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À Albane



Remerciements

J’aimerais commencer par remercier mes directeurs de thèse, Michaël Benzaquen et
Jean-Philippe Bouchaud, de m’avoir accompagné tout au long de ces trois années de
doctorat. Tout au long de la thèse, ils ont toujours été disponibles pour m’orienter et
me suivre dans mes différents projets, tout en me conférant le juste degré d’autonomie
dès mon arrivée en stage. Je leur suis reconnaissant de m’avoir prodigué leur soutien
sans faille pour tous les aspects de ma thèse, c’est une réelle chance d’avoir pu être leur
étudiant. Cela a été pour moi un plaisir de discuter et d’interagir avec eux au grè de nos
réunions (et en dehors) tant leur expertise est vaste.

J’aimerais en particulier remercier Michaël de m’avoir fait confiance en me donnant
l’opportunité d’être chargé des travaux dirigés pour deux de ses cours. L’enseignement a
été pour moi une expérience particulièrement enrichissante et appréciable.

Je souhaiterais exprimer ma plus grande gratitude envers José Moran qui m’a pris
sous son aile lors de mes débuts en stage. Son expertise dans un si grand nombre de
domaines a toujours été pour moi une source d’admiration, et je suis très heureux d’avoir
pu collaborer avec lui.

J’adresserai aussi mes remerciements aux différents membres de mon jury de doctorat
Alan Kirman, Isabelle Méjean, Grégory Schehr, Jean-Pierre Nadal, Herbert Dawid et
Francesco Zamponi. J’aimerais en particulier remercier Francesco Zamponi et Herbert
Dawid pour avoir accepté d’être rapporteurs de ma thèse.

J’ai aussi eu la chance de pouvoir faire partie de la chaire d’Econophysique et Systèmes
Complexes dès ses débuts. Un grand merci à tous les membres de l’équipe Antoine, José,
Medhi, Pierre, Federico, Cécilia, Jérome, Samy, Salma, Elia, Gianluca, Swann.

Je tenais à adresser en particulier mes remerciements aux personnes avec qui j’ai
pu collaborer sur des projets publiés ou non Johannes, Camille, Prachi, Elia, ainsi que
Claude Godrèche.

Un grand merci aux relecteurs de ce manuscrit qui m’ont été d’une aide précieuse
Jean-Philippe, Michaël, Jérôme, Cécilia, Albane ainsi que ma mère.

Un immense merci à ma mère qui a toujours su trouver les mots justes dans les
moments où la motivation venait à me manquer. Elle n’a cessé, dès mon plus jeune âge,
de nourrir ma curiosité et m’encourager dans mes études.

Finalement, j’aimerais remercier Albane, à qui je dédie ce manuscrit. Elle a été à mes
côtés depuis le premier jour de cette thèse et m’a soutenu tout au long de cette aventure
de trois ans. Ses encouragements ont été une vraie source de motivation, sans laquelle ces
trois années seraient probablement passées plus lentement.

ii



Résumé

Quelle est l’origine des fluctuations macroéconomiques ? À la fin du xxe siècle, Ben
Bernanke introduisait pour la première fois ce qu’il appela le puzzle des "small shocks,
large business cycles" faisant référence à l’apparente incompatibilité entre les petites
fluctuations observées au niveau granulaire de l’économie ("small shocks") et les larges
fluctuations macroéconomiques ("large business cycles"). Par exemple, le PIB des États-
Unis montre un taux moyen de croissance annuelle stable autour de 3% mais présente
des fluctuations atteignant 2.7%. L’énigme réside dans le fait que la plupart de cette
volatilité en excès ne peut être liée à des crises exogènes connues, comme les chocs
pétroliers ou la crise financière de 2008, et doit donc être d’origine endogène, c’est-à-dire
générée par l’économie elle-même. De nombreuses explications ont vu le jour, les plus
connues impliquant la distribution en loi de puissance des tailles d’entreprises qui se
répercuterait au niveau agrégé de l’économie, ou bien des effets de réseaux responsables de
l’amplification des chocs microscopiques. En revanche, ces explications reposent sur des
modèles économiques à l’équilibre représentant le monde comme une succession d’états
équilibrés atteints instantanément et sans frictions, et qui, tautologiquement, ne prennent
pas en compte les effets hors équilibres. Dans cette thèse, les deux premières parties sont
consacrées à la recherche de mécanismes hors équilibres pouvant expliquer la volatilité en
excès. La troisième partie est dédiée à l’étude plus générale des systèmes linéaires par
cônes, omniprésents en économie.

Nous commençons par montrer que l’équilibre au sens économique n’existe pas
toujours dans les réseaux d’entreprises. Cela a plusieurs conséquences. Premièrement,
comme l’équilibre n’est pas toujours bien défini, les modèles économiques devraient être
principalement conçus hors-equilibre. Deuxièmement, proposant un modèle dynamique
minimal et comportemental pour l’ajustement des prix et productions dans un contexte
d’interactions inter-entreprises, nous montrons que l’économie subit un ralentissement
critique au voisinage du point de non-existence de l’équilibre caractérisé par une divergence
du temps de relaxation et une accumulation des chocs dans le réseau générant naturellement
de la volatilité en excès. Troisièmement, nous argumentons, dans le même esprit que Bak
et al., que les économies actuelles sont proches du point de non-existence de l’équilibre à
cause du phénomène dit de criticalité auto-organisée.

Dans la deuxième partie, nous nous éloignons du modèle minimal et proposons un mod-
èle basé agents pleinement cohérent prenant en considération des éléments économiques
plus réalistes. Nous montrons que la multitude de boucles de rétroactions, engendrées
par les interactions entre entreprises, génère des oscillations endogènes pour des valeurs
économiquement cohérentes des paramètres gouvernant le modèle, donnant alors une
autre piste pour expliquer la volatilité en excès. En outre, une étude analytique du modèle
révèle que la dynamique reste non triviale au niveau linéaire : la dépendance linéaire des
entrées et sorties économiques peut elle-même varier en fonction de la forme des entrées.
Ces systèmes, appelés linéaires par cônes, génèrent aisément, même dans les cas les plus
simples, des paternes de crises ainsi que des oscillations et sont omniprésents en économie.
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Cela mène naturellement à la dernière partie de cette thèse où nous nous intéressons
aux propriétés de stabilité de ces systèmes dans un contexte plus général de matrices
aléatoires. Nous montrons que les systèmes linéaires par cônes peuvent exhiber des
propriétés hautement non triviales comme l’absence de concentration de la mesure de
l’exposant de Lyapunov maximum qui gouverne la stabilité du système.
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Abstract

What is the origin of macroeconomic fluctuations? In the late XXth century, Ben
Bernanke first introduced the so-called "small shocks, large business cycles" puzzle as
the seeming incompatibility between small fluctuations observed at granular levels of the
economy (small shocks) and large macroeconomic fluctuations (large business cycles).
As an example, the Unites States’ GDP displays a steady average yearly growth rate
of around 3% but with fluctuations reaching 2.7%. The conundrum is that most of
this volatility cannot be linked to known exogeneous crises, such as oil shocks or the
2008 financial crisis, and must therefore be of endogeneous origin, i.e. generated by the
economy itself. Numerous explanations have been proposed, the most famous of which
involve the power-law distribution of firms’ sizes, rippling out at aggregate levels of the
economy, or network effects responsible for amplifying micro-level shocks. However, these
explanations rely on equilibrium-only economic models which picture the world as a
succession of equilibria instantaneously reached without friction, and which tautologically
do not account for out-of-equilibrium effects. In this thesis, the first two parts are devoted
to finding mechanisms accounting for the excess volatility through those overlooked
out-of-equilibrium effects. The third part is dedicated to studying more general properties
of so-called conewise linear systems, which are ubiquitous in economics.

We start by showing that, in firm networks, economic equilibrium does not always
exist. This has several consequences. First, since equilibrium can be ill-defined, economic
models should be chiefly devised out-of-equilibrium. Second, upon proposing a minimal
behavioral dynamical model of prices and productions’ adjustment with inter-firms inter-
actions, we show that at the onset of equilibrium non-existence, the economy experiences
a critical slow-down where the relaxation time diverges and shocks start accumulating in
the network, naturally generating excess volatility. Third, in the same spirit as Bak et
al., we argue that economies generically sit close to the non-existence point through a
phenomenon called self-organized criticality.

In the second part, we depart from the first minimal model and devise a fully
consistent Agent-Based Model by factoring in some more realistic economic features. We
show that, because of the multiple feedbacks stemming from the interactions between
firms, our model is able to generate sustained endogenous business cycles for economically
sound values of the parameters governing the model, giving yet another avenue for
explaining excess volatility at aggregate levels. Furthemore, an analytical study of the
model reveals a non-trivial dynamics even at linear level: the linear dependency between
economic inputs and outputs can vary depending on the inputs themselves. Such systems,
called conewise linear, can easily generate crises-like patterns and oscillations even in the
simplest cases and naturally come to play in economics.

This naturally leads to the last part of this thesis, where we investigate more general
stability properties of conewise linear systems in a random matrix theory setting. We show
that such system can exhibit highly non-trivial properties, such as the non-self-averaging
of the maximal Lyapunov exponent governing the system’s stability.
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Introduction

1 Small shocks, large business cycles: a macroeconomic

conundrum

One of the most empirically well-identified stylized fact of economic time-series is the
persistence of large deviations from economic trends at the aggregate levels of large
economies. For instance, take the Gross Domestic Product (GDP) of the United States,
whose rolling yearly growth rate is represented on Figure 1 starting in 1948. On average,
the United States’ GDP has grown by 3.13% each year, but one observes very large
fluctuations around the average growth. Some of these fluctuations can be linked to known
crises such as the 2008 financial crisis or the Covid-19 pandemic, that has been hitting
the globe since 2020 and whose consequences are still unraveling. However, long periods
of times seemingly unaffected by known crises still display wild fluctuations, which, all
things considered, result in a standard deviation of the yearly growth rate around 2.7%,
i.e. of the same order of magnitude as the average.

Understanding the origin of these large fluctuations has puzzled economists for a long
time. The first attempt at understanding their origin dates back to the XIXth century.
As large crises account for some of the volatility of the United States’ economy, one could
naively try to explain the remaining fluctuations by searching for hidden crises or events.
Jevons proposed in 1875 his "sunspot theory" [7], linking weather fluctuations and solar
activity to the seasonal variations of the price of corn. Even though more than a century
old, his explanation is still very prominent nowadays: fluctuations are thought to be
chiefly driven by exogenous events, i.e. events hitting economies from the outside, some
of which are clearly visible (the Covid-19 pandemic for instance), and some others are
not (the solar activity of Jevons).

The idea that economic fluctuations are mainly driven by exogenous events is deeply
intertwined with the idea of economic equilibrium. Textbook macroeconomic models
picture the world as a succession of equilibria where markets clear perfectly and firms
maximize their profits. Each equilibrium is characterized by a different level of productivity
or household preferences, themselves driven by exogenous shocks, which are the primary
cause of fluctuations. Drawing an analogy from physics, one may call such an approach
“adiabatic”, in the sense that the time needed for the system to reach equilibrium is much
shorter than the time over which the environment changes, so out-of-equilibrium effects
can be neglected. The time evolution of the economy is then slaved to the time evolution

1
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Figure 1: Rolling yearly GDP growth rate (in %) from January 1st, 1948 to October 1st,
2021. Gray areas represent the time span over which effects of well identified external
shocks or crises were dominant. Source Bureau for Economic Analysis (BEA) [6].

of the exogenous parameters. Such assumptions along with using representative agents
are at the core of the so-called "Dynamic Stochastic General Equilibrium" models used by
central banks, which completely failed when the world’s banking system nearly collapsed
in 2008. As put by Willem Buiter in 2009 [8]: "Standard macroeconomic theory did not
help foresee the crisis, nor has it helped understand it or craft solutions. [...] both the
New Classical and New Keynesian complete markets macroeconomic theories not only did
not allow the key questions about insolvency and illiquidity to be answered. They did not
allow such questions to be asked. A new paradigm is needed."

In the late 1990s, Cochrane [9] and then Bernanke [10] first pointed out what Bernanke
later referred to as the "small shocks, large business cycles puzzle": exogenous shocks
undergone at granular levels of the economy cannot alone account for the aggregate
volatility observed. The remainder of the volatility should therefore be of endogenous
origin, i.e. generated within the economy itself, but this could not be understood
within equilibrium-only representative-agent frameworks prominent at the time (hence
the "puzzle"). As an illustration, consider an economy of N representative firms, with
production at time t given by yi(t) and assume that, initially, yi(0) is distributed according
to some narrow distribution such that yi(0) ⇡ y(0). We further define total production
as Y (t) =

P
i yi(t). Assume now that production follows a multiplicative growth model

from one year to the other, i.e.

yi(t+ 1) = (1 +m+ �⇠i(t))yi(t), (1)

where m represents a constant growth rate and �⇠i(t) exogenous shocks, modeled by IID

Gaussian random variables, that account for the fluctuations around the constant growth.
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2. Main proposition and outline of the manuscript

If macroeconomic fluctuations originate from the aggregation of micro-level shocks, one
should expect the yearly growth rate of total production Y (t) to display large fluctuations.
For small times t, we can consider the distribution of yi(t) to still be narrow enough such
that

Y (t+ 1)

Y (t)
⇡ 1 +m+

�p
N
⇠(t), (2)

with ⇠(t) a unit-variance Gaussian random variable. We therefore see that, within this
framework, aggregate fluctuations around the average growth should decrease as 1/

p
N ,

which should be completely negligible as the U.S. economy comprises around 5 million
firms. This simple computation illustrates that large macroeconomic fluctuations need a
much richer modelling framework than the representative one to be understood. Note
however, that the previous reasoning is only valid at small times since it is known that
multiplicative growth models can yield distributions with broad tails if one waits long
enough. Therefore, the previous naive reasoning breaks down, and one must consider
more general arguments such as the granularity arguments presented below.

As understanding the mechanisms responsible for this excess volatility is crucial for
policy-making, this conundrum stemmed numerous seminal works and explanations. The
first notable one is due to Xavier Gabaix [11], and known as the granularity hypothesis.
A statistically robust stylized fact about firms is that the probability distribution P of
their sizes S displays a power-law behavior P (s) ⇠s!1 s�µ [12] with an exponent µ
close to 1. Consequently, firms cannot be thought of as identical since their size can
vary widely thanks to the power-law distribution, rendering invalid the naive reasoning
of the last paragraph. Because of the fat-tailedness of firms’ sizes, fluctuations of the
aggregate sales are dominated by fluctuations undergone by the largest firms, which
typically do not average out. The CLT-like reasoning must be traded for its generalized
version, where aggregate fluctuations take the form of Lévy-stable distributions with
infinite variance. The second notable explanation is due to Daron Acemoglu [13] whose
mechanism favors the effects due to the network of interactions between firms. In Gabaix’s
explanation, firms remain independent, which is of course not realistic. Since firms interact
on a supplier-buyer network, shocks can propagate up or down the supply chain and
successively affect other firms. This contagion effect can amplify micro-level shocks into
long-lived perturbations shaking the entire network and contributing at aggregate levels.

2 Main proposition and outline of the manuscript

Even though previous explanations are appealing and certainly reflect relevant mechanisms
at hand, they still rely on equilibrium-only descriptions of the economy. We believe that
such descriptions, especially as a foundation for policy-making, can widely underestimate
the effects of shocks and therefore favor fragility over resilience. At the time of writing
of this manuscript, the world stood in horror witnessing Russia’s vicious invasion over
Ukraine. European political leaders, reluctant to engage in a direct military intervention
to help Ukraine that could lead to a global conflict, imposed a string of stringent economic,
political and cultural sanctions against Russia. An important sanction concerned the

3
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European Union (EU) oil imports from Russia. Up until the end of May 2022, EU states
had been importing "2.2 million barrels per day (bpd) of crude oil from Russia and 1.2
million bpd of oil products" according to the BBC [14]. EU nations agreed to ban all
sea-imported oil from Russia, thus cutting Russian exports to the EU by about two-thirds.
Of course, some anxiety about the price of energy followed this decision, since most
European countries depended to some extent on Russian oil. In Germany, a study from
March 2022 [15] showed that a sudden drop of Russian oil imports would affect German
GDP down by only 0.3% (at most 3% which they compare to the 4.5% drop caused by
Covid-19 in 2020), which in turn would affect German households by 120e. An even
lower figure (54e) is obtained for France [16] (in French). Such low numbers of course go
in the sense of dropping oil imports, but could very well minimize the effects on European
economies. Indeed, the economic models used for these studies assume that the economies
will "quickly" converge back to equilibrium and equilibrium descriptions can therefore
be used. However, a physicist would ask what is the meaning of "quickly" and how big
a drop can we expect during this "quick" equilibrating time. These models completely
neglect the behavior of the economy in this transient phase and therefore could miss GDP
drops much direr than the expected 0.3% (see [17] in French).

The central proposition of this manuscript is that large macroeconomic fluctuations
can chiefly be explained through out-of-equilibrium effects where, in such situations, the
dynamics is mostly of endogenous origin. We argue that, rather than on initial and final
economic states (which can be equilibria), economic modelling should focus on the path
(possibly paths plural) linking these two states. Furthermore, we also argue that such
path is not a collection of quasi-equilibria (as if the evolution followed the "quasi-static"
idea from physics) but can be arbitrarily far from equilibrium and, in fact, remain far
for arbitrarily large times. Finally, we place ourselves within the network framework of
Acemoglu [18, 13] where firms interact on a supplier-buyer network. We will argue that
the equilibrating time of the economy depends on the network and that interactions, which
are too often neglected in economic modelling, are an integral part of large macroeconomic
fluctuations.

This manuscript is organized in three parts. The first two parts are entirely devoted to
economic modelling in an out-of-equilibrium framework. In the first part, entitled "Critical
network-economies", we propose a fully non-linear evolution of prices and productions
using behavioral rules, and show that, through a process called self-organized criticality,
large economies are prone to being far from equilibrium and fluctuating widely. In
the second part, entitled "Macroeconomic agent-based modelling", we propose a hybrid
approach between standard economic thinking (where firms attempt to optimize profits
in a competitive environment, and households optimize their utility function to balance
consumption and labor) and Agent-Based Models (ABM), where simplified behavioral
assumptions allow one to specify the decision-making process of firms. The third and last
part, entitled "Complex interactions and random matrices", deals with idealizations of
systems that naturally arise in economic models: conewise linear systems. The closely
related question of occupation time is also discussed. Even though related to economic
modelling, this part will more appeal to the theoretical physicist readership.
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2. Main proposition and outline of the manuscript

Finally, the first two parts account (almost in chronological order) for the different
steps building up to the publication of [1]. We of course added some additional results,
analytical derivation and intuitions, but the reader will find the same general outline.
For the last part, the reader will surely notice a change in style as we decided to expose
the results on conewise linear systems, occupation time and elliptic random matrices as
they are published [2, 3] or in their "in preparation" version [4]. The reader will however
see that [2] has been reworked and augmented for this manuscript. We also chose to
provide technical appendices at the end of each corresponding chapter. We changed
both font color and size to indicate that, although appendices should provide details
and insights about computations, they are not fundamental for the understanding of the
overall manuscript.

2.1 Critical network-economies

The behavior of large assemblies of interacting individuals cannot be
understood as a simple extrapolation of the properties of isolated individuals.
Instead, entirely new, unanticipated behaviors may appear and their
understanding requires new ideas and methods. Statistical physics has
developed tools to describe these "collective phenomena", pertaining to
crowds and not to any of its single constituents. Small changes at the
individual level can trigger dramatic effects at the collective level - for the
better or for the worse.

Philip Warren Anderson, adapted from More is Different, Science 1972

2.1.1 From local to global: self-organized criticality in firm networks

The study of large assemblies of particles has led to the development of statistical physics.
From the kinetic theory of gases by Ludwig Boltzmann in the XIXth century to the
study of active biological particles and spin-glasses, statistical physics increasingly showed
that large interacting systems could not be understood solely by extrapolating individual
behaviors: macroscopic properties emerge from interactions. The concept of phase
transition is central in statistical physics: small variations of parameters can trigger
dramatic changes in the macroscopic phase of the system. Take water, for instance. Below
0�, solid ice is the stable state. Increasing the temperature, the ice will melt into liquid
water at 0� and vaporize at 100�. The nature of water molecules and of their interaction
has not changed in the process, but the system did however undergo two macroscopic
phase transitions. Nearing critical points where phase transition occurs, interacting
systems are prone to scale-free behaviors, i.e. subsystems sharing the same macroscopic
property can be found at all scales. When systems get closer to phase transitions, the
correlation length diverges, thus creating global fluctuations from local interactions.

Since economic systems are large highly complex interacting systems, it is quite
naturally that Bak et al. [19] proposed the criticality explanation to account for macroe-
conomic fluctuations. However, economies cannot be tuned by a few parameters such as
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temperature, and the concept of economic phase transition, let alone economic critical
points, is hard to define. In [20], Bak proposes a general mechanism, called self-organized
criticality 1 (SOC), explaining that complex systems naturally organize towards critical
points. If applied to economic systems, SOC would nip in the bud the questions about
defining economic critical points.

As an introduction to the concept of SOC, let us present a model of sandpiles: the
Bak–Tang–Wiesenfeld model (BTW) [23]. A sandpile is literally a pile of sand, which is
of course idealized in the BTW model. Consider an L⇥ L grid where for each square cell
(x, y) we associate the height Z(x, y) of the sandpile in this cell. As put by Per Bak in
[20], the sand is a "theoretical physicist’s sand" here, i.e. modeled as regular cube of unit
sides. Now, one can define a dynamical process for adding sand to the pile. At each time
step, choose a site (x, y) at random and add a grain of sand at this cell

Z(x, y)! Z(x, y) + 1.

If the height of the pile at this site is low enough Z(x, y)  Zc, then nothing happens. If,
however, the height exceeds the threshold Z(x, y) > Zc, the sandpile topples on the four
neighboring sites

Z(x, y)! Z(x, y)� 4

Z(x± 1, y)! Z(x± 1, y) + 1

Z(x, y ± 1)! Z(x, y ± 1) + 1.

If toppling occurs near the edges of the grid, the sand simply leaves the system.
The state with the lowest energy of this sandpile is the flat state, since one would

need to add energy to the system to create heaps. However, due to the friction of the
sand, i.e. the pile topples only above a certain threshold, the system will not revert to
the ground state whenever one stops adding sand. Consequently, a sandpile naturally
displays local heaps with associated local slopes. When these slopes are relatively low, i.e.
the sandpile is not very high, the grains of sand tend not to topple, and, when they do,
create only local disturbances on the pile without much communication between different
heaps. However, upon increasing the global height of the pile, adding sand may cause
avalanches which spread throughout the entire pile. Indeed, assume that one only adds
sand at the center cell. At some point, the global slope cannot increase any further, since
the entering sand is perfectly balanced by the grains exiting at the edges. The system
reaches a stationary state of balance between entering and leaving grains that requires
communication throughout the entire system (between center and edges). Such state,
called self-organized critical, is prone to very large avalanches that span throughout the
entire system. Even though the process of adding sand is local, the SOC state has global
dynamics.

1The term self-organization is actually due to Wiliam Ashby in 1947 [21, 22] in the context of
cybernetics. It refers to the natural tendency of (complex) systems to evolve towards states of high
complexity.
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Figure 2: (a) Distribution P (s) of avalanche sizes s in the BTW sandpile model. We
see a power-law decay indicating scale-free behavior (disregarding finite-size effects). (b)
Two-dimensional Ising model on a 400⇥400 lattice with periodic boundary conditions.
The system is quenched at the critical temperature T = Tc which separates paramagnetic
(high temperature, no global order) and ferromagnetic (low temperature, global order)
macroscopic behaviors. The system evolves according to a Glauber dynamics. We see the
emergence of large structures of correlated spins which illustrate the divergence of the
correlation length at the critical point. Both figures are obtained using software from the
NetLogo App [25, 26, 27].

As we said, Bak et al. [19] proposed the criticality explanation to account for large
macroeconomic fluctuations. They argued that economic networks are typically in SOC
states which make them prone to large contagion/avalanche effects that amplify exogenous
shocks, therefore leading to large fluctuations. This idea was revisited in [24], where
authors exploit the Hawkins-Simons transition to define a critical point in firm networks
(see Chapter I), and argue in favor of SOC states. However, they remained within the
equilibrium framework from which we will depart by endowing classical firm networks with
some dynamics. Close to the economic critical point (reached through a SOC mechanism),
such dynamics should be able to generate large fluctuations from local interactions (see
an illustration of this phenomenon on Figure 2).

2.1.2 Economies as dynamical systems

Past literature in macroeconomics (see e.g. [28, 29, 30, 31, 32, 33] and [34]) has been
mainly concerned with “disequilibrium” effects, which in that context means studying the
impact of price or wage frictions and rigidities that prevent the economy from reaching full
equilibrium. In a sense, these models postulate economies that are not able to reach an
idealized state of equilibrium because of certain imperfections, but they still mostly deal
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with the static properties of such economies, with no particular focus on their dynamics
or on how said state is reached. Effectively, the dynamics that are studied through these
models are those in which the agents in the economy are all capable of optimizing their
behavior, exchanging goods and coordinating between themselves instantly. The main
source of fluctuations is therefore given by external shocks to the economy. This is, for
example, the case of [35] and [36], despite their common acknowledgment of the need to
take into account the “time to build” in the economy, which we choose to interpret too as
the time required for all the agents to coordinate and exchange enough information to
reach equilibrium.

In Chapter II we go beyond disequilibrium and propose an out-of-equilibrium economic
description. We draw onto the concept of toy-modelling dear to physicists. With toy-
models, physicists try to strip away as much complexity as possible while still being able
to capture the mechanisms responsible for particular empirical observations. In a way,
toy-models aim for the most minimal non-trivial empirically relevant models. Most of
the time, they rely on heuristics rather than precise microscopic descriptions. Some have
advocated for the use of heuristics in socioeconomic modelling [37, 38] arguing that people
tend to make decisions under "bounded rationality" (a term coined by Herbert Simon
[39, 40]): only partial information is available, threshold effects drive decision-making
etc. We therefore propose a minimal set of heuristic rules for prices and productions
adjustments in firm networks. Such models have recently become popular as a way to
generate excess aggregate volatility, as shocks may propagate through the input-output
network. However, the seminal papers of [35], and of [13], are studied within the “adiabatic”
framework in which the system instantaneously adapts to productivity shocks (for a
recent enlightening review of these models, see [41]). We therefore propose a dynamical
description that is based on the assumption that economic agents react to observables
rather than optimizing their behavior. Firms interact on a supplier-buyer network, but
we do not assume any coordination a priori, i.e. equilibrium is not the constitutive state
of the system but rather one of the possible dynamical outcomes.

A strand of the economic literature considers “reduced-form” differential equations
that describe the coupled evolution of a set of aggregate variables (for example employment,
wage and output in the original model by Goodwin [42] and revived in [43]). These
low-dimensional dynamical equations can generate various types of dynamics, such as
business cycles in the Goodwin model, which is equivalent to the classic Lotka-Volterra
(or predator-prey) model of [44, 45]. Note also that [46] establish a system of coupled
dynamical equations whose dynamics are determined by certain matrices that describe
the production network. This is, in a way, a similar approach to ours, but our toy-
model considers a fully non-linear description with a linearized evolution governed by
a production-network determined matrix that is only valid close to equilibrium. In a
sense, our model can be seen as a multidimensional, discrete time version of the reduced-
form differential equations à la Goodwin [42] and followers, that also lead to oscillatory
dynamics. The main difference is that we describe the dynamics of the economy at a
highly granular level (that of firms), which is an important aspect in view of the amount
of microdata now available to calibrate such models.
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2.2 Macroeconomic agent-based modelling

The atomistic, optimizing agents underlying existing models do not capture
behavior during a crisis period. We need to deal better with heterogeneity
across agents and the interaction among those heterogeneous agents. We need
to entertain alternative motivations for economic choices. [...] Agent-based
modelling dispenses with the optimization assumption and allows for more
complex interactions between agents. Such approaches are worthy of our
attention.

Jean-Claude Trichet, Opening address at the ECB Central Banking
Conference Frankfurt, 18 November 2010

2.2.1 From cellular automata to agent-based models: numerical simulations
as a new paradigm

Even though the appeal of toy-modelling is quite clear (models are often simple and
sometimes analytically tractable), these models are not usually designed to be predictive
as they aim for a more qualitative understanding of the phenomenon at hand. However,
the idea that simple enough rules can create very complex behaviors has been at the heart
of the development of computational physics and more generally the tools for numerical
simulations.

In the 1940s, John Von Neumann and Stanislaw Ulam (working respectively on
self-replicating machines and crystal growth) introduced the concept of cellular automaton
(CA) [47]. It was not until the 1960s that the concept was recognized as significant
when John Conway simplified the initial complicated CA of Von Neumann 2 into what
is now called the "Game of Life" (LIFE) [48]. A CA is a discrete-time model on a grid
of cells that can occupy different states. From an initial condition of states at t = 0, a
new generation is created using a set of rules determining the future state of each cell
depending on the current state of the cell itself and of its neighbors. The model then
carries out, evolving into new generations according to the same rules. For instance, in
Conway’s LIFE, cells can be either dead or alive, and the evolution rules are: (a) any live
cell with two or three live neighbors survives; (b) any dead cell with three live neighbors
becomes a live cell; (c) all other live cells die in the next generation and all other dead
cells stay dead. This simple set of rules can lead to intricately complex phenomena in the
grid: it has been shown that LIFE contains self-replicating patterns, is undecidable and
Turing complete 3 [49, 50, 51].

2Working on self-replicating machines, Von Neumann designed a CA where cells (the constitutive
entities) could be in 29 different states. He finally found a self-replicating pattern that occupied 200000
cells.

3The last two concepts are actually related. Undecidability has to be understood in Gödel’s sense: there
is no algorithm that can predict whether some pattern will emerge starting from a given initial layout.
Turing completeness indicates that a universal Turing machine, i.e. a machine capable of performing
arbitrary finite computations, can be built within LIFE. It is proven that Turing completeness implies
undecidability.
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Even though this historical detour through cellular automata might seem like a
digression, the study of CA actually created a new paradigm: not only complex structures
can emerge from very simple rules, but, more importantly, these rules can and must be
simulated. With the increase of computational power over the last decades, this paradigm
is at the base of what is now known as Multi-Agent Systems, or more precisely in the
context of this manuscript Agent-Based Models (ABM). Such models are built upon the
same general principles as CA. They are discrete time systems composed of constitutive
entities called agents (the evolution of Conway’s cells) which can be heterogeneous. To go
one step forward in time, agents undertake some actions (the evolution of Conway’s rule)
based on other agents, themselves, the general environment etc. Of course, the agents
are not described by a binary state anymore but rather by a collection of continuous
variables (in the context of economic modelling prices, productions, debts...). The actions
are also much more complex, usually involving non-linearities and intricate interactions.
The general principle however is not different from that of cellular automata. Note that
this approach has been advocated for economic modelling by Holland and Miller in [52].
They consider complex adaptive systems 4 as the right framework for studying economic
system and they especially insist on the notion of emergence [53].

2.2.2 Macroeconomic modelling and policy-making

The use of agent-based modelling in economics seems to be a right avenue to explore, since
economic systems comprise heterogeneous agents which interact in a complex manner. It
is therefore natural that in the second part of this thesis, we moved towards an ABM
description of our network economies. ABMs are explicitly dynamical models (which goes
in the way of our general proposition), in the sense described by [54]: decision rules lead
to actions (buy/sell, produce, update prices and wages, etc.) that move the economy one
step forward in time. As argued in [55] in the context of financial markets, ABMs are
very well suited to understand non-linear behaviors such as bubbles or crises.

Some macroeconomic ABMs have emerged in the last years [56, 57, 58, 59, 60, 61,
62, 62, 63, 64, 65, 66] to account for various macroeconomic aspects. In [58], authors
describe the Eurace@Unibi Model with three types of agents (firms, household, banks)
spatially arranged and interacting. The decision rules attempt at describing as closely
as possible actual behaviors observed in the real economy. In [61, 62], the Mark0 model
(a simplification of the MarkI family of models elaborated in [57]) is described along
with its use for the understanding of different macroeconomic aspects such as monetary
policies in [62] for instance. The work in [63, 64] describes an ABM based on the general
framework of constraint satisfaction problems (studied at length in theoretical physics
and mathematics) and more specifically on the perceptron model.

In [61, 62] (see also [67] in a DSGE-ABM crossover framework), the authors also
provide a classification in phases of the possible dynamical outcomes depending on the

4Complex adaptive systems are characterized by (i) a network of interacting agents, (ii) a dynamic
aggregate behavior emerging from the individual agents, (iii) the fact that the aggregate behavior may
be characterized without detailed knowledge of the behavior of individual agents.
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parameters of the model. This physics-inspired approach highlights one of the main
proposition in this manuscript: depending on the parameters of the model, the economy
may not reach equilibrium. The use of phase diagrams is, in our opinion, not only an
excellent way to gain a deeper understanding of the model itself, but could also allow for
better decision-making in macroeconomic policies. Establishing the phase diagram on the
parameters targeted by some specific policy might help understanding the effect of said
policy on the economy. Furthermore, the dynamical aspect of the model allows for in
silico experiments to track the effects of policies over time.

This long-term in silico monitoring goes along with voices advocating in favor of
more scenario-based macroeconomic [68, 69]. One aspect of macroeconomic modelling
is its propensity to try and forecast very short-term trends. Scenario-based policies or
macroeconomics advocate for the understanding of more general and long-term trends
along with the possible factors influencing these trends. As an example, climate change
cannot be understood by trying to forecast tomorrow’s weather, but rather by identifying
the causes that make the world’s average temperature rise. The understanding of long-
term trends and tipping points from one scenario to another should make systems more
resilient. We will use this approach in the manuscript by proposing phase diagrams which
classify possible outcomes of the economy (along with mechanisms accounting for these
outcomes) rather than looking at economic time-series on short-term scales.

The approach of ABMs, although very prolific, has been heavily criticized by those
who argue in favor of “micro-founded” models where agents are forward-looking and
optimize inter-temporal utility functions. However, whenever interactions are complex,
involving non-linearities for instance, analytic treatment becomes a fool’s errand and
must give way to numerical assessment. During the Covid-19 pandemics, a lot of difficult
political decisions about lock-downs and vaccinations were made using projections from
ABMs [70, 71, 72]. Maybe this recent use for political decision making in time of crisis
will make this approach more palatable for economic policy-making.

2.3 Complex interactions and random matrices

Not only in research, but also in the everyday world of politics and economics,
we would all be better off if more people realized that simple nonlinear
systems do not necessarily possess simple dynamical properties.

Robert M. May, Simple mathematical models with very complicated dynamics,
Nature 1976

In the second part of the manuscript, the study of our network-economy ABM
naturally leads to a class of dynamical systems called conewise linear. In such systems, the
relationship between inputs and outputs is linear, but the linear transformation depends
on the direction of the vector of inputs in state space. Take a sequence of numbers U(t)
such that U(t+ 1) = aU(t) if U(t) > 0 and U(t+ 1) = bU(t) otherwise. Depending on
the relative signs of U(0), a and b, this sequence will have very different evolution. Of
course, when the dimension of the space increases, things get more complicated as the
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matrices governing the linear evolution do not commute as real numbers do. Even though
each individual step forward is linear, the overall evolution is actually very complex and
does not possess simple dynamical properties. Very little is known about these systems,
let alone analytical methods to solve them.

Chapter VII is devoted to the study of such systems by considering linear evolu-
tion governed by random matrices in the large-dimensional limit. Replacing complex
interactions by random elements is a trick that is well-known in high-energy physics.
Eugene Wigner came up with this idea upon studying the energy levels of large atoms
nuclei. The Hamiltonian of these systems was so complex that diagonalizing it to find the
energy levels revealed too formidable a task. Wigner suggested rephrasing the question
in statistical terms, i.e. what is the probability to find the atom in such or such level
spacing? He therefore proposed to abandon the deterministic description of the Hamilto-
nian and replace it with random Hermitian matrices drawn from the same ensemble. The
underlying idea was that, to some extent whenever interactions are complex enough and
the system large enough, the overall spectrum does not depend on the precise system (i.e.
the precise Hamiltonian) but is rather universally described through a few key parameters.
This simple and rather bold idea is at the base of what is called Random Matrix Theory,
which has been a very prolific field in both mathematics and physics over the past few
decades.

In the case of the conewise systems resulting from the ABMs of Part II, the choice to
try to move to a randomized description was quite natural. As it will be demonstrated in
the manuscript, the dimension of state space is actually of order O(N2) where N is the
number of firms involved in the economy. Furthermore, the network of interaction can
be very complex and intricate, and we usually choose it random anyway. Of course, the
resulting model of Chapter VII is a crude idealization of the systems of Part II, but it
highlights the level of complexity at hand. The seemingly simple question "will the system
be stable?" does not have a straightforward answer. Depending on the initial perturbation
and the time of observation, one may find that the system is stable or unstable.

The last part of this manuscript also addresses questions that one naturally asks
when studying conewise linear systems. For instance, since each step forward is linear,
one can ask for how long the system is governed by the same linear evolution. This
question falls into the study of occupation time of stochastic processes, where one studies
for how long a given process keeps some property (for instance positivity in the case of
Chapter VII). Actually, these kinds of questions directly relate to economic concerns.
As the Covid-19 crisis was unraveling in 2020, the word resilience was thrown around
a lot when speaking about the economy. Even though elusive, the concept of economic
resilience refers to the inherent capacity of the economy to recover and heal itself after a
shock. The real question though is how much time will this process take, i.e. for how long
will the economy feel the aftermaths of said shock. In the ABM framework of Part II,
this question amounts to understanding for how long firms can be, for instance under
producing before the economy stabilizes or collapses, and therefore relates to occupation
time issues.

Even though the last part of the manuscript can be read almost independently, it
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still relates to the main proposition of this work: understanding the path from initial to
final state is crucial, all the while accepting that the economy can occupy a state that
will never allow it to converge back towards equilibrium.
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Critical network-economies

15





Foreword

The first part of this thesis is devoted to a study regarding out-of-equilibrium dynamics
in firm networks. We will show that excess volatility can be created by network-induced
amplification of shocks through a process called self-organized criticality.

In Chapter I, we lay the foundation on which Part I and Part II are based. The
reader will become familiar with the framework of firm networks along with basics from
the theory of production functions. We will also introduce the household sector as another
constitutive entity of our model. We will then define economic equilibrium and show
that, in the context of firm networks, it can be ill-defined which will motivate moving
towards a fully out-of-equilibrium description of the economy. Furthermore, we will see
that economic equilibrium exists provided the economy fulfills the Hawkins-Simons (HS)
conditions, and we will argue that real economies tend to self-organize right at the point
where these conditions are only marginally satisfied.

The out-of-equilibrium economic description is provided in Chapter II where we
propose a set of behavioral rules to set prices and productions. Rather than optimizing
at every time-steps, firms react to imbalances such as excess of production and try to
correct them. This description will naturally lead to a non-linear dynamical system
for prices and productions adjustments. In the same spirit as [35], we linearize this
system around economic equilibrium and show that, at the onset of violating the HS
conditions, the economy experiences a critical slow-down. As a consequence, the economy
will take an increasingly large amount of time to converge back to equilibrium, rendering
it dynamically unattainable in effects. Furthermore, another consequence of the critical
slow-down is that exogenous shocks will accumulate and linger in the network, creating
excess volatility.

Finally, some features of this model are still unsatisfactory since, for instance, we
could not find any bounded trajectory whenever the HS conditions are violated and
economic equilibrium ceases to exist. We show this feature in Chapter III using the
framework of Dynamical Mean-Field Theories from statistical physics. This inconsistency
below the HS threshold will be our motivation to refine the model in the second part of
the manuscript.
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CHAPTER I

Equilibrium network-economies

Abstract

In this introductory chapter, we present the building blocks on which the work
presented in this manuscript is based. We introduce the different agents that will
be interacting throughout Part I and Part II along with the general framework of
firm networks as introduced by Acemoglu et al. [13]. We also introduce the notion
of economic equilibrium, but we depart from the standard definition by drawing
closer to ideas from physics, i.e. keeping in mind that equilibrium is the result of
a dynamical adjustment process. Furthermore, we give conditions for equilibrium
to be economically admissible (with positive prices and productions) and uncover
a transition on the "feasibility" of the economy known as the Hawkins-Simons
transition. Finally, we link this transition to the idea by Bak et al. [19] that excess
volatility at aggregate levels comes from the proximity of the economy to a critical
point, which corresponds here to the Hawkins-Simons transition point.

1 Firm networks, production functions and household

1.1 Firm networks

One of the central ideas in our work is that microscopic shocks can amplify through
interactions between firms and account to some extent for the excess volatility observed at
aggregate levels[13]. One of the vectors for these interactions is the supplier-buyer network
(or input-output network) describing fluxes of goods between firms. Schematically, if one
firm produces cars it will need raw materials such as steel. A link will therefore be formed
from a steel-supplying firm to the car-producing one. The resulting interaction structure
is therefore a graph J whose nodes are firms with directed links j ! i describing the
relation "j supplies to i". Such links can be weighted if one is interested in the actual
amount supplied.

Firm networks have drawn a lot of attention in the past decades since they display
rather non-trivial topological features. A central well-established stylized fact is that the
empirical distribution of the number of in and out links (denoted by kin/out) displays a
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(a) (b) (c)

Figure I.1: Different types of networks. The original networks are directed but we omitted
links’ directions for clarity. (a) Random 4-regular network on n = 500 firms. The number
of in and out links is fixed to d = 4. (b) Scale-free network on n = 500 firms. The
number of in and out links follows a Pareto distribution with parameter µin = 1.29 and
µout = 1.25 (power-law exponents from [75]). (c) Input-output network over n = 660 firms
inferred from the FACTSET data-set [76]. Links correspond to an existing supplier-buyer
relationship between 2012 and 2015. These networks are represented with an embedding
described in [77].

truncated power-law behavior

P(kin/out = q) /
q!1

e�q/Qin/out

q1+µin/out
. (I.1)

Even if the power-law exponents µin/out or the truncation may vary from country-to-
country, this general form seems to be universal. Note that this scale-free behavior of sizes
q ⌧ Qin/out supports the granularity hypothesis [11] for excess volatility of aggregate
outputs. While microscopic shocks might originate from a sparsely-connected firm, it can
propagate towards central firm, and therefore ripple out on a large part of the network.
For a complete overview of the features of firm networks beyond scale-free behavior,
see [73, 74, 41]. Figure I.1 shows a visual comparison between synthetic and real-world
input-output networks.

Finally, firm networks are not static in time. New firms can enter the network, while
existing firms can go bankrupt. New contracts can also be negotiated and change links in
the network. This calls for a dynamic description of the network itself. We will discuss
this point at the end of Part II but we will consider throughout Part I and Part II that
the network is fixed in time. We implicitly assume that the evolution of the network
occurs on time-scales much slower than those underlying the adjustment process of firms’
prices and productions. For dynamical networks, we refer the reader to [73] where authors
present a model for network creation aiming at reproducing empirical features of firm
networks.
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1.2 Production functions

The production function gives the quantity yi of goods produced by firm i as a function of
input goods, labor and the intrinsic, possibly time dependent, productivity of the firm zi
(i.e. its efficiency in converting a given amount of inputs into outputs). The production
function is mathematically described by a relationship of the type

yi = zifi({xij}j=0,...,N ) := zi�i, (I.2)

where xij denotes the amount of good j (or labor xi0 := `i if j = 0) available to i, and
where we defined the level of production �i of firm i as the purely input-dependent part
of the production, i.e.

�i := fi({xij}j=0,...,N ). (I.3)

1.2.1 Constant Elasticity of Substitution

Although many types of production functions exist, we present here a specific family of
functions called the Constant Elasticity of Substitution (CES) family. We generalize the
standard CES production function [78] as 1

�i :=

0
@ai0
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`i

Ji0

◆�1/q

+
NX

j=1

aij

✓
xij
Jij

◆�1/q
1
A

�bq

, (I.4)

where Jij � 0 and aij � 0 are link variables that measure the importance of good j in
the production of i. The aij are normalized such that

8i,
NX

j=1
Jij 6=0

aij + ai0 = 1.

Note that although for all values of q 2]0,1[, the Jijs can be absorbed into the aij , our
specification allows for consistent limits when q = 0 (Leontief) and q =1 (Cobb-Douglas).

The parameter q measures the substitutability of inputs. For example, when q ! 0+

we get the Leontief production function, corresponding to the case where production falls
to zero if a single input is missing

�i =

✓
min


`i

Ji0
,min

j

✓
xij
Jij

◆�◆b

. (I.5)

The link variable Jij can therefore be interpreted as the amount of good j that i would
need to achieve a level of production equal to zi. The Leontief production function
corresponds to an economy where firms only keep a small, very optimized portfolio of
suppliers that does not allow for redundancy.

1The standard CES function corresponds to all Jij set to unity.
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If q ! +1, we get the Cobb-Douglas production function

�i =

0
@
✓
`i

Ji0

◆ai0 NY

j=1

✓
xij
Jij

◆aij

1
A

b

, (I.6)

for which some amount of substitutability is present. Indeed, halving the quantity xik
of input k can be compensated by multiplying the input of ` by 2aik/ai` , where the aij
describes the amount of substitutability between goods for the production of i.

Finally, one can also extend the domain of validity of q to include the interval ]�1, 0[.
For q = �1, we recover a linear production function

�i =

0
@ai0

`i

Ji0
+

NX

j=1

aij
xij
Jij

1
A

b

. (I.7)

As in the Cobb-Douglas case, substitutability is present but in an additive way. Re-
ducing input k by a quantity rik can be compensated by augmenting input ` by
r0i` = rik(aikJi`)/(ai`Jik).

Finally, the parameter b sets the return to scale: if all inputs and labor are multiplied
by a factor �, then the total output is multiplied by �b. For example, for increasing
return to scales b > 1, �b > 1 which means that outputs increase if the firm aggregate
more inputs. This situation can reflect economies of scale made by firms upon buying
larger quantities of inputs (see [79] for a detailed account).

1.2.2 Hybrid and nested production functions

CES production functions assume that there is a certain extent of substitutability among
inputs. However, we can imagine that some inputs are more crucial than others and
therefore not subsitutable, while others could be interchangeable. We can therefore write
hybrid production functions with – say – Leontief and Cobb-Douglas parts

�i =

✓
min
j2Sl

✓
xij
Jij

◆◆b
0
@ Y

j2Scb

✓
xij
Jij

◆aij

1
A

b

, Sl [ Scb = {1, . . . , N},

where we omitted labor for conciseness and where Sl and Scb refer to the subsets of firms
belonging to the Leontief or Cobb-Douglas classes respectively.

Another generalization would be that of nested production functions. These functions
appear where production is carried out through different aggregation levels. As an
example, these nested functions are used to estimate the amount of substitutability
between capital, labor and energy for countries. Calling K, L and E these different
variables, an intermediate aggregate X is defined as

X =
⇣
↵K�1/� + (1� ↵)L�1/�

⌘��

, (I.8)
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and used in the final output Y

Y =
⇣
�X�1/✓ + (1� �)E�1/✓

⌘�✓

, (I.9)

see for instance [80] where authors use this structure to estimate elasticity of substitutions
between capital labor and energy in the Chinese economy.

1.3 Household

As we anticipated in the previous section, another agent is present in the network.
Throughout this manuscript, we will consider the household to be representative, i.e.
the coarse grained version of in-homogeneous real households. We do not specify the
coarse-graining procedure but see Chapter III for an example of such procedure applied
to firms. A more realistic description is of course possible by introducing M different
households and a household interaction network that could measure the degree of influence
between individuals on consumption, for instance. For the case of a representative firm
and a network of households, see [67] that studies consumption crises and confidence
collapse in a DSGE framework.

As it is standard in the economic literature, the household interacts with firms by
consuming goods and providing work. Consumption and labor supply are set through
the optimization of a separable utility function that measures the "happiness" of the
household depending on the amount consumed and worked. Usually, the utility function
is written as

U = f({Ci}i=1,...,N ) + g({`i}i=1,...,N ), (I.10)

where Ci and `i denote the amount of good i consumed and working hours provided to
firm i respectively. The functions f and g can virtually be any reasonable functions that
account for the fact that people tend to be happier when consuming more and working
less. In this manuscript, we will restrict ourselves to the following rather standard utility
function

U =
X

j

✓j logCj �
Γ

1 + '

✓
L

L0

◆1+'

, (I.11)

where L(t) =
P

j `j(t) is the total amount of work provided by the representative household
and ✓i is the preference for good i. The Frisch elasticity index ', after the eponymous
author of [81], gives a measure of the convexity of the disutility of work, L0 is the scale of
the amount of work that the household is able to provide and Γ is a parameter that can
be set to one without loss of generality. In the limit '!1, households are indifferent to
the amount of work provided L < L0, but refuse to work more than L0. We restrict to a
“myopic” optimization here, that does not take into account the long-term forecasts and
desires of the household. Intertemporal effects would require to add interest rates, which
we do not consider in the work presented in this manuscript.

The household therefore optimizes the previous utility while assuming that the
entirety of its budget B will be used for consumption. This budget comes from the wage
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p0 earned by working for the different firms, i.e. B = p0L. The optimization procedure
can therefore be written as

(Ci, L) =

8
<
:
argmax
(Ci,L)

P
j ✓j logCj � Γ

1+'

⇣
L
L0

⌘1+'

subject to p0L =
P

i piCi

, (I.12)

leading to

Ci = L0
✓i

µ

p0
pi

L = L0µ
1/',

(I.13)

with µ = (
P

i ✓i)
'/(1+'). Rewriting consumption as Ci =

✓iP
j ✓j

B
pi

allows us to see that the

household partitions its budget with respect to preferences and prices, luxurious goods
being consumed less.

1.4 Modelling framework

Following the descriptions of [35, 13, 66] and [41], we model the economy as consisting of N
firms which interact with one another and with a single representative household providing
labor and consuming goods. The economy is described by a “technology network”, namely
a directed graph where each node i = 1, . . . , N represents a firm and where the link j ! i
exists if i uses the good produced by j for its own production. The node conventionally
labelled i = 0 represents households. Each edge in the graph j ! i carries a “weight” Jij
that is a measure of the number of j goods needed to make a unit of i. Figure I.2 shows
a schematic representation of a firm network augmented by one representative household.

2 Competitive equilibrium

Equilibrium in physics corresponds to the balancing of forces leading to idle or constant-
velocity bodies. In economics, these forces are replaced by fluxes of goods that should
be balanced at equilibrium. The first equilibrium condition is known as market clearing :
at equilibrium, the entirety of production must be sold either to other firms or to the
household. The second condition is that of maximum profits: at equilibrium, firms
maximize their profits under the market clearing condition. Note that this second
condition is not equivalent to null profits at equilibrium (which would balance money
fluxes) except when return to scales are constant. In the present manuscript, and in the
worked we published in [1], we propose a different definition of equilibrium having in
mind the possible dynamical processes needed to reach it, along with the idea that forces
must balance at equilibrium.
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i

j k

0
Jji Jik

Jkj

Jjk

Jk0Jj0

Ji0

Figure I.2: Schematic representation of a network of 3 firms and one household. The
household supplies work and consumes goods through the links f 0, f 2 {i, j, k}. The
coefficient Jf0 measures the amount of working hours needed by firm f in its production.
Firms can also buy goods from each other through the links f ←− f 0, and the coefficient
Jff 0 measures the amount of goods f 0 needed by f for production.

2.1 Competitive equilibrium under uncertainty

Given prices pi of the goods and wage p0, the profit ⇡i of firm i can be written as

⇡i =
NX

j=0

xjipi �
NX

j=0

xijpj ⌘ Gi �
NX

j=0

xijpj , (I.14)

where Gi denotes the total proceeds of the future sales (“gains”), xi0 := `i the working
hours provided by the household and x0i := Ci is the consumption of good i by the
households. Now, the textbook protocol at this stage is to impose that firms maximize
their profit assuming that markets will clear, so that all that is produced will be sold,
hence

Gi ⌘ yipi. (I.15)

Using the production function (I.4), profit maximization by firm i then leads to the
optimal quantities of input goods xij and optimal production zi�i. Note that when b = 1,
the corresponding solution leads to profits that are zero in equilibrium, but they are
strictly positive when b < 1, corresponding to imperfect competition in that case.

We take another stance and depart from the standard definition of equilibrium in
two ways:

1. Since we do not assume that markets clear at each time step, firms can only
compute the optimal input quantities bxij required to reach a certain production
target byi := zib�i. Since firms do not know in advance how much of their production
they will be able to sell (and consequently how much they will earn), the only lever
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I. Equilibrium network-economies

on which they can act is the cost term that they attempt to minimize. The process
yielding the specific target value b�i will be specified in Part II.

2. We assume that our firm network is competitive in the sense that enough firms sell
similar goods to drive profits down to zero at equilibrium. An explicit description of
such a competitive process would entail introducing a time dependent network where
firms rewire towards cheaper suppliers. We will also briefly discuss this process in
Part II.

2.1.1 Step 1: Cost-minimizing inputs

More explicitly, the cost-minimizing input quantities are such that

bxij =

8
>><
>>:

argmin
xij

PN
j=0 xijpj

subject to

✓PN
j=0 aij

⇣
xij

Jij

⌘�1/q
◆�bq

= b�i.
(I.16)

Within the CES framework, this leads to

bxik = aq⇣ikJ
⇣
ik

0
@X

j

aq⇣ij J
⇣
ij

✓
pj
pk

◆⇣
1
A

q

b�1/bi , (I.17)

with ⇣ = (1 + q)�1. In the Leontief case with b = 1, this boils down to

bxik = Jikb�i, (I.18)

which amounts to buying no more than the minimum amount needed to reach the target.
In the Cobb-Douglas case with b = 1, we get

bxik = aikp
�1
k

NY

j=0
Jij 6=0

✓
Jij
aij

pj

◆
�̂i, (I.19)

where substitutability is measured through the ratios p/a. For any value of q and b, we
see that cost-minimizing input quantities can be expressed through the 2N variables pi
and b�i.

2.1.2 Step 2: Market clearing and competitive prices

We then obtain equilibrium prices and productions by assuming perfect competition, i.e.
null profits ⇡i = 0 for all firms (step 2), and perfect market clearing. These conditions
can be written for each firm i as

NX

j=0

xeq,jipeq,i �
NX

j=0

xeq,ijpeq,j = 0, (I.20a)

yeq,i � Ceq,i �
NX

j=1

xeq,ji = 0, (I.20b)
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2. Competitive equilibrium

where Ci is the household demand for good i. They furnish 2N equations on the
2N variables peq,i and �eq,i := b�eq,i 2 if one uses the relationships derived above for
xeq,ij = bxeq,ij 2.

Except when return to scales are constant (b = 1), the above two-step procedure is
not equivalent to the standard profit maximization where market clearing is assumed
from the start, which allows firms to know their gains in advance and include them in
the optimization program. Indeed, the standard definition of competitive equilibrium
requires maximum profits. Whenever b 6= 1, this maximum is different from 0 since one
maximizes a functional of yi consisting in a sum of a concave or convex part (depending
on whether return to scales are decreasing or increasing) and a linear part.

Finally, consumption a priori depends on prices. As long as the consumption is only
a function of prices, the specific relationship is not important to establish the equilibrium
equations, but we will assume that it takes the form of Eq. (I.13).

2.1.3 Equilibrium conditions on prices and productions

Imposing market clearing, production target and real production must be equal at
equilibrium. This allows us to write closed form equations on prices and productions for
q <1 (see Appendix B for a derivation)

Mpeq
⇣ = V + z⇣ � peq

⇣ �
⇣
1� �eq

⇣ b�1
b

⌘

M>∆
⇣
zq⇣peq

q⇣
⌘
�eq

⇣ bq+1
b = Ceq + z � peq

q⇣ � �eq
⇣ bq+1

b

⇣
1� �eq

⇣ b�1
b

⌘
,

(I.21)

where ⇣ = (1+ q)�1, Vi = p0Ji0 and � denotes the term-wise (Hadamard) vector or matrix
product. The Cobb-Douglas case requires more care and a better specification of the
relationships between consumption and prices (see Appendix B for a derivation in the
case of an inverse relationship between prices and consumption). We also introduced a
matrix M that we will call the network matrix and which is expressed by

Mij = z⇣i �ij � aq⇣ij J
⇣
ij . (I.22)

This matrix relates the ability of firms to convert inputs into outputs (through productivity
factors zi) with the network needs Jij weighted by substitutability factors. In the Leontief
case, the matrix is simpler and reads

Mij = zi�ij � Jij ,

which only takes into account the network needs, while in the Cobb-Douglas case,
substitutability prevails

Mij = �ij � aij .

2At equilibrium, market clearing implies perfect balance between supply and demand, between work
supply and work demand as well as between consumption and budget. No shortages of any kind occur at
equilibrium which implies that cost-minimizing inputs are equal to actually exchanged quantities, i.e.
xeq,ij = bxeq,ij . As a corollary, production targets are reached, i.e. �eq,i := b�eq,i.
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I. Equilibrium network-economies

3 Positive equilibrium and Hawkins-Simons condition

Whether the economy is at equilibrium or evolving according to some dynamical process,
prices and productions must remain positive to make sense. This positivity condition
is not obviously guaranteed by Eqs. (I.21) and this section is devoted to the conditions
under which an admissible positive equilibrium exists.

3.1 Constant return to scales

The first and easiest situation to look at is that of constant return to scale b = 1. We will
also focus on the Leontief limit q ! 0+ since results are qualitatively similar in the CES
case (see [24]). In this limit, equilibrium equations become linear

Mpeq = V

M>�eq = Ceq.
(I.23)

Regardless of the relationship between prices and consumption (once again as long as
consumption is only price dependent), these equations can be solved in cascade, i.e.
solving the first one and injecting the results into the second one. As long as M is
invertible, the solutions are straightforward and read

peq = M�1V

�eq =
⇣
M>

⌘�1
Ceq.

(I.24)

The positivity condition is guaranteed if the matrix M is a so-called M-matrix. Our
network matrix has negative off-diagonal elements �Jij (�aq⇣ij J

⇣
ij in the general case) and

positive diagonal elements zi (z⇣i in the general case). Owing to this particular shape,
M is an M-matrix if and only if all of its eigenvalues have positive real parts (see [82]).
Furthermore, we can also use a theorem paramount to that of Perron-Frobenius to show
that the smallest eigenvalue (in modulus) of M is real, simple and associated to a full
positive eigenvector. Calling " this eigenvalue, the positivity condition can be rewritten as

peq, �eq > 0() " > 0. (I.25)

The different results about M-matrices are reported in [82] and the previous condition is
known as the Hawkins-Simons (HS) condition [83] in economics. Eq. I.25 is the equivalent
of the HS condition in the context of network economies which has been revisited in [24].

To understand this condition, we give the following example. Consider an economy
where productivity factors are homogeneous zi := z and where the number of in/out links
is fixed to some value d (the subsequent network is called d-regular). The network matrix
is therefore

M = zIN � J,

where IN is the identity matrix. Assuming unit weights, we have
PN

j=1 Jij = d since
the number of in links is fixed to d. Therefore, d is an eigenvalue of J associated to the
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3. Positive equilibrium and Hawkins-Simons condition

eigenvector e = (1, . . . , 1)>. This eigenvalue is the top eigenvalue of J and we can use it
to express "

" = z � d.

The HS condition then translates into z > d: firms’ ability to transform inputs into
outputs (the productivity factor z) must be large enough with respect to input needs
(here the connectivity d).

As a consequence, as soon as "  0, admissible economic equilibrium ceases to exist,
rendering invalid one of the founding hypothesis of standard economics. Furthermore, one
defining feature of the economy (the equilibrium) is dramatically different whether the
economy is above or below the point "c = 0. This points therefore constitutes an economic
critical point, and we retrieve the instability point theorized by Bak et al. [19] that we
mentioned in the introduction and whose implications will be discussed in Section 4.

3.2 Non-constant return to scales

Of course, the picture is a lot more complex when dealing with non-constant return to
scales b 6= 1. In the general case, Eqs. (I.21) constitute a set of 2N non-linear coupled
algebraic equations about which very little can be said. Although some conditions could
be found in [84] for instance, a complete characterization of the solutions is not possible
yet.

3.2.1 Large productivity regime

A first interesting limit to consider is the large productivity limit " ! 1. This limit
coincides with very large productivity factors or equivalently negligible network effects.
To express prices and productions in this limit, we therefore set Jij = 0 in Eqs. (I.21)
and get for all i

z⇣i p
⇣
eq,i�

⇣ b�1
b

eq,i = Vi (I.26a)

zip
q⇣
eq,i�

1/b
eq,i = Ceq,i. (I.26b)

Using the relationship Ceq,i = i/peq,i where i depends on the parameters of the utility
function, we therefore get the solutions

peq,i =
V

x/⇣
i

zi
b�1
i

(I.27a)

�eq,i =

✓
i

Vi

◆b

, (I.27b)

with x = 1� ⇣(b� 1)(q � 1). In this regime, regardless of the values of the elasticity of
substitution q or return to scale b, equilibrium is always positive. This reinforces the
point made in the previous section: interactions are a vector of instabilities in network
economies.
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3.2.2 Linear shift to the Hawkins-Simons transition

A second interesting limit is b = 1� � with |�|⌧ 1, i.e. return to scales close to constant
but not quite. We expect that the transition from existence to non-existence of equilibrium
gets shifted with �. To illustrate this shift, let us consider homogeneous productivity
factors zi = z along with a symmetric network Jij (for a more general computation,
see Chapter II). We denote by (⇢⌫)⌫=1,...,N the eigenvalues of J ordered such that ⇢N
corresponds to the top Perron-Frobenius eigenvalue. Eigenvectors are denoted by e⌫
with eN full, i.e. without elements equal to zero, and positive. Finally, the relationship
between prices and production is given by

Ci =
µi

pi
, (I.28)

which results from the maximization of a log-utility function by the household (see
Chapter II).

Writing xeq = x
(0)
eq + � x

(1)
eq for any quantity x, we can �-expand the equation on

prices from (I.21) to get
Mp(1)

eq = zp(0)
eq log �(0)

eq , (I.29)

where any function of a vector is to be understood as acting component-wise. Now, we
need to take the limit " = z � ⇢N ! 0+ in the previous equation to assess the shift
introduced by � in the positivity of peq. It is easy to see that

M�1 ⇠
"!0

1

"
eNe>N (I.30)

resulting into

p(0)
eq ⇠

"!0

1

"
(e>NV)eN (I.31)

�(0)
eq ⇠

"!0

eN

(e>NV)
. (I.32)

Injecting these into Eq. (I.29), we get for p
(1)
eq

p(1)
eq ⇠

"!0
(e>NV)

⇢N

"2

 
NX

i=1

eN,i ln
eN,i

e>NV

!
eN . (I.33)

A first order condition for the positivity of prices can be obtained by equating p
(0)
eq +�p

(1)
eq

to 0 and yields

"c(�) ⇠
�!0
��⇢N

 
NX

i=1

e2N,i ln
eN,i

e>NV

!
. (I.34)

In the case where J accounts for a symmetric d-regular network, we get the simple
condition

"c(�) ⇠
�!0

�d ln

NX

i=1

Vi,
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3. Positive equilibrium and Hawkins-Simons condition

Figure I.3: (a) Region of existence of an admissible economic equilibrium for a directed
15-regular network on N = 50 firms as a function of return to scale b and ". The work
vector Vi is uniformly drawn between 1 and 5. The region where peq,i, �eq,i > 0 for all i is
represented in blue-gray. (b) shows a close-up of (a) onto the regions b ⇠ 1 and " ⇠ 0.
The black line shows the linear approximation from Eq. (I.34) which aligns with numerical
simulations. Finally, note that if b = 1, an admissible equilibrium exists whenever M is
an M-matrix, i.e. whenever " > 0 as expected.

which is reported in Figure I.3. Decreasing return to scale (� < 0) lowers the threshold
below which equilibrium disappears and therefore stabilizes the network. At least at linear
level, b does not qualitatively change the HS transition, and we will therefore restrict
ourselves to b = 1 in the following, except when stated otherwise.

3.3 Parallel with ecological equilibria

The existence of an admissible positive equilibrium relates to the broader question of the
existence of positive solutions to a set of equations. Whenever the equations are non-linear,
very little is known except in some specific cases [84]. The linear case (corresponding to
constant return to scales b = 1 in our case) has drawn a lot of attention in the context of
ecological equilibria. Consider the generalized Lotka-Volterra equations that account for
the dynamics of the populations Ni(t) of interacting species, namely

dNi

dt
= Ni

0
@1�Ni �

X

j 6=i

↵ijNj

1
A . (I.35)

The interaction matrix ↵ describes how species may cooperate ↵ij > 0 or hinder ↵ij < 0
one another. Equilibrium is reached whenever species populations reach stationary values
N?

i that are obtained through
(IN +↵)N? = e, (I.36)

with e = (1, . . . , 1)>. A realizable equilibrium requires that N?
i � 0 which amounts to

IN + ↵ being an M-matrix. Since interactions between species are hard to capture, ↵
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is usually considered random to allow statistical treatment (an idea first introduced by
Wigner and Dyson to explain the level spacing of heavy nuclei [85, 86]). Depending on its
properties (distribution of elements, sparsity...) positive solutions may or may not exist
leading to interesting phase transitions, see for instance [87].

4 Self-organized criticality in firm networks

The idea of Bak et al. [19] that economies sit close to a point of instability can prompt
criticisms. In light of the previous section, the instability point in question would be the
"c = 0 threshold around which economic equilibrium exists or not. A natural question
would be: why would the economy sit close to such a point, since virtually any value of
" is possible? This question is actually more general. In any complex systems, critical
phenomena occur at very specific values in parameter space, and it is not at all obvious
why parameters should be close to these instability points.

To assess this criticism, we must turn to a dynamical framework where parameters
are allowed to evolve. With simple heuristics, one is generally able to explain why
some systems should self-organize such that the relevant parameters are drawn towards
instability points. In the context of network economies, an in depth discussion of this
point can be found in [24] but we expose in this section an intuitive argument pointing
towards a self-organization around "c = 0.

Consider an economy comprising N firms with productivity factors zi interacting on
a network Jij . Let us introduce a new firm with productivity factor z? and in/out links
J?i, Ji?. One can write the equilibrium condition on p?

p? =
V?

z?
+

NX

i=1

J?j
z?

pj ,

and plug this equation into the equilibrium equation for the N original firms. With some
rearranging, we get

✓
zi �

Ji?J?i
z?

◆
pi �

NX

j=1

✓
Jij +

Ji?J?j
z?

◆
pj = Vi +

Ji?V?

z?
. (I.37)

Effectively, original productivity factors decrease zi ! zi � Ji?J?i
z?

while network needs

increase Jij ! Jij +
Ji?J?j
z?

. This leads to a decrease in " which pushes the economy
towards the critical point. As a consequence, growing economies can only be drawn
towards the instability point with time. Similar arguments can be crafted regarding an
increase in the connectivity of the most connected firms of the network (which renders
the economy more unstable); or regarding the increase of the global interconnectivity
of the network [88]. These arguments rely on dynamical processes underlying network
formation. As we mentioned before, such processes will be briefly discussed in Part II but
is not at the heart of the work discussed in this manuscript.
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5 Conclusion

The key point of this chapter is the notion of feasible and unfeasible economies. Whenever
economies are inefficient in converting inputs into outputs, an equilibrium with positive
prices and productions ceases to exist. In the case of constant return to scale, the sign of
the smallest eigenvalue " of the network matrix

Mij = z⇣i �ij � aq⇣ij J
⇣
ij , (I.38)

determines whether economies are feasible (" > 0) or not (" < 0). This transition is the
analogous to the Hawkins-Simons transition in the context of network economies [24].

Furthermore, heuristic arguments concerning the modifications of links in firm
networks allow us to surmise that large economies sit close to the critical value "c = 0:
adding extra firms or increasing connectivity tend to lower ". With real economies
containing numerous firms (around 5 million in the US, for instance) and with power-law
distribution for in/out-links degree, the idea of self-organized criticality seems to be a
good avenue to follow in order to account for excess volatility at aggregate levels. Indeed,
as we will see in the next chapters, the HS transition translates into a dynamical transition
that increases the volatility of outputs.

Finally, this transition is yet another example that a standard hypothesis in economic
textbooks is actually invalid: equilibrium might not exist and equilibrium economies
therefore cannot make sense in the general case. This calls for an out-of-equilibrium
description of economies that we will attempt in the following chapters of this manuscript.
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Key takeaways

• Firms produce a single good in quantity yi and sells it at price pi. They
transform input quantities xij into outputs through the production function

yi = zi

✓
min


`i

Ji0
,min

j

✓
xij
Jij

◆�◆b

,

where zi is the productivity factor and Jij the weighted input-output network
elements measuring the need of good j in i’s production.

• Households are considered representative. They consume a quantity Ci

and work `i for each firm. Labor market clearing imposes that
P

i `i = L0

where L0 is the total amount of work supplied (and fixed) by the household.
Consumption is then obtained through utility maximization, upon imposing
a constraint on budget.

• The Hawkins-Simons transition (network setting) refers to the exis-
tence (or not) of positive prices and productions at competitive equilibrium.
For constant return to scale, positive solutions to the equilibrium equations
exist whenever

" > 0,

with " the smallest eigenvalue of the network matrix Mij = zi�ij � Jij . Small
enough increasing or decreasing return to scale b = 1± �, linearly shifts the
value of the threshold "c.

• Self-organized criticality refers to the capacity of complex systems to
drive themselves towards a critical point. For firm networks, the value of "
decreases as both the number of firms and their connectivity increases. Large
economies are therefore prone to being unstable.
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A. Optimizations

A Optimizations

In this appendix, we detail the computations leading to the optimal quantities bxik of Eq. (I.17)
as well as consumption and labor Eqs. (I.13).

A.1 Household

The household maximizes the utility function (I.11) under the budget constraint p0L =
P

i piCi.
Introducing the Lagrange multiplier µ/(p0L0), we differentiate U we respect to both Ci and L

@U

@Ci
=
✓i

Ci
� µpi

@U

@L
= �L�1�'0 L' + µ/L0.

Setting both partial derivative to zero then yields

Ci = L0
✓ip0
µpi

L = L0µ
1/'.

The parameter µ can be found using the budget constraint and reads

µ =
X

j

✓j .

A.2 Firms

Using the same reasoning as in the previous section, we introduce a Lagrange multiplier �
enforcing the constraint

b�i = �i :=

0
@X

j

aij

✓
xij

Jij

◆�1/q
1
A
�bq

.

We compute the partial derivatives of the cost terms Ci with respect to input quantities

@Ci
@xik

= pk � �baikJ1/q
ik x

�1/q⇣
ik �

(bq+1)/bq
i .

Setting the left-hand side to zero, we get

bxik =

 
b�aik

pkJ
�1/q
ik

!q⇣

b�⇣(bq+1)/b
i .

Finally, we use the constraint to express �

b�i =

0
@X

j

aijJ
�1/q
ij

 
b�aij

pjJ
�1/q
ij

!�⇣
b��⇣(bq+1)/bq
i

1
A
�bq

,
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leading to

b� =

0
@X

j

aq⇣ij J
⇣
ijp

⇣
j

1
A

1/⇣

b�(1�b)/bi ,

and finally

bxik = aq⇣ikJ
⇣
ikp
�q⇣
k

0
@X

j

aq⇣ij J
⇣
ijp

⇣
j

1
A

q

b�1/bi .

B General equilibrium conditions

In this appendix, we show the computations that lead to the equilibrium equations on prices and
production levels in the case of a general CES production function and a non-constant return to
scale b. To alleviate notations, we will denote by Λij the matrix elements

Λij = aq⇣ij J
⇣
ij , Mij = z⇣i �ij � Λij (I.39)

Note that matrix elements Λij extend for j = 0 to account for labor. Finally, we will consider
that consumption is inversely proportional to prices

Ci(t) =
µi

pi(t)
, (I.40)

where µi are coefficients depending on the form of the log-utility function from which one deduces
the inverse proportionality relationship. Remember that at equilibrium we have �eq,i = b�eq,i such
that optimal quantities, given by Eq. (I.17)

bxeq,ik = Λikp
�q⇣
eq,k

0
@X

j

Λijp
⇣
eq,j

1
A

q

b�1/beq,i,

are equal to quantities that are actually exchanged, i.e. xeq,ik = bxeq,ik. Finally, we will set the
wage p0 to 1 which amounts to rescaling all prices.

Since markets clear at equilibrium, i.e.

zi�eq,i =

NX

j=1

xeq,ji + Ceq,i, (I.41)

the gains realized by firm i are simply given by zi�eq,ipeq,i. The zero profit condition can therefore
be rewritten as

zi�eq,ipeq,i =
X

j

xeq,ijpeq,j . (I.42)

Eqs. (I.41)-(I.42) will be our starting point to compute the equilibrium conditions on prices and
productions.
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B. General equilibrium conditions

B.1 Case q < +1: Leontief and general CES

At equilibrium, we can deduce a nicer expression for the quantity pnet
eq,i =

PN
j=0 Λijp

⇣
eq,j intervening

in (I.17). Using (I.42) we have

zipeq,i�eq,i =
X

j

Λijp
⇣
eq,j

�
pnet
eq,i

�q
�
1/b
eq,i

We can extract both pnet
eq,i and �

1/b
eq,i from the sum and, after some rearanging, get

pnet
eq,i =

⇣
zipeq,i�

b�1

b

eq,i

⌘⇣

.

Plugging this expression into (I.17), we deduce a neater expression for the exchanged quantities

xeq
ij = zq⇣i Λij

✓
peq,i

peq,j

◆q⇣

�
⇣ bq+1

b

eq,i . (I.43)

We express (I.43) back into the the zero profit condition to retrieve the first equilibrium equation

8i, zipeq,i�eq,i �
NX

j=1

peq,jz
q⇣
i Λij

✓
peq,i

peq,j

◆q⇣

�
⇣ bq+1

b

eq,i = zq⇣i Λi0p
q⇣
eq,i�

⇣ bq+1

b

eq,i

() 8i, z⇣i p⇣eq,i�
⇣ b�1

b

eq,i �
NX

j=1

Λijp
⇣
eq,j = Λi0

() 8i, z⇣i p⇣eq,i �
NX

j=1

Λijp
⇣
eq,j = Λi0 + z⇣i p

⇣
eq,i

⇣
1� �⇣

b�1

b

eq,i

⌘

() Mpeq
⇣ = V + z⇣ � peq

⇣ �
⇣
1� �eq

⇣ b�1

b

⌘
,

and then in the market clearing condition to retrieve the second equilibrium equation

8i, zi�eq,i �
NX

j=1

zq⇣j Λji

✓
peq,j

peq,i

◆q⇣

�
⇣ bq+1

b

eq,j =
i

peq,i

() 8i, zi�eq,ip
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NX
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zq⇣j Λjip
q⇣
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eq,j =
i

p⇣eq,i

() 8i, z⇣i �eq,iz
q⇣
i pq⇣eq,i �

NX

j=1

Λjiz
q⇣
j pq⇣eq,j�

⇣ bq+1

b

eq,j =
i

p⇣eq,i

() 8i, z⇣i �
⇣ bq+1

b

eq,i zq⇣i pq⇣eq,i �
NX
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Λjiz
q⇣
j pq⇣eq,j�

⇣ bq+1

b

eq,j =
i

p⇣eq,i
+ zip

q⇣
eq,i�

⇣ bq+1

b

eq,i

⇣
1� �

⇣ b�1

b
eq

⌘

() M>∆
�
zq⇣peq

q⇣
�
�eq

⇣ bq+1

b =


peq
⇣
+ z � peq

q⇣ � �eq
⇣ bq+1

b

⇣
1� �eq

⇣ b�1

b

⌘
.

In the case where q ! 0+ and b = 1, one can check that one retrieves Eq. (I.23).

37



I. Equilibrium network-economies

B.2 Case q = +1: Cobb-Douglas

To get the equilibrium equations in the case q = +1, we need to first take this limit in (I.17). It
yields

bxil = aq⇣il J
⇣
ilp
�q⇣
l

0
@

NX

j=0

aq⇣ij J
⇣
ijp

⇣
j

1
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�̂
1/b
i
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⇣
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�q⇣
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0
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⇣
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⇡
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8
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>>;

⇡
q!+1

ailp
�1
l �̂

1/b
i exp

8
>><
>>:
q ln

0
BB@

NX

j=0
Jij 6=0

aij + ⇣

NX

j=0
Jij 6=0

ln


Jij
aij

pj

�
1
CCA

9
>>=
>>;

⇡
q!+1

ailp
�1
l �̂

1/b
i exp

8
>><
>>:
q ln

0
BB@1 + ⇣

NX

j=0
Jij 6=0

ln


Jij
aij

pj

�
1
CCA

9
>>=
>>;

⇡
q!+1

ailp
�1
l �̂

1/b
i exp

8
>><
>>:
q⇣

NX

j=0
Jij 6=0

ln


Jij
aij

pj

�
9
>>=
>>;

⇡
q!+1

ailp
�1
l �̂

1/b
i

NY
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✓
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◆
.

We can then express the quantity zi�
b�1

b

eq,i peq,i through the zero profit condition as

zi�
b�1

b

eq,i peq,i =

NY

j=0
Jij 6=0

✓
Jij
aij

peq,j

◆
. (I.44)

Using the market clearing condition, we get the first equilibrium equation in the Cobb-Douglas
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case

8i, zi�eq,i =
i

peq,i
+
X

j

ajip
�1
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��1
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To get the second equation, we inject the previous result into Eq. (I.44) and take the
logarithm. It reads
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b
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where hi =
PN

l=1
Jil 6=0

ail ln
Jil

ail
.

In the Cobb-Douglas case, a positive equilibrium for prices and productions always exists.
Indeed, looking at the second equation, one sees that a solution generically exists (except in the
very specific case where b�1 is an eigenvalue of a) for lnpeq. Exponentiating this solutions shows
that peq will always be positive. For the first equation, the matrix IN � a is always invertible

since the eigenvalues � of a are such that |� � a00| = |�|  PN
j=1 aij = 1 � ai0 < 1 thanks to

Gershgorin’s theorem. This also proves that IN � a is in fact an M-matrix, which makes the
solution of this equation positive, implying in turn that �eq is also positive.
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CHAPTER II

Weakly out-of-equilibrium economies

Abstract

This chapter reports our first attempt at endowing classical firm networks with
out-of-equilibrium dynamics. A strand of the literature considers low-dimensional
dynamical systems on a set of aggregate variables that are able to generate non trivial
behavior, see [42, 43]. We propose here a more granular view with a set of reduced-
form non-linear differential equations on prices and productions directly. They follow
a set of heuristic rules which aim at reducing imbalances with respect to equilibrium.
As it is the case with the Goodwin model [42], our equations are closely related
to generalized Lotka-Volterra dynamics. The model displays a marginally stable
dynamics as the economy reaches the Hawkins-Simons transition. The relaxation
time of the system, i.e the time needed to reach back equilibrium (provided it exists)
after a perturbation, becomes infinite close to the transition. This behavior increases
the instabilities in the system as shocks can accumulate and therefore create excess
volatility.

Adapted from: [1] Théo Dessertaine, José Moran, Michael Benzaquen, and Jean-
Philippe Bouchaud. Out-of-equilibrium dynamics and excess volatility in firm networks.
Journal of Economic Dynamics and Control, 138:104362, 2022.

1 Reduced-form differential equations: the Goodwin model

As an introduction to this chapter and to reduced-form differential equations, we begin
with the well-known Goodwin model. This model was first introduced by Richard Goodwin
in 1967 [42]. It aims at explaining economic fluctuations and cycles through redistribution
of capital. Goodwin considered an economy with two agents: capitalists, which possess
capital k(t) at time t, and n workers, supplying a quantity `(t) of work at time t. The
production y(t) is driven by both work and capital through

y(t) = min(a(t)`(t), k(t)/�),
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II. Weakly out-of-equilibrium economies

where a and � represent productivity of work and capital-to-production ratio respectively.
Goodwin assumed that capital is used in its entirety at each time-step, therefore implying
k(t)/� = a`(t) = y(t). Goodwin then considered a constant growth rate � of population,
which allows to write an evolution equation for the share of employment v = `/n

v̇

v
=

˙̀

`
� �,

where ḃ = db/dt, for any time-dependent quantity b. In the same way, assuming constant
growth rate ↵ for productivity a yields

˙̀

`
=

ẏ

y
� ↵.

Furthermore, he also postulated that wages w are given by a Philips-curve-type relationship
[89]

ẇ

w
= ⇢v � �,

where ⇢ and � are constant, and which also allows one to write the evolution of the share
of workers in production u = w`/y

u̇

u
=

ẇ

w
� ↵.

Finally, workers consume their entire salary, capital owners save a fraction s of their
profits while capital is depreciated at rate �. One can therefore write a final equation on
capital

k̇

k
= s(1� u)y/k � �.

A lot of the previous equations are actually redundant and the model can be summarized
through two constitutive equations

v̇ = v
⇣ s

�
(1� u)� � � ↵� �

⌘
(II.1)

u̇ = u (⇢v � � � ↵) . (II.2)

Interestingly, these equations are mutatis-mutandi Lotka-Volterra equations in the context
of prey-predator dynamics. The simple Goodwin model is actually able to generate
limit-cycles and endogenous economic fluctuations. The origin of these cycles is as
follows: whenever labor share in production is low, investments – which is this case are
comparable to profits – still allow for a steady growth, therefore increasing employment.
As employment reaches its cap of available workers in the economy, salaries start to
increase and profits increasingly go towards workers. Capital therefore decreases slowing
down investment and overall growth which makes employment plummet. Therefore a cycle
is generated through the interplay between capital owners, workers and the redistribution
process.
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2. Adjustment processes through behavioral rules of thumb

Even though this model is simple and stylized, it sheds light on a mechanism that, not
only surely happens in the real economy but can also be responsible for economic cycles.
In physics, toy-modelling refers to this exact approach. Upon devising a model, one tries
to strip away as much complexity as possible while still being able to observe some key
mechanisms. In the following, we will take this stance by proposing a minimal model that
can endogenously amplify economic fluctuations whenever close to the Hawkins-Simons
transition.

2 Adjustment processes through behavioral rules of thumb

In this section, we introduce the set of rules that is the core of the different models that are
described in this section and later in the manuscript. The equations we postulate are based
on reasonable “rules of thumb” that firms are likely to use in real life conditions, see [90,
91, 37]. We draw inspiration from what physicists call “phenomenological approaches”,
based on symmetry, plausibility and dimensional arguments. As we have learnt from
physics, general arguments can often be used to write down correct equations before the
underlying foundations have been worked out. For example, the Navier-Stokes equations
for fluid motion have been postulated in the XIXth century based on general arguments,
50 years before Boltzmann’s statistical theory of molecular motion gave a solid, first
principle justification of these equations.

2.1 Forces restoring equilibrium

Whereas in the economic equilibrium, as defined in the Chapter I, profits are zero and
markets clear, out-of-equilibrium situations tautologically imply non zero profits and/or
excess supply or demand. So we naturally introduce, for each firm, two indicators that
measure the distance from equilibrium: Ei(t) is the excess production at time t (interpreted
as unsatisfied demand if Ei(t) < 0), and ⇡i(t) the instantaneous profits or losses of the
firm at time t.

Prices and productions must then adapt through some kind of adjustment process to
reduce these imbalances:

• Faced with excess production, firms will lower prices to prop up demand, and/or
reduce production to limit losses.

• Faced with excess demand, on the other hand, firms can consider increasing prices
and/or increase production.

• Similarly, when profits are positive, firms may be tempted to increase production
but at the same time competition, attracted by the prospect of a profit, should put
pressure on prices.

• If profits are negative, firms will try to adapt by lowering production and increase
prices, with the hope of better compensating production costs.
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II. Weakly out-of-equilibrium economies

All these rules are common sense and it is hard to argue that they do not play a
crucial role in real economies with boundedly rational agents. What is more debatable,
however, is how to model them quantitatively. Throughout the manuscript, we further
assume that restoring forces are all linear in Ei(t),⇡i(t), at least when these imbalances
are small enough. For the point that we want to make in this section, higher order terms
would in any case be irrelevant since we will perform a linear analysis.

If only for dimensional reasons, all quantities determining price and production
relative changes must appear as relative, non-dimensional quantities, i.e. ratios of Ei(t)
to total production yi(t) and ⇡i(t) to total possible sales yi(t)pi(t). Hence we posit the
following adjustment rules for prices and production

log

✓
pi(t+ �t)

pi(t)

◆
=

✓
�↵Ei(t)

yi(t)
� ↵0 ⇡i(t)

pi(t)yi(t)

◆
�t (II.3a)

log

✓
yi(t+ �t)

yi(t)

◆
=

✓
�

⇡i(t)

pi(t)yi(t)
� �0 Ei(t)

yi(t)

◆
�t, (II.3b)

where �t is an elementary time step, and the parameters ↵, ↵0, �, �0 characterize the
speed of adjustment in the face of imbalances. From our general arguments above, we
expect that all these parameters are non-negative, i.e. that firm policies and market forces
tend to dampen imbalances.

Of course, these parameters could depend on the firm i, with some firms choosing to
be more aggressive than others in their adjustment policy. Throughout the present work we
will stick to time-independent and firm-independent values for ↵, ↵0, �, �0. Furthermore,
one could imagine a version of the model where firms attempt to learn optimal values of
these adjustment parameters, adding an extra level of complexity in the dynamical rules.
The simple rules of Eqs. (II.3a, II.3b) are very similar in spirit to those used in several
well studied Agent-Based Models – see [57, 61]. Note that ↵0 > 0 reflects our hypothesis
that competition is at play in the economy, pushing prices down when profits are positive.

2.2 Competitive equilibrium as dynamical equilibrium

Although null profits and market clearing obviously imply from Eqs. (II.3a, II.3b) that
prices and productions are time invariant, the converse is more subtle. Assume indeed
that there exists quantities p?i , y

?
i , E ?

i and ⇡?i towards which prices, productions, and
imbalances converge under the dynamics (II.3a, II.3b). These values should satisfy

�↵E ?
i

y?i
� ↵0 ⇡

?
i

p?i y
?
i

= 0

��0E
?
i

y?i
+ �

⇡?i
p?i y

?
i

= 0

()
✓
↵ ↵0

�0 ��

◆
0
BB@

E ?
i

y?i
⇡?i
p?i y
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i

1
CCA =

✓
0
0

◆
. (II.4)

If the matrix comprising adjustment speeds is non-singular, then the only solution
is trivial and E ?

i = ⇡?i = 0 which coincides with the equilibrium defined in the previous
section. The only way through which this matrix can be singular is by having ↵�+↵0�0 = 0.
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Since ↵, ↵0, �, �0 are chosen to be positive, this happens only when at least one of the
pairs (↵,↵0), (�,�0), (↵,�0) or (↵0,�) is equal to (0, 0). In the first two cases, prices or
productions are frozen in time, making the dynamical rules moot. In the last two cases,
prices and productions are driven either only by profits or only be production surplus. The
dynamics will converge towards a partial competitive equilibrium with only one of the two
conditions of null profits or market clearing fulfilled. This is again not a satisfying choice
of parameters, because it implies no reaction from the firms to either supply/demand
imbalances or to profits/losses. Therefore, the stationary solutions associated with our
dynamical rules coincide with competitive equilibrium for generic cases. Note that this is
true even if Eqs.(I.21) have multiple solutions: the resting point of our behavioral rules
would then coincide with one of them.

3 Dynamical system for Leontief economies

3.1 Expressing surplus and profits

Eqs. (II.3a, II.3b) may now be closed by expressing imbalances in terms of prices pi and
productions yi, as

⇡i(t) = pi(t)

NX

j=1

xji(t) + pi(t)Ci(t)�
NX

j=1

xij(t)pj(t)� p0(t)`i(t) (II.5a)

Ei(t) = yi(t)�
NX

j=1

xji(t)� Ci(t), (II.5b)

where once again Ci(t) is the consumption of households, `i(t) the quantity of labor, and
where we recall that we have restricted our analysis to constant return to scale Leontief
production functions.

Note that here, we discard possible shortages in both work and supply. For instance
firm i still supplies fully even if demands are too great. Accounting for shortages would
require modifying the exchanged quantities in Eq. (II.5a) as

xik(t)! xik(t)min

 
1,

yk(t)PN
`=1 x`k(t) + Ck(t)

!
,

for example 1. We will not account for this point here but we will come back to it in
Part II.

1As it will be discussed in Part II, this choice accounts for a proportional redistribution of goods
whenever a firm is faced with defaulting supply. One could devise more general redistribution rules of the
form

xik(t) ! xik(t) gk

 
yk(t)PN

`=1 x`k(t) + Ck(t)

!

,

where gk is a firm-dependent function such that gk(u) = 1 whenever u � 1 and gk(u) < 1 whenever u < 1.
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We use a Leontief production function to express exchanged quantities xij = Jij�i
and further express profits and surplus

⇡i(t) = pi(t)

NX

j=1

Jji�j(t) + pi(t)Ci(t)�
NX

j=1

Jij�i(t)pj(t)� Vi�i(t), (II.6a)

Ei(t) = zi�i(t)�
NX

j=1

Jji�j(t)� Ci(t), (II.6b)

where we recall that Vi = Ji0p0(t). Here again there is an inconsistency. Firms use goods
xij(t) bought at time t to produce yi(t). However, this production is also sold at time
t to other firms. Causality is therefore violated since in principle goods cannot be sold
before produced or vice versa. We will come back to this point at the end of the chapter
and introduce a causal framework in Part II. Studying these equations is of course still
enlightening since the fine-grained causal structure of the equations may not matter if
one studies the system on longer time-scales.

We finally express both profits and surplus with the network matrix Mij = zi�ij �Jij

⇡i(t) = �i(t)

0
@

NX

j=1

Mijpj(t)� Vi

1
A� pi(t)

0
@

NX

j=1

Mji�j(t)� Ci(t)

1
A , (II.7a)

Ei(t) =

NX

j=1

Mji�j(t)� Ci(t), (II.7b)

and one recognizes distances to equilibrium
P

j Mijpj(t)� Vi and
P

j Mji�j(t)� Ci(t).
One must too model the consumption of households. For simplicity, we assume

that households work full time, i.e. with Frisch index ' = 1, and denote by L0 the
total amount of available labor supplied by the household. Consumption is obtained by
saturating the current budget p0(t)L0

2 to maximize a log-consumption utility, i.e.

max
Ci(t)

X

i

✓i logCi(t) with
X

i

pi(t)Ci(t) = p0(t)L0, (II.8)

where ✓i is the preference for good i. The optimal consumption is then

Ci(t) = L0✓i/µ(t)pi(t)

with µ(t) =
P

i ✓i/p0(t) as we saw in Chapter I. For simplicity, we will assume constant
unit wages (which amounts to a rescaling of prices at any time) along with L0 = 1.

2Note that, in the absence of market clearing, the budget should be p0(t)
P

i `i(t) since /sumi`i 6= L0

a priori.
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3. Dynamical system for Leontief economies

Putting all these ingredients together and taking the continuous time limit �t! 0 in
(II.3) yields the following system of coupled non-linear ordinary differential equations

dpi
dt

= �(↵� ↵0)
pi(t)

zi�i(t)

0
@X

j

Mji�j(t)� Ci(t)

1
A� ↵0

zi

0
@X

j

Mijpj(t)� Vi

1
A (II.9a)

d�i
dt

= �
�i(t)

zipi(t)

0
@X

j

Mijpj(t)� Vi

1
A� � + �0

zi

0
@X

j

Mji�j(t)� Ci(t)

1
A . (II.9b)

These equations are slightly different from the ones presented in our article [1].
Indeed, in the published version, we assume that profits take their market clearing form

⇡i(t) = pi(t)yi(t)�
NX

j=1

xij(t)pj(t),

which amounts to a redefinition of time-scales

dpi
dt

= �e↵ pi(t)

zi�i(t)

0
@X

j

Mji�j(t)� Ci(t)

1
A� e↵0

zi

0
@X

j

Mijpj(t)� Vi

1
A (II.10a)

d�i
dt

= e� �i(t)

zipi(t)

0
@X

j

Mijpj(t)� Vi

1
A�

e�0
zi

0
@X

j

Mji�j(t)� Ci(t)

1
A . (II.10b)

In the following, we will consider this set of equations but we will omit the f(·) on time-
scales for clarity. This set of reduced-form dynamical equations will be a naive candidate
for weakly out-of-equilibrium dynamics in firm networks. Since they are non-linear and
coupled, very few things can be said about their behavior and we will resort to numerical
simulations in order to characterize them.

3.2 Simulations

Figure II.1 shows time-series for different values of time-scales ↵, �, ↵0, �0, network
stability " and initial conditions pi(0), �i(0). The most striking feature is the difference
between large and low values of ". As " decreases, relaxation towards equilibrium seems
to slow down for given values of ↵, �, ↵0, �0. Furthermore, outputs seem to rapidly
synchronize onto a single mode of oscillations or exponential dampening. As we will
see, this is due to a separation of time-scales in the behavior of the stability matrix of
the system as "! 0. Both features hint at a relationship between fading feasibility of
the economy and diverging relaxation time which we are going to prove further down
in this chapter. In addition, the relative value of time-scales seem to affect whether the
subsequent dynamics will be oscillatory or not. Initial conditions, though affecting the
aspect of time-series, do not seem to affect the outputs qualitatively. Very large initial
conditions can however lead to diverging outputs.
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II. Weakly out-of-equilibrium economies

As the Hawkins-Simons transition gets violated, i.e. " < 0, no bounded trajectories
have been found numerically. The associated non-economically-sound equilibrium is
negative and the system, confined within the region of positive prices and outputs, blows
up exponentially. This point is not satisfying and will be discussed further down in this
chapter. We do not show the time-series since they bear little relevant information.

One must be particularly careful about spurious numerical effects when simulating
Eqs. (II.9). Indeed, such differential equations fall into the category of so called stiff
ordinary differential equations (ODE). They are characterized by an evolution governed by
two (or more) very different timescales. For a dynamical system of the form of Eq. II.11,
i.e.

dU(t)

dt
= DU(t),

we denote by �⌫ the eigenvalues of the matrix D (as in Appendix B). We call � and �

the two eigenvalues such that

8⌫, |Re (�)| � |Re (�⌫)| � |Re (�)| ,

i.e. respectively the fastest and slowest timescales of the system. The stiffness ratio is
defined as

r =
|Re (�)|

|Re (�)|
,

and the system is said to be stiff if this ratio is large. In our case, as " ! 0, � will
remain finite whereas � is of order " making the stiffness ratio r ⇠ "�1 divergent (see
Appendix B). Stiff ODEs require special care for their simulation. More precisely, one
cannot use simple explicit integration routines with fixed step-size but rather implicit
schemes such as Radau integration (see [92]).

3.3 Parallel with generalized Lotka-Volterra equations

As mentioned previously, these equations bear a strong resemblance to generalized Lotka-
Volterra models used in theoretical ecology by [93], where an ecosystem self-organizes
into a configuration that is highly susceptible to amplify external perturbations. Newer
extensions to such models, along the lines of [94], show that they can also explain
anomalous, persistent fluctuations in the populations of the different species that make up
an ecosystem. The different analogies linking the study of firm networks and ecosystem
have also been fruitful in linking the notion of trophic levels, namely the position of a
species along the food web, to the “upstreamness” of a firm along the supply chain, as
done by [95], and in the work of [96] where these concepts are used to study the properties
of production networks. Interesting parallels between these two domains could also arise
when studying the impact of technological innovation or biological evolution within these
models.

The economic intuition behind the analogy with Lotka-Volterra equations is the
following: when dealing with a complex assembly of interacting entities, be it an ecosystem
with species having attained a certain evolutionary level or an economy with firms capable
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3. Dynamical system for Leontief economies
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Figure II.1: Simulated trajectories of relative price difference from equilibrium �pi(t) =
(pi(t) � peq,i)/peq,i for (i) " = 100, tmax = 100 and (ii) " = 0.001, tmax = 1000. We do
not show the time-series of ��i(t) since they are qualitatively similar. The network is
Gaussian with Jij ,! N�1 |N (0, 1)|. Parameters: ↵ = 0.01, � = 0.01, �0 = 0.1. (a)� (c)
↵0 = 0.5, (b)� (d) ↵0 = 0.05. (a)� (b) Initial conditions �pi(0), ��i(0) 2]� 0.001, 0.001[,
(c)� (d) Initial conditions �pi(0), ��i(0) 2]� 0.9, 10[.
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II. Weakly out-of-equilibrium economies

of using certain technologies, one is considering a complex system with a large amount
of feedback loops. The different entities depend on one another in a way that creates
feedback loops that can lead to very volatile oscillatory behavior or even chaos, and in
general to crises where certain firms or certain species must become “extinct” to re-stabilize
the system, a point that was made by [24] and [19] arguing in favor of “self-organized
criticality”. Although the analogy with ecology is chosen here because it is easy to
understand, we stress that we believe this is a generic characteristic of a large class of
systems with a large number of inter-dependencies, as is the case for firm networks.

4 Linear study and marginal stability at the onset of

feasibility

Equations (II.10) are our “naive” candidate equations for the out-of-equilibrium dynamics
of the firm network model, the limitations of which will be discussed below. As we
mentioned previously, very little can be said about these equations in their fully non-linear
form. We resort to a linear analysis, which turns out to be enough for the point we want
to make about excess volatility generated by network effects.

Writing pi(t) = peq,i+�pi(t) and �i(t) = �eq,i+��i(t) and keeping only terms of order
1 in �(.), one finds a linear evolution equation for a 2N dimensional vector U = (�p, ��)>,
of the form

dU(t)

dt
= DU(t). (II.11)

The stability matrix D is written in the following block form

dU

dt
=

✓
D1 D2

D3 D4

◆
U(t) := DU(t), (II.12)

where the different blocks of the matrix are

D1 = �↵∆
✓

µ✓i
zi�eq,ipeq,i

◆
� ↵0∆

�
z�1
i

�
M D2 = �↵∆

✓
peq,i

zi�eq,i

◆
M>

D3 = �∆

✓
�eq,i

zipeq,i

◆
M� �0∆

 
µ✓i

zip2eq,i

!
D4 = ��0∆

�
z�1
i

�
M>,

(II.13)

with ∆ (vi) the diagonal matrix with entries vi.
It is well known that the eigenvalues of the matrix D dictate whether the system is

stable, i.e, whether it will be able to reach equilibrium back after a small perturbation.
As long as the real parts of the eigenvalues are negative, equilibrium will be stable. They
also dictate the speed at which the relaxation will occur. Calling �N+ the eigenvalue whose
real part is closest to zero, the relaxation time ⌧r of the system is approximately

⌧r ⇡
1

|Re
�
�+N

�
|
. (II.14)
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4. Linear study and marginal stability at the onset of feasibility
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Figure II.2: (a) Modulus of the largest eigenvalue of D for economies on N = 100 firms
on a 3-regular undirected network with unit weights. We generate 50 such economies and
average out the eigenvalue of D closest to 0 in real part. Plain dark lines give the linear
estimate when "! 0 (as given by Eq. (II.29)) and the plateaus as "!1 (corresponding
to the values of Eq. (II.27)). Finally, �c (defined in Eq. (II.18)) gives the threshold on
� such that the linearized dynamics is oscillatory and dampening (�  �c) or purely
exponentially dampening (� > �c). (b) Absolute error between the linear estimate from
Eq. (II.29) and the simulated eigenvalue. We see that the error decays as "2 (as it should
be) before numerical accuracy becomes limiting.

It can be interpreted as follows: at time t ⌧ ⌧r ⇠ 1/
��Re

�
�N+

��� after the perturbation,
the system is still relatively far away from equilibrium whereas it is close to it for times
t� ⌧r. As ⌧r increases, the initial perturbation will take longer and longer to be absorbed
by the system. This notion of relaxation time, which is central in physics, can be related
to the resilience of economies: the faster shocks are absorbed by economies, the more
resilient they are.

On Figure II.2, we show the evolution of the modulus of the eigenvalue �+N of the
matrix D as a function of the distance to the Hawkins-Simons transition. We can clearly
see two regimes: whenever " ! 1, i.e, far-away from the transition, this eigenvalue,
and therefore the relaxation time, reaches a strictly positive plateau; however, as "! 0,
|�+N | / " which indicates a diverging relaxation time ⌧r ⇠

"!0+
"�1. In the following, we

will give an analytical justification of the observations displayed on Figure II.2.
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II. Weakly out-of-equilibrium economies

4.1 Relaxation time in the high productivity regime

In this section, we assume that the productivity factors are large enough to ignore
interactions between firms: firms are so efficient that the actual amount of inputs does not
matter in the final production. This regime zi !1 corresponds to an economy far-away
from the HS transition, i.e. "!1. We can therefore give approximate expressions for
the equilibrium prices and productions

peq,i =
Vi

zi
(II.15a)

�eq,i =
µ✓i
Vi

, (II.15b)

which are equivalent to Eqs. (I.27) in Chapter I for q = 0 and b = 1, i.e. Leontief
production function with constant return to scale.

Similarly, we can approximate each block of the stability matrix

D1 ⇡
zi!1

�(↵+ ↵0)IN D2 ⇡
zi!1

�↵∆
✓

V 2
i

ziµ✓i

◆

D3 ⇡
zi!1

(� � �0)∆
✓
ziµ✓i
V 2
i

◆
D4 ⇡

zi!1
��0IN ,

(II.16)

and deduce the spectrum of matrix D by computing its characteristic polynomial and
setting it to 0

det (�I2N � D) =

����
�IN �D1 �D2

�D3 �IN �D4

����

⇡
zi!1

det
��
� + ↵+ ↵0

� �
� + �0

�
IN + ↵(� � �0)IN

�

=
�
�2 + �(↵+ ↵0 + �0) + ↵� + ↵0�0

�N

= 0.

Solving this equation yields two eigenvalues �± degenerated N times reading

�± =
1

2
⇥
⇢
�↵0 � �0 � ↵±

p
(↵0 + �0 + ↵)2 � 4(↵� + ↵0�0) if �c > �

�↵0 � �0 � ↵± i
p

4(↵� + ↵0�0)� (↵0 + �0 + ↵)2 if �c  �
, (II.17)

with

�c =
(↵+ ↵0 + �0)2 � 4↵0�0

4↵
. (II.18)

We see here that the dynamics can be oscillatory with exponential hull or purely exponen-
tially dampening, depending on the magnitude of � with respect to �c. In any case, since
time-scales are chosen positive, equilibrium remains stable in that limit. Furthermore,
as we saw in Chapter I, network effects are negligible in the large productivity limit:
firms behave independently from one another which accounts for the degeneracy of the
eigenvalues �±. The slowest eigenvalue �N+ of D plotted on Figure II.2 is therefore none
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4. Linear study and marginal stability at the onset of feasibility

other than �+ and we see that it reaches the plateau defined by Eq. (II.27). Finally,
considering the case �  �c for simplicity, the relaxation time is

⌧r =
2

↵0 + ↵+ �0
, (II.19)

which is finite and of the same order as the time-scale of prices and productions adjustment.
In this limit, firms efficiently cope with shocks and the economy is resilient.

4.2 Marginal stability and Hawkins-Simons transition

As a toy example, Eqs. (II.10) can be solved in the case where ↵ = 0, i.e. when prices are
only driven by competition and inelastic to production surplus. In this case, prices read

p(t) = peq + e�↵0
∆(z�1

i )Mt (p(0)� peq) . (II.20)

Since we chose ↵0 > 0, as long as a feasible equilibrium exists, i.e. Re (Sp (M)) > 0, the
exponential factor is dampening and prices will reach their equilibrium value. However,
as "! 0+, the dynamics on prices will become slower and slower. Taking homogeneous
productivity factors for simplicity zi := z, the slowest mode of ∆

�
z�1
i

�
M will be

approximately "
⇢N

r`> with r, ` the right and left eigenvectors associated to the largest
eigenvalue ⇢N > 0 of J. Consequently, for an initial perturbation around equilibrium of
magnitude �, i.e. p(0) = peq � (1 + �), the relative distance to equilibrium will behave as

pi(t)� peq,i

peq,i
=
⇣
`>�

⌘
rie

�↵0"t/⇢N . (II.21)

The time needed to converge back to equilibrium will therefore be of order "�1 ! 1.
More generally, this behavior is known as marginal stability in linear systems: the matrix
D governing the evolution is Hurwitz (all eigenvalues negative) except for one eigenvalue
which is exactly 0. Such systems are frozen in time since the mode associated to the
null eigenvalue yields a forever non-vanishing contribution. In this toy example, marginal
stability comes together with the violation of the Hawkins-Simons condition and we will
see that this is actually a general feature of these equations, as was hinted by the behavior
of �N+ as "! 0 on Figure II.2.

4.2.1 Perturbation expansion in " for D

Studying the behavior of D as " ! 0+ requires understanding the behavior of M, peq

and �eq in that limit. We now introduce the matrix eJ = ∆ (zmax � zi) + J and denote by
⇢⌫ (resp. |r⌫i, h`⌫ |) 3 its eigenvalues (resp. right/left eigenvectors) ordered by their real
parts. The Perron-Frobenius theorem implies that the top eigenvalue ⇢N is real, simple
and associated to a full and positive eigenvector. We then use the following spectral
representation of the matrix M

3We use here Dirac bra-ket notation, where |vi represents a column vector and hv| a row vector.
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II. Weakly out-of-equilibrium economies

M =
⇣
⇢NIN � eJ

⌘
+ "IN (II.22)

M�1 =
1

"
|rN i h`N |+

N�1X

⌫=1

1

⇢N � ⇢⌫ + "
|r⌫i h`⌫ |

=
1

"
|rN i h`N |+

1X

k=0

(�")k
N�1X

⌫=1

1

(⇢N � ⇢⌫)k+1
|r⌫i h`⌫ | ,

(II.23)

which allows us to express the equilibrium prices and outputs as well as D in terms of ".
We also use the notation M0 to refer to the network matrix when " = 0. This matrix is
singular and verifies

M0 |rN i = 0 , M>
0 |`N i = 0. (II.24)

Expanding in " and neglecting factors of order O
�
"4
�

and higher gives the following
form for the blocks of the stability matrix

D1 = D
(0)
1 + "D

(1)
1 + "2D

(2)
1 + "3D

(3)
1 D2 =

1

"
D

(�1)
2 +D

(0)
2 + "D

(1)
2 + "2D

(2)
2 + "3D

(3)
2

D3 = "D
(1)
3 + "2D

(2)
3 + "3D

(3)
3 D4 = D

(0)
4 + "D

(1)
4 + "2D

(2)
4 + "3D

(3)
4 ,

(II.25)

where the exact values of the perturbation terms D
(l)
i are given in Appendix A. To ease

computations and give closed-form results, we consider an undirected network (symmetric
M) with homogeneous productivity factors. The qualitative results are however unchanged
when considering more general networks. In this setting, the right and left eigenvectors of
M are the same and we denote them by |e⌫i.

4.2.2 Marginal stability for " = 0

Interestingly enough, although the upper-right block of D diverges as "! 0, its spectrum
converges to a finite limit. To see this, we use the block determinant formula

����
A B

C D

���� = det (AD�BC) ,
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4. Linear study and marginal stability at the onset of feasibility

for same-size matrices, where the commutator [C,D] = CD�DC = 0. In our case, we
need [D3,D4] = 0 which is true only in the limit " = 0. We can then write 4

det (�I2N � D) ⇡
"!0

det
⇣⇣
�IN �D

(0
1

⌘⇣
�IN �D

(0
4

⌘
�D

(�1)
2 D

(1)
3

⌘

= det

✓✓
�IN +

↵0

⇢N
M0

◆✓
�IN +

�0

⇢N
M0

◆
+
↵�

⇢2N
M2

0

◆

= det

✓
�2IN + �

↵0 + �0

⇢N
M0 +

↵� + ↵0�0

⇢2N
M2

0

◆

=
NY

⌫=1

✓
�2 + �

↵0 + �0

⇢N
(⇢N � ⇢⌫) +

↵� + ↵0�0

⇢2N
(⇢N � ⇢⌫)2

◆

= �2
Y

⌫ 6=N

 
�2 + �(↵0 + �0)

✓
1� ⇢⌫

⇢N

◆
+ (↵� + ↵0�0)

✓
1� ⇢⌫

⇢N

◆2
!
.

Each factor ⌫ in the product yields two eigenvalues

• If (↵0 � �0)2 > 4↵� then

�⌫± =
1

2

⇣
�↵0 � �0 ±

p
(↵0 + �0)2 � 4(↵� + ↵0�0)

⌘✓
1� ⇢⌫

⇢N

◆
, (II.26)

• If (↵0 � �0)2 < 4↵� then

�⌫± =
1

2

⇣
�↵0 � �0 ± i

p
4(↵� + ↵0�0)� (↵0 + �0)2

⌘✓
1� ⇢⌫

⇢N

◆
, (II.27)

• If (↵0 � �0)2 = 4↵� then

�⌫0 = �↵
0 + �0

2

✓
1� ⇢⌫

⇢N

◆
. (II.28)

Since ⇢⌫  ⇢N and ↵,�0 > 0, we see that D has only eigenvalues with negative real
part and the system remains stable whenever " = 0. However, we also see that �N± = 0
such that, as anticipated, the system exhibits marginal stability in this limit. Figure
II.3 shows the empirical distribution of eigenvalues of D for " = 0 and the corresponding
theoretical predictions given by Eqs. (II.27,II.26,II.28).

4We do not need to consider terms of order one in the commutator because
h
D

(1)
3 ,D

(0)
4

i
= 0, see

Appendix A.

55



II. Weakly out-of-equilibrium economies

−0.100 −0.075 −0.050 −0.025 0.000

0

1

p
(R

e(
σ
))

×10
1 (a)

−0.02 0.00 0.02

0

1

2

p
(I
m
(σ
))

×10
1 (b)

−0.15 −0.10 −0.05 0.00

Re(σ)

0

1

p
(R

e(
σ
))

×10
1 (c)

−0.50 −0.25 0.00 0.25 0.50

Im(σ)

0

2

4

p
(I
m
(σ
))

×10
1 (d)

Figure II.3: (a)� (b) Empirical probability distribution of the real part (a) and imaginary
part (b) or eigenvalues in the case (↵0 � �0)2 < 4↵�. (c) � (d) Empirical probability
distribution of the real part (c) and imaginary part (d) or eigenvalues in the case
(↵0 � �0)2 > 4↵�. The black line is the thermodynamic computation accounting for
(II.27) and (II.26) using the McKay density for the eigenvalues of a random 3-regular
graph [97] over N � 1 nodes. One can notice spikes at 0 accounting for the case ⌫ = N
in Eqs. (II.27, II.26).

4.2.3 Diverging relaxation time

For " = 0, the equilibrium equations do not have any solutions and the linearized system
(II.11) is ill-defined. Therefore, it makes more sense to study the spectrum of D as "! 0+,
i.e. close to the HS transition but with a well-defined equilibrium. In this limit, we can
show that the slowest eigenvalue �N+ of D is proportional to ". Since the computation is
rather long and cumbersome, we only give the results here but see Appendix B for a full
derivation. As the Hawkins-Simons condition is on the verge of being violated, we find
that

�N+ ⇡
"!0

"

2⇢N
⇥

8
<
:

�↵0 � �0 � ↵±
p
(↵0 + �0 + ↵)2 � 4(↵� + ↵0�0) if � < �c

�↵0 � �0 � ↵± i
p

4(↵� + ↵0�0)� (↵0 + �0 + ↵)2 if � > �c
�↵0 � �0 � ↵ if � = �c

. (II.29)

We reported this theoretical prediction on Figure II.2 and one can see a very good
agreement with simulated values of �N+ . As a consequence, the relaxation time reads

⌧r ⇡
2⇢N
"
⇥
(⇣

↵0 + �0 + ↵�
p

(↵0 + �0 + ↵)2 � 4(↵� + ↵0�0)
⌘�1

if �c > �

(↵0 + �0 + ↵)�1 if �c  �.
(II.30)
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5. Excess volatility

When " ! 0, the relaxation time of the system diverges, i.e. it takes an infinitely
long time to reach equilibrium. This point is very important: even though equilibrium
exists, it may never be reached effectively since changes in the technologies and in the
network structure will happen before relaxation is complete. The existence of equilibrium
therefore does not imply that the economy will sit anywhere close to it, or that it is
always resilient to shocks.

5 Excess volatility

5.1 Marginally stable linear stochastic ODEs

In this section, we consider a general evolution for a vector U(t) given by a linear stochastic
equation

dU(t)

dt
= AU(t) + ⇠(t), (II.31)

where A is a real N ⇥N matrix and ⇠(t) is a Gaussian correlated noise such that

h⇠i(t)i = 0 (II.32)

h⇠i(t)⇠j(s)i = 2�2�ijG (|t� s|) . (II.33)

We assume the dynamical matrix A to be diagonalizable with real eigenvalues 5 such that

�1  �2  · · ·  �N�1 < �N := �" < 0.

Negative eigenvalues mean that the system is stable, i.e. hkU(t)ki ! 0 as t!1 for any
initial condition. Let us assume that "! 0 and show that the volatility of U(t) increases
as "�1/2. We introduce the eigenvectors e⌫ associated to �⌫ and we express U into the
diagonal basis

U(t) =
NX

⌫=1

u⌫e⌫ . (II.34)

Injecting this expression into (II.31), we get and evolution equation for the components
of U(t) in the diagonal basis

d

dt
u⌫ = �⌫u⌫ + ⇠(t) · e⌫ . (II.35)

We can give an explicit solution for these components

u⌫(t) = e�⌫t


u⌫(0) +

Z t

0
ds e��⌫s⇠(t) · e⌫

�
, (II.36)

5The case with complex eigenvalues leads to the same conclusion. One must only take into account the
fact that, since A is real, eigenvalues and eigenvectors will be conjugated so that there are two eigenvalues
that are smallest in real parts. We can make the same ordering of eigenvalues replacing the �’s by their
real parts.
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II. Weakly out-of-equilibrium economies

and focus on uN since this is the component yielding the O("�1/2) volatility. To show
this, we compute the average value of uN (t)2 � huN (t)i2

D
uN (t)2 � huN (t)i2

E
= e�2"t

*
uN (0) +

Z t

0
ds e"s⇠(s) · eN

�2+
� uN (0)2e�"t

= e�2"t


uN (0)2 + 2uN (0)

Z t

0
ds e"s h⇠(s) · eN i

+

Z
dsds0 e"(s+s0)

⌦
(⇠(s) · eN )(⇠(s0) · eN )

↵�
� uN (0)2e�"t

= e�"t
X

j,k

eN,jeN,k

Z
dsds0 e"(s+s0)

⌦
⇠j(s)⇠k(s

0)
↵

= 2�2keNk2e�"t

Z
dsds0 e"(s+s0)G(|s0 � s|).

Using keNk = 1, we substitute ⌧ = s0 � s in the s integral to get

D
uN (t)2 � huN (t)i2

E
= 2�2e�"t

Z t

0
ds0 e2"s

0

Z s0�t

0
d⌧e�"⌧G(⌧).

Using the quick decay of the exponential term in the ⌧ integral, we can expand the
integration domain such that

D
uN (t)2 � huN (t)i2

E
⇡ 2�2e�"t

Z t

0
ds0 e2"s

0

Z 1

0
d⌧e�"⌧G(⌧),

and perform the integration over s0 with an approximately vanishing exponential remainder

D
uN (t)2 � huN (t)i2

E
⇡ �2

"

Z 1

0
d⌧e�"⌧G(⌧).

Denoting be ⌧⇠ the typical correlation time of G, we see that:

• if "⌧⇠ ⌧ 1 (meaning that ⇠i(t) is correlated on short time-scales) then G(⌧) ⇠ �(0)
such that Z 1

0
d⌧e�"⌧G(⌧) ⇡ 1,

• if "⌧⇠ � 1 (meaning that ⇠i(t) is correlated on long time-scales) then G(⌧) ⇠ G(0)
on the decay time of the exponential such that

Z 1

0
d⌧e�"⌧G(⌧) ⇡ G(0)

"
.
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6. Conclusion

Finally, the volatility of U(t) behaves as

rD
uN (t)2 � huN (t)i2

E
/
⇢
"�1/2 if "⌧⇠ ⌧ 1
"�1 if "⌧⇠ � 1

. (II.37)

In both cases, the volatility of U(t), induced by the volatility of uN (t), increases as the
matrix A gets closer to marginal stability. We will apply this generic feature in the case
of our economic system.

Note also that this result generalizes to discrete time processes

Ut+1 = DUt + ⇠t, (II.38)

for which the marginal stability condition can be written as �N = 1� " 6 with "! 0.
We can carry out the same kind of computation and derive the same result depending on
the behavior of the quantity

P
⌧�0(1� ")⌧G(⌧).

5.2 Shock accumulation

Now, suppose that the parameters describing the economic equilibrium (such as pro-
ductivity factors or household preferences, etc.) are changing over time, the dynamical
equation governing economic fluctuations, Eq. (II.11), becomes:

dU(t)

dt
= DU(t) + ⇠(t), (II.39)

where ⇠(t) represents the (weak) exogenous shocks to the economy modeled by a Gaussian
white noise. As we saw in the previous section in the limit "! 0, the volatility of prices
and output is proportional to "�1/2, and can thus be much larger than the variance of
the exogenous shocks when the system approaches the limit of stability. The intuitive
reason is that past shocks linger a very long time (comparable to ⌧r) in the system and
aggregate with more recent shocks, leading to a much larger overall perturbation.

Hence, the proximity to the point of instability is a natural candidate to explain
the “small shocks, large business cycle” paradox (see [66] for a related discussion). An
illustration of this phenomenon for our model is given in Figure II.4 for small Gaussian
shocks on productivity factors.

6 Conclusion

The above results suggest that, although “naive”, our equations already provide an
interesting generic scenario for anomalous fluctuations of output, namely the proximity
of an instability. Note that the dynamics we have described is directly linked to a large
body of work concerned with the stability of large complex systems (see the historical
precursors [98, 22], and [99] and [100] for recent general approaches), using random matrix

6Or more generally for complex eigenvalues �N = rNei✓N with rN = 1� ".
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Figure II.4: (a)� (b) Empirical distribution of the projection u+N (t) of (�p/peq, ��/�eq)
onto the eigenvector associated to the marginal eigenvalue after productivity shocks with
volatility � = 10�8 for (a) " = 103 and (b) " = 10�4. Note that we rescaled price and
production fluctuations by the equilibrium value to retrieve a square-root volatility (see
Appendix C): for " = 10�4, the volatility of output and prices is of the order of 10�6

(vs 10�11 on (a)), i.e. 100 times larger than �, as expected. The bi-modality on (b) is
not a defining feature and only comes from the particular time-series that we chose. (c)
Time-series of u+N (t) on a symlog scale to accentuate the difference of behaviors between
" = 10�4 and " = 103.

techniques to represent generic interactions. These papers highlight the importance of
studying the eigenvectors and eigenvalues of large random matrices for understanding
complex systems, with other noteworthy contributions by [101, 102] and [103].

However, the naive approach above sweeps under the rug important constraints that,
although irrelevant at equilibrium, turn out to be essential out-of-equilibrium:

• Causality: firms must plan production before they know how much they will manage
to sell.

• Supply/demand imbalances (which are zero if markets clear): when supply exceeds
demand, inventories accumulate, whereas when demand exceeds supply (including
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6. Conclusion

inventories) involuntary savings increase. These extra variables should play a role
in the out-of-equilibrium evolution of the economy, but are totally absent from
Eqs.(II.9). Furthermore, if some input goods is missing, Eqs.(II.5b) incorrectly
account for imbalances.

In Part II, we will propose a minimal, fully consistent model that allows one to
account for both causality and imbalances. Interestingly, we will see that hard constraints
– such as the impossibility to consume more than what is available – lead to intrinsically
non-linear dynamics, even for small perturbations close to equilibrium. As a consequence,
limit cycles or chaotic behavior will spontaneously emerge, when Eqs. (II.9) can only lead
to damped oscillations converging to equilibrium. Such generalized equations in fact allow
one to obtain legitimate dynamics even in the region where the equilibrium is no longer
defined, i.e. when " < 0, whereas Eqs. (II.9) cease to make sense in this case (prices and
productions are are always dragged below zero).

Finally, another question that one might ask is: what is the good level of aggregation
to look at in these models? This is of course a rather broad question and the answer is
not straightforward. When looking at the Goodwin model of the first section, every agent
is actually representative: capital owners are described by an aggregate variable and so
are workers. In the model we presented throughout this section, firms are granular but
workers still aggregate. Another natural question is: can we really consider representative
agents? If yes, how can we model this representativeness properly? It seems that on
account of such questioning, economic sciences do not provide answers. Statistical physics
however has provided methods to bridge the gap between the micro and macro worlds.
In the next chapter, we will present one of these methods called dynamical mean-field,
which aims at properly taking the "representative limit".
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II. Weakly out-of-equilibrium economies

Key takeaways

• Toy-modelling provides minimal models that properly identify key aspects
to explain a particular phenomenon.

• Behavioral rules are used by firms to adjust their productions and prices
according to deviations from equilibrium, measured in terms of production
surplus Ei(t) and profits ⇡i(t). We model this adjustment process as

log

✓
pi(t+ �t)

pi(t)

◆
=

✓
�↵Ei(t)

yi(t)
� ↵0 ⇡i(t)

pi(t)yi(t)

◆
�t

log

✓
yi(t+ �t)

yi(t)

◆
=

✓
�

⇡i(t)

pi(t)yi(t)
� �0 Ei(t)

yi(t)

◆
�t,

where ↵, ↵0, �, �0 are inverse time-scales measuring the feedback strength of
the adjustments.

• The Hawkins-Simons transition (dynamical setting) translates into a
dynamical transition. Linearizing previous rules around equilibrium, we can
show that the stability matrix D of the system exhibits marginal stability on
the verge of violating the HS conditions, i.e.

minRe (Sp (D)) /
"!0
�".

Therefore, the time needed to reach equilibrium diverges as "�1 whenever
the economy gets closer to unfeasibility.

• Economic fluctuations and excess volatility are driven by the minimum
eigenvalue of D and increase as "�1/2 when the economy gets closer to
unfeasibility. Intuitively, the increasingly long time needed to reach back
equilibrium allows for an accumulation and lingering of shocks in the network,
which increases volatility. This process, which corresponds to that of Bak et
al. [19] is a natural candidate for shock amplification in firm networks.
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A. Blocks of the stability matrix

A Blocks of the stability matrix

In this section, we give the values of the perturbation terms D
(l)
i for the blocks of the stability

matrix. We introduce several notations for quantities that simplify in the case of an undirected
network with homogeneous productivity factors. Finally, we use the bra (resp. ket) notation to
refer to a row (resp. column) vector |vi (resp. hv|) and we denote by vi its ith component. We
also use the perturbation expansion of the matrix M from Eqs. (II.23).

A.1 Perturbation of peq and �eq

Equilibrium prices are easily obtained by applying M�1 to the vector |V i, which yields

peq,j =
1

"
h`N | V i rN,j +

N�1X

⌫=1

hl⌫ | V i
⇢N � ⇢⌫

r⌫,j � "
N�1X

⌫=1

hl⌫ | V i
(⇢N � ⇢⌫)2

r⌫,j

+ "2
N�1X

⌫=1

hl⌫ | V i
(⇢N � ⇢⌫)3

r⌫,j � "3
N�1X

⌫=1

hl⌫ | V i
(⇢N � ⇢⌫)4

r⌫,j

:=
1

"
⇡l
�1(V )j + ⇡l

0(V )j � "⇡l
1(V )j + "2⇡l

2(V )j � "3⇡l
3(V )j , (1.a)

and where we introduced (for i � 0)

⇡l
�1(V ) = h`N | V i |rN i , ⇡l

i(V ) =

N�1X

⌫=1

hl⌫ | V i
(⇢N � ⇢⌫)i+1

|r⌫i .

Equilibrium productions can be a little trickier to obtain. We first derive three useful
identities to simplify computations. For s = 1, . . . , n, we have

1

"peq,s
=

1

⇡l
�1(V )s

� " ⇡l
0(V )s�

⇡l
�1(V )s

�2 +
"2

⇡l
�1(V )s

 
⇡l
1(V )s

⇡l
�1(V )s

+

✓
⇡l
0(V )s

⇡l
�1(V )s

◆2
!

� "3

⇡l
�1(V )s

 
⇡l
2(V )s

⇡l
�1(V )s

+ 2
⇡l
0(V )s⇡

l
1(V )s

⇡l
�1(V )s

+

✓
⇡l
0(V )s

⇡l
�1(V )s

◆3
!

(i)

1

peq,s
=

"

⇡l
�1(V )s

� "2 ⇡l
0(V )s�

⇡l
�1(V )s

�2 +
"3

⇡l
�1(V )s

 
⇡l
1(V )s

⇡l
�1(V )s

+

✓
⇡l
0(V )s

⇡l
�1(V )s

◆2
!

(ii)

"

peq,s
=

"2

⇡l
�1(V )s

� "3 ⇡l
0(V )s�

⇡l
�1(V )s

�2 (iii)

"2

peqs
=

"3

⇡l
�1(V )s

(iv)

"3

peqs
= o("3). (v)
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II. Weakly out-of-equilibrium economies

Introducing  eq,i =
µ✓i
peq,i

, previous results allow to write the equilibrium productions

�eq,j =
µ

"
hrN |  eqi lN,j + µ

N�1X

⌫=1

hr⌫ |  eqi
⇢N � ⇢⌫

l⌫,j � "µ
N�1X

⌫=1

hr⌫ |  eqi
(⇢N � ⇢⌫)2

l⌫,j

+ "2µ

N�1X

⌫=1

hr⌫ |  eqi
(⇢N � ⇢⌫)3

l⌫,j � "3µ
N�1X

⌫=1
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(⇢N � ⇢⌫)4
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�1(V )s

◆�

:= µf0,j + "µf1,j + "2µf2,j + "3µf3,j , (1.b)

where factors fl,j are obtained through straightforward identification.

A.2 Stability blocks

The next step is to perturb the stability matrix itself. This yields no particular difficulty, but
computations are a bit lengthy so that we only give the results for the different blocks. We denote
by ⌧gk the coefficients of the expansion of z� where ⌧i = ⇢NeN,i/ heN | V i for an undirected
network. We have

(D
(0)
1 )ij = �↵0
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B Relaxation time in the limit "! 0

We have shown in Section 4.2.2 that our system exhibits marginal stability at " = 0. We now
prove that the relaxation time of the system behaves as ⌧r ⇠ "�1. To this end, we use analytical
perturbation theory as described in [104], which in our setting reduces to the "-perturbation of
the characteristic polynomial of D(" = 0) 7 as " goes away from 0. Some elements of analytical

7We have done a slight abuse of notation, since D(" = 0) is not formally defined because of the
diverging upper right block.
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perturbation theory are reported in Appendix D for completeness. This characteristic polynomial
is given by

�(�, 0) = �2
NY

⌫=1

�
� � �⌫

+

� �
� � �⌫

�
�
, (II.40)

with �⌫
± given in the Section 4.2.2.

We now try to find a perturbation of the �2 term to retrieve the perturbation on �N
± = 0.

Using analytical perturbation theory, we see that (",�) = (0, 0) is a splitting point under the
perturbation D(") (" = 0 is a multiple point – since D has at least one multiple root for " = 0 –
and �N

± = 0 is a multiple root.) In this setting, �N
± = 0 splits under the perturbation D(") to

give 2 perturbed eigenvalues. Henceforth, for small enough ", the prime factor �2 of �(�, 0) is
expressed as a second order polynomial whose coefficients depend on ".

We may write

p0(�) := �2 D(")�! p0(�, ") := �2(1 + a
(1)
2 "+ a

(2)
2 "2 + · · · ) + �(a

(1)
1 "+ a

(2)
1 "2 + · · · )

+ a
(1)
0 "+ a

(2)
0 "2 + · · · .

This expansion makes sure that p0(�, ") �!
"!0

p0(�). Moreover, at least one of the a
(i)
0 is non-zero.

Otherwise we would be able to factor out � in p0(�, "), meaning that for small enough (but non
zero) ", 0 2 Sp (D(")) which we know is not correct since the system is stable for " > 0.

Furthermore, we know that the splitting behavior of �N
± = 0 is imposed, ensuring that

the discriminant of p0(�, ") cannot vanish (leading to a multiple root), which yields another
condition on the coefficients. Finally, since we are looking at complex roots in general, p0(�, ")
will always factor into two irreducible and normalized polynomials of degree 1. This ensures that

8 i � 1, a
(i)
2 = 0 and that a

(1)
0 = 0.

This last point is not so straightforward and warrants an explanation. From [104], the
Puiseux series for the perturbed eigenvalues �N

± (") can be written as

�N
± (") =

1X

x=1

bN±,x"
x/gN,±

where gN,± is the degree of the polynomial from which the root �N
± is extracted. In our setting

gN,± = 1 meaning that the first perturbation to �N
± is of order ". Now, we also know that �N

± is
obtained by solving the second order equation p0(�, ") = 0. This means that both roots read

�N
± = o(") + ±

p
∆,

with ∆ the discriminant of p0(�, "). We may write ∆ as

∆ = o("2)� 4a
(1)
0 ",

so that, if a
(1)
0 6= 0, the dominant term of �N

± will be of order o(
p
") which contradicts the previous

analysis.
Finally, we can look for a perturbation resembling

p0(�) := �2 D(")�! p0(�, ") := �2 + �(a
(1)
1 "+ a

(2)
1 "2 + · · · ) + a

(2)
0 "2 + · · · .
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To determine the different terms in this expansion, we use the determinant computation
from Section 4.2.2, but now keeping terms up to order "2. This yields

det (�I2N � D) =

����
�IN �D1 �D2

�D3 �IN �D4

����
⇡

"!0
det ((�IN �D1)(�IN �D4)�D2D3)

= det
h
Σ(0)(�) + "Σ(1)(�)"2Σ(2)(�)

i

⇡
"!0

detΣ(0)(�) + "Tr

✓
Com

⇣
Σ(0)

⌘>
Σ(1)(�)

◆

+ "2Tr

✓
Com

⇣
Σ(0)

⌘>
(�)Σ(2)(�)

◆

+ "2

⇣
Tr

⇣
Com

�
Σ(0)

�>
(�)Σ(1)(�)

⌘⌘2

� Tr

✓⇣
Com

�
Σ(0)

�>
(�)Σ(1)(�)

⌘2
◆

2 detΣ(0)(�)
.

where

Σ(0)(�) = �2IN � �
⇣
D

(0)
1 +D

(0)
4

⌘
+D

(0)
1 D

(0)
4 �D

(�1)
2 D

(1)
3

Σ(1)(�) = ��(D(1)
1 +D

(1)
4 ) +D

(0)
1 D

(1)
4 +D

(1)
1 D

(0)
4 �D

(�1)
2 D

(2)
3 �D

(0)
2 D

(1)
3

Σ(2)(�) = ��(D(2)
1 +D

(2)
4 ) +D

(0)
1 D

(2)
4 +D

(1)
1 D

(1)
4 +D

(0)
1 D

(1)
4 �D

(�1)
2 D

(3)
3

�D
(0)
2 D

(2)
3 �D

(1)
2 D

(1)
3

The constant term detΣ(0)(�) is the characteristic polynomial of D for " = 0, so that
detΣ(0)(�) = �(�, 0). Furthermore, it is easy to prove that, for a diagonalizable matrix A with
eigenvalues � and associated eigenvectors |�i, the matrix Com (A) can be diagonalized in the
same basis and reads

Com (A) =
X

�

0
@Y

�0 6=�

�0

1
A |�i h�| . (II.41)

Using this lemma, we can write

Com
⇣
Σ(0)(�)

⌘
=

0
@Y

⌫ 6=N

�
� � �⌫

+

� �
� � �⌫

�
�
1
A |eN i heN |

+
X

⌫ 6=N

0
@�2

Y

µ 6=⌫,N

�
� � �µ

+

� �
� � �µ

�
�
1
A |e⌫i he⌫ | .

(II.42)

We now develop each trace term onto the eigenbasis of Com
�
Σ(0)(�)

�
. From now on and, we

drop the � dependencies of the Σ matrices for clarity, but bear in mind that these matrices are
polynomials of order one in �. The first trace reads

Tr

✓
Com

⇣
Σ(0)

⌘>
Σ(1)

◆
=

0
@Y

⌫ 6=N

�
� � �⌫

+

� �
� � �⌫

�
�
1
A heN |Σ(1) |eN i

+
X

⌫ 6=N

0
@�2

Y

µ 6=⌫,N

�
� � �µ

+

� �
� � �µ

�
�
1
A he⌫ |Σ(1) |e⌫i .
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II. Weakly out-of-equilibrium economies

Only the first term is of interest for us and we can use the explicit forms of the blocks of D to find

heN |Σ(1) |eN i = � heN |
⇣
D

(1)
1 +D

(1)
4

⌘
|eN i

= � �

⇢N
(↵+ ↵0 + �0).

The same computation can be carried out for the second trace term,

heN |Σ(2) |eN i = � heN |
⇣
D

(2)
1 +D

(2)
4

⌘
|eN i+ heN |D

(1)
1 D

(1)
4 |eN i � heN |D

(0)
2 D

(2)
3 |eN i

=
�

⇢2N
(↵0 + �0)� ↵0�0 + ↵�

⇢2N
+ �,

with  = heN |D
(2)
1 |eN i which we do not need to compute.

The square trace terms are very complicated, and we only sketch out their computation.
The terms that could have entered in the perturbation of p0(�) cancel out (these are sums of
square terms). The terms that are rational fractions of polynomials (and could be pathological
since we look for a polynomial perturbation) cancel out as well. The other terms do not enter the
perturbation of p0(�) and are non-pathological.

Finally the perturbation of p0(�) reads

p0(�) := �2 D(")�! p0(�, ") ⇡ �2 + �

✓
"
↵+ ↵0 + �0

⇢N
� "2↵

0 + �0

⇢2N
� "2

◆
+ "2

↵0�0 + ↵�

⇢2N
.

We now write the discriminant of this polynomial at second order to get

∆(") =
"2

⇢2N

�
(↵+ ↵0 + �0)2 � 4(↵� + ↵0�0)

�
.

We retrieve the formula from Section 4.2.3. Denoting by �c =
(↵+↵0+�0)2�4↵0�0

4↵ , we have at order
one in "

�N
± ⇡

"!0

"

2⇢N
⇥

8
<
:
�↵0 � �0 � ↵±

p
(↵0 + �0 + ↵)2 � 4(↵� + ↵0�0) if � < �c

�↵0 � �0 � ↵± i
p
4(↵� + ↵0�0)� (↵0 + �0 + ↵)2 if � > �c
�↵0 � �0 � ↵ if � = �c

. (II.43)

C Computation of the volatility induced by Gaussian

shocks on productivity factors

If we consider shocks on productivity factors zi(t) = zi + ⇠i(t) with ⇠i(t) a Gaussian white noise,
we can linearize the dynamics of the naive model in both small deviations from equilibrium and
small shocks. The stochastic equation that we retrieve reads

dU(t)

dt
= DU(t) +Ξ(t), (II.44)

with a noise Ξ of the form

Ξ(t) =

 
�↵+↵0

zi
peq � ⇠(t)

���0

zi
�eq � ⇠(t)

!
⇠

"!0

 
�↵+↵0

"⇢N
(`N ·V)rN � ⇠(t)

���0

(`N ·V)⇢N
lN � ⇠(t)

!
, (II.45)
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C. Computation of the volatility induced by Gaussian shocks on productivity factors

with rN (resp. `N ) the right (resp. left) eigenvector of M associated to ". The correlations of
this noise are slightly more complicated than in the main text of this chapter

hΞi(t)Ξj(s)i = �2G(|t� s|)⇥

8
>>>>>><
>>>>>>:

�ij

⇣
(↵+↵0)(`N ·V)

⇢N

⌘2

rN,irN,j"
�2 if i, j  n

�ij

⇣
���0

(`N ·V)⇢N

⌘2

lN,ilN,j if i, j > n

��i,j�n (���0)(↵+↵0)
⇢2
N

rN,ilN,j"
�1 if i  n, j > n

��i�n,j (���0)(↵+↵0)
⇢2
N

lN,irN,j"
�1 if i > n, j  n

. (II.46)

For an undirected network and in the limit " ! 0, the matrix D yields two eigenvalues
�±
N = k±"! 0 with associated eigenvectors Σ±

N = (eN ,⌫±")> where eN is the Perron-Frobenius
eigenvector of M. We assume � < �c so that the marginal eigenvalues are real, as well as their
eigenvectors. It follows that, at leading order in ", the volatility of the marginal components of
U(t) behaves as "�3/2. Indeed

D
u±
N (t)2 �

⌦
u±
N (t)

↵2E
=

�2

(k±)2 "3

✓
(↵+ ↵0)(eN ·V)

⇢N

◆2

H (eN )

Z 1

0

d⌧e�"⌧G
⇣ ⌧

⌫±

⌘
,

where H represents the inverse participation ratio. To retrieve the volatility as "�1/2 we may
rescale �pi(t) (resp. ��i(t)) by peq,i (resp. �eq,i). Denoting by ✏i the ith canonical vector of R2N ,
we have

Var

✓
�pi(t)

peq,i

◆
= p�2eq,iVar

0
B@

NX

k=1
⌧=±

u⌧
k(t)(Σ

±
k · ✏i)

1
CA

⇡
"!0
"t⌧1

"2

e2N,i(eN ·V)2
Var

�
u+
N (t)eN,i + u�N (t)eN,i

�

=
"2

(eN ·V)2
⇥
Var

�
u+
N (t)

�
+ Var

�
u�N (t)

�
+ 2Cov

�
u+
N (t), u�N (t)

�⇤

/ 1

"
;

Var

✓
��i(t)

�eq,i

◆
= ��2eq,iVar

0
B@

NX

k=1
⌧=±

u⌧
k(t)(Σ

±
k · ✏i+N )

1
CA

⇡
"!0
"t⌧1

(eN ·V)2

e2N,i

Var
�
u+
N (t)⌫+"eN,i + u�N (t)⌫�"eN,i

�

= (eN ·V)2"2
⇥
(⌫+)2Var

�
u+
N (t)

�
+ (⌫�)2Var

�
u�N (t)

�

+2⌫+⌫�Cov
�
u+
N (t), u�N (t)

�⇤

/ 1

"
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II. Weakly out-of-equilibrium economies

D Elements of analytical perturbation theory

In this appendix, we will present some useful concepts related to analytical perturbation theory
of matrices and operators. These ideas have been lifted almost verbatum from [105] and are here
for completeness. We introduce such concepts to have an abstract approach to the holomorphic
perturbation D(✏).

Let us study the local behavior of the spectrum of A(z), a meromorphic operator-valued
function defined on G ⇢ C, around a point z0 2 G. If z0 is a pole of order k of A then the same
results apply to B(z) := (z � z0)

kA(z).

D.1 Characteristic polynomial

Definition II.1. Let A(z) be meromorphic in G. We call characteristic polynomial of A(z) the
quantity

�(�, A(z)) = det (�In �A(z)) := �n + a1(z)�
n�1 + · · ·+ aN (z)

This polynomial of G[�] is normalized with scalar meromorphic functions as coefficients ai(z). If
A is holomorphic in G we say that � 2HG[�]. Furthermore, if at some point z0 2 G the equation
a1(z0) = . . . = aN (z0) = 0 holds, we say that � 2H

z0
G [�].

After this definition, a straightforward consequence of the fundamental theorem of polynomial
factorization allows stating the following

Theorem II.1. One can factorize � such that

�(�, A(z)) =

rY

⇢=1

pm⇢
⇢ (II.47)

where each p⇢ are normalized and irreducible elements of G[�]. The poles of their coefficients
belong to the set of poles of A. Furthermore, if � 2HG[�] (resp. � 2H

z0
G [�]) so do every prime

factors.

Proof. The first point is a straightforward consequence of the fundamental theorem of algebra.
The second point is easily checkable when one expands the r.h.s of Eq. (II.47). The very last
point is the trickiest. Assuming � 2H

z0
G [�], one has

�(�, A(z0)) = �n

For the r.h.s of Eq. (II.47) to reproduce this, each prime factors must have vanishing coefficients
at z0 since they are normalized.

We will now introduce the concepts of simple and multiple points.

D.2 Simple and multiple points

The dotted set G \ SA (SA being the set of poles of A) can be split into a set of simple points
and a set of multiple points. First, we state the following general theorem before formulating
Theorem II.3.

70



D. Elements of analytical perturbation theory

Theorem II.2. Let p and q be normalized polynomial from M [�] that are relatively prime in
M [�]. Then, except for a set H ⇢ G, isolated and closed in G, the polynomial p and q are
relatively prime in C[�] for all z 2 G \ (Sp [ Sq), i.e, for all z 2 G \ (Sp [ Sq [H), p and q are
relatively prime.

Proof. Let deg p  deg q > 0. Since p and q are relatively prime, the remainder of the euclidean
division of p by q is a polynomial pr of degree 0, that is f(z) a non-identically vanishing
meromorphic function on G. Let E =

S
⇢(Sp⇢

[ Sq⇢) the union of all poles of p⇢ and q⇢,
polynomials generated by Euclide’s algorithm. E is an enumerable union of isolated and closed
sets in G, it is then itself isolated and closed in G. Let N be the set of all roots of f . Then, for
N = f�1{0}, N is closed. Furthermore, since f is holomorphic on G \ Spr

and non identically
vanishing, N is isolated. Let z0 2 G \E and let �0 denote a common root of p(�, z0) and q(�, z0).
From Euclide’s algorithm it follows that

p1(�0, z0) = p2(�0, z0) = · · · = pr�1(�0, z0) = f(z0) = 0

ensuring that z0 must be a root of f(z). Hence, for all z 2 G \ (E [N), p and q have no common
root.

This theorem will be of help in the proof of the following

Theorem II.3. Let p be a normalized and irreducible polynomial from HG[�]. The set of all
poles of coefficients of p is denoted by Sp. For all z0 2 G \ Sp, the polynomial p = p(�, z0) can be
considered as a polynomial from C[�]. Then, except for an isolated and closed set in G, p(�, z0)
has only simple roots for all z0 2 G \ Sp.

Proof. Let us prove the assertions by induction on the degree of p. The case deg p = 1 is trivial.
Let us consider p such that deg p > 1 and let us denote q(�, z) = @p

@�
(�, z). Since p is irreducible,

(p, q) = 1 meaning that p and q are relatively prime. From Theorem II.2, we know that p and q
have no common roots, except for a closed and isolated subset of G. This means that, except for
a closed and isolated subset of G, p only has simple roots for z 2 G \ Sp.

We can apply this theorem to the characteristic polynomial. The prime factors p⇢(�, z0)
have multiple roots with respect to � for at most an enumerable set of points z0 from G. We
define the polynomial q as

q(�, z) =
rY

⇢=1

p⇢(�, z)

Definition II.2. The point z0 2 G \ SA is called a multiple point if q(�, z0) has at least one
multiple root with respect to �. Conversely, the point z0 is called simple if q(�, z0) has only simple
roots with respect to �.

To finish this section, we will state a lemma, which will be of importance when dealing with
the perturbed behavior of the spectrum around simple points.

Lemma II.1. The set M of all multiple points is isolated and in G closed, i.e, M is enumerable
and any accumulation point of M is to be found on @G.

Proof. This is a straightforward consequence of Theorem II.3.
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II. Weakly out-of-equilibrium economies

D.2.1 Local behavior of the eigenvalues in the neighborhood of simple points

Let z0 be a holomorphic point of A(z) and let z0 be simple. Recalling that

q(�, z) =

rY

⇢=1

p⇢(�, z)

From Lemma II.1, there exists an ✏ to that every point z 2 D(z0, ✏) is a simple point. This
means that for each ⇢ = 1, · · · , r, there exists different holomorphic function elements �⇢�(z)
with � = 1, · · · , g⇢ (with g⇢ = deg p⇢) such that

p⇢(�, z) =

g⇢Y

�=1

(�� �⇢�(z))

Altogether, one obtains different holomorphic eigenvalue elements over |z � z0| < ✏ and one
has

�(�, A(z)) =

rY

⇢=1

g⇢Y

�=1

(�� �⇢�(z))

Each perturbed eigenvalue has a holomorphic dependency on z.

D.3 Splitting behavior of eigenvalues in the neighborhood of multiple

points

Let z0 be a holomorphic point of A(z) and let it be multiple. The behavior of eigenvalues in the
vicinity of z0 can be very complicated and splitting may occur. Let �0 be a fixed root of q(�, z0)
with multiplicity m > 1. The multiplicity of �0 with respect to p⇢(�, z0) is denoted by n⇢ such
that

P
⇢ n⇢ = m, and there is at least one n⇢ > 0. Let us state the following admitted theorem

(the proof is too long and out of scope for our discussion).

Theorem II.4. Let p 2MG[�] be normalized, let z0 2 G\Sp and p(�, z0) =
Qr

⇢=1(���0)k⇢ . Then,
there is a neighborhood of z0, for instance a disc K = D(z0, ✏) such that the following properties
hold. There exist r polynomials q1(µ, z), . . . , qr(µ, z) belonging to H

z0
K [µ] with deg q⇢ = k⇢ such

that

p(�, z) =
rY

⇢=1

q⇢(�� �⇢, z)

is a decomposition of p within HK [�].

We apply this theorem to each factors of q. We choose ✏ such that D(z0, ✏) is common for all
p⇢ (i.e ✏ = min⇢ ✏⇢ with obvious notations), and such that this dotted disc contains only simple
points (possible from Lemma II.1). The decomposition of Theorem II.4 for p⇢(�, z) contains a
factor corresponding to the root �0. Let us denote this factor by q⇢(�� �0, z) where deg q⇢ = n⇢

and q⇢(µ, z) 2 H
z0
K [µ]. We can decompose this polynomial into prime factors with respect to

HK [µ]

q⇢(�� �0, z) =
k⇢Y

↵

q⇢↵(�� �0, z)

with q⇢↵ 2H
z0
K [µ] and irreducible with respect to HK [µ]. Since p⇢ is irreducible with respect to

MG[�] and that q⇢ are prime factors of p, no multiple factors can occur among the q⇢↵. Denoting
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D. Elements of analytical perturbation theory

deg q⇢↵ = g⇢↵ we then have
Pk⇢

↵=1 = n⇢. Let us now state a theorem that will give us the behavior
of roots of q⇢↵.

Theorem II.5. Let p(µ, z) 2 H
z0
K [µ] where K = D(z0, ✏) and deg p = g and p irreducible in

H
z0
K [µ] (hence also irreducible with respect to HK [µ]). Furthermore, for all z 2 K \ {z0}, p(µ, z)

is assumed to have only simple roots with respect to µ. Then p defines a unique g-values algebroid
function P over K where only z0 is a singular point, namely a branching point of order g. As
z ! z0, the function P assumes the unique finite limit 0. Furthermore, P is represented over K
by a convergent Puiseux series of the form

1X

⇢=0

a⇢(z � z0)
⇢/g, a0 = 0, z 2 K

that is, if one denotes by �1(z), . . . ,�g(z) the values of P over z 6= z0 , then (with suitable
ordering)

��(z) =

1X

⇢=0

a⇢

h
⇣�(z � z0)

1/g
i⇢

, � = 1, . . . , g

where (z � z0)
1/g denotes a fixed root and ⇣ a g-th primitive root of unity.

We can now describe the situation as follows. Every polynomial q⇢↵(�� �0, z) represents a
branch H⇢↵ of P⇢ with the only singularity z0 which is a branching point of H⇢↵ of order g⇢↵
with the unique finite limit �0 as z ! z0. For z 6= z0 the values of the branch are denoted by
�⇢↵�(z) for � = 1, . . . , g⇢↵ which are holomorphic function elements of H⇢↵. Furthermore, they
have the property �⇢↵� ! �0 as z approaches z0.
The family {�⇢↵�} is called the (z0,�0)-group of perturbed eigenvalues. One can formulate the
following results

• An eigenvalue �0 of A(z0) always splits under the perturbation A(z) if it is a multiple root
of q(�, z0).

• If z0 is multiple, then there is at least one eigenvalue �0 of A(z0) which splits under the
perturbation A(z).

• If z0 is simple, then there is no splitting for the eigenvalues of A(z0) under the perturbation
A(z).

If the operator-valued function A(z) is considered on the restricted region K, the eigenvalues
of each branch H⇢↵ form K-cycles of eigenvalues. In this way, we obtain a decomposition of the
(z0,�0)-group into several K-cycles. The eigenvalues �⇢↵�(z), � = 1, . . . , g⇢↵ of a fixed K-cycle
are given over K according to Theorem II.5, by a Puiseux series of the form

�⇢↵�(z) = �0 +

1X

x=1

a⇢↵x

h
(z � z0)

1/g⇢↵
ix

where the g⇢↵ different eigenvalues are obtained if (z � z0)
1/g⇢↵ runs through all the values of the

root.

Finally, to end this appendix, we will give two definitions suggested by the previous analysis.
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II. Weakly out-of-equilibrium economies

Definition II.3. Let z0 2 G be a multiple point for the perturbation A(z). Let �0 be a root of
q(�, z0). Then we have two situations

• If �0 is a multiple root of q(�, z0), then the point (z0,�0 is called a splitting point of the
perturbation,

• If �0 is a simple root of q(�, z0), then the point (z0,�0 is called a normal point.
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CHAPTER III

Dynamical mean-field theory: the

proverbial firm

Abstract

Even if interactions are key to understand the properties of complex systems,
they usually make analytical computations complicated and painful. However,
when the number N of interacting agents grows very large, certain systems exhibit
some universality and can be described using a small amount of parameters. This
universality translates into equations on representative agents, which feel overall
interactions as a mean field. When applied to dynamical processes, such methods are
called dynamical mean-field theories. In this chapter, we try to obtain dynamical
mean-field theories to study the economic system presented in Chapter II. More
generally, such approach seems to be interesting for economics as economic models
often consider "representative" agents which aim at describing generic behaviors
obtained after aggregation of granular units. Dynamical mean-field theories could
allow specifying such aggregation processes.

1 Dynamical mean-field theory

Solving high-dimensional differential equations is in general a complicated task. When
equations are coupled and non-linear, very little can be said in general about their
properties, such as stability or the existence of limit cycles. Pioneer of the science of
complex systems, Robert May [98] showed that the question of stability for a random
N -dimensional linear dynamical system of the form

dx

dt
= Ax, (III.1)

only depends upon parameters relative to the distribution of the matrix elements Aij .
More precisely, May showed the following bound for stability. Considering that Aij

are IID random variables such that they are set to 0 with probability 1� p, or drawn,
with probability p, from a centered distribution of variance �2, the system is stable if
N < (�2p)�1. In the context of computational neurosciences, Sompolinsky, Crisanti and
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III. Dynamical mean-field theory: the proverbial firm

Sommers [106] showed some years later that a system of N neurons, modeled by a local
field hi(t) and interacting through synaptic impulses Si(t) = tanh ghi(t) as

dhi(t)

dt
= �hi(t) +

X

j 6=i

JijSj(t), Jij = �Jji ,!
Jp
N

N (0, 1) , (III.2)

can exhibit chaotic behavior if the aggregate variable gJ is greater than 1, whereas a zero
fixed-point exists otherwise.

In both cases, the specific nature of interactions (matrices A or J) does not matter
in the large size limit N ! 1, and the systems exhibit some universality which only
depends on a few parameters. In the second case, the authors derive a self-consistent (in
the large size limit) equation for a single neuron

dh

dt
= �h(t) + ⌘(t), (III.3)

where ⌘(t) is a Gaussian white noise of zero mean and covariance

h⌘(t)⌘(t+ ⌧)i = J2
E

2
4N�1

X

j

Sj(t)Sj(t+ ⌧)

3
5 . (III.4)

The brackets h(·)i denote the average over the Gaussian distribution of ⌘(t), while E [(·)]
the average over the distribution of J. Eq. (III.3) therefore describes the behavior of
an average neuron with interactions-induced fluctuations ⌘(t). The equivalence between
Eqs. (III.2) and (III.3), or equivalently that between averages h(·)i and E [(·)], has been
proven in [107] (in the context of spin-glasses which is analogous), and therefore Eq. (III.3)
provides a faithful description of the system as N grows very large.

These equations are called dynamical mean-field theories (DMFT) and can provide
faithful representations for large systems with complex interactions. Such theories might
be useful for economics, which often uses the "representative" agent approximation.
However, the actual derivation might be cumbersome and often depends on the actual
model. As we mentioned in Chapter II, the behavioral rules that we postulate for prices
and productions adjustments lead to equations which strongly resemble generalized Lotka-
Volterra equations, for which DMFT has been used to study stability, attractors and
chaotic behavior [108, 100, 109]. For completeness, we present here a rapid derivation
of the DMFT equations associated with the generalized Lotka-Volterra model using the
cavity method. For a full and detailed account, see [108] on which we heavily rely for the
following explanation.

Consider an ecosystem which consists of S interacting species. Each species has a
population of Ni(t) which we assume to be continuous for simplicity. They reproduce at
a rate ri, and have carrying capacity 1 Ki, which we both set to 1 for simplicity. Species
i and j interact through the matrix elements ↵ij which account for cooperation (↵ij > 0)

1The carrying capacity refers to the maximum population that can be sustained by an environment
given the available resources.
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1. Dynamical mean-field theory

or competition (↵ij < 0). In the DMFT framework, the matrix elements ↵ij are chosen
to be IID random variables such that

↵ij = µ/S, (↵ij � ↵ij)2 = �2/S, (↵ij � ↵ij)(↵ji � ↵ji) = ��2/S,

where (·) denotes the average over the distribution of elements. The parameter � measures
the amount of symmetry of matrix ↵. The generalized Lotka-Volterra equations read

dNi

dt
= Ni

0
@1�Ni(t)�

X

j 6=i

↵ijNj(t) + hi(t)

1
A , (III.5)

where hi(t) is an external field necessary to define the responses of the system to per-
turbations. The method used in [108, 94] to derive the DMFT equations is called the
cavity method. Roughly speaking, it amounts to adding a new species to a system of size
S, deriving equations linking observables in the cases of size S and S + 1, and equating
the distributions of these observables in the large size limit. More precisely, here are the
different steps to obtain self-consistent equations

1. Draw a S ⇥ S interaction matrix ↵, initial conditions Ni(0) and let the system
evolve.

2. Upon adding a new species i = 0 (with initial condition N0(0) and interactions
↵i0,↵0i), we expect the subsequent perturbation on the old trajectories of Ni to
be small (typically of order S�1). The new species modifies the field hj(t) into
ehj(t) = hj(t)� ↵j0N0(t), and we use linear response theory to relate unperturbed
trajectories Ni(t) to perturbed trajectories fNi(t), i.e.

fNi(t) = Ni(t)�
SX

j=1

Z t

0
ds

�Ni(t)

�hj(s)

����
h=0

↵j0N0(s).

We will denote by �ij(t, s) the response function �Ni(t)
�hj(s)

���
h=0

.

3. We can plug these expressions into the equation on N0

dN0

dt
= N0

0
@1�N0 �

X

j

↵0j
fNj + h0(t)

1
A ,

and carefully evaluate the interaction terms using both the law of large numbers
and the central limit theorem. For instance, decomposing ↵ij = µ/S + �aij (with
aij centered Gaussian of variance 1/S), one of the interaction terms yields

�
X

i

a0iNi(t) ⇡ �Sha0iNi(t)i+ �
p
S
q
ha20iNi(t)2iZ ⇡ �

p
hNi(t)2iZ,

with Z a centered Gaussian random variable.
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III. Dynamical mean-field theory: the proverbial firm

4. Evaluating all these interaction terms (see [108] for a full account), we get an
equation on N0 where we drop the index 0 since this species can be replaced by any
other without changing results

dN
dt

= N

✓
1� µm(t)� �⌘(t) + ��2

Z t

0
�(t, s)N(s) + h(t)

◆
.

Here, ⌘(t) is a centered Gaussian noise with correlator C(t, s). C(t, s), m(t) and
�(t) are determined self-consistently through

m(t) = E [N(t)]

C(t, s) = E [N(t)N(s)]

�(t, s) = E


�N(t)

�h(s)

����
h=0

�
,

with E [(·)] is the average over both noise ⌘(t) and initial condition N(0).

Of course, the previous equation is still complex, but a lot can be said on its properties,
which was not obvious for the initial Lotka-Volterra equations (see [108]). In the following,
we will try to apply this reasoning to Eqs. (II.10) from Chapter II.

2 Mean-field Hawkins-Simons transition

In this section, we start by considering a mean-field approach to the equilibrium equations
of Chapter I for constant return to scale. To do so, we will consider that the elements
of the network matrix are Gaussian random variables, as in the computations that we
presented in the introductory section. However, in contrast with the interaction matrix
↵ of the generalized Lotka-Volterra equations, the network matrix M has a Z-matrix
structure, i.e. a positive diagonal populated by productivity factors and negative off-
diagonal elements �Jij . This sign structure must be conserved in the limit N !1. We
therefore model links weights as Gaussian random variables such that

hJiji = µJ/N (III.6)

hJ2
iji � hJiji2 = �2J/N

� , (III.7)

where � > 1 ensuring that Jij remains almost surely positive in the large N limit.
Furthermore, productivity factors are drawn from a distribution with probability density
P (z) such that P (z) = 0 if z  0.

With this prescription for the network matrix, we start by considering the equilibrium
equation on prices for N firms

MNpN = V, (III.8)

where the N subscript denotes the value for N firms. In the same spirit as in Section 4
of Chapter I, we introduce a new firm i = 0 with link variables Ji0 and J0i along with
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2. Mean-field Hawkins-Simons transition

productivity factor z0. The new equilibrium equations on prices read (for i � 1)

NX

j=0

(MN+1)ij(pN+1)j =
NX

j=1

(MN )ij(pN+1)j � Ji0p0 = Vi =
NX

j=1

(MN )ij(pN )j , (III.9)

where we used Eq. (III.8) for the last equality. We can insert these relations into the
equilibrium equation for i = 0, which yields

z0p0 = V0 +

NX

j=1

J0j(pN+1)j

z0p0 = V0 + p0
X

i,j

J0j(M
�1
N )ijJi0 +

NX

j=1

J0j(pN )j ,

leading to

p0 =
V0 +

PN
j=1 J0j(pN )j

z0 �
P

i,j J0j(M
�1
N )ijJi0

. (III.10)

Assuming that prices are iid samples from a random variable p in the large N limit,
one can write

NX

j=1

J0j(pN )j ⇡ µJE[p] +O
⇣
N (1�min (�,2))/2

⌘
, (III.11)

with E [(·)] the average over the distribution of p. Furthermore, one can approximate
M�1

N as

(M�1
N )ij =

�ij

zi
+

Jij
zizj

,

since Jij ! 0 almost surely. As a consequence, the sum
P

i,j J0j(M
�1
N )ijJi0 at the

denominator of Eq. (III.10) only gives vanishing contributions as N ! 1 since the
leading term is

PN
j=1 J0jJj0/zi ⇡ N�1µ2

JE[z
�1] +O(N�1). Putting all these ingredients

together yields a mean-field self-consistent equation on p

p =
V + µJE[p]

z
. (III.12)

Introducing µc
J =

�R1

0 dzP (z)/z
��1

, we have

p =
V µc

J

z
(µc

J � µJ)
�1 , (III.13)

where we assumed V constant for simplicity. In the same way, we can get a mean-field
equation on production levels by rescaling the baseline work-offer as L0 = N`0, and
assuming that preference factors ✓i := ✓ are constant

� =
µJ`0

zV
+

`0

V µc
J

(µc
J � µJ) . (III.14)
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Figure III.1: Statistics of prices and production as a function of µJ/µ
c
J obtained by

inverting the systems Mp = V and M>� = `0/p for N 2
�
101, 102, 103

 
, zi ,! LN (1, 1)

and Jij Gaussian of mean µJ/N and variance �2J/N
� , � = 3/2. Plain dark lines indicate

the solutions obtained from Eqs. (III.13) and (III.14). Each dot is obtained by averaging
over 500 realizations of M. (a) Probability that prices are positive, (b) empirical mean of
prices, (c) probability that productions are positive, (d) empirical mean of productions.

These mean-field equations make the Hawkins-Simons transition plain as day: as
soon as µJ > µc

J , prices become negative (since productivity factors are positive). The
interpretation is a lot clearer here as well: µJ measures the network needs since µJ ⇡P

i Jij , whereas µc
J measures an average productivity in the network. Similar results are

obtained upon studying the statistics of Leontief inverses (I�A)�1
e in [110], with A the

adjacency matrix of the network and e = (1, . . . , 1)>. Figure III.1 shows the probability
to have positive prices or productions, along with the associated expectation values as a
function of µJ/µ

c
J and for several values of N .

Finally, one can see that the fluctuations associated with the Jijs are not present
in the final equations. This difference from the generalized Lotka-Volterra case comes
from the fact that interactions are constrained to obey sign properties in the network
matrix. We have not found a way to retrieve fluctuations all the while respecting these
constraints. It would be very interesting to find such a regime since in that case the HS
transition would be less trivial, see [109] for Lotka-Volterra.
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3. DMFT for firm networks
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Figure III.2: Trajectories of log-prices under system (III.15) along with the average
trajectory in black. (a) � < �c corresponding to overall exponential dampening. (b)
� > �c corresponding to dampened oscillations.

3 DMFT for firm networks

As in the static case, the immutable sign structure of the network matrix M makes the
DMFT equations associated to Eqs. (II.10) a lot less complex than in the Lotka-Volterra
case. Our DMFT equations read (see Appendix A for a sketch of the computations)

dp
dt

= �↵ p

z�

✓
z� � µJE[�]�

`0

p

◆
� ↵0

z
(zp� µJE[p]� V ) (III.15a)

d�
dt

= �
�

zp
(zp� µJE[p]� V )� �0

z

✓
z� � µJE[�]�

`0

p

◆
, (III.15b)

where E[(·)] denotes the average over both the distribution of z and initial conditions. From
these equations, one can very easily recover most results from Chapter II. Appendix B
will provide details for the results exposed below. Since z is drawn before running the
dynamics on prices and productions, these equations are a lot easier to simulate than
their Lotka-Volterra counterpart. Figure III.2 shows trajectories for prices under system
(III.15) along with the trajectory of the average price E[p(t)].

3.1 Marginal stability

Considering fluctuations �p and �� around the fixed point (peq, �eq) defined by Eqs.
(III.13) and (III.14), one gets the following linear evolution for the 2-dimensional vector
U(t) = (�p, ��)>

dU
dt

=

 
�↵ `0

zpeq�eq
� ↵0 �↵ peq

�eq

��0 `0
zp2eq

+ �
�eq

peq
��0

!
U(t) := DMFU(t). (III.16)

One can immediately write the characteristic polynomial p(�) of DMF

p(�) = �2 +

✓
↵0 + �0 + ↵

z

z + c

◆
�+ ↵� + ↵0�0, (III.17)
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with c = µJµ
c
J/(µ

c
J � µJ) and with associated eigenvalues �1,2. A straightforward study

(see Appendix B) shows that the fate of the eigenvalues, i.e. whether they are real or
complex, is determined by quantities m± depending on time-scales

m± = ↵�1
⇣
�↵0 � �0 ± 2

p
↵� + ↵0�0

⌘
. (III.18)

Noticing that

�c � � =
↵

4
(1�m�)(1�m+), (III.19)

where �c is defined in Eq. (II.18) (the threshold determining whether the marginal
eigenvalue of the system in Chapter II is real or complex), we see a correspondence
between the values of m± and the relative values of �c and �. Since m� < 0, the relative
magnitude of � and �c is determined by the relative magnitude between m+ and 1.
Furthermore, the sign of m+ is the same as the sign of (↵0 � �0)2 � 4↵� which was the
condition for the stability matrix to have a complex or real spectrum right at the HS
transition in Chapter II. Of course, none of this is a coincidence, and we can show for
instance that as soon as m+ > 1 the spectrum of DMF is almost surely complex below
the HS transition (see Appendix B), as it would for the same parameters in Chapter II.
Focusing on this case, one can write the real part of the eigenvalues and compute an
expectation over z. It yields

E [Re (�i)] = �
1

2
(↵0 + �0)� 1

2
↵E


z

z + c

�
,

which can be rearanged into

E [Re (�i)] = �
1

2
(↵0 + �0)

✓
1� "

µc
J

◆
E


1

1 + "(z � µc
J)/(µ

c
J)

2

�

� 1

2
(↵0 + �0 + ↵)

"

(µc
J)

2
E


z

1 + "(z � µc
J)/(µ

c
J)

2

�
.

where we set " = µc
J�µJ > 0. The previous expression interpolates between the large/low

productivity regimes of Chapter II through " (paramount of the lowest eigenvalue of M),
i.e.

• "! µc
J corresponds to the large productivity regime µJ = 0. It yields

E [Re (�i)] = �
1

2
(↵0 + �0 + ↵),

which is exactly the real part of the common eigenvalue in the large productivity
regime of Chapter II.

• "! 0+ corresponds to the low productivity regime where the HS condition is almost
violated. In this case, the first term of E [Re (�i)] yields the average value of the
real part of the spectrum of D for " = 0 in Chapter II. The second term yields the
real part of the marginal eigenvalue.
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Figure III.3: Simulated eigenvalues of the matrix DMF with respect to µJ/µ
c
J and the

value of m+. The expectation value is taken over 500 realizations of z ,! LN (1, 1).
(a)� (b) display the imaginary part of �1 and �2 respectively. (c)� (d) display the real
part of �1 and �2 respectively

In opposition to the network model in Chapter II, we can get the eigenvalues of
DMF for any value of ". We therefore fully characterize the interpolation between the
plateauing eigenvalues (as "!1) and the marginal stability (as "! 0) of the previous
chapter. Figure III.3 shows the real and imaginary parts of the eigenvalues �1/2 of DMF

along with the analytical solution from Appendix B.

3.2 Non-linear study

3.2.1 General features

Interestingly, Eqs. (III.15) can also be studied in their non-linear form. For simplicity, we
will dispose of the expectation values E[p], E[�] by choosing homogeneous productivity
P (z) = �(z � z?) and initial conditions P (p(0), �(0)) = �(p(0) � p0)�(�(0) � �0). Our
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simplified equations now read

dp
dt

= �↵ p

z?�

✓
"� � `0

p

◆
� ↵0

z?
("p� V ) (III.20a)

d�
dt

= �
�

z?p
("p� V )� �0

z?

✓
"� � `0

p

◆
, (III.20b)

with " = z? � µJ . We can define new variables u = p/peq and g = �/�eq with peq = V/"
and �eq = `0/V , along with a new time ⌧ = |"|t/z? to get

du
d⌧

= sgn (")


�↵u

g

✓
g � 1

u

◆
� ↵0 (u� 1)

�
(III.21a)

dg
d⌧

= sgn (")


�
g

u
(u� 1)� �0

✓
g � 1

u

◆�
. (III.21b)

We finally introduce the vector field F(u, g) to write the previous equations in vector form

d
dt

✓
u
g

◆
= sgn (")F(u, g). (III.22)

We can see from the previous equation that changing the sign of " amounts to changing
the direction of the arrow of time, i.e. "! �" is equivalent to t! �t. Consequently, a
stable system for " > 0 will be unstable whenever the HS condition is violated. We can
therefore only consider the case where " > 0. Figure III.4 shows the vector field F along
with possible trajectories from Eq. III.22.

A new feature that we can deduce from Eq. (III.22) is the non-existence of limit-cycles
in this system. This point is not obvious and requires the following theorem

Theorem III.1 (Dulac-Bendixon’s criterion). Let x = (x1, x2) 2 R
2 evolve according to

ẋ = F(x1, x2).

Let Ω be a simply-connected domain in R
2. If there exists a positive scalar function

µ 2 C1(R2) such that
r · (µF)

keeps a constant sign over Ω, then the dynamical system does not have any closed trajectory
lying in Ω.

For any function µ, we have the following computation in the case of the vector field
from Eq. (III.22)

r · (µF) = �µ(↵+ � + �0)� g � u�1

g

⇥
�0g@gµ+ ↵u@uµ

⇤

+
u� 1

u

⇥
�0µ+ �g@gµ� ↵0u@uµ

⇤
.
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Figure III.4: Trajectories in the plane (u, g) (black curves) starting from initial condition
(0.5, 0.5) (black dots). The equilibrium of the system is the point (u, g) = (1, 1). Small
arrows represent the direction of the vector field F, whereas the color gradient represents
its magnitude. (a) m+ > 1 equivalent to � > �c for which we see a stable spiraling
trajectory towards equilibrium. (b) m+ < 0 equivalent to � < �c for which we see a stable
exponentially decaying trajectory towards equilibrium.

If one chooses

µ(u, g) = ukgq, k =
��0

↵� + ↵0�0
, q = � ↵�

↵� + ↵0�0
,

the divergence simplifies to

r · (µF) = �µ(↵+ � + �0), (III.23)

and remains negative for u, g > 0. Taking Ω to be the strictly positive quadrant of R2, µ
verifies every criterion of the previous theorem, which renders limit cycles impossible in
the region p, � > 0.

In this simplified case, we proved two important features. First, any stable trajectory
for a given " > 0 would become unstable as " ! �". Second, since no limit cycle is
possible, trajectories are bound to be unstable in the quarter plane p, � > 0 as soon as
" < 0. The need to improve the model of Chapter II is made even clearer by this DMFT
approach.

3.2.2 An exactly solvable case

Taking ↵0 = �, we can fully solve the previous equations. It is easy to show that the
aggregate variable h = ug obeys the linear equation

ḣ = �(↵+ �0)(h(t) + 1), (III.24)
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Figure III.5: Simulated trajectories (plain black lines) for variables (a) u(t) and (b) g(t)
along with the exact formulas (dashed gray lines) inferred from Eqs. (III.25) and (III.27).

which yields
h(t) = 1� C exp

�
�(↵+ �0)t

�
, (III.25)

with C = 1� u0g0. We can express this back into the equation on u to find

u̇ = �u(↵+ ↵0 � ↵/h(t)) + ↵0. (III.26)

This equation is very simple and solves as

u(t) =
⇣
C � et(↵+�0)

⌘ ↵

↵+�0

0
BB@Ke�(↵+↵0)t +

↵0
⇣
C � et(↵+�0)

⌘ �0

↵+�0

C(↵+ ↵0)
H(t)

1
CCA , (III.27)

with K an integration constant and

H(t) = 2F1

 
1,

↵0

↵+ �0
+ 1;

↵+ ↵0

↵+ �0
+ 1;

e(↵+�0)t

C

!
.

In this case, the relaxation is exponential-like as highlighted in Figure III.5.

4 Conclusion

Dynamical mean-field theories provide a natural way to take the "representative" limit in
large interacting complex systems. Applying this framework to the equations of our weakly
out-of-equilibrium dynamics from Chapter II, we were able to show that most results
for which computations revealed cumbersome could be recovered easily. Furthermore,
we were also able to infer new results such as the absence of limit cycles, which would
have been difficult to obtain within the full model of Chapter II. The definitive absence
of bounded dynamics whenever the HS transition is violated is yet another argument in
favor of developing a much more consistent model for dynamics in firm networks.
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4. Conclusion

Key takeaways

• Dynamical Mean-Field Theories (DMFT) aim a reducing the complexity
of a system down to a few universal parameters. These theories seem to be a
good avenue for thinking about representative agents in economics or social
sciences.

• Mean-field network economies: applied to the model of Chapter II,
DMFT allows to retrieve most results from the study with N firms. Further-
more, it also allows to prove two key features of the model from Chapter II:

? There is no limit cycle in the region p, � > 0.

? There is no bounded trajectory in the region p, � > 0 whenever the HS
condition is violated.

Both features firmly motivate the sharpening from the model of Chapter II
by including more realistic features.

• Heterogeneity on Jij plays no role in the firm network setting because of
the positivity constraint Jij � 0.
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III. Dynamical mean-field theory: the proverbial firm

A Sketch of the derivation of the DMFT equations

In this appendix, we sketch the computations leading to the DMFT equations (III.15). We will
remain brief as most terms do not contribute in the limit N !1 for the particular scaling chosen
for the matrix elements Jij

hJiji = µJ/N (III.28)

hJ2
iji � hJiji2 = �2

J/N
� , � > 1. (III.29)

We recall the system of equations from Chapter II

zi�i(t)
dpi
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= �↵pi(t)

0
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1
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d�i
dt

= ��i(t)
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j

Mijpj(t)� Vi

1
A� �0pi(t)

0
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j

Mji�j(t)� Ci(t)

1
A+ h�

i (t),

to which we added external fields hp,�
i . For simplicity, we assume that preference factors ✓i := ✓

are constant and L0 = N`0, such that Ci(t) = `0/pi(t). Upon adding a new firm i = 0, the
external field acting on prices i > 0 is modified as

ehp
i (t) = hp

i (t)� ↵pi(t)M0i�0(t)� ↵0�i(t)Mi0p0(t), (III.30)

A similar expression can be written for eh�
i (t). We assume that the perturbation induce by the

new firm is small enough such that responses are linear, i.e. the perturbed price epi(t) (i > 0) can
be written as

epi(t) = pi(t)�
NX

j=1

Z t

0

ds�pp
ij (t, s) (↵pj(s)M0j�0(s) + ↵0�j(s)Mj0p0(s))

+

NX

j=1

Z t

0

ds�p�
ij (t, s) (��0pj(s)M0j�0(s) + ��j(s)Mj0p0(s)) ,

(III.31)

where we defined response functions

�uv
ij (t, s) :=

�ui(t)

�hv
j (s)

�����
h=0

, (III.32)

for u, v 2 {p, �}. Once again, a similar equation can be written for the perturbation of productions.
Injecting these perturbed forms into the equations for the new firm i = 0, one readily sees that
one must compute the large N behavior of the two quantities

NX

j=0

M0jepj(t),
NX

j=0

Mj0e�j(t).

We will focus on the first one since computations are essentially similar. From Eq. (III.31), we
have a term reading

NX

j=0

M0jpj(t) = z0p0(t)�
NX

j=1

J0jpj(t),

88



A. Sketch of the derivation of the DMFT equations

which we express using the indepedance between J0j and pj along with the iid approximation for
prices

NX

j=0

M0jpj(t) = z0p0(t)� µJE[p(t)] +O(N (1�min (�,2))/2).

The average E[(·)] is taken over zi, the matrix J and initial conditions. Note that, in contrast with
the Lotka-Volterra case, no ensemble noise remains because of the sign structure of J encoded in
�. The other terms from

PN
j=0 M0jepj(t) can be treated in a similar way, and we will only give

one example. We have a term proportional to
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As it turns out, only diagonal response functions �↵↵
ii contribute in the large N limit. First, we

can compute the single-time response �↵�
ij (t, t) in the following way. We start by computing the

time evolution of the response function. We take the functional derivative of the equation on
prices with respect to h↵

j (s). We set all external fields to 0, thus yielding
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We then integrate this relation over t between s� ⌧ and s and use the fact that responses are
causal, i.e. (�p↵

ij (t, s) = 0 for t < s), to get (for ⌧ ! 0+)

�
p↵
ij (s, s) =

�ij�p↵

zi�i(s)
. (III.33)

Non-diagonal single-time responses (cross-fields or cross-firms) are therefore sub-dominant, and
we actually expect them to remain sub-dominant as t 6= s. Note that this point is rather intuitive
since non-diagonal responses are obtained after one "correlation loop". Using this fact, we can
revert to the time evolution of non-diagonal responses and only consider contributions from
diagonal responses

@

@t
�
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i 6=j ⇠ �

↵0
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Jij�

pp
jj , (III.34)

implying
�
p 6=↵
i 6=j ⇠ Jij ⇠ N�1. (III.35)

Coming back to the perturbations on prices, we can simplify our computation
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.
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III. Dynamical mean-field theory: the proverbial firm

The other terms can be treated in the same way, and we see that the only nontrivial
contributions in the initial sums are

NX

j=0

M0jepj(t) ⇠
N!1

z0p0 � µJE[p(t)] (III.36)

NX

j=0
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z0�0 � µJE[�(t)]. (III.37)

Injecting these behaviors into the equation on the new firm i = 0 and dropping the index 0
yields system (III.15)
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B Linear study of the DMFT equations

In this appendix, we provide the computations for the linear study.

B.1 Purely complex spectrum for DMF

As we explained in Chapter II, the relaxation time of the system is given by

⌧r = 1/|min(Re (�1) ,Re (�2))|.

The expressions Re (�i) depend on the parameters of the model that can make the spectrum
of DMF either purely real or purely complex. To properly express ⌧r, we therefore need to
characterize the conditions yielding real or complex spectra. We have
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,

and c = µJµ
c
J/(µ

c
J � µJ) as defined in the main sections.

B.1.1 Below the transition µJ < µc
J

In this case, c > 0, and one readily sees that the z/(z + c) > 0 (since we chose z > 0). We can
carry out the computation
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Figure III.6: (a) Probability that the matrix DMF is stable. We see that below the transition,
equilibrium is always stable. (b) Probability that the spectrum of DMF is purely complex. In the
case 0 < m+ < 1, the system naturally interpolates between real and complex spectrum as it gets
closer to the HS transition.

As mentioned in the text, we retrieve a purely complex real (resp. purely complex) whenever
m+ < 0 (resp. m+ > 1). Since m+ < 0 corresponds to (↵0 � �0)2 < 4↵� and � > �c, we expect
a real spectrum whenever "!1 and "! 0+ by analogy with Chapter II. If now m+ > 1 the
spectrum is expected to be complex in this regime since inequalities on � are reversed. In the
intermediate case, 0 < m+ < 1, we have a real spectrum for " ! 1 and a complex one for

" ! 0. The probability P

⇣
z 2

h
0, cm+

1�m+

i⌘
interpolates between these two cases since c �!

"!1
0

and c �!
"!0+

1.

B.1.2 Above the transition µJ > µc
J

In this case, c < 0 which can make z/(z + c) negative as well. Careful evaluation shows that
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The interpretation is not as straightforward as in the case µJ < µc
J , but we can still see that

cases m+ > 1 and m+ < 0 are complementary.

B.2 Stable equilibrium

In the same way, we can compute the probability to have a stable equilibrium. To do so, we use
the following straightforward string of equivalences

Re (Sp (DMF)) < 0() Tr (D) < 0() z

z + c
� �↵

0 + �0

↵
,
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III. Dynamical mean-field theory: the proverbial firm

which holds regardless of the position of µJ with respect to the transition. We can then compute
the following probabilities for c < 0
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For c > 0, the latter one remains unchanged while the former becomes
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We can see that below the transition, the system is almost surely locally stable.

B.3 Expectation of eigenvalues

Using previous results, we can write the expectation values of �1/2. We will only write out the
results below the HS transition, but the other case can be obtained in the same way. We have for
the real parts
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Denoting by Dz = P (z)dz, we have the different cases

• Case m+ < 0
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• Case 0 < m+ < 1
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• Case 1 < m+
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The imaginary part can be obtained in the same way. See Figure III.3 for a comparison between
simulated expectation values and the previous analytical results in the case where z follows a
log-normal distribution.
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Conclusion of Part I

The central proposition of this part is that the standard economic equilibrium may
actually be dynamically unattainable. Correspondingly, the “small shock, large business
cycles” paradox (i.e. aggregate fluctuations much too large to be explained by exogenous
shocks alone, see e.g. [9] and [10]) would be chiefly explained by out-of-equilibrium effects.
Indeed, in such out-of-equilibrium situations, the dynamics is mostly of endogenous
origin and cannot be accounted for by traditional equilibrium arguments, like those of
e.g. [35] and [13, 41, 111]. From a conceptual point of view, our point is the following:
economic equilibrium requires so much cooperation between rational, forward-looking
agents, that the only way such equilibrium can plausibly be achieved is through some
kind of adjustment process, that inevitably takes some time to complete. Such a situation
requires a richer modelling framework where out-of-equilibrium dynamics is an integral
part of the description: we do not only need to describe the final equilibrium state, but
also the path to equilibrium, which may in fact never converge.

We started making our case by showing that the notion of economic equilibrium
can be itself ill-defined. Competitive equilibrium is the perfect balancing of economic
fluxes, summarized by market clearing (production is either bought or consumed) and zero
profits (competition inevitably drive profits towards zero). This last condition is different
from the standard definition, where profits are maximized at equilibrium (except for
constant return to scale, where the two coincide). This new definition allows anticipating
on Part II, where causality imposes to minimize costs rather than maximize profits in
order to compute exchanged quantities. These two conditions translate into equations on
equilibrium prices and productions (independent of any dynamical process). As argued
in [24], admissible economic equilibrium, i.e. one with positive prices and productions,
can only be achieved if firms are efficient enough in converting inputs into outputs. We
unveiled a quantity " measuring this efficiency relative to the amount of cooperation
needed from the network: as long as " > 0 firms are efficient enough and equilibrium is
properly defined, whereas when " < 0 network needs are too important and equilibrium
disappears. An illustration of this transition is given on Figure III.7. As we discussed in
Chapter I, a possibly nonexistent equilibrium invalidates the central hypothesis of most
economic models, and makes out-of-equilibrium modelling a necessity.

We then proposed a minimal model for weakly out-of-equilibrium dynamics in firm
networks. We based it on a set of heuristic rules describing the behavior of agents
faced with non-balancing fluxes. The general idea behind these rules is that agents act
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Figure III.7: Eigenvalues � of the network matrix Mij = zi�ij � Jij for zi ,! U (6, 8)
and Jij the adjacency matrix of an input-output network inferred from FACTSET data
[76]. Links correspond to an existing supplier-buyer relationship between 2012 and 2015.
Productivity factors are chosen uniform only to illustrate the HS transition.

to reduce imbalances with respect to equilibrium, as though these deviations acted as
frictions. These imbalances are measured through profits ⇡i(t) – gains minus losses – and
excess production Ei(t) – supply minus demand – and serve as proxies for the distance
to equilibrium. Prices and productions are adjusted through linear responses to these
imbalances
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For instance, faced with excess demand, a firm will increase its production. Inverse time-
scales ↵, ↵0, �, �0 measure the strength of the response to imbalances. Interestingly, the
HS transition transfers into a dynamical transition for this adjustment process. As "! 0,
the economy becomes less and less resilient to shocks as its relaxation time diverges with
"�1. Intuitively, if the relaxation time of the economy is much slower than the typical time
between shocks, they will tend to accumulate rather than vanish. This lingering of shocks
provides a nice mechanism for excess volatility in firm networks. Furthermore, even if
economic equilibrium exists, it might not be dynamically attainable since the time needed
to reach it might be unrealistically high. As a consequence, equilibrium is effectively
nonexistent, which further strengthen our view on the necessity of out-of-equilibrium
modelling.
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However, the results obtained in Chapter II have to be mitigated. Indeed, upon
simulating our system, we found no bounded trajectories (specifically limit cycles) as soon
as " < 0. Even if divergent economies – exploding prices and plummeting productions –
can make sense, we did not expect it to be the only possibility as soon as the HS conditions
were violated. Turning to dynamical mean-field theory, we were able to prove that the
no-equilibrium region could not yield any bounded trajectories, and that our model for
weakly out-of-equilibrium dynamics was in fact too "naive". By resorting to a toy-model,
we stripped out too much of the inherent complexity involved in the interactions between
firms and therefore overlooked essential constraints, some of which were discussed in the
concluding sections of Chapter II.

The next step for this work is therefore to factor in this missing complexity. In the
next part, we present the central model of this manuscript: a macroeconomic agent-based
model following the same behavioral rules as in Chapter II, but abiding to essential
constraints such as causality or conservation of goods.
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Part II

Macroeconomic agent based

modelling
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Foreword

The second part of this thesis is devoted to macroeconomic agent-based modelling. We
will heavily draw onto notions and results from previous chapters since we generalize the
model presented in the first part.

In both Chapter IV and Chapter V, we devise Agent-Based Models (ABMs) to
account for the out-of-equilibrium dynamics of a single firm (Chapter IV), or N firms
(Chapter V), adjusting prices and productions across time. In ABMs, the constitutive
entities (agents) go through a series of actions constituting a fundamental time-step of
the model. As time goes by, agents loop through these actions until some time-horizon
is reached. This approach is of course very versatile since virtually any system can
be simulated, provided enough computational power is available. Factoring in essential
realistic features, our ABMs are based on the same behavioral assumptions about reactions
to imbalances as in Part I. We will see that a rich phenomenology of behavior emerges,
such as sustained endogenous oscillations of prices and productions.

Chapter VI will serve as a conclusion to the first two parts of this thesis. It will
summarize the different explanations to the "small shocks, large business cycles" puzzle
in terms of out-of-equilibrium effects. It will also discuss some key economic features that
should be included in the models as well as perspectives for generalizations.
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CHAPTER IV

A simplified approach

Abstract

In this chapter, we present a simple representative model for out-of-equilibrium
dynamics in a primitive economy consisting of one firm and one household. The idea
of this chapter is to introduce the general concept of Agent-Based Models, along with
some of the analytical methods that one may use to approach them. It also serves
as an introduction to the next chapter, which will present a much more complex
framework although based on the same principles. We will also introduce the concept
of conewise linear dynamics, central in the model of Chapter V.

1 A causal mass-conserving economy

Chronologically, this project came after the work of Chapter V was submitted to publica-
tion. We wanted to reduce the model of the next chapter to gain a deeper understanding
of the equations, while still factoring in some complexity missing from Chapter II. To that
end, we decided to take a well known economic model and endow it with the same dynam-
ics as in Chapter V. As in [112, Chapter 2], we consider a single-firm single-household
economy. The firm produces a quantity y of goods using only manpower ` through the
production function

y = z`b, (IV.1)

where z > 0 is a technological productivity factor and b accounts for return to scale. The
firm sells this production to the household at some price p, and pays workers for their
labor at wage p0. For its part, the household seeks to maximize some utility function 1

U = logC � 1

1 + '

✓
`

`0

◆1+'

, (IV.2)

where the log-consumption corresponds to the limit � ! 1� in [112]. The household is
subject to the budget constraint

pC  p0`+ S, (IV.3)

1Unlike [112], we disregard inter-temporal effects in the utility maximization.
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IV. A simplified approach

where S denotes possible savings. We do not take bonds nor debts into account here.
From this very simple static framework, we will move to a time-dependent description
by allowing prices, production etc. to adjust throughout time. We will use update rules
similar to those of Chapter II, but we will factor in essential ingredients that were missing
from Chapter II: imbalances and causality.

1.1 Imbalances

Accounting for imbalances, we enforce the general rule that neither sales nor manpower
can exceed available supply (where supply refers to the available pool of workers in
the case of manpower). If supply of goods is plentiful, then demands will be satisfied.
However, if demands exceed available supply, the firm will only sell what is available. The
flow of goods going from the firm to the household must therefore be computed with care.
Instead of a single consumed quantity C(t) considered in Chapter II, we need to introduce
the amount of goods demanded by the household, Cd(t), that can only be smaller or
equal to the quantity actually exchanged, C(t). We also keep track of the firm’s inventory,
denoted by I(t), to which we successively add goods that the firm did not manage to sell
(if supply exceeds demands), and subtract those that perished. In this highly simplified
setting, it is straightforward to relate realized and demanded consumption. Indeed, firm’s
supply and demand, S (t) and D(t), are given by

S (t) = y(t) + I(t) (IV.4)

D(t) = Cd(t), (IV.5)

which implies

C(t) = Cd(t)min

✓
1,

S (t)

D(t)

◆
= min

�
Cd(t), y(t) + I(t)

�
. (IV.6)

Similarly, the manpower `d required by the firm to produce may not be equal to the total
maximum amount of work `s provided by the household. Consequently, realized working
hours are capped in the same way as consumption is, i.e.

`(t) = `d(t)min

✓
1,
`s(t)

`d(t)

◆
= min

�
`d(t), `s(t)

�
, (IV.7)

where supply of work `s(t) is fixed by the household (see below).
Finally, since the number of hired employees may be slightly smaller than expected,

firms may produce less than anticipated. We will therefore make the distinction between
production target by(t) (used to estimate manpower needs `d(t)) and real production y(t),
such that y(t)  by(t).

1.2 Causality

Implementing causality in the dynamics also means dissecting the firms’ decision process.
Clearly, goods can only be sold at time t after they have been produced at time t� 1, and
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1. A causal mass-conserving economy

prices may change (if only slightly) between these two times. More importantly, the firm
only have partial information about the amount of goods it will be able to buy and sell
when it plans for the next production cycle. Likewise, the number of employees it will be
able to hire is not known precisely, because it depends on the amount of work deemed
acceptable by the households. It is at this stage that we will introduce a heuristic rule
that allows firms to plan for the next production round by making more or less informed
guesses about these unknown quantities. In the present work, we assume that firms base
their estimate on what happened in the previous time step, although more complicated
and more general rules can already be imagined.

1.3 Decision process

As hinted at in the last paragraph, causality requires dissecting firms’ decision process.
Each time-step is therefore sliced into three epochs – planning, hiring and producing –
over which the firm will loop. Intuitively, one time-step can be thought of as a quarter
during which the firm will carry out several non-instantaneous tasks.

1.3.1 Planning

In this phase, firms will plan their production by setting a target production by(t) with
a similar heuristics as in Chapter II. However, since causality forbids the use of yet to
be disclosed information, the firm must forecast future profits and production surplus in
order to set out a production target.

Forecasts We will assume that forecasts, denoted by Et [ · ], are computed using demands
from the preceding time-step, i.e. firms assume that, through their dynamical adjustment
of prices and productions, they are now able to meet past observed demands. As a
consequence

Et [C] = Cd(t� 1) (IV.8)

Et [`] = `d(t� 1), (IV.9)

so that expected profits and surplus read

Et [⇡] = Cd(t� 1)p(t)� p0(t)`
d(t� 1) (IV.10)

Et [E ] = y(t) + I(t)� Cd(t� 1). (IV.11)

Note that the supply part of Et [E ], i.e. y(t) + I(t) is known for the current period since
production and compilation of inventories already occured (see below).

Setting targets Using these forecasts, the firm sets a production target by(t+1) through
the update rule

log

✓by(t+ 1)

y(t)

◆
= 2�

Et[⇡]

Et[G ] + Et[L ]
� 2�0

Et[E ]

Et[S ] + Et[D ]
, (IV.12)
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with G and L , the gains and losses of the firm such that ⇡ = G �L . Note that the
update rule is slightly different from that of Chapter II. The normalization of each term
is chosen such that the update factors stay between �1 and 1. In addition, since at
equilibrium gains equal losses and supply equals demand, the denominator yields a factor
of two, which cancels out with the one in front of the inverse time-scales.

Posting demands Now that a production target has been set, the firm computes the
optimal working hours that minimize costs while allowing to reach the target. Such
process is described in Chapter I and yields

`d(t) = (by(t+ 1)/z)1/b . (IV.13)

The subsequent demand of work `d(t) is posted to the household. In parallel, the household
posts its consumption demand Cd(t) and available man-power `s(t) by optimizing the
expected utility

Et[U ] = logCd(t)� 1

1 + '

✓
`s(t)

`0

◆1+'

, (IV.14)

under the expected budget constraint p(t)Cd(t) = p0(t)`
s(t)+S(t), where S(t) is a leftover

budget from previous periods. We also introduced the baseline work offer `0: if '!1,
the household refuses to work more than `0. In this chapter and the next, we consider
the household to be optimistic, i.e. it assumes that it will consume and work as much as
it intends.

1.3.2 Hiring

Now that demands have been posted, the firm can hire workers and pay the household,
which in turn consumes goods.

Hiring and wage payment The hiring process only needs to comply with the available
workforce. If the overall workforce is smaller than the firm’s demand, the firm will only
be able to hire a fraction of what it needs, and the household will be fully employed. If
now the available workforce is enough, the household will satisfy the firm’s demand but
will be partially unemployed. This traduces into

`(t) = min
�
`d(t), `s(t)

�
. (IV.15)

After being hired, the household is paid and has an available budget of

B(t) = p0(t)`(t) + S(t). (IV.16)

The firm offers a certain quantity to buy Co(t)

Co(t) = Cd(t)min

✓
1,

S (t)

D(t)

◆
, (IV.17)

106
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that the household consumes according to the previous budget

C(t) = Co(t)min

✓
1,

B(t)

p(t)Co(t)

◆
. (IV.18)

Finally, the household updates its leftover savings by the amount that might be left after
consumption

S(t+ 1) = B(t)� p(t)C(t). (IV.19)

Price and wage updating After paying wage to its workers, the firm can compute its
losses L (t) = p0(t)`(t). In addition, the household has spent money by consuming goods,
and the firm can also compute its gains G (t) = p(t)C(t). Realized profits and realized
production surplus therefore read

⇡(t) = p(t)C(t)� p0(t)`(t) (IV.20)

E (t) = y(t) + I(t)� Cd(t). (IV.21)

The firm adjusts its selling price for the next period with a rule similar to that of Chapter II

log

✓
p(t+ 1)

p(t)

◆
= �2↵ E (t)

S (t) + D(t)
� 2↵0 ⇡(t)

G (t) + L (t)
. (IV.22)

Furthermore, the wage p0(t) is not constant anymore and reacts to tensions in the labor
market

log

✓
p0(t+ 1)

p0(t)

◆
= �2!`

s(t)� `d(t)
`s(t) + `d(t)

:= �2! E0(t)

`s(t) + `d(t)
, (IV.23)

where ! is an inverse timescale (paramount to ↵, �, ↵0, �0) measuring the speed of wage
adjustment, and where we defined the excess work E0(t) = `s(t)� `d(t). This heuristics is
of course in the same spirit as those on prices/productions. We will discuss it further in
Chapter V and it implements a "Philip’s curve" at each time-step.

Rescaling Conventionally, we rescale every monetary quantities by the value of the
wage to avoid exponential growth or decay conveyed by inflation/deflation effects. Note
that this step is not part of the firm’s decision process per se, but is mostly for numerical
convenience. The rescaling is as follows

p(t+ 1) � p(t+ 1)

p0(t+ 1)

S(t+ 1) � S(t+ 1)

p0(t+ 1)

p0(t+ 1) � 1.

1.3.3 Producing

After the hiring phase, the firm is able to produce and compile its inventories. This phase
is a lot less cumbersome than the corresponding one in Chapter V since inventories are
only compiled for the unique good and production only takes work into account.
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Production Given working hours `(t) provided by the household, the firm produces a
quantity y(t+ 1) that will be sold during the next period

y(t+ 1) = z`(t)b  by(t+ 1). (IV.24)

Note that, in an economy whose production is only work-dependent, the distinction
between the different production functions of Chapter I becomes irrelevant (up to a
redefinition of the productivity factor).

Inventories Compiling inventories is simple here and amounts to storing leftover goods
that have not been consumed by the household

I(t+ 1) = e�� (S (t)� C(t)) . (IV.25)

We introduced a depreciation factor e�� to interpolate between non-perishable (� = 0)
and instantaneously perishable goods (� =1).

1.4 Laying down the equations

The previous steps can be rewritten into a discrete dynamical system linking times t+ 1,
t and t� 1. It reads

by(t+ 1) = y(t) exp


2�

Et[⇡]

Et[G ] + Et[L ]
� 2�0

Et[E ]

Et[S ] + Et[D ]

�
(IV.26)

y(t+ 1) = z
�
min(`s(t), `d(t)

�b
(IV.27)

p(t+ 1) = p(t) exp


�2↵ E (t)

S (t) + D(t)
� 2↵0 ⇡(t)

G (t) + L (t)
+ 2!

E0(t)

`s(t) + `d(t)

�
(IV.28)

I(t+ 1) = e� (S (t)� C(t)) (IV.29)

S(t+ 1) = (B(t)� p(t)C(t)) exp


2!

E0(t)

`s(t) + `d(t)

�
(IV.30)

where prices and savings are rescaled by wages which are therefore set to 1. These
constitutive equations are consistent in the sense that these five variables are enough
to describe the entire system. Of course, there is little to no hope to get any analytical
tractability out of this system: it is non-linear, intricately coupled, second-order recursive.
Furthermore, the form of the equations actually depends on the relative magnitude of the
state variables. For instance, if labor supply exceeds labor demand then y(t+1) = z(`d(t))b,
whereas y(t+ 1) = z(`s(t))b if it were the other way around. This adds another layer of
complexity since the system will act differently depending on the position of the state
variables in state space. We will see in Section 3 that one can give (to some extent) a
characterization of the behavior of the system at linear level.
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1.5 Absence of HS transition

In this model, competitive equilibrium equations are fairly simple and immediately yield

peq =
`1�b
0

z
(IV.31)

�eq = `b0. (IV.32)

Provided that z is strictly positive (which should always be the case), equilibrium price
and production will always be positive. This model therefore does not have any analogous
of the HS transition that we presented in Part I. As a consequence, z actually plays
very little role in the dynamics, and we will set it to z = 1. Finally, the absence of HS
transition highlights that this model is not some representative mean-field limit of the
model in Chapter II. To retrieve the HS transition, one could impose that the firm needs
a fraction of its own production as an input. This self-interaction would effectively shift
the productivity factor z ! z � q, and allow for negative equilibrium prices while keeping
z > 0. We disregard such a possibility here.

2 Short numerical survey

Since very little can be said a priori about the dynamics of this model, we will resort to
numerical simulations in the same way as we will in Chapter V. We classify the different
dynamical behaviors that we obtain into a phase diagram, i.e. a graphical representation
associating a specific phase to the parameters generating it. As for those presented in
Chapter V, we choose ↵ = ↵0 = � = �0 for simplicity. We also set z = 1 (since this
parameter is just a scaling factor in this model), `0 = 1, ' = 1 and b = 1. Figure IV.1
shows four different phase diagrams in the parameter plane (↵,!), for � = {0,1} and
different initial perturbations of equilibrium. To obtain these phase diagram, we run the
dynamics for T = 10000 time-steps with the prescribed initialization and parameters. We
then classify the different asymptotic behaviors. The different phases obtained are

• Collapse: the price blows up exponentially while production plummets, i.e. the
economy collapses.

• Competitive equilibrium: price and production converge to the equilibrium
defined in Chapter I, i.e. the economy is stable. The type of dynamics for the
relaxation depends on the parameters of the model and can be rather complex (see
Figure IV.2-(a, b) and Section 3).

• Deflationary equilibrium: the rescaled price converges towards a value differ-
ent from competitive equilibrium. In this phase, a fraction of the household is
unemployed `s1 > `d1, and the wage decreases at constant rate.

• Inflationary equilibrium: the rescaled price converges towards a value different
from competitive equilibrium. In this phase, the household is fully employed
`s1 < `d1, and the wage increases at constant rate.
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Figure IV.1: Phase diagram in the plane (↵,!) obtained by classifying the different
asymptotic behaviors of the system after an initial perturbation. For each plot, we chose
↵ = ↵ = � = �0 along with z = 1, b = 1, ' = 1, `0 = 1 and an initial perturbation
�(0) = �eq(1 + �), b�(t+ 1) = �eq(1 + �) with � = 10�5. (a) � = 0 and p(0) = peq(1 + �).
(b) � = 0 and p(0) = peq(1 � �). (c) � = 1 and p(0) = peq(1 + �). (d) � = 1 and
p(0) = peq(1� �). Whenever the system is initialized with a downward perturbation on
prices, we see the emergence of an additional inflationary/oscillatory region.

• Crises: price and production start converging towards competitive equilibrium but
are violently destabilized when getting too close. This creates a series of price spikes
(and production falls) more or less spaced out in time.

• Oscillations: price and production enter limit cycles of various nature. The
economy remains bounded but is unstable. Cycles can be rather ordered or exhibit
more chaotic patterns (see Figure IV.2-(c, d)).

The precise nature of the different phases will be discussed at length in Chapter V since
we retrieve most of the same behaviors. However, we already have an improvement from
the model presented in Chapter II with the emergence of a large region of parameter space
where sustained oscillations occur (see Figure IV.2 for examples of oscillatory patterns).
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Figure IV.2: Some price trajectories generated by the model. We chose ↵ = ↵0 = � = �0,
z = 1, `0 = 1 and ' = 1 for each trajectory. (a) Simple exponential relaxation for ↵ = 0.2,
! = 0.1, � = 1 and b = 1. (b) Complex damped oscillations for ↵ = 0.8, ! = 0.1,
� = 0 and b = 1. (c) Sustained oscillations with smooth excursions for ↵ = 0.8, ! = 0.7,
� = 0 and b = 1. (d) Sustained oscillations with dampening modulations for ↵ = 0.8,
! = 0.75, � = 0.1 and b = 0.95. Initial conditions: p(0) = 2peq, �(0) = 2�eq, b�(1) = 2�eq

for (a) � (c); p(0) = peq(1 + �), �(0) = �eq(1 + �), b�(1) = �eq(1 + �) with � = 0�5 for
(b)� (d); the remaining variables are initialized with the associated equilibrium values.

In Figure IV.1-(a, c), oscillatory patterns can be observed for large values of ↵. Intuitively,
the firm’s reactions to imbalances are too strong and lead to overshoots/undershoots in the
update of price and production, therefore generating oscillatory patterns. In the following,
we will see that oscillations can also emerge when the economy switches from one region of
state space to another, where dynamical equations have different outputs due to shortages.
This feature is also linked to the appearance of the two inflationary/oscillatory regions in
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the upper left corner of the diagrams whenever the price is initialized with a downward
perturbation on equilibrium. Such a perturbation increases consumption demand and
puts the system in a situation where supply is not enough to meet demand. This will be
discussed at length in the next section. Finally, inflationary equilibria can be observed in
this model, whereas they are not present in the model of Chapter V to the best of our
knowledge. The nature of these equilibria is still rather elusive, and an attempt to properly
characterize them is underway. However, in Chapter V, large regions of parameters space
were found to display oscillations with persistent inflation, i.e. `s(t) < `d(t).

The transition lines between the different phases in Figure IV.1 are tricky to assess
analytically since they are of various origins. The diagonal transition line between
collapsing and bounded dynamics (competitive equilibrium or oscillations) corresponds
to a linear stability/instability transition of equilibrium in some regions of space, as we
will see below. However, the transition between competitive equilibrium and oscillatory
patterns (below the diagonal) is related to the invariance or non-invariance of some specific
regions of space, and is therefore a lot harder to pinpoint.

3 Conewise dynamics and geometric study

In this section, we will study the dynamics of the system close to competitive equilibrium.
Even at linear level, the system remains rather non-trivial since competitive equilibrium
is a cusp of the dynamics, as we will see below. In the following, we will denote by ✏i the
i-th column vector of the canonical basis of R5.

3.1 Shortages close to equilibrium

One of the new features of this model is that it accounts for imbalances in goods, work
and budget. Mathematically, these imbalances translate into constraint factors of the
form min(1, a(t)/b(t)) such that aeq = beq. For instance, the budget constraint factor is
obtained by taking a(t) = B(t) and b(t) = p(t)Co(t). Considering small perturbations
�(·) around the equilibrium values of a and b, the constraint factor can be linearly
approximated by

min

✓
1,

a(t)

b(t)

◆
⇡ min

✓
1, 1 +

�a(t)� �b(t)
beq

◆
= 1 +min

✓
0,
�a(t)� �b(t)

beq

◆
.

We see that the min (0, ·) function cannot be disregarded even close to equilibrium, and
its output depends on the sign of �a(t)� �b(t). Indeed, competitive equilibrium coincides
with a non-differentiable point for constraint factors, i.e a cusp of the dynamics. To
make proper sense, the perturbative analysis around equilibrium must be performed in
restrictions of space where �a(t) � �b(t) keeps a constant sign. Take for instance the
production level �(t+ 1) = `(t)b (with z = 1). We can write its evolution as

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
min (0, �E0), (IV.33)

which can take two different forms:

112



3. Conewise dynamics and geometric study

• if enough work was supplied to reach the target of production, i.e. �E0(t) > 0, then

��(t+ 1) = �b�(t+ 1),

• otherwise, i.e. �E0(t) < 0, production is capped by available work

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
(�`s(t)� �`d(t)).

In either region �E0 ? 0 the dynamics linearly depends on the perturbations, but the
linear dependency differs depending on the region. Of course, the same applies for
good and budget shortages. The expression of the dynamics depends on the sign of
the three perturbations �E (t) (good shortages), �E0(t) (work shortage) and �h(t) =
��E0(t) + min (0, �E0)� peq min (0, �E ) (budget shortages).

In Appendix A, we provide the computations for the complete linearization of the
dynamics. We show that the system can be described through the evolution of a vector
U(t) encapsulating perturbations on past and present targets along with present prices,
productions, stocks and savings

U(t) =

0
BBBBBB@

�b�(t+ 1)
��(t)
�p(t)
�I(t)
�S(t)
�b�(t)

1
CCCCCCA

. (IV.34)

The stability matrix D(t) of the system is of the form

D(t) = FE(t), (IV.35)

where F 2M6,10 is fixed and E(t) 2M10,6 is a matrix that depends on the signs of the
quantities �E , �E0, �h. At linear level, these quantities can be expressed as the overlaps
between the state vector U(t) and three vectors cg, cw, ch(t), i.e.

�E (t) = c>g U(t)

�E0(t) = c>wU(t)

�h(t) = ch(t)
>U(t),

where

cg =

✓
0, z,

Ceq

peq

, 1,�Ceq

k`0
, 0

◆

cw =

✓
� `eq

b�eq

, 0, 0, 0,� 1

1 + '
, 0

◆
.

113



IV. A simplified approach

Note that ch is itself time dependent, since it also depends on the signs of �E , �E0. One
can therefore partition R

6 into at most eight regions C±,±,± where �E , �E0, �h(t) keep a
constant sign

C±,±,± =
n
x 2 R

6, sgn
⇣
c>g x

⌘
= ±1, sgn

⇣
c>wx

⌘
= ±1, sgn

⇣
c>h x

⌘
= ±1

o
. (IV.36)

These regions are convex cones within which the evolution of U(t) is determined by a
single value D(t). Such a situation is generically called conewise linear dynamics, and can
yield highly complex dynamics, as we will see. To be more precise, our situation is not
exactly conewise linear since ch also depends on the position, and therefore the cones
themselves depends on the position in space. However, we will still refer to this type of
dynamics as conewise linear for clarity purposes. In the next section, we will give the
explicit form of D(t) in the different cones.

3.2 Exchange matrices

As we said before (see Appendix A), the dynamical matrix D(t) is of the form D(t) = FE(t)
with F fixed and E(t) a conewise constant function with block form

E(t) =

✓
S(t) 05

I5 � ✏5✏
>
5 0

◆
, (IV.37)

with I5 the identity of M5,5. The shortage matrix S(t) can take 5 different values
determined by the form of the update of savings

�S(t+ 1) = �h(t)�min (0, �h), (IV.38)

stocks

�I(t+ 1) = e��

✓
�E (t)�min (0, �E )� Ceq

Beq

min (0, �h)

◆
, (IV.39)

production levels,

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
min (0, �E0), (IV.40)

and finally prices through profits

�⇡(t) = �S(t)� �h(t) + min (0, �h). (IV.41)

The previous equations are obtained in Appendix A. We will detail the different values
Si taken by S(t) along with their interpretations below. Finally, each situation is also
described graphically on Figure IV.3 where we look at a projection of the state space
onto the plane (cg, cw). The labeling of the different situations below corresponds to the
one on Figure IV.3. To each matrix Si, we naturally associate the corresponding stability
matrix Di, along with the cone Ci within which they are active.
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(a) Plentiful supply, partial unemployment: In this situation �E (t) > 0 as well
as �E0(t) > 0: there is enough supply to satisfy demand, and the household is not
fully employed since �`s(t) > �`d(t). In this case, the household will be faced with a
shortage of budget. Indeed, since it is employed for `eq + �`d(t) < `eq + �`

s(t) hours,
its expected budget (computed optimistically by assuming full employment) will
be lower that its realized counterpart. Furthermore, its consumption demand will
be met since supply is plentiful and the household will be unable to consume it all.
In this case, �h = ��E0 < 0, i.e. ch = �cw, which is expected from the previous
discussion. Furthermore, no money will be saved �S(t+ 1) = 0 since the budget
will be entirely used to consume as much as possible. The firm will profit from the
goods consumed thanks to the household possible savings �⇡(t) = �S(t) and will
store the leftover supply

�I(t+ 1) = e��

✓
�E (t) +

Ceq

Beq

�E0(t)

◆
,

where the last term comes from goods that could not be consumed due to budget
shortage. Finally, the production target is reached ��(t + 1) = �b�(t + 1) since
enough work was provided. The subsequent matrix will be called S0 and reads

S0 = (✏1 + ✏2)✏
>
1 + ✏3

✓
✏3 � ↵

peq

z�eq

cg + !
peq

`eq
cw � ↵0 1

z�eq

✏5

◆>

+ e��✏4

✓
cg +

Ceq

Beq

cw

◆>

.

(IV.42)

(b) Plentiful supply, full employment: In this situation �E (t) > 0 still but now
�E0(t) < 0, i.e. firms cannot hire as much as needed and the household is fully
employed. There is no budget shortage in this case since the consumption demand
is satisfied (plentiful supply) and the household work as much as it expected. Here
ch = 0. As before no money is saved �S(t + 1) = 0, and profits come from
consumption thanks to savings �⇡(t) = �S(t). The firm will stock less than in the
previous case since the household consumes more

�I(t+ 1) = e���E (t).

However, since the firm did not get the amount of work needed, the actual production
level is lower that the targeted value

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
�E0(t).

The subsequent matrix is called Sw and reads

Sw = ✏1✏
>
1 + ✏2

✓
✏1 + b

�eq

`eq
cw

◆>

+ ✏3

✓
✏3 � ↵

peq

z�eq

cg + !
peq

`eq
cw � ↵0 1

z�eq

✏5

◆>

+ e��✏4c
>
g .

(IV.43)
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(c) Good shortage, full employment: In this situation, �E0(t) < 0 as well as
�E (t) < 0. Since the household is fully employed, there is no budget shortage.
However, the firm cannot fulfill the household’s demand and the latter is frustrated
in its consumption. Here ch = �peqcg. Money will be saved

�S(t+ 1) = �peq�E (t),

and the firm will make less profits than they would have with plentiful supply

�⇡(t) = �S(t) + peq�E (t).

Since the firm tries to fulfill the household’s demand as much as possible, it will
completely empty its supply and no good will be stored �I(t+1) = 0. Finally, since
work was not sufficient as before, the production target will not be reached

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
�E0(t).

The subsequent matrix is called Sg,w and reads

Sg,w = ✏1✏
>
1 + ✏3

✓
✏3 � ↵

peq

z�eq

cg + !
peq

`eq
cw � ↵0 1

z�eq

(✏5 + peqcg)

◆>

� peq✏5c
>
g + ✏2

✓
✏1 + b

�eq

`eq
cw

◆>

.

(IV.44)

(d) Good shortage, partial unemployment: This final situation with �E0(t) > 0
and �E (t) < 0 is more intricate. Since �E0(t) > 0 the household works less than it
expected, and therefore overestimates its budget before consuming. Consequently,
a budget shortage can occur. However, since there is a good shortage, the amount
of goods offered by the firm can be low enough so that the household is still able
to consume them entirely, regardless of the unanticipated low budget. We have
�h(t) = ��E0(t)� peq�E (t), so that ch = �cw � peqcg, and the following situations
can occur:

(i) Budget shortage: If budget is still short in spite of the low offer in goods, i.e.
�h(t) < 0, the household will not save anything �S(t+ 1) = 0. The firm will
profit from the savings’ expenses �⇡(t) = �S(t), will store the left over supply

�I(t+ 1) = e��Ceq

Beq

(cw + peqcg) ,

and will reach its target production ��(t + 1) = �b�(t + 1). The subsequent
matrix is called Sg,b and yields

Sg,b = (✏1 + ✏2)✏
>
1 + ✏3

✓
✏3 � ↵

peq

z�eq

cg + !
peq

`eq
cw � ↵0 1

z�eq

✏5

◆>

+ e��Ceq

Beq

✏4 (cw + peqcg)
> .

(IV.45)
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(ii) No budget shortage: Here, the shortage of goods is so important that the firm
offers a small enough quantity such that the household is not inconvenienced
by its low budget, i.e. �h(t) > 0. The household will then save some amount
of money

�S(t+ 1) = ��E0(t)� peq�E (t) > 0.

The firm will empty its stocks �I(t+ 1) = 0 and make less profits than in the
previous situation

�⇡(t) = �S(t) + �E0(t) + peq�E (t).

As before, the production target is reached. The subsequent matrix is called
Sg and yields

Sg = (✏1 + ✏2)✏
>
1 + ✏3

✓
✏3 � ↵

peq

z�eq

cg + !
peq

`eq
cw � ↵0 1

z�eq

(✏5 + cw + peqcg)

◆>

� ✏5 (cw + peqcg)
> .

(IV.46)

3.3 Equilibrium stability and transition lines

In conewise linear systems, the question of stability does not have a straightforward
answer [113, 114]. Since the dynamics can switch from one cone to another, the state
vector U(t) is given by a time-ordered product of matrices applied to U(0). To assess the
stability of this system, one would need to know the eigenvalues of this product, which
is a notoriously difficult task. As an introduction, Figure IV.4-(a) reproduces the phase
diagram of Figure IV.1-(c) (obtained for � = 1 and an initial upward deviation from
equilibrium) over which we overlaid two transition lines associated with the matrix D0:

• the ARK1 line refers to the asymptotically rank-one transition discussed in Section 3.3.1.
On the left of this line, the matrix D0 possesses an invariant cone K, i.e. such that
D0K ⇢ K.

• the stable transition refers to the escape of at least one eigenvalue from the unit circle.
On the left of this line, a linear dynamics governed by D0 would be convergent.

As we see on Figure IV.4-(a), even if equilibrium is stable under D0, there is an entire
region of spontaneous oscillations occurring for small enough !. However, as soon as
D0 possesses an invariant cone, the system is able to reach equilibrium. As we will see,
equilibrium stability is by no means a token of convergence in conewise linear systems,
and one needs to study the invariance properties of the matrices Di.
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U1 = DwU3

U2 = D0U1

U3 = DgU2
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Dg Dg,b
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Figure IV.3: Schematic representation of the different cones in the plane spanned by
(cg, cw). The red arrows correspond to the position of U in the plane (cg, cw) and the
blue arrows correspond to the vector ch. The subplots (a)� (b)� (c)� (d) correspond to
the different situations described in Section 3.2. (e) provides a fictitious evolution of the
vector U (red dots) that loops over the three regions governed by D0,Dg and Dw. Finally,
the color code highlights the regions where budget shortage occurs or not.
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Figure IV.4: (a) Phase diagram of Figure IV.1-(c) obtained for � =1 and an upward
initial perturbation applied to equilibrium prices, productions and targets. (b) Regions
(in blue) in parameter plane (↵,!) for which D0 is asymptotically rank-one (ARK1) along
with the pink transition line overlaid on (a). (c) Regions (in blue) in parameter plane
(↵,!) for which D0 is stable along with the cyan transition line overlaid on (a).

3.3.1 Cone invariance

Since within one cone the dynamics is linear (and therefore fully determined by the
eigenpairs of the associated matrix), a natural question to ask is under which condition
will a cone be stable under this linear dynamics 2. To the best of our knowledge, given
a cone C and a matrix A, there does not exist any straightforward criterion for C to be
stable under A. However, there exist some conditions for the existence of a stable cone
under A. First, we recall the generalization of the Perron-Frobenius theorem

Theorem IV.1 (Perron-Frobenius). Let a proper cone C be strictly invariant for a non
zero matrix A. Then the following facts hold

(i) the spectral radius ⇢(A) 3 is a simple positive eigenvalue of A and |�| < ⇢(A) for
any other eigenvalue � of A;

(ii) int(C) 4 contains the unique leading eigenvector v associated with ⇢(A);

2A cone C is stable under A if AC ⇢ C.
3The spectral radius ⇢(A) of a N ⇥N matrix A is defined as ⇢(A) = max{|�1|, . . . , |�N |} where �i is

the i-th eigenvalue of A.
4For a subset A of a topological space X, the set intA is a subset of X included in A defined as the

union of all open sets contained in A.

119



IV. A simplified approach

(iii) the secondary eigenvectors and generalized eigenvectors of A do not belong to C.

This theorem provides some properties whenever an invariant cone exists, but does
not ensure the existence of such a cone. For the existence of invariant cones, we need the
following definition

Definition IV.1. A matrix A is said to be asymptotically rank-one if the following
conditions hold

(i) ⇢(A) > 0;

(ii) exactly one between ⇢(A) and �⇢(A) is an eigenvalue of A and, moreover, it is a
simple eigenvalue;

(iii) |�| < ⇢(A) for any other eigenvalue � of A.

Intuitively, such matrices will behave as a projector onto the eigenvector associated
with ±⇢(A) whenever they are raised to a large power. As a consequence, we have the
following theorem (see [115])

Theorem IV.2. A matrix A is asymptotically rank-one if and only if A or �A admits
an invariant proper cone.

To ensure the existence of an invariant cone, we can therefore use the rank-one
characterization, which we can easily check numerically. Figure IV.5 shows the different
regions where matrices Di are asymptotically rank-one. Of course, the previous theorem
does not say anything about the features of the invariant cone C but, together with
Perron-Frobenius theorem, we know that it must contain the eigenvector v associated
with ±⇢(A). Finally, if v is also contained within some cone of the dynamics, we can
deduce that the dynamics will leave at least part of this cone invariant.

To summarize, let us take A = D0 and consider the dynamics associated with the
plentiful supply and partial unemployment cone C0. If D0 is asymptotically rank-one,
then there exists a cone K invariant under D0. Furthermore, the eigenvector v associated
with ±⇢(D0) is contained within K. If also v 2 C0, then D0 will leave K \ C0 invariant
and the dynamics will be trivial in this region. Since we do not know the exact nature of
K, we cannot say for certain whether K \ C0 = C0 (i.e. C0 ⇢ K), which would imply that
C0 itself is invariant, but we know that C0 is at least partially invariant.

On Figure IV.4, we can see that the dynamics is less stable whenever D0 is not
asymptotically rank-one. This suggests that the oscillatory patterns come from excursions
in different cones where matrices are less stable than D0.

3.3.2 Matrix stability

Since the dynamics may leave some of the cones invariant, it is interesting to study the
spectral properties of the different matrices Di. In this section, we will focus on the matrix
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Figure IV.5: Regions in the parameter plane (↵,!) where matrices Di are asymptotically
rank-one (in blue) for � = 0 (top) and � = 1 (bottom). (a) D0, (b) Dw, (c) Dg,w, (d)
Dg,b, (e) Dg. We chose ↵ = ↵0 = � = �0, z = 1, `0 = 1, b = 1 and ' = 1.

D0, but computations are very similar for other matrices. Assuming that the matrix D0

leaves the cone C0 invariant, the dynamics on U is trivial and one has

U(t) = D
t
0U(0). (IV.47)

The system is therefore stable if all the eigenvalues of D0 are contained within the unit
circle. It is not hard to compute the characteristic polynomial of D0, but it is a bit lengthy
and we will therefore not show the computation. For simplicity, let us consider the case
↵ = ↵0 = � = �0 and � = 1. The characteristic polynomial �0 of D0 is expressed as
follows

�0(�) = �3
�
�3 + �2(↵(! + 3)� 2) + �

�
3↵2 � 2↵! � 3↵+ 1

�
� 2↵2

�
. (IV.48)

From this expression, one could use the cubic roots’ formula to get the eigenvalues.
However, the final expressions would be hard to interpret in terms of stability. We will
therefore give some conditions for the existence of roots lying right onto the unit circle by
studying f�0 = �0/�

3 directly. There are different possibilities.

�0 = 1 is a root In this case, we have the equation e�0(1) = 0 which translates into the
relation

↵ = !. (IV.49)
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In the general case, the relationship would have been ↵� = �0! independent of both ↵0

and �. With Eq. (IV.49), we easily retrieve the diagonal transition from the collapsing
regions and the bounded dynamics region in Figure IV.1.

�0 = �1 is a root With the same reasoning, we have the following relationship

! =
4� 6↵+ 5↵2

3↵
. (IV.50)

This condition is less restrictive than the one obtained for the case � = 1, and therefore
does not play a role in the stability of D0.

Two complex roots on the unit circle If we assume that e�0 has two complex roots
�1/�̄1 and one real root �0, we have the following factorization

e�0(�) = (�� �0)(�� �1)(�� �̄1),

which we can expand

e�0(�) = �3 � (�0 + 2Re (�1))�
2 + �0(�0 + 2Re (�1))�� �0,

and where we used |�1| = 1. We immediately see that in this case, the constant term of
e�0 must be the opposite of the root �0, i.e. �a0 is a root. We can write

e�0(�) = (�+ a0)P (�) +Q(�),

such that Q = 0 whenever two complex roots lie on the unit circle. Since degQ <
deg (�+ a0) = 1, Q is a real number. Solving Q = 0 yields the relationship

! =
3� 2↵� 4↵2

2(↵� 1)
. (IV.51)

As we said, Eq. (IV.50) turns out to be irrelevant and the stability of the matrix
D0 is solely determined by the position of ↵ or ! with respect to the lines (IV.49) and
(IV.51). The different regions in the plane (↵,!) where matrices Di are stable are shown
in blue on Figure IV.6 for different values of the perishability parameter �. Together
with the asymptotically rank-one condition as shown on Figure IV.5, one can devise an
approximate region where equilibrium is stable, and the dynamics determined by D0.

3.3.3 Sequence stability

Of course, the situation where cones are not stable is a lot more complex to tackle. In
full generality, the solution to the conewise linear system can be written as

U(t) = M(t)U(0), (IV.52)
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Figure IV.6: Regions in the parameter plane (↵,!) where matrices Di are stable (in blue)
for � = 0 (top) and � = 1 (bottom). (a) D0, (b) Dw, (c) Dg,w, (d) Dg,b, (e) Dg. We
chose ↵ = ↵0 = � = �0, z = 1, `0 = 1, b = 1 and ' = 1. The solid black lines indicate the
analytical values of the transition lines such as Eqs. (IV.49) or (IV.51).

with M(t) a matrix accounting for the different cones visited by the dynamics

M(t) = T
Y

K2~C

D
⌧K
K . (IV.53)

The operator T denotes the time ordered product,~C a cone sequence with elements K and
⌧K the occupation time of cone K such that

P
K2~C

⌧K = t. The stability of the system
can therefore be assessed using Lyapunov analysis. The system is stable if the maximum
Lyapunov exponent �max is negative, where

�max = lim
t!1

t�1 ln kM(t)k, (IV.54)

and with k(·)k a matrix norm. Whereas the analytical computation of �max seems out of
reach in full generality, the case of a periodic cone sequence yields some simplifications.

Assume for concreteness that the system visits the no-good/no-work shortage region
C0, then hops over to the work shortage region Cw and ends up in the good/work shortage
region Cg,w before going around again. The effective matrix can be written as (assuming
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that one starts in C0 at t = 0)

M(3T ) = (Dg,wDwD0)
T

M(3T + 1) = D0 (Dg,wDwD0)
T

M(3T + 2) = DwD0 (Dg,wDwD0)
T ,

and the maximal Lyapunov exponent reads

�max = log ⇢
⇣
(Dg,wDwD0)

1/3
⌘
. (IV.55)

Note that, by shifting the origin of time, we would have considered cyclic permutations
of the matrix M(3T ) in the previous expression, which does not change the eigenvalues.
One can therefore study the product Dg,wDwD0 to assess the stability of the system.
Figure IV.7 shows four examples of converging dynamics with different cone sequence,
one of which involves a product of 44 matrices!

Interestingly, some situations arise where each individual matrix involved in the
product is unstable, but the product itself is not. In this situation, the time spent in the
cones yielding unstable matrices must be "small" in order for the dynamics to converge,
i.e. unstable cones must be very repulsive. The study of the time spent in the cones
seems however out of reach for this model, but will be discussed in Part III in the context
of random conewise linear systems.

4 Conclusion

In this introductory chapter, we start with a very simple economic model consisting of
one firm and one household. The firm produces some good which is sold to the household
and, in turn, the household provides manpower to the firm. The equilibrium description
of this economy is well known. Equilibrium prices and productions are given by

peq =
`1�b
0

z
, �eq = `b0, (IV.56)

where z > 0 is the productivity factor of the firm, `0 the equilibrium available workforce
and b the return to scale parameter. We see immediately that there is no equivalent to
the HS transition in this model, so that equilibrium always exists and is well-defined.
We then moved to a dynamical picture by allowing prices, productions etc. to vary and
adjust throughout time. We used adjustment rules similar (up to normalization) to the
heuristics from Chapter II, but we factored in essential constraints, which were missing
from the model of Chapter II. The first constraint was to properly account for imbalances:

• the firm cannot sell more than the available supply (taking possible inventories into
account);

• the household cannot work more than the available workforce, or consume more
than what is allowed by its budget (we do not consider loans or debts in this model).
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Figure IV.7: Non-linear dynamics close to equilibrium (solid black lines) compared with
the associated conewise linear dynamics (dashed gray lines). The dashed black line shows
the decay rate predicted by the Lyapunov exponent of the system. (a) Simple case where
C0 is stable and the dynamics is governed solely by D0. We chose ↵ = ↵0 = � = �0 = 0.6,
! = 0.5, � = 1, z = 1, b = 0.95, `0 = 2 and ' = 1. (b) The effective matrix is given
by M = (Dg,wDg,bDw)

1/3 and the system loops through the three associated cones. We
chose ↵ = ↵0 = � = �0 = 0.6, ! = 0.2, � = 1, z = 1, b = 1, `0 = 1 and ' = 1. (c)

The effective matrix is M =
�
D
2
0Dg,wD0Dg,w

�1/5
. We chose ↵ = 0.66, ↵0 = 0.24, � = 0.9,

�0 = 0.9, ! = 0.3, � = 1, z = 1, b = 1, `0 = 1 and ' = 1. (d) The effective matrix

is M =
�
D
4
0D

5
g,wDwDg,bD

4
g,wD

4
0DwD

4
g,wDg,bD

3
0DwDg,bD

4
g,wD

4
0DwDg,bD

3
g,wDg

�1/44
. We chose

↵ = 0.66, ↵0 = 0.24, � = 0.9, �0 = 0.9, ! = 0.1, � = 0.1, z = 1, b = 0.95, `0 = 2 and ' = 1.
The initial perturbation is chosen to be an upward perturbation of magnitude � = 10�5

relative to equilibrium applied on prices, productions and targets for (a)� (c)� (d). For
(b), we used a downward (resp. upward) perturbation on prices and productions (resp.
targets) of magnitude � = 10�5.

With these prescriptions, the model is conservative in the sense that no goods nor money
are generated without reason. The second constraint was to properly account for causality:

• goods cannot be sold before being produced;

• manpower cannot be used to produce before it is available;

• information cannot be used before being disclosed.
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These prescriptions are a bit more subtle to implement in the model. To that effect, we
needed to depart from the ODE description of Chapter II. We therefore devised a series
of steps that the firm and the household loop over throughout time. This kind of model
is generically referred to as Agent-Based Model (ABM). The description of the dynamics
is given by specific actions taken by different agents (here the firm and the household).
In our model, each time step is broken down into three epochs: planning, hiring and
producing. During the planning phase, the firm sets out a production target by trying to
forecast the amount of goods sold and workforce hired. During the hiring phase, the firm
hires workers and pays them. The production phase may then occur since workforce has
been provided.

The dynamical model that we obtain can be simulated and yields a rich variety of
behaviors. In anticipation with Chapter V, we provided a succinct description of the
different phases that can be reached asymptotically by this dynamics. Right away, we
observe a clear improvement from the phenomenology of Chapter II: entire regions of
parameter space do not allow the dynamics to converge towards competitive equilibrium,
even though it is always well-defined. Furthermore, sustained oscillatory patterns (whether
they are limit cycles or more chaotic) can be observed.

Finally, a large part of this chapter was devoted to the linear analysis of this ABM. We
showed that accounting for imbalances introduced an additional layer of complexity. Close
to equilibrium, the evolution of the model is conewise linear. We can identify five disjoint
cones in state space, each corresponding to a specific economic situation in the model,
within which the dynamics is governed by a single stability matrix. However, stability
matrices are different across cones. As a consequence, the stability of equilibrium cannot
be accounted for by traditional arguments regarding the spectrum of each individual
matrices. One needs to understand how regions interact with one another. This conewise
dynamics leads to situations where individual matrices can all be unstable but the system
still manages to reach equilibrium by rapidly switching from cones to cones. This behavior
(along with the sustained oscillations observed in this model) can be a satisfying answer
to the "small shocks, large business cycles" puzzle. After an initial perturbation, even
though the economy manages to reach back equilibrium, its trajectory visits regions of
booms or recessions.

In the next chapter, we will augment this model by considering a network of firms
rather that a representative one. On top of the already rich phenomenology reported in
this chapter, we will see the effects of the Hawkins-Simons transition on the dynamics.
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Key takeaways

• Agent-Based Models (ABMs) are models for which actions taken by
agents (constitutive entities of the model) are prescribed and looped over
throughout time. These models allow for intricate descriptions since agents
can all be different from one another (both in their descriptions and actions).

• Imbalances & causality are two essential constraints missing from
Chapter II. Accounting for them, we needed to (1) depart from the ODE
description of Chapter II and resort to Agent Based Modelling, (2) impose
by hand constraint factors to prevent creation of goods/money.

• Asymptotic behaviors are very rich in this model. From a generic initial
condition six different outcomes are possible: collapsing, competitive equi-
librium, deflationary/inflationary equilibria, crises and oscillations. Even
though equilibrium is always well defined, it is seldom reached in practice.

• Conewise linear systems are systems for which the linear stability matrix
depends on the region of space. Let C1, C2 be two space-partitioning disjoint
cones and D1,D2 two matrices. If

U(t+ 1) = DiU(t) , U(t) 2 Ci,

then U(t) follows a conewise linear dynamics. For such systems, the stability
of the origin cannot be understood solely by studying the spectrum of each
individual Di.
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A Linearization

For a generic variable x(t), with associated equilibrium value xeq > 0, we will write the perturbation
�x(t) around equilibrium as x(t) = xeq exp �x(t)/xeq. For quantities with an equilibrium value of
zero (such as savings, inventories, production surplus or profits), we will identify said quantity
with the associated perturbation, i.e. x(t)! �x(t). When there is no ambiguity, we will drop the
time dependency for clarity. Furthermore, we will implicitly consider monetary quantities as being
rescaled by wages, which are therefore set to 1. We will finally use the equilibrium relationships

peqCeq = Beq = `eq

z�eq = Ceq

µeq = 1.

A.1 Goods and labor constraints

As we explained in the main section of this chapter, the constraints imposed by imbalances
are perfectly satisfied at equilibrium. For instance, since Seq = Deq = z�eq, we have trivially,
min(1,Seq/Deq) = 1. Close to equilibrium, we therefore have

min

✓
1,

S

D

◆
= 1 +min

✓
0,

E

D

◆
⇡ 1 + min

✓
0,

�E

z�eq

◆
.

The same holds for labor constraints

min

✓
1,
`s

`d

◆
⇡ 1 + min

✓
0,
�E0

`eq

◆
,

and we see that, even at linear level, one still has to take into account the position of the state
variables in state space. A similar but more complex condition holds for the budget constraint,
and we will detail it in the next section.

A.2 Household

The household sets consumption demand Cd and labor supply `s by optimizing an expected
utility function under expected budget constraint. These two quantities read (see Chapter I)

Cd =
`0

µp

`s = `0µ
1/'

1 = µk +
S

`0
µ,

where µ is a Lagrange multiplier that depends on savings S, and where k = 1 + 1/' with ' the
Frisch index [81]. One can linearize the last equation to relate the perturbation on µ to that of
savings

�µ = �µeq

k`0
�S, (IV.57)
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and revert it back into Cd and `s

�Cd =
Ceqµeq

k`0
�S � Ceq

peq

�p (IV.58)

�`s = �`eqµeq

'k`0
�S. (IV.59)

The firm satisfies the household demand if supply is plentiful. The firm therefore offers a quantity
to consume Ceq exp �C

o/Ceq, such that

�Co = �Cd +
Ceq

z�eq

min (0, �E ). (IV.60)

In turn, the household is able to consume this quantity if its budget is plentiful. The perturbation
on budget reads

�B = �S + �` = �S + �`d +min (0, �E0). (IV.61)

The budget constraint is satisfied at equilibrium, and we can therefore rewrite it as

min

✓
1,

B

pCo

◆
⇡ 1 + min

✓
0,
�B � �(pCo)

peqCeq

◆
.

The numerator �h = �B � �(pCo) can be simplified as follows

�h = �S + �`d +min (0, �E0)� peq�C
o � Ceq�p

= �S + �`d +min (0, �E0)�
peqCeq

z�eq

min (0, �E )� Ceq�p� peq�C
d

= �S + �`d +min (0, �E0)�
peqCeq

z�eq

min (0, �E )� peqCeq

k`0
�S

=
1

1 + '
�S + �`d +min (0, �E0)�

peqCeq

z�eq

min (0, �E )

= ��E0 +min (0, �E0)� peq min (0, �E ),

where we used the equilibrium relationships along with the definition of �`s and �Cd. The
perturbation on realized demand can therefore be written as

�C = �Cd +min (0, �E ) +
Ceq

Beq

min (0, �h), (IV.62)

and the household computes its savings for the next period

�S(t+ 1) = �h(t)�min (0, �h), (IV.63)

where the wage rescaling does not intervene since it would yield a second order perturbation.

A.3 Firms

The firm sets a consumption target by forecasting future profits and production surplus. Both
expectations are computed using previous demands and read, close to equilibrium

�Et[E ] = z��(t) + �I(t)� �Cd(t� 1) (IV.64)

�Et[⇡] = �(p(t)Cd(t� 1))� �`d(t� 1). (IV.65)
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IV. A simplified approach

The target is set as

�b�(t+ 1) = ��(t) + �
�Et[⇡]

zpeq

� �0 �Et[E ]

z
, (IV.66)

and work demands can be computed

�`d(t) =
`eq

b�eq

�b�(t+ 1). (IV.67)

After hiring the household, the firm can compute real production surplus and profits

�E = z�� + �I � �Cd (IV.68)

�⇡ = �(pC)� �`. (IV.69)

One can expand and rewrite profits so that they read

�⇡ = �S � �h+min (0, �h). (IV.70)

The firm then updates its price for the next period

�p(t+ 1) = �p(t)� ↵ peq

z�eq

�E � ↵0 1

z�eq

�⇡ + !
peq

`eq
�E0, (IV.71)

produces

��(t+ 1) = �b�(t+ 1) + b
�eq

`eq
min (0, �E0), (IV.72)

and compiles its inventories

�I(t+ 1) = e�� (�S � �h) = e��
✓
�E �min (0, �E )� Ceq

Beq

min (0, �h)

◆
. (IV.73)

A.4 Forecasting and exchanging

We will now summarize the previous relationships into the linear evolution of a vector U(t). The
information-optimal vector (in the sense of the number of variables carried) is

U(t) =

0
BBBBBB@

�b�(t+ 1)
��(t)
�p(t)
�I(t)
�S(t)
�b�(t)

1
CCCCCCA

. (IV.74)

To get to a linear evolution of U, it is easier to break down the period t! t+ 1 into two linear
actions: forecasting and exchanging. The forecasting step sets the target, and the exchanging
step updates prices, productions, savings and inventories.
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A. Linearization

A.4.1 Forecasting

This step implements Eq. (IV.66). We introduce the intermediate vector eU

eU(t) =

0
BBBBBBBBBBBBBB@

�b�(t)
��(t)
�p(t)
�I(t)
�S(t)

�b�(t� 1)
��(t� 1)
�p(t� 1)
�I(t� 1)
�S(t� 1)

1
CCCCCCCCCCCCCCA

, (IV.75)

and a matrix F 2M6,10(R) such that

U(t) = FeU(t). (IV.76)

The matrix F has the block form

F =

✓
F1 F2

✏>1 0>5

◆
, (IV.77)

with ✏1 = (1, 0, 0, 0, 0)> 2 R
5, 05 = (0, 0, 0, 0, 0)> 2 R

5 and where F1/2 2M5,5(R) can be deduced
from Eq. (IV.66)

F1 =

0
BBBB@

��
b 1� �0 �

Ceq

zpeq

��0

z 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
CCCCA

, F2 =

0
BBBB@

0 0 �(�0 + �)
Ceq

zpeq

0 (�0 + �)
Ceq

zk`0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA

.

(IV.78)

One can check that the first line of F implements Eq. (IV.66) while the other lines ensure the

reduction of size going from eU to U.

A.4.2 Exchanging

Conversely, the exchange phase allows one to go from U to eU through a matrix E(t) 2M6,10(R)
such that

eU(t) = E(t)U(t� 1) :=

✓
S(t) 05

I5 � ✏1✏
>
1 ✏1

◆
U(t� 1), (IV.79)

with I5 the identity matrix in M5(R) and S(t) 2M5,5(R). This last matrix accounts for Eqs.

(IV.73), (IV.71), (IV.72) and (IV.73). The time dependency comes from the fact that the form

of the update relationships can vary regarding the position of the state vector U(t) 2 R
6. This

point is discussed in details in the main sections of this chapter.
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CHAPTER V

Out-of-equilibrium dynamics and

excess volatility in firm networks

Abstract

In this chapter, we merge models from Chapter II and Chapter IV, and devise
an ABM for interacting firms. We discuss the different steps of the decision process
of firms, along with possible generalizations. We then provide a general numerical
study of this ABM. We highlight that the model is able to generate spontaneous
oscillations of endogenous origin, even if firms are individually trying to reduce
imbalances. This provides yet another possible avenue of explanation to the "small
shocks, large business cycles" puzzle.

Adapted from: [1] Théo Dessertaine, José Moran, Michael Benzaquen, and Jean-
Philippe Bouchaud. Out-of-equilibrium dynamics and excess volatility in firm networks.
Journal of Economic Dynamics and Control, 138:104362, 2022.

1 A fully consistent approach

In the previous chapter, we devised a model with an already rich phenomenology. Account-
ing for natural constraints such as causality and imbalances, we saw a clear improvement
from the naive model of Chapter II, with the appearance of non-trivial dynamical out-
comes such as oscillatory patterns. As we will detail below, these cycles provide another
possible explanation to the "small shocks, large business cycles" puzzle. However, in the
previous chapter and in contrast with Chapter II, we moved to a representative firm as
in [112, Chapter 2]. Consequently, network effects such as the HS transition that we
extensively discussed in Chapter II were completely absent from the phenomenology of
the previous model. In this chapter, we again adopt a granular description of the firm
sector as in Chapter I.

Recall that firms interact through supplier-buyer relationships. The underlying
input-output network is a weighted graph: link weights Jij are non zero if j supplies to i,
and their magnitude measures the amount of goods j needed by i to produce one unit

133



V. Out-of-equilibrium dynamics and excess volatility in firm networks

I. Planning

(1) Forecasts

(2) Production
targets

(3) Posting demands

II. Exchanges & Updates

(1) Hiring and Wage
payment

(2) Trades

(3) Price and Wage
updates

III. Production

(1) Production starts

(2) Inventory updates

(3) Price rescaling

Figure V.1: Time-line of the model.

of good. Conventionally, we denoted by j = 0 the household sector and therefore Ji0
measures the amount of work needed by i to produce. Throughout this chapter, we will
use the Leontief production function

yi = zimin


min
j

✓
xij
Jij

◆
,
`i

Ji0

�b
, (V.1)

with zi firms’ technological productivity factors, xij the amount of goods exchanged,
`i := xi0 the amount of manpower provided and b the return to scale parameter. Finally,
in Chapter I we also introduced the network matrix (or production matrix) M such that

Mij = zi�ij � Jij . (V.2)

We recall that the Hawkins-Simons (HS) transition refers to the disappearance of positive
equilibrium prices and productions whenever the smallest eigenvalue " of M becomes
negative. In Chapter II, we related this transition to a critical slow down of the dynamics
close to equilibrium: as "! 0+, the economy needed a time inversely proportional to " to
recover from a shock. However, within the framework of Chapter II, we could not obtain
any bounded economic trajectory as soon as " < 0. In this chapter, we will merge the
models of Chapter II and Chapter IV and devise an agent-based model over an interacting
network of firms.

1.1 Time-line of the model

In order to keep all causal constraints satisfied, one must carefully set up a consistent
chronology for the actions of firms and households. The resulting time-line of the model
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1. A fully consistent approach

is schematized in Figure V.1. Each time-step �t (�t = 1 hereafter) is conveniently sliced
in three successive “epochs”, represented as boxes in Figure V.1. At the end of time step
t� 1, goods have been produced and are available for consumption at t in quantities yi(t)
and prices pi(t).

1.1.1 Planning

At any given time, firms must plan how much to produce for the following period. To
capture this, we keep exactly the same adjustment rule as in the naive version of our
model in Chapter II, Eq. (II.3b), but using now the expected profits Et[⇡i] and excess
productions Et[Ei] at the end of the period, which we specify below.

Thus, the target production for time t+ 1, byi(t+ 1), is set using

log

✓byi(t+ 1)

yi(t)

◆
= 2�

Et[⇡i(t)]

Et[Gi(t)] + Et[Li(t)]
� 2�0

Et[Ei(t)]

Et[Si(t)] + Et[Di(t)]
, (V.3)

where Gi(t) denotes the proceeds of the sales (“gains”), Li(t) the production costs (“losses”),
Di(t) the overall demand for good i and Si(t) the supply of good i, which is already
known to the firm at time t, hence Et[Si(t)] ⌘ Si(t).

Once the target productions for t+ 1 are decided, the corresponding quantities bxij
are computed according to (see Chapter I)

bxij = Jijb�i(t+ 1), (V.4)

in the Leontief framework. Firm i then posts its demands xd
ij for inputs j for delivery at

time t, taking into account their current available stock Iij of said inputs, with the rule

xd
ij =

⇢
max (0, bxij � Iij) i = 1, . . . , N ; j = 1, . . . , N

bxi0 i = 1, . . . , N ; j = 0.
(V.5)

Thus, if stocks are plentiful, the firm will prefer drawing from them instead of buying new
inputs. Of course one cannot store work, and work demands are equal to their optimal
counterpart. In the meantime, households calculate their own consumption target for
good i as detailed below, and they also decide, given offered wages, how much labor
they are willing to supply, a quantity we call Ls(t) that now may not correspond to full
employment (in contrast with Chapter II).

1.1.2 Exchanges & price/wage updates

At this point, firms start hiring workers from the job market, albeit without exceeding
the total supply of work Ls, i.e.

`i(t) = `di (t)min

✓
1,

Ls(t)

Ld(t)

◆
; Ld(t) :=

X

i

`di (t), (V.6)
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V. Out-of-equilibrium dynamics and excess volatility in firm networks

where `i is the real amount of work contracted by firm i. Workers are paid the same wage
p0(t) independently of their employer. 1 Conventionally, we prescribe that wages are paid
immediately upon hiring – regardless of any technical unemployment in the future caused
by shortages of inputs – which allows the household to compute its available budget for
the present period:

B(t) = S(t) + p0(t)
X

i

`i(t), (V.7)

with S(t) the household’s savings. The household’s demands for goods Cd
i (t) are computed

in section 1.3.
Trading can now start, whereby firms sell their production and buy the goods they

need, in a way to satisfy the constraint that the total amount of goods sold cannot exceed
production plus inventory, i.e.

Ci(t) +
X

j

xji(t)  Si(t) := yi(t) + Iii(t). (V.8)

If demand exceeds supply, buyers are satisfied proportionally to their posted demand,
and so quantities x that are effectively exchanged are given by

xji(t) = xd
ji(t)min

✓
1,

Si(t)

Di(t)

◆
; Di(t) := Cd

i (t) +
X

j

xd
ji(t), (V.9)

where Di(t) is the total demand for good i at time t. The equation for Ci(t) is slightly
more convoluted because we do not give households access to debt, see Eq. (V.33) below.

At this point, firms have an exact knowledge of their earnings and expenses. Their
profit at round t may now be computed

⇡i(t) = pi(t)

0
@X

j

xji(t) + Ci(t)

1
A�

0
@X

j

pj(t)xij(t) + p0(t)`i(t)

1
A := Gi(t)�Li(t),

(V.10)
and they also know how much excess supply or demand they actually registered

Ei(t) = Si(t)�Di(t). (V.11)

Realized profits and supply/demand imbalances then generate price updates. We
describe them exactly as in Eq. (II.3a) from Chapter II, which now reads

log

✓
pi(t+ 1)

pi(t)

◆
= �2↵ Ei(t)

Si(t) + Di(t)
� 2↵0 ⇡i(t)

Gi(t) + Li(t)
, (V.12)

and where all quantities are now known. 2

1Extending the model to firm-dependent wages would be interesting but requires one to move beyond
a representative agent description of the household sector.

2Since markets do not clear and profits are non zero, we choose symmetric normalization factors
involving the average of supply and demand for the first term, and the average of sales and costs for the
second.
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1. A fully consistent approach

Prices are updated due to tension between supply and demand, which is in our
framework a natural channel for inflation or deflation. By the same token, tensions on
the job market are bound to lead to wage updates, which we postulate to be of the same
form as for price updates, namely

log

✓
p0(t+ 1)

p0(t)

◆
= 2!

Ld(t)� Ls(t)

Ld(t) + Ls(t)
, (V.13)

meaning that excess demand of labor increases wages, and vice-versa. This rule implements
a Phillips curve at each time step (see [89] and [116]). One could also use an asymmetric
update rule, accounting for the fact that lowering nominal wages is more difficult than
raising them. Finally, one could also consider adding a direct coupling between the
inflation of the price of goods and wages, as an extra term in the right hand side of
Eq. (V.13).

1.1.3 Production

The last epoch corresponds to the start of production. Firm i uses the workforce `i, along
with available quantities xa

ij that depend on exchanges x, optimal inputs bx and inventories
I, as

xa
ij(t) = xij(t) + min (Iij , bxij) . (V.14)

Indeed, if the inventory I allows to provide for optimal input bx, then no demand is posted
(see Eq. (V.5)): x = 0 and xa = bx. Otherwise, the firm acquired a quantity x that now
adds to available stocks, and so xa = x + I  bx. Note that labor cannot be stored, and
therefore Ii0 = 0 at all times.

Now that all of the available inputs xa
ij and labor `i are known, the outputs are

determined by the firms’ production functions, which in the Leontief case with b = 1
entails:

yi(t+ 1) = zi(t)min


min
j

✓
xa
ij(t)

Jij

◆
,
`i(t)

Ji0

�
. (V.15)

The firms’ inventories of their own production is also updated, as

Iii(t+ 1) = e��i

0
@yi(t) + Iii(t)�

X

j

xji(t)

1
A , (V.16)

where the decay factor �i measures the perishability of good i. For durable goods, �i ⌧ 1
and e��i ⇡ 1, whereas �i � 1 and e��i ⌧ 1 for perishable goods.

Furthermore, in the Leontief framework total production is limited by the scarcest
input, which is therefore depleted during production, leaving a fraction of the other inputs
unused. We denote by

j?(i) = argmin
j

✓
xa
ij

Jij

◆
,
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so that we can write the fraction of inputs k 6= j?(i) effectively used as

xu
ik(t) =

Jik
Jij?(i)

xa
ij?(i). (V.17)

The unused inputs add to firm inventories, and their update may be written using
Eq. (V.14), as

Iik(t+ 1) = e��k (xa
ik � xu

ik) . (V.18)

Finally, for numerical purposes, it is convenient to rescale new prices pi(t+ 1) by the
new wage p0(t+ 1) to avoid exponential growth (or decay) of prices induced by inflation
(or deflation), effectively measuring prices in units of wages. We therefore set: 3

pi(t+ 1) �! pi(t+ 1)

p0(t+ 1)
; p0(t+ 1) �! 1. (V.19)

This concludes the third and last epoch of the time step. The process is then repeated
at time t+ 1, with productions yi(t+ 1) and prices pi(t+ 1).

To close the model, we now need to specify how firms estimate their future prof-
its/losses and excess/deficit production. The behavior of households must also be spelled
out, to allow for the determination of the demand of goods and the supply of labor.

1.2 Expected profits and imbalances

We may write the expected profit of firm i as

Et[⇡i] = pi(t)

0
@X

j

Et[xji] + Et[Ci]

1
A�

0
@X

j

pj(t)Et[xij ] + p0(t)Et[`i]

1
A , (V.20)

showing that in the planning phase firms must estimate future goods and labor demand,
which we will denote generically as Et[x]. Similarly, the expected excess production is
also a function of Et[x]:

Et[Ei] = yi(t) + Iii(t)�
X

j

Et[xji]� Et[Ci]. (V.21)

The simplest assumption we can adopt is that firms are “sticky”, and estimate all
future demands to be equal to their last observation (which follows the rationale that
firms produce in order to meet total demand), i.e.

Et[x] = xd(t� 1). (V.22)

However, some immediate generalizations come to mind. For example, firms may also
factor in realized quantities x(t� 1) in their estimate, and set as a learning rule

Et[x] = �xd(t� 1) + (1� �)x(t� 1), (V.23)
3Note that profits and savings should also be appropriately rescaled, when necessary, e.g. S(t+ 1) !

S(t+ 1)/p0(t+ 1), etc.
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1. A fully consistent approach

where � 2 [0, 1] is a parameter interpolating between the two behaviors. Our “sticky”
assumption that will be used henceforth thus corresponds to � = 1.

Another possible generalization is that firms use a more sophisticated learning rule
that allows them to estimate Et[x] using time-series analysis, the simplest of which is
“constant gain learning” (equivalent to computing the exponential moving average) of
past realized demands. This is similar to the AR1 estimation of economic growth used by
the agents of [65] in their decision-making process. Trend-following, extrapolative rules
may also be considered.

1.3 Household demand and labor

1.3.1 Work-elastic households

As in standard macroeconomic models, we assume that households are represented by a
single representative agent with a certain disutility for work, who seeks to maximize the
following utility function 4

U(t) =
X

j

✓j logCj(t)�
Γ

1 + '

✓
L(t)

L0

◆1+'

, (V.24)

where L(t) =
P

j `j(t) :=
P

j xj0(t) is the total amount of work provided by the repre-
sentative household. The so called Frisch elasticity index ', after the eponymous author
of [81], gives a measure of the convexity of the disutility of work, L0 is the scale of the
amount of work that the household is able to provide and Γ is a parameter that can be
set to unity without loss of generality. In the limit ' ! 1, households are indifferent
to the amount of work provided L(t) < L0, but refuse to work more than L0. With an
utility function of this form, the household may then compute its optimal demand for
good i, Cd

i (t) which it will set as a consumption target for period t, and the optimal
amount of labor Ls(t) it is willing to provide to firms.

1.3.2 The optimization sequence

To compute the aforementioned quantities, the household needs to know its current savings
S(t) and anticipate its income for the next period. The expected utility is estimated
with optimistic forecasts (i.e. consumption demand will be met and offered labor will be
fully utilized). Wage p0(t) and prices pi(t), on the other hand, are all known before the
“Exchange and Update” stage, see Section 1.1.2. Hence,

Et[U ] =
X

i

✓i logC
d
i (t)�

1

1 + '

✓
Ls(t)

L0

◆1+'

, (V.25)

4We restrict to a “myopic” optimization here, that does not take into account the long-term forecasts
and desires of the household. Inter-temporal effects would require to add interest rates, which we
completely disregard in the present study.
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with an expected budget constraint that reads
X

i

pi(t)C
d
i (t) = p0(t)L

s(t) + S(t) := Et[B], (V.26)

where Et[B] is the expected (or in fact hoped for!) budget. For convenience, we denote
as W0(t) = p0(t)L0 the wage associated to L0 work-hours.

The household optimizes its expected utility while enforcing the budget constraint
using a Lagrange multiplier µ(t)/W0, so that 5

Cd
i (t) = L0

✓i

µ(t)

p0(t)

pi(t)
(V.28a)

Ls(t) = L0 µ(t)
1/'. (V.28b)

In order to find µ(t), one must enforce Eq. (V.26). We find the following equation on
µ(t):

µk(t) +
S(t)

W0(t)
µ(t) = ✓̄, (V.29)

with k = 1+ 1/' and ✓̄ =
P

i ✓i. For instance, if ' =1 (constant work offer Ls(t) = L0),
we have

µ(t) =
✓̄W0(t)

W0(t) + S(t)
. (V.30)

When ' = 1 (a common value found in the literature and corresponding to a quadratic
work-disutility), we have

µ(t) =
1

2W0(t)

✓q
S(t)2 + 4✓̄W0(t)2 � S(t)

◆
. (V.31)

Note, interestingly, that high savings lead to reduced labor supply. Also, because of
possible involuntary unemployment, the household may want to consume more than it is
able to spend when Ld(t) < Ls(t).

A final word on the scaling behavior of these quantities with N is in order. For large
N we expect that the size of the household sector will also be of order N . Noting that ✓̄
is also of order N , one finds the following coherent scaling laws if we choose L0 ⇠

p
N :

µ ⇠
p
N ; Ls ⇠ N ; Cd

i (t) ⇠ 1, (V.32)

meaning that total work-hours and total consumption are proportional to the size of the
population, as it should be.

5Although not necessary for the present model, it is important to allow for confidence effects, which
can lead to endogenous crises (see e.g. [67]). One possibility is to couple the consumption propensity to
the unemployment level, taken as a proxy of consumer confidence, i.e.:

log

✓
✓i(t)

✓0i

◆
= 2!0 L

d(t)� Ls(t)

Ld(t) + Ls(t)
, (V.27)

where ✓0i are the baseline values for consumption preferences. In the following, we will fix !0 = !.
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1.3.3 Savings update

Because we do not allow households to borrow in the present version of the model,
real consumption must be adjusted in the case of partial unemployment. In this case,
the available budget is necessarily smaller than what was hoped, leading to a realized
consumption:

Cr
i (t) = Ci(t)min

 
1,

B(t)P
j pj(t)Cj(t)

!
; Ci(t) = Cd

i (t)min

✓
1,

Si(t)

Di(t)

◆
, (V.33)

with B(t) their available budget computed in Eq. (V.7) . The difference between Ci(t)
and Cr

i (t), if positive, is added to the inventory Iii(t) of firm i. The households’ savings
are then updated as:

S(t+ 1) = B(t)�
X

i

pi(t)C
r
i (t). (V.34)

1.4 Discussion

The above steps look rather tedious and considerably more complex than the simple
logic behind the model of Chapter II. Nonetheless, they are quite natural when one
decomposes all the stages of a real production process. But more importantly, we have
found that short-circuiting any of these steps leads to inconsistent dynamics with spurious
instabilities, reflecting that natural constraints are in fact violated. Furthermore, the
approach of behavior modelling as a series of actions or sequence of events is a typical
feature of ABMs, where the ordering of these events is done in a coherent way as to
ensure causality.

An important difference with the naive version of Chapter II is the large number of
update rules that necessarily involve cusps, such as those involving taking the maximum
or minimum of two expressions, see section 2.2 below. Furthermore, the number of thumb
rules used by firms and households to aid their decision has increased, and so has the
number of parameters that are needed to describe a given instance of our toy economy.

Therefore, and in spite of the fact that the naive model allows a fair understanding
of certain regions of the parameter-space of the full model, we cannot reasonably attempt
an exhaustive description using analytical tools only. We therefore resort to a numerical
exploration of its properties. We also provide open access to a simulation tool [5] that allows
the reader to explore different configurations here: https://yakari.polytechnique.fr/
dash.

2 A numerical study

The following section is a numerical investigation of the very rich phenomenology of the
above model, supplemented with some analytical results when possible. Because of the
relatively large number of parameters, we only investigate here some specific “cuts” in
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parameter space, but we believe that these cuts are representative of all the possible
dynamical classes that the model can generate.

To facilitate reading this section, we will first recall the different parameters that can
be adjusted. We will then explore the different types of dynamical trajectories that can
be observed in our toy economy, and classify them into different “phases”. This idea comes
from physics, where the macroscopic properties of a system can be split into different
parameter regions where its aggregate behavior is qualitatively the same. These regions
only depend on the values taken by a handful of parameters that describe the system; an
eloquent example is that of water, which depending on the pressure or temperature can
be in either the liquid, solid or gas phase.

We will therefore present the following “phase diagrams” that summarize the influence
of the parameters on the broad dynamical behavior of our model, an idea that was already
advocated for economic Agent-Based Modelling in [61].

2.1 Summary of parameters

The different parameters introduced in the previous sections may be split into two
categories: static parameters, describing the production network and the production
function, and dynamic parameters, describing the evolution of prices, labor and outputs.
We provide an overview of them along with typical values we assign to them in our
simulations below.

Static parameters

1. Number of firms N – here N = 100.

2. Type of network – here a random regular directed network, see [97, 117], where
each firm has the same number of clients and suppliers d = 15.

3. Constant Elasticity of Substitution production function – here a Leontief production
function (q = 0+) with a return to scale parameter b = 0.95. 6

4. The smallest eigenvalue " of the network matrix M, which for large values corre-
sponds to a stable economy.

5. Firm inter-linkages Jij , which we take to be 1 when firms i and j are linked and 0
otherwise.

6. Firm productivity factors zi, first set to 1 and then adapted to adjust " to take the
required value. 7

6Choosing b slightly below unity helps stabilizing the dynamics and also prevents the relaxation time
from diverging as the smallest eigenvalue of the production matrix " ! 0. Arguments to this effect are
detailed in Chapter I.

7Modifying the productivity factors as z0 = z + "�min Sp (M) makes the minimum eigenvalue of M
equal to ".
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7. Baseline household consumption preferences ✓0i , modeled by IID uniform random
variables rescaled to have

P
i ✓

0
i = 1.

8. Work disutility Frisch index, set to ' = 1 (quadratic disutility of labor) and scale of
workforce set to L0 = 1.

9. The behavioral extrapolation parameter �, defined in Eq. (V.23), is set to 1.

Note that we shall also simulate our model on more realistic models of firm networks,
including actual input-output networks constructed from the FACTSET database [76],
see Section 3.

Dynamic parameters

1. Parameters describing restoring forces: ↵,↵0,�,�0, (see Eqs. (V.3)-(V.12)). We
restrict ourselves to the case �0 = ↵0 = � = ↵ and scan for varying values of ↵.

2. Phillips curve parameter !, relating wages to tensions in the job market (see
Eq. (V.13)).

3. Confidence parameter, relating consumption propensities to unemployment: !0 (see
Eq. (V.27)). For this study, we take !0 = !.

4. Perishability parameters �i describing the speed of decay of good i, all taken as
�i = � except when otherwise indicated.

These choices therefore reduce the number of parameters to explore to four: "

(network stability), ↵ (strength of restoring forces), ! (Phillips curve parameter) and �
(perishability). We will now show how varying them may lead to a very rich phenomenol-
ogy.

2.2 Perturbations around equilibrium and cone-wise linear dynamics

Similarly to what was presented in Chapter IV, the cusps of the full model, imply that
perturbative analysis produces at best piecewise-linear equations. 8

To be precise, let us attempt to linearize the different update rules by writing
�x(t) = x(t)� xeq for the perturbed value of any quantity x and expanding the different
equations to lowest order in �(·). When applied to the flows of goods xji one gets:

�xji(t) = �xd
ji(t) +

xeq,ji
zi�eq,i

min (0, �Si(t)� �Di(t)) . (V.35)

Depending on the sign of �Si(t)��Di(t), the flow of exchanged goods is characterized
by two different linear equations, rendering the system piecewise-linear. The same feature
also holds for exchanged work (replacing �Si(t)� �Di(t) by �Ls(t)� �Ld(t)) and realized

8This, as the general time-line framework outlined in Section 1.1, is a feature common to other ABMs,
such as Mark-0 [61], or the ABM recently developed in [118].
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consumption (where the switch depends on �Si(t) � �Di(t) as well as on the budget
constraint, which is more cumbersome to write, see Eq. (V.33)). These non-vanishing
cusps mean, perhaps surprisingly, that there does not exist a limiting case where the full
model would boil down to the “naive” model of Chapter II.

Linearizing around equilibrium yields piecewise-linear dynamics that can be described
by the evolution of a (N2 + 4N + 1)-dimensional state vector that we denote by U(t).
This vector encodes perturbations on stocks �Iij(t) (stacking the columns of the N ⇥N
stocks-matrix in an N2-dimensional vector), current production targets �b�i(t+ 1), past
targets �b�i(t), production levels ��i(t), prices �pi(t), and finally household’s savings �S(t).
A detail account of the linearization procedure is given in Appendix A.

In Appendix A, we also provide a characterization of the different regions of space over
which the dynamics is linear. In this paragraph, we will disregard the piece-wise effects
coming from the budget shortage condition for clarity purposes, and focus exclusively on
work/good shortages. See however Appendix B for a detailed account. To study possible
switches in the conditions defining regions of plentiful/shortage of goods and work, let us
define two vectors cg,i and cw such that

c>g,iU(t) = �Si(t)� �Di(t), c>wU(t) = �Ls(t)� �Ld(t). (V.36)

Each vector defines a hyperplane Ci = {cg,i}
? (resp. Cw = {cw}

?) separating state space
into two regions:

• the no shortage region for i, C+
i (resp. C+

w ) where c>g,iU(t) > 0 (resp. c>wU(t) > 0)
where i’s supply is enough to cope with demand (resp. work offer is enough to cope
with work demands);

• the shortage region for i, C�
i (resp. C�

w ) where c>g,iU(t) < 0 (resp. c>wU(t) < 0)
where i’s supply is not enough to cope with demand (resp. work offer is not enough
to cope with work demands).

The intersection of these half-spaces defines regions of space called cones in which the
linearized dynamics is fully characterized by a single stability matrix. Calling S ✓ [[1, N ]],
the set of firms with a shortage of goods, we define stability matrices in each cone as
follows

U(t) 2
\

s2S

C�
s \

\

s02[[1,N ]]\S

C+
s0 \ C+

w () U(t+ 1) = DSU(t),

U(t) 2
\

s2S

C�
s \

\

s02[[1,N ]]\S

C+
s0 \ C�

w () U(t+ 1) = DS,wU(t).
(V.37)

If S = ; (no shortages), we call D0 and D0,w the stability matrices without/with work
shortage; and if S = [[1, N ]] (all firms have shortages), we call them DN and DN,w.
Figure V.2 illustrates the previous construction in a schematic 2-dimensional space.

Although the dynamics inside each cone is linear, knowledge of the eigenvalues of
the stability matrices is in general not sufficient to conclude on the stability of the entire
system. Indeed, knowing whether a cone is preserved or not by its stability matrix is
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None
Good 1
Labor and Good 1
Good 2
Labor and Good 2
Full

Shortages

Figure V.2: Example of the cone-separation for a schematic two dimensional space. Solid
black lines represent the hyperplanes C1,2,w separating shortage/no-shortage cones, they
are orthogonal to cone vectors cg,1,2, cw. Shaded areas represent the different cones of
possible shortages along with the associated stability matrices. Note that for the given
configuration of vectors, the matrices DN and D0,w cannot exist.

essential to understand the dynamics. If the linear dynamics corresponding to the stability
matrix inside a cone preserves it, meaning that any trajectory starting in the cone will
always be contained within it, the dynamics becomes trivial. On the other hand when
this is not the case, a trajectory may switch back and forth between different cones, and
it will therefore be described by a product of stability matrices. It is said product that
one most study in order to conclude on the overall stability of the system. This can lead
to quite complicated trajectories, where for example two different cones have stability
matrices that are such that a trajectory starting in one inevitably ends up in the other
and vice versa, leading to a pseudo-oscillation that can be stable in the long run. To
our knowledge, the mathematical tools needed to account for these interesting cone-wise
linear dynamics are not available in the general case.

2.3 Phase diagrams and dynamical classes

For each set of values of the parameters (↵, !, �, "), we start from a random perturbation
about equilibrium of relative magnitude � = 10�3, taking e.g. pi(t) = peq,i(1 + �u) with u
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uniform in [�1, 1]. 9 We then run the dynamics for T = 20000 time-steps and consider
only the last 2500 to classify the trajectory into one of several classes that are detailed
below.

The trajectories we will use to classify the behavior of our model are those of relative
price differences �p(t) := p(t)/peq,i � 1. 10 In order to provide more vivid illustrations of
some of these dynamical types, we have made firms slightly heterogeneous in their values
of the parameters ↵ and �. In the figure captions below, the notation ↵,� 2 [A,B] means
that these quantities are chosen uniformly in [A,B], independently for each firm. Finally,
for all price trajectories reported below, we highlight one firm at random to make the
time-series more readable.

In general, we observe five classes of behavior (or “phases”): convergence towards the
competitive equilibrium, convergence towards deflationary equilibria, crises, business-cycle
like oscillations or chaotic oscillations and economic collapse, where the economy crashes
after a finite number of time steps. Different phase diagrams corresponding to this
classification can be seen in Figure V.3 with " in [100, 1, 0, 01,�5], and the study and
description of these phases is detailed in the sections below.

Note that the boundaries of the phase diagrams depend on the network of interactions,
especially as "! 0. If "� 1, then productivity factors are very large, and network effects
can safely be neglected. However, as "! 0, these network effects become more and more
important and the specific type of network will play a role. The regular network chosen in
this section is thus only meant to illustrate the different classes of dynamical trajectories
that can be generated by the model. But such classes are in fact generic and appear for a
broad family of networks, and are a consequence of the non-linear update rules followed
by firms.

Before delving into the description of each of these classes, we note in particular that
(see Figure V.3):

• All the different classes appear for values of parameters ↵, !, �, " of order unity,
meaning that interesting dynamical behavior do not require uncanny values of the
parameters.

• The region where the competitive equilibrium is reached shrinks as the economy
approaches the instability "! 0 from above. When " < 0, there is no admissible
equilibrium and only deflationary equilibria or cycles/chaos can be attained.

• For a fixed perishability � one observes the following succession of phases as the
restoring parameter ↵ is increased: collapse when ↵ is too small, followed by
deflationary equilibria, then competitive equilibrium and finally cycles and chaos
for large ↵, corresponding to firms that overreact to imbalances.

9When " < 0 and no competitive equilibrium can be defined, we start from random initial conditions
between 1 and 2 for prices and productions.

10The trajectories of produced quantities are qualitatively similar within each phase, except that, as
expected, high prices correspond to production troughs, and vice versa.
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Figure V.3: Phase diagrams in the plane restoring forces, perishability (i.e. (↵,�)), all
for the same network economy, ! = 0.1 and different values of ": (a) " = 100, (b) " = 1,
(c) " = 0.01, (d) " = �5. The color code is explained in the legends. The region where
the competitive equilibrium state is stable shrinks when " decreases, and disappears
when " < 0 as deflationary equilibria and cycles/chaos take over. One also observes large
regions with cycles/chaos, and crises when " > 0. Finally, when restoring forces are to0
weak (small ↵) the economy crashes.

• At the boundary between competitive equilibrium and cycles and chaos, one observes
intermittent crises, similar to the ones described in [61, 62] – see below.

2.3.1 Economic collapse

Starting from ↵ = 0 and increasing its value, the model finds itself in a collapse phase first,
where prices diverge exponentially and productions plummet to zero. As ↵ grows we reach
a critical value ↵c corresponding to a transition from the collapse phase to one where the
economy is able to stabilize (either in a deflationary or competitive equilibrium).

This transition, which can be observed in Figure V.3, appears to be independent of
both " and �. The fact that ↵c is independent of " means that the economy collapses
when prices are too slow to adjust, regardless of the nature of the firm network. The
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exact value of ↵c in Figure V.3 can be computed to be:

↵c = !
�0

�
(V.38)

(i.e. ↵c = ! whenever ↵ = ↵0 = � = �0), where ! is the Phillips curve parameter relating
wages to unemployment (see Eq. (V.13)).

This value is obtained by diagonalizing the stability matrix of the system D0 in the
no shortage cone �Si(t)� �Di(t) > 0 for all firms i (see Section 2.2), which happens to
be stable under the quasi-linear dynamics. The computation is detailed in Appendix C
and Appendix D.

This collapse transition may also be observed along the diagonal ! = ↵ of the plots in
Figure V.11 below, as well as along the parabola on Figure V.13. (Note however that an
additional wedge where the economy diverges appears for small ! which will be discussed
in Section 2.7.2.)

2.3.2 Competitive equilibrium

The most natural behavior one could expect is for the economy to converge to a competitive
equilibrium, where all profits are zero and markets clear, as classically assumed in
economics models. This is indeed what happens, but, interestingly, it requires ↵ to be
neither too small, nor too large, i.e. when restoring forces are strong enough to stabilize
the system but not too strong to avoid overshoots and the corresponding impossibility for
the economy to coordinate. Perishability � should also be large enough, see Figure V.3.
Finally, as returns to scale diminish (i.e. as the parameter b decreases), the region where
competitive equilibrium can be attained becomes more extended (see Figure V.5 below).

In order to give some economic meaning to the phase where competitive equilibrium
is reached, let us focus on the case " = 1, i.e. a firm network of moderate average
productivity, relatively far from the Hawkins-Simons instability. Choosing the unit time
scale of the model to be a quarter (3 months, a reasonable period for firms to adjust prices
and production). Competitive equilibrium cannot be reached when ↵ < ↵d(" = 1) ⇡ 0.395.
Such a value of ↵ means that a firm facing a production imbalance of say 10% will decrease
– say – prices by e�0.395⇥10% ⇡ 3.8% over the next quarter. Attempting to reduce it much
faster leads to oscillation and chaos. For example, when � = log 2 ⇡ 0.69, corresponding
to half-life of goods of a quarter, ↵ should remain smaller than ⇡ 0.55 to avoid falling
in the yellow region of Figure V.3. Note that when � drops below ⇡ 0.3, competitive
equilibrium is unattainable.

Note further that within the competitive equilibrium phase, convergence can either
be purely exponential, or correspond to damped oscillations or even damped chaos, see
Figure V.4. The precise nature of the relaxation depends on the relative values of ↵,↵0,�
and �0.

2.3.3 Deflationary equilibrium

An interesting feature of our model is the appearance of a different kind of equilibrium,
corresponding to stationary points where profits and excess demand are non-zero, but
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Figure V.4: Relaxation towards competitive equilibrium after a perturbation of magnitude
� = 10�3 for a variety of firms. (a) Exponential relaxation for " = 10, ! = !0 = 0.1,
↵ = ↵0 = � = �0 2 [0.3, 0.35] and � 2 [0.5, 0.6]. (b) Damped oscillations for " = 1,
! = !0 = 0.1, ↵ = ↵0 = � = �0 2 [0.4, 0.45] and � 2 [0.2, 0.6]. (c) Damped chaotic
oscillations for " = 100, ! = !0 = 0.1, ↵ = ↵0 = � = �0 2 [0.25, 0.3] and � 2 [0.2, 0.6].
The dark lines correspond to one randomly picked firm

equal to a constant value. We call them “deflationary” equilibria because prices synchronize
with the (negative) inflation rate determined by the downward evolution of wages, induced
by chronic unemployment (i.e. Ls > Ld).

Figure V.7 shows an example of the convergence of inflation-adjusted prices towards
their stationary values. Note that in real terms, the stationary price level is above the
equilibrium value. Throughout our simulations we have found these equilibria to be
rather stable. For a fixed value of !, the transition between deflationary equilibria and
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competitive equilibrium occurs at a value ↵d(") which is difficult to compute analytically.
We can nevertheless locate this transition numerically by simulating the stability matrix
in the no-shortage cone mentioned in the previous subsection. Results are reported in
Figure V.5.

In contrast with the competitive equilibrium, which is independent of the dynamical
parameters ↵,↵0,�,�0, deflationary equilibria are characterized by prices and production
levels that depend on the parameters of the dynamics. Explicit expressions for the
stationary prices/productions are, however, difficult to compute analytically as we expose
now. Since real prices (i.e. deflated by wage) reach a stationary value p1i , we deduce
from Eq. (V.12) and the subsequent wage rescaling that

p1i = p1i exp
⇣
�2↵0⇡1i � 2↵E

1

i + 2!E
1

0

⌘
, (V.39)

where ⇡ = (G �L )/(G +L ), E = (S �D)/(S +D), E 0 = (Ls�Ld)/(Ls+Ld) and the
superscript1 denotes associated stationary values. Furthermore, targets and productions
also reach stationary values by1i and y1i , which can be linked through Eq. (V.3)

b�1i = �1i exp
�
2�E1[⇡i]� 2�0E1[E i]

�
. (V.40)

We therefore have a set of equations linking stationary values of prices, targets and
productions to stationary imbalances and expectations:

↵E
1

i + ↵0⇡1i = !
Ls,1 � Ld,1

Ls,1 + Ld,1
(> 0),

�E1[⇡i]� �0E1[E i] =
1

2
ln
by1i
y1i

.

(V.41)

We can try to further simplify these equations by assuming that E 1
i > 0 for all firms (i.e

no good shortages). Since the system is at deflationary equilibrium we also have E 1
0 > 0

(i.e available workforce is greater than demands). As no shortages occur, we therefore
have by1i = y1i . Furthermore, households demand C1

i are always satisfied by firms, but
the household systematically overestimates its budget E1[B] since Ls,1 > Ld,1 so that:
(1) the household voids its available budget and no savings are made S1 = 0, (2) realized
consumption is given by

Cr,1
i = Cd,1

i

B1

E1[B]
⌘ Cd,1

i

Ld,1

Ls,1
.

Note also that since S1 = 0, work offer is equal to the competitive equilibrium value. On
the firms’ side, since no shortages occur, forecasts are correct (except for consumption
forecasts)

E1[`i] := `
d,1
i = `1i

E1[xij ] := xd,1
ij = x1ij ,
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Figure V.5: (a) Eigenvalues � of the stability matrix for " = 10 in the no-shortage cone
where �Si(t) � �Di(t) > 0 for all i. Here, � = 1, ↵ = ↵0 = � = �0 2 {0.12, 0.25} and
! = 0.1. For ↵c < ↵ < ↵d("), competitive equilibrium is not stable and the non-linear
dynamics converges to a deflationary equilibrium. (b) ↵d as a function of " (in log-scale
on the x-axis) for different values of the return-to-scale parameter b. The horizontal
plain dark line corresponds to ↵c = ! = 0.1, which is independent of ". The labelled
areas correspond to the different phases of Figure V.3 for b = 0.95. As b decreases, one
can see that the area below ↵d(") tend to decrease i.e. the region where competitive
equilibrium is reached becomes larger. As mentioned in footnote 6, decreasing return to
scale tend to stabilize the dynamics. Note that the values of ↵d(" = 100), ↵d(" = 10) and
↵d(" = 1) are consistent with values observed on the phase diagrams of Figure V.3 for
which b = 0.95. Finally, as " ! 0, one can see in Figure V.3 that the smallest � over
which this transition exists gets larger. As a consequence, for small ", the region labelled
“competitive equilibrium” only exists for large enough �.

and no stocks of inputs are kept I1ij = 0, i 6= j. However, since the household cannot
consume everything offered, some of the production is stored but we will assume � =1
for simplicity so that I1ii = 0. Finally, using previous results we can write the error that
firms made in forecasting imbalances

E1[Ei] = E
1
i

E1[⇡i] = ⇡1i + p1i Cd,1
i

✓
1� Ls,1

Ld,1

◆
,

and we see that they systematically overestimate profits. From here one could continue
and plug this relationships into Eqs. (V.41) but the subsequent equations would not be
very helpful. We can however see that such equilibrium is very peculiar: by systematically
overestimating profits, firms should have higher production target and therefore work
demands which would contribute to bridge the gap between Ls and Ld.

Actually, these deflationary equilibria make little economic sense in the long run,
because (a) the stationary level of production tends to be extremely small compared to
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equilibrium values and (b) forecasts of consumption (for households) and profits (for firms)
systematically overshoot their realized counterparts. One expects that in such situations,
like in the case of economic collapse, the influence of monetary and fiscal policies cannot
be neglected. Furthermore, we expect that when biases are strong and systematic, agents
would soon adapt and change their forecasting rules accordingly. Such an extension is
however beyond the scope of the present paper, but a natural conjecture is that firms
would react more strongly to imbalances (i.e. increase the coefficients ↵,↵0,�,�0), which
would drive the system back in the competitive equilibrium phase or in the oscillatory
phase.

We finally point out that we have not found, within the present specification of the
model and in contrast with Chapter IV, inflationary equilibria where the demand for
labor exceeds the supply. We have found that introducing precautionary savings used to
buy interest rate paying bonds leads to new phenomena, including a whole region where
inflationary equilibria are now found. However, we have observed that large regions of
parameter space can display oscillations accompanied by inflation, i.e. oscillations for
which Ls(t) < Ld(t) consistently. These regions are characterized by quicker adjustment
speeds for productions i.e. �,�0 > ↵,↵0. Further characterization is still underway.

2.3.4 Oscillatory dynamics

Owing to the strongly non-linear dynamics defining the model, it is natural to expect that
some choices of the parameters lead – as in generic dynamical systems – to oscillations or
to chaotic dynamics, which is indeed what we observe in a whole region of parameter space
– in short, when firms tend to over-react and adjust prices/productions too quickly in the
face of imbalances (i.e. ↵ "large") or when goods do not quickly perish (i.e. � "low").
Both situations can of course occur at the same time but lead to different signatures. For
large ↵, the economy constantly over/undershoot leading to sharp oscillations. For low �,
oscillations are smoother and determined by the slow depletion of stocks (see Section 2.6
for an in-depth discussion).

The first interesting oscillatory behavior is that of spontaneously emerging business
cycles, as shown in Figure V.6. They can be either synchronized (Figure V.6-a) or
completely unsynchronized (Figure V.6-b), depending on the values of ! and ", and the
relative values of ↵ and �0. Chaotic oscillations also emerge (see Figure V.6-(c)).

We stress that such persistent oscillations, observed in rather large portions of
the phase diagram, are not due to external perturbations, absent in these simulations
(compared with Chapter II where small external shocks are amplified by the proximity of
an instability). Rather, this is a region of the phase diagram where the volatility of the
economy is purely endogenous (see [66] for similar observations).

This provides yet another scenario to explain the “small shock, large business cycle”
puzzle described by [10], different from the proximity of an unstable point, as in Chapter II.
Volatility may be high because of the existence of self-sustained oscillations/chaos, as
reported here and in many previous work in which a dynamical systems approach to
economics was advocated, see e.g. [42, 29, 119, 43, 120] and also [56, 32, 61, 121] in the
context of ABMs.
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Figure V.6: Different types of price (or production) oscillations around equilibrium after
an initial perturbation of magnitude � = 10�3 from equilibrium. (a) Synchronized business
cycles for " = 100, ! = !0 = 0.05, ↵ = ↵0 = � = �0 2 [0.2, 0.25], � 2 [0.1, 0.4]. (b)
unsynchronized oscillations for " = 100, ! = !0 = 0.1, ↵ = ↵0 = � 2 [0.25, 0.4], � = 0.2;
�0 = 1.3↵. (c) Chaotic oscillations for the same parameters except " = 1 and �0 = 0.2↵.
The dark lines correspond to one randomly picked firm.

2.3.5 Intermittent crises

This additional dynamical class is represented in Figure V.7-(a). Here, a fast relaxation
to equilibrium is followed by spontaneous destabilization. The system enters a cycle of
price inflation and plummeting production. This is most likely due to a switch between
different cones, characterized by different stability matrices, as discussed in Section 2.2.
The first matrix is stable, whereas the second has at least one eigenvalue out of the unit
circle, and therefore an unstable direction.
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Figure V.7: (a) Example of a deflationary equilibrium with " = 1 and heterogeneous
productivity factors. Note that we show here real prices (deflated by wages), which
reach unreasonable values 105 higher than at equilibrium. We choose here ! = !0 = 0.1,
↵ = ↵0 = � = �0 2 [0.25, 0.3] and � = 0.6. (b) Crises-like price pattern for " = 100,
! = !0 = 0.1, ↵ = ↵0 = � = �0 = 05, � =1. The dark line corresponds to one randomly
picked firm.

Non-linear saturation effects then take over and quell the dynamics, and the system
flows back towards equilibrium before the next crisis appears. These acute endogenous
crises are one of the most interesting aspects of our model; they also appear in the
Agent-Based Models of [61] and [64] where they result from a generic synchronization
mechanism, as made explicit by [122].

2.4 Critical slow-down and SOC driven instability

2.4.1 Diverging relaxation time for " > 0

Figure V.9 displays the relaxation time ⌧r as a function of ↵ for fixed values of " = 1, ! =
0.1 and � = 1. Whenever ↵ ! ↵±

d or ↵ ! ↵+
c , we observe that the relaxation time ⌧r

diverges continuously and the economy experiences a second-order transition known as
a critical slow-down in the field of dynamical systems. Interestingly, and in contrast
with the results of Chapter II, a slow-down of the dynamics, and therefore the associated
increase in the aggregate volatility, can happen for values of " greater than 0.

As an illustration, if we take "!1, one finds ↵d = ↵c as given by Eq. (V.38). If

154



2. A numerical study

0.0 2.5 5.0 7.5 10.0

ε

0.0

0.1

0.2

0.3

f
(ε
)

(a)

0.15 0.25 0.35 0.45 0.55 0.65

α

0

2

4

6

8

10

ε

(b)

Collapse

Comp. eq.

Def. eq.

Inf. eq

Crises

Osc.

Figure V.8: (a) Function f(") := ↵o(",1)� ↵d(",1) extracted from the phase diagram
displayed in (b). We see the behavior described in Eq. (V.42). (b) Phase diagram
in the plane (↵, ") for b = 1, � = 1 and ! = 0. We observe that the region where
competitive equilibrium can be reached shrinks as " ! 0, and actually vanishes for a
value "c(� =1) ⇡ 3

.

we now set ↵ = ↵c + � with � ⌧ ↵c, it is not hard to show that the largest eigenvalue of
D0 is given by 1 � �/(3(1 + !)) + O(�2). If � > 0, the matrix D0 is stable (the system
lies above the collapse transition), whereas for � < 0, the system becomes unstable. The
relaxation time is then of order ��1, and indeed diverges close to the collapse/competitive
transition. The same behavior holds for generic values of ", when ↵ = ↵d(") + �, as we
can clearly see on Figure V.9.

Furthermore, the type of equilibrium reached by the economy does not qualitatively
influence the slow-down. Whenever " <1 (such that ↵c 6= ↵d), if ↵! ↵+

c and ↵! ↵�
d ,

the time needed to reach deflationary equilibrium diverges, while whenever ↵ ! ↵+
d

it is the time needed to reach competitive equilibrium that diverges, as illustrated on
Figure V.9.

Finally, whenever ↵ ! ↵�
o (where ↵o(",�) denotes the value of ↵ for which the

economy enters the region of oscillations), the relaxation time experiences a first-order
transition, in opposition with the second-order transition close to ↵c,↵d. For ↵ > ↵o,
equilibrium is never reached, which corresponds to ⌧r = 1. However, as ↵ ! ↵�

o ,
Figure V.9 indicates that ⌧r converges to a finite value ⌧ or . As it crosses the transition line
↵o, the relaxation time jumps discontinuously from ⌧ or <1 to an infinite value, where
the discontinuous nature of the jump is a token of a first-order transition.

2.4.2 Forced slow-down when "! 0+

For a fixed value of �, let us now focus on the region where competitive equilibrium
can be reached. With the notation introduced in the previous sections, this interval
is ]↵d(",�),↵o(",�)[. As " ! 0, this interval shrinks down, i.e. ↵o(",�) � ↵d(",�) :=
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Figure V.9: Relaxation time ⌧r (gray line) as a function of the adjustment speed ↵ for
" = 1, ! = 0.1, � = 1. We ran the model for T = 2⇥ 104 time-steps and defined ⌧r as
⌧r = inf{t 2 [0, T ], kp(t) � p(T )k2 < 10�8} (if the previous set is empty, ⌧r > T and
not displayed on the plot). We can see that on either side of the transition line ↵d(",�)
(shown on the red vertical line) and on the right of the transition line ↵c (shown on the
green vertical line), the relaxation time of the economy diverges continuously featuring a
second-order transition (regardless of the type of equilibrium reached). Furthermore, as
↵ gets closer to the left of the transition line ↵o (shown on the blue vertical line), the
relaxation time reaches a finite value ⌧ or before jumping to an infinite value whenever
↵ > ↵o, therefore displaying a first-order transition.

f(")! 0, as illustrated on Figure V.8. More precisely, numerical simulations show that
there exists a value "c (depending on �, b and !) such that

f(") =

(
0, for "  "c
r("� "c), for "! "+c

, (V.42)

where r = f 0("+c ), see Figure V.8-(a). As "! "+c , the values of ↵ for which competitive
equilibrium can be reached are forced to be such that ↵ ⇡ ↵d + f(") with f(")⌧ ↵d(").
By the same argument as in the previous section, the relaxation time will scale as
f(")�1 ⇠ 1/("� "c). Consequently, through the self-organized criticality mechanism from
Part I which drives " towards 0, the system is bound to reach "c at some point. Therefore,
any economy sitting in the region where competitive equilibrium can be reached will be
forced to experience a critical slow-down leading to aggregate volatility.

156



2. A numerical study

0 200 400 600 800 1000

3

4

5

p
(t
)

×10
1 (a)

0 50 100 150 200 250 300 350

t

0.6

0.8

1.0

p
(t
)

×10
2 (b)

Figure V.10: Different possible price (or production) dynamics in the unstable phase
" = �5, for initial conditions for prices and productions randomly chosen between 1
and 2. (a) Rapid oscillations for ! = !0 = 0.01, ↵ = ↵0 = � = �0 = 0.45, � = 0.2. (b)
Deflationary equilibrium for ! = !0 = 0.02, ↵ = ↵0 = � 2 [0.4, 0.45], � 2 [0.2, 0.8]. The
dark lines correspond to one randomly picked firm.

2.5 The low-productivity phase " < 0

A weakness of the naive model of Chapter II was that it can only produce divergent
trajectories whenever " < 0, i.e. in the low productivity phase. As illustrated in
Figure V.10, our full model produces instead a wide range of interesting behavior in this
case, from deflationary equilibria to oscillations. Of course, since there is no well-defined
equilibrium, the convergent phase is now proscribed. However, an important message is
that a viable economy can exist even if the Hawkins-Simon condition is violated, but at
the expense of either substantial stationary imbalances or oscillatory/chaotic behavior.

2.6 The role of perishability

Finally, we illustrate here the crucial role of inventories in determining the type of
dynamics we observe. As shown in the phase diagrams of Figure V.11 in the (↵,!) plane
at fixed �, goods that perish immediately (� = 1) lead to simple relaxation towards
equilibrium (deflationary/competitive) or to a collapse. In a sense, this limit is as close
as possible to the model of Chapter II where all inventory effects were overlooked.

On the other hand, non-perishable goods lead to oscillating, highly volatile economies.
Intuitively, if firm i has a stock Iik of good k, it will decrease its demand to firm k, leading
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Figure V.11: Phase diagrams for non-perishable (� = 0, top row (a) � (b) � (c)) and
immediately perishable (� =1, bottom row (d)� (e)� (f)) goods in the ↵,! plane, for
different values of ": (a)� (d) " = 100, (b)� (e) " = 10, (c)� (f) " = 1.

to a decrease of its production. This lasts until all stocks are exhausted. A phase of
booming demands and increase in production follows, firms’ stocks begin to pile up again
and the economy enters another cycle. This is similar to the well-known “bull-whip effect”
suggested by [123], where inventories are known to lead to instability effects.

2.7 Sensitivity to initial conditions

The phase diagrams of Figure V.3 and Figure V.11 have been established by classifying
the behavior of the system after an initial perturbation around equilibrium of magnitude
10�3. But since our system is non-linear, larger perturbations may lead to different
outcomes for the same set of parameters. In this section, we study of the impact of initial
conditions on the dynamics.

2.7.1 Basin of attraction of equilibrium

As for any non-linear dynamical system, the basin of attraction of a given fixed point is
defined as the set of initial conditions that will allow the system to reach it. The analytical
determination of basins of attraction is a notoriously difficult question, especially for high
dimensional systems.

As pointed out in Section 2.2, it is possible to linearize the dynamics around equilib-
rium. The subsequent dynamics is piece-wise linear and described by the evolution of a
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N2 + 4N + 1-dimensional vector. As it would be unrealistic to explore separately the
effects of a perturbation on each and every component of this vector, we will restrict our
study to uniform perturbations on current productions, prices and production targets.
We thus parametrize perturbations as

pi(0) = peq,i(1 + rp), �i(0) = �eq,i(1 + r�), b�i(1) = �eq,i(1 + r�), (V.43)

where rp and r� are the perturbation radii ranging from �1 (initial values at 0) and +1.
For a given rp, we scan all values of r� and find the largest upward and downward possible
perturbation allowing the system to revert back to equilibrium. Beyond this domain, the
dynamics may drive the system to another phase.

Figure V.12 shows the approximate regions for which the dynamics reach equilibrium
after a perturbation of size (rp, r�). For large ", the system is able to sustain very large
perturbations when rp, r� > 0. However, whenever either rp or r� is negative, the system
can end up in the collapse region. We will discuss this point in the next section.

Finally, as one expects, the basin of attraction drastically shrinks as " is reduced
(Figure V.12-(b)). One can see that the system is still able to cope with large perturbations
on production provided that prices are not too far from equilibrium.

The shrinkage of the basin of attraction of the competitive equilibrium state as "! 0
again reveals how network effects are crucial to understand the fragility of the economy,
since the value of " is, we recall, determined by productivity on the one hand, and the
structure of the input-output network on the other.

2.7.2 Direction of perturbations

On top of the importance of the magnitude of perturbation, the direction of the perturba-
tion matters as well. This is a consequence of the separation of state space in different
cones. For a small perturbation around equilibrium, if the system is initialized in the
no-shortage cone, the dynamics will behave differently than if it were initialized in the
full shortage cone. As an illustration, Figure V.13 shows the phase diagrams in the plane
(↵,!) for the same parameters but for different initial perturbations. On the left (a), a
small upward perturbation is applied on equilibrium prices and productions but initial
targets are set to �eq. This prepares the system in the no-shortage cone since production
is higher than in equilibrium and household’s demand lower. We see that the collapse
region is very well described by the stability of the matrix D0 defined in Section 2.2,
which in this case keeps the trajectory inside the no-shortage cone.

On the other hand, the right plot (b) shows that initializing the system in a mixture
of no-shortages/shortages adds an additional wedge of collapsing dynamics (note that the
same wedge is present on the diagrams of Figure V.11). Above this line, the matrix DS

drives the dynamics outside the partial-shortage cones. The system finally reaches the
no-shortage cone, which is preserved by D0 and for which equilibrium is stable. Below
this line, the dynamics is thrown into the full-shortage cone, which is preserved by DN

but where, on the other hand, equilibrium is unstable.
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Figure V.12: Approximate basins of attraction of the dynamics for ↵ = � = �0 = ↵0 = 0.45,
! = 0.1, � =1. (a) " = 100, ↵� ↵d(100) ⇡ 0.115 which allows very large perturbations
of equilibrium values. (b) " = 1, ↵ >⇠ ↵d(1) ⇡ 0.395. Large perturbations lead to the
system reaching a deflationary equilibrium. Also note that downwards perturbation can
lead to deflationary equilibrium. In this case, the system overreacts and blows up to reach
a deflationary equilibrium. Dashed black lines separate the regions of positive and negative
perturbation on prices or productions. The black dot corresponds to no-perturbation.
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Figure V.13: Phase diagrams (↵,!) for " = 104, �0 = 0.1, ↵0 = 0.25, � = 1 and
↵ = �. (a) The system is initialized in the no-shortage region by applying a small
upward perturbation on equilibrium prices and productions of magnitude 10�4. (b) The
system is initialized in a mixture of no-shortages and shortages (50%/50%) by applying a
perturbation around equilibrium prices and productions. The grey line corresponds to
the prediction ↵c =

p
�0! (here ↵ = �) for the stability of the matrix D0. Note here that

we fixed values of ↵0 and �0 to illustrate another possible shape of the transition around
↵c. If we had chosen, as previously, ↵ = � = ↵0 = �0, the transition line would have been
the line ↵ = !, as in Figure V.11.
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Figure V.14: Approximate basins of attraction of the dynamics for mixed initial conditions
(50 % shortages, 50 % mark-ups) for (a) " = 100 and (b) " = 1, and ↵ = � = �0 = ↵0 = 0.45,
! = 0.1, � =1.

To further illustrate this effect, we ran the dynamics of our model with mixed initial
conditions

pi(0) = peq,i(1± rp), �i(0) = �eq,i(1± r�), b�i(1) = �eq,i(1± r�), (V.44)

where we choose + for 50% of the firms and � for the others. This prepares the system
in a state where 50% of the firms cannot fulfill demands. In Figure V.14, we show the
basin of attraction of equilibrium for perturbations rp, r� ranging from 0 to 1. As we see,
large enough shortages can destabilize the dynamics even at large ".

3 Real world networks

As mentioned at the beginning of Section 2, random regular networks are a crude
idealization of real interaction networks. Real networks have been studied extensively (see
for instance [73, 75, 74]) and display well identified topological features such as truncated
power law distributed in and out vertex degrees. Figure I.1 of Chapter I illustrates
the topological discrepancies between regular and real world networks, and highlights
similarities with scale-free networks.

To build the network of Figure I.1, we use the FactSet Supply Chain Relationships
database to build a supply chain network. The FACTSET dataset [76] contains a list of
relational data between firms, stating if firms A and B have a client/supplier relation, if
they are in competition or if they have a joint venture. It is built by collecting information
from primary public sources such as SEC 10-K annual filings, investor presentations and
press releases, and covers about 23, 000 publicly traded companies with over 325, 000
relationships. Since the relationships are inferred from data released to the public, we
cannot be sure that it is an exhaustive database of all the relationships between firms, but
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the subset of relationships deemed important by the firm themselves. Such links between
firms have a finite duration in time and have thus a beginning and end date. For our
study, we have chosen the set of client/supplier relationships between the years 2012 and
2015. This allows us to build a graph G where a link i! j exists whenever i is reported
to be a supplier of j or when j is reported to be a client of i. Furthermore, since this
graph is not fully connected, we extracted its largest strongly connected component.

Even though phase diagrams are not changed qualitatively if one changes the network,
the features of the dynamics within one phase depends on the structure of interactions.
As an illustration, we ran our model on the network represented on Figure I.1 for " = 10
and " = �3. Results are reported on Figure V.15. While equilibria (whether competitive
or deflationary) are reached in a somewhat similar manner as on a regular network,
oscillatory patterns are much more disordered due to the in-homogeneity of in and out
degrees.

Finally, another effect closely related to network topology is worth mentioning. In
the case of random regular networks, firms are always supplied by at least one firm.
However it is possible for a firm to use labor as sole input. Upon simulating the dynamics
on scale free networks with labor-supplied firms, we found that whenever deflationary
equilibria occurred, only a fraction of firms survived while the others saw their prices
blow up exponentially and production plummet. Surviving firms are the ones for which
going up the supplier network leads only to labor-supplied firms.

4 Conclusion

A numerical investigation of the full model leads to rich phase diagrams, from which we
extract the following salient features, with clear economic implications:

• The competitive equilibrium attracts the dynamics only in a restricted range of
parameters : the speed at which firms adapt to imbalances must neither be too slow
nor too fast, and the rate at which goods spoil must be high enough. Diminishing
returns to scale also help convergence towards equilibrium.

• When the adaptation speed is too large, or the perishability of goods too low,
coordination breaks down and the economy enters a phase with periodic or chaotic
business cycles of purely endogenous origin, as was also reported in [66].

• Close to the boundaries between the competitive equilibrium phase and the os-
cillating phase, one observes a regime of intermittent crises, with long periods of
quasi-equilibrium interrupted by bursts of inflation.

• Another class of equilibria exists, with a negative inflation but with stationary real
prices and production different from those pertaining to the competitive equilibrium.
In particular, markets – including the job market – do not clear in such situations:
labor supply is always larger than labor demand. These equilibria are however
characterized by persistent discrepancies between forecasts and realized quantities,
which presumably make them unstable against simple learning rules.
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Figure V.15: Example of dynamics on the network of Figure I.1. (a) � (b) Dynamics
for " = 10. (a) Relaxation towards equilibrium. (b) Oscillatory patterns: oscillations
are quite disordered relatively to random regular networks. (c) Dynamics for " = �3.
Oscillations with quenched explosions for some firms.
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• For inflationary equilibria to exist, where labor demand is larger than labor supply,
one needs to introduce precautionary savings and interest rates in the model.
However, inflation (even though non constant) can be found within the present
specifications for quick adjustment speeds on targets.

• Finally, we have checked that the overall shape of the phase diagram is robust
to changes of the structure of the network (although see Section 3 for additional
information about the dynamics on real input-output networks) and of the specific
form of the CES production function that one uses. This means that these results
are generic and should hold in realistic situations as well.

This model therefore suggests two distinct out-of-equilibrium routes to excess volatility
(or “large business cycles”): (a) purely endogenous cycles, resulting from over-reactions
and non-linearities, or (b) persistence and amplification of exogenous shocks, governed
by the proximity of a boundary in parameter space where the competitive equilibrium
becomes unstable. While scenario (a) may appear at first sight to be more generic, the
self-organized criticality scenario proposed long ago by [19] could make (b) plausible as
well. Specific empirical work is needed to distinguish between these two scenarios.

It should however be born in mind that many relevant features of the real economy
are left out of the present version of the model. In particular, whereas firms are allowed
to make losses, we have not accounted to the cost of credit that this would entail, and
the impact of monetary policy, increasing or decreasing the interest rate in the face of
inflation/deflation.

Nor have we introduced a bankruptcy mechanism when firms go too deep into debt,
removing non-competitive firms along the lines of, e.g. [63]. But this would require moving
from a static network of firms, as considered throughout this work, to a dynamically
evolving network that rewires as some firms go bankrupt and others are created. In fact,
another motivation for moving from such a static framework to a rewiring model is to be
able to describe possible cascades of bankruptcies mediated by the input-output network,
much as cascades of defaults can occur in banking networks. We leave this for further
investigations.

The household sector also needs to be better described, moving away from the
representative household assumption and introducing wage inequalities, confidence effects
(as, for example, in [67]) and debt. In fact, our dynamical model can be seen as a
hybrid between traditional economic models (describing equilibrium) and Agent Based
Models, where extra reasonable but ad hoc rules are implemented to account for out-
of-equilibrium, dynamical aspects. As we have shown, in some swath of parameters,
the classical competitive equilibrium is reached. If reached fast enough, the “adiabatic”
assumption used in most standard descriptions will hold, whereas when the relaxation
time is long (or even infinite) new phenomena appear.

Finally, an appealing feature of this approach is the possibility to use highly dis-
aggregated data on individual firms and prices (for example through the “Billion Price
Project” [124]) to calibrate the model and, hopefully, use it as a powerful descriptive and
predictive tool.
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Key takeaways

• Economic equilibrium can be reached for a restricted range of parameters
depending on the distance to the HS transition. Within this range speed of
convergence depends on the adjustment parameters as well as ".

• Amplification of external shocks can occur in the same way as in the
model of Chapter II. Close to the transition line ↵d("), the relaxation time
diverges allowing shocks to accumulate in the network. Furthermore, as
"! 0+, the size f(") of the region where equilibrium can be reached shrinks
down to zero so that the relaxation time (or the volatility of outputs with
random exogenous shocks) will behave as 1/f(").

• Endogenous oscillations emerge for economically sound value of param-
eters. When perishability is too low, firms tend to accumulate inventories
and demands are reduced. As inventories are depleted, demands get boosted
back up. When reactions to imbalances are too fast, firms tend to over-
shoot/undershoot production targets or prices resulting in never-ending
adjustments. The fact that this model is able to endogenously generate
sustained oscillations offers another avenue of explanation for the excess
volatility observed at macroeconomic level.
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A Linearization of the model

In this section, we provide computations for the linearization of the ABM presented in the main
text. We will implicitly use results from Chapter IV, especially on perturbations of constraint
factors.

A.1 Useful relationships at equilibrium

We start by considering equilibrium relationships that will allow for a simplification of computa-
tions. Recall that equilibrium relationships on prices peq,i and production levels �eq,i are given
by

zi�eq,i =
X

j

xeq,ji + Ceq,i (V.45)

zi�eq,ipeq,i =
X

j

peq,jxeq,ij + xeq,i0. (V.46)

At equilibrium, the household has no savings so that its budget is equal to work supply

Beq = Leq (V.47)

Seq = 0 (V.48)

µk
eq = ✓̄ (V.49)

Leq = L0 (V.50)

We will assume that
P

i ✓i := ✓̄ = 1, so that µeq = 1 for simplicity.

A.2 Notations for linearization

pi(t) = peq,i exp
�pi(t)

peq,i
; �i(t) = �eq,i exp

��i(t)

�eq,i

Iij(t) = �Iij(t) ; x#
ij(t) = xeq,ij exp

�x#
ij(t)

xeq,ij

C#
i (t) = Ceq,i exp

�C#
i (t)

Ceq,i
; L#(t) = Leq exp

�L#(t)

Leq

S(t) = �S(t) ; µ(t) = exp �m(t)

B(t) = Beq exp
�B(t)

Beq

;

(V.51)

A.3 General linearization

A.3.1 Linear optimization by the household

We write the expected budget constraint as

L0
✓̄

µ(t)
= S(t) + L0(µ(t)f)

1/', (V.52)
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which we linearize as follows

L0 = �S(t) + L0 + kL0�m(t)() �m(t) = � 1

kL0
�S(t). (V.53)

We can then give the expressions for the perturbations of labor supply and consumption
demands

�Cd
i (t)

Ceq,i
=

1

kL0
�S(t)� �pi(t)

peq,i
(V.54a)

�Ls(t)

Leq

= � 1

1 + '
�S(t), (V.54b)

with Ceq,i = L0✓i/peq,i.

A.3.2 Linear labor market

We know from the previous section that labor supply is perturbed as Eq. (V.54b). We still have
to compute the perturbation on labor demand. Since no stocks have to be taken into account for
labor demands xd

i0 = Ji0b�i(t+ 1)1/b (see Eq. (V.5)), we can easily compute the perturbation on
xd
i0 and Ld :=

P
i x

d
i0. It yields

�xd
i0(t)

xeq,i0
=

1

b

�b�i(t+ 1)

�eq,i
, (V.55a)

�Ld(t) =
1

b

X

j

xeq,j0

�eq,j
�b�j(t+ 1). (V.55b)

We now need to compute the actual work provided by the household, taking into account
possible work shortages. This is easily obtained and reads:

�xi0(t)

xeq,i0
=

1

b

�b�i(t+ 1)

�eq,i
+min

✓
0,
�E0(t)

Leq

◆
, (V.56a)

�L(t) = �Ld(t) + min (0, �E0(t)) , (V.56b)

where the latter is quite natural and similar to Chapter IV.

A.3.3 Linear trade market

Let us now compute perturbations on fluxes of goods. We first need the perturbation of the
optimal quantity bxij(t). As for work, this reads:

�bxij(t)

xeq,ij
=

1

b

�b�i(t+ 1)

�eq,i
. (V.57)

Now, goods’ demands are computed by taking stocks into account

xd
ij(t) = max (0, xeq,ij + �bxij(t)� �Iij(t)) .

Since perturbations are small enough and xeq,ij > 0, we can remove the max (0, ·) condition so
that

�xd
ij(t) = �bxij(t)� �Iij(t). (V.58)
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Intuitively, removing max (0, ·) amounts to saying that stocks cannot be high enough to entirely
take care of production close to equilibrium. Goods are then exchanged according to possible
supply shortages which reads

�xij(t) = �xd
ij(t) +

xeq,ij

zj�eq,j
min (0, �Ej(t)) . (V.59)

Finally, available goods for production take into account available stocks

xa
ij(t) = xij(t) + min (Iij(t), bxij(t)) .

The term min (�Iij(t), xeq,ij + �bxij(t)) can be further expressed and always yields �Iij(t) close
to equilibrium. We can therefore expressed available goods for production in terms of optimal
quantities by combining Eq. (V.58) with the previous equation

�xa
ij(t) = �bxij(t) +

xeq,ij

zj�eq,j
min (0, �Ej(t)) . (V.60)

A.3.4 Linear retail market and linear household finances

The household consumes goods according to the budget computed upon hiring, whose perturbation
reads

�B(t) = �S(t) + �L(t). (V.61)

Firms reserve some goods for retailing according to shortages of their supply. The perturbation
of the offered consumption reads

�Co
i (t) = �Cd

i (t) +
Ceq,i

zi�eq,i
min (0, �Ei(t)) . (V.62)

Since the household might have overestimated its budget in its planning, budget shortage may
occur. The minimum budget needed to entirely consume Co

i (t) can be written as

X

i

pi(t)C
o
i (t) = Beq exp

P
i (Ceq,i�pi(t) + peq,i�C

o
i (t))

Beq

, (V.63)

since this minimum budget has to equate real budget at equilibrium. The budget constraint
factor from Eq. (V.33) can therefore be expressed as

min

✓
1,

B(t)P
i pi(t)C

o
i (t)

◆
= 1 +

1

Beq

min(0, �h(t)),

where

�h(t) = �(�E0(t)�min (0, �E0(t))�
X

i

peq,iCeq,i

zi�eq,i
min (0, �Ei(t)) , (V.64)

which generalizes the expression of Chapter IV. We can therefore write the perturbation on the
real consumption

�Cr
i (t) = �Cd

i (t) +
Ceq,i

zi�eq,i
min (0, �Ei(t)) +

Ceq,i

Beq

min (0, �h(t)) . (V.65)
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The household may then compute its savings for the next period

�S(t+ 1) = �B(t)� �
 
X

i

pi(t)Ci(t)

!

= �S(t) + �Ld(t) + min (0, �E0(t))�
X

i

�pi(t)Ceq,i �
X

i

peq,i�Ci(t)

= �S(t) + �Ld(t) + min (0, �E0(t))�
X

i

peq,iCeq,i

kL0
�S(t)

�
X

i

peq,iCeq,i

zi�eq,i
min (0, �Ei(t))�

X

i

peq,iCeq,i

Beq

min (0, �h(t))

=
1

1 + '
�S(t) + �Ld(t) + min (0, �E0(t))�min (0, �h(t))

�
X

i

peq,iCeq,i

zi�eq,i
min (0, �Ei(t))

= �h(t)�min (0, �h(t)) . (V.66)

Since Seq = 0, rescaling by wages does not affect the previous expression.

A.3.5 Linear imbalances

In this section we will use the notation
P

i j to denote sums over all suppliers j of firm i.
Furthermore, we will only show the results from computations since they are quite lengthy.

Forecast We have

�Et[Ei] = zi��i(t) + �Iii(t)�
1

b

X

j

xeq,ij

�eq,j
�b�j(t) +

X

j i

�Iji(t� 1)

� Ceq,i

kL0
�S(t� 1) +

Ceq,i

peq,i
�pi(t� 1),

(V.67)

�Et[⇡i] = zi�eq,i�pi(t)�
X

j

xeq,ij�pj(t)�
peq,i

b

0
@zi�b�i(t)�

X

j

xeq,ji

�eq,j
�b�j(t)

1
A

+
X

i j

peq,j�Iij(t� 1)� peq,i

X

j i

�Iji(t� 1)

� Ceq,i�pi(t� 1) +
peq,iCeq,i

kL0
�S(t� 1).

(V.68)

Realized We have

�Ei(t) = zi��i(t)�
1

b

X

j

xeq,ij

�eq,j
�b�j(t+ 1) +

X

j i

�Iji(t) + �Iii(t)

� Ceq,i

kL0
�S(t) +

Ceq,i

peq,i
�pi(t),

(V.69)
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�⇡i(t) = zi�eq,i�pi(t)�
X

j

xeq,ij�pj(t)�
peq,i

b

0
@zi�b�i(t+ 1)�

X

j

xeq,ji

�eq,j
�b�j(t+ 1)

1
A

+
X

i j

peq,j�Iij(t)� peq,i

X

j i

�Iji(t) + peq,i
Ceq,i

kL0
�S(t)� Ceq,i�pi(t)

+
peq,iCeq,i

Beq

min (0, �h(t))� xeq,i0

Leq

min (0, �E0(t))

+ peq,i min (0, �Ei(t))�
X

j

xeq,ijpeq,j

zj�eq,j
min (0, �Ej(t)) .

(V.70)

A.3.6 Linear production

Using the Leontief production function and the explicit forms for xeq,ij , we have

�i(t+ 1) = �eq,i exp

✓
bmin


min
j

✓
�xa

ij(t)

xeq,ij

◆
,
�xi0(t)

xeq,i0

�◆
.

With the expressions obtained for the different perturbations (Eqs. (V.56a) and (V.59)), it is
possible to get the perturbation of the production as a function of the perturbation of the target

��i(t+ 1) = �b�i(t+ 1) + b�eq,i min

⇢
min
j

✓
min (0, �Ej(t))

zj�eq,j

◆
,
min (0, �E0(t))

Leq

�
. (V.71)

A.3.7 Linear inventories

It is easy to obtain the perturbation for both diagonal and non diagonal stocks

�Iii(t+ 1) = e��i

✓
�Ei(t)�min (0, �Ei(t))�

Ceq,i

Beq

min (0, �h(t))

◆
(V.72)

�Iij(t+ 1) = e��jxeq,ij

✓
min (0, �Ej(t))

zj�eq,j

�min

⇢
min
k

✓
min (0, �Ek(t))

zj�eq,j

◆
,
min (0, �E0(t))

Leq

�◆
.

(V.73)

A.3.8 Linear updates

Finally, updates on prices and production targets can be deduced easily from linear imbalances
(both forecast and realized)

�b�i(t+ 1) = ��i(t)� �0
�Et[Ei]

zi
+ �

�Et[⇡i]

zipeq,i
(V.74a)

�pi(t+ 1) = �pi(t)� ↵
peq,i

zi�eq,i
�Ei(t)� ↵0

�⇡i

zi�eq,i
+ !

peq,i

Leq

�E0(t), (V.74b)

where we took wage rescaling into account.
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B State space vector, forecast and cones

In this appendix, we detail the geometric structure of the model at linear level. We will use
the following notations. Let M be a square matrix. We denote by Ci(M) the i-th column of M
(column vector) and by Li(M) the i-th row of M (row vector). Furthermore, we denote by ⌦ the
Kronecker product. For A 2Mp,q and B 2Mn,m, then A⌦ B 2Mpn,qm is composed of p block
rows and q block columns such that block r, s reads ArsB. Furthermore, we will denote by ✏i
the i-th canonical column vector of RN and by Eij = ✏i✏

>
j the matrices of the canonical basis of

MN⇥N .

B.1 Two steps dynamics

Similarly to Chapter IV, our dynamics can be decomposed in two steps: forecasts and exchanges.
Each step needs different state space vectors. Forecasts will need information on current pro-
ductions, prices, stocks and savings as well as previous targets, prices, stocks and savings (see
Eqs. (V.68)-(V.67)). At time t, the forecast matrix F will thus act on the intermediate state
vector

Uf (t) =

0
BBBBBBBBBBBBBB@

�b�(t)
��(t)
�p(t)
�I(t)
�S(t)

�b�(t� 1)
��(t� 1)
�p(t� 1)
�I(t� 1)
�S(t� 1)

1
CCCCCCCCCCCCCCA

, (V.75)

and outputs the target �b�(t+ 1) along with other relevant quantities for the update step.
The update step only needs the target �b�(t + 1) along with current productions, prices,

stocks and savings. Therefore, the exchange matrix E solely acts on the state vector

Ue(t) =

0
BBBB@

�b�(t+ 1)
��(t)
�p(t)
�I(t)
�S(t)

1
CCCCA

. (V.76)

Here we consider that the matrix of perturbations on stocks has been flattened row-wise

�I =

0
B@
�I11
�I21

...

1
CA . (V.77)

We can see that one needs to keep track on the state vector

U(t) =

0
BBBBBB@

�b�(t+ 1)
��(t)
�p(t)
�I(t)
�S(t)
�b�(t)

1
CCCCCCA
2 R

N2+4N+1. (V.78)

171



V. Out-of-equilibrium dynamics and excess volatility in firm networks

which carries every information. The exchange step may be written as follows

✓
S(t) 0

P Q

◆

0
BBBBBB@

�b�(t)
��(t� 1)
�p(t� 1)
�I(t� 1)
�S(t� 1)
�b�(t� 1)

1
CCCCCCA

=

0
BBBBBBBBBBBBBB@

�b�(t)
��(t)
�p(t)
�I(t)
�S(t)

�b�(t� 1)
��(t� 1)
�p(t� 1)
�I(t� 1)
�S(t� 1)

1
CCCCCCCCCCCCCCA

. (V.79)

where S(t) 2MN2+3N+1,N2+3N+1(R) encodes the update steps of Eqs. (V.74b), (V.71), (V.72),
(V.73), (V.66); and P and Q take care of the projection of the (t� 1)-vectors

P =

0
BBBB@

0N 0N 0N 0N,N2 ~0N
0N IN 0N 0N,N2 ~0N
0N 0N IN 0N,N2 ~0N

0N2,N 0N2,N 0N2,N IN2,N2 ~0N2

~0>N ~0>N ~0>N ~0>N2 1

1
CCCCA
2MN2+3N+1,N2+3N+1(R) (V.80)

Q =

✓
IN

0N2+3N+1,N

◆
2MN2+3N+1,N (R). (V.81)

The forecast step can then be expressed as

✓
F1 F2

Q> 0

◆

0
BBBBBBBBBBBBBB@

�b�(t)
��(t)
�p(t)
�I(t)
�S(t)

�b�(t� 1)
��(t� 1)
�p(t� 1)
�I(t� 1)
�S(t� 1)

1
CCCCCCCCCCCCCCA

=

0
BBBBBB@

�b�(t+ 1)
��(t)
�p(t)
�I(t)
�S(t)
�b�(t)

1
CCCCCCA

. (V.82)

where F1 and F2 encode Eq. (V.74a). Finally, the whole process may be written as

U(t+ 1) =

✓
F1 F2

Q> 0

◆✓
S(t) 0

P Q

◆
U(t) =

✓
F1S(t) + F2P F2Q

Q>S(t) 0

◆
U(t) (V.83)

172



B. State space vector, forecast and cones

B.2 Forecast matrices Fi

We will denote by A the adjacency matrix of the network, i.e. Aij = 1 if j supplies to i. We write
forecast matrices as follows

F1 =

0
BBBB@

V1 W1 X1 Y1 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 1

1
CCCCA

(V.84a)

F2 =

0
BBBB@

0 0 X2 Y2 Z2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCA

, (V.84b)

where

V1 = ��0∆
�
z�1i

�
M>2 + �0IN �

�

b
∆
�
z�1i

�
M>1

W1 = (1� �0)IN

X1 = �∆

✓
�eq,i

zipeq,i

◆
M1

Y1 = ��0
X

`

z�1` ✏>` ⌦E``

X2 = �(� + �0)∆

✓
Ceq,i

zipeq,i

◆

Y2 = �(�0 + �)∆
�
z�1i

�X

`

✏>` ⌦ (✏`L`(A
>))

+ �∆
⇣
z�1i p�1eq,i

⌘X

`

✏>` ⌦∆ (Ll(A))∆ (peq,i) ,

Z2 = (� + �0)
Ceq

zkL0

and where we have defined matrices M1/2 as

M1 = ∆ (zi)�∆
⇣
�

1�b
b

eq,i

⌘
J

M2 = ∆ (zi)�
1

b
∆
⇣
�

1�b
b

eq,i

⌘
J .

B.3 Exchanges and cones

In the same way as in Chapter IV, the position of state vector U(t) in state space conditions the
specific exchange matrix that will govern the dynamics. The description of the different regions
over which the update matrix is constant is a lot more cumbersome for this model. Not only
do they depend on the signs of �Ei(t), �E0(t), �h(t) but one also needs to consider the relative
magnitude of the quantities �Ei(t) in Eq. (V.71) and Eq. (V.73), which therefore adds another
layer of complexity.
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B.3.1 Cone vectors

At linear level, we can express the quantities �Ei(t), �E0(t), �h(t) as overlaps between U(t) and
fixed column vectors cg,i, cw, ch(t) such that

c>g,i =

✓
�1

b
Li

⇣
J∆

⇣
�(1�b)/b

eq

⌘⌘
, zi✏i,

Ceq,i

peq,i
✏i, ✏i ⌦

⇥
✏>i + Li(A

>)
⇤
,�Ceq,i

kL0
,~0N

◆

c>w =

✓
�1

b

⇣
∆
⇣
�(1�b)/b

eq

⌘
J0

⌘>
,~0N ,~0N ,~0N2 ,� 1

1 + '
,~0N

◆
.

Some regions of space with a constant stability matrix are similar to those of Chapter IV,
but others are much more complex. For a firm i, we will denote by @+i the set of suppliers or i,
and @�i the set of buyers of i.

Plentiful supply, partial unemployment Here �E0(t) > 0, i.e. more workforce is
available that actual word demands, and every firms have enough supply in goods �Ei(t) > 0. In
this case, ch = �cw and therefore �h < 0 which implies that no savings are made for the next
period. This also impacts profits which are lower. The associated matrix is called S0.

Plentiful supply, full employment Here �E0(t) < 0, i.e. work demands are very high and
the household is fully employed, and every firms have enough supply in goods �Ei(t) > 0. In this
case, ch = 0 and therefore �h = 0 which implies that no savings are made for the next period (the
household works exactly the amount planned). Productions are capped by work availability and
stocks of inputs are made since they were not exhausted due lacking manpower. The associated
matrix is called Sw.

Partial (or full) good shortage, full employment Here again �E0(t) < 0, however
there are some firms that cannot satisfy demands due to a lack of supply. We call S ✓ [[1, N ]] the
subset of firms that are defaulting. In this case

�h(t) = �
X

k2S

peq,kCeq,k

zk�eq,k
�Ek(t),

rendering �h(t) > 0. The household therefore saves some money for the next period. Production
is capped by either scarcest goods or lack of manpower, and stocks of inputs are replenished.
Here the form of the associated stability matrix is still undefined. Indeed, considering one firm i
with two defaulting suppliers k, j its perturbation on production reads

��i(t+ 1) = �b�i(t+ 1) + b�eq,i min

✓
�Ek(t)

zk�eq,k
,
�Ej(t)

zj�eq,j
,
�E0(t)

Leq

◆
,

which can have three different outcomes. In general, the number N(S) of possible matrices is
given by

N(S) =

NY

i=1
S\@+

i
6=;

(1 + |S \ @+i |),

where |A| denotes the cardinality of set A. For example, if only firm k is defaulting then

N(S) = 2|@
�

k
|.

The associated matrices are called Sg,w(t)
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Partial (or full) good shortage, partial unemployment Here again �E0(t) > 0 so
that manpower is not lacking, however there is still a subset S of firms that cannot answer
demands due to a lack of supply. In this case

�h(t) = ��E0(t)�
X

k2S

peq,kCeq,k

zk�eq,k
�Ek(t),

and we can have both situations �h(t) ? 0.

Budget shortage Here �h(t) < 0. Even though consumption offers are lower than
planned, the budget is still too little to consume.

No budget shortage Here �h(t) > 0. Firms offers are so low that the budget, even
though lower than anticipated, is enough to consume.

In both situations �h(t) ? 0, productions are capped by the scarcest goods and we still end
up in a similar situation as before where now the number of possible matrices is

NY

i=1
S\@+

i
6=;

|S \ @+i |,

since manpower is not lacking. The associated matrices are called SS(t) (resp. SS,b) in the case
of no budget shortage (resp. budget shortage).

B.4 The matrix S0

The matrix S0 associated to the plentiful supply and partial unemployment cone has the structure

S0 =

0
BBBB@

IN 0 0 0 ~0

IN 0 0 0 ~0
A B C D E

F G H I J
~0> ~0> ~0> ~0> 0

1
CCCCA

(V.85)
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with

A = ∆

✓
peq,i

�eq,i

◆✓
↵I�

✓
!�eq
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◆
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peq,Ceq

bz�eqBeq

◆⇣
V�(1�b)/b

eq

⌘>
(V.86)

B = �↵∆
✓
peq,i

�eq,i

◆
(V.87)

C = I� (↵� ↵0)∆
✓

Ceq,i

zi�eq,i

◆
� ↵0∆

�
z�1

�
M1 (V.88)

D = (↵0 � ↵)∆
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zi�eq,i

◆X
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>
k + Lk(A

>)))

� ↵0∆
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z�1��1eq

�
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`

✏>` ⌦∆
�
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�
∆ (peq,i)
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(V.89)

E = ↵
peqCeq

z�eqkL0
� ! peq

(1 + ')Leq

� ↵0 peqCeq

z�eq(1 + ')Beq

(V.90)

F =
X

i

e��i✏i ⌦
�
✏io
>
i

�
(V.91)

G =
X

i

e��izi✏i ⌦Eii (V.92)

H =
X

i

e��i
Ceq,i

peq,i
✏i ⌦Eii (V.93)

I =
X

i

e��iEii ⌦
�
✏i(✏
>
i + Li(A

>)
�

(V.94)

J = � 1

Beq

X

i

e��iCeq,i✏i ⌦ ✏i (V.95)

with

oi = Ci(M2)� zi✏i �
1

b

Ceq,i

Beq

(V�(1�b)/b
eq ) (V.96)

C Study of the matrix D0 in the large productivity limit

We denote by D0 the dynamical matrix associated to S0. It reads

D0 =

✓
F1S(t) + F2P F2Q

Q>S(t) 0

◆
:=

0
BBBBBB@

T11 T12 T13 T14 T15

IN 0 0 0 ~0
A B C D E

F G H I J
~0> ~0> ~0> ~0> 0

0

Q> 0

1
CCCCCCA

(V.97)
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with

T11 = V1 +W1 +X1TA+Y1F (V.98)

T12 = X1B+Y1G (V.99)

T13 = X1C+Y1H+X2 (V.100)

T14 = X1D+Y1I+Y2 (V.101)

and where we do not give the expression of T15 since it will be irrelevant.
It follows that

Sp (D0) = {0}N+1 [ Sp

0
BB@

T11 T12 T13 T14

IN 0 0 0

A B C D

F G H I

1
CCA (V.102)

Using notations from Appendix D, we can make the following determinant computation for
Ns = N2 + 4N + 1:

det (µINs
� D0) = µN+1
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A (µIN2 � I)�1

�
F G H

�
������

= µN+1 det (µIN2 � I)

⇥

������

µIN �T11 �T14
eF(µ) �T12 �T14

eG(µ) �T13 �T14
eH(µ)

�IN µIN 0

�A�DeF(µ) �B�D eG(µ) µIN �C�D eH(µ)

������

= µN+1 det (µIN2 � I) det
⇣
µIN �C�D eH(µ)

⌘

⇥ det
n
µ
h
µIN �T11 �T14

eF(µ) (V.103)

�
⇣
T13 +T14

eH(µ)
⌘⇣

µIN �C�D eH(µ)
⌘�1 ⇣

A+DeF(µ)
⌘�

�T12 �T14
eG(µ)�

⇣
T13 +T14

eH(µ)
⌘⇣

µIN �C�D eH(µ)
⌘�1 ⇣

B+D eG(µ)
⌘�

where for a generic matrix M with the right dimension, we define the matrix eM as

eM = (µIN2 � I)�1M.

We also used the block determinant formula
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A�BD�1C
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,
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Figure V.16: Eigenvalues µ of D0 (circles) along with the roots of the polynomial of Eq. (V.104)
(black stars). The stability region is represented in light blue. (a) " = 104, � = 0. (b) " = 1,
� = 0. (c) " = 104, � =1. (c) " = 1, � =1.

for D an invertible matrix. In Appendix D, we show that, in the large productivity limit zi !1,
this characteristic polynomial can be rewritten as

det (µINs
� D0) = µN2+1

Π(µ)N�1
✓
Π(µ) +

1

b
Ξ(µ)

◆
. (V.104)

One can carry out the same analysis as in Chapter IV to determine stability properties of the
matrix D0 in the large productivity limit. For example, we retrieve a transition line from the
simplified model by solving the equation Π(1)+Ξ(1)/b i.e. finding the condition on the coefficients
such that µ = 1 is a root. We get

↵� = �0!.
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D Computational appendix to Appendix C

We present here computations leading to the evaluation of the spectrum of D0 in the large
productivity limit zi !1. We will use the expressions of equilibrium prices and productions in
the large productivity limit

�eq =
⇣ 

V

⌘b

(V.105)

peq =
Vb

zb�1 , (V.106)

with i = ✓iL0 and we will denote by

R =
1

Leq

⇣ 

V

⌘b �
V1�b�> . (V.107)

We will also use the large productivity form of blocks A,B,C

A =
1

b
∆

✓
peq,i

�eq,i

◆
(∆ (↵0i)�∆ (! + ↵0i)R) (V.108)

B = �∆
✓
↵ipeq,i

�eq,i

◆
(V.109)

C = ∆ (1� ↵i) . (V.110)

Furthermore, we will assume that inverse time-scales ↵i,↵
0
i,�i,�

0
i are different across firms as

subscript i suggests.

D.1 Explicit forms for products of blocks of D0 and large productivity

expressions

D.1.1 Matrix µIN2 � I

The matrix µIN2 � I is block diagonal with N blocks µIN � e��k✏k(✏
>
k + Lk(A

>)) := µIN � Ik.
Each block can be inverted and one gets

(µIN � Ik)
�1

=
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✓
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◆
,

using Sherman-Morison’s formula. Finally
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. (V.111)

Furthermore, the determinant can be expressed as

det (µIN2 � I) =
Y

k
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In the following, we will denote by ni(µ) the quantity

ni(µ) =
e��i

µ� e��i
.

D.1.2 Products involving I and (µIN2 � I)�1

For a generic matrix M with the right dimension, we define the matrix eM as

eM = (µIN2 � I)�1M.

We therefore have

IH =
X
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D.1.3 Products of D with f(·)-matrices
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D.1.4 Expression of (µIN �C�D eH(µ))�1

We denote by e↵i = ↵i(1 + ni(µ))

µIN �C�D eH(µ) = µIN �∆
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where we have defined the diagonal matrix ∆C by identification.
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D.1.5 Expressions involving Y1
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D.1.6 Expressions involving T-matrices

Expressions involving T11
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where we have defined the diagonal matrix ∆11 by identification.

Expressions involving T12
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Expressions involving T13 We denote by ∆13 the diagonal matrix

∆13 = ∆
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. (V.112)
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Expressions involving T14 We denote by ∆14 the diagonal matrix
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D.2 Expression for (V.103)

The characteristic polynomial in Eq. (V.103) can be rewritten as
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thanks to results of the previous sections and identification. In the large productivity limit we
saw that

det
⇣
µIN �C�D eH(µ)

⌘
⇠ det∆C ,

therefore yielding further simplifications. The matrix M(µ) is expressed through the products of
the blocks of D0. Using the previous sections, this matrix can be decomposed into two terms in
the large productivity limit

M(µ) ⇠ K(µ) + L(µ)
R

b
, (V.114)

where both K and L are diagonal matrices
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The diagonal entries of these matrices are rational fractions in µ. Upon multiplying by ∆C

and ∆ ((µ� e��i)), we define two diagonal matrices
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Π and Ξ have polynomial entries in µ reading
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The determinant of Eq. (V.103) therefore has the asymptotic form
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Since Ξ(µ)R has rank one, we can further express the determinant as
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If adjustment parameters and stock depreciation parameters are uniform among firms, we finally
get
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. (V.121)
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CHAPTER VI

Summary, discussion and extensions

1 Summary and discussion

What is the origin of macroeconomic fluctuations? Textbook-macroeconomic models
picture the world as a succession of equilibria where markets clear perfectly and firms
maximize their profits. Each equilibrium is characterized by a different level of productivity
or household preferences, themselves driven by exogenous “shocks”, which are the primary
cause of fluctuations. Drawing an analogy from physics, one may call such an approach
“adiabatic”, in the sense that the time needed for the system to reach equilibrium is much
shorter than the time over which the environment changes, so out-of-equilibrium effects
can be neglected. The time evolution of the economy is then slaved to the time evolution
of the exogenous parameters. This assumption is at the core of DSGE models (see [112]),
but also central to the analysis of Acemoglu et al. [13] in their now classic paper on the
network origins of aggregate fluctuations.

The central proposition of Part I and Part II of this thesis is that the standard
economic equilibrium may actually be dynamically unattainable. Correspondingly, the
“small shock, large business cycle” paradox (i.e. aggregate fluctuations much too large to
be explained by exogenous shocks alone, see e.g. [9] and [10]) would be chiefly explained
by out-of-equilibrium effects. Indeed, in such out-of-equilibrium situations, the dynamics
is mostly of endogenous origin and cannot be accounted for by traditional equilibrium
arguments, like those of e.g. [35] and [13, 41, 111].

From a conceptual point of view, our point is the following: economic equilibrium
requires so much cooperation between rational, forward-looking agents, that the only way
such equilibrium can plausibly be achieved is through some kind of adjustment process,
that inevitably takes some time to complete. 1 We argued that even in cases where
equilibrium is eventually reached, this time can be much longer than the evolution time
of technology or of any other type of shocks (political, social, geopolitical, sanitary, etc.)
that affect the economy, in which case the adiabatic hypothesis is doomed to fail. Such a

1This is actually even the case for financial markets where transactions take place at the second time
scale. In reality, a large amount of the supply/demand volume is latent and is only slowly revealed,
see [125].
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situation requires a richer modelling framework where out-of-equilibrium dynamics is an
integral part of the description: we do not only need to describe the final equilibrium
state, but also the path to equilibrium, which may in fact never converge.

In this concluding chapter, we will summarize the different models and findings
presented throughout Part I and Part II. We will also take a critical look at these models
and discuss several avenues of extensions.

1.1 Critical network-economies

In Part I, we approached the problem from a physicist’s point of view. After defining
precisely the notion of competitive equilibrium as the clearing of markets and the balancing
of gains and losses, we specified the adjustment process mentioned previously. Since
firms have no prior notion of equilibrium prices or production, they adjust said quantities
by reacting to the variations of two observables of imbalances: production surplus E (t)
(measuring the balance between production and demand at time t) and profits ⇡(t)
(measuring the balance between gains and production costs at time t), which are both
zero when competitive equilibrium is attained. The general idea behind the adjustment
process is to try to incrementally reduce imbalances. In Chapter II, we hypothesized the
following behavioral rules for reducing imbalances:

• Faced with excess production, firms will lower prices to prop up demand, and/or
reduce production to limit losses.

• Faced with excess demand, on the other hand, firms can consider increasing prices
and/or increase production.

• If profits are negative, firms will try to adapt by lowering production and increase
prices, with the hope of better compensating production costs.

• When profits are positive, firms may be tempted to increase production but at the
same time competition, attracted by the prospect of a profit, should put pressure
on prices.

The first three rules are behavioral in essence: given observations of imbalances, firms
take specific actions. However, for the last rule, the feedback between profits and prices
is the consequence of effective competition between firms rather than the modelling of
a decision. In any case, all of these rules aim at reducing imbalances, and we further
assumed that firms would adjust (log) prices and (log) productions linearly according to
these rules. Mathematically, this translates into the system

log

✓
pi(t+ �t)

pi(t)

◆
=

✓
�↵Ei(t)

yi(t)
� ↵0 ⇡i(t)

pi(t)yi(t)

◆
�t (VI.1a)

log
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yi(t)

◆
=

✓
�

⇡i(t)

pi(t)yi(t)
� �0 Ei(t)

yi(t)

◆
�t, (VI.1b)

where imbalances are measured in terms of total production y(t) for E (t), and total gains
p(t)y(t) for ⇡(t). Parameters ↵, ↵0, �, �0 correspond to the speed at which firms react in
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the face of imbalances. The choice of modelling the dependency between adjustments
and imbalances as linear is of course approximate, but it does not affect the point we
made further down Chapter II about relaxation time to equilibrium. For instance, one
could imagine that faced with a very large excess of production, firms would want to
drastically reduce prices, and we could therefore have a quadratic or cubic negative
feedback between prices and E (t). More scenarios can be imagined and one could inspire
from the modelling of price returns in financial markets (see for instance [126] for a
feedback-driven Langevin-like dynamics on returns).

This model was the setup for illustrating one of the main point of this thesis:
even though competitive equilibrium exists, it may not be dynamically attainable. In
Chapter I, we introduced the Hawkins-Simons (HS) transition in the context of network
economies. Given firms’ technological productivity factors zi and an input-output network
Jij measuring firm j’s importance in i’s production, competitive equilibrium is not always
well-defined. In [24], authors show 2 that a specific condition needs to be fulfilled by the
network matrix Mij = zi�ij � Jij for equilibrium prices and productions to be positive
(and therefore make economic sense): the smallest eigenvalue " of M must be positive. In
essence, this eigenvalue encodes the relative strength between network needs, the Jijs,
and abilities to convert inputs into outputs, the zis. If the latter are too weak, then " will
be negative and an economically admissible equilibrium will cease to exist. As it turns
out, the HS transition translates beautifully into a dynamical transition for equations
(VI.1). As "! 0+, the relaxation time ⌧r of the system diverges as "�1

⌧r ⇡
2⇢N
"
⇥
(⇣

↵0 + �0 + ↵�
p

(↵0 + �0 + ↵)2 � 4(↵� + ↵0�0)
⌘�1

if �c > �

(↵0 + �0 + ↵)�1 if �c  �,
(VI.2)

where ⇢N is a network-related quantity and �c is defined in Chapter II. When "! 0+,
equilibrium still exists in an economically admissible sense. However, any small deviation
from competitive equilibrium will take a time ⌧r much larger than typical adjustment times
⇠ 1/↵ to be absorbed by the economy. In effect, the economy will never come back to
equilibrium again. As a consequence, equilibrium is in essence not dynamically attainable
as " ! 0+, which forces us to consider economies as intrinsically out-of-equilibrium in
this limit. Furthermore, as we have shown, the proximity to the critical point "c = 0
also gives a natural mechanism for excess volatility. Adding some white noise �⇠(t) with
variance �2 to system (VI.1), the volatility of prices and productions close to equilibrium
would be of order �2/": marginal stability, which corresponds to a diverging relaxation
time, also coincides with an increase in volatility for the associated stochastic system.
For this simple feedback-driven dynamics on prices and productions, the "small shock,
large business cycles" conundrum is merely due to the economy being in the vicinity of a
critical point where exogenous shocks linger in the network and end up aggregating.

This last point reignites an old idea by Bak et al. [19], who qualitatively propose
such a mechanism to account for excess volatility in large economies. A natural criticism
to this mechanism resides in the necessity for the economy to be close to some critical

2For generic CES production functions but we restrict ourselves to the Leontief case for this discussion.
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point. Why would such a point exist and, if it does, why would the economy sit anywhere
close to it? In [20, 19], and then later in the context of network-economies [24], authors
explain that complex systems tend to self-organize towards such critical points, i.e. the
system evolves towards a configuration which is critical or near-critical. In our case, it is
easy to argue that large economies are more prone to being critical. Indeed, " depends
on both the amount of firms in the network and their connectivity: if either increases, "
decreases. Since nowadays’ economies are so large (around 5 million firms in the United
States) and interconnected (truncated power-law behavior of the number of in/out links
in the input-output network), one would expect them to be critical.

Of course, nothing prevents economies to be near-critical with a negative ": network
needs and inter-connectivity playing an increasingly crucial part today, we actually expect
this situation to arise generically. The need of out-of-equilibrium modelling is all the
more dire in this situation, since equilibrium does not even exist. However, our simple
model of weakly out-of-equilibrium dynamics breaks down in that region. In Chapter III,
we showed that no bounded trajectory with positive prices and productions could exist
as soon as " < 0. The economy systematically collapses with blowing-up prices, and
plummeting productions and consumption. Even though such a scenario may certainly
exist, we cannot reasonably expect it to be the only possible outcome for a real economy.
Driven by the analogy with generalized Lotka-volterra equations, we expected the negative
" phase to yield oscillatory or chaotic behaviors.

We reach here the limits of the toy-modelling approach. In the model of Chapter II,
we stripped away a little too much complexity for the economy to make sense when " < 0.
As we explained, the two main constraints that were overlooked are causality and proper
management of imbalances. Furthermore, the modelling of the household sector was
rather poor compared to the modelling of firms. In Part I, the household offered constant
work (and this offer could actually be disregarded altogether) and was paid a constant
wage, which is of course too stiff. As Part II is the natural extension of the model of
Part I, we will postpone a more in depth critique of the present model to the next section.

1.2 Macroeconomic agent-based modelling

We pointed out that the naive model of Chapter II does not correctly factor in physical
constraints: excess demand cannot be satisfied, excess supply must be stored, consumption
can only start after goods are produced, wages can only be spent after being paid, etc.

Causality imposes to dissect the firms’ decision process. As a consequence, we
naturally moved to a step-by-step description of adjustments within the framework of
Agent-Based Models (ABMs). In such models, agents (here firms or households) carry
out a series of actions throughout time, abiding to some rules. We broke down one time
step (which can be viewed as a quarter, for instance) of the model into three sub-steps:
planning, exchanging, and producing. During the planning phase, firms try to forecast
future gains (which are unknown at the time) and set out a target of production. The
household also plans its consumption for the next period. During the exchanging phase,
firms trade with one another to acquire goods necessary for production. They also hire
and pay workers, which in turn consume. Firms can then compute their profits and
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measure the excess of production, such that they can adjust prices accordingly. Finally,
during the producing phase, firms use goods and labor to actually produce for the next
period. They also store the potential left-over supply.

Imbalances management imposes that firms are not able to sell more than their
supply, nor is the household capable of providing more workers than the available pool
or consuming more than the available budget. These natural constraints modify the
equations such that in a situation of under-supply, firms honor their contracts to the best
of their capacity and proportionally to the initial demands. Similar equations can be
written to account for the possible shortage of workers and budget.

Accounting for all these constraints within a consistent model considerably complicates
the resulting equations, but leads to a model that displays a much larger variety of possible
dynamical behavior, some very far from the competitive equilibrium. In fact, the dynamics
of the model can remain well-behaved even in the region of parameters where equilibrium
is inadmissible because some prices and/or productions would be negative, unless some
firms are removed from the network.

A numerical investigation of the full model leads to rich phase diagrams, from which
we extract the following salient features, with clear economic implications:

• The competitive equilibrium attracts the dynamics only in a restricted range of
parameters : the speed at which firms adapt to imbalances must neither be too slow
nor too fast, and the rate at which goods spoil must be high enough. Diminishing
returns to scale also help convergence towards equilibrium.

• When the adaptation speed is too large, or the perishability of goods too low,
coordination breaks down and the economy enters a phase with periodic or chaotic
business cycles of purely endogenous origin, as was also reported in [66].

• Close to the boundaries between the competitive equilibrium phase and the os-
cillating phase, one observes a regime of intermittent crises, with long periods of
quasi-equilibrium interrupted by bursts of inflation.

• Close to the boundaries between the competitive equilibrium phase and the defla-
tionary equilibrium phase, the relaxation time of the system diverges regardless
of the value of ". Whenever " ! 0, the region where competitive equilibrium is
accessible shrinks down and the relaxation time diverges as well.

• Another class of equilibria exists, with a negative inflation but with stationary real
prices and production different from those pertaining to the competitive equilibrium.
In particular, markets – including the job market – do not clear in such situations:
labor supply is always larger than labor demand. These equilibria are however
characterized by persistent discrepancies between forecasts and realized quantities,
which presumably make them unstable against simple learning rules.

• For inflationary equilibria to exist, where labor demand is larger than labor supply,
one needs to introduce precautionary savings and interest rates in the model.
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However, whenever �,�0 > ↵,↵0, oscillations are accompanied by sustained inflation
with Ls(t) < Ld(t) on average.

Our model therefore suggests two distinct out-of-equilibrium routes to excess volatility
(or “large business cycles”): (a) purely endogenous cycles, resulting from over-reactions
and non-linearities, or (b) persistence and amplification of exogenous shocks, governed
by the proximity of a boundary in parameter space where the competitive equilibrium
becomes unstable. While scenario (a) may appear at first sight to be more generic, the
self-organized criticality scenario proposed long ago by [19] could make (b) plausible as
well. Specific empirical work would be needed to distinguish between these two scenarios.

Finally, the linear study of this model revealed that the cause of mechanism (a) could
be directly traced to the constraints due to imbalances. We showed that perturbations
around competitive equilibrium are not described by a well-defined stability matrix, but
rather by a collection of stability matrices whose "activations" depend on the direction
of the vector of perturbations in state space. Even close to competitive equilibrium, the
economy behaves differently whether the initial shock lowers supplies, or consumption,
for instance. This situation, which is generically called conewise linear, is able to easily
generate limit cycles of very intricate nature. Since such systems are ubiquitous in
economics, a more systematic investigation of their properties would be beneficial.

It should however be borne in mind that many relevant features of the real economy
are left out of the present version of the model. In particular, whereas firms are allowed
to make losses, we have not accounted to the cost of credit that this would entail, and
the impact of monetary policy, increasing or decreasing the interest rate in the face of
inflation/deflation. Nor have we introduced a bankruptcy mechanism when firms go too
deep into debt, removing non-competitive firms along the lines of, e.g. [63]. But this
would require moving from a static network of firms, as considered throughout this work,
to a dynamically evolving network that rewires as some firms go bankrupt and others
are created. In fact, another motivation for moving from such a static framework to a
rewiring model is to be able to describe possible cascades of bankruptcies mediated by the
input-output network, much as cascades of defaults can occur in banking networks. On
the same line of thought, there is no liquidity management in this model. Firms buy inputs
regardless of previous profits or losses. A more detailed account of this point must be
incorporated in the model. The household sector also needs to be better described, moving
away from the representative household assumption and introducing wage inequalities,
confidence effects (as, for example, in [67]) and debt.

Our dynamical model can be seen as a hybrid between traditional economic models
(describing equilibrium) and ABMs, where reasonable but ad hoc rules are implemented
to account for out-of-equilibrium, dynamical aspects. As we have shown, in some swath
of parameters, the classical competitive equilibrium is reached. If reached fast enough,
the “adiabatic” assumption used in most standard descriptions will hold, whereas when
the equilibrating time is long (or even infinite) new phenomena appear. We hope that
the possibility of recovering standard results in some limiting cases will make the ABM
approach more palatable to economists, and at the same time elicit the inherent limits
of general equilibrium ideas. Conversely, including firm network effects in ABMs such
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as Mark-0 [61, 62] along the lines of the present model is certainly worthwhile. Finally,
an appealing feature of our approach is the possibility to use highly dis-aggregated data
on individual firms and prices (for example through the “Billion Price Project” [124]) to
calibrate the model and, hopefully, use it as a powerful descriptive and predictive tool.
We look forward to working in that direction in the near future, with access to accounting
databases from the French Institute of Statistics.

2 Extensions

2.1 Liquidity, debts and interest rate

We took a rather hard stance at the beginning of Part II by saying that, from now on,
our models would incorporate precise imbalances’ management. We succeeded in doing
so about goods’ management. Input goods are converted into outputs using the Leontief
production function, and any left-over is stored and used (up to depreciation) during the
next period. We also were careful about the household’s budget management: it cannot
spend more than the available budget, and any left-over budget can be used for the next
period. However, we did not take care of any liquidity issues at firm level. Liquidity, i.e.
the amount of available cash at some point in time, is essential to determine whether
firms will be able to pay for the inputs they have to buy in order to fulfill production’s
targets.

It is here that we can start merging our ABM with existing models such as Mark0
[61, 62, 122]. We will give a brief overview of modifications that such a merging would
entail. We first define Li(t) as the available liquidity at time t. Liquidity can be negative,
and, when so, is interpreted as a firm being indebted. The constitutive accounting
equations of Mark0, adapted to our model, are

⇡i(t) =
X

j

xji(t)pi(t) + Ci(t)pi(t)�
X

j

xij(t)pj(t)� `i(t)p0(t)

Li(t+ 1) = Li(t) + ⇡i(t)� �⇡i(t)Θ (⇡i(t))

S(t+ 1) = S(t) +B(t)�
X

i

Ci(t)pi(t) + �
X

i

⇡i(t)Θ (⇡i(t)) .

(VI.3)

where household’s savings S(t) can also become negative if in debts, and with the budget
B(t) = p0(t)

P
i `i(t) +max (0, S(t)). With this prescription, monetary mass is conserved

i.e. @t (S(t) +
P

i Li(t)) = 0. We introduced another parameter � measuring the fraction
of (positive) profits that are redistributed as dividends to the household. With this
prescription, no monetary mass is created. However, whenever firms go too much in
debts, they go bankrupt and the (negative) liquidity is absorbed by healthier firms and
households.

We could go even further and adopt a finer-grained description by adding an explicit
variable accounting for debts as in models such as MarkI or MarkI+ [57, 127, 61].
Introducing firm-dependent variables Di(t) encoding debt, firms with positive liquidity
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can compute their financial need for production Ri(t) at time t

Ri(t) = max

0
@0,

X

j

xd
ij(t)pj(t) + `i(t)� Li(t)

1
A . (VI.4)

If liquidity is enough to cope with demands in inputs, i.e. Ri(t) = 0, firms do not ask for
a loan. Otherwise, the bank, which would be a new agent in the model, can provide a
loan up to Ri(t) > 0 with interest rate

⇢i(t) = ⇢0G(Fi(t)) (1 + ⇠i(t)) , (VI.5)

where ⇢0 is the baseline interest rate (set by a central bank), G (·) an increasing function,
⇠i(t) a noise term and Fi(t) the financial fragility of the firm at time t

Fi(t) =
Di(t) +Ri(t)

Li(t)
. (VI.6)

The more financially fragile you are, the higher your interest rate will be through G-
function, which is chosen to be G(u) = 1+tanhu in MarkI for instance. If firms decide to
take a loan, total debt is increased by Ri(t) (or a fraction of it if the full loan is deemed
too high). At each time, firms would pay back a part of the debt ⌧Di along with the
interests Ii(t) = ⇢i(t)Di(t). We would therefore have

⇡i(t) =
X

j

xji(t)pi(t) + Ci(t)pi(t)�
X

j

xij(t)pj(t)� `i(t)p0(t)� Ii(t)

Di(t+ 1) = (1� ⌧) (Di(t) +Ri(t))

Li(t+ 1) = Li(t) + ⇡i(t)� �⇡i(t)Θ (⇡i(t))� Ii(t)� ⌧Di(t)

S(t+ 1) = S(t) +B(t)�
X

i

Ci(t)pi(t) + �
X

i

⇡i(t)Θ (⇡i(t)) ,

(VI.7)

along with similar accounting equations for the bank’s monetary mass. For these types of
accounting schemes, firms with negative liquidity would go bankrupt and their default
would be also absorbed by healthy firms.

Finally, the baseline interest rate ⇢0, which is actually time dependent in full generality,
is set by the central bank. In DSGE models, the central bank uses a so-called Taylor rule,
which takes into account inflation Π(t) [112] to adjust baseline interest rates. We will not
detail this point here, but it is certainly worth incorporating in our model, and efforts in
that direction are currently underway.

2.2 Time-varying networks

One of the very first assumptions that was made in Chapter I and Chapter II, was
that we would consider a static interaction network throughout the manuscript. We
motivated this hypothesis by arguing that the timescale of the intrinsic dynamics of the

192



2. Extensions

network is much larger than those governing prices and productions’ variations. However,
we then proceeded to show that right before an economically admissible equilibrium
disappears, the relaxation time of the system can become arbitrarily large. This of course
comes as a contradiction with the assumption that the network evolves more slowly than
prices and productions, and we cannot discard this evolution in our description anymore.
Furthermore, as we have seen in the previous section, allowing firms to contract loans
and manage debts inevitably poses the question of bankruptcy. Firms going too much in
debt must exit the network, which consequently evolves. Finally, we also explained in
Chapter I that the observed configuration of the network is the result of an underlying
competitive process between firms which "converged" towards this specific configuration.
We then factored competition back into our equations in a very weak way through the
coupling between prices and profits: as profits grow, the prospect of high profits should
attract competition, which would in turn put pressure on prices. Having a dynamical
description of the network with firms selling similar goods would account for competition
much better than in the present model.

We started investigating in that direction by proposing the following framework.
Consider N firms which are distributed among M sectors. Within each sector, firms
essentially produce the same good, up to quality considerations. We denote firms by
lowercase letters i 2 {1, . . . , N} and sectors by uppercase letters S 2 {1, . . . ,M}. In
this framework, firms need specific goods, i.e. specific sectors, in order to produce. The
interaction network is therefore an N ⇥M matrix JiS encoding the amount of goods from
sector S that firm i needs to produce. Now, firm i may want to choose one or several
firms from this sector as suppliers, and we introduce a "substitutability" matrix aij , j 2 S
that measure how easily can good j 2 S be used for production with respect to another
good k 2 S. The production function is therefore a nested Leontief production function

yi = zimin

✓
min
S

✓P
k2S aikxik

JiS

◆
,
`i(t)

Ji0

◆
, (VI.8)

where xik denote the exchanged quantities, and S = 0 denotes the labor sector. Given
a certain production target byi(t) = zib�i(t), we can compute demands using standard
Karush-Kunh-Tucker costs optimization

xd
ik = �kk?

JiS
aik

b�i, k? = argmin
k2S

pk
aik

. (VI.9)

In that case, firms solely choose that supplier k? 2 S that minimizes the price-to-usage
ratio pk/aik. Firms are perfectly rational and competition is fierce: as soon as a firm tries
to increase its price, it will lose its buyers (assuming aik are set to one for simplicity).

At each time, the network can therefore evolve if prices are reshuffled, since firms
will switch suppliers. As a way to allow more flexibility in the evolution, we propose two
approaches which should be equivalent in the large-time limit. We can first consider that
firms exchange a price-dependent quantity with each firm from a supplying sector, i.e.
such that

xd
ij =

JiS
aik

b�i
e��0pk/aik

P
j2S e��0pj/aij

. (VI.10)
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The rationality parameter �0 interpolates between the previous fully rational decision
(�0 ! 1) and an irrational decision (�0 = 0) where prices are not taken into account.
The interaction network is unchanged throughout time in that case, but the strength
of the interaction depends on prices. Note that here the timescale of network variation
(more precisely, links’ strength variation) is similar to that of prices. The second idea is
to consider a more incremental process. Consider a fixed network of interaction at time t.
Assume for simplicity that if i needs sector S to produce, it will be fully supplied by one
firm j from this sector at the considered time. At time t, with some "small" probability
�, choose a random firm i along with a supplying sector S of i. In sector S, choose a
random firm k which is not supplying i. Firm i rewires from j to k with probability

qkj = min
⇣
1, e��0(pk/aik�pj/aij)

⌘
. (VI.11)

In this Metropolis-Hastings-like setup, firms instantly rewire if the price-to-usage ratio
is more advantageous, but can also rewire (with a smaller probability) if it is not. The
timescale of evolution of the network is of order ⌧net ⇠ 1/' here. We therefore recover
models from Part I and Part II on time-scales smaller than ⌧net.

With the previous dynamics, it is not unlikely that some firms could end up without
any buyers (except maybe the household). As said before, for such firms, profits are
expected to drop drastically, and they will have to contract some loans if they want to
keep producing. If debts are too high, firms go bankrupt and will have to be removed
from the network. Bankruptcy can of course occur even if firms still have suppliers. In
such a situation, removing the bankrupt firm from the network will force buyers to rewire,
therefore creating some kind of shock in the network. Finally, new firms can also enter the
network with potentially higher productivity factor zi, i.e. corresponding to firms with a
technological edge. A lot of different models can be considered for network dynamics, but
a very prolific one is given in [73] and can be of inspiration for our model.
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Key takeaways

• Excess volatility can be generated through two mechanisms: (a) the ampli-
fication of exogenous shocks through network effects whenever the economy
sits close to the Hawkins-Simons transition; (b) the emergence of sustained
endogenous oscillations whenever perishability is too low ("bullwhip" effect),
or the speed to adjust is too high (constant over/under shoot).

• Different scenarii can be found for the same parameters but different
initial conditions or, conversely, for different parameters and the same initial
conditions. The same model can generate very different outcomes and must
therefore be studied in its entirety rather than focusing on regions where
equilibrium can be reached.

• Two main axes of extensions are (a) the introduction of liquidity, debts
and loans and (b) allowing the network to rewire, firms to go bankrupt and
new firms to enter the network.
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matrices

197





Foreword

The third and last part of this thesis is devoted to more theoretical studies of conewise
linear systems and related topics. Even though the results that we will present can be
taken independently of the overall economic context of this thesis, they stemmed from
the attempts at understanding some natural economic systems in their simplest form.

In Part II, we devised ABMs which revealed a non-trivial structure close to equilibrium.
We showed that economic equilibrium generically coincides with a cusp of dynamical
price (or production) adjustment processes, since over or under supply situations are not
described by the same mathematical relationships. More generally, a dynamical system
ẋi = fi(x) whose resting point x? coincides with a cusp of its associated vector field f

will yield a conewise linear system upon linearization around x?. In such a system, the
form of the Jacobian matrix depends on the direction of the perturbation away from x?.
In the context of the ABMs of Part II, we saw that, not only was equilibrium cusped in
many directions of state space, but the different Jacobian did not have any particular
properties facilitating the overall study. In the first chapter of this last part, we present a
toy-model of conewise dynamics which involves only two Jacobian matrices, which we
choose to be random. We used the same ideas as Robert May in his paper "will a large
complex system be stable?" and tried to understand the properties of this system from
a statistical point of view, as the size of the matrices diverges. As we will explain in
Chapter VII such systems can be either stable or unstable given minute details of the
initial perturbation, and display ergodicity breaking.

If the dynamics is bound to remain within a region of constant Jacobian, it becomes
linear and therefore trivial. We showed in Chapter IV that a simple condition (the
asymptotically rank-one condition) fulfilled by the Jacobian was enough to ensure the
existence of an invariant region of space, though the precise nature of this region is not
specified. The understanding of this invariance property falls into the more general field
of occupation time for which the main focus is how long will a property hold for a generic
random process. We will see in Chapter VII (and more generally in Chapter VIII) that
the occupation time of a single cone, where the Jacobian is fixed, displays a power-law
behavior in the large-dimensional limit for a wide class of matrices. In an economic
context, persistence or occupation time are notions closely related to that of economic
resilience, where one would like to estimate the amount of time that an economy spends
in recession, for instance.

Finally, the very last chapter tackles a more theoretical problem which stemmed from
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the extension of the model of Chapter VII to random matrices with more general structure.
We study the mixed-moments of Gaussian elliptic matrices, and give a computationally
efficient exact formula for their computation. We map the problem to the partition of
Temperley-Lieb algebras into disjoint subsets with constant features. This work is still
underway.
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CHAPTER VII

Non-self-averaging of maximal

Lyapunov exponent in random

conewise linear systems

Abstract

We consider a simple model for multidimensional conewise linear dynamics
around cusp-like equilibria. We assume that the local linear evolution is either
v0 = Av or Bv (with A, B independently drawn from a rotationally invariant
ensemble of symmetric N ⇥N matrices) depending on the sign of the first component
of v. We establish strong connections with the random diffusion persistence problem.
When N ! 1, we find that the Lyapunov exponent is non-self-averaging, i.e.,
one can observe apparent stability and apparent instability for the same system,
depending on time and initial conditions. Finite N effects are also discussed and
lead to cone trapping phenomena.

Adapted from: [2] Théo Dessertaine and Jean-Philippe Bouchaud. Non-self-averaging
Lyapunov exponent in random conewise linear systems. Phys. Rev. E, 105:L052104, May
2022.

1 Introduction

The stability of generic equilibrium points is well known to be determined by the largest
eigenvalue of the matrix describing the linearized dynamics of small perturbations. How-
ever, a large variety of systems exhibit non-linearities even for infinitesimal perturbations.
Such a situation arises when the dynamics involves threshold effects or constraints. For
example, operational amplifiers in electrical systems involve diodes with voltage thresh-
olds, whereas in neuroscience, simple models of neurons involve a gain function with
a threshold over which the considered neuron will fire. For electrical engineering, the
question of controlability of switch systems is also crucial. It was shown that, even in
the simplest case, numerical assessment of stability and controlability is NP hard [113],
see also [114] for a detailed study of a particular class of switch systems. Similar effects

201



VII. Random conewise linear systems

have recently been discussed in the context of out-of-equilibrium macroeconomic models
[61, 1]. Economic equilibrium enforces that markets clear, i.e. that firms’ supply y equals
households’ demand c. However, in a dynamical setting, one can be in a situation where
demand is – say – larger than supply. In this case, realized consumption cr is limited
by production, i.e. cr = min(c, y). Generically, the resulting update rules for firms’
production and households’ demand will differ when under-supply leads to excess savings,
or when over-supply leads to inventories. Hence, even small perturbations away from
market clearing will evolve differently in the two regions c > y and c < y (see [1] for
a generalization to n > 1 firms). A recurrent question in economics is how resilient is
the economy to shocks i.e. how well will it recover from – say – a crisis. Within the
previous example, the evolution of the economy will be different whether the shock affects
consumption or supply. Answering the question of resilience therefore relies on the study
of the dynamics within each region as well as the interactions between those.

The situation described above is generically called “cone-wise linear”: depending
on the direction of the perturbation away from equilibrium, the linear stability matrix
will not be the same. Even in the simplest case of a planar dynamical system with two
cones, the overall dynamics can be highly non trivial and may generate limit cycles, for
example. For higher dimensional systems such as considered in [1] (in the context of large
economies), it is hard to get an intuition on the possible behaviors generated by such
cone-wise dynamics since the amount of interaction is quite high and their form potentially
complex. The purpose of the present chapter is to propose a simplified Random Matrix
Theory framework to understand some of the phenomenology of these systems in the
large-dimension limit, in the spirit of Robert May’s celebrated study [98]. We find that
the answer to the question “will the system be stable?” is not straightforward, with the
emergence of complex non self-averaging behavior.

The simple model we consider in this chapter is the following: let v(t) 2 R
N be the

N -dimensional vector describing the perturbation away from equilibrium. Depending
on the sign of the dot-product v(t) · e, where e 2 R

N is a fixed vector, the linearized
dynamics is governed either by matrix A or by matrix B, chosen to be symmetric N ⇥N
random matrices, independently drawn from O(N) rotationally invariant ensembles with
possibly different eigenvalue spectra. 1. In the present case, the cone structure is simply
the two half-spaces separated by the hyperplane {e}?. We thus consider the following
evolution for v(t) 2

v(t+ 1) =

(
Av(t), when v1(t) > 0

Bv(t), when v1(t) < 0
, (VII.1)

where we have set e = (1, 0, . . . , 0) without loss of generality using the rotational invariance
of both A and B. The stability analysis therefore relies on the large-time properties
of matrix products of the type M(t) = A

t�tk�1B
⌧k�1 · · ·A⌧1 , with tk�1 :=

Pk�1
i=1 ⌧i and

1For X a rotationally invariant random matrix and O a rotation matrix, X
d
= OXO

>, where
d
= denotes

the equality in distribution.
2The case v1(t) = 0 has a zero probability for generic choices of A and B, but if it were to happen, one

would choose A or B with equal probability.
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Figure VII.1: Trajectory of the rescaled first component ev1(t) =
p
Nv1(t)/kv(t)k ⇠N!1 �(t)

(where �(t) is defined in Eq. (VII.6)) under the dynamics of Eq. (VII.1) with A and B independently
drawn GOE matrices with N = 103, ⌫±,A = ⌫±,B = ±2 (where ⌫±,M are the lower/upper edges
of the matrix M = A,B). We see that the dynamics is highly non-trivial with rapid oscillations
caused by powers of negative eigenvalues changing sign. Note also that the time spent in each
cone varies widely from a single time-step to very long excursions.

tk�1 < t  tk, and where ⌧i are persistence times, i.e. times during which the dynamics
leaves v(t) within the same cone (here the half space). It turns out that in our problem,
the probability Q0(⌧) to remain in a single cone for a time larger or equal to ⌧ decays
algebraically, i.e. Q0(⌧) ⇠⌧!1 ⌧�µ, where µ is called the persistence exponent (see [128]
for a detailed review). We will see that whenever µ < 1 (which corresponds to natural
choices for matrices A and B, see below), the maximal Lyapunov exponent of the problem,
namely

�max = lim
t!1

t�1 ln (kM(t)v(t = 0)k/kv(t = 0)k) , (VII.2)

remains a random quantity even in the large-time limit, and does not converge to its
ensemble average value. In some cases one can observe �max < 0, seemingly indicating
stability, while in others (or at later times) �max > 0, suggesting instability. This situation
departs from the standard Furstenberg-Kesten result [129] for products of random matrices
where the maximal Lyapunov exponent self-averages in the large-dimensional limit. In
fact, quite non-trivial dynamics can be observed, even for such a simple system, see
Figure VII.1.

2 Persistence and intra-cone behavior

To understand the spectral properties of M(t), we must first characterize the behavior of
the persistence times ⌧i. Let us consider the evolution of v within one cone, say v1(t) > 0.
As long as v1(t) > 0, the evolution is linear and yields v(t) = A

tv(0). Calling "i the i-th
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canonical vector of RN , we can express the `-th component v`(t) of v(t) as

v`(t) := "` · v(t) =
X

↵

�
A
t
�
`↵

v↵(0).

Here, we consider a fixed realization of the disorder A. As a consequence, since v(0) is a
Gaussian vector, one immediately sees that v(t) is also a Gaussian vector whose statistics
can be computed easily. Denoting by ( · ) the average over initial conditions, we get for
the mean

v`(t) =
X

↵

�
A
t
�
`↵

v↵(0)

= 0,

and for the covariance,

v`(t)v`0(s) =
X

↵,�

�
A
t
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=
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=
⇣
A
t
⇣
A
>
⌘s⌘

``0
.

Once again, these expressions are obtained for a fixed realization of the disorder A. Taking
the average over A, one should usually be a bit careful. It is not straightforward that the
average over A will leave the statistics of v(t) Gaussian. However in our case, we can see
that its correlator is actually self-averaging in the limit N !1, thanks to the rotational
invariance of A and, as a consequence, the process remains Gaussian for N !1 with
covariance

v`(t)v`0(s) ⇠
N!1

1

N

D
Tr

h
A
t
⇣
A
>
⌘siE

�``0 �!
N!1

⌧
⇣
A
t
⇣
A
>
⌘s⌘

=
D
v`(t)v`0(s)

E
, (VII.3)

where h(·)i is the ensemble average of A, and ⌧( · ) the normalized trace

⌧( · ) = lim
N!1

N�1Tr (·) .

We see that components are uncorrelated and therefore independent in the large N limit
since they are Gaussian. Finally, time-wise correlations are given by the mixed-moments
of matrices A and A

>. In the present case where we choose A symmetric, mixed-moments
are nothing more than standard moments fA(u) of the matrix A, i.e.

D
v`(t)v`0(s)

E
= �``0fA(t+ s), (VII.4)

with,
fA(t) ⇠

t!1
KΓ(↵+ 1) ⌫t+↵+1

+ t�↵�1, (VII.5)
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2. Persistence and intra-cone behavior

0.0

0.5

1.0

Figure VII.2: Simulations of the vector v(t) = M
tv(0) for M 2 GOE(N), v(0) ,!

N (0, IN ), N = 104 and t < 10. The average
D
( · )

E
is performed over 5000 realizations of

M and v(0). (a) Probability distribution of �i(t) overlaid with the density of a Gaussian

random variable N (0, 1). (b) Component-wise covariance matrix
D
�i(t)�j(t)

E
at time

t = 1. We see that this covariance matrix is exactly IN as predicted by Eq. (VII.31) from

Appendix B. (c) Time-wise covariance matrix
D
�i(t)�i(s)

E
for t, s < 10 which coincides

with the prediction of Eq. (VII.31) from Appendix B. Note the checkerboard structure
coming from the fact that odd moments of GOE matrices are 0.

where K and ↵ relate to the shape of the density of eigenvalues ⇢(⌫) of A near its upper
edge ⌫+, i.e. ⇢(⌫) ⇠

⌫!⌫+
K|⌫ � ⌫+|↵. See Appendix B for a derivation of the asymptotic

behavior of the moments of A. Of course, a similar result holds for the covariance of
the sequence of vectors induced by matrix B. In the following, we will assume that the
singularity exponent ↵ is the same for A and B (but see Appendix D for the general case).
Note that the natural case where A and B are (shifted) GOE matrices corresponds to
↵ = 1/2. For N � 1, Eq. (VII.4) shows that components v`(t) become independent since
the process remains Gaussian. As a consequence, the persistence probability Q0(⌧) is
solely determined by the statistics of the sign of v1(t).

As it is standard in the study of persistence of Gaussian processes (see [130, 128]),
we introduce the rescaled process

�(t) = v1(t)/
D
v1(t)2

E1/2
, (VII.6)

whose statistics are displayed on Figure VII.2. One obtains the following asymptotic form
for the correlator of �(t) using Eq. (VII.5) 3

h�(t)�(s)i ⇠
t,s!1

✓
2
p
ts

t+ s

◆↵+1

. (VII.7)

Interestingly, this is exactly the correlator of a well studied problem, namely the random
diffusion process with an effective dimension d = 2(↵ + 1) [131, 132] (see Appendix A

3Note that this correlator is independent of the constant K appearing in Eq. (VII.5). Correspondingly,
the persistence probability Q0(⌧) is also independent of K.
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VII. Random conewise linear systems

for a derivation of the associated correlator). Consider the simple diffusion equation
@�/@t = ∆� for a scalar field � on R

d with random initial conditions having zero mean
and short-ranged correlations h�(x, 0)�(x0, 0)i = �d(x� x0). The probability that �(0, t)
does not change sign between time t = 0 and t = ⌧ , is found to decay asymptotically
as ⌧�✓(d), with a dimension-dependent persistence exponent [128, 133]. The connection
between these two seemingly unrelated problems boils down to the edge behavior of ⇢.
As an example with GOE matrices, the square-root singularity of Wigner’s semicircle
distribution is the same as that of the density of eigenvalues of the three-dimensional
Laplacian.

For Gaussian Stationary Processes (GSP), the correlator’s asymptotics is related to
the persistence decay by the Newell-Rosenblatt theorem [134]. Loosely speaking, a GSP
with exponentially decaying correlator C(t, s) ⇠ e��|t�s| will have exponentially decaying
persistence Q0(⌧) ⇠ e�✓⌧ , where generically ✓ 6= �. In the case of Eq. (VII.7), the r.h.s is
not stationary but self-similar. If one performs a Lamperti transformation T = ln(t), the
new process  (T ) = �(ln(t)) is asymptotically stationary

h (T ) (S)i ⇠
T,S!1

(cosh |T � S|)�↵�1 ,

and decays exponentially. One can therefore apply the previous theorem: there exists an
exponent µ(↵) such that Q0(T ) ⇠ e�µ(↵)T . Reverting back to real time t, the persistence
decays algebraically Q0(t) ⇠ t�µ(↵). Finally, the asymptotic equivalence of Eq. (VII.7)
with the correlator of the random diffusion process does not immediately imply equality
of persistence exponents. However, in most cases, non-universal corrections to Q0(⌧),
depending on the entire form of the correlator, are sub-leading with respect to the algebraic
decay inferred from the asymptotics, and one can equate persistence exponents. Our
numerical simulations strongly suggest that this is also the case here, i.e. µ(↵) = ✓(d) with
d = 2(↵+1), see Figure VII.3-(a). In particular GOE matrices correspond to the random
diffusion problem in d = 3 dimensions. From the results of [133] on the d dependence of ✓,
we infer that for ↵ . 22, the persistence exponent µ = ✓ is less than unity, corresponding
to an infinite mean survival time.

3 Switch process and distribution of the maximal Lyapunov

exponent

Now, let us come back to our product of random matrices problem

M(t) = A
t�tk�1B

⌧k�1 · · ·A⌧1 , tk :=
kX

i=1

⌧i. (VII.8)

In the large N limit, such products have been extensively studied in the context of free
probabilities [135, 136, 137]. However, these methods do not apply here since the different
terms in the product are not mutually free. In order to progress, we make the following
independent interval hypothesis [130, 138, 128], namely that when the sign of v1(t)
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3. Switch process and distribution of the maximal Lyapunov exponent

changes, i.e. at times tk, the current vector v(tk) can be considered as independent from
the matrix (A or B) under which it will evolve between tk and tk+1. Intuitively, since A,B
are assumed mutually free, i.e. randomly rotated from one another, switching from one
to the other erases the effects of the previous matrix. Therefore, persistence times ⌧i can
be considered as iid random variables with distribution P(⌧i = ⌧) := p(⌧) = �@⌧Q0(⌧).
(Again, we restrict here to the case where A or B share the same upper edge singularity
exponent ↵.) The second consequence of our independence assumption is that the growth
of the norm of v(t) between t = tk�1 and t = tk can be approximated, for large N , as

kv(tk)k2 =
NX

a=1

wa(tk�1)⌫
2⌧k
a ⇡ kv(tk�1)k2

Z
d⌫⇢k(⌫)⌫

2⌧k (VII.9)

where wa = (v · ua)
2 with (⌫a,ua) the eigenpairs of either A or B (depending on which of

the two matrices is “active” between tk�1 and tk), and ⇢k(⌫) is the corresponding density
of eigenvalues. Note that we implicitly used the asymptotic independence of eigenvectors
and eigenvalues for rotationally invariant random matrices. See Appendix C for details
about the previous formula. We introduce the notation gk(⌧) :=

1
2 ln

R
d⌫⇢k(⌫)⌫2⌧ and

use the approximate multiplicative norm process of Eq. (VII.9) to estimate the norm
kM(t)v(t = 0)k in the definition of the maximal Lyapunov exponent (VII.2). It yields

log
kM(t)v(0)k
kv(0)k ⇡ gk(t� tk�1) +

k�1X

i=1

gi(⌧i) := Λ(~⌧ , t) (VII.10)

with ~⌧ = (⌧1, . . . , ⌧k). The moments of the distribution of the Lyapunov exponent �max

can therefore be expressed as

E [�qmax] = lim
t!1

t�qZ(q, t)

Z(0, t)
, (VII.11)

where

Z(q, t) =

1X

k=1

Z

~⌧

Y

i

p(⌧i)Θ (tk � t)Θ (t� tk�1)Λ
q(~⌧ , t), (VII.12)

with Θ(·) the Heaviside step function. Note that trivially Z(0, t) = 1.
In order to estimate the limit in Eq. (VII.11), we introduce the t-Laplace transform

bf(!) =
R

dt e�!tf(t) of a generic function f , and use Tauberian analysis [139] to relate
the large-time behavior of f to the small ! behavior of bf . We first consider the case
µ < 1, for which p(t) ⇠t!1 Ct�1�µ implies bp(!) ⇠!!0 1 + CΓ(�µ)!µ (with Γ(·) the
Euler’s gamma function). Now, for (VII.11) to have a finite non-trivial limit, one can
make the following ansatz for Z(q, t) ⇠

t!1
E[�qmax]tq. After finding a recursion relation

for bZ(q,!), one can show that the q-exponential generating function of bZ denoted by
G bZ(x,!) verifies the equation

G bZ =
1

2

Gbh1
+ Gbh2

+ Gbh2
Gb�1

+ Gbh1
Gb�2

1� Gb�1
Gb�2

, (VII.13)
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VII. Random conewise linear systems

where b�i(q,!) (resp. bhi(q,!)) is the Laplace transform of t 7! p(t)gi(t)
q (resp. t 7!

Q0(t)gi(t)
q). See Appendix D for a detailed derivation of Eq. (VII.13).

Using a scaling limit !, x! 0 while keeping the ratio !/x = y constant, we can show
that the probability density of �max, denoted by ', obeys the following equation

Z
d�

'(�)

y � � =
(y � r1)

µ�1 + (y � r2)
µ�1

(y � r1)
µ + (y � r2)

µ , (VII.14)

with r1 = ln |⌫+,A|, r2 = ln |⌫+,B|, and for y � max (r1, r2). Finally, using Stieltjes
inversion formula, one finds the following density

'(�) = |r2 � r1|
sinµ⇡

⇡

(z1z2)
µ�1

z2µ1 + z2µ2 + 2(z1z2)µ cos(µ⇡)
, (VII.15)

for zi = |�� ri|. This distribution was first obtained by Lamperti [140] and revisited by
Godrèche & Luck [141] in the context of occupation time of renewal stochastic processes.
A moment of reflection allows to understand why this distribution appears in our problem
as well: when µ < 1, the mean persistence time diverges, which means that the longest
persistence time ⌧i observed in the interval [0, t] is of order t itself. Hence, Eq. (VII.12) is
dominated by long persistence times, for which gi(⌧i) ⇡ ri⌧i. In other words, our problem
indeed boils down to an occupation time problem, at least within our independent interval
hypothesis.

Note that when � ! ri the density '(�) diverges as |� � ri|
µ�1, reflecting the

dominance of long periods where the evolution is given either by matrix A (contributing to
� ⇡ ln |⌫+,A|) or by matrix B (contributing to � ⇡ ln |⌫+,B|). Setting µ = 1 in Eq. (VII.14),
we see that '(�)! �(��m1) with m1 = (r1 + r2)/2, rendering the system self-averaging.
Figure VII.3 shows the distribution of the Lyapunov exponent for matrices drawn from
GOE and the density of Eq. (VII.15) with µ = 2✓(d = 3) 4. The agreement with our
theoretical prediction is very good. A rigorous hypothesis test is however difficult because
of finite N and t effects that cannot be neglected, see below.

In the case where µ > 1 (i.e. ↵ & 22), the whole small ! analysis of bZ(q,!) must be
reconsidered (see Appendix D) and leads to the conclusion that the Lyapunov exponent
�max becomes self-averaging and given by

�max =
E [gA(⌧) + gB(⌧)]

2E[⌧ ]
, (VII.16)

with ⌧ distributed according to p(⌧). However, observing this self-averaging regime is not
straightforward since for ↵ & 22, the density of eigenvalues is extremely small close to
the upper edge.

4Here, the persistence exponent doubles since Wigner’s semi-circle distribution is symmetrical and
therefore has odd moments equal to zero. As a consequence, (v`(2s))s and (v`(2s+ 1))s are mutually
independent and the persistence of the entire system is the square of that of the even or odd process.
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Figure VII.3: (a) Persistence probability of �(t) for different effective dimensions d. The
spectral distribution ⇢ is chosen to be a standard symmetric Beta distribution B

�
d
2 ,

d
2

�

with support [0, 1]. The solid lines represent the algebraic decay of the persistence of the
random diffusion process t�✓(d) using the persistence exponents computed in [128, 131]:
✓(1) = 0.1205, ✓(2) = 3/16, ✓(3) = 0.2382, ✓(4) = 0.2806, ✓(5) = 0.3173. (b) Probability
distribution of the normalized Lyapunov exponent �̄max = (�max � r1)/(r2 � r1) for GOE
matrices A and B of size N ⇥ N , N = 104 with ⌫+,A = 0.05

p
2 and ⌫+,B = 2

p
2. The

black line shows the density Eq. (VII.15). (c) Zoom on the left-tail of ' showing a very
good agreement of the divergence with the predicted exponent µ� 1 (black line).

4 Finite N effects

The previous analysis was conducted in the limit N ! 1, before the large-time limit
t ! 1 is taken. As we saw, in this limit, the persistence probability takes the form
Q0(⌧) ⇠ ⌧�µ. However, whenever N is finite, the eigenvalues of the matrices A and B

do not perfectly sample the respective measures ⇢A(⌫) and ⇢B(⌫). Fluctuations near the
edges of the spectrum are thus expected to change the persistence probability. As an
example, let us consider matrices A drawn from GOE. It is well known that at finite
N , the maximum eigenvalue of A (or of B) exhibits fluctuations of order N�2/3 around
the edge, abiding to the � = 1 Tracy-Widom distribution F1 [142]. As a consequence,
following the analysis of [131, 143] for the random diffusion problem, we conjecture that
the persistence probability at finite, large N writes

Q0(⌧, N) / N�2µ/3h
⇣
⌧N�2/3

⌘
, (VII.17)

where h is a scaling function such that h(u) ⇠
u!0

u�µ and h(u) !
u!1

c, with c a constant.

Figure VII.4-(a) shows our numerical results that confirm such a scaling hypothesis, with
again µ = 2✓(3) for centered GOE matrices. The small u behavior of h recovers the pure
power law ⌧�µ in the large N limit, whereas the large u regime shows that, at finite N ,
P(⌧ =1) = c > 0. This means that there is a positive probability that the vector v(t)
remains “trapped” forever within a cone. But if the dynamics gets stuck within one cone,
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Figure VII.4: (a) Scaling form of the persistence probability at finite N for matrices
drawn from GOE(N). For GOE, ↵ = 1/2 and d = 3, however since the eigenvalue density
is symmetrical, odd and even times processes are uncorrelated, such that the persistence
exponent is 2✓(3). (b) Probability distribution 'N of �max for finite N = 128. We see that
the edges of the spectrum are not sharp as in the case N !1, but fluctuate around the
corresponding values of ln |⌫+| (with ⌫+,A = 0.05

p
2 and ⌫+,B = 2

p
2). (c) Cumulative

distribution of the random variable &1 = (e�max � ⌫+)N2/3/� with � = ⌫+/2. We overlay
in black the cumulative distribution F1(s) of the � = 1 Tracy-Widom distribution.

the associated Lyapunov exponent is simply given by �max = ln |⌫max,N | where ⌫max,N is
the largest eigenvalue of either A or B for a given finite value of N . As a consequence,
the distribution of e�max will have two peaks of width N�2/3 centered around ⌫+,A and
⌫+,B. The fluctuations around these peaks are given by Tracy-Widom distributions, as
confirmed by our numerical data (see Figure VII.4-(b)).

5 Conclusion and extensions

In conclusion, even our highly simplified conewise-linear dynamics exhibits quite non-
trivial properties. First, if the large-dimension limit N !1 is taken before the large-time
limit, we find that for a wide class of random matrices the Lyapunov exponent is non
self-averaging, i.e. continues to fluctuate in the large-time limit. Depending on the relative
positions of the upper edge of the spectrum of A and B, one can observe apparent stability
and apparent instability for the same system, depending on time and initial conditions. If,
on the other hand, N is large but finite, the dynamics eventually gets trapped in one of
two half-spaces and the Lyapunov exponent converges to the top (log-)eigenvalue of the
corresponding matrix A and B. So if – say – A leads to a stable evolution and B to an
unstable explosion, the dynamics of the system, even close to equilibrium, will be either
stable or explosive, depending on minute details of the initial perturbation.

Finally, we list here some avenues for the generalizations of the results, some of which
are detailed in the technical appendices of this chapter. We can think first of matrices
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5. Conclusion and extensions

with more complicated structure such as correlations between coefficients. For example,
for non-symmetric Gaussian random matrices with a correlation coefficient % between
entries ij and ji (% = 1 corresponding to the symmetric case), we have found numerically
that the persistence probability Q0(⌧) decays as a truncated power-law ⌧�µ(%)e�(%)⌧

where (µ(%),(%)) interpolate between (µ, 0) (% = 1: symmetric case) and (0, ln 2) (% = 0:
Ginibre case). For generic %, a non self-averaging behavior occurs up to the time-scale
1/(%). Furthermore, we can think of matrices having outlying eigenvalues in addition to
the spectrum supported on a compact set. Take for instance a matrix A of the form

A = X+ �
uu>

kuk2 ,

with X a GOE matrix with elements of variance �2, u ,! N (0, IN ) a random Gaussian
vector independent from X and � > 0 a scalar. As � increases, the spectrum of A

undergoes the well-known BBP transition [144] for a value �c = �. For � < �c, the
spectrum of A is simply given by the bulk of X, whereas whenever � > �c, an outlying
eigenvalue ⌫o = � + �2/� escapes the bulk. In the previous situation, it would be
interesting to understand what is the effect of the BBP transition on the persistence
probability, and the subsequent Lyapunov exponent. Both previous generalizations are
detailed in Appendix F, and Chapter IX is devoted to the study of the mixed-moments
of Gaussian elliptic matrices which are of interest for this generalization.

More complicated cone structures could also be considered. The simplest generaliza-
tion is when the signs of p vector components, say v1, v2, . . . , vp, select which of the 2p

matrices determine the dynamics. In this case, the persistence exponent is simply given
by pµ and the distribution of �max is a generalization of the Lamperti distribution. Such
generalization will be discussed in Chapter VIII, and can be found in [3]. Furthermore,
one could also consider mixed switch conditions

v(t+ 1) =

8
>>>><
>>>>:

Av(t), when v1(t) > 0 and v2(t) + av1(t) > 0

Bv(t), when v1(t) < 0 and v2(t) + av1(t) > 0

Cv(t), when v1(t) > 0 and v2(t) + av1(t) < 0

Dv(t), when v1(t) < 0 and v2(t) + av1(t) < 0

, (VII.18)

with a > 0. Whenever a = 0, we retrieve the previous example where cone switching
is governed by the signs of v1 and v2. Whenever a ! 1, we recover the model of the
previous section with matrices A and D. The persistence exponent therefore depends
continuously on a and interpolates between 2µ and µ. However, the precise nature of the
relationship a 7! µ(a) is very complex to track down. Indeed, v1(t) and v2(t) + av1(t) are
not independent, and the persistence probability therefore does not decouple. Such a
situation is of interest for the conewise models of Chapter IV and Chapter V since cone
vectors cg,i and cw are not as trivial as the canonical vectors we consider in this chapter.

Finally, small N effects should lead to a breakdown of our strong independence
assumption, and generate even more complex types of dynamics, with non-random
sequences of visited cones (see Appendix E). In view of the rich phenomenology reported
in [1], we believe that such effects would be well worth investigating.
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VII. Random conewise linear systems

Key takeaways

• Conewise Linear Systems are systems for which the linear evolution
depends on the direction of the input vector. The simple example of this
chapter is a two-cone system with matrices A,B such that

v(t+ 1) =

(
Av(t), when v1(t) > 0

Bv(t), when v1(t) < 0
.

• Intra-cone behavior, i.e. the evolution v(t+ 1) = Av(t), can be mapped
onto a centered Gaussian process with covariance

D
v`(t)v`0(s)

E
= �``0fA(t+ s),

where the average
D
( · )

E
is taken over both initial conditions (such that v(0)

is a standard Gaussian vector with independent entries) and the disorder A

(chosen to be orthogonally invariant random matrices), and where fA refers
to the moments of A.

• Persistence of v1(t), i.e. the time for which v1(t) keeps a constant sign,
displays a power-law behavior Q0(t) ⇠ t�µ whenever the matrix A is sym-
metric. The exponent µ is characterized by the edge behavior of the spectral
density of A, and related to the persistence of diffusive fields in an effective
dimension. For non-symmetric matrices, we conjecture an exponential cutoff

to the persistence.

• Stability, characterized by the maximum Lyapunov exponent �max, depends
on the initial conditions and observation time. For symmetric matrices, the
system is non-ergodic and the Lyapunov exponent remains random even in
the large-time limit, with a distribution given by a Lamperti law

'(�) = |r2 � r1|
sinµ⇡

⇡

(z1z2)
µ�1

z2µ1 + z2µ2 + 2(z1z2)µ cos(µ⇡)
,

for zi = |�� ri|, r1 = ln |⌫+,A|, r2 = ln |⌫+,B|.
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A. Persistence probability for the diffusion equation with random initial conditions

A Persistence probability for the diffusion equation with

random initial conditions

Let us consider a scalar field �(~x, t) over R
d obeying the diffusion equation

@�

@t
= ∆�, (VII.19)

with initial condition taken to be a Gaussian random field such that

h�(x, 0)i = 0, h�(x, 0)�(x0, 0)i = �d(x� x0). (VII.20)

Assuming that the diffusion may occur in a region of linear size L, i.e. kxk  L, we want to
understand the probability Q(⌧, L) that the field �(x, t) will keep a constant sign up to time ⌧ .
The solution to the above equation reads

�(x, t) =

Z

kykL
dy G(y � x, t)�(y, 0), (VII.21)

where G denotes the Green’s function associated to the diffusion equation

G(z, t) = (4⇡t)�d/2 exp�kzk2/4t. (VII.22)

The persistence probability for this process refers to the amount of time the field � keeps a
constant sign at x = 0 5. Denoting by C(t, t0) the correlator of �(0, t) between times t and t0, we
can use the explicit solution for � to get

C(t, t0) := h�(0, t)�(0, t0)i =
Z

kykL
dy G(y, t)G(y, t0). (VII.23)

By rescaling both the field  (t) = �(t)/
p
C(t, t) and the time t̃ = t/L2, we can easily obtain the

behavior of the correlator a(t̃, t̃0) for  (t̃)

a(t̃, t̃0) ⇠

8
<
:

⇣
2
p
t̃t̃0

t̃+t̃0

⌘d/2

, t̃, t̃0 ⌧ 1

1 , t̃, t̃0 � 1
. (VII.24)

We will consider the case L!1, i.e. t̃, t̃0 ⌧ 1, but see [128] for the other limit. In this limit, the

process is self-similar, i.e.  (�t)
d
=  (t) for � > 0. It can therefore be mapped onto a stationary

process using the Lamperti transformation T = ln t. In this new variable, the process has the
correlator

h (T ) (S)i = (cosh |T � S|)
�d/2

, (VII.25)

whose exponential decay implies an exponential decay of the associated persistence probability.
Reverting back to the original time variable, the persistence q(⌧) of  (t) therefore has an algebraic
decay with a dimension dependent exponent q(⌧) ⇠ ⌧�✓(d). There exists no known analytical
value for ✓(d), except for d = 2 for which ✓(d) = 3/16 [131], but several techniques have been
developed to estimate them numerically [128, 133].

5We choose to look at the point x = 0 since spatial features are irrelevant for the persistence.
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B Mapping to a Gaussian process and persistence of v1(t)

In this section, we provide the details of the computation to map the dynamics of Eq. (VII.1) of
the main text onto a centered Gaussian process for which Eq. (VII.4) is the particular case for
symmetric matrices. Recall that we consider the following conewise-linear system

v(t+ 1) =

(
Av(t), when v1(t) > 0

Bv(t), when v1(t) < 0
, (VII.26)

where A and B are O(N) rotationally invariant random matrices. We assume that the initial
condition v(0) 2 R

N is a centered Gaussian vector of unit variance. For the matrix M = A or B,
we denote by ⇢ its spectral density and by f(t) its t-th moment

f(t) =

Z
d⌫⇢(⌫)⌫t.

Finally, h( · )i will denote the average over the disorder M, ( · ) the average over the initial
condition v(0) and ⌧( · ) = limN!1N�1Tr (·) the normalized trace.

B.1 Computation of the statistics of v(t) within one cone in the limit

N !1
As long as v1(t) keeps a constant sign, the dynamics is linear and immediately yields

v(t) = M
tv(0). (VII.27)

Calling "i the i-th canonical vector of RN , we can express the `-th component v`(t) of v(t)
as

v`(t) := "` · v(t) =
X

↵

�
M

t
�
`↵

v↵(0)

Here, we consider a fixed realization of the disorder M. As a consequence, since v(0) is a
Gaussian vector, one immediately sees that v(t) is also a Gaussian vector whose statistics can be
computed easily. For the mean, we have

v`(t) =
X

↵

�
M

t
�
`↵

v↵(0)

= 0

and for the covariance, we get

v`(t)v`0(s) =
X

↵,�

�
M

t
�
`↵

(Ms)`0� v↵(0)v�(0)

=
X

↵

�
M

t
�
`↵

(Ms)`0↵

=
⇣
M

t
�
M
>�s⌘

``0
.
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Once again, these expressions are obtained for a fixed realization of the disorder M. Taking
the average over M, one should usually be a bit careful. It is not straightforward that the average
over M will leave the statistics of v(t) Gaussian. However in our case, we can see its correlator is
actually self-averaging in the limit N !1 thanks to the rotational invariance of M and, as a
consequence, the process remains Gaussian for N !1 with covariance

v`(t)v`0(s) ⇠
N!1

1

N

D
Tr

h
M

t
�
M
>�siE �``0 �!

N!1
⌧
⇣
M

t
�
M
>�s⌘ =

D
v`(t)v`0(s)

E
. (VII.28)

We see that components are uncorrelated and, since they are Gaussian, therefore independent in
the large N limit. Finally, time-wise correlations are given by the mixed-moments of matrices M

and M
>.

B.2 The symmetric case: link to random diffusion

If the matrix M is symmetric, the mixed moment can be easily expressed

⌧
⇣
M

t
�
M
>�s⌘ = ⌧

�
M

t+s
�
= f(t+ s), (VII.29)

and amounts to the knowledge of the moments of M. To establish the link with the random
diffusion process, we must study the asymptotic behavior of the correlator of v(t), which boils down
to the asymptotics of the moments of M. In the previous section, we have introduced the spectral
density ⇢ of M. As in the main text, we will assume that this density has a compact support
[⌫�, ⌫+] with ⌫� < ⌫+. Furthermore, it has a behavior close to the upper edge characterized by a
constant K and an exponent ↵, which we assume greater than �1 for integrability purposes,

⇢(⌫) ⇠
⌫!⌫+

K|⌫ � ⌫+|↵.

With these assumptions, we can use Laplace’s method to estimate the large-time behavior of the
moments f(t) of ⇢. Denoting by ∆⌫ = ⌫+ � ⌫� > 0, it yields

⌫�t+ f(t) =

Z ⌫+

⌫�

d⌫⇢(⌫)

✓
⌫

⌫+

◆t

=

Z ∆⌫

0

d�⇢(⌫+ � �)
✓
1� �

⌫+

◆t

=
⌫+

t

Z t∆⌫

0

dx⇢
⇣
⌫+

⇣
1� x

t

⌘⌘⇣
1� x

t

⌘t

⇠ ⌫+

t

Z 1

0

dxK
���⌫+ � ⌫+

⇣
1� x

t

⌘���
↵

e�x

= K
⇣⌫+

t

⌘↵+1
Z 1

0

dxe�xx↵

= K
⇣⌫+

t

⌘↵+1

Γ(↵+ 1),

so that we get the asymptotic behavior of the main text

f(t) ⇠
t!1

KΓ(↵+ 1) ⌫t+↵+1
+ t�↵�1. (VII.30)
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We then introduce (as it is standard in persistence problems), the rescaled process

�i(t) =
vi(t)rD
v2i (t)

E ,

with �(t) := �1(t) as in the main text. Its correlator is given by

h�i(t)�j(s)i = �ij
f(t+ s)p
f(2t)f(2s)

. (VII.31)

Note that �i(t) is a Gaussian random variable with 0 mean and unit variance. Using the
asymptotic behavior of Eq. (VII.30), we therefore get

h�(t)�(s)i ⇠
t,s!1

✓
2
p
ts

t+ s

◆↵+1

, (VII.32)

and recover the result stated in the main text. Figure VII.2 shows the statistics of the process
�i(t), aligned with the previous theoretical predictions.

C Approximation of the norm-growth of v(t)

The vector v(t) can be expressed thanks to the initial condition and the effective matrix

v(t) = M(t)v(0), (VII.33)

with
M(t) = A

t�tk�1B
⌧k�1 · · ·A⌧1 ,

assuming w.l.o.g that v1(0) > 0. Assuming that at time t` =
P`

i=1 ⌧i, one has v1(t`) > 0 (and
v1(t` � 1) < 0, we can write

v(t`+1) = A
⌧`+1v(t`).

Denoting by (⌫a,ua) the eigenpairs associated to A, we can express the norm of v(t`+1)

kv(t`+1)k2 =

NX

a=1

⌫2⌧`+1

a (ua · v(t`))
2
. (VII.34)

Using the IIA approximation of the main text, v(t`) and ua are independent. Furthermore, in
the large N limit components of both v(t`) and ua become independent from each other, and the
components ua,i can be approximated by centered Gaussian random variables of variance 1/N .
As a consequence

kv(t`)k2 =
NX

i=1

v2i (t`) ⇡ N
D
v21(t`)

E
, (VII.35)

and

(ua · v(t`))
2
:=

X

i,j

vi(t`)vj(t`)ua,iua,j ⇡
X

i

v2i (t`)u
2
a,i ⇡ N

D
v21(t`)

E ⌦
u2
a,1

↵
⇡ 1

N
kv(t`)k2 .

(VII.36)
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We can plug this back into Eq. (VII.34) to get

kv(t`+1)k2 = kv(t`)k2
1

N

NX

a=1

⌫2⌧`a ⇡ kv(t`)k2
Z

d⌫⇢A(⌫)⌫
2⌧` . (VII.37)

Of course the same reasoning holds for the matrix B. Using the notation

gk(⌧) :=
1

2
ln

Z
d⌫⇢k(⌫)⌫

2⌧ ,

with k denoting either A or B depending on which matrix dictates the linear evolution, we can
write the norm growth

ln
kv(t)k
kv(0)k = gk(t� tk�1) +

k�1X

i=1

gi(⌧i). (VII.38)

D Distribution of �max

In this appendix, we derive the equation for the q-exponential generating functions of bZ and the
density ' of �max. As stated in the text in Eq. (VII.11), the starting point is

E [�qmax] = lim
t!1

t�q
Z(q, t)

Z(0, t)
, (VII.39)

where

Z(q, t) =

1X

k=1

Z

~⌧

kY

i=1

pi(⌧i)Θ (tk � t)Θ (t� tk�1)Λ
q(~⌧ , t) :=

1X

k=1

Xk(q, t), (VII.40)

with tk =
Pk

i=1 ⌧i, ~⌧ = (⌧1, . . . , ⌧k),
R
~⌧
=
R

d⌧1 · · · d⌧k and

Λ(~⌧ , t) =

k�1X

i=1

gi(⌧i) + gk (t� tk�1) . (VII.41)

The partition function Z(q, t) corresponds to a grand canonical ensemble partition function. We

will denote by bf the t-Laplace transform of a generic function f

bf(!) =
Z 1

0

dte�!tf(t). (VII.42)

We also introduce the following quantities

b�i(`,!) =
Z 1

0

dte�!tpi(t)gi(t)
`, (VII.43)

bhi(`,!) =

Z 1

0

dtpi(t)

Z t

0

dse�!sgi(s)
` (VII.44)

=

Z 1

0

dse�!sgi(s)
`Q0,i(s), (VII.45)

bhi(0,!) :=
1� bpi(!)

!
, (VII.46)

where b�i(0,!) := bpi(!). Finally, note that, unlike in the main text, there is a subscript i on the
persistence probabilities. This is the general case where matrices A and B can have different edge
exponents ↵A and ↵B.
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D.1 Canonical ensemble computation

We introduce the following canonical partition function which we will need for the computation
of Z(q, t)

Z(q, t) =

1X

k=1

Z

~⌧

kY

i=1

pi(⌧i)� (t� tk)Λ
q(~⌧ , t) :=

1X

k=1

xk(q, t). (VII.47)

We will express the exponential generating function GbZ(x) of bZ. To do so, we must find a recursive
relation on the Laplace transform of Z. Let us start by computing the quantities bxk(q,!). We
have for xk

xk(q, t) =

Z

~⌧

� (t� tk)

kY

i=1

pi(⌧i)

0
@

kX

j=1

gj(⌧j)

1
A

q

,

where we have replace the last term in the q-power gk (t� tk�1) by gk(⌧k) as enforced by the
Dirac delta constraint. We can carry out the computation by expanding the q-power using the
multinomial theorem

=

Z

~⌧

� (t� tk)

kY

i=1

pi(⌧i)
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆ qY

j=1

gj(⌧j)
`
j

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

� (t� tk)
kY

j=1

pj(⌧j)gj(⌧j)
`j .

We can then compute the Laplace transform of xk

bxk(q,!) =

Z 1

0

dte�!t
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

� (t� tk)

kY

j=1

pj(⌧j)gj(⌧j)
`j

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

kY

j=1

pj(⌧j)gj(⌧j)
`je�!⌧j

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆ kY

j=1

b�j(`j ,!).

To carry out the computation, we need to distinguish between even and odd values of k. Indeed,
provided v1(0) > 0, the effective matrix of the system will look like

M(t2s) = B
⌧2sA

⌧2s�1 · · ·B⌧2A
⌧1

M(t2s+1) = A
⌧2s+1B

⌧2s · · ·B⌧2A
⌧1 ,

which in turn implies g2s = g2 and g2s+1 = g1. As a consequence, we have

bx2s(q,!) =
X

`1,...,`2s

�

 
2sX

i=1

`i � q

!✓
q

`1, . . . , `2s

◆
b�2(`2s,!)

2s�1Y

j=1

b�j(`j ,!)

=

qX

`=0

✓
q

`

◆
b�2(`,!)

X

`1,...,`2s�1

�

 
2s�1X

i=1

`i � (q � `)
!✓

q � `
`1, . . . , `2s�1

◆ 2s�1Y

j=1

b�j(`j ,!),
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where the sum over `1, . . . , `2s�1 is exactly bx2s�1(q� `,!). A similar fact holds for bx2s+1(q� `,!)
and we get

bx2s(q,!) =

qX

`=0

✓
q

`

◆
b�2(`,!)bx2s�1(q � `,!), s � 1 (VII.48)

bx2s+1(q,!) =

qX

`=0

✓
q

`

◆
b�1(`,!)bx2s(q � `,!), s � 1. (VII.49)

These two equations do not account for bx1(q,!) but it is easy to compute and readsbx1(q,!) =
b�1(q,!). We now introduce odd and even partition functions

Ze(q, t) =

1X

s=1

x2s(q, t) (VII.50)

Zo(q, t) =

1X

s=0

x2s+1(q, t) (VII.51)

Z(q, t) = Ze(q, t) + Zo(q, t), (VII.52)

and sum equations Eqs. (VII.48)-(VII.49) to get the Laplace transforms of Ze and Zo

bZe(q,!) =

qX

`=0

✓
q

`

◆
b�2(`,!) bZo(q � `,!) (VII.53)

bZo(q,!) = b�1(q,!) +
qX

`=0

✓
q

`

◆
b�1(`,!) bZe(q � `,!). (VII.54)

We recognize exponential convolution equations and we introduce the exponential generating
function of a sequence c

Gc(x) =
1X

q=0

c(q)
xq

q!
,

to solve Eqs. (VII.53)-(VII.54). We get

G bZe = Gb�2
G bZo

G bZo = Gb�1
+ Gb�1

G bZe

and finally

G bZe =
Gb�1

Gb�2

1� Gb�1
Gb�2

(VII.55)

G bZo =
Gb�1

1� Gb�1
Gb�2

. (VII.56)

From these two equations we could continue the computation and get a general recursive formula
for bZ(q,!) but we only need Eqs. (VII.55)-(VII.56) to express the Laplace transform of the grand
canonical partition function.
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D.2 Grand canonical ensemble computation

The idea for the computation in the grand canonical ensemble is similar to the canonical
computation. However, upon summing over t, the constraint Θ (tk � t)Θ (t� tk�1) does not
imply t� tk�1 = ⌧k anymore, but only tk�1  t  tk i.e t = tk�1 + ⌧, ⌧ 2 [0, ⌧k]. Using this, we
can compute the Laplace transform of Xk

bXk(q,!) =

Z 1

0

dte�!t
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

Θ (tk � t)Θ (t� tk�1)
kY

j=1

pj(⌧j)gj(⌧j)
`j

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

k�1Y

j=1

pj(⌧j)gj(⌧j)
`j

⇥
Z 1

0

dte�!t
Θ (tk � t)Θ (t� tk�1) gk (t� tk�1)

`k

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆Z

~⌧

k�1Y

j=1

pj(⌧j)gj(⌧j)
`je�!tk�1

Z ⌧k

0

d⌧e�!⌧gk(⌧)
`k

=
X

`1,...,`k

�

 
kX

i=1

`i � q

!✓
q

`

◆
bhk(`k,!)

k�1Y

j=1

b�j(`j ,!).

As in the canonical computation, we need to distinguish between the parity of k and we have

bX2s(q,!) =

qX

`=0

✓
q

`

◆
bh2(`,!)bx2s�1(q � `,!), s � 1 (VII.57)

bX2s+1(q,!) =

qX

`=0

✓
q

`

◆
bh1(`,!)bx2s(q � `,!), s � 1. (VII.58)

Note that on the r.h.s we have identify the factors bx the canonical partition function. For k = 1,
we also have bX1(q,!) = bh1(q,!). Introducing odd and even grand canonical partition functions
Ze and Zo, we have

G bZe = Gbh2
G bZo

G bZo = Gbh1
+ Gbh1

G bZe ,

and using Eqs. (VII.55)-(VII.56) we get for G bZ = G bZe + G bZo

G bZ =
Gbh1

+ Gbh2
Gb�1

1� Gb�1
Gb�2

. (VII.59)

Note that, as in Eqs. (VII.55)-(VII.56), Eqs. (VII.59) are not symmetric upon the interchange
1$ 2. This is only due to the fact that we have considered products starting with the matrix A

in the previous analysis. However, these products start either by A or B with probability 1/2,
given the initial draw of v1(0). As a consequence, one should symmetrize Eqs. (VII.59) to get

G bZ =
1

2

Gbh1
+ Gbh2

+ Gbh2
Gb�1

+ Gbh1
Gb�2

1� Gb�1
Gb�1

, (VII.60)

as in the main text. We will see however, that this does not matter for the long time behavior of
the system.
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D.3 Stieltjes transform of �max

Taking x = 0 in Eq. (VII.59), we easily get

bZ(0,!) = !�1, (VII.61)

which, after Laplace inversion yields
Z(0, t) = 1, (VII.62)

and shows that �max is well normalized. As a consequence, for the limit in Eq. (VII.39) to be
well defined, one must have the following asymptotic behavior

Z(q, t) ⇠
t!1

tqE [�qmax] , (VII.63)

which in turns implies in Laplace space

bZ(q,!) ⇠
!!0+

q!!�1�qE [�qmax] . (VII.64)

Taking the limit ! ! 0+ in the r.h.s of Eq. (VII.59), while keeping the ratio !/x = y constant,
yields

G bZ(x,!) ⇡
!!0+

1X

q=0

�
!y�1

�q

q!
q!!�1�qE[�qmax]

=
y

!
E


1

y � �max

�
.

The last expectation is the Stieltjes transform of �max and we get

G bZ(x,!) ⇡
!!0+

y

!

Z
d�

'(�)

y � � , (VII.65)

with ' the density of �max.

D.4 Distribution of �max in the case where ↵A = ↵B and E[⌧ ] = +1
In this case, the persistence exponents are the same, i.e. µ(↵A) = µ(↵B) := µ < 1 ensuring
E[⌧ ] = +1. Note however that the scale factor Ci (such that pi(t) ⇠ Cit

�1�µ) could still be
different. However, since the correlator of � in Eq. (VII.32) is independent of the constant K
such that ⇢(⌫) ⇠⌫!⌫+

K|⌫ � ⌫+|↵, we conclude that CA = CB := C.

To use Eq. (VII.59) to find the Stieltjes transform of �max, we need to compute the behavior
of the Laplace transforms as ! ! 0. We start by linking the long-time behavior of p and gi to
the small-! behavior of the related Laplace transforms

pi(t) ⇠
t!1

C

t1+µ

gi(t) ⇠
t!1

rit

9
>=
>;
 !

8
>>>><
>>>>:

bpi(!) ⇠
!!0

1 + CΓ(�µ)!µ

b�i(q,!) ⇠
!!0

rqiCΓ(q � µ)!µ�q, q � 1

bhi(q,!) ⇠
!!0

rqiC
Γ(1 + q � µ)

µ
!µ�q�1, q � 1

(VII.66)
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Using the same scaling limit !/x = y in the e.g.f of b�i and bhi, we have

Gb�i
(x,!) ⇡

!!0+
1 + CΓ(�µ)

✓
!

y

◆µ

(y � ri)
µ

Gbhi
(x,!) ⇡

!!0+
CΓ(�µ)

✓
!

y

◆µ�1
(y � ri)

µ�1.

Plugging these expressions into Eq. (VII.59), we get

Z
d�

'(�)

y � � =
(y � r1)

µ�1
+ (y � r2)

µ�1

(y � r1)
µ
+ (y � r2)

µ , (VII.67)

which we can invert using Stieltjes inversion formula

'(�) = (r2 � r1)
sinµ⇡

⇡

(z1z2)
µ�1

z2µ1 + z2µ2 + 2(z1z2)µ cos(µ⇡)
, (VII.68)

with zi = |�� ri|.

D.5 Self-averaging of �max for E[⌧ ] < +1
We will consider the case ↵A = ↵B (the case ↵A 6= ↵B can be treated in the exact same way). If
E[⌧ ] <1 then µ > 1. Let us assume that µ 2]1, 2[ in order to carry fewer terms in the Tauberian
analysis. The only important feature is that µ > 1 thus ensuring the existence of E[⌧ ].

Since the persistence has now a finite first moment, the small-! behavior of the Laplace
transforms are modified. We will denote by m⌧ = E[⌧ ] and mi = E[gi(⌧)] (which is finite since
gi(⌧) ⇠⌧!1 ri⌧). We have the behaviors

p(t) ⇠
t!1

C

t1+µ

gi(t) ⇠
t!1

rit

9
>=
>;
 !

8
>>>>>>>><
>>>>>>>>:

bpi(!) ⇠
!!0

1� !m⌧ + CΓ(�µ)!µ

b�i(1,!) ⇠
!!0

mi + riCΓ(1� µ)!µ�1, q � 1

b�i(q,!) ⇠
!!0

rqiCΓ(q � µ)!µ�q, q � 2

bhi(q,!) ⇠
!!0

rqiC
Γ(1 + q � µ)

µ
!µ�q�1, q � 1

, (VII.69)

and get for the e.g.f

Gb�i
(x,!) ⇡

!!0+
1 +mi

!

y
� !m⌧ + CΓ(�µi)

✓
!

y

◆µi

(y � ri)
µi

Gbhi
(x,!) ⇡

!!0+
m⌧ + CΓ(�µi)

✓
!

y

◆µi�1
(y � ri)

µi�1.

Plugging these into Eq. (VII.59) and keeping only the lowest orders, we get
Z

d�
'(�)

y � � =
1

y � m1 +m2

2m⌧

, (VII.70)

which in turn implies that

'(�) = �

✓
�� m1 +m2

2m⌧

◆
. (VII.71)
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Figure VII.5: Different trajectories for v̄1(t) =
p
Nv1(t)/kv(t)k ⇠ �(t) where v(t) evolves

according to Eq. (VII.1) for N = 2500 components. The initial condition v(0) is a Gaussian
vector N (0, IN ). Matrices A and B are drawn from GOE with ⌫±,A = 0.05

p
2 and ⌫±,A = 2

p
2.

E Trajectories generated by the dynamics in Eq. (VII.1)

On Figure VII.5, we give other examples of the types of complex dynamics that arise from the
dynamical equation Eq. (VII.1). The simulations are performed for matrices A and B drawn
from GOE(N) with N = 2500. We chose A to be a contracting matrix and B to be expanding.
As we can see, the dynamical types observed are quite diverse.

First, the dynamics gets stuck in the A-cone on the middle-right plot. Indeed, since N
is finite, the persistence probability Q0(⌧) reaches a finite limit as ⌧ ! 1 which indicates a
non-zero probability of absorption. Note that here the absorption happens in the contracting
cone rendering the system stable.

Second, on the bottom-left and top/bottom-right plots, the dynamics seems to reach limits
cycles. As a consequence, the IIA approximation leading to the distribution of �max is not valid
anymore since a "deterministic" sequence of cones is visited over and over. In this situation, �max

should be equal (or at least very close to zero) and one should account for these dynamical type
with an additional Dirac delta at zero in the expression of '.

Finally, we can observe more complex dynamical types on the top/middle-left plots which
are reminiscent of the dynamics presented on Figure VII.1 of the main text.
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F Extensions

In this final appendix, we consider two extensions related to the properties of matrices A and B.
The generalization of the Lamperti law will be consider in Chapter VIII.

F.1 Gaussian elliptic matrices

We start by considering Gaussian matrices with a slightly more complicated correlation structure.
We assume that entries ij and ji are correlated with a coefficient %. Let S+, S� be two mutually-
free N ⇥N GOE(N) and anti-GOE(N) random matrices. S+ is a standard GOE(N) matrix
thus verifying

E [Sij ] = 0, E
⇥
S
2
ii

⇤
=

2

N
, E [SijSji] =

1

N
, (VII.72)

while S� is its skew-symmetric counterpart. An Gaussian elliptic random matrix A of parameter
% is obtained through

A =

r
1 + %

2
S+ +

r
1� %
2

S�, (VII.73)

and verifies

E [Aij ] = 0, E
⇥
A

2
ii

⇤
=

1 + %

N
, E [AijAji] =

%

N
. (VII.74)

The parameter % interpolates between the Gaussian Orthogonal Ensemble (symmetric matrices,
% = 1), the Ginibre ensemble (% = 0) and the Anti Gaussian Orthogonal Ensemble (skew-
symmetric matrices, % = �1). In this case, the correlator of process �(t) cannot be simply
expressed as the moments of A and one must evaluate the mixed-moments of A and A

>

h�(t)�(s)i = ⌧
�
(A)t(A>)s

�
p
⌧ ((A)t(A>)t) ⌧ ((A)s(A>)s)

. (VII.75)

In Chapter IX, we show an exact explicit computation of the mixed-moments ⌧
�
(A)t(A>)s

�

by mapping the problem to the enumeration of partitions of Temperley-Lieb algebras. We can
therefore give the expression of the mixed moments for t, s even (the case t, s odd is similar, see
Chapter IX)

⌧
⇣
A

t
�
A
>�s⌘ =

(t^s)/2X

k=0

%(t+s)/2�2k (2k + 1)2

(t/2 + k + 1)(s/2 + k + 1)

⇥
✓

s

s/2 + k

◆✓
t

t/2 + k

◆
,

(VII.76)

where t ^ s = min (t, s).
We can look at some limit cases which are of interest. The cases % = ±1 are discussed

in Chapter IX where it is explained that one recovers the Catalan numbers C(t+s)/2 for the
symmetric case % = 1, or sign-flipping Catalan numbers in the skew-symmetric case % = �1.

In the case % = 0, which corresponds to matrices drawn from the real Ginibre ensemble, Eq.
(VII.76) simplifies greatly to

⌧
⇣
A

t
�
A
>�s⌘ = �(t� s), (VII.77)

and �(t) is therefore a Gaussian white noise. The persistence probability thus behaves as

Q0(⌧) = 2�⌧ . (VII.78)

224



F. Extensions

10
0

10
1

10
2

τ

10
−3

10
−2

10
−1

10
0

Q
0
(τ
)

� = 0

� = 0.1

� = 0.2

� = 0.3

� = 0.4

� = 0.5

� = 0.6

� = 0.7

� = 0.8

� = 0.9

Figure VII.6: Persistence probability for even-time process �(2`) for Gaussian elliptic matrices.
The covariance of � is given by Eq. (VII.76). The dashed line correspond to both limits % = 0
(Ginibre matrices; Q0(⌧) = 2�⌧ ) and % = 1 (GOE matrices; Q0(⌧) ⇠ ⌧�µ).

Intuitively, since Ginibre matrices have a singular value decomposition A = OΣV> with O and V

independent, the action of matrix A on v(t) completely erases previous effects. Indeed, take for
instance the first time steps of the dynamics v(2) = OΣV>OΣV>v(1). The elements of V>O are

(V>O)kl =
X

i

VikOil ⇡ NhVikOili ⇡ NhVikihOili ⇡ 0,

where we used that components of columns of orthogonal matrices are asymptotically independent.
Therefore, the innermost matrix V

>
O of v(2) is, roughly speaking, zero on average which

"reshuffles" v(t).
In the generic case % 2]0, 1[, we can see numerically on Figure VII.6 that the persistence has

an exponential cutoff (%) such that

Q0(⌧) ⇠
⌧!1

⌧�µ(%)e�(%)⌧ . (VII.79)

The precise expression of the cutoff seems hard to tackle analytically. Even though the asymptotics
of the correlator can be computed analytically using a saddle-point method (see Chapter IX), no
known results on the link between correlator’s asymptotics and persistence decay can be applied,
to the best of our knowledge.

F.2 Outlying eigenvalues

In this section, let us consider the case of a symmetric N ⇥N O(N)-invariant random matrix of
the form

A = O

0
BBBBBBBB@

⌫o
. . .

⌫o
⌫1

. . .

⌫(1�q)N

1
CCCCCCCCA

O
>, (VII.80)
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where (⌫i)i=1,··· ,(1�q)N are the eigenvalues of a matrix M whose spectral measure ⇢M is compactly
supported on [[⌫�, ⌫+]], 0  ⌫� < ⌫+ as N !1, ⌫o > 0 6 is an isolated eigenvalue repeated qN
times and O an orthogonal matrix. With this form, we can write the spectral measure of A as
N !1

1

N

X

k

�(⌫ � ⌫k) =
1

N

(1�q)NX

i=1

�(⌫ � ⌫i) + q�(⌫ � ⌫0)

! (1� q)⇢M(⌫) + q�(⌫ � ⌫0) := ⇢A(⌫).

The computation of the moments of A in the large-dimension limit is straightforward and yields

fA(t) = (1� q)fM(t) + q⌫t0. (VII.81)

Now, in order to estimate the asymptotic behavior of the correlator of �(t) under the dynamics
governed by A, one needs to consider the relative position between ⌫o and the upper edge ⌫+ of
the spectrum of M. We have the asymptotic behaviors:

• if ⌫o < ⌫+, i.e. ⌫0 is lost in the bulk of M or lies below the lower edge, the asymptotic
behavior of M is transmitted to A

fM(t) ⇠
t!1

(1� q)KΓ(↵+ 1)⌫t+↵+1
+ t�↵�1. (VII.82)

• if ⌫o � ⌫+, i.e. ⌫o is an outlying eigenvalue, which escaped the bulk rightward, the
asymptotic behavior is governed by the outlier

fA(t) ⇠
t!1

q⌫to. (VII.83)

Consequently for the correlator of �(t), the asymptotic behavior is rather different

h�(t)�(s)i ⇠
t,s!1

8
<
:

⇣
2
p
ts

t+s

⌘↵+1

, when ⌫o < ⌫+

1, when ⌫o � ⌫+
. (VII.84)

The persistence probability thus also depends on the relative positions between ⌫o and ⌫+

Q0(⌧) ⇠
⌧!1

(
⌧�µ(↵), when ⌫o < ⌫+

c, when ⌫o � ⌫+
, (VII.85)

where c 2 [0, 1] is a constant. We therefore expect the same cone-trapping phenomenon as in the
finite N case if dynamical matrices A and B both have outlying eigenvalues. The probability
density function of �max will be given by a sum of two Dirac deltas

'(�) =
�(�� ln |⌫o,A|) + �(�� ln |⌫o,B|)

2
. (VII.86)

Even though, the construction of Eq. (VII.80) might seem a bit ad-hoc, it is actually easily
achieved by a well-known set of random matrices. Consider a N ⇥ T random matrix H whose

6We only consider the case where ⌫o, ⌫� and ⌫+ are positive for simplicity.
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Wishart of parameter q and �� = (1� q)2. We see that when q > 1, we recover a power-law decay
dictated by the square-root singularity of the Marcenko-Pastur distribution, whereas q < 1 shows
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entries are time observations of random quantities Hit = xt
i. The sample-covariance matrix of

these observations, namely

E =
1

T
HH
> (VII.87)

is called a Wishart matrix. If in addition, the true covariance matrix C of the observations is
the identity C = 1, then E := W is called a white Wishart. It is well-known that the spectral
distribution of white Wishart matrices converges towards the Marcenko-Pastur distribution ⇢MP

⇢MP (⌫) =

q
[(⌫+ � ⌫)(⌫ � ⌫�)]+

2⇡q⌫
+

1� q

q
�(⌫)Θ(q � 1), (VII.88)

whenever T,N !1 such that q = N/T is fixed and where ⌫± = (1± q)2. We therefore see that,
when the number of observables N is larger than the number of observations T , N�T := N(1�q�1)
eigenvalues are equal to 0 and one recovers the previous construction with the exchange q ! q�1

and ⌫o = 0. The matrix A = ↵1 �W has an outlying eigenvalue ⌫o = ↵. The prediction of a
plateauing persistence probability for q < 1 is confirmed by numerical simulations displayed on
Figure VII.7.

In the case of the rank-one BBP transition, a single eigenvalue pops out of the bulk as soon
as � > �c where � is such that

A = M+ �
uu>

kuk2 , (VII.89)

with u a Gaussian random vector. However, in the large N limit, this eigenvalue will not
contribute to the spectrum of A since it has a weight N�1. Consequently, the BBP transition
affects the persistence only at finite N .
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CHAPTER VIII

Occupation time of a renewal process

coupled to a discrete Markov chain

Abstract

A semi-Markov process is one that changes states in accordance with a Markov
chain but takes a random amount of time between changes. We consider the general-
ization to semi-Markov processes of the classical Lamperti law for the occupation
time of a two-state Markov process. We provide an explicit expression in Laplace
space for the distribution of an arbitrary linear combination of the occupation times
in the various states of the process. We discuss several consequences of this result.
In particular, we infer the limiting distribution of this quantity rescaled by time in
the long-time scaling regime, as well as the finite-time corrections to its moments.

From: [3] Théo Dessertaine, Claude Godrèche, and Jean-Philippe Bouchaud. Occu-
pation time of a renewal process coupled to a discrete Markov chain. Journal of Statistical
Mechanics: Theory and Experiment, 2022(6):063204, June 2022.

1 Introduction

Studies of the occupation time of stochastic processes have a long history, starting with the
investigation by Lévy of the fraction of time spent by Brownian motion above zero or of
the fraction of time where the first player is ahead of the second, in repeated coin toss [145].
The limiting density of this fraction of time is the U-shaped arcsine law, with a minimum
at 1/2 and infinite tails at 0 and 1 (see [146, 147] for a summary of [145]). These founding
investigations were followed by many subsequent studies [146, 148, 149, 150, 151, 152]
and the topic is now a classic in probability theory (see [153, 154] for reviews).

Only lately was this topic revisited in the physics community, motivated, in particular,
by studies on phase persistence for self-similar coarsening systems, such as breath figures
[155], Ising spin systems quenched from high temperature to zero temperature (or more
generally to a temperature below the critical temperature) [156, 157], the diffusion
equation evolving from a random initial condition [158, 159], to name but a few. The
statistics of the occupation time for Ising spins systems, the voter model and diffusive
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persistence were addressed in [160], while [161] is entirely devoted to this last subject.
However, obtaining a complete solution to the question of the statistics of the occupation
time for these extended systems is currently out of reach. Partial analytical studies, as well
as numerical or approximate theoretical treatments, allow nevertheless to make progress
[160, 161, 162, 163, 164, 165]. A noticeable series of works on the occupation time of the
voter model [166, 167, 168, 169, 170] was a source of inspiration for the endeavor made in
[160] on this topic. A study on the same issues was further continued in [171].

The above mentioned works [160, 161] were followed by investigations on the statistics
of the occupation time for simpler systems, more amenable to exact analysis, and closer
to the main stream of probabilistic studies [163, 172, 173, 174, 175, 176, 177, 178]. We
refer the reader to [128] for subsequent references and to [179, 180, 181, 182, 183, 184]
for more recent works.

The study presented below belongs to the same vein and gives a generalization to
multi-state Markov processes of the Lamperti law for the occupation time of a two-state
Markov process [150], a problem also considered in [185, 186, 187]. Our motivation comes
from a recent work [2] on cone-wise linear dynamics in large dimensions. Each “cone” is
characterized by a stability matrix chosen to be from the Gaussian Orthogonal Ensemble.
The selected cone is determined by the direction of the dynamically evolving vector with
respect to a fixed set of vectors. Because of the random nature of the stability matrix, the
cone-switching process can be described, for large dimensions, as a semi-Markov process,
with a power-law distribution of switching times [2]. The dynamical system investigated in
[2] is among the few known examples where the Lyapounov exponent is not self-averaging
(see e.g., [188] for a similar mechanism in the context of Pomeau-Manneville maps).

We consider an irreducible Markov chain ↵1,↵2, . . . , with discrete state space {aj , j =
1, 2, . . . , q}, and transition matrix

Pij = P(↵n+1 = aj |↵n = ai). (VIII.1)

In addition, we consider a sequence of time intervals ⌧1, ⌧2, . . . , which represent the time
spent in the states ↵1,↵2, . . . More specifically, the jumps occur at the random epochs
of time t1, t2, . . ., from some time origin t0 = 0. The intervals of time between jumps,
⌧1 = t1, ⌧2 = t2 � t1, . . ., are independent and identically distributed random variables
with a common density ⇢(⌧), thus forming a renewal process [189, 190, 191, 192]. The
process defined by the pairs (↵n, tn), n = 1, 2, . . . , is known as a Markov renewal process
in the mathematical literature, while the process defined as

↵(t) = ↵n, tn < t < tn+1 (VIII.2)

is a simple example of a semi-Markov process [145, 193, 152, 194, 195]. The latter is not
Markovian except at the epochs of jumps. As set forth in [195], a semi-Markov process is
one that changes states in accordance with a Markov chain but takes a random amount
of time between changes. If the latter is exponentially distributed, the process becomes
an ordinary Markov chain in continuous time.
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1. Introduction

The purpose of this chapter is to investigate the statistics of the sum

St =

Z t

0
du↵(u) = ↵1⌧1 + · · ·+ ↵Nt⌧Nt + ↵Nt+1

⇣
t�

NtX

i=1

⌧i

⌘
, (VIII.3)

where Nt is the random number of jumps between 0 and t. More precisely, we will
investigate the limiting distribution fM (x) of the fraction Mt = St/t in the long-time
limit, where

M = lim
t!1

Mt = lim
t!1

St

t
= lim

t!1

1

t

Z t

0
du↵(u),

that is, the distribution of the temporal mean of ↵(t), when the density ⇢(⌧) has a
power-law tail (VIII.7), with index ✓ < 1.

There are several possible interpretations to the quantities St or Mt. The first one is
in terms of occupation times. To simplify, consider the case where the number of states
is q = 2 with a1 = 0 and a2 = 1. Then St is the occupation time of state a2 (i.e., the
time spent in this state), up to time t. More generally, St is the linear combination of the
occupation times of the process in the various states a1, . . . , aq,

St = a1T
(1)
t + a2T

(2)
t + · · ·+ aqT

(q)
t , (VIII.4)

where T
(j)
t is the occupation time in state aj (i.e., the time spent in this state), up to

time t, with
qX

j=1

T
(j)
t = t.

Equivalently, Mt is the mean of a1, a2, . . . , aq weighted by the fractions of time T
(1)
t /t,

T
(2)
t /t, . . . , T (q)

t /t, spent in these various states.
A second interpretation is in terms of a one-dimensional random walk in continuous

time. Let ↵1,↵2 . . . be the respective positions of the walker during the time intervals
⌧1, ⌧2, . . . , with ↵ = 1, 2, . . . , q. Then Mt = St/t is the mean position of this walker up to
time t. Alternatively, let ↵1,↵2 . . . be the respective velocities of the walker during the
time intervals ⌧1, ⌧2, . . . . Then St is the position at time t of this walker and Mt is its
mean speed. Likewise, if ↵ is a Potts spin with q states a1, . . . , aq, then Mt represents
the mean magnetization up to time t.

To anticipate on what follows, a natural question is to know whether the process
is ergodic, i.e., whether the distribution of the mean Mt becomes narrow around h↵i in
the long-time limit, or otherwise stated, is self-averaging. As we will see, the answer
depends on the nature of the distribution of waiting times ⌧1, ⌧2, . . . . Finally, note that
the sum St is a particular instance of what is known in the mathematical literature as a
renewal-reward process (see e.g., [192, 195] for details).
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In the specific case where the distribution of waiting times ⇢(⌧) has a power-law tail
(VIII.7), with index ✓ < 1, we find that, within each sector ai < x < ai+1, (i = 1, 2, . . . , q),

fM (x) =
sin⇡✓

⇡

�P
ji ⇡j �

✓�1
j

��P
j>i ⇡j �

✓
j

�
+
�P

ji ⇡j �
✓
j

��P
j>i ⇡j �

✓�1
j

�
�P

ji ⇡j �
✓
j

�2
+
�P

j>i ⇡j �
✓
j

�2
+ 2 cos⇡✓

�P
ji ⇡j �

✓
j

��P
j>i ⇡j �

✓
j

� ,

(VIII.5)

where �j = |x� aj |, and ⇡j is the j�th component of the stationary measure associated
with the Markov chain. For x outside the range of values (a1, aq), fM (x) = 0. This
result is universal with respect to ⇢(⌧), i.e., independent of the details of this distribution.
The same expression was obtained in [185, 186] as a generalization of the Boltzmann
distribution for systems showing weak ergodicity breaking [196] (see also [187]) 1. For a
uniform stationary probability measure over two states, the expression (VIII.5) recovers
the classic Lamperti law [150] (see (VIII.25)).

In the context of the present part of the thesis, i.e. for conewise linear systems, (VIII.5)
gives the distribution of the Lyapunov exponent when the mean waiting time within each
cone is infinite. The study of the present chapter stems for a natural generalization of the
system presented in Chapter VII. Indeed, the model of the previous chapter consists in
the simple case where the Markov chain encoding the cone structure has the particular
form

P =

✓
0 1
1 0

◆
,

i.e. the system can only jump from the A-cone to the B-cone and vice versa. Consider
now that our conewise linear systems consists in four different cones Ci associated with
matrices Ai such that

C1 = {x 2 R
N , x1 > 0 and x2 > 0}, A1 =

0
@
1 0
0 �1 02,N�2

0N�2,2 1N�2

1
A ,

C2 = {x 2 R
N , x1 > 0 and x2 < 0}, A2 =

0
@
�1 0
0 1

02,N�2

0N�2,2 1N�2

1
A ,

C3 = {x 2 R
N , x1 < 0 and x2 > 0}, A3 =

0
@
1 0
0 �1 02,N�2

0N�2,2 1N�2

1
A ,

C4 = {x 2 R
N , x1 < 0 and x2 < 0}, A4 =

0
@
�1 0
0 �1 02,N�2

0N�2,2 1N�2

1
A .

1We will come back to [185, 186, 187], which are closely related to the present work, in Section 6.
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In this very simple example, the matrix associated to the cone-switching process is

P =

0
BB@

0 1 0 0
0 0 0 1
0 0 0 1
1 0 0 0

1
CCA ,

as A1C1 ✓ C2, A2C2 ✓ C4, A3C3 ✓ C4 and A4C4 ✓ C1. The associated stationary measure
is therefore ⇡ = (1/3, 1/3, 0, 1/3) and we see that the system can never end up in C3. Of
course, in this trivial example, the time spent in each cone is designed to be ⌧ = 1 exactly,
and the associated Lyapounov exponent is 0 which corresponds to the self-averaging
behavior described in Eq. (VIII.69) in Appendix VIII. For general matrices Ai, more
complex cone-switching structure should be considered which therefore motivates the
study of this chapter.

2 Renewal processes: a brief reminder

As mentioned above, jumps (or renewals) occur at the random epochs of time t0, t1, . . ..
We take the origin of time at t0 = 0. Intervals of time between two jumps, ⌧1 = t1, ⌧2 =
t2� t1, . . ., are IID random variables with common density ⇢(⌧). In other words, ⌧2, ⌧3, . . .
are independent copies of the generic waiting time ⌧1. The number of jumps which
occurred between 0 and t, denoted by Nt, is the random variable for the largest n for
which tn  t, with

tn = ⌧1 + · · ·+ ⌧n.

With this definition, if there is no jump between 0 and t, then Nt = 0. The probability of
such an event, or survival probability (or yet persistence probability), reads:

q(t) = P(⌧1 > t) =

Z 1

t
d⌧ ⇢(⌧).

The density ⇢(⌧) can either be a narrow distribution with all moments finite, in which case
the decay of q(t), as t!1, is faster than any power law, or a distribution characterized
by a power-law tail with index ✓ > 0

q(t) =

Z 1

t
d⌧ ⇢(⌧) ⇡

⇣⌧0
t

⌘✓
, (VIII.6)

hence
⇢(⌧) ⇡ c

⌧1+✓
, (VIII.7)

where ⌧0 is a microscopic time scale and c = ✓⌧ ✓0 is the tail parameter. If ✓ < 1 all
moments of ⇢(⌧) are divergent, if 1 < ✓ < 2, the first moment h⌧1i is finite but higher
moments are divergent, and so on. In Laplace space, where s is conjugate to ⌧ , for a
narrow distribution we have

L
⌧
⇢(⌧) = b⇢(s) =

Z 1

0
d⌧ e�s⌧⇢(⌧) =

s!0
1� h⌧1is+

1

2

⌦
⌧21
↵
s2 + · · · .

233



VIII. Renewal processes and Markov chains

For a broad distribution, (VIII.6) yields

b⇢(s) ⇡
s!0

⇢
1�As✓ (✓ < 1)
1� h⌧1is+As✓ (1 < ✓ < 2),

(VIII.8)

and so on, where A = c|Γ(�✓)|. From now on, unless otherwise stated, we will only
consider the case 0 < ✓ < 1. When ✓ > 1, the process becomes ergodic, in the sense that
M = limt!1 St/t converges to the ergodic mean, with possibly non trivial corrections
when t is large but finite (see Section 5).

The last time interval involved in the sum (VIII.3) is the backward recurrence time
Bt = t� tNt , i.e., the length of time measured backwards from t to the last jump before
t, where tNt , the time of occurrence of this last jump, is the sum of a random number of
random variables

tNt = ⌧1 + · · ·+ ⌧Nt .

The backward recurrence time has also the interpretation of the age of the current,
unfinished, interval at time t. The statistics of the quantities Nt, tNt , Bt is investigated in
detail in [175], which also contains relevant references on renewal processes.

3 Distribution of the sum St when ↵1,↵2, . . . are IID

random variables

We start our study with the simpler case where the random variables ↵1,↵2, . . . in
(VIII.3) are independent and identically distributed with common distribution f↵(a), as
a preparation for the more elaborate situation where these random variables form the
Markov chain defined in (VIII.1), and also because this case has an interest in itself. The
distribution f↵(a) is either a density,

f↵(a) =
d
da

P(↵  a),

for continuous random variables, or is given by

f↵(a) =

qX

j=1

pj�(a� aj),

qX

j=1

pj = 1, (VIII.9)

in the discrete case. As we will see, in the long-time scaling regime, the distribution of
the fraction M = limt!1 St/t for this latter case is the same as for the Markov renewal
process investigated in Section 4.

3.1 The distribution of St

The methods used in [175] for the computation of the distribution of the occupation time
of a two-state process can be easily extended to the case of the multi-state process at
hand.
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3. Distribution of the sum St when ↵1,↵2, . . . are IID random variables

The joint probability density of St and Nt reads

fSt,Nt(t, y, n) =
d
dy

P(St  y,Nt = n),

from which the density of St is obtained by summing upon n

fSt(t, y) =
X

n�0

fSt,Nt(t, y, n).

The computation of this density can be made in Laplace space. The transform

bfSt(s, u) =L
t
L
y
fSt(t, y)

is taken with respect to the two coordinates t and y with conjugate variables s and u.
This yields

bfSt(s, u) =
X

n�0

L
t

⌦
e�uStI(tn < t < tn + ⌧n+1)

↵

=
X

n�0

⌧
e�u(↵1⌧1+···+↵n⌧n)eu↵n+1tn

Z tn+⌧n+1

tn

dt e�ste�u↵n+1t

�
,

where the average is taken upon the ⌧i and ↵i and I(.) is the indicator random variable
of the event inside the parentheses, equal to 1 if this event occurs and 0 otherwise. The
expression of the integral is

Z tn+⌧n+1

tn

dt e�t(s+u↵n+1) = e�(s+u↵n+1)tn 1� e�(s+u↵n+1)⌧n+1

s+ u↵n+1
,

thus

bfSt(s, u) =
X

n�0

*
e�u(↵1⌧1+···+↵n⌧n)e�stn 1� e�(s+u↵n+1)⌧n+1

s+ u↵n+1

+
(VIII.10)

=
X

n�0

⌧
b⇢(s+ u↵1) . . . b⇢(s+ u↵n)

1� b⇢(s+ u↵n+1)

s+ u↵n+1

�
(VIII.11)

=
X

n�0

hb⇢(s+ u↵)in
⌧
1� b⇢(s+ u↵n+1)

s+ u↵

�
, (VIII.12)

where, in the last two lines, the averages are taken upon the ↵i only.
We thus finally obtain

bfSt(s, u) =
1

1� hb⇢(s+ u↵)i

⌧
1� b⇢(s+ u↵)

s+ u↵

�
, (VIII.13)

where the averages are taken upon ↵. For a generic distribution f↵(a), we get

bfSt(s, u) =
1

1�
R

da f↵(a)b⇢(s+ ua)

Z
da f↵(a)

1� b⇢(s+ ua)

s+ ua
, (VIII.14)

235



VIII. Renewal processes and Markov chains

while for the particular case of a discrete distribution (see (VIII.9)), (VIII.13) yields

bfSt(s, u) =
1

1�Pq
j=1 pj b⇢(s+ uaj)

qX

j=1

pj
1� b⇢(s+ uaj)

s+ uaj
. (VIII.15)

3.2 Scaling regime

In the long-time regime where s and u are small and comparable, using (VIII.8), the
result (VIII.13) yields

bfSt(s, u) ⇡
h(s+ u↵)✓�1i
h(s+ u↵)✓i ⇡

1

s
g(⇠), ⇠ =

u

s
, (VIII.16)

where

g(⇠) =
h(1 + ⇠↵)✓�1i
h(1 + ⇠↵)✓i .

If ↵ is a continuous random variable we have

g(⇠) =

R
daf↵(a)(1 + ⇠a)✓�1

R
daf↵(a)(1 + ⇠a)✓

, (VIII.17)

while for the discrete case (VIII.15) gives

g(⇠) =

P
j pj(1 + ⇠aj)

✓�1

P
j pj(1 + ⇠aj)✓

. (VIII.18)

The scaling behavior (VIII.16) entails the following properties (see Appendix B of [175]
for more details). First, St/t possesses a limiting distribution given by

fM (x) = lim
t!1

fSt/t(t, x), x =
y

t
.

Hence

bfSt(s, u) =

Z 1

0
dt e�sthe�uSti =

Z 1

0
dt e�sthe�utM i =

⌧
1

s+ uM

�
,

so that

g(⇠) =

⌧
1

1 + ⇠M

�
=

Z 1

0
dx

fM (x)

1 + ⇠x
. (VIII.19)

This can be inverted as 2

fM (x) = � 1

⇡x
lim
✏!0

Im

✓
g

✓
� 1

x+ i✏

◆◆
.

2Setting ⇠ = 1/y in (VIII.19) yields

h(y) =
1

y
g

✓
1

y

◆
=

Z
1

0

dx
fM (x)

x+ y
,

showing that h(y) is the Stieltjes transform of fM (x) [197].
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3. Distribution of the sum St when ↵1,↵2, . . . are IID random variables

Furthermore, the moments of M can be obtained, when they exist, by expanding g(⇠) as
a Taylor series, since (VIII.19) implies that

g(⇠) =
X

k�0

(�⇠)k
D
Mk

E
. (VIII.20)

We will come back to the moments of M in Section 5.
In the continuous case, the result is

fM (x) =
sin⇡✓

⇡

I<✓�1(x)I
>
✓ (x) + I<✓ (x)I>✓�1(x)

I<✓ (x)2 + I>✓ (x)2 + 2 I<✓ (x)I>✓ (x) cos⇡✓
, (VIII.21)

with

I<✓ (x) =

Z x

�1

da (x� a)✓f↵(a), I>✓ (x) =

Z 1

x
da (a� x)✓f↵(a). (VIII.22)

In the discrete case (see (VIII.9)) we have in each sector ai < x < ai+1,

I<✓ (x) =
X

ji

pj(x� aj)
✓, I>✓ (x) =

X

j>i

pj(aj � x)✓, (VIII.23)

which results in the expression for fM (x) given by (VIII.5), up to the replacement of ⇡j
by pj . Similar results can be found in [185, 186, 187] (see Section 6).

Recently, an interesting parallel with problems related to random matrices has been
made. 3 Setting ⇠ = 1/y, the Stieltjes transform takes the generic form

Z
dµ(z)

y + z
:= h(y) =

1

�

P 0(y)

P (y)
, (VIII.24)

with P (y) =
R
dzf(z)(y + z)� , � = ✓ and f = f↵ and µ the distribution of M in our case.

A similar expression for the Stieltjes transform of the measure is found in the context of
the Finite Free Convolution in [199] with � = n 2 N

⇤ and f the negative Markov-Krein
transform of µ. In the same way, the same expression is obtained in [200] in the case of
the rank-one HCIZ integral interpolating between classical and free convolution. In this
context, � = �c with c the interpolation parameter, and f the Markov-Krein transform
of µ. The precise nature of the connection is still unclear though.

3.3 Examples

Let us take, as a first example, the case where f↵ is discrete (see (VIII.9)), with q = 2,
and p1 = p2 = 1/2. Then, if a1 < x < a2, (VIII.21) and (VIII.23) yield

fM (x) =
(a2 � a1) sin⇡✓

⇡

(x� a1)
✓�1(a2 � x)✓�1

(x� a1)2✓ + (a2 � x)2✓ + 2 cos⇡✓(x� a1)✓(a2 � x)✓
,

(VIII.25)

3Observations made with Pierre Mergny upon noticing the similarities between (VIII.21) and Eq. (10)
from [198].

237



VIII. Renewal processes and Markov chains

and fM (x) = 0 otherwise, which is the law found by Lamperti [150]. This function has a
power-law singularity with negative exponent at both ends, x! aj (j = 1, 2),

fM (x) ⇡ sin⇡✓

⇡(a2 � a1)✓
|x� aj |

✓�1. (VIII.26)

It is U-shaped, as the arcsine law,

fM (x) =
1

⇡
p
(a2 � x)(x� a1)

,

to which it reduces when ✓ = 1/2, as long as ✓ < ✓c = 0.594612..., while a local maximum
appears at x = (a1 + a2)/2 when ✓ > ✓c [163, 175].

As a second example, let the random variable ↵ be uniform between �1 and 1. Then,
by (VIII.22), we have

I<✓ (x) = I>✓ (�x) = (1 + x)✓

2(1 + ✓)
,

and therefore, if �1 < x < 1, (VIII.21) implies

fM (x) =
2(1 + ✓) sin⇡✓

⇡✓

(1� x2)✓

(1� x)2(1+✓) + (1 + x)2(1+✓) + 2 cos⇡✓(1� x2)(1+✓)
,

and fM (x) = 0 otherwise. This function vanishes as a power-law at both ends, x! ±1,
with a positive exponent

fM (x) ⇡ (1 + ✓) sin⇡✓

21+✓⇡✓
(1⌥ x)✓,

and is always maximum at x = 0. Note that (VIII.27) reduces to the arcsine law for
✓ = �1/2.

Finally, it is easy to see on both expressions (VIII.25) and (VIII.27) that fM (x)!
f↵(x) for ✓ ! 0 (complete absence of self-averaging), and that, when ✓ ! 1, fM (x)
becomes a � function centered at h↵i, that is, at (a2+a1)/2 for the former and at 0 for the
latter (ergodicity). The same holds true for the general expressions (VIII.5) and (VIII.21),
as can be seen on (VIII.17) and (VIII.18). We will come back to these limits and their
interpretations in Section 5 (see also [150, 160, 161, 163, 175, 185, 186]). Figure VIII.1
shows numerical simulations for different continuous distributions for ↵.

4 Distribution of the sum St for a Markov renewal process

We now assume the Markov chain to be irreducible with the associated stationary
probability measure h⇡| = (⇡1, . . . ,⇡q) satisfying

h⇡| = h⇡|P,
qX

i=1

⇡i = 1. (VIII.27)
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Figure VIII.1: Probability density function fM (x) for different continuous distributions
for ↵ and different values of ✓. (a) Uniform distribution on [0, 1]. (b) Exponential
distribution of parameter 1. (c) Standard Gaussian distribution. (d) Arcsine distribution.
We can clearly see the two different limits ✓ ! 0+ (M identifies to ↵) and ✓ ! 1� (M
self-averages).

The main results of this section are, first, the exact expression (VIII.31) of the
distribution fSt of the sum St in Laplace space, and secondly the scaling form (VIII.33)
which leads to the limiting distribution (VIII.5) of the rescaled variable M in real space.
This latter expression is the same as that founded for the IID case in Section 3, up to
the replacement of ⇡j by pj . The difference between the Markov renewal process and the
IID case is that the stationary distribution (⇡1, . . . ,⇡q) is generated dynamically for the
former, while the weights pi are given a priori for the latter.

4.1 The distribution of the sum St

We start again from (VIII.11)

bfSt(s, u) =
X

n�0

⌧
b⇢(s+ u↵1) . . . b⇢(s+ u↵n)

1� b⇢(s+ u↵n+1)

s+ u↵n+1

�
, (VIII.28)

where now the average is upon the configurations {↵1,↵2, . . . ,↵n+1} of the chain. A
realization of such a configuration, with Nt = n fixed, is given by the sequence of values

aj1 , aj2 , . . . , ajn+1 , (VIII.29)
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where each of the indices j1, j2, . . . takes the values 1, . . . , q. Let xj and yj denote the
quantities appearing in (VIII.15)

xj = b⇢(s+ uaj), yj =
1� b⇢(s+ uaj)

s+ uaj
.

We also denote by Qj1 = P(↵1 = aj1) the probability that the first value taken by ↵ be
aj1 .

Now (VIII.28) entails

bfSt(s, u) =
X

n�0

X

j1,...,jn+1

Qj1 xj1Pj1,j2 xj2Pj2,j3 . . . xjnPjn,jn+1 yjn+1 ,

or, with matrix notations,

bfSt(s, u) =
X

n�0

X

j1,...,jn+1

Qj1 ∆
x
j1,j1Pj1,j2 ∆

x
j2,j2Pj2,j3 . . .∆

x
jn,jnPjn,jn+1 ∆

y
jn+1,jn+1

,

where we have introduced the diagonal matrices ∆x et ∆y,

∆
x = diag(x1, . . . , xq), ∆

y = diag(y1, . . . , yq).

So

bfSt(s, u) =
X

n�0

X

j1,jn+1

Qj1(∆
x
P)nj1,jn+1

∆
y
jn+1,jn+1

=
X

n�0

hQ| (∆x
P)n∆y |Ri , (VIII.30)

with

|Ri =

0
B@
1
1
...

1
CA , hQ| = (Q1, . . . , Qq),

so that hQ|Ri = 1. Equation (VIII.30) finally leads to the key result

bfSt(s, u) = hQ| (1�∆
x
P)�1

∆
y |Ri . (VIII.31)

For u = 0, this expression yields

bfSt(s, 0) =
1� b⇢(s)

s
hQ| (1� b⇢(s)P)�1 |Ri = 1

s
,

showing that fSt is well normalized.

4.2 Scaling regime

In the long-time regime where s and u are small and comparable, using again (VIII.8),
we have

∆
x ⇡ 1�As✓∆✓,
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with
∆✓ = diag((1 + ⇠a1)

✓, . . . , (1 + ⇠aq)
✓).

Likewise
∆

y ⇡ As✓�1
∆✓�1.

The matrix P is dominated by the Perron-Frobenius eigenvalue 1, hence the matrix
(1�∆x

P)�1 becomes singular when s! 0. The final result reads

bfSt(s, u) = hQ| (1�∆
x
P)�1

∆
y |Ri ⇡ 1

s

h⇡|∆✓�1|Ri
h⇡|∆✓|Ri

=
1

s
g(⇠), (VIII.32)

where

g(⇠) =

P
j ⇡j(1 + ⇠aj)

✓�1

P
j ⇡j(1 + ⇠aj)✓

, (VIII.33)

as we now show.
We write

1�∆
x
P ⇡ 1� (1�As✓∆✓)P ⇡ 1� P+As✓∆✓P.

The matrix M = 1� P has a zero eigenvalue, with associated (right and left) eigenvectors

|Ri , hL| = (⇡1,⇡2, . . . ) = h⇡| ,

i.e.,
M |Ri = 0 hL|M = 0.

For a generic matrix G, it is known that, ✏ being a small parameter,

(M+ ✏G)�1 ⇡ 1

✏

|Ri hL|
hL|G|Ri . (VIII.34)

Here, using (VIII.34), we get

(M+As✓∆✓P)
�1 =

1

As✓
|Ri hL|
hL|∆✓P|Ri

=
1

As✓
|Ri hL|
hL|∆✓|Ri

,

since P |Ri = |Ri. Thus

hQ| (1�∆
x
P)�1

∆
y |Ri ⇡ hQ|Ri1

s

hL|∆✓�1|Ri
hL|∆✓|Ri

=
1

s

h⇡|∆✓�1|Ri
h⇡|∆✓|Ri

,

which is (VIII.32).
Coming back to (VIII.33) we recognize the expression (VIII.18) found previously,

up to the replacement of pj by ⇡j , the stationary distribution. As a consequence, the
result for the distribution of the mean M = limt!1 St/t is the same as before (up to
the replacement of pj by ⇡j), i.e., it is given by (VIII.21) and (VIII.23), resulting in
(VIII.5). The rationale behind this result is that the chain visits a great many times all
accessible states. Of course, as we will see shortly, finite-time behaviors are different for
the IID situation of Section 3 and for the Markov case of the present section. Finally,
Figure VIII.2 shows examples of simulations of M for two Markov chains and different
values of ✓.
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Figure VIII.2: Probability density function fM (x) for different two different Markov
chains on the states {1, 2, 3, 4} and values of ✓. (a) Deterministic Markov chain defined
by Pij = �j,i+1 with uniform stationary measure |⇡i = 1

4(1, 1, 1, 1). (b) Generic Markov
chain with transition matrix

P =

0
BB@

0.05 0.1 0.75 0.1
0.25 0.25 0.25 0.25
0.15 0.2 0.3 0.35
0.3 0.3 0.15 0.25

1
CCA ,

and stationary measure |⇡i = (0.191, 0.217, 0.337, 0.255).

5 Moments

5.1 Moments in the long-time regime

The moments of the mean M can be obtained from (VIII.33), as mentioned above (see
(VIII.20)). For instance, the first three moments read

hMi = h↵i, hM2i = ✓h↵i2 + (1� ✓)h↵2i,

hM3i = ✓2h↵i3 + 3

2
✓(1� ✓)h↵ih↵2i+ (1� ✓)(2� ✓)

2
h↵3i. (VIII.35)

These results manifest the absence of self-averaging of the process as long as ✓ < 1. When
✓ ! 0, M identifies to ↵ (complete absence of self-averaging). For ✓ = 1, the moments of
M are given by powers of h↵i, namely hMki = h↵ik. More generally, if ✓ � 1, the system
becomes ergodic in the limit of long times, i.e., the limiting distribution fM (x) is peaked
around h↵i, so

M = lim
t!1

1

t

Z t

0
du↵(u) = h↵i,

i.e., the mean is identical to the average (see [185, 186] for similar considerations). For
1  ✓ < 2, for long but finite times, even though the distribution of St/t becomes narrow,
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the fluctuations of St are anomalous. Finally, for ✓ � 2 they are normal and grow as t1/2.
This phenomenon is analyzed in detail in [175] for the case of two states. The present
situation of a multistate Markov chain does not change this picture.

5.2 Finite-time corrections

Coming back to the case where ✓ < 1, an interesting consequence of the analyses of
Section 3 and Section 4 is the possibility of computing the finite-time corrections to the
asymptotic formulas (VIII.35), that is, in other words, of answering the question of how
fast the fraction Mt converges to its limit M , both for the IID case and for the Markov
renewal process. As we will see, this convergence is quite slow, and different for the two
processes.

We start from the exact expressions of bfSt(s, u) given respectively by (VIII.13) for
the IID case and by (VIII.31) for the Markov renewal case.

For the IID case, taking the derivative of (VIII.13) with respect to u and setting
u = 0, we have

L
t
hSti =

h↵i
s2

,

yielding the identity, holding for any finite time t,

hSti
t

= h↵i, (VIII.36)

which is in line with the result given in (VIII.35) for hMi. This identity can also be
simply obtained by noting that

hSti =
Z t

0
du h↵(u)i = h↵i

�
⌧1 + · · ·+ ⌧Nt +Bt

�
= h↵it.

For the Markov renewal process, the identity (VIII.36) no longer holds. We have
instead

hSti
t
⇡ h↵i+ b t�✓, (VIII.37)

where the amplitude b of the correction is given by (VIII.40) below, as we now show. We
take the derivative of (VIII.31) with respect to u and set u = 0, to obtain, after some
algebra,

L
t
hSti =

1� b⇢(s)
s2

hQ| (1� b⇢(s)P)�1
∆

a |Ri , (VIII.38)

where
∆

a = diag(a1, . . . , aq).

Using the spectral decomposition of the matrix P, with eigenvalues �i and right and left
eigenvectors |Rii and hLi|,

P =

qX

i=1

|Rii hLi|

hLi|Rii
�i,
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we obtain

(1� b⇢(s)P)�1 =

qX

i=1

1

1� b⇢(s)�i
|Rii hLi|

hLi|Rii
.

In the right side of this equation, the term coming from the Perron eigenvalue �1 = 1
plays a distinct role, so we rewrite it as

(1� b⇢(s)P)�1 =
1

1� b⇢(s)
|Ri hL|
hL|Ri +

qX

i=2

1

1� b⇢(s)�i
|Rii hLi|

hLi|Rii
,

leading to the exact result, which is a more explicit expression of (VIII.38),

L
t
hSti =

h↵i
s2

+
1� b⇢(s)

s2

qX

i=2

1

1� b⇢(s)�i
hQ|RiihLi|∆

a|Ri
hLi|Rii

. (VIII.39)

The first order correction is given by

L
t
hSti ⇡

h↵i
s2

+As✓�2
qX

i=2

1

1� �i
hQ|RiihLi|∆

a|Ri
hLi|Rii

,

which, by inversion, yields (VIII.37) with

b =
c

✓(1� ✓)

qX

i=2

1

1� �i
hQ|RiihLi|∆

a|Ri
hLi|Rii

, (VIII.40)

where c is the tail coefficient of ⇢(⌧) (see (VIII.7)).
These computations can in principle be extended to higher moments h(St/t)

ki. While
they are easy for the IID case, they become increasingly more difficult for the Markov
renewal process. In any event, the finite-time corrections are again different for these two
cases.

We illustrate this study by the case of a symmetric simple random walk on q = 4
sites, with reflecting boundary conditions. The stationary probabilities of this Markov
chain are (⇡1 = 1/6,⇡2 = 1/3,⇡3 = 1/3,⇡4 = 1/6). The random variable ↵ of interest is
the position of the walker, which takes the values aj = j (j = 1, . . . , 4). With these values,
the mean position of the walker is h↵i = 5/2 and the correction amplitude b obtained
from (VIII.40) reads

b =
c

✓(1� ✓)
n
� 11

4
,�5

4
,
5

4
,
11

4

o
,

according to whether the walker starts at 1, 2, 3, 4, respectively.
Figure VIII.3-(a) and Figure VIII.3-(b) depict a numerical study of this process. The

random time intervals ⌧ are drawn from the distribution ⇢(⌧) = ✓/⌧1+✓ for ⌧ � 1, with tail
coefficient c = ✓, corresponding to taking ⌧ = U�1/✓, where U is uniform between 0 and
1. We choose ✓ = 3/4, yielding b = {�11,�5, 5, 11}, according to the initial position of
the walker. In Figure VIII.3-(a), the agreement between the simulation points (dots) and
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5. Moments

the data coming from a numerical inversion of the exact expressions (VIII.38) or (VIII.39)
of fSt in Laplace space (solid lines) is excellent. In Figure VIII.3-(b), the convergence
to the predicted amplitude b = �5, for a walker starting at j = 2, is demonstrated by
plotting the straight line y = 5� 15x/4, together with

✓
5

2
� hSti

t

◆
t✓ ⇡ 5� 15

4
t✓�1, (VIII.41)

against t✓�1. Equation (VIII.41) stems from the estimate

hSti
t
⇡ 5

2
� 5

t✓
+

15

4t
, (VIII.42)

obtained by expanding (VIII.39) at second order. The data were obtained by a numerical
inversion of the exact expressions (VIII.38) or (VIII.39) of fSt in Laplace space up to time
105. The agreement of these finite-time data with the theoretical prediction (VIII.42) is
convincing.

Choosing a stable law for the distribution ⇢(⌧), with same tail parameter c as above,
would yield the same results, as can be seen on (VIII.39) and (VIII.40). In contrast,
higher moments of St depend on the details of the distribution ⇢(⌧).

0.00 0.05 0.10 0.15 0.20

t
−1/4

4.4

4.6

4.8

5.0

� hM
i
�

t
−
1
hS

t
i� t

3
/
4

(a)

0 200 400 600

t

2.0

2.5

3.0

t
−
1
hS

t
i

(b)

q = 1

q = 2

q = 3

q = 4

Figure VIII.3: (a) Plot of hSti/t against time t for the four starting points 1, 2, 3, 4
of a simple random walker on q = 4 sites, with reflecting boundary conditions. Dots:
simulation points, solid lines: numerical inversion of the exact Laplace transforms (VIII.38)
or (VIII.39). See text for details on ⇢(⌧). Here ✓ = 3/4. (b) Check of the theoretical
prediction of the corrections to scaling (VIII.42). Dots: left side of (VIII.41) against t�1/4,
obtained by a numerical inversion of the exact Laplace transforms (VIII.38) or (VIII.39).
Solid line: straight line y = 5� 15x/4.
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VIII. Renewal processes and Markov chains

6 Discussion

The present work is part of the ongoing studies on the generalizations of the law of
Lamperti for the occupation time of a two-state Markov process [150]. Reviews in the
mathematical literature of this topic can be found in [147, 154]. The purpose of the
present work was to extend this law to the specific case of a multistate semi-Markov
process. While completing this paper, we became aware of the existence of closely related
works, with similar results [187, 153, 185, 186]. These studies are variations around the
same theme, with differences, as we now comment.

Reference [187] investigates the Walsh process of index ✓, defined as follows. Consider
q half-lines Hj , j = 1, 2, . . . , q, with a common endpoint at zero, and a Bessel process (or
radial Brownian motion) of dimension 2(1 � ✓) on these half-lines. When this process
arrives at zero, it chooses the half-line Hj with a given probability pj . Using the inherent
scaling properties of Brownian motion, it is shown that the law of the rescaled sum
St/t obeys (VIII.16), (VIII.18) and (VIII.19). The Walsh process therefore provides an
implementation of the IID case of Section 3, at least in the scaling regime (see also [153]).

References [185, 186] are closer in spirit to the present work. The analysis of the
process given in these references leads to the expression (VIII.5) of the distribution fM in
the long-time regime, as well as to (VIII.18), (VIII.21) and (VIII.35). Note that these
results are already found in the IID case. However the analysis made in [185, 186] does
not lead to the explicit expressions of the distribution of the sum St in Laplace space,
as in (VIII.13) for the IID case and in (VIII.31) for the Markov renewal case, which, in
turn, lead to predictions of the finite-time behaviors of these processes, as demonstrated
in Section 5.
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6. Discussion

Key takeaways

• Renewal processes are a sequence of intervals of time ⌧1, ⌧2, . . . representing
the time spent in different states ↵1,↵2, . . .. The interval of time between
the jumps (occurring at time ti) are IID random variables.

• Markov Renewal Processes are defined as the coupled independent evolu-
tion of a renewal process (defining the times of jumps between states) and a
Markov chain (defining the states). The state of the process is ↵(t) = ↵n for
tn < t < tn+1.

• Power law distribution of intervals leads to a weak-ergodicity breaking
of the observable

M = lim
t!1

1

t

Z t

0
du↵(u).

The Stieltjes transform of M is given by

g(⇠) =

R
daf↵(a)(1 + ⇠a)✓�1

R
daf↵(a)(1 + ⇠a)✓

,

for f↵ the density of states ↵ and ✓ the exponent (smaller than 1) of the
distribution of intervals. In the case of a Markov renewal process, f↵ is
replaced by the stationary probability of the Markov chain.
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VIII. Renewal processes and Markov chains

A Computation with partition functions

In this appendix, we compute the distribution of the occupation time of a renewal process coupled
to a Markov chain using partition functions, in the same spirit as in Chapter VII.

A.1 Setup

Let us then consider a general Markov chain {Xn}n on a discrete state space {↵i, i 2 [[1, S]]}
associated with the transition matrix P such that

Pij = P (Xn+1 = ↵j |Xn = ↵i) , 8i 2 [[1, S]],

SX

j=1

Pij = 1. (VIII.43)

We assume the Markov chain to be irreducible with the associated invariant probability measure
h⇡| = (⇡1, . . . ,⇡S) defined through

h⇡| = h⇡|P,
SX

i=1

⇡i = 1. (VIII.44)

Furthermore, note that the normalization condition 8i 2 [[1, S]],
PS

j=1 Pij = 1can be written as

P |ei = |ei (or he|P> = he|), with |ei = (1, . . . , 1)>. Finally, the initial state is drawn according to
a probability vector |p0i. On top of this Markov process, we consider that after having jumped
onto a new state, the system will spend a certain amount of time in said state before jumping to
the next one. We therefore introduce a renewal process {tn}n for which intervals ⌧i = ti+1 � ti
are independent and identically distributed according to some density ⇢(⌧). Our system is then
formed by the pairs {(Xn, tn)}n and we assume the Markov chain and the renewal process to be
independent. We want to study the distribution of the occupation time

M = lim
t!+1

St

t
, St =

N�1X

i=1

Xi⌧i +XN (t� tN�1), (VIII.45)

for Xi and ⌧i defined above and N a random variable encoding the number of jumps that occurred
up to time t.

A.2 Distribution of M

To compute the distribution of M , we will compute all of its moments. We start by computing
the moments of St/t. To do so, we sum over all possible states’ paths ~sk = (↵1, . . . ,↵k),
intervals’ sequences ~⌧k = (⌧1, . . . , ⌧k) and number of jumps k compatible with an observation
of the occupation time at time t, i.e. paths such that ~s is unrestricted and tk�1  t  tk for

tk =
Pk

i=1 ⌧i. It therefore yields

E [Sq
t ] =

1X

k=1

Z

~⌧k

p (~⌧k)
X

~sk

p (~sk)Θ (t� tk�1)Θ (tk � t)

 
k�1X

i=1

↵i⌧i + ↵k(t� tk�1)

!q

1X

k=1

Z

~⌧k

p (~⌧k)
X

~sk

p (~sk)Θ (t� tk�1)Θ (tk � t)

:=
Z(q, t)

Z(0, t)
,

(VIII.46)
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A. Computation with partition functions

where we have defined Z(q, t) through the previous equality and where Z(0, t) acts as a normal-
ization factor. Furthermore, p(~↵k) and p(~⌧k) refer to the probabilities to have a certain states’
path ~sk and intervals’ sequence ~⌧k given by

p(~sk) = p0(s1)Ps1s2 · · ·Psk�1sk , p(~⌧k) =
kY

i=1

⇢(⌧k), (VIII.47)

where we have used the fact that {Xn}n and {tn}n are respectively a Markov chain and a renewal
process. The moments of M are therefore given by

E [Mq] = lim
t!+1

t�q
Z(q, t)

Z(0, t)
. (VIII.48)

We evaluate the previous limit by computing the Laplace transforms of the numerator and the
denominator. We denote by bf(!) the Laplace transform of a generic function f . We further

introduce b⇢` the Laplace transform of the function ⌧ 7! ⇢(⌧)⌧ ` with b⇢ := b⇢0, along with bQ`

associated with ⌧ 7! Q(⌧)⌧ ` (where Q(⌧) =
R1
⌧

ds⇢(s) is called the persistence probability), and

where bQ0(!) = (1� b⇢(!))/!. We further assume that ⇢ has a power-law behavior ⇢(⌧) ⇠⌧!1
a⌧�1�✓ such that

b⇢(!) ⇡
!!0+

(
1 + aΓ(�✓)!✓, 0 < ✓ < 1

1� !h⌧i+ aΓ(�✓)!✓, 1 < ✓
, (VIII.49)

which in turn implies, if 0 < ✓ < 1 for k � 1

b⇢k(!) ⇡
!!0+

aΓ(k � ✓)!✓�k

bQk(!) ⇡
!!0+

a
Γ(1 + k � ✓)

✓
!✓�1�k,

(VIII.50)

and finally, if 1 < ✓,
b⇢1(!) ⇡

!!0+
h⌧i � aΓ(1� ✓)!✓�1. (VIII.51)

A.2.1 Exponential generating function of bZ

Let us start by computing the Laplace transform bZ(0,!). From Eq. (VIII.46), Z(0, t) reads

Z(0, t) =

1X

k=1

Z

~⌧k

p (~⌧k)
X

~sk

p (~sk)Θ (t� tk�1)Θ (tk � t) .

Using the expression for p(~sk), we can easily express

X

~sk

p (~sk) = he|
�
P
>�k�1 |p0i = he | p0i = 1, (VIII.52)

with h · | · i the standard scalar product, and where we used the normalization condition for P.
We can therefore compute the Laplace transform of Z(0, t)

bZ(0,!) =

1X

k=1

he|
�
P
>�k�1 |p0i

Z 1

0

dte�!t

Z

~⌧k

p (~⌧k)Θ (t� tk�1)Θ (tk � t)

=
1

!
,
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VIII. Renewal processes and Markov chains

which shows that Z(0, t) = 1 as expected. In order to compute the generating function of bZ, we
need to introduce an auxiliary partition functions Zi defined by

Zi(q, t) =

1X

k=1

Z

~⌧k

p (~⌧k)
X

~sk(i)

p (~sk(i)) � (t� tk)

0
@

k�1X

j=1

↵j⌧j + si⌧k

1
A

q

, (VIII.53)

which correspond to intervals’ sequences ~⌧k exactly summing to the observation time t, and states’
paths ~sk(i) = (si,↵k�1, . . . ,↵1) ending in state si. We encapsulate these auxiliary variables in a
vector |Zi. Using the Markov property, we write a recursive relation between the terms xk,i of
the sum defining Zi, it reads

bxk,i(q,!) : =

Z 1

0

dte�!t

Z

~⌧k

p (~⌧k)
X

~sk

p (~sk(i)) � (t� tk)

0
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↵j⌧j + si⌧k

1
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=
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p (~sk(i))
X

~̀
k

�
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k
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`j
j

=

qX
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`

◆
s`ib⇢`(!)
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P↵k�1si

X

~sk�1(↵k�1)

p(~sk�1(↵k�1))

⇥
X

~̀
k�1

�

 
k�1X

i=1
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!✓

q � `
~̀
k�1

◆ k�1Y

j=1

b⇢`j (!)s
`j
j

=

qX

`=0

✓
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`
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s`ib⇢`(!)

X

↵k�1

P↵k�1sibxk�1,↵k�1
(q � `,!)

=

qX

`=0

✓
q

`

◆
s`ib⇢`(!)

X

↵k�1

P↵k�1sibxk�1,↵k�1
(q � `,!)

=

qX

`=0

✓
q

`

◆
s`ib⇢`(!)

�
P
> |bxk�1(q � `,!)i

�
i
.

The computation above is not valid for k = 1 but we have bx1,i(q,!) = sqi b⇢q(q,!)p0(i). Summing
over k therefore yields

bZi(q,!) = sqi b⇢q(!)p0(i) +
qX

`=0

✓
q

`

◆
s`ib⇢`(!)

⇣
P
> | bZ(q � `,!)i

⌘
i
. (VIII.54)

We recognize an exponential convolution equation and therefore introduce exponential generating
functions Gc(x) =

P
q x

qcq/q!.
4 We therefore get

⇣
G|bZi

⌘
i
(x,!) = Gb⇢(six,!)p0(i) + Gb⇢(six,!)

⇣
P
>G|bZi

⌘
i
(x,!).

With the notation ∆b⇢ the diagonal matrix with entries (∆b⇢)ii = Gb⇢(six,!) and dropping the

(x,!) for clarity, we have a closed form for the e.g.f of | bZi

G|bZi =
�
1�∆b⇢P

>��1
∆b⇢ |p0i . (VIII.55)

4Note that the expression in also valid for a vector-valued sequence |ci. In this case the associated
e.g.f will also be vector-valued with components the e.g.f of the components of |ci.
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A. Computation with partition functions

Going back to the initial partition function, one can use the same reasoning to get to the e.g.f.
However, since the constraint � (t� tk) is replaced by Θ (t� tk�1)Θ (tk � t), we need to replace

the Laplace transforms b⇢k by bQk. We can write an analogous of equation Eq. (VIII.55) for the

partition function bZ using the auxiliary bZ

bZi(q,!) = sqi
bQq(q,!)p0(i) +

qX

`=0

✓
q

`

◆
s`i bQ`(!)

⇣
P
> | bZ(q � `,!)i

⌘
i
, (VIII.56)

and using Eq. (VIII.55), we have

G| bZi = ∆ bQ

�
1� P

>
∆b⇢

��1
|p0i . (VIII.57)

Finally, the e.g.f of bZ is trivially given by he|G| bZii (one sums over all the possible ending states

of states’ sequences) and we have

G bZ = he|∆ bQ

�
1� P

>
∆b⇢

��1
|p0i . (VIII.58)

We will now take the scaling limit ! ! 0+ while keeping the ratio !/x := y constant.

A.2.2 Long-time behavior of Z(q, t) and Stieltjes transform of M

For Eq. (VIII.48) to be well defined, we must have Z(q, t) ⇡
t!1

tqE[Mq]. Turning to Laplace

space, we get bZ(q,!) ⇡
!!0+

q!E[Mq]!�1�q. Using the scaling !/x := y, we can express the e.g.f

of bZ as follows

G bZ(!y
�1,!) ⇡

!!0+

1X

q=0

�
!y�1

�q

q!
q!!�1�qE[Mq]

=
y

!
E


1

y �M

�
,

where the last expectation is the Stieltjes transform of M such that

G bZ(!y
�1,!) ⇡

!!0+

y

!

Z
ds

'(s)

y � s
,

where ' is the probability density function of M .

A.2.3 Probability density function of M for 0 < ✓ < 1

Computing the scaling limit of the different e.g.f, we get at leading order in !

Gb⇢(si!y
�1,!) ⇡

!!0+
1 + aΓ(�✓)

✓
!

y

◆✓

(y � si)
✓

(VIII.59)

G bQ(si!y
�1,!) ⇡

!!0+
�aΓ(�✓)

✓
!

y

◆✓�1
(y � si)

✓�1
. (VIII.60)
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VIII. Renewal processes and Markov chains

We can therefore compute the r.h.s of Eq. (VIII.58) using perturbation theory for the matrix
1� P

>
�
1� P

>
∆b⇢

��1 ⇡
!!0+

� !✓

aΓ(�✓)y✓
|⇡i he|

he|∆
⇣
(y � si)

✓
⌘
|⇡i

, (VIII.61)

and get

he|∆ bQ

�
1� P

>
∆b⇢

��1
|p0i =

y

!

he|∆
⇣
(y � ↵i)

✓�1
⌘
|⇡i

he|∆
⇣
(y � ↵i)

✓
⌘
|⇡i

. (VIII.62)

Relating it to the Stieltjes transform of M , we have

Z
ds

'(s)

y � s
=

P
j ⇡j(y � ↵j)

✓�1
P

j ⇡j(y � ↵j)✓
, (VIII.63)

which we can invert by setting y = x+ i⌘ and taking the limit ⌘ ! 0+. For x /2 ]↵1,↵S [, '(x) = 0
while for x 2 ]↵i,↵i+1[, we get the density

'(x) =
sin⇡✓

⇡

⇣P
ji ⇡jz

✓�1
j

⌘⇣P
j>i ⇡jz

✓
j

⌘
+
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j
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✓�1
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⌘
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ji ⇡jz

✓
j

⌘2

+
⇣P

j>i ⇡jz
✓
j

⌘2

+ 2
⇣P

ji ⇡jz
✓
j

⌘⇣P
j>i ⇡jz

✓
j

⌘
cos⇡✓

, (VIII.64)

where zj = |x� ↵j |. For a uniform stationary probability measure over two states, we retrieve
the density in [141].

A.2.4 Probability density of M for 1 < ✓ < 2

In this case, ⇢ has a finite first moment and the scaling behavior of the e.g.f is the following

Gb⇢(si!y
�1,!) ⇡

!!0+
1� !

✓
h⌧i � si

y

◆
(VIII.65)

G bQ(si!y
�1,!) ⇡

!!0+
h⌧i. (VIII.66)

Applying the same procedure as before, we easily get

�
1� P

>
∆b⇢

��1 ⇡
!!0+

y

!

|⇡i he|
he|∆ (yh⌧i � si)) |⇡i

. (VIII.67)

We can therefore express the Stieltjes transform of M

Z
d�

'(�)

y � � =
1

y �
P

i ⇡isi
h⌧i

, (VIII.68)

which easily gives

'(�) = �

✓
��

P
i ⇡isi
h⌧i

◆
. (VIII.69)
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CHAPTER IX

Mixed-moments of Gaussian elliptic

matrices

Abstract

We find an explicit formula for the mixed-moments N�1Tr
�
X

t(X>)s
�

in the
limit N ! 1 with t, s 2 N and X a real N ⇥N Gaussian elliptic random matrix.
This formula allows for a numerically efficient way to compute mixed-moments by
reducing the exponential complexity of a naive enumeration of non-crossing pairings
to a polynomial complexity.

Early version of [4]: Théo Dessertaine. Some mixed-moments of Gaussian elliptic
matrices and Ginibre matrices, https://arxiv.org/abs/2212.05793, Dec. 2022.

1 Introduction

The study presented in this chapter stems from the generalization of the simple conewise
linear dynamics presented in Chapter VII. One of the problems that we faced was to
understand the behavior of the Gaussian process v(t) = A

tv(0) (with v(0) an initial
centered Gaussian vector with IID entries of unit variance) in the large-dimensional limit.
We showed that the covariance of the components ij at times t, s was given by

vi(t)vj(s) = (At(A>)s)ij , (IX.1)

where (·) denotes the average over initial conditions. Using both self-averaging and
rotational invariance of the ensemble of A, the previous expression reduced to

hvi(t)vj(s)i = �ij ⌧
⇣
A
t
⇣
A
>
⌘s⌘

, (IX.2)

in the large-dimensional limit. Recall that the linear form ⌧(·) is the standard normalized
trace from Random Matrix Theory, i.e.

⌧(·) = lim
N!1

1

N
Tr (·) . (IX.3)
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IX. Mixed-moments of Gaussian elliptic matrices

As we explained in Chapter VII, giving an explicit expression for Eq. (IX.2) amounts
to computing the mixed-moments of the random matrices A and A

>. This is a difficult
task since, in this case, these two matrices are not mutually free, i.e. not randomly
rotated from one another. In this chapter, we will provide a numerically efficient formula
to compute these mixed-moments for Gaussian elliptic matrices. We will present the
most general case of computing mixed-moments of such matrices before moving to the
two-matrix case.

Before going through this chapter, let us relate this problem to ongoing investigations
regarding random matrices. Consider Eq.(IX.1), for a symmetric matrix A = OΛO>, with
O a random orthogonal matrix and Λ = ∆ (�i) the diagonal matrix of eigenvalues. Using
the independence of eigenvectors and eigenvalues for orthogonally invariant matrices, we
can perform the average over the Haar measure on the orthogonal group first in Eq. (IX.1)

D
vi(t)vj(s)

E
O

=

*
X

k

�t+s
k OikOjk

+

O

= N�1�ij
X

k

�t+s
k , (IX.4)

where the last equality is exact. In the large N limit, the rightmost expression converges
towards the moment of order t+ s of A, and we recover Eq. (IX.2) (in the specific case
where A = A

>). In this case, the overlap between eigenvectors hOikOjliO (and more
generally hOi1k1Oi2k2 ...iO) is completely known and given by the Weingarten functions
[201]. Assume now that A is not symmetric but, say, Gaussian elliptic, i.e. a matrix with
some correlation parameter % 2 [�1, 1] between entries ij and ji (see below). We can
write the singular value decomposition of A as A = OΣV>. Both O and V are orthogonal
matrices, which are not independent for generic values of %. Moreover, the average overlap
between left and right eigenvectors is not known analytically for real elliptic matrices (see
[202] where the question of overlaps is addressed for complex elliptic matrices). Of course,
the result should interpolate between N�1 for the symmetric case (% = 1) and 0, for the
Ginibre case (where it is known that both O and V are completely independent). One
of the interesting features of the computation that is presented in this chapter is that it
bypasses the difficulty of computing the overlaps using self-averaging.

2 Gaussian elliptic matrices

A Gaussian elliptic matrix X is a random matrix whose entries verify

E [Xij ] = 0, E
⇥
X
2
ii

⇤
=

1 + %

N
, E [XijXji] =

%

N
. (IX.5)

The parameter % interpolates between the Gaussian Orthogonal Ensemble, abbreviated
GOE(N) (symmetric matrices, % = 1), the Ginibre ensemble (% = 0) and the Anti
Gaussian Orthogonal Ensemble, abbreviated anti-GOE(N) (skew-symmetric matrices,
% = �1). One can easily build a Gaussian elliptic matrix of parameter % thanks to a
linear combination of a GOE(N) matrix S+ and an anti-GOE(N) matrix S�. Indeed,
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3. General formula for the mixed-moments

by defining the matrix X as

X =

r
1 + %

2
S+ +

r
1� %
2

S�, (IX.6)

one readily sees that it verifies Eqs. (IX.5).

3 General formula for the mixed-moments

3.1 Moment-cumulant formula

Consider an elliptic matrix X. Using the moment-cumulant formula (see [135]), the
normalized trace of a product of n terms that are either X or X

> can be expressed as

⌧ (X✏1 · · ·X✏n) =
X

⇡2NC2(n)

Y

(r,s)2⇡

2 (X
✏r ,X✏s) , (IX.7)

where NC2(n) denotes the set of all non-crossing pairings of elements of [[1, n]] and
✏i 2 {1,>} (in the sense that X

✏i is either X or X
>), see [203, Lemma 4] for a proof of

this formula. The cumulant 2 is easily computed since S± are mutually free, implying
2(S±, S⌥) = 0, and we get

2 (X,X) =
1 + %

2
2 (S+, S+) +

1� %
2

2 (S�, S�)

=
1 + %

2
� 1� %

2
= %

= 2

⇣
X
>,X>

⌘
,

2

⇣
X,X>

⌘
=

1 + %

2
2 (S+, S+)�

1� %
2

2 (S�, S�)

=
1 + %

2
+

1� %
2

= 1

= 2

⇣
X
>,X

⌘
,

In the product
Q

(r,s)2⇡ 2 (X
✏r ,X✏s) from Eq. (IX.7), the different terms can either

be 1 or % according to the previous computations. Furthermore, the % contributions
correspond to pairs for which ✏r = ✏s, i.e. pairs linking the matrix X or X> with itself. For
a non-crossing pairing ⇡, we denote by �(⇡) the quantity �(⇡) = |{(r, s) 2 ⇡, ✏r = ✏r}|,
where |A| denotes the cardinality of set A. We can therefore further simplify Eq. (IX.7)

⌧ (X✏1 · · ·X✏n) =
X

⇡2NC2(n)

%�(⇡), (IX.8)

255



IX. Mixed-moments of Gaussian elliptic matrices

and find the result of [203, Lemma 4]. A first fact to notice is that whenever n is odd the
set NC2(n) is empty since it is not possible to construct pairings across an odd number
of elements. Consequently, the mixed moments of an odd number of elliptic terms X

✏i is
always zero, and we will implicitly consider an even number of terms in the following.
Finally, we can group consecutive matrices with the same ✏ 2 {1,>} such that

⌧ (X✏1 · · ·X✏n) = ⌧
⇣
X
r1
⇣
X
>
⌘s1

· · ·Xrk
⇣
X
>
⌘sk⌘

,

with
kX

i=1

(ri + si) = n.
(IX.9)

In the case where only two blocks can be made, we retrieve the mixed-moments that we
needed to compute in Chapter VII.

3.2 The Knights and Ladies of the Round Table

Since ⌧ is invariant under cyclic permutations, it is more natural to represent the non-
crossing pairings of Eq. (IX.8) as pairings of elements arranged around a circle. In the
following, we will denote by white dots � (resp. black dots •) matrices X (resp. X

>). See
Figure IX.1 for an example.

In the case where % = 0, i.e. the case of Ginibre matrices, the computation of
Eq. (IX.8) amounts to solving the mathematical problem historically known as the
Knights and Ladies of the Round Table. Imagine that two people want to organize a
dinner party. They both invite a group of friends that have never met before. Each
person gets randomly seated around the dinner table, and is paired with an invitee from
the other friend group. As the two hosts want people to properly hear each other, they
try to make no two conversation cross around the table. The question is: from a given
seating arrangement, how many ways do the hosts have to pair people as explained? In
other more mathematical words, how many non-crossing pairings of two distinct elements
(the two groups of friends) can you make? Plugging % = 0 in Eq. (IX.8), we immediately
see that the only non-zero contributions are those for which �(⇡) = 0, i.e. pairings such
that X is always paired with X

> therefore solving the previous problem. See [204] for a
review of the Knights and Ladies problem and the connection to the mixed-moments of
Ginibre matrices. In the general case of elliptic matrices, it is much more difficult to get
some general formula for Eq. (IX.8) and a systematic study of � is needed.

4 Explicit formula for ⌧
�
X

t(X>)s
�

Let us consider the case k = 1 in Eq. (IX.9), i.e. the specific case where ✏i = 1 for i  t
and ✏i = > otherwise. We will denote by t, s the exponent r1, s1 in Eq. (IX.9) with
t+ s = n. We will study the function � to properly partition the set NC2(t+ s) and map
these partitions onto Temperley-Lieb algebras. Finally, as observed above, t+ s must be
even implying that t and s must have the same parity (which we are going to assume
from now on).
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�

()()

() ()

() ()

Figure IX.1: An example of a non-crossing pairing involved in the computation of

⌧
⇣
XX

>
X
�
X
>
�3⌘

and yielding a term %. We see that the representation around a circle

lifts some of the ambiguity inherent to the line representation.

4.1 Study of �

Anticipating on the connection with Temperley-Lieb algebras, it makes more sense to study
the complementary function to �, which we denote by �c(⇡) = |{(r, s) 2 ⇡, ✏r 6= ✏r}| and
counts the number of pairs (�, •). Obviously, the two functions are linked through the
relation � + �c = (t+ s)/2 where (t+ s)/2 2 N is the number of pairs for a pairing in
NC2(t+ s). It is easy to see that � and �c are both integer-valued piece-wise constant
functions, and therefore furnish a natural partitioning of NC2(t+ s). Furthermore, the
number of mixed pairs �c is always of the same parity as t and s (since otherwise one
would need to pair an odd number of either � or •), and the maximum number of mixed
pairs in given by t ^ s := min(t, s). As a consequence, we can partition NC2(t+ s) in the
following way

NC2(t+ s) =

(t^s)/2G

k=0

NC2k
2 (t, s), t, s 2 2N (IX.10)

NC2(t+ s) =

(t^s�1)/2G

k=0

NC2k+1
2 (t, s), t, s 2 2N+ 1, (IX.11)

where we introduced

NC`
2(t, s) = {⇡ 2 NC2(t+ s), �c(⇡) = `} , (IX.12)
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IX. Mixed-moments of Gaussian elliptic matrices

and where
F

denotes the disjoint union. For simplicity, we will consider the case where
t, s 2 2N in the following. We can finally use the partition from Eq. (IX.10) to rewrite
Eq. (IX.8) as

⌧
⇣
X
t(X>)s

⌘
=

(t^s)/2X

k=0

%(t+s)/2�2k
���NC2k

2 (t, s)
��� . (IX.13)

We therefore need to study the cardinality of the sets NC2k
2 (t, s) to give an explicit

expression.

4.2 Study of the sets NC2k
2 (t, s) and mapping to Temperley-Lieb

diagrams

To start studying the sets NC2k
2 (t, s), let us consider an example for t = 3 and s = 3.

There are 5 non-crossing pairings over 6 elements that are represented below

, ,

, .

(IX.14)

We naturally arranged (from left to right and top to bottom) partitions by decreasing
length of the longest mixed arc (�, •). For instance for the first two pairings, the longest
mixed arc (or mixed pair) links the leftmost � to the rightmost •, whereas it links the
two innermost �, • for the last pairing. Due to the inherent non-crossing pattern, the
longest mixed arc naturally cuts the pairing into three regions: the left region, the inner
region and the right region. In turn, each of these regions (which can be void), have to
be arranged into a non-crossing pairing. One can repeat this process with the second
longest mixed arc, the third longest etc. up until the point where one has exhausted the
number �c of mixed arc. In the example of Eq. (IX.14), there can be either 3 or 1 mixed
arc. The case of three mixed arcs is very restricted as the only way to draw them is to
symmetrically link � with •, which only yields one pairing with �c = 3. In the case of one
mixed arc, one has more choices available for the endpoints. If • is at the far right, it
can be link to either the leftmost or innermost �, which both yield one pairing. If • is
now at the innermost position, it can also be linked to the two previous �, which also
accounts for two pairings. All in all, there are exactly four pairings with �c = 1. This
process can be generalized and allows to enumerate the number of pairings with fixed
�c. In Appendix A, we provide a general derivation leading to the cardinality of the sets
NC2k

2 (t, s).

There is however a quicker way to study NC2k
2 (t, s). Indeed, if one rotates the �-line
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�

by �⇡/2 and the •-line by ⇡/2 of any element in NC2(t, s), i.e.

�! , (IX.15)

the resulting structure is called a Temperley-Lieb diagram, belonging to the Temperley-
Lieb algebra T Lt,s. These diagrams connect t �-elements with s •-elements spread
over two opposite strands (connections between elements of the same line are allowed).
Moreover, the connection pattern has a non-crossing structure. The rank of the diagram
corresponds to the number of connections between elements belonging to different strands.
It is straightforward to see that, the bijective homotopic mapping, geometrically described
in Eq. (IX.15), sends elements from NC2k

2 (t, s), with �c = 2k, onto diagrams with rank 2k.
Finally, it is known that the rank function furnishes a simple way to partition T Lt,s into
constant-rank subsets (once again isomorphic to NC2k

2 (t, s)), and that these subsets have
a cardinality given by products of triangular Catalan numbers (see [205]). The cardinality
of NC2k

2 (t, s) is therefore given by

���NC2k
2 (t, s)

��� = (2k + 1)2

(t/2 + k + 1)(s/2 + k + 1)

✓
t

t/2 + k

◆✓
s

s/2 + k

◆
. (IX.16)

4.3 Polynomial expression for ⌧
�
X

t(X>)s
�

As a consequence of the previous analysis, one can rewrite Eq. (IX.8) in the following
explicit forms. If t = 2u and s = 2v are even then

⌧
⇣
X
t(X>)s

⌘
=

u^vX

k=0

%u+v�2k (2k + 1)2

(u+ k + 1)(v + k + 1)

✓
2u

u+ k

◆✓
2v

v + k

◆
, (IX.17)

whereas when t = 2u+ 1 and s = 2v + 1 are odd, we get

⌧
⇣
X
t(X>)s

⌘
=

u^vX

k=0

%u+v�2k 4(k + 1)2

(u+ k + 2)(v + k + 2)

✓
2u+ 1

u+ k + 1

◆✓
2v + 1

v + k + 1

◆
. (IX.18)

As the left-hand-side is a little heavy to write, we introduce a sequence of polynomials
Pt,s 2 N[X] such that ⌧

�
X
t(X>)s

�
= Pt,s(%). This explicit formula is very useful since the

number of non-crossing pairings (or equivalently the number of Temperley-Lieb diagrams)
involved in the computation of Eq. (IX.8) is equal to C(t+s)/2 (the (t+ s)/2th Catalan
number), which rapidly increases as highlighted by the explicit computations below:
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⌧
⇣
X
2(X>)2

⌘
= + = 1 + %2 = P2,2(%) (IX.19)

⌧
⇣
X
4(X>)2

⌘
= + +

+ +

= 3%+ 2%3 = P4,2(%) (IX.20)

⌧
⇣
X
6(X>)2

⌘
= +

+ +

+ +

+ +

+ +

+ +

+ +

= 5%4 + 9%2 = P6,2(%). (IX.21)

In effect, if one were to compute Eq. (IX.8) by enumerating explicitly non-crossing
pairings, the complexity of the procedure would be O(4t+s/(t+ s)3/2) (using the asymp-
totics of the Catalan numbers), whereas the proposed formula allows polynomial time
O(t^ s) (assuming that each term of the sums Eqs. (IX.18-IX.17) takes O(1) to compute).
Finally, Figure IX.2 shows the excellent agreement between this formula and numerical
simulations of mixed-moments. As a final note, one can see that Pt,s is symmetric upon
the exchange t$ s, which accounts for the invariance of ⌧ under both cyclic permutation
and transposition.
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e⌧
�
X

t
(X

>
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�
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t = 3

t = 5

t = 7

t = 9
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�
X

t
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>
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�
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t = 6

t = 8

Figure IX.2: Comparison between e⌧
�
X
t(X>)s

�
= ⌧

�
X
t(X>)s

�
/C(t+s)/2 and ePt,s =

Pt,s/C(t+s)/2 for % 2 [�1, 1] and t + s  10, s  t. (a) s = 1, (b) s = 3, (c) s = 2,
(d) s = 4. For each point, we simulated k = 100 elliptic matrices of size 500 ⇥ 500,
and computed the average of the normalized trace of the product X

t(X>)s. We see an
excellent agreement between simulations and theoretical values.

4.4 GOE(N) and anti-GOE(N) matrices: % = ±1

One must check that Pt,s(1) = C(t+s)/2 to retrieve the well-known result concerning the
moments of GOE(N) matrices, see for instance [135]. Using results from [206], we can
use the identity

u^vX

k=0

(2k + 1)2

(u+ k + 1)(v + k + 1)

✓
2u

u+ k

◆✓
2v

v + k

◆
= Cu+v, (IX.22)

and get the expected result Pt,s(1) = C(t+s)/2. Furthermore, it is easy to see that the
parity of the polynomial function Pt,s depends on the parity of t, s and (t+ s)/2. Indeed,
on the one hand, assuming t, s 2 2N, powers of % will have the same parity as (t+ s)/2.
On the other hand if t, s 2 2N+ 1, they will have an opposite parity from (t+ s)/2. As a
consequence, one can give a more general formula for the mixed-moments of GOE(N)
and anti-GOE(N) matrices

Pt,s(±1) =

(
(±1)(t+s)/2C(t+s)/2 , for t, s 2 2N

±(±1)(t+s)/2C(t+s)/2 , for t, s 2 2N+ 1
. (IX.23)
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One can easily check that these results are coherent with a direct computation of
⌧
�
X
t(X>)s

�
for % = ±1.

4.5 Ginibre matrices: % = 0

As mentioned above, the Ginibre case is the answer to the Knights and Ladies problem.
In our simplified setting, it is easy to see that plugging % = 0 in Pt,s always yields 0 (there
are no solutions to the problem), except when t = s where the only possible pairing is the
one connecting � and • symmetrically, e.g.

, (IX.24)

in the case t = s = 4. As a consequence

Pt,s(0) = �t,s, (IX.25)

and this result is reported in [207]. If we come back to the covariance of the Gaussian
process of Chapter VII, we see that, in the Ginibre case

hvi(t)vj(s)i = �ij�ts. (IX.26)

Since the process is not correlated in time anymore, the persistence of the sign of v1(t) is
given by Q0(⌧) = 2�⌧ .

5 Asymptotics of ⌧
�
X

t(X>)s
�

as t, s!1
The study of the asymptotics of this mixed-moment is relevant in the context of persistence
of Gaussian processes whose correlator are exactly given by ⌧

�
X
t
�
X
>
�s�

. Such processes
are of interest in [2] and we have already discussed them in Chapter VII. We will limit
this analysis to % � 0 since the negative counterpart can be easily obtained using the
parity of Pt,s. We will also limit our analysis to t, s 2 2N, t = 2u, s = 2v, v  u, but the
other case can be obtained in the same way. Finally, we will assume that u, v !1 while
keeping the ratio u/v = q � 1 constant.

The polynomial Pu,v(x) can be rewritten using an auxiliary polynomial Qu,v(x)

Pu,v(%) = %u+v @x(�xQu,v(x) + @x(x
2Qu,v(x)))

��
x=%�1 , (IX.27)

with

Qu,v(x) =

vX

k=0

x2k

(u+ k + 1)(v + k + 1)

✓
2u

u+ k

◆✓
2v

v + k

◆
. (IX.28)

It is easy to give an asymptotic evaluation of Qu,v

Qu,v(x) ⇠
u,v!1
u/v=q

4v(q+1)

⇡q3/2v2

Z 1

0
dy g(y; q)evF(y;x,q), (IX.29)
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where we introduced the following functions

g(y; q) =
⇥�
1� y2

� �
1� y2/q2

�⇤�1/2
[(1 + y) (1 + y/q)]�1

h±(y) = (1± y) log (1± y)

F(y;x, q) = y log x2 � h+(y)� h�(y)� q (h+(y/q) + h�(y/q))

. (IX.30)

Note that since x will take the value 1/%, we will consider that x 2 [1,1[. Furthermore,
we will drop the explicit dependency in q and x for clarity. The previous integral can be
evaluated via a saddle point approximation. However, one must be careful since the saddle
point will be located at 0 and 1 for % = 1, 0. In any case, a straightforward computation
shows that the saddle point y? is given by

y? =
(q + 1)(x2 + 1)�

p
(q + 1)2(x2 + 1)2 � 4q(x2 � 1)2

2(x2 � 1)
. (IX.31)

5.1 Case %! 1�

In this case, we know that Pu,v(⇢) must be equivalent to Cu+v, and we must therefore
recover the Catalan number’s asymptotic behavior. y? has the following behavior as
x! 1+ (corresponding to the limit %! 1� since x = %�1)

y? ⇠
x!1+

q

1 + q
(x� 1), (IX.32)

indicating that the saddle will be located close to 0, as %! 1�. As a consequence, one
must be careful with the saddle point approximation. If the width (�vF 00(y?))

�1/2 of the
associated Gaussian is much larger that the saddle point itself, we will have to compute
the integral of a half-Gaussian. Conversely, if the width is much smaller, a standard
saddle point approximation can be carried out. Assuming that y? ⌧ (�V F 00(y?))

�1/2,
we can then further approximate Qu,v as follows

Qu,v(x) ⇠
u,v!1
u/v=q

1

2

4v(q+1)

⇡q3/2v2

s
2⇡

�vF 00(y?)
g(y?)e

vF(y?). (IX.33)

Note the factor 1/2 that comes from the saddle-point approximation on a half-Gaussian
since y? ⌧ (�V F 00(y?))

�1/2. Plugging Eq. (IX.31) into Eq. (IX.33), and then Eq. (IX.33)
into Eq. (IX.27), we use Mathematica to compute the derivatives and take the limit
%! 1�. Keeping only the highest orders in v yields

Pu,v(%) ⇠
u,v!1
u/v=q

4v(1+q)

p
⇡q3/2v2

v1/2
✓

q

1 + q

◆3/2

=
4v+u

p
⇡(u+ v)3/2

,

and we recover the asymptotic behavior of the Catalan numbers as expected.

263



IX. Mixed-moments of Gaussian elliptic matrices

5.2 Case 0⌧ %⌧ 1

For the generic case of intermediate correlation parameter %, the asymptotics can also
be obtained through a saddle point approximation. In this case, y? is far enough from
the edges of [0, 1] so that the standard formula can be applied. One can use Eq. (IX.33)
(removing the 1/2 factor), and differentiate it according to Eq. (IX.27). Keeping only
leading order terms, we get

Pu,v(%) ⇠ %u+v�2 4
v(q+1)

⇡q3/2

s
2⇡

�vF 00(y?)
g(y?)(F

0(y?))
2evF(y?). (IX.34)

This expression is quite gruesome and does not seem to yield any simplifications at this
point. However, numerical simulations shown on Figure IX.3 clearly point towards an
exponential cutoff of the rescaled polynomial bPv,qv(%) := Pv,qv(%)/

p
Pv,v(%)Pqv,qv(%) as

v !1. In the context of persistence of a Gaussian process with correlator ⌧
�
X
t(X>)s

�
,

such an exponential cutoff would mean that time-wise correlations are negligible for times
larger than said cutoff, which could introduce an exponential cutoff in the persistence of
the sign of v1(t). Furthermore, we also know that this cutoff should interpolate between
0 (% = 1; GOE case) and ln 2 (% = 0; Ginibre case).
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Figure IX.3: Rescaled polynomial bPv,qv(%) := Pv,qv(%)/
p
Pv,v(%)Pqv,qv(%) as a function of

v and different values of 0 < % < 1. (a) q = 2, (b) q = 3, (c) q = 4, (d) q = 5. We see an
exponential decay as v increases. One notices that the closer % is to zero, the faster the
exponential decay is. Similarly, the larger q is, the faster the decay will be.
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6 Conclusion

In this chapter, we provided an explicit computation for the mixed-moments ⌧(Xt(X>)s)
of Gaussian elliptic matrices X. Our formula can be evaluated in polynomial time which
is a significant improvement to the more general formula found in [203] which involves a
summation over all possible non-crossing matchings of t+ s elements.

Taking this formula as a base case, one could generalize it to compute more compli-
cated mixed-moments with more than one block such as ⌧(Xt1(X>)s1Xt2(X>)s2). Indeed,
considering Eq. (IX.8), we can classify non-crossing matchings on t1+ t2+ s1+ s2 into dif-
ferent categories. Some matchings do not link matrices from the first to the second block:
such matchings can be factorized into a non-crossing matching over the first block along
with another one over the second. Therefore, the mixed-moment ⌧(Xt1(X>)s1Xt2(X>)s2)
can be expressed as

⌧(Xt1(X>)s1Xt2(X>)s2) = ⌧(Xt1(X>)s1)⌧(Xt2(X>)s2) +
X

mixed
non-crossings

⇡

%�(⇡). (IX.35)

We can then study the remaining sum by classifying the mixed non-crossing matchings
according to the type of their longest arc, in the same spirit as in Appendix A.
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Key takeaways

• Gaussian elliptic random matrices are Gaussian random matrices for
which elements ij and ji are correlated through a parameter %.

• Temperley-Lieb diagrams are non-crossing pairings between points spread
across two facing lines. These diagrams can be classified according to their
rank, i.e. the number of links from one line to the other.

• Mixed-moments of Gaussian elliptic random matrices of the form
⌧(Xt(X>)s) can be generally expressed as a function of t, s and % in the
thermodynamic limit. The expression involves weighted sum over the cardi-
nality of the subspaces partitioning the set of Temperley-Lieb diagrams.
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2 (2t, 2s)

In this Appendix, we will prove the following statement

���NC2k
2 (2t, 2s)

��� = C(t+ k + 1, t� k + 1)C(s+ k + 1, s� k + 1)

=
(2k + 1)2

(t+ k + 1)(s+ k + 1)

✓
2t

t+ k

◆✓
2s

s+ k

◆ (IX.36)

where C(n, k) are triangular Catalan numbers [208], see Table IX.1.
To compute the cardinal of NCk

2(t, s), we need to study the properties of mixed pairs (�, •).
We will order the elements �, • on a line such that the leftmost � is indexed by t (the innermost
by 1), and the rightmost • by s (the innermost by 1), see Figure IX.4 for an illustration.

Consider one mixed pair (i, j) 2 ⇡ where ⇡ is a non-crossing pairing. For ⇡ to be valid, we
must have i and j of the same parity. Indeed, if i 6⌘ j [2], the interior set {i�1, . . . , 1, 1, . . . , j�1}
is not balanced and since this set is separated from elements i0 > i and j0 > j (because ⇡ is
non-crossing and (i, j) 2 ⇡), no pairing of its elements would be possible.

Consider now a non-crossing pairing ⇡ with exactly k mixed pairs {(i1, j1), . . . , (ik, jk)}
ordered such that (i1, j1) is the inner-most mixed pair and (ik, jk) the outer-most i.e.

1  i1 < · · · < ik  2t, 1  j1 < · · · < jk  2s.

First-of-all, k must be of the same parity as t and s for balancing purposes. Considering now the
`-th mixed pair. The endpoints i` and j` must have the same parity as `. Indeed, because of the
ordering, the inner-most possibility for (i`, j`) is the pair (`, `). Since i` and j` must keep the
same parity, i` = `+ 2r and j` = `+ 2s for some r, s respecting the ordering. Finally, aside from
the parity requirements, the endpoints of the pairs are independent from one another and move
freely in the limits of the ordering.

Still considering non-crossing pairings ⇡ with exactly k mixed pairs, we can now count how
many such pairings there are. Since the number of mixed pairs of ⇡ is fixed, ⇡ may be written in
the following way

⇡ = �0 [ ⌫0 [
 

k[

`=1

(i`, j`) [ �` [ ⌫`
!
, (IX.37)

with �` (resp. ⌫`) a non-crossing partition over the elements {i` + 1, . . . , i`+1 � 1} (resp. {j` +
1, . . . , j`+1 � 1}), �0 over {1, . . . , i1 � 1}, �k over {ik + 1, . . . , 2t} and ⌫0, ⌫k defined in the same

n
k

1 2 3 4 5 6 7

1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 2 0 0 0 0
4 1 3 5 5 0 0 0
5 1 4 9 14 14 0 0
6 1 5 14 28 42 42 0
7 1 6 20 48 90 132 132

Table IX.1: Catalan triangle containing the numbers C(n, k)

267



IX. Mixed-moments of Gaussian elliptic matrices

12345678910 1 2 3 4 5 6

�2 �1 �0 ⌫0 ⌫2

i2 = 8! 10

12345678910 1 2 3 4 5 6

�1 �0 ⌫0 ⌫2

Figure IX.4: Contributions to
��NC2

2(10, 6)
��. (Top) partitions with fixed mixed pairs (8, 4) and (5, 3):

C1C1C2C1C0C1. (Bottom) partitions with fixed mixed pairs (10, 4) and (5, 3): C0C2C2C1C0C1.

way. We only need to count the number of sub-partitions �`, ⌫`. For �`, there are C(i`+1�i`�1)/2.

Putting all these observations together, we get a formula for
���NC2k

2 (2t, 2t)
���

���NC2k
2 (2t, 2s)

��� = B2k(2t)B2k(2s), (IX.38)

and

B2k(2r) =
X

1i1<···<i2k2r
i`⌘`[2]

 
2k�1Y

`=1

C(i`+1�i`�1)/2

!
C(t�i2k)/2C(i1�1)/2, (IX.39)

see Figure IX.4 for an illustration of the previous formula. Upon changes of variable to account
for the parity constraints i` ⌘ ` [2], it is easy to see that B2k(2t) obeys the following recursion
relation

B2k(2t) =
tX

`=k

Ct�`

`�1X

s=k�1
C`�s�1B2(q�1)(2s). (IX.40)

We will now show that B2k(2t) = C(t+ k + 1, t� k + 1) (?) using the identity (see [208])

C(r +m,m) =

mX

s=1

C(s, s)C(r +m� s,m� s+ 1), (IX.41)
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and the fact that C(n + 1, n + 1) = Cn. It is easy to see that the (?) holds whenever k = 0.
Assuming that (?) holds true for any q  k � 1 and s  t� 1, we have

B2k(2t) =
tX

`=k

Ct�`

`�1X

s=k�1
C`�s�1C(s+ k, s� k + 2)

=

tX

`=k

Ct�`

`�1X

s=k�1
C(`� s, `� s)C(s+ k, s� k + 2)

=

tX

`=k

Ct�`

`�k+1X

s=1

C(s, s)C(`+ k � s, `� k � s+ 2),

using Eq. (IX.41) with m = `� k + 1 and r = 2k � 1, we have

=

tX

`=k

Ct�`C(`+ k, `� k + 1)

=

tX

`=k

C(t� `+ 1, t� `+ 1)C(`+ k, `� k + 1)

=
t�k+1X

`=1

C(`, `)C(t� `+ k + 1, t� `� k + 2),

and once again with m = t� k + 1 and r = 2k, we get

= C(t+ k + 1, t� k + 1).

Finally, using the expression for the numbers C(n,m) we get

B2k(2t) =
2k + 1

t+ k + 1

✓
2t

t+ k

◆
. (IX.42)
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Conclusion

In this thesis, we have explored three main avenues to tackle the problem of large
macroeconomic fluctuations. The first avenue is built upon the idea of self-organized
criticality. In this work, we argue that economies are typically close to a point of instability,
which naturally increases fluctuations. This point of instability is defined as the tipping
point between existence and non-existence of admissible economic equilibrium. Close
to the instability, the economy experiences a critical slow-down, which allows shocks to
linger and accumulate, therefore producing excess volatility. In this explanation, the
economy amplifies exogenous shocks through the proximity with an instability point. The
second avenue explores more endogenous origins for the excess volatility by proposing a
fully consistent Agent-Based Model (ABM) of interacting firms. Sensible behavioral rules,
encoding firms reactions to variations of profits and production surplus, allow for a wide
range of aggregate behavior in our ABM. Even though equilibrium may be perfectly well-
defined, the economy might not reach it and can either reach different types of equilibria
or enter cycles of sustained oscillations. These oscillations can be of different origins
depending on the values of the parameters of our ABM. However, they are endogenously
generated by the model, without any external driver. This is yet another scenario for
explaining macroeconomic fluctuations. Finally, the last avenue is provided by the study
of conewise linear systems (CLS). These systems are ubiquitous in economics, and they
are able to generate crises-like patterns very easily. We have shown several fascinating
properties of CLS in a random setting, i.e. whenever linear evolutions are governed by
random matrices. We also looked at more general questions concerning occupation times
of random processes. These questions can actually translate to economics since one may
wonder for how long an economy could be booming or receding.

The work compiled in this manuscript also advocates for a multidisciplinary approach
to economic modelling. We firmly believe that the economy must be dealt with as
a complex system evolving through time. The equilibrium-only descriptions must be
dropped in favor of more realistic out-of-equilibrium settings, which allow for a much richer
phenomenology. Furthermore, the amount of interactions and the number of economic
agents should lead to non-trivial emerging behavior. The complex systems approach offers
a wide variety of methods and ideas to tackle emerging dynamics and characteristics. We
hope that future work in this direction will be carried out, and that the economist’s and
physicist’s communities find common grounds to develop new approaches to economic
challenges.
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Titre : Grandes fluctuations macroeconomiques: criticalité auto-organisée dans les réseaux d’entreprise, mo-

dèles basés agents et matrices aléatoires

Mots clés : fluctuations economiques, criticalité auto-organisée, modèles basés agents, systèmes dyna-

miques, matrices alétoires

Résumé : Quelle est l’origine des fluctuations macroéconomiques? À
la fin du xxesiècle, Ben Bernanke introduisait pour la première fois ce qu’il
appela le puzzle des "small shocks, large business cycles" faisant référence
à l’apparente incompatibilité entre les petites fluctuations observées aux ni-
veaux granulaires de l’économie ("small shocks") et les larges fluctuations

macroéconomiques ("large business cycles"). Par exemple, le PIB des États-
Unis montre un taux moyen de croissance annuelle stable autour de 3%

mais présente des fluctuations atteignant 2.7%. L’énigme réside dans le fait
que la plupart de cette volatilité en excès ne peut être liée à des crises exo-
gènes connues, comme les chocs pétroliers ou la crise financière de 2008,
et doit donc être d’origine endogène, c’est-à-dire générée par l’économie
elle-même. De nombreuses explications ont vu le jour, les plus connues im-
pliquant la distribution en loi de puissance des tailles d’entreprises qui se ré-
percuterait aux niveaux agrégés de l’économie, ou bien des effets de réseaux
responsables de l’amplification des chocs microscopiques. En revanche, ces
explications reposent sur de modèles économiques à l’équilibre représen-
tant le monde comme une succession d’états équilibrés atteints instantané-
ment et sans friction, et qui, tautologiquement, ne prennent pas en compte
les effets hors équilibres. Dans cette thèse, les deux premières parties sont
consacrées à la recherche de mécanismes hors équilibres pouvant expliquer
la volatilité en excès. La troisième partie est dédiée à l’étude plus générale
des systèmes linéaires par cônes, omniprésents en économie.
Nous commençons par montrer que l’équilibre au sens économique n’existe
par toujours dans les réseaux d’entreprises. Cela a plusieurs conséquences.
Premièrement, comme l’équilibre n’est pas toujours bien défini, les modèles
économiques devraient être principalement conçus hors-equilibre. Deuxiè-
mement, proposant un modèle dynamique minimal et comportemental pour

l’ajustement des prix et productions dans un contexte d’interactions inter-
entreprises, nous montrons que l’économie subit un ralentissement critique
au voisinage du point de non-existence de l’équilibre caractérisé par une di-
vergence du temps de relaxation et une accumulation des chocs dans le
réseau générant naturellement de la volatilité en excès. Troisièmement, nous
argumentons, dans le même esprit que Bak et al., que les économies ac-
tuelles sont proches du point de non-existence de l’équilibre à cause du phé-
nomène dit de criticalité auto-organisée.
Dans la deuxième partie, nous nous éloignons du modèle minimal et pro-
posons un modèle basé agents pleinement cohérent prenant en considéra-
tion des éléments économiques plus réalistes. Nous montrons que la mul-
titude de boucles de rétroactions, engendrées par les interactions entre en-
treprises, génère des oscillations endogènes pour des valeurs économique-
ment cohérentes des paramètres gouvernant le modèle, donnant alors une
autre piste pour expliquer la volatilité en excès. En outre, une étude ana-
lytique du modèle révèle que la dynamique reste non triviale au niveau li-
néaire : la dépendance linéaire des entrées et sorties économiques peut
elle-même varier en fonction de la forme des entrées. Ces systèmes, ap-
pelés linéaires par cônes, génèrent aisément, même dans les cas les plus
simples, des paternes de crises ainsi que des oscillations et sont omnipré-
sents en économie.
Cela mène naturellement à la dernière partie de cette thèse où nous nous in-
téressons aux propriétés de stabilité de ces systèmes dans un contexte plus
général de matrices aléatoires. Nous montrons que les systèmes linéaires
par cônes peuvent exhiber des propriétés hautement non triviales comme
l’absence de concentration de la mesure de l’exposant de Lyapunov maxi-
mum qui gouverne la stabilité du système.

Title : Large macroeconomic fluctuations: self-organized criticality in firm networks, Agent Based Models and

random matrices

Keywords : economic fluctuations, self-organized criticality, agent based models, dynamical systems, random

matrices

Abstract : What is the origin of macroeconomic fluctuations ? In the
late XXth century, Ben Bernanke first introduced the so-called "small shocks,
large business cycles" puzzle as the seeming incompatibility between small
fluctuations observed at granular levels of the economy (small shocks) and
large macroeconomic fluctuations (large business cycles). As an example,
the Unites States’ GDP displays a steady average yearly growth rate of
around 3% but with fluctuations reaching 2.7%. The conundrum is that most
of this volatility cannot be linked to known exogeneous crises, such as oil
shocks or the 2008 financial crisis, and must therefore be of endogeneous
origin, i.e. generated by the economy itself. Numerous explanations have
come to light, the most famous of which involve the power-law distribution
of firms’ sizes rippling out at aggregate levels of the economy or network
effects responsible for amplifying micro-level shocks. However, these expla-
nations rely on equilibrium-only economic models which picture the world as
a succession of equilibria instantaneously reached without friction, and which
tautologically do not account for out-of-equilibrium effects. In this thesis, the
first two parts are devoted to finding mechanisms accounting for the excess
volatility through those overlooked out-of-equilibrium effects. The third part is
dedicated to studying more general properties of so-called conewise linear
systems, which are ubiquitous in economics.
We start by showing that, in firm networks, economic equilibrium does not
always exist. This has several consequences. First, since equilibrium can
be ill-defined, economic models should be chiefly devised out-of-equilibrium.
Second, upon proposing a minimal behavioral dynamical model of prices and

productions’ adjustment with inter-firms interactions, we show that at the on-
set of equilibrium non-existence, the economy experiences a critical slow-
down where the relaxation time diverges and shocks start accumulating in
the network, naturally generating excess volatility. Third, in the same spirit
as Bak et al., we argue that economies generically sits close to the non-
existence point through a phenomenon called self-organized criticality.
In the second part, we depart from the first minimal model and devise a fully
consistent Agent Based Model by factoring in some more realistic econo-
mic features. We show that, because of the multiple feedbacks introduced by
the interactions between firms, our model is able to generate sustained en-
dogenous business cycles for economically sound values of the parameters
governing the model, giving yet another avenue for explaining excess volati-
lity at aggregate levels. Furthemore, an analytical study of the model reveals
a non-trivial dynamics even at linear level : the linear dependency between
economic inputs and outputs can vary depending on the inputs themselves.
Such systems, called conewise linear, can easily generate crises-like pat-
terns and oscillations even in the simplest cases and naturally come to play
in economics.
This naturally leads to the last part of this thesis, where we investigate more
general stability properties of conewise linear systems in a random matrix
theory setting. We show that such system can exhibit highly non-trivial pro-
perties, such as the non-self-averaging of the maximal Lyapunov exponent
governing the system’s stability.
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