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patterns at the macroscale . . . .

On constate souvent que les micro-organismes, tels que les bactéries motiles, sont capables de se propager dans des environnements divers et à diérentes échelles. Comprendre comment les bactéries se disséminent présente un intérêt dans de nombreux domaines tels que la biologie, l'écologie, les géosciences, l'ingénierie ou encore la médecine. Leur propagation est inuencée par diérents phénomènes à la fois biologiques, chimiques et physiques. Parmi ces phénomènes, le couplage hydrodynamique entre leur nage et l'écoulement du uide dans lequel elles se déplacent joue un rôle important, en particulier dans la dispersion des bactéries sur les surfaces ou dans les environnements poreux naturels comme les sols et les roches, où les cisaillements du uide sont omniprésents. Dans cette thèse, nous étudions le couplage de l'activité et de la concentration des bactéries avec l'advection du uide et sa conséquence sur la dispersivité macroscopique d'une suspension. Dans la première partie, nous eectuons des simulations de Langevin lors-qu'une suspension peu peuplée est soumise à un écoulement de Poiseuille et étudions le coecient de dispersion macroscopique. Nous montrons que le couplage nage/écoulement induit une augmentation de la dispersion longitudinale macroscopique, qui croît comme U 2+κ , où U est la vitesse de l'écoulement. L'analyse des prols de concentration en bactéries, en régime permanent, nous permet d'identier également les diérents mécanismes de piégeage et d'étudier leur inuence sur la valeur de κ. Dans la deuxième partie, nous réalisons des expériences de déplacement de uides miscibles dans une cellule de Hele-Shaw milliuidique avec une suspension d'Escherichia coli. Ces expériences nous permettent de comprendre le rôle de la rhéologie d'une suspension sur sa dispersion macroscopique. Nous montrons que l'activité des bactéries provoque un contraste de viscosité susamment élevé pour induire une instabilité de Saman-Taylor. Nous identions également les diérents régimes de dispersion un analysant les prols de concentration le long des fronts et leur dynamique temporelle.

Microorganisms, such as motile bacteria, are often found to be able to propagate in diverse environments and across dierent scales. Understanding how bacteria disseminate is of interest in many elds such as biology, ecology, geosciences, engineering and medicine. Their propagation is inuenced by various biological, chemical and physical phenomena. Among these phenomena, the hydrodynamic coupling between their swimming and the ow of the uid in which they move plays an important role, in particular on the dispersion of bacteria on surfaces or in natural porous environments such as soils and rocks, where uid shearing is omnipresent. In this thesis, we investigate the coupling of the bacteria activity and concentration with the uid advection and its consequence on the macroscopic dispersivity of a suspension. In the rst part, we perform Langevin simula-tions when a sparsely populated suspension is subject to a Poiseuille ow and we study the macroscopic dispersion coecient. We show that the swim/ow coupling induces an enhancement in the macroscopic longitudinal dispersion, which scales as U 2+κ , where U is the imposed ow velocity. The analysis of bacteria concentration proles, in the steady state, allows us to identify the dierent trapping mechanisms and their inuence on the value of κ. In the second part, we perform miscible uid displacement experiments in a Hele-Shaw cell with a suspension of Escherichia coli. These experiments allow us to understand the role of the rheology of a suspension on its macroscopic dispersivity. We show that bacteria activity causes a viscosity contrast high enough to induce a Saman-Taylor instability. We also identify the dierent dispersion regimes by analyzing the concentration proles along the front and their temporal dynamics.
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Résumé étendu en français

Les micro-organismes sont présents dans l'ensemble des écosystèmes terrestres. Ils ont colonisé l'ensemble du monde vivant et développent des interactions symbiotiques aussi bien avec des espèces animales que végétales. L'étude des interactions des bactéries avec leur environnement est un domaine complexe sujet de recherches toujours très actives. Les recherches combinent souvent des angles disciplinaires variés comme la biologie, la médecine, les sciences du sol ou l'écologie et elles sont maintenant l'enjeu de recherches à la frontière entre les disciplines. Dans ma thèse, j'ai abordé ce sujet en me plaçant à l'interface entre la mécanique des fluides et la microbiologie en étudiant le rôle de l'hydrodynamique sur la dispersion des bactéries. Près de la moitié des bactéries sont motiles ce qui leur permet d'explorer leur environnement proche. Cette motilité est modulée en fonction des espèces chimiques présentes dans leur voisinage : cela leur permet de se diriger vers des sources favorables à leur développement ou au contraire de s'en éloigner si l'espèce chimique en question est nocive. Grâce en particulier aux développements récents de la microfluidique, ce mécanisme de nage est maintenant relativement bien compris. Cette nouvelle technologie a aussi permis de faire évoluer la pensée existante sur le comportement des bactéries transportées par un écoulement. Il y a encore quelques années, les bactéries étaient considérées comme des colloïdes passifs avec une diffusivité effective dominée par leur nage aléatoire. Dans la première partie de ma thèse, je montre que le couplage entre la vorticité et la composante extensionnelle du fluide avec le rapport d'aspect des microorganismes augmente la dispersion de la population. Pour permettre une description analytique du phénomène, j'ai considéré des particules transportées dans un écoulement de Poiseuille typique des écoulements en cellule de Hele-Shaw. Sans couplage, la dispersion macroscopique est décrite par la loi dérivée analytiquement par Taylor en 1953 et confirmée depuis par de nombreuses expériences. Quand le couplage avec le fluide est présent, j'observe une déviation à la loi de Taylor. Cette déviation est étudiée en fonction des conditions et de la géométrie de l'écoulement et en considérant différentes formes de bactéries. Un modèle théorique basé sur l'idée que le couplage limite la diffusion entre les trajectoires est aussi proposé. Il permet d'obtenir le comportement en loi de puissance mesuré par mes simulations. Ce premier régime est caractéristique des écoulements "forts". Ces écoulements sont caractérisés par leur taux de cisaillement maximal qui est comparé au temps de réorientation des bactéries par leur nage. Le rapport entre ces deux fréquences est défini comme le nombre de Péclet fluide noté P e f . J'ai montré que le couplage domine pour P e f > 10. Pour P e f < 10, le nombre de bactéries devient un élément important qui contrôle la vis-vi cosité effective de la suspension. Dans la seconde partie, j'étudie les effets de réduction de viscosité par les bactéries sur la dispersion de la population. Le phénomène de réduction de viscosité a été mis en évidence dans des rhéomètres mais n'a jamais été caractérisé dans d'autre type d'écoulement. Nous l'avons mis en évidence en étudiant le déplacement d'un fluide sans bactérie poussé par ce même fluide mais contenant des bactéries. La baisse de la viscosité se traduit par l'apparition d'une digitation typique de celle observée lorsqu'un fluide moins visqueux pousse un fluide plus visqueux. L'analogie entre les deux phénomènes m'a permis de déterminer les conditions d'écoulement et de concentration en bactéries pour lesquelles l'instabilité hydrodynamique est présente.

Etude numérique de la dispersion d'une suspension de bactéries

Dans le chapitre 2, je présente un travail numérique permettant d'étudier la dispersion de bactéries dans des conditions d'écoulements rapides difficilement accessibles expérimentalement. Chaque bactérie est modélisée par une ellipse de rapport d'aspect q qui avance à une vitesse constante V s orientée selon un des axes principaux de la bactérie. Une réorientation continue et aléatoire de la direction de nage se superpose à ce mouvement de translation. Un coefficient de diffusion rotationelle D R est associé à ce mouvement. Les particules sont supposées ne pas perturber le fluide dans lequel elles se déplacent ; il n'y a donc pas d'interaction entre particules. L'orientation des particules est aussi influencée par le cisaillement local du fluide. Pour cela, j'utilise les équations obtenues par [1].

Une simulation numérique débute un plaçant une population de particules à l'entrée d'une cellule de Hele-Shaw. Au cours de temps, le premier moment et la variance des positions des particules dans différentes directions sont mesurées. On observe que la variance des positions dans la direction de l'écoulement σ 2 y varie aux temps courts en t 2 (régime convectif). Ce régime est suivi d'un régime de variation linéaire en 2D ∥ t qui correspond à un régime de transport diffusif. Une régression de nos mesures en fonction du temps permet de déterminer le coefficient de dispersion D ∥ . Ce coefficient ainsi que le temps caractéristique τ c de transition entre les deux régimes ont été déterminés sur une plage de P e f compris entre 0,0025 et 100 (ce qui correspond à 0,03 ≤ P e ≤ 1300, où P e est le rapport entre le temps de diffusion et le temps de convection) et pour des particules avec des rapport d'aspects allant de q = 0.5 à q = 10. Plusieurs régimes de variation ont observés : (i) pour des P e f < 10, la réorientation des particules par la diffusion rotationelle est plus forte que l'effet de l'écoulement sur l'orientation de la particule. Dans ce régime, les bactéries diffusent selon le mécanisme connue de Taylor [2] et on observe la variation suivant la loi suivante : D ∥ /D 0 = 1 + αP e 2 . (ii) Pour des P e f > 10, le coefficient de dispersion augmente comme une loi de puissance supérieure à 2 avec le nombre de Péclet. J'ai déterminé cet exposant (2 + κ) par ajustement des données et déterminé sa variation en fonction du rapport d'aspect des particules. L'exposant κ est trouvé proche de 2 sur une gamme de q proche de 1 et diminue ensuite quand q devient vii plus grand que 4. J'ai mis en évidence deux contributions pour le coefficient D ∥ : la variance de la vitesse des particules σ 2 Up et le temps de relaxation, τ c . L'étude de ces deux contributions m'a permis d'observer que la variation de D ∥ est entièrement liée à l'augmentation de τ c avec le nombre de Péclet. Le couplage entre l'orientation des particules et l'écoulement piège plus longtemps les particules le long de leurs trajectoires hélicoïdales et limite ainsi leur diffusion dans le profil de vitesses. J'ai également noté que la valeur plateau atteinte par σ 2 Up /U 2 était uniquement fonction de la forme des profils de concentration des particules dans l'ouverture de la cellule de Hele-Shaw. Lorsque la diffusion rotationelle est forte, les particules sont uniformément distribuées dans l'ouverture -comme classiquement observé par Taylor pour des particules passives -avec une forte accumulation à la surface due à nos conditions aux limites. Lorsque le nombre de Péclet fluide augmente, on observe une accumulation des particules proches des parois. Ce phénomène de piégeage dans les régions dans lesquelles le taux de cisaillement est élevé a déjà été observé expérimentalement par [3] et numériquement [3][4][5]. Lorsque le nombre de Péclet fluide continue à augmenter, le régime de piégeage change et on passe à une région de piégeage dans les régions de faible cisaillement, c'est-à-dire localisée entre les deux plaques. Cette transition apparaît pour un Péclet fluide d'autant plus petit que le rapport d'aspect est petit. Ces observations corroborent les résultats de [5] obtenus avec une autre méthode numérique. Pour une bactérie sphérique (q = 1), le profil de concentration reste constant pour tous les P e f , seule la concentration à la surface change. On constate une diminution du nombre de particules à la surface et un piégeage moins important lorsque P e f augmente. Les particules qui se déplacent le long de leur axe le plus petit (i.e. celles avec q = 0.5), ont un comportement singulier : elles sont piégées à la fois dans les zones de faibles et de forts cisaillements. Enfin, j'ai proposé un modèle physique pour expliquer la loi d'échelle en puissance κ de τ c . À partir de ce modèle, j'ai obtenu κ = 2, ce qui est observé pour les cas q < 4. J'ai ensuite étudié l'importance de l'ajout d'un terme de diffusion D m sur les régimes de dispersion. Cette diffusion modélise par exemple le bruit thermique ou un bruit biologique. Trois régimes ont été alors observés : un premier régime de Taylor à faible P e où D ∥ ∼ P e 2 dans lequel la diffusion rotationelle domine. Ce régime est suivi du régime de puissance anormale pour lequel D ∥ ∼ αP e 2+κ . Puis, un troisième régime où D ∥ revient à nouveau vers un régime de Taylor dans lequel la diffusion est dominée par D m . Dans ce régime l'échelle de temps de diffusion est définie par rapport à la diffusivité moléculaire passive D m au lieu de la diffusivité active effective

D 0 = V 2 S 6D R + D m .
Ainsi, une valeur finie de D m peut supprimer l'effet de couplage du cisaillement et annule le rôle du rapport d'aspect. Ces résultats sont conformes à ceux de Chilikuri et.al. [6].

Pour finir, j'ai également étudié l'effet de l'ouverture de la cellule de Hele-Shaw. Pour des grands P e f , j'ai observé D ∥ ∼ P e 2+κ f indépendamment du confinement. Le confinement joue par contre sur la fraction de particules qui s'accumulent sur la surface. Ainsi, lorsque la hauteur du canal est du même ordre de grandeur que la longueur de corrélation de la nage des bactéries donnée par V S D R , près de 80% sont trouvées sur les surfaces.

viii Pour illustrer les ouvertures possibles de ce travail, j'ai également commencé à étudier l'effet de la rhéologie du fluide sur le comportement d'échelle de D ∥ et de τ c , conditions qui modélisent par exemple l'effet la nage des bactéries dans du mucus. En me limitant à des fluides en loi de puissance et en supposant que V S et D R restent indépendants de la viscosité du fluide, j'ai pu donner des premiers éléments montrant l'influence de la rhéologie.

Etude expérimentale de la dispersion d'une suspension de bactéries

Dans le chapitre 3, j'ai étudié la dispersion d'une suspension de bactéries dans des cellules dites de Hele-Shaw en contrôlant la fraction volumique en particules. Les fractions volumiques considérées sont comprises entre 0.06 et 0.8%. Les bactéries sont mises en suspension dans un fluide dans lequel elles nagent activement mais sans se reproduire. J'ai aussi joué sur l'ajout d'une faible quantité de polymères dans la suspension pour moduler l'activité de nage des bactéries. Les polymères utilisés sont des polyvinylpyrrolidone (PVP) et les quantités ajoutées n'excèdent pas le pourcent. Le nombre de bactéries est ainsi maintenu constant sur toute la durée de mes observations. Les débits utilisés permettent de couvrir une gamme de nombres de Péclet fluide P e f compris entre 2 et 12.

Les cellules de Hele-Shaw sont fabriquées en collant, après traitement plasma, un moulage du canal réalisé polydiméthylsiloxane (PDMS) sur une plaque en verre. Le PDMS étant perméable à l'oxygène, son utilisation permet de maintenir une oxygénation suffisante de la suspension de bactéries et ainsi compenser l'oxygène consommé par les micro-organismes. Je me suis assuré que cette condition était bien réalisée en faisant des expériences complémentaires. Un petit volume de suspension a été placé dans une cavité en PDMS collée sur une lame de microscope. La cavité a été ensuite recouverte par un morceau de PDMS. Cette cellule reproduit, en plus petit, nos conditions expérimentales. Une fois placée sous un microscope, elle me permet de visualiser mes bactéries fluorescentes et de réaliser des films. Pour étudier la nage des bactéries dans une suspension plus dense, des suspensions mélangeant une souche non fluorescente avec la souche fluorescente ont été réalisées. Ces expériences m'ont permis de montrer que l'activité des bactéries (caractérisée par la vitesse moyenne de nage V s et le coefficient de diffusion rotationelle D R ) est inchangée sur 3 heures, durée qui correspond à la durée maximale de mes expériences en cellule de Hele-Shaw. Elles ont aussi permis de montrer que les caractéristiques de nage ne dépendaient pas de la concentration de la suspension sur la gamme utilisée dans mon étude.

Les cellules de Hele-shaw sont placées sur une table lumineuse émettant dans le bleu et l'ensemble est filmé grâce à une caméra placée au dessus du dispositif. Sous cette éclairage, les bactéries fluorescent. Une filtre orange est ajoutée sur l'objectif de la caméra pour filtrer l'éclairage bleu du panneau et ne garder que le signal de ix fluorescence. Une expérience de calibration m'a permis de m'assurer que l'intensité lumineuse du signal capté par la caméra est proportionnel à la concentration en bactéries. J'ai ainsi pu traduire mes images en niveaux de gris en champs de concentration. L'expérience débute en remplissant la cellule par une solution tampon ordinaire. Les bactéries sont ensuite placées dans un réservoir spécialement conçu pour qu'elles soient bien oxygénées et donc maintenues actives sur la durée de l'expérience. Une pompe à seringue connectée à la sortie de la cellule est alors utilisée pour créer l'écoulement. Des images sont acquises à intervalles réguliers et permettent ainsi de reconstituer l'évolution spatio-temporelle du front de concentration. Sur la base de la forme des fronts de concentration observés, j'ai classé mes résultats en 4 régimes distincts ; (i) Régime D : Un régime diffusif où le front de concentration est uniforme dans la largeur du canal et avec une variation en fonction erreur dans la direction de l'écoulement, (ii) Regime R : Le front de concentration était arrondi dans la largeur englobant des lignes d'iso-concentrations en forme de V, (iii) Regime S : Transition d'un front de concentration en forme de V à un front en forme de V avec un précurseur de faible intensité se développant à l'avant du front et, (iv) Regime F : Caractérisé par l'émergence d'un front en forme de doigt. Le régime D a été observé pour tous les P e f et pour des concentrations en bactéries relativement faible. Dans ce régime, la forme des fronts de concentration ressemble à ceux observés lors de la dispersion d'un soluté passif (comme la fluorescéine). Les profils de concentration moyennés sur la largeur sont ajustés par une fonction d'erreur. À partir de cet ajustement, j'obtiens le premier moment b dont la variation avec le temps me permet de déterminer la vitesse moyenne, ūbact , d'avancée de la population de bactéries. Le second paramètre c mesure la largeur du front de mélange. Sa variation avec le temps informe sur la dynamique d'étalement du front. Si c 2 varie linéairement avec le temps, l'étalement est diffusif et l'ajustement linaire des données a pour pente 2D ∥ . J'ai observé que la population de bactéries avance à une vitesse plus faible que la vitesse moyenne du fluide. Cette effet de rétention est attribué à la rétention des bactéries sur les parois. Cette rétention reste réversible. Cet effet de rétention diminue avec la vitesse de l'écoulement et est moins visible lorsque la hauteur de la cellule de Hele-Shaw est augmentée. Cet effet de rétention est attribué aux interactions hydrodynamiques des bactéries avec la surface [7][START_REF] Junot | Transport of active bacteria: from micro-scale processes to macroscopic hydrodynamic dispersion[END_REF][START_REF] Molaei | [END_REF][10][11][12][13][14]. Ces observations sont en accord avec les prédictions du modèle physique que j'ai développé à partir de l'équation de [7]. Dans ce régime, j'ai également observé que D ∥ ∼ αP e 2 . Ce régime est identique à celui mesuré avec de la fluorescéine. On retrouve donc le régime dit de Taylor [2,15] pour les traceurs passifs. Le régime R a été observé lorsque j'ai augmenté la concentration de bactéries. Le profil de concentration devient asymétrique et il ne peut plus être ajusté proprement par une fonction erreur. Sa dynamique est caractérisée en étudiant la vitesse d'avancée, u(c), des positions y(c) pour lesquelles la concentration mesurée est égale à c. Les vitesses u(c) sont ensuite normalisées par la vitesse moyenne de la population de bactéries. On obtient ainsi : V (c) = u(c) ūbact . J'ai observé une variation non uniforme de V (c) avec c. Pour de petits c, V (c)>1 indiquant que le front de concentration x avance à une vitesse plus rapide que la partie arrière. Cet effet augmente avec la concentration en bactéries i.e., c'est-à-dire que la vitesse de l'extrémité V tip augmente avec l'augmentation de la concentration. Cette augmentation de V tip avec la concentration de bactéries est analogue aux observations pour les fluides newtoniens lorsque le contraste de viscosité entre deux fluides est augmenté [16][17][18][19][20]. J'ai ainsi mis en évidence que la concentration en bactéries joue le même rôle que le contraste de viscosité pour les fluides newtoniens. Le profil obtenu en dérivant le profil de concentration mesuré montre une évolution aux temps longs vers une forme proche d'une forme gaussienne. Cela indique que la dynamique temporelle du front est influencée par la diffusion. À la vitesse d'écoulement la plus élevée, j'ai observé que l'effet de la concentration des bactéries diminuait et que le front de concentration apparaissait plus diffus, ce que confirme le graphe de la dérivée spatiale du profil de concentration qui s'approche d'une gaussienne. Cela a été mis en évidence par la diminution de V tip /ū bact avec U pour toutes les concentrations de bactéries.

Le régime S a été observé lorsque l'activité bactérienne est plus élevée (concentration en bactéries plus grande) et lorsque l'activité est augmentée en ajoutant des polymères dans la suspension. Les caractéristiques du front restent globalement assez similaires à celles du régime R. L'existence du précurseur est marquée par une augmentation de V tip /ū bact avec U . Lorsque la concentration de bactéries passe à une concentration encore supérieure, le régime S laisse place au régime F. Dans ce régime, une digitation apparaît, typique des digitations visqueuses observées lorsqu'un fluide pousse un fluide de plus forte viscosité. J'ai également augmenté la largeur du canal en passant d'une largeur de 1 cm à une largeur de 2 cm et caractérisé l'influence de ce changement sur la dynamique de l'instabilité. J'ai pu observer la croissance de deux doigts instables qui finissent par fusionner en une seule digitation dont la forme rappelle celle de l'instabilité de Saffman-Taylor [16]. Ceci a été confirmé quantitativement en réalisant des expériences avec des fluides newtoniens ayant des contrastes de viscosité, M , imposés. J'ai alors observé une augmentation de V tip /U avec l'augmentation de M en accord avec les résultats numériques ou expérimentaux déjà publiés [17-19, 21, 22]. En particuliers, on observe que la longueur l de la digitation varie linéairement avec V tip /U . La comparaison de ces longueurs avec les longueurs obtenues avec les suspensions de bactéries me permet de dire que les suspensions très concentrées en bactéries introduisent un contraste de viscosité d'environ 3.9. La dynamique au début de l'injection semble cependant correspondre plus à celle obtenue avec M = 12 des fluides newtoniens. Ceci reflète l'influence du mélange qui est favorisé par le caractère instable du déplacement et qui atténue le contraste de viscosité. Mes expériences prouvent la présence d'une diminution de la viscosité du fluide injecté due à l'activité des bactéries. Cette étude est la première qui démontre cette diminution et son influence sur la dispersion de la population de bactéries dans un écoulement de Poiseuille. Mes expériences permettent de montrer que cet effet contrôle la dispersion lorsque le nombre de Péclet fluide est inférieur à 10 et lorsque la concentration en bactéries est plus grande que 5.
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Conclusion :

Les deux études que j'ai réalisées se complètent et explorent chacune le rôle du couplage entre l'écoulement du fluide et les bactéries. Dans les simulations, j'ai considéré le rôle de la réorientation imposée par le cisaillement de l'écoulement sur l'orientation des bactéries. Lorsque le couplage fluide-bactérie est absent, les particules sont passives et on retrouve le régime de dispersion de Taylor caractérisé par une augmentation du coefficient de dispersion comme P e 2 . Lorsque le couplage est introduit, on constate que le temps passé par les particules sur leurs trajectoires augmente. La conséquence est une augmentation de la dispersion comme P e κ+2 avec κ ∼ 2. Dans les expériences, j'ai considéré une autre situation observée pour des nombres de Péclet fluide inférieurs à 10. Dans ces conditions, la présence des bactéries abaisse la viscosité du fluide. Cet réduction a été mise en évidence par des mesures de rhéologie, ici je démontre que cette réduction conduit à une instabilité hydrodynamique qui se traduit par l'apparition de digitations visqueuses lorsque les bactéries déplacent un autre fluide. Mes expériences faites en cellule de Hele-Shaw permettent de déterminer les conditions sous lesquelles cette instabilité se déclenche. Pour des bactéries de type E. coli, il est nécessaire que le nombre de Péclet fluide soit plus petit que 10 et que la fraction volumique en bactéries de la suspension soit supérieure à 0.5%. Sous cette dernière condition, le contraste de viscosité atteint une valeur proche de 1.5. Les différents régimes de dispersion caractérisés dans ma thèse améliorent notre compréhension de la dispersion hydrodynamique macroscopique des bactéries. Ma thèse ouvre de nouvelles voies d'explorations passionnantes sur le rôle de l'écoulement, de la motilité des bactéries, de leur concentration et du couplage de ces paramètres sur le transport des microorganismes. xiv 

Chapter 1

Introduction

Microorganisms contribute to a significant volume fraction of the total biomass in nature. This broad family of species is part of the ecological balance in our environment [START_REF]Environmental microbiology[END_REF]. Among all microorganisms, bacteria plays a critical role in the life of plants, animals and humans by performing chemical reactions and providing nutrients [START_REF] Madigan | Brock biology of microorganisms[END_REF][START_REF] Lauga | [END_REF][26]. They are essential in the degradation of organic matter (bioremediation) [START_REF]Environmental microbiology[END_REF][27][28][29][30] and photosynthesis [START_REF] Fleischman | Cell Physiology Source Book[END_REF]. One of the key characteristics of bacteria, is their ability to spread, disperse and migrate in their environment. This can either enable the population of bacteria to escape harmful environments or to colonize new niches [START_REF] Bhattacharjee | [END_REF]. Understanding the spreading of bacteria is of interest in many fields such as biology, ecology, geosciences, engineering and medicine. Their propagation is influenced by various biological, chemical and physical phenomena. Among these phenomena, the hydrodynamic coupling between their swimming and the flow of the fluid in which they move plays an important role, in particular on the dispersion of bacteria on surfaces or in natural porous environments such as soils and rocks, where fluid shearing is omnipresent. They fundamentally differ from that of passive brownian colloids due to their swimming activity as well as their coupling with the surrounding flow. These coupling mechanisms influences their individual trajectories [33,34] and result in altering the macroscopic dispersivity of the suspension [3][4][5][6][35][36][37][38][39]. At high concentrations, these coupling mechanisms can also alter the effective viscosity of the suspension [?, [40][START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF][43][44]. The focus of this thesis is to develop a framework that would augment our understanding on the hydrodynamic dispersion of bacteria suspensions. To do so, we studied the macroscopic dispersion of bacteria in a Poiseuille flow and characterize the influence of bacteria concentration, motility and coupling with flow on its macroscopic dispersivity.

We first begin by introducing the different mechanisms through which a bacteria can exhibit their motility. This is then followed by explaining the swimming mechanism of a Escherichia coli (E. coli) bacteria in a quiescent fluid. We will also highlight few of the phenomena that can bias its swimming startegy, followed by citing a few examples of the macroscopic consequences that emerge from a biased swimming of bacteria. Furthermore, we will briefly present the influence of an external flow on bacteria transport, where we will emphasize specifically the influence of bacteria concentration, motility and coupling with the flow on the rheology of Most of the known bacteria are motile and this motility is essential for them to propogate to either colonize surfaces or explore for other favourable regions in their environment. Bacteria can express motility in different ways; (i) Swimming, (ii) Swarming, (iii) Twitching, (iv) Gliding, and (v) Sliding [45]. The swimming and swarming mechanisms are faciliated through the rotation of a flagellum. Swimming is a mode of single bacterium movement in a liquid environment and swarming is a rapid movement of bacteria community across a surface. In the absence of a flagellum, a bacterium can also move along the surface by extending and retracting a hair-like appendage on its surface (pilius), which makes the motion of the bacterium twitchy. The movement of a bacterium along the direction of its long axis on a surface is called gliding. Sliding is a "passive" form of bacteria motility on surfaces in the presence of surfactants, which reduces the surface tension and enables a colony of bacteria to disperse and slide along the surface in different directions. These mechanisms are described in a schematic provided by Kearns et.al [45] as shown in Fig. 1.1. Among these mechanisms, a common form of bacterial motility is swimming. Microorganisms, in general, are found to adopt either of the following two types of swimming strategies, namely; (i) the thrust to propel the organism forward is generated behind the cell body (pushers) (ii) or the thrust is generated in front of the cell body (pullers) [46]. Bacteria like Escherichia coli (E. coli) or Bacillus Subtilis (B. subtilis) adopt a pusher type strategy, while algae such as Clamydomonas reinhardtii are examples of swimmers using puller type strategy. E. coli is one of the most well documented organism and often used as a model microorganism in biophysics since it is easy to grow and also due to the availability of a variety of mutant strains. For these reasons E. coli is used as a model organism to study biophysics problems and is the bacteria used in this thesis as well.

Different motility mechanisms of bacteria

Swimming mechanism of bacteria and micro hydrodynamics

An E. coli bacterium consists of a cell body to which multiple flagella are attached (See Fig. 1.2(a)). The flagella are slender helical appendages connected to rotating motors embedded at the cell wall through a flexible hook as represented schematically in Fig. 1.2(b). The direction of rotation by these motors are driven by proton fluxes [START_REF] Berg | Biological and medical physics series[END_REF] and this facilitates the rotation of the flagellum. A free swimming E. coli adpots the pusher strategy to swim and exhibits a run-and-tumble motion [START_REF] Berg | Biological and medical physics series[END_REF][START_REF] Prucell | [END_REF]. A counter clock wise (CCW) rotation of the motors results in the bundling of flagella together and propelling the bacterium from the rear of the cell body, and this is described as a run. A clockwise rotation of the motors results in unbundling of the flagella and a random reorientation of the bacterium and is described as a tumble [START_REF] Berg | Biological and medical physics series[END_REF]49]. This random walk of alternating run-and-tumble events is encapsulated in a simple model proposed by Berg et.al [50] and revised by Saragosti et.al [51]. The random walk of run-and-tumble results in the activity of bacteria, where they constantly probe their local environment. In a free-swimming environment, their activity allows cells to explore space much more efficiently than they would, if they were to move by Brownian motion alone. This is due to the additional influence of its activity on the effective diffusivity D 0 . D 0 = λV s 3(1-< cos θ >) [52,53], where V s , λ and θ are respectively the magnitude of the mean swimming velocity, mean run length and mean turn angle between two succesive runs. The run length for a run-tumble bacteria is defined as V s /D R , where D R is the rotational diffusivity. The rotational diffusivity is usually associated to the random orientation of a particle due to brownian noise. However, in the case of bacteria, they have an additional "active" contribution due to their tumbling activity and is much larger compared to its brownian counterpart. The D R of bacteria is the measure of its average tumbling rate i.e. it quantifies the exploration of bacteria in the reorientation space θ due to its tumbling. Thus, from the above definition of λ we obtain, D 0 ∼ V 2 s . For E. coli bacteria, it was experimentally observed by Berg et.al [50] and Saragosti et.al [51] that, < cos θ > ∼ 0.33. Therefore, D 0 ∼ 400µm 2 /s, which is much larger compared to its brownian diffusivity ∼ 0.2µm 2 /s [54,55].

The hydrodynamics of the ability of rotating flagella to produce propulsive forces can be explained as follows. At the scale of a bacterium, the viscous drag is dominant over the inertia forces and thus the Reynolds number Re = ρV s a µ 0 is of order 10 -4 with ρ and µ 0 being the density and viscosity of water, a ∼ 10 µm, which is the typical length of an E. coli bacterium including its body and flagella and V s ∼ 12 µm/s being the magnitude of its average swimming velocity. In this regime, the hydrodynamic equations are governed by the incompressible Stokes equations, and drag forces on rigid bodies scale linearly with their instantaneous velocities relative to the fluid. At this scale, the bacterium motion is force and torque free. Since the flagellum is a slender helical filament, its physics can be gleaned from an anology of a slender rod motion in a viscous fluid. At a given velocity, a rod experiences a higher drag when translating perpendicular to its long axis compared to a translation along this axis. Thus, when the rod is obliquely suspended, the hydrodynamic drag on the rod is not aligned with the direction of velocity, instead an additional drag is present along the perpendicular direction, thus resulting in a drag based thrust. Now, we can extend the same idea to flagella as well. When the flagella undergoes a CCW rotation, it exerts a local velocity on the fluid. An instaneous drag force Chapter 1. Introduction is exerted by the fluid on the flagella to resist the rotation of flagella in the fluid. Due to the slender shape of the flagella, there is an additional drag perpendicular to the direction of velocity. This results in a non-zero component of the drag force and since the bacterium is force-free, it has to swim to balance this force [START_REF] Lauga | [END_REF].

During the run phase of a bacterium, the force balance can be modelled as a force dipole separated by a distance ξ as shown in Fig. 1.3 (b). The leading order velocity field u at a distance r from the centre of mass of the bacterium is given by:

u ∝ F ξ µ 0 r 2 (1.2.1)
This relation was experimentally verified by Drescher et.al [46] in which they observed the average flow field around a free swimming E. coli bacteria as shown in Fig. 1.3(a). They estimated ξ = 2.2 µm and F = 0.43 pN.

Finally. the energy dissipated along the length of dipole, σ 0 ,is defined as:

σ 0 ∝ F ξ ∝ µ 0 V s ξ 2 (1.2.2)
where σ 0 < 0 for pushers.

Bias in bacteria swimming in a quiescent fluid and patterns at the macroscale

Bacteria response to the spatial and temporal variation of chemical and physical parameters in its environment has been of interest over the last few decades. Such constraints not only influences the trajectories of individual bacterium, as we will see, but it can also result in emergence of macroscale patterns.

Response to chemical stimuli

When the bacteria moves in a gradient (chemical or thermal), the change in its environment will be sensed by their sensory system. This will then influence the direction of rotation of the rotary motors. The probability of the motor rotating CCW increases when it is moving towards a favourable environment, and thus swims smoothly towards the region. The converse occurs, when it is swimming towards an un-favourable environment, and it tumbles more frequently and reorients itself to swim in the opposite direction. A detailed account on the mechanism of the working of bacteria sensory system is given by [START_REF] Berg | Biological and medical physics series[END_REF]. This step enables the bacteria to display robust and adaptive responses to chemical (chemotactic response) and thermal (thermotactic response) gradients in its enviroment. This introduces a bias in the bacteria either swimming towards an attractive nutrient or away from a repellent. For example, E. coli bacteria is often attracted to chemicals of low molecular weights like oxygen, acids and bases, salts, sugars, amino acids and dipeptides [START_REF] Berg | Biological and medical physics series[END_REF]50,57,61,62], while they are repelled by alcohols or metal ions [START_REF] Berg | Biological and medical physics series[END_REF]61]. This biased spreading of bacteria population in response to different types of chemical gradients have been characterized through experiments [START_REF] Bhattacharjee | [END_REF][START_REF] Berg | Biological and medical physics series[END_REF]50,53,57,[62][63][64][65][66][67][68][69][70][71][72]. Many theoretical approaches [49,[73][74][75][76][77][78][79][80] have also been developed to model this phenomena and discern the underlying physics of these biased run or tumble phases of bacteria. The bacteria can also bias their swimming strategy in accordance to the temperature of the environment [START_REF] Berg | Biological and medical physics series[END_REF][81][START_REF] Berg | Random Walks in biology[END_REF][START_REF] Turner | [END_REF][84][85][86][87][88]. Demir et.al observed the response of bacteria to temperature changes to be coupled with the bacteria concentration and the medium of suspension [87]. At low bacteria concentrations, on one hand, in a nutrient rich medium, they observed an increase in the swimming velocity of the E. coli bacteria with temperature. On the other hand, they observed an intial increase followed by a monotonic decrease in the swimming velocity of the bacteria with increase Chapter 1. Introduction in temperature, when suspended in a buffer medium without any nutrients. In this medium, a positive thermal response to temperature gradients (smooth runs towards higher temperature) was observed [85,87,88]. Moderate concentrations of bacteria in nutrient rich medium have been observed to preferentially accumulate at a higher temperature initially, and then drift to a lower temperature due to increased rate of consumption of nutrients or oxygen, which leads to chemical gradients [START_REF] Berg | Random Walks in biology[END_REF]85,87]. A reversal in response of the bacteria to temperature gradients were observed for very high bacteria concentrations in a nutrient medium, which was attributed to their physiological changes and is detailed in [87].

The bias induced in the motion of bacteria at a microscopic scale results in the formation of patterns at the meso and macroscopic scale. Some examples of this effect includes the formation of chemotactic or aerotactic bands by bacteria either along or opposite to the direction of an imposed concentration gradient [START_REF] Bhattacharjee | [END_REF]55,57,65,67,[START_REF] Bouvard | Dynamics of bacteria suspensions, from aerotaxis to cluster formation[END_REF][START_REF] Mazzag | [END_REF] or an accumulation of bacteria in an ambient temperature region in a system [85][86][87]. Another example of large scale patterns induced by bacteria is the formation of biofilms. A biofilm is a community of bacteria that secrete an extracellular matrix and agrregate as multicellular groups [45]. Many factors influence the aggregation of bacteria and formation of these biofilms [60,[91][92][93][94][95]. It also marks a shift in bacterium phenotype from a free-swimming individual cell to a matrix producing biofilm, due to an increase in local bacteria density past a threshold value [60]. Bioconvection [58][59][60][96][97][98][99] is another example of bacteria accumulation at large scales. Bioconvection is often observed among bacteria suspensions in deep channels with a chemical gradient along the channel height. In this case, the concentration of the attractant is higher at the top of the channel compared to the bottom. This causes the bacteria to migrate towards the top of the channel, which then results in an accumulation of large population of bacteria at the top, thereby inducing a density gradient across the channel height. An instability is triggered due to buoyancy effects and results in the formation of fingers containing dense concentrations of bacteria pointing downwards (see Fig. 1.4 (c)) [58,59]. Vertical and horizontal stratifications of bacteria population are observed in lakes and soils. This occurs due to the variation in the temperature, pH, oxygen or nutrients across the region [100]. This influences the diversity and activity of the bacteria residing at a specific region, depending on the coupling between their growth rate, consumption of nutrients as well as the type of bacteria (aerobic or anaerobic). There also exists an interplay between the mass transfer of nutrients and bacteria, which also results in local gradients of nutrients. These characteristics are best depicted by the Winograsky column. It is a vertical column complimented with different nutrients with combination of aqueous (water) and non-aqueous regions (soil or mud). Depending on the diffusivity of nutrients and oxygen at a specific region, different types of bacteria grow and colonize in various regions across the length and breadth of the column.

Response to physical constraints

In addition to chemical stimuli, external physical constraints can also influence the swimming strategy of the bacteria. For instance, the rheology of the fluid influ-1.4. Influence of external flow in bacteria transport and consequence on rheology 9 ences the swimming speed and tumbling rate of the bacteria [101][102][103][START_REF] Gagnon | Locomotion At Low Reynolds Number: Dynamics In Newtonian And Non-Newtonian Systems With Biomedical Applications[END_REF][START_REF] Li | [END_REF][106][107]. For example, E. coli bacteria have been observed to exhibit a non-monotonic response to increase in viscosity of the fluid i.e. an increase in its swimming velocity and run length for small increases in viscosity of the fluid, followed by a monotonic decrease in swimming velocity with further increase of viscosity [101,103]. Bacteria have also been observed to alter their swimming strategy in Non-newtonian fluids compared to a Newtonian fluid of same viscosity. For instance, in a weakly viscoelastic fluid, bacteria were observed to swim faster than in a Newtonian fluid of similar viscosity. However, as the viscoelasticity was increased, a decrease in swimming velocity was observed [START_REF] Li | [END_REF]. Another example would be an increase in vorticity observed for a bacteria swimming in a shear-thinning fluid [START_REF] Gagnon | Locomotion At Low Reynolds Number: Dynamics In Newtonian And Non-Newtonian Systems With Biomedical Applications[END_REF].

When bacteria swim near a mucus zone or near an interface between different parts of animal or human body, they cross environment with spatially varying viscosities [108,109]. In the presence of these viscosity gradients, bacteria tend to navigate towards regions of favourable viscosity, where they can swim faster, and this phenomenon is called viscotaxis. Due to the alteration in the swimming strategy of the bacteria with the viscosity of the fluid, they can also bias their swimming strategies in the presence of viscosity gradients. For instance, bacteria flowing in slowly varying viscosity fields, experiences an asymetry in the viscous forces exerted on the body and the extent of its response depends on the shape of the bacteria [109].

The confinement of free-swimming bacteria across narrow spaces can induce hydrodynamic interaction of bacteria with surface. In the case of no flow or moderate flows, hydrodynamic interactions with the surface [7] traps the bacteria in smooth circular trajectories [13,14]. This results in long residence times at a solid surface [START_REF] Junot | Transport of active bacteria: from micro-scale processes to macroscopic hydrodynamic dispersion[END_REF][START_REF] Molaei | [END_REF], which leads to bacteria surface accumulation [7,110]. This retention effect can also reduce the average velocity of the bacteria population and influence its spreading [111]. The effect of surface interaction of bacteria would be discussed in detail in Chapters 2 and 3. Another example would be the number density of the bacteria. The presence of highly dense population of bacteria can induce bacteriabacteria interaction, where the trajectory of a single bacteria is affected by other. This leads to large scale coherent motion which induces local turbulence and clustering [?, 112, 113].

Influence of external flow in bacteria transport and consequence on rheology

External flows also influences the trajectories of bacteria. Many studies [3][4][5][33][34][35] have investigated the transport of sparsely populated bacteria flowing in a confined channel. In these studies, they had considered the population of bacteria to be low enough, such that the hydrodynamic pertubations due to their activity on the flow field of the fluid was neglected. These studies revealed the bacteria to exhibit preferential orientation and localized trapping across the channel height [3,33,34,36].

Chapter 1. Introduction

These observations have also been corroborated through modelling of bacteria population transport using a Fokker-Plank equation, as well as by Langevin simulations of their equations of motion [3][4][5]36]. These studies emphasized that the coupling between the local shear experienced by the bacteria due to the imposed flow and active diffusivity of the bacteria determines its re-orientation and trajectories across different directions. This "shear-coupling" influence on the reorientation of bacteria differentiates their dispersion from that of passive solute particles. Furthermore, an enchancement in the macroscopic longitudinal dispersivity have also been reported for bacteria suspensions [6,36,114]. A more detailed account of the different macroscopic dispersion regimes and the trapping mechanism across the channel gap as a function of imposed flow will be provided in Chapter 2. We will now see how the micro-hydrodynamic flow around the bacteria can influence the rheology of the suspension [44,116,117]. The rheological response of a bac-1.4. Influence of external flow in bacteria transport and consequence on rheology 11 teria suspension due to flow results from the coupling of bacteria configurations with both externally applied flows and these internally generated fluid disturbances [117]. This coupling induces an extra stress in addition to the stress of the fluid [40,117] in response to an imposed shear (see Eq. (1.4.1)).

Σ = -P I + 2µ 0 E + Σ p . (1.4.1)
where Σ is the total stress response, P is the fluid pressure and E is the strain rate tensor. While the first two terms in Eq. (1.4.1), corresponds to the Newtonian stress response, the third term is due to the particle. The magnitude of this extra stress, Σ p is proportional to the number density N of the suspension since it is the summation of the dipoles exerted by the individual particles on the fluid. In the case of passive particles, it has contributions from two parameters; (i) interaction of the particle with external flow, (ii) brownian rotations [40,118,119] and is given as follows:

Σ f = N A < pppp > - I 3 < pp > : E (1.4.2) Σ b = 3N k B T < pp > - I 3 (1.4.3)
where p corresponds to particle orientation and < pppp > and < pp > corresponds to the different moments of the orientation distribution of the particles. The parameter A is a constant and is related to the shape of the particle and k B and T are Boltzmann constant and temperature respectively. However, a third contribution is involved in the case of a swimmer particle i.e. the permanent force dipole due to swimming activity [40,117] and is given by:

Σ s = N σ 0 < pp > - I 3 (1.4.4)
where σ 0 is dipole magnitude of the swimmer and is given by Eq. (1.2.2). For the case of a pusher type swimmer, like bacteria, this dipole is negative. When a suspension of bacteria is dense enough, this additional stress Σ s can be negative and reduce the overall stress response of the suspension due to the flow. In the limit of low shear rates, where the re-oreintation time scale of bacteria due it rotational diffusivity D R is greater or of comparable order than the imposed shear γ, the effective viscosity is given by [44,117]:

µ = µ 0 [1 + N x + y σ 0 D R ] (1.4.5)
where the parameters x and y are positive numbers which are functions of the particle size and shape. The first term inside the square bracket is the passive brownian contribution, while the second term is an active contribution and is negative for bacteria, since σ 0 < 0. All these terms are multiplied by the bacteria number density N . Therefore, when N was large enough, a reduction of the effective viscosity µ of the suspension was reported [40,44,116,117,120,121]. Furthermore, for the case of pullers, where σ 0 > 0, an increase in effective viscosity has been reported as well [40,122]. The reduction of effective viscosity for bacteria have also been experimentally observed in a Couette-Taylor rheometer [?, [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]115] and in a Yshaped microfluidic channel [43]. A rheogram of bacteria suspensions of different concentrations are shown in Figs. 1.5 (a) and (c). In these studies, they observed a lower Newtonian plateau when γ < D R [?, [START_REF] Chui | [END_REF]115]. This corresponds to the assymptotic value of the reduced effective viscosity value at very low shear rates. The value of this plateau was observed to be a linearly decreasing function with bacteria concentration [115] (see Fig. through imaging and tracking of bacteria at this regime, reported that this superfluidity regime coincided with the onset of collective motion by bacteria. At high shear rates i.e. γ » D R , another Newtonian plateau was observed. In this regime, the effective viscosity was equal to or slightly greater than the viscosity of the fluid [START_REF] Chui | [END_REF]115]. This is because, at high shear rates, the re-orientation of the bacteria is predominantly influenced by the external flow and results in alignment along the direction of flow. Therefore, this resulted in the rheological response to be same as that of passive particles [40][START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF][43]115,117]. At intermediate shear rates, typically in the range γ ∼ D R , a crossover between the two Newtonian plateaus was observed [START_REF] Chui | [END_REF]115]. However, the effective viscosity in this regime was still less than that of the fluid viscosity (see Figs. They observed a shift in the critical shear, γc with regards to commencement of the drop in effective viscosity. However, when they plotted their rheogram as function of the flow Péclet number P e f = γ/D R , a collapse of all the data were observed as shown in Fig. 1.5 (c). They also observed that the critical flow Péclet P e c f , which marked the mid-point in the crossover regime, was independent of the viscosity of the suspended medium. The rheogram was fit with the Carreau-Yausda equation of the following form to model the relation between viscosity of the suspension as function of imposed shear:

µ = µ ∞ + (µ s -µ ∞ ) 1 + P e f P e c f a n -1 a (1.4.6)
where n, a and P e c f were the fit parameters and was estimated to be -1.05, 1.67 and 4.35 respectively by Chui et. al [START_REF] Chui | [END_REF]. P e c f corresponds to the dashed line in Fig. 1.5(c). µ s and µ ∞ corresponds respectively to the lower and upper Newtonian plateaus of the rheogram.

1.5. Key questions and structure of the thesis

Key questions and structure of the thesis

To improve our knowledge on the hydrodynamic dispersion of bacteria, we address the following points in this thesis. Will the effect of bacterial activity influence its dispersion? If yes, how does it influence, under what conditions does it become significant? How can we characterize such an effect? It has also been observed that the bacterial activity influences the rheology of the suspension. So, we will also address the question of how the change in rheology of the suspension can influence its dispersion.

We use the following approach to address these questions. We focus on studying the hydrodynamic dispersion of bacteria suspensions in a Hele-shaw cell. We investigate on the effect of bacterial activity on the macro dispersivity in the context of two classical transport problems; (i) Taylor dispersion [123]; which is associated with the decorrelation by molecular diffusion of the velocity of advection of the particles transported and its influence on the macroscopic dispersion, and, (ii) Saffman Taylor instability [16]; which is defined as a flow instability that is induced at the interface between two fluids of different viscosities. This thesis is structured as follows. In Chapter 2, we first introduce the idea of Taylor dispersion and other basic concepts that are relevant for understanding the dispersion of particles when transported in a Poiseuille flow. We model the bacterium as an active brownian elliptical rod and perform Langevin simulations to obtain the steady state mean square displacement of the population and the distribution and orientation of individual bacteria. This approach allows us to characterize the macroscopic dispersivity of bacteria over a wide range of shear rates. We present these results in context with the classical Taylor dispersion observed for passive solute particles. In Chapter 3, we first introduce the reader to different studies and approaches employed to study viscous fingering instabilities. We then perform miscible displacement experiments in a Hele-shaw cell with E. coli bacteria suspensions pushing a plain swimming medium. We employ a similar geometry to that of Saffman-Taylor experiments [16]. We characterize different regimes observed based on the shape of the concentration front and identify the conditions required to obtain a viscous fingering instability and compare it with that of Newtonian fluids. Finally, in Chapter 4, we discuss the findings of this work and its contribution to understanding the role of bacteria activity on the hydrodynamic dispersion of the suspension. We also provide perspectives of this study and possible future works.

Chapter 2 Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow 2.1 Introduction

Understanding the spreading of bacteria in confined environments is of key importance due to its relevance in processes like waste water management, decomposition of organic matter and removal of contaminants (biodegradation) [124][125][126][127][128][129][130]. Of these confined environments, studying the transport of bacteria in fractured and porous media is of great interest. In situ field tests carried out to study the transport of bacteria in fractured bed rocks revealed a difference between the transport of bacteria, colloid particles of same size and solute tracers [124,129,131,132]. Becker et al.. [124] reported an increase in the transport rate of motile bacteria compared to solute tracer particles, but a decrease in mass recovery. They plotted the recovered mass fraction as function of time (breakthrough curves) for rod shaped and spherical bacteria. They observed that a motile rod shaped bacteria had a higher transport rate and less mass recovery compared to a non-motile bacteria of same size and shape. They also reported that a non-motile spherical bacteria transported faster than rod shaped bacteria, but with a lower mass recovery. Furthermore, polystyrene microscospheres of equivalent size of bacteria was observed to have an increased transport rate and an attenuation in the fraction of mass recovered compared to solute tracer particles [124,131,133]. However, their breakthrough curves were quite different from that of bacteria [124]. Thus, the analogy of studying the dispersion of bacteria in fractured media using micorspheres of equivalent size is limited. Apart from field experiments, experiments in controlled environments in laboratories have also been carried out. One of the methods employed to study this problem uses randomly placed obstacles in a microfluidic channel [START_REF] Bhattacharjee | [END_REF]36,39,134,135]. Lutterbodt et al. [134] and Creppy et al.. [134] experimentally observed a stark difference in the spatio-temporal distribution of passive tracers and bacteria in a porous media. Lutterbodt et al. [134] observed the concentration profiles to be a normal distribution for NaCl , while Creppy et al.. [135] reported the same for Non-motile bacteria. However, the profiles were assymetric with motile bacteria (see Fig. 2.1(a)). Two Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow main effects contributing to this difference in behaviour exhibited by bacteria are the retardation effect of bacteria close to surfaces and enchanced spreading of the bacteria that are not trapped near the surfaces. Rusconi et al.. [3] (see Fig. 2.1(b)) performed experiments in a "simple" microfluidic channel, where the bacteria were subject to flow between two parallel plates. At large flow rates, they observed an accumulation of bacteria in the high shear regions across the channel gap. Dehkarghani et al.. [36] performed experiments in a channel of evenly spaced matrix, also reported a transition from uniform distribution when there was no flow to a strong accumulation of bacteria in high shear regions across the narrow spaces between two pores as the flow rate was increased (see Fig. 2.1(c)).

Many studies have focused on understanding the tendency of bacteria to accumulate on surfaces [10,110,[136][137][138][139] and correlates the swimming activity and trajectories exhibited by them close to surfaces. A wide range of behaviours like upstream motions [10,137], transverse motion [138], or oscillations on the surface induced by the rheotactic torque on the flagella [11] are observed by these studies. Away from the surfaces, bacteria are observed to perform helicoidal trajectories [3,34,140] similar to the trajectories obtained analytically by Jeffery [1] for an elongated particle immersed in a sheared viscous fluid. In confined geometry, the bacteria also have the possibility to explore the flow profile across the channel gap and are thus exposed to a gradient of shear rates while swimming. This is particularly true in microfluidic devices and this results in the migration of the bacteria towards high shear regions [3]. This phenomena, known as high shear trapping, increases the presence of the bacteria close to surfaces where the shear is the highest [3][4][5]. The reverse has also been predicted numerically i.e. the trapping of bacteria in low shear regions [5,116]. The spreading of bacteria is thus controlled by its activity coupled with its response to the imposed flow and its interaction with surfaces. A key focus of the present work is to study the influence of the competition between convection by the flow along Jeffery orbits and mixing between the flow lines on macroscopic dispersion. We also identify on how macroscopic dispersivity scales with respect to imposed flow. Furthermore, we correlate the influence of these low or high shear trapping mechanisms on the scaling of macroscopic dispersivity. Bacteria are also often found to swim in non-Newtonian environments like that of biological fluids (like mucus, DNA). Understanding the transport of bacteria in such environments is of interest due its relavence in disease and infection, fertilization [141][142][143][144][145] and biofilm formations [91,92,[146][START_REF] Bruellhoff | The International[END_REF][148]. Hence, in this chapter we also study the influence of fluid rheology on the macroscopic dispersivity of the bacteria.

In this chapter, we consider a simple scenario where the bacteria are transported in an imposed flow between two fixed parallel plates. The velocity profile of the fluid between the parallel plates will be affected by its rheology. In our work we consider power law fluids whose viscosity is defined as: where γ is the imposed shear rate which is defined as the spatial velocity gradient of the fluid across the channel height, du dz . n is the power law index and A is the constant of proportionality. The magnitude of parameter n magnitude characterizes the rheology of the fluid. A fluid with n < 1 is called a shear thinning fluid, since its viscosity decreases with increase in shear and if n > 1, it is shear thickening fluid whose viscosity increases with shear. In the case of n = 1, the viscosity is a constant Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow and independent of shear, which corresponds to a Newtonian fluid. The velocity profile is given by:

µ = A γn-1 (2.
u(z) = U 1 + 2n 1 + n     1 - z H 1 + n n     (2.1.2)
For passive Brownian particles 1 placed in a Poiseuille flow (n = 1, see Eq. (2.1.4)), the macroscopic longitudinal dispersion is due to the flow advection and molecular diffusion between the flow lines [2,15]. In the absence of flow, the particles will spread along the channel because of the brownian diffusivity. In the case of an external flow, the velocity profile of the fluid is parabolic, with the velocity maximum at the center of the channel and zero at the surfaces (see Eq. (2.1.4)). One can then define two time scales, namely; (i) diffusive time scale: the time taken by the particle to diffusive across the gap, τ taylor = H 2 /2D m and (ii) convection time: the time taken by the particle to get advected across the same distance due to impose flow, τ a = 2H/U , where U is the average flow velocity, 2H is the channel height and D m is the molecular or brownian diffusivity of the particle. The Péclet number, P e, is defined as the ratio between τ taylor and τ a and thus, we have P e = HU D m .

When a pulse of passive tracer particles are injected at the intlet, the velocity gradient will induce a transverse diffusion that will influence the longitudinal spreading of the particles. This phenomena is illustrated in Fig. 2.2. At early times (t = 10), the particles follows the flow streamline and the concentration profile across the channel height is parabolic like the velocity profile. This creates a transverse gradient and a strong diffusion flux that homogenizes the distribution of particles in the gap (see t = 100 and above in Fig. 2.2) due to brownian diffusion D m . And eventually, at a time larger than the time to diffuse in the gap (t > τ taylor ), the particles diffuse across the channel height and are uniformly distributed (see Fig. 2.2(c)) across this direction. At a microscopic scale, this process is governed by the classical convection diffusion equation:

∂c ∂t + ∇.J = 0 (2.1.3)
where J is the mass flux and is defined as J = uc -D m ∇c, c is the local particle concentration and u is the local fluid velocity. For a 1D Poiseulle flow, u has only one non-zero component u(z) given by:

u = 3U 2 1 - z H 2 êy (2.1.4)
1. Particles that does not influence the fluid properties like density or viscosity and one which diffuses due to brownian motion in the absence of flow. Taylor [2] proposed an upscaled version of the Eq. (2.1.3) by expressing each quantity integrated across the height of the channel i.e. average over z from -H to H. The convection-dispersion equation derived by Taylor [2], expressed in terms of averaged quantities is:

∂c ∂t + U ∇c = D ∥ ∇ 2 c (2.1.5)
Where c = [2].

For the case of a continous influx of passive particles in the system, the solution to Eq. (2.1.5) for times t > H 2 /2D m is an error function [2,15]. Taylor [2] performed miscible displacement experiments between water and pottasium permanganate dye solution (see Fig. 2.3) and verfied this analytical solution experimentally. Taylor also derived an expression that relates the macroscopic longitudinal dispersion coefficient D ∥ with the imposed velocity and molecular diffusion coefficient as:

D ∥ D m = 1 + αP e 2 (2.1.6)
where α is a pre-factor coefficient which is function of the geometry. For a flow between two parallel plates, α = 4 210 [2,15,[START_REF] Sharp | [END_REF].

Sharp [START_REF] Sharp | [END_REF] reproduced the calculation made by Taylor [2,15] and extended this result to power law fluids. He obtained:

D ∥ D m = 1 + 35n 2 (4n + 1)(5n + 2) 4 210 P e 2 (2.1.7)
Since the physics of dispersion remains unchanged when the rheology is modified, D ∥ still varies as P e 2 . This scaling was verified experimentally by Vartuli et al.. [151] by flowing shear-thinning polymer solutions in a capillary tube. We observe that only the pre-factor value is a function of n due to the change in the fluid velocity profile. One can recover Eq. (2.1.6) from Eq. (2.1.7) if we set n = 1 in the latter equation.

Self-propelling active particles like flagellated bacteria such as Escherichia coli also diffuse in the fluid. This behaviour leads to a 3D diffusive motion with a diffusion coefficient D 0 . The same diffusive behaviour is obtained with particles like Janus particles or artificial swimmers that gradually change their swimming direction by rotational diffusion with an angular diffusivity D R [152]. Such particles diffuse with

a diffusion coefficient D 0 = V 2 s 6D R + D m
where D m is the thermal diffusion coefficient which would be the diffusion coefficient measured if the bacteria were to lose their swimming ability. Unlike a passive solute particle, the bacteria has a finite size and shape (a slender body), which influences on how it gets re-oriented by the imposed flow. Thus, a key question arises: How will this additional "shear-coupling" effect on the orientation dynamics affect D ∥ of the population? Since the size of a bacteria is very small compared to the system size, the viscous forces dominate and thus the bacteria would "view" the fluid as a viscous fluid. Therefore, their orientation dynamics can be described by the Jeffrey's equation for an elongated particle immersed in a sheared viscous fluid [1]. Two key assumptions are made for modelling such a system. Firstly, the population of bacteria particles are dilute enough to not induce any particle-particle interaction i.e. the trajectory of one particle does not affect another particle's trajectory. Secondly, the hydrodynamic pertubations induced by the activity of the particle on the fluid is neglected. The latter is a resonable assumption given that the size of the particle is very small compared to system size and that they are dilutely populated. Based on this analogy, Langevin models that incorporate the convection, the reorientation and the rotation by the flow can be derived [3,33,36]. In those approaches, the bacteria are usually modelled as self-propelling elongated ellipsoid of aspect ratio q that move and rotate according to the following equations [33]:

ẋ = V s p + u + 2D m τ ξ x (2.1.8) ṗ = [I -pp].[ q 2 -1 q 2 + 1 E -W ].p -2D R p - 2D R τ p ∧ ξ p (2.1.9)
where x and p are the particle position and orientation. In the above equations, the particle is convected by the local flow velocity u characterized by its local strain rate tensor E = [∇u + ∇u T ]/2 and its local vorticity tensor W = [∇u -∇u T ]/2. The Gaussian white noise ξ has zero mean and unit variance. Eq.(2.1.9) was interpreted in the same way as Raible et al.. [153], and the term -2D R p is included to conserve the norm of p to 1. In Eq.(2.1.8), thermal diffusion coefficient D m was included, such contribution is often assumed negligible [3,33] but was found to have an important effect on the asymptotic regime [4][5][6]154] and was considered in our Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow study. In the absence of coupling between the particle re-orientation and the flow (referred as decoupled case), the particle gets convected at the local flow velocity. Its influence is balanced by molecular diffusion across the gap. This results in a macroscopic Fickian dispersion parallel to the flow characterized by the Eq. (2.1.6). The objective of this chapter is to study how Eq.(2.1.6) is modified when the effect of shear and vorticity on the orientation of the particles is taken into account.

Analytical solution of the set of equations (2.1.8) and (2.1.9) exists for Couette flow (i.e. constant shear rate γ) and for D m = 0 [3]. Those studies revealed that the probability distribution of the orientation of the particles depends on a single dimensionless number called the flow Péclet number P e f that compares the time scale of the flow γ and the time scale for bacteria to reorient due to their swimming activity D R . For small P e f = γ D R all orientations are equally probable but an emergence of a preferential orientation, increasingly aligned with the flow direction, is observed with increase in P e f [40,43]. For Poiseuille flows, a second dimensionless number, the swimming Péclet number P e s , equivalent to the Knudsen number for gas that compares the reorientation time scale of the swimmer 1/D R and the time 2H/V s for the bacteria to swim across the gap of size 2H was introduced [4]. At larger values of V s /2HD R the rheotactic effects of the surface becomes predominant and greatly affects the dispersion of particles [4,155].

For wide channels such as P e s = V s /2HD R ≪ 1, Rusconi et al.. [3] observed the concentration profiles of bacteria across the channel gap when subject to flow and reported a high shear trapping exhibited by bacteria at P e f ≫ 1. Rusconi et al.. [3] also performed Langevin simulations by approximating the bacteria as a slender active brownian rod with a fixed aspect ratio of q = 10 and compared the concentration profiles in the channel gap obtained from simulations with that of experiments. They observed the profiles to be in good agreement upto P e f = 25. These observations were also confirmed by Saintillan et al.. [4], where they solved the 1D Flokker-Plank equation for a population of active brownian particles to obatin the concentration profiles across the channel gap. Like Rusconi et al.., they also performed their simulations for fixed aspect ratio by setting q 2 -1 q 2 +1 ∼ 1. Vennamneni et al.. [5] studied the effect of shape of the particle on its concentration profile across the channel gap by changing the aspect ratio of q of the particles. In order to explore a wide range of P e f and avoid the computational cost of Langevin simulations, they solved the 1D Flokker-Plank equation for a population of active brownian particles and zero thermal diffusivity D m for different values of q and P e f to obtain a P e fq phase diagram as shown in 2.4(c). They confirmed the transition from uniform concentration profiles in the gap to a high shear trapping after a critical flow P e c f ∼ 9 like [3,4]. They further reported a transition from high shear trapping to another trapping regime called the low shear-trapping regime at very large P e f . They also investigated the effect of imposing a finite value of D m and found that it leads to a homogenization of concentration profile in the gap at very high P e f in this case.

Chilukuri et al.. [6] performed numerical simulations to study the macroscopic longitudinal dispersion of active swimmers. They modelled the swimmer as two beads connected by a stiff spring. Hydrodynamics interactions between the swimmer and the wall were modeled by setting the bead to reposition itself when it tries

(c) (a) (b) D V s / (l ) D V s / (l )
Pe Pe to move through the wall [7,37,[START_REF] Blake | Mathematical Proceedings of the Cambridge Philosophical Society[END_REF]. They identified three regimes (i) at low P e, the dispersivity was higher than a passive particle (ii) at intermediate P e, where the dispersivity slightly drops and then (iii) at high P e, where the dispervity reaches an assymptotic regime same as that of a passive particle (see Figs . 2.5 (a) and (b)). However, since they modelled with a more complex microswimmer, they also had a high computational cost and the range of parameters explored in their simulations were limited. Also, to negate the high computational time, they performed their simulations with a large value of D m , which limited the study of the effect of activity on the macroscopic dispersion. Guasto et al.. [36] performed experiments by flowing bacteria suspensions in a periodic microfluidic lattice and capture the cell motion and spatial distribution to study the macroscopic dispersion of bacteria subject to a shear gradient flow in a periodic pillar arrays. However, due to size of the system, they were limited in the range of P e f for which they could perform their experiments. Hence, they also performed Langevin simulations by setting the aspect ratio q = 10 over a large range of P e f to understand the physics at play as well as compliment their experiments. They reported a localized densification of bacteria at high shear rates and attribute to the preferential alignment of bacteria in different regions of flow field and observed a decay of dispersivity in the transverse direction as P e -2 f and an enhancement of dispersivity in the longitudinal direction as P e 4 f which was two orders of magnitude more than the Taylor dispersion of passive brownian particles [2,15] (c.f. Fig. 2.5(c)). This transition regime from which they start to observe an enhancement in longitudinal dispersivity is also the high shear trapping regime of the bacteria across the channel gap [3][4][5]. Hence, one of the key questions we address in this chapter concerns understanding the influence of these different trapping regimes on the macroscopic dispersivity. We also provide a scaling for the time scale needed to reach the asymptotic regime or the time scale for decorrelation of velocities of the particle across the channel gap in the presence of these trapping regimes which directly correlates to the macroscopic dispersivity [6].

In this chapter we also study the dispersion of bacteria in power law fluid. We employ the same assumptions that was used in modelling the equations of motion for a particle in a Newtonian fluid, with the only variation being the change in the shape of velocity profile in the channel gap with respect to fluid rheology. We then investigate on whether there exists a low-shear or high-shear trapping regimes that have been previously reported during transport of bacteria in a parabolic velocity profile. Furthermore, we also investigate the influence of fluid rheology on the macroscopic dispersivity and the relaxation the time scale needed for bacteria to diffuse across the channel gap .

To address these issues, we performed 3D Langevin simulations on the equations of motion (cf. Eqs.(2.1.8) and (2.1.9)) to obtain the macroscopic dispersion coefficients in presence of coupling between the particle orientation and flow. The reason for choosing this approach was to simulate over a large number of particles with a relatively simple approximation on the size and shape of the bacteria as an active brownian elongated rod whose shape is given the aspect ratio q. Also, the use of such a simple model enables us to discern the influence of different parameters that Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow influence the trajectory of the particle and understand the physics at play. Finally, previous studies [3,5,36] have also shown that such a simple model is still good enough to match the experimental observations. This chapter is structured as follows. We first present the details of the simulations along with the assumptions in section (2.2). In section (2.3.1), the macroscopic longitudinal dispersion coefficient, D ∥ , is studied as function of the flow velocity and bacteria aspect ratio. This section enables us to identify an "active" dispersion regime characterized by a dispersion coefficient increasing as a power law of the Péclet number with an exponent larger than 2. We will show that this new exponent mainly reflects the dependence of the relaxation time scale with the shear rate. We will also connect this exponent to the distribution profile of the bacteria in the gap. In section (2.3.4), we will further show that the increase of the dispersion in the flow direction is associated with a reduction of the transverse dispersion. In sections (2.3.5) and (2.3.6), the effect of the molecular diffusion of the bacteria and the aperture on the domain of existence of the active diffusion will be addressed. In section (2.3.7), we will explore the effect of fluid rheology on the macroscopic dispersion and the relaxation time scale as well as the steady state concentration profiles across the channel gap. We present the results for the case of three different fluid rheologies namely, (i) Shear-thinning (n<1) (ii) Newtonian (n = 1) and (iii) Shear-thickening (n>1). Finally, we also provide different scalings for dispersivities of different particle aspect ratios at high P e regime in the conclusion of our results in (2.4) and provide perspectives for future work in (2.5).

Materials and methods

The swimming bacteria were modelled as elongated ellipsoids of aspect ratio q located in a Cartesian system of reference coordinates by their positions x i (t) (x,y,z) and orientation p i (t) (p x ,p y ,p z ) where i is associated to particle index. The particles are placed in a fluid of viscosity defined by Eq. (2.1.1) and whose velocity profile is given as Eq. (2.1.2). From these equations we can define the local shear rate as:

γ(z) = du(z) dz = z |z| U H 1 + 2n n z H 1 n (2.2.1)
and is maximal on the surface with:

γm = U H 1 + 2n n (2.2.2)
We observe that when we substitute n = 1 in Eq. (2.1.2), we recover Eq. (2.1.4) and the same for the expressions of γ(z) and γm as well. Here, U is defined as the average flow velocity. x is the transverse direction, y is the direction of flow and z is the direction of height (vertical). Individual bacteria modelled as active Brownian ellipsoid swimming with an orientation p. The aspect ratio of the particles is q = a b where a is the particle length and b the particle width.

All particles in the system were assumed to be identical. They have the same aspect ratio q, the same swimming velocity V s , the same rotational diffusion coefficient D R and the same thermal diffusion coefficients D m . For q>1, the long axis of the particle and its swimming direction are aligned. The case of q = 1 corresponds to a spherical swimmer. Finally, q < 1 corresponds to a particle which swims along the direction of its minor axis. A value of q ≫ 1 is typical of natural microswimmers like bacteria or algae. For instance recent studies found that E. coli bacteria trajectories can be well adjusted by an active rod of an aspect ratio q ≃ 10 [3,33]. Any other value of q could be characteristic of an artificial microswimmer.

The positions and orientations of the particles were obtained by integrating Eq.(2.1.8) and (2.1.9) with a time step τ , and by drawing at each time step and for each particle random numbers from a Gaussian distribution of zero mean and unit variance. The discrete writing of the equations is given in appendix A2. The choice of the integration time step τ is detailed in appendix A3. The equations of motions were simultaneously solved for 10 5 trajectories. The particles were initially uniformly distributed in x and z directions and were situated at y = 0. The particles were confined in the x and z directions between parallel surfaces located at x = -W and x = W and at z = -H and z = H respectively. W was fixed at a constant value of 3 cm and H was varied such that W/H ≫ 1 always.

When a particle reaches one of the surfaces, its trajectory was supposed to be rectified by the surface in such a way that its velocity vector becomes parallel to the surface. The particle then continues to translate upstream or downstream along the surface until it undergoes a reorientation and swims back into the bulk. These conditions allow to reproduce the large residence times and the persistence of swimming Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow along the surfaces of the bacteria observed experimentally [START_REF] Molaei | [END_REF]139]. Some simulations were done with reflective boundary conditions (referred to RBC) to examine the effect of swimming persistence along surfaces on the results and allow comparison with published studies [5].

At each time step, the first moment m 1k (t) and the variance σ 2 k (t) of the distribution of the population of particles was estimated in all three direction k : x,y,z as:

m 1k (t) = ⟨k i (t) -k i (0)⟩ i , (2.2.3) σ 2 k (t) = ⟨(k i (t) -k i (0) -m 1k (t)) 2 ⟩ i (2.2.4)
where: i is the particle index and ⟨ • ⟩ i is the average over all particles. Fig. 2.7 (a) shows the variation of the rate of change σ 2 y (t) as a function of t for three flow conditions. The following trend was observed for all the cases: a first linear regime followed by a plateau. With this representation the plateau regime corresponds to the diffusive regime. The relaxation time τ c to transit to the diffusive regime was observed to be affected by the flow conditions used. Increasing the flow Péclet number clearly delays the transition to diffusive regime. Practically, the two
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values D ∥ and τ c were obtained by adjusting the data by the function :

dσ 2 y (t) dt = 2D ∥ (1 -e -t/τc ) (2.2.5)
In Fig. 2.7 (b) the variation of the variance in the gap σ 2 z (t) is shown as function of time for the same flow conditions as in Fig. 2.7 (a). The variance initially increases with time indicating that the particle explores the gap which corresponds to the linear regime observed on Fig. 2.7(a). Then σ 2 (z) plateaus to a constant value indicating that the particles have explored the entirety of the gap. This corresponds to the asymptotic diffusive regime described before.

In the following section, the variations of D ∥ and τ c are presented as functions of the flow and bacteria characteristics. They are often compared with the diffusion coefficient measured in absence of flow D 0 and the corresponding Taylor's diffusive time scale, τ taylor = H 2 /2D 0 . Practically, simulations without coupling with the flow vorticity and shear were achieved by setting E and W to zero. These cases are referred to as decoupled cases. Unless explicitly mentioned, all the simulations were done by setting D R = 1 rad 2 /s and V s = 20 µm/s, values typically observed for motile bacteria [51]. The Péclet numbers range from 1 to 1000.

Results

Effect of particle shape on macroscopic longitudinal dispersion

In this section, we present results that focus on the effect of shear coupling on the longitudinal dispersion D ∥ and relaxation time scale τ c . The thermal diffusion coefficient is here neglected (D m = 0). For this condition, the Péclet number and the flow Péclet number are related by the relation:

P e = 2D 2 R H 2 V 2 s P e f
We also set the distance between the two plates to 2H = 100 µm. Therefore, we have P e = 12.5P e f . The longitudinal dispersion coefficient D ∥ obtained for different flow conditions and particle aspect ratios are represented in Fig. 2.8(a). For the decoupled case (Filled circles in Fig. 2.8(a)), the results of the simulation fall onto the theoretical prediction made by Taylor [2,15,[START_REF] Frankel | [END_REF] that predicts an increase of the longitudinal dispersion coefficient like the square of the Péclet. In the other cases, the simulations first gave D ∥ values very close to the values predicted by Taylor. However, for P e > 100 (viz P e f > 10), a deviation from Taylor model is observed. The difference increases with the Péclet number and D ∥ increases faster than P e 2 . We recover here the "giant active Taylor-Aris dispersion" regime reported by Dehkharghani et al. [36]. In order to confirm this, we also scaled D ∥ D 0 by P e 2 as shown in Fig. 2.8(b).

For the decoupled case, we observe that there is an initial decrease in the value of D ∥ D 0 P e 2 , corresponding to the regime where D ∥ D 0 is close to 1, and this is followed by plateauing of D ∥ D 0 P e 2 at higher P e to a constant value of α. The latter corresponds to the regime where D ∥ D 0 scales as αP e 2 , with α = 4/210 for the RBC case (maroon •) and α = 8/210 for the case with our boundary condition (blue •) . However, for the coupled cases, they follow the same trend as decoupled until about P e ∼ 100, above which it deviates and scales as βP e 2+κ with κ being the additional exponential variation. This new power law is evidenced in Fig. 2.8(b), where an increase in D ∥ D 0 P e 2 is observed.

To understand the origin of the deviation, we determined separately the two terms that contribute to the dispersion: the velocity variance of the particles σ 2 Up and the relaxation time scale τ c . These two terms are related to the dispersion coefficient by the relation

D ∥ ∼ σ 2
Up τ c [159]. Practically, the mean U p and variance σ 2

Up

of the particle velocity are calculated from the components of the particle velocities

Results

along the flow direction at the end of the simulation. In this way, we have t >> τ c and the profiles have reached their asymptotic state. In the situation considered by Taylor, the particles diffuse freely across the streamlines without any effect of the local fluid shear or fluid vorticity with no flux across the surfaces and the particles are observed to be uniformly distributed in the gap. In this case, the relaxation time τ c is the time to diffuse across the gap and it remains constant and is independent of P e. In the limit of a negligible effect of diffusion (i.e. P e >> 1), the variance of the particle and fluid velocities are identical. For a Poiseuille flow, we thus have:

U p = U and σ 2 Up = σ 2 U = 1 5 U 2 .
(a) (b) Up /U 2 p for different q (b) Log-Log representation of the normalized relaxation time τ c /τ taylor as function of P e. ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. • shows the decoupled case (our BC or OBC (blue) and RBC (maroon). Solid line: fit by 1 + βP e κ of the q = 2 case, where κ = 1.96 and β = 7.6x10 -5 . The data were obtained with 2H = 100 µm, D m = 0. Figs. 2.9(a) and (b) show that these predictions are well obtained in the decoupled case with reflecting boundaries conditions (RBC): (i) σ 2 up /U 2 p plateaus to a value close to 1/5 for P e > 100 (see the maroon solid circles in Fig. 2.9(a)) and (ii) τ c /τ taylor ≃ 1 for all P e (see the maroon solid circles in Fig. 2.9(b)). If the bacteria have the option of swimming along the surfaces (blue solid circles in Fig. 2.9), they will spend more time in regions of zero fluid velocity. This condition increases the normalized variance of the velocities as can be seen in figure Fig. 2.9(a). As for the relaxation time (see blue solid circles in Fig. 2.9(b)), it remains constant and independent of the P e, slightly higher than the value when RBC condition is used. Thus, while the variance of particle velocity varies as U 2 p , the relaxation time remains independent of the imposed flow velocity. As a consequence, D ∥ strictly We will now look at how these two terms are modified when the particles are coupled with shear. Fig. 2.9(a) shows the variation of σ 2

Up / U 2 p to be first decreasing with increase in P e. This regime is where the transport of particles is dominated by diffusion. This is followed by a transition regime between P e ∼ 50 -100, and then by a new regime for P e > 100 where the transport of the particles is dominated by the imposed shear. It is to be noted that the σ 2 Up /U 2 p seems to collapse to a constant value close to the one of the Taylor regime discussed previously (i.e. 1/5). A closer view of the data reveals that the simulations converge to values between 0.19 and 0.22, slightly different from the predicted value of 1/5. Now, let us take a look at Fig 2.9(b) which shows the variation of the normalized relaxation time τ c /τ taylor as function of P e. For P e < 100 (viz P e f < 10), we observe that the relaxation time is constant. In this limit, the reorientation by the diffusion due to swimming activity dominates and particles diffuse in the gap as they do in absence of flow and we have τ c = τ taylor . As the flow increases (i.e. P e > 100), we observe an increase in the relaxation time. This indicates that there is a drop in diffusivity of the particles across the gap with increase in P e and it arises due to the alignment of the particles along the direction of flow due to imposed shear. In this new regime, we observe that τ c varies as a power law of the Péclet number with an exponent κ. Thus, D ∥ varies as βP e 2+κ in these cases.

Dehkharghani et al. [36] report a P e 4 variation of D ∥ and this would indicate
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To check this, we first plotted τ c /τ taylor normalized by P e 2 as shown in Fig. 2.10(a). We observe that the value initially decreases for small P e, which corresponds to the diffusion dominated regime where τ c /τ taylor is a constant. At high P e, the regime from which τ c /τ taylor increases, we observe for small q i.e. q<4 to reach an assymptotic horizontal plateau with a constant value (see the ♦, ■, ▶ and ◀ symbols in Fig. 2.10(a)). This indicates that κ ≃ 2 for these aspect ratios. However for the case of q = 4 and 10, we observe that they are still decreasing with P e (see ⋆ and ▲ symbols in in Fig. 2.10(b)), implying that κ < 2. The κ estimated by fitting τ c /τ taylor vs P e data points with 1 + βP e κ are shown in Fig. 2.10 (b). We observe that the κ values to be very close to 2 for q = 0.5, 1, 1.5 and 2. This is followed by a decrease in κ and they are ∼ 1.7 and 1.55 respectively for q = 4 and q = 10. This double variation i.e. change in variance of velocities as U 2 (as for Taylor dispersion) with a pre-factor being a function of the aspect ratio as well as change in relaxation time as Pe κ where κ ∼ f (q) results in a overall deviation of the macroscopic longitudinal dispersion D ∥ from Taylor with D ∥ ∼ Pe 2+κ . The fact that this effect is observed only in the case where the effect of local shear on the particle reorientation is taken into account, underlines the importance of shear alignment on the increase of the macroscopic longitudinal dispersion of bacteria. If we follow this idea, we would expect a stronger alignment for the longer particles and the consequence would be that bacteria with large q would have the largest D ∥ . But we observe that bacteria with an aspect ratio of 2 have a larger dispersion coefficient than particles with an aspect ratio of 10. To identify the underlying mechanics, we now study in the following section, the steady state distribution of the particles across the gap for different aspect ratios and P e as shown in Fig. 2.12 and will be described in the next section.

Effect of the particle aspect ratio on the concentration profiles in the gap

To highlight the diffusion dominated and shear dominated regimes, we present the steady state concentration profiles in terms of flow Péclet number P e f , which compares the reorientation time scales of the particle with respect to imposed flow and its rotational diffusivity. Thus, when P e f > 1, the particle reorientation due to the imposed flow is more dominant than due to its rotational diffusivity. Fig. 2.11 shows the steady state concentration profiles for different P e f and cases. In the case of decoupled (see Fig. 2.11(a)), we observe that the particles are uniformly distributed in the bulk of the gap with a sharp increase in the number of particles accumulated on the surface for all P e f . The accumulation near the boundary is due to the imposed boundary condition, where the bacteria swim along the surface until it can re-orient itself to eventually flow back into the fluid. When this boundary condition was replaced with a reflective boundary condition (RBC), the surface accumulation is suppresed and we observe that the particles are uniformly (d) q = 2 (e) q = 10 (c) q = 1 (f) q = 0.5 Now, when we take into account the shear-coupling effect, we observe the steady state concentration profile to vary with P e f (see Figs. 2.11(c)-(f)). We first observe that at low P e f i.e. P e f < 10 (blue and red curves Figs. 2.11(c)-(f)), the profiles to have a similar distribution to that of decoupled case with an uniform distribution in the bulk and a sharp increase in the accumlation of the surface. This regime corresponds to the regime where the the longitudinal dispersion D ∥ scales as P e 2 and τ c is constant and same as τ taylor . However, when P e f >10, we observe a shift in the distribution of particles across the channel gap and a commnencement of different trapping regimes. We further observe that at a given P e f , the steady state distribution is a function of the aspect ratio.

Firstly, in the case of a spherical particle, q = 1 (see Fig. 2.11(c)), we observe an uniform distribution of particles in the bulk similar to the profiles reported by [3], but with a slight depletion close to the surface. In this case there is no influence of strain rate tensor E on the reorientation of the particle due to Bretherton constant being 0 (see Eq. (2.1.9)) and thus the particle just spins in the same plane due to the vorticity W . Therefore, a spherical particle at high P e f gets transported along the direction of flow due to imposed flow and across the channel gap due to rotational diffusivity. Thus, the particles are distributed uniformly across the channel gap at 2.3. Results
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large P e f . However, we still observe an increase in τ c with P e f and we attribute this due to the effect of vorticity.

In the case of q > 1, we observe two distinct trapping regimes exhibited by the particles as we vary the P e f . Firstly at moderate P e f , we observe a high shear trapping i.e. accumulation of bacteria close to the surfaces where the shear is maximum, for both q = 2 and q = 10 (See yellow and purple curves in Figs. 2.11(d) and (e)). As we increase the P e f , particles with an aspect ratio of 10 continue to stay in the high shear trapping regime with causing a near-collapse at the centerline of the channel (See light blue and green curves in Fig. 2.11(e)). However, in the case of q = 2, we observe a transition from high shear to low shear trapping i.e. accumulation of bacteria close to the center line where the shear is minimum (See light blue and green curves in Fig. 2.11(d)). The critical flow Péclet number, P e f ≥ 10 from which we start to observe high shear trapping in the case of q = 2 and 10 is about the same value that was reported by [5].

Finally, we also consider a particle which swims about its minor axis i.e. q < 1 and observed a strong accumulation of bacteria at the centerline of the channel (see Fig. 2.11(f)) where the local shear of the particle is zero as well as on the surfaces. Thus in this case, we observe the particles to exhibt both low and high shear trapping. This implies that the bacteria makes a quick "jump" from lowest shear region to high shear region because of their swimming mechanism and spend less time in the streamlines between these two regimes. For all the cases presented above, we observe that at P e f ≥ 50, the steady state profiles to reach almost a P e f independent regime as shown by the near collapse of the curves corresponding P e f = 50 and 75 (See light blue and green curves in Figs.

2.11(d) -(f))

. We note that the critical P e f above which these different trapping regimes in steady state profiles are observed, coincides with the increase in τ c as well. In Fig. 2.9(b), the τ c value is higher for q = 2 than q = 10 at high P e f . Thus it appears that it takes longer time for the particles distribution to reach their steady state regime in the case of low shear trapping than in the case of high shear trapping.

We also, explored the effect of boundary condition imposed on the steady state distribution of particles for the case of q = 2. As shown in Fig. 2.12, we observed the boundary condition to have a strong effect at low P e f i.e. the particles were uniformly distributed across the channel gap in the case of RBC (Red curve in Fig. 2.12(a)), as opposed to a uniform distribution in the bulk of the channel gap and a sharp accumulation on the surface in the case of OBC (Blue curve in Fig. 2.12(a)). However, as we increased the P e f , we observed a weak effect of the boundary condition on the distribution of the particles across the gap in both high shear and low shear trapping regimes (see the collapse of blue and red curves in Figs. gap. The effect of shear coupling plays a dominant role when P e f ≥ 10 as observed by [5] and below this value the particles behave like a passive particle characterized by their effective diffusivity D 0 . In the case of spherical particles, we observed a transition to a regime where the particles are uniformly distributed across the channel gap with a small depletion close to the boundary. In the case of q = 2, we observed the particles to exhibit first a high shear trapping regime, which was then followed by a low shear trapping regime at very high P e f . However, in the case of q = 10, we observed only high shear trapping and at large P e f , we observed a sharper dip in the swimmer concentration at the centreline. In the case of q = 0.5, we observed a mixture of both high and low shear trapping as well as the disappearence of the centerline dip that was observed for q>1 cases. This to our knowledge, is a new observation that has not been reported previously.

Proposition of a physical model for observed power law variation in D ∥

We propose the following model for the value of κ estimated. We know that D ∼ σ 2 Up τ c and that σ 2 Up scales with the average flow velocity like U 2 . The pre-factor between σ 2

Up and U 2 p depends on the asymptotic bacteria concentration profile in the gap. Our simulations validate this hypothesis. Thus, the additional component apart from the quadratic varition in the power law obtained, comes essentially from the relaxation time which increases with P e.

At high P e, the rotation period of the bacteria is set by the flow and scales like T ∼ γ-1 m [1]. During one period of rotation, the amplitude of the motion of the bacteria in the gap is then

l ∼ V s T . Since γm = 3U H , we have l ∼ H V s U
. This means that, increasing the flow velocity reduces the amplitude of movement across the gap. The separation between time scales characterizing the particle orientation dynamics of characteristic time τ R = 1/D R and those that characterize the period of rotation T along its helicoidal trajectory allows us to propose a model in which the particle diffuses by jumping between helicoidal trajectories. In this model, the diffusive time is τ R , and diffusion permits jumps of length l. The diffusion coefficient across the channel gap and the time to diffuse in the gap are then given by,

D z = 2l 2 τ R and τ c = 2H 2 D z . We thus have, τ c = H 2 τ R l 2 . Since l ∼ H V s U , the relaxation time is τ c ∼ τ R ( U V s ) 2 .
From the above expression for the relaxation time τ c , we can deduce the dispersion coefficient in the direction of the flow using the relation

D ∥ ∼ σ 2 Up τ c . Using the observation that σ 2 Up ∼ U 2 , we find D ∥ ∼ U 4
. This model captures well the behavior of particles with lower aspect ratios (q < 4), but overestimates the exponent κ measured for larger aspect ratios. The difference between the model and the simulation can be explained by the strong assumptions on which the model is based. We implicitly assumed that the jumps are independent without correlation with each other and that they follow a "not too wide" distribution. The observation of a preferential localization of particles across the channel gap at large flow velocities suggests that the jumps between trajectories probably retain some memory of previously occupied trajectories. The dependence of the relaxation time on the flow velocity is then probably more complex than predicted by our model. • are for the decoupled case. ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. Data obtained for 2H = 100 µm and D m = 0.

Effect of the aspect ratio on the transverse dispersion coefficient

To determine the dispersion coefficient in the direction transverse to the flow, the variation of the variance of the transverse position of the bacteria σ 2

x as function of time was studied. The dispersion coefficient D x was then obtained by fitting the rate of change of σ 2

x using the same method as for obtaining D ∥ . The Fig. 2.13 shows D x as function of the log of the Péclet number for bacteria of different aspect ratio. In the decoupled case (circles in Fig. 2.13), the dispersion coefficient remains very close to the dispersion coefficient D 0 as what we observe in the flow direction. When the coupling with the flow is taken into account, we find the two regimes observed previously: (i) the flow is first not strong enough to have a significant influence on the dispersion of the bacteria (P e <100), (ii) a domain in which the coupling controls the dispersion. In contrast to the longitudinal direction, we observe a reduction of the transverse dispersion coefficient. This is due to the fact that as we increase the shear, the particle displaces longer in the longitudinal direction before reorientation. Even though there is no flow imposed in x -direction, there will be repercussions due to imposed flow on the diffusivity because of the local shear coupled with the reorientation of the particles and also the interdependence of the orientation of particles in one direction with other two directions i.e. p x = f ( γ(z), p y , p z ) (c.f. A2 in Appendix). However, this reduction is slow with D x which varies as log(1/P e).

Effect of thermal diffusion on the longitudinal dispersion coefficient

In the previous sections, the effect of thermal diffusion was neglected. In this section, we study its influence on the relaxation time τ c and longitudinal dispersion D ∥ of the bacteria. In absence of flow, the diffusion coefficient is now given by:

D 0 = V 2 s 6D R + D m .
In addition to τ taylor , we can define a second time scale with respect to D m : H 2 /2D m . We make use of the latter to define a new Péclet number: P e c = U H Dm . To get as close as possible to the conditions of bacteria which have a characteristic size of the order of a micron meter, simulations were carried out with a thermal diffusion coefficient ranging from 0.05 to 20 µm 2 /s which corresponds to characteristic sizes of bacteria between 0.01 and 4 µm [54]. . For all plots: (• : D m = 0.05 µm 2 /s, q = 2), (♦ :D m = 1 µm 2 /s, q = 2), (▶: D m = 10 µm 2 /s, q = 2), (▷: D m = 10 µm 2 /s, q = 10), and (■: D m = 20 µm 2 /s, q = 2).

In figures 2.14 and 2.15, the influence of D m for a fixed aspect ratio q = 2 and a channel gap of 2H = 100 µm are presented. It can be seen from Fig. 2.15 that there is a decrease in relaxation time with increase in D m . A direct correlation is seen with the longitudinal dispersion coefficient of the particles as well in Fig 2 .14. Three distinct regimes are observed. The first regime as depicted in Fig. 2.14 (a) where at low P e, the longitudinal dispersion exhibits a Taylor dispersion, where the diffusion is dominated by the effective diffusivity D 0 of the particles. Then, there is an intermediate "active" regime as we increase the imposed shear rate where there is an increase in relaxation time and longitudinal dispersion and hence a deviation The transition from the "active" intermediate regime to the "passive" Taylor regime is a function of D m i.e. higher the D m , earlier the transition occurs. If the D m is chosen to be of same order or of higher order than V 2 s 6D R the effect of activity would fully be suppressed by D m . This result corroborates one of the results by Vennamneni et al. [5] where it was concluded by the author that the critical P e at which the transition from "active" regime to "passive" taylor regime is inversely proportional to the magnitude of D m . As shown by [5], we also observed that the presence of D m shifts the steady state distribution of particles in the gap towards an uniform distribution from high/low shear trapping at high shear rates. We also observe that this effect is in direct correspondence to the limit of τ taylor /τ c reaching a new asymptotic value corresponding to the final value at which the longitudinal dispersion converges to the "passive" Taylor regime where the diffusion across the gap becomes independent of the imposed shear rate.

Now, let us focus on the effect of D m on the dispersion of bacteria of different aspect ratio. Suppose we fix the D m = 10 µm 2 /s. As depicted in Figs. 2.14 and 2.15 we observe that D m suppresses the effect of aspect ratio on the dispersion of particles. This shows that the effect of D m is significant not only on the macroscopic dispersion of particles of a given aspect ratio, but also reduces the effect of shape on the longitudinal dispersion and relaxation time scales. Thus, a finite value of thermal diffusivity suppresses the shear coupling effect on the longitudinal dispersion of the particles. Now, in the following section let us focus on the influence of the degree of confinement on the dispersivity of the particles.

2.3.6

Effect of degree of confinement on macroscopic dispersivity This section focuses on the influence of channel gap height 2H on the dispersion of the particles of a given aspect ratio q = 2 and in absence of thermal diffusion (D m = 0). The Fig. 2.16 shows the change in longitudinal dispersion with respect to P e f . We observe that for P e f > 10, the curves deviate from Taylor's prediction to reach the asymptotic power law regime described in section (2.3.1). The power law fit of the data at large P e f gives the same value for all three apertures with κ ≃ 1.96. We also see that D ∥ is larger for 2H = 500 µm at a given P e f than for 2H = 30 µm. This is because for a given P e f , the U is larger for 2H = 500 µm case than for 2H = 30 µm.

From Fig. 2.17 (a) where the normalized variance of particle velocity is plotted as function of P e f , we observe that the normalized variance collapses to the asymp- . This indicates that the velocity variance scales as P e 2 f . It was observed that there is a very weak effect of 2H on the normalized relaxation time scales as shown in Fig. 2.17 (b) at P e f > 10 for 2H = 100 , 200 and 500 µm. We also observe that the transition from the diffusive regime to the shear alignment dependent "active" regime for all the different 2H cases occurs at the same P e f (cf. Fig. 2.17 (b)). In the case of 2H = 30 µm, we see a slight
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deviation in the value of τ c /τ taylor until P e f about 25 and then at higher value collapses with the other 2H values. We also observe that, at low P e f i.e. P e f < 10, a decrease in the assymptotic value with increase in 2H. This assymptotic value was approaching the τ c /τ taylor value of the RBC case with increase in 2H. This is due to a decrease in the surface accumulation with increase in channel height as shown in Fig. 2.18. This can be explained as follows. The swimming Péclet number,

P e s = V s 2HD R
decreases with increase in 2H. Therefore the frequency at which a particle encounters the surface is reduced. Therefore, a decrease in the surface effect is observed at large 2H.

From Figs. 2.16 and 2.17, it can be gleaned that the power variation of the relaxation time scale τ c and longitudinal dispersion coefficient D ∥ with P e f are independent of the channel height 2H and only the pre-factor multiplying the P e 2+κ f term increases with 2H. We observe a very weak boundary effect at low P e f for large 2H which maybe attributed to the fact that the P e s ≪ 1. This would mean a larger channel height compared to the correlation length (= V s D R ) of the swimmer which is 20 µm in our simulations. We can expect a stronger effect of boundary and a different dispersion regime when 2H is very small and comparable to the correlation length of the particle as observed by [154]. We start to observe a slight glimpses of this effect at 2H = 30um at low P e f , since it is quite close to the correlation length of the swimmer.

Influence of fluid rheology on the longitudinal dispersion and steady concentration profiles across the channel gap

In this section, we present results that focuses on the effect of fluid rheology on the longitudinal dispersion D ∥ and relaxation time scale τ c . We also present the steady state concentration profiles across channel gap as function of fluid rheology. . We obtain these profiles by changing the power law index n in Eq. (2.1.1). The case of n = 1 corresponds to Newtonian fluid (red curve in Fig. 2. 19) and the velocity profile is parabolic. The case n = 0.5 corresponds to a shearthinning fluid (blue curve in Fig. 2.19), and the velocity varies from zero at the walls to maximum at the center of the channel. We also observe a constant velocity regime which is more flat close to the center compared to other cases. Finally, for the case of n = 1.5 corresponds to a shear-thickening fluid (yellow curve in Fig. 2. 19), and the velocity varies from zero at the walls to maximum at the center and the shape of the curve is more sharp close to the center of the channel gap. We note that for fixed γm , U increases with n (see Eq. (2.2.2)). For all the results presented 2.3. Results in this section, we assume the swimming velocity V s and rotational diffusivity D R of the particles to be invariant with respect to fluid rheology. This is a strong assumption, but also is a solid starting point for studying the Taylor dispersion in a Non-Newtonian fluid. We then perform langevin simulations of Eqs. (2.1.8, 2.1.9) for three different n values i.e. 0.5, 1 and 1.5 for the same set of γm values and fixed V s and D R . The channel gap is fixed at 2H = 100µm and the thermal diffusivity at D m = 0 for all the results presented.

(a) q = 2 (b) q = 2 (c) q = 2 (d) q = 10 (e) q = 10 (f) q = 10 These changes with n observed are in concurrence with the increase in sharpness of the velocity profile of the fluid. This implies that the particles just navigates across different regions in the channel gap as a function of its response to local shear γ(z). This can be gleaned from Eqs. (2.1.9), (2.2.1) and (2. 

Discussion and Conclusions

Our study demonstrates that shear alignment of bacteria particles by flow increases the longitudinal dispersion coefficient. The consequence of shear alignment on dispersion is observed when the flow Péclet number P e f is larger than 10. Below this critical value, diffusion due to the swimming activity is strong enough to reduce the effect of shear alignment. Bacteria diffuses in the gap like passive Brownian particles with a diffusive time scale given by the diffusion coefficient D 0 associated to the random swimming motion of the particle. For P e f > 10, a transition from a Taylor-like dispersion regime where D ∥ D 0 ∼ P e 2 f to an "active" regime where the longitudinal dispersion coefficient increases such as :

D ∥ D 0 ∝ P e 2+κ
f similar to the "Gigantic" Active-Taylor dispersion reported by [36]. The active regime is characterised by a relaxation time scale τ c /τ taylor , that increases with the average flow velocity like U κ with 1.5 < κ < 2. The increase of relaxation time comes from the particles that get aligned in the flow direction, thereby reducing the diffusivity in the gap. We have also highlighted the link between the value of the exponent and the aspect ratio of the particle. The beginning of the active regime is characterized by the change in shape of the concentration profiles of the particles across the channel gap, which depends on the imposed shear and the aspect ratio q of the particles. For spherical particles, we do not observe any depletion or local trapping of particles, however a delay in relaxation time is observed due to the influence of vorticity on the reorientation of the particle. Particles with aspect ratio q > 1 tend to accumulate in two regions close to the surfaces where the shear is high. The depletion of the center deepens when P e f increases. The existence of high shear trapping of the bacteria and depletion at the center of the channel at high P e f is in tandem with the results of [3][4][5]. We also observed that for bacteria with small aspect ratio (q ≤ 4), the high shear trapping regime is followed by a low shear trapping i.e. particles are trapped more at the vicinity of the center with increase in shear rate and still the depletion at the center deepens. This second regime is not observed for q = 10 within the range of P e f at which we operated. In the case of particles with q < 1 we observe an existence of both high and low shear trapping at high P e f . In this case we observe the particles to either accumulate close to the surface where the shear is high or in the center of the channel where the shear is zero. The particles, due to their unique swimming mechanism, tend to make big "jumps" from lowest to highest shear regions in the gap. This observation, to our knowledge, has never been reported before. We observe that particles with small aspect ratios have a higher relaxation time and thus an enhanced macroscopic longitudinal dispersion with a larger κ.

We also observe that there is an effect of the imposed boundary condition on the alignment of particles only at low P e f . As shown in Fig. 2.12(a), at low P e f parti-Chapter 2. Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow cles subject to a reflective boundary condition are distributed uniformly throughout the gap in contrast to a uniform distribution in bulk and accumulation on the surface for the imposed boundary condition employed for this work. However, this imposed boundary condition has a weak effect on the distribution of particles across the channel gap at high P e f (See Fig. 2.12(b) and (c)). The imposed boundary condition for this work is more of practical relevance, since it mimics the experimental observations of the tendency of bacteria to spend more time swimming along the surface [START_REF] Junot | Transport of active bacteria: from micro-scale processes to macroscopic hydrodynamic dispersion[END_REF]36,135,139].

Additional diffusion term puts an end to the P e 2+κ f behaviour. A new regime is reached at large P e f when the apparent diffusion coefficient in the gap becomes similar to the extra diffusion term. The distributions of the particles in the gap flatten again and the longitudinal dispersion coefficient then scales again like Péclet to the square but with a new Péclet number based on the diffusion coefficient, D m , instead of the diffusion coefficient D 0 . We then have:

D ∥ D m = 1 + αP e 2 c or equiva- lently D ∥ D m = 1 + α( D 0 Dm P e c ) 2
which is in tandem with results of [6]. In addition to this we also explore the D ∥ scaling with P e f with different D m and observe that the critical P e f at which D ∥ ∼ P e 2+κ f behaviour ends is inversely proportional to imposed D m .

We further observe that reducing the aperture does not alter the corresponding P e f at which we observe a transition to active regime. However, we still observe a weak confinement effect at low P e f , marked by a decrease in relaxation time scale with increase in channel height and approaches the value corresponding to RBC case. This is attributed to the drop in the number of bacteria accumulated on the surface with increase in channel height. This indicates an attenuation of the imposed boundary condition effect at large channel heights. These observations were from the simulations performed for a channel height larger than the correlation length of the particle and P e s was varied from 0.7 (lowest channel height) to 0.04 (highest channel height).

Finally, we observe the velocity profile of a power law fluid to have an effect on the distribution of particles in the gap and hence its dispersion. A decrease in spread of particles in the gap and sharper depletion at the center was observed with increase in n which was in concurrence with the corresponding velocity profiles of the fluid in the channel gap. However, we were able to collapse the profiles for a fixed wall shear when we re-scaled the distribution of particles as function of local shear instead of position. This indicated the "trapping " mechanism induced by shear-coupling is independent of fluid rheology for power law fluids. We also observe the same scaling of D ∥ ∼ αP e 2+κ f for the three different rheologies (shear-thinning, Newtonian and shear-thickening) explored here, and only α increases with the parameter n described in Eq. (2.1.1). This echoes with the behaviour of the solute particles as shown by [START_REF] Sharp | [END_REF].

Perspectives

This study is the first step to a more complete description of dispersion of swimming bacteria that would include the heterogeneous and disordered structure of the flow observed in porous media. In the present study, we assume that the suspension is diluted in the bulk and that the particles are small in size such as there is no particle-particle interaction and the effect of particles on the flow field of surrounding fluid is negligible. However, we know that when the number of bacteria increases new phenomena like collective motion emerges [160] with effect on the effective viscosity [?, [START_REF] Chui | [END_REF]115]. As a first step, this effect can be included in our model by introducing a local viscosity as function of the local shear and the local bacteria concentration. This could be the first step towards a comprehension of the effect of bacterial number on the macroscopic dispersion that would include hydrodynamic interactions between swimmers. Furthermore, this study considered a very "simple" scenario on studying the dispersion in a non-Newtonian fluid. However, we know that the suspending fluid rheology has a profund effect on the swimming velocity and rotational diffusivities of individual bacteria [102,[START_REF] Gagnon | Locomotion At Low Reynolds Number: Dynamics In Newtonian And Non-Newtonian Systems With Biomedical Applications[END_REF][START_REF] Li | [END_REF][106]. A next step in understanding the dispersion of bacteria in non-Newtonian environments would be to include these effects in the model and observe the scaling of relaxation time and longitudinal dispersion with imposed flow. While this study focuses on power-law fluids, one can also explore fluids with other rheologies like Visco-elastic, Bingham or Carreau fluid. Another challenge is to design an experimental set-up to test the results of this study and one which accomodates the range of dispersion regimes observed from our simulations. One of the approaches would be to design a microfluidic channel with a periodic structure along the direction of flow similar to [3] and a channel with a larger aspect ratio and using fluorescent swimmers for ease of visualizing the dispersion of the population at a macroscale. The swimmer can either be bacteria or an artificial swimmer. The advantage of using an artificial swimmer is that, it would provide an option of controlling the shape of the particle and aid in exploring the effect of shape of particles on its dispersion.

Chapter 3

Miscible flow displacement experiments 3.1 Introduction

Displacement of a more viscous fluid by a less viscous fluid leads to flow instabilities resulting in the formation of fingers of the less viscous fluid [21,[161][162][163][164] and this phenomena is called Viscous fingering. Viscous fingering has been a subject of extensive study over the past few decades, since it occurs in many processes such as, carbon sequestration [165,166], oil recovery [167][168][169], pollutant removal, or liquid chromatography [170,171]. Additionally, the interfacial instability also provides a tool to form small-scale patterns [172,173]. Major efforts have been made to understand the dynamics of this phenomena in order to determine the conditions for the onset of fingering instability, to find a strategy to mitigate it [174,175]. One of the earliest experiments investigated the dynamics of the interfaces in a column. These experiments revealed the existence of a critical velocity separating the stable displacement front, from the unstable front, which was characterized by the emergence of complex fingering patterns [176]. The principle of the instability can be understood simply by considering an initially flat interface separating the two fluids on which appears a protrusion of finite size (See Fig. 3.1) [169,176]. The calculation of the pressures just ahead and behind the protrusion allows to determine if the protrusion will grow or decay. The protrusion will grow if p 2 > p 1 , this situation is met when M = µ 1 µ 2 > 1. For M < 1, p 2 < p 1 and the protrusion recedes.

To obtain a precise image of the interface and a good control of the flow, experiments have been performed in capillary tubes [21,178] or between parallel plates separated by a small gap of height 2H (Hele-shaw cell) [179,180]. Saffman and Taylor [16] performed their experiments in a Hele-shaw cell and observed that the continuous injection of air in a viscous fluid created an interface that evolved from a plane interface at low flow velocity towards a state where a single finger occupies about one half of the channel. When the flow velocity was further increased, small eddies at the tip of the steady finger appeared [177,178]. Small disturbances due to experimental noise, have been observed to generate splitting of the finger tip and after multiple generations of splitting, the fingering pattern transitioned to a fractal 

M = µ 1 µ 2 < 1 but unstable for M > 1.
behaviour [163,[START_REF] Couder | Viscous Fingering in a Circular Geometry[END_REF][START_REF] Praud | [END_REF].

The physics of the viscous fingering instability can be gleaned from the schematic diagram presented in in Fig. 3.1(c). Inside the two fluids, the pressure is uniform and the motion of the fluid obeys the Darcy law as shown in the equations specified in Fig. 3.1(c), where the permeability k is the function of the system geometry and scales as H 2 for a Hele-shaw cell. However, at the interface between the two fluids, there exists a pressure drop because of the viscosity difference between the two fluids. When the viscosity difference between the displacing fluid and displaced fluid is negative, this would result in a positive pressure drop across the interface and led to the growth of the protrusion (destabilizing effect). However, the surface tension, γ will try to limit the growth of this protrusion (stablizing effect). Therefore, the competition between stabilizing effect of surface tension and the destabilizing role of viscosity contrast, results in an instability which leads to the growth of one or more fingers of selective wavelength(s). This competition between surface tension and viscosity is reflected by the capillary number: Ca = µ 1 U γ that compares the Laplace pressure at the interface ∼ γ H and the viscous pressure drop µ 1 U H 2 where µ 1 is the viscosity of the displaced fluid and U the average flow velocity. This number controls the thickness of the fluid layer left behind on the surfaces [178] and was observed to scale like √ Ca and the size of the most unstable wavelength λ c to scale as ∼ H √ Ca [183,184].

For miscible fluids, the mixing front is defined as the distance over which the local concentration of the injected fluid c, varies from 0 (corresponding to the outgoing In this zone, the viscosity, µ(c), is intermediate between the viscosities of the two fluids. The size of the front is determined by the combined action of the diffusivity D 0 between the two fluids, which acts to reduce the local concentration gradients, and advection, which controls the interface dynamics. The degree of mixing is thus determined by the competition between these two effects. Similar to C a for immiscible fluids, one can define another equivalent dimensionaless number, called the Péclet number P e = U H D 0 , for the case of miscible fluids. It is defined as the ratio between diffusive time scale H 2 /D 0 and the convective time scale H/U . In this case, the diffusivity D 0 plays the same "stabilizing" role as that of the surface tension in immscible case [18,21,22,164,[START_REF] Chui | Understanding the evolution of miscible viscous fingering patterns[END_REF][START_REF] Videbaek | [END_REF][188]].

2D

The Fig. 3.2 shows the various flow regimes that were observed in a Hele-Shaw configuration for different injection methods. Three regimes are represented as a function of the governing parameters which consists of the dimensionless velocity in the form of the Péclet number, and the viscosity ratio, M. At high P e and M , the viscous fingering patterns was ramified [189] and its asymptotic geometry was observed to be fractal with a fractal dimension close to 1.70 ± 0.02 [START_REF] Couder | Viscous Fingering in a Circular Geometry[END_REF][START_REF] Praud | [END_REF] similar to the growth of aggregates produced by the numerical model of diffusion limited aggregation (DLA). Chui et.al. [190] reported that the number of fingers scales like P e 2/3 M 1/2 for radial miscible viscous fingering. Moderate P e and M , corresponds to a stationary flow regime. In this regime, an intermediate behavior in which fingers grow in the plane of the flow with a single characteristic size was observed [179,185]. At lower P eand M , the fingers in the flow plane were no longer present. In the opening of the Hele-Shaw cell, the two fluids were separated by a well defined sharp interface.

Several experimental studies investigated these regimes by correlating the measured optical absorption to the amount of fluid present in the gap. They have allowed to distinguish different forms of fronts shown in Fig. 3.3 whose typical shapes depend on the flow velocity and the viscosity ratio. These studies revealed that for M below a critical value M c of about 1.5, the incoming fluid forms a tongue covering the central half of the flow, reminiscent of Safman Taylor's finger [16] confined to the gap centre. For higher viscosity ratios, a spike whose size depends on the flow conditions emerged at the front of the finger [20,21]. Above a critical velocity U c , the shape of the front varied abruptly in a form that looks like a shock [18][19][20]179].

The structure of the flow before the onset of the instability is essentially 2D and is either confined in the opening or axially symmetrical in the case of tubes which makes it possible to simulate those flows in a 2D geometry and to develop asymptotic solutions [17]. These numerical models aids us in understanding the role of mixing on the distribution of fluids and discern the physics at the origin of the instability [18,19,22]. Recent 3D simulations have extended our understanding of the onset of the fingering instability. These simulations have revealed that, close to the finger, a presence of two sets of recirculating flows with axes aligned in the cross gap [19]. Their presence explained the spike formation that developed at the forehead of the 1) are taken from [179,191], they show the concentration profiles measured in the direction of flow. The profiles marked by (2) are taken from [185], they show the fluid distribution across the gap. To obtain the profiles across the gap, the authors converted the measured optical absorption to fluid thickness. The framed profiles show that the renormalization of the distances allows to superimpose the profiles. The dynamics of the fronts is therefore self-similar. fingers [21,22]. This initial spanwise vorticity of the base flow gives rise to cross gap vorticity [188,192]. One of the striking features of these fronts is the absence of mixing, particularly in the area near the front. From this observation, the hypothesis of a negligible diffusion was made and has led to the development of a kinematic wave theory that can reproduce the experimental observations [19,191]. The combination of experimental, numerical and theoretical approaches has resulted in a comprehensive understanding of this phenomenon which is now well documented in all standard books on fluid mechanics. The most recent issues concern the 3D simulations of this phenomenon and its coupling with other sources of instability such as buoyancy effects, the role of fluid rheology [193][194][195] or the presence of non-colloidal particle in suspension [196][197][198]. Those experiments revealed that introducing polymers or particles in either displacing or displaced fluid deeply modifies the fingering patterns from classical fingering patterns usually observed for the Newtonian-Newtonian displacement of similar viscosity contrast.

Recent studies [?, [START_REF] Chui | [END_REF][43][44]115,117,199] have shown that the presence of swimming bacteria in a fluid has a non-trivial influence on the rheology of the suspension when subject to flow (reduction in effective viscosity of the suspension). The same mechanisms that we have just described are likely to be present when a bacterial suspension displaces a fluid without bacteria. This phenomenon has never been demonstrated before, the objective of this chapter is to show its existence and to give the conditions of its emergence. As was done previously on studying the miscible viscous fingering phenomena, we perform a series of miscible displacement experiments with bacteria suspensions with the control parameters being the P e and M . The P e was controlled by varying the rate of injection of the bacteria suspension into the flow cell. However, the control of the viscosity contrast between the two fluids is a bit tricky. This is because of the coupling between bacteria concentration and activity with the imposed shear on its rheological response [?, [START_REF] Chui | [END_REF]44,115,117,199]. Therefore, we vary the concentration of the bacteria suspension injected and the viscosity of swimming medium, which changes the swimming velocity and diffusivity of the bacteria.

In Section (3.2), we firstly provide details on preparation of the bacteria suspension and characterization of its microscopic properties like the average swimming velocity and rotational diffusivity in different fluids. This is followed by the characterization of the experimental set-up and protcol for performing the experiments. Finally, we provide the details on treating the raw image data which is crucial for our analysis. In the section (3.3), we first underline the effect of concentration of bacteria and its activity on the shape of the concentration fronts. Based on the shape of these concentrations fronts, we categorize our results into different regimes. We then characterize the velocity and the spreading of the concentration fronts for each regime and present their dynamics. Furthermore, we also draw analogies to the Newtonian-Newtonian displacement observations, to provide some physical interpretation of our results. In section (3.4), we conclude the chapter by providing a phase diagram that characterizes the different regimes observed in our experiments as function of P e and M . Finally, in section (3.5), we propose a model that would
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describe our observations and provide some perspectives.

Materials and Methods

Preparation of bacteria suspension

We used an E. coli strain (RP437-YFP), which is a bacteria expressing yellow fluorescence protein. A minimal salt medium (M9G), consisting of M9 minimal medium salts along with 0.1% Casammino acids, 0.4% Glucose, 0.01% 1M Calcium chloride and 0.2% 1M Magnesium sulphate dissolved in milliQ water was used as the growth medium. To this growth medium, 25µg/mL Chloramphenicol (CAM) was added to prefentially grow only the bacteria expressing yellow fluorescence. For some of our experiments, we also make use of another strain of E. coli viz RP437-WT which does not have the plasmid to express yellow fluorescence protein and was directly cultured in the growth medium (M9G).

The bacteria was cultured in the growth medium in an incubator shaker at 240 rpm, 30 • C. The concentration of the bacteria suspension were measured in terms of optical density (OD) using a UV spectrophotometer (D30 Eppendorf BioPhotometer) set at 600 nm wavelength. This unit (OD) is a representation of the number of bacteria present per mL volume of the solution. To obtain the growth rate of the bacteria, the concentration of an overnight bacteria culture were checked in the UV spectrophotometer (represented by the spheres in Fig 3.4). A small volume of this sample was the diluted in a fresh medium and kept inside the incubator (represented by the diamonds in Fig. 3.4). The concentration of both the former and latter samples were measured every 30 minutes over the next few hours. From these concentration values, we obtained a growth curve as shown in Fig. 3.4, which showcases the concentration of bacteria as function of time. When a bacteria strain taken directly from a -80 • C freezer were cultured, we observed a ∼ 16h lag phase before it reaches the exponential growth phase.

The growth of the bacteria culture was always stopped at the beginning of the exponential growth phase i.e. at an OD between 0.1 and 0.15. They were then removed from the culture medium and re-suspended in a swimming medium through centrifugation. The swimming medium is a Motility buffer (MB) which consists of 0.1M EDTA, 0.001M Methionine, 1M Sodium Lactate and 0.1M Phosphate buffer dissolved in milliQ water and the pH = 7.0. The medium provides the salts needed for the bacteria to swim actively as long as there is sufficient oxygen supply, however, it does not contain any nutrients for the bacteria to multiply further. Therefore, suspended the bacteria in this medium enabled us to have an active bacteria suspension with a constant concentration for our experiments.

The application of centrifugal force separates the bacteria from the culture medium. The bacteria suspension were filled in 15 mL tubes and centrifuged for 15 mins at 4000 rpm. At the end of centrifugation, the pelet of bacteria were col- lected and rinsed 2 -3 times with before being suspended in the swimming medium.

To wash the bacteria, we further rinsed all the collected pelets with 1 mL of water and centrifuged for 5 mins at 10,000 rpm. The supernatant was discarded after each round of centrifugation. A final volume of 1 mL of highly concentrated bacteria suspended in the swimming medium was thus obtained.

Based on the final concentration and volume of bacteria suspension required for a given experiment, the initial volume of the culture medium prepared was varied. For example, if a volume of 4 mL of OD 0.6 was needed for an experiment, a culture medium of 24 mL was prepared. This 24 mL culture medium once grown to a concentration of OD 0.1 was centrifuged as explained previously. We obtain 1 mL of ∼ OD 2.4 in MB at the end of the centrifugation process. This solution was then diluted in MB to obtain a concentration of OD 0.6. Hence, higher the final concentration of bacteria suspension required, higher volume of culture medium was prepared and more rounds of centrfugations were performed.

Characterization of the motility of the bacteria suspension in the Motility buffer(MB)

We characterize the motility of a bacteria suspension by two parameters i.e. the average swimming velocity (V s ) and rotational diffusivity (D R ) of the bacte- ria. These two values were obtained from microscopic imaging of the bacteria. The bacteria suspension was diluted to a concentration of OD 0.3 and filled into a microfluidic chamber created by bonding Polydimethylsiloxane (PDMS) polymer with glass and the configuration of our channel and set-up for imaging is depicted in Fig.

Chapter 3. Miscible flow displacement experiments
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) . PDMS has high diffusivity to oxygen and hence provides sufficient oxygen supply for the bacteria to swim with a constant velocity over a long period of time. This was verified during our measurement of motility of bacteria from microscopic imaging. The dimensions of the microfluidic chambers were 2 x 1 x 0.025 cm. The bacteria suspension were observed under a Leica DMI 6000 microscope using a 10x objective lens equipped with a YFP filter. The YFP filter enabled us to distinguish the fluorescent bacteria from the background upon the adjustment of exposure time and contrast settings. We performed our imaging at 2 x 2 binning and 50 ms exposure time. The sample was iluminated by a fluorescent lamp from the bottom and images were recorded by a high speed Hamamatsu Orca Flash 4 camera. The images were recorded at 10 fps for 20s every 30 minutes over a period of ∼ 2 -4h. We chose to dilute the bacteria concentration to OD 0.3 to ensure that the suspension was dilute enough to spot and track individual bacteria on one hand, but also have enough track statistics to average-out and characterize the motility of the bacteria suspension. The sample was focused at the centre of the channel. The field of view of the objective used was 1.3 mm x 1.3 mm and the depth of field was 30 µm. The microscope imaging room temperature was always found to be ∼ 23 -26 o C. The details of the protocol of performing the tracking and analyzing the track statistics are provided in Appendix B1. The tracking gives the positions of each bacteria (x i , y i ) as a function of time from which the average velocity V s and rotational diffusivity D R of the population were calculated. Fig. 3.7 depicts the measured val-ues of V s and D R as function of time for multiple samples cultured and measured on different days. The dashed line represents the average value over time and different realizations. The final concentration of the bacteria suspension in MB was always fixed at ∼ OD 0.3 for these measurements. It was inferred from the plots that both V S and D R were constant over a period of ∼ 3h. And this was consistently observed over measurements done on multiple days with freshly cultured samples. The V s for bacteria suspended in MB was found to be ∼ 10.6 ± 1.2 µm/s and D R ∼ 0.13 ± 0.02 s -1 . We also cultured the non-fluorescence bacteria strain viz RP437-WT and observed to have V s ∼ 10.4 ± 1.5 µm/s and D R ∼ 0.15 ± 0.04 s -1 . Thus, the fluorescent and non-fluorescent strain have similar characteristics.

In our flow experiments, we varied the concentration from about OD 0.6 to about 7. Therefore, we also characterized the motility of the bacteria at OD 7. At this concentration, it was difficult to distinguish individual bacteria and perform the tracking. Hence, we employed an indirect means of measuring the V s and D R for this bacteria concentration. We prepared a mixture of high concentration of nonfluorescent bacteria strain and a dilute concentration of fluorescent strain. We then, performed tracking of the fluorescent strain. The composition of the mixture was such that we obtained a final concentration of ∼ OD 7 in which we had ∼ OD 0.3 of RP437-YFP and remaining concentration was RP437-WT. bacteria suspended in MB (V s ∼ 10.6 ± 1.2 µm/s and D R ∼ 0.13 ± 0.02 s -1 ). We also observed no collective motion of the bacteria at OD 7 .

The motility of the bacteria was thus not observed to be influenced by concentration eventhough the concentration was varied by a factor close to 25.

Motility of bacteria suspension in PolyVinylPyrolydine (PVP)

In order to increase the viscosity of the suspending medium, we dissolved different concentrations of PVP K-360 (Sigma Aldrich) polymer in MB. The viscosity of these suspensions were measured in a Couette-Taylor Low-shear rheometer as detailed in Appendix B3. We first measured the motility of the bacteria in a fresh 1% PVP-MB as function of time using the same protocol as described in section 3.2.2. The values are plotted in Fig. 3.9. We observed the behaviour to be different from that of plain MB case. Unlike with the plain MB, we observed the bacteria to swim faster and tumble more frequently for the first 30 -60 min. But after ∼ 60 -120 min, the V s and D R values decreased to an asymptotic value.

We suspected an effect of PVP on the motiltiy. Therefore, to understand the cause of this variation, we initially kept the bacteria suspension of ∼ OD 0.3 in 1% PVP-MB in a shaker for ∼ 3h and then centrifuged the suspension and collected the supernatant PVP-MB solution. Fresh bacteria were then suspended in the supernatant. This new bacteria suspension was then placed under the microscope for imaging and the tracking procedure was repeated. The viscosity of the supernatant was also measured to be same as the fresh 1% PVP-MB. This time, we observed that the motility of bacteria were constant as function of time and that the value was same as the asymptotic value we observed after ∼ 60 -120 mins in the fresh 1% PVP-MB (See Fig. 3.9). This indicates, as hypothesized by Martinez et.al. [103], that there exists some impurities or complex molecules in a fresh PVP solution which the bacteria tend to metabolize initially before reaching an asymptotic motility regime. This initial metablizing period was marked by a ∼ 20% increase in V s and a ∼ 3-4 fold increase in D R values, indicating a higher tumbling rate of the bacteria.

The same measurements were carried out for bacteria suspended in different concentrations of PVP. The asymptotic motility regime was defined as when D R reaches an asymptotic value (See Fig. 3.10). Fig. 3.11 shows the asymptotic values of the V s and D R for the bacteria in swimming medium of different viscosities i.e. different concentrations of PVP dissolved in MB. The swimming velocity and rotational diffusivity was observed to vary as function of concentration of PVP in a non-monotonic way i.e. as we increased the viscosity of the swimming medium a maxima in V s was observed between 0.5 and 1% PVP concentration before it decreased with increase in viscosity. Therefore, we can control the activity of the bacteria by varying the viscosity of the swimming suspension. Our observations corroborated with what was reported pre- viously [START_REF] Chui | [END_REF]101,103,200] for the variation in the motility of a run-and-tumble E. coli bacteria in a viscous environment.

Surface accumulation of bacteria

Sedimentation of the bacteria would lead to an increased accumulation of bacteria on the surface with time which will inturn create a density gradient across the height of the channel and introduce buoyancy instabilities. This is likely to affect our measurement of the macroscopic dispersion of the bacteria suspension in our experiments. Hence, it was important to verify the effect of sedimentation of the bacteria suspension during the time duration of our experiments.

To do so, we filled a 2 x 1 x 0.05 cm microfluidic chamber with the bacteria suspension. The channel was first filled with plain swimming medium and then OD 0.3 bacteria suspension was injected into the channel. Then, the chamber was shaken to mix the bacteria suspension to minimize any bias in distribution because of our injection. We recorded movies in 5 different focal planes across the height of the chamber for over a period of 5 hours. The depth of field was 30 µm for the 10x objective used to image the bacteria and hence the figures were plotted as a bar plot with a width of 30 µm.

Figs. 3.12 (a) and (b) shows the number of bacteria detected at different positions in height for different times. In Fig. 3.12, we initially observed more bacteria at the bottom surface. This might arise from the way we injected bacteria into the microfluidic chamber. After few minutes, we observed the profile resorting to a symmetric one with respect to the mid-point of the height of the chamber. This accumulation of bacteria close to the surfaces arises due to the hydrodynamic interaction of bacteria with surfaces and is in correspondence to the concentration profiles reported by Berke et.al. [7]. They measured the number of swimming bacteria as function of the distance in the focal plane. They also derived an analytical model for steady state concentration profiles across the height of the chamber by solving the fluid velocity equation characterizing the flow around a single bacteria induced by its swimming activity and the mass conservation equation. We the adjusted our concentration profiles at different times with an exponential fit of form

N (z) = N 0 exp[a( 1 z + 1 2H -z
)] obtained by Berke et.al. [7]. In that expression, the parameters N 0 is the average number of bacteria away from the surface and a is the thickness of the accumulation layer of the bacteria on the surfaces. The Fig. 3.13 shows that the value of N 0 is low at t = 0 and then increases to reach an asymptotic value and a is higher at t = 0 and then decreases to an asymptotic value. We observed a = 30 ± 5 µm at long times for both MB and 1% PVP-MB experiments. This value was comparable to that reported by [7]. It was also observed that over a period of 5 hours there was a neglible sedimentation of the bacteria across the height of the channel as evidenced by the number of bacteria detected in the middle region fluctuating over an average value during this duration.

The experiment was repeated for a bacteria of concentration OD 7 suspended in MB consisting a mixture of a population of fluorescent bacteria with non-fluorescent bacteria. The Fig. 3.14 shows the number of bacteria measured midway between the top and bottom surfaces of the chamber as function of time is constant over an average value of 2500 for period of 2.5 hours. The values obtained with the first set of experiments with dilute bacteria concentration (OD 0.3) were also plotted for comparison and we observed a similar trend for both the cases. For the case of OD 7, we visualized only the fluorescent bacteria in the suspension. The concentration of fluorescent bacteria in that mixture was about OD 0.3. Therefore, we detected the same number of bacteria as that of OD 0.3 experiment. Since, the number bacteria detected in the centre of the chamber remains constant with time, this indicates negligble sedimentation of bacteria. Thus, we observe that sedimentation of bacteria is a negligible parameter for the duration of even our longest experiments (See Fig. 3.12 and Fig. 3.14).

Experimental set-up and protocol

The Fig. 3.15 represents the schematic diagram of the experimental set-up that was employed for performing our flow experiments. The flow cell was fabricated by bonding a PDMS mold with a glass plate through plasma cleaning. Details on the mold used for fabrication of flow cell are given in Appendix B2. The total volume of the flow cell were 1.2 mL (for 1 cm width flow cell) and 2.6 mL (for 2 cm width flow cell). Holes of size 2 mm were puntched at the two ends of the flow cell. The inlet was attached to a 3 cm wide and 0.8 cm tall reservoir connected through a syringe needle. The outlet was connected by a Tygon tubing to a 10 mL syringe which was attached to a CETONI Base 120 NEMESYS low pressure pump. The set-up also consisted of a 3-D printed flat impellor attached to a rotor to continously stir the suspension filled in the reservoir at ∼ 14 rpm.

Materials and Methods

The flow cell was placed on top of a blue-light illumination table and a 16-bit CCD Photometrics Cascade 1K monochrome camera was placed ∼ 60cm from the top of the flow channel. The camera was equipped with a Nikkon objective attached with a F-PRO orange filter ring which enabled us to distingush the fluorescent bacteria concentration front from the non-fluorescent background. The magnification was set at ∼ 0.7x and the resolution of the camera was ∼ 40 pixels/cm. The whole set-up was enclosed in a dark environment using black screens to reduce the background noise. With this camera, we cannot focus and track individual bacteria, but instead what we would observe is the top-view of the flow cell in 2-D and the integrated bacterial concentration front across the height of the channel. A droplet of the bacteria suspension was placed on the side of the flow cell to estimate the expected gray level value for the bacteria concentration injected into the flow cell.

The following was the protocol employed to carry out the experiments. The flow cell was initially filled with milliQ water and the flow cell was oriented vertically while filling water to avoid trapping of air bubbles during injection. Then, the flow cell was reverted back to the horizontal orientation as shown in Fig. 3.15 and the plain (No bacteria) swimming medium ( x% PVP in MB) was continuously flushed into the flow cell at 10µL/min for ∼ 35 -45 mins to ensure that all the water was flushed out and the flow cell was uniformly filled with the plain swimming medium. The plain swimming medium was injected directly from the reservoir and the rate of injection was set in the software controlling the pump connected at the outlet of the flow cell.

Once the flow cell is fully filled with the plain swimming medium, the reservoir was cleaned and the bacteria suspension was filled in the reservoir. 2mL of the bacteria suspension from the reservoir was then continously injected into the flow cell to displace the already filled fluid at a given flow rate. The suspension in the reservoir was continuously stirred using a flat shaped impellor (as shown in Fig. 3.15) at ∼ 14 rpm in order to ensure homogenous oxygen supply for the bacteria suspension in the reservoir and avoid sedementation during the duration of the experiment. The concentration of the leftover bacteria suspension in the reservoir at the end of the experiment (especially the slow flow rate experiment which lasted for ∼ 6 hrs) were checked, and we observed that the change in concentration of bacteria were within ∼ 5% which was attributed to a loss of ∼ 5 -6% of the total volume of the solution due to evaporation over a period of ∼ 6 hrs.

Once, the experiment is over, we cleaned the flow cell by flushing out the bacteria through injection of 2 mL of 70% Ethanol followed by 8 mL of milliQ water at 30µL/min. At the end of this injection process, we illuminated our flow cell with a blue light in a dark environment and checked via orange eyeglass to see if any bacteria still remains in the flow cell. The water remaining in the flow cell was then drained out and the reservoir and syringes were cleaned before injection fresh milliQ water for performing the next experiment. The flow cell was changed for every 6 to 8 experiments. 

Spatial homogenity and temporal stability of the light table

We noticed that the illumination of the light table was not stable with time. Therefore, to avoid any bias while measuring the bacteria profile, we first characterized the temporal variation of the illumination of the blank light table. To do this, the average intensity I B on small areas of 50 x 50 pixels were measured for sevaral hours.

The temporal variation I B (t) are depicted in Fig. 3.17 (a). We observe the same rapid drop in all regions and then a stabilization after ∼ 60 mins. The intensity fluctuates over an average value with a standard deviation of 5 gray level values close to the fluctuation of gray level value recorded in the absence of illumination. To account this temporal variation, I B (t) was systematically measured in the viscinity of the flow cell at different times. The average intensity I B (t) at a time t and that measured initially I B (0) were used as the temporal correction for each pixel (x, y).

To check the spatial homogenity of the light table, we placed the flow cell filled with water on the table. We then plotted the light intensity < I(x,y,t) > x as function of the length L of the flow cell, where light intensity was averaged over the width of the channel. Fig. 3.17 (b) depicts the spatial variation of the blank profile (blue curve). The intensity was observed to be constant in the centre region of the table and reduces by ∼ 12% in the two ends. To account for this effect, we normalized the light intensity with respect to the blank profile.

The following formula was applied on each pixel to account for both the temporal variation and spatial in-homogenity of the ilumination table:

I N (x,y,t) = I(x,y,t) + (I B (0) -I B (t)) I(x,y,0) (3.2.1)
This normalization enabled us to correlate the gray level value to the concentration of fluorescein dye or bacteria filled in the flow cell. More details on this aspect will be provided in section (3.2.8). For known concentration, we can also correlate the gray level value to measure the height of the channel gap and its incertitudes across the length of the flow cell. The characterization of the channel is discussed in the next section.

Characterization of the height of the channel

To determine height of the channel 2H, and its uniformity across the length and width of the channel, we employed two methods. Firstly, we injected into an empty We also tested the uniformity of the height of the channel by plotting the normalized light intensity profile < I N (x,y,t) > for a flow cell filled with fluorescein dye. We then observed < I N (x,y,t) > across the length L (see Fig. 3.18 (a)) and across the width W (see Fig. 3.18 (b)) of the flow cell. In Fig. 3.18 (a), it was observed that the variation in the normalized profile along the length of the channel was ∼ 4% lower at the two ends (inlet and outlet) and a ∼ 3% increase at the centre of the channel from the average value. Fig. 3.18 (b) shows the profiles in different positions along the length of the channel. The variation in the profile across the width was observed to be less than 2% from the average value with a slight drop observed at the edges of the channel. It is also to be noted that, we measured a higher intensity values in Fig. 3.18 (b) at 8 and 12 cm from the inlet (red and orange curves). This corroborates with the fact that, there is a slight increase in the height of the channel near the centre of the flow cell.

To have a systematic measurement of the average aperture of the channel, the following method was employed. We injected fluorescein dye solution into a flow cell initially filled with water. The average velocity U f at which fluorescein concentra- Table 3.1 -Average height measured from the average velocity at which the fluorescein concentration front was moving at different rates of injection.

tion front is moving, was then measured to calculate the channel height using the

relation: 2H = Q U f W .
The details of how U f is determined are given in section (3.3.1). From Table 3.1 based on experiments carried out in 5 different flow cells, we observed a consistency in the height of the channel produced. The average height is ∼ 480 µm and the variation is of order 10 µm. 

Relation between bacteria concentration (OD) and normalized light intensity

To determine the relation between OD and light intensity, channels of height 500 µm filled with different concentrations of fluorescent bacteria were placed on the light table. The Fig. 3.19 shows the normalized intensity values measured plotted as a function of the optical density measured in the UV spectrophotometer. The measurements were done for different exposure times and a fixed controller gain of 3 for the camera and we observed a linear relation between the normalized intensity values and the bacteria concentration with < I N > = αc + 1 . The slope α was observed to be a function of the cameria setting, i.e. α increased with increase in exposure time τ exp . Based on the concentration of bacteria, an exposure time was adopted to strike a good balance of signal-to-noise ratio and to avoid any signal saturation. Unlike fluorescein dye, we observed that there was no bleaching effect of the bacteria suspension when subject to prolonged ilumination by the lamp (See Fig 3.20). Fig. 3.21 (a) represents the normalized intensity as a function of position y measured during one experiment. We observed that the normalized profile yields values ranging between 1 and a plateauing at some asymptotic value close to 1.12. We employed an additional step in the normalization of the intensity profiles in order to re-scale the curves between 0 and 1. Firstly, we first subtracted < I N (x,y,t) > x by the mimina which was defined as the average of the last 20 points in Fig. 3.21 (a) and normalized this by the difference between maxima and minima of the profile. The maxima was defined as average of the first 20 points. Finally, we performed After the normalization, the lower assymptote region (c ∼ 0) corresponds to the region of flow cell filled with the plain swimming medium and the upper assymptote region (c ∼ 1) represents the region which is filled with bacteria at a concentration equal to the bacteria concentration in the fluid injected. We perfomed experiments with different concentrations of bacteria suspensions ranging from OD 0.6 to 7.5. In this range, we were able to achieve a reduction in viscosity of the suspension with increase in bacteria concentration [?, [START_REF] Chui | [END_REF]43,115]. However, they were still not dense enough to instigate collective motions [?, 42]. To 

Results

Figs. 3.22 (b)-(f)

shows the concentration fields for experiments performed with bacteria in MB at the lowest flow velocity (U /V s ∼ 2) and fixed injection time (t = 103min). This figure shows that the concentration of bacteria in the injected fluid modifies in an important way the displacement front. We have also included a concentration field obtained with dyed water pushing water (Fig. 3.22 (a)). We observed that the experiments performed with the bacterial concentrations of OD 0.6 and 1 have a concentration field relatively similar to that of the water-dye experiment. For these cases, the concentration front was quite uniform across the width of the channel W and was spreading along the flow direction y. These cases will be referred as Regime D (Figs. 3.22 (b) and (c)). When the concentration is increased, the front was observed to become rounded (See Fig. 3.22 (d) for OD 3). As we increased to OD 5 (Fig. 3.22 (e)), we observed the forehead of the front to still be rounded, but we noticed that the iso-concentration fronts at the inner region adopted a V shape. For the highest bacterial concentration, OD 7.5 (Fig. 3.22 (f)), the forehead became more pointed and a protrusion seemed to appear in the center of the channel. These types of front will be named Regime R (Figs. 3

.22 (d)-(f))

. We also noted that the distance over which the bacteria have penetrated the displaced fluid was increasing with bacteria concentration. These regimes were also observed in experiments done with 1% PVP MB (see Fig. 3.23). At low concentration (OD 1, Fig. 3.23(a)), the concentration front was distributed uniformly across the width of the channel and was spreading along the flow direction. Then, as we increased the concentration (Fig. 3.23(b) and (c)) the forehead of the front was observed to be rounded which encapsulated a V-shape iso-concentration fronts in the inner region. However, in the case of OD 5, we also noticed the existence of a precursor developing ahead of the bacteria front and was categorized as Regime S. For the highest concentration, OD 7.5 (Fig. 3.23 (d)), the front evolved in the form of sinous finger surrounded by a diffusing zone of lower concentration and was categorized as Regime F.

The concentration fronts that we observed echoes those observed numerically or experimentally with fluids of different viscosities in situations of flows giving rise to viscous instabilities as described in Section (3.1) [16,18,21,22,[161][162][163][164][START_REF] Chui | Understanding the evolution of miscible viscous fingering patterns[END_REF][START_REF] Videbaek | [END_REF][188]. In order to push the analogy further and make it quantitative, we will in the following sections analyze the concentration profiles as a function of the bacteria concentration, the viscosity of the fluid, the flow velocity and the time. The following section will be devoted to the study of the fronts obtained for low concentrations of bacteria i.e. regime D. In this section, the fronts will be compared to the diffusion fronts observed with passive tracers. In the subsequent sections we will analyze the fronts corresponding to the regimes R, S and F as presented in the introduction of the chapter. Observing the self-similar nature of the dynamics of the evolution of the fronts will give us a means of producing an image, grouping together all the dynamics. We will then discuss our results and we will conclude by offering perspectives to our work.

Regime D : Miscible flow displacement experiments with low bacteria concentration

We first present the results of the experiments performed between water and water dyed with fluorescein. The plot of normalized concentration curves at different times for one of the experiments is depicted in Fig. 3.24. The profiles were adjusted by the solution to the 1D convection-dispersion equation describing the dispersion of passive tracers with a step function as the initial condition [15,123]. The solution is:

c(y,t) = 1 2 (1 + erf (- y -b c )) (3.3.1)
Where b and c were the fitting parameters. An adjusted fit for one of the normalized concentration curves is presented in Fig. 3.24 as well.

The rate at which the fluorescein concentration front is displacing water and We also scaled their profiles with respect to its corresponding fit parameters and checked if they collapsed. Fig. 3.25 verified this aspect and we also observed at (y -b)/c = 0, c = 0.5. The Fig. 3.26 shows that b and c 2 increases as function of time. The linear fits of these data gives ūf and 2D ∥ respectively. We observed ūf ∼ 136 µm/s, which was very close to the value of imposed velocity U and D ∥ ∼ 3.2 x 10 5 µm 2 /s for this experiment. The experiments were repeated for different flow conditions and the values of ūf and D ∥ were determined. For all our concentration profiles analyzed so far, each pixel along the length of the flow cell was averaged over the entire width of the cell. However, when we looked at the shape of the front closely, we observed that it was slightly rounded across the width of the cell (Fig. 3.27). This might be due to a point-wise injection of the displacing fluid into the flow cell which results for the front along the axis of injection point to have moved a slightly larger distance along the length compared to the front parallel to the axis of injection point. Therefore, there was possibility of overestimating the dispersion coefficient when averaging over the entire width of the cell.

We performed the same analysis presented earlier, but instead of averaging con- centration over the cell width (40 pixels or 80 pixels depending on the cell width), we averaged them over a linewidth of 10 pixels in the middle of the channel width W . In Fig. 3.28 (a), we observed the slope of b vs t remained independent of the size of the averaging linewidth. This is because all regions of the front were moving with the same velocity. In Fig. 3.28 (b), we evidenced that, independent of the channel width W and flow velocity U , u f /U ∼ 1 always. Fig. 3.29 represents the ). Here, D 0 is the diffusivity of fluorescein in water when there is no flow (which is its molecular diffusivity D m ). We observed that all our data points lie close to a P e 2 line with no effect of width of the flow cell on the scaling of dispersion coefficient. However, we noticed that the pre-factor value multiplying P e 2 i.e. α = 0.14 (blue line) to be larger when we averaged over the entire channel width, compared to α = 0.06 (green line) when we averaged over 10 pixel linewidth. This indicates that, when analyzing curves averaged over entire width of the channel, we had over-estimated the dispersivity because of the slightly curved shape of the concentration front.

Let us proceed to the results of experiments performed with dilute suspensions of bacteria (OD 0.6 and 1) in MB and 1% PVP MB experiments. In Fig. 3.30, we observed that the normalized concentration profiles were quite similar to that of , we here observed the measured average velocity of the concentration fronts to be less than the imposed average velocity of injection. Thus, the bacteria front was moving at a slower velocity than the imposed velocity of injection. We suspected that this retention effect might be due to the accumulation of bacteria close to the surface because of hydrodynamic interactions [7]. To check if the retention effect was a function of channel height, we performed the same set of experiments in a 250 µm channel for OD 0.6 in MB. As shown in Fig. 3.32 (b) we still observed the retention effect even after reducing the channel by half. The drop in the velocity ratio for U /V s = 2 indicated a stronger retention effect at lower flow velocity.

This retention effect can be explained as follows. In the absence of flow, hydrodynamic interactions [7] traps the bacteria in smooth circular trajectories [13,14] and long residence times at a solid surface [START_REF] Junot | Transport of active bacteria: from micro-scale processes to macroscopic hydrodynamic dispersion[END_REF][START_REF] Molaei | [END_REF] leads to bacteria surface accumulation [7,110]. In presence of flow, a new hydrodynamic phenomenon modifies the near-surface swimming patterns of bacteria. Previous studies have shown a continuous and rapid upstream motility under a moderate laminar flow [10,137] before giving rise to transverse movements [11] and the removal of bacteria at higher flow rates [12]. The transition between the different regimes is a function of the shear rate at the surface. For example, upstream motions with a negative average velocity close to 4 µm/s on the surface were observed to be predominant up to shear rates close to 6.5 s -1 for E. coli [10,11]. Pullout of bacteria from the surface was observed to become important for shear rates above 30 s -1 [10,12].

The rectangular channel we used has an aspect ratio W/2H = 20, we can thus assume that the flow profile, u(z), is parabolic with no influence of the lateral confinement on the flow [START_REF] Stone | [END_REF]. The profile is thus:

u(z) = 3 2 U (1 -( z H ) 2 ), (3.3.2)
and the shear rate on the surface: γM = 3 U H . Here U is the average flow velocity and 2H the height of the channel. For a height of 500 µm and a flow rate in the range of 20 to 90 µm/s, γM ranges between 0.25 and 1.2 s -1 . Under these conditions, the hydrodynamic forces between bacteria and surfaces remain strong with a weak role of bacteria being pulled away by the flow.

Based on this, we now propose a model to calculate the average velocity of
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a population of bacteria. Our model assumes that the population decomposes into two populations: (i) bacteria at a distance smaller than a that we determined earlier (see (3.2.4)). This measures the distance over which the hydrodynamic interaction between bacteria and the surface is perceived. (ii) bacteria at a larger distance are supposed to be transported at the flow velocity. In this region, we thus have: u bact (z) = u(z) where u bact is the bacteria velocity. Close to the surface, we will assume that the swimming activity of the bacteria reduces its velocity according to the following relation: u bact (z) = u(z) -αV s . The average bacteria velocity is given by, ūbact = 1 2

1 -1 u bact dw, where w = z/H. It then leads to the following equation:

ūbact U = 3 2 [ 1 2 
1-∆ -1+∆ (1-w 2 )dw + 1 2 -1+∆ -1 (1-w 2 -α V s U )dw + 1 2 1 1-∆ (1-w 2 -α V s U )dw] (3.3.
3) where ∆ = a/H is a dimensionless distance. The integration of Eq.(3.3.3) gives: Eq. (3.3.4) predicts that the slope of ūbact /U vs V s /U is inversly proportional to channel height as observed in our experimental data. The slope decreased with increase in channel height due to the decrease in ∆ value with increase in channel height. However, we also noted that we lack enough experimental data points to adjust it with a good fit and test our model. To do this, would require more experiments over a broad range of shear rates. It would also be of interest to perform experiments at high shear rates i.e. V s /U → 0 to see if the ūbact /U approaches 1 as our proposed model predicts (subtituting the limit V s /U → 0 in Eq. (3.3.4). Now, let us look at the variation of c 2 as a function of time which will give the measure of the bacteria dispersion. In Fig. 3.34, we observed that for higher velocities of injection i.e. U = 43.5 µm/s and 86 µm/s (see Figs. 3.34 (b) and (c)), c 2 increased with time and can be approximated with a linear fit. However, at the lowest flow rate, we observed the c 2 to marginally increase and then decrease with time (See Fig. 3.34 (a)). This would imply that the bacteria concentration front was stretching and shrinking instead of continuously stretching along the direction of flow. We also observed that this apparent change corresponds to a change of ∼ 5mm in the value of c over 3800 secs which is a very small value. We further observed that the fluctuation in the locating the c value from the fit for a single concentration curve to be ∼ 0.5 mm. When we converted this to pixels with respect to the camera resolution, we observed that the shift in c 2 value corresponds to ∼ 400 pix 2 ± 80 pix 2 indicating an incertitude of 20%. Therefore, the detected c 2 values were also very sensitive to the incertitude generated by the fit and as the spreading of the mixing front was very small and close to the resolution limit of our camera. On the other hand, the imposed flow velocity was also very close to the average swimming velocity of the bacteria and it was also possible for the effect of swimming activity of the bacteria to dominate the imposed shear effects on dispersion. Therefore it

ūbact U = 1 - 3 2 α a H V s U (3.
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was difficult to assert if this trend was a consequence of bacteria activity or was just a result of the sensitivity of this measurement to its incertitude. Here, D 0 is the effective diffusivity of the bacteria in the absence of flow (which is different from the diffusivity of fluorescein in the absence of flow). This value was measured from microscopic observations of bacteria suspended in a quiescent swimming medium (See (3.2.2)). For a 2D tracking, D 0 = V 2 s /(4D R ) and it was estimated to be 220 and 625 µm 2 /s respectively for bacteria suspended in MB and 1%PVP-MB. We observed that all the values lies close to a P e 2 line. This indicated that a dilute bacteria suspension exhibits a Taylor-like dispersion at these flow rates. We also observed the pre-factor α, to be same as that of fluorescein experiments. We therefore inferred that for a given range of P e numbers explored, the spreading and mixing of bacteria suspensions mimics Taylor dispersion and behaves the same way as that of passive tracers.

We thus observed that in the range we explored i.e. 10<P e<100, the spread of dilute bacteria suspension was diffusive with D ∥ /D 0 increasing with P e. We also observe that the D ∥ /D 0 values for all these cases lie close to the P e 2 line that we obtained from the fluorescein dye experiments. Thus, the length scale of our flow cell and time scale of our experiments were much greater than the theoretical Taylor's diffusive length and time scale, and using Eq.(3.3.1) was valid. We can quantify this as follows, the time for a particle to diffuse across half the channel height of 2H is given by τ taylor = H 2 /D 0 and the length scale that the particle would travel along the direction of flow during this time is given by L taylor = U τ taylor . Thus, when we substituted the values of D 0 for bacteria used in our experiments in a flow cell of height 2H = 500 µm, we calculated τ taylor to be about 5 and 2 min respectively for the experiments done in MB and 1%PVP-MB. This is much smaller than our experimental duration τ expt which typically ranged about 80 and 160 mins for the two U presented here, and hence, τ expt ≫τ taylor . Now, if when we substituted the U values of our experiments, we calculated L taylor to be 1.2 and 2.4 cm for MB experiments and 0.5 and 1 cm for 1% PVP-MB experiments. The length of the flow cell L is 20 cm, and hence, L≫L taylor .

In conclusion, miscible flow displacement experiments were performed first with fluorescein dye and then with dilute suspensions of swimming bacteria in MB and fresh 1% PVP-MB. Firstly, we observed a retention effect in the measured average velocity of the bacterial concentration front, ūbact , with respect to the average injection velocity. This might be because of the accumulation of bacteria close to the surfaces due to hydrodynamic interactions as shown by our analytical model. Secondly, we observed that, with the range of P e considered in this study, a dilute bacteria suspension disperses like Taylor dispersion i.e. D ∥ /D 0 ∼ P e 2 . At the lowest flow velocity U , we observed a deviation in the dynamics of the mixing front for the experiments with OD 0.6 and 1 as evidenced by the non-linear trend in temporal variation of c 2 . Thus, indicating a possibility of the effect of bacterial activity on the dispersion at the lowest flow velocity. Therefore, in the subsequent sections we will emphasize more on the effect of bacteria activity and concentration on the shape and dynamics of the mixing front at this flow velocity.

Regime R : Evolution from round shape to V-shaped iso-concentration lines

In this section, we will describe the dynamics of the evolution of the concentration front from diffusive displacement to a front characterized by a round shape at the forefront encapsulating a V-shaped iso-concentration lines. These characteristics were observed for a set of 9 experiments performed in MB whose concentration fields are shown in Fig. 3.36. We will then provide a generalized conclusion highlighting the salient characteristics of this regime and in the context of shift towards subsequent regimes when the same experiments were performed in 1% PVP-MB.

(A) Study of the concentration profiles for a fixed injected volume of bacteria suspension

We will now use these set of 9 experiments to describe the dynamics of the evolution of the concentration front with the velocity of injection and bacteria concentration by comparing fronts obtained for a fixed volume of injection. We observed that at the lowest flow velocity, the iso-concentration lines change from a rounded shape to a V shape when the concentration of bacteria was increased. This evolution was not visible at the highest velocity of injection (see last row of Fig. 3.36). In this case, the front seemed to become more diffusive as evidenced by the broadening in the V-shape of the iso-concentration lines at high bacteria concentration. For a more closer look at the shape of the fronts for all these cases, we have also shown a zoomed image cropped close to the forehead of the concentration front in Fig. 3.37. Fig. 3.38 also confirmed these first observations, where it shows the concentration profiles for these 9 experiments. At the high flow velocity (see yellow curves in Figs.

3.38(a)-(c)), the curves were observed to be smooth and the profiles were varying continuously from c = 1 to 0 for all three bacteria concentrations. At the intermediate and low flow velocities, we observed the profiles to be discontinuous with deflection points. For instance, with increase in position of y, we initially observed a smooth monotonic variation from c = 1 to about 0.7. This was followed by a linear change in concentration to about c = 0.25 and then finally we observed a very steep change of concentration, where the concentration abruptly changed from c = 0.25 to 0.

To show the difference between the fronts in Fig. 3.36 and the diffusive front obtained in the previous section and to highlight the change in slope of the concentration profiles, we calculated the spatial derivative of the concentration profiles (see Fig. 3.39). The x-axis of the spatial derivative curves were shifted by y 0 , de- fined as the position where ∂c ∂y was minimal. For the case of a diffusive front, ∂c ∂y is Gaussian (since spatial variation of c in y is an error function as discussed in the previous section) and the concentration corresponding to y 0 , c(y 0 ) ∼ 0.5.

At the highest flow velocity of U /V s = 8 (see yellow curves in Figs. 3.39(a) -(c)), we observed that ∂c ∂y monotonically decreased from zero which then reached a minima and then monotonically increased again to reach zero. The trend was observed to be similar for all three bacteria concentrations. However, when we superimposed on these curves with a Gaussian function of the form 1

σ √ 2π exp - (y -y 0 ) 2 2σ 2
, we observed an imbalance in the slopes of the regions at either side of the minima with the slope of the rear being less than the slope of the curve on the forehead part of the front. This indicated that, though the concentration profiles have a single point of deflection between both plateaus, it was assymetric about this deflection point. The concentration at which the deflection point was observed for all these three cases c(y 0 ) was about 0.4. The variance σ of the fit, gives an estimate of the spreading of the front and the values obtained were close to 2 for all three bacteria . We observed that ∂c ∂y monotonically decreased from zero and then reached a trough where it plateaued over a distance along yy 0 and this corresponded to the linear change in concentration curve. This was followed by a sharp decrease to a minima and then a final sharp increase to zero. The increase from minima to zero was almost linear, which indicated that the slope of the concentration curve in the corresponding region was quadratic. These charactersitics observed in the spatial derivative curve indicates that there exists two deflection points between c = 1 and 0 of the concentration profiles. This also marked the upper end of the regime where the iso-concentration lines of the concentration front evolves from a rounded-shape to a V-shape (see first two rows of Fig. 3.36). The existence of a trough followed by a minima was observed to be more evident in the case of OD 5 and 7.5.

Let us first focus on the slope of the forehead of the front. It corresponds to the part of the curves for which y -y 0 > 0. The blue and red curves all shows a part with a linear variation. The concentration profiles at the forehead of the front, has therefore a quadratic form with c ∼ y 2 . For the lowest OD, the slope was smaller for the experiment done with the intermediate velocity but this difference was less apparent for the other two bacteria concentrations. Additionally, the concentration at which the front reaches the minima, c(y 0 ) was not the same for all the bacteria concentrations. We measured c(y 0 ) to be about 0.25, 0.2 and 0.15 for OD 3, 5 and 7.5 respectively, at the lowest flow velocity. Thus, the height of the quadratic part in c decreased with increase in bacteria concentration.

Let us now look at the plateau that appears for y -y 0 < 0. It was most apparent for OD 5 and 7.5. We noticed that for the lowest velocity, the length of the plateau increased as OD was increased i.e. it increased from ∼ 0.9 cm for OD 5 to ∼ 1.7 cm for OD 7.5.

We further quantified the difference between the fronts with flow velocities and bacteria concentrations by defining the two following quantities:

∆y 2 = (y(c = 0.05) -y(c = 0.7)) 2 (3.3.5) ∆S = y 0 -y(c = 0.5) (3.3.6)
where, ∆y 2 gives the measure of spread of the interface along the longitudinal direction and ∆S measures the shift in the minima value of the spatial derivative of the profile with respect to the position where the concentration is half the injected concentration, y (c = 0.5). We chose c = 0.5 as a reference point, since for a diffusive In Fig. 3.40, we observed that ∆S was always greater than zero, which indicated that the c that corresponded to the deflection point in the concentration profile was less than 0.5. At the highest flow velocity, we observed that ∆S was close to zero for all three bacteria concentrations. This indicated that at this flow velocity, c(y 0 ) was close to 0.5. Thus, at highest flow velocity the effect of bacteria concentrations were suppressed. However at the lowest flow velocity, we observed an increase in ∆S value with bacteria concentration with a value as high as ∼ 1.2 cm shift in the case of OD 7.5. This was due to the decrease in c(y 0 ) with increase in bacteria concentration from 0.25 for OD 3 to 0.15 for OD 7.5.

In Fig. 3.41, we observed the spreading to increase for OD 3 and 5 with flow velocities, which, as we will see, indicates that the spreading of the interface was dominanted by hydrodynamic dispersion. At low OD, the front spreads diffusively around a mean position that moves at a constant velocity. The characteristic size of the spreading is given by σ 2 = 2D ∥ t. Since, D ∥ ∼ αD 0 P e 2 , we have

σ 2 ∼ 2H 2 L D 0 U ,
where L average position of the front for a given volume of fluid injected. Since ∆y 2 is a measure of spreading like σ 2 , this prediction was plotted along with our data in Fig. 3.41. Since our data follows the same trend predicted by the plot of σ 2 with U , this indicated that the dynamics of our fronts were still very much influenced by Taylor's dispersion. On the other hand, it was also noted that the ∆y 2 was the same in the case of OD 7.5 for intermediate and lowest flow velocities. This further corroborated our previous observations from profiles and spatial derivatives that, at lowest and intermediate flow velocities, there is only a minimal effect on the spreading of the concentration front in the case of OD 7.5. However, at highest flow velocitiy the spreading of the interface increased and was similar to that of OD 5.

(B) Characterization of the time evolution of the fronts

We also observed a temporal variation of the concentration profiles of the bacterial front for the case of lowest flow velocity. In Fig. 3.42, we observed that the iso-concentration lines just behind the forehead of the front, to have changed from V-shaped to a more round shape with time and this was more prominent in the case of OD 7.5 (see Fig. 3.42(b)). In order to characterize the temporal dynamics of the front, we plot in Fig. 3.43, the spatial derivative for bacteria concentrations of OD 3 and 7.5 at this flow velocity.

In the case of OD 3 (see Fig. 3.43(a)), we observed that there was an increase in y 0 with time as well as an increase in the minima of ∂c ∂y . This implied a decrease in c(y 0 ) with time. Furthermore, as the minima of the ∂c ∂y increased with time, it collapsed with the shoulder shape in the rear side of the minima at long times (see purple curve in Fig. 3.43(a)). We noticed that the spatial derivative curve at long times had evolved into a curve, more skewed at the forhead, with a single minima. These observations indicated that the front evolves asymptotically to a diffusive-like front at long times.

In the case of OD 7.5 (see Fig. 3.43(b)), we observed an increase in y 0 with time as well as an increase in the magnitude of the minima of ∂c ∂y . This implied a decrease in c(y 0 ) with time. We also observed that the magnitude of the trough observed in the rear of the minima remained relatively unchanged with time and only a spatial shift was observed. We further observed that the difference between the values of ( ∂c ∂y ) min and the shoulder region to decrease with time. However, we did not observe a collapse of these two regions as was observed in the case of OD 3. Therefore, the time taken to reach a diffusive regime i.e. the collapse of ( ∂c ∂y ) min and the shoulder region, increases with increase in bacteria concentration at the lowest flow velocity.

5500 6000 6500 7000 7500 8000 8500 Time(s) for different bacteria concentrations and lowest flow velocity U /V s = 2. In these experiments bacteria suspended in MB displaces MB. Bacteria concentrations: OD 0.6 (•), 1 (♦), 3 (■), 5 (▶) and 7.5 (▲).

In the limit of negligible mixing or zero diffusion during the miscible displacemet between two Newtonian fluids, Yortsos et. al [17] obtained the following continuity equation that governs c(y,t):

∂c ∂t + ∇F (c) = 0 (3.3.7)
where F (c) corresponds to the mass flux of the injected fluid. Furthermore, the convective velocity for each concentration c i.e. v(c), was observed to be the shape of the flux F (c) as:

v(c) = dy(c) dt = dF (c) dc (3.3.8)
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Since then, various studies on miscible displacement of two fluids with different viscosities have analyzed the variation of dy(c) dt as a function of c [18][19][20]. This plot was used to characterize the evolution of the shape of the concentration fronts as a function of the viscosity ratio M at a fixed P e or vice-versa. To draw an analogy between the role of bacteria concentration and M , we adopted the same characterization in our study as well. To do this, we first estimated the change in position y(c) with time for different c. Fig. 3.44(a) shows the time evolution of the position y(c) for three values of c. The temporal variation were observed to be linear, this indicated that a given iso-concentration moves at a constant velocity v(c). These velocities were then normalized by ūbact to obtain

V (c) i.e. V (c) = v(c) ūbact .
In the case of OD 0.6 and 1, we observed in Fig. 3.44(b), that V (c) was constant for all c and close to 1. These experiments corresponded to regime D, where diffusion and mixing plays a dominant role in the evolution of the concentration fronts. As we increased the bacteria concentration, we observed V (c) to increase. For OD 5 and 7.5, we observed that V (c) was no longer constant with c. In the range, 0 ≤ c ≤ 0.25 and 0 ≤ c ≤ 0.2 respectively for OD 5 and 7.5, we initially observed a linear decrease in V (c) with c. This region corresponded to the parabolic variation of c with y in the concentration profile. It was then followed by a second regime, where there was sharp change in V (c) in the range 0.25 ≤ c ≤ 0.35. This corresponded to the transition region of the concentration profile from the parabolic to linear variation of c with y. The third regime observed for c ≥ 0.35, where V (c) was constant, corresponded to the linear variation of c with y in the concentration profile. Thus, the existence of these distinct regimes in variation of V (c) with c highlighted the non-uniform spreading of different regions in the concentration front with time. We also noticed that the V (c) vs c curves for OD 5 and 7.5 in Fig. 3.44(b), exhibited similar characteristics to the ones corresponding to moderate values of M between 1 and 5 at large P e as reported by Rakotomalala et. al [18]. This further indicated the analogy between the role bacteria concentration and M .

We now define the tip velocity V tip as the rate of change of position y(c = 0.1)

i.e. V (c = 0.1) = V tip ūbact . In Fig. 3.45, we observed that, for a fixed flow velocity the V tip /ū bact increased with bacteria concentration. An increased tip velocity at high bacteria concentration correlates to an increased protusion of the tip of the concentration front into the channel. This shift in V tip /ū bact with bacteria concentration was observed to decrease with increase in flow velocity. For instance, it was about 10% between OD 3 and 7.5 at the lowest flow velocity compared to about 5% at the high flow velocity.

(C) Physical interpretation of Regime R

We will first consider the parabolic part of the concentration profile. This part of the concentration profile is related to the concentration field that emerges from the central part of the channel. Along the line that passes through the middle of the channel width, the longitudinal velocity changes from a characteristic value V tip to the average velocity of the bacteria population ūbact . In this region, the decrease of the velocity will increase the concentration, which will then be counterbalanced by the diffusion. The diffusion coefficient is here the Taylor dispersion coefficient, D ∥ which takes into account the velocity profile in the channel opening. This will be achieved over a characteristic distance:

δ = D ∥ V tip -ūbact (3.3.9)
In the range of experimental parameters used in our study, see section (3.3.1), we observed

D ∥ D 0 = αP e 2 .
Where, P e is defined as HU /D 0 and U is the imposed flow velocity. Thus, a normalization of δ by the half the channel height H gives :

δ H = αD 0 P e 2 H(V tip -ūbact ) (3.3.10)
In section (3.3.1), we observed the bacteria population to exhibit a retardation effect on their average velocity with respect to the imposed flow velocity U . Thus, by introducing the retardation factor R = U/ū bact defined previously, we obtain:

δ H = R      αP e V tip ūbact -1      (3.3.11)
This scaling captures, at least qualitatively, our observations: (i) an increase in flow velocity, which results in an increase in P e, gives rise to an increase in the size of the tip. (ii) the increase in the ratio V tip /ū bact effectively results in a decrease in δ. In our experiments, the increase in the V tip /ū bact is achieved by increasing the concentration of bacteria. With Newtonian fluids, this increase is observed when the viscosity contrast between the two fluids is increased [16][17][18][19][20] and they observed the same quadratic part of the profile at the forehead of the front similar to the one we observed. The bacterial concentration therefore plays the same role as the viscosity contrast for Newtonian fluids. However, numerical studies reported a different dependence with the flow velocity [17][18][19]. For them, δ decreased with the P e. This difference can be explained by the fact that we performed our experiments in conditions where the experimental time, τ expt = L U , was greater than the Taylor diffusive time, τ taylor = H 2 D 0 , and hence diffusion will play a predominant role. However, the previous studies were more interested in the opposite conditions, where τ expt < τ taylor . In this case, the scaling behaviors that they observed were found by changing the Taylor dispersion coefficient, D ∥ in Eq.(3.3.9) by D 0 .

Our experiments also revealed that the iso-concentration lines appear parallel to each other just behind the forhead of the front. This V-shaped structuring of the iso-concentration lines results in an integrated concentration profile across the width of the cell that varied linearly. The angle, θ between the iso-concentration lines and the axis perpendicular to the flow direction is given by the ratio of the velocities V tip and U according to the relation: cos(θ) = U V tip . In the absence of a V-shaped structuring, V tip = U and θ = 0. Thus, the iso-concentrations lines are all perpendicular to the flow direction and the diffusive regime is reached like in the case of experiments presented in section (3.3.1). When V tip increases, the lines tilt. This inclination increases the concentration gradient in the direction of the flow increasing the diffusion in the direction normal to the flow according to the Taylor principle [2]. This results in a non-uniformity at the speed at which different iso-concentration lines transport along the direction of flow.

If we observe the temporal variation of the concentration profile with a parabolic variation at the forhead and then a linear variation at the rear, we infer that the shape does not only translate to increasing y with time, but also ( ∂c ∂y ) min decreases with time. This decrease proves the important role of diffusion which tends to reduce the spatial concentration gradients. This effect is particularly visible on the experiment done with a lower concentration of bacteria (OD 3 and U/V s = 2) for which we see the front tending towards an error function i.e. the derivative of the concentration profile tending towards a Gaussian function (see the purple curve in Fig. 3.43(a)). We observed the V-shape of the forehead at the front with a precursor developing ahead of it and we define this as a spike. We observed that the spreading of this precursor increased with flow velocitiy and the V-shaped iso-concentration line evolved to a more rounded shape at the highest flow velocity. Regime S was observed for miscible displacement with a bacteria concentration of OD 5 in 1% PVP-MB. Hence, we will use these set of experiments to describe the dynamics of this regime and the evolution of the concentration front with the velocity of injection. Fig. 3.46 shows the concentration fields for OD 5 at three different velocities of injection. 
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tion profiles for these 3 experiments. In the case of the highest flow velocity (yellow curve in Fig. 3.47), concentration monotically decreases from c = 1 to about 0.2. This was followed by a decrease in slope of the curve as it monotonically reached c = 0. At the intermediate flow velocity (red curve in Fig. 3.47), the concentration monotically decreased from c = 1 to about 0.7, followed by a linear decrease up to about c = 0.4 and then a sharp decrease to about 0.1. Finally, a monotonic decrease to c = 0 was observed. A similar trend was observed at the lowest flow velocity (blue curve in Fig. 3.47), however, the final regime of monotonic decrease commences at about c less than 0.1. The final region of monotic decrease to c = 0 observed in all three cases corresponds to the spike that was observed to be developing as a precursor to the forehead of the front. While the spread of the spike increases with flow velocity, the end of spike collapses almost at about y = 18 cm for all three cases. To show the different regimes in the spatial variation of the concentration profile as described in the previous paragraph, we plot the spatial derivatives as shown in Fig. 3.48(a). We have also included a reference of a spatial derivative plot from Regime R (see Fig. 3.48 (b)) to highlight the difference in the characteristics of these two regimes.

We observed that at the highest flow velocity (see yellow curve in Fig. 3.39(a)), Chapter 3. Miscible flow displacement experiments ∂c ∂y montonically decreased from zero which then reached a minima at yy 0 = 0 and then monotonically increased again to reach zero. However, when we superimposed this curve with a Gaussian function of the form 1

σ √ 2π exp - (y -y 0 ) 2 2σ 2
, we observed an imbalance in the slopes of the regions at either side of the minima with the slope of the rear being smaller than the slope of the curve on the forehead part of the front. This indicated that though the concentration profiles have a single point of deflection between both plateaus, it was asymetric about this deflection point which can be clearly seen in their corresponding spatial derivative curves. While these characteristics were similar to regime R (see yellow curve in Fig. 3.39(b)), however

we observed an additional effect in regime S. In regime R, the ∂c ∂y plateaued to zero at about yy 0 = 2 cm, whereas in regime S an additional drift in variation of ∂c ∂y was observed between about yy 0 = 1.5 and 4.5 cm before it plateaued to zero. This additional shift in the ∂c ∂y close to the asymptote region corresponds to the spike.

At the lowest and intermediate flow velocities (see blue and red curves in Fig. 3.48(a)), similar to the case of regime R (see blue and red curves in Fig. 3.48(b)), we observed a monotonic decrease in ∂c ∂y from zero to reach a trough which corresponds to the linear variation regime of the concentration curve. This was followed by a further monotonic decrease to a minima after which a sharp almost linear like increase to reach the asymptotic value of zero was observed. However, unlike regime R where ∂c ∂y reached zero post the linear increase at about yy 0 = 2 cm, there existed an additional drift in variation of ∂c ∂y between about yy 0 = 1.5 and 3 cm for low flow velocity and 3.5 cm for intermediate flow velocity before it plateaued to zero. The y 0 decreased from about 10.2 cm to 9 cm between the lowest and highest flow velocity. From Fig. 3.39 (a), we observed that the slope of the drift in ∂c ∂y before it plateaued at zero, increased with flow velocity which indicated the increase in spreading of the spike with flow velocity. Since the corresponding y at which the spike disappears is the same and y 0 decreases with flow velocity, the length of the drift along yy 0 increases with flow velocity. Similar to regime R, even in this regime we observed a decrease in the minima of ∂c ∂y with time (data not shown). Its dynamics were same as the one described in the previous section.

In order to distinguish the additional characteristics in the temporal dynamics of this regime, we plotted the variation of V (c) as function of c for different flow velocities as shown in Fig. 3.49. The drop in the V (c) was more linear across c at the lowest flow velocity (see blue right triangle symbols in Fig. 3.49) and no sudden steep drop in velocity was observed close to c = 0.1 to 0.3. This was due to a very small spike observed in this flow velocity. At the intermediate flow velocity (see red right triangle symbols in Fig. 3.49), we observed an increase in V (c) at c = 0.1 compared to lowest flow velocity case. In this case, we also observed a steep drop in its value from about c = 0.1 to 0.15. This was followed by a small plateau up to c = 0.35 and then a linear drop in the value of V (c), which was qualitatively similar to the trend observed at the lowest flow velocity. In the case of highest flow velocity (see yellow right triangle symbols in Fig. 3.49), we observed a further increase in V (c) at c = 0.1 compared to intermediate flow velocity and a steep drop in its value from about c = 0.1 to 0.25. This was followed by a linear decrease in the value of V (c) which was qualitatively similar to the trend observed at the lowest and intermediate flow velocities. The increase in the value of V (c = 0.1) and the c up to which a steep decrease in its value was observed with flow velocity, corresponds to the increase in the spreading of spike with flow velocity. We also observed that for the case of OD 7.5 the V (c = 0.1) was between the corresponding values of V (c = 0.1) for OD 5 at intermediate and high flow velocities. However, the trend was qualitatively same as OD 5 at intermediate flow velocity. Furthermore, we evidenced a clear contrast in the shape of the V (c) vs c curves in this regime compared to Regime R. For instance, in regime R, we observed that there was gradual variation in V (c) with respect to c. However, in regime S, we observed a sharp drop after c about 0.1, followed by a near constant value. We also observed that in regime R, the normalized tip velocity V tip /ū bact to decrease with flow velocity, however, in regime S we observed the opposite behaviour i.e. V tip /ū bact increased from about 1.1 to about 1.5 with increase in flow velocity.

Chapter 3. Miscible flow displacement experiments

Petitjeans et.al [21], first reported the formation of spike when a less viscous fluid displaced a fluid of higher viscous fluid in a capillary tube. They defined a parameter m, which corresponded to the quantity of the displaced fluid left behind as m = 1 -U V tip and observed a spike only when m < 0.5. They noted that m < 0.5 corresponded to the regime where V tip was lower than the maximum velocity of the Poiseuille profile U max . The formation of spike has also been reported by Rashidnia et. al [203] during a miscible displacement of a less viscous (light) fluid by a more viscous (heavy) fluid in a vertically oriented cylindrical tube. However, in their experiments the formation of spike was observed in an intermediate regime when both the buoyancy and viscous forces were competiting to respectively stabilize and destablize the displacement front. Frigaard et. al [20] performed experiments as well as numerical simulations in a similar configuration as Rashidnia et.al [203], but with the less viscous fluid displacing the more viscous fluid. They too reported the formation of spike and, in addition to this, they also observed an increase in the spread of spike with increase in U . The formation of spike in these studies [20,21,203] have largely been attributed due to the flow field across the channel gap. The physical interpretation for the formation of a spike was given by Petitjeans et.al [21] as follows. During a miscible displacement between two fluids of different viscosities, if V tip >U , it results in a recirculating secondary flow fields ahead of the forehead of the concentration front and schematic representation of this is depicted in Fig. 11 of [21]. Since the velocity profile is parabolic across the channel gap, the fluid at the centre of the channel moves faster and is pulled ahead by the secondary flow. This leads to a small fraction of displacing fluid travelling faster than the rest, which then results in the formation of a spike. Frigaard et.al [20] attributed that the increase in spread of spike with flow velocity was due to the increase in sharpness of the parabolic velocity profile in the gap.

When we compared these results to our experiments, we observed that V tip < U max for the four experiments reported in this section and m varied from about 0.02 to 0.3, which was in correspondence to the Petitjeans et.al [21] result of m < 0.5 for formation of spike. We also observed an increase in the spread of spike with flow velocity (See Figs. 3.46 and 3.49), which was similar to the trend observed by Frigaard et.al [20]. However we observed one contradiction with the previously reported observations when compared to our experiments. Previous studies [20,21] observed spike only at P e > 200, while our experiments were performed at P e<50. Thus, it would of interest to visualize the flow fields at the forehead of the concentration front during the formation of spike, since we can expect bacteria activity to have a non-trivial effect in the regions of recirculating flow fields. Therefore, the visualization of the flow fields would also enbale us to check if the mechanism at the origin of spike with bacteria suspensions is similar to that of Petitjeans et.al [21] hypothesis. The regime F marks the evolution of the shape of the forehead of the front from a spike to a finger. Fig. 3.50 shows the concentration fields measured at two different velocities of injection with a dense bacteria suspension. We observed the finger to be more curve for the lowest flow velocity (see first row of Fig. 3.50), compared to a relatively straight finger observed for the intermediate flow velocity (see second row of Fig. 3.50). Furthermore, we also observed an increased laterally spreading close to the finger tip at the lowest flow velocity, while the finger tip was observed to be elongated along the longitudinal direction in the case of intermediate flow velocity. (i) firstly, we observed c to be constant at 1 up to about y ∼ 4 cm, (ii) we then observed a slight drop of c to about 0.9 and then it was constant again for about 1 cm, (iii) this was followed by a parabolic shift in c from about 0.9 to 0.6, (iv) post this, a linear decrease up to c about 0.2 was observed and, (v) finally, a very sharp decrease with a large slope was observed between c about 0.2 to 0. This sharp decrease in regimes R and S appeared to be parabolic with a finite slope. However, in this case the slope was observed to be almost infinite, since y remained almost constant as c decreased. This sharp decrease is defined as a "shock" [18]. At the intermediate flow velocity (red curve in Fig. 3.51), we observed c to be constant at 1 up to about 4 cm and this was followed by a parabolic variation in c as it decreased from 1 to about 0.8. Then, a linear decrease in c was observed from about 0.8 to 0.4. Finally, a shock from c about 0.4 to 0 was observed. The existence of a shock and an extended linear variation in the concentration profile is characteristic to a concentration front that is finger-shaped [17,18,179,185]. Let us now observe the evolution of finger as function of time as shown in Fig. 3.52. It corresponds to concentration fields observed at different times of injection for these two experiments. In the first column, which corresponds to the lowest flow velocity, we observed the meandering finger to be unstable and a lateral mixing was induced. This was evidenced by the disappearence in meandering of the isoconcentration lines across the first half of the width in the rear of the concentration front at long times. At t = 81 min (second row in Fig. 3.52(a)), we observed the concentration front to be fully spread across the channel width up to y ∼ 2 cm. This was followed by a meandering curve with multiple curvatures upto to the finger tip at about y ∼ 7.5 cm. However, at t = 144 min (last row in Fig. 3.52(a)), we observed the concentration front to be fully spread across the width of the channel up to about y ∼ 12 cm followed by a single shift in curvature to the finger tip at y ∼ 13 cm. In the latter case, an increased spreading ahead of the finger tip was observed. In the case of intermediate flow velocity (see Fig. 3.52(b)), we observed a stable finger to stretch along the direction of flow with time. Lateral mixing across the width of the channel was less efficient in this case. Furthermore, we observed the tip of the finger to become more thinner and diffusive along the length towards the tip of the concentration front. We believe that this increased spreading that was observed ahead of the finger tip for both these cases, to be a small spike spreading at the forehead of the front. These observations were confirmed by the corresponding concentration profiles. In Fig. 3.53(a) at the lowest flow velocity, we observed that the height and slope of the shock decreases with time i.e. the shock spread along y with time and resembled a parabolic variation of c with y at long times. This corresponded to the lateral mix-ing of the unstable finger. As we moved along in the direction of decreasing y, we also observed that the length and slope of the linear regime that follows the shock remained constant (is more evident in the spatial derivative curve plotted in Fig. 3.54(a)). However, the c corresponding to the lower and upper bound for the linear part decreased with time. For instance, the linear regime was between c about 0.6 to 0.3 at t = 81 min (see blue curve in Fig. 3.53(a)), where as at t = 144 min, it was between c about 0.4 to 0.1 (see purple curve in Fig. 3.53(a)). As we moved further towards the inlet (decreasing y), the linear variation of c was followed by a parabolic increase. Similar to the linear regime of the curve, the slope and length of this parabolic regime was observed to be constant in time. It was noticed that only the corresponding c that marks this regime, decreased with time. Finally, a monotic drift towards a plateau of c = 1 was observed and it appeared to spread along y with time. For the intermediate flow velocity shown in Fig. 3.53(b), we observed that the height and slope of shock only marginally decreased with time. This corresponded to a stable finger which stretched along the direction of flow. To show these different regimes, we also plotted the spatial derivatives of the concentration profiles in Fig. 3.54. In the case of lowest flow velocity (see Fig. The velocity V (c) was plotted as function of c as shown in Fig. 3.55. Firstly, we observed that the tip of the concentration front moved faster than the average velocity of the bacteria concentration front for the both the flow velocities. In the case of lowest flow velocity (blue symbols), a monotonic decrease in the V (c) values from c about 0.1 to 0.35 was observed. This was followed by a constant regime. The monotonic decrease regime corresponds to the crossover of the decreasing shock and the shifting linear regime of the concentration profile. We observed this decrease in V (c) to be much sharper compared to regime R (see blue triangles in Fig. 3.44). For instance, V (c) decreased from about 1.25 to 1.15 in the case of regime R, compared to a decrease from about 1.2 to 1 in the current case (see blue symbols in Fig. 3.55). Such a sharp drop in V (c), we believe, was induced by an enchancement in lateral mixing due to the meandering finger observed in the current case, which was absent in the case of regime R. In the case of intermediate flow velocity (red symbols), we observed the value of V (c) to be higher than the lowest flow velocity case. This was due to a decrease in the effect of mixing induced by lateral displacement of the bacteria front, as we increased the flow velocity. Furthermore, we observed the V (c) to be constant up to c about 0.4 which corresponded to the advection of a stable forhead of the concentration front as well as the neglible change in the height and slope of the shock with time. This was followed by a sharp decrease in V (c) up to c about 0.5 and then a monotonic decrease after that. This decrease in V (c) corresponded to the increase in spreading of the linear regime in the bacteria concentration profile with time. We observed that V (c = 0.1) was of comparable value to what was observed in the case of regime S (see yellow Fig. 3.49). However, in regime S, we observed a sharp drop in the value of V (c) for c>0.1. But, in the current case (red symbols in Fig. 3.55), we observed V (c) to have a constant value up to c about 0.4. In addition to this, we also noticed that the shape of V (c) vs c curve in the case of intermediate flow velocity, were similar to the previous results from numerical simulations, in the limit of negligible mixing during miscible displacement [18,19]. Rakotomalala et.al [18] estimated that, V (c) was above 1.5 at small c and it decreased to a value less than 1 for c>0.7. We observed a slight lower value of V (c) at small c in our experiment, which indicated that, there was still an effect of mixing on the evolution of the front, which caused this decrease. Due to technical limitations, it was difficult to estimate y(c) for c>0.7, therefore we were unable to make further comparison with the numerical simulations of previous studies [18,19].

(B) Experiments in W = 2 cm flow cell

From the previous section, we observed that the unstable meandering finger was limited by the channel width. Therefore, we decided to perform the same experiment in a flow cell of a larger width. Fig 3.56 shows the concentration fields for this experiment at different times of injection. At short times, we observed a split of the front tip into two fingers (see first row of Fig 3.56). Then, the fingers were observed to advect along the longitudinal direction as well as interact with each other across the lateral direction. This was evidenced by the closing of the gap between the two fingers (see second and third rows of Fig 3.56). Eventually at long times, they coallesced into a single meandering finger which continued to get advected along the direction of flow (see last two rows of Fig. 3.56). Fig. 3.57 depicts the corresponding concentration profiles. At early times (see blue, red and yellow curves of Fig. 3.57) we observed that c had not reached an upper plateau of c = 1 close to the inlet. Since c was the concentration averaged over the entire width of the channel, this indicated that the width of the unstable concentration front at the rear was smaller than the channel width. The spatial variation of c profile from inlet to the forehead of the front consisted of 3 shocks during the early times due to two meandering unstable fingers. For instance, at t = 49 min (red curve in Fig. 3.57), we observed firstly, that close to inlet c to be less than 1 and was about 0.8. This was followed by a sharp decrease (a shock) to about 0.6 and a monotonic decrease to about 0.5. Another shock was observed from 0.5 to about 0.2 which was Chapter 3. Miscible flow displacement experiments followed by a plateau in c for about 1 cm along y. Finally, we observed another shock from about 0.2 to 0. At later times of injection, as the two fingers interacted with each other across the lateral direction and coallesced into one finger, we observed the multiple shocks that had existed between the inlet and the forehead earlier had subsided. Instead, we observed that close to inlet c had reached 1 (see green curve in Fig. 3.57), which indicated that the width of the concentration front close to the inlet was same as the channel width. This was followed by a shock up to c about 0.7, which was due to meandering shape of the finger at the rear. We then observed a very long linear drift which stretches about 7 cm along y with little change in c. This indicated the finger having an almost constant width across this length. It was then followed by a monotonic decrease from about 0.6 to about 0.2 as the width of the finger changed. This was then followed by a shock from 0.2 to 0 which marked the finger tip at the forehead of the front. We further observed that after an initial advection along y, there was a neglegible spatial variation for c between ∼ 0.6 to 0.8. The instability observed with bacteria suspensions resembled that of the classical Saffman-Taylor instability. To explore more on this analogy and quantitatively characterize our result, we performed miscible displacement experiments between Newtonian fluids at three different viscosity ratios (M ) at about the same flow

Results

111

velocity at which the bacteria experiment was performed. Fig. 3.58 shows the concentration fields at different times of injection for different pairs of Newtonian fluids displacing each other. In all these experiments, the less viscous fluid (water dyed with fluorescein) displaced the fluid with higher viscosity (by varying the concentration of PVP dissolved in water). For all the three cases presented in Fig. 3.58, we observed that the shape of the concentration front was finger shaped and the width of the front close to the inlet was less than the width of the channel at early times (see first row of Fig. 3.58). For the case of M = 3.2, we observed that at long times, the width of the front close to the inlet was same as the width of the channel (see last row in Fig. 3.58 (a)). This indicated an effect of lateral spreading with time. As we increased M, we observed that the time taken for the rear of the concentration front to spread across the width of the channel increased. For instance, in the case of M = 6.5, we reached this state only at about 99 min after starting the injection compared to about 74 min for the case of M = 3.2. In the case of M = 12, we observed a manuvering of the curved finger with time and the shoulder that was observed at earlier times, had coallesced with the finger. In this case, only a small portion of the concentration front close to the inlet at rear (about 1.5 cm) had fully spread across the width of the channel, even after about 118 min after starting the injection. Our experimental observations were in tandem with previous studies [16-19, 162, 164, 173, 188, 189, 191, 192], where a decrease in lateral mixing and an increase in finger length with increase in M was reported. To compare the shape of the concentration fronts obtained with bacteria suspensions and Newtonian fluids, we first plotted the iso-concentration lines of c = 0.6 for the same volume of fluid injected as shown in Fig. 3.59. Firstly, we observed that for the case of Newtonian fluids (blue, red and yellow curves in Fig. 3.59), the position y corresponding to the tip of the forehead of the front increased with M. separating the iso-concentration lines at a given position y. The variation of λ in y is shown in Fig. 3.60. We observed that close to the inlet, λ(y) was about 2 cm, which was equal to the channel width. This was followed by a decrease in λ(y) as we moved along increasing y. Then, λ(y) was observed to have reached an almost constant value along y. This asymptotic value of λ(y) was about half the channel width. Finally, as we moved further along increasing y, we observed λ(y) to decrease again, whic corresponds to the region close to the tip of the concentration front. To characterize the length l of the finger, we determined the distance between the positions in y where λ(y) = 0 and 2 cm. The two positions are marked by the vertical dashed lines in Fig. 3.60. The average finger width λ was then estimated as the average of λ(y) values over the length l. The parameters l and λ were then plotted as function of the tip velocity V tip normalized by the imposed flow velocity U . We observed that the V tip /U increased with increase in viscosity ratio (see x-axis in Fig. 3.61). In Fig. 3.61 (a), we observed λ/W to be constant and close to 0.5 as function of V tip /U for both the Newtonian fluids and bacteria experiments (colored symbols). We also observed a large variance in the incertitude of λ/W , especially at low M and this was because of the large variation in the value of λ(y) along l (see Fig. 3.60). A similar result was observed by Saffman-Taylor [16] and Tabeling et. al [177] for displacement of immiscible fluids in a Hele-shaw cell at large capillary number and M . Using the same definition of λ, Lajeunesse et. al [179] found λ = 5*2H and this would result in λ value of 0.25 cm in our case. However, we observed a value which was 4 times Chapter 3. Miscible flow displacement experiments larger than this value. We suspect that this descripancy might be due to an usage of longer length and larger aspect ratio, W/H = 100 in their experiments compared to a value of 20 in our case. The ratio of λ/W can also be estimated by a simple mass conservation argument. If we assume the finger to be moving at a velocity V tip in a fluid moving at a velocity U , then the width of the finger is given by the ratio of velocities such that λ/W = U /V tip . The values of λ/W = U /V tip were also plotted as function of V tip /U in Fig. 3.61 (a) and are represented by the black symbols. Firstly, we observed the values (black symbols) to be higher than the values of λ/W estimated from tracing the iso-concentration lines (colored symbols). This can be explained as follows. In our experiments, we observed the finger across the width of the channel and assumed that the fluid to have fully filled the channel gap. Thus, we neglected any residue of the displaced fluid left behind. We also observed that the decrease in λ/W (black symbols) to be from about 0.78 to 0.68 with increase in V tip . The decrease was only marginal, since our experiments corresponded to only a small window in the varaition of V tip . Petitjeans et. al [21] estimated that, the asymptotic values at high P e ( ∼ 10 3 ) for λ/W corresponding to the values of M used here to be between 0.5 and 0.42 with increase in M. We observed this to be lower than the values estimated in our experiment, this might come from the difference in geometry used, since Petitjeans et. al [21] performed their experiments in a capillary tube. Our measurements of λ/W (black symbols), can also be compared with the values estimated from the numerical simulations by Goyal et. al [19] for a finger developing in the gap of the Hele-shaw cell. They found λ/W to vary between 0.7 to 0.62 corresponding to the values of M used in our experiments. These values were lower, but quite close to the values we found. The marginally higher value estimated by us might be because of the lower P e at which we performed our experiments. We thus, were able to reproduce the trend in the values of λ/W (black symbols) with previous observations for our Newtonian experiments. In addition to this, we also evidenced the values corresponding to the bacteria experiments to be consistent along this trend. Furthermore, we observed the value of λ/W (black and colored symbols) and V tip /U for the bacteria to lie between M = 3.2 and 6.5 of the Newtonian case. Based on the values of V tip /U , it indicated that the effective viscosity contrast for the bacteria suspension experiments should be between 3.2 and 6.5. We now make use of the Carreau-Yassuda fit for the rheogram of bacteria suspensions reported by Chui et.al. [START_REF] Chui | [END_REF] to approximately estimate the M for the case of OD 7.5. We identified the upper plateau of the rheogram as the viscosity exhbited by bacteria suspensions at very high shear and the lower plateau corresponding to the viscosity of bacteria suspensions at low shear. We then defined M as the ratio between the upper plateau and lower plateau and estimated it to be about 3.9. This value seems to be in line with the trend observed for V tip /U values as function of M . In Fig. 3.61(b), we observed the finger length l to increase with M. This is due to an increased stretching of the finger in the longitudinal direction. We now try to estimate a scaling for l with V tip . l is interpreted as the distance travelled by the finger as it diffuses along the lateral direction. We thus have: The two ▲ corresponds to the two repetitions done with bacteria concentration of OD 7.5 suspended in 1% PVP-MB displacing 1% PVP-MB.

l = V tip τ T (3.3.12)
where, τ T is the time taken to diffuse laterally in the region unfilled by the displaced fluid across the channel width i.e. W -λ and is defined as:

τ T = W 1 - λ W 2 D 0 (3.3.13)
where, D 0 is the diffusivity in the absence of flow. Let us now define a modified Péclet number P e mod as follows:

P e mod = V tip W D 0 (3.3.14)
The combination of of Eqs. (3.3.13) and (3.3.14) in Eq. (3.3.12), gives:

l = P e mod W 1 - λ W 2 (3.3.15)
From Eq. (3.3.15), it can be inferred that, for a negligible change in λ/W , as observed in our experiments, l should increase with P e mod . In Fig. 3.62, we observed this trend to be true for the Newtonian cases, however for the case of bacteria suspensions, the value of l was measured to be higher than what was expected at their corresponding P e mod . We noticed that, while V tip value for the bacteria suspensions were similar to M ∼ 4 of the Newtonian case, D 0 for the bacteria was higher than the Newtonian cases. Furthermore, we note that, typically the variation of the local viscosity with respect to concentration of the mixture, µ(c), was approximated as a power law variation for Newtonian fluids [17,19,162,189]. However, for the case of bacteria suspension µ(c) varies linearly with the bacteria concentration c, at low shear rates [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF]115]. In addition to this, for the Newtonian case, D 0 is inversely proportional to the viscosity of the fluid and is given by the Stokes-Einstein equation [START_REF] Einstein | Investigations on the theory of Brownian movement[END_REF]. Thus, in our plot, we approximately estimated D 0 for each M by multiplying the D 0 value for fluorescein dye in water (∼ 400 µm 2 /s [START_REF] Kapusta | Absolute Diffusion Coefficients: Compilation of Reference data for FCS Calibration[END_REF]) with 1/M . But, for the case of bacteria suspension D 0 has been observed to be independent of bacteria concentration (see section (3.2.2)). Since the inherent characteristics of D 0 and µ(c) are different for bacteria suspensions and Newtonian fluids, this limits on drawing further quantitative analogies between these two cases. Thus, we hypothesize that, this aspect might be one of the reasons for the bacteria suspensions to exhibit at a lower P e, the characteristics typically observed for a Newtonian fluid of an equivalent viscosity at a much higher P e.

Disscusion and Conclusions

We conclude from our experimental observations that bacterial concentration and activity plays the same role as the viscosity contrast for Newtonian fluids. We believe to our knowledge, for the first time, we have demonstrated a Saffman-Taylor instability with bacteria suspensions. By controlling the bacteria concentration, activity and rate of shear, we were able to observe different regimes characterized by the shapes of the concentration fronts. These regimes qualitatively resonated with what has typically been observed for Newtonian fluids, as one increases the viscosity contrast [17][18][19][20][21]185]. Based on our results, we were able to map a general P e-M phase diagram as shown in Fig. 3.63, which is similar to the one presented at the introduction of this chapter (see Fig. 3.2). However, an unique aspect with bacteria suspension, is the coupling of the flow Péclet number P e f with regards to the rheological response of the bacteria suspension [?, [40][START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]44,115,117]. Thus, in our phase diagram we have also highlighted the region (marked in gray shade), corresponding to the critical flow péclet P e c f reported by Chui et.al [START_REF] Chui | [END_REF]. In our experiments, we observed the bacteria suspensions to induce strong viscous effects below this critical value.

As shown in Fig. 3.63, we were able to distinguish four different regimes as we varied the flow velocity of injection, bacteria concentration and activity. The regime D (See blue circles in Fig. 3.63), corresponded to a regime where the concentration front appeared to be diffusive and spread uniformly across the width of the channel. This was typically observed for a low bacteria concentration of OD 0.6 and 1, where the presence of bacteria has a very weak effect on viscosity of the suspension as can be inferred from low values of M estimated for these concentrations. We observed that, in the case of P e f >6, the macroscopic longitudinal dispersion coefficient D ∥ to scale as αP e 2 , thus exhibiting a Taylor dispersion. However, when we injected the and W = 2 cm (red symbol). An example of the concentration field corresponding to each regime is also included to depict the shape of the concentration fronts. The values of M are estimated from the rheogram of [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF].

bacteria population at almost the same velocity as their average swimming velocity, we observed a non-linear spreading of the mixing front. We also noticed that, this flow velocity corresponded to the regime of P e f <6. Thus, we hypothesized that, this behaviour might indicate towards an effect of bacteria activity, which influenced its macroscopic dispersion. We also observed the bacteria accumulation in the vicinity of surfaces. This was evidenced by a ∼ 20% drop in the measured average velocity of the bacterial concentration front ūbact with respect to the imposed flow velocity U . We observed this retention effect to depend on the fluid velocity and channel height.

When the bacteria concentration was increased, we observed the concentration front to become more rounded or V-shaped, this corresponded to regime R (red di-amond symbols in Fig. 3.63). This change in shape of the front, was in concurrence with an increase in the tip velocity, V tip , of the concentration front. This increase in V tip was analogous to the observations for Newtonian fluids when the viscosity contrast between two fluids were increased [16][17][18][19][20]. We also observed this behaviour to be more pronounced in the regime P e f <6. In this regime, we also observed the bacteria concentration front to slowly spread laterally with time. This indicated that the temporal dynamics of the front was influenced by diffusion, which induces mixing of the concentration front. This transition to a diffusive regime appeared over shorter time, when the flow velocity was increased. This was evidenced by the decrease in V tip /ū bact with U for all bacteria concentrations. These observations were also in tandem with the decrease in the effect of bacteria concentration on the effective viscosity of the suspension with increasing P e f [?, [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF][43]115].

When we increased the bacteria activity, an additional precursor developing at the forehead of the front (spike) was observed (regime S, yellow square symbols in Fig. 3.63). In this regime, we observed an increase in the spreading of the spike with increase in U , which was similar to the observations by Frigaard et.al. [20]. This was evidenced by an increase in V tip /ū bact with U , which was in contrast to the previous regime. This transition was in tandem with the increase in M observed with increase in bacteria activity [START_REF] Chui | [END_REF].

Finally, for the highest bacteria concentration (with increased bacteria activity), an onset of instability and growth of fingers were observed (regime F, triangle symbols in Fig. 3.63) at the regime P e f <6. We observed that, mixing was again a limiting factor on the development of instability. We also changed the width of the channel to characterize its influence on the dynamics of instability. The growth of two unstable fingers were observed at early times. These fingers was observed to coallesce into a single finger with time because of lateral mixing. The long time dynamics of the concentration front was similar to the characteristics of the classical Saffman-Taylor instability [16]. We confirmed this quantitatively by performing experiments with Newtonian fluids of different viscosities M . The characteristics of the fingers obtained with Newtonian fluids like width of finger λ, its length l and V tip were compared with that for bacteria suspensions. We observed that these values obtained for bacteria suspensions, to corresponded to a value of M ∼ 4 for Newtonian case. This was found to be consistent with the approximate estimate of M as shown in in Fig. 3.63. However, when we compared the scaling of l with respect to a modified Péclet number P e mod defined with the channel width as the length scale, we observed the value of l to be larger than the expected value of l corresponding to its P e mod . Therefore, we observed the viscous instability dynamics for bacteria suspensions to occur at a much lower P e compared to a Newtonain fluid of equivalent viscosity. At low P e, typically mixing plays a dominant role and supresses any viscous instabilties. However, in the case of bacteria suspensions, as we decrease P e, we also decrease P e f . Thus at low P e, while we increased the effect of mixing, we also increase the viscosity effect induced by bacteria as well (see Fig. 3.63) [?, [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]115]. Therefore, this additional coupling, modifies the spatial and temporal dynamics of the front. Thus, this limits further analogy of bacteria suspensions with that of Newtonian cases quantitatively.

Perspectives

This study is the first step towards understanding the dynamics of the dispersion of dense bacteria suspensions. The coupling of imposed shear, bacterial concentration and bacterial activity on viscosity of the suspension presents a complex problem to discern the physics. However, the qualitative similarity of the results to that observed for Newtonian fluids indicates that one can draw certain analogies from the Newtonian case to obtain some physical insights. Following this idea, we propose a standard model for studying the dynamics of the concentration and velocity fields [17,19,162,164,189] by approximating the bacteria suspension as an equivalent fluid defined by an effective viscosity. Assuming incompressibility of the fluid, the effective diffusivity D 0 to be a constant value independent of the bacteria concentration and negating buoyancy effect (the last two assumptions were tested experimentally), the governing equations are given by: µ e is effective viscosity of the fluid, defined as function of the bacteria concentration and the flow Péclet P e f . It is given by Carreau-Yassuda equation for bacteria suspensions [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]115]. µ s is the viscosity of the suspending fluid, M is the viscosity ratio of the upper and lower plateau of the rheogram and P e c f is the critical P e c f corresponding to the mid-point between the upper and lower plateaus of the rheogram. a and n are the fit parameters obtained from Carreau-Yassuda fit [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]115]. The values of a , n and P e c f were estimated to be 1.67, -1.05 and 4.35 respectively [START_REF] Chui | [END_REF]. We believe that the numerical simulations of this model would give us more insights on the interplay between viscous effects and diffusion at low P e.

In the present study, we have limited data on the experiments performed pertaining to different regimes reported to draw a generic phase diagram. However, one can perform plethora of experiments by altering the geometry and size of the system to explore more flow rates. For example, we perform our experiments in a rectilinear flow cell to mimic the Saffman-Taylor configuration [16], however one can also perform experiments either in radial displacement like [190] or a quarter five-spot configuration like [164,189] to explore the dynamics of different regimes and map a more comprehensive P e-M phase diagram to highlight different regimes and extend further the analogy with Newtonian fluids case. We observe the 2-D concentration fronts in our experiments and do not view the individual bacteria, however one can also perform the experiments under a microscope to view the concentration profiles of the bacteria across the channel gap at low U to better understand the retention effect. Viscotaxis is a phenomena experienced by bacteria when they transport at the mucus or in the interface between different organs in our body [108,109], therefore performing miscible displacement experiments by increasing or decreasing the viscosity of the displaced fluid with respect to the viscosity of the suspending fluid will be a primary step to explore this problem. Finally, we explored only the range of bacteria concentrations where we do not observe any collective motion or superfluidity [?, 42]. Therefore, it would be interesting to perform experiments with bacteria concentrations where we observe superfluidity and check if the flow dynamics is analogous to the case of inviscid flows with Newtonian fluids.

Chapter 4 Perspectives

In this thesis, we studied hydrodynamic dispersion of bacteria suspensions. We had raised two key questions at the beginning of this thesis; When does the coupling between bacterial activity and imposed flow influence the macroscopic dispersion of bacteria? What role does bacteria concentration play in its macroscopic dispersivity? We addressed these questions by first demonstrating the deviation in dispersivity of bacteria from that of passive colloids in the regime P e f > 10 as a consequence of the coupling effect between bacterial activity and imposed flow ("shear-coupling"). We do this by performing Langevin simulations of a system of sparsely populated bacteria. In this study, we also demonstrated the consequence on macroscopic dispersivity due to the rheological response of the bacteria suspension originating from the coupling between imposed flow, bacteria concentration and activity at low shear rates [?, [40][START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF][43][44]117]. This was demonstrated through a series of miscible displacement experiments performed in a Hele-shaw cell by varying bacteria concentrations, its activity and imposed flow in the regime P e f < 15.

We first investigated the macroscopic dispersion along different translational directions and the concentration profiles of bacteria across the channel gap over a range of 0.0025 ≤ P e f ≤ 100. We observed that in the limit of negligible thermal diffusion and for P e f > 10, the macroscopic longitudinal dispersion D ∥ ∼ αP e 2+κ across different particle aspect ratios (q). Furthermore, while the concentration profiles of the particles in the channel gap varied with q for a given P e f (uniform distribution, low shear or high shear trapping), this had only a small variation in the value of κ i.e. a decrease in κ from about 2 to 1.6 for low and high shear trapping regimes respectively. At large scales during waste water treatment, and particularly in porous environment, bacteria often encounter these large shear rates. For passive solute particles, D ∥ ∼ αP e in a porous media. Therefore, extending the current approach to porous media would shed light on the scaling phenomena of the bacteria macroscopic dispersivity in this geometry. The different trapping mechanisms exhibited at high P e f with respect to particle shape, could be useful for designing artificial microswimmers of varying shapes for trageted drug delivery. In the current study, we assume the bacteria to be an elongated rod, however in reality, bacteria has a more complicated structure with a cell body and either one or multiple flagella attached to it. We also assume elongated rod to be continuously diffusing in the Chapter 4. Perspectives re-orientation plane, in reality, bacteria are found to perform motions like run-andtumble or run-reverse. The assumptions made in the current work have a qualitative agreement in demonstrating the different trapping mechanisms (experimentally observed by Rusconi et. al [3]). However, for a more quantitative verification in the scaling of the macroscopic dispersivity, it is essential to incorporate a more realistic representation of bacteria structure and swimming strategy in the model. We also observed that the D ∥ ∼ αP e 2+κ scaling is true for different degrees of confinement, as long as P e s < 1. However, an increase in surface retention effect was observed as we decreased the confinement and thus a decrease in α. While an enchancement in transport rate would still exist, the volume fraction of the residual bacteria left on the surface would increase when the confinement is too small. A next step, would be to study the dispersion of bacteria in a geometry where bacteria flows through different confinements along the direction of flow or in transverse direction. These situations are often encountered when the bacteria are flowing through capillaries. In the assumption of a constant bacteria activity, we observed the D ∥ ∼ αP e 2+κ scaling even in shear-thinning and thickenning fluids with only a variation in α. However, the bacterial activity has been observed to be influenced by fluid rheology. Thus, it is essential to implement these effects in the model to understand the dispersion of bacteria in these non-Newtonian environments. Studying this phenomena will be essential to understand the transport of bacteria in more complex fluids which are of practical relevance (like in mucus or urinary tracts). We can further extend this study to observe the macrodispersion scalings in more complex flows like Couette-Poiseuille or Waleffe flows. Extending these studies on bacteria transport in turbulent flows, its response to local eddies would be relevant to understand large scale dispersion of bacteria in oceans.

In the second part, we investigated through experiments, the effect of coupling between bacteria concentration and activity with imposed flow at low shear rates (P e f < 15) on its macroscopic dispersivity. To our knowledge, for the first time we demonstrate that the rheological response of bacteria induced by this coupling effect does significantly influence its macroscopic dispersivity. We demonstrate that we can control the viscosity contrast between the fluids by varying the P e f and bacteria concentration. Furthermore, we observe the displacing bacterial concentration front at low P e, to exhibit a Saffman-Taylor instability similar to that of displacements between Newtonian fluids at large P e. At large scales, these types of flows are often coupled with buoyancy effect. A next step would be to introduce this effect by changing the orientation of our flow cell and performing a similar set of experiments. The displacing of high viscous fluids by low viscous fluids at large scales have often been used for oil-recovery. Thus, it would be of interest to perform our experiments in a more complex geometries to test for a potential application of using bacteria suspensions in an oil-recovery process. Bacteria are often found to spread in natural porous environments like soils or rocks. In these situations, it is common for the bacteria to encounter low shear rates, and the subsequent viscosity decrease would affect its macroscopic dispersivity. Therefore, one can also recreate these types of geometries at the laboratory scale, and study the variation in dispersivity induced by these viscous effects in porous media and check if we can use 123 this property of bacteria to efficiently remove pollutants between pores. While in all our experiments, bacteria is the displacing fluid and the plain swimming medium is the displaced fluid, we can also perform the reverse experiments as well. This would enable us to check if we can further extent the analogy with Newtonian fluids case of a more viscous fluid displacing a less viscous fluid. Such a study would be of relevance for removal of bacteria contaminations across narrow spaces. The key question would be to test if, through a controlled shearing of bacteria suspension, whether this viscous effect can enhance its removal. Bacteria are often found in an environment where there exists multiple gradients that simulateneously influence their dispersion. Therefore, as a first step to address this larger question, introducing another gradient like chemotaxis or viscotaxis in addition to flow, would aid us in determining the change in bacteria dispersion when there exists a competition between two or more gradients. Finally, a scientific limitation of the current results, is the lack of understanding on the dynamics at the interface between the two fluids. In future works, it would be interesting to zoom close to the interface and perform a Lagrangian tracking of the interface as we inject the bacteria suspension. Another idea would be to use passive tracers to visualize the flow fields across different regions of the displacing fronts to further improve our understanding of the dynamics of the front.

Overall, both the Langevin simulations and experiments complemented each other, since it allowed us to investigate the coupling in two extreme conditions. While our simulations explored the "shear-coupling" effect at large P e f , our experiments have demonstrated that coupling between imposed flow, bacteria concentration and activity can be used to induce viscous fingering instabilities at low P e f . We believe that the different dispersion regimes presented in our study has opened up new avenues for explorations that would augment our understanding on the dispersion of bacteria. the gap closing maximum frame gap. The gap closing maximum frame gap is the maximum frames within which the trackmate is set to detect a specific blob for linking it with its former position and it corresponds to the maximum allowable frame for a blob to disappear out of its maximum linking distance. For example, if this value is set to say N , then if the trackmate is not able to detect the blob within N -1 frames then, the trajectory recording for that specific blob is terminated. The gap closing maximum distance is essentially gap closing maximum frame gap times the maximum linking distance. A typical value of 5 µm was used for the maximum linking distance and gap closing maximum distance, and the gap closing maximum frame gap was set to 1.

This setting eliminates any blob having a velocity greater than 50 µm/s as false detection. The linking of the spherical blobs and drawing their trajectories were carried out by the plugin after this step. The trajectories were analyzed in a MATLAB code to obtain quantities like the average velocity of bacteria and their diffusivities.

B.1.2 Code routine to analyze the track statistics

The bacteria tracks obtained using Trackmate plugin were post processed using an in-house MATLAB code. For each track i, the position of bacteria at time t is r i (t) = (x i (t) , y i (t)) from which the two dimensional velocity V i (t) = δr i (t)/δt can be computed using a sampling time δt and δr i (t) = r i (t + δt)r i (t). Holes were drilled on the sides of the mold in order to screw and attach some fittings on the sides to create a volume tank (height 0.5 cm) for pouring and developing the PDMS. A silicone elastomer base was mixed with a silicone elastomer curing agent from SYLGARD T M at a ratio of 8:1. We employed this ratio to increase the strength of the PDMS and hence avoid bending across the length of the channel. This mixture was then poured on the mold and was vacuumed for ∼ 1 -2 hours until all the air bubbles were removed. The PDMS was then cured by placing it in an oven at 60 o C overnight. The cured PDMS was then cut from the mold and the inlet and outlet holes of 2 mm diameter were punched at about 5 mm from the tip of the channel. The PDMS was plasma cleaned in a HPT-200 henniker plasma cleaner along with a clean glass plate of 1 cm thickness for 30 secs. The plasma cleaned PDMS and glass were finally bonded together.

The same procedure was adopted to fabricate the channels used to image the bacteria under the microscope and used as a droplet sample placed on the side of the flow cell. As shown in Fig. B.6, a single mold contained 8 microfluidic channels of dimensions 1 x 0.5 cm in length and breadth. Two molds were cut to have a channel height of either 0.025 or 0.05 cm.

B.3 Rheology of the active bacteria suspensions

To obtain the rheogram of the bacteria suspensions, we measured their effective viscosity with contraves low shear 30 rheometer. The thesis of Lopez et.al. [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF] contains a very detailed version explaining the characteristics of the rheometer used and the measurement protocol. The exact same protocol was followed for this work as well. The following paragraph briefly overviews the protocol used for measuring the effective viscosity of the fluid at different shear rates. A sample of 1 mL of the suspension was placed in a cup and the inner bob was then immersed into the fluid and carefully centered by turning the zero point adjustment knob until the zero value of the signal was attained. The resulting chamber sandwiched between the inner and outer cylinders was maintained at a constant temperature of 25 o C. The measurement protocol was then programmed in the computer as follows; the outer cylinder is kept fixed for 30 s and then rotated for 30 s to define a steady state shear rate. The rotation was then stopped for 30 s. These steps were repeated with increased shear rates ( γ) . Once the highest γ was reached, the procedure was repeated in decreasing order to verify reversibility. The experiment lasts 28 minutes to complete the round-trip for different values of γ logarithmically spaced between 0.02 and 63.9 s -1 . The resulting outputs from the computer program are the step value imposed to rotate the outer cylinder at a given rate and the corresponding magnitude of the reverse torque applied to maintain the inner cylinder stationary. The raw output values were imported into a MATLAB code which was programmed to perform the zero correction for each signal corresponding to non-zero step with respect to its preceeding and suceeding step zero signal via linear gradient correction. The zero-corrected signal values were then converted to equivalent viscosity using the conversion factors from the datasheet. The step value were also converted to the corresponding shear rate values and the resulting rheogram were plotted.

Measurements were first made with varying concentrations of PVP dissolved in MB. Fig. B.7 shows the rheogram for different concentrations of PVP in MB and the solution has a constant viscosity for all shear rates. With η s = 0.9 , 1.9 and 3.3 mPas for 0, 0.5 and 1% PVP MB suspensions respectively and were in concurrence with the values previously reported [START_REF] Chui | [END_REF]103]. We also noticed an improvement in the signal-to-noise ratio af the raw output from the rheometer with increase in fluid viscosity. Now, the same procedure was extended to swimming bacteria suspension. Since the inner and outer cylinders are made of metals and therefore not porous to oxygen which results in a cut-off of continuous oxygen supply to the inner chamber and a loss in bacteria motiltiy. To overcome this issue, an additional chemical 250 mM of L-serine was dissolved in the swimming medium. The addition of L-serine ensures the activity of the bacteria for longer duration in the absence of oxygen [55]. To determine the time taken by the bacteria to consume all the oxygen and be left with only L-serine in the swimming medium as a source to sustain its motility, we characterized the motility of the bacteria of concentration OD 0.3 suspended in a swimming medium containg L-serine as function of time in a sealed glass capillary. In Fig. B.8(a), we observed that the bacteria swam at a faster rate initially, when there was both oxygen and L-serine in the medium and then decreased to an assymptotic value of lower velocity once all the oxygen in the medium has been consumed. We also observed the same trend regarding the rotational diffusivity, D R of the bacteria as shown in One of the parameters in our main experiments of this study, was varying the activity of the bacteria, which was acheived by varying the viscosity of the swimming medium (see Section (3.2.3) in Chapter 3). Thus, to observe the effect of bacteria activity on its rheological response, we performed our rheological measurements by suspending it in swimming mediums of two different viscosity. We first characterized the activity of bacteria in the presence of L-serine in the two different swimming mediums. In Fig. B.8 (a), we observe the bacteria to swim at a slightly higher velocity in 1% PVP MB-serine solution compared to MB-serine at long times. Furthermore, we also observed the rotational diffusivity to be lower in 1% PVP MBserine compared to MB-Serine (see Fig. B.8 (b)). Thus, we observed an increase in activity of the bacteria when we increased the viscosity of the suspension. This result is consistent with our observation regarding the bacteria activity in these two swimming mediums even in the absence of L-serine (see Section (3.2.3) in chapter 3).

To ensure a constant swimming velocity regime during the duration of our measurement, we waited for ∼ 20 -30 minutes after filling the cylinder with the suspension and zero point adjustment with the bob. Fig. B.9 depicts the rheograms for bacteria suspended in two different swimming mediums. We observed the bacteria suspension to exhibit a non-newtonian behaviour as was shown by Lopez et.al. and Chui et.al. [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF]. We observe that at high shear rates i.e. when the shear rate is much larger than the rotational diffusivity or tumbling rate of bacteria, the viscosity of the suspension remains constant (almost mimics that of a newtonian fluid as though the activity of the bacteria becomes irrelevant). As we decreased the shear rate, we observed a reduction in effective viscosity. Furthermore, we observed the drop in viscosity to increase with bacteria concentration. We also observed that an increase in bacteria activity for a fixed concentration and P e f resulted in a larger reduction of viscosity. For instance in Fig. B.9(c), in the case of OD 7.5 in MBserine, we observe only about a 20% drop in viscosity at P e f ∼ 0.8, however, a drop of about 60% was observed for the same condition when the bacteria were suspended in 1% PVP MB-serine solution. Thus, from our rheological measurements, we were able to verify a drop in viscosity of the suspension at low shear rates for the strain of bacteria that will be used in our main experiments. In the range of P e f at which we made our measurements, we found a similarity with the previous observations [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF].

Our main experiments were performed in the regime P e f < 10 in a Hele-shaw cell. This corresponds to the regime where we observed a drop in effective viscosity of the suspension. However, one of the scientific limitations in our measurements in the rheometer is that, unlike the results of Lopez et.al and Chui et.al [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF], we did not observe any lower Newtonian plateau of the effective viscosity at low shear rates. We performed our measurements in the regime where the bacteria activity was reduced, since it has consumed all oxygen and is swimming only due to the Lserine. Therefore, the D R of our bacteria in this condition was lower. However, both Lopez et.al and Chui et.al [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF], performed rapid experiments at low shear rates before bacteria consumes all the oxygen in the system. In this regime, the bacteria were more active and thus their D R and V s values were relatively higher than our values. Therefore, for the given set of shear rates, our P e f range was shifted to a higher range of values. However, it is to be noted that in our Hele-shaw experiments there is no L-serine and the experiments were performed in presence of abundant oxygen supply and therefore the bacteria were much more active than the ones used in this rheometer i.e. a relatively higher D R and V s values. This indicates that P e f encountered in our experiments will be much lower than the range at which we were able to make our rheometer measurements. We thus used the general equation proposed by et.al and Chui et.al [START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF] to estimate the viscosity ratios for our experiments.
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 11 Figure 1.1 -Different mechanisms through which bacteria species express their motility. The direction of cell movement is indicated by black arrows, and the motors that power the movement are indicated by coloured circles [45].
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 12 Figure 1.2 -(a) Microscopic image of a fluorescent E. coli, the body is in green and the flagella bundle is in red [8]. (b) A schematic representation of a bacteria with three flagellar filaments connected to rotary motors (green color) embedded at the cell walls. The image was procured from [25].
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 13 Figure 1.3 -(a) Contour of the flow field measured in the swimming plane of a swimming E. coli bacteria far from the walls reported by Drecher et.al [46]. The fields are obtained through PIV measurements of an E. coli swimming in a suspension of fluorescent tracer particles. The streamlines are indicted by black lines. (b) A schematic representation of bacteria as a force and torque dipole which pushes the fluid away along its axis pi . Image procured from [56].
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 314 Figure 1.4 -Pattern formation by bacteria (a) Travelling band formation of E. coli due to chemotaxis observed by Adler et.al [57] in a capillary assay. (b) Magnified bottom-up fluorescence intensity projection of a biased propagating front, showing individual E. coli bacteria during chemotaxis in a well-defined 3D porous media observed by Bhattacharjee et.al [32]. The scale bar represents 200 µm and the arrow represents the overall propogartion direction. (c) Formation of plumes (white mushroom shaped structures shown in the image) with time by a suspension of B. subtillis in a ∼ 7 -8mm deep chamber due to vertical oxygen gradient [58-60].
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 15 Figure 1.5 -(a) Effective viscosity of the suspension normalized with the viscosity of the swimming medium plotted as function of shear rate for different bacteria concentrations [41,115]. (b) The lower plateau value of normalized effective viscosity as a function of bacteria concentration [41]. (c) The normalized effective viscosity of the suspension plotted as a function of the ratio between shear rate and rotational diffusivity of bacteria for bacteria of different concentrations suspended in medium of varying viscosities (see the legend) [42]. OD 1 corresponds to a volume fraction ϕ ∼ 0.1%. Solid line in (a) and (c) is the fit with Carreau-Yassuda equation of form Eq. (1.4.6).

  1.5 (a) and (c)). Chui et.al also tested the influence of V s and D R at high bacteria concentrations, by changing the viscosity of the suspending fluid.
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 21 Figure 2.1 -(a) Normalized distribution of the distance ξ = ∆x -∆x σ x along the flow direction travelled by motile (top right) and non-motile (top left) bacteria for different flow velocities. ∆x is the bacterium displacement along the flow direction, ∆x is the average displacement, σ x the standard deviation of the distribution and U is the average flow velocity [135]. (b) Concentration profiles focused close to the center of the channel i.e. z/H between -0.3 and 0.3, where H total the channel height for 6 different flow rates. The thin lines corresponds to numerical simulations and thick lines to experiments with wild-type B. subtilis [3]. (c) The density patterns of swimming bacteria injected into an evenly spaced matrix at three different flow rates. The density of the bacteria concentration is normalized by the average density of the population. The depth of the channel is 100 µm and the matrix is composed of a square, periodic lattice of circular pillars with a diameter of 65 µm and lattice length 120 µm. The scale bar corresponds to a size of 65 µm [36].
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 22 Figure 2.2 -Monte Carlor simulation of Taylor dispersion [8, 149]. Schematic diagram of a pulse of passive tracer particles (black dots) subject to Poiseulle flow in a channel of parallel plates with height 2H, at four successive instants of time (t = 10, 100, 1000 and 10000 time steps). The scale in the direction of flow y-axis is contracted by a factor 10 between successive graphs.
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 24 Figure 2.4 -(a) Concentration profiles focused for z/H between -0.3 and 0.3 for q = 10. The thin lines corresponds to numerical simulations and thick lines to experiments with wild-type B. subtilis[3]. (b) Concentration profiles in the gap obtained by numerical simulations for q → ∞ [4] assuming a balance between self-propulsion and translational thermal diffusivity at the wall. (c) P e f -q phase diagram depicting different regimes of the concentration profiles in the gap obtained from solving the 1D Flokker-Plank equation for a population of active brownian particles by[5] assuming a periodic boundary condition. The red and blue circles corresponds to high shear and low shear trapping regimes respectively and the grey dashed line is an approximate boundary separating the two. The solid black lines denote the near-sphere and large-aspect-ratio asymptotes for this boundary. ♦ and ◀ respectively, corresponding to the different trapping regimes of the algae Heterosigma and Dunaliella observed by Barry et al.[156].
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 25 Figure 2.5 -(a) and (b) Dispersivity D ∥ for different confinements versus the Péclet number P e and here the P e is defined with respect to the thermal diffusivity D m of the particle. (a) without hydrodynamic interactions between the swimmer and the walls (b) with hydrodynamic interactions. Dispersion along the channel was quantified for three confinements L compared to l, the length of the swimmer. • 2L = 4l, ■: 2L = 10l and ▲ 2L = 16l. The black solid line represents Taylor's dispersion for a passive particle with the Brownian diffusivity of a passive particle Eq.(2.1.6) and the dotted line represents Taylor's dispersion of a passive particle with Brownian diffusivity of a motile organism Figure taken from Chilukuri et al.. [6]. (c) Normalized dispersion coefficient in the transverse and longitudinal direction as function of flow péclet number P e f[36]. •: experimental data for the macroscopic transverse dispersion for bacteria, ▲: Macroscopic transverse dispersion of brownian tracer particles, □: Macroscopic longitudinal dispersion from simulations, •: Macroscopic transverse dispersion from simulations ♦: Macroscopic longitudinal dispersion of brownian tracer particles.The active rods have an aspect ratio of q = 10. The dashed line corresponds to the transverse dispersion of a spherical swimmer (q = 1) in a constant shear.
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 26 Figure 2.6 -Schematic representation of a population of swimming bacteria placed in Poiseuille flow.x is the transverse direction, y is the direction of flow and z is the direction of height (vertical). Individual bacteria modelled as active Brownian ellipsoid swimming with an orientation p. The aspect ratio of the particles is q = a b where a is the particle length and b the particle width.
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 27 Figure 2.7 -(a) Rate of change of the second moment in the flow direction dσ 2 y (t) dt plotted as a function of time for different flow Péclet, P e f . (b) Scaled second moment in z-direction plotted as a function of time scaled with Taylor time scale for different P e f . ⋆, • and ♦ are respectively for P e f = 10, 50 and 100 which corresponds to Péclet numbers of respectively P e = 125, 625 and 1250. The solid line represents the fit of the curve with Eq. (2.2.5) for the P e f = 100 case. For all three cases: q = 2, 2H = 100 µm, D m = 1 µm 2 /s. Simulations performed in a Newtonian fluid n = 1.
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 228 Figure 2.8 -(a) Longitudinal dispersion coefficient D ∥ normalized by the diffusion coefficient measured in absence of flow D 0 as function of the Péclet number P e = U H D 0 . The solid line is the Taylor prediction 1 + 4 210 P e 2 [2, 15]. (b) D ∥ D 0 normalized by P e 2 as function of P e. The solid black line corresponds to the expected constant value of 4/210 from Taylor prediction. • for decoupled case (our BC (blue) and reflective BC (maroon)), ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. Data obtained for 2H = 100 µm and D m = 0.
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 29 Figure 2.9 -(a) Evolution of the normalized variance of the particles velocities, σ 2 Up /U 2 p as a function of the Péclet number, P e = U H D 0 . The insert highlights the asymptotic values of σ 2Up /U 2 p for different q (b) Log-Log representation of the normalized relaxation time τ c /τ taylor as function of P e. ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. • shows the decoupled case (our BC or OBC (blue) and RBC (maroon). Solid line: fit by 1 + βP e κ of the q = 2 case, where κ = 1.96 and β = 7.6x10 -5 . The data were obtained with 2H = 100 µm, D m = 0.
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 22 Figure 2.10 -(a) Log-Log representation of τ c /τ taylor scaled with P e 2 as function of P e for different q (b) The power-law variation of τ c /τ taylor with P e i.e. κ as function of the Bretherton constant q 2 -1 q 2 + 1 . ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. The data were obtained with 2H = 100 µm, D m = 0.
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 2 Numerical Modelling of dispersion of swimming bacteria in a Poiseuille flow (a) Decoupled (b) Decoupled (RBC)
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 211 Figure 2.11 -Steady state concentration profiles across the channel gap for different P e f . (a) Decoupled (b) Decoupled with RBC (c) q = 0.5 (d) q = 1 (e) q = 2 (f) q = 10. The data were obtained with 2H = 100 µm and D m = 0.

  2.12(b) and (c)). Thus from Figs. 2.11(a)-(f), we observed the aspect ratios of the particles to greatly influence the steady state distribution of the particles across the channel
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 212 Figure 2.12 -Steady state concentration profiles across the channel gap for (a): (P e f = 0.5, P e = 6.25), (b):(P e f = 25, P e = 312.5) and (c):(P e f = 75, P e = 937.5) and for an aspect ratios of q = 2 and Two different boundary conditions: OBC (blue curve) and RBC (red curve). The data were obtained with 2H = 100 µm and D m = 0.
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 2 Figure 2.13 -Normalized transverse dispersion coefficient as function of the Péclet number.• are for the decoupled case. ♦, ■, ▶, ⋆, ▲ and ◀ are for particles of aspect ratios q = 1, 1.5, 2, 4, 10 and 0.5 respectively. Data obtained for 2H = 100 µm and D m = 0.
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 2 Figure 2.14 -(a) Longitudinal dispersion coefficient normalized by the diffusion coefficient D 0 measured in absence of flow as function of the Péclet number P e = U H D 0 . The solid line is the Taylor's prediction D ∥ D 0 = 1 + 4 210 P e 2 [2, 15]. (b) Longitudinal dispersion coefficient normalized by D m as function of the Péclet number P e c = U H Dm . The solid line is the Taylor prediction D ∥ Dm = 1+ 4 210 P e 2 c. For all plots: (• : D m = 0.05 µm 2 /s, q = 2), (♦ :D m = 1 µm 2 /s, q = 2), (▶: D m = 10 µm 2 /s, q = 2), (▷: D m = 10 µm 2 /s, q = 10), and (■: D m = 20 µm 2 /s, q = 2).
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 2 Figure 2.15 -Evolution of the normalized relaxation time τ taylor /τ c as function of the flow Péclet number P e f for (• : D m = 0.05 µm 2 /s, q = 2), (♦ :D m = 1 µm 2 /s, q = 2), (▶: D m = 10 µm 2 /s, q = 2), (▷: D m = 10 µm 2 /s, q = 10), and (■: D m = 20 µm 2 /s, q = 2).
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 216 Figure 2.16 -Longitudinal dispersion coefficient normalized by the diffusion coefficient D 0 measured in absence of flow as function of the flow Péclet number P e f = γm D R . ■, ♦, ▶ and • represents 2H = 30, 100, 200 and 500 µm respectively. A solid line of slope αP e 2+κ f
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 2 Figure 2.17 -(a) Normalized variance of particles velocities as function of P e f = γm D R . Horizontal solid line: value of σ 2 Up /U 2 p for a parabolic profile. (b) Evolution of the normalized relaxation time τ taylor /τ c as function of P e f . The black solid line: fit by δ + βP e κ for the 2H = 100 µm case, where δ ∼ 1, κ = 1.96 and β = 7.6x10 -5 . ■, ♦, ▶ and • are respectively for 2H = 30, 100, 200 and 500 µm. Data obtained for: q = 2 and D m = 0.

  (a) 2H = 30 μm (b) 2H = 500 μm
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 2 Figure 2.18 -(a) Steady state concentration profiles across the channel gap for different P e f . (a) 2H = 30 µm and (b) 2H = 500 µm. Data obtained for: q = 2 and D m = 0.
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 219 Figure 2.19 -Velocity profiles of the fluid across the channel gap for (a) Shearthinning fluid (n = 0.5, blue curve), (b) Newtonian fluid (n = 1, red curve) and (c) Shear-thickening (n = 1.5, yellow curve) at a fixed γm = 0.25s -1 .

Figure 2 .

 2 Figure 2.20 -(a) and (b) Macroscopic longitudinal dispersion coefficient D ∥ normalized with effective diffusivity D 0 in the absence of flow plotted as a function of P e for three different values of n. (a) q = 2 and (b) q = 10. (c) and (d) Relaxation time τ c normalized with Taylor relaxation time τ taylor plotted as a function of P e for three different values of n. (c) q = 2 and the black line is the 1 + δP e κ fit for the case of n = 1 and κ = 1.96 for this case. The inset depicts κ as a function of n. (d) q = 10 and the black line is the 1 + δP e κ fit for the case of n = 1 and κ = 1.54 for this case. The inset depicts κ as a function of n. For all the plots the values of n are 0.5 (blue symbols), 1 (red symbols) and 1.5 (yellow symbols). All the data are obtained for 2H = 100µm and D m = 0.
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 2 Fig.2.19 depicts an example for the different shapes of velocity profiles for the fluid across the channel gap as we alter the fluid rheology for a fixed wall shear of γm = 0.25s -1 . We obtain these profiles by changing the power law index n in Eq. (2.1.1). The case of n = 1 corresponds to Newtonian fluid (red curve in Fig.2.19) and the velocity profile is parabolic. The case n = 0.5 corresponds to a shearthinning fluid (blue curve in Fig.2.19), and the velocity varies from zero at the walls to maximum at the center of the channel. We also observe a constant velocity regime which is more flat close to the center compared to other cases. Finally, for the case of n = 1.5 corresponds to a shear-thickening fluid (yellow curve in Fig.2.19), and the velocity varies from zero at the walls to maximum at the center and the shape of the curve is more sharp close to the center of the channel gap. We note that for fixed γm , U increases with n (see Eq. (2.2.2)). For all the results presented

Figure 2 . 21 -

 221 Figure 2.21 -Steady state concentration profiles across the channel gap for different P e f . (a) q = 2, n = 0.5 (b) q = 2, n = 1 (c) q = 2, n = 1.5 (d) q = 10, n = 0.5 (e) q = 10, n = 1 (f) q = 10, n = 1.5. All data obtained for 2H = 100µm and D m = 0.

  Fig. 2.20 shows the normalized macroscopic longitudinal dispersion coefficient D ∥ /D 0 and the normalized relaxation time scale τ c /τ taylor as function of P e for three different values of n and two different aspect ratios. In Fig. 2.20(a) we observe almost the same scaling for D ∥ ∼ αP e 2+κfor all the cases of n and fixed aspect ratio of q = 2. We observe only an increase in the value of the α with n. This is confirmed by the relaxtation time scale plot in Fig.2.20(c), where we observe τ c /τ taylor ∼ δP e κ and κ ∼ 1.93 for all the n values (see inset of Fig.2.20(c)). We observe the same for the case of q = 10 (Figs. 2.20(b) and (d)), where κ ∼ 1.54. These results echoes to the prediction of the analytical model for the case of passive solute particles by Sharp[START_REF] Sharp | [END_REF]. In this case, he shows that scaling D ∥ ∼ αP e 2 is independent of fluid rheology and the value n only alters the pre-factor α (see Eq. (2.1.7)).

Figure 2 .

 2 Figure 2.22 -Steady state concentration profiles across the channel gap for different n plotted as function of γ/ γm for a fixed γm = 75. (a) q = 2 (b) q = 10. All data obtained for 2H = 100µm and D m = 0

1 n

 1 2.2) , where we observe that ṗ ∼ γm z H and thus for a fixed γm a scaling of γ/ γm would yield the same ṗ for all n. To test this, we perform a change of variable from z to z 1/n and plot the steady concentration profiles for different n as function of γ/ γm for two different aspect ratios (see Figs. 2.22(a) and (b)) and a collapse of the profiles confirms our hypothesis. Thus, the shear coupling effect on the reorientation of the particle is 2.4. Discussion and Conclusions 47 the same for different rheologies in a power law fluid.
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 31 Figure 3.1 -(a) Picture of a viscous finger when air is penetrating oil. The finger width is half the width of the flow cell (b) For high values of C a , obtained by increasing the flow velocity, tip splitting instabilities were observed. Images taken from [177]. (c) Schematic showing an interface separating two fluids of same density but different viscosities moving at an imposed velocity U in a medium of permeability k. The interface is stable when M = µ 1 µ 2 < 1 but unstable for M > 1.
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 32 Figure 3.2 -Fingering patterns observed experimentally in Hele-Shaw cells or in tubes represented in a P e-M plane. The two dotted lines separates three flow regimes: Above the top most line, 3D fingers are observed. They become ramified and fractal at high Pe and M. Between the two dotted lines, fingers are regularly spaced with a spatial wavelength of nearly five times the gap thickness[179,185]. Below the bottom dotted line, the injected fluid forms a tongue that develops on the center of the flow cell[179,185]. The fronts are steady. At high M, a spike develops in front of the tongue[21].
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 33 Figure 3.3 -Example of profiles obtained experimentally based on the viscosity ratio M and fluid velocity U . The profiles marked by (1) are taken from[179,191], they show the concentration profiles measured in the direction of flow. The profiles marked by (2) are taken from[185], they show the fluid distribution across the gap. To obtain the profiles across the gap, the authors converted the measured optical absorption to fluid thickness. The framed profiles show that the renormalization of the distances allows to superimpose the profiles. The dynamics of the fronts is therefore self-similar.
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 34 Figure 3.4 -Concentration (in terms of OD) of the RP437-YFP bacteria strain measured as function of time in the culture medium. The exponential growth phase starts at ∼ OD 0.1 and the growth saturates at ∼ OD 0.6 -0.7. • represents the growth curve from the stock and ♦ represents the growth curve of the diluted sample from the overnight culture.
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 3536 Figure 3.5 -Schematic diagram representing the procedure of obtaining a highly concentrated bacteria suspension in MB from the culture medium through centrifugation
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 37 Figure 3.7 -(a) Average swimming velocity of bacteria plotted as function of time along. The vertical bars are the standard deviation of the velocity distribution (b) Rotational diffusivity of the bacteria plotted as function of time. The vertical bar represents the incertitude in the value of D R measured. Each set of measurements (represented by different filled shapes) were done on different days. The concentration was ∼ OD 0.3 and bacteria was suspended in MB. The time parameter represents the time since the placement of the microfluidic chamber under the microscope
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 3833 Figure 3.8 -(a) Average swimming velocity of bacteria plotted as a function of time along with the standard deviation of the velocity distribution (OD 7 in MB) (b) Rotational diffusivity of the bacteria plotted as a function of time and the vertical bars represent the incertitude in the value of D R values measured at a given time (OD 7 in MB) . The bacteria suspension was a mixture of RP437-WT (wild type) and RP437-YFP (fluorescent) in MB. The dashed line represents the average value measured for a concentration of OD 0.3.
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 39310 Figure 3.9 -Average velocity and rotational diffusivity of bacteria as function of time when suspended in fresh (•) and supernatant (■) 1% PVP in MB. The bacteria concentration was OD 0.3.
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 311 Figure 3.11 -asymptotic values of average velocity and rotational diffusivity of bacteria as function of different PVP concentrations in MB. The vertical bars in the plot represents the standard deviation in the average values measured in different samples.

Figure 3 . 12 -Figure 3 . 13 -

 312313 Figure 3.12 -Number of bacteria detected in each focal plane across the height of the chamber as a function of time. (a) OD 0.3 in MB (b) OD 0.3 in 1% PVP-MB. At each time 200 images were recorded for the 5 vertical positions at 10 fps and the number of bacteria were estimated by image treatment. The histogram of number of bacteria measured as a function of z at t = 300 min was adjusted with a fit function (black solid curve) by equation : N(z) = N 0 exp[a( 1 z + 1 2H -z )] [7].Where N 0 and a were the adjusted fit parameters.

66 Chapter 3 .Figure 3 . 14 -

 663314 Figure 3.14 -Number of bacteria detected in the middle of chamber as function of time for OD 7 (•) and OD 0.3 (♦) suspended in MB. Each point obtained from the analysis of 200 images recorded at 10 fps. The vertical bars represents the fluctuations in the average number of bacteria detected during the 200 image sequence.
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 315 Figure 3.15 -Schematic diagram of the experimental set-up. The dimensions of the region of interest (ROI) are: Length (L) = 21 cm, Width (W) = 1 or 2 cm and Height (2H) = 250 or 500 µm
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 316 Figure 3.16 -Example of the gray image recorded by the camera of the concentration front of the RP437 YFP bacteria of OD 1 in MB displacing plain MB in the flow cell as recorded by the camera. Image cropped over the region of interest (ROI).

Fig. 3 .

 3 Fig. 3.16 is an example of the light intensity map I(x,y) recorded by the camera. In this image, the flow celll is half filled with fluorescent bacteria (OD 1) and the

Chapter 3 .Figure 3 .

 33 Figure 3.17 -(a) Average light intensity of the blank light table as a function of time in three different regions across the table by averaging over 50 x 50 pixel area (b) Light intensity of the blank flow cell and fluorescien dye filled flow cell as function of the distance by averaging over 38 pixel linewidth .
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 318 Figure 3.18 -Normalized light intensity profiles for 0.01 mM fluorescein dye filled in the flow cell. (a) The intensity profile along the length of flow channel L. The intensity values were averaged over the entire width of the channel (b) Profile across the channel width W , measured at different positions along L. The intensity values were averaged over a 20 pixel band.
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 315319 Figure 3.19 -Normalized light intensity values measured on the droplets (averaged over 15 x 15 pixel area) plotted as function of the optical density (OD) of the suspension measured in UV spectrophotometer. The controller gain was set at 3 and exposure time τ exp was varied to 0.3 and 0.6 s (circles and diamonds respectively). The solid line is the linear fit of the data.
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 320 Figure 3.20 -Variation of normalized light intensity of a droplet of fluorescein dye (•), bacteria of OD 0.6 (▶) and OD 1 (♦) as function of time after taking into account the background correction.

Figure 3 .

 3 Figure 3.21 -(a) Normalized intensity profile for OD 0.6 after injecting 0.5mL into the flow cell. (b) Normalized concentration profile corresponding to (a) after employing the second normalization method described in the text.

Chapter 3 .

 3 Miscible flow displacement experiments a moving average over 5 points to smoothen the curve to obtain the normalized concentration profile, c vs y as shown in Fig. 3.21(b).
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 322 Figure 3.22 -Concentration fields for (a) Water dyed with fluorescein displacing water at U = 34 µm/s (b) -(f) Different concentrations of bacteria suspended in MB displacing MB at U = 21 µm/s. The fields are for the same volume of fluid injected.

Figure 3 .

 3 Figure 3.23 -Different concentrations of bacteria suspended in 1% PVP MB displacing 1% PVP MB at U = 21 µm/s. The fields are for the same volume of fluid injected.
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 324 Figure 3.24 -Normalized concentration profiles at different times for fluorescein dye (0.04 mM) injected into the flow cell at U = 140 µm/s. The camera exposure time was set at 0.1s. The concentration was averaged over the width of the channel. Black line corresponds to the fit of the experimental data with Eq. (3.3.1). The fit parameters are b = 8.4 and c = 1.6. The blue, red, yellow and purple curves are respectively 10, 13, 16 and 19 min after starting the injection.
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 33253 Figure 3.25 -Re-scaled normalized concentration curves at different times for fluorescein dye (0.04mM) injected into the flow cell at U = 140 µm/s. Black line corresponds to the error function fit. The blue, red, yellow and purple curves are respectively 10, 13, 16 and 19 min after starting the injection.

Figure 3 . 27 -Figure 3 .

 3273 Figure 3.27 -Concentration field for 0.04 mM fluorescein dye injected at U = 140 µm/s into the W = 1cm flow cell.
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 329330331 Figure3.29 -Dispersion coefficient scaled with respect to the diffusivity of fluorescein in water when there is no flow (D 0 = 425µm 2 /s[START_REF] Kapusta | Absolute Diffusion Coefficients: Compilation of Reference data for FCS Calibration[END_REF]) plotted as a function of Pe along with fit function (blue and green dashed lines) of form 1 + αP e 2 (α = 0.14 (blue) and α = 0.06 (green)). The dashed black curve represents the Taylor dispersion where α = 0.02, •: W = 1 cm flow cell where blue and yellow symbols corresponds to concentration curves averaged over entire channel width and 10 pixel average respectively. ♦ : W = 2 cm flow cell, where red and purple symbols corresponds to concentration curves averaged over entire channel width and 10 pixel average respectively.

Figure 3 .

 3 Figure 3.32 -(a) Velocity ratio ūbact /U as function of the normalized flow velocity U /V s measured for different bacteria concentrations. OD 0.6 (•), OD 1 (♦) in MB and OD 1 (▶) in 1%PVP MB (b) Velocity ratio ūbact /U as function of the normalized flow velocity U /V s measured using different channels of heights. 250 µm (•) and 500 µm (♦). All these experiments were performed with a bacteria concentration of OD 0.6 in MB.
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 333 Figure 3.33 -Velocity ratio ūbact /U for different V s /U and OD 0.6 in MB. The • and ♦ are respectively for channel heights 250 µm and 500 µm. The solid lines represent the adjusted fit using Eq. (3.3.4) with α ∼ 2.4 for both the cases.
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 334 Figure 3.34c 2 as function of time for OD 0.6 (•), 1 (♦) in MB and 1 (▶) in 1%PVP MB at different flow rates. (a) U = 21 µm/s (b) U = 43.5 µm/s (c) U = 86 µm/s. The solid lines (in (b) and (c)) are the linear fit of the data used to estimate D ∥ .
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 335 Figure 3.35 -Dispersion coefficient scaled with D 0 plotted as function of Pe for OD 0.6 (•), OD 1 (♦) in MB, OD 1 (▶) in 1%PVP MB. Dispersion coefficient measured with fluorescein dye (■) are also included in the plot. D 0 in the case of bacteria corresponds to its effective diffusivity when no flow is imposed (see (3.2.2)) and for the case of fluorescein dye it corresponds to its molecular diffusivity [201]. The dashed line represent D ∥ /D 0 = 1 + αP e 2 line in which α = 0.14. The dashed black curve represents the theoretical equation by Taylor, where α = 0.02.
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 336337 Figure 3.36 -Concentration fields for different flow velocities U after approximately same volume of injection and for different bacteria concentrations. In these experiments bacteria are suspended in MB and the displaced fluid is MB. The first, second and third rows are respectively U /V s = 2, 4 and 8 and the first, second and third columns are bacteria concentrations of OD 3, 5 and 7.5.
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 338 Figure 3.38 -Concentrations profiles for different flow velocities U after approximately same volume of injection for different bacteria concentrations. In these experiments bacteria in MB displaces MB. The blue, red and yellow lines are respectively for U /V s = 2, 4 and 8. The bacteria concentrations are: (a) OD 3, (b) OD 5 and (c) OD 7.5.
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 339 Figure 3.39 -Spatial derivative of the concentration profile ∂c ∂y for different flow velocities U after approximately same volume of injection for different bacteria concentrations. In these experiments bacteria suspended in MB displaces MB. The blue, red and yellow lines are respectively U /V s = 2, 4 and 8. The bacteria concentrations are: (a) OD 3, (b) OD 5 and (c) OD 7.5. The x-axis is shifted by y 0 , defined as the position in y where ∂c ∂y reached its minima. The black dotted line corresponds to the fit by Gaussian function for the yellow curves in all cases. The corresponding concentration profiles in the same window of yy 0 is also plotted.

Chapter 3 .

 3 Miscible flow displacement experiments concentrations. This indicated that at this flow velocity, bacteria concentration has a relatively less influence on the concentration profiles. Now, let us look at the spatial derivatives curves for the intermediate and low flow velocities (see blue and red curves in Figs. 3.39(a) -(c))
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 340 Figure 3.40 -Shift of minima value of the spatial derivative with respect to the symmetric minima point y(c = 0.5), ∆S for different flow velocities and bacteria concentrations: OD 3 (■), OD 5 (▶) and OD 7.5 (▲).
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 33 Figure 3.41 -∆y 2 for different flow velocities and bacteria concentrations: OD 3 (■), OD 5 (▶) and OD 7.5 (▲). The black line corresponds to the spreading that was estimated from Taylor's equation.
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 342343 Figure 3.42 -Concentration fields for the lowest flow velocity U /V s = 2 at times of injection t = 82, 103, 124 and 144 mins respectively. The two bacteria concentrations are: (a) OD 3 and (b) OD 7.5. In these experiments bacteria suspended in MB displaces MB.

Figure 3 .

 3 Figure 3.44 -(a) Position of y(c) as function of time for three concentrations: c = 0.2 (•), 0.4 (⋄) and 0.6 (□). The straight lines are the linear fit of the data and their slopes gives their velocity v(c). The data were from an experiment performed with OD 7.5 at U /V s = 2. (b) Normalized velocity V (c) (= v(c) ūbact ) as a function of c
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 345 Figure 3.45 -Velocity of the tip normalized with average velocity of the bacteria front measured from dilute concentration experiments (see section (3.3.1)) for different flow velocities and bacteria concentrations: OD 3 (■), OD 5 (▶) and OD 7.5 (▲).
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 346 Figure 3.46 -Concentration fields for different flow velocities U after approximately same volume of injection and for bacteria concentration of OD 5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The first, second and third rows are respectively U /V s = 1.5, 3 and 6.
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 347 Figure 3.47 -Concentrations profiles for different flow velocities U after approximately same volume of injection for bacteria concentration of OD 5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The blue, red and yellow lines are respectively for U /V s = 1.5, 3 and 6.
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 348 Figure 3.48 -Spatial derivatives of the concentration profiles ∂c ∂y for different flow velocities U after approximately same volume of injection for bacteria concentration of OD 5. (a) In those experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The blue, red and yellow lines are respectively for U /V s = 1.5, 3 and 6. (b) Same experiments, but with bacteria suspended in MB displaces MB. The blue, red and yellow lines are respectively U /V s = 2, 4 and 8. The x-axis is shifted by y 0 which is defined as the position in y corresponding to the minima of ∂c ∂y . The black dotted line corresponds to the fit by Gaussian function for the yellow curves in all cases.
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 349 Figure 3.49 -Normalized velocity V (c) as function of c for different bacteria concentrations and flow velocities. In these experiments bacteria suspended in 1% PVP-MB displaces 1% PVP-MB. ▶: OD 5 and ▲: OD 7.5. The blue, red and yellow symbols are respectively for U /V s = 1.5, 3 and 6.

Figure 3 . 50 -

 350 Figure 3.50 -Concentration fields for two flow velocities U after approximately same volume of injection and for bacteria concentration of OD 7.5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The first and second rows are respectively U /V s = 1.5 and 3.
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 351 Figure 3.51 -Concentrations profiles for two flow velocities U after approximately same volume of injection for bacteria concentration of OD 7.5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The blue and red lines are respectively for U /V s = 1.5 and 3.
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 51 for these 2 experiments. At the lowest flow velocity (see blue curve in Fig.3.51), we observed 5 different regimes;
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 352 Figure 3.52 -Concentration fields for two flow velocities U at different times of injection. In these experiments bacteria at OD 7.5 are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. The first and second columns are respectively U /V s = 1.5 and 3. Each row corresponds to a specific time of injection. The volume of injection is the same for the fields presented in the two columns of each row.
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 353 Figure 3.53 -Concentrations profiles for different flow velocities U at different times of injection and for bacteria concentration of OD 7.5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. (a) and (b) are respectively for U /V s = 1.5 and 3. The blue, red, yellow and purple corresponds to increasing times of injection and the corresponding times are specified in the legend of the plot.

Figure 3 . 54 -

 354 Figure 3.54 -Spatial derivatives of the concentrations profiles for different flow velocities U at different times of injection and for bacteria concentration of OD 7.5. In these experiments bacteria are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB. (a) and (b) are respectively for U /V s = 1.5 and 3. The blue, red, yellow and purple corresponds to increasing times of injection and the corresponding times are specified in the legend of the corresponding concentration profile plot in 3.53. The x-axis is shifted by y 0 which is defined as the position in y corresponding to minima of ∂c ∂y
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 355 Figure 3.55 -Normalized velocity V (c) as function of c for bacteria concentration of OD 7.5 and two different flow velocities. In these experiments bacteria suspended in 1% PVP-MB displaces 1% PVP-MB. The blue and red symbols are respectively for U /V s = 1.5 and 3.
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 2356357 Figure 3.56 -Concentration fields for one of the experiments performed in a channel of width W = 2 cm. Here, bacteria at concentration OD 7.5 are suspended in 1% PVP-MB displaces 1% PVP-MB. The flow velocity is U /V s = 1.5. (a) Run 1 (b) Run 2

12 Figure 3 . 58 -

 12358 Figure 3.58 -Concentration fields for a flow velocity of U = 17.5 µm/s in a channel of width W = 2 cm at different times of injection and for fluids with three different viscosity contrasts. In these experiments, water dyed with fluorescein displaced different solutions of PVP. The viscosity ratios are (a) M = 3.2 (Water dyed with fluorescein displaces 1% PVP solution) (b) M = 6.5 (Water dyed with fluorescein displaces 2% PVP solution) (c) M = 12 (Water dyed with fluorescein displaces 3% PVP solution).

2 Figure 3 . 59 -

 2359 Figure3.59 -Shape of the concentration front at long times after same volume of injection in a channel of width W = 2 cm for the Newtonian cases and bacteria concentration of OD 7.5. The blue, red and yellow curves are respectively for the Newtonian cases for M = 3.2, 6.5 and 12. The purple and green curves corresponds to two repetitions of bacteria concentration OD 7.5. In the Newtonian case, water dyed with fluorescein displaces a solution with varying concentration of PVP dissolved in water. In the experiments with bacteria,they are suspended in 1% PVP-MB and the displaced fluid is 1% PVP-MB

Figure 3 .

 3  Average width of the concentration front λ estimated from isoconcentration lines normalized by channel width (colored symbols) is plotted as a function of tip velocity V tip normalized by flow velocity U . We also plot the λ/W estimated from mass conservation (black symbols), λ/W = U /V tip[19]. (b) Length of the finger l as function of tip velocity V tip normalized by flow velocity U for different cases. •, ■ and ♦ corresponds to M = 3.2, M = 6.5 and M = 12 respectively. The two ▲ corresponds to the two repetitions done with bacteria concentration of OD 7.5 suspended in 1% PVP-MB displacing 1% PVP-MB.
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 362 Figure 3.62 -Length of the finger l as function of modified Péclet number P e mod for different cases. •, ■ and ♦ corresponds to M = 3.2, M = 6.5 and M = 12 respectively. The two ▲ corresponds to the two repetitions done with bacteria concentration of OD 7.5 suspended in 1% PVP-MB displacing 1% PVP-MB.
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 363 Figure 3.63 -P e-M phase diagram highlighting the different regimes observed in our experiments with bacteria suspensions; (i) Regime D (•), (ii) Regime R (♦),(iii) Regime S (■) and, (iv) Regime F (▲) and the two corresponds to experiments performed in flow cells of two different channel widths; W = 1 cm (purple symbols) and W = 2 cm (red symbol). An example of the concentration field corresponding to each regime is also included to depict the shape of the concentration fronts. The values of M are estimated from the rheogram of[START_REF] Lopez | Influence of the coupling between flow and bacteria on the fluid rheology and on bacterial transport[END_REF][START_REF] Chui | [END_REF].

  (uc) = D 0 ∇ 2 c (3.5.3)

  µ e (c, P e f ) = µ s
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 121 Figure A.1 -Longitudinal dispersion coefficient D ∥ normalized by the diffusion coefficient in absence of flow D 0 as function of the integration time τ in s. The flow rate is such that γm = 50s -1 . (■) q=1, (♦) q=2 and (•) q=10. The dashed line represents the asymptotic value
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 3 Figure B.3 -Average velocity of bacteria as function of δt for OD 0.3 suspsended in MB
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 56 Figure B.5 -Layout of the metallic mold for the Hele-shaw cell. The main channel is of dimensions L x W x 2H. Where L = 24 cm, W = 1 cm and 2H = 0.05 cm
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 7 Figure B.7 -Rheogram for two different PVP concentrations in MB. 0% PVP (♦) and 1% PVP (•)

Figure B. 8 -

 8 Figure B.8 -(a) Average velocity and (b) Rotational diffusivity as function of time. The bacteria were suspended in 2 different swimming mediums in which L-Serine (250 mM) was dissolved. The suspension were filled in a glass capillary sealed at two ends. 0% PVP in MB-serine (♦) and 1% PVP in MB-serine (•).

  Fig. B.8(b).

B. 3 . 5 Figure B. 9 -

 359 Figure B.9 -Rheogram of swimming bacteria suspensions for different concentrations of bacteria in two different swimming mediums. The effective viscosity was normalized with respect to the plateau value at high shear rates. The bacteria concentrations used were; (a) OD 1, (b) OD 3 and (c) OD 7.5. 0% PVP in MB-serine (♦) and 1% PVP in MB-serine (•).
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Chapter 3. Miscible flow displacement experiments

We also observed that the shape of the forehead of the finger in the case of bacteria suspensions (purple and green curves in in Fig. 3.59) were very similar to that M = 3.2 case with Newtonian fluids. However, the shape of the concentration front in the rear for the bacteria suspension was more meandering than the Newtonian case. This was associated with the initial instability that was observed close to the entrance at early times for bacteria suspensions. To characterize the width λ of the finger, we estimated the distance along x

Results

Appendix A A.1 Langevin equation for particle orientation

In this section, we show that the Langevin equation 2.1.9 preserves the magnitude of p equal unity. Furthermore, we show the equivalence of the Langevin model to the two-dimensional model employed in the study by Rusconi et. al [3] by writing 2.1.9 in polar coordinates. First, we demonstrate that the magnitude is conserved. To this end, we write the Langevin equation for p 2 (t) = p(t).p(t). Using the Ito rule [153], we obtain

As p.p ∧ ξ p = 0, we have

For p 2 (t = 0) = 1, the solution of this equation is constant and p 2 (t) = 1. Thus, the magnitude is unity and conserved.

In order to see the equivalence to the model by [3], we first write Eq.2.1.9 in two dimensions,

where ρ = (p 2 -p 1 ) ⊤ . We now set p 1 = cos(θ) and p 2 = sin(θ). The Langevin equation for the angle can be written in general as

We determine the drift and diffusion coefficients A and B by comparison with the equation for p 1 = cos(θ). We can write

where we defined

with e 1 the unit vector in 1-direction. We substitute A.1.4 into A.1.5 to obtain

By comparison, we find that B(θ) = D R and

Thus, the Langevin equation for the angle θ is given by

The strain rate tensor for two-dimensional Poiseuille flow is E 11 = E 22 = 0 and

and local vorticity is W 11 = W 22 = 0 and

Thus, we obtain for

where we defined C = q 2 -1 q 2 +1 E -W . And for A = -F/ sin(θ) = -F/p 2 , we obtain

Now we note that
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where we used that p 1 = cos(θ) and σ = u 0 y/a 2 . Thus, we obtain for the angle θ the Langevin equation

which is equivalent to the Langevin equation considered by [3].

A.2 Numerical implementation

where β = q 2 -1 q 2 + 1 is the bretherton constant.

The above equations (A.2.1) -(A.2.6) where coded in MATLAB. The channel height varies from z = -H to z = H and the width varies from x = -W to x = W and we have chosen W ≫ H.

The particles were initially uniformly distributed between -W and W in xdirection, -H and H in z-direction and at y = 0. The initial orientation angles θ and ϕ were uniformly distributed between 0 to 2π and the initial orientations were given by:

The boundary condition was implemented as follows: if the position of particle crosses the boundary it was restricted to swim along the boundary until it reorients itself and flows back into the channel i.e. if x(t) > W or x(t) < -W the particle was repositioned to x(t) = W or -W until it reoriented and translated back into the channel. The same condition was used for z(t) as well.

The above equations were for determining the position and orientation for one particle at any instant time (t) provided its position and orientation of previous time step (t -τ ) is known. The same equations were solved simultaneously for 10 5 particles. We solved the equations to determine the new positions and orientations in time, until a steady state regime was obtained.

A.3 Convergence test

The choice of an integration time step τ was a key parameter for performing the simulations. We chose the value of τ as function of period of rotation at a given γ m value. The period of rotation is defined as:

It can be seen that for any given value of γm , q = 1 would have the lowest T value. Therefore the choice of τ was with respect to T (q = 1). In order determine the best choice of τ , we performed the simulations for different τ values for a high P e case ( γm = 50) and checked for the convergence of D ∥ /D 0 values. We chose a high P e case, a regime at which there is a stronger effect of the shear-coupling terms. Since the shear coupling terms consists of non-linear terms, any error due to a bad choice of τ would result in a multi-fold increase in error.

In Fig. A.1, the choice of τ for q = 1 and 2 were T /50, T /100, T /200, T /350 and T /500. We observe the convergence of D ∥ /D 0 to an asymptotic value as we decrease the value of τ . We observe the convergence to happen from τ = T /350 onwards for q = 1 and from τ = T /200 onwards for q = 2. For the case of q = 10, since the values converged at a higher τ , we stopped the test for convergence at T /200 itself. This convergence in the values of D ∥ /D 0 is also corroborated with a convergence of steady steady profiles of particles in the gap as shown by Fig. A.2. Based on the results of the convergence test carried out (c.f. Figs. A.1 and A.2), we chose τ = T /350 for q = 1 simulations, τ = T /200 for q = 2 simulations and τ = T /50 for q = 10 simulations.

Appendix B B.1 Image analysis of the bacteria suspension microscopic images

This section details on the tracking protocol applied for analyzing the microscopic images of the bacteria suspension to obtain the track statistics of individual bacteria.

B.1.1 Obtaining the track statistics

The raw track statistics data was obtained using the Trackmate plugin in Fiji (ImageJ) software. At first, the sequence of images to be analyzed was imported in bio-format into the Fiji (c.f. ). These sequence of images were then analyzed using the trackmate plugin. Before tracking detection of the bacteria, there were a few input paramters that were required to be specified.

Firstly, the bright spots were approximated to a circle (blob). The blob radius and threshold value (difference of intensity value between a blob and background) were given as input for the trackmate to detect the bacteria in the images. Fig. B.2 shows the detection of bacteria done by trackmate using a blob radius of 2 µm and threshold value of 400 as an input. The detection was carried out for all the images in the stack. The next step is to extract the trajectories of individual blobs by linking the positions of each blob across different images in the stack and the following protocol was employed.

To perform the extraction of trajectories of individual blobs, we had to input three parameters; (i) maximum linking distance, (ii) gap closing maximum distance and (iii) gap closing maximum frame gap. The maximum linking distance is the maximum distance within which the trackmate would search for another blob in a subsequent image with respect to its position in the previous image and link the two positions together and form a trajectory. The maximum gap closing distance is the maximum radius within which trackmate would search for the same blob within We then, computed the velocity V i using sampling time δt between 0.1s and 10s. The magnitude of the average velocities over all tracks V s is plotted as function of sampling time δt in Fig. B.3. We observe the value of V s to drop at δt > 7 s. This is due to the lack of enough track statistics to average over at these δt values. We extracted the V s value from the assymptotic region (V s at δt = 0.4s) as the average swimming velocity of the bacteria. To determine the rotational diffusivity of the bacteria the dot product of the velocity vector projections V i (t).V i (t + τ ) were calculated for different time spacings τ . The values were then normalized by the magnitude of velocities and were then averaged over time and tracks to obtain the mean cosine angle of projection between these two vector projections cos θ(τ ).

In Fig. B.4(a) we observe two relaxation time scales; a first rapid drop followed by another drop with a smaller slope for τ > 0.7 s. The first slope is attributed to the noise and the second to the rotational diffusivity D R due to the bacteria's run and tumble motion. To estimate D R we fit the curve with an exponentially decaying function [51]