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Introduction

The trapped mode is a mathematical description of free oscillation which is widely observed in the practical application. Trapped mode mainly limited to the vicinity of the structure, and it decays to zero at a large distance from the structure. The medium can be fluid or other elastic materials. Trapped mode is very important because it is related to resonance of initial value problem. For acoustic and water waves, forcing motion at a frequency close to the trapped mode frequency will produce large fluid oscillation. Although it may be limited by nonlinearity and fluid viscosity. Trapped mode is known to exist in various physical environments and refers to in different contexts by various names: acoustic resonance, Rayleigh-Bloch wave, edge wave, array guided surface wave and bound state, etc. For the analysis of trapped mode problems, there are already a lot of literatures on numerical and physical aspects.

In a two-dimensional open system, the acoustic wave spreads in the waveguide in the presence of an obstacle, there will be the amplification of sound pressure around the obstacle where exists trapped mode below and above the cut-off frequency. It brings considerable damage to the system, such as noise, stability and security issues. The trapped mode is a kind of free oscillation which often occurs in the mathematical theory and exists below the cut-off frequency. For the mode exists above the cut-off frequency, is called embedded trapped mode. If we can predict the frequency of possible acoustic resonances and avoid any coincidence with mechanical resonances, the danger of severe vibrations can be greatly eliminated. The prediction of trapped mode's frequency can help avoid the appearance of high sound levels. Meanwhile, the study of obstacle's geometric parameters and fluid field also allow us achieving desired purpose by adjusting the geometry of obstacle.

In the previous research, they mainly concentrated on the solving of Helmholtz equation, which means that the variation of fluid field was not taken into consideration. The objective of this paper is to numerically compute the trapped mode (including the embedded trapped mode) with the presence of varying fluid field. The interference between fluid and acoustic field due to the appearance of different series of obstacles will be taken into consideration.

With the internal fluid field calculated by solving Euler equations adopted as an initial condition, its acoustic field is obtained by solving the governing Galbrun equations. Their relevant trapped modes are captured through scanning the acoustic frequency. This thesis consists of seven chapters. The first chapter is introduction. The second chapter mainly describes the background and research history of trapped mode, many literatures are introduced. Furthermore, the deficiencies of previous researches are summarized and the main topic of this thesis is briefly depicted.

The third chapter focus on the study of basic theory. The theoretical framework of this thesis is stated. Firstly, the general equations of fluid mechanics are recalled. There are two approaches to linearize of these equations: one is based on Eulerian description of the perturbation and the other one is based on mixed Eulerian-Lagrangian description. Secondly, the mixed Galbrun equation, as well as boundary conditions and the associated energy properties, is represented. Thirdly, the perfectly matched layer associated with Galbrun equation is introduced. In the fourth section, Navier-Stokes (NS) equations of fluid is presented in detail. Based on the high-speed air flow researched in this study, standard k-ε turbulence model, which is especially suitable for the fully developed turbulent flow, is adopted to solve steady Reynolds-averaged Navier-Stokes equations. In order to achieve the coupling of acoustic and fluid field, a method for using non-potential flow is proposed. Finally, the pressure and displacement mixed finite element is introduced, and the triangle element T4-3c is selected to numerically calculate the coupled acoustic and fluid field.

The physical model adopted is presented in Chapter 4, there are two ways to excite the system: imposed mode and acoustic source. These two methods are introduced in detail. The convergence of calculation mesh is also verified. What's more, The formula for calculating the cut-off frequency with different Mach number is derived and the nondimensionalization of geometrical and physical parameters are shown. At last, the procedure of searching for the trapped mode is explained.

In the fifth chapter, for the analysis of trapped mode, there are already a lot of literatures on numerical and physical aspects. In this part, some results and related concepts are shown.

There are various methods for the study of trapped mode in the references, but they have studied the trapped mode all associated with Helmholtz equation, which is primarily suitable for the case of without flow or uniform mean flow. Hence, a numerical calculation model involved with Galbrun equation with the uniform mean flow is proposed. In order to verify the effectiveness of the numerical method, numerous cases without flow and with uniform mean flow are calculated and the obtained results are compared with those given in references. The comparison results prove the accuracy of adopted method.

In Chapter 6, the Galbrun equation which allows us to use non-potential flow, that is the varying fluid velocity, pressure and density field is imposed simultaneously, is applied.

Under the influence of many factors, the calculation becomes more complicated and accurate. Different rectangular and elliptical obstacle models are mainly dealt. Because of the obstruction of different geometric obstacles, the resulting fluid field is no longer uniform. In order to consider the effects of non-uniform fluids, including velocity, pressure, etc., the results calculated from Fluent are appended to the calculation of acoustic field. Their relevant trapped modes are captured through scanning the acoustic frequency.

At the same time, the effects of various parameters of obstacles on the trapped mode frequency are also studied. For rectangular obstacles, the influence of its length on the calculation results is investigated; For elliptical obstacles, the effects of its size and the rotation 

Trapped mode in the waveguide

Trapped mode describes some mathematical results of the linearization problem of the interaction of water waves with free-floating structures. It was first discovered in a failure to prove uniqueness. For a particular geometry, the uniqueness of the solution at a particular frequency is equivalent to the absence of trapped mode at that frequency.

The history of trapped mode

John (1950) established the uniqueness of a particular class of geometries and since then many other partial results have been obtained (for example, Simon and Ursell (1984) [START_REF] Mj Simon | Uniqueness in linearized two-dimensional water-wave problems[END_REF]).

Many (probably most) researchers in the field believed that the acquisition of a general uniqueness proof was only a matter of time, which was valid for any structural geometry and for all frequencies [START_REF] John | On the motion of floating bodies II. Simple harmonic motions[END_REF]. [START_REF] Ursell | Surface waves on deep water in the presence of a submerged circular cylinder. I[END_REF] proved the uniqueness of a cylinder immersed in an infinitely deep fluid by using a method that involved a system of linear equations in an infinite number of unknowns; this system always possessed a solution [START_REF] Ursell | Surface waves on deep water in the presence of a submerged circular cylinder. I[END_REF]. [START_REF] Ursell | Trapping modes in the theory of surface waves[END_REF] found that a trapped mode occurs when a mass of fluid is bounded by fixed surfaces and by a free surface of infinite extent. Both a mode on a sloping beach and a mode near a submerged circular cylinder were constructed mathematically, this existence of trapped mode was discovered in a water environment [START_REF] Ursell | Trapping modes in the theory of surface waves[END_REF].

Numerous tests were done by [START_REF] Parker | Resonance effects in wake shedding from parallel plates: some experimental observations[END_REF] about the air flowing over a series of parallel plates and the results showed that pressure fluctuations occur with amplitudes of the same order of magnitude as the air stream dynamic head. The waves formed a series of resonances and were excited by coda waves falling off the trailing edge of the board. This kind of resonance was caused almost entirely by acoustic effects and has little to do with the mechanical vibration of the plate [START_REF] Parker | Resonance effects in wake shedding from parallel plates: some experimental observations[END_REF]. After the experimental methods, [START_REF] Parker | Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies[END_REF] proposed a relaxation method of calculating the resonant frequency and corresponding amplitude distribution of pressure. For each mode, there is a critical value of the plate chord/pitch ratio. Below this value the mode does not exist. Values just above the critical regions of maximum amplitude are large and decay gradually in the upstream and downstream directions. When it is much larger than the critical attenuation value, it is fast, and large pressure amplitudes only appear around the plate [START_REF] Parker | Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies[END_REF].

Since then many other partial results have been obtained (for example, Simon and Ursell (1984) [START_REF] Mj Simon | Uniqueness in linearized two-dimensional water-wave problems[END_REF]), but a general proof of uniqueness for all bodies at all frequencies was not found.

The reason for the absence of such a proof soon became evident. For example, the nonuniqueness in a two-dimensional water wave problem has been done by [START_REF] Mciver | An example of non-uniqueness in the two-dimensional linear water wave problem[END_REF], which does not radiate waves to infinity and interprets two of flow streamlines as body boundaries. In addition, the question of whether a trapped mode can exist at more than one frequency for a given pair of bodies is under investigation. Preliminary numerical evidence indicates that it is possible to construct bodies for which exists trapped modes with more nodal lines, but it is not yet clear whether more than one mode can exist for a given pair of bodies [START_REF] Mciver | An example of non-uniqueness in the two-dimensional linear water wave problem[END_REF] [START_REF] Allan | Acoustics: An introduction to its physical principles and applications[END_REF].

Detailed reviews of these literatures are provided by [START_REF] Linton | Embedded trapped modes in water waves and acoustics[END_REF], they thought that the existence of eigenvalues that are embedded in the continuous spectrum is much more difficult to establish and they are much harder to locate. There appears to be virtually no general theory for such eigenvalues and each of the methods described in this article is limited in scope. Embedded mode for a number of simple geometries have been discovered. In the meanwhile, the only general procedure is available to compute complex resonances of the problem numerically and then look for parameter values at which one or more of these resonances have zero imaginary part [START_REF] Linton | Embedded trapped modes in water waves and acoustics[END_REF].

Another point of view on this issue was proposed by [START_REF] Ursell | Trapping modes in the theory of surface waves[END_REF], who established the correspondence between the finite energy of trapped mode and the type of eigenvalue that caused it. If the fluid is surrounded by a fixed surface and an infinite range of free surfaces, a vibrational spectrum with infinite energy forms a continuous spectrum. Trapped mode has a finite total energy and corresponds to discrete eigenvalues embedded in a continuous spectrum [START_REF] Ursell | Trapping modes in the theory of surface waves[END_REF]. In the later study, [START_REF] Jones | The eigenvalues of ∇ 2 u + λu = 0 when the boundary conditions are given on semi-infinite domains[END_REF] established a semi-infinite domain of an infinitely large cylinder, which has a continuous spectrum and a discrete embedded spectrum. His work established the Helmholtz equation with appropriate boundary conditions [START_REF] Jones | The eigenvalues of ∇ 2 u + λu = 0 when the boundary conditions are given on semi-infinite domains[END_REF].

Waveguides with one or more obstacles of different shapes placed symmetrically or offcentered with respect to the centerline have been extensively studied in various situations because the problem is very important for applications. This configuration is mathematically equivalent to the configuration of an infinite-period array of such obstacles. A finite array of structures may exhibit a "near" trapped mode. In practice, the large response forces the frequency of trapped mode of corresponding infinite array close. A typical example would be the support columns of a long bridge, which can be represented as two discs in a waveguide.

Chen et al. (2012) used the zero-field BIEM formula of a degenerate kernel to solve the water wave scattering problem involving four cylinders. The physical phenomena of trapped mode and numerical phenomena caused by virtual frequencies in BIEM are discussed [START_REF] Chen | On near-trapped modes and fictitious frequencies for water wave problems containing an array of circular cylinders using a null-field boundary integral equation[END_REF]. [START_REF] Callan | Trapped modes in two-dimensional waveguides[END_REF] applied the mathematical technique adopted by Ursell and discovered that the trapped mode appears in the vicinity of a circular cylinder. It has been shown that a local mode oscillation symmetrically exists near the vertically-fixed rigid cylinder in a two-dimensional waveguide. The two-dimensional waveguide consists of two symmetrically placed circles. Parallel lines indicate, or is equivalent to open water [START_REF] Callan | Trapped modes in two-dimensional waveguides[END_REF].

Trapped mode or edge wave mode is well known in linear water wave theory. They occur at discrete frequencies below a certain cut-off frequency, and consist of local oscillations near long, submerged objects that are trapped at finite or infinite depth, or on inclined beaches. The unknown is existence of trapped modes in some acoustic problems, where the governing equation is the Helmholtz equation. [START_REF] Jones | The eigenvalues of ∇ 2 u + λu = 0 when the boundary conditions are given on semi-infinite domains[END_REF] proved the existence of such patterns, which correspond to the point eigenvalues of the spectrum of differential operators that satisfy certain boundary conditions in a semi-infinite region. [START_REF] Evans | The wide-spacing approximation applied to multiple scattering and sloshing problems[END_REF] used the wide-spacing approximation to consider the scattering of waves from an arbitrary number of identical bodies and the resonance frequency of the rectangular water tank was determined [START_REF] Evans | The wide-spacing approximation applied to multiple scattering and sloshing problems[END_REF]. Evans and Linton (1991) described a construction method for determining point eigenvalues or trapped mode frequencies in two specific problems that satisfy the two-dimensional Helmholtz equation [START_REF] Evans | Trapped modes in open channels[END_REF]. [START_REF] Evans | Trapped acoustic modes[END_REF] pointed out constructive evidence that there were captured acoustic modes near the two-dimensional boundary, with a length of 2a between them, where a is the spacing. The strips and boundary lines meet the Neumann condition, the Dirichlet condition on the midline of the strip's outside can be symmetrical or antisymmetric about the line crossing its center. When the spacing a is large, the equation determining the modal wave number is reduced to the equation proposed by Evans and Linton (1991) using non-strict parameters [START_REF] Evans | Trapped acoustic modes[END_REF] [START_REF] Evans | Trapped modes in open channels[END_REF].

In subsequent research, Evans, Linton, and Ursell (1993) put a thin strip of finite length in a two-dimensional waveguide, this strip is parallel to the walls but not on the tube's centerline. They used the modified residue calculate method to demonstrate the existence of trapped mode for sufficiently long strips. This method was proposed by [START_REF] Evans | Trapped modes in open channels[END_REF] and they also provided a very efficient method to compute the trapped-mode wave numbers. Both symmetric and antisymmetric modes were constructed [START_REF] Evans | Trapped mode frequencies embedded in the continuous spectrum[END_REF]. [START_REF] Evans | Acoustic resonance in ducts[END_REF] also proposed a method based on complex residual theory, which used the very simple transcendental equations to determine wavenumber or frequencies at which acoustic resonances occur in flow ducts of various geometries and with varying boundary conditions. Although all the calculation results are approximate, they are still very accurate for most parameter values [START_REF] Evans | Acoustic resonance in ducts[END_REF]. An infinite range of two-dimensional acoustic waveguides described by two parallel lines contains obstacles of various shapes that are symmetrical with respect to the centerline of the waveguide. [START_REF] Evans | Existence theorems for trapped modes[END_REF] presented an approach based on the complex residue theory in order to simplify the transcendental equation and detected that it is appropriate for various configurations. It turns out that with the absence of excitation, there is at least one asymmetrical oscillation mode around the center line, which corresponds to a local oscillation at a specific frequency, and the oscillation mode decays with distance from the obstacle. To illustrate this they indicated how the method can be applied to the case of a two-dimensional acoustic waveguide containing symmetric indentations on opposite sides [START_REF] Evans | Existence theorems for trapped modes[END_REF].

Generally, artificial boundaries must usually be introduced to limit the infinite computing domain to a limited range. [START_REF] Evans | Trapped modes about multiple cylinders in a channel[END_REF] developed a systematic method to obtain the hierarchy of local boundary conditions at these artificial boundaries. These boundary conditions not only ensure stable differential approximations, but also minimize (non-physical) artificial reflections that occur at the boundaries. He also combined the multipole extension method with Bessel function addition to enable accurate calculations of trapped modes. The trapped mode occurs in a narrow channel that contains any number of bottom-mounted cylinders of arbitrary size and spacing positioned on the center plane of the channel. It has been shown that there are usually up to N trapped mode frequencies below the lowest cutoff of this channel, corresponding to any configuration of N cylinders, and the exact number mainly depends on whether the mode is Dirichlet or Neumann type and its geometry [START_REF] Evans | Trapped modes about multiple cylinders in a channel[END_REF] [START_REF] Evans | Trapping and near-trapping by arrays of cylinders in waves[END_REF] [21] [START_REF] Evans | On the existence of embedded surface waves along arrays of parallel plates[END_REF]. Maniar and Newman pointed out that both types of trapped modes are important in offshore engineering. Under the assumption of linear theory, the water wave diffraction caused by a series of bottom mounted cylinders is analyzed. The cylinders are in the same geometry and are equally spaced along the array. When the number of cylinders is large, finite near-resonance modes occur at critical wave numbers between neighbor cylinders and cause an abnormally large load on each element of the array. These modes are related to the existence of a uniform solution that diffracts through an array that extends to infinity in both directions. This phenomenon is related to the presence of notches in the channel. A second trapped mode was established, corresponding to the Dirichlet boundary condition on the channel wall, and a higher wave number sequence where there is a trapped mode [START_REF] Hd Maniar | Wave diffraction by a long array of cylinders[END_REF] [START_REF] Evans | Edge waves along periodic coastlines[END_REF]. [START_REF] Evans | Trapping and near-trapping by arrays of cylinders in waves[END_REF] introduced some of the latest developments and new results about trapping waves in vertical cylindrical arrays. They introduced some of the latest developments and new results about capturing waves in vertical cylindrical arrays. In particular, he examined the circular arrangement of cylinders and the case of finite and infinitely periodic linear arrays of the same cylinder. And he found that only in infinite arrays, pure trapped (called Rayleigh-Bloch) or side waves exist. For a certain number of dominant waves, they will be reduced to a cylindrical trapped mode between two parallel walls with Neumann or Dirichlet conditions. The latter case will be considered separately and give some new results.

In circular arrays and finite linear arrays, the concept of near-trapping was introduced, where large resonant motions were found to occur at certain frequencies of the incident wave field.

In the case of a finite linear array, these near-trapped frequencies are related to the Rayleigh-Bloch trapped frequencies of an infinite array. He also checked the case of two or more rows of cylinders in a linear array [START_REF] Evans | Trapping and near-trapping by arrays of cylinders in waves[END_REF] [START_REF] Evans | Trapped waves over symmetric thin bodies[END_REF].

In an open resonator, some are open or some are isolated from the outside world. Such an open resonator loses energy to infinity through radiation. The numerical calculation of the corresponding resonances complicates the situation due to the reflection of the outgoing wave at the boundary of the finite element mesh. These reflections can be reduced to extremely low levels by applying a perfectly matched layer (PML) that absorbs boundary conditions that separate discrete resonances from continuous spectra. Hein, Hohage, and Koch (2004) numerically calculated the resonances of several rectangular geometry open resonators through multi-domain spectral matching methods and the PML absorption boundary conditions. The disadvantage of the absorption boundary condition is that the PML is physically unrelated to other calculation points, but in order to attenuate the output wave to a lower level, the wave reflected from the outer end of the PML is ignored [START_REF] Hein | On resonances in open systems[END_REF].

Due to the problem of radiation losses, resonances in open systems extend to infinity solutions. However, when approaching a symmetric center object in a pipeline domain or periodic array, there may be a so-called trapped mode below the first cutoff frequency of the pipeline. Above the first cutoff frequency, there is a trapped mode only for certain parameter combinations. These isolated trapped modes are called embedded modes because their corresponding eigenvalues are embedded in the continuous spectrum of the appropriate difference operator. The trapped mode is very important in the application, because in this case, the entire system is easily activated by the outside. [START_REF] Porter | Trapped modes about tube bundles in waveguides[END_REF] The results show that among the various structures existing in the waveguide, the modes of the circular and elliptical obstacles exactly correspond to the complex resonance with a small imaginary part. In addition, new embedding modes for rectangular cavities with specific aspect ratios have been found, placed symmetrically on both sides of the pipe [START_REF] Duan | Complex resonances and trapped modes in ducted domains[END_REF]. [START_REF] Hein | Acoustic resonances and trapped modes in pipes and tunnels[END_REF] numerically studied the acoustic resonance of a simple threedimensional finite-length structure in an infinitely long cylindrical tube by solving the eigenvalue problem. In order to avoid non-physical reflections at the finite grid boundaries in the uniform cross section of the tube, a perfectly matched absorbing layer boundary condition was applied in the form of complex scaling methods of atomic and molecular physics. Examples of obstacles studied are hard spheres, cylinders, cavities and closed side branches.

For frequencies below the first cut-off frequency of the tube, several trapped modes with zero radiation loss are identified. If the frequency is close to the resonance frequency, this captured mode can be aerodynamically excited. In addition, there is numerical evidence for an isolated embedded trapped mode with a ring cavity above the first cut-off frequency and a closed-side branch below the first cut-off frequency. As an engineering application, They calculated acoustic resonances around simple models of ball valves and high-speed trains in infinite tunnels. Interestingly, if a symmetrical three-dimensional object moves away from the centerline of tube, one mode will become a damped resonance in two dimensions, while the other mode is almost or may actually be trapped in it [START_REF] Hein | Acoustic resonances and trapped modes in pipes and tunnels[END_REF].

McIver et al. ( 2001) investigated the existence of embedded trapped modes for symmetric obstacles which are placed on the centreline of a two-dimensional acoustic waveguide.

The sought modes are antisymmetric about the centreline of the channel and the frequencies are above the first cut-off for antisymmetric wave propagation down the guide [START_REF] Mciver | Embedded Trapped Modes for Obstacles in Two-Dimensional Waveguides[END_REF].

Mciver (2011) also proved the existence of acoustic, Rayleigh-Bloch modes in the vicinity of a one-dimensional (1D) periodic array of rigid, axisymmetric structures using variational principles. The theory is explained by numerically calculating the wavenumber of the Rayleigh-Bloch mode of the circular plate array. Galerkin technique was used to obtain and solve the integral equation of the acoustic wave field near such arrays [START_REF] Mciver | Acoustic Wave trapping in one-dimensional axisymmetric arrays[END_REF]. 2011) proposed an experimental study of the trapped mode around a vertical piercing cylinder symmetrically placed between parallel walls of a long and finite water waveguide. A wave generator placed near the waveguide entrance is used to force asymmetric perturbations into the waveguide, the free-surface deformation field is measured using the global single-shot optical profilometric technique. In this configuration, for a series of drive frequencies below the cut-off frequency, several values of the aspect ratio a/d were explored.

Cobelli et al. (

The obtained field is decomposed in the harmonics of the drive frequency, the linear effects are isolated, and then they are separated according to the symmetry of the problem. For each aspect ratio considered, the spatial structure of the trapped mode is obtained and compared with the theoretical predictions given by the multiple expansion method. The reflection and transmission coefficients of the waveguide-barrier system were further characterized, which led to the construction of a resonance curve, indicating the presence of one or two trapped modes (depending on the value of a/d). From these curves, the frequency dependence of the trapped mode with geometric parameters a/d was determined and successfully compared with theoretical predictions within the framework of linear wave theory [32] [33].

Sargent and Mestel (2018) studied the trapped mode of the Helmholtz equation in an infinite two-dimensional acoustic waveguide with Neumann or Dirichlet walls. They used a robust boundary element scheme to study the modes and induced an effective method for distinguishing between genuine trapped modes and spurious solutions. This method can also be used to detect and study "nearly trapped modes" (NTM). This has important practical implications because they show many characteristics of trapped mode, but do not require perfect geometry. In an infinite two-dimensional pipe, there are one or two disks on its centerline. The pipe wall can be rectangular, triangular or smooth cavity. The combination of circular obstacles and rectangular cavities was studied in two boundary conditions of Neumann and Dirichlet, and it was proved that the movable disc can be used to detect irregularities of the coronary wall. Their numerical methods have been validated against known results, and many new patterns have been found inside and outside the continuous spectrum.

The obtained results showed that the symmetry line is an important condition for forming trap mode resonance. For the problem of discrete embedded trapped mode solutions with a specific geometry, adding a geometric parameter that preserves symmetry often results in a continuous set of trapped mode [START_REF] Cristina | Trapped modes of the Helmholtz equation in infinite waveguides with wall indentations and circular obstacles[END_REF].

Summary

In this chapter, the references related to the trapped mode is introduced, and other people's research on trapped mode are described in chronological order. Various views of research and different research methods are shared. Most methods are developed associated with Helmholtz equation, and the effects of uniform mean flow on the trapped mode are analyzed.

Chapter 3

Basic theory of the governing equation

The purpose of this chapter is to establish the theoretical framework that will govern the work presented in this thesis. In the first section, the general equations of fluid mechanics are recalled. There are two approaches to linearise these equations: the first is based on a description Eulerian of the perturbation and the second is based on a description mixed Eulerian-Lagrangian. The second section will introduce the Galbrun model, resulting from the mixed representation. It will also introduce the boundary conditions and the associated energy properties. In the third section will introduce the perfectly matched layer associated with Galbrun equation. The governing equation of fluid mechanics is introduced in detail in the fourth section, and a method for adding non-uniform fluid is proposed. Finally, the variational formulation used for numerical resolution is presented.

General equations

In fluid dynamics, the Euler equation is a set of equations that governs the motion of a nonviscous fluid, named after Leonhard Euler:

             dρ dt + ρ∇ • v = 0 ρ dv dt + ∇p = 0 dp dt -c 2 dρ dt = 0, (3.1) 
Where ρ is the density, v is the particle velocity and p is the pressure. The derivative d/dt = ∂/∂t + v • ∇ and c is the speed of sound. The equations represent the conservation of mass (continuity), momentum , and energy, respectively, corresponding to the Navier-Stokes equations with zero viscosity and no heat conduction terms. In the case of a perfect gas in isentropic evolution, the following relationships can also be considered:

p ρ γ = cste, c 2 = γ p ρ (3.2)
where γ is the heat capacities.

Linearisation of Euler Equations (LEE)

Before the linearisation of the equation of fluid mechanics, it is necessary to focus on the two types of representation that are used in the Eulerian description. The first uses the Euler representation method, which takes into account the Euler perturbation; the second is the mixed representation, which is more original and less known, involving so-called Lagrangian disturbances, which was originally introduced by Galbrun in 1931 [START_REF] Galbrun | Propagation d'une onde sonore dans l'atmosphère et théorie des zones de silence[END_REF].

Eulerian representation

The Euler perturbation of any physical quantity (indicated here by the exponent E) can be defined as the difference between the size of its total configuration Ψ and its geometric point

x 0 entrainment configuration Ψ 0 . Ψ E (x 0 , t) = Ψ(x 0 , t) -Ψ 0 (x 0 , t) (3.3)
where is a dimensionless coefficient that defines the amplitude of the disturbance. In the case of a perfect gas in isentropic flow, the system of linearised Euler equations (LEE for Linearised Euler Equations) takes the following form [START_REF] Joel Chorin | A mathematical introduction to fluid mechanics[END_REF] [37]:

       d 0 p E dt + v E • ∇p 0 + γp 0 ∇ • v E + γp E ∇ • v 0 = 0 d 0 v E dt + v E • ∇v 0 + 1 ρ 0 ∇p E + p E ρ 0 c 2 0 d 0 v 0 dt = 0 (3.4)
where p E is the Eulerian disturbance of the pressure, v E is the velocity, v 0 is the speed of the training flow and ρ 0 the mass average volume.

Mixed representation

Mixed representations include the consideration of Lagrangian disturbances written according to Euler variables. The Lagrangian disturbance of a variable Ψ, noted here by an exponent L, can be defined as the difference between the variable in its total configuration and its driving configuration for the same particle a.

Ψ L (a, t) = Ψ(a, t) -Ψ 0 (a, t) (3.5)
The Lagrangian perturbation is thus clearly associated with the same particle and not with the same geometrical point x 0 . Indeed, we can directly write this definition in terms of the Eulerian variable:

Ψ L (x 0 , t) = Ψ(x, t) -Ψ 0 (x 0 , t) (3.6)
where x 0 the position of the particle mathb f a in its training configuration and x is the position of the same particle in its total configuration (see Fig 3.1).

Ψ L (x 0 , t) = Ψ E (x 0 , t) + w L • ∇Ψ 0 (x 0 , t) (3.7)
where w L denotes the Lagrangian disruption of the displacement:

w L (x 0 , t) = x(t) -x 0 (t). (3.8) 
disrupted trajectory of a tranning trajectory of a (a, t ) 

0 0 0 0 w(x,t) (x,t) (x ,t) (x ,t) w w L w L = w(x,t) -w (x ,t) 0 0

Galbrun equation

The propagation of an acoustic wave in the fluid environment is governed by the Galbrun equation, which is based on the mixed Eulerian-Lagrangian disturbance of Euler's equations.

It can be written as:

ρ 0 d 2 0 w L dt 2 -∇(ρ 0 c 2 0 ∇ • w L ) -∇ • w L ρ 0 d 0 v 0 dt -T ∇w L • ∇p 0 = 0 (3.9)
where d 0 /dt = ∂/∂t + (v 0 • ∇) constitutes the convective derivative and w L is the displacement of the Lagrangian disturbance. The speed of sound, density and pressure are nondimensionlised with c * 0 (340 m/s), ρ * 0 and ρ * 0 c * 0 respectively. The equation of Galbrun can also be written as follows:

     ρ 0 d 2 0 w L dt 2 + ∇p L -(∇ • w L )ρ 0 d 0 v 0 dt -T ∇w L • ∇p 0 = 0 p L = -ρ 0 c 2 0 ∇ • w L (3.10)
where p L is the Lagrangian disturbance pressure. The Galbrun equation remains valid for a heterogeneous non-homentropic carrier flow (i.e. for spatially non-uniform entropy). Thus, the hypotheses of homogeneity, perfect gas or homentropy do not introduce fundamental simplifications contrary to the LEE. Therefore, it constitutes a general acoustic propagation equation for a fluid and any carrier flow. In the literature, the hypothesis of a carrier flow satisfying the Euler equations is often raised. In this case, the term -ρ 0 d 0 v 0 /dt can be replaced by ∇p 0 , this ensures that the Galbrun equation remains valid for a non-homentropic carrier for heterogeneous fluid (i.e. for spatially non-uniform entropy) [START_REF] Karra | Formulation variationnelle par équations intégrales pour la résolution des problèmes de couplage vibro-acoustique dans un fluide thermovisqueux[END_REF].

Variational formulation

To derive the variational formula, we define the test function w * associated with the Lagrangian displacement w L and the second function p * associated with the Lagrangian pressure p L . We then multiply the first equation of the system by w * and the second equation multiply by p * . Next, we combine the sum of these two expressions into the sound field.

After partial integration, we get the following formula:

- however, it is difficult to generalise flow and geometry using this technique.

Ω 1 ρ 0 c 2 0 p * p L + w * • ∇p L + ∇p * • w L -ω 2 ρ 0 w * • w L -iωρ 0 w * • (v 0 • ∇w L ) + iωρ 0 (v 0 • ∇w * ) • w L -ρ 0 (v 0 • ∇w * ) • (v 0 • ∇w L ) + w * • ∇p 0 (∇ • w L ) -w * • ( T ∇w L • ∇p 0 ) dx dy dz - L p * (w L • n 0 ) -w * • ρ 0 (v 0 • n 0 )(-iωw L + v 0 • ∇w L ) dL = 0 ∀(w * , p * ).

The conservation of energy

The acoustic intensity is a vectorial quantity that indicates how energy is propagated and where it is radiated. This makes it possible to determine the direction of propagation of the group velocity of the wave, or to locate the acoustic sources and the absorption zones.

Depending on the particle, the mixed Eulerian-Lagrangian description forms a thermodynamically closed system [START_REF] Godin | Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid[END_REF]. Thus, in the case of a Eulerian stationary flow, the Galbrun equation derived from a Lagrangian density allows us to establish an exact expression of the energy conservation equation contrary to the LEE:

∂e ∂t + ∇ • i = 0 (3.12)
where e denotes the energy, and i denotes the flow of energy (or instantaneous intensity), which are given by:

e = ρ 0 2 d 0 w L dt • d 0 w L dt + 1 2ρ 0 c 2 0 (p L ) 2 -2(w L • ∇p 0 )p L -ρ 0 d 0 w L dt • v 0 • ∇w L (3.13) and i = (p L -w L • ∇p 0 ) ∂w L ∂t + ρ 0 ∂w L ∂t • d 0 w L dt v 0 . (3.14)
In the general case, for any flow, hydrodynamic contributions may be added to the acoustic phenomena in the energy flow. Thus, the formulation does not correspond to a proper sound intensity.

Perfectly Matched Layer (PML) associated with Galbrun equation

In the aeroacoustic, wave propagation occurs often in very large or infinite domains. Since the domain of numerical computation is necessarily bounded, it must be artificially truncated while ensuring that the boundaries are transparent for the solution [START_REF] Robert L Higdon | Numerical absorbing boundary conditions for the wave equation[END_REF] [44] [START_REF] Jones | The eigenvalues of ∇ 2 u + λu = 0 when the boundary conditions are given on semi-infinite domains[END_REF]. Using a limiting absorption process, they characterised the outgoing solution radiated by a compactly supported source. Then, a Fredholm formulation with perfectly matched absorbing layers was proposed [START_REF] Bécache | Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow[END_REF].

S S R Ω1 Ω2 Γ FIGURE 3.2:
The unbounded medium R is truncated to two different domains by the artificial boundary Γ: Ω 1 is the calculated domain and Ω 2 is the outer domain.

The boundary conditions associated with the Galbrun equation, except the radiation condition in an unbounded medium, will be discussed. In this section, a method based on the PMLs [START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF] associated with the Galbrun equation is described [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF]. First, a brief bibliographic synthesis concerning the treatment of the radiation conditions is presented. The PML layer associated with the linearised Euler equation is then detailed [START_REF] Berenger | Perfectly matched layer for the FDTD solution of wave-structure interaction problems[END_REF] [51].

Classic formulation

Several approaches have been developed in the literature to solve the acoustic or aeroacoustic equations in an unbounded domain.

The first approach is surface conditions, where the objective is to put a non-reflection condition on a surface of a truncated domain. Representations (Boundary Element Method, BEM) [START_REF] Soares | Acoustic modelling by BEM-FEM coupling procedures taking into account explicit and implicit multi-domain decomposition techniques[END_REF] that can be considered accurate but limited to homogeneous domains (without flow or in the presence of a uniform flow) consist in transferring the integral representation of a surface on the surface delimiting the inhomogeneous domain. DtN (Dirichlet-to-Neuman) conditions are approximations of decompositions on truncated eigenfunctions [START_REF] Givoli | Non-reflecting boundary conditions[END_REF]. This involves approximating Sommerfeld's radiation condition. The major disadvantage of these approaches is that they are non-local in space and time. Therefore, they are very expensive in terms of memory space and computing time. Consequently, we also find approximate boundary conditions that try to minimise the reflections on artificial boundaries, which is called Absorbent Limit Conditions (ACL). The first of these studies dates back to Engquist and Majda [START_REF] Engquist | Absorbing boundary conditions for numerical simulation of waves[END_REF] who researched transient acoustic waves. A lot of work has since been done on this topic [54] [55]. The second is the infinite element method (IEM for Infinite Element Method) [START_REF] Bettess | Infinite elements[END_REF] which models the outer domain using particular shape functions representing the radial approximation behavior of the outgoing waves. This can be used where little is known about the solution of the equations at infinity. In addition, it can be used for non-linear problems, which Boundary Integral Methods fail to solve, and also for analytical far field solutions that are more rare. The infinite elements can simply be introduced to existing finite element programs as additions to the element library. Most of the other ways of dealing with the region towards infinity need special procedures. It is important to note that the method described here does not give a true indication of the behaviour of the mathematical model towards infinity. Rather, the effect of the far region on the domain of interest is modelled.

The last method uses the operator that is commonly called Dirichlet-to-Neumann (DtN) [START_REF] Givoli | High-order local non-reflecting boundary conditions: a review[END_REF] [57] [START_REF] Hagstrom | Complete radiation boundary conditions for convective waves[END_REF], which i based on an analytic representation of the external field and requiring a particular geometry interface. It is non-local; in other words, the fact that all degrees of freedom of Γ are coupled together has the effect of destroying the band structure of the system and increasing the problem [START_REF] Poirée | Les équations de l'acoustique linéaire et non-linéaire dans un écoulement de fluide parfait[END_REF].

The PML method is based on the introduction of a dissipative layer denoted

Ω 2 = [|x| x 0 , |y| y 0 ]
, whose role is to absorb the waves out of an acoustic domain

Ω 1 = [|x| <
x 0 , |y| < y 0 ], which constitutes the domain of interest in which the solution is sought.

The combination of the two domains, denoted as Ω = Ω 1 ∪ Ω 2 , represents the domain of computation. Continuity conditions are imposed on the interface between the domains Ω 1

and Ω 2 . On the outer boundary of the Ω 2 domain, the acoustic boundary conditions are zero-valued (p = 0, w = 0). This dissipative layer can be seen as an equivalent viscous medium. However, it can also be seen (which is often presented in the literature), from a mathematical point of view, as a change of variables applied to the system. The following complex variables in the harmonic domain are introduced (with convention e -iωt ) [START_REF] Hagstrom | On high-order radiation boundary conditions[END_REF]:

x -→ x + i ω x x 0 σ x (x)dx and y -→ y + i ω y y 0 σ y (y)dy (3.15)
where σ x and σ y are positive coefficients of absorption. x and y are defined as follows:

γ x =      1 i f |x| < x 0 1 + iσ x ω i f |x| x 0 and γ y =      1 i f |y| < y 0 1 + iσ y ω i f |y| y 0 (3.16)
and then the following transformations are obtained:

∂ ∂x -→ 1 γ x ∂ ∂x and ∂ ∂y -→ 1 γ y ∂ ∂y (3.17)
In the corner, two types of absorption are combined; as seen in Figure 3.3. These absorption coefficients may be respective functions of x and y. Many choices and optimisation studies have been proposed to avoid reflections on external borders. If the choice of a constant value for x and y ensures that the interface is suitable for the continuous problem, then it is not the same for discrete problem. Consequently, the choose of values depends on x and y [START_REF] Fang | On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer[END_REF]. Generally, quadratic functions:

σ x σ y σ x σ y σ x σ x σ x σ y σ x σ y σ x σ y Ω 1 Ω 2 Fluid
σ x (x) = β x (|x| -x 0 ) 2 ∀|x| ≥ x 0 (3.18) σ y (y) = β y (|y| -y 0 ) 2 ∀|y| ≥ y 0 (3.19)
are used in the literature.

The parameters of the PML domain can be adjusted for optimal absorption, which can be expressed by the function [START_REF] Fang | Development of PML absorbing boundary conditions for computational aeroacoustics: A progress review[END_REF]:

σ = β m ( d D ) n (3.20)
where D is the thickness of PML domain, d is the distance between PML point and interface, β m is the maximum value of β, and n is the power of function. The parameters of the PML domain can be adjusted for optimal absorption, they can also be determined by the size of the sound field.

The application of PML to the Galbrun equation

In this section, the classic PML formula to the Galbrun equation in the hybrid formula is applied. The fluid is assumed to be ideal, stationary and incompressible. An artificial boundary (PML) associated with the Galbrun equation is exposed in the presence of a non-uniform flow, as follows [START_REF] Feng | Modélisation numérique par éléments finis d'un problème aéroacoustique en régime transitoire: application à l'équation de Galbrun[END_REF]:

-

Ω 2 γ x γ y ρ 0 c 2 0 p * p L + w * • (γ x γ y ∇p L ) -γ x γ y ω 2 ρ 0 w * • w L + iωρ 0 (γ x γ y v 0 • ∇w * ) • w L -ρ 0 (γ x γ y v 0 • ∇w) * • (γ x γ y v 0 • ∇w L ) + (γ x γ y ∇p) * • w L -iωρ 0 w * • (γ x γ y v 0 • ∇w L ) + w * • ∇p 0 (γ x γ y ∇ • w L ) -w * • (γ x γ y T ∇w L • ∇p 0 ) dΩ 2 = 0 ∀(w * , p * ) (3.21)
where γ x ,γ y are the absorption coefficients.

The assumption of continuity of the normal displacement is posed with regard to the borders of the rigid or treated walls, which facilitates the expression of boundary conditions (Fig 3 .4). Thus, for the border L 1 , which corresponds to an impermeable rigid wall, the boundary condition is written as follows:

w L • n 0 = 0, on L 1 (3.22)
where n 0 is the normal to the wall, leaving the fluid domain Ω. 

∂ (ρu) ∂x + ∂ (ρv) ∂y + ∂ (ρw) ∂z = 0 (3.23)
Momentum equations: Energy equation: 

∂ ρu 2 ∂x + ∂ (ρuv) ∂y + ∂ (ρuw) ∂z = - ∂p ∂x + 1 
∂ (uE T ) ∂x + ∂ (vE T ) ∂y + ∂ (wE T ) ∂z = - ∂ (up) ∂x - ∂ (vp) ∂y - ∂ (
where, ρ is the fluid's density, u, v, w represent the velocity's components in x-, y-, z-direction in the Cartesian coordinate respectively. p is the pressure. τ ij is the corresponding component of shear stress tensor, and the its subscript means the stress is in j-direction acting on i-surface, and σ represents the normal stress. g x , g y , g z is the corresponding component of body accelerations, for example gravity, inertial accelerations, electrostatic accelerations, and so on. E T is the specific energy of fluid, q x , q y , q z are the rate of heat transfer in the

x-, y-, zdirections, respectively. Re is the Reynolds number, which means the ratio of inertia force and viscous force. Pr is Prantdl number.

The viscous stresses of Newtonian fluids can be expressed as functions of the local deformation rate, or strain rate, and the sheer stress τ ij = τ ji [START_REF] Arnoldus | Tensor analysis for physicists[END_REF]. The fluid viscous stresses are proportional to the gradient of velocity (see Batchelor), and this is a constant in many fluids [START_REF] Cx | An introduction to fluid dynamics[END_REF]. In this study, air is taken as the flowing fluid, and its motion governing equations are the steady compressible Navier-Stokes equations. The heat transfer process is commonly neglected when the temperature is thought to be constant. Therefore, the fluid governing equations that are used in this study consist of the continuity equation and momentum equation, which can be written in vector form as:

∂ρ ∂t + ∇ • (ρU) = 0 ∂(ρU) ∂t + ∇ • (ρUU) = -∇p + µ∇ 2 U (3.28)
where ∇ is the Nabla operator, U is the fluid velocity, ∇ 2 is the Laplace operator, and µ is its kinematic viscosity coefficient.

The equations are nonlinear due to the coupling of fluid velocity and pressure. Several methods have been developed to solve NS equations numerically. The three main ways to solve partial differential equations are the Finite Element Method (FEM) [START_REF] Tj | Finite element analysis in fluid dynamics[END_REF], the Finite Differential Method (FDM) [START_REF] John D Anderson | Introduction to computational fluid dynamics[END_REF] and the Finite Volume Method (FVM) [START_REF] Malalasekera | An introduction to computational fluid dynamics: the finite volume method[END_REF], of which FVM is widely used in commercial computational fluid dynamics software. In Computational Fluid Dynamics, turbulence modeling is one of the most important problems to predict a complete time history of every aspect of a turbulent flow [START_REF] David | Turbulence modeling for CFD[END_REF]. are obtained and they can be written in Cartesian tensor form as [START_REF] Xinyu | Design and CFD simulations of a vortex-induced piezoelectric energy converter (VIPEC) for underwater environment[END_REF]:

∂ρ ∂t + ∂ (ρu i ) ∂x i = 0 ∂(ρu) ∂t + ∂ρu i u j ∂x j = - ∂p ∂x i + ∂ ∂x j µ u i ∂x j + ∂u j ∂x i - 2 3 δ ij ∂u l ∂x l + ∂ ∂x j -ρu i u j (3.29)
where, u i is the velocity component and i = 1, 2 for two-dimensional cases and i = 1, 2, 3

for three-dimensional cases.

-ρu i u j represents the Reynolds stresses, which must be modeled in order to close RANS equations by means of turbulence models. Spalart-Allmaras (SA) model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], standard [START_REF] Edward | The numerical computation of turbulent flows[END_REF] [75], renormalisation group (RNG) [START_REF] Steven | Introduction to renormalization group modeling of turbulence[END_REF] [77] and realisable [START_REF] Shih | A new k-ε eddy viscosity model for high reynolds number turbulent flows[END_REF] k-ε models, and standard [START_REF] David | Turbulence modeling for CFD[END_REF], baseline (BSL) [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] and Shear-stress transport (SST) [START_REF] Fr Menter | Ten years of experience with the SST turbulence model. Turbulence[END_REF] [81] k-ω models are among the most used turbulence models in solving RANS equations. Direct numerical simulation (DNS) is able to directly resolve the whole spectrum of turbulent scales, due to the rapid improvement of computer performance. However, it still is not feasible for use in practical engineering problems involving high Reynolds number flows. The filtering method divides eddies into large and small eddies. Large Eddy Simulation (LES) [START_REF] Viswanathan | Aeroacoustics of hot jets[END_REF] has been more frequently used in recent years. In LES, large eddies are resolved directly, while small eddies are modeled. Therefore it falls between DNS and LES in terms of the fraction of resolved scales. In addition, Detached Eddy Simulation (DES) [START_REF] Mikhail S Gritskevich | Development of DDES and IDDES formulations for the k-ω shear stress transport model[END_REF], Shielded Detached Eddy Simulation (SDES) [START_REF] Spalart | A new version of detached-eddy simulation, resistant to ambiguous grid densities[END_REF], Stress-Blended Eddy Simulation (SBES) [START_REF] Menter | Stress-Blended Eddy Simulation (SBES)-A New Paradigm in Hybrid RANS-LES Modeling[END_REF], Large Eddy Simulation (LES) and Embedded Large Eddy Simulation (ELES) [START_REF] Davidson | Embedded large-eddy simulation using the partially averaged Navier-Stokes model[END_REF] models are the most elaborate type of filtered method. Combined with other RANS turbulence models, several hybrid models have been developed to solve the NS equation.

In this study, taking the computational cost into consideration, the k-ε model developed by Launder and Spalding is adopted to close the RANS equations. This is a two-equation turbulence model, which is based on transport equations for the turbulence kinetic energy (k) and its dissipation rate (ε). The transport equations for the standard k-ε model are written as follows:

∂ ∂t (ρk) + ∂ ∂x i (ρku i ) = ∂ ∂x j µ + µ t σ k ∂k ∂x j + G k + G b -ρε -Y M + S k (3.30) ∂ ∂t (ρε) + ∂ ∂x i (ρεu i ) = ∂ ∂x j µ + µ t σ ε ∂ε ∂x j + C 1ε ε k (G k + C 3ε G b ) -C 2ε ρ ε 2 k + S ε (3.31)
where, G k is the generation of turbulence kinetic energy due to the mean velocity gradients. 

µ t = ρ C µ k 2
ε , where C µ is a constant.

In summary, according the high-speed air flow researched in this study, the standard kε turbulence model, which is especially suitable for the fully developed turbulent flow, is adopted to solve steady Reynolds-averaged Navier-Stokes equations.

The discretisation of finite element

The finite element method is a numerical analysis technique that can be used to obtain approximate solutions to a wide variety of engineering problems. Although originally developed to study stresses in complex airframe structures, it has been extended and applied to a broader field of continuum mechanics. Because of its diversity and flexibility as an analysis tool, it has received much more attention in engineering schools and industry.

This method started in the 1950s with milestone papers in a structural engineering context, as well as classical references, such as Turner et al. [START_REF] Turner | Stiffness and deflection analysis of complex structures[END_REF] and Clough [START_REF] Ray | The finite element method in structural mechanics[END_REF]. This method has since been extensively developed and studied in the last 50 years and it is currently used also for the solution of complex nonlinear problems. Within such a broad approximation method, we focus on the often-called mixed finite element methods, where in our terminology the word 'mixed' indicates the fact that the problem discretisation typically results in a linear algebraic system of the general form:

  A B T B 0      x y    =    f g    (3.32)
where A and B are matrices and x, y, f, and g are vectors. In addition, the literature of mixed finite element is large and it ranges from classical contributions to more recent references.

An impressive amount of work has been devoted to a number of different stabilisation techniques, which been applied for virtually all applications in which mixed formulations are involved.

In numerical analysis, the mixed finite element method, also known as the hybrid finite element method, is a type of finite element method in which extra independent variables are introduced as nodal variables during the discretisation of a partial differential equation problem. The extra independent variables are constrained by using Lagrange multipliers.

To distinguish this method from the mixed finite element method, the usual finite element methods that do not introduce such extra independent variables are also called irreducible finite element methods [START_REF] Olek C Zienkiewicz | The finite element method: its basis and fundamentals[END_REF].

The mixed finite element method is efficient for some problems that would be numerically ill-posed if discretised by using the irreducible finite element method (e.g. to compute the stress and strain fields in an almost incompressible elastic body).

The finite element method is a well-known and highly effective technique for the computation of approximate solutions of complex boundary value problems. The mixed finite element is used in computing pressure and displacement. To ensure the stability of the element and the convergence of the method, the interpolation of two variables must follow the inf-sup mathematical rule. The triangle element T4-3c is selected (Figure 3.5) [START_REF] Treyssède | Etude de la propagation acoustique en présence d'écoulement non uniforme par une méthode d'éléments finis mixtes basée sur l'équation de Galbrun[END_REF].

DOFs of pressure

DOFs of displacement FIGURE 3.5: Finite element used for spatial discretisation, named T4-3c.

In the numerical domain, two variational formulas, Formula (2.13) and (2.23), are applied to their respective domains and in the same geometric coordinate system.

After the combination and application of boundary conditions, the discrete global variational formula produces the following algebraic system:

K(ω)U(ω) = F(ω) (3.33)
where U(ω) is a vector containing all of the unknown degrees of freedom (pressure and displacement). The matrix K(ω) is dependent on ω, non-symmetrical, complex, and of band structure. Sparse storage is chosen. For a fixed ω, U(ω) is finally obtained using an LU decomposition [START_REF] Gabard | Stability and accuracy of finite element methods for flow acoustics. II: Two-dimensional effects[END_REF].

Summary

The mixed Galbrun equation with pressure-displacement has been introduced in this chapter.

It has been shown to have good performance in the case of a complex flow. The intensity and energy equation of Galbrun are also presented. For the purpose of absorbing outgoing waves from the interior of a computational region without reflecting them back into the interior, an artificial absorbing layer PML is imposed and its application to Galbrun equation is given. In addition, the fluid governing equation Navier-Stokes equations and corresponding turbulence model are presented for the Computational Fluid Dynamics (CFDs) simulation. Finally, the mixed finite element method is adopted and triangle element T4-3c is selected for the spatial discretisation.

Chapter 4

The presentation of physical models This chapter will present the physical model excited in two different ways: mode imposed or acoustic source. The cut-off frequency with different Mach numbers is then calculated and the process of looking for the trapped mode is outlined.

The physical model excited by a mode

Previous research mainly concentrated on solving the Helmholtz equation [START_REF] Parker | Resonance effects in wake shedding from parallel plates: some experimental observations[END_REF] [6], which means that the non-uniform fluid was not taken into consideration. The objective of this section is to numerically compute the trapped modes (including the embedded trapped modes) with a non-uniform fluid field [START_REF] Duan | Complex resonances and trapped modes in ducted domains[END_REF]. The interference between the fluid and acoustic field due to the appearance of an obstacle will be taken into consideration. To verify the validity of the numerical method, a large number of numerical calculations are done. Furthermore, some of the experimental results obtained from other references are selected for comparison [START_REF] Ratcliffe | Trapped modes in the presence of thin obstacles[END_REF] [92] [START_REF] Ursell | Trapped modes in a circular cylindrical acoustic waveguide[END_REF].

To present the influence of obstacles in the tube on fluid and acoustic fields, the acoustic pressures under three different flow conditions are calculated: 1) without mean flow; 2) with uniform mean flow; 3) with non-potential flow. For the non-uniform flow, two varying flow velocities are adopted to investigate their affect on the final acoustic field. In this section, the Mach number (M), the type of flow, the obstacle size and the rotation angle's influence on the trapped mode will be discussed.

A series of the acoustic frequencies are employed to obtain the variation of the pressure field. The trapped mode occurs where the pressure field reaches its extrema. 

P n (x, y) = 1 √ L x cos nπy e -i[-ωM/α 2 +σΛ(n,ν)]x (4.1) Λ(n, ν) =    √ A, A > 0 i √ -A, A < 0 (4.2) A = {ω 2 -α 2 π 2 (n 2 + ν 2 )}/α 4 , α 2 = 1 -M 2 (4.3)
where, n and ν present the y-direction node number and z-direction wave number, respectively. Both the obstacle and the wall of the tube are rigid (Neumann condition). 

The physical model excited by an acoustic source

For the potential acoustic sources that excite this two-dimensional waveguide, 

The convergence of the mesh

The physical model can be simplified as a two-dimensional mathematical model. All of the geometric parameters are nondimensionalised with the reference height H * re f . Meanwhile, H * is the height of the tube, and then H = H * /H * re f = 1, L is the length of plate. The PML boundary condition is employed to compute the resonances.

For the validity of calculation, the convergence of mesh is verified. The size of the discretised finite elements is represented by their total degree of freedom (DOF). The calculation result is shown in The number of DOF 

The calculation of the cut-off frequency and dimensionless parameters

When the acoustic wave propagates in a duct with an obstacle in the center, it can cause a large amplification around this obstacle. This amplification has no radiation loss and it can exist below or above the first cut-off frequency. Formula 3.5 can be used to calculate the cut-off frequency of a 2D tube (Fig 4.6), where n is the number of mode, M represents the Mach number and c is the speed of sound in the air. In Table 3.1, the cut-off frequencies are listed corresponding to three different Mach numbers. Mach number

f c = nc √ 1 -M 2 2 (4.6) 0 x y H V 0
M = 0.0 M = 0.1 M = 0.2 M = 0.3
Cut-off frequency 0.5 0.497 0.490 0.477 The acoustic wave cannot propagate below the cut-off frequency, while the trapped mode can exist below the first cut-off frequency. The mode above the first cut-off frequency is called the embedded trapped mode.

All of the models are two-dimensional and all of the parameters are dimensionless. H is the height of the duct, H = H * /H re f , H * is the real value and H re f is the reference value, for this paper H * = H re f ; sound speed is c 0 = c * 0 /c re f = 1.0 and the density is ρ 0 = ρ * 0 /ρ 0re f = 1.0; the dimensionless acoustic pressure is p = p * /ρ 0 c * 2 0 and the dimensionless frequency is f = f * H/c * 0 .

The process of searching for the trapped mode

When the acoustic wave propagates in a duct with obstacles, it can cause a large amplification around the obstacles. In the process of calculation, the frequency is swept and the maximum value of sound pressure is found. The maximum value of sound pressure reaches a peak around the frequency of the trapped mode, as shown in the 

Summary

This chapter has described the development of two-dimensional physical models. There are two kinds of excitation for the system: a mode and an acoustic source. The calculation of cut-off frequency is given with various Mach numbers and the process of dimensionlising all of the parameters is stated. Finally, the process of looking for the trapped modes is explained, and the peak search method is used to find the trapped mode.

Chapter 5

The influence of uniform mean flow on trapped mode

In this chapter, the numerical results without mean flow and with the presence of uniform mean flow are introduced. Four different calculation models are listed, as follows: plate centered, plate off-centered, ellipse centered and rectangle centered. Furthermore, the results of numerical calculations are compared with those in the literature to verify the correctness of the numerical method. As the length of the plate increases, the number of trapped modes begins to increase. In When the flat obstacle reaches a certain length, the second trapped mode begins to appear. 

Model with a plate centered excited by mode without mean flow

L(Length of the plate) 

Model with a plate off-centered excited by mode without mean flow

This section will mainly show the resonances in a tube with an off-centered plate and without mean flow. For the computational domain, PML is to be applied in the bottom of the The results are compared with Hein, Hohage, and [START_REF] Hein | On resonances in open systems[END_REF] in Table 5.1, who computed resonances numerically through a multi-domain spectral collocation method together with PML absorbing boundary conditions associated with Helmholtz equation [START_REF] Hein | On resonances in open systems[END_REF]. They found the first and second trapped mode when f = 0.328 and f = 0.445; f = 1.357 is the embedded trapped mode. The results obtained by these two methods are in good agreement, and the error is within a reasonable range.

Model with an elliptic obstacle centered excited by mode without mean flow

With the existence of a ellipse centered in the tube, as shown in Fig 5 .16, the acoustic pressure field's behaves differently from that with a flat plate. The ellipse is characterised with two parameters: its major and minor axis length a, b, and the α is the rotation angle. Various groups of a, b and α are calculated to investigate their influence on the trapped modes. 

Model with a plate centered and excited by mode in the presence of a uniform mean flow

To further verify the numerical method, the cases with uniform flow are also calculated. The cut-off frequency is equal to 0.477 when M = 0.3. Overall, when a uniform flow is present, the trapped mode becomes less symmetrical and the fluid has a certain effect on the shape of trapped mode.

The trapped mode appears for the first time when the length of obstacle L equals 0.3.

There exists only one trapped mode at f = 0.466, which is very close to the cut-off frequency. This trapped mode is symmetric about the x-axis and anti-symmetric about the y- In Fig 5 .25,the x-axis is the length of obstacle, and the y-axis is the frequency which exists the trapped mode. The dashed line is the results of using FEM 2.0 at M = 0.3, the trapped mode decreases with the increase of the plate's length. The triangles represent results

of [START_REF] Koch | Resonant acoustic frequencies of flat plate cascades[END_REF], who showed that the acoustic resonance frequencies of a flat plate cascade can be computed by finding the natural frequencies of the system via the linearised theory [START_REF] Koch | Resonant acoustic frequencies of flat plate cascades[END_REF]. [START_REF] Koch | Resonant acoustic frequencies of flat plate cascades[END_REF] results. It can be concluded that the trapped mode's frequency decreases with the increase of the plate's length. [START_REF] Koch | Resonant acoustic frequencies of flat plate cascades[END_REF] results are less than the FEM2.0 results; however, [START_REF] Duan | Complex resonances and trapped modes in ducted domains[END_REF] results are greater than those of FEM2.0. Therefore, it can be concluded that the trapped mode has a close relationship with the size of the obstacle. 

The simplified model excited by an acoustic source

The trapped mode is a mathematical description of the free oscillations that exist around the obstacle, which will be the amplification of sound pressure around the obstacle. In other words, all of the energies concentrate on the obstacle. However, this will cause considerable damage to the system (e.g. noise, stability and security). Therefore, for the sake of further exploration of trapped mode, the intensity and energy of trapped mode is calculated. 

Summary

This chapter developed the two-dimensional numerical model. It also considered the effects of without mean flow and uniform mean flow on the trapped mode. The numerical results of four kinds of structures (i.e. plate centered, plate off-center,ellipse and rectangle) are studied. Two excitations was introduced: mode and source excitation. The results calculated by in-house code FEM 2.0 were also compared with those of the literature.

Chapter 6

The influence of non-potential flow on trapped mode

Although a wide variety of methods have been developed for the study of trapped mode in the literature, they have studied the trapped mode in association with with Helmholtz equation.

In addition, they considered the influence of various parameters on trapped mode but, with respect to the fluid field part, they were limited to the influence of uniform mean flow, which is a more idealised factor and far from the actual situation.

In this chapter, the trapped mode governed by Galbrun equation will be studied. This allows us to use the non-potential flow, where varying fluid velocity, pressure and density field can be imposed simultaneously. Under the influence of so many factors, the calculation becomes more complicated and is also more accurate. To discuss the effect of non-potential flow on trapped mode, a computation procedure allowing the coupling of the fluid field and the acoustic field has been developed. With the internal fluid field calculated from Navier-Stokes (NS) equations adopted as an initial condition, its acoustic field is obtained by solving the governing Galbrun equations. Their relevant trapped modes are captured through scanning the acoustic frequency [START_REF] Fr Menter | Ten years of experience with the SST turbulence model. Turbulence[END_REF].

The treatment of fluid field

The influence of obstacles on the tube's internal fluid field is simulated through the commercial code ANSYS Fluent 13.0. The tube is filled with air [START_REF] Bailly | Modélisation du rayonnement acoustique des écoulements turbulents libres subsoniques et supersoniques[END_REF]. When the flow velocity is relatively low, (generally, M < 0.3), the flow is considered as impressible [32] [33]. The fluid governing Navier-Stokes equation is solved using the Reynolds averaged method; that is, Reynolds averaged Navier-Stokes (RANS) equation is employed [67] [83].

We know that the Reynolds number (Re) is an important dimensionless quantity in fluid mechanics that can be used to help predict flow patterns in different fluid flow situations.

At low Reynolds numbers, the flows tend to be dominated by laminar flow; while at high Reynolds, the number's turbulence results in differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow.

The Reynolds number has a wide range of applications, from liquid flow in a pipe to the passage of air over an aircraft's wing. It is also used to predict the transition from laminar to turbulent flow, and is used in the scaling of similar but different-sized flow situations (e.g.

between an aircraft model in a wind tunnel and the full size version).

The predictions of the onset of turbulence and the ability to calculate scaling effects can be used to help predict fluid behaviour on a larger scale. The concept was introduced by Stokes (1851) [START_REF] Gabriel | On the effect of the internal friction of fluids on the motion of pendulums[END_REF], but the Reynolds number was named by [START_REF] Sommerfield | Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flussigkeisbewegung[END_REF] [START_REF] Sommerfield | Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flussigkeisbewegung[END_REF] after

Osborne Reynolds (1842Reynolds ( -1912)), who popularised its use in 1883 [101] [102].

The Reynolds number is defined as:

Re = ρuD µ = uD ν (6.1)
where ρ is the density of the fluid (kg/m 3 ), u is the flow speed (m/s), D is the diameter of the tube (m), µ is the dynamic viscosity of the fluid (Pa • s), ν is the kinematic viscosity of the fluid (m 2 /s).

With regard the model adopted in this study, the value of the Reynolds number can be calculated from Equation (5.1). Taking u = 34(m/s), D = 1(m) and ν = 14.8 × 10 -6 m 2 /s, Re = 2.3 × 10 6 can be calculated from 5.1. Due to the high Reynolds number, the k-ε turbulence model is adopted to close the RANS equations thanks to its good performance and high accuracy to the high Reynolds number flow [103] [70].

The Galbrun equation can be used to calculate the acoustic field with non-potential flow, and the effect of p 0 , v 0 and ρ 0 can be taken into consideration. The variables p 0 , v 0 , ρ 0 in Eq.(4.1) are derived from the treatment of non-potential flow.

     ρ 0 d 2 0 w L dt 2 + ∇p L -(∇ • w L )ρ 0 d 0 v 0 dt -T ∇w L • ∇p 0 = 0 p L = -ρ 0 c 2 0 ∇ • w L (6.2) 
The K-epsilon (kε) turbulence model is the most common model used in CFDs to simulate mean flow characteristics for turbulent flow conditions. This is a two equation model that gives a general description of turbulence by means of two transport equations, which are both partial difference equations (PDEs). The original impetus for the kε model was to improve the mixing-length model and to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.

The exact kε equations contain many unknown and unmeasurable terms. For a much more practical approach, the standard kε turbulence model (Launder and Spalding, 1974 [START_REF] Edward | The numerical computation of turbulent flows[END_REF]) is used, which is based on our best understanding of the relevant processes, thus minimising unknowns and presenting a set of equations that can be applied to a large number of turbulent applications. For turbulent kinetic energy k:

∂(ρk) ∂t + ∂ (ρku i ) ∂x i = ∂ ∂x j µ t σ k ∂k ∂x j + 2µ t E ij E ij -ρε (6.3)
For dissipation ε [START_REF] Henk | An introduction to computational fluid dynamics: the finite volume method[END_REF] [105] :

∂(ρε) ∂t + ∂ (ρεu i ) ∂x i = ∂ ∂x j µ t σ ε ∂ε ∂x j + C 1ε ε k 2µ t E ij E ij -C 2ε ρ ε 2 k 2µ t E ij E ij -ρε (6.4)
The kε model has been specifically tailored for planar shear layers and recirculating flows. This model is the most widely used and validated turbulence model. Its applications range from industrial to environmental flows, which explains its popularity. It is useful for free-shear layer flows with relatively small pressure gradients and in confined flows where the Reynolds shear stresses are most important. It can also be stated as the simplest turbulence model for which only initial and/or boundary conditions need to be supplied [START_REF] Edward | Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[END_REF].

However, it is more expensive in terms of memory than the mixing length model because it requires two extra PDEs. Therefore, this model would be an inappropriate choice for problems such as inlets and compressors because its accuracy has been shown experimentally to be reduced for flows containing large adverse pressure gradients. The kε model also performs poorly in a variety of important cases such as unconfined flows [START_REF] Bradshaw | Turbulent secondary flows[END_REF], curved boundary layers, rotating flows and flows in non-circular ducts [START_REF] Ias Larsson | Secondary flow in semi-circular ducts[END_REF].

Calculation method and normalisation process

In this part, the processing method of non-potential flow will be introduced. It is worth mentioning that all of the parameters are dimensionless. Reference value dimensionless value

C 0re f = 340 m/s V x = V * x /C 0re f , V y = V * y /C 0re f , C 0 = C * 0 /C 0re f ρ 0re f = 1.225 kg/m 3 ρ 0 = ρ * 0 /ρ 0re f P 0re f = ρ 0re f * C 2 0re f P 0 = P * 0 /P 0re f TABLE 6.1:
The dimensionless of parameters. From the contour of the velocity field in Fig 6 .3, it can be seen that V x is symmetrical at the upper and lower parts of the obstacle. At the front of the obstacle, there is a point with a relatively low speed. There is a wake at the tail of the obstacle, which has a certain length.

V y is shown in Fig 6 .4, it is anti-symmetric both about x-axis and y-axis, the maximum and minimum values of V y are mainly concentrated at the front and end of obstacles. and below the ellipse are asymmetrical and the speed above is higher than below. For the minimum speed, it is mainly concentrated on the front and tail of the rotated ellipse. There is a banded area at the tail of the obstacle, and the speed gradually increases in this area.

We show the velocity in y direction V y in Fig 6 .9. The maximum speed is above the ellipse and the negative velocity maximum is at the head of the ellipse. Except for the vicinity of rotated ellipse, the speed in other places is almost uniform. The effect of ellipse angle on trapped is indicated in Fig 6 .12. The x axis represents the rotation angle α (from α = 0 • to α = 45 • ), and the y axis represents the frequency at For the rectangular obstacle centered in the waveguide, Fig 6.16 shows the trapped mode below the cut-off frequency at M = 0.2. This kind of mode is the first x-symmetry trapped mode which is generated below the cut-off frequency. Compared with the previously trapped mode, this mode is still symmetrical about the y-axis but is no longer symmetrical about the x-axis, which is mainly affected by the non-potential flow. From the shape of trapped mode, The trapped mode below the cut-off frequency f c = 0.490 was found at f = 0.185, 

Summary

In this chapter, the influence of non-potential flow on trapped mode was analysed. The method of processing the flow field is introduced in detail, the calculation process and the dimensionless of parameters are introduced. For the fluid field, the kε model was used to obtain the various parameters of the fluid field: V x , V y , and P 0 , and then the code FEM2.0 was used to calculate and scan the frequency region. Two models have been discussed: elliptical and rectangular models. However, due to the size of obstacles, these two models are not suitable for the calculation of uniform flow.

Furthermore, the influence of the size and rotation angle of the ellipse on the trapped mode are considered. For the rectangle, the influence of the rectangle's length on the trapped mode is taken into account. The trapped mode at different Mach numbers is calculated and the effect of Mach number on the trapped mode was found. For the form of the trapped mode, its symmetry about the x axis disappeared. This resonance mode does not exist in all cases. The search for the frequency of the trapped mode provides a theoretical basis for acoustic processing, and provides a reference to reduce noise and enhance the stability of the system.

Chapter 7 The basic theory of governing equations is described in this thesis. The mixed formulation of displacement-pressure associated with the Galbrun equation is revealed, and is shown to have advantages in the case of non-potential flow. PML is used to simulate an infinitely long waveguide to simulate infinite fields and prevent interference from reflected waves.

Conclusion and prospectives

Furthermore, the governing Navier-Stokes equations have been presented for the CFDs. Finally, the mixed finite element method is stated and the triangle element T4-3c is chosen to numerically calculate the coupled acoustic and fluid field.

A two-dimensional physical model is developed, and two kinds of method are used to excite the system: the mode imposed in the inlet of the tube and an acoustic source placed at the front of an obstacle. To ensure the accuracy of the simulation, the convergence of mesh is verified. The cut-off frequencies under different Mach numbers are calculated and the nondimensionalisation of the geometrical and physical parameters is presented. For the sake of further explanation, the procedure of searching for the trapped mode is stated and there are a peak pressure values around the obstacles at corresponding frequencies.

There are four kinds of obstacles in the waveguide: a plate centered, a plate off-centered, an ellipse and a rectangle. The influence of various parameters of the obstacle in trapped mode is investigated in the situations without flow and with uniform mean flow. The obtained results are in good agreement with those of other references, which validates the effectiveness of the method used in the manuscript and provides a theoretical basis for further analysis.

A coupling method is developed by using the ANSYS 13.0 and Matlab software. This method contains two parts: the first part is the fluid field simulation involved with Navier-Stokes (NS) equations, where the fluid is assumed to be incompressible; the second part is the calculation of the acoustic field, which is governed by Galbrun equation. The kε model is adopted for the treatment of the fluid fields. The developed code can be used for the calculation procedure of all geometries.

In addition to the influence of non-potential flow and the obstacle's shape, various geometrical parameters under different Mach numbers in trapped mode are discussed. Moreover, this resonance mode does not exist in all cases. The search for the frequency of trapped mode provides a theoretical basis for acoustic processing, and affords a reference to help reduce noise and enhance the stability of the system.

There are many promising prospects for this work. In this thesis, the search for trapped modes required a lot of calculations. Although the calculation method is optimised, it still takes some time to get results. It is recommended that future work should find a way to quickly and accurately calculate the frequency of trapped mode to save time and cost.

For the model of various obstacles, all boundary conditions adopt rigid boundaries.
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Chapter 1 .

 1 Introductionangle on the mode are researched.Chapter 2

  calculated embedded trapped mode and compared with the resonances of several models obtained numerically [27]. Duan et al. (2007) calculated the trapped mode frequencies of various waveguides containing obstacles and compared them with numerically obtained complex resonance results.
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 31 FIGURE 3.1: Illustration of the mixed Eulerian-Lagrangian representation of displacement.
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 11 The first line indicates the operator without fluid, the second line indicates the effects of flow, the third line indicates the variation of the average pressure p 0 , and the fourth line indicates the edge integral.At first, Peyret and Elias[START_REF] Peyret | Finite-element method to study harmonic aeroacoustics problems[END_REF] chose to develop a variational formulation from the Galbrun equation expressed in terms of Lagrangian displacement. However, it is now known that this form poses difficulties resulting in instabilities of the solution. (This phenomenon is called "blocking" or "locking" numerically in the literature, see Wang and Treyssede.Thus another formulation emerged, developed by Treyssede[START_REF] Treyssède | Etude de la propagation acoustique en présence d'écoulement non uniforme par une méthode d'éléments finis mixtes basée sur l'équation de Galbrun[END_REF] on the basis of the work of Wang and Bathe[START_REF] Wang | Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems[END_REF]. This new formulation is based on the use of the mixed pressuredisplacement form of the Galbrun equation.) Associated with an interpolation of the two variables respecting the so-called 'inf-sup' mathematical criterion, this formulation ensures the stability of solution. It should be noted that a regularisation technique proposed by Bonnet et al., Bonnet, Legendre and Berriri also makes it possible to overcome this problem;

  Fig 3.2 illustrates the truncation of an infinite domain R by an artificial boundary Γ, and thus they form a bounded acoustic domain Ω 1[START_REF] Baccouche | Développement d'une approche numérique et expérimentale pour un conduit avec traitement acoustique: application à la validation de modèles d'impédance en propagation multimodale avec écoulement[END_REF]. The Perfectly Matched Layer (PML) for aeroacoustic problems using Galbrun equation in the presence of an axial and a swirling steady mean flow was investigated in a cylindrical coordinates system by Ryan[START_REF] Baccouche | Développement d'une approche numérique et expérimentale pour un conduit avec traitement acoustique: application à la validation de modèles d'impédance en propagation multimodale avec écoulement[END_REF]. This equation is based on an Eulerian-Lagrangian description and leads to a wave equation that is written only in terms of the Lagrangian perturbation of the displacement. Galbrun equation is solved by a mixed pressure-displacement Finite Element Method (FEM)[START_REF] Baccouche | Perfectly Matched Layer for Galbrun's aeroacoustic equation in a cylindrical coordinates system with an axial and a swirling steady mean flow[END_REF]. E.[START_REF] Bécache | Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow[END_REF] considered the case of a uniform subsonic flow in an infinite, two-dimensional duct.
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 33 FIGURE 3.3: Computing domain with PML layer.
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 34 FIGURE 3.4: Boundary condition in the duct.

3. 5

 5 The governing equations of the fluid field The duct is filled with an incompressible fluid and sound also propagates in the fluid environment. Fluid flow is depicted with Navier-Stokes (NS) equations, which essentially arose from applying Isaac Newton's second law to fluid motion. The equation of motion (EOM) of incompressible viscous fluid was first established by French scientist Claude-Louis-Marie-Henri Navier on 1827. In 1831, another French physicist, Simeon-Denis Poisson, proposed the motion equation of compressible fluid. In 1843, British physicist George Gabriel Stokes put forward the form of EOM with viscous coefficient as a constant. Therefore, the equations depicting the motion of viscous fluid are called Navier-Stokes equations [64] [65]. NS equations are composed of three types of equations (i.e. the continuity equation, the momentum equations and the energy equation), which are written as: Chapter 3. Basic theory of the governing equation Continuity equation:

  Reynolds/ensemble averaging, filtered Navier-Stokes equations and hybrid formulations are among the underlying principles for turbulence modeling, while Reynolds averaging is the most widely used in engineering problems. Reynolds averaging means that the exact Navier-Stokes equations are decomposed into the mean/time-averaged and fluctuating component; that is, each scalar quantities and the vector components are written as: φ = φ + φ , where φ and φ are the mean and fluctuating components of a specified variable. By substituting expressions of this form into the instantaneous NS equations, the Reynolds-averaged Navier-Stokes (RANS) equations

G b is the

  generation of turbulence kinetic energy due to buoyancy. Y M is the contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate. C 1ε , C 2ε and C 3ε are constants. σ k and σ ε are the turbulent Prandtl numbers for k and ε. S k and S ε are user-defined source terms. The turbulent viscosity µ t is computed by combining k and ε as:
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 41 FIGURE 4.1: The structure excited by mode of P n (x, y).

Fig 4 . 1

 41 Fig 4.1 gives a schematic diagram of the structure excited by a mode P n (x, y) (Equation (3.1)) in the entrance of the waveguide [94]. The PML Perfectly Matched Layer is placed at the end to absorb the sound waves. The term Λ(n, ν) is defined in Equation (3.2) and Equation (3.3). Both the obstacle and the wall of the tube are rigid (Neumann condition).

Fig 4. 2

 2 gives the analytical solution of the mode that is placed in the entrance of the tube when f = 1.0.
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 42 FIGURE 4.2: The analytical solution of P n (x, y) when f = 1.0.

Fig 4 . 3 FIGURE 4 . 3 : 1 ) 2 +(y-x s 2 ) 2 )/r 2 s

 434312222 FIGURE 4.3: The structure excited by a potential acoustic source.

  Fig 4.4 (a) is the force in x direction, and 4.4 (b) is the force in y direction.
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 45 The x-axis represents the DOF and the y-axis is the error.

FIGURE 4 . 4 :

 44 FIGURE 4.4: Potential acoustic sources
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 45 FIGURE 4.5: The convergence of computation procedure.

FIGURE 4 . 6 :

 46 FIGURE 4.6: Two-dimensional rectangular waveguide.

Fig 4 . 7 .

 47 The trapped mode may exist at this peak. Fig 4.7 (a) (b) (c) represent the peak value of the maximum of sound

FIGURE 4 . 7 :

 47 FIGURE 4.7: Peak value of sound pressure near the trapped mode frequency with a plate obstacle in the center of the waveguide and the length of the plate L = 3.0, M = 0.0 : (a) f = 0.176; (b) f = 0.344; (c) f = 0.488.

Fig 5 . 1

 51 Fig 5.1 shows the simplified two-dimensional model with a plate centered in the waveguide.L is the length of plate, H indicates the height of waveguide. PML is applied to the bottom of waveguide.

FIGURE 5 . 1 :

 51 FIGURE 5.1: The simplified two-dimensional model with a plate centered in the waveguide.

FIGURE 5 . 2 :

 52 FIGURE 5.2: Trapped mode without mean flow in the tube near the flat plate: L = 0.2, M = 0.0, f = 0.498.
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 5353 Fig 5.3 depicts the maximum pressure value around the trapped mode frequency f =

Fig 5 . 4 ,

 54 Fig 5.4, (a) and (b) indicate the first and second trapped modes at L = 1.3, respectively.There are two trapped modes: f = 0.281 and f = 0.496. These two modes are antisymmetric about the y-axis.
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 5455 FIGURE 5.4: Trapped mode without flow in the waveguide with a plate centered, L = 1.3 and M = 0.0: (a) the first trapped mode: f = 0.281; (b) the second trapped mode: f = 0.496.

FIGURE 5 . 6 :

 56 FIGURE 5.6: Trapped mode without flow in the tube near the flat plate, L = 2.4 and M = 0.0: (a) the first trapped mode: f = 0.176; (b) the second trapped mode: f = 0.344; (c) the third trapped mode: f = 0.488.

FIGURE 5 . 7 :FIGURE 5 . 8 :

 5758 FIGURE 5.7: Peak value of sound pressure near the trapped mode frequency, L = 2.4 and M = 0.0: (a) f = 0.176; (b) f = 0.344; (c) f = 0.488.
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 59 FIGURE 5.9: The effect of plate length on second trapped mode.

Fig 5 . 9

 59 Fig 5.9 shows the influence of plate length on the second trapped mode. As can be seen from the figure, the second trapped mode starts from L = 1.3 when M = 0.0. The frequency of the trapped mode then begins to decrease as L increases.
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 510 FIGURE 5.10: The effect of plate length on third trapped mode: the upwardpointing triangles indicate the results of Khallaf, Parnovski, and Vassiliev (2000) and the dotted line
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 5114512 FIGURE 5.11: Three different trapped modes below the cut-off frequency with M = 0.0.
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 513 FIGURE 5.13: Embedded trapped modes above the cut-off frequency without flow in the tube near the flat plate L = 3.0: (a) Embedded trapped mode: f = 1.015; (b) Embedded trapped mode: f = 1.05.
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 514 FIGURE 5.14: The simplified two-dimensional model with a plate offcentered in the waveguide.

FIGURE 5 . 15 :

 515 FIGURE 5.15: Resonances for the Neumann problem with an offset plate and the Mach number M = 0.0: (a) f =0.229; (b) f =0.439; (c) f =1.362.

FIGURE 5 . 16 :

 516 FIGURE 5.16: The simplified two-dimensional model with an ellipse centered in the waveguide.
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 31 The numerical results without rotation (α = 0 • ) The existence of a trapped mode near the elliptic obstacle is shown in Fig 5.17 when f = 0.339 and M = 0.0. From Fig 5.18, we can see that the frequency of trapped mode grows with the increase of b/H and it is consistent with Duan (2007)'s results [28].

FIGURE 5 . 17 :FIGURE 5 . 18 :

 517518 FIGURE 5.17: Trapped mode for ellipse centered in the waveguide without flow: M = 0.0, a = 1.0, b = 0.4 and f = 0.339.
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 32 The numerical results with rotation angle α For an elliptical obstacle with a rotation angle α, the trapped mode at frequency f = 0.352 is found; as shown in Fig 5.19. The dimensions of major and minor axis length is a = 1.0, b = 0.4 and the rotation angle is α = 15 • and the Mach number is M = 0.0.
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 519520 FIGURE 5.19: Trapped mode with a rotated ellipse (α = 15 • ) centered in the waveguide: M = 0.0, a = 1.0, b = 0.4 and f = 0.352.

5. 4

 4 Model with a rectangular obstacle centered excited by mode without mean flow For the rectangular obstacle centered in the waveguide, we can see from Fig 5.21 that H represents the height of the tube, L is the length of the rectangle and b indicates the width.PML is placed on the bottom of the waveguide to absorb sound waves.

FIGURE 5 . 21 :FIGURE 5 . 22 :Fig 5 .

 5215225 FIGURE 5.21: The simplified two-dimensional model with a rectangular centered in the waveguide.
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 523 FIGURE 5.23: The effect of rectangle's length on trapped mode without mean flow: the black solid line represents the result without mean flow calculated by FEM2.0; solid dots, hollow circle and solid triangle represent the result of Evans(1992), Hein(2004) and Khallaf (2000).

Fig 5 .

 5 Fig 5.23 indicates the effect of the rectangle's length on resonance. Frequency of trapped mode decreases with the length of rectangle. Comparison with Hein(2004), Evans(1992) and Khallaf (2000), most of the results in the literature are agreement with the black solid line, which is found from numerical computation (FEM2.0).

Fig 5 .

 5 [START_REF] Evans | Edge waves along periodic coastlines[END_REF] shows the existence of various modes in the presence of uniform flow at M = 0.3. It can be seen from the figure that xaxis is the length of plate, and y-axis is the frequency which the trapped modes are located.

  axis. As the length of the obstacle reaches 1.2, two modes appear at the same time, f = 0.274 and f = 0.462, which represent the first and second trapped mode, respectively. For the second trapped mode f = 0.462, it is anti-symmetrical about both the x-axis and y-axis. When L = 2.4, there are three kinds of trapped modes: f = 0.161, f = 0.317 and f = 0.454. For the first and second trapped mode, they are all symmetrical about the x-axis and antisymmetric about the y-axis. The third trapped mode f = 0.454 is anti-symmetrical in both about the x-axis and the y-axis.

FIGURE 5 . 24 :

 524 FIGURE 5.24: The existence of various modes in the presence of uniform mean flow M = 0.3.

FIGURE 5 . 25 :

 525 FIGURE 5.25: The effect of plate's length on first trapped mode with M = 0.3: the dashed line represents the results of using FEM (2.0); the triangles indicate Koch's (1983) results; and the circles indicate Duan's (2007) results.

FIGURE 5 . 26 :

 526 FIGURE 5.26: The effect of plate's length on first trapped mode with M = 0.5: the dotted line indicates the results of using FEM (2.0); the triangles indicate Koch's (1983) results; and the circles indicate Duan's (2007) results.

Fig 5 .

 5 Fig 5.27 shows the three different trapped modes below the cut-off frequency with uniform mean flow M = 0.3. This figure illustrates that more trapped modes appear on a longer plate. The frequency of these three modes decreases with the increase of the plate's length.
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 527528 FIGURE 5.27: Three different trapped modes below the cut-off frequency with uniform flow M = 0.3: the solid line represents the result of first trapped mode; the dashed line indicates the second trapped mode; and the dotted line is the third trapped mode.

FIGURE 5 . 29 :

 529 FIGURE 5.29: The pressure field of trapped without mean flow (M = 0.0): the frequency of the mode is f = 1.1.

Fig. 5 .

 5 Fig. 5.29 is the pressure field of trapped mode without mean flow. Fig. 5.30 is the energy field of trapped mode without mean flow at frequency f = 1.1, it can be said that all the energy focus on the plate.

FIGURE 5 . 30 :

 530 FIGURE 5.30: The energy field of trapped: M = 0.0, f = 1.1.

Fig 5 .FIGURE 5 . 31 :

 5531 Fig 5.31 (a) indicates I x , the intensity in x direction, 5.31 and (b) represents I y the intensity in y direction. All of the intensity is near the plate, which increases the instability of system and will also cause great harm to the entire system.

Fig 6 . 1

 61 Fig 6.1 shows the viscous model in Fluent. In the simulation process, the kε model is chosen because of the high Reynolds number.

FIGURE 6 . 1 :

 61 FIGURE 6.1: All the viscous model in Fluent.

Fig 6 . 2

 62 Fig 6.2 is the residual plot during the calculation process, and it shows that the calculation converges to a relatively small residual criterion.

FIGURE 6 . 2 :

 62 FIGURE 6.2: The residual plot of the kε model.

6. 3

 3 Model with an elliptical obstacle centered in the presence of non-potential flow For the model with an ellipse centered in the tube, the case of without flow has been discussed in Section 4.3. Here, the example of a = 1.0 and b = 0.2 with the presence of non-potential flow M = 0.3 is taken to explain the whole calculation process. Fluent 13.0 software is used to calculate fluid field to obtain the overall fluid field needed and the kε model is chosen to finish all of the calculations. Fig 6.3 and Fig 6.4 represent the fluid velocity in x and y direction (V x and V y ), respectively.

FIGURE 6 . 3 :

 63 FIGURE 6.3: Velocity field in x direction V x when a = 1.0, b = 0.2 and M = 0.3.

Fig 6 . 5

 65 Fig 6.5 shows the pressure field P 0 . The pressure field is almost uniform except for the banded area at the end of the ellipse. After obtaining all of the results calculated through

FIGURE 6 . 4 :

 64 FIGURE 6.4: Velocity field in y direction V y when a = 1.0, b = 0.2 and M = 0.3

FIGURE 6 . 5 :

 65 FIGURE 6.5: Pressure field P 0 : a = 1.0, b = 0.2 and M = 0.3
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 66367 FIGURE 6.6: Trapped mode below the cut-off frequency with the nonpotential flow a = 1.0, b = 0.2 and M = 0.3, the frequency is f = 0.318.
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 6768 Fig 6.7 shows the influence of major and minor axis length a, b on trapped mode. It can be found that the frequency of trapped mode increases with increasing b/h. Furthermore, the effect of Mach Number on trapped mode is also shown in Fig 6.7, the decrease in Mach

  Fig 6.10 represents 

FIGURE 6 . 8 :

 68 FIGURE 6.8: Velocity field in x direction V x : a = 1.0, b = 0.4, M = 0.1 and the rotation angel is 15 • .

FIGURE 6 . 9 :

 69 FIGURE 6.9: Velocity field in y direction V y : a = 1.0, b = 0.4, M = 0.1 and the rotation angel is 15 • .
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 61061165 FIGURE 6.10: Pressure field P 0 : a = 1.0, b = 0.4, M = 0.1 and the rotation angel is 15 • .

FIGURE 6 . 12 :

 612 FIGURE 6.12: Results of the model with a rotated ellipse centered in the waveguide when a = 1.0, b = 0.4: the solid line denotes the results when M = 0.0, dashed and dotted line denotes the results with non-potential flow M = 0.1 and M = 0.2, respectively.
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 613 FIGURE 6.13: Velocity field in x direction V x : L = 1.0, b = 0.5 and M = 0.2.

FIGURE 6 . 14 :

 614 FIGURE 6.14: Velocity field in y direction V y : L = 1.0, b = 0.5 and M = 0.2.

Fig 6 .

 6 Fig 6.14 shows the velocity in the y direction V y . There is a maximum/minimum area near the top and bottom sharp corner of the rectangle's front side and is almost zero.

FIGURE 6 . 15 :

 615 FIGURE 6.15: Pressure field P 0 : L = 1.0, b = 0.5 and M = 0.2.

FIGURE 6 . 16 :

 616 FIGURE 6.16: Pressure field of trapped mode with non-potential flow M = 0.2, L = 1.0 and b = 0.5, the frequency of trapped mode: f = 0.252.

FIGURE 6 . 17 :

 617 FIGURE 6.17: Velocity field in x direction V x : L = 2.0, b = 0.5 and M = 0.2.

FIGURE 6 . 18 :

 618 FIGURE 6.18: Velocity field in y direction V y : L = 2.0, b = 0.5 and M = 0.2.
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 619 FIGURE 6.19: Pressure field P 0 : L = 2.0, b = 0.5 and M = 0.2.

FIGURE 6 . 20 :

 620 FIGURE 6.20: Pressure field of trapped mode with non-potential flow M = 0.2, L = 2.0 and b = 0.5, the frequency of the trapped mode: f = 0.185.

Fig 6 .

 6 Fig 6.21 indicates the effect of Mach number and the length of rectangle on resonance. When numerical calculations take into account the presence of non-potential flow (M = 0.2 and M = 0.3), the calculation process involves the coupling of fluid and sound field, and the variables P 0 , V x and V y are extracted from the calculation results of the turbulence model kepsilon to solve the Galbrun equation. In Fig 6.21, the frequency of trapped mode drops with an increase of the Mach number and an increase in the length.

3 FIGURE 6 . 21 :

 3621 FIGURE 6.21: The influence of length and Mach number on trapped mode: the solid line denotes the results of M = 0.0, the dashed lines and dotted curves indicate the results with non-potential flow M = 0.2 and M = 0.3, respectively.

  This work focuses on the numerical prediction of the trapped mode generated by a confined flow with low Mach number. Many studies have focussed on the situation without flow and with uniform mean flow. These studies used a variety of methods to investigate the trapped modes, most of which are associated with the Helmholtz equation. They have also analysed the effects of uniform mean flow and the obstacle's parameters on the trapped mode. Meanwhile, this thesis has studied the procedure of calculating the coupling fluid and the acoustic field.
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1: The cut-off frequency of different Mach numbers.

TABLE 5 .

 5 

1: The results compared with HEIN (2004).

(a) (b) (c)

Therefore, it is recommended that the influence of a range of materials on the trapped mode should be explored. An exploration of the trapped mode from the perspectives of energy and sound intensity is also hopeful and meaningful.
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