
HAL Id: tel-03999974
https://theses.hal.science/tel-03999974

Submitted on 22 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software-defined security for network function
virtualization

Manel Smine

To cite this version:
Manel Smine. Software-defined security for network function virtualization. Cryptography and
Security [cs.CR]. Ecole nationale supérieure Mines-Télécom Atlantique, 2022. English. �NNT :
2022IMTA0323�. �tel-03999974�

https://theses.hal.science/tel-03999974
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÈRIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Manel SMINE

Software-defined Security for Network Function Virtualization

Thèse présentée et soutenue à Cesson Sévigné à IMT Atlantique, le 05/12/2022
Unité de recherche : LabSTICC
Thèse N° : 2022IMTA0323

Rapporteurs avant soutenance :
Joaquin Garcia-Alfaro Professeur Télécom SudParis
Rémi Badonnel Professeur des Universités Université de Lorraine

Composition du Jury :
Président : Abdelmalek Benzekri Professeur des universités, Université Paul Sabatier

Toulouse III
Examinateurs : Joaquin Garcia-Alfaro Professeur Télécom SudParis

Rémi Badonnel Professeur des Universités Université de Lorraine
Françoise Sailhan Professeure, IMT-Atlantique

Dir. de thèse : David Espes Professeur, Université de Bretagne Occidentale
Encadrant de thèse : Marc-Oliver Pahl Directeur de recherche, IMT Atlantique

2

Dedicated to my parents, my husband, my two
brothers, my sister and my two children for

1001 reasons.

3

ABSTRACT

Network Function Virtualization (NFV) technology is a concept that aims to virtualize
basic network functions that are traditionally performed by physical elements, such
as routing. This concept has been proposed to improve the flexibility of deployment
and cost effectiveness of network services by eliminating the problems imposed by
manual processes. Also it allows better sharing of information between their compo-
nents. In particular, NFV enables a cost-effective transformation from hardware-based
to software-defined services. In addition, it allows the deployment of new services on
demand. Despite the above-mentioned advantages, existing NFV infrastructures suf-
fer from several security issues such as security breaches, data loss and information
leakage that can lead to serious security threats such as user privacy violation and/or
exposure of confidential data. To mitigate these threats, many security mechanisms
have been proposed in the literature such as intrusion detection and prevention, ac-
cess and flow control and data encryption, etc. Particularly, once well-specified and
correctly-enforced, access control policies can help reduce many security threats such
as, DoS attack, data leakage, breach of isolation, cross VM Attack, malicious insiders,
etc.

The main objective of this thesis is to improve the security of NFV services through
access control enforcement. We start by studying the existing and potential security
problems and threats in NFV infrastructures. Then, we propose a taxonomy for classi-
fying identified threats according to the components that are affected by these threats.
Afterwards, we review existing solutions for enforcing access control policies in NFV in-
frastructures and provide a comprehensive comparative overview of existing solutions
with respect to several properties, including the considered adversary model, effective-
ness, correctness, optimality, etc. The conducted comparative overview allows us to
identify several open challenges that were addressed through the following contribu-
tions.

In a first step, we define an expressive specification model to be able to express
high-level access control requirements to be enforced over network services. Then, we
show that our specification model can correctly express access control requirements

4

specified using well known access control models such as RBAC, ABAC, and ORBAC.
Second, we propose a provably correct method for refining high-level access control
requirements towards a Domain Type Enforcement (DTE) concrete specification. Then,
we define an ETSI-NFV compliant, efficient, and scalable enforcement method of ac-
cess control policies in NFV services.

In a second step, we extend the proposed model to enable a clean and efficient
deployment of complex access control policies containing exceptions and/or conflicting
rules on NFV services. Experimental results show that, compared to similar existing
solutions, our model significantly reduces (1) the complexity of the DTE specification to
be deployed and (2) the network performance impact of the NFV service in which the
policies are deployed.

In a third step, we consider a strong adversary model in which an insider adversary
is controlling one or more unknown nodes (Virtual Network Functions) that compose
the NFV service. We propose a correctly provable access control policy enforcement
model that computes optimally the right set of rules that should be deployed in each
network link connecting two VNFs . This model makes violating the enforced access
control requirement impossible for the insider adversary.

In a fourth step, we aim to find the best trade-off between the resources required
for the access control policy deployment and the impact on the quality of NFV ser-
vice due to the enforcement of access control requirements. We propose a model to
quantify the impact in terms of latency of the deployment of the access control model
on the target NFV service. Then, we define a minimization problem that aims to min-
imize both the impact in terms of latency in an NFV service and the computation and
storage resources that are required by the access control policy enforcement points.
Afterwards, we show that the proposed optimization problem is nonlinear and non-
convex and we use an improvement of the Non-dominated Sorting Genetic Algorithm
NSGA II for solving it. Finally, we build a simulation framework to evaluate the effec-
tiveness of the proposed optimization model. The conducted simulations show that the
optimization model we propose allows security administrators to have enough informa-
tion to make decisions on the right trade-off between the quality of service degradation
and the quantity of resources that should be dedicated to the access control policy
enforcement points.

5

RÉSUMÉ

La nouvelle technologie NFV (Network Function Virtualization) est un concept qui vise
à virtualiser les fonctions de base du réseau qui sont traditionnellement réalisées par
des éléments physiques, comme le routage. Ce concept a été proposé pour améliorer
la flexibilité du déploiement et la rentabilité des services de réseau en éliminant les
problèmes imposés par les processus manuels. Aussi, elle permet un meilleur partage
des informations entre leurs composants. En particulier, NFV permet une transforma-
tion rentable des services basés sur le matériel vers des services définis par logiciel.
En outre, elle permet le déploiement de nouveaux services à la demande. Malgré les
avantages susmentionnés, les infrastructures NFV existantes souffrent de plusieurs
problèmes de sécurité tels que les failles de sécurité, les pertes de données et les fuites
d’informations qui peuvent entraîner de graves menaces pour la sécurité, comme la vi-
olation de la vie privée des utilisateurs et/ou l’exposition de données confidentielles.
Pour atténuer ces menaces, de nombreux mécanismes de sécurité ont été proposés
dans la littérature, tels que la détection et la prévention des intrusions, le contrôle
d’accès et de flux, le cryptage des données, etc.

L’objectif de cette thèse est d’améliorer la sécurité des services NFVs. Pour at-
teindre cet objectif, nous avons proposé un certain nombre de contributions. Tout
d’abord, nous avons étudié les problèmes et les menaces de sécurité existants et
potentiels dans les infrastructures NFVs. Ensuite, nous les avons classés en fonc-
tion des composants qui sont affectés par ces menaces. Puis, nous avons étudié les
différents mécanismes de sécurité qui peuvent être utilisés pour réduire ces risques.
Cette étude nous a permis de réaliser que le déploiement des politiques de contrôle
d’accès au niveau des services NFV permet d’atténuer plusieurs problèmes de sécu-
rité tels que, les vulnérabilités des VMs invitées, les utilisateurs malveillants, les fuites
d’informations, etc. Ce constat nous a conduit à examiner les solutions existantes
pour le déploiement des politiques de contrôle d’accès dans les infrastructures NFV.
Troisièmement, nous fournissons un aperçu comparatif complet des solutions exis-
tantes en se basant sur plusieurs propriétés, y compris le modèle d’adversaire consid-
éré, l’efficacité, la véracité, l’optimalité, etc. L’aperçu comparatif réalisé nous a permis

6

d’identifier plusieurs défis ouverts qui ont été abordés aux travers des contributions
suivantes.

Dans un premier temps, nous définissons un modèle de spécification expressif per-
mettant d’exprimer les exigences de contrôle d’accès de haut niveau à déployer aux
services de réseau. Nous montrons ensuite que notre modèle de spécification peut ex-
primer correctement les exigences de contrôle d’accès spécifiées à l’aide de plusieurs
modèles de contrôle d’accès bien connus tels que RBAC, ABAC et ORBAC. Ensuite,
nous proposons une méthode prouvée correcte pour raffiner les exigences de con-
trôle d’accès de haut niveau vers une spécification concrète de type et de domaine
(DTE). Enfin, nous définissons une méthode de déploiement des politiques de con-
trôle d’accès dans les services NFV qui soit conforme à la norme ETSI-NFV, efficace
et évolutive.

Dans un deuxième temps, nous avons étendu le modèle proposé pour permettre
un déploiement propre et efficace de politiques de contrôle d’accès complexes con-
tenant des exceptions et/ou des règles de conflit sur les services NFV. Les résultats ex-
périmentaux montrent que, par rapport aux solutions similaires existantes, l’extension
proposée réduit de manière significative (1) la complexité de la spécification DTE à
déployer et (2) l’impact sur les performances du réseau du service NFV dans lequel
les politiques sont déployées.

Dans un troisième temps et en considérant un modèle d’adversaire fort dans lequel
un adversaire interne contrôle un ou plusieurs nœuds inconnus (VNF) qui composent
le service NFV, nous proposons un nouveau modèle de déploiement des politiques de
contrôle d’accès correctement prouvable qui calcule de manière optimale le bon en-
semble de règles de la politique de contrôle d’accès qui doit être déployé dans chaque
lien réseau reliant deux VNFs, rendant impossible la violation de l’exigence de contrôle
d’accès appliquée par l’adversaire interne.

Dans un quatrième temps, visant à trouver le meilleur compromis entre les ressour-
ces nécessaires au déploiement de la politique de contrôle d’accès et l’impact sur la
qualité du service NFV dû au déploiement des exigences de contrôle d’accès, nous
proposons un modèle permettant de quantifier l’impact en terme de latence du dé-
ploiement du modèle de contrôle d’accès sur le service NFV cible. Ensuite, nous
définissons un problème de minimisation qui vise à réduire à la fois l’impact en ter-
mes de latence dans un service NFV et les ressources de calcul et de stockage qui
sont requises par les points de déploiement de la politique de contrôle d’accès. Par la

7

suite, nous montrons que le problème d’optimisation proposé est non linéaire et non
convexe et nous utilisons une amélioration de l’algorithme génétique de tri non dom-
iné NSGA II pour le résoudre. Enfin, nous construisons un cadre de simulation pour
évaluer l’efficacité du modèle d’optimisation proposé. Les simulations réalisées mon-
trent que le modèle d’optimisation que nous proposons permet aux administrateurs de
la sécurité d’avoir des informations claires et suffisantes pour prendre des décisions
sur le bon compromis entre la dégradation de la qualité de service et la quantité de
ressources qui devraient être consacrées aux points de déploiement de la politique de
contrôle d’accès.

8

REMERCIEMENTS

La réalisation de cette thèse n’a pas été possible sans le soutien, l’aide, l’orientation
et les conseils que j’ai reçus de nombreuses personnes au cours de ma vie d’étudiant.
Je tiens sincèrement à exprimer ma gratitude à toutes ces personnes, du fond du cœur.

Je tiens à exprimer ma gratitude à mes directeurs de thèse David Espes et Marc-
Oliver Pahl pour leur soutien, leur confiance et leurs conseils qui m’ont permis d’atteindre
cet objectif important. Je tiens à remercier Nora Cuppens-Boulahia et Frédéric Cup-
pens pour leur support et leur confiance tout au long de la première année de ma
thèse. Ce fut un honneur pour moi d’être l’un de leurs doctorants. Je tiens à exprimer
ma gratitude à David pour ses précieux conseils et pour ses réponses à toutes mes
questions tout au long des trois années de ma thèse.

Je tiens également à remercier Joaquin Garcia-Alfaro et Rémi Badonnel qui ont
eu la lourde tâche de rapporter ma thèse et de donner leurs conseils pour améliorer
son contenu. Un grand merci à Abdelmalek Benzekri et Françoise Sailhan pour
avoir fait partie du jury de ma thèse.

Un grand merci à tous mes amis et collègues, membres de notre équipe pour avoir
apporté de la joie dans ma vie. A tous ceux qui m’ont soutenu durant cette thèse, merci
encore.

Je tiens à remercier tout particulièrement mon bien-aimé mari Anis Bkakria pour
son soutien continu. Je ne peux pas te remercier assez de m’avoir encouragée tout
au long de cette expérience. Tu as été ma source d’inspiration. Je n’aurais jamais pu
réaliser cette thèse sans ton amour, ton soutien, tes conseils et tes compréhensions.
Merci pour tout ce que tu as apporté à ma vie. Merci de m’avoir donné deux merveilleux
enfants Iyed et Mirna. J’ai de la chance de t’avoir rencontré et j’ai hâte de passer le
reste de ma vie avec toi.

9

Un grand merci à ma famille. Avant tout, ma mère Raja et mon père Abdelwahab
pour avoir été ma motivation à réussir dans la vie. Je tiens également à remercier ma
sœur Marwa, mes frères Safwen et Mahdi , à mes oncles et tantes. Je tiens égale-
ment à remercier ma belle-famille pour leur compréhension et leurs encouragements.

10

CONTENTS

1 Introduction 18
1.1 Context and Motivation . 18
1.2 Research Goal and Questions . 19
1.3 Methodologies and Contributions . 22
1.4 Outline of dissertation . 24

2 Access Control in NFV: State of the Art & BACKGROUND 26
2.1 Introduction . 27
2.2 NFV architecture . 28

2.2.1 NFV Infrastructure (NFVI) . 28
2.2.2 Virtual Network Functions (VNFs) 29
2.2.3 NFV Management and Orchestration (NFV MANO) 30

2.3 Security in NFV . 31
2.3.1 Security issues related to NFVI 31
2.3.2 Security issues related to VNF 36
2.3.3 Security issues related to NFV MANO 36
2.3.4 Common security issues for the three components: 37

2.4 Security Countermeasures . 38
2.5 Access Control in NFV . 38

2.5.1 SDN-based Access Control . 39
2.5.2 Orchestrator-based access Control 41
2.5.3 Optimal Deployment . 45
2.5.4 A Comparative Overview . 50

2.6 Open Challenges . 56
2.7 Conclusion . 57

3 A Domain Type Enforcement of Access Control Policies in NFV Services 58
3.1 Introduction . 59
3.2 Background . 60

11

3.2.1 Virtual Network Service . 60
3.2.2 Domain and type enforcement (DTE) 62
3.2.3 Access control models . 65

3.3 The proposed model . 69
3.3.1 Adversary Model . 69
3.3.2 Security Policy specification . 70
3.3.3 Policy translation . 72
3.3.4 Policy refinement . 78
3.3.5 Access query evaluation . 81
3.3.6 Policy refinement correctness . 84
3.3.7 Service requirements specification 87
3.3.8 DTE policy enforcement . 88

3.4 Implementation and experimental evaluations 89
3.5 Conclusion . 93

4 A Priority-based DTE for Exception Management 95
4.1 Introduction . 95
4.2 Motivation . 97
4.3 Mixed policy deployment in DTE . 99

4.3.1 Mixed access control policy specification 99
4.3.2 Exception in access control policy 99
4.3.3 Exception Management in DTE 102

4.4 Priority-based DTE . 109
4.5 A new policy enforcement model . 113

4.5.1 Policy transformation towards priority-based DTE 113
4.5.2 Access Query Evaluation . 117
4.5.3 Correctness . 120

4.6 Experimental Results . 122
4.7 Conclusion . 126

5 Optimal Access Control Deployment in NFV Service 128
5.1 Introduction . 129
5.2 Background . 131

5.2.1 Multi-objective optimization . 131
5.2.2 Queuing Theory . 133

12

5.3 Adversary model and Problem Statement 134
5.4 System Modelling and Problem Formalization 136

5.4.1 NFV Topology Modelling . 136
5.4.2 Policy Deployment . 137

5.5 Latency Quantification . 140
5.5.1 Transmission Delay . 141
5.5.2 Rules Enforcement Delay . 142
5.5.3 Queuing delay . 143
5.5.4 Optimization Problem Formulation 144

5.6 Problem Solving . 144
5.6.1 NSGA II . 147

5.7 Implementation and Simulation . 151
5.8 Conclusion . 159

6 Conclusions and Perspectives 160
6.1 Conclusion . 160
6.2 Perspectives . 163

6.2.1 Dynamic deployment of access control requirements 163
6.2.2 Heterogeneous security requirements enforcement on NFV ser-

vices . 165

A Publications 166

B Résumé en français 167
B.1 Contexte et motivation . 167
B.2 Objectif et questions de la recherche . 168
B.3 Méthodologies et contributions . 172

B.3.1 La sécurité des NFVs . 172
B.3.2 Déploiement des politiques de contrôle d’accès sur les services

NFV . 174
B.3.3 Un DTE basé sur les priorités pour la gestion des exceptions . . 175
B.3.4 Déploiement optimal du contrôle d’accès sur les services NFV . 177

LIST OF FIGURES

2.1 NFV infrastructure . 29

2.2 NFVI threats . 32

3.1 Network Service Descriptor overview . 61

3.2 DTE specification of the access control policy used in Example 3.1. . . 64

3.3 RBAC policy specification model . 66

3.4 ABAC policy specification model . 67

3.5 An overview of the ORBAC model . 68

3.6 Translation of an RBAC rule to a property-based rule 73

3.7 Translation of an ABAC rule to a property-based rule 75

3.8 Translation of an OrBAC rule to a property-based rule 76

3.9 The refinement of a property-based rule towards a DTE specification . . 79

3.10 Transformation of rules r1, r2, and r3 to a DTE policy 82

3.11 Network Service forwarding graph modification 89

3.12 Design architecture of the implementation of the proposed model and
the operational flow of an access control policy deployment 91

3.13 Policy transformation time . 93

3.14 RTT as a function of the number of rules in the access policy to be
deployed . 94

4.1 Full exception example . 100

4.2 Partial exception example . 100

4.3 Exception transformation example . 104

4.4 Possible DTE transition for considered access queries in Example 4.2 . 111

4.5 Rule transformation. 114

4.6 Graphical representation of the DTE policy described in Example 4.3 . . 116

4.7 Access Queries evaluation . 119

14

4.8 The comparison of the growth of the number of required DTE domains
and types in classic and priority-based DTE as a function of the number
of exception in the policy. 123

4.9 The comparison of the number of rules in the classic DTE specification
and in the priority-based DTE specification as a function of the number
of rules in the policy to be deployed. 124

4.10 The comparison of the time required to transform the policy towards
classic DTE specification and priority-based DTE specification as a func-
tion of the number of exceptions in the high-level policy to be deployed. 124

4.11 The comparison of the access query evaluation time between the classic
DTE specification and the priority-based DTE specification as a function
of the number of exceptions in the policy to be deployed. 125

4.12 The comparison of the growth of the round-trip time of a network request
when (a) a classic DTE policy model is used and (b) a priority-based
DTE policy model is used, as a function of the number of exceptions in
the enforced policy. 126

5.1 Classic policy deployment strategy in the presence of an insider adver-
sary © [2022] IEEE . 135

5.2 Policy deployment strategy to cope with insider adversaries 138

5.3 Transmission delay cause by the access control policy enforcement . . 142

5.4 The frequency of usage of the different optimization methods in the con-
sidered studies. The "Hybrid" method pairs two or more optimization
methods for solving the considered problem. 146

5.5 NSGA-II algorithm . 148

5.6 Hypothetical case of the Crowded distance assignment 150

5.7 The used simulation framework . 152

5.8 Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed resources as a function
of the number of VNFs that composes the NFV service. © [2022] IEEE. 154

5.9 Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed resources as a function
of the number of rules in the policy to be deployed. © [2022] IEEE. . . . 155

15

5.10 Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed number of firewalls as
a function of the number of physical servers. © [2022] IEEE. 156

5.11 Different observed delays resulting from the deployment of an access
control policy composed of 100 rules on an NFV service composed of
100 VNFs hosted in 12 different physical servers. © [2022] IEEE 157

5.12 The time required for the optimizer to find the optimal policy enforcement
solution to be deployed. © [2022] IEEE. 158

B.1 NFVI threats . 173

16

LIST OF TABLES

2.1 The virtualized system threats and vulnerabilities that can be addressed
by access control policy enforcement [Pat19] 38

2.2 Comparative view of optimization approaches. We used TO to denote
traffic overhead, R to denote resources, L to denote latency, M to denote
memory, and B to denote bandwidth . 51

2.3 Comparative view of optimization approaches. 54

5.1 Inputs and Variables Notation © [2022] 137
5.2 Multi-objective optimization problems comparison regarding the ability to

deal with non-linear and non-convex optimization problems 145

6.1 Summary of the research questions that have been investigated and the
chapters in which they were addressed. 164

17

CHAPTER 1

INTRODUCTION

Contents
1.1 Context and Motivation . 18

1.2 Research Goal and Questions . 19

1.3 Methodologies and Contributions 22

1.4 Outline of dissertation . 24

1.1 Context and Motivation

To respond quickly and efficiently to the growing need for new and diverse network ser-
vices, today’s networks must be flexible, adaptable, responsive, robust and highly re-
sourced (processing capacity, storage and bandwidth) [MS14]. The model according to
which the networks of previous generations are built, which relies on proprietary hard-
ware often strongly coupled to a particular technology (IPv4 for example), is unable to
respond effectively and quickly to these needs to achieve this transformation. It is there-
fore from this observation that the Network Function Virtualisation (NFV) paradigm was
born. With NFV, network functions such as storage, computation, filtering, and NAT, can
be decoupled from the hardware, which allows them to be virtualized in Virtual Network
Function (VNF) to be installed anywhere on the network infrastructure both physically
and virtually. The goal is then to simplify network service lifecycle management, to op-
timize the resources and improve operational efficiency and to allow rapid development
of new network services while maximizing flexibility for scalability and automation.

With the NFV paradigm, enterprises are tempted to virtualize and outsource their
network infrastructures to the cloud, in order to reap the benefits of the latter. For cloud
providers, NFV opens the door to new highly innovative and lucrative business models
such as Network as a Service (NaaS) [LRMO16]. Large number of cloud providers

18

already offer a broad spectrum of out-of-the-box VNFs e.g., load balancer [Gui18],
AWS Transit Gateway [AWS], and AWS Network Firewall. The companies can then
quickly create efficient network services by linking various VNFs. According to a study
conducted by Meticulous Research [Ltd20], The global NFV market is expected to grow
34.9% annually to reach 122 billion by 2027.

Despite the unanimous recognition of the benefits of outsourcing network functions
to the cloud through NFV, the security remains to be one of the vital concerns and
potential hurdles that prevent wide-spread adoption of NFV [PHS+18, ZAR22]. NFV
significantly expands the attack surface as it relies on a broad software stack such as
hypervisors (e.g., KVM, Docker), automation and management tools (e.g., OpenStack,
Cloudify, Ansible), and network isolation and data plane acceleration software (e.g.,
OpenVswitch, FD.io). Each of these software products may expose various vulnerabili-
ties (e.g., CVE-2020-35498 and CVE-2020-3236), increasing tenfold the opportunities
for an adversary to violate enterprise network service specifications [ZAR22]. More-
over, in NFV platforms, VNFs belonging to different tenants (enterprises) often share
the same physical or virtual server. A malicious tenant can then conduct side-channel
attacks [AQK+19,AWJ20] against other tenants’ VNFs to steal or corrupt sensitive data,
or disrupt the different features provided by the VNFs. It has been shown by Youngjoo
Shin et al. [SKH20] that shared access to the CPU cache can allow one tenant to in-
fer information such as the firewall filtering rules that are enforced in another tenant’s
network service.

Companies’ and Organizations’ lack of confidence in NFV environments inhibits the
outsourcing of network functions to the cloud. This critical gap must be bridged by the
NFV research field which needs to be fed by new security-oriented approaches that
can be used to improve the security posture of existing NFV environments.

1.2 Research Goal and Questions

The goal of this dissertation is to improve the security of NFV services. To meet the
previously stated objective, several research questions need to be answered.

First, considering the fact that VNFs are software-based network functions run-
ning on virtualized infrastructures, the security threats related to NFV based network
services can be larger than traditional network services, ranging from generic virtual-
ization threats [AQK+19], physical network functions prior to virtualization [BMMR+15],

19

and threats introduced by the combination of virtualization technology with network-
ing [AWJ20] such as orchestration and policy violation. Therefore, the first sub-goal is
then to establish a comprehensive NFV layer-specific threat taxonomy by answering
the following research questions:

• RQ-1: What are the security threats in NFV infrastructures?

• RQ-2: Which layers of the NFV infrastructure are concerned by which security
threats?

To overcome some of the threats and vulnerabilities related to NFV infrastructures,
several security mechanisms have been proposed in the literature. One of these mech-
anisms is the enforcement of access control policies. Hence, as a second sub-goal, we
focus on studying existing mechanisms that can be used to enforce access control
policies on NFV services. Then, to evaluate and compare existing access control pol-
icy enforcement in NFV services solutions, as a third sub-goal, we focus on identifying
the set of relevant properties that need to be satisfied to effectively enhance the secu-
rity of NFV services. We fulfill the previous two sub-goals by answering the following
research questions:

• RQ-3: What is the state of the art with respect to access control policy enforce-
ment in virtualized network infrastructures?

• RQ-4: What are the relevant properties that need to be satisfied by access control
enforcement mechanisms to enhance the security of NFv services in existing
solutions?

By answering the previous questions, we observe that all existing access control
enforcement on virtualized infrastructure suffers from at least one of the following lim-
itations. First, none of the existing approaches provides formal proofs supporting the
correctness of the deployment of access control policies. Second, most of the existing
approaches rely on specification models that are not expressive enough to handle high
level policies specified using other access control models such as RBAC [SCFY96],
ORBAC [KBB+03], and ABAC [PFMP04]. Finally, several of the existing approaches
require the modification and the management of the NFV Infrastructure (NFVI) which
makes them non-compliant with the ETSI-NFV architecture and thus not easily used

20

in practice. Therefore, to overcome the previous limitation, as a forth sub-goal, we fo-
cus on the definition of a provably correct, highly expressive, and ETSI-NFV compliant
access control enforcement mechanism by investigating the following research ques-
tions:

• RQ-5.1: How to define a sufficiently expressive high-level specification model that
allows to correctly express requirements modeled using well known access con-
trol models?

• RQ-5.2: How to correctly refine the high level access control policy towards conc-
rete-level deployable requirements?

• RQ-5.3: How to define an ETSI-NFV compliant deployment of the concrete-level
requirements?

The investigations we conduct to answer the previous research questions allow
us to observe that high-level access control policies are often composed of a set of
authorizations and prohibitions, which may give place to conflicts and exceptions in the
policy to be enforced. Consequently, as a fifth sub-goal, we focus on the definition of a
solution allowing efficient enforcement of high-level mixed access control policies (i.e.,
policies that contain both positive and negative authorizations) containing exceptions
in virtualized infrastructure. To meet the previous sub-goal, we investigate the following
research questions:

• RQ-5.4: Can the solutions proposed to answer RQ-5.1, RQ-5.2, and RQ-5.3 be
used to efficiently (i.e., by reducing to the best the number of rules in the concrete-
level policy as well as the time needed to evaluate an access request) deploy
high-level mixed access control policies containing exceptions?

• RQ-5.5: How can we improve the proposed solutions to deal efficiently with high-
level mixed access control policies containing exceptions?

NFV services, as any other virtualized infrastructure, can be compromised and par-
tially controlled by an adversary. The conducted literature review (Chapter 2) shows that
all existing access control policies enforcement solutions consider only outsider adver-
saries that aim to remotely bypass the enforced policy. Hence, the sixth sub-goal we
consider in this dissertation focuses on proposing a solution that can correctly enforce

21

access control policies when both outsider and insider adversaries are considered. To
meet the previous sub-goal, we investigate the following research question:

• RQ-5.6: How to deal with both insider and outsider adversaries? More specifically,
how to correctly deploy access control policies when an unknown part of the
target NFV service is compromised and controlled by an adversary?

Finally, the enforcement of access control policy requires resources in terms of com-
putation and storage, and often impacts the functionality provided by the target NFV
service i.e., by introducing latency due to the traffic analysis and rule enforcement. The
conducted literature review (Chapter 2) allows us to observe that none of the exist-
ing access control enforcement on virtualized infrastructure solutions has considered
minimizing both resource consumption and the impact related to access control policy
enforcement. Hence, the seventh sub-goal of this dissertation focuses on proposing an
access control policy enforcement solution that allows minimizing both the resources
needed by the policy enforcement points and the impact in terms of latency introduced
by the access control policy deployment. We achieve the previous sub-goal by investi-
gating the following research question:

• RQ-5.7: How to define an access control policy enforcement mechanism that min-
imizes both the consumed resources and the impact on the target NFV service
caused by the access control policy deployment?

1.3 Methodologies and Contributions

To meet the above research goals and answer the defined aforementioned research
questions, this dissertation provides the following contributions.

• An in-depth analysis about NFV security and existing access control policy en-
forcement solutions for virtualized infrastructures. To answer the research ques-
tions RQ-1 and RQ-2, in this contribution, we first conduct a literature review of
existing and potential security issues and threats in the NFV architecture. Then,
we classify them according to the components of the NFV architecture that are
concerned by these threats. At a second time, to answer the research questions
RQ-3 and RQ-4, we review existing solutions for enforcing access control policies

22

in NFV infrastructures. Then, we identify the relevant properties that need to be
satisfied by access control enforcement mechanisms to effectively enhance the
security of NFV services. Third, we give an extensive comparative overview of
the existing access control enforcement solutions regarding the identified prop-
erties. Finally, we identify several open challenges that we addressed throughout
the following contributions.

• A provably correct, highly expressive, and ETSI-NFV compliant access control
enforcement model. Specifically, to answer the research question RQ-5.1, we
propose a formal model that provides a software-defined access control as a ser-
vice capability for network services. First, we define an expressive specification
model to be able to express high-level access control requirements to be enforced
over virtualized network services. Then, we show that our specification model
can correctly express access control requirements specified using well-known
existing access control models such as RBAC [SCFY96], ORBAC [KBB+03],
and ABAC [PFMP04]. Second, to tackle RQ-5.2, we propose a provably cor-
rect method for refining high-level access control requirements towards a Do-
main Type Enforcement (DTE) concrete specification. Finally, to answer RQ-5.3,
we define an ETSI-NFV compliant, efficient, and scalable access control policy
enforcement method, as illustrated by the conducted experimental evaluations.

• A priority-based DTE for exception management. In this contribution, to answer
RQ-5.4 and RQ-5.5, we define a solution allowing a clean and efficient deploy-
ment of complex access control policies containing exceptions and/or conflict
rules on NFV services. Our model allows a clean deployment in the sense that,
compared to the high level security policy to be deployed, it does not introduce
additional low-level rules which allows security administrators to straightforwardly
understand and update the deployed concrete-level policy. Our model relies on a
provably correct approach for exception management in DTE specification. The
conducted empirical evaluations show that the priority-based DTE model we are
proposing is quite efficient for enforcing big and complex policies that contain
exceptions.

• An approach allowing an optimal access control deployment in NFV services. In
this contribution, we consider a strong adversary model by assuming that we are
dealing with an insider adversary who can control one or more unknown nodes

23

(VNFs) that compose the NFV service. Hence, to answer RQ-5.6, we propose a
new correctly provable access control policy enforcement model that optimally
computes the right set of rules of the access control policy that needs to be
deployed in each network link linking two VNFs, making violating the enforced
access control requirement not possible for the insider adversary. As a second
time, to tackle RQ-5.7, we propose a formal modeling of the optimal deployment
of the access control policy problem allowing to model and quantify consumed
resources as well as the impact in terms of latency that is to be generated by
the access control policy deployment. We show that the optimal deployment of
access control policies problem is a nonlinear multi-objective optimization prob-
lem and uses an improvement of the Non-dominated Sorting Genetic Algorithm
NSGA II [WSZ+18] for solving it. Finally, we conduct an experiment in an emu-
lated Internet environment, NS-3 [ns3], to evaluate the effectiveness of access
control policy deployment solutions.

1.4 Outline of dissertation

The organization of this dissertation is given as follows:

• Chapter 2 – Access Control in NFV: State of the Art & Background – gives a
review of existing and potential security issues and threats in the NFV architec-
ture. It classifies them according to the components that are concerned by these
threats. Then, it reviews existing solutions for enforcing access control policies in
NFV infrastructures.

• Chapter 3 – A Domain Type Enforcement of Access Control Policies in NFV
Services – defines an expressive specification model of high-level access control
requirements to be enforced over network services. Then, it proposes a provably
correct method for refining them towards a Domain Type Enforcement (DTE) con-
crete specification.

• Chapter 4 – A Priority-based DTE for Exception Management – investigates
the management of access control exception in concrete-level DTE specification.
Then, it proposes a solution to allow a clean and efficient deployment of com-
plex access control policies containing exceptions and/or conflict rules on NFV
services.

24

• Chapter 5 – Optimal Access Control Deployment in NFV Service – proposes
a formal modeling of the optimal deployment of the access control policy problem
allowing to quantify and optimize consumed resources as well as the impact in
terms of latency caused by the access control policy deployment.

• Chapter 6 – Conclusions and Perspectives – concludes the thesis with a sum-
mary of the contributions and presents the perspectives of future works.

25

CHAPTER 2

ACCESS CONTROL IN NFV: STATE OF

THE ART & BACKGROUND

Contents
2.1 Introduction . 27

2.2 NFV architecture . 28

2.2.1 NFV Infrastructure (NFVI) . 28

2.2.2 Virtual Network Functions (VNFs) 29

2.2.3 NFV Management and Orchestration (NFV MANO) 30

2.3 Security in NFV . 31

2.3.1 Security issues related to NFVI 31

2.3.2 Security issues related to VNF 36

2.3.3 Security issues related to NFV MANO 36

2.3.4 Common security issues for the three components: 37

2.4 Security Countermeasures . 38

2.5 Access Control in NFV . 38

2.5.1 SDN-based Access Control . 39

2.5.2 Orchestrator-based access Control 41

2.5.3 Optimal Deployment . 45

2.5.4 A Comparative Overview . 50

2.6 Open Challenges . 56

2.7 Conclusion . 57

26

2.1 Introduction

Network Function Virtualization (NFV) aims to make the physical equipment used ver-
satile by allowing them to multiply the functions they can perform (each function be-
coming a software rather than a physical device). NFV increases the flexibility and
cost-effectiveness of network services by eliminating the bottlenecks imposed by man-
ual processes, while making it possible to deploy new services on demand [TKJ16,
HGJL15]. With NFV, providers are able to deliver services faster, lower their cost, and
leverage automation to match customer requirements for scalability and agility. NFV
extracts network functions, allowing software running on standardized compute nodes
to install, control, and manipulate them. Despite the aforementioned advantages, exist-
ing NFV infrastructures are suffering from several threats and vulnerabilities [RAB+16]
such as security breaches, data loss and information leakage, malicious insiders, etc.
To mitigate these threats, several security mechanisms have been defined in the liter-
ature such as Intrusion Detection and Prevention [AZZ+20], Access control and Flow
Control Policy [Jae15,PHMZ16,SECBC20,TCCM17], and Data Encryption, etc.

As it was mentioned in Chapter 1, the research goal of this dissertation is to improve
the security of NFV services through the use of access control policy enforcement
techniques. To meet the previous objective, we first need to establish a comprehensive
NFV layer-specific threat taxonomy by answering the following two research questions:

• RQ-1: What are the security threats in NFV infrastructure?

• RQ-2: What are the security threats that can be addressed/reduced by Access
control policy enforcement?

Then, we focused on studying existing mechanisms that can be used to enforce access
control policies on NFV services to understand their strengths and limitations. To meet
the previous objective, we investigate the following two research questions:

• RQ-3: What is the state of the art with respect to the access control policy en-
forcement in virtualized network infrastructure?

• RQ-4: What are the relevant properties that are satisfied/unsatisfied in existing
solutions?

The contribution of this chapter is threefold. First we give a review of existing and
potential security issues and threats in the NFV architecture. Then, to allow a better

27

understanding of the impact of these threats, we classify them according to the com-
ponents that are concerned by these threats. Second, we review existing solutions for
enforcing access control policies in NFV infrastructures. Then, we give an extensive
comparative overview of the existing solutions regarding several properties including,
the considered adversary model, the effectiveness, the correctness, the optimality, etc.
The comparative overview illustrates the main improvement we bring through the con-
tributions we propose in this thesis compared to existing solutions.

This chapter is organized as follows. Section 2.2 introduces the NFV architecture.
Section 2.3 study the security in NFV by proposing a classification of the threats related
to the NFV architecture components. Section 2.4 study the security contermeaures.
Section 2.5 propose a clasification of enforcement security policies approaches over
NFV. Finally, section 2.7 concludes this chapter.

2.2 NFV architecture

The NFV architecture proposed by the European Telecommunications Standards In-
stitute (ETSI) helps to define the standards for implementing network function virtual-
ization. Each component of the architecture is based on these standards to provide
a higher level of stability and interoperability. This section introduces the main archi-
tectural components of NFV that is provided by ETSI in [E+14]. The NFV architecture
includes the three following main functional blocks: NFV Infrastructure (NFVI), Virtual
Network Functions (VNFs), and NFV Management and Orchestration (NFV MANO)
interconnected over specific reference points, as illustrated in Figure 2.1.

2.2.1 NFV Infrastructure (NFVI)

NFVI is a low-cost based infrastructure that contains a set of hardware and software
components (compute, storage, network), which supports the software and delivers the
environment on which virtualized network functions (VNFs) are deployed, managed,
and executed. NFVI provides the virtualization layer to ensure the separation of soft-
ware from hardware for network functions such as a hypervisor like KVM, or a container
management platform. as well as the physical compute, storage, and network compo-
nents that host the VNFs. So that they can be logically partitioned and provisioned
to support the VNFs. The NFVI module is also essential for building complex, widely

28

NFV management and
Orchestration (Mano)

Virtualized Network Functions (VNFs)

NFV infrastructure (NFVI)

VNFs VNFs VNFs VNFs VNFs

Virtual Compute Virtual NetworkVirtual
Storage

Physical NetworkPhysical StoragePhysical Compute

Virtualization Layer

OSS and BSS Partners

NFV Orchestrator (NFVO)

VNF Manager (VNFM)

Virtualized Infrastructure Manager
(VIM)

Figure 2.1 – NFV infrastructure

distributed networks without the geographic limitations associated with the traditional
network architectures. The NFVI module is administered by the NFVI Infrastructure
Manager (VIM).

2.2.2 Virtual Network Functions (VNFs)

VNFs are software packages where the implementation of network functions takes
place using software based approaches. A number of VNFs that are executed in one or
more virtual machines on top of the hardware networking infrastructure can be chained
to provide virtual network services. VNFs comprise routers, switches, firewalls and a
large number of other network services now offered as software from vendors such as
Cisco and Juniper Networks. VNFs use the virtualized infrastructure provided by the
NFVI module to connect to the network and provide programmable and scalable ser-
vices. VNF managers support the lifecycle of VNF instances and the management of
VNF software. The virtualization of network functions reduces the implementation cost
and the use of the material and improves the scalability [LL21]. Using a network func-

29

tions virtualization architecture, VNFs are deployed on demand, which eliminate the
deployment time associated with traditional network hardware, as well as the require-
ment for on-site technical expertise when deploying remotely. VNFs offer the agility to
meet or anticipate dynamic network performance or expansion demands in hybrid and
multi-cloud environments [ZPL+20].

2.2.3 NFV Management and Orchestration (NFV MANO)

NFV MANO is a framework developed by a working group of the European Telecom-
munications Standards Institute (ETSI) to provide the overall management and orches-
tration process for the resources - NFVIs and VNFs - that operate in a virtualized data
center including computers, networks, storage, and virtual machines (VMs) [Ers13].
The MANO component executes network services through automation, provisioning,
and workflow coordination on VIM and VNF managers that perform VNF functions and
overlay networking service chains. NFV MANO uses templates for standard VNFs en-
abling architects to select the suitable NFVI resources to deploy. MANO connects the
NFV architecture to existing OSS/BSS systems and is composed of three components:

• Virtualized Infrastructure Manager(s) (VIM): The VIM is in charge of managing the
used resources of the NFVI such as compute, storage, and network resources. It
monitors the lifecycle of virtual resources allocated to a domain, keeps the virtual
machine and physical machine matched, analyzes hardware, software and vir-
tual performance through an agent, and collects infrastructure failure information.
An example of an open source VIM manager is OpenStack that controls physi-
cal and virtual resources. The Red Hat OpenStack platform is an example of a
commercial VIM.

• NFV Orchestrator (NFVO): The NFVO plays a very important role in managing
resource orchestration. It coordinates the allocation of hardware resources: au-
thorizes, scales, releases physical resources across the set of DataCenters. It
gives orders to the hardware resource manager VIM. Additionally, the NFVO han-
dles service orchestration by checking the establishment or the release of one or
more VNF virtual functions. The NFVO relies on resource catalogs that specify
the desired template to handle network services such as:

– VNFD catalog includes the descriptor of each instance of VNF

30

– Service catalog allows to enumerate all the VNF functions to be chained to
obtain a sub-network of instances

– NFVI catalog contains the resources required to implement an NFV service.

• VNF Manager(s) (VNFM): manages the lifecycle of virtual network functions such
as creation, scaling, deployment, configuration. It is able to release their instances,
monitors and detects their faults. It provides a coordinated and adaptive role for
NFVI and element/network management system configuration and event report-
ing. The VNFM can be deployed for each VNF or multiple VNFs.

Established network vendors like Cisco and Juniper provide the functionality of NFV
MANO, as well as open-source offerings from Cloudify and Open Source MANO.

2.3 Security in NFV

NFV technologies are increasingly being utilized by e-communications operators to
answer rapidly to the market needs. It consists of the virtualization of network func-
tions, which is most often telecommunication network applications including routers,
firewalls, load balancers, etc. The main goal is to allow these functions to run as
software programs or virtual network functions (VNFs). Since service providers do
not exhibit internal structures, users can have limited ability to see and control net-
work resources [LV94]. These limitations inherently lead to important security threats
[DSVV17, LROT17, RLOH17, SECBC20, SECB+20]. According to what we have pre-
sented in Section 2.2, the NFV architecture is composed of several components (VNFs,
NFVI, and NFV MANO). Each of these components may introduce different threats. In
this section, we propose a classification of the threats related to the NFV architecture
components.

2.3.1 Security issues related to NFVI

In this section, we discuss the set of threats related to the different layers that compose
the NFVI. Figure B.1 gives a taxonomy of existing threats according to the impacted
NFVI layer.

31

Figure 2.2 – NFVI threats

Security issues related to virtual machines

• Compromised VM images: To launch VM instances on demand, a VM image is
used as a software template pre-packaged containing a configuration files. Net-
work operators can create their personal VM images from scratch or download
VM images that are stored in the public repository of provider. In some cases,
users can download or upload a VM image. If a malicious user upload a VM im-
ages containing malicious code and if another user runs this image, all their virtual
machines will be infected with the hidden malware [EMEBHM16, ABET16]. This
kind of threat represents a serious threat in the virtualized environment [AH21].

• VM Denial of Service (DoS): Using the virtualization, the physical resources
like memory disk, CPU, and network bandwidth are shared by several virtual
machines. The DoS attack can be launched by an attacker that tries to exploit
a misconfiguration of the hypervisor [PBB13] by using all the resources that are

32

available [HRFMF13,HCSL12].

• VM migration threats: Virtual machine (VM) migration is the main feature of
cloud computing that is mainly used for maximum availability, workload balanc-
ing, maintenance of hardware and catastrophe recovery. It permits network oper-
ators to transfer virtual machines from one physical machine to another [KSK14].
This beneficial feature could be vulnerable to several types of attacks like traffic
sniffing, DDoS flooding, and man-in-the-middle attacks [DTM10,PBB13,FJKK17].
For the secure migration of VMs, a lot of research has been done focusing on of-
fline migration [CGS+17]. Particularly, it has been shown that offline migration
can be performed securely. However, live VM migration has yet to be actively
researched. Live VM migration has multiple vulnerabilities and threats [SM14,
YMH+18, GXWS20] that can be easily exploited by the attackers. Due to their
demonstrations, the live VM migration could affect any of these three various
classes: (1) control plane, (2) data plane and (3) migration module.

– Control plane; The whole network services can be impacted by any vulner-
ability or attack [G+16,ZCP+15] occurring at the control plane level. Multiple
security issues in the control plane can allow an attacker to exploit the live
migration operation. Mainly, an attacker can perform the following attacks:

* Attack on VM monitor (VMM) and VM [SLCL09]: A virtual machine hav-
ing malicious code can be migrated by an attacker to a host server con-
taining the compromised VM. This malicious code is used to exchange
information between the VMM (that virtualizes the machine’s resources
in terms of CPU, memory, storage, network, and I/O) and the target VM
via a hidden channel. This channel will make the host server’s privacy
compromised by divulging the target VM’s information.

* Denial-of-Service (DoS) attack [Cho13]: A multiple virtual machines will
be created by the adversary on the host operating system in an attempt
to overload the host OS and making it incapable to accept additional
migrated virtual machines.

– Data plane: In the data plane, many contents of memory such as applica-
tion data and kernel states are moved from source to destination server.
This transfer of data is migrated as a plaintext data without any encryption.
Multiple passive and active attacks are able to be launched on it [BR+11].

33

* Active attacks: Among the most severe attack is the active one in which
there is a memory exploitation by the attacker while the VMs are being
live migrated such as alteration in explicit memory zone of advent VM,
authentication service and Network storage attacks [AKS13].

* Passive attacks: The communication channel and other network flows
are observed by the attacker in order to obtain information from the mi-
grating VM [ASS13]. So, the attacker can get the authentic guest by
obtaining the VM properties such as the duration and the size of the
migration and some information of the migrated VM such as application
data capturing packets, keys, and passwords.

– Migration module: is a software of VMM for migration process which can
be used for live migration of virtual machines. Both guest operating system
and host system are able to interact with each other. In addition, the host
system has a total control over every virtual machine that runs on its VMM.
If the VMM is compromised by the attacker through its migration module,
the integrity of all guest VMs running on top of this VMM will be compro-
mised. So, all virtual machines that migrate to the affected VMM in the fu-
ture will also be compromised [HKKT10,SAS12,CSS+12]. This plane could
be vulnerable to several types of attacks such as DDoS flooding attack and
man-in-the-middle attack [DTM10,FJKK17]

• VM escape: This attack concerns malicious virtual machines that manage to
break the spatial isolation set up by the virtual machine manager. The attacker
can then access the memory of other machines, physical devices, and the hy-
pervisor itself. If successfully performed, VM escape can allow an attacker to
monitor other VMs, including accessing their shared resources and CPU utiliza-
tion [GWS10].

• Cross VM Attack: Known also as VM hopping attack is a process allowing an
attacker who is controlling a VM to maliciously gain access to another VM running
on the same physical host by exploiting weaknesses in virtual infrastructure or in
the hypervisor [XX12]. VM hopping is shown by Ristenpart et al [RTSS09] to be
a quite realistic attack.

34

Security issue related to Hypervisors: The isolation of virtual machines is provided
by the hypervisor that plays a key role. This latter provides services and protection for
guest VMs. It often has a significant attack surface by an attacker who is residing in
one VM and then threatens the security of other co-located VMs. That is why all the
attached VMs to an infected hypervisor could also be infected. We present the two
possibilities to make an hypervisor compromised as follows:

• Breach of isolation: Conceptually, hypervisor-based isolation ensures that (1)
the content i.e., data and processes of each VM must be isolated from others,
and (2) each VM will use only the granted resources. Bad configuration and/or
weaknesses in the hypervisor may give rise to a possible VM escape or DoS
attacks [SAD+12,LTD17].

• Hyperjacking: This attack allows a malicous adversary to take the control of the
hypervisor to create the virtual environment within a VM host [IMZ16]. This may
allow the adversary to control the virtualization layer and thus taking control of all
the VM that are running on top of this layer [MA17].

Security issue related to Host OS: In NFV infrastructure, virtual machines are run-
ning on top of the host operation system. Hence, if the latter get compromised by an
adversary that may very likely be able to compromise all the NFVI layers running on top
of the host operating system including the hypervisor and the guest virtual machines.
Host OS are threaten by the common operating system threats, such as malwares,
network intrusion, buffer overflow, denial of service, etc.

Security issue related to Physical hardwares: To have a secure system, it is very
important that the developer find better methods of designing and exhaustive testing
of his system to be sure that it will not be broken and redesigned in a few weeks.
The reason is that once the hardware module is affected by the attackers, the security
mechanisms of the software on these devices will also be affected. In the literature,
several kinds of hardware attacks are reported in [Pag13, BMMR+15] such as hard-
ware modification tampering through jailbroken software and manufacturing backdoors
eavesdropping.

35

2.3.2 Security issues related to VNF

In this section, we will present the set of threats in the VNF layer:

• DoS attack: The NFV environments can have a major threat such as Denial of
Service attacks (DoS). DoS is one of the most popular and destructive types of
cyberattacks. This latter generates a large number of anomalous packets from a
compromised VNF and directly target other VNFs that are running on the same
hypervisor or even on different hypervisor. As a result, this attack overloads the
buffer of the network devices, generates amplified traffic to occupy the bandwidth
between the data and the control plane, and consumes all available resources
(CPU, memory) in a short time in order to make them inaccessible [JSGI09]. A
huge volume of traffic from a compromised VNF can be generated and sent to
other VNFs that would be running on the same hypervisor or even on different
hypervisors. Similarly, some VNF applications can consume high CPU, hard disk,
and memory resources in order to exhaust the hypervisor

• Vulnerabilities in VNF softwares: The network operators use VNF softwares
to launch and deploy network functions on request. Unfortunately, different kinds
of software flaws provide opportunities for security issues that threaten network
functions when deployed in an NFV environment [RAB+16] like taking advantage
of a buffer overflow to execute a random code.

2.3.3 Security issues related to NFV MANO

• Failure of troubleshooting: When a failure occurs in the NFV architecture, the
NFV management and orchestration entity need to gather, analyse, and corre-
late the logs generated by several miscellaneous entities to determine the root
causes of the failure. The heterogeneity of the entities and services composing
the NFV infrastructure makes failure detection and troubleshooting challenging.
LAl et al [LTD17] shown that it is even more challenging when compromised VNFs
maliciously generate huge amount of logs making analysing other VNFs logs ex-
tremely difficult.

• Attacks to management and control plane: All operations, that comprise the
configuration, creation, management, and other functionalities of NFV network

36

services are controlled by the NFV management and control plane. Neverthe-
less, this NFV management and control plane can be rendered a unique failure
point. As a result, the compromising of any control operation may often lead to
a failure of either specific network functionalities or the global virtualized sys-
tem [ZCP+15].

2.3.4 Common security issues for the three components:

• Malicious insiders: An insider is a person within an organization who has au-
thorized access, privilege, or knowledge of information systems, information ser-
vices, and missions. He is a person motivated to adversely impact an organi-
zation’s mission through a series of actions that compromise the confidentiality,
integrity and/or availability of information [LTD17].

• Insecure interfaces: The security of a virtualized system depends also on the
security of the interfaces. The latter depends on the type of interface, manufac-
turers, etc. A study conducted by the European Union Agency for Cybersecurity
(ENISA) [ENI22] reports that insecure interfaces such as TLSv1, FTP, SNMP
are still used in NFV services. These interfaces can be easily compromised by
exploiting vulnerabilities in the used protocols such as spoofing and insecure set-
tings. The attackers also may integrate malicious code in the interfaces in order
to obtain an unauthorized access to the target’s system [WBO15,LTD17].

• Security policy and regular compliance failure: Generally, the connectivity be-
tween VNFs is controlled by the management and orchestration module. This
latter can build relations between virtual infrastructure resources and VNFs. Nev-
ertheless, the inconsistency in the way network services are orchestrated, main-
tained, and used can lead to security risks [YF16,G+16].

• Data loss and information leakage: The loss or leakage of data represents a
major problem that needs to be solved in all kinds of organizations. Ristenpart
et al. [DSPA18] have shown that a virtual instance (NFV or VM) controlled by a
malicious adversary can be used to learn and leak information about co-resident
virtual instances through the exploitation of specific side channels. In particular,
the authors of [DSPA18] have shown that the time-shared caches can be used by

37

an attacker to figure out when other virtual instances are experiencing computa-
tional load.

2.4 Security Countermeasures

Several security mechanisms have been proposed in the literature to mitigate the afore-
mentioned threats. Among the security mechanisms that can overcome the above se-
curity problems in the different NFV layers, the enforcement of access control policies.
As reported in [Pat19], once well specified and correctly enforced, access control poli-
cies can help reducing several security threats such as, DoS attack, data leakage,
breach of isolation, cross VM Attack, malicious insiders, etc. The following table list the
set of security threats that can be addressed by access control policy enforcement.

Security Threats Can be addressed ?
Security issues in guest VMs 3

Security issues in hypervisor
Insecure management interfaces
Compromising virtual network components 3

Malicious insiders 3

Untrustworthy service composition 3

Hardware attacks
Vulnerabilities in VNF softwares 3

DoS/DDoS attacks 3

Attack to management and control plane 3

information leakage 3.

Table 2.1 – The virtualized system threats and vulnerabilities that can be addressed by
access control policy enforcement [Pat19]

According to the previous table, most existing threats to virtualized systems can be
addressed by access control policy enforcement. Hence, in this thesis we focused on
the study of access control policies enforcement in NFV services.

2.5 Access Control in NFV

As we have seen in Section 2.3, NFV environments bring new security challenges and
issues introduced by several types of threats and vulnerabilities [DSVV17, LROT17,

38

RLOH17, SECBC20, SECB+20]. In recent years, several researchers investigated the
usage of policy-driven security mechanisms, such as access control, to mitigate threats
raised by malicious user-related vulnerabilities (e.g., unauthorized access and/or privi-
lege, unauthorized flow between VNFs). Thus, many approaches have been proposed
to define and enforce security policies over NFV architecture to ensure their security.
These approaches can be classified into two classes: SDN-based policy enforcement
and Orchestrator-based policy enforcement.

2.5.1 SDN-based Access Control

Nowadays, the majority of the existing frameworks are mainly oriented into migrating
network functions from hardware devices to a virtualization environment. SDN and NFV
are two independent but complementary concepts. Their combination offers a definite
added value in terms of automation, service mobility, operation cost reduction, and
security management. Following the previous idea, some approaches have used SDN
to enable access control policy enforcement solutions over NFV infrastructure.

Yakasai and Guy [YG15] propose a virtualized network access control function us-
ing OpenFlow protocol [MAB+08]. The proposed solution enables network access con-
trol in SDN architectures by combining an implementation of 802.1X framework with an
authorization method through a stateful role-based firewall enforcement. The solution
allows a high-level specification of the access control policy to be deployed based on
the role that each network function/component will play in the NFV service. The up-
date and deployment of the defined security policies can be made dynamically and
instantaneously enforced. Nevertheless, the proposed approach is deeply dependent
on the SDN architecture which is required to be installed and configured in the consid-
ered NFV infrastructure. Hence, the usage of this solution within an NFV architecture
requires the control and/or the management of the NFV infrastructure. Therefore, it
cannot be directly used in NFV as service architecture, but only in NFVI as a service
architecture. Moreover, the proposed solution relies on a single access control policy
enforcement point which can be a bottleneck when dealing with large traffic NFV ser-
vice. The latter drawback can be addressed by considering several policy enforcement
points. However, the authors did not give details on how the proposed solution can be
extended to a multi policy enforcement points approach.

To address the single policy enforcement point limitation described above, Leopoldo,

39

et al. propose ACLFLOW [MRD18], an approach that combines NFV and SDN frame-
works to provide a cost-effective security framework allowing a distributed enforce-
ment of access control policies using a set of policy enforcement points (e.g., SDN
virtual switches). ACLFLOW takes as input a set of ACL rules, each one is composed
of source/destination IP, source/destination port, a protocol, and a decision (i.e., allow
of deny). Then, it uses a translation module that rewrites them into OpenFlow filter
rules [MAB+08, SJK+14], which are then enforced by SDN virtual switches. To reduce
the impact of the policy enforcement on the NFV service, ACLFLOW allows a dynamic
prioritization of the most popular OpenFlow filter rules i.e., the rules affecting the high-
est traffic volume. Despite the fact that the contributions proposed in ACLFLOW miti-
gate the policy enforcement bottleneck of [YG15], ACLFLOW suffers form the following
limitations. First, the authors did not provide any formal correctness proof to show
that the ACL policy is correctly translated to a set of OpenFlow filter rules and that
the deployed OpenFlow filter rules effectively enforced the set of ACL rules. Second,
ACLFLOW is not suitable for enforcing more advanced and expressive access control
policy models such as Role Based Access Control (RBAC), Organization-Based Ac-
cess Control (ORBAC), Attribute-Based Access Control (ABAC), etc. Third, similarly to
previous SDN-based approches, ACLFLOW cannot be used to enforce policies on an
NFV as service architecture, as it needs to control and manage the NFV infrastructure
to include the SDN framework.

Seeking to define a security management solution for NFV-based architecture, the
authors of [Jae15] proposed an SDN based security orchestrator that (1) handles se-
curity on a hybrid Telco network i.e, configure the functions of the physical and virtual
networks, (2) improves the ETSI NFV reference architecture with an extensive manage-
ment of trust, and (3) offers a global view for fast and efficient topology validation. More
specifically, the solution enables a security administrator to enforce specific hardening
of the security of a network service. However, to completely meet end-to-end security,
multiple responsibilities, such as security profiling, security policy management and au-
tomation, as well as trust management, should be considered in the proposed security
orchestrator. Unfortunately, none of the previous functionalities has been defined in the
paper. In addition, apart from the high level concrete use case and implementation of
the provided security requirements are given. Moreover, this approach inherits the lim-
itation of the previously discussed SND-based technique, namely, the fact that it can
only be used to enforce policies on an NFVI as service architecture.

40

Matias et al. [MGT+15] presented an SND-enabled NFV approach allowing to achieve
fine-grained control of which traffic is authorized to flow between the different entities
(VNFs and other services) that compose a network virtual service. The proposed ap-
proach relies on three main components. First, an authentication service that allow
authenticating the entities on a per service basis. Second, a classifier which is respon-
sible for categorizing all the traffic exchanged between the involved entities according
to the service to which the traffic is destinated. Third, a policy decision point responsible
of determining whether the traffic should be allowed or denied. The previous decision
is then enforced by the policy enforcement. Nevertheless, it is not clear if the proposed
solution can handle policies expressed using advanced access control models such
as RBAC, ORBAC, etc. In addition, it is difficult to assess the impact of the usage of
this solution on the virtualized network service on which the access policy is deployed.
Finally, as the solution is relying on SDN, similarly to the previous SDN-based solution,
it can only be useful to enforce policies on an NFVI as service architecture.

The authors of [LQ16] proposed an SDN-based NFV orchestration framework called
APPLE (Automatic aPProach for poLicy Enforcement). It enables two main functional-
ities. First, information flow policy enforcement meaning that the sequential order of
VNFs that will be traversed by specific data flows should be respected. The previous
requirement should be satisfied without the need to change the flow forwarding paths
required by other network applications such as access control and routing. Second,
resource isolation meaning that the resources used by any VNF should not be ac-
cessible to others, even if they are running on top of the same physical platform. In
addition, APPLE includes an engine allowing to estimate the virtual network function
demand for network-wide flows and proactively installs VNF instances for each poten-
tial flow to prevent the delays resulting from waiting for the new VNF instances getting
started. While this approach can be used to enforce flow control policies efficiently, it is
not designed to perform access control policy enforcement.

2.5.2 Orchestrator-based access Control

In this section, we discuss the security policy enforcement approaches on NFV infras-
tructure that define and/or rely on their own security orchestrators i.e., the approaches
that are not based on the SDN framework.

In [PHMZ16], Montida et al. provide a comparative review on the existing NFV or-

41

chestration frameworks in an objective to analyze whether or not they can be used/ext-
ended to enable specifying, defining and enforcing security properties in the entire
lifecycle of the NFV services. Then, the authors propose SecMANO, a security or-
chestrator that extends the MANO NFV orchestrator to allow the management of the
security properties that needs to be ensured on virtualized network services. They ex-
tend the specification language of the Topology and Orchestration Specification for
Cloud Applications (TOSCA) model [BBKL14] with particular high-level security at-
tributes (e.g., access control attributes, privacy related attributes, confidentiality related
attributes, etc.) that can be used by the security administrator to attach these secu-
rity attributes to the virtualized network service components. They instantiate the pro-
posed security orchestrator in [PHZ+18,PTH+17] through the implementation of an ac-
cess control model allowing the specification and deployment of access control policies
over NFV services. Nevertheless, the proposed approaches suffer from several limita-
tions. First, it is not clear how the high-level security properties are refined/transformed
to concrete-level security configurations. Without a clear description of such refine-
ment/transformation, it is not possible to assess the correctness of the solution i.e.,
whether or not the concrete security configurations effectively deploy the high-level
security requirements. Second, the TOSCA language extension allows only to handle
simple RBAC access control rules and cannot be used to handle policies specified
using more expressive access control models such as ORBAC. Finally, to deploy the
access control policies, the solution requires policy enforcement points to be installed
in each virtual machine hosting the NFV service components. The previous require-
ment makes the approaches proposed by Montida et al. [PHMZ16, PTH+17, PHZ+18]
useful only when an NFVI as service architecture is considered.

The authors of [TCCM17] present a high-level architecture for NFV environments
focusing on the automation of access control policy deployment. The proposed archi-
tecture involves three components: a management dashboard allowing to express the
security requirements (i.e., access control policy) to be deployed; a policy engine al-
lowing to translate the high level security requirement to security configuration that are
deployed through a set of security mechanisms (i.e., packet filtering, intrusion detec-
tion, etc.); and a security monitoring module allowing to collect specific information
(e.g., indicators of compromise) from associated security function enablers (e.g., intru-
sion detection). This collected information can be used by the policy engine to update
the access control rules to mitigate specific new detected threats. Nevertheless, sim-

42

ilarly to [PHMZ16], no concrete high-level security requirement refinement method is
proposed.

In [OKJ+17], Oh et al. introduce a generic architecture for Network Security Func-
tions (NSF) based security management on NFV infrastructures. The main goal is to
enable any NFV-based security application managed by a security controller to be
seamlessly integrated into NFV-enabled networks. The proposed architecture inte-
grates new components to the ETSI NFV architecture enabling security policy man-
agement. First, the NSF client components allow generating high-level security poli-
cies that need to be enforced to mitigate security attacks. Second, a security man-
agement component responsible for refining the high-level policies to concrete-level
configurations/rules that can be enforced by available NSFs, such as firewalls and in-
trusion detection systems. Thanks to this architecture, application users can enforce
their high-level security policies in a user-friendly manner. However, despite that the
authors briefly discussed the usage of the proposed framework to fulfill specific high-
level security requirements, such as dangerous domain blacklisting, time-based access
control policies enforcement, and suspicious call detection for VoIP-VoLTE services, no
formal high-level policy refinement method is proposed, which make evaluating the cor-
rectness of the generated concrete level configuration not possible.

To mitigate the security threats raised by the lack of access control in NFV services,
Guija and Siddiqui [GS18] propose an architecture integrating well-known solutions
allowing (1) the authentication of the entities/components that interact with the NFV
service and (2) th authorization of the different actions/events that are performed in vir-
tualized services. Concretely, the proposed approach relies on the NFV-based SONATA
Service Platform [DKP+17] for implementing authentication and authorisation mecha-
nisms, specifically for identity and access control of micro-services in 5G platforms
for services virtualisation, orchestration and management. This solution uses OAuth
2 [Har12] and OpenID Connect [SBJ+] to form the implementation of the user man-
agement module allowing to enforce RBAC policies as well as identity management
in a centralized authorization approach. Unfortunately, this dependency on OAuth 2
and OpenID Connect makes this solution usable only with virtualized network services
where an HTTP-based communication is used between their different components.

In [BVL+19], Basile et al. proposed an approach for automatically enforcing secu-
rity policies in NFV networks. It uses a high-level policy language [BLP+15] allowing
to express the security requirements that need to be deployed in an NFV architecture.

43

The used high-level policy language is an authorization language in which policy rules
are represented with natural language sentences. An example of rule is "SSH traffic
should not be allowed between data processing and data storage subnets". Then to be
deployable, the high-level rules need to be refined into concrete rules and configura-
tions. The proposed approach defines a policy refinement module called Policy Man-
ager. The latter is used to perform a transformation of user-specified, high-level, and
natural language security policies into low-level configuration of virtual network func-
tions. The refinement is performed in two steps. First, using a set of inference rules, the
high level sentences that compose the high-level policy rules are mapped to low-level
concepts. For example, a "data processing subnet" sentence is mapped to a range of
IP addresses associated with the VNF instances that are processing (e.g., encoding,
encrypting, etc.) the data. In addition, the sentence "should not be allowed" is mapped
to a filtering prohibition. Second, once the high-level policy is refined to a concrete one,
the proposed approach chooses then for each concrete policy rule, the best network
security function that can be used to enforce the rule on NFV services. Nevertheless,
this solution suffers from two main weaknesses. First, the correctness of the used re-
finement technique relies strongly on the correctness of the inference rules that will be
used to map high-level requirements to deployable rules. Unfortunately, neither the set
of inference rules to be used nor their correctness are provided in [BVL+19]. Second,
the authors do not consider conflict management in their solution. Conflicts can occur
at low-level (deployable) policies as well as between the network security functions that
will be used to enforce the policies.

Murillo and Rueda [MR20] presented an access control policy enforcement frame-
work for NFV-based industrial control system (ICS). The framework defines a new se-
curity policy specification language that allow security administrators to easily model,
in one hand, virtual ICS systems with various components such as sensors, actua-
tors and PLCs, as well as the different types of interconnections that are used in the
ICS systems; and in the other hand, the security requirements that should be enforced
in the system. Then, the proposed framework relies on a policy compiler module to
translate the high-level security requirements to concrete ones depending on the spec-
ification of the target ICS. Finally, the framework relies on a policy enforcement module
that is in charge of intercepting the requests generated by the different entities in the
ICS system (e.g., users, servers, sensors, etc.) and enforce the concrete security pol-
icy by accepting/denying those requests. Same as the previously discussed solutions,

44

the current does not formally specify how high-level security requirements are trans-
lated to concrete ones. In addition, it is difficult to evaluate the efficiency of the policy
enforcement strategy as it is not clear where the policy enforcement points are to be
installed in the target ICS system.

To sum up, all the previously discussed security policy enforcement solutions suffer
from at least one of the following limitations. First, lack of generalisability meaning that
the proposed approaches [PHMZ16,PHMZ16,PHZ+18,GS18,MR20] can only be used
to enforce specific access control requirements e.g., ACL rules and RBAC rules. Sec-
ond, the lack of formalization which makes the evaluation of the correctness of the pro-
posed solutions1 not possible. Third, the lack of conflict management1 that may occur
between either two or many security requirements or between security requirements
and the functional requirements that the virtualized service has to fulfill (see Chapter
4 Section 4.3.2). If these conflicts are not resolved, then the correctness of the pol-
icy enforcement cannot be guaranteed. Fourth, the non compliance with the standard
ETSI NFV architecture (e.g., the approaches proposed in [PHMZ16,PTH+17,PHZ+18]
as additional components need to be added to the NFV infrastructure to allow se-
curity policy enforcement. Finally, none of the previously discussed approaches has
considered the optimization of the access control policy enforcement cost in terms of
the resources required by the enforcement points and the impact on the functionalities
provided by the virtualized network service.

2.5.3 Optimal Deployment

NFV services aim to bring agility, flexibility, and high performance for virtualized infras-
tructures. The enforcement of access control policies on NFV services relies on one
or multiple enforcement points that, on one side, require computation and storage re-
sources to deploy the concrete rules/configurations on the NFV service, and on the
other side may impact the performance of the latter. Considering the above problem,
several approaches in the literature have investigated the optimization of the required
resources and/or the impact on performance when access control policies are deployed
in NFV services. These approaches can be classified into two classes:

• First, solutions that investigate the impact of the number and the placement of
the policy enforcement points in the NFV infrastructure on the amount of required

1. all previously discussed approaches suffers from this limitation

45

resources and the performance of the provided network services.

• Second, rule/configuration placement based approaches that investigate the im-
pact of the placement of access control policies’ rules in the NFV infrastructure on
the amount of required resources and the performance of the provided network
services.

Policy Enforcement Point Placement

Lee et al. [LPS13] investigates the problem of finding the best policy enforcement point
placements while taking into consideration the bandwidth constraint on each link. To
enforce the access control policies, the authors propose to filter the communication
between different entities that compose the virtualized infrastructure. To accomplish
this filtering, the data flows are reroute to pass through one or several firewall instances.
Then, the authors proposed a greedy algorithm to find the best placement of the firewall
instances to reduce to the best the traffic congestion on the virtualized network service.
Nevertheless, the proposed approach has several limitations. First, it does not consider
optimizing the resources that are to be used by the firewall instances. Second, it is not
clear how the number of firewall instances is decided in the system. Third, the proposed
approach can support only the deployment of ACL policies.

In [BMSV20], Bringhenti et al. proposed an approach defining a methodology al-
lowing to automatically allocate and configure channel protection systems in virtualized
networks. Channels are virtual links that ensure specific security properties (e.g., ac-
cess control, confidentiality, integrity) to protect highly sensitive information transiting
through the NFV infrastructure. The proposed approach relies on the formulation of
the studied problem as a MaxSMT problem. The authors generalized their approach
in [BMSV21] to study the optimal placement of security functions (e.g., access control)
called virtual Network Security Functions (vNSFs) in a virtualized network.

Bringhenti et al. [BMS+20] addressed the problem of automatically computing the
optimal allocation scheme and configuration of virtual firewalls on a virtualized infras-
tructure. The proposed approach relies on the dynamicity of the definition and config-
uration of network services offered by emerging technologies such as NFV and SDN
technologies. This dynamicity of the network configuration is used to replace man-
ual and error-prone tasks such as, network isolation in case of cyberattacks and fire-
wall rule enforcement by automatic approaches, which relies on placing, configuring

46

and enforcing NFV. If previous tasks are manually realized, it can cause non-correct
and/or non-optimal policy enforcement. For that, it is necessary to replace manual and
error-prone tasks by automatic approach. To meet the previous objective, the authors
proposed a new methodology for automating and optimizing the assignment and the
configuration of virtual firewalls on virtualized networks. They used as optimization cri-
teria the minimization of the number of assigned virtual firewall instances as well as
the minimization of the number of rules inside each firewall configuration and they
used as evaluation criteria the number of firewall allocation places and the number of
ensured/violated network security requirements. The strategy adopted to reach both
formal correctness and optimality consists of formally modelling the problem as partial
weighted Maximum Satisfiability Modulo Theories (MaxSMT) problem. The main draw-
back of the approach proposed by Bringhenti et al. [BMS+20] is that it does not take
into consideration the optimization of the impact (e.g., latency, traffic overhead, etc.)
of the deployment of the access control policy on the virtualized network, which may
result in quite inefficient enforcement (e.g., high latency and/or low bandwidth) of the
access control policy.

Rules placement

In [LQ16], Li and Qian propose an orchestration framework based on SDN/NFV called
APPLE (Automatic aPProach for poLicy Enforcement). It installs instances of virtual
network functions (VNFs) automatically to enforce the network function policies. The
proposed framework offers three preferred properties such as Policy enforcement, in-
terference freedom, and resource isolation. APPLE is able to make an estimation of the
NF demand for network-wide flows and proactively installs VNF instances for each po-
tential flow to prevent delays in getting started. APPLE uses an optimization engine to
identify the placement of VNFs and a flow marking scheme to reduce TCAM (Ternary
Content-Addressable Memory) consumption. However, APPLE does not provide any
formal proof of the correct enforcement of the access control policy.

In [MRD18], Mauricio et al. focus on the problem of filtering traffic on cloud comput-
ing. In virtualized environment, ACLs are traditionally used as a straightforward way to
enforce traffic filtering policies. Nevertheless, depending on the size of the considered
system, the number of ACL rules to be enforced may be large, which may not be very
adapted with the storage and processing capacities of the policy enforcement points
(e.g., TCAM virtual router). To solve this problem, the authors proposed a cost-effective

47

NFV/SDN security framework named ACLFLOW. The latter allows a transformation of
regular security rules (source/destination IP, source/destination port, and protocol) into
OpenFlow filtering rules. It builds and monitors distributed OpenFlow using routers for
controlling virtual machine traffic in a cloud computing environment. It optimizes switch-
ing operations by using an algorithm that dynamically prioritizes the most popular rules.
The solution relies on the fact that based on the set of ACL rules to deploy, the ex-
changed traffic is monitored to know which rules have the highest priority and translate
them into a control plan. As evaluation criteria, the authors considered the maximum
HTTP request rate, the maximum throughput, and round-trip time. Nevertheless, no
formal modeling was proposed in the paper, which makes checking the correctness of
the deployment of the access control policy not possible.

The problem considered by Amin et al. in [ASM19] is to find the optimal method
to place Access Control Lists (ACL) that eliminates the path misconfigurations2 and
unwanted traffics. To secure a traditional computer system, network operators typically
implement fine-grained network policies that are known as ACLs at switch and/or router
network interfaces through the use of low-level commands. Network performance can
be degraded if there is a misconfiguration that allows unauthorized users to access
confidential resources. In general, the implementation of ACL policies is performed
manually which make it extremely difficult and costly when dealing with large infras-
tructure. For that, the authors proposed a systematic design approach to optimize the
implementation of access control policies in hybrid SDN networks. The solution relies
on decision tree and K-partite graphs [LWZY06] to search for the best placement of
ACL policies. The authors use as optimization criteria, the minimisation of the number
of ACL rules and the number of transmission of unwanted traffic. As evaluation criteria,
the authors consider the computation time of the K-partite graphs, the traffic optimiza-
tion, the number of ACL rules versus number of firewalls, end-to-end delay calculation,
and the packet delivery success rate. Similarly to the previous approaches, no formal
modeling was proposed in the paper, which makes checking the correctness of the
enforcement of the access control policy rules not possible.

Kim et al. [KYNL20] considered the problem of optimizing and deploying firewall
rules in Software-Defined Networks. Since the traffic inspection capacity of a firewall
is restricted by the network processor speed, memory capacity, and power consump-

2. a misconfiguration can drastically degrade the network performance by enabling unauthorized
users to access confidential resources

48

tion, large-scale network traffic must be inspected by multiple firewall instances. The
placement of this firewall in the infrastructure may have an impact on the optimal de-
ployment of access control policies. So, it is necessary to study the impact of firewalls
placement on the optimization of the access control policies deployment. For that, the
authors proposed a software-defined firewall system that relies on SDN functionalities
to dynamically enforce access control requirements through firewall operations. The
authors propose to optimize the overall volume of data traffic in the network by finding
the appropriate OpenFlow-enabled switches in which the SDN flow rules should be de-
ployed, while respecting the processing and storage capacities of OpenFlow switches.
The authors used the greedy algorithm to solve the problem. They used as evaluation
criteria the service throughput as a function of number of rules and the resource as a
function of number of rules. However, the authors do not consider the optimization of
the impact e.g., in terms of the latency introduced by the access policy enforcement on
the virtualized service.

Bringhenti et al. [BMSV21] proposed a new approach to automatically configure
and deploy access control requirements in a virtual service graph. In contrast with
the previous approaches, the authors consider that several policy enforcement mech-
anisms can be used. The goal is then, not only to optimally enforce the access control
requirements but also to choose the right concrete mechanisms that can be used to
enforce them. To meet the previous objective, Bringhenti et al. introduce a new level of
abstraction in which a set of functionalities (i.e., function features) that can be used to
enforce each security requirement (e.g., access control rule). Then based on the identi-
fied functionalities and their possible configurations, the approach chooses the optimal
combination of concrete policy enforcement mechanisms and their placement in the
virtual service graph. The proposed optimisation algorithm is multi-objective that opti-
mizes physical resources such as CPU, Memory, and Bandwidth. Unfortunately, they
do not consider the optimization of the impact (e.g., introduced latency) of the chosen
policy enforcement strategy on the virtual service.

In [JJW+21], Jiang et al. have considered the problem of access control rule place-
ment in multi-tenant virtualized infrastructure. Such infrastructure needs usually many
fine grained policies to be deployed to enforce specific security requirements. The au-
thors point out that in case in which the access control policies have to be deployed
in large scale virtualized infrastructure, millions of rules will need to be deployed. To
solve this problem, they provide an online rule placement (ORP) algorithm to minimize

49

traffic overload based on a virtual Cloud Rule Information Base (vCRIB). The solution
relies on the fact that the online algorithm is able to check the traffic matrix update after
the adjustment of each rule subset. The authors used as optimization criteria the mini-
mization of the number of used rules, the maximization of the amount of carried traffic,
and the minimization of energy consumption and as evaluation criteria the optimization
algorithm time. Similarly to the previous approaches, the authors do not consider the
optimization of the impact (e.g., introduced latency) of the access policy enforcement
on the virtual service.

The Table 2.2 gives a comparative view on the approaches that consider the opti-
mization of the deployment of access control policies on virtualized environments. For
each proposed approach, we identify the optimization criteria, the optimization strategy
(policy or rule level optimization), and the optimization algorithm that has been used.
According to the Table 2.2, five out of the eight studied approaches have investigated
the optimization of the resources used for access control policy deployment, and only
three (resp. one) have (resp. has) considered the optimization of the impact in terms of
traffic overhead (resp. latency) on the target virtualized service. Moreover, none of the
studied solutions has considered both the optimization of the required resources and
the introduced impact due to the enforcement of the access control policy.

2.5.4 A Comparative Overview

In this section, we provide a comparative view of the different approaches discussed
above. The comparison is performed in the basis of the following properties.

Correctness: To allow an easy specification of the security requirements to be en-
forced, most security policy enforcement approaches discuss above proposed high-
level security requirements specification languages/methods. These high-level require-
ments are then translated to concrete security configurations/rules that are to be en-
forced on the considered system. The correctness property requires the concrete secu-
rity configurations/rules to be enforced to effectively and correctly enforce the specified
high-level security requirements. In other words, once the concrete security configura-
tions/rules are enforced on the target system, no high-level security requirement can
be violated by malicious adversaries.

50

P
ap

er
O

pt
im

iz
at

io
n

C
ri

te
ri

a
O

pt
im

iz
at

io
n

S
tr

at
eg

y
O

pt
im

iz
at

io
n

A
lg

or
ith

m
TO

R
L

R
P

FP
M

C
P

U
B

[B
M

S
+

20
]

7
3

3
3

7
7

3
M

ax
S

M
T

[B
M

S
V

20
]

7
3

3
3

7
7

3
M

ax
S

M
T

[L
P

S
13

]
3

7
7

7
7

7
3

A
pp

ro
xi

m
at

io
n

al
go

rit
hm

an
d

G
re

ed
y

al
go

rit
hm

[M
R

D
18

]
7

3
3

3
7

7
3

A
C

LF
LO

W
pr

io
rit

iz
at

io
n

al
go

rit
hm

[A
S

M
19

]
3

7
7

7
3

3
7

D
ec

is
io

n
Tr

ee
C

on
st

ru
ct

io
n

Tr
ee

Tr
av

er
si

ng
[J

JW
+

21
]

3
7

7
7

7
3

7
O

nl
in

e
ru

le
re

pl
ac

em
en

t(
O

R
P

)a
lg

or
ith

m
[B

M
S

V
21

]
7

3
3

3
7

7
3

M
ax

S
M

T
[K

Y
N

L2
0]

7
7

3
3

7
3

7
G

re
ed

y
al

go
rit

hm

Ta
bl

e
2.

2
–

C
om

pa
ra

tiv
e

vi
ew

of
op

tim
iz

at
io

n
ap

pr
oa

ch
es

.
W

e
us

ed
TO

to
de

no
te

tra
ffi

c
ov

er
he

ad
,

R
to

de
no

te
re

so
ur

ce
s,

L
to

de
no

te
la

te
nc

y,
M

to
de

no
te

m
em

or
y,

an
d

B
to

de
no

te
ba

nd
w

id
th

51

Adversary Model. In existing access control policies enforcement approaches, two
types of adversary models can be considered. First, external adversaries who repre-
sent malicious entities which are trying to violate the access control policy by interacting
remotely with the target infrastructure. Second, insider adversaries which are malicious
entities that are controlling one or several components of the target infrastructure and
aim to use them to bypass the deployed access control policy.

Efficiency: The enforcement of access control policies usually requires the analysis
of the traffic flowing inside the system on which the policy is to be deployed to decide
whether the traffic should be allowed or denied. This will inevitably introduce a latency
at the network level of the target system. The efficiency property describes how the
aforementioned latency increases as the number of rules/requirements in the policy to
be deployed and the complexity of the target system (e.g., in the case of NFV service:
the number of VNF, the number of forwarding paths, etc.) increases. Concretely, we
say that an access control enforcement approach is efficient if the introduced latency
grows (sub) linearly with the size of the policy and the complexity of the target system,
and inefficient otherwise.

Optimality: Access control policy enforcement does not only introduce a network-
level latency, but it also requires computation and storage resources that will be used by
policy enforcement points to analyze and authorize the traffic flowing through the target
system. The previous two elements can be impacted by several enforcement decisions
such as, the location of the enforcement points inside the target system, the rules
that will be enforced by each enforcement point, etc. The optimality property is used to
determine if an approach offer an (near3) optimal deployment of access control policies
allowing to find the best possible trade-offs between the impact in terms of latency
resulting from the deployment of the access control policy and the used resources.

High Expressiveness: Several access control policy specification models have been
proposed in the literature such as, RBAC, ORBAC, ABAC, etc. Each of them brings the
ability to model different and/or more fine-grained access control requirements. The
high Expressiveness property is used to determine if an existing access control de-
ployment approach offers sufficiently expressive specification language to support the

3. Some of the existing approaches do not explore all the search space to find the optimal solution.

52

enforcement of most well known policies specification model such as RBAC, ORBAC,
ABAC, etc.

Conflict Management: Most of the exisiting access control models allow defining
both authorization (positive) and prohibition (negative) rules. Using the previous, one
can specify one of the following three policies:

• Open policy: the policy is composed only of prohibition rules. Only the accesses
that are explicitly prohibited by these rules should be denied.

• Closed policy: the policy is composed only of authorization rules. Only the ac-
cesses that are explicitly stated by these rules should be allowed.

• Mixed policy: the policy is composed of both authorization and prohibition rules.

It has been shown in the literature by Alfaro et al. [ACCB07] that open and closed
policies lead to complex concrete-level configuration/rules when excluding some spe-
cific cases of general rules that should always apply, which can be avoided by using
mixed policies. However, the latter may introduce conflicts that occur between prohibi-
tion and authorization rules. These conflictual rules should be appropriately addressed
to ensure a correct deployment of access control policies. The conflict management
property is used to denote whether an access control policy enforcement approach
can correctly deploy mixed access control policies containing exceptions and/or con-
flict rules.

Easy deployment: As we have seen previously in this section, some approaches
require the modification of the infrastructure in which the target system is running e.g.,
the modification of the ETSI NFVI architecture by adding new components. Therefore,
the easy deployment property is used to denote whether an approach is easily de-
ployable on an NFV service or not. Concretely, we say that an approach allows easy
deployment of access control policy if it does not require the modification of ETSI NFVI
infrastructure. For example, approaches based on SDN often require the modification
of the ETSI NFVI to add the components (e.g., SDN controller) that enable specific
SDN features. Hence, these approaches are considered to provide hard deployment of
access control policies on NFV services.

53

P
aper

P
roperties

A
dversary

E
fficiency

C
orrectness

O
ptim

ality
H

igh
C

onflict
E

asy
M

odel
E

xpressiveness
M

anagem
ent

deploym
ent

[LP
S

13]
O

utsider
-

7
3

N
/A

N
/A

3

[B
LP

+15]
O

utsider
-

7
7

3
3

3

[Y
G

15]
O

utsider
•
•
•

7
7

3
7

3

[Jae15]
O

utsider
-

7
7

7
7

3

[M
G

T
+15]

O
utsider

-
7

7
7

7
7

[P
H

M
Z16]

O
utsider

-
7

7
7

7
3

[LQ
16]

O
utsider

•
◦
◦

7
7

7
7

7

[TC
C

M
17]

O
utsider

-
7

7
3

7
3

[P
TH

+17]
O

utsider
-

7
7

3
7

3

[O
K

J
+17]

O
utsider

-
7

7
3

7
3

[G
S

18]
O

utsider
•
•
◦

7
7

7
7

3

[P
H

Z
+18]

O
utsider

•
•
◦

7
7

3
7

7

[M
R

D
18]

O
utsider

•
•
•

7
3

7
7

7

[A
S

M
19]

O
utsider

•
•
•

7
7

7
7

7

[B
V

L
+19]

O
utsider

-
7

7
3

7
3

[B
M

S
V

20]
O

utsider
-

7
3

7
7

3

[K
Y

N
L20]

O
utsider

•
•
•

7
3

7
3

7

[M
R

20]
O

utsider
-

7
7

3
7

3

[B
M

S
V

21]
O

utsider
•
•
◦

7
3

7
7

7

[JJW
+21]

O
utsider

•
•
•

7
3

7
7

3

Table
2.3

–
C

om
parative

view
ofoptim

ization
approaches.

54

Table 2.3 gives a comparative review of existing access control deployment solu-
tions regarding the properties defined above. We use N/A to denote that the property
is not applicable to the solution. In addition, we use - to denote that the information
given in the solution does not allow to state if the latter satisfies a given property. Fi-
nally we used ’• • •’, ’• • ◦’, and ′ • ◦◦′ to denote respectively linear, super-linear, and
exponential complexity.

According to Table 2.3, we can make the following observations.

1. All existing approaches consider only outsider adversaries who are aiming to
bypass the enforced access control policy by interacting remotely with the target
infrastructure. None of them has investigated the enforcement of access control
policies in the presence of an insider adversary who compromises part of the
virtualized infrastructure.

2. None of the proposed solutions has provided formal evidence proving the cor-
rectness of the used access control policy refinement and enforcement methods.

3. Almost half of the proposed solutions do not provide any theoretical and/or exper-
imental results making evaluating their efficiency not possible. Particularly, only a
quarter (5 out of 20) of the studied solutions have reported results showing their
efficiency.

4. Few of the studied approaches have proposed methods for finding the optimal
access control policy enforcement solution. Moreover, as shown in Table 2.2,
all previous approaches have consider either the optimization of the resources
(e.g., CPUs, memory) used to enforce the policy, or the impact (e.g., the latency
introduced by the policy enforcement points) on the virtualized infrastructure due
to the enforcement of the policy. None of the proposed solutions has investigated
both the optimization of the required resources and the introduced impacts.

5. Around half of the studied approaches enable high expressiveness of the access
control policy to be enforced while proposing a lightweight deployment strategy
(i.e., without requiring the modification of the virtualization infrastructure on which
the virtualized network service is running). However, only two of the proposed
solutions have investigated the management of conflictual rules in the policy to
be enforced.

55

6. Finally, we can clearly observe that none of the studied approaches has been
able to fulfill all the properties that we have identified.

2.6 Open Challenges

According to the aforementioned observations, the following challenges need to be
addressed.

• The definition of a formal model for access control policy enforcement in NFV ser-
vices. The model should be sufficiently expressive to allow to express high level
access control requirements modeled using well known access control models.
In addition, it should allow a provably correct refinement of the high level access
control requirements towards concrete-level rules that are compliant with ETSI-
NFV architecture.

• The definition of an access control enforcement strategy that allow to optimize
both the introduced latency and the required computation and storage resources
that will be used by policy enforcement points to enforce the access control re-
quirements.

• The definition of an access control enforcement strategy that can deal with in-
sider adversaries that are controlling one or several unknown components of the
target virtualized service. Concretely, the proposed model should prevent insider
adversaries from violating the enforced access control requirements.

• High-level access control policies are often composed of a set of authorizations
and prohibitions, which may give place to conflicts and exceptions in the policy
to be enforced. Consequently, the definition of a solution allowing efficient en-
forcement of high-level mixed access control policies containing exceptions in
virtualized infrastructure is required.

• The design and development of a simulation framework allowing to evaluate the
effectiveness and efficiency of the deployment of access control policies on NFV
service.

56

2.7 Conclusion

In this Chapter, to answer the raised research question, we conduct a literature review
of existing and potential security threats in NFV architecture and existing solutions for
enforcing access control policies on virtualized infrastructure.

We answer the research questions RQ-1 and RQ-2 by conducting an extensive
review of the security threat in NFV-based infrastructure. Then, we classify them ac-
cording to the concerned NFV layer.

Answering RQ-3 and RQ-4 were not evident due to the fact that an in-depth study
of the access control enforcement in virtualized environments was missing in the liter-
ature. To answer RQ-3 and RQ-4, we conduct an extensive literature review on access
control policies on virtualized infrastructure. In synthesis, we found 20 distinct solu-
tions. We compare them according to the set of properties that need to be considered
when designing an access control policy enforcement on virtualized infrastructures.
These properties include the high expressiveness of the model, the correctness of the
refinement and deployment strategies, the optimality on both the required resources
and the introduced latency, the ability to deal with insider adversaries, and the effective
management of conflicts in the policy to be deployed.

The conducted comparison allows us to make the following observations. First, only
nine of the existing solutions present evidence (e.g., simulations and experimentation)
about their real-world usage. Second, none of the existing solutions provides formal
proofs on the correctness of their refinement and enforcement methods. Third, very
few of them provide high expressiveness for security requirements, enable conflict
management, and/or ensure an easy deployment of access control policies on virtu-
alized infrastructure. The previously mentioned shortcomings of the existing solutions
raise several open challenges that are to be addressed by investigating the following
research question.

RQ-5: How to create efficient, high expressive, correct, and easy
deployable approach allowing to optimally deploy mixed and complex
access control policies on virtualized infrastructures?

The previous question guides, for the most part, the rest of this dissertation. We will
break RQ-5 down into several research questions related to the properties that we aim
to ensure, and provide some solutions that answer the identified research questions.

57

CHAPTER 3

A DOMAIN TYPE ENFORCEMENT OF

ACCESS CONTROL POLICIES IN NFV
SERVICES

Contents
3.1 Introduction . 59

3.2 Background . 60

3.2.1 Virtual Network Service . 60

3.2.2 Domain and type enforcement (DTE) 62

3.2.3 Access control models . 65

3.3 The proposed model . 69

3.3.1 Adversary Model . 69

3.3.2 Security Policy specification . 70

3.3.3 Policy translation . 72

3.3.4 Policy refinement . 78

3.3.5 Access query evaluation . 81

3.3.6 Policy refinement correctness 84

3.3.7 Service requirements specification 87

3.3.8 DTE policy enforcement . 88

3.4 Implementation and experimental evaluations 89

3.5 Conclusion . 93

58

3.1 Introduction

As we have seen in Chapter 2, several access control policies deployment approaches
in virtualized infrastructure have been proposed. Based on Table 2.3, we can see that
most of these approaches are suffering from at least one of the following limitations.
First, none of the existing approaches provide formal proofs supporting the correctness
of the deployment of access control policies. Second, most of the existing approaches
rely on specification models that are not expressive enough to handle high level poli-
cies specified using other access control models such as RBAC, ABAC, and ORBAC.
Finally, several existing approaches require the modification and the management of
the NFVI which make them non-compliant with the ETSI-NFV architecture and thus not
easily used in practice. Hence, to overcome the previous limitation, in this chapter, we
address the following research questions:

• RQ-5.1: How to define a sufficiently expressive high-level specification model
that allows to correctly express policies specified using other well known access
control models such as RBAC, ABAC, and ORBAC?

• RQ-5.2: How to correctly refine the high level access control policy towards
concrete-level deployable requirements?

• RQ-5.3: How to define an ETSI-NFV compliant deployment of the concrete-level
requirements?

To answer the previous research questions, in this chapter, we propose a formal
model that provides a software-defined access control as a service capability for vir-
tualized network services. First, we define an expressive specification model to be
able to express high-level access control requirements to be enforced over virtualized
network services. Then, we show that our specification model can correctly express ac-
cess control requirements specified using other access control models such as RBAC,
ABAC, and ORBAC. Second, we propose a provably correct method for refining high-
level access control requirements towards a domain type enforcement (DTE) concrete
specification. Finally, our model defines an ETSI-NFV compliant and efficient enforce-
ment method, as illustrated by the different conducted experimental evaluations in Sec-
tion 3.4. In addition, our policy enforcement method is scalable as it is possible to add
as many enforcement points as needed (e.g., for load balancing purposes) without
impacting the functioning of the network services.

59

This chapter is organized as follows. Section 3.2 provides some background on
NFV service, its composition and how they are specified according to the ETSI NFV
standards. Section 3.3 defines our access control policy enforcement model. Section
3.4 provides an overview of the implementation of our model and presents the evalua-
tion results. Finally, Section 3.5 concludes this chapter.

3.2 Background

This section provides background material about all main technologies to enable the
deployment of our security policy.

3.2.1 Virtual Network Service

A Virtual Network service is an interconnection of virtual network functions (VNFs) to
provide a desired functionality. VNFs refer to the abstraction in software of network re-
sources traditionally provided in hardware. It can combine multiple physical networks
into a virtual software network, or divide a physical network into multiple independent
and distinct virtual networks. Common VNFs include virtualized firewalls, routers, and
network address translation (NAT) services. Most VNFs are run in virtual machines
(VMs) on common virtualization infrastructure software such as VMWare or KVM. It
is necessary to chain the traffic through the VNFs in an ordered graph to apply the
network services. In the case of NFV, the chaining is called the Virtualized Network
Function Forwarding Graph (VNFFG) to take into account the virtualization on an over-
lay network. A NFV service is composed of the following elements:

• A set of VNFs: A VNF represents a Network Function (NF) software implementa-
tion which can be deployed on an NFV infrastructure [E+14].

• A set of VNF Forwarding Graph: It represents a logical graph that defines the
connectivity between the network function such as VNF and the connection point
in order to define a traffic flow between them. This notion [VNF] is defined by
ETSI. It is known also as Service Function Chaining (SFC) that provides a level
of abstraction so that the operator can compose the network services in real
time. It is used to manage traffic through a sequence of network functions (NF)
that should be traversed in an order list of VNFs according to different routing

60

Figure 3.1 – Network Service Descriptor overview

policies. This latter is a sequence of connection points through which the packets
traverse. Each forwarding graph is composed of a set of forwarding paths.

• Physical Network Function: It is an implementation of a Network Function by a
closely coupled software and hardware system.

• Virtual Links: A virtual link (VL) is a logical connection used to interconnect the
VNFs. VL defines the connectivity between connection points and any associated
target performance metrics (e.g. bandwidth, latency) [E+14].

To specify the configuration of the network service, ETSI uses network service de-
scriptors that describe the requirements and attributes for deployment and lifecycle
management of an entity that are defined below:

• VNF descriptors (VNFD) are templates that define the instances to be imple-
mented and the resource requirements of each instance (CPU, memory, interface
and network). The descriptor also defines the types of interfaces with the NFVI
infrastructure and the expected KPIs.

• VNFFG descriptors (VNFFGD): VNFFG are described by VNF Forwarding Graph
Descriptors (VNFFGD). It is a model that specifies the requirements for the con-
nectivity of connection points that are attached to a physical network function.The
VNFFGD contains metadata about the routing graph of the VNF virtualized net-
work functions, as well as references to the infrastructure containers, the VNF

61

instances and the link between the VNFs. The metadata also contains policy
rules for the routing functions (routing and switching rules).

• Physical Network Function Descriptor (PNFD): is a model that defines the re-
quirements for the connectivity of the connection points attached to a physical
network function.

• Virtual Link Descriptor: It is a specification model that describes a Virtual Link
within an NFV (Network Functions Virtualization) system.

3.2.2 Domain and type enforcement (DTE)

Domain and Type Enforcement (DTE) [BSS+96] was developed by Badger, et al. in
1996. The objective was to enhance the ease and suitability of the flexible and robust
Type Enforcement (TE) access control mechanism. It protects the integrity of military
computer systems and was designed to be used in combination with other access con-
trol techniques. As with many access control schemes, DTE views a system as a col-
lection of active entities (that represent the subjects that are going to perform actions)
accessing a collection of passive entities (that represent the objects over which the ac-
tion are performed) based on rules defined in attached security context. Each subject
of the system belongs to DTE domain and each object of the system is associated to
DTE type. The access policy is then defined as:

• A set of actions that can be performed by a set of entities belonging to a domain
on the set of objects associated to a type.

• A set of domains transitions defining the conditions under which a subject can
transit from a domain to an other.

Based on Type Enforcement, a global table called Domain Definition Table (DDT)
contains allowed interactions between domains and types. Each row of the DDT rep-
resents a domain, and each column represents a type. In addition, It manages

• Access Control by controlling access from domains to types

• Flow Control by controlling transitions from domains to other domains

62

In DTE abstraction, a domain definition specifies the rights that each domain has
over objects of a given type. Any subject in the same domain has the same set of ac-
cess rights. Assigning subjects to domains gives a flexible mechanism for implementing
a security policy. All subjects associated with ordinary users can be represented by a
domain. This latter does not have to be associated with the rights of a single user.
Many other security models grant rights according to certain characteristics of a user,
such as his or her security clearance (multi-level security), role (i.e., function) in the
organization (role-based access control) or identity (standard UNIX access control).
One of the main advantages of DTE is that it lets the administrator strike an adequate
compromise between security and policy complexity. DTEL is a simple high-level sym-
bolic language used by DTE to express reusable DTE configurations. It provides four
primary statements for expressing DTE configuration for a single host:

• The type statement declares one or several types as part of the DTEL configura-
tion. For each object in the target system, only one of the types is associated.

• The domain statement which is composed mainly of the following three elements:

– Subject access rights: are permissible access modes (e.g., use to perform
specific action) to subject in other specified domain.

– Object access rights: are permissible access modes (e.g., write, read, delete)
to object of specified types.

– Entry points: In the context of an NFV system, we are not handling processes
and files, we are rather dealing with virtual services. In an abstract way, an
entrypoint is a concept that will allow the transfer of an entity from one DTE
domain to another.

• The initial-domain statement: It associates to each subject that joins the system
an initial domain to which the subject will belong. For example, a subject repre-
senting a HTTP client will be placed in the HTTP domain.

• The assign statement: is utilized to assign exactly one type with each object on
the target system. Based on directive hierarchies, it supports a technique "implicit
typing", to associate types with objects.

63

Read

Read

Read

authentification
service

DTE
domain

DTE
Type

DTE
Entrypoint Authorization

DTE
Domain
Transition

Figure 3.2 – DTE specification of the access control policy used in Example 3.1.

Example 3.1 To illustrate access policy enforcement using DTE, let us consider a sys-
tem composed of a database client db_c and two database servers db_s1 and db_s2.
Let us consider an access control policy composed of the following two rules:

• Rule 1: db_s1 contains non-sensitive information that can be accessible by both
authenticated and non-authenticated database clients.

• Rule 2: db_s2 contains sensitive information that should be accessible only to
authenticated clients.

The previous policy can be specified in DTE as depicted in Figure 3.2 and described
in the following:

• Using type statements, we create two DTE types db_s_sens and db_s_nonsens.
Then, using assign statements, we assign db_s1 to db_s_nonsens and db_s2 to
db_s_sens.

• Using domain statements, we create two domains db_c_unauth and db_c_auth.
Using object access rights, we specify that subjects in db_c_unauth can read the
objects in db_s_nonsens, while subjects in db_c_auth can read objects in both
db_s_sens and db_s_nonsens.

• We create a transition domain (a DTE entry point) represented by an authenti-
cation service allowing database clients to transit from db_c_unauth to db_c_auth
as soon as they are authenticated.

64

• Finally, we use an initial domain statement to specify that any new instance of a
database client should belong to db_c_unauth (the domain containing the unau-
thenticated database client).

According to the previous DTE specification, a non-authentication database client will
be initially placed in db_c_unauth. The latter can only access objects in db_s_nonsens
(databases containing non sensitive information) which satisfies the rule 1. In addition,
once authenticated, a database client can transit to the domain db_c_auth which al-
lows access to objects associated to both db_s_nonsens and db_s_sens types, which
satisfies the rule 2.

3.2.3 Access control models

Several access control models have been defined in the literature. In the following, we
introduce the most known models with their access control requirement specification
capabilities. The content of this section will be helpful later in this chapter to show that
the requirements specified using any of the following models can be correctly translated
to our access control policy specification model (see Section 3.3).

Role-Based Access Control (RBAC)

RBAC is a model of access control where permissions are associated with roles, and
users are assigned to appropriate roles [SCFY96] (Figure 3.3). In this model, users
acquire permissions by being members of roles [FSG+01]. Defined user roles repre-
sent the work processes in an organization and vary from company to company. The
breakdown of user roles can be done by department, location, cost center, or (more
common) employee responsibilities.

Pioneered in the 1970s, this model has gained acceptance and it is the de facto
standard access control model for many systems having originated many derivatives.
It has been accepted as the best-practice model, and can offer many advantages:
flexibility, reduced administration work (as individually assigning permissions is not an
issue), less error prone, increased efficiency and transparency. Yet, the setup of such
a model is labor-intensive (especially in what concerns the translation of organizational
structures). It is not the best model for temporary assignments (as there is not the
concept of time lease at the concept). Additionally, in small companies, the process

65

SubjectRole(s)

Object

Session/
Context

Permission

R
B

A
C

 R
ul

e

Subject/Role(s)
asignement

Decision

Figure 3.3 – RBAC policy specification model

of creating and maintaining roles is more time consuming than assigning permissions
individually.

The following definition provides a formal modeling of an RBAC rule.

Definition 3.1 (RBAC Rule) Formally an RBAC access control rule r is modeled as a
quadruplet

r = 〈R̂, O, C, P,D〉

where R̂, O, C, P , D represent respectively a role, an object, a context describing the
condition(s) under which the rule can be fired, a permission representing a possible
action on the object, and a decision stating whether the r is an authorization or a
prohibition rule.

Attribute-Based Access Control(ABAC)

The ABAC model has been introduced in [PFMP04, YT05] to ensure more flexibility in
the specification and the enforcement of access control requirements.

As illutrated in Figure 3.4, ABAC is a model that evaluates attributes assigned to
subjects, objects, permission, and environment to determine access. ABAC as a form
of logical access control became prominent in the past decade, having evolved from
simple access control lists and role-based access control (RBAC) [11]. ABAC draws on

66

Subject

Permission

Object

Context
A

B
A

C
 R

ul
e

A
ttr

ib
ut

es
Decision

Figure 3.4 – ABAC policy specification model

a set of attributes (ex: user characteristics, environmental characteristics, resource at-
tributes). ABAC supports Boolean logic, meaning that the attribution of access control
can be dependent on a set of conditions (contrary to RBAC). This provides enhanced
granularity and flexibility over previous models, including time-dependent access con-
trols. On the downside, ABAC is complex to design and implement. The model’s focus
on attributes also makes it hard to gauge the permissions available to specific users
before all attributes and rules are in place.

The following definition provides a formal modeling of an ABAC rule.

Definition 3.2 (ABAC Rule) Let us denote by A the set of attributes that are to be
used in the system to model the access control requirement. An ABAC access control
rule r is modeled as a quadruplet

r = 〈S = AS, O = AO, C = AC , P = AP , D〉

where S, O, C, P , and D represents respectively any subject of system to which the
set of attributes AS ⊆ A , any object of system to which the set of attributes AO ⊆ A, a
context describing the set of environment attributes AC ⊆ A under which the rule can
be fired, a permission modeled using a set of access attributes AP ⊆ A ,and a decision
stating whether the r is an authorization or a prohibition rule.

67

Organization-Based Access Control (ORBAC)

The ORBAC model [KBB+03] was first proposed to overcome the limitations of existing
access control models such as RBAC. As shown in Figure 3.5, this model introduces a
level of abstraction in which subjects are abstracted into roles, actions are abstracted
into activities and objects are abstracted into views. Each security policy is defined by
and for an organization and the high-level policy specification is parameterized by the
organization by assigning to each subject a role, to each concrete action (i.e., read,
write, delete, etc.) an activity, and to each object a view.

Concrete-level OrBAC rule

High-level OrBAC rule

Role Activity View

Organization

Subject Action Object

Context

Decision

Subject Action

Figure 3.5 – An overview of the ORBAC model

ORBAC is still a dynamic model as context is taken into account as following:

• Permission means that given an organization, a role is authorized to perform an
activity on a view if the context is active in the system.

• Prohibition states that a role is not authorized to perform some activity on some
view when a given context is true.

ORBAC defines a formal refinement method allowing to transform abstract-level
access control requirements to concrete level ones following the associations between
a subject and a role, an action and an activity, and an object and a view.

Using the following definition, we provide a formal modeling of an ORBAC rule.

68

Definition 3.3 (ORBAC Rule [AEKEBB+03]) An ORBAC access control rule r is mod-
eled as a quadruplet

r = 〈Org, R̂, Â, V̂ , C,D〉

where Org, R̂, Â, V̂ , C, and D represents respectively the organization over which the
rule is going to be enforced, a role, an activity, a view, a context, and a decision.

3.3 The proposed model

As we have seen in the previous section, each of the aforementioned models specifies
access control requirements in a different way. Our objective is then to define a new
sufficiently generic access control specification model that can be used to express
requirements specified using any of the aforementioned models.

In the rest of this section, we first present the adversary model we are going to
consider in Section 3.3.1. Then, we propose a specification of a security policy to be
deployed in Section 3.3.2. In section 3.3.5, the proposed model defines what is an ac-
cess query and how it can be evaluated with regards to the policy to be enforced. Sub-
sequently, in Section 3.3.6, we propose a provably correct policy refinement method.
Finally, in Section 3.3.7, we focus on the specification of the NFV service requirements.

Afterwards, since DTE has made its evidence for the enforcement of access con-
trol policies at concrete level in operating system, a method for refining an access
control policy specified using our policy specification model towards a concrete-level
DTE specification is proposed in Section 3.3.4. The proposed transformation allows
us to benefit from the advantages of DTE. In particular, it allows entities having the
same access requirements to be collected into domains and types which allows to find
an appropriate balance between security and policy deployment complexity. We prove
that the proposed transformation method is correct and we show how the DTE policy
is enforced.

3.3.1 Adversary Model

To understand the scope of the problem and evaluate the risks, we have to develop
an adversary model. The adversary model considered in this work is composed of an
attacker, an NFV infrastructure hosting the multiple VNFs that compose the network

69

services to be deployed, and an access control engine that is used to deploy the ac-
cess control policy. In our model, the objective is to allow users including the likely
attacker to perform operations that a normal NFV infrastructure user can do. It means
that the attacker can generate and modify a flow attack to try to compromise a VNF.
We suppose that the adversary will be able to interact with the VNFs composing the
deployed network service but he cannot control or modify the behavior of the access
control engine as well as the VNF that will be used to enforce the access control policy.
This latter is supposed to be hardened i.e., keeping the operating system up to date,
minimizing the installed packages to minimize vulnerabilities, enable and correctly con-
figure a firewall, etc.

3.3.2 Security Policy specification

One of the properties that we want to ensure in our approach, is the high expressive-
ness. That is, we aim to define an access control policy specification model that can
express requirements that are specified using any of the three well known access con-
trol models we aforementioned in Section 3.2.3. Hence, in the following, we define our
property-based access control specification model (Definition 3.4), then we show how
access control requirements specified using RABC, ABAC, or ORBAC can be trans-
lated to our property-based specification model.

Definition 3.4 (Access Control Policy) An access control policy SP is composed of
a set of access control rules {r1, · · · , ri}. Each rule ri comprises:

• A subject Si that represents one or many entities that want to access the object.
These entities are characterized by a set of properties PSi = {ps1, · · · , psn}.

• An action Ai that represents the operation that is going to be performed by Si on
Oi. Each action is characterized by a set of properties PAi = {pa1, · · · , pal }.

• An object Oi represents one or many resources over which the action Ai is going
to be performed. Oi are characterized using two types of properties: (1) a set of
properties PEi that characterizes the entities (e.g., VNF) and (2) a set of proper-
ties PRi that characterizes the resources inside those entities and over which the
action Ai will be performed.

• A context Ci under which the rule can be invoked.

70

• A decision Di indicating whether it is a permission or denial rule.

In our model, each rule ri in the security policy will be represented as follows:

ri = 〈Si := PSi , Ai := PAi , Oi := {PEi ,PRi }, Ci, Di〉

where X := P is used to denote the elements (e.g., subjects, objects, actions) that is
characterized by the set of properties P.

We note that the properties that characterize the entities representing the subject Si
(resp. the object Oi) may include: attributes of Si (resp. Oi) in the considered system
(e.g., the IP address of a network to which the subject belongs, etc.), functional at-
tributes representing the provided functionalities (e.g., routing, deep packet inspection,
firewalling, etc.), and security attributes that represent the security properties that is
associated to Si (resp. Oi) (e.g., the security level, trust level, etc.). In the case of NFV
service, these properties can be retrieved from the VNF descriptors that compose the
service to be deployed.

In the sequel, we will use property-based specification model to refer to our
policy specification model defined in Definition 3.4.

Example 3.2 To illustrate the security policy specification, let’s take the example of
a rule r1 saying that any VNF providing web client functionalities and having a high
security level can read the content of any web page on a VNF providing a web server
functionality and having a high security level if the client is using https It can be specified
using the following notation:

〈S := {func : web_client, sec_level : high}, A := {Action : read, proto = https}, O :=

{PE = {func : web_server, sec_level : high},PR = {file_name : any}},

C = {between 8am and 8pm}, D = allow〉

An access control policy is used to check all access requests that will be made in
the system in which the policy is deployed. In the following definition, we define what an
access request is, what it consists of, and to what extent it will be accepted or denied
by the access control policy.

Definition 3.5 (Access Query) An access queryAQ is represented by the quadruplet
〈Sq, Oq, Aq, Cq〉 where Sq represents the subject performing the query, Oq the object

71

over which the query is performed, Aq the action performed by the query, and Cq the
request context under which the query is performed. Given a closed 1 policy SP, AQ
is allowed by SP if and only if the following condition holds:

(i) ∃ri ∈ SP such that Sq ∈ Si, Oq ∈ Oi, A
q ∈ Ai, Cq satisfies Ci, and Di = allow.

AQ is denied by SP if and only if one of the following conditions hold:

(ii) @ri ∈ SP such that Sq ∈ Si, Oq ∈ Oi, A
q ∈ Ai, Cq satisfies Ci, and Di = allow.

(iii) ∃ri ∈ SP such that Sq ∈ Si, Oq ∈ Oi, A
q ∈ Ai, Cq satisfies Ci, and Di = deny.

The conditions used in the previous definition can be informally described as fol-
lows:

• Condition (i) states that an access query AQ is allowed by the security policy SP
if and only if there exists an authorization (Di = allow) rule ri in SP such that AQ
satisfies ri.

• Condition (ii) states that an access query AQ is denied by the security policy SP
if there does not exist an authorization rule ri in SP such AQ satisfies ri.

• Condition (iii) states that an access query AQ is denied by the security policy SP
if there exists a prohibition (Di = Deny) rule ri in SP such AQ satisfies ri.

3.3.3 Policy translation

We design our access control specification model presented in Definition 3.3 to be suffi-
ciently expressive so that it can be used to specify any access control policy expressed
using RBAC, ABAC, and ORBAC. In the following, we propose a translation method for
each of the considered access control model. Then we prove their correctness.

Definition 3.6 (Policy translation correctness) Let us consider two access control
specification modelMi andMj and a rule ri specified usingMi. Let us denote by rj

the translation of ri inMj. The translation is correct if and only if there exist no access
query AQ such that none of the following conditions hold:

(i) AQ satisfies ri but not rj.

(ii) AQ satisfies rj but not ri

1. only accesses that are explicitly authorized should be allowed, all other accesses will be denied.

72

RBAC rule translation

The translation of an RBAC rule to our property-based specification model is depicted
in Figure 3.6.

Subject

Action

Object

Context

Pr
op

er
ty

-b
as

ed
 p

ol
ic

y
ru

le

Roles

Subject

Object

Session/
Context

R
BA

C
 ru

le

Translation Rule

Pr
op

er
tie

s

Decision Decision

Permission

Figure 3.6 – Translation of an RBAC rule to a property-based rule

The RBAC notions subject, object, context, and decision are straightforwardly trans-
lated to the same notion used in our property-based model. The notion of permission is
translated to an action that can be performed over the object. Finally, The notion of role
can be seen in our model as a specific property that can be associated to a subject.
We formalize the previous translation using the following definition.

Definition 3.7 An RBAC rule r = 〈R̂, O, C, P,D〉 is translated to a property-based
specification rule r∗ where

r∗ = 〈S∗ := {role : R̂}, A∗ = P,O∗ = O,C∗ = C,D∗ = D〉

Proposition 3.3.1

The RBAC translation method defined in Definition 3.7 is correct.

73

Proof: Proof is by contradiction. According to Definition 3.6, a translation is correct if
and only if there exists no access query AQ such that one of the following conditions
hold:

1. AQ satisfies r but not r∗

2. AQ satisfies r∗ but not r

So let us suppose that there exists AQ = 〈Sq, Oq, Aq, Cq〉 such that one of the previous
conditions hold. Two cases should be considered.

• Case 1: condition (1) holds. As AQ satisfies r, then we can deduce (d1) that Sq

has the role R̂, Oq = O, Aq = P , and Cq satisfies C. Now, considering the fact
that AQ does not satisfy r∗, then we can deduce that Sq does not have the role
R̂, Aq 6= A∗, Oq 6= O∗, or Cq does not satisfy C∗, which contradicts (d1).

• Case 2: condition (2) holds. As AQ satisfies r∗, then we can deduce (d2) that Sq

has the role R̂, Oq = O∗, Aq = A∗, and Cq satisfies C∗. Now, considering the fact
that AQ does not satisfy r, then we can deduce that Sq does not have the role R̂,
Aq 6= P , Oq 6= O, or Cq does not satisfy C, which contradicts (d2).

�

ABAC rule translation

An ABAC rule can be translated to our property-based specification model as illustrated
in Figure 3.7. Similarly to the RBAC rule translation method, the ABAC notions subject,
object, context, and decision are straightforwardly translated to the same notion used in
our property-based model. The permission notion is translated to an action. In addition,
the attributes used in the ABAC model to model the subject, object, permission, and
context, can be translated in our model to properties that characterize a subject, an
object, a context, or an action.

The translation of ABAC rules to our property-based specification rules is formalized
as follows.

Definition 3.8 An ABAC rule r = 〈S = AS, O = AO, C = AC , P = AP , D〉 is translated
to a property-based specification rule r∗ such that

r∗ = 〈S∗ := PS, A∗ := PP , O∗ := PO, C∗ := PC , D〉

74

Subject

Permission

Object

Context

AB
AC

 R
ul

e

Decision

A
ttr
ib
ut
es

Subject

Action

Object

Context

Pr
op

er
ty

-b
as

ed
 p

ol
ic

y
ru

le

Pr
op

er
tie

s

Decision

Subject

Permission

Object

Context

Decision

At
tri

bu
te

s

Translation Rule

Figure 3.7 – Translation of an ABAC rule to a property-based rule

where PX are the set of properties that translates the set of attributes AX .

Proposition 3.3.2

The translation method of ABAC rules to a property-based specification rules
defined in Definition 3.8 is correct.

Proof: By following the same reasoning method as in the proof of Proposition 3.3.1,
we can straightforwardly prove the previous proposition. Proof is by contradiction. Ac-
cording to Definition 3.6, a translation is correct if and only if there exists no access
query AQ such that one of the following conditions hold:

1. AQ satisfies r but not r∗

2. AQ satisfies r∗ but not r

So let us suppose that there exist AQ = 〈Sq, Oq, Aq, Cq〉 such that one of the previous
conditions hold. Two cases should be considered.

• Case 1: condition (1) holds. As AQ satisfies r, then we can deduce (d1) that Sq

has the role R̂, Oq = O, Aq = P , and Cq satisfies C. Now, considering the fact

75

that AQ does not satisfy r∗, then we can deduce that Sq does not have the role
R̂, Aq 6= A∗, Oq 6= O∗, or Cq does not satisfy C∗, which contradicts (d1).

• Case 2: condition (2) holds. As AQ satisfies r∗, then we can deduce (d2) that Sq

has the role R̂, Oq = O∗, Aq = A∗, and Cq satisfies C∗. Now, considering the fact
that AQ does not satisfy r, then we can deduce that Sq does not have the role R̂,
Aq 6= P , Oq 6= O, or Cq does not satisfy C, which contradicts (d2).

�

ORBAC rule translation

ORBAC rules can be translated to our property based specification model as illustrated
in Figure 3.8.

Subject

Action

Object

Context

Pr
op

er
ty

-b
as

ed
 p

ol
ic

y
ru

le

Pr
op

er
tie

s

Decision

H
ig

h-
le

ve
l O

rB
AC

 ru
le

Role

Activity

View

Decision

O
rg

an
iz

at
io

n

Subject

Action

Object

Context

Translation Rule

Figure 3.8 – Translation of an OrBAC rule to a property-based rule

To be able to translate high-level ORBAC rule to our specification model, we con-
sider the role, activity, view notions of the ORBAC model as properties that can be
assigned respectively to a subject, an action, and an object in our specification model.
The ORBAC’s organization notion is translated to a property that can be associated
to any subject, object, action, and context. Finally, the ORBAC concrete-level notions
subject, object, action, are straightforwardly translated to the same notions used in our

76

property-based model. The translation of ORBAC rules to our property-based specifi-
cation rules is formalized as follows.

Definition 3.9 An ORBAC rule r = 〈Org, R̂, Â, V̂ , C,D〉 is translated to a property-
based specification rule r∗ such that

r∗ = 〈S∗ := {role : R̂, org : ˆOrg}, A∗ := {activity : Â, org : ˆOrg}, O∗ :=

{view = V̂ , org : ˆOrg}, C∗ = C,D∗ = D〉

Remark 3.3.1

In the previous Definition, the property org is only involved in the specification of
the subject, action, and object of the rule r∗. This choice is motivated by the fact
that the association between the high-level concepts such as role, activity and
view with low level concepts such as subject, object, and action is to be decided
by the organization, and will affect only the subjects, objects and actions related
to the organization. This modeling allows us also to be able to specify access
control policies defined by several organizations.

Proposition 3.3.3

The translation method of ORBAC rules to a property-based specification rules
defined in Definition 3.9 is correct.

Proof: We prove the previous proposition by contradiction. Similarly to the proof of
Proposition 3.3.1, we suppose that there exists an access query AQ = 〈Sq, Oq, Aq, Cq〉
such that the translation method defined in Definition 3.9 is not correct. So according
to Definition 3.6, to cases should be considered:

• Case 1: AQ satisfies r but not r∗.

• Case 2: AQ satisfies r∗ but not r.

For both previous cases, a contradiction is shown as follows.

Case 1: Since AQ satisfies r, we can deduce that (d1) the role R̂ is assigned to Sq

within the organization ˆOrg, the object Oq belongs to the view V̂ within ˆOrg, the action

77

Aq is part of the activity Â within ˆOrg, and the context Cq satisfies C. In the other hand,
AQ does not satisfies r∗ means that Sq does not have the role R̂ in ˆOrg, Oq does not
belong to the view V̂ within ˆOrg, the action Aq is not part of the activity Â within ˆOrg, or
Cq does not satisfy C, which contradicts (d1).

Case 2: Following the same reasoning as in the previous case, we can straightfor-
wardly show a contradiction and conclude the proof. �

Remark 3.3.2

In this section, we propose an access control policy modeling language, then we
formally proved through Propositions 3.3.1, 3.3.2, and 3.3.3 that it can be used to
correctly express access control policies specified in RBAC, ORBAC and ABAC.
Generally, our model can be used to specify any access control policy that is
based on the properties related to the involved subjects, objects, and actions.
Hence, we answer positively the research question RQ-5.1.

3.3.4 Policy refinement

In this section, we propose a method for refining a policy specified using our property-
based policy specification model (Definition 3.4) towards a concrete-level specification.
Then, we formally prove that the refinement method we propose is correct.

Remark 3.3.3

In our approach, we choose DTE as a concrete enforcement model as it offers
several advantages. First, as mentioned in Section 3.2.2, DTE allows to manage
both access Control by controlling access from domains to types and flow Control
by controlling transitions from domains to other domains. Second, the DTE model
has been widely adopted for enhancing the security of Linux operating systems
through the Security-Enhanced Linux (SELinux) [Cla00] module implementing
the DTE model. Third, the impact of the enforcement of a DTE policy in Linux
operating system on the different operations (e.g., file read, file write, file copy,
etc) is very low (less than 10 µs) [ZLJ21]. Hence, by using DTE as a concrete
enforcement model in NFV service, we expect to have a quite low latency on the
NFV quality of service due to the evaluation of the DTE specification.

78

Definition 3.10 Given a security policy SP composed of n rules r1, · · · , rn. SP is trans-
formed to a DTE policy by performing, for each rule ri ∈ SP the following steps that
are also depicted in Figure 3.9:

• Step 1: If there exist no j < i such that PSi = PSj , define the domain s_PSi _d which
will contain all entities of the considered system (i.e., the network service to be
deployed) that have the set of properties PSi used to characterize the subject Si.
Otherwise, use the same domain s_PSj _d (i.e., s_PSi _d = s_PSj _d) defined for the
subject Sj of the rule rj.

Add a domain

Step 1

Step 2 Add an entry point

Step 3

Add a domain

Step 3

Add a domain
transition rule

Step 4 Authorize

Step 5

Add a type

DTE
domain

DTE
Type

DTE
Entrypoint Authorization

DTE
Domain

Transition

Figure 3.9 – The refinement of a property-based rule towards a DTE specification

• Step 2: If there exist no k < i such that Ci = Ck, define new type ci_t. Otherwise,
use the same type ck_t defined for the context of the rule rk (i.e., ci_t = ck_t).
Note that the type ci_t will be considered as an entry point allowing any access
query associated to ci_t to transit through the entry point.

• Step 3: If there exist no l < i such that PRi = PRl define new type o_PRi _t which
will be associated to all resources of the considered system that have the set of
properties PRi . Otherwise, use the same type o_PRl _t (i.e., o_PRl _t = o_PRi _t). In
addition, if there exist no l′ < i such that PEi = PEl , define new domain o_PEi _d that
will contain all entities of the considered system that have the set of properties

79

PEi . Otherwise, use the same domain o_PEl′ _d (i.e., o_PEl′ _d = o_PEi _d) defined
for the object of the rule rl.

• Step 4: When associated to the request context Cq of an access query AQ (i.e.,
the context of the rule ri is satisfied by the context Cq of AQ), allow the type ci_t
to be an entry point allowing to transit AQ from domain s_PSi _d to the domain
o_POi _d.

• Step 5: Authorize access queries that transit from s_PSi _d to o_PEi _d to perform
the actions Ai on any objects having the type o_PRi _t.

Finally, we denote by C the set of couples of DTE types ci_t and their respective
contexts Ci created in step 2 (C = {(ci_t, Ci)}).

Remark 3.3.4

We note here that only the authorization rules i.e., having an allow decision, are
considered in the previous definition. This choice is due to the fact that DTE is
using closed policies by default. Hence, there is no need to refine prohibition rule
to a DTE specification. We emphasis here that the refinement strategy presented
in Definition 3.10 can only be used with access control policies that does not
contain conflictual rules i.e., rules that both allow and deny an access query. A
method for dealing with such access control policies is proposed in Chapter 4.

In our model, when an access query is created by the system, the query inherits
all the types associated with the subject Sq and belongs to the DTE domains of Sq. In
addition, we suppose that the system associates types to Cq as follows. ∀(ci_t, Ci) ∈ C :
if Ci is satisfied in Cq, then associate the type ci_t to the request context Cq of the
access query.

Example 3.3 This example illustrates the security policy transformation method we
defined in Definition 3.10. Let us consider that we have a security policy SP that is
composed of three rules r1, r2 and r3 such that:

• r1 = 〈S1 := {func : web_server, sec_level : high}, A1 = read,O1 := {PE1 =
{func : ftp_server, sec_level : high},PR1 = {file_name : any}}, C1 =
{between 8am and 8pm}, D1 = allow〉

80

• r2 = 〈S2 := {func : web_server, sec_level : high}, A2 = write, O2 := {PE2 =
func : database_server, sec_level : low,PR2 = db_name : service_db}, C2 =
{between 8am and 8pm}, D2 = allow〉

• r3 = 〈S3 := {func : web_client, sec_level : high}, A3 = access,O3 := {PE3 =
func : ftp_server, sec_level : high,PR3 = file_name : web_config}, C3 =
{between 8am and 8pm}, D3 = allow〉

According to Definition 3.10, the transformation of the policy SP to a DTE specifi-
cation is illustrated using the schema in Figure 3.10.

Subjects S1, S2, of rules r1, r2 are respectively represented in the transformation by
the DTE domain s_web_server_high_d while the subject S3 of r3 is represented by the
domain s_web_client_high_d. The entities of objects O1 and O3 of r1 and r3 (described
using the set of properties PE

1 and PE
3) are represented in the DTE transformation

by the DTE domain o_ftp_server_high_d and the resources of the objects O1 and
O3 (described using the set of properties PR

1 and PR
3). In the case of O2, the entities

described using the set of properties PE
2 and the resources are described using the set

of properties PR
2 .

The DTE domains o_ftp_server_high_d and o_db_server_low_d are respectively
created by the transformation of the rules r1 and r3. After the transformation, o_ftp_ser−
ver_high_d contains the ftp server having the security level high while the domain
o_db_server_low_d contains the database servers having the security level low. Finally,
c_t is a DTE type that will be associated to any access query satisfying the context C1,
C2, and C3 of the rules r1, r2, and r3.

3.3.5 Access query evaluation

In this section, we focus on how the access query will be evaluated with respect to the
DTE specification that are to be enforced. The pseudo-code in Algorithm 1 outlines the
procedure used to authorize an access query. It takes as inputs the access query to
be authorized, the sets C of types and their respective contexts created in the policy
transformation process (Definition 3.10). It outputs a value (allow_traffic or deny_traffic)
indicating whether or not the access query should be allowed by the DTE policy. The
functions get_domains, get_types, get_transition_src, and get_transition_dst are used
to retrieve respectively, the set of domains to which the subject of the access query

81

belongs, the set of types associated with the object of the access query, the source
domain of the domain transition, and the destination domain of the transition. The
function assign_types assigns to the access query AQ the types used in C if their
respective context matches the context of AQ. Finally, the function check_permission
checks whether a DTE domain is allowed or denied to perform the actions in Aq on a
given DTE type.

Figure 3.10 – Transformation of rules r1, r2, and r3 to a DTE policy

82

The foreach loop (lines 5 to 8) is used to find all the possible DTE domains to which
the access query can transit. Then, using the second foreach loop (lines 10 to 17), the
procedure checks if there exists one of the domains to which the query can transit that
allows to perform the action Aq on one of the types associated to the target object Oq.

Input: AQ : 〈Sq, Oq,Aq, Cq〉 /* the access query be authorized */
C = {(c_ri_t, Ci)}) /* Definition 3.10 (step 2) */

1 subject_domains = get_domains(Sq)
2 object_types = get_types(Oq)
3 AQ_types = assign_types(AQ, C)
4 possible_domains = ∅
5 foreach AQ_type ∈ AQ_types do
6 if AQ_type is not a DTE entrypoint then continue ;
7 if get_transition_src(AQ_type) /∈ subject_domains then continue ;
8 possible_domains = possible_domains ∪ get_transition_dst(AQ_type)
9 end

10 foreach type ∈ object_types do
11 foreach domain ∈ possible_domains do
12 if check_permission(domain, type,Aq) = allow then
13 transit_domain(AQ, domain);
14 return allow_query;
15 else if check_permission(domain, type,Aq) = deny then
16 return deny_traffic;
17 end
18 end

Algorithm 1: Access query authorization

Example 3.4 To illustrate how an access query is going to be evaluated, let us consider
the access control policy that has been refined in Example 3.3, and the following two
access queries

AQ1 : 〈Sq1 = web_client, Oq
1 = ftp_server :: web_config_t, Aq1 = read, Cq

1 = {time=12 am}〉

AQ2 : 〈Sq2 = web_client, Oq
2 = db_server, Aq2 = access, Cq

2 = {time=12 am}〉

to be evaluated and performed on the considered system. We suppose the following:

• The web_client entity has high security level, so it belongs to s_web_client_high_d
domain.

83

• The ftp_server entity has high security level, so it belongs to s_ftp_server_high_d
domain.

• db_server entity has low security level and then belongs to o_db_server_low_d
domain.

So, let us first focus on AQ1. According to the access query evaluation procedure
presented in Algorithm 1, AQ1 will inherit the domain of its subject, so it will initially
belongs to the domain s_web_client_high_d. Moreover, the context Cq

1 of AQ1 satis-
fies the contexts C1, C2 and C3 of the three rules r1, r2, and r3. Hence, the type c_t
will be associated to the query AQ1. According to the step 4 of our transformation
method, the DTE type c_t will allow the access query AQ1 to transit from the domain
s_web_client_high_d to the domain o_ftp_server_high_d. Furthermore, according to
the transformation shown in Figure 3.10, the action access is authorized to be per-
formed by access queries belonging to the domain o_ftp_server_high_d over objects
associated to the DTE type o_ftp_server_high_t. So, we conclude that the query AQ
is to be authorized by the DTE specification of SP.

Let us now focus on the query AQ2. The latter will be associate initially to the do-
main of its subject s_web_client_high_d. As we can see in Figure 3.10, the only possi-
ble domain to which AQ2 can transit is o_ftp_server_high_d, and no action is possible
from o_ftp_server_high_d on resources associated to the DTE object service_db_t.
Hence, AQ2 will be denied by the DTE specification of SP.

3.3.6 Policy refinement correctness

Since the policy is being refined from our high-level property-based specification model
to a concrete DTE specification, we must be sure that the transformation is correct in
the sense that the policy that is going to be deployed in the DTE level is equivalent to
the high-level policy that has been specified.

A security policy transformation method is correct if, for any access query, no rule
in the transformed security policy is violated when the transformation resulting policy is
deployed. This is formalized using the following definition.

Definition 3.11 Given a closed security policy SP = {r1, · · · , rn} and its correspond-
ing DTE transformation SPDTE (as described in Definition 4.3). The transformation

84

from SP to SPDTE is correct if and only if for any access query AQ: if AQ is allowed
(resp. denied) by SP, then it is allowed (resp. denied) by SPDTE.

Theorem 3.3.1

The policy transformation method proposed in Definition 3.10 is correct.

Proof: We prove the previous theorem by contradiction. Let us denote by SP the
transformed policy and SPDTE the transformation resulting policy. According to Defini-
tion 3.11, the policy transformation method is not correct if one of the following cases
hold:

• case 1: There exists an access query AQ such that it is allowed by SP and
denied by SPDTE.

• case 2: There exists an access query AQ such that it is denied by SP and al-
lowed by SPDTE.

For both cases, a contradiction is shown in the following.

Case 1: Formally, this case implies that ∃ri ∈ SP ,∃AQ such that: Sq ∈ Si, O
q ∈

Oi, A
q ∈ Ai, Ci is satisfied in Cq, and Di = allow. Sq ∈ Si means that Sq will belong

to the same domain as Si (s_PSi_d) and that the query itself will belong to s_PSi_d.
According to the step 3 of our policy transformation method (Definition 4.3), Oq ∈ Oi

implies that the object Oq will have the type o_PRi_t. In addition, according to the query
initialization rules, Ci is satisfied in Cq means that the type ci_t will be assigned to Cq.
Then, according the step 4 of Definition 4.3, when executed, AQ will transit from the
domain s_PSi_d to the domain o_PEi_d. Subsequently, and according to the step 5 of
Definition 4.3, since AQ transited to o_PEi_d, it will have the permission to perform
the set of actions Ai on all entities having the type o_PRi_t. Finally, since Oq ∈ Oi and
Aq ∈ Ai, then AQ will have the permission to perform the action Aq on the object Oq

which contradicts the hypothesis of the case 1.

Case 2: This case happens if one of the following conditions hold:

85

case 2.1: Given the access query AQ, there exists no rule in the policy SP that
allow AQ. Formally, @ri ∈ SP such that Sq ∈ Si, O

q ∈ Oi, A
q ∈ Ai, Cq satisfies Ci,

and Di = allow. Let us suppose that the AQ is allowed by SPDTE. According to the
transformation method, action permission is only specified in step 5 of Definition 4.3.
This step means that if AQ is allowed by SPDTE, then there exist a domain s_PSi_d
and a type o_PRi_t such that AQ belongs to s_PSi_d and Oq has the type o_PRi_t.
This means that there exists ri ∈ SP such that Aq ∈ Ai and Oq ∈ Oi. In addition,
according to step 3 of Definition 4.3, o_PRi_d (i ∈ [1, n]) does not contain any access
query when created. These domains are only accessible for access queries thought
the transformation rule defined in step 4 of Definition 4.3. Since we already showed
that AQ belongs to s_PSi_d, then there exists an entrypoint type ci_t that allows AQ
to transit to the domain o_PEi_d which allow us to deduce that Ci is satisfied in Cq

and that both Si and Sq belong to the same domain s_PSi_d (since Sq ∈ Si). Then,
we deduce that ∃ri ∈ SP such that Sq ∈ Si, Oq ∈ Oi, Aq ∈ Ai, Ci satisfied in Cq and
Di = allow which contradicts the case 2.1. �

case 2.2: This case implies that given the access query AQ, in one hand ∃ri ∈
SP ,∃AQ such that: Sq ∈ Si, Oq ∈ Oi, A

q ∈ Ai, Ci is satisfied in Cq, and Di = deny and
in the other hand AQ is allowed by SPDTE. Sq ∈ Si means that Sq will belong to the
same domain as Si (s_PSi_d) and that the query itself will belongs to s_PSi_d, since
AQ inherit the domain of its subject then AQ belongs also to s_PSi_d. Since the rule
ri is transformed using our transformation method, then there exists the type ci_t that
represents an entrypoint to the domain o_PEi_d. Since Ci is satisfied in Cq, the type
ci_t will be associated to the Cq of AQ, as a result, when executed, AQ will transit from
s_PSi_d to o_PEi_d. However, based on the transformation of ri, the domain o_PEi_d
will be denied to perform the action Ai on the type o_PRi_t. Finally, since Oq ∈ Oi and
Aq ∈ Ai then AQ will be denied by the SPDTE which contradicts the case 2.2.

Remark 3.3.5

As we have seen in this section, we have proposed a refinement transformation
method that allows to refine high level policies towards DTE specification, we
show how we can evaluate access queries against a DTE specification and we
prove the correctness of our refinement method. Hence, with the previous we
answered the research question RQ-5.2.

86

3.3.7 Service requirements specification

The goal of our model is to allow the enforcement of access control policies in NFV
services to provide their intended function. To meet the previous objective, the traffic
that needs to flow through the target NFV service should be authorized by the access
control policy to be enforced. In this section, we focus on the specification of the NFV
service requirements and how they can be translated to property-based access control
rules.

An NFV service S is composed of a set of VNFs {vnf1, · · · , vnfn} and a set of
forwarding graphs {fg1, · · · , fgm}. Each forwarding graph fgi is composed of a set
of forwarding paths {fp1, · · · , fpd}, each fpi can be represented using the following
couple

〈〈vnf i1, vnf i2, · · · , vnf ini
〉, fp_mi〉

where vnf i1 is the VNF that is forwarding the traffic, vnf in is the VNF to which the traffic
is forwarded, and fp_mi is the match policy that will be used to distinguish which traffic
should traverse the path.

In our model, a traffic T is used to represent each exchange between two consec-
utive VNFs in the considered forwarding path. It is modeled as the quadruplet

〈vnf_src, vnf_dst, t_context, t_content〉

where vnf_src, vnf_dst, t_context, and t_content represent respectively, the VNF that
is sending the traffic, the VNF destination of the traffic, the context and the content of
the traffic. Formally, a forwarding path fp = 〈〈vnf1, vnf2, · · · , vnfn〉, fp_m〉 is repre-
sented using n− 1 traffics Ti = 〈vnfi, vnfi+1, fpm, t_content〉, 1 ≤ i < n.

It is worth highlighting that the action involved in the security policy to be deployed
can be implemented in the content of a traffic according to the used application proto-
col. For example, the “write” action can be implemented according to the protocol that
is used. If the FTP protocol is used, a traffic containing the “post” ftp command imple-
ments the action “write” used in the security policy. Based on the previous observation,
a traffic can be modeled as an access query as defined in the following.

Definition 3.12 A traffic T = 〈vnf_src, vnf_dst, t_context, t_content〉 will be modeled
as an access query AQ = 〈Sq, Oq,Aq, Cq〉 where vnf_src equals to Sq, vnf_dst equals
to Oq, Aq are the actions that can be implemented by the traffic content t_content, and

87

Cq = t_context.

To ensure a proper functioning of the NFV service to be deployed, the traffics that
represent each forwarding path should be allowed to flow according to the latter. To
meet the previous objective, for each traffic Ti = 〈vnfi, vnfi+1, ti_context, ti_content〉
that is modeled as the access query AQi = 〈vnfi, vnfi+1, Aqi , C

q
i 〉, we define the follow-

ing policy rule:

rTi
= 〈S = vnfi, O = vnfi+1, A = Aqi , C = Cq

i , D = allow〉

The previous rule states that vnfi is allowed to perform the action Aqi (implemented by
the content of the traffic Ti) over vnfi+1 if the context Cq

i is satisfied in the considered
system. Finally, The previous rule is transformed to a DTE specification as described
in Definition 3.3.

3.3.8 DTE policy enforcement

The DTE policy obtained from the transformation of the access control policy to be
enforced and the network service to be deployed is enforced using a special VNF we
called VNF_Filter. VNF_Filter will basically analyze the traffic exchanged between the
different VNFs that compose the deployed network service to evaluate the authoriza-
tion of each access query. In order to allow this, we should modify (as described in
Definition 3.13) the forwarding graphs used to orchestrate and manage traffic through
the VNFs that compose the deployed network service to make sure that these traffics
pass certainly through the VNF_Filter.

Definition 3.13 (Forwarding graph modification) Given a network service S com-
posed of a set of forwarding graphs {fg1, · · · , fgm}. Each forwarding graph fgi is com-
posed of a set of forwarding paths {fp1, · · · , fpd}, and each fpi is represented by a
sequence sqi = 〈vnf i1, vnf i2, · · · , vnf ini

〉 of the VNF that represents the path that should
be traversed by a traffic. Each sqi = 〈vnf i1, vnf i2, · · · , vnf ini

〉 of a forwarding path fpi will
be modified as following:

sqi = 〈vnf i1,vnf_filter, vnf i2,vnf_filter, · · · ,vnf_filter, vnf ini
〉

To illustrate, let us consider a forwarding path fp composed of a sequence of three
VNFs 〈vnf1, vnf2, vnf3〉. The modification of fp according to Definition 3.13 makes

88

Figure 3.11 – Network Service forwarding graph modification

sure that the traffic managed by fp will pass through the VNF_Filter as shown in Figure
3.11.

The observation of all traffics exchanged between the VNFs that compose the con-
sidered network service gives VNF_Filter the ability to analyze those traffics and au-
thorize only the ones that are allowed by the considered DTE policy.

3.4 Implementation and experimental evaluations

This section presents the implementation details of a prototype of our proposed access
control model. The design architecture of the prototype implementing the proposed
model is illustrated in Figure 3.12. The major functional components are described in
the following.

• OpenStack Tacker [Tac17]: it is an official OpenStack project that orchestrates
and manages infrastructure resources and maintains the lifecycle management
of network services and VNF instances over the OpenStack infrastructure.

• Access control engine (ACE): it is an entity that we have developed. It is re-
sponsible for parsing (1) the NFV service descriptor we are working on, (2) the
security attributes, and (3) the access control policy to be eployed. Then it uses
the Openstack tacker service to transform the access control policy to concrete
DTE policy.

89

• OpenFlow Manager of OpenDaylight (ODL) [odl] is an open-source applica-
tion development and delivery platform. OpenFlow Manager (OFM) [ofm] is an
application that runs on top of ODL allowing to visualize OpenFlow topologies,
program network traffic flow paths and gather network traffic stats.

• OpenStack Infrastructure: Openstack is the open source cloud computing plat-
form. This Infrastructure as a Service (IaaS) is open and massively scalable.
OpenStack as a virtual infrastructure manager (VIM) layer is used to give a stan-
dardized interface for managing, monitoring and assessing all resources within
NFV infrastructure.

In addition, Figure 3.12 illustrates the different steps that are implemented in order
to deploy an access control policy on a VNF network service. In the following, more
details on each step are given:

• Onboard and deploy the network service (Steps 1 and 2): In these steps, Tacker
uses the network service descriptor provided as an input to onboard and deploy
the network service on the OpenStack infrastructure.

• Access control policy parsing and transformation (Steps 3 and 4): In these steps,
the access policy engine parses the VNF network service descriptor, the security
properties associated with the different VNFs that compose the network service
(e.g., security level, trust level, etc.), and the access control policy to be deployed.
Then, it transforms the access control policy to a DTE policy as described in
Definition 4.3.

• DTE policy refinement (Steps 5 and 6): The ACE engine queries Tacker to get
the set of resources (e.g., VMs, Connection points, networks, etc.) that are used
to deploy the different VNFs that compose the deployed service. Then, it refines
the DTE-policy at the resources level of the NFV service.

• Policy enforcement (Steps 7, 8, 9): To enforce the DTE policy, the ACE first uses
Tacker to deploy VNF_Filter which is a special VNF that implements a DTE en-
gine we developed in python [Smi]. Second, it loads the refined DTE policy to
be enforced over the deployed NFV service on VNF_Filter. Third, ACE updates
the forwarding graphs of the deployed network service (as illustrated in Figure
3.11) and uses OpenFlow Manager of ODL to make sure that all network flows

90

Figure 3.12 – Design architecture of the implementation of the proposed model and
the operational flow of an access control policy deployment

91

exchanged between the VNFs that compose the deployed network service will
transit through VNF_Filter. Once VNF_Filter receives a network traffic, it starts
by parsing the traffic to extract its source and its destination as well as the ac-
tions that are implemented by its content. Finally, it uses the DTE engine to check
whether the traffic is allowed to transit from its source to its destination i.e., the
actions that are implemented by the content of the traffic are allowed to be per-
formed by the traffic source component over the traffic destination component.

Remark 3.4.1

As we can see in the architecture that implements our approach (Figure 3.12),
the deployment of the access control policy on NFV services does not require any
modification of the NFV infrastructure. Indeed, it goes mainly through the Tacker
service that is generally used to manage the NFV services. We add the VNF-
filter which will deploy the access control policy and through the same service,
we modify the forwarding graph to make sure that all the traffic goes through the
added VNF-filter to be analyzed. Hence we positively answered to the research
question RQ-5.3.

We experimentally evaluate the performance of our approach. Our access control
engine prototype is hosted in a server running Linux with an Intel Xeon E5-2680 v4
Processor with 8 vCPU and 16 GB of RAM while our implementation of the VNF filter
including the implementation of the DTE engine is hosted in a virtual machine running
Linux having a processor with 2 vCPU and 2 GB of RAM.

In our empirical evaluation, we aim to quantify the following characteristics of our
approach. First, the time needed to transform an access control policy to a DTE speci-
fication as a function of the number of rules of the considered access control policy is
quantified. The obtained results are depicted in Figure 3.13.

They show that the transformation method we are proposing is quite efficient since
it takes around 230 ms to transform an access control policy composed of 104 rules to
a DTE specification. The time needed to transform a security policy to a DTE specifica-
tion grows linearly in function of the number of rules in the policy. Second, we quantify
the round-trip time (RTT) required for a packet as a function of the activation of our
VNF_Filter (i.e., we aim to compare the RTT when our VNF_filter is used and when it
is not) and the number of rules in the considered access control policy.

Figure 3.14 reports a linear growth of the measured RTT in function of the number

92

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of rules in the considered policy

0

0.05

0.1

0.15

0.2

0.25

ti
m

e
(s

)

Figure 3.13 – Policy transformation time

of rules in the policy to be deployed. It shows that our implementation introduces less
than 2 ms delay when a policy composed of 500 rules is considered.

3.5 Conclusion

This chapter proposes an access control as a service model to improve security man-
agement in the context of NFV services. To answer the research question RQ-5.1, we
define an expressive access control policy specification model and show formally that
it can be used to specify any access control requirement modeled in RBAC, ABAC, or
ORBAC. Then, to answer RQ-5.2, we propose a provably correct method allowing to
refine high level access control rules specified in our model to a concrete DTE speci-
fication. Finally, to answer RQ-5.3, we propose an ETSI-NFV compliant, efficient, and
scalable enforcement method, as illustrated by the different conducted experimental
evaluations.

Compared to existing models, our solution offers several advantages to VNF users.
First, it is generic in the sense that our model allows to handle the deployment of
policies expressed using most well known access control models such as RBAC, OR-
BAC, ABAC. Second, it complies with the ETSI-NFV infrastructure because it does
not require any modification of the latter for policy deployment. The conducted experi-
mentation shows that the implementation of the proposed model is quite efficient. The
deployment of a security policy composed of 500 rules introduces less than 2 ms delay

93

0 50 100 150 200 250 300 350 400 450 500

 Number of rules

2

4

6

8

10

12

14

R
T

T
 (

m
s
)

RTT (VNF_filter enabled)

RTT (VNF_filter disabled)

Figure 3.14 – RTT as a function of the number of rules in the access policy to be
deployed

for the round-trip time of a network packet.
The solution proposed in this chapter relies on transforming the high-level access

control requirements towards concrete DTE specifications. The latter are close poli-
cies where only authorizations (e.g., subject access rights, object access rights, do-
main transitions) are considered. As we have seen in this chapter, refining high-level
closed/open policies leads to quite efficient deployable DTE specification. Neverthe-
less, high-level access control policies may contain both authorization and prohibition
rules [ACCB07,GMW10], which may give place to conflicts and exceptions in the policy.
The research questions we need to answer are then the following:

• RQ-5.4: Can we use the solution we proposed in this chapter to efficiently deploy
high-level mixed and complex access control policies?

• RQ-5.5: If the previous question is answered negatively, how can we improve
our solution to deal efficiently with high-level mixed and complex access control
policies?

94

CHAPTER 4

A PRIORITY-BASED DTE FOR

EXCEPTION MANAGEMENT

Contents
4.1 Introduction . 95

4.2 Motivation . 97

4.3 Mixed policy deployment in DTE . 99

4.3.1 Mixed access control policy specification 99

4.3.2 Exception in access control policy 99

4.3.3 Exception Management in DTE 102

4.4 Priority-based DTE . 109

4.5 A new policy enforcement model . 113

4.5.1 Policy transformation towards priority-based DTE 113

4.5.2 Access Query Evaluation . 117

4.5.3 Correctness . 120

4.6 Experimental Results . 122

4.7 Conclusion . 126

4.1 Introduction

As we have seen in Chapter 2, several models are proposed to manage access within
and between NFV services. Unfortunately, the identified techniques suffer from at least
one of the following limitations: (1) It is not clear how the transformation from the high-
level policy towards a concrete deployable policy is performed (e.g., [Jae15,TCCM17]).

95

(2) The lack of generality by either requiring the modification of the NFV infrastruc-
ture to allow access control policy enforcement within NFV services (e.g., [PHMZ16,
PTH+17]), or supporting only specific access control policy model (e.g., [PHMZ16]).

To overcome the previous limitations, in Chapter 3, we propose a Domain Type En-
forcement (DTE) based formal model, allowing to handle the deployment of policies
expressed using most well known access control models such as RBAC [SCFY96],
ORBAC [KBB+03], and ABAC [PFMP04]. The model provides a formal and efficient
method for deploying access control policies within NFV services without requiring the
modification of the NFV infrastructure. However, the model proposed in the previous
chapter was mainly designed to enforce closed access control policies. The latter are
known to suffer from a lack of expressiveness i.e., when specific cases (e.g., excep-
tions) need to be excluded of general rules that should always apply [ACCB07,CCB18].
For sake of illustration, let us consider an NFV service composed of n VNFs (VNF1,
· · · , VNFn) and suppose that all VNFs except VNFi can communicate with a specific
service s. Using a mixed policy, the previous requirements can be expressed using the
following two rules:

• VNFi is not allowed to access to s.

• All VNFs are allowed to access to s.

However, the usage of closed policies to express the previous access control require-
ments will lead to a policy composed of n− 1 high-level authorization rules, which may
introduce high latency when enforced on the NFV service.

Nevertheless, despite that mixed policies are well adapted to express high-level
access requirements containing exceptions, it has been shown in [ACCB07] that mixed
high-level access control policies containing exceptions lead often to quite complex
concrete configurations. Hence, the first research question we want to address in this
chapter is as follows:

• RQ-5.4: Can we use the access control policy deployment solution proposed
in Chapter 3 to efficiently deploy high-level mixed and complex access control
policies containing exceptions?

Then, if the previous question is answered negatively, the second research question
to answer is the following:

96

• RQ-5.5: How can we improve the proposed solution to deal efficiently with high-
level mixed and complex access control policies containing exception?

To answer the research questions RQ-5.4 and RQ-5.5 , we investigate the man-
agement of access control exception in concrete-level DTE specification in Section
4.3. Then, in Section 4.4, we propose a solution to allow a clean and efficient deploy-
ment of complex access control policies containing exceptions and/or conflict rules on
NFV services. Our model allows a clean deployment in the sense that, compared to
the high level security policy1 to be deployed, it does not introduce additional low-level
rules which allows security administrator to straightforwardly understand and update
the deployed concrete level policy. Our model relies on a provably correct approach
for exception management in DTE specification. The conducted empirical evaluations
show that the priority-based DTE model we are proposing is more efficient for enforcing
big and complex policies that contain exceptions.

This chapter is organized as follows, Section 4.2 illustrates the problem addressed
in this chapter with a motivating example. Section 4.3 gives some definitions for the
mixed policy deployment in DTE. Section 4.4 describes the proposed priority-based
DTE model. Section 4.5 defines the policy transformation towards priority-based DTE
specification. Section 4.6 reports the experimental results. Finally, Section 4.7 con-
cludes the chapter.

4.2 Motivation

Many aspects of networking are continuously growing [BBS+12] and networks are rely-
ing more and more on complex NFV services involving many VNF [LDB+21]. Typically,
as the complexity of the NFV services increases, the access control policies that should
be deployed on them become more and more complex. They might introduce exception
rules i.e., rules that exclude some specific cases of general rules that should always
apply.

Regarding the access control policy models that support mixed policy i.e., policies
that contain both positive and negative authorizations, the management of exceptions
can be straightforwardly accomplished through the ordering of rules or the segmen-
tation of condition attributes [ACCB07]. Nevertheless, most promising access control

1. Security policy that is expressed using the specification model proposed in Chapter 3

97

models on NFV (e.g., [SECBC20,SECCB20]) are relying on the DTE model. However,
this latter supports only closed policies which leads to a very complex configuration
when policies containing exceptions are considered. To illustrate, let us consider the
two following rules:

• r1: Any VNF providing web server functionalities and having a low security level
(e.g., a web server suffering from vulnerabilities) should be prohibited from read-
ing and deleting records from VNF providing a highly sensitive database server.

• r2: Any VNF providing web_server functionalities should be allowed to read, write
and delete records from a VNF providing a database server.

The previous two rules ensure that any web server except those having low security
level can read, write, and delete records from any database. In order to be transformed
to a DTE specification, r1 and r2 should be rewritten into a closed policy, which give the
following three rules:

• r∗1: Any VNF providing a web server functionalities can write on VNFs providing a
database server.

• r∗2: Any VNF providing a web server functionalities except the ones that have
low security level are allowed to read and delete from VNF providing a database
server.

• r∗3: Any VNF providing a web server functionalities and having low security level
are allowed to read and delete records from any VNF providing a database server
except the ones storing highly sensitive data.

Clearly, the previous transformation increases the number of rules and introduces
new domains such as the domain containing the VNF providing a web server but does
not have low security level and the domain of the VNF providing a database server but
does not contain highly sensitive data. We formally show in Section 4.3.3 that, as the
number of exceptions increases, the number of rules and DTE domains of the DTE
specification to be deployed increases exponentially, which considerably affects the
performance of the access control model.

98

4.3 Mixed policy deployment in DTE

In this section, we define a model for exception management in DTE-based access
control policies. First, using the high-level access control policy model defined in Chap-
ter 3, we give a formalization of exceptions in access control policies. Then, in Section
4.3.3, we propose a method for transforming arbitrary high-level access control policies
containing exceptions to a DTE specification. Later, we discuss the issues related to
the proposed model.

4.3.1 Mixed access control policy specification

As defined in Defintion 3.4, an access control policy is composed of a set of access
control rules {r1, · · · , ri}. Each rule ri comprises a subject Si, an action Ai, an object
Oi, a context Ci and a decision Di.

For sake of simplicity, in this chapter, we omit the usage of the context in the access
control rule definition, then each rule ri in the security policy is represented as ri =
〈Si, Ai, Oi, Di〉. We stress that the previous modification will have no effect on the results
that are provided in the rest of this chapter.

We extend the previous definition by adding an ordering property for the rules that
compose an access control policy. That is, we suppose that the rules are evaluated
from top to bottom in the order they appear in the policy. The ordering property is
modeled through the association of a priority to each rule according to the order in
which the rule appear in the policy. This can be formalized as follows.

Definition 4.1 (Ordered-rule policy) Given a policy P = {ri|i ∈ [1, n]} where i is the
index of appearance of the rule ri in P. P is an ordered policy if for all i, j ∈ [1, n], i > j

implies that the rule ri has higher priority than rj.

The notion of priority associated to access control rules that compose an ordered-
rule mixed policy enables to express access exception as detailed in the following sec-
tion.

4.3.2 Exception in access control policy

In access control policy, exceptions are used to grant (resp. revoke) permissions (resp.
prohibitions) exceptionally. For this, the exception rule has to be defined with a higher

99

priority than the generic rule i.e., by placing the former rule before the latter in the
considered ordered-rule policy. Two types of exceptions can be distinguished:

• Full exception: A full exception authorization (resp. prohibition) occurs when the
exception rule is totally included in the generic prohibition (resp. authorization)
rule. To illustrate, let us consider the two rules r1 and r2 defined in Section 4.2.
The rule r1 is totally included in the rule r2 as illustrated in Figure 4.1.

db_servers

web_servers

low_sec_level

deny

read

write
delete

Allow

Web servers having low
security level

All web servers

Figure 4.1 – Full exception example

db_servers

web_servers

low_sec_level deny

read

write
delete

Allow

Web servers used by
commertial departement

Web servers having low
security level

Figure 4.2 – Partial exception example

• Partial exception: As illustrated in Figure 4.2, a partial exception occurs when
there is an intersection between a permission and a prohibition rule. As an illus-
tration, the rule r1 and the rule r3 form a partial exception.

100

– r3: A VNF providing web server functionalities used by the commercial de-
partment should be allowed to read, write, insert and delete records from
any VNF providing a database server used by the same department.

Together, r1 and r3 ensure that a web server used by the commercial department
except those having low security level are allowed to read, write, insert and delete
records from any database server used by the same department.

Definition 4.2 (Exception) Given an ordered-policy P = {ri|i ∈ [1, n]}, where i is the
index of appearance of the rule ri in the policy P. Two rules ri and rj of P form an
exception if and only if the following conditions hold:

(i) i < j

(ii) Si ∩ Sj 6= ∅ ∧ Oi ∩Oj 6= ∅ ∧ Ai ∩ Aj 6= ∅ ∧ Di 6= Dj

(iii) Sj * Si ∨ Aj * Ai ∨ Oj * Oi

The exception represented by two rules ri and rj is denoted by E(ri, rj).

Informally, in the previous definition, condition (i) states that the appearance index of ri
should be less than the one of rj i.e., the priority of the rule ri is higher than the one
of the rule rj. Condition (ii) states first that the intersection between the subjects, the
intersection between the objects, and the intersection between the actions of ri and
rj are not empty. Second, the decisions of the two rules ri and rj are not equal i.e.,
the couple (ri, rj) is composed of an authorization rule and a prohibition rule. Finally,
condition (iii) is used to make sure that the rule rj is not shadowed. The rule rj is
shadowed by ri if the latter matches all the access queries that match the former, such
that rj will never be activated.

We note also that, in our notation, the two arguments (binary) predicate E(·, ·) is not
commutative since the rule representing by the left side argument has higher priority
than the rule represented by the right side argument.

Proposition 4.3.1

The definition 4.2 models both full and partial exceptions.

The proof of the previous proposition is straightforward and, hence, omitted.
In the sequel, we use the term exception for both a full or a partial exception.

101

4.3.3 Exception Management in DTE

As mentioned before, DTE-based systems are relying on closed policies. Hence, in
order to deploy a mixed policy in a DTE-based system, we have to transform the mixed
policy to be deployed to a closed policy. That is, only positive authorizations should be
considered and all negative authorizations should be eliminated from the initial mixed
policy. However, since there might be exceptions in the policy to be deployed, we need
to make sure that these exceptions will be correctly enforced by the closed policy.

Exception transformation

In the following, we propose a method for transforming an exception represented by a
negative and a positive authorizations towards a set of positive authorizations. Then,
we prove its correctness.

Definition 4.3 Given an exception E(r1, r2) such that r1 = 〈S1, A1, O1, D1〉 and r2 =
〈S2, A2, O2, D2〉. The exception is transformed towards a set of positive authorizations
E∗ as following:

(i) if D1 = allow and D2 = deny, E∗ = {r1}

(ii) if D1 = deny and D2 = allow, E∗ = {r∗1, r∗2, r∗3} such that:

• r∗1 = 〈S∗1 := S1, A
∗
1 := A1, O

∗
1 := O2\O1, D

∗
1 := allow〉

• r∗2 = 〈S∗2 := S2\S1, A
∗
2 := A1, O

∗
2 := O2, D

∗
2 := allow〉

• r∗3 = 〈S∗3 := S2, A
∗
3 := A2\A1, O

∗
3 := O2, D

∗
3 := allow〉

where X\Y is used to denote the difference between the two sets X and Y .

The case (i) (resp. (ii)) defines the transformation of exceptions in which the posi-
tive (resp. negative) authorization rule has higher priority than negative (resp. positive)
authorization rule.

As we can see in Definition 4.3, the rules that compose the exception-free policy E∗

are expressed using the ’\’ operator. The following proposition gives a formal definition
of the aforementioned operator as a function of the properties that characterize the two
sets of elements (e.g., a set of subjects or a set of objects) over which the operator is
used.

102

Proposition 4.3.2

Given two sets of elements Θ1 and Θ2 characterized respectively by the two sets
of properties P1 and P2, the set of elements Θ∗ := Θ1\Θ2 is characterized by the
set of properties P∗ such that:

P∗ =
{
p ∪ not p′ | p ∈ P1 ∩ P2 and p′ ∈ P2 − P1

}

Example 4.1 To illustrate the exception transformation formalized in Definition 4.3, let
us consider the two rules r1 and r3 we used respectively in Sections 4.2 and 4.3.2 :

• r1: Any VNF providing web server functionalities and having a low security level
(e.g., a web server suffering from vulnerabilities) should be prohibited from read-
ing and deleting records from VNF providing a highly sensitive database server.

• r3: A VNF providing web server functionalities used by the commercial depart-
ment should be allowed to read, write, insert and delete records from any VNF
providing a database server used by the same department.

According to our policy specification model (Definition 3.4), the previous two rules are
formalized as follows:

• r1 = 〈S1 := {func : web_server, sec_level : low}, A1 := {read, delete}, O1 :=
{func : database_server, sec_level : high}, D1 := deny〉

• r3 = 〈S3 := {func : web_server, used_by : commercial_dep}, A3 := {read, write,
insert, delete}, O3 := {func : database_server, used_by : commercial_dep}, D3 :=
allow〉

According to the exception transformation method formalized in Definition 4.3, the pre-
vious two rules will be transformed to the following authorizations that are depicted in
Figure 4.1.

• r∗1 = 〈S∗1 := {func : web_server, sec_level : low}, A∗1 := {read, delete}, O∗1 :=
{func : database_server, used_by : commercial_dep,not sec_level : high}, D∗1 :=
allow〉

103

• r∗2 = 〈S∗2 := {func : web_server, used_by : commercial_dep,not sec_level : low},
A∗2 := {read, delete}, O∗2 := {func : database_server, used_by : commercial_dep},
D∗2 := allow〉

• r∗3 = 〈S∗3 := {func : web_server, used_by_commercial_dep}, A∗3 = {write, insert},
O∗3 := {func : database_server, used_by_commercial_dep}, D∗3 := allow〉

allow

allow

Web servers having low
security level

allow

Web servers used by
commercial department

Database servers having
high security level

Database servers used by
commercial department

Web servers used by
commercial department

and not having low security
level

Database servers having
high security level and are
not used by commercial

department

Figure 4.3 – Exception transformation example

To prove the correctness of the transformation defined in the previous definition, we
first introduce the concept of access query in Definition 4.4 and define the correctness
of exception transformation in Definition 4.5.

Definition 4.4 (Access Query) An access query AQ is represented by the triplet
〈S,A,O〉 where S denotes the subject performing the query, A is the set of requested
actions, and O denotes the object over which the query is performed.

Definition 4.5 (Exception transformation correctness) Given an exception E(r1, r2)
and its corresponding transformation E∗ as described in Definition 4.3. The transforma-
tion is correct if and only if, for any access query AQ, the following conditions hold:

104

• If AQ is allowed by E(r1, r2), then it is allowed by E∗.

• If AQ is denied by E(r1, r2), then it is denied by E∗ .

Theorem 4.3.1

The exception transformation method proposed in Definition 4.3 is correct.

Proof: The proof is by contradiction. We will suppose that, in both cases (i) and (ii) of
Definition 4, there is an access query AQ = 〈S∗, A∗, O∗〉 that is (a) allowed by 〈r1, r2〉
and denied by E∗, and (b) denied by 〈r1, r2〉 and allowed by E∗. Then we will show that
in both cases we get a contradiction.

Case 1: if D1 = allow and D2 = deny

(a) AQ is allowed by 〈r1, r2〉 implies that

S∗ ⊆ S1 ∧ A∗ ⊆ A1 ∧O∗ * O1 (4.1)

while AQ is denied by E∗ implies

S∗ * S1 ∨ A∗ * A1 ∨O∗ (4.2)

Or, S∗ ⊆ S1 ∧A∗ ⊆ A1 ∧O∗ * O1 contradicts S∗ * S1 ∨A∗ * A1 ∨O∗ * O1 which
means that Formula (4.1) contradicts Formula (4.2). Therefore the case (a) gives
a contradiction.

(b) AQ is denied by 〈r1, r2〉 implies that

(S∗ * S1 ∨ A∗ * A1 ∨O∗ * O1) ∧ (S∗ ⊆ S2 ∧ A∗ ⊆ A2 ∧O∗ ⊆ O2) (4.3)

while AQ is allowed by E∗ implies

S∗ ⊆ S1 ∧ A∗ ⊆ A1 ∧O∗ * O1 (4.4)

Formula (4.3) contradicts Formula (4.4) which prove that condition (i) of Definition
4 holds.

105

Case 2: if D1 = deny and D2 = allow

(a) AQ is allowed by 〈r1, r2〉 implies that

(S∗ * S1 ∨ A∗ * A1 ∨O∗ * O1) ∧ (S∗ ⊆ S2 ∧ A∗ ⊆ A2 ∧O∗ ⊆ O2) (4.5)

while AQ is denied by E∗ implies

(S∗ * S1 ∨ A∗ * A1 ∨O∗ * O2\O1) ∧ (S∗ * S2\S1 ∨ A∗ * A1 ∨O∗ * O2)∧

(S∗ * S2 ∨ A∗ * A2\A1 ∨O∗ * O2)
(4.6)

In Formula (4.6), any conjunctive clause including O∗ * O2, or S∗ * S2 will be
in contradiction with Formula (4.5). In addition, any conjunctive clause containing
A∗ * A2\A1 ∧ A∗ * A1, S∗ * S2\S1 ∧ S∗ * S1, or O∗ * O2\O1 ∧ O∗ * O1 is
in contradiction respectively with the clauses A∗ ⊆ A2, S∗ ⊆ S2, or O∗ ⊆ O2 of
Formula (4.5). Then, it remains only to show that A∗ * A2\A1∧S∗ * S2\S1∧O∗ *
O2\O1 is in contradiction with Formula (4.5). Since, A∗ * A1∧A∗ ⊆ A2 contradicts
A∗ * A2\A1, S∗ * S1 ∧ S∗ ⊆ S2 contradicts S∗ * S2\S1, and O∗ * O1 ∧ O∗ ⊆ O2

contradicts O∗ * O2\O1. Therefore the case (a) gives a contradiction.

(b) AQ is denied by 〈r1, r2〉 implies that

S∗ ⊆ S1 ∧ A∗ ⊆ A1 ∧O∗ ⊆ O1 (4.7)

while AQ is allowed by E∗ implies

(S∗ ⊆ S1 ∧ A∗ ⊆ A1 ∧O∗ ⊆ O2\O1) ∨ (S∗ ⊆ S2\S1 ∧ A∗ ⊆ A1 ∧O∗ ⊆ O2)∨

(S∗ ⊆ S2 ∧ A∗ ⊆ A2\A1 ∧O∗ ⊆ O2)
(4.8)

Since S∗ ⊆ S2\S1 contradicts S∗ ⊆ S1, A∗ ⊆ A2\A1 contradicts A∗ ⊆ A1, and
O∗ ⊆ O2\O1 contradicts O∗ ⊆ O1, then Formula 4.7 contradicts Formula 4.8
which prove that condition (ii) of Definition 4 holds.

�

Now that we have proved the correctness of the exception transformation method
we propose in Definition 4.3, we will focus on investigating its effectiveness by evalu-
ating the complexity of the low level exception-free concrete policy. To meet our objec-
tive, in the rest of this section, we propose an algorithm that implements our exception

106

transformation method. Then, we give a formal quantification of the complexity of the
resulting concrete level DTE specification to evaluate the effectiveness of our exception
transformation method.

The following algorithm presents a method allowing to transform a mixed policy
towards a closed policy. It takes as an input the initial mixed policy to be deployed
and produces a set of rules representing the closed policy that can be deployed in the
DTE-system.

Input: P /* the policy to be deployed */

1 closed_policy = ∅
2 exceptions = get_exception(P) /* getting the exceptions in P */
3 foreach exception ∈ exceptions do
4 E∗ = transform(exception) /* Definition 4.3 */
5 new_exception = get_exception(E∗, P)
6 exceptions = exceptions ∪ new_exception
7 closed_policy = closed_policy ∪ E∗

8 end
9 foreach rule ∈ P do

10 if rule /∈ exceptions and rule is ”allow” then
11 closed_policy = closed_policy ∪ rule

12 end

13 end
14 Return closed_policy

Algorithm 2: Policy transformation algorithm
The first loop (lines 3 to 8) transforms all the exceptions in the initial policy as de-

scribed in Definition 4.3. The function get_exception is used to identify all the excep-
tions in the input policy as described in Definition 4.2. Then, the transform function
transforms each exception as described in Definition 4.3. Finally, the get_exception
function is used to identify the exceptions that may occurs between the rules in E∗

and the other rules in the input policy, which will be added to the set of exceptions to
transform.

In the second loop (lines 9 to 13), we add to the closed policy all the positive autho-
rization rules that have not been part of an exception.

The number of rules in the closed policy increases exponentially on the number of
exceptions in the policy to be deployed as stated by the following theorem.

107

Theorem 4.3.2

Let us consider an ordered policy P = {r1, r2, · · · , rn}. Let us denote by Ωi the
set of rules in P that represent an exception of ri (i.e., ∀rj ∈ Ωi : E(rj, ri)), and by
P∗ the closed form of P. In the worst case:

‖P∗‖ =
n∑
i=1

Θi with Θi =

 3‖Ωi‖ if Di = allow

0 if Di = deny

where ‖x‖ and Di denote respectively the cardinality of x and the decision of ri.

Proof: The proof is by induction. Let us denote by P∗i the closed form of Pi =
{r1, · · · , ri}, the policy composed of the i-st rules of P.

n = 1n = 1n = 1: First, let us prove that the theorem holds for n = 1. In this case, the policy
P = {r1}.

• D1 = deny: In this case P∗ = ∅ since the rule r1 will be removed when P is
transformed to a closed policy. According to the theorem, ‖P∗‖ = 0 which is
correct.

• D1 = allow: In this case the closed form P∗ = {r1}. In fact, since the rule r1 does
not have any exception, then Ω1 = ∅. Therefore, ‖P∗‖ = 3‖Ω1‖ = 30 = 1, which is
correct.

n = k + 1n = k + 1n = k + 1: Let us now suppose that the theorem holds for n = k and prove that it
holds for n = k + 1. Two cases are to be considered:

• Dk+1 = deny: In this case, the rule rk+1 will not change anything on the closed
form of the policy P. This is mainly due to the fact that the transformation of an
exception of the form E(∗, rk+1) does not introduce any new rule to the policy (see
case (i) of Definition 4). Then, Theorem 2 is correct for this case since, according
to the latter ‖P∗‖ = ‖P∗k‖ + 0 = ‖P∗k‖.

• Dk+1 = allow: Since rk+1 has ‖Ωk+1‖ exceptions. Let us suppose that Ωk+1 =
{Ek+1

1 , · · · , Ek+1
m }. According to Definition 4, in the worst case, Ek+1

m introduces

108

three new rules to the policy. And, in the worst case, each of these three added
rules will form a new exception with the denial rules of Ek+1

1 · · · , Ek+1
m−1. Then, in

the worst case, we end up with 3‖Ωk+1‖ new rules when rk+1 is added to Pk. As a
result, ‖P∗‖ = ‖P∗k‖+ 3‖Ωk+1‖ = ∑k+1

i=1 3‖Ωi‖, which conclude the proof.

�

Remark 4.3.1

The approach we describe in this section allows to transform an arbitrary mixed
policy towards a closed policy that can be straightforwardly deployed in a DTE-
based access control system by considering each subject (resp. object) of a rule
as DTE domain (resp. DTE type). Hence, as we show in Theorem 4.3.2 that the
number of rules in the exception-free closed policy grows exponentially in the
number of exceptions, then the number of DTE types and domains grow also ex-
ponentially in the number of exceptions in the policy to be deployed. This makes
it difficult for security administrators to read, understand, update and maintain
the deployed DTE specifications, which answers negatively the research ques-
tion RQ-5.4. The previous results are experimentally validated by the conducted
evaluations (See Section 4.6).

4.4 Priority-based DTE

To overcome the complexity problem shown in the previous section, we extend our
policy enforcement model by proposing a priority-based DTE model that we describe
in this section.

In our priority-based DTE model, we extend the concept of DTE domain transition
by adding two key elements: a transition condition C and a priority P . The classic DTE
transition and its extension are defined in the following definitions.

Definition 4.6 (DTE Transition) A DTE transition T is represented using the triplet
〈Sd, E,Dd〉 where Sd andDd represent respectively the source and destination domains
of the DTE transition, and E represents one or many entry points that can be used to
transit an access query from Sd to Dd.

109

Definition 4.7 (Transition Condition) A domain transition condition C is defined as
an association between a set of actions A and a DTE type Ot. C is denoted in our
model as Ac → Ot. We say that C is satisfied by an access query AQ = 〈S,A,O〉 if and
only if the following conditions hold:

• A ⊆ Ac

• The DTE type Ot is associated to O

Definition 4.8 (Extended DTE Transition) The extended DTE transition is represented
by the quintuplets 〈Sd, C, E, P,Dd〉 where Sd, E and Dd are the same elements used in
the Definition 4.6 and C and P are respectively the transition condition and priority of
the extended transition applicability.

Semantically, the extended DTE transition states that if an access query AQ is created
in the source domain Sd (i.e., the subject performing the access belongs to Sd) and
satisfies the condition C, then AQ can use any entrypoint in E to transit from Sd to the
destination domain Dd. We formalize the previous statements as follows.

Remark 4.4.1

In our model, we suppose that a different priority value is associated to each
transition, i.e., no more than one transition can have the same priority.

Definition 4.9 (Possible Transition) Given a transition T = 〈Sd, C, E, P,Dd〉. T is a
possible transition for an access query AQ = 〈S,A,O〉 if and only if the following con-
ditions hold:

• The subject S of AQ belongs to Sd or AQ has transited to Sd

• AQ satisfies C (Defintion 4.7)

Example 4.2 To illustrate the concept of possible transition, let’s assume that we have
two access queries AQ1 and AQ2 such that:

• AQ1 = 〈web_server_1, read, db_server_1〉 in which the web server 1 wants to read
from the database server 1

• AQ2 = 〈web_server_2_high, read, db_server_2〉 in which the web server 2 having
high security level wants to read from the database server 2.

110

Let us suppose that the considered DTE specification contains:

• web_server_d: a domain containing VNFs providing a web server functionalities,

• web_server_h_d: a domain containing VNFs providing a web server functionali-
ties and having high security level,

• db_server_t: a type associated to VNFs providing database functionalities

Hence, as illustrated in Figure 4.4, web_server_1 belongs to web_server_d, web_server_2-
_high belongs to both web_server_d and web_server_h_d, and db_server belongs to
db_server_d and is associated to the DTE type db_server_t.

web_server_h_d

web_server_d

db_server_t

Associated to

database server
2

database server
1

Associated to

Belongs toweb server 1

db_server_d

r->db_server_t

web server 2

T1 T2

Permission(s)

T2 is a possible transition
only for

Belongs to

T1 is a possible transition
for both and

Figure 4.4 – Possible DTE transition for considered access queries in Example 4.2

Let us now suppose that we have the following two extended DTE transitions:

111

• T1 = 〈web_server_d, db_server_t : read, /bin/db_reader, p1, db_server_d〉 that says
that the transition of an access query from the domain web_server_d to the do-
main db_server_d is possible if: (1) the access query is running in web_server_d,
(2) the access query aims to read from a resource in db_server_t, and (3) the
access query executes the entrypoint ”/bin/db_reader”.

• T2 = 〈web_server_h_d, db_server_t : read, /bin/db_reader, p2, db_server_d〉 that
says that the transition of the access query from the domain web_server_h_d
to the domain db_server_d is possible if: (1) the access query is running in the
domain web_server_h_d, (2) the access query aims to read from a resource in
db_server_t, and (3) the access query executes the entrypoint ”/bin/db_reader”.

According to the Definition 4.9, the two transitions T1 and T2 are possible for the
access query AQ1 since web_server1 belongs to both domains web_server_d and
web_server_h_d and AQ1 satisfies all the three requirements that are defined in Defi-
nition 4.9 while only the transition T1 is possible for the access query AQ2.

As we can remark in the previous example, an access query can have several pos-
sible transitions. Hence, to help the system choosing the right (according to a specific
property) transition to choose, we use the priority attribute P that we introduced in the
extended DTE transition definition (Definition 4.8) as follows.

Definition 4.10 (Prioritized Transition) Given an access query AQ and a set of AQ’s
possible transitions T1, · · · , Tn. The transition Tj (j ∈ [1, n]) is the prioritized transition
for AQ if and only if:

∀(i ∈ [1, n]) and i 6= j : Pj ≥ Pi

where Pi is the priority associated to Ti.

Informally, the previous definition states that the prioritized transition for AQ is the pos-
sible transition that has the highest priority.

At this level, we have all the ingredients to define how mixed and high level access
control policies containing exception(s) can be transformed to a concrete and effective
(i.e., low complexity specification and enforcement) priority-based DTE specification.

112

4.5 A new policy enforcement model

In this section, we first propose a method for transforming a mixed access control
policy towards a priority-based DTE specification. Then, we show how access queries
are evaluated by the concrete level priority-based DTE specification. Afterwards, we
prove the correctness of transformation and enforcement methods.

4.5.1 Policy transformation towards priority-based DTE

Given a high-level mixed policy P = {r1, · · · , rn}. P is transformed to a priority-based
DTE specification by performing the following steps, for each rule ri = 〈Si, Ai, Oi, Di〉 ∈
P, where i is the index of ri in P.

• step 1: Define a domain Si_d which will contain all entities in the system that
have the same properties used to characterize the subject Si.

• step 2: Define a domain Oi_d which will contain all entities in the system that
have the same properties used to characterize the object Oi.

• step 3: Define a type Oi_t which will be associated with objects that share the
same properties with the access query.

• step 4: Define a transition Ti that transits access queries from Si_d to Oi_d. Then,
define the transition condition Ci associated to Ti as Ci : Ai → Oi_t.

• step 5: If ri is an authorization query (i.e., the decision Di = allow), then give to
access queries that are in Oi_d and coming from Si_d the possibility to execute
the actions Ai in Oi_t. If ri is a prohibition query (i.e., the decision Di = denied),
then, there is nothing to do in this step.

• step 6: Set the priority Pi of the transition Ti to n− i.

113

The authorization are only added
if it is an authorization rule

DTE Domain

Transition
Condition

DTE
transitionDTE Type

Transition
Priority

DTE
permission

Step 5 Step 3Step 2
Step 4

Step 6

Step 1

Figure 4.5 – Rule transformation.

Example 4.3 To illustrate the previous transformation, let’s take the following access
control policy P that is composed of the following rules:

• r1 = 〈mail_server, {read, write}, ftp_server, allow〉which authorizes a mail server
to read and write information from an ftp server.

• r2 = 〈web_server_low, {write}, ftp_server, deny〉 which denies any web server
having low security level to write information on ftp server.

• r3 = 〈web_server_low, {read}, db_server, deny〉 which denies any web server hav-
ing low security level to read from a database server.

• r4 = 〈web_server, {read, write}, db_server, allow〉 which allows any web server to
read and write on any database server.

The transformation of the policy P towards a priority-based DTE specification is
illustrated in Figure 4.6. The parts colored in green, yellow, blue and black represent
the transformation of the rule r1, r2, r3 and r4 respectively.

Rule r1r1r1: To transform the rule r1, first, we create the DTE domain mail_server_d

which will contain all VNF providing mail server functionalities. Then, we create a sec-
ond domain ftp_server_d which will contain all VNF providing ftp server functionali-
ties. Afterwards, we create the type ftp_server_t which will be associated to all VNF

114

providing ftp server functionalities. Then, we create the domain transition T1 allowing to
transit access queries from mail_server_d to ftp_server_d and define the transition
condition C1 to be rw → ftp_server_t. Next, we define a DTE authorization allowing
any access query in ftp_server_d that transits from mail_server_d to perform the
read and write operation overs any object associated to ftp_server_t. Finally, we
assign to 3(=4-1) the priority P1 of T1.

Rule r2r2r2 : To transform the rule r2, first, we create the DTE domain web_server_low_d

which will contain all VNF providing web server functionalities but having a low security
level. Then, as r1 and r2 are defined over the same object ftp_server, we use the
domain ftp_server_d and the type ftp_server_t that have been created during the
transformation of r1. Then, we create the domain transition T2 allowing to transit access
queries from web_server_low_d to ftp_server_d and define the transition condition
C2 to be w → ftp_server_t. However, r2 is a prohibition query, so we do not give any
permission for access queries transiting from web_server_low_d to ftp_server_d on
the objects associated with ftp_server_t. Finally, we assign to 2(=4-2) the priority P2

of T2.

Rule r3r3r3 : The rule r3 is to be transformed similarly to r2. First, since r2 and r3 are
defined over the same subject web_server_low, then we use the same DTE domain
web_server_low_d defined during the transformation of r2. Then, we create the DTE
domain db_server_d which will contain all VNF providing database server functional-
ities. Afterwards, we create the type db_server_t which will be associated to all VNF
providing ftp server functionalities. Then, we create the domain transition T3 allowing
to transit access queries from web_server_low_d to db_server_d and define the tran-
sition condition C3 to be r → db_server_t. Then, similarly to r2, since r3 is a prohibition
query, no permission is given for access queries transiting from web_server_low_d to
db_server_d on the objects associated with db_server_t. Finally, we assign to 1(=4-3)
the priority P3 of T3.

Rule r4r4r4 : The rule r4 is to be transformed similarly to r1. First, we create the DTE
domain web_server_d which will contain all VNF providing web server functionali-
ties. Then, as r4 and r3 are defined over the same object db_server, we use the
domain db_server_d and the type db_server_t that have been created during the

115

transformation of r3. Then, we create the domain transition T4 allowing to transit ac-
cess queries from web_server_d to db_server_d and define the transition condition
C4 to be rw → db_server_t. Next, we define a DTE authorization allowing any access
query in db_server_d that transits from web_server_d to perform the read and write

operation overs any object associated to db_server_t. Finally, we assign to 0(=4-4)
the priority P4 of T4.

Figure 4.6 – Graphical representation of the DTE policy described in Example 4.3

Once we have defined how high-level mixed policies are transformed to priority-
based DTE specification, in the next section, we show how access queries are evalu-
ated when the concrete priority-based DTE specification is enforced.

116

4.5.2 Access Query Evaluation

In this section, we focus on defining how access query evaluation is performed when
a priority-based DTE specification is enforced. To meet the previous objective, we first
define the strategy we are considering for transiting access query between different
DTE domains.

Definition 4.11 (Transition Rule) Given an access query AQ = 〈S,A,O〉 that belongs
to the DTE domain D and a set of possible DTE transitions T1, · · · , Tn. If the access
query is authorized in D i.e., the entities in D are not allowed to perform the actions A
on O, then AQ performs the prioritized transition (Definition 4.10).

Informally, the previous definition states that if an access query cannot be authorized
in its current DTE domain, then, it performs the DTE transition with the highest priority.

The pseudo-code in Algorithm 3 presents the procedure we use for access query
evaluation when a priority-based DTE specification is enforced in the target system.

Input: Ppdte /* the enforced priority-based DTE specification*/
AQ = 〈S,A,O〉 /* the access query to be evaluated */

1 current_domain = get_domain(AQ,Ppdte) /* getting the DTE domain of AQ */
2 while is_authorized(AQ, current_domain,Ppdte) == false do
3 prioritized_transition =

get_prioritized_transition(AQ,current_domain,Ppdte)
4 if prioritized_transition == null then
5 return fasle /* access query is not authorized */

6 end
7 current_domain = perform_transition(AQ,prioritized_transition)

8 end
9 Return true

Algorithm 3: Access query evaluation under a priority-based DTE policy en-
forcement.

In Algorithm 3, using the function get_domain (line 1), we start by getting the DTE
domain associated with the access query. Note that, an access query belongs initially
to the DTE domain associated with the subject performing the access query. Then, as
long as the current domain of the access query does not allow the required action A on
the object O (i.e., the access query is not authorized), we get the prioritized transition

117

(line 3) for the access query and perform it (line 7). If no possible transition is available
for the access query (line 4), then the latter will be prohibited. Otherwise, the access
query will be accepted as it was able to transit to a DTE domain on which the action(s)
required by the access query are allowed to be performed over the target object.

Example 4.4 To illustrate the access query evaluation when a priority-based DTE
specification is enforced, let us consider the same priority-based DTE policy used in
Example 4.3, and let us suppose that we want to evaluate the following access queries:

• AQ1 = 〈mail_server1, read, ftp_server1〉 in which the mail server 1 wants to read
from the ftp server 1.

• AQ2 = 〈web_server2_low, write, ftp_server1〉 in which the web server 2 having
low security level wants to write on the ftp server 1.

• AQ3 = 〈web_server2_low, read, db_server1〉 in which the web server 2 having low
security level wants to read from the database server 1.

• AQ4 = 〈web_server2_low, write, db_server1〉 in which the web server 2 having
low security level wants to write on the database server 1.

When evaluating the access query AQ1, the process executing AQ1 will be initially in
the domain mail_server_d since the subject of AQ1 (mail_server1) belongs to the do-
main mail_server_d. The latter has only one possible transition towards ftp_server_d
which is allowed to read from objects in ftp_server_t including ftp_server_1. As a
result AQ1 will be authorized.

When evaluating the access query AQ2, the process executing AQ2 will be initially
in the domain web_server_low_d since the subject of AQ2 (web_server2_low) belongs
to the domain web_server_low_d and it belongs also to the domain web_server_d.
Based on the Figure 4.6, the domain web_server_low_d have two possible transi-
tions. However, only one transition is possible for AQ2 since only the condition "w− >

ftp_service_t" is satisfied. So following this transition, the process will transit to the
domain ftp_service_d and we know that all the access queries coming from the do-
main web_server_low_d do not have any possible action on the type ftp_service_t. As
a result AQ2 is denied.

To evaluateAQ3, since the process is initially in the domain web_server_low_d and it
belongs also to the domain web_server_d, so it will have two possible transitions (From

118

web_server_low_d and web_server_d), so the two conditions "r− > db_service_t" and
"rw− > db_service_t" are satisfied. Here we will apply the concept of priority defined
in Definition 4.10. As result, the prioritized transition is colored in blue in which the
process will transit from the domain web_server_low_d to the domain db_server_d.
However, the access queries coming from web_server_low_d do not have any possible
action on the type db_service_t. As result AQ3 is denied

When evaluating the access query AQ4, the process executing AQ4 belongs to both
domains web_server_low_d and web_server_d. On the other hand, it will have only one
possible transition because only the condition "rw− > db_service_t" is satisfied. So
it will transit to the domain db_server_d. However, the access queries coming from
web_server_d have the right to read and write on the type db_service_t. As a result
AQ4 is authorized.

Figure 4.7 – Access Queries evaluation

119

Remark 4.5.1

In contrast to the exception management approach defined in Section 4.3.3, we
can remark that the transformation method defined in this section does not in-
crease the number of authorization rules in the policy to be enforced, which al-
lows to have a constant number of DTE domains and types regardless how many
exceptions are in the high-level policy to be deployed. Moreover, the complexity
of the evaluation of access queries depends only on the number of rules in the
high-level policies and is constant on the number of exceptions.

4.5.3 Correctness

In this section, we focus in showing the correctness of the policy transformation and
query evaluation methods we propose in Sections 4.5.1 and 4.5.2 respectively.

Informally, we say that our policy enforcement (i.e., the transformation and query
evaluation methods) is correct if any access query authorized (resp. prohibited) by the
high-level access control policy is also authorized (resp. prohibited) by the equivalent
priority-based DTE specification.

Definition 4.12 (Policy Enforcement Correctness) Given a high-level access con-
trol policy P and its corresponding priority-based DTE specification Ppdte. Our enforce-
ment method is correct if and only if for any access query AQ: if AQ is allowed (resp.
denied) by P, then it is allowed (resp. denied) by Ppdte.

Theorem 4.5.1

The access control policy enforcement method proposed in Sections 4.5.1 and
4.5.2 is correct.

Proof: Proof is by contradiction. Let us denote by AQ = 〈S,A,O〉, P, Ppdte, and EP
respectively the access query to be evaluated, the high-level access control policy to be
enforced, its priority-based DTE specification, and the set of exceptions in P. According
to Definition 4.12, two cases should be considered:

120

Case 1: AQ is authorized by P but not authorized by Ppdte.
Let us first focus on the evaluation of AQ by Pddte. As we suppose that AQ is pro-

hibited by Pddte, this means that there is no DTE domain in Pddte to which AQ belongs or
can transit that allows performing the action(s) A on O.

Now, let us suppose that there exists a set of m(m ≤ n) rulesR ⊆ P such that each
rule r ∈ R matches AQ:

∀ri ∈ R : S ∈ Si ∧O ∈ Oi ∧ A ∈ Ai

Hence, AQ is authorized by P means that the highest priority rule r∗ (i.e., the rule
having the lowest index in the ordered-rule policy P) in R is an authorization rule.

Then, according to our policy transformation method defined in Section 4.5.1, the
transformation of each ri = 〈Si, Ai, Oi, Di〉 ∈ R (depicted in Figure 4.5) creates a
DTE transition allowing to transit access queries from the domain of the subject to the
domain of the object considered by the rule. Then associate a priority Pi = n− i, where
i is the index of ri in P.

Now, as we have supposed that there exists an authorization rule r∗ ∈ R such that
AQ matches r∗ and that r∗ has the highest priority in R. Then, if we denote by P ∗ the
priority associated to the DTE transition created during r∗ transformation, we have:

∀ri ∈ R\{r∗} : P ∗ > Pi (4.9)

Hence, as we suppose that AQ matches all the rules in R, then AQ initially belongs to

⋂
ri∈R

Si_d

the intersection of the DTE domains associated to all the subjects of the rules in R. In
addition, AQ will have m possible DTE transitions {T1, · · · , Tm}.

Now according to our query evaluation method, AQ will transit following the DTE
transition of the rule having the highest priority r∗. Finally, as r∗ is an authorization
query that matches AQ, then AQ will be authorized, which contradicts our hypothesis
for this case.

Case 2: AQ is not authorized by P but authorized by Ppdte. Similarly to the case 1, let
us start by supposing that there exists a set of m(m ≤ n) rules R ⊆ P such that each

121

rule r ∈ R matches AQ:

∀ri ∈ R : S ∈ Si ∧O ∈ Oi ∧ A ∈ Ai

As we suppose that AQ is prohibited by P, this means that the highest priority rule
r∗ in R is a prohibition rule. Then, in PpDTE, the priority P ∗ associated with r∗ satisfies
Formula 4.10.

∀ri ∈ R\{r∗} : P ∗ > Pi

Similarly to the case 1, and according to the query evaluation strategy, AQ will transit
following the DTE transition T ∗ having the highest DTE priority. However, as r∗ is a
prohibition rule, AQ will be prohibited, which contradicts the hypothesis considered in
this case. �

4.6 Experimental Results

In this section, we experimentally evaluate the performance of our priority-based DTE
model for deploying security policies on NFV services. For all conducted experiments,
we use a (pseudo) randomly generated high-level policies that will be deployed on
NFV services. The evaluations are conducted on a server running Linux with an Intel
Xeon E5-2680 v4 Processor with 16 vCPU and 32 GB of RAM on which we install
our openstack-based access control policy enforcement framework we proposed in the
previous chapter (Section 3.4). We extend our framework by adding the transformation
of high-level mixed access control policies towards priority-based DTE specification
and the enforcement of the latter. Our objective is to compare the performance of our
proposed model with the classic DTE-based access control model for NFV services
proposed in Chapter 3 regarding the following characteristics:

• The number of required domains and types in the DTE specification as a function
of the number of exceptions in the high-level policy to be deployed.

• The number of rules in the DTE specification as a function of the number of
exceptions in the policy to be deployed.

• The time required for transforming the policy to be deployed towards a deployable
DTE specification.

122

• The time needed to evaluate an access query as a number of exceptions in en-
forced policy.

• The impact on network performance.

In the sequel, we use the term classic DTE based solution to refer to the access control
solution proposed in Chapter 3.

Figure 4.8 compares the growth of the number of DTE domains and types for both
classic and priority-based DTE as a function of the number of exceptions in the policy to
be deployed. When the latter grows by a factor of 6 (from 10 to 60), the number of DTE
domains and types grow by a factor of 2 for the priority-based DTE while growing by a
factor of ≈ 192 in the case of classic DTE. Figure 4.9 compares the number of rules
required by both the classic DTE and priority-based DTE specifications as a function of
the number of rules in the policy to be deployed. When the latter increases from 10 to
60, the number of rules in the priority-based DTE increases by the same factor (factor
of 6) while the number of rules required by the classic DTE grows by a factor of 230.

10 20 30 40 50 60
Number of exceptions

0

2000

4000

6000

8000

10000
Number of DTE types (classic DTE)
Number of DTE domains (classic DTE)
Number of DTE types (Priority-based DTE)
Number of DTE domains (Priority-based DTE)

Figure 4.8 – The comparison of the growth of the number of required DTE domains
and types in classic and priority-based DTE as a function of the number of exception
in the policy.

Figure 4.10 compares the time required for transforming a high-level policy towards
a classic DTE and priority-based DTE specifications. In the case of priority-based DTE,
the time of transformation is almost constant while growing by a factor of 105 in the case
of classic DTE as the number of exceptions increases by only a factor of 10. This is
mainly due to the transformation of all exceptions of the policy (lines 3 to 8 of Algorithm

123

2). In fact, when an exception is transformed to a set of positive authorizations, these
latter may introduce several new exceptions that need to be resolved.

10 20 30 40 50 60
Number of rules in the high-level policy

0

5000

10000

15000

20000

25000

30000

35000 Number of rules in the classic DTE specification
Number of rules in the priority-based DTE specification

Figure 4.9 – The comparison of the number of rules in the classic DTE specification
and in the priority-based DTE specification as a function of the number of rules in the
policy to be deployed.

10 20 30 40 50
Number of exceptions

0

5

10

15

20

25

30

Ti
m

e
in

 se
co

nd
s

Policy transformation towards classic DTE specification
Policy transformation towards priority-based DTE specification

Figure 4.10 – The comparison of the time required to transform the policy towards
classic DTE specification and priority-based DTE specification as a function of the
number of exceptions in the high-level policy to be deployed.

124

10 20 30 40 50 60
Number of exceptions

0.0

0.2

0.4

0.6

0.8

Ti
m

e
in

 se
co

nd
s

Priority-based DTE specification
Classic DTE specification

Figure 4.11 – The comparison of the access query evaluation time between the classic
DTE specification and the priority-based DTE specification as a function of the number
of exceptions in the policy to be deployed.

Figure 4.11 compares the time needed by both classic DTE-based model and our
priority-based DTE model for the evaluation of an access query. Compared to the
model proposed in Chapter 3, our priority-based DTE model drastically reduces the
time needed for evaluating an access query as the number of exceptions in the policy
to be deployed increases. This is due to the fact that, in the classic DTE specification,
the number of domains and types grows exponentially relative to the number of ex-
ceptions. As the evaluation of an access query requires matching the domains (resp.
types) with the subject (resp. object) of access query. Therefore, the time required to
evaluate an access query grows exponentially according to the number of exceptions.

Finally, we compare the impact in terms of network performance on the target NFV
service. Figure 4.12a (resp. 4.12b) illustrates the growth of the round-trip time (RTT) of
a network request when a classic DTE (resp. our priority-based DTE) model is used as
a function of the number of exceptions in the deployed policy. When the classic DTE
model is used, the RTT increases by a factor of 210 (from 3,84 to 801 milliseconds)
while increasing by only a factor of 4 (from 3,8 to 14.2 milliseconds) when our priority-
based DTE model is used. This is mainly due to the time required to evaluate access
queries with both solutions.

125

5 10 15 20 30 40 50 60
Number of exceptions

0

100

200

300

400

500

600

700

800

Ti
m

e
in

 m
illi

se
co

nd
s

(a)

5 10 15 20 30 40 50 60
Number of exceptions

0

2

4

6

8

10

12

14

Ti
m

e
in

 m
illi

se
co

nd
s

Policy enforced
Policy unenforced

(b)

Figure 4.12 – The comparison of the growth of the round-trip time of a network request
when (a) a classic DTE policy model is used and (b) a priority-based DTE policy model
is used, as a function of the number of exceptions in the enforced policy.

Remark 4.6.1

As illustrated by the conducted evaluations, the priority-based DTE model pro-
posed in Section 4.4 of this chapter brings two main advantages compared to
existing solutions. First, it does not require to create additional DTE types and
domains. That is, each rule in the high-level policy will be refined using two DTE
domains and a DTE type (see Section 4.5.1) which drastically reduces the com-
plexity of reading, understanding, and updating the deployed DTE specifications.
Second, the proposed solution improves drastically the efficiency of the enforce-
ment of high-level mixed access control policies compared to existing solutions.
Hence, with the previous contributions, we answer the research question RQ-5.5.

4.7 Conclusion

In this chapter, we investigate high-level mixed access control policies enforcement
using DTE-based concrete level specification. In particular, we propose in Section 4.3
a first extension of the DTE-based access control enforcement solution proposed in
Chapter 3 to handle high-level mixed access control policies enforcement. This first
extension relies mainly on transforming high-level mixed access control policies con-

126

taining exceptions towards a high-level closed and exception-free access control policy.
The latter is then refined to a DTE specification as described in Section 3.3.4. Then,
we formally proved that the proposed solution leads to a quite complex concrete DTE
specification that involves DTE domains and types whose number grows exponentially
as the number of exceptions in the high-level mixed policy grows linearly.

To overcome the previous limitation, we propose a provably correct priority-based
DTE access control model. We experimentally show that our proposed model is by
far more efficient than the one proposed in Section 4.3 when dealing with high-level
complex policies containing exceptions.

With respect to the dissertation main research question, this chapter answers RQ-
5.4 and RQ-5.5 by proposing a provably correct solution for efficiently enforcing high-
level mixed policy.

Access control policies enforcement on NFV service solutions we proposed in the
previous chapters have considered various criteria related to access control policy
specification, refinement, and deployment, such as the expressiveness of the proposed
access control model, the formal modeling, efficient exception management, as well as
the correctness verification of access control policy refinement and deployment. How-
ever, the proposed solutions did not take into consideration two fundamental criteria.
First, the impact in terms of latency on the NFV service due to the access control
enforcement. Second, the resources needed to enforce the access control policy.

In the next chapter, we focus on extending our access control enforcement over
NFV service framework to optimize the impact in terms of latency that is generated
by the access control policies deployment and the resources consumed by the policy
enforcement points.

127

CHAPTER 5

OPTIMAL ACCESS CONTROL

DEPLOYMENT IN NFV SERVICE

Contents
5.1 Introduction . 129

5.2 Background . 131

5.2.1 Multi-objective optimization . 131

5.2.2 Queuing Theory . 133

5.3 Adversary model and Problem Statement 134

5.4 System Modelling and Problem Formalization 136

5.4.1 NFV Topology Modelling . 136

5.4.2 Policy Deployment . 137

5.5 Latency Quantification . 140

5.5.1 Transmission Delay . 141

5.5.2 Rules Enforcement Delay . 142

5.5.3 Queuing delay . 143

5.5.4 Optimization Problem Formulation 144

5.6 Problem Solving . 144

5.6.1 NSGA II . 147

5.7 Implementation and Simulation . 151

5.8 Conclusion . 159

128

5.1 Introduction

Decoupling of network functions from proprietary appliances is a concept introduced
by Network Function Virtualization (NFV). It permits network services to run on com-
modity cloud computing style platforms. It allows a better information sharing between
their components by enabling faster deployment of new services with less risk and al-
lowing iterative improvement of existing services. It broadens the developer ecosystem
to include new entrants, while reducing network cost structure through infrastructure
sharing and automation.

As we have seen in Chapter 2, security is a major concern in NFV-based networks
as they are susceptible to threats that are related to network-based, virtualization, and
malicious users-related vulnerabilities. Once exploited, these vulnerabilities lead often
to misuse affecting the capabilities provided by NFV services as well as their end-users
security.

In Chapters 3 and 4 of this dissertation, we propose an access control enforcement
framework on NFV services to mitigate threats raised mainly by malicious user-related
vulnerabilities (e.g., unauthorized access/privilege, unauthorized flow between VNFs).
The proposed approaches have considered various criteria related to access control
policy specification, refinement, and deployment, such as the expressiveness of the
proposed access control model, the formal modelling and the correctness verification
of access control policy refinement and deployment. However, most of the aforemen-
tioned solutions did not take into consideration two fundamental criteria. First, NFV
services, as any other virtualized infrastructure, can be compromised and partially con-
trolled1 by an adversary. However, existing solutions as well as the ones we proposed
in Chapters 3 and 4 consider only outsider adversaries that are aiming to remotely by-
pass the enforced policy (see Table 2.3 in Section 2.5.4). Hence, the ability to deal with
both insider and outsider adversaries is an important criteria that needs to be consid-
ered when defining solutions for access control policy enforcement on NFV services.
Second, the enforcement of access control policy requires resources in terms of com-
putation and storage, and often impacts the functionality provided by the target NFV
service i.e., by introducing latency due to the traffic analysis and rule enforcement.
Nevertheless, all existing access control enforcement solutions on NFV infrastructure

1. If adversary totally controls the target NFV service i.e., all the VNFs that compose the NFV service
are controlled by the adversary, then there is nothing to be protected by an access control approach.

129

including the ones we proposed in Chapters 3 and 4 does not consider minimizing
both resource consumption and the impact related to access control policy enforce-
ment (see Table 2.2 in Section 2.5.3), which we believe to be an important criteria that
should be considered when designing solutions for access control policy enforcement
on NFV services.

In the light of the previous observations, the research questions we aim to answer
in this chapter are the following:

• RQ-5.6: How to improve previously proposed solutions to deal with insider adver-
saries? More specifically, how to correctly deploy access control policies when an
unknown part of the NFV service is controlled by an adversary?

• RQ-5.7: How to extend our access control policy enforcement framework to mini-
mize both the consumed resources and the impact caused by the access control
policy deployment?

To answer the previous research questions, we propose the following contributions:

• We consider a strong adversary model: In contrast to our approaches proposed
in Chapters 3 and 4 that only consider outsider adversary, we assume that we are
dealing with an insider adversary who can control one or more nodes (VNFs) that
compose the NFV service. In addition, we assume that the compromised nodes
are not known.

• We propose a formal modelling of the optimal deployment of the access control
policy problem allowing to model and quantify consumed resources as well as
the impact in terms of latency that is to be generated by the access control policy
deployment. The proposed model allows to formally prove the correctness of the
access control policy deployment.

• We show that the problem of the optimal deployment of access control policies is
a nonlinear multi-objective optimization problem and we use an improvement of
the Non-dominated Sorting Genetic Algorithm NSGA II [WSZ+18] for solving it.

• We conduct an experiment in an emulated Internet environment, NS-3 [ns3], to
evaluate the access control policy deployment solutions.

130

The chapter is organized as follows. Section 5.2 provides some background on
multi-objective optimization and queuing theory that we use in this chapter. Section
5.3 describes the adversary model and the problem addressed in this work. Section
5.4 presents our proposed model and the formalization of the optimization problem.
Section 5.5 shows how the latency is quantified. Then, in section 5.6, we study the
optimization problem to identify the right resolution algorithm to use. Section 5.7 pro-
vides an overview of the implementation of our model and gives the evaluation results.
Finally, Section 5.8 concludes this chapter.

5.2 Background

In this section, we present two notions that we are going to rely in the definition of the
solution we propose in this chapter, namely multi-objective optimization and queuing
theory.

5.2.1 Multi-objective optimization

First, we define the main notions common to any multicriteria optimization method.

Objective function: An objective function is a function that models the goal to be
achieved in the optimization problem on all criteria. It is the function that must be opti-
mized.

Parameters: A parameter of the optimization problem is a variable that expresses a
quantitative or qualitative data on a dimension of the problem: cost, time, error rate,
etc. These parameters correspond to the variables of the objective function. They are
adjusted during the optimization process to obtain the optimal solutions. They are also
called optimization variables.

Constraints: A constraint of the problem is a condition that must be respected by the
decision vectors of the problem.

131

Solution A solution or a decision vector is a vector corresponding to the set of vari-
ables of the problem. Formally, a solution is denoted as

~x = 〈x1, x2, · · · , xn〉

with n is the number of variables or dimension of the problem and xi the variable on
the ith dimension.

Multicriteria optimization has been widely studied in the literature [Ehr05, Gun18].
Considered optimization problems often invoke multiple performance measures or ob-
jectives, which must be optimized simultaneously. In practice, this is not always possible
because the objectives may conflict, as they measure different aspects of the quality
of the solution. In this case, the quality of an individual is described not by a scalar but
by a vector. Examples of conflicting objectives are performance, reliability and cost. A
multicriteria optimization problem consists in finding the ideal solution vector such that
the constraints are satisfied and the objective functions are optimal.

These multiple objectives are often in competition with each other, where the im-
provement of one leads to the deterioration of the others. This conflict between objec-
tives is easily explained: in general, high performance structures tend to have a high
cost, while simpler and usually low cost devices will have lower performance. Depend-
ing on the constraints, an intermediate solution (satisfactory performance and accept-
able cost) may be optimal. In multi-objective problems with conflictual objectives, the
optimum is no longer a simple solution as in single-objective problems, but a set of
solutions, called the set of best compromises or the Pareto front [DD98].

Among the most important properties of multi-objective optimization problems are
the linearity and convexity. The previous properties can impact heavily the efficiency of
the methods that can be used to solve the optimization problem. In the following, we
recall the definition of a linear and convex optimization problem.

Definition 5.1 (Linear Optimization Problem) A multi-objective optimization problem
is said to be linear if and only if all the following conditions hold:

• All objective functions are linear in the parameters (variables) considered in the
multi-objective optimization problem

• All optimization constraints are linear in the parameters considered in the multi-
objective optimization problem i.e., each optimization constraint can be written as
a linear combination of the variables that appear in them.

132

We said that a multi-objective optimization problem is nonlinear if it is not linear.

Definition 5.2 (Convex Function) A function f : Rn → R is convex if its domain is a
convex set and for all (x1, · · · , xn), (x′1, · · · , x′n) in its domain, and all λ ∈ [0, 1], we have

f(λx1 + (1− λ)x′1, · · · , λxn + (1− λ)x′n) ≤ λf(x1, · · · , xn) + (1− λ)f(x′1, · · · , x′n)

Informally, the previous definition means that if we take any two points (x1, · · · , xn) and
(x′1, · · · , x′n), then f evaluated at any convex combination of these two points should be
no larger than the same convex combination of f(x1, · · · , xn) and f(x′1, · · · , x′n).

Definition 5.3 (Convex Optimization Problem) A multi-objective optimization prob-
lem is said to be convex if and only if all objectives functions are convex functions
over convex sets. We said that a multi-objective optimization problem is non-convex if
it is not convex.

5.2.2 Queuing Theory

In this section, we present the fundamental concepts of queues as described in [All90]
and we introduce the model that we will use in our solution.

Characteristics of Queuing Models

We speak of a waiting phenomenon whenever certain entities, also called clients, arrive
at a system composed of a set of servers in order to receive a service from the latter
or wait to be served.

Incoming flow: We are confronted with queuing systems, as soon as we talk about
the flow of arriving customers. The arrivals to the queues can be deterministic or ran-
dom, dependent or independent, individual or grouped, homogeneous or heteroge-
neous.

Server: The incoming stream is presented to a device, called a server, which pro-
vides the requested service. The service time can be described by a probability law or
determined from the beginning.

133

A service discipline: The service discipline is the method of selecting the next client
when the server terminates the service of the current client. A number of disciplines
are used such as first in first out (FIFO), last in first out (LIFO), prioritized, random, etc.

Queue capacity Queues can have a limited capacity. This means that when it is full,
incoming flow will be backed up at the entrance of the system. This factor is important
especially. If, for example, a limited-capacity queue is inserted between two consec-
utive services, when this queue reaches saturation, a blockage will occur at the first
service. In the other side, queue can also be considered of infinite capacity.

Kendall created a notation to describe a queue system [Ken53]. The general nomen-
clature of a queue using this notation is of the form A/S/c/K/D where, A describes
the probability distribution of times between customer arrivals, S describes the proba-
bility distribution of a customer’s service time, c represents the number of servers, K
represents the queue capacity, and D represents the service discipline of the queue.

The M/M/1/∞/FIFOM/M/1/∞/FIFOM/M/1/∞/FIFO Model

The M/M/1/∞/FIFO queue is a classic example where clients arrive and are served
according to Markov’s law, at a single server. The queue capacity of the system is
considered to be infinite with FIFO service discipline.

Definition 5.4 (Queue Latency [All90]) Consider theM/M/1/∞/FIFO queuing mo-
del. Let us denote by λ and µ the mean incoming flow per time period and the mean
number of customers served per time period, respectively. The latency L of the queue
i.e., the average time a customer spends waiting in the queue to be served is computed
as follows

L = λ

µ(µ− λ)
Note that L tends to infinity if µ ≤ λ.

5.3 Adversary model and Problem Statement

In contrast to existing similar approaches, in this work we consider an insider adversary
who can control one or more VNFs of the NFV service. Nevertheless, we assume that
the compromised VNFs are not known to the entity aiming to deploy the access control

134

policy. In addition, we assume that the adversary can inject new traffic in the NFV
service using the VNFs he/she controls. However, we assume that the traffic transiting
through the NFV service can be authenticated. This means that the adversary cannot
impersonate other (uncompromised) VNFs by generating and sending network traffic
on their behalf. We believe that this last assumption is fairly reasonable since, any
access control model is useless if the considered adversary can impersonate other
system’s entities.

Considering the previous assumptions, traditional solutions for optimal deployment
of access control models on virtualized network services become useless and cannot
guarantee a correct deployment of the access control policy. When considering an
external adversary, an optimal and correct deployment of access control policy requires
each rule of the latter to be enforced at least once for deployment correctness and at
most once for optimizing the impact related to access control policy enforcement on
the NFV service.

Figure 5.1 – Classic policy deployment strategy in the presence of an insider adversary
© [2022] IEEE

As illustrated in Figure 5.1, when an external adversary is considered, a rule has to
be enforced only once for each traffic to prevent it from reaching its destination when
violating the rule. However, this is no longer sufficient if an insider adversary is con-
sidered. As illustrated, an insider adversary who compromises the VNF4 can easily
create traffic that violates the access control policy. Hence, if we consider that the com-
promised VNFs are not known to the entity aiming to deploy the access control policy,
it is necessary to place a firewall at the exit of each VNF to ensure that a compromised
VNF cannot inject unauthorized traffic in the network. Nevertheless, when a large NFV

135

service is considered, a large number of firewalls will be required, which increases the
amount of resources and/or may lead to high latency. One solution to optimize the use
of the resources of these firewalls consists of making sure that only the policy rules
corresponding to the VNFs each firewall is in charge of should be enforced by the
latter.

The problem we are tackling in this chapter consists of optimizing the deployment
of access control policies for a virtualized network service NFV. We consider an NFV
service composed of several VNFs that can be hosted in different physical servers,
each having limited available resources e.g., the number of available CPUs and the
quantity of available memory. Concretely, resolving our problem consists of finding 1)
the optimal number of policy enforcement points (PEP), their corresponding logical
(i.e., where to place the PEP in the NFV service) and physical (i.e., in which physical
server each PEP is placed) placements, as well as 2) the access control rules that are
enforced by each PEP, allowing to reduce both the latency of the NFV service while
ensuring a correct deployment of the access control policy. We mainly constrain our
problem on physical server resources. As each physical service disposes of a limited
resource, it cannot host an infinite number of policy enforcement points.

5.4 System Modelling and Problem Formalization

In this section, we provide a formal modelling of the considered system. We give a
formalization of the considered optimization criteria, and we formulate the optimization
deployment of access control policies problem. The notations for the variables and the
inputs are gathered in Table ??.

5.4.1 NFV Topology Modelling

NFV services are composed of a set of VNFs {n1, n2, · · · , nm} and a set of forwarding
graphs (FGs) which can be seen as oriented graphs. Hence, we model the initial NFV
service on which the access control policy is to be deployed by a directed, vertex and
edge labeled graph G = (V,E, L,R). The set of vertex V denotes the set of VNFs
that compose the NFV service, where vi denotes the vertex representing the VNF ni.
The set of edges E represents the set of network links between the different VNFs,
where ei,j denotes an edge linking the vertices vi and vj. The set of labels L denotes

136

Notation Description
Inputs

P Access Control Policy
FG Forwarding Graph
G Oriented Graph
V Set of VNFs that compose the NFV service
E Set of network links between the different VNFs
L Set of physical VNFs locations
R Set of average flow rates that transit through the

set of edges E
sv The server in which the VNF v is hosted
S Set of physical servers
re Average flow rate that traverse the edge e
G Oriented Graph G = (V,E, L,R)
ei,j Link between node ni and node nj
smem Available memory in the physical server
scpu Number of CPUs available on the physical server
dr Average delay of single rule

Variables (Parameters)
F The set of used policy enforcement points
Fs The set of used policy enforcement points hosted in the

physical server
Fmem Memory used by the set of PEPs hosted

in the physical server
Fcpu Number of CPU
Ep Edge belonging to the path p
Ls Global latency of service s
Lp Latency in the forwarding path p
Le Latency between two nodes

Table 5.1 – Inputs and Variables Notation © [2022]

the physical VNFs locations, where sv denotes the physical server in which the VNF
represented by the vertex v is hosted. Finally, the set of labels R denotes the set of the
averages of flow rates ri,j that transit on an edge ei,j ∈ E.

5.4.2 Policy Deployment

Access control policy is to be deployed on the NFV service through one or several
PEPs. In the case in which an insider adversary is considered, and since we are sup-

137

posing that we do not know which VNF nodes are compromised by the adversary, a
correct deployment of the access control policy requires each traffic that transits be-
tween two nodes of the NFV service to be authorized by the access control policy. To
satisfy the previous condition, a trivial solution would be to enforce the complete policy
(i.e., all the rules of the policy) at each network link between two nodes as depicted
in Figure 5.2. While it correctly deploys the access control policy, the previous solu-
tion leads often to high latency in the NFV service since it is likely to happen that only
few rules of the policy will be matched by the traffic, and other rules will be processed
uselessly.

VNF1 VNF2

VNF6
VNF7

VNF3 VNF4 VNF5

PEP Insider
Adversary

Figure 5.2 – Policy deployment strategy to cope with insider adversaries

To optimize the policy deployment, our solution has to guarantee that, for each link
between two nodes, only the rules of the policy that can match traffic that flow through
the link are to be enforced. Using the modelling of NFV topology we provide in Section
5.4.1, we formally define the network traffic that can transit through a network link (an
edge of G) as follows.

Definition 5.5 Given a network link represented by an edge ei,j ∈ E of G. Let us
denote by Avi

(resp. Dvj
) the set of ancestor (resp. descendant) vertices of vi (resp. vj)

in G. A network traffic T can flow through ei,j if and only if T originates and has been
forwarded by Avi

∪ {vi} or has a destination belonging to Dvj
∪ {vj}.

We now define the set of access control rules that should be enforced on each
network link (an edge of G). Informally, a rule has to be enforced in a network link if
and only if it matches one of traffic that can flow through the link.

138

Definition 5.6 Given an access control policy P and a network link represented by an
edge ei,j ∈ E and the set of traffic T that can flow through ei,j. An access control rule
r = 〈rsrc, rdst, rdecision〉 has to be enforced over e if and only if the following condition
holds.

Rei,j
= {r | ∃T ∈ T , Tscr ∈ rsrc and Tdst ∈ rdst}r∈P (5.1)

where Tscr (resp. rscr) denotes the traffic (resp. the rule) source and Tdst (resp. rdst)
denotes the traffic (resp. the rule) destination.

Theorem 5.4.1

The policy enforcement strategy described in Definition 5.6 ensures a correct
policy deployment in the presence of an insider adversary.

Proof: Let us consider that the access control policy to be deployed is composed of
the following set of rules {r1, · · · , rn}, each rule is denoted as (risrc, ridst, ridecision) where
risrc, r

i
dst, and ridecision represent respectively the subject, the object, and the decision

indicating whether it is a permission or denial rule. Let us denote by T = (Tsrc, Tdst, Ta)
a traffic flowing through the NFV service where Tsrc, Tdst and Ta denote respectively
the VNF source node of the traffic, the VNF destination node of the traffic, and an
authorization result indicating whether the traffic has been authorized or not. A policy
is not correctly enforced if one of the following cases hold:

1. ∃, ri ∈ P and T ∈ T such that Tsrc ∈ risrc, Tdst ∈ ridst, ridecision = allow, and Ta is not
authorized.

2. ∃, ri ∈ P and T ∈ T such that Tsrc ∈ risrc, Tdst ∈ ridst, ridecision = deny, and Ta is
authorized.

Informally, case 1 (resp. case 2) happens when a traffic that should (resp. should not)
be authorized by the policy is not (resp. is) allowed by the policy enforcement points. In
the following, we prove by contradiction that both cases cannot happen.

Case 1 Let us suppose that case 1 holds. This means that for all paths PT in the NFV
service forwarding graph that links Tsrc and Tdst, there exists an edge e in which the

139

authorization rule ri is not enforced. Formally, we have

∀path ∈ PT ,∃e ∈ path | ri /∈ Re.

which contradicts Equation (5.1).

Case 2 We now suppose that case 2 holds. This means that there exists a path in
the NFV service forwarding graph that links Tsrc and Tdst such that, for all edges, the
prohibition rule ri is not enforced. Formally we have,

∀e ∈ path,∃path ∈ PT | ri /∈ Re.

which again contradicts Equation (5.1). �

Remark 5.4.1

In this section, we propose a new correctly provable policy enforcement model
that optimally computes the set of rules of the access control policy that needs to
be deployed in each network link linking two VNFs. Since the right rules are de-
ployed in each network link that composes the NFV service, an insider adversary
cannot violate the access control policy as long as he/she cannot impersonate
other (uncompromised) VNFs, which is the case according to the considered
adversary model (Section 5.3). Hence, we answer the research question RQ-5.6

5.5 Latency Quantification

One of the objectives we are considering in this chapter is the minimization of the
impact in terms of latency of the deployment of the access control model on the target
NFV service. In this section, we provide a formal method for quantifying the latency
generated by the deployment of the access control policy on the NFV service.

According to Section 5.4.1, an NFV service is modeled through an oriented graph,
which means that a traffic (a flow of network packet) can transit through several pos-
sible paths of the oriented graph G. Hence, we define the latency generated by the
deployment of the access control policy on the NFV service as the sum of latencies
generated at each possible path of the oriented graph representing the NFV service.

140

Let us denote by Φ = {φ1, · · · , φn} the set of possible paths. Moreover, as we have
seen in the previous section, an access control policy is deployed at the network links
by a set of PEPs. Hence, the latency generated at each path is in fact the sum of the
latencies that are generated at each network link of the path. In view of the previous ob-
servations, we formalize the latency generated by the deployment of the access control
policy at the NFV service level as follows:

Ls =
∑
φ∈Φ

∑
e∈φ
Le. (5.2)

where Ls and Le denote respectively the latency generated at the service level and the
network link level.

Let us now focus on the latency generated at a network link. As described in Section
5.4.2, our policy deployment strategy requires that a set of rules has to be enforced by
a PEP (this is denoted by F) at each network link of the considered NFV service.
Therefore, the latency generated at a network link e is equal to the sum of 1) the data
transmission delay L(T)

e,F between the two nodes that are connected through the network
link and F – the PEP that enforces the access control rules, 2) the rules enforcement
delay L(E)

F which represents the time required by F to enforce the set of rules on a
network traffic, and 3) the queuing delay L(Q)

F at F .

Le = L(T)
e,F + L(E)

F + L(Q)
F (5.3)

In the following subsections, we show how to compute the transmission, enforce-
ment, and queuing delays.

5.5.1 Transmission Delay

Given a network link represented by the edge ei,j ∈ G. We define the transmission
delay to be the time needed to transfer a network packet from the VNF represented by
the vertex vi and the PEP F added to the time required to transfer the same packet
from F to the node VNF represented by the vertex vj. The transmission delay depends
mainly on the physical location of the different involved nodes as illustrated in Figure
5.3. If the considered VNFs are in the same physical server, then the traffic will flow
through the virtual network layer. Otherwise, the traffic will flow through the physical
network layer.

141

VNF1 VNF2

PEP

Virtual Network
Layer

Physical Network
Layer

Different Physical
Server

Same Physical
Server

Figure 5.3 – Transmission delay cause by the access control policy enforcement

Let us denote by svi
, svj

, and sF , the physical server hosting the VNFs represented
respectively by vi, vj, and F .

L(T)
ei,j ,F

= Dsvi ,sF
+DsF ,svj

(5.4)

where Dsi,sj
represents either the average latency between the two physical servers

si, sj if si 6= sj, or the average latency in the virtual network layer otherwise.

5.5.2 Rules Enforcement Delay

The rules enforcement delay is the time needed by a PEP F to enforce a set of access
control rules Re on a network packet transiting through the edge e. It depends mainly
on the number of rules to be enforced and the computational capability (i.e., number
of CPUs) of F . Let us denote by dr the average delay of the enforcement of a single
access control rule on a network packet, by Fcpu the number of CPUs used by F, and
by ||Re|| the number of rules that has to be enforced over e. In addition, considering
that a PEP can be charged to enforce rules on several edges, we denote by EF the set
of edges on which F has to enforce rule. The rules enforcement delay associated to F
is quantified as follows:

L(E)
F =

dr ·
∑

e∈EF

||Re||

Fcpu
(5.5)

142

5.5.3 Queuing delay

In our model, we suppose that the traffic flowing through a data link (an edge e of G) is
processed by a single firewall instance. Consequently, we used the M/M/1/∞/FIFO
presented in Section 5.2.2. The queuing delay associated to a PEP F represents the
time a network packet is waiting in F before being processed. According to Definition
5.4, the queue latency is a function of the average traffic rate λF flowing through a PEP
F and the processing rate µF of F . It is formalized as

L(Q)
F = λF

µF (µF − λF) (5.6)

Let us denote by Ie the average data rate that transit on the edge e. Considering EF as
the set of edges (network links) in G on which F has to enforce access control rules,
the average traffic rate λF flowing through F is

λF =
∑
e∈EF

Ie (5.7)

In the other side, the processing rate µF of F can be expressed as a function of the
rules enforcement delay L(E)

F

µF = 1
L(E)
F

(5.8)

Now based on Equations 5.6, 5.7, and 5.8, we have

L(Q)
F =

 ∑
e∈EF

Ie

 ·
 1
L(E)
F

 1
L(E)
F

−
∑
e∈EF

Ie

−1

(5.9)

Putting all together: Once we have defined how transmission delay, rules enforce-
ment delay, and the queuing delay, we have all the ingredients (Equations 5.2 to 5.9)
to give our quantification of the latency generated by the deployment of access control
policy at NFV service.

Ls =
∑
φ∈Φ

∑
ei,j∈φ

Dsvi ,sF
+DsF ,svj

+
∑
e∈EF

dr · ||Re||
Fcpu

+
 ∑
e∈EF

Ie

 ·
 ∑

e∈EF

dr · ||Re||
Fcpu

−1

·

 ∑
e∈EF

dr · ||Re||
Fcpu

−1

−
∑
e∈EF

Ie

−1
143

5.5.4 Optimization Problem Formulation

The objectives of this work consist of (1) minimizing the impact in terms of latency due
to the deployment of an access control policy in an NFV service, 2) minimizing the
computational resources that are required by the policy enforcement points. Let F be
the set of PEPs to be used for the policy deployment and Fs be the set of PEPs hosted
in the physical server s. The previous two minimization objectives are represented in
Formula 5.10.

minimize
(
Ls,

∑
F∈F

Fcpu

)
(5.10)

subject to ∀s ∈ S :
∑
F∈Fs

Fmem ≤ smem (5.11)

∀s ∈ S :
∑
F∈Fs

Fcpu ≤ scpu (5.12)

Our optimization problem involves a set of constraints to be respected. Constraint
5.11 ensures that, for each physical server, the memory used by the set of PEPs hosted
in the physical server cannot exceed the latter’s available memory. Similarly, constraint
5.12 ensures that, for each physical server, the number of CPUs to be used by the
PEPs hosted in the physical server cannot exceed the number of CPUs available on
the physical server.

5.6 Problem Solving

The problem we formalize using the objective function in Formula 5.10 and the con-
straints in Equations 5.11 and 5.12 is a multi-objective, non-linear, and non-convex (see
Propositions 5.6.1 and 5.6.2) optimization problem. The two considered objectives are
in conflict with each other. That is, minimizing the used resources leads to increase the
latency of the NFV service. Hence, it is not possible to find a single optimal solution
that optimizes both considered objectives. Our aim is then to find a set of solutions that
are as close as possible to the so-called Pareto-optimal. The Pareto-optimal front is a
curve or surface that is formed by solutions providing the best compromise between
the objectives.

144

Proposition 5.6.1: non-linearity

The optimization problem formulated in Section 5.5.4 is non-linear.

The proof of the previous proposition is trivial and, hence, omitted.

Proposition 5.6.2: non-convexity

The optimization problem formulated in Section 5.5.4 is non-convex.

Proof: To prove the non-convexity of the optimization problem formulated in Section
5.5.4, we show that the objective function Ls is non-convex as following. Let us denote
1/L(E)

F as x and
∑
e∈EF

Ie as y. Based on Definitions 5.2 and 5.3, we show that there
exists x1, x2, y1, y2 and θ ∈ [0, 1] such that the following convexity inequality does not
hold.

f(θx1 + (1− θ)x2, θy1 + (1− θ)y2) ≤ θf(x1, y1) + (1− θ)f(x2, y2) (5.13)

Indeed, it is easy to check that the previous inequality does not hold for x1 = 1, x2 =
3, y1 = 1, y2 = 2 and any θ ∈ [0, 1]. �

Methods Non-linear Non-convex
Differential evolution (DE) [SP97] 3 3

Strength Pareto evolutionary algorithm (SPEA) [ZT98] 3 3

Non-dominated sorting genetic algorithm-II 3 3

(NSGA-II) [SD94]
Niched Pareto genetic algorithm (NPGA) [HNG94] 3 7

Multi-objective genetic algorithm (MOGA) [MI+95] 3 3

Particle swarm optimization (PSO) [KE95] 3 3

Ant colony optimization (ACO) [DB05] 3 3

Analytic network process (ANP) [SV13] 3 7

Shuffled frog-leaping algorithm (SFLA) [ELP00] 3 3

Simulated annealing algorithm (SA) [VLA87] 3 3

Plant growth simulation algorithm (PGSA) [WCHW08] 3 3

Hungarian algorithm (HA) [DD90] 3 7

Mixed-integer nonlinear programming (MINLP) [BP+03] 3 7

Table 5.2 – Multi-objective optimization problems comparison regarding the ability to
deal with non-linear and non-convex optimization problems

145

Several approaches have been proposed to solve constrained multi-objective opti-
mization problems. Among these approaches, we found Differential evolution [SP97],
Non-dominated sorting genetic algorithm-II [SD94], Simulated annealing algorithm (SA)
[VLA87], and Ant colony optimization (ACO) [DB05]. Overall, we find 14 multi-objective
optimization methods in the literature. We compare them regarding the ability to deal
with non-linear and non-convex optimization problems. Table 5.2 shows the compari-
son results.

In [AA19], Alothaimeen et al. consider 55 studies published between 2012 and 2019
that use the methods presented in Table 5.2 to solve Multi-objective optimization prob-
lems in different domains. These optimization methods were used to solve different
numbers of objectives (ranged between 2 and 7) at a time. Figure 5.4 reports the
frequency usage of each method to solve the considered Multi-objective optimization
problems. Note that we consider only the methods that can deal with both non-linear
and non-convex multi-objective optimization problems.

Figure 5.4 – The frequency of usage of the different optimization methods in the consid-
ered studies. The "Hybrid" method pairs two or more optimization methods for solving
the considered problem.

In view of the above, we can emphasize that among the multi-objective methods
used in the literature, NSGA-II was the most used to solve the optimization problems of
the considered studies. NSGA-II has proven its capability in solving optimization prob-

146

lems in different domains. In addition to its popularity among researchers, NSGA-II has
many advantages that make it suitable for many types of optimization problems such as
obtaining diverse solutions in Pareto-front, low computational complexity, solving prob-
lems that involve non-linearity, non-convexity, and non-differential problems, as well as
the support of parallel computation.

Deb et al. [DPAM02] proposed an enhancement of the NSGA algorithm, the NSGA-
II, which uses a faster (than NSGA) non-dominance based sorting procedure and uses
a comparison operator based on a crowding calculation to improve diversity of solu-
tions. In this work, we use an improvement of the NSGA II [WSZ+18] for solving the
problem we described in Section 5.5.4.

5.6.1 NSGA II

The NSGA-II algorithm is based on a multi-level classification of individuals. This last
one uses a faster sorting procedure than its predecessor (NSGA [SD94]), based on
non-dominance or Pareto optimal, an elitist approach which allows to preserve the
diversity of the populations, by saving the best solutions found during the previous
generations on the one hand, and on the other hand a comparison operator based on
a Crowding distance calculation. The working principle of the algorithm is detailed in
Figure 5.5.

Population initialization In this step, the population is initialized based on the con-
sidered optimization problem parameters such as, number of variables, number of
constraints. Particularly, for sake of efficiency and effectiveness, the initial population
should satisfy the constraints considered in the optimization problem. For instance, in
our optimization problem, the population should be initialized such that the two opti-
mization constraints in Formulas 5.11 and 5.12 are satisfied.

Non-dominance sorting The current population is sorted based on non-dominance.
That is, an individual is said to dominate another if the objective functions values as-
sociated to it is no worse than the- values associated to the objective functions for the
other, and at least in one of its objective functions value the one associated to the other.
The sort algorithm [DPAM02] is described in Algorithm 4.

147

Initialize Random Population

Non-dominated sorting

Pareto-frontStopping criteria

Crowding Distance

Selection

Genetic Operators

Recombination and
Selection

Figure 5.5 – NSGA-II algorithm

Crowding Distance To manage diversity at the level of Pareto sets, the algorithm
uses a very particular implementation of the selection operator, the crowded tourna-
ment. The latter relies on the crowing distance which represents the euclidean distance
between each individual in a front based on the considered n objectives in the n dimen-
sional hyper space. In the Crowded distance assignment procedure, for each solution,
we evaluate the density of the solutions present around it. Assigning this value will have
the effect of decreasing the chances of survival of a solution present in a region where
several other solutions are concentrated. Concretely, as shown in Figure 5.6, assigning
a large distance to the first and last solutions, for each objective function, gives priority

148

to the extreme solutions of a Pareto set.
Input: P /* the population to sort */

1 foreach p ∈ P do
2 Sp = ∅ /* the individuals that is being dominated by p */
3 np = 0 /* the number of individuals that dominate p */

4 end
5 foreach p ∈ P do
6 foreach q ∈ P do
7 if p dominates q then
8 Sp = Sp ∪ {q}; nq = nq + 1
9 end

10 end
11 if np = 0 then
12 prank = 1; F1 = F1 ∪ {p}
13 end

14 end
15 i = 1
16 while Fi 6= ∅ do
17 Q = ∅ /* the members of the next front */
18 foreach p ∈ Fi do
19 foreach q ∈ Sp do
20 nq = nq − 1
21 if nq = 0 then
22 qrank = i+ 1 /* q belongs to the next front */
23 Q = Q ∪ q
24 end

25 end

26 end
27 i = i+ 1; Fi = Q

28 end
Algorithm 4: NSGA II: Non-dominance sorting

For the intermediate solutions, thanks to the sorting vector, the distance is given
by the half perimeter of the cuboid surrounding these solutions. In the example shown
in Figure 5.6, the solution z2 is the one that is more likely to be rejected since the

149

Crowd Distance for

Figure 5.6 – Hypothetical case of the Crowded distance assignment

perimeter of its cuboid is the smallest.

Selection Once the individuals are sorted on the basis of non-domination and the
crowding distance is assigned, the selection is performed using the crowded compari-
son operator (≺) that is defined as follows.

Definition 5.7 (crowded comparison operator) Given two individuals p and q, p ≺ q

holds if one of the following conditions holds:

• prank < qrank

• If p and q belong to the same front, the crowd distance assigned to p is greater
than the one assigned to q

The individuals are then selected by performing a binary selection with crowded com-
parison operator.

Genetic Operators NSGA II relies on two generic operations: simulated binary crossover
(SBX) [BD01] and polynomial mutation [Kak04].

Recombination and Selection In this step, the NSGA II algorithm combines the
offspring population with the current generation population and selects the individuals

150

that will compose the next generation. As all the previous and current best individuals
are part of selected population, elitism is ensured. Since the population is sorted on
the basis of non-domination, the new generation is filled by each subsequent front
until the population size exceeds the size of the current population. If, by adding all
the individuals from the front Fj, the population exceeds N , then the individuals from
Fj are selected on the basis of their crowding distance in descending order until the
population size is reachesn N .

Remark 5.6.1

In Sections 5.5, we propose a model to quantify the impact in terms of latency of
the deployment of the access control model on the target NFV service. Then, we
define a minimization problem that aims to minimize both the impact in terms of
latency in a NFV service and the computation resources that are required by the
policy enforcement points. In Section 5.6, we show that the proposed optimiza-
tion problem is nonlinear and non-convex. Then, based on these characteristics,
we choose the adapted optimization algorithm. Hence, we answer the research
question RQ-5.7.

5.7 Implementation and Simulation

In this section, we aim to evaluate our proposed optimal access control policy deploy-
ment model. To meet the previous objectives, we built the simulation framework repre-
sented in Figure 4.9. The major functional components are described in the following.

Virtual Network Simulator This module is responsible of the creation of the NFV
service topology and the simulation of the impact in terms of latency resulting from the
deployment of an access control policy over the created NFV service topology. It is
composed of the following sub-modules:

• Random NFV topology generator (RTG): This module provides a random gen-
eration of NFV service topology capability. It allows to create an NFV service
topology by randomly selecting, the number of VNFs, the number of paths that
composes the NFV forwarding graph, the VNFs that compose each path, the

151

Figure 5.7 – The used simulation framework

number of physical servers that hosts the VNFs, and the physical location of
each VNF.

• Latency measurement service (LMS): This module is responsible of measuring
the latency at the NFV service topology. The method used by the service to mea-
sure the latency is described as following. Using the target NFV service topology,
the LMS installs a User Datagram Protocol (UDP) client in the first VNF node of
each path of the forwarding graph and installs an UDP server in the last node
of each path. Then, it creates randomly generated UDP traffic that flow through
the different paths that compose the NFV service topology. Meanwhile, the LMS
observes the sending and receiving times of each packet in order to compute the
average latency of each path. The overall latency of the NFV service is computed
by summing up the average latencies of all the paths that compose the service
topology.

• Policy Enforcer (PE): This sub-module is responsible of the deployment of the ac-
cess control policy enforcement solutions that are returned by the Optimizer. For
each enforcement solution, the PE places the enforcement points (i.e., firewalls)
according to their placement in the enforcement solution, then informs the LMS
to measure the impact in terms of latency of the deployed enforcement solution.

As a virtual network simulator, we used NS3 [ns3]. The RTG, LMS, and PE sub-
modules are developed in C++ and used as NS3 modules.

152

Random policy generator (RPG) This module is responsible of generating the ran-
dom access control policies to be deployed on a target NFV service. To generate the
policies, the RPG builds access control rules by choosing, for each rule:

• Two random, yet connected VNFs from the topology of the target NFV service.
The first represents the subject of the rule while the second is considered as the
object of the rule.

• A random decision (allow or deny). We have implemented the RPG in python.
Two VNF nodes are said to be connected if there is a path in the NFV service
topology that allows a network traffic to flow from a node to the other.

Optimizer This module takes as inputs the target NFV service topology and the ac-
cess control policy to be deployed. Then it processes them to find the optimal solutions
for the deployment of the access control policy. A deployment solution includes the
locations of the firewalls in the physical servers, the set of links that are to be pro-
cessed by each firewall and the computational resources (i.e., the number of CPUs)
that are allocated for each firewall. We use the Python based implementation of NSGA
II provided in jMetalPy framework [BHNGN+19].

We now focus on the simulation flow and the interactions between the different
modules. As first step, we use the NS3’s RTG module to generate a random NFV
service topology by choosing randomly the number of VNFs, the number of paths inside
the forwarding graph, the number of VNFs inside each path, and the number of physical
servers that host the NFV service. In the second step, the generated topology will be
sent to the LMS to measure the initial latency i.e., the average latency observed in
NFV service before the deployment of the access control policy. Then, in the third step,
the generated service will be sent to the RPG in order to generate random access
control rules that are going to be deployed on the NFV service. In the fourth step, the
generated topology and the access control policy will be sent to the Optimizer. Once
the latter receives these elements, it uses the NSGA II algorithm to find the optimal
policy deployment solutions. The latters are sent back to the PE module which enforces
the solutions one by one on the NS3 topology of the NFV service by placing the policy
enforcement points i.e., firewalls in their locations and deploys the set of access control
rules that should be enforced at each enforcement point. For sake of simplicity, we
simulate the traffic processing at firewall level by adding a delay that represents the

153

time needed by the firewall to process the traffic according to the number of rules to
enforce and the number of CPUs it can use. The added delay is computed as described
in Equation 5.5.

Afterwards, the PE notifies the LMS to remeasure the latency inside the NFV ser-
vice. Concretely, the latter is computed as the sum of the latencies measured in each
path in the NFV service (see Equation 5.2). The latency in each path is measured by
computing the time needed by a network packet to go all the way through the path.
Finally, the LMS computes the impact of the deployment of the access control policy as
the difference between the initial latency and the one observed after the deployment of
the policy on the NFV service.

We experimentally evaluate the performance of our optimal access control policy
enforcement model. All the conducted evaluations were performed in a server running
Linux with an Intel XeonE5-2680 v4 Processor with 32 vCPU and 128 GB of RAM. In
our experimentation, we aim to evaluate the impact of the deployment of the access
control policy according to 1) the size of the NFV service, 2) the size of the access
control policy to be deployed, 3) the number of physical servers on which the NFV
service is hosted, 4) and the size of the traffic that flows through the NFV service.

Figure 5.8 – Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed resources as a function of the number
of VNFs that composes the NFV service. © [2022] IEEE.

To evaluate the impact of the deployment of the access control policy according to

154

the size of the NFV service i.e., the number of VNFs that composes the NFV service,
we consider the configuration in which all VNFs that compose the NFV service are
hosted in a single physical server. We also consider an access control policy composed
of 100 rules. In this evaluation, we vary the number of nodes to study its impact on
the trade-offs between the latency resulting from the deployment of the access control
policy and the needed resources. Figure 5.8 reports the obtained result. As we can see,
the latency grows exponentially as the number of VNFs in the service increases and
the used resources decrease. In addition, the results show, for each considered size
of NFV service, the resources required to achieve a near optimal latency. For example,
when an NFV service composed of 300 VNFs is considered, the policy enforcement
points need to use 8 CPUs to reduce to the best the latency.

Figure 5.9 – Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed resources as a function of the number
of rules in the policy to be deployed. © [2022] IEEE.

We now evaluate the impact of the deployment of the access control policy accord-
ing to the number of rules in the policy. We consider a configuration in which an NFV
service composed of 100 VNFs is hosted in the same physical server. We randomly
generate access control policies with different sizes: 50, 100, 200, and 300 rules. Then,
we perform the simulation to see how the trade-offs between the latency resulting from
the deployment of the access control policy and the needed resources change. As
illustrated in Figure 5.9, the latency is growing exponentially as the number of rules in-

155

creases and the used resources decrease. The simulation results show the resources
required to achieve a near optimal latency when deploying each of the considered poli-
cies. For example, a policy composed of 300 rules requires the usage of 5 CPUs to
achieve a near-optimal latency.

Policy enforcement points’ physical location are extremely important when an NFV
service hosted on several physical server is considered. The goal of this evaluation is to
study the impact of the deployment of the access control policy according to the number
of physical servers in which the NFV service is hosted. Hence, in this configuration,
we consider an NFV service composed of 100 VNFs and an access control policy
composed of 100 rules. The result of the simulation is depicted in Figure 5.10.

Figure 5.10 – Optimal trade-offs between the impact in terms of latency of the deploy-
ment of the access control policy and the needed number of firewalls as a function of
the number of physical servers. © [2022] IEEE.

Similarly to previous simulations, the latency grows exponentially as the number of
used policy enforcement points (firewalls) decreases. This mainly due to inter physical
server’s transmission delay since, due to the limited number of firewalls, large part of
the traffic flowing through VNFs have to be sent to a firewall hosted in different physical
server. The results show also that once the number of used firewalls equals the number
of physical servers, the observed latency falls to a near-optimal value.

Seeking to have better understanding of the result obtained in the previous exper-
iment, we compute the different observed delays resulting from the deployment of an

156

access control policy composed of 100 rules on an NFV service composed of 100
VNFs hosted in 12 different physical servers. The results are shown in Figure 5.11.

Figure 5.11 – Different observed delays resulting from the deployment of an access
control policy composed of 100 rules on an NFV service composed of 100 VNFs hosted
in 12 different physical servers. © [2022] IEEE

The results show that the transmission delay (the delay between the VNF sending
the traffic and the firewall) represents the most part of the observed latency. The reason
behind that is the relatively high delay between physical servers compared to the delay
inside the same server. Hence, when the number of firewalls to be used is less than the
number of servers, it is not possible to place a firewall in each physical server. Hence,
there is often a need to transmit the traffic to a firewall that is placed in a different
physical server, which considerably increases the transmission delay due to the high
inter-server latency. However, as soon as the number of firewalls equals the number of
physical servers, it is possible to place a firewall in each physical server resulting in the
elimination of the inter-server latency.

Finally, we evaluate the time required for the optimizer to find the optimal policy
enforcement solution to be deployed. Figure 5.12 reports the average time needed for
the optimized implementing the genetic algorithm NSGA II to solve our multi-objective
optimization problem (Formulas 5.10-5.12) as a function of the number of VNFs that
compose the target service and the number of rules that needs to be enforced.

According to the previous Figure, the optimization algorithm used in our solution is

157

Figure 5.12 – The time required for the optimizer to find the optimal policy enforcement
solution to be deployed. © [2022] IEEE.

quite efficient when medium size policy (i.e., number of rules less or equal than 200)
is to be enforced on medium size (i.e., number of VNFs less or equal than 200) NFV
service. However, when a large number of rules (e.g. 500 rules) are to be enforced on
a quite complex NFV service (composed of 500 VNFs), our approach based on NSGA
II algorithm takes around 23 minutes to find the optimal deployment of the access
control rules. While this may be an acceptable delay when launching the NFV service,
we believe that this might be too much for specific use case when we should have an
immediate application of the policy updates. One possible solution to reduce this delay
is to use our graph-based modelling of the topology and the policy deployment problem
to exclude all the elements (e.g., the nodes and the edges of the graph) of the NFV
service that will not be impacted by the policy updates. The multi-objective optimization
problem will then include only the graph nodes and edges that will be impacted by the
policy updates which can drastically reduce the time needed by the NSGA II for solving
the optimization problem. We leave the investigation of this solution to future work.

158

5.8 Conclusion

In this chapter, we present an approach allowing a correct and optimal deployment of
access control policies on NFV services in the presence of insider adversaries. We
firstly propose a formal modelling of the optimal deployment of access control policy
problem that allows to model and quantify the resources consumed and the impact in
terms of latency that are to be generated by the access control policies deployment.
We formally show that the proposed model ensures a correct enforcement of access
control policies in the presence of an insider adversary who can control one or more
unknown nodes (VNFs) that compose the NFV service. To the best of our knowledge,
the solution we propose in this chapter is the first that can provide simultaneously all
the aforementioned properties. Finally, we build a simulation framework to evaluate the
effectiveness of the proposed optimization method.

The conducted experiments clearly show that the model we propose in this chapter
allows security administrators to have enough information e.g., the introduced latency
according to the used resources and the introduced latency according to the number
of PEPs, to make decision on the right trade-off between the quality of service degra-
dation and the used resources that should be considered.

In respect to this dissertation main research questions, the approach we propose
in this chapter fully answers the questions of "How to improve previously proposed so-
lutions to deal with insider adversaries?" (RQ-5.6) and the question of "How to enforce
access control policy while minimizing both the consumed resources and the impact
caused by the access control policy deployment?" (RQ-5.7).

159

CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

Contents
6.1 Conclusion . 160

6.2 Perspectives . 163

6.2.1 Dynamic deployment of access control requirements 163

6.2.2 Heterogeneous security requirements enforcement on NFV ser-
vices . 165

In conclusion, we provide an overview of how the different research objectives pre-
sented in the introduction were followed and the different contributions that resulted.
We then reflect on how our contributions can be improved and provide new research
directions.

6.1 Conclusion

The main research goal of this dissertation was to improve the security of NFV services
through access control policies enforcement. More precisely, to improve the security of
NFV services by defining a framework allowing a correct, efficient, and optimal deploy-
ment of access control requirements.

Chapter 2, exploratory by nature, scrutinized the security of NFV-based networks.
First, it proposes an extensive literature review of the existing and potential security
issues and threats in the NFV infrastructure. Then, to provide a better understanding
of the impact of these threats, we classify the issues and threats according to the com-
ponents that are affected by them. Second, we review existing solutions for enforcing
access control policies in NFV infrastructures. Third, we provide a comprehensive com-
parative overview of existing solutions with respect to several properties, including the

160

considered adversary model, effectiveness, correctness, optimality, etc. The compara-
tive overview illustrates the main improvements that need to be made to allow correct,
efficient, and optimal deployment of access control requirements on NFV service.

In Chapter 3, we address fundamental questions about the design of an access
control policy enforcement in NFV service framework that is simultaneously highly ex-
pressive, correct, efficient, and easily deployable. First, we define an expressive spec-
ification model to be able to express high-level access control requirements to be en-
forced over network services. Then, we show that our specification model can correctly
express access control requirements specified using well known access control models
such as RBAC, ABAC, and ORBAC. Second, we propose a provably correct method
for refining high-level access control requirements towards a Domain Type Enforce-
ment (DTE) concrete specification. Finally, our model defines an ETSI-NFV compliant
and efficient enforcement method, as illustrated by the different conducted experimen-
tal evaluations in Section 3.4.

Compared to existing models, our framework offers several advantages to VNF
users. First, it is generic in the sense that our model allows to handle the deployment
of policies expressed using most well known access control models such as RBAC,
ORBAC, ABAC. Second, it complies with the ETSI-NFV infrastructure because it does
not require any modification of the latter for policy deployment. The conducted experi-
mentation shows that the implementation of the proposed model is quite efficient. The
deployment of a security policy composed of 500 rules introduces less than 2 ms delay
for the round-trip time of a network packet. Finally, our policy enforcement method is
scalable as it is possible to add as many enforcement points as needed (e.g., for load
balancing purposes) without impacting the functioning of the network services.

The policy enforcement framework proposed in Chapter 3 was mainly designed
to enforce closed access control policies. Unfortunately, the latter are known to be
suffering from a lack of expressiveness when rules containing exceptions need to be
enforced. In contrast, mixed policies are well adapted to express high-level access re-
quirements containing exceptions. Nevertheless, it has been shown in [ACCB07] that
mixed high-level access control policies containing exceptions often lead to quite com-
plex concrete configurations. In Chapter 4, we investigate the deployment of high-level
mixed and complex access control policies containing exceptions using the framework
proposed in Chapter 3. First, we propose an approach that straightforwardly trans-
forms a high-level mixed access control policy towards a closed policy that can be

161

enforced using the framework proposed in Chapter 3. Then, we show theoretically that
this approach is quite unscalable as we prove that the number of rules in the closed
and exception-free policy grows exponentially in the number of exceptions in the high-
level access control policy to be deployed. Hence, to overcome the previous scalability
problem, as a second step, we extend our access control policy enforcement frame-
work by proposing a priority-based DTE model. The latter enables a clean and efficient
deployment of complex access control policies containing exceptions and / or conflict
rules on NFV services. Specifically, the proposed priority-based DTE model does not
introduce additional low-level rules compared to the high level security policy to be de-
ployed, which allows security administrator to straightforwardly understand and update
the deployed concrete level policy. Our model relies on a provably correct approach
for exception management in DTE specification. The conducted empirical evaluations
show that the priority-based DTE model we are proposing improves drastically the ef-
ficiency of the enforcement of big and complex policies that contain exceptions.

The last part of this dissertation (Chapter 5) improves our access control policy
enforcement in NFV service framework in two ways. First, considering the facts that
(1) NFV services, as any other virtualized infrastructure, can be compromised and
partially controlled by an adversary and that (2) the solutions we propose in Chap-
ters 3 and 4 consider only outsider adversaries that are aiming to remotely bypass
the enforced access control policy. In the first part of Chapter 5, we consider a strong
adversary model in which we assume that we are dealing with an insider adversary
who can control one or more unknown nodes (VNFs) that compose the NFV service.
Then, we propose a new correctly provable access control policy enforcement model
that optimally computes the right set of rules of the access control policy that needs
to be deployed in each network link linking two VNFs. Second, considering the facts
that (1) the enforcement of access control policy requires resources in terms of com-
putation and storage, (2) often impacts the functionality provided by the target NFV
service i.e., by introducing latency due to the traffic analysis and rule enforcement. In
the second part of Chapter 5, we propose a model to quantify the impact in terms of
latency caused by the deployment of the access control model on the target NFV ser-
vice. Then, we define a minimization problem that aims to minimize both the impact in
terms of latency in a NFV service and the computation and storage resources that are
required by the access control policy enforcement points. Afterwards, we show that the
proposed optimization problem is nonlinear and non-convex and we use an improve-

162

ment of the Non-dominated Sorting Genetic Algorithm NSGA II for solving it. Finally,
we build a simulation framework to evaluate the effectiveness of the proposed opti-
mization model. The conducted experiments clearly show that the optimization model
we propose allows security administrators to have clear and enough information e.g.,
the introduced latency according to the used resources and the introduced latency ac-
cording to the number of PEPs, to make decision on the right trade-off between the
quality of service degradation and the quantity of resources that should be dedicated
to the access control policy enforcement points.

We conclude this subsection with a summary of the research questions that have
been investigated in this dissertation and the chapters in which they were addressed
(Table 6.1).

6.2 Perspectives

In this section, we describe some future research directions that we identified during
this dissertation.

6.2.1 Dynamic deployment of access control requirements

After their enforcement, access control policies are often subject to update to allow
adding/revoking specific accesses. As we have seen in Chapter 5, the optimization of
the resources required for policy enforcement and the impact on the quality of service
requires several minutes when dealing with complex NFV service (500 VNFs). While
this delay can be tolerated during the target NFV service setup, it is too much when
specific access control requirements should be updated and instantly enforced.

The access control policy enforcement framework proposed in this dissertation can
be extended to support optimal yet dynamic enforcement of access control require-
ments on NFV services. One possible solution to meet the previous objective consists
of reducing the optimization delay by using our graph-based modeling of the NFV ser-
vice topology and the policy deployment problem to exclude all the elements (e.g., the
nodes and the edges of the graph) of the NFV service that will not be impacted by
the policy updates. The multi-objective optimization problem will then include only the
graph nodes and edges that will be impacted by the policy updates which can drasti-
cally reduce the time needed by the NSGA II for solving the optimization problem.

163

Research Question Chapter/Section

RQ-1 What are the security threats in NFV infrastructure? Sec. 2.3

RQ-2 What are the security threats that can be ad-
dressed/reduced by Access control policy enforcement? Sec. 2.5.1

RQ-3 What is the state of the art with respect to the access con-
trol policy enforcement in virtualized network infrastructure?

Sec. 2.5

RQ-4 What are the relevant properties that are satis-
fied/unsatisfied in existing solutions?

Sec. 2.5.4

RQ-5 How to create efficient, high expressive, correct, and easy
deployable approach allowing to optimally deploy mixed and
complex access control policies?

Ch. 3 – 5

RQ-5.1 How to define a sufficiently expressive high-level speci-
fication model that allows to correctly express policies specified
using other well known access control models such as RBAC,
ABAC, and ORBAC?

Sec. 3.3

RQ-5.2 How to correctly refine the high level access control
policy towards concrete-level deployable requirements?

Sec. 3.3

RQ-5.3 How to define an ETSI-NFV compliant deployment of
the concrete-level requirements?

Sec. 3.3 – 3.4

RQ-5.4 Can we use the access control policy deployment solu-
tion proposed in Chapter 3 to efficiently deploy high-level mixed
and complex access control policies containing exceptions?

Sec. 4.3

RQ-5.5 how can we improve the proposed solution to deal ef-
ficiently with high-level mixed and complex access control poli-
cies containing exception?

Sec. 4.4

RQ-5.6 How to improve previously proposed solutions to deal
with insider adversaries?

Sec. 5.4

RQ-5.7 How to extend our access control policy enforcement
framework to minimize both the consumed resources and the
impact caused by the access control policy deployment?

Sec. 5.5 – 5.7

Table 6.1 – Summary of the research questions that have been investigated and the
chapters in which they were addressed.

164

6.2.2 Heterogeneous security requirements enforcement on NFV
services

By analyzing some real-life scenarios of NFV services, we realize that the security and
utility (functionality) requirements specified by NFV service owners are quite different
in each scenario. Moreover, they are often heterogeneous (e.g., access control require-
ments, confidentiality requirements, privacy requirements, etc.). Security mechanisms
allowing to provide those security requirements have been the focus of huge interest.
These mechanisms are known to be effective when used independently. However, in
many situations, they must be combined appropriately to provide security functionality
without one interfering with the other.

The framework proposed in this dissertation can be extended by defining a suffi-
ciently expressive language to specify heterogeneous security requirements that take
into account the topology of the target NFV service as well as the data that needs to be
processed. Moreover, it is necessary to develop a formal theoretical means to analyze
the consistency of these requirements. One possible approach is to extend the logical
formalism of the proposed framework to formally represent security requirements and
their enforcement in the target system.

As a second objective, it is therefore necessary to propose a richer formalism to
formally specify the requirements that each security mechanism can guarantee. The
approach is to formally characterize the security requirements guaranteed by the con-
sidered security mechanisms by relying on a logic-based language. The objective is to
have a unique formal framework to reason about the security needs expressed in the
policy and the requirements guaranteed by the available security mechanisms.

The innovative principle is therefore to consider that all the available security mech-
anisms constitute a "toolbox" from which the security architect can "pick and choose"
to meet specific security needs. In this context, how can one verify that the various
mechanisms selected actually guarantee the requirements specified in the security
policy? One possible approach to answer the previous question is to rely on the formal
specification of the security policy and the security mechanisms to determine the most
appropriate mechanisms to meet the data outsourcing and security needs expressed
in the policy.

165

APPENDIX A

PUBLICATIONS

The following are the publications during the course of my thesis:

1. Smine, M., Espes, D., & Pahl, M. O. (2022, April). Optimal Access Control Deploy-
ment in Network Function Virtualization. In NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium (pp. 1-9). IEEE.

2. Smine, M., Espes, D., Cuppens-Boulahia, N., Cuppens, F., & Pahl, M. O. (2020,
December). A priority-based domain type enforcement for exception manage-
ment. In International Symposium on Foundations and Practice of Security (pp.
65-81). Springer, Cham.

3. Smine, M., Espes, D., Cuppens-Boulahia, N., & Cuppens, F. (2020, June). Net-
work functions virtualization access control as a service. In IFIP Annual Con-
ference on Data and Applications Security and Privacy (pp. 100-117). Springer,
Cham.

4. Smine, M., Cuppens, N., & Cuppens, F. (2018, October). Effectiveness and Im-
pact Measurements of a Diversification Based Moving Target Defense. In Interna-
tional Conference on Risks and Security of Internet and Systems (pp. 158-171).
Springer, Cham.

166

APPENDIX B

RÉSUMÉ EN FRANÇAIS

B.1 Contexte et motivation

Pour répondre rapidement et efficacement à la croissance des besoins de services
réseaux nouveaux et diversifiés, les réseaux d’aujourd’hui doivent être flexibles, adapt-
ables, réactifs, robustes et dotés de ressources importantes (capacité de traitement,
stockage et bande passante) [MS14]. Le modèle selon lequel sont construits les réseaux
des générations précédentes, qui repose sur du matériel propriétaire souvent forte-
ment couplé à une technologie particulière (IPv4 par exemple), n’est pas en mesure
de répondre efficacement et rapidement à ces besoins pour réaliser cette transforma-
tion. C’est donc de ce constat quiest né le paradigme de la virtualisation des fonctions
réseau (NFV). Avec la NFV, les fonctions réseau telles que le stockage, le calcul, le
filtrage et le NAT, peuvent être découplées du matériel, ce qui permet de les virtu-
aliser en Fonction de réseau virtuel (VNF) à installer n’importe où sur l’infrastructure
réseau, aussi bien physiquement que virtuellement. L’objectif est donc de simplifier la
gestion du cycle de vie des services réseau, d’optimiser les ressources et d’améliorer
l’efficacité opérationnelle et de permettre le développement rapide de nouveaux ser-
vices réseau tout en maximisant la flexibilité pour l’évolutivité et l’automatisation.

Avec le paradigme NFV, les entreprises sont tentées de virtualiser et d’externaliser
leurs infrastructures réseau vers le cloud afin de bénéficier des avantages de ce dernier.
Pour les fournisseurs de services Cloud, la NFV ouvre la porte à de nouveaux modèles
commerciaux très innovants et lucratifs tels que le Réseau en tant que service (NaaS)
[LRMO16]. Un grand nombre de fournisseurs de cloud computing proposent déjà un
large éventail de VNF prêts à l’emploi, par exemple l’équilibreur de charge [Gui18],
Passerelle de transit [AWS] et Pare-feu réseau AWS. Les entreprises peuvent alors
créer rapidement des services réseau efficaces en reliant divers VNF. Selon une étude
menée par une recherche méticuleuse [Ltd20], le marché mondial des NFV devrait
connaître une croissance annuelle de 34,9% pour atteindre 122 milliards d’ici 2027.

167

Malgré la reconnaissance unanime des avantages de l’externalisation des fonc-
tions réseau vers le cloud par le biais de la NFV, la sécurité reste l’une des préoc-
cupations essentielles et l’un des obstacles potentiels qui empêchent l’adoption à
grande échelle de la NFV [PHS+18, ZAR22]. Le NFV élargit considérablement la sur-
face d’attaque car il repose sur une large pile logicielle telle que des hyperviseurs
(par exemple KVM, Docker), des outils d’automatisation et de gestion (par exemple
OpenStack, Cloudify, Ansible) et des logiciels d’isolation du réseau et d’accélération
du plan de données (par exemple OpenVswitch, FD.io). Chacun de ces logiciels peut
exposer diverses vulnérabilités (par exemple CVE-2020-35498 et CVE-2020-3236),
décuplant ainsi les possibilités pour un adversaire de violer les spécifications des ser-
vices réseau de l’entreprise [ZAR22]. En outre, dans les plateformes NFV, les VNF
appartenant à différents locataires (entreprises) partagent souvent le même serveur
physique ou virtuel. Un locataire malveillant peut alors mener des attaques par canal
latéral [AQK+19,AWJ20] contre les VNF des autres locataires pour voler ou corrompre
des données sensibles, ou perturber les différentes fonctionnalités fournies par les
VNF. Youngjoo Shin et al. [SKH20] ont montré que l’accès partagé au cache du pro-
cesseur peut permettre à un locataire de déduire des informations telles que les règles
de filtrage du pare-feu appliquées dans le service réseau d’un autre locataire.

Le manque de confiance des entreprises et des organisations dans les environ-
nements NFV empêche l’externalisation des fonctions réseau vers le cloud. Cette
lacune critique doit être comblée par le domaine de la recherche NFV, qui doit être
alimenté par de nouvelles approches orientées sécurité pouvant être utilisées pour
améliorer la posture de sécurité des environnements NFV existants.

B.2 Objectif et questions de la recherche

L’objectif de cette thèse est d’améliorer la sécurité des services NFV. Pour atteindre
cet objectif, plusieurs questions de recherche doivent être répondues.

Tout d’abord, compte tenu du fait que les VNF sont des fonctions réseau logicielles
fonctionnant sur des infrastructures virtualisées, les menaces de sécurité liées aux
services réseau basés sur NFV peuvent être plus importantes que les services réseau
traditionnels, allant des menaces de virtualisation génériques [AQK+19], des fonctions
réseau physiques avant la virtualisation [BMMR+15], et des menaces introduites par
la combinaison de la technologie de virtualisation avec la mise en réseau [AWJ20]

168

telles que l’orchestration et la violation des politiques. Le premier sous-objectif est
donc d’établir une taxonomie complète des menaces spécifiques à la couche NFV
en répondant aux questions de recherche suivantes :

• QR-1: Quelles sont les menaces pour la sécurité des infrastructures NFV?

• QR-2: Quelles couches de l’infrastructure NFV sont concernées par quelles men-
aces de sécurité?

Pour surmonter certaines des menaces et des vulnérabilités liées aux infrastruc-
tures NFV, plusieurs mécanismes de sécurité ont été proposés dans la littérature.
L’un de ces mécanismes est le déploiement des politiques de contrôle d’accès. Par
conséquent, comme deuxième sous-objectif, nous nous concentrons sur l’étude des
mécanismes existants qui peuvent être utilisés pour appliquer des politiques de con-
trôle d’accès aux services NFV. Ensuite, afin d’évaluer et de comparer le déploiement
des politiques de contrôle d’accès existantes dans les solutions de services NFV,
le troisième sous-objectif consiste à identifier l’ensemble des propriétés pertinentes
qui doivent être satisfaites pour améliorer efficacement la sécurité des services NFV.
Nous remplissons les deux sous-objectifs précédents en répondant aux questions de
recherche suivantes:

• QR-3: Quel est l’état de l’art en ce qui concerne le déploiement des politiques de
contrôle d’accès sur les infrastructures de réseau virtualisées?

• QR-4: Quelles sont les propriétés pertinentes qui doivent être satisfaites par les
mécanismes du contrôle d’accès pour renforcer la sécurité des services NFv
dans les solutions existantes?

En répondant aux questions de recherche précédentes, nous observons que tous
les mécanismes de contrôle d’accès existants sur les infrastructures virtualisées souf-
frent d’au moins une des limitations suivantes. Premièrement, aucune des approches
existantes ne fournit de preuves formelles de l’exactitude du déploiement des politiques
de contrôle d’accès. Deuxièmement, la plupart des approches existantes s’appuient
sur des modèles de spécification qui ne sont pas assez expressifs pour traiter des
politiques de haut niveau spécifiées à l’aide d’autres modèles de contrôle d’accès tels
que RBAC [SCFY96], ORBAC [KBB+03], et ABAC [PFMP04]. Enfin, la plupart des
approches existantes nécessitent la modification et la gestion de l’infrastructure NFV

169

(NFVI), ce qui les rend non conformes à l’architecture ETSI-NFV et donc difficilement
utilisables en pratique. Par conséquent, pour surmonter la limitation précédente, nous
nous concentrons sur la définition d’un mécanisme de déploiement du contrôle d’accès
prouvé correct, hautement expressif et conforme à l’ETSI-NFV en étudiant les ques-
tions de recherche suivantes :

• QR-5.1: Comment définir un modèle de spécification de haut niveau suffisam-
ment expressif qui permet d’exprimer correctement des exigences modélisées à
l’aide de modèles de contrôle d’accès bien connus?

• QR-5.2: Comment raffiner correctement la politique de contrôle d’accès de haut
niveau vers des exigences concrètes et déployables?

• QR-5.3: Comment définir un déploiement conforme à l’ETSI-NFV des exigences
de niveau concret?

Les investigations que nous menons pour répondre aux questions de recherche
précédentes nous permettent de constater que les politiques de contrôle d’accès de
haut niveau sont souvent composées d’un ensemble d’autorisations et d’interdictions,
ce qui peut donner lieu à des conflits et des exceptions dans la politique à appliquer.
Par conséquent, comme cinquième sous-objectif, nous nous concentrons sur la déf-
inition d’une solution permettant un déploiement efficace des politiques de contrôle
d’accès mixtes de haut niveau (c’est-à-dire des politiques qui contiennent à la fois des
autorisations positives et négatives) contenant des exceptions dans une infrastructure
virtualisée. Pour répondre au sous-objectif précédent, nous étudions les questions de
recherche suivantes:

• QR-5.4: Les solutions proposées pour répondre aux QR-5.1, QR-5.2 et QR-5.3
peuvent-elles être utilisées pour déployer efficacement (c’est-à-dire en réduisant
au mieux le nombre de règles dans la politique de niveau concret ainsi que le
temps nécessaire pour évaluer une demande d’accès) des politiques de contrôle
d’accès mixtes de haut niveau contenant des exceptions?

• QR-5.5: Comment pouvons-nous améliorer les solutions proposées pour traiter
efficacement les politiques de contrôle d’accès mixtes de haut niveau contenant
des exceptions?

170

Comme toute autre infrastructure virtualisée, les services NFV peuvent être com-
promis et partiellement contrôlés par un adversaire. La revue de la littérature dans
la thèse montre que toutes les solutions existantes de déploiement des politiques de
contrôle d’accès ne prennent en compte que les adversaires externes qui visent à con-
tourner à distance la politique appliquée. Par conséquent, le sixième sous-objectif que
nous considérons dans cette thèse se concentre sur la proposition d’une solution qui
peut appliquer correctement les politiques de contrôle d’accès lorsque des adversaires
externes et internes sont considérés. Pour répondre au sous-objectif précédent, nous
étudions la question de recherche suivante:

• QR-5.6: Comment faire face à des adversaires internes et externes? Plus pré-
cisément, comment déployer correctement les politiques de contrôle d’accès lors-
qu’une partie inconnue du service NFV cible est compromise et contrôlée par un
adversaire?

Enfin, le déploiement de la politique de contrôle d’accès nécessite des ressources
en termes de calcul et de stockage, et a souvent un impact sur la fonctionnalité fournie
par le service NFV cible, c’est-à-dire en introduisant une latence due à l’analyse du
trafic et au déploiement des règles. La revue de la littérature effectuée nous permet
d’observer qu’aucune des solutions existantes de déploiement des politiques de con-
trôle d’accès sur les infrastructures virtualisées n’a envisagé de minimiser à la fois la
consommation de ressources et l’impact lié au déploiement de la politique de contrôle
d’accès. Par conséquent, le septième sous-objectif de cette thèse se concentre sur la
proposition d’une solution de déploiement de la politique de contrôle d’accès qui per-
met de minimiser à la fois les ressources nécessaires aux points de déploiement de la
politique et l’impact en termes de latence introduit par le déploiement de la politique de
contrôle d’accès. Nous atteignons le sous-objectif précédent en étudiant la question
de recherche suivante:

• QR-5.7: Comment définir un mécanisme de déploiement de la politique de con-
trôle d’accès qui minimise à la fois les ressources consommées et l’impact sur le
service NFV cible causé par le déploiement de la politique de contrôle d’accès?

171

B.3 Méthodologies et contributions

Pour atteindre les objectifs de recherche susmentionnés et répondre aux questions
de recherche définies ci-dessus, cette thèse apporte les contributions suivantes.

B.3.1 La sécurité des NFVs

Les technologies NFV sont de plus en plus utilisées par les opérateurs de commu-
nications électroniques pour répondre rapidement aux besoins du marché. Elles con-
sistent à la virtualisation des fonctions réseau, qui sont le plus souvent des applica-
tions réseau de télécommunication, notamment des routeurs, des pare-feu, des équili-
breurs de charge, etc. L’objectif principal est de permettre à ces fonctions de fonction-
ner comme des programmes logiciels ou des fonctions de réseau virtuelles (VNFs).
Comme les fournisseurs de services ne présentent pas de structures internes, les util-
isateurs peuvent avoir une capacité limitée de voir et de contrôler les ressources du
réseau [LV94]. Ces limitations entraînent intrinsèquement d’importantes menaces pour
la sécurité [DSVV17, LROT17, RLOH17, SECBC20, SECB+20]. L’architecture NFV est
composée de plusieurs composants (VNFs, NFVI, et NFV MANO). Chacun de ces
composants peut introduire des menaces différentes.

Dans cette contribution, nous abordons l’ensemble des menaces liées aux dif-
férentes couches qui composent le NFVI. La figure B.1 donne une taxonomie des
menaces existantes en fonction de la couche NFVI impactée.

Nous avons fais une comparaison des solutions existantes de déploiement des
politiques de contrôle d’accès dans la littérature, cette étude nous a permis de faire les
observations suivantes:

1. Toutes les approches existantes ne prennent en compte que les adversaires ex-
ternes qui visent à contourner la politique de contrôle d’accès appliquée en in-
teragissant à distance avec l’infrastructure cible. Aucune d’entre elles n’a étudié
le déploiement des politiques de contrôle d’accès en présence d’un adversaire
interne qui compromet une partie de l’infrastructure virtualisée.

2. Aucune des solutions proposées n’a fourni de preuves formelles de l’exactitude
des méthodes de raffinement et de déploiement des politiques de contrôle d’accès
utilisées.

172

Figure B.1 – NFVI threats

3. Près de la moitié des solutions proposées ne fournissent aucun résultat théorique
et/ou expérimental, ce qui rend impossible l’évaluation de leur efficacité. En par-
ticulier, seul un quart (5 sur 20) des solutions étudiées ont fourni des résultats
démontrant leur efficacité.

4. Peu d’approches étudiées ont proposé des méthodes pour trouver la solution op-
timale de déploiement de la politique de contrôle d’accès. En outre, toutes les
approches précédentes ont considéré soit l’optimisation des ressources (par ex-
emple, les CPU, la mémoire) utilisées pour appliquer la politique, soit l’impact (par
exemple, la latence introduite par les points de déploiement de la politique) sur
l’infrastructure virtualisée en raison de déploiement de la politique. Aucune des
solutions proposées n’a étudié à la fois l’optimisation des ressources nécessaires
et les impacts introduits.

5. Environ la moitié des approches étudiées permettent une grande expressivité

173

de la politique de contrôle d’accès à appliquer tout en proposant une stratégie de
déploiement légère (c’est-à-dire sans nécessiter la modification de l’infrastructure
de virtualisation sur laquelle le service réseau virtualisé fonctionne). Cependant,
seules deux des solutions proposées ont étudié la gestion des règles conflictuelles
dans la politique à déployer.

6. Enfin, nous pouvons clairement observer qu’aucune des approches étudiées n’a
été capable de remplir toutes les propriétés que nous avons identifiées.

B.3.2 Déploiement des politiques de contrôle d’accès sur les ser-
vices NFV

Comme nous l’avons vu dans la première cotribution, plusieurs approches de dé-
ploiement de politiques de contrôle d’accès dans les infrastructures virtualisées ont
été proposées. Nous avons constaté que la plupart de ces approches souffrent d’au
moins une des limitations suivantes. Premièrement, aucune des approches existantes
ne fournit de preuves formelles de l’exactitude du déploiement des politiques de con-
trôle d’accès. Deuxièmement, la plupart des approches existantes s’appuient sur des
modèles de spécification qui ne sont pas assez expressifs pour traiter des politiques de
haut niveau spécifiées à l’aide d’autres modèles de contrôle d’accès tels que RBAC,
ABAC et ORBAC. Enfin, plusieurs approches existantes nécessitent la modification
et la gestion du NFVI, ce qui les rend non conformes à l’architecture ETSI-NFV et
donc difficilement utilisables en pratique. Par conséquent, pour surmonter les limita-
tions précédentes, nous abordons dans cette contribution les questions de recherche
suivantes :

• QR-5.1: Comment définir un modèle de spécification de haut niveau suffisam-
ment expressif qui permet d’exprimer correctement les politiques spécifiées à
l’aide d’autres modèles de contrôle d’accès bien connus tels que RBAC, ABAC
et ORBAC?

• QR-5.2: Comment raffiner correctement la politique de contrôle d’accès de haut
niveau vers des exigences déployables de niveau concret?

• QR-5.3: Comment définir un déploiement conforme à l’ETSI-NFV des exigences
de niveau concret?

174

Pour répondre aux questions de recherche précédentes, nous proposons un mod-
èle formel qui fournit un contrôle d’accès défini par logiciel en tant que capacité de ser-
vice pour les services de réseau virtualisés. Tout d’abord, nous définissons un modèle
de spécification expressif permettant d’exprimer les exigences de contrôle d’accès de
haut niveau à appliquer aux services de réseaux virtualisés. Nous montrons ensuite
que notre modèle de spécification peut exprimer correctement les exigences de con-
trôle d’accès spécifiées à l’aide d’autres modèles de contrôle d’accès tels que RBAC,
ABAC et ORBAC. Ensuite, nous proposons une méthode prouvée correcte pour raf-
finer les exigences de contrôle d’accès de haut niveau vers une spécification concrète
d’application de type et domaine (DTE). Enfin, notre modèle définit une méthode de dé-
ploiement efficace et conforme à la norme ETSI-NFV, comme l’illustrent les différentes
évaluations expérimentales. En outre, notre méthode de déploiement de la politique
est évolutive car il est possible d’ajouter autant de points de déploiement que néces-
saire (par exemple, à des fins d’équilibrage de charge) sans affecter le fonctionnement
des services de réseau.

B.3.3 Un DTE basé sur les priorités pour la gestion des excep-
tions

Comme nous l’avons vu dans la deuxième contribution, plusieurs modèles sont pro-
posés pour gérer l’accès dans et entre les services NFV. Malheureusement, les tech-
niques identifiées souffrent d’au moins une des limitations suivantes : (1) La manière
dont la transformation de la politique de haut niveau vers une politique concrète dé-
ployable est effectuée n’est pas claire (par exemple, [Jae15,TCCM17]). (2) Le manque
de généralité, soit en exigeant la modification de l’infrastructure NFV pour permettre
le déploiement de la politique de contrôle d’accès dans les services NFV (par exem-
ple, [PHMZ16, PTH+17]), soit en ne prenant en charge qu’un modèle de politique de
contrôle d’accès spécifique (par exemple, [PHMZ16]).

Pour surmonter les limitations précédentes, nous proposons un modèle formel basé
sur Domain Type Enforcement (DTE), permettant de gérer le déploiement de politiques
exprimées à l’aide des modèles de contrôle d’accès les plus connus tels que RBAC,
ORBAC et ABAC. Ce modèle fournit une méthode formelle et efficace pour déployer
des politiques de contrôle d’accès au sein des services NFV sans nécessiter la mod-
ification de l’infrastructure NFV. Cependant, le modèle proposé précédemment a été

175

principalement conçu pour déployer des politiques de contrôle d’accès fermées. Ces
dernières sont connues pour souffrir d’un manque d’expressivité, c’est-à-dire lorsqu’il
faut exclure des cas spécifiques (par exemple, des exceptions) de règles générales qui
devraient toujours s’appliquer [ACCB07, CCB18]. À titre d’illustration, considérons un
service NFV composé de n VNFs (VNF1, · · · , VNFn) et supposons que tous les VNFs,
à l’exception de VNFi, puissent communiquer avec un service spécifique s. En utilisant
une politique mixte, les exigences précédentes peuvent être exprimées à l’aide des
deux règles suivantes :

• VNFi n’est pas autorisé à accéder à s.

• Tous les VNFs sont autorisés à accéder à s.

Cependant, l’utilisation de politiques fermées pour exprimer les exigences de contrôle
d’accès précédentes conduira à une politique composée de n− 1 règles d’autorisation
de haut niveau, qui peuvent introduire une latence élevée lorsqu’elles sont déployées
au service NFV.

Néanmoins, bien que les politiques mixtes soient bien adaptées pour exprimer des
exigences d’accès de haut niveau contenant des exceptions, il a été démontré dans
[ACCB07] que les politiques mixtes de contrôle d’accès de haut niveau contenant des
exceptions conduisent souvent à des configurations concrètes assez complexes. Par
conséquent, la question de recherche à laquelle nous voulons répondre dans cette
partie est la suivante :

• QR-5.4: Pouvons-nous utiliser la solution de déploiement des politiques de con-
trôle d’accès proposée pour déployer efficacement des politiques de contrôle
d’accès mixtes et complexes de haut niveau contenant des exceptions?

Ensuite, si la réponse à la question précédente est négative, la deuxième question de
recherche à laquelle il faut répondre est la suivante :

• QR-5.5: Comment pouvons-nous améliorer la solution proposée pour traiter effi-
cacement les politiques de contrôle d’accès mixtes et complexes de haut niveau
contenant des exceptions ?

Pour répondre aux questions de recherche QR-5.4 et QR-5.5, nous étudions la ges-
tion des exceptions de contrôle d’accès dans les spécifications concrètes basées sur

176

DTE. Ensuite, nous proposons une solution pour permettre un déploiement propre et
efficace de politiques de contrôle d’accès complexes contenant des exceptions et/ou
des règles de conflit sur les services NFV. Notre modèle permet un déploiement pro-
pre dans le sens où, par rapport à la politique de sécurité de haut niveau exprimée à
l’aide du modèle de spécification proposé à déployer, il n’introduit pas de règles de bas
niveau supplémentaires, ce qui permet à l’administrateur de sécurité de comprendre
et de mettre à jour directement la politique de niveau concret déployée. Notre modèle
s’appuie sur une approche prouvée correcte pour la gestion des exceptions dans la
spécification DTE. Les évaluations empiriques réalisées montrent que le modèle DTE
basé sur les priorités proposé est plus efficace pour déployer des politiques impor-
tantes et complexes qui contiennent des exceptions.

B.3.4 Déploiement optimal du contrôle d’accès sur les services
NFV

Comme nous l’avons vu dans la troisième contribution, la sécurité est une préoccu-
pation majeure dans les réseaux NFV car ils sont sensibles aux menaces liées aux
vulnérabilités du réseau, de la virtualisation et des utilisateurs malveillants. Une fois
exploitées, ces vulnérabilités conduisent souvent à une utilisation abusive affectant les
capacités fournies par les services NFV ainsi que la sécurité de leurs utilisateurs fin-
aux.

Dans les précédentes contributions de cette thèse, nous proposons un cadre de
déploiement du contrôle d’accès sur les services NFV pour atténuer les menaces
soulevées principalement par les vulnérabilités liées aux utilisateurs malveillants (par
exemple, accès/privilège non autorisé, flux non autorisé entre VNFs). Les approches
proposées ont pris en compte divers critères liés à la spécification, au raffinement et
au déploiement des politiques de contrôle d’accès, tels que l’expressivité du modèle
de contrôle d’accès proposé, la modélisation formelle et la vérification de l’exactitude
du raffinement et du déploiement des politiques de contrôle d’accès. Cependant, la
plupart des solutions susmentionnées n’ont pas pris en compte deux critères fonda-
mentaux.

Tout d’abord, les services NFV, comme toute autre infrastructure virtualisée, peu-
vent être compromis et partiellement contrôlés par un adversaire qui contrôle totale-
ment le service NFV cible, c’est-à-dire que tous les VNF qui composent le service NFV

177

sont contrôlés par l’adversaire, alors il n’y a rien à protéger par une approche de con-
trôle d’accès. Cependant, les solutions existantes ainsi que celles que nous avons pro-
posées dans les précédentes contributions ne prennent en compte que les adversaires
externes qui visent à contourner à distance la politique déployée. Par conséquent, la
capacité de gérer les adversaires internes et externes est un critère important à pren-
dre en compte lors de la définition de solutions pour le déploiement de la politique de
contrôle d’accès sur les services NFV. Deuxièmement, le déploiement de la politique
de contrôle d’accès nécessite des ressources en termes de calcul et de stockage, et
a souvent un impact sur la fonctionnalité fournie par le service NFV cible, par exem-
ple en introduisant une latence due à l’analyse du trafic et au déploiement des règles.
Néanmoins, toutes les solutions existantes de déploiement de la politique de contrôle
d’accès sur l’infrastructure NFV, y compris celles que nous avons proposées dans la
deuxième et la quatrième contribution, ne prennent pas en compte la minimisation de
la consommation de ressources et de l’impact lié au déploiement de la politique de con-
trôle d’accès, ce qui nous semble être un critère important à prendre en compte lors
de la conception de solutions pour le déploiement de la politique de contrôle d’accès
sur les services NFV.

A la lumière des observations précédentes, les questions de recherche auxquelles
nous cherchons à répondre dans cette contribution sont les suivantes:

• QR-5.6: Comment améliorer les solutions proposées précédemment pour faire
face aux adversaires internes? Plus précisement, comment déployer correcte-
ment les politiques de contrôle d’accès lorsqu’une partie inconnue du service
NFV est contrôlée par un adversaire?

• QR-5.7: Comment étendre notre cadre de déploiement de la politique de contrôle
d’accès pour minimiser à la fois les ressources consommées et l’impact causé
par le déploiement de la politique de contrôle d’accès?

Pour répondre aux questions de recherche précédentes, nous proposons les con-
tributions suivantes :

• Nous considérons un modèle d’adversaire fort : Contrairement aux approches
proposées qui ne considèrent qu’un adversaire externe, nous supposons que
nous avons affaire à un adversaire interne qui peut contrôler un ou plusieurs
nœuds (VNF) qui composent le service NFV. En outre, nous supposons que les
nœuds compromis ne sont pas connus.

178

• Nous proposons une modélisation formelle du déploiement optimal de la poli-
tique de contrôle d’accès permettant de modéliser et de quantifier les ressources
consommées ainsi que l’impact en termes de latence qui doit être généré par
le déploiement de la politique de contrôle d’accès. Le modèle proposé permet
de prouver formellement l’exactitude du déploiement de la politique de contrôle
d’accès.

• Nous montrons que le problème du déploiement optimal des politiques de con-
trôle d’accès est un problème d’optimisation multi-objectifs non linéaire et nous
utilisons une amélioration de l’algorithme génétique de tri non dominé NSGA
II [WSZ+18] pour le résoudre.

• Nous menons une expérience dans un environnement Internet émulé, NS-3 [ns3],
pour évaluer les solutions de déploiement de la politique de contrôle d’accès.

179

BIBLIOGRAPHY

[AA19] Ibraheem Alothaimeen and David Arditi. Overview of multi-objective
optimization approaches in construction project management. Multicri-
teria Optimization-Pareto-Optimality and Threshold-Optimality, 2019.

[ABET16] Omnia AbdElRahem, Ayman M Bahaa-Eldin, and Ayman Taha. Virtu-
alization security: A survey. In 2016 11th International Conference on
Computer Engineering & Systems (ICCES), pages 32–40. IEEE, 2016.

[ACCB07] JG Alfaro, Frederic Cuppens, and Nora Cuppens-Boulahia. Manage-
ment of exceptions on access control policies. In IFIP International
Information Security Conference, pages 97–108. Springer, 2007.

[AEKEBB+03] Anas Abou El Kalam, Rania El Baida, Philippe Balbiani, Salem Benfer-
hat, Frédéric Cuppens, Yves Deswarte, Alexandre Miege, Claire Saurel,
and Gilles Trouessin. Or-bac: un modèle de contrôle d’accès basé sur
les organisations. Cahiers francophones de la recherche en sécurité
de l’information, 1:30–43, 2003.

[AH21] Yunusa Simpa Abdulsalam and Mustapha Hedabou. Security and pri-
vacy in cloud computing: Technical review. Future Internet, 14(1):11,
2021.

[AKS13] Naveed Ahmad, Ayesha Kanwal, and Muhammad Awais Shibli. Survey
on secure live virtual machine (vm) migration in cloud. In 2013 2nd Na-
tional Conference on Information Assurance (NCIA), pages 101–106.
IEEE, 2013.

[All90] Arnold O Allen. Probability, statistics, and queueing theory. Gulf Pro-
fessional Publishing, 1990.

[AQK+19] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V Krishnamurthy,
Thomas La Porta, Patrick McDaniel, and Lisa M Marvel. Catch me if you

180

can: A closer look at malicious co-residency on the cloud. IEEE/ACM
Transactions on Networking, 27(2):560–576, 2019.

[ASM19] Rashid Amin, Nadir Shah, and Waqar Mehmood. Enforcing optimal acl
policies using k-partite graph in hybrid sdn. Electronics, 8(6):604, 2019.

[ASS13] MR Anala, Jyoti Shetty, and G Shobha. A framework for secure live
migration of virtual machines. In 2013 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
pages 243–248. IEEE, 2013.

[AWJ20] Nawaf Alhebaishi, Lingyu Wang, and Sushil Jajodia. Modeling and
mitigating security threats in network functions virtualization (nfv). In
IFIP Annual Conference on Data and Applications Security and Privacy,
pages 3–23. Springer, 2020.

[AWS] Aws transit gateway. https://docs.aws.amazon.com/vpc/latest/
tgw/what-is-transit-gateway.html. Accessed: Juin 14,2022.

[AZZ+20] Ihsan H Abdulqadder, Shijie Zhou, Deqing Zou, Israa T Aziz, and Syed
Muhammad Abrar Akber. Multi-layered intrusion detection and preven-
tion in the sdn/nfv enabled cloud of 5g networks using ai-based defense
mechanisms. Computer Networks, 179:107364, 2020.

[BBKL14] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann.
Tosca: portable automated deployment and management of cloud ap-
plications. In Advanced Web Services, pages 527–549. Springer, 2014.

[BBS+12] Carel Nicolaas Bezuidenhout, Shamim Bodhanya, Thawani Sanjika,
Milindi Sibomana, and Gordon Louis Nelson Boote. Network-analysis
approaches to deal with causal complexity in a supply network. Inter-
national Journal of Production Research, 50(7):1840–1849, 2012.

[BD01] H-G Beyer and Kalyanmoy Deb. On self-adaptive features in real-
parameter evolutionary algorithms. IEEE Transactions on evolutionary
computation, 5(3):250–270, 2001.

181

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html

[BHNGN+19] Antonio Benítez-Hidalgo, Antonio J. Nebro, José García-Nieto, Izaskun
Oregi, and Javier Del Ser. jMetalPy: A Python framework for multi-
objective optimization with metaheuristics. Swarm and Evolutionary
Computation, 51, dec 2019.

[BLP+15] Cataldo Basile, Antonio Lioy, Christian Pitscheider, Fulvio Valenza, and
Marco Vallini. A novel approach for integrating security policy enforce-
ment with dynamic network virtualization. In Proceedings of the 2015
1st IEEE Conference on Network Softwarization (NetSoft), pages 1–5.
IEEE, 2015.

[BMMR+15] A Belmonte Martin, L Marinos, E Rekleitis, G Spanoudakis, and
NE Petroulakis. Threat landscape and good practice guide for software
defined networks/5g. 2015.

[BMS+20] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Automated optimal firewall orchestration and
configuration in virtualized networks. In NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium, pages 1–7. IEEE,
2020.

[BMSV20] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio
Valenza. Short paper: Automatic configuration for an optimal channel
protection in virtualized networks. In Proceedings of the 2nd Workshop
on Cyber-Security Arms Race, pages 25–30, 2020.

[BMSV21] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio
Valenza. A novel approach for security function graph configuration
and deployment. In 2021 IEEE 7th International Conference on Net-
work Softwarization (NetSoft), pages 457–463. IEEE, 2021.

[BP+03] Michael R Bussieck, Armin Pruessner, et al. Mixed-integer nonlin-
ear programming. SIAG/OPT Newsletter: Views & News, 14(1):19–22,
2003.

[BR+11] Anthony Bisong, M Rahman, et al. An overview of the security concerns
in enterprise cloud computing. arXiv preprint arXiv:1101.5613, 2011.

182

[BSS+96] Lee Badger, Daniel F Sterne, David L Sherman, Kenneth M Walker, and
Sheila A Haghighat. A domain and type enforcement unix prototype.
Computing Systems, 9(1):47–83, 1996.

[BVL+19] Cataldo Basile, Fulvio Valenza, Antonio Lioy, Diego R Lopez, and An-
tonio Pastor Perales. Adding support for automatic enforcement of se-
curity policies in nfv networks. IEEE/ACM Transactions on Networking,
27(2):707–720, 2019.

[CCB18] Frédéric Cuppens and Nora Cuppens-Boulahia. Stratification based
model for security policy with exceptions and contraries to duty. In From
Database to Cyber Security, pages 78–103. Springer, 2018.

[CGS+17] Anita Choudhary, Mahesh Chandra Govil, Girdhari Singh, Lalit K
Awasthi, Emmanuel S Pilli, and Divya Kapil. A critical survey of live
virtual machine migration techniques. Journal of Cloud Computing,
6(1):1–41, 2017.

[Cho13] Te-Shun Chou. Security threats on cloud computing vulnerabilities.
AIRCC’s International Journal of Computer Science and Information
Technology, 5(3):79–88, 2013.

[Cla00] Paul C Clark. Policy-enhanced linux. Technical report, NAVAL POST-
GRADUATE SCHOOL MONTEREY CA, 2000.

[CSS+12] Ying Chen, Qingni Shen, Pengfei Sun, Yangwei Li, Zhong Chen, and Si-
han Qing. Reliable migration module in trusted cloud based on security
level-design and implementation. In 2012 IEEE 26th International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum,
pages 2230–2236. IEEE, 2012.

[DB05] Marco Dorigo and Christian Blum. Ant colony optimization theory: A
survey. Theoretical computer science, 344(2-3):243–278, 2005.

[DD90] Sajal K Das and Narsingh Deo. Parallel hungarian algorithm. Computer
Systems Science and Engineering, 5(3), 1990.

[DD98] Indraneel Das and John E Dennis. Normal-boundary intersection: A
new method for generating the pareto surface in nonlinear multicriteria

183

optimization problems. SIAM journal on optimization, 8(3):631–657,
1998.

[DKP+17] Sevil Dräxler, Holger Karl, Manuel Peuster, Hadi Razzaghi Kouchak-
saraei, Michael Bredel, Johannes Lessmann, Thomas Soenen, Wouter
Tavernier, Sharon Mendel-Brin, and George Xilouris. Sonata: Ser-
vice programming and orchestration for virtualized software networks.
In 2017 IEEE international conference on communications workshops
(ICC Workshops), pages 973–978. IEEE, 2017.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE trans-
actions on evolutionary computation, 6(2):182–197, 2002.

[DSPA18] Prachi Deshpande, Subhash Chander Sharma, Sateesh K Peddoju,
and Ajith Abraham. Security and service assurance issues in cloud
environment. International Journal of System Assurance Engineering
and Management, 9(1):194–207, 2018.

[DSVV17] Luca Durante, Lucia Seno, Fulvio Valenza, and Adriano Valenzano. A
model for the analysis of security policies in service function chains.
In 2017 IEEE Conference on Network Softwarization (NetSoft), pages
1–6. IEEE, 2017.

[DTM10] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. Infrastruc-
ture as a service security: Challenges and solutions. In 2010 the 7th
International Conference on Informatics and Systems (INFOS), pages
1–8. IEEE, 2010.

[E+14] NFVISG ETSI et al. Network functions virtualisation (nfv); management
and orchestration. NFV-MAN, 1:v0, 2014.

[Ehr05] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Sci-
ence & Business Media, 2005.

[ELP00] MM Eusuff, KE Lansey, and F Pasha. Shuffled frog leaping algorithm:
a memetic meta-heuristic for combinatorial optimization. J. Heuristics,
2000.

184

[EMEBHM16] Khalid El Makkaoui, Abdellah Ezzati, Abderrahim Beni-Hssane, and
Cina Motamed. Cloud security and privacy model for providing secure
cloud services. In 2016 2nd international conference on cloud com-
puting technologies and applications (CloudTech), pages 81–86. IEEE,
2016.

[ENI22] ENISA. Nfv security in 5g - challenges and best prac-
tices. https://www.enisa.europa.eu/publications/
nfv-security-in-5g-challenges-and-best-practices/@@download/
fullReport, 2022. Accessed: Juin 14,2022.

[Ers13] Mehmet Ersue. Etsi nfv management and orchestration-an overview.
Presentation at the IETF, 88, 2013.

[FJKK17] Mahdi Daghmehchi Firoozjaei, Jaehoon Paul Jeong, Hoon Ko, and Hy-
oungshick Kim. Security challenges with network functions virtualiza-
tion. Future Generation Computer Systems, 67:315–324, 2017.

[FSG+01] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and
Ramaswamy Chandramouli. Proposed nist standard for role-based ac-
cess control. ACM Transactions on Information and System Security
(TISSEC), 4(3):224–274, 2001.

[G+16] Cybersecurity Working Group et al. White paper: Considerations for
securing sdn/nfv, 2016.

[GMW10] Oscar Garcia-Morchon and Klaus Wehrle. Modular context-aware ac-
cess control for medical sensor networks. In Proceedings of the 15th
ACM symposium on Access control models and technologies, pages
129–138, 2010.

[GS18] Daniel Guija and Muhammad Shuaib Siddiqui. Identity and access con-
trol for micro-services based 5g nfv platforms. In Proceedings of the
13th International Conference on Availability, Reliability and Security,
pages 1–10, 2018.

[Gui18] Developer Guide. Amazon elastic load balancing. 2018.

185

https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport

[Gun18] Nyoman Gunantara. A review of multi-objective optimization: Methods
and its applications. Cogent Engineering, 5(1):1502242, 2018.

[GWS10] Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. Understand-
ing cloud computing vulnerabilities. IEEE Security & privacy, 9(2):50–
57, 2010.

[GXWS20] Xing Gao, Jidong Xiao, Haining Wang, and Angelos Stavrou. Under-
standing the security implication of aborting live migration. IEEE Trans-
actions on Cloud Computing, 2020.

[Har12] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, Octo-
ber 2012.

[HCSL12] Yu-Lun Huang, Borting Chen, Ming-Wei Shih, and Chien-Yu Lai. Secu-
rity impacts of virtualization on a network testbed. In 2012 IEEE Sixth
International Conference on Software Security and Reliability, pages
71–77. IEEE, 2012.

[HGJL15] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Net-
work function virtualization: Challenges and opportunities for innova-
tions. IEEE communications magazine, 53(2):90–97, 2015.

[HKKT10] Kevin Hamlen, Murat Kantarcioglu, Latifur Khan, and Bhavani Thurais-
ingham. Security issues for cloud computing. International Journal of
Information Security and Privacy (IJISP), 4(2):36–48, 2010.

[HNG94] Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. A niched
pareto genetic algorithm for multiobjective optimization. In Proceedings
of the first IEEE conference on evolutionary computation. IEEE world
congress on computational intelligence, pages 82–87. Ieee, 1994.

[HRFMF13] Keiko Hashizume, David G Rosado, Eduardo Fernández-Medina, and
Eduardo B Fernandez. An analysis of security issues for cloud comput-
ing. Journal of internet services and applications, 4(1):1–13, 2013.

[IMZ16] Tariqul Islam, D Manivannan, and Sherali Zeadally. A classification and
characterization of security threats in cloud computing. International
Journal of Next-Generation Computing, pages 01–17, 2016.

186

[Jae15] Bernd Jaeger. Security orchestrator: Introducing a security orchestra-
tor in the context of the etsi nfv reference architecture. In 2015 IEEE
Trustcom/BigDataSE/ISPA, volume 1, pages 1255–1260. IEEE, 2015.

[JJW+21] Wei Jiang, Wanchun Jiang, Jianxin Wang, Jianliang Gao, and Neal
Xiong. Orp: An online rule placement scheme to optimize the traffic
overhead for data center networks. IEEE Transactions on Network Sci-
ence and Engineering, 8(3):2183–2197, 2021.

[JSGI09] Meiko Jensen, Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. On
technical security issues in cloud computing. In 2009 IEEE international
conference on cloud computing, pages 109–116. Ieee, 2009.

[Kak04] MM Raghuwanshi1and OG Kakde. Survey on multiobjective evolution-
ary and real coded genetic algorithms. In Proceedings of the 8th Asia
Pacific symposium on intelligent and evolutionary systems, pages 150–
161. Citeseer, 2004.

[KBB+03] Anas Abou El Kalam, R El Baida, Philippe Balbiani, Salem Benferhat,
Frédéric Cuppens, Yves Deswarte, Alexandre Miege, Claire Saurel, and
Gilles Trouessin. Organization based access control. In Proceedings
POLICY 2003. IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks, pages 120–131. IEEE, 2003.

[KE95] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks,
volume 4, pages 1942–1948. IEEE, 1995.

[Ken53] David G Kendall. Stochastic processes occurring in the theory of
queues and their analysis by the method of the imbedded markov chain.
The Annals of Mathematical Statistics, pages 338–354, 1953.

[KSK14] ES Phalguna Krishna, E Sandhya, and M Ganesh Karthik. Managing
ddos attacks on virtual machines by segregated policy management.
Global Journal of Computer Science and Technology, 2014.

[KYNL20] Sunghwan Kim, Seunghyun Yoon, Jargalsaikhan Narantuya, and Hyuk
Lim. Secure collecting, optimizing, and deploying of firewall rules in
software-defined networks. IEEE Access, 8:15166–15177, 2020.

187

[LDB+21] Rui Li, Bertrand Decocq, Anne Barros, Yiping Fang, and Zhiguo Zeng.
Complexity in 5g network applications and use cases. In 31st Euro-
pean Safety and Reliability Conference, pages 3054–3061. Research
Publishing Services, 2021.

[LL21] Pei-Hsuan Lee and Fuchun Joseph Lin. Tackling iot scalability with 5g
nfv-enabled network slicing. Advances in Internet of Things, 11(3):123–
139, 2021.

[LPS13] Seungjoon Lee, Manish Purohit, and Barna Saha. Firewall placement
in cloud data centers. In Proceedings of the 4th annual Symposium on
Cloud Computing, pages 1–2, 2013.

[LQ16] Xin Li and Chen Qian. An nfv orchestration framework for interference-
free policy enforcement. In 2016 IEEE 36th international conference on
distributed computing systems (ICDCS), pages 649–658. IEEE, 2016.

[LRMO16] Diego Lopez, Andy Reid, Antonio Manzalini, and Marie-Paule Odini.
Impact of sdn/nfv on business models. IEEE Softwarization, 2016.

[LROT17] Shankar Lal, Sowmya Ravidas, Ian Oliver, and Tarik Taleb. Assuring vir-
tual network function image integrity and host sealing in telco cloue. In
2017 IEEE International Conference on Communications (ICC), pages
1–6. IEEE, 2017.

[LTD17] Shankar Lal, Tarik Taleb, and Ashutosh Dutta. Nfv: Security threats and
best practices. IEEE Communications Magazine, 55(8):211–217, 2017.

[Ltd20] Meticulous Market Research Pvt. Ltd. Network function virtualization
(nfv) market by component, virtualized network function, application,
end user - global forecast to 2027. Technical report, Meticulous Re-
search, 2020.

[LV94] Thomas DC Little and Dinesh Venkatesh. Prospects for interactive
video-on-demand. IEEE multimedia, 1(3):14–24, 1994.

[LWZY06] Bo Long, Xiaoyun Wu, Zhongfei Zhang, and Philip S Yu. Unsuper-
vised learning on k-partite graphs. In Proceedings of the 12th ACM

188

SIGKDD international conference on Knowledge discovery and data
mining, pages 317–326, 2006.

[MA17] Chirag N Modi and Kamatchi Acha. Virtualization layer security chal-
lenges and intrusion detection/prevention systems in cloud computing:
a comprehensive review. the Journal of Supercomputing, 73(3):1192–
1234, 2017.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
flow: enabling innovation in campus networks. ACM SIGCOMM com-
puter communication review, 38(2):69–74, 2008.

[MGT+15] Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo
Jacob. Toward an sdn-enabled nfv architecture. IEEE Communications
Magazine, 53(4):187–193, 2015.

[MI+95] Tadahiko Murata, Hisao Ishibuchi, et al. Moga: multi-objective genetic
algorithms. In IEEE international conference on evolutionary computa-
tion, volume 1, pages 289–294. IEEE Piscataway, NJ, USA, 1995.

[MR20] Andrés F Murillo and Sandra Rueda. Access control policies for net-
work function virtualization environments in industrial control systems.
In 2020 4th Conference on Cloud and Internet of Things (CIoT), pages
17–24. IEEE, 2020.

[MRD18] Leopoldo AF Mauricio, Marcelo G Rubinstein, and Otto Carlos MB
Duarte. Aclflow: An nfv/sdn security framework for provisioning and
managing access control lists. In 2018 9th International Conference on
the Network of the Future (NOF), pages 44–51. IEEE, 2018.

[MS14] Sunilkumar S Manvi and Gopal Krishna Shyam. Resource manage-
ment for infrastructure as a service (iaas) in cloud computing: A survey.
Journal of network and computer applications, 41:424–440, 2014.

[ns3] ns-3 | a discrete-event network simulator for internet systems.

[odl] The opendaylight platform. https://www.opendaylight.org/. Ac-
cessed: January 30th,2019.

189

https://www.opendaylight.org/

[ofm] Openflow manager. https://github.com/CiscoDevNet/
OpenDaylight-Openflow-App. Accessed: January 30th,2019.

[OKJ+17] Sanghak Oh, Eunsoo Kim, Jaehoon Jeong, Hoon Ko, and Hyoungshick
Kim. A flexible architecture for orchestrating network security functions
to support high-level security policies. In Proceedings of the 11th Inter-
national Conference on Ubiquitous Information Management and Com-
munication, pages 1–5, 2017.

[Pag13] Pierluigi Paganini. Hardware attacks, backdoors, and electronic com-
ponent qualification. InfoSec Institute, 2013.

[Pat19] Montida Pattaranantakul. Moving towards software-defined security in
the era of NFV and SDN. PhD thesis, Université Paris-Saclay, 2019.

[PBB13] Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. A survey of
security issues in hardware virtualization. ACM Computing Surveys
(CSUR), 45(3):1–34, 2013.

[PFMP04] Torsten Priebe, Eduardo B Fernández, Jens I Mehlau, and Günther Per-
nul. A pattern system for access control. In Research Directions in Data
and Applications Security XVIII, pages 235–249. Springer, 2004.

[PHMZ16] Montida Pattaranantakul, Ruan He, Ahmed Meddahi, and Zonghua
Zhang. Secmano: Towards network functions virtualization (nfv)
based security management and orchestration. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 598–605. IEEE, 2016.

[PHS+18] Montida Pattaranantakul, Ruan He, Qipeng Song, Zonghua Zhang, and
Ahmed Meddahi. Nfv security survey: From use case driven threat
analysis to state-of-the-art countermeasures. IEEE Communications
Surveys & Tutorials, 20(4):3330–3368, 2018.

[PHZ+18] Montida Pattaranantakul, Ruan He, Zonghua Zhang, Ahmed Meddahi,
and Ping Wang. Leveraging network functions virtualization orches-
trators to achieve software-defined access control in the clouds. IEEE
Transactions on Dependable and Secure Computing, 2018.

190

https://github.com/CiscoDevNet/OpenDaylight-Openflow-App
https://github.com/CiscoDevNet/OpenDaylight-Openflow-App

[PTH+17] Montida Pattaranantakul, Yuchia Tseng, Ruan He, Zonghua Zhang, and
Ahmed Meddahi. A first step towards security extension for nfv orches-
trator. In Proceedings of the ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, pages
25–30, 2017.

[RAB+16] François Reynaud, François-Xavier Aguessy, Olivier Bettan, Mathieu
Bouet, and Vania Conan. Attacks against network functions virtualiza-
tion and software-defined networking: State-of-the-art. In 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pages 471–476. IEEE,
2016.

[RLOH17] Sowmya Ravidas, Shankar Lal, Ian Oliver, and Leo Hippelainen. In-
corporating trust in nfv: Addressing the challenges. In 2017 20th Con-
ference on Innovations in Clouds, Internet and Networks (ICIN), pages
87–91. IEEE, 2017.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 199–212, 2009.

[SAD+12] Ivan Studnia, Eric Alata, Yves Deswarte, Mohamed Kaâniche, and Vin-
cent Nicomette. Survey of security problems in cloud computing virtual
machines. In Computer and Electronics Security Applications Rendez-
vous (C&ESAR 2012). Cloud and security: threat or opportunity, pages
p–61, 2012.

[SAS12] Jyoti Shetty, MR Anala, and G Shobha. A survey on techniques of se-
cure live migration of virtual machine. International Journal of Computer
Applications, 39(12):34–39, 2012.

[SBJ+] Nat Sakimura, John Bradley, Michael B. Jones, Breno de Medeiros,
and Chuck Mortimore. OpenID connect core 1.0. https://openid.
net/specs/openid-connect-core-1_0.html.

191

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

[SCFY96] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E
Youman. Role-based access control models. Computer, 29(2):38–47,
1996.

[SD94] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization
using nondominated sorting in genetic algorithms. Evolutionary com-
putation, 2(3):221–248, 1994.

[SECB+20] Manel Smine, David Espes, Nora Cuppens-Boulahia, Frédéric Cup-
pens, and Marc-Oliver Pahl. A priority-based domain type enforcement
for exception management. In International Symposium on Founda-
tions and Practice of Security, pages 65–81. Springer, 2020.

[SECBC20] Manel Smine, David Espes, Nora Cuppens-Boulahia, and Frédéric
Cuppens. Network functions virtualization access control as a service.
In IFIP Annual Conference on Data and Applications Security and Pri-
vacy, pages 100–117. Springer, 2020.

[SECCB20] Luis Suarez, David Espes, Frédéric Cuppens, and Nora Cuppens-
Boulahia. Formalization of a security access control model for the 5g
system. 2020.

[SJK+14] Nick Shelly, Ethan J Jackson, Teemu Koponen, Nick McKeown, and
Jarno Rajahalme. Flow caching for high entropy packet fields. In Pro-
ceedings of the third workshop on Hot topics in software defined net-
working, pages 151–156, 2014.

[SKH20] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. Inferring firewall
rules by cache side-channel analysis in network function virtualization.
In IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions, pages 1798–1807. IEEE, 2020.

[SLCL09] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Se-
cure in-vm monitoring using hardware virtualization. In Proceedings of
the 16th ACM conference on Computer and communications security,
pages 477–487, 2009.

192

[SM14] Norshazrul Azman Bin Sulaiman and Hideo Masuda. Evaluation of a
secure live migration of virtual machines using ipsec implementation. In
2014 IIAI 3rd International Conference on Advanced Applied Informat-
ics, pages 687–693. IEEE, 2014.

[Smi] Manel Smine. DTE engine. https://github.com/msmine/
vnf-access-control-as-a-service.

[SP97] Rainer Storn and Kenneth Price. Differential evolution–a simple and ef-
ficient heuristic for global optimization over continuous spaces. Journal
of global optimization, 11(4):341–359, 1997.

[SV13] Thomas L Saaty and Luis G Vargas. The analytic network process.
In Decision making with the analytic network process, pages 1–40.
Springer, 2013.

[Tac17] O Tacker. Tacker-openstack nfv orchestration, 2017. Accessed: Jan-
uary 25th,2019.

[TCCM17] Tran Quang Thanh, Stefan Covaci, Marius Corici, and Thomas
Magedanz. Access control management and orchestration in nfv en-
vironment. In 2017 IFIP Networking Conference (IFIP Networking) and
Workshops, pages 1–2. IEEE, 2017.

[TKJ16] Tarik Taleb, Adlen Ksentini, and Riku Jantti. " anything as a service" for
5g mobile systems. IEEE Network, 30(6):84–91, 2016.

[VLA87] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In
Simulated annealing: Theory and applications, pages 7–15. Springer,
1987.

[VNF] Vnffg. https://docs.openstack.org/tacker/latest/user/vnffg_
usage_guide.html. Accessed: January 1,2019.

[WBO15] Candid Wueest, Mario Ballano Barcena, and Laura O’Brien. Mistakes
in the iaas cloud could put your data at risk. Symantec, 2015.

193

https://github.com/msmine/vnf-access-control-as-a-service
https://github.com/msmine/vnf-access-control-as-a-service
https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html
https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html

[WCHW08] Chun Wang, Hao-zhong Cheng, Ze-chun Hu, and Yi Wang. Distribution
system optimization planning based on plant growth simulation algo-
rithm. Journal of Shanghai Jiaotong University (Science), 13(4):462–
467, 2008.

[WSZ+18] Yanfeng Wang, Yongpeng Shen, Xuncai Zhang, Guangzhao Cui, and
Junwei Sun. An improved non-dominated sorting genetic algorithm-ii
(insga-ii) applied to the design of dna codewords. Mathematics and
Computers in Simulation, 151:131–139, 2018.

[XX12] Zhifeng Xiao and Yang Xiao. Security and privacy in cloud computing.
IEEE communications surveys & tutorials, 15(2):843–859, 2012.

[YF16] Wei Yang and Carol Fung. A survey on security in network functions
virtualization. In 2016 IEEE NetSoft Conference and Workshops (Net-
Soft), pages 15–19. IEEE, 2016.

[YG15] Sadiq T Yakasai and Chris G Guy. Flowidentity: Software-defined net-
work access control. In 2015 IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN), pages 115–
120. IEEE, 2015.

[YMH+18] Rehana Yasmin, Mohammad Reza Memarian, Shohreh Hosseinzadeh,
Mauro Conti, and Ville Leppänen. Investigating the possibility of data
leakage in time of live vm migration. In Cyber Threat Intelligence, pages
259–279. Springer, 2018.

[YT05] Eric Yuan and Jin Tong. Attributed based access control (abac) for
web services. In IEEE International Conference on Web Services
(ICWS’05). IEEE, 2005.

[ZAR22] Moubarak Zoure, Toufik Ahmed, and Laurent Réveillére. Network ser-
vices anomalies in nfv: Survey, taxonomy, and verification methods.
IEEE Transactions on Network and Service Management, 2022.

[ZCP+15] Letterio Zuccaro, Federico Cimorelli, F Delli Priscoli, C Gori Giorgi, Sal-
vatore Monaco, and Vincenzo Suraci. Distributed control in virtualized
networks. Procedia Computer Science, 56:276–283, 2015.

194

[ZLJ21] Wenhui Zhang, Peng Liu, and Trent Jaeger. Analyzing the overhead of
file protection by linux security modules. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security,
pages 393–406, 2021.

[ZPL+20] Danyang Zheng, Chengzong Peng, Xueting Liao, Ling Tian,
Guangchun Luo, and Xiaojun Cao. Towards latency optimization in hy-
brid service function chain composition and embedding. In IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications, pages
1539–1548. IEEE, 2020.

[ZT98] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multi-
objective optimization: The strength pareto approach. TIK-report, 43,
1998.

195

Titre : La sécurité définie par le logiciel pour la virtualisation des fonctions réseaux

Mot clés : Virtualisation des fonctions réseau (NFV), contrôle d’accès (AC), déploiement des

politiques, gestion des exceptions, optimisation

Résumé : La technologie NFV (Network Func-
tion Virtualization) a été proposé pour amélio-
rer la flexibilité du déploiement et la rentabi-
lité des services de réseau et elle permet un
meilleur partage des informations entre leurs
composants. Malgré les avantages susmen-
tionnés, les infrastructures NFV existantes
souffrent de plusieurs problèmes de sécu-
rité. L’objectif de cette thèse est d’améliorer
la sécurité des services NFVs. Pour atteindre
cet objectif, nous avons proposé un certain
nombre de contributions. Tout d’abord, nous
avons étudié les problèmes et les menaces de
sécurité existants et potentiels dans les infra-
structures NFVs. Ensuite, nous les avons clas-
sés en fonction des composants qui sont af-

fectés par ces menaces. Puis, nous avons étu-
dié les différents mécanismes de sécurité qui
peuvent être utilisés pour réduire ces risques.
Cette étude nous a permis de réaliser que le
déploiement des politiques de contrôle d’ac-
cès au niveau des services NFV permet d’at-
ténuer plusieurs problèmes de sécurité. Ce
constat nous a conduit à examiner les solu-
tions existantes pour le déploiement des poli-
tiques de contrôle d’accès dans les infrastruc-
tures NFV. Troisièmement, nous fournissons
un aperçu comparatif complet des solutions
existantes en se basant sur plusieurs proprié-
tés, y compris le modèle d’adversaire consi-
déré, l’efficacité, la véracité et l’optimalité

Title: Software-defined Security for Network Function Virtualization

Keywords: Network Functions Virtualization (NFV), Access Control (AC), policy enforcement

(PE), Exception management, Optimization

Abstract: Network Function Virtualization
(NFV) technology has been proposed to im-
prove the deployment flexibility and cost ef-
fectiveness of network services and allows for
better information sharing between their com-
ponents. Despite the aforementioned bene-
fits, existing NFV infrastructures suffer from
several security issues. The objective of this
thesis is to improve the security of NFV ser-
vices. To achieve this goal, we proposed a
number of contributions. First, we studied the
existing and potential security problems and
threats in NFV infrastructures. Then, we clas-
sified them according to the components that

are affected by these threats. Then, we stud-
ied the different security mechanisms that can
be used to reduce these risks. This study al-
lowed us to realize that the deployment of ac-
cess control policies at the NFV service level
can mitigate several security issues. This re-
alization led us to examine existing solutions
for deploying access control policies in NFV in-
frastructures. Third, we provide a comprehen-
sive comparative overview of existing solutions
based on several properties, including the ad-
versary model considered, effectiveness, ve-
racity, and optimality.

	Introduction
	Context and Motivation
	Research Goal and Questions
	Methodologies and Contributions
	Outline of dissertation

	Access Control in NFV: State of the Art & BACKGROUND
	Introduction
	NFV architecture
	NFV Infrastructure (NFVI)
	Virtual Network Functions (VNFs)
	NFV Management and Orchestration (NFV MANO)

	Security in NFV
	Security issues related to NFVI
	Security issues related to VNF
	Security issues related to NFV MANO
	Common security issues for the three components:

	Security Countermeasures
	Access Control in NFV
	SDN-based Access Control
	Orchestrator-based access Control
	Optimal Deployment
	A Comparative Overview

	Open Challenges
	Conclusion

	A Domain Type Enforcement of Access Control Policies in NFV Services
	Introduction
	Background
	Virtual Network Service
	Domain and type enforcement (DTE)
	Access control models

	The proposed model
	 Adversary Model
	Security Policy specification
	Policy translation
	Policy refinement
	Access query evaluation
	Policy refinement correctness
	Service requirements specification
	DTE policy enforcement

	Implementation and experimental evaluations
	Conclusion

	A Priority-based DTE for Exception Management
	Introduction
	Motivation
	Mixed policy deployment in DTE
	Mixed access control policy specification
	Exception in access control policy
	Exception Management in DTE

	Priority-based DTE
	A new policy enforcement model
	Policy transformation towards priority-based DTE
	Access Query Evaluation
	Correctness

	Experimental Results
	Conclusion

	Optimal Access Control Deployment in NFV Service
	Introduction
	Background
	Multi-objective optimization
	Queuing Theory

	Adversary model and Problem Statement
	System Modelling and Problem Formalization
	NFV Topology Modelling
	Policy Deployment

	Latency Quantification
	Transmission Delay
	Rules Enforcement Delay
	Queuing delay
	Optimization Problem Formulation

	Problem Solving
	NSGA II

	Implementation and Simulation
	Conclusion

	 Conclusions and Perspectives
	Conclusion
	Perspectives
	Dynamic deployment of access control requirements
	Heterogeneous security requirements enforcement on NFV services

	Publications
	Résumé en français
	Contexte et motivation
	Objectif et questions de la recherche
	Méthodologies et contributions
	La sécurité des NFVs
	Déploiement des politiques de contrôle d'accès sur les services NFV
	Un DTE basé sur les priorités pour la gestion des exceptions
	Déploiement optimal du contrôle d'accès sur les services NFV

