xxxiv

https://doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
https://doi.org/10.1145/3336294.3342383
https://doi.org/10.1145/3336294.3342383
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1109/EURCON.2009.5167663
https://doi.org/10.1109/EURCON.2009.5167663
https://doi.org/10.1109/ECBS.2009.41


[129] Pierre-Alain Muller et al., « Modeling modeling modeling », in: Software & Systems

Modeling 11.3 (2012), pp. 347–359.

[130] Bradford Nichols et al., Pthreads programming: A POSIX standard for better multipro-

cessing, O’Reilly Media, Inc., 1996.

[131] Hanne Riis Nielson and Flemming Nielson, Semantics with applications: an appe-

tizer, Springer Science & Business Media, 2007.

[132] Bentley James Oakes et al., « Fully verifying transformation contracts for declarative

ATL », in: 2015 ACM/IEEE 18th International Conference on Model Driven Engineering

Languages and Systems (MODELS), IEEE, 2015, pp. 256–265.

[133] Martin Odersky, Lex Spoon, and Bill Venners, Programming in scala, Artima Inc, 2008.

[134] Jeho Oh et al., « Finding Near-Optimal Configurations in Product Lines by Random

Sampling », in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, Paderborn, Germany: Association for Computing Ma-

chinery, 2017, pp. 61–71, ISBN: 9781450351058, DOI: 10.1145/3106237.3106273,

URL: https://doi.org/10.1145/3106237.3106273.

[135] Leslie Pérez Cáceres et al., « Automatic configuration of GCC using irace », in: In-

ternational Conference on Artificial Evolution (Evolution Artificielle), Springer, 2017,

pp. 202–216.

[136] Jolan Philippe, « systematic development of efficient programs on parallel data struc-

tures », PhD thesis, Northern Arizona University, 2019.

[137] Jolan Philippe and Frédéric Loulergue, « PySke: Algorithmic Skeletons for Python »,

in: The 2019 International Conference on High Performance Computing & Simulation

(HPCS), Dublin, Ireland, July 2019, URL: https://hal.archives-ouvertes.fr/
hal-02317127.

[138] Jolan Philippe et al., « Executing Certified Model Transformations on Apache Spark »,

in: SLE 2021, Chicago, IL, USA: Association for Computing Machinery, 2021, pp. 36–

48, ISBN: 9781450391115, DOI: 10.1145/3486608.3486901, URL: https://doi.
org/10.1145/3486608.3486901.

xxxv

https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3106237.3106273
https://hal.archives-ouvertes.fr/hal-02317127
https://hal.archives-ouvertes.fr/hal-02317127
https://doi.org/10.1145/3486608.3486901
https://doi.org/10.1145/3486608.3486901
https://doi.org/10.1145/3486608.3486901


[139] Jolan Philippe et al., « Towards Transparent Combination of Model Management Ex-

ecution Strategies for Low-Code Development Platforms », in: Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-

tems: Companion Proceedings, MODELS ’20, Virtual Event, Canada: Association for

Computing Machinery, 2020, ISBN: 9781450381352, DOI: 10.1145/3417990.3420206,

URL: https://doi.org/10.1145/3417990.3420206.

[140] Iman Poernomo and Jeffrey Terrell, « Correct-by-Construction Model Transforma-

tions from Partially Ordered Specifications in Coq », English, in: 12th International

Conference on Formal Engineering Methods, Shanghai, China: Springer, 2010, pp. 56–

73, ISBN: 978-3-642-16900-7, DOI: 10.1007/978-3-642-16901-4_6.

[141] Risto Pohjonen and Juha-pekka Tolvanen, Automated Production of Family Members:

Lessons learned, ed. by K. Schmid and B. Geppert, 2002.

[142] B Randell and JN Buxton, « Software Engineering Techniques: Report of a conference

sponsored by the NATO Science Committee, Rome, Italy, 27th-31st October 1969 »,

in: (1970).

[143] Louis M Rose et al., « A feature model for model-to-text transformation languages »,

in: 2012 4th International Workshop on Modeling in Software Engineering (MISE),

IEEE, 2012, pp. 57–63.

[144] Margaret Rouse, Task, Definition, https://whatis.techtarget.com/definition/
task, Accessed: 2020-07-14.

[145] J. Rumbaugh, I. Jacobson, and G. Booch., The unified modeling language, Reference

manual, 1999.

[146] Ágnes Salánki et al., « Qualitative Characterization of Quality of Service Interference

between Virtual Machines. », in: ARCS Workshops, 2011.

[147] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar, « On the value of user prefer-

ences in search-based software engineering: A case study in software product lines »,

in: 2013 35Th international conference on software engineering (ICSE), IEEE, 2013,

pp. 492–501.

[148] E Schikuta, « MPI: A message-passing interface standard », in: Techn. Ber., University

of Tennessee, Knoxville, Tennesee 30 (1994).

[149] Douglas C Schmidt, « Model-driven engineering », in: Computer-IEEE Computer Society-

39.2 (2006), p. 25.

xxxvi

https://doi.org/10.1145/3417990.3420206
https://doi.org/10.1145/3417990.3420206
https://doi.org/10.1007/978-3-642-16901-4_6
https://whatis.techtarget.com/definition/task
https://whatis.techtarget.com/definition/task


[150] Patrick Schnider, « An introduction to proof assistants », in: Student Seminar in Com-

binatorics: Mathematical Software, vol. 8, 2009.

[151] Syed Asif Raza Shah et al., « Benchmarking and Performance Evaluations on Various

Configurations of Virtual Machine and Containers for Cloud-Based Scientific Work-

loads », in: Applied Sciences 11.3 (2021), ISSN: 2076-3417, DOI: 10.3390/app11030993,

URL: https://www.mdpi.com/2076-3417/11/3/993.

[152] Allan Snavely et al., « Benchmarks for Grid Computing: A Review of Ongoing Efforts

and Future Directions », in: SIGMETRICS Perform. Eval. Rev. 30.4 (Mar. 2003), pp. 27–

32, ISSN: 0163-5999, DOI: 10.1145/773056.773062, URL: https://doi.org/10.
1145/773056.773062.

[153] Dave Steinberg et al., EMF: eclipse modeling framework, Pearson Education, 2008.

[154] Kurt Stenzel, Nina Moebius, and Wolfgang Reif, « Formal verification of QVT transfor-

mations for code generation », in: Software & Systems Modeling 14 (2015), pp. 981–

1002.

[155] L.M. Surhone, M.T. Timpledon, and S.F. Marseken, Von Neumann Architecture: Cen-

tral Processing Unit, John Von Neumann, Universal Turing Machine, SISD, Read-write

Memory, Betascript Publishing, 2010, ISBN: 9786130318154, URL: https://books.
google.fr/books?id=vTlOQwAACAAJ.

[156] Gabriel Tamura and Anthony Cleve, « A Comparison of Taxonomies for Model Trans-

formation Languages », in: Paradigma 4.1 (Mar. 2010), pp. 1–14, URL: https://hal.
inria.fr/inria-00488765.

[157] OMG team, Meta Object Facility (MOF) Specification, Object Management Group,

2000, URL: https://www.omg.org/mof/.

[158] The Coq development team, The Coq proof assistant reference manual, Version 8.16,

LogiCal Project, 2004, URL: http://coq.inria.fr.

[159] Julien Tesson et al., « Program calculation in Coq », in: International Conference on

Algebraic Methodology and Software Technology, Springer, 2010, pp. 163–179.

[160] Ashish Thusoo et al., « Data warehousing and analytics infrastructure at Facebook »,

in: Proceedings of the 2010 ACM SIGMOD International Conference on Management

of data, 2010, pp. 1013–1020.

xxxvii

https://doi.org/10.3390/app11030993
https://www.mdpi.com/2076-3417/11/3/993
https://doi.org/10.1145/773056.773062
https://doi.org/10.1145/773056.773062
https://doi.org/10.1145/773056.773062
https://books.google.fr/books?id=vTlOQwAACAAJ
https://books.google.fr/books?id=vTlOQwAACAAJ
https://hal.inria.fr/inria-00488765
https://hal.inria.fr/inria-00488765
https://www.omg.org/mof/
http://coq.inria.fr


[161] Ashish Thusoo et al., « Hive-a petabyte scale data warehouse using hadoop », in: 2010

IEEE 26th international conference on data engineering (ICDE 2010), IEEE, 2010, pp. 996–

1005.

[162] Ashish Thusoo et al., « Hive: A Warehousing Solution over a Map-Reduce Frame-

work », in: Proc. VLDB Endow. 2.2 (Aug. 2009), pp. 1626–1629, ISSN: 2150-8097, DOI:

10 . 14778 / 1687553 . 1687609, URL: https : / / doi . org / 10 . 14778 / 1687553 .
1687609.

[163] Massimo Tisi and Zheng Cheng, « CoqTL: an Internal DSL for Model Transforma-

tion in Coq », in: ICMT 2018 - 11th International Conference on Theory and Practice

of Model Transformations, vol. 10888, LNCS, Toulouse, France: Springer, June 2018,

pp. 142–156, DOI: 10.1007/978-3-319-93317-7\_7, URL: https://hal.inria.
fr/hal-01828344/file/main.pdf.

[164] Massimo Tisi, Rémi Douence, and Dennis Wagelaar, « Lazy Evaluation for OCL », in:

Proceedings of the 15th International Workshop on OCL and Textual Modeling co-

located with 18th International Conference on Model Driven Engineering Languages

and Systems (MoDELS 2015), Ottawa, Canada, September 28, 2015, ed. by Achim D.

Brucker et al., vol. 1512, CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 46–

61, URL: http://ceur-ws.org/Vol-1512/paper04.pdf.

[165] Massimo Tisi, Martínez Salvador Perez, and Hassene Choura, « Parallel Execution of

ATL Transformation Rules », in: Model-Driven Engineering Languages and Systems -

16th International Conference, MODELS 2013, Miami, FL, USA, September 29 - Octo-

ber 4, 2013. Proceedings, ed. by Ana Moreira et al., vol. 8107, Lecture Notes in Com-

puter Science, Springer, 2013, pp. 656–672, DOI: 10.1007/978-3-642-41533-3\_40,

URL: https://doi.org/10.1007/978-3-642-41533-3%5C_40.

[166] Massimo Tisi et al., « Lazy Execution of Model-to-Model Transformations », in: Model

Driven Engineering Languages and Systems, 14th International Conference, MODELS

2011, Wellington, New Zealand, October 16-21, 2011. Proceedings, ed. by Jon Whittle,

Tony Clark, and Thomas Kühne, vol. 6981, Lecture Notes in Computer Science, Berlin,

Heidelberg: Springer, 2011, pp. 32–46, ISBN: 978-3-642-24485-8, DOI: 10.1007/978-
3-642-24485-8\_4, URL: https://doi.org/10.1007/978-3-642-24485-8%5C_4.

[167] Lowcomote: Training the Next Generation of Experts in Scalable Low-Code Engineer-

ing Platforms, CEUR Workshop Proceedings (CEUR-WS.org), Eindhoven, Netherlands,

July 2019, URL: https://hal.archives-ouvertes.fr/hal-02363416.

xxxviii

https://doi.org/10.14778/1687553.1687609
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1007/978-3-319-93317-7\_7
https://hal.inria.fr/hal-01828344/file/main.pdf
https://hal.inria.fr/hal-01828344/file/main.pdf
http://ceur-ws.org/Vol-1512/paper04.pdf
https://doi.org/10.1007/978-3-642-41533-3\_40
https://doi.org/10.1007/978-3-642-41533-3%5C_40
https://doi.org/10.1007/978-3-642-24485-8\_4
https://doi.org/10.1007/978-3-642-24485-8\_4
https://doi.org/10.1007/978-3-642-24485-8%5C_4
https://hal.archives-ouvertes.fr/hal-02363416


[168] Le-Duc Tung and Zhenjiang Hu, « Towards Systematic Parallelization of Graph Trans-

formations Over Pregel », in: Int. J. Parallel Program. 45.2 (Apr. 2017), pp. 320–339,

ISSN: 0885-7458, DOI: 10.1007/s10766-016-0418-5, URL: https://doi.org/10.
1007/s10766-016-0418-5.

[169] Tamás Vajk et al., « Runtime Model Validation with Parallel Object Constraint Lan-

guage », in: Proceedings of the 8th International Workshop on Model-Driven Engi-

neering, Verification and Validation, MoDeVVa, Wellington, New Zealand: Associa-

tion for Computing Machinery, 2011, ISBN: 9781450309141, DOI: 10.1145/2095654.
2095663, URL: https://doi.org/10.1145/2095654.2095663.

[170] Leslie G. Valiant, « A Bridging Model for Parallel Computation », in: Commun. ACM

33.8 (Aug. 1990), pp. 103–111, ISSN: 0001-0782, DOI: 10.1145/79173.79181, URL:

http://doi.acm.org/10.1145/79173.79181.

[171] Gergely Varró and Frederik Deckwerth, « A Rete Network Construction Algorithm for

Incremental Pattern Matching », in: Theory and Practice of Model Transformations -

6th International Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013. Pro-

ceedings, ed. by Keith Duddy and Gerti Kappel, vol. 7909, Lecture Notes in Computer

Science, Springer, 2013, pp. 125–140, DOI: 10.1007/978-3-642-38883-5\_13, URL:

https://doi.org/10.1007/978-3-642-38883-5%5C_13.

[172] Vinod Kumar Vavilapalli et al., « Apache hadoop yarn: Yet another resource negotia-

tor », in: Proceedings of the 4th annual Symposium on Cloud Computing, 2013, pp. 1–

16.

[173] Dennis Wagelaar et al., « Towards a General Composition Semantics for Rule-Based

Model Transformation », in: Proceedings of the 14th International Conference on Model

Driven Engineering Languages and Systems, MODELS’11, Wellington, New Zealand:

Springer-Verlag, 2011, pp. 623–637, ISBN: 9783642244841.

[174] Edward D. Willink, « Deterministic Lazy Mutable OCL Collections », in: Software Tech-

nologies: Applications and Foundations - STAF 2017 Collocated Workshops, Marburg,

Germany, July 17-21, 2017, Revised Selected Papers, ed. by Martina Seidl and Steffen

Zschaler, vol. 10748, Lecture Notes in Computer Science, Springer, 2017, pp. 340–355,

DOI: 10.1007/978-3-319-74730-9\_30, URL: https://doi.org/10.1007/978-
3-319-74730-9%5C_30.

xxxix

https://doi.org/10.1007/s10766-016-0418-5
https://doi.org/10.1007/s10766-016-0418-5
https://doi.org/10.1007/s10766-016-0418-5
https://doi.org/10.1145/2095654.2095663
https://doi.org/10.1145/2095654.2095663
https://doi.org/10.1145/2095654.2095663
https://doi.org/10.1145/79173.79181
http://doi.acm.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-642-38883-5\_13
https://doi.org/10.1007/978-3-642-38883-5%5C_13
https://doi.org/10.1007/978-3-319-74730-9\_30
https://doi.org/10.1007/978-3-319-74730-9%5C_30
https://doi.org/10.1007/978-3-319-74730-9%5C_30


[175] Dili Wu and Aniruddha Gokhale, « A self-tuning system based on application Profil-

ing and Performance Analysis for optimizing Hadoop MapReduce cluster configu-

ration », in: 20th Annual International Conference on High Performance Computing,

2013, pp. 89–98, DOI: 10.1109/HiPC.2013.6799133.

[176] Matei Zaharia et al., « Spark: Cluster computing with working sets », in: 2nd USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 10), 2010.

[177] Jingren Zhou et al., « SCOPE: Parallel Databases Meet MapReduce », in: The VLDB

Journal 21.5 (Oct. 2012), pp. 611–636, ISSN: 1066-8888, DOI: 10.1007/s00778-012-
0280-z, URL: https://doi.org/10.1007/s00778-012-0280-z.

xl

https://doi.org/10.1109/HiPC.2013.6799133
https://doi.org/10.1007/s00778-012-0280-z
https://doi.org/10.1007/s00778-012-0280-z
https://doi.org/10.1007/s00778-012-0280-z




Titre : Contribution à l’analyse de l’espace de conception d’un moteur de transformation distri-
bué

Mot clés : Spark,Model Transformation,Model Queries,Correction,Caractérisation

Résumé : L’espace de conception pour dé-
finir un moteur de transformation de modèle
distribué est un large spectre de possibili-
tés et d’opportunités pour améliorer les per-
formances en termes de temps de calcul et
de consommation mémoire. Selon les déci-
sions adoptées, l’utilisation d’un moteur de
transformation peut être complètement diffé-
rente (par exemple, une solution incrémen-
tale pour un modèle souvent modifié contre un
moteur formellement spécifié pour le raison-
nement, non performant). Les solutions déjà
existantes proposent des moteurs avec diffé-
rents objectifs basés sur plusieurs approches,
notamment la distribution, la paresse, l’incré-
mentalité et l’exactitude. Cependant, compa-

rer les solutions n’est pas anodin, et n’a pas
forcément de sens. C’est pourquoi nous avons
mis en place un nouveau moteur, intégrant
la variabilité, qui permet une analyse de son
espace de conception. À partir d’un langage
doté de spécifications formelles, nous avons
créé SparkTE, un moteur de transformation
paramétrable et distribué au-dessus de Spark.
Dans cette thèse, nous cherchons à analyser
l’impact des choix à différents niveaux : les
modèles de programmation utilisés pour dé-
finir les expressions ; les différentes séman-
tiques utilisées pour définir le calcul d’une
transformation ; et l’impact des choix d’ingé-
nierie.

Title: Contribution to the Analysis of the Design-Space of a Distributed Transformation Engine

Keywords: Spark,Model Transformation,Model Queries,Correctness,Features

Abstract: The design space for defining a
distributed model transformation engine is a
large spectrum of possibilities and opportu-
nities to enhance performances in terms of
computation time and memory consumption.
Depending on the adopted decisions, the use
of a transformation engine can be completely
different (e.g., an incremental solution for an
often-modified model vs a formally specified
engine for reasoning, not performing). Already
existing solutions propose engines with differ-
ent goals based on several approaches in-
cluding distribution, laziness, incrementality,
and correctness. However, comparing the so-

lutions is not trivial, and does not necessar-
ily make sense. That is why we have imple-
mented a new engine, integrating variability,
that allows an analysis of its design space.
From a language that has formal specifica-
tions, we created SparkTE, a parametrizable
and distributed transformation engine on top
of Spark. In this thesis, we aim at analysing
the impact of the choices at different levels:
the used programming models for defining ex-
pressions; the different semantics used to de-
fine the computation of a transformation; and
the impact of engineering choices.
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