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LIP6
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Introduction

In a classical combinatorial optimization setting, given an instance of a problem
one needs to find a good feasible solution. However, in many situations, the data
may evolve over time and one has to solve a sequence of instances. The natural
approach of solving every instance independently may induce a significant transi-
tion cost, for instance for moving a system from one state to another. Gupta et al.
(2014) and Eisenstat et al. (2014) proposed a multistage model where given a time
horizon t = 1, 2, . . . , T , the input is a sequence of instances I1, I2, . . . , IT , (one for
each time step), and the goal is to find a sequence of solutions S1, S2, . . . , ST (one
for each time step) reaching a trade-off between the quality of the solutions in each
time step and the stability/similarity of the solutions in consecutive time steps. The
multistage framework is the main subject of the thesis in which we addressed some
maximization problems in the offline setting as well as in the online one and study
a direct application of the framework in a musical context. Roughly speaking, in
the offline setting, one has a complete knowledge of the data over the time horizon
whereas in the online setting, one only knows the data at a time t and the intances
of future time steps t+ 1, . . . , T are unknown.

In Chapter 1 of the thesis, we will present an overview of optimization problems
tackling evolving data. First we present some notions of complexity theory that will
be used during the whole document. Then, the framework of this thesis is presented
as well as its current state of the art. Note that the framework was introduced fairly
recently (in 2014) and more and more articles adressing it are published each year.
In addition of being interesting in practical situations, some surprising behaviours
were observed in the multistage context: some problems, polynomially solvable in
their classical version, become NP-hard and/or inapproximable in their multistage
version even in very “easy” restricted settings; some other problems, NP-hard in
their classical version, tend to be easier to approximate in their multistage ver-
sion than polynomially solvable problems (in their classical version). Finally are
presented some other approaches of the literature dealing with evolving data and
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6 Introduction

sharing some properties with the multistage framework.

Then, in Chapter 2, the multistage knapsack problem is addressed in the
offline setting. Note that the studies of this chapter have been presented at MFCS
(Mathematical Foundations of Computer Science) 2019 (Bampis et al. (2019c)).
The main contribution is a polynomial time approximation scheme (PTAS) for the
problem in the offline setting. Up to the best of our knowledge, this is the first
PTAS presented for a problem in its multistage version, contrasting with some
inapproximability results showed for some polynomially solvable problems in their
static (classic) version.

In Chapter 3, the multistage framework is studied for multistage problems in
the online setting, i.e. at time t, instances at time t+ 1, . . . , T are unknown. When
the lack of knowledge of the future has too much (bad) influence on the results one
can obtain, the k-lookahead setting was studied, where at time t, instances at time
t+ 1, . . . , t+ k are known. The goal of these research were to measure, in the mul-
tistage framework, the impact of the absence of information on the future of data
evolution. Contrasting with the multistage literature which mainly focused on mini-
mization problems, we addressed a large family of problems in the multistage setting
known as the subset maximization problems (note that the multistage knapsack
problem is in this family of problems). The main contribution of this chapter was
the introduction of a structure for these problems (tackling different kinds of mod-
els) and almost tight upper and lower bounds on the best-possible competitive ratio
for these models. Note that these works have been presented at ESA (European
Symposium on Algorithms) 2019 (Bampis et al. (2019b)).

Finally in the chapter 4 is presented a direct application of the multistage frame-
work in a musical context. In the first part of this chapter is presented the musical
problem studied, i.e. the target-based computed-assisted orchestration
problem, with some basic notions of musical theory and the history behind the
study of the problem. Then our work is presented, which is a theoretical analysis
of the target-based computed-assisted orchestration problem, with NP-
hardness and approximation results as well as some experimentations. Note that
these works will be put on arXiv and submitted to a journal by the time of the thesis
defense.



Chapter 1

Optimization with temporal
aspects, a state of the art

1.1 Combinatorial optimization preliminaries

In the first section of this chapter, we will present some fundamental definitions
and notions of combinatorial optimization used during the thesis. We will define a
certain terminology and vocabulary for the entire document. First and foremost,
we will address the theory of complexity with its main classes, then, we will develop
the notion of approximation algorithms.

1.1.1 A brief introduction to the theory of complexity

As we said in the introduction of the thesis, in a classical optimization problem,
given an instance, one is asked to find a feasible solution optimizing an objective
function. The feasibility of a solution is defined by a set of constraints applied to,
depending on the nature of the problem, nodes, edges, precedence and so on for
graphs, objects for packing problems...

Let us define two types of problems, the decision problems and the combinatorial
optimization problems.

Definition 1.1. (Decision problem)
A decision problem is defined as a set I of instances which is partitioned into I+
(YES-instances) and I− (NO-instances). The goal is to determine if a given I ∈ I
is a YES-instance or a NO-instance.

Definition 1.2. (Combinatorial Optimization problem) A combinatorial optimiza-
tion problem A is defined by:

7



8 CHAPTER 1.

• a given set of instances I

• for each instance I ∈ I, a set F(I) of feasible solutions

• for each solution x ∈ F(I) a value cI(x), assumed to be greater than or equal
to 0

One needs to find a feasible solution in order to optimize the objective function

Note that, any optimization problem can be associated with a decision problem
where the problem is to determine, for a given k, whether there exists a solution of
value at least (for a maximization problem) or at most (for a minimization problem)
k.

An algorithm, based on Turing machines that we won’t present here, is used to
solve either the optimization problem or the decision problem. We call the time
complexity of an algorithm the number of steps one has to go through in order to
run it. We say that a problem is solvable in polynomial time if there exists some
c > 0 such that any instance I of the problem can be solved by an algorithm running
in time O(|I|c) with |I| the size of the instance. Space is another type of resource
addressed in complexity theory, defined by the space complexity, which is the space
in memory an algorithm needs to run. We focus extensively on the time complexity
in this thesis (we will sometimes use the term complexity of an algorithm and will
be referring in this case to its time complexity).

That being defined, we can introduce two central classes of problems of the
theory of complexity. The first one is called the class P (The following definitions
of this section are for most of them taken from Escoffier (2005) which we refer the
reader to for a more detailed introduction on complexity classes and approximation
algorithms and techniques).

Definition 1.3. (The complexity class of problems P)
The complexity class P of problems is defined as the set of all decision problems
solvable in polynomial time by a deterministic Turing machine.

We will encounter quite a lot of problems belonging to this class in the next
sections. However, a large amount of problems are not known to be in the class P,
i.e., we don’t know any polynomial time algorithm able to solve them.

This observation leads us to introduce the second central class of problems, called
the complexity class NP.

Definition 1.4. (The complexity class of problems NP)
The complexity class NP is defined as the set of all decision problems solvable in
polynomial time by a non deterministic Turing machine.
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Roughly speaking, the complexity class NP of problems is defined as the set
of all decision problems for which it is possible to verify in polynomial time if an
answer to a given instance of the decision problem question is yes.

The classNP gathers a large amount of problems, in addition to all the problems
of the class P, solvable and thus verifiable in polynomial time.
These definitions give us the possibility to introduce the central question of the
theory complexity: does P=NP? The hypothesis stating P ̸=NP being widely ac-
cepted, the majority of the results presented in this thesis are relevant and presented
under this hypothesis.
In order to be able to gather a large amount of problems either in P or NP and
given a problem to be able to determine if it is in one, the other or none of the
class, Cook and Karp introduced and used, in two of the most fundamental articles
of the theory of complexity (Cook (1971) and Karp (1972)), the notion of reduction
between two decision problems.

Definition 1.5. (The Karp reduction)
Let A and B be two decision problems. We say that A is reducible to B if there is
a function f such that:

• for all instances I ∈ A, f(I) ∈ B

• the answer to the question of the decision problem A is yes for an instance I∗

if and only if the answer to the question of the decision problem B is yes for
the instance f(I∗)

• it takes a polynomial time to compute f

Such a reduction gives the possibility to transfer the result of belonging to a class
from one problem to another. Indeed, following Definition 1.5, if a decision problem
B is in P and a decision problem A is reducible to B, then A is in P too. This
affirms that if it is possible to solve a decision problem B in polynomial time, thus
it is also possible to solve an easier decision problem A in polynomial time.
In Cook (1971), the author showed that all problems in NP are reducible to the well
known SAT problem, i.e. all problems in NP are easier than the SAT problem.
This observation leads to the definition of the complexity classes NP-hard and NP-
complete.

Definition 1.6. (The complexity class of NP-hard problems)
The complexity class NP-hard is defined as the set of all the decision problems B
such that any decision problem A ∈ NP is (Karp)-reducible to B.

Later in the document, we will also refer to NP-hard optimization problems, an
optimization problem is NP-hard if its decision version is NP-hard.
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Definition 1.7. (The complexity class of NP-complete problems)
The complexity class NP-complete is defined as the set of all decision problems that
are both in NP and NP-hard.

We introduced some central notions of the theory of complexity (see Garey and
Johnson (1979) for a more detailed presentation on theory of complexity), let us
now present approximation algorithms and their motivations.

1.1.2 Approximation algorithms

As said in the previous section, a vast amount of decision problems are known to be
NP-hard i.e. not polynomially solvable if P ̸=NP, which is the central hypothesis
of the theory of complexity. The hardness of those problems make real world appli-
cations and implementations really difficult or even impossible. It is then naturally
that about 30 years ago approximation algorithms were introduced. Those algo-
rithms give some solutions in reasonable time, more precisely in polynomial time,
even if they are not optimal. The quality of a solution output by such an algorithm
is defined by a ratio, comparing the value of its solution to the optimal value.

Formally, for an optimization problem P and an instance I of P , the quality of
an approximation algorithm is given by the ratio:

SOL(I)

OPT(I)

with SOL(I) the value of the solution returned by the algorithm on the instance
I and computed in polynomial time and OPT(I) the value of an optimal solution.
The value of this ratio has to be at most (resp. at least) one for maximization (resp.
minimization) problems. Note that in this document, we only consider problems
with positive objective functions.
We say that an algorithm is a ρ-approximation algorithm for an optimization prob-
lem if it has been shown that for any instance I of the problem, i.e. especially in
the worst case scenario, the ratio ρ(I) is verified, i.e. if SOL(I) ≤ ρ(I)OPT (I) for
minimization problems and SOL(I) ≥ ρ(I)OPT (I) for maximization problem. One
is looking for an approximation algorithm with a ratio as close as possible to 1.

Some problems have a known constant approximation ratio and said to be in a
complexity class called APX:

Definition 1.8. (The complexity class of problems APX)
The complexity class APX of problems is defined as the set of all optimization
problems solvable by a polynomial time algorithm A with a constant approximation
ratio, i.e., there exists ρ ∈ R∗ such that A is a ρ-approximation algorithm.
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Let us finally introduce two last classes of complexity that we will largely use in
this thesis and that are known to be in APX.

The first one is called PTAS.

Definition 1.9. (The complexity class PTAS)
The complexity class of problems PTAS is defined as the set of all optimization
problems admitting a Polynomial Time Approximation Scheme (PTAS). A PTAS
is an algorithm that takes as input an instance of an optimization problem and any
ϵ > 0, outputs a (1 − ϵ)-approximate solution for maximization problems, ((1 + ϵ)-
approximate solution for minimization problems) and has a complexity polynomial
in the instance size |I|. The dependency in ϵ can be arbitrary.

We say that a problem is APX-hard if there is no PTAS under the hypothesis
that P ̸= NP.

The other one is the more restricted class called FPTAS where the complexity of
the algorithm is required to be polynomial in both the instance size and 1

ϵ
. Formally:

Definition 1.10. (The complexity class FPTAS)
The complexity class of problems FPTAS is defined as the set of all optimization
problems admitting a Fully Polynomial Time Approximation Scheme (FPTAS). A
FPTAS is a PTAS whose complexity is polynomial both in the instance size |I| and
in 1

ϵ

A lot of other complexity classes dealing with approximation algorithms are stud-
ied in the literature (see Ausiello and Paschos (2018) for a detailed survey on the
approximation preserving reductions).

Let us now give the definition of a pseudo polynomial problem:

Definition 1.11. (Pseudo-polynomial problem)
Let I be an instance of an optimization problem A (with its decision version being
NP-complete) and C(I) the absolute value of the largest number in I. We say that
A is pseudo-polynomial if there exists an algorithm whose complexity is polynomial
in the size of the instance, i.e. |I|, and in C(I).

Finally, let us give the definition of the complexity class strong NP-hard.

Definition 1.12. (The complexity class Strong NP-hard)
The complexity class strong NP-hard is defined as the set of all decision problems
that remain NP-hard even when all their numerical values are bounded by a poly-
nomial in the length of the input.

Results on the complexity classes defined in this section will be presented in the
different chapters of this thesis.
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1.2 Multistage optimization

Beyond the complexity issues, some real world problems naturally induce some dif-
ficulties regarding their own data. Indeed, in some cases, one only has a partial
knowledge of the problem data or in some other cases the data will be brought to
evolve over time. To deal with these kind of temporal difficulties, a lot of approaches
have been developed, most of them since the early 1980’s, responding to different
applications and needs.
We will first develop the multistage optimization which is the main topic of the
thesis, illustrate it with an example and give its definition in Section 1.2.1. Then
we will present the actual state of the art of the framework in Section 1.2.2.
We will next focus on a few other optimization frameworks coping with evolving
data, being extensively studied and/or sharing some properties with the multistage
one in Section 1.3.

1.2.1 Introduction and definition of the multistage frame-
work

In the multistage framework, a decision maker is given a time horizon with T discrete
time steps and a sequence of instances of a problem, one for each time step, he needs
to solve. To do so, one needs to build a sequence of solutions, i.e. a set of feasible
solutions, one for each time step, optimizing the objective function of the problem.

First, let us illustrate this approach with an example. Consider a company own-
ing a set N = {u1, . . . , un} of production units. Each unit can be used or not; if ui

is used, it spends an amount wi of a given resource (energy, raw material,...), and
generates a profit pi. Given a bound W on the global amount of available resources,
the static Knapsack Problem aims at determining a feasible solution that speci-
fies the chosen units in order to maximize the total profit under the constraint that
the total amount of the resource does not exceed the bound of W .

u1 u2 u3

wi 1 1 2
pi 3 1 7
W 2

u1 u2 u3

wi 1 2 3
pi 2 5 5
W 3

1.1: Two instances of the Knapsack problem

Two distinct instances of the Knapsack problem are presented in Figure 1.1.
To get the optimal solution, one has to take in the left instance the production unit
u3, obtaining a profit of 7 and using all the resources, called also capacity of the
knapsack, i.e. 2. Otherwise, the profit would be lower or the amount wi of resources
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would exceed the global available resources. In the right instance, one has to take
the units u1 and u2, obtaining a profit of 7 and using again all of the resources, i.e. 3.

In a temporal setting and more precisely in the multistage setting we focus on
this thesis, a company would have to decide a production plan over a time horizon
t = 1, 2, . . . , T , of, let us say, T days. The company here needs to decide a pro-
duction plan for each day of the time horizon, given that data (such as prices, level
of resources,...) usually change over time. This a typical situation, for instance, in
energy production planning (like electricity production, where units can be nuclear
reactors, wind or water turbines,...), or in data centers (where units are machines
and the resource corresponds to the available energy). Moreover, in these examples,
there is an extra cost to turn ON or OFF a unit like in the case of turning ON/OFF
a reactor in electricity production (Rottner (2018)), or a machine in a data center
(Scheideler and Hajiaghayi (2017)). Obviously, whenever a reactor is in the ON or
OFF state, it is beneficial to maintain it in the same state for several consecutive
time steps, in order to avoid the overhead costs of state changes (even if it is impor-
tant to note that the real problem is much more complicated). Therefore, the design
of a production plan over a given time horizon has to take into account both the
profits generated each day from the operation of the chosen units, and the poten-
tial transition profits from maintaining a unit in the same state for two consecutive
days. Thus, in the Multistage framework, instead of having only an instance of a
problem and seeking a feasible solution optimizing its objective function, we have a
sequence of instances of a problem, one for each time step and one is asked to seek
a sequence of feasible solutions, one for each time step, reaching a trade-off between
the optimality of the solutions and the stability of consecutive solutions.
The problem can be formalized as follows. We have a given time horizon t =
1, 2, . . . , T , and a sequence of knapsack instances I1, I2, . . . , IT , one for each time
step, defined on a set of n productions units, also called objects in the Knapsack
problem. In every time step t we have to choose a feasible knapsack St of It, which
gives a knapsack profit. Taking into account transitions costs, we measure the sta-
bility/similarity of two consecutive solutions St and St+1 by identifying the objects
for which the decision, to be picked or not, remains the same in St and St+1, giving
a transition profit. We are asked to produce a sequence of solutions S1, S2, . . . , ST

so that the total knapsack profit plus the overall transition profit is maximized.
There are a lot of other applications where it is beneficial to use a multistage frame-
work. One of them is the facility location problem, which we will develop
later in this section. Another one is a musical application called the target-based
computer-assisted orchestration. We will focus on this latter application in details
in the last chapter of the document.

Let us now look at the example of Figure 1.1 and consider both instances as a
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sequence of instances of a Multistage knapsack problem with two time steps,
the left instance being the instance at the time step 1 and the right instance the one
at the time step 2. In order to compute a transition profit, we need to introduce
the notion of the bonus. Let us say that for this example, one gets a bonus B = 1
for each object if the object is taken or not taken for two consecutive time steps,
i.e. if the decision remains the same between time steps 1 and 2. Thus, the global
transition profit is equal to B times the total number of decisions that remain the
same between two consecutive time steps. For instance, if we take the objects of the
static optimal solution, i.e., object u3 for the first time step and objects u1 and u2

for the second time step, the knapsack profit is equal to 14, 7 at both time steps.
However, the value of the transition profit is equal to 0, none of the decisions remains
the same (the object u1 is taken only at time step 1 whereas the objects u2 and u3

are taken only at time step 2), so we have a global reward equal to 14. The optimal
solution consists of taking only the object u3 at both time steps, getting a knapsack
profit equal to 7 + 5 = 12 and the max value of the transition profit, as object u1

and u2 are not taken at both time steps and u3 is taken at t = 1 and t = 2, i.e.
3B = 3; the global reward is then equal to 12 + 3 = 15.

The example introduces the Knapsack problem in its multistage configuration.
This problem is the main subject of the second chapter where we will develop its
particularities and properties.

Let us now give a formal definition of an optimization problem in its multistage
version.

Definition 1.13. (Multistage Optimization problem). In a Multistage Optimization
problem, given

• a combinatorial optimization problem P;

• a number T ∈ N∗ of time steps;

• for any t ∈ T , an instance It of the optimization problem P with a feasible set
Ft

• For each t = 1, . . . , T − 1 a function b(St, St+1) associating to each couple
of feasible solutions St ∈ Ft and St+1 ∈ Ft+1 the transition bonus/cost for
resp. maximization/minimization problems between two solutions at consecu-
tive time steps

With S = (S1, . . . , ST ) a sequence of feasible solutions over the time horizon, the
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objective function is the value of a solution sequence S:

f(S) =
T∑
t=1

pt(St) +
T−1∑
t=1

b(St, St+1)

We will use the term profit/cost for pt(St) for resp. maximization/minimization
problems, transition bonus/cost for the transition bonus/transition cost b(St, St+1)
for resp. maximization/minimization problems, and value of a solution S for f(S);
The goal is to determine a solution sequence of maximum/minimum value for resp.
maximization/minimization problems.

Let us look back at the multistage knapsack problem example. The profit
function pt(St) would be the knapsack profit for t = 1, 2, with St a solution at a
time step t. The transition function, here a bonus function, would be b(S1, S2) =
|(S1 ∩ S2) ∪ (N \ S1 ∩ N \ S2)|. The goal is then to maximize the sum p1(S1) +
p2(S2) + b(S1, S2).

The definition presented above is one of the several possible ways to define a
problem in a multistage version.
Indeed, here the global objective function consists of the sum of the profit/cost func-
tion and the transition bonus/cost.
This definition is debatable but seemed relevant for the problems encountered during
the thesis. Moreover, it follows the original definition of the multistage framework
presented in Gupta et al. (2014) and in Eisenstat et al. (2014). It is in fact possible
to define the objective function this way when one is able to compare the profit/cost
function value and the transition bonus/cost function value. For example, it is pos-
sible in the previously introduced applications, i.e. in, energy production planning
or in data center problems, since the cost of the production and the cost of switching
ON/OFF a reactor/server are directly comparable.
Another way of defining a multistage version is with a multi-objective approach.
Indeed, we will see later in this section that for some problems such as the vertex
cover problem, a multistage version of the problem was introduced where one is
asked to minimize a number of selected nodes (the classical vertex cover problem
objective function) and at the same time to minimize the number of modifications
regarding the selected subset of nodes for two consecutive time steps. In some cases
it is also relevant to bound the number of changes between two consecutive time
steps or even to bound them on the whole time horizon.

This latter point on the objective function is one aspect subject to differ between
several possible definitions of the framework, depending on the nature of the studied
problem.
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Another aspect is the way data may evolve during the time horizon. There are indeed
different possibilities of data evolution that will be developed later in chapter 3.

In the third chapter, we will present some results for a class of problems called the
Multistage Subset Maximization problems (a formal definition will be given
in the corresponding chapter) and study these problems in terms of their different
types of data evolution.

Then, another key point in the definition of a problem in its multistage version
is the definition of the transition bonus/cost (maximization/minimization version
respectively) function.
Indeed, several ways of defining such a transition bonus/cost function in order to
measure the stability of a sequence of solutions can be relevant in real world appli-
cations.
For example, for the Facility location problem that we will develop into details
in the next section, it could be interesting to take into account in the transition
function:

• the cost induced by the opening of a facility

• and/or the cost induced by clients switching from different facilities

Two kinds of transition bonus, namely the Intersection Bonus and the Hamming
Bonus, will be studied in the third chapter of the thesis. We will see that, depending
on the bonus studied, different results are observed.

Finally, in order to go further into the development of the multistage frame-
work and present the current state of the art of the multistage framework, we need
to present different temporal settings on the knowledge of the data over the time
horizon. We will focus on three settings studied in the literature:

1. The offline setting: one has a complete knowledge of the instance over the
time horizon (this was the case of the example of Figure 1.1 where we know
the whole sequence of instances of the Multistage Knapsack problem, it
would be the case for the electricity planning problem where one is asked to
find a solution given a predicted fixed data set; a musical application will be
developed in the fourth chapter in this setting, where one has a given data set
over a time horizon);

2. The online setting: at a time step t, one only knows the data for today, i.e.
we have no information regarding the instances at time steps t+ 1, . . . , T . In
our definition, we also assume that we know the number T of time steps of the
time horizon. The online setting will be developed later in the chapter as it is
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an extensively studied case of temporal optimization. (Note that this setting
will be presented in detail in Subsection 1.3.2)

3. The k-lookahead setting: at a time step t, one knows the data for today and
the next k days. This setting is tightly linked to the online case as it is often
used when no results can be obtained in the online case. In our definition, we
again assume that one knows the total number of time steps T of the time
horizon.

The third chapter deals with Multistage Subset Maximization problems in
the online and k-lookahead settings, with different possible types of data evolution
and transition bonus functions.

1.2.2 State of the art: the multistage framework

In this section, we will cover the current state of the art of the multistage framework.
To do so and for the sake of clarity, we will present it problem by problem. We will
give a definition of the problems and develop their approaches and current results.
The multistage framework defined formally in the previous section follows the di-
rection presented fairly recently by Gupta et al. (2014) and Eisenstat et al. (2014)
who covered different problems.

Matching and Perfect Matching problems

In the static matching problem, given a graph, we need to find a set of edges with
no vertices in common. A matching is called a perfect matching if all vertices of a
graph are covered by the set of selected edges.
In its multistage version, the perfect matching problem is called the perfect
matching maintenance and consists of keeping the perfect matching property
over the time horizon, i.e. at each time step, while the cost function on the edges
of the graph and cost value for adding new elements is subject to changes over the
time horizon.

In Gupta et al. (2014), they showed that the perfect matching mainte-
nance problem becomes surprisingly inapproximable, even in the offline case. This
negative result is the first observation of the hardness induced by the multistage
framework. Indeed, the majority of the problems studied for now and considered as
easy, i.e., polynomially solvable or easily approximable, in their static form, become
really hard in this framework, even for limited restricted instances, in the offline
case and for a small number of time steps.
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The negative result on the perfect matching maintenance was improved
a few years later in Bampis et al. (2018a). Indeed, in Gupta et al. (2014), it was
shown that the problem was inaproximable for instances with as least 8 time steps
but the question for less time steps and for specific instances such as bipartite graphs
was left open. Bampis et al. (2018a) addressed this open question and proved that
the problem is hard to approximate even for 2 time steps and in bipartite graphs.
Then, they showed other negative results. Even the metric version of the problem
where the triangle inequalities are satisfied, called minimum multistage perfect
matching, is APX-hard. However, in the case where the number of time steps
is equal to 2 or 3, they presented an algorithm with constant approximation ratio.
Finally, they also showed that the problem in its maximization version, with the
complementary objective function, was also APX-hard even though it has a con-
stant approximation ratio.

Very recently, in Chimani et al. (2020), the authors looked again at the multi-
stage matching problem and a variant where the number of overall modifications
is as small as possible. They improved the results presented in Bampis et al. (2018a)
by showing the NP-hardness of the problem in an even more restricted case than the
one presented in Bampis et al. (2018a). They also presented a new approximation
algorithm that does not require the restrictions needed before.

Facility Location problem

In the facility location problem, one is asked, given a set of clients and facilities,
to find the best connections of clients to facilities such that the tradeoff between,
here a sum of two objectives is minimum. The first objective is the distance objec-
tive, corresponding to the sum of distances from the clients to facilities, each client
has to be connected to a facility and as close as possible to their facilities. The
second is an opening cost paid for each opened facility. Thus, one has to select the
least amount of facilities to open such that the sum of distances between clients and
facilities and paid opening costs is minimum.
The multistage version of the problem, called the Dynamic Facility Location
problem, shares the same two objectives with the static version. However, it has a
third objective, also summed with the other two objectives, called the non-negative
client switching cost. Indeed, a cost is paid for switching clients between different
facilities and two consecutive time steps. This last function measures the stability
of the solution over the time horizon.

For both the static and the multistage versions of the problem, there exists a
variant in the definition of the opening cost per facility. Indeed, one has to pay
either a fixed opening cost to open a facility, the facility remains open for the whole



1.2. MULTISTAGE OPTIMIZATION 19

time horizon, or a hourly opening cost that in which case must be paid for each
facility opened at each time step.

In Eisenstat et al. (2014), they addressed the facility location problem in
the multistage framework. The application underlying the study of this problem
is another example of a possible application and need of stability in the decisions
made over a time horizon. In our era, a huge amount of data are collected on
social networks and their studies are more and more important. These networks
quickly evolve in time and it is thus important to be able to analyze such data in
a dynamic environment. Even though the facility location problem has been
widely studied in temporal settings, the notion of stability was not really looked
at. Taking into account this stability, here represented by clients moving or not
among a set of facilities, gives the possibility to understand better clients behaviour
and highlights the impact of clients moving through different facilities. It thus
offers better results in realistic situations, giving a stable group partition of the net-
work. Eisenstat et al. (2014) proposed a logarithmic approximation for the problem
and gave a matching inapproximability result in restricted instances respecting the
triangle inequality, with only one client, two possible positions and a fixed opening
cost. These instances admit a constant approximation ratio in the static framework.

In An et al. (2017), the authors treated one open question left in Eisenstat et al.
(2014) and presented a constant factor approximation algorithm using LP-rounding
techniques for the version of the problem where opening costs are paid hourly.

Spanning Tree problem

In the spanning tree problem, one is asked to find a tree A in a graph such that
all vertices of the graph are connected in A and that the total edge weight of the
selected edges is minimum.
In its multistage version, given a set of instances in a graph and a number T of time
steps, we need to find a set of spanning trees At for t ∈ T , one for each time step.
Indeed, for each time step, we pay the price for the tree, as in the classical static
version of the problem and also |At \ At−1| for the modification of edges between
two consecutive time steps.

In Gupta et al. (2014), they studied the multistage matroid maintenance
problem, a problem with some costs induced by changing decisions at some time
steps on some edges, and with an application quite similar to the one presented in
our example. As a special case, the problem can be seen as a natural multistage
version of the Spanning tree problem. They looked at both the online and offline
versions of the problem and gave logarithmic approximation algorithms in both
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cases using some LP-rounding, randomized algorithms and matroid techniques (see
Vazirani (2013) for details on approximation algorithms). They improved a result
from Buchbinder et al. (2016) and Buchbinder et al. (2014) who looked at a fractional
version and later a more general version of the problem.

List Update problem

In the list update problem, given a set of items with values corresponding to their
distances to the head of a track, a set of requests (these requests can be in the offline
or in the online setting) and a constraint on a fixed position for each item at each
time step, one has to give for each item an assignment to a position in the track for
the whole time horizon minimizing the cost of all the requests.
In a multistage version of a closed variant of the problem, called the dynamic min-
imum linear arrangement problem, there is no constraint on the position of an
item at the beginning of each time step and one has to pay a cost for moving an
item from one position to another between two time steps, measuring this way the
stability of the solution.

In Olver et al. (2018), the authors studied this multistage problem in both the
offline setting, presenting a polylogarithmic approximation algorithm, and the online
setting, giving a logarithmic lower bound on the competitive ratio of any randomized
algorithm against an oblivious adversary.

Cut, Vertex Cover and some prize-collecting problems

Last year, Bampis et al. (2020) studied a wide variety of discrete minimization prob-
lems in a multistage framework. The idea was to highlight the possibility of using
some LP-rounding techniques in a multistage framework.
They presented some surprisingly positive results. Indeed, for some minimization in-
teger programming problems refereed to as monotone problems, polynomially solv-
able in their static version, such as the min cut problem, they proved that the
problems remain polynomially solvable in their multistage version. These results
contrasts with the hardness results presented before on problems solvable by a poly-
nomial algorithm in their static version and becoming NP-hard in the multistage
framework.
They also showed that vertex cover, as well as some other problems, remain
2-approximable in the multistage framework. Finally they introduced a new round-
ing technique designed specially for multistage problems, and proved some constant
approximation ratio for multistage versions of the Prize-Collecting Steiner
Tree problem and the Prize-Collecting Traveling Salesman problem.
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Santa Claus problem

In the santa claus problem, also called max min fair allocation problem,
given a set of resources and agents, one is asked to find an allocation of resources to
agents such that the value of the worst-off agent is maximum.
The problem in the multistage framework, called the over-time max min fair
allocation problem, in addition of sharing the same objective as its static version,
has a transition revenue evaluating the stability of solutions between two consec-
utive time steps. Indeed, one has a bonus for keeping the same decision over the
time horizon, which corresponds here to resources remaining on a same agent for
two consecutive time steps. The global objective function sums these two objectives.

In Bampis et al. (2018b), the authors addressed this problem. They studied
the problem in the offline, online and 1-lookahead settings and for different kinds
of evolving instances. The study of different kinds of evolving instances is crucial
in temporal optimization and will be developed in the third chapter. They showed
that in its offline version, the problem is much harder than its static version. It
becomes NP-hard even for simple instances without restriction whereas these in-
stances are trivially solved in the static version of the problem (instances where the
set of feasible solutions is static over the time horizon, i.e. in this case instances
where the set of resources and agents are the same during the whole time horizon
and every resource can be allocated to any agent). Regarding the online version
of the problem, they proposed a constant competitive ratio for instances without
restriction using an approximation algorithm for the static case as a subroutine.
For instances where the feasible set of solutions may change between different time
steps, they showed that the problem has no bounded competitive ratio in the online
setting. Finally, they looked at the 1-lookahead version of the problem, in the same
instance evolving setting and proposed a constant approximation algorithm using
again an approximation algorithm for the static case as a subroutine.

The over-time max min fair allocation problem is the unique multistage
problem presented in the literature up to our knowledge addressing a multistage
maximization problem; all other presented multistage problems are minimization
problems. We will develop in the second and third chapters of this thesis a study on
a large class of multistage maximization problems called the Multistage Subset
Maximization problems and a special offline study on the multistage knapsack
problem.
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1.2.3 State of the art: Parameterized multistage optimiza-
tion studies

Let us now develop an alternative definition of the global objective function of a
multistage problem different from the one presented in the previous section, since
here such a problem is addressed as a multi-objective problem. In the following
problems the global objective function is still a mono-objective function but with
some stability constraint. Indeed, whereas the problems presented before share the
notion of transition profit or transition cost, ensuring that the solution does not
change too much over the time horizon, here the stability is represented by a bound
over the number of changes in a decision one can make between two time steps. Let
us illustrate this function more precisely with the vertex cover problem.

Informally, we say that a problem is (or is in) FPT (being a complexity class)
if it is a fixed parameter tractable problem, i.e. if it is solvable in time f(k).|x|O(1)

with f any computable function and |x| the size of the instance. Furthermore, we
say that a problem is W[1]-hard if is not in FPT.

Vertex Cover problem

In the classical static version of the vertex cover problem, given a undirected
graph, one is asked to find the smallest subset of vertices such that all edges contain
at least one endpoint in the cover.
In the multistage version of the vertex cover problem studied in Fluschnik et al.
(2019), one is asked to find a small subset of vertices covering the edges of a tem-
poral graph, i.e. a subset of vertices at each time step in a set of graphs with a
fixed set of vertices but with a set of edges evolving over the time horizon, such that
the number of changes between two solutions of two consecutive time steps does not
exceed a given parameter.
Note that a set of graphs, with either the set of vertices or the set of edges changing
over a time horizon is called a temporal graph. It is very well studied in the temporal
optimization literature and will be presented into more details further in this chapter.

In Fluschnik et al. (2019), the authors studied the above version of the multi-
stage vertex cover problem. They showed that in the case where the number
of time steps of the problem can be arbitrary, i.e. not a constant, the Multistage
vertex cover is NP-hard even for instances with only two vertices and one edge
at every time step. Note that these instances are trivial in the static case. They
also proved that the problem becomes NP-hard even for two time steps and on
restricted instances where the graph of the first time step is a path and the one of
the second time step is a tree. Then, they showed that if the parameter correspond-
ing to the number of changes allowed between two time steps is smaller than two
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times the size of the cover, the problem is not fixed-parameter tractable according
to this transition parameter (i.e. W[1]-hard). The problem appears to be FPT
when parameterized by the same transition parameter otherwise (see Downey and
Fellows (2012) for a survey on parameterized complexity).

In Heeger et al. (2019), the authors also looked at the multistage framework in
the parameterized version, with a constraint on the number of allowed modifications
in the solutions selected in two consecutive time steps. A contrario to the one pre-
sented before where the constraint was local, they introduced a global constraint
with a bound on the total number of modifications. They introduced the global
multistage vertex cover problem and proved that it is FPT when parameter-
ized by both the upperbound of the size of the solution and by the number of time
steps, but W[1]-hard when only parameterized by the upperbound of the solution
size.
The authors also addressed a global multistage version of the min cut problem
giving some W[1]-hardness results. They finally highlighted that some polynomial-
time solvable problems are harder, computationally speaking, in a global multistage
framework than global multistage versions of NP-hard problems.

s− t Path problem

In the s− t Path problem, given a directed weighted graph containing two nodes s
and t, one is asked to find a shortest path between s and t.
In the multistage version of the problem, the multistage s−t path problem, given
a temporal graph with the same vertex set, but with changing edges over the time
horizon, one is asked to find a minimum path between s and t in the temporal graph
so that it is as stable as possible. The stability here is represented by a bound on the
number of authorized modifications between two time steps, either on the vertices
or on the edges.

In Fluschnik et al. (2020), the authors proved that for very restricted instances
with only two time steps and maximal degree of any vertex of the temporal graph
smaller than or equal to 4, the problem becomes NP-hard (for both variants of
the problem). They also looked at the parameterized complexity and showed some
results W[1]-hardness, when the parameter is the size of the returned solution.
They were also the first to address the notion of dissimilarity, in contrast with the
similarity, stability, of two consecutive solutions previously studied. In this variant,
they presented this time an FPT algorithm in the size of the returned solution.
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Committee Election problem

In Committee Election problems, given a set of agents, a set of candidates and
a voting function, called voting profiles, one is asked to find the smallest committee
such that it has a sufficient number of approvals.
Two variants of the Multistage Committee Election exist (Bredereck et al.
(2020)). In the first one, given a set of agents, a set of candidates, a sequence of
voting profiles over a time horizon and an integer k, one is asked to find a sequence
of small committees, one for each time step, such that the number of approvals is
sufficiently large and the size of the symmetric difference of two consecutive commit-
tees over the time horizon is lower than k. This version is called the Conservative
Multistage Plurality Voting problem.
In the other variant called the Revolutionary Multistage Plurality Vot-
ing problem, the problem is the same as the one presented above, but this time the
symmetric difference of two consecutive committees in the time horizon has to be
greater than a given integral parameter.

In Bredereck et al. (2020), the authors looked at both variants of the multistage
problem. They showed NP-hardness of both problems when the number of agents
is fixed and gave some parameterized complexity results. Indeed, they showed that
both problems are W[1]-hard when parameterized by the number of stages.
At last, they presented a polynomial algorithm for the revolutionary problem, while
the conservative variant remains NP-hard, when the fixed parameter on the sym-
metric difference between two consecutive time steps is a constant.

1.2.4 Contributions

We presented the current state of the multistage framework. This setting is fairly
recent but more and more studies appear with a lot of publications within the last
few years. Indeed, authors keep improving the results and observations introduced
in 2014 by Gupta et al. (2014) and Eisenstat et al. (2014). Some surprising proper-
ties are being highlighted such as strong negative results (NP-hardness, inapprox-
imability, W[1]-hardness) for very restricted instances (even sometimes for trivial
instances in the static framework) and only a few time steps, problems polynomially
solvable in a static version becoming harder than NP-hard problems, and also a few
positive results, some problems keeping the properties of their static version in the
multistage framework. The community looked at a few different settings regarding
the evolution of the instances, the bonus/cost representing the stability, the knowl-
edge over the time horizon, or the parameterized version of the framework. Some of
them will be developed later in the second and third chapters. The framework has
still a lot of open questions and settings to be looked at.
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At the beginning of the thesis, the vast majority of the problems studied in the
framework were minimization multistage problems. This was one of the reasons
that motivated us to focus on maximization problems. As said previously, we stud-
ied a large class of maximization problems in different settings; this will be detailed
in the second and third chapters of this document.

1.3 Some other approaches tackling evolving data

As stated in the introduction of this chapter, optimization in dynamic environment
gathers a wide variety of research branches. They were, for most of them, developed
in the last 30 years in parallel of a lot of different approaches such as the approxi-
mation framework, feeding one another continuously.
We will develop here different branches of research taking into account optimization
problems with evolving data sets. We will see that some of them are widely studied
in the literature and that some others are closely linked to the multistage framework.
For each temporal approach presented, we will focus on the similarities with and
differences from the multistage framework.

The structure of this section on other temporal approaches was strongly inspired
by the survey on temporal optimization presented in Boria and Paschos (2011).

1.3.1 Reoptimization

We will first develop the reoptimization paradigm. The notion was introduced in
Schäffter (1997) where a scheduling problem was addressed and later developed
in Archetti et al. (2003) where the authors addressed the travelling salesman
problem, a very well-known NP-hard problem. In both articles, two distinct steps
were considered. In a first step, an algorithm gives an optimal or approximate
solution for a NP-hard problem on an initial instance. The reoptimization focuses
on the second step where the instance is perturbed, i.e., we perform vertex or edge
deletions for graph problems, changing values for numerical problems. . . One is then
asked to maintain the optimality/approximation ratio of the solution. Note that the
perturbation in the reoptimization context is small, e.g., only one vertex or edge is
deleted for a graph problem.
These two steps give direct properties for the problem in their reoptimization version.
Indeed, the result of NP-hardness of a problem typically holds in the reoptimization
framework, otherwise one could solve any NP-hard problem using reoptimization
algorithms and starting from an empty instance. However, some problems are known
to be hard to approximate in their static version and become APX or even admit
a PTAS in the reoptimization framework (it is the case for example for the max
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independent set problem). This is why the majority of the results presented
in this framework concern approximation algorithms. More generally, two kinds of
results can be achieved for NP-hard problems in their reoptimization version:

• The reoptimization algorithm gives with a better running time an optimal
or approximate solution as good as the solutions given by the best known
algorithm for the problem in its static version;

• The reoptimization algorithm gives in polynomial time a better approximation
ratio than the best one known for the problem in its static version.

A reoptimization algorithm is thus closely linked to the multistage framework,
as it has to maintain a certain quality in the solution. To do so, one has to look
at the solution already found and try to adapt it for the new instance. This often
implies keeping a huge part of the solution in the new instance and thus keeping the
solution stable. The main differences with the multistage framework are:

• the instance modifications appear locally and affect only one object or con-
straint at each time step;

• There are (generally) two steps: one has to use the solution found at the
previous time step to find another solution locally without taking into account
in its value the solution value for the previous time step. Thus, the solution
is local for every time step.

The reoptimization approach was also addressed with the notion of stability.
In Cohen et al. (2016), the authors looked at a close variant of the reoptimization
approach where one, in addition to looking for a good reoptimization solution, has
to find a solution close to the initial one.

Example 1.1. Train scheduling
In a train station, an algorithm has to find a assignment over a time horizon for
trains to its platforms, so that the corresponding schedule problem is optimized. It
is relevant here to consider spending a lot of computing time in order to output the
best possible solution. However, in real world situations, some perturbations and
problems can occur, malfunction of a train, breakdown. . ., affecting the feasibility
and quality of the presented solution. In this case, spending a lot of time seeking for
a new optimal solution from scratch is not a relevant option and a simple adaptation
of the previous optimal solution would be way more beneficial. Indeed, here, dealing
with only one perturbation at a time, one can use some reoptimization algorithm
and output a solution in a short amount of time, i.e. in polynomial time, based on
the previous solution.

Note that in the presented example, both the quality of the reoptimization so-
lutions and the number of modifications matter, as in the multistage framework.
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1.3.2 Online optimization

Let us now address the theory of online algorithms. We already discussed it briefly
in the previous section and will develop it into more details. A complete survey, on
which we based ourselves is presented in Albers (1997).
The central idea behind a lot of frameworks dealing with evolving environments is
the ignorance of the decision maker regarding the behaviour of the problem instances
over a (future) time horizon. It emphasizes the fact that a pure offline analysis is
often not very realistic and can not be computed directly to a vast amount of real
world applications. In an online setting, one has only a partial knowledge of the
problem instance; the instance will be revealed step by step over a given time horizon
and the algorithm needs to build the solution step by step, without the complete
knowledge of the data. It is important to notice that, once a decision is made by an
online algorithm, it can not be changed when new data are revealed. It contrasts
here with reoptimization algorithms, for example, which are allowed to modify their
decisions over the time horizon.
The study of the online theory began in the end of the seventies; in Sleator and
Tarjan (1985) the authors addressed the main criteria used to analyse online algo-
rithms: comparing the online solution and the offline optimal solution. This analysis
was later given the name of competitive analysis in Karlin et al. (1988), with a ratio
for the online algorithm called the competitive ratio. The offline optimal solution is
computed with a full knowledge of the instances over the whole time horizon. This
ratio is given in the worst case scenario, and one is looking for a tight ratio, i.e. no
competitive algorithms can do better.
In specific cases when only bad competitive ratios can be obtained (some problems
are not competitive in the online setting) the k-lookahead setting, introduced previ-
ously, where at a time step, one knows the data for today and the next k days, can
be useful.
Another approach leading to better competitive results is the use of randomness.
Indeed, random online algorithms are very studied in the online theory. Their com-
petitive ratio are defined according to an adversary, that does not necessarily have
a full knowledge of the decisions made by the randomized online algorithm.
Three adversary variants are extensively looked at:

• The oblivious adversary: the adversary knows the randomized online algorithm
but has to generate its decisions over the whole time horizon without knowing
the decisions made by the randomized online algorithm;

• the adaptive online adversary: the adversary knows the randomized online
algorithm and has access to the decisions made by the randomized online
algorithm in the previous time steps.
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Example 1.2. Ski rental problem
As a toy example, let us present the ski rental problem where one has two options
for his winter holidays:

• pay 1e per day to rent skis, or

• buy the skis for 10e

The online principle behind this example is that the decision maker cannot predict
the future conditions or complications he can get during a journey and thus does not
know the number of days he will go for skiing. If the person is skiing less than 10
days it would be beneficial to only rent the skis, otherwise it would be best to buy
them. This algorithm is the optimal algorithm for this problem, in a deterministic
setting, getting a competitive ratio equals to 1.9 in the worst case scenario.
As we said previously, it is possible to get a better competitive ratio by using some
randomized online algorithm. Indeed, using randomized techniques, one can get a
e

e−1
-competitive algorithm. See Karlin et al. (1990) for a detailed presentation of

this example.

Let us now, to conclude this presentation of the online framework, talk about
online learning algorithms. The study of these algorithms is quite recent and share
some concepts with the multistage framework.
An online learning algorithm, given a set of feasible decisions and an adversary,
makes an action iteratively inducing some loss/reward for each decision (made either
by the algorithm or by the adversary). The goal of such an algorithm is to minimize
the regrets represented by the difference between the cost of the decision made by the
algorithm and the cost of the optimal static solution that does not evolve over the
time horizon. The similarity with the multistage framework is within the objective
functions of such problems, called the regret functions, where one seeks to minimize
an accumulative cost step by step. Multiple problems have been studied in this
framework, such as routing problems in Awerbuch and Kleinberg (2008), some min-
max discrete problems in Bampis et al. (2019a), some online learning tree problems
in Buchbinder et al. (2016), these authors were the first to study a variant of the
multistage framework (see previous section) to cite a few of them.

1.3.3 Dynamic algorithms

Let us now present the studies on dynamic algorithms. We chose to present this
framework after the online and reoptimization ones, the latter being a restrictive
case of the more general dynamic setting.
Indeed, in a dynamic setting, that we will present on graph problems (a complete
study of the dynamic graph problems are addressed in Eppstein et al. (1999)), one
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is asked to give an algorithm able to maintain the quality of a solution as the graph
evolves locally. The algorithm also has to be more efficient than computing a so-
lution of the new instance from scratch. This local evolution of the graph can be
anything, from insertions or deletions of nodes and edges to changes in the edges
weights, that can all happen simultaneously. This contrasts with the reoptimization
setting, which is a restrictive case of the dynamic setting and where only one local
modification occurs between two time steps, and typically only two time steps are
being considered.
The graph evolution in dynamic setting results in the update of its underlying data
structure. Actually, in dynamic algorithms, one is interested in being able to update
and maintain a given data structure on a new instance efficiently, i.e., faster than
computing a new solution with a static algorithm. A query, using this data struc-
ture, will then be asked when the decision maker wants to solve the problem. Note
that dynamic algorithms always start with trivial instances, i.e., cliques or inde-
pendent sets for graph problems . . . Less formally, one can say that, in the dynamic
framework, when a solution is taken, the instance is modified and the decision maker
has to adapt his solution.
The main difference between the online setting and the dynamic one is that in the
dynamic setting, one can completely change its decision on the next time steps,
which is not allowed in online algorithms, where, once a decision is taken, it can not
be changed afterwards.
As a quick example of the update and query procedures, we can mention the min-
imum spanning tree problem. Indeed, we will use as an example an algorithm
that solve this problem by sorting the list of elements of the instance. The update
procedure will remove an element of the list or add the element at its sorted po-
sition, for deletions or insertions of elements in a new instance respectively, hence
ensuring that the data structure is sorted list of elements. The query procedure will
then only need to output a solution based on the sorted list with its underlying data
structure, which is faster than sorting the list for each new instance and then finding
a shortest path using this list.
While presenting the dynamic setting, we need to introduce briefly the notion of
amortized complexity. Indeed, in the precedent frameworks and examples and in all
the rest of the thesis, we present some complexity results that all consider the worst
case scenario. In dynamic algorithms, the amortized complexity is often looked
at, being the complexity one needs to compute a solution on average over all the
different time steps. Indeed, in this framework, it is more relevant to analyze the
complexity of the update and query procedures on average at each time step, rather
than to look at the complexity of solving an instance every time from scratch.
The results one seeks to obtain with dynamic algorithms differ for polynomially
solvable and NP-hard problems.
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• For polynomially solvable problems, it is possible to find an optimal solution
efficiently. Thus, in the dynamic setting literature, authors did not looked at
improving the solution value, but instead presented faster ways of maintaining
the optimal solution while the instances were subject to perturbations, im-
proving the complexity. Note that here the complexity is studied in terms of
the number of updates and the number of queries one needs to do.
A lot of work has been done on tree and path problems, since the first results
in the dynamic setting were presented in (Frederickson (1985)), looking at the
min spanning tree problem and in (Even and Gazit (1985)), addressing the
shortest path problem.

• For NP-hard problems, in a dynamic setting, one seeks an approximation al-
gorithm giving the same ratio as the static one and such that the approximate
solution is computed faster than if the static algorithm was used. Less results
were found for those problems in a dynamic setting. This negative observa-
tion is due to the fact that we seek to obtain an approximation ratio from an
approximate solution. Indeed, the data structure is guaranteeing a certain ap-
proximation ratio and thus the update procedure is applied to an approximate
solution and not an optimal one, making it hard to maintain some properties
in most of the cases.
The vertex cover problem was studied in Ivkovic and Lloyd (1993b) and
the bin packing problem in Ivkovic and Lloyd (1993a) to name two of them.

1.3.4 Temporal graphs

Let us now introduce the temporal graphs.
The concept of temporal graphs was formally introduced in Berman (1996) and
then developed formally in Kempe et al. (2000) where the authors addressed some
network problems and presented this new dynamic setting. In temporal graphs, one
is given a discrete time horizon and a pair (G, λ) where G is a graph with a fixed
vertex set over the time horizon and λ a function on the edge set of G, i.e. each
edge e ∈ G has a time label λ(e) and is present only at the fixed time step λ(e).
A more general approach of temporal graphs deals with the same pair (G, λ) but
allows edges to be present at different time steps, i.e. to have several time labels
per edge (Mertzios et al. (2019)). Then, one is asked to solve a problem on this
temporal graph that can model a lot of different types of real world situations such
as network problems, path problems. . .

The main difference with the multistage framework is that here one needs to
move on the graph over time in order to build a unique solution, and not a sequence
of solutions as in the multistage framework.

On the other hand, it shares a global time property with the multistage frame-
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work leading to the study of offline problems with instances subject to discrete
changes over a given time horizon.

Most of the problems studied in this framework concern path problems and are
presented in the survey (Michail (2016)).
However, some authors also addressed other types of graph optimization problems.
In Himmel et al. (2017), a variant of the clique problem called ∆− clique was
studied. In this problem, one is asked to find subsets of vertices connected for ∆
consecutive time steps, echoing the multistage framework.
Very recently, in Akrida et al. (2020) two variants of the vertex problem were
addressed. In the first one, one is asked, given a temporal graph, to find a sequence
of subsets of vertices such that it covers the edges of the graph at least once during
the time horizon, to be minimized (note that the set of edges changes between
consecutive time steps). In the second one, the edges of the graph have to be
covered once during a small time window and over the whole time horizon, assuring
thereby a stability in the solution.

Example 1.3. The shortest path problem
In the shortest path problem in temporal graphs, given a temporal graph such
that at each time step of the time horizon t = 1, . . . , T there is a set Et of usable
edges one needs to decide whether there exists a path from s to t, i.e. vi1, . . . , viT ,
such that vi1 = s, viT = t and ∀t = 1, . . . , T − 1 either vit = vi(t+1) (no movement)
or (vit, vi(t+1)) ∈ Et (we use the edge present at the time step t).

1.3.5 Stochastic Optimization

To conclude our presentation on different approaches dealing with evolving data
over a time horizon we will now present the Stochastic Optimization theory. This
approach addresses data uncertainty with the introduction of probabilities in the
problem definition. Once again, it is not possible for the decision maker to have a
complete knowledge of the problem instances.
The stochastic optimization community first focused on problems with a probability
distribution on the problem parameters, e.g., the weights of edges for graph prob-
lems or the bound constraints for linear problems, but with a fixed structure, i.e.,
with a fixed set of nodes/edges for graph problems, fixed constraints for linear pro-
gramming problems,. . . The study of problems with this approach began a long time
ago. In Beardwood et al. (1959) the authors looked at the TSP problem when prob-
abilities are applied to the node positions. Later, in Frieze (1985), the authors also
addressed path problems under this presented configuration, looking at the span-
ning tree problem with probabilities applied to the weights of the edges. Note
that in the context of stochastic optimization there is also a literature dedicated to
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some multistage problems. However, the multistage term denotes here a different
model. Indeed, in Ravi and Sinha (2006), the authors addressed several optimization
problems in the multistage stochastic setting and especially the two-stage stochastic
model. In the two stage model, at a first stage, part of the data is known and a
probability distribution is characterizing the uncertain future. Then, at a second
stage, the data are revealed. One needs to optimize its first stage decisions in order
to minimize both the cost of the first stage and the expected cost of the second stage.

It was in Jaillet (1985) that was addressed a new way of using probabilities in op-
timization problems. This time, the probabilities were not applied on parameters on
fixed elements of the problem, but on the presence or absence of the elements them-
selves. Indeed, for example, a probability distribution was applied to the existence
or not of nodes/edges for graph problems, of constraints for linear programming
problems,etc.
Soon after, in the thesis of Bertsimas (1988), the notion of a priori optimization
was presented (see also Bertsimas et al. (1990) for a detailed paper on a priori op-
timization).
Let us develop this technique on graph problems, and let us observe that it shares
some properties with the reoptimization techniques presented before. When dealing
with a priori optimization, one is given a graph with probabilities on its nodes and
an a priori solution f on an initial instance of the graph. One is asked to find
an updating method, that is able to update the a a priori solution to any possi-
ble feasible solution for all possible instances, (i.e., instances composed of all the
combinations of presence/absence of nodes following the probability distribution),
in such a way that the average cost on all instances is minimum (for minimization
problems). This updating method has to be done in a reasonable computational
time. In this case and in real world applications, it can be beneficial, for the average
value to be minimum, and for the solutions to remain as stable as possible over all
the feasible solutions, hence echoing the multistage framework.

Example 1.4. We will illustrate stochastic optimization with an example of the
TSP problem.
A company needs to deliver some products in different cities and wishes to be as
quick as possible. This problem can indeed be modeled as a TSP problem. In a
graph, where cities are represented by nodes and roads between two cities by weighted
edges, the edges weights are the distances between the cities. One then needs to find
a shortest path, going through all of the cities exactly once and getting back to its
initial city.
Let us suppose now that the company has some knowledge of the traffic and possible
accidents occurring each day. It would associate probabilities to the values of the
distances between two cities, i.e. probabilities on the values of edges of the graph.
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The weight of the edges being a parameter of the graph, this problem would be solved
using the first strategy presented in this stochastic optimization presentation.
Let us this time suppose that the company knows that, sometimes, some products
will not need to be delivered in some cities. Thus, the company would associate this
time probabilities to cities, corresponding to probabilities on the presence or not of
nodes of the graph. To solve this variant, one needs to use the second presented
stochastic strategy. Indeed, in order to be as efficient as possible, it is interesting for
the company to develop an updating method from a priori solution and thus being
sure to adapt efficiently its decisions and deliveries and to remain stable.

Now that we presented the multistage framework and some other approaches
tackling evolving data, we will present in the next chapter the first study of the
thesis focuses on the Multistage knapsack problem in the offline setting, which
are presented in the Section 1.2.1.
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Chapter 2

Multistage Knapsack Problem

2.1 Introduction

We presented and motivated the study of the Multistage Knapsack Problem in sec-
tion 1.2.1. Note that, in this chapter, the multistage framework is studied in the
offline setting.

Briefly, let us recall the definition of the problem. We are given a time horizon
t = 1, 2, . . . , T , and a sequence of knapsack instances I1, I2, . . . , IT , one for each time
step, defined on a set of n objects. In every time step t we have to choose a feasible
knapsack St of It, which gives a knapsack profit. Taking into account transition
costs, we measure the stability/similarity of two consecutive solutions St and St+1

by identifying the objects for which the decision, to be picked or not, remains the
same in St and St+1, giving a transition profit. We are asked to produce a sequence
of solutions S1, S2, . . . , ST so that the total knapsack profit plus the overall transition
profit is maximized.

Our main contribution is a polynomial time approximation scheme (PTAS) for
the multistage version of the Knapsack problem. As we said earlier, up to the best
of our knowledge, this is the first approximation scheme for a multistage combina-
torial optimization problem and its existence contrasts with the inapproximability
results for other combinatorial optimization problems that are even polynomial-
time solvable in the static case (e.g. the multistage Spanning Tree problem
(Gupta et al. (2014)), or the multistage Bipartite Perfect Matching prob-
lem (Bampis et al. (2018a))).

An extended abstract of this chapter has been presented at MFCS (Mathematical
Foundations of Computer Science) 2019 (Bampis et al. (2019c)).

35
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2.1.1 Problem definition

Formally, the Multistage Knapsack problem can be defined as follows.

Definition 2.1. In the Multistage Knapsack problem (MK) we are given:

• a time horizon T ∈ N∗, a set N = {1, 2, . . . , n} of objects;

• For any t ∈ {1, . . . , T}, any i ∈ N :

– pti ≥ 0 the profit of taking object i at time t

– wti ≥ 0 the weight of object i at time t

• For any t ∈ {1, . . . , T − 1}, any i ∈ N :

– Bti ∈ R+ the bonus of the object i if we keep the same decision for i at
time t and t+ 1.

• For any t ∈ {1, . . . , T}: the capacity Ct of the knapsack at time t.

We are asked to select a subset St ⊆ N of objects at each time t so as to respect the
capacity constraint:

∑
i∈St

wti ≤ Ct. To a solution S = (S1, . . . , ST ) are associated:

• A knapsack profit
T∑
t=1

∑
i∈St

pti =
T∑
t=1

pt(St) corresponding to the sum of the profits

of the T knapsacks;

• A transition profit
T−1∑
t=1

∑
i∈∆t

Bti =
T−1∑
t=1

b(St, St+1) where ∆t is the set of objects

either taken or not taken at both time steps t and t + 1 in S (formally ∆t =
(St ∩ St+1) ∪ (St ∩ St+1)).

The value of the solution S is the sum of the knapsack profit and the transition
profit, to be maximized.

2.1.2 Related works

Knapsack variants.
Our work builds upon the Knapsack literature (see Kellerer et al. (2004)). It

is well-known that there is a simple 2-approximation algorithm as well as a fully
polynomial-time approximation scheme (FPTAS) for the static case (see Ibarra and
Kim (1975); Lawler (1979); Magazine and Oguz (1981); Kellerer and Pferschy (1999)
for a detailed presentation of the knapsack problem). There are two variants that
are of special interest for our work:

(i) The first variant is a generalization of the Knapsack problem known as the
k-Dimensional Knapsack (k −DKP ) problem:
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Definition 2.2. In the k-dimensional Knapsack problem (k − DKP ), we have
a set N = {1, 2, . . . , n} of objects. Each object i has a profit pi and k weights wji,
j = 1, . . . , k. We are also given k capacities Cj. The goal is to select a subset Y ⊆ N
of objects such that:

• The capacity constraints are respected: for any j,
∑

i∈Y wji ≤ Cj;

• The profit
∑

i∈Y pi is maximized.

It is well known that for the usual Knapsack problem, in the continuous relax-
ation (variables in [0, 1]), at most one variable is fractional. Caprara et al. (2000)
showed that this can be generalized for k −DKP .

Let us consider the following ILP formulation (ILP −DKP ) of the problem:


max

∑
i∈N

piyi

s.t.

∣∣∣∣∣
∑
i∈N

wjiyi ≤ Cj ∀j ∈ {1, ..., k}

yi ∈ {0, 1} ∀i ∈ N

Theorem 2.1. (Caprara et al. (2000)) In the continuous relaxation (LP−DKP ) of
(ILP −DKP ) where variables are in [0, 1], in any basic solution at most k variables
are fractional.

Note that with an easy affine transformation on variables, the same result holds
when variable yi is subject to ai ≤ yi ≤ bi instead of 0 ≤ yi ≤ 1: in any basic
solution at most k variables yi are such that ai < yi < bi.

Caprara et al. (2000) use the result of Theorem 2.1 to show that for any fixed
constant k (k − DKP ) admits a polynomial-time approximation scheme (PTAS).
Other PTASes have been presented in Oguz and Magazine (1980); Frieze et al.
(1984). Korte and Schrader Korte and Schrader (1981) showed that there is no
FPTAS for k −DKP unless P=NP.

(ii) The second related variant is a simplified version of (k − DKP ) called
CARDINALITY(2−KP ), where the dimension is 2, all the profits are 1 and, given
a K, we are asked if there is a solution of value at least K (decision problem). In
other words, given two knapsack constraints, can we take K objects and verify the
two constraints? The following result is shown in Kellerer et al. (2004).

Theorem 2.2. (Kellerer et al. (2004)) CARDINALITY(2−KP ) is NP-complete.

2.1.3 Our contribution

As stated before, our main contribution is to propose a PTAS for the multistage
Knapsack problem. Furthermore, we prove that there is no FPTAS for the problem
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even in the case where T = 2, unless P=NP. We also give a pseudopolynomial-time
algorithm for the case where the number of steps is bounded by a fixed constant and
we show that otherwise the problem remains NP-hard even in the case where all
the weights, profits and capacities are 0 or 1. The following table summarizes our
main result pointing out the impact of the number of time steps on the difficulty of
the problem (“no FPTAS” means “no FPTAS unless P=NP”).

T = 1 T fixed any T
pseudopolynomial pseudopolynomial strongly NP-hard
FPTAS PTAS PTAS
- no FPTAS no FPTAS

We point out that the negative results (strongly NP-hardness and no FPTAS)
hold even in the case of uniform bonus when Bti = B for all i ∈ N and all t =
1, . . . , T − 1.

2.2 ILP formulation

The Multistage Knapsack problem can be written as an ILP as follows. We
define Tn binary variables xti equal to 1 if i is taken at time t (i ∈ St) and 0 otherwise.
We also define (T − 1)n binary variables zti corresponding to the transition profit
of object i between time t and t+ 1. The profit is 1 if i is taken at both time steps,
or taken at none, and 0 otherwise. Hence, zti = 1− |x(t+1)i − xti|. Considering that
we solve a maximization problem, this can be linearized by the two inequalities:
zti ≤ −x(t+1)i + xti + 1 and zti ≤ x(t+1)i − xti + 1 and positive coefficients in the
objective function. We end up with the following ILP (called ILP −MK):



max
T∑
t=1

∑
i∈N

ptixti +
T−1∑
t=1

∑
i∈N

ztiBti

s.t.

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈N

wtixti ≤ Ct ∀t ∈ {1, ..., T}

zti ≤ −x(t+1)i + xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
zti ≤ x(t+1)i − xti + 1 ∀t ∈ {1, ..., T − 1},∀i ∈ N
xti ∈ {0, 1} ∀t ∈ {1, ..., T}, ∀i ∈ N
zti ∈ {0, 1} ∀t ∈ {1, ..., T − 1},∀i ∈ N

In devising the PTAS we will extensively use the linear relaxation (LP −MK)
of (ILP −MK) where variables xti and zti are in [0, 1].
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2.3 A polynomial time approximation scheme

In this section we show that Multistage Knapsack admits a PTAS. The central
part of the proof is to derive a PTAS when the number of steps is a fixed constant
(Sections 2.3.1 and 2.3.2). The generalization to an arbitrary number of steps is
done in Section 2.3.3.

Building upon Caprara et al. (2000), our PTAS for a fixed number of time
steps heavily relies on a property of the relaxed LP-formulation of Multistage
Knapsack: we show that there are at most T 3 fractional variables in an optimal
(basic) solution of the (relaxed) Multistage Knapsack problem. Based on this
bound, the PTAS is built from a combination of (1) bruteforce search (to find the
most profitable objects), (2) a preprocessing step and (3) a rounding of the fractional
solution of the (relaxed) LP-formulation. The preprocessing step associated to the
bound on the number of fractional variables allow to bound the global loss of the
solution built by the algorithm.

We show how to bound the number of fractional variables in Section 2.3.1. We
first illustrate the reasoning on the case of two time-steps, and then present the
general result. In Section 2.3.2 we present the PTAS for a constant number of steps.
For ease of notation, we will sometimes write a feasible solution as S = (S1, . . . , ST )
(subsets of objects taken at each time step), or as S = (x, z) (values of variables in
(ILP −MK) or (LP −MK)).

2.3.1 Bounding the number of fractional objects in LP-MK

Warm-up: the case of two time-steps

We consider in this section the case of two time-steps (T = 2), and focus on the
linear relaxation (LP −MK) of (ILP −MK) with the variables xti and zi in [0, 1]
(we write zi instead of z1i for readability). We say that an object is fractional in a
solution S if x1i, x2i or zi is fractional.

Let us consider a (feasible) solution Ŝ = (x̂, ẑ) of (LP − MK), where ẑi =
1− |x̂2i − x̂1i| (variables ẑi are set to their optimal value w.r.t. x̂).

We show the following.

Proposition 2.1. If Ŝ is an optimal basic solution of (LP−MK), at most 4 objects
are fractional.

Proof. First note that since we assume ẑi = 1 − |x̂1i − x̂2i|, if x̂1i and x̂2i are both
integers then ẑi is an integer. So if an object i is fractional either x̂1i or x̂2i is
fractional.

Let us denote:

• L the set of objects i such that x̂1i = x̂2i.
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• P = N \ L the set of objects i such that x̂1i ̸= x̂2i.

We first show Fact 1.

Fact 1. In P there is at most one object i with x̂1i fractional.

Suppose that there are two such objects i and j. Note that since 0 < |x̂1i− x̂2i| <
1, ẑi is fractional, and so is ẑj. Then, for a sufficiently small ϵ > 0, consider the

solution S1 obtained from Ŝ by transfering at time 1 an amount ϵ of weight from i
to j (and adjusting consequently zi and zj). Namely, in S1:

• x1
1i = x̂1i − ϵ

w1i
, z1i = ẑi − di

ϵ
w1i

, where di = 1 if x̂2i > x̂1i and di = −1 if
x̂2i < x̂1i (since i is in P x̂2i ̸= x̂1i).

• x1
1j = x̂1j +

ϵ
w1j

, z1j = ẑi + dj
ϵ

w1j
, where dj = 1 if x̂2j > x̂1j and dj = −1

otherwise.

Note that (for ϵ sufficiently small) S1 is feasible. Indeed (1) x̂1i, x̂1j, ẑi and ẑj are

fractional (2) the weight of the knapsack at time 1 is the same in S1 and in Ŝ (3)
if x̂1i increases by a small δ, if x̂2i > x̂1i then |x̂2i − x̂i1| decreases by δ so ẑi can
increase by δ (so di = 1), and if x̂2i < x̂i1 then ẑi has to decrease by δ (so di = −1),
and similarly for x̂1j.

Similarly, let us define S2 obtained from Ŝ with the reverse transfer (from j to
i). In S2:

• x2
1i = x̂1i +

ϵ
w1i

, z2i = ẑi + di
ϵ

w1i

• x2
1j = x̂1j − ϵ

w1j
, z2j = ẑi − dj

ϵ
w1j

As previously, S2 is feasible. Then Ŝ is clearly a convex combination of S1 and S2

(with coefficient 1/2), so not a basic solution, and Fact 1 is proven.
In other words (and this interpretation will be important in the general case),

for this case we can focus on variables at time one, and interpret locally the problem
as a (classical, unidimensional) fractional knapsack problem. By locally, we mean
that if x̂1i < x̂2i then x1i must be in [0, x̂2i] (in S1, x1

1i cannot be larger than x̂2i,
otherwise the previous value of z1i would be erroneous); similarly if x̂1i > x̂2i then
x1i must be in [x̂2i, 1]. The profit associated to object i is p1i + diB1i (if xi1 in-
creases/decreases by ϵ, then the knapsack profit increases/decreases by p1iϵ, and the
transition profit increases/decreases by ϵdiB1i, as explained above). Then we have
at most one fractional variable, as in any fractional knapsack problem.
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In P there is at most one object i with x̂1i fractional. Similarly there is at most
one object k with x̂2k fractional. In P , for all but at most two objects, both x̂1i and
x̂2i, and thus ẑi, are integers.

Note that this argument would not hold for variables in L. Indeed if x̂1i = x̂2i,
then ẑi = 1, and the transition profit decreases in both cases: when x̂1i increases by
δ > 0 and when it decreases by δ. So, we cannot express Ŝ as a convex combination
of S1 and S2 as previously.

However, let us consider the following linear program 2 − DKP obtained by
fixing variables in P to their values in Ŝ, computing the remaining capacities C ′

t =
Ct −

∑
j∈P wtjx̂tj, and “imposing” x1i = x2i:

max
∑
i∈L

(p1i + p2i)yi +
∑
i∈L

B1i∑
i∈L

w1iyi ≤ C ′
1∑

i∈L
w2iyi ≤ C ′

2

yi ∈ [0, 1] ∀i ∈ L

Clearly, the restriction of Ŝ to variables in L is a solution of 2−DKP . Formally,
let ŜL = (ŷj, j ∈ L) defined as ŷj = x̂1j. ŜL is feasible for 2 −DKP . Let us show

that it is basic: suppose a contrario that ŜL =
S1
L+S2

L

2
, with S1

L = (y1i , i ∈ L) ̸= S2
L

two feasible solutions of 2 − DKP . Then consider the solution S1 = (x1, y1) of
(LP −MK) defined as:

• If i ∈ L then x1
1i = x1

2i = y1i , and z11i = 1 = ẑ1i.

• Otherwise (for i in P ) S1 is the same as Ŝ.

S1 is clearly a feasible solution of Multistage Knapsack. If we do the same for
S2
L, we get a (different) feasible solution S2, and Ŝ = S1+S2

2
, so Ŝ is not basic, a

contradiction.
By the result of Caprara et al. (2000), ŜL has at most 2 fractional variables.

Then, in L, for all but at most 2 variables both x̂1i, x̂2i and ẑi are integers.

General case

The case of 2 time steps suggests to bound the number of fractional objects by
considering 3 cases:

• Objects with x̂1i fractional and x̂1i ̸= x̂2i. As explained in the proof of Propo-
sition 2.1, this can be seen locally (as long as x1i does not reach x̂2i) as a
knapsack problem from which we can conclude that there is at most 1 such
fractional object.
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• Similarly, objects with x̂2i fractional and x̂1i ̸= x̂2i.

• Objects with x̂1i = x̂2i fractional. As explained in the proof of Proposition 2.1,
this can be seen as a 2−DKP from which we can conclude that there are at
most 2 such fractional objects.

For larger T , we may have different situations. Suppose for instance that we
have 5 time steps, and a solution (x, z) with an object i such that: x1i < x2i = x3i =
x4i < x5i. So we have xti fractional and constant for t = 2, 3, 4, and different from
x1i and x5i. The idea is to say that we cannot have many objects like this (in a
basic solution), by interpreting these objects on time steps 3, 4, 5 as a basic optimal
solution of a 3−DKP (locally, i.e. with a variable yi such that x1i ≤ yi ≤ x5i).

Then, roughly speaking, the idea is to show that for any pair of time steps t0 ≤ t1,
we can bound the number of objects which are fractional and constant on this time
interval [t0, t1] (but not at time t0 − 1 and t1 + 1). Then a sum on all the possible
choices of (t0, t1) gives the global upper bound.

Let us state this rough idea formally. We consider a (feasible) solution Ŝ = (x̂, ẑ)
of (LP −MK), where ẑti = 1− |x̂(t+1)i − x̂ti| (variables ẑti are set to their optimal
value w.r.t. x̂).

In such a solution Ŝ = (x̂, ẑ), let us define as previously an object as fractional if
at least one variable x̂ti or ẑti is fractional. Our goal is to show the following result.

Theorem 2.3. If Ŝ = (x̂, ẑ) is an optimal basic solution of (LP −MK), it has at
most T 3 fractional objects.

Before proving the theorem, let us introduce some definitions and show some
lemmas. Let t0, t1 be two time steps with 1 ≤ t0 ≤ t1 ≤ T .

Definition 2.3. The set F (t0, t1) associated with Ŝ = (x̂, ẑ) is the set of objects i
(called fractional w.r.t. (t0, t1)) such that

• 0 < x̂t0i = x̂(t0+1)i = · · · = x̂t1i < 1;

• Either t0 = 1 or x̂(t0−1)i ̸= x̂t0i;

• Either t1 = T or x̂(t1+1)i ̸= x̂t1i;

In other words, we have x̂ti fractional and constant on [t0, t1], and [t0, t1] is
maximal w.r.t. this property.

For t0 ≤ t ≤ t1, we note C ′
t the remaining capacity of knapsack at time t

considering that variables outside F (t0, t1) are fixed (to their value in x̂):

C ′
t = Ct −

∑
i ̸∈F (t0,t1)

wtix̂ti.
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As previously, we will see xt0i, . . . , xt1i as a single variable yi. We have to express
the fact that this variable yi cannot “cross” the values x̂(t0−1)i (if t0 > 1) and x̂(t1+1)i

(if t1 < T ), so that everything remains locally (in this range) linear. So we define
the lower and upper bounds ai, bi induced by Definition 2.3 as:

• Initialize ai ← 0. If x̂(t0−1)i < x̂t0i then do ai ← x̂(t0−1)i. If x̂(t1+1)i < x̂t1i then
do ai ← max(ai, x̂(t1+1)i).

• Similarly, initialize bi ← 1. If x̂(t0−1)i > x̂t0i then do bi ← x̂(t0−1)i. If x̂(t1+1)i >
x̂t1i then do bi ← min(bi, x̂(t1+1)i).

Note that with this definition ai < x̂t0,i =< x̂t1,i < bi. This allows us to define
the polyhedron P (t0, t1) as the set of y = (yi : i ∈ F (t0, t1)) such that{ ∑

i∈F (t0,t1)

wtiyi ≤ C ′
t ∀t ∈ {t0, ..., t1}

ai ≤ yi ≤ bi ∀i ∈ F (t0, t1)

Definition 2.4. The solution associated with Ŝ = (x̂, ẑ) is ŷ defined as ŷi = x̂t0i for
i ∈ F (t0, t1).

Lemma 2.1. If Ŝ = (x̂, ẑ) is an basic solution, then the solution ŷ associated with
(x̂, ẑ) is feasible of P (t0, t1) and basic.

Proof. Since (x̂, ẑ) is feasible, ŷ respects the capacity constraints (remaining capac-
ity), and ai < ŷi = x̂t0i < bi so ŷ is feasible for P (t0, t1).

Suppose now that ŷ = y1+y2

2
for two feasible solutions y1 ̸= y2 of P (t0, t1). We

associate to y1 a feasible solution S1 = (x1, z1) for (LP −MK) as follows.
We fix x1

ti = x̂ti for t ̸∈ [t0, t1], and x1
ti = y1i for t ∈ [t0, t1]. We fix variables z1it

to their maximal values, i.e., z1ti = 1 − |x1
(t+1)i − x1

ti|. This way, we get a feasible

solution (x1, z1) since y1 and y2 feasible for P (t0, t1). Note that:

• z1ti = ẑti for t ̸∈ [t0− 1, t1], since the corresponding variables x are the same in
S1 and Ŝ;

• z1ti = 1 = ẑti for t ∈ [t0, t1 − 1], since variables x are constant on the interval
[t0, t1].

Then, for variables z, the only modifications between z1 and ẑ concerns the “bound-
ary” variables z1ti for t = t0 − 1 and t = t1.

We build this way two solutions S1 = (x1, z1) and S2 = (x2, z2) of (LP −MK)
corresponding to y1 and y2. By construction, S1 and S2 are feasible. They are also
different provided that y1 and y2 are different. It remains to prove that Ŝ is the half
sum of S1 and S2.

Let us first consider variables x:
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• if t ̸∈ [t0, t1], x
1
ti = x2

ti = x̂ti so x̂ti =
x1
ti+x2

ti

2
.

• if t ∈ [t0, t1], x
1
ti = y1i and x2

ti = y2t , so
x1
ti+x2

ti

2
=

y1i +y2i
2

= ŷi = x̂ti.

Now let us look at variables z: first, for t ̸∈ {t0 − 1, t1}, z1ti = z2ti = ẑti so

ẑti =
z1ti+z2ti

2
. The last and main part concerns about the last 2 variables z(t0−1)i (if

t0 > 1) and zt1i (if t1 < T ).
We have z1(t0−1)i = 1−|x1

t0i
−x1

(t0−1)i| = 1−|x1
t0i
− x̂(t0−1)i| and ẑ(t0−1)i = 1−|x̂t0i−

x̂(t0−1)i|. The crucial point is to observe that thanks to the constraint ai ≤ yi ≤ bi,
and by definition of ai and bi, x

1
t0,i

, x2
t0,i

and x̂t0,i are either all greater than (or equal
to) x̂(t0−1)i, or all smaller than (or equal to) x̂(t0−1)i.

Suppose first that they are all greater than (or equal to) x̂(t0−1)i. Then:

z1(t0−1)i − ẑ(t0−1)i = |x̂t0,i − x̂t0−1,i| − |x1
t0,i
− x̂t0−1,i| = x̂t0i − x1

t0i
= ŷi − y1i

Similarly, z2(t0−1)i − ẑ(t0−1)i = ŷi − y2i . So

z1(t0−1)i + z2(t0−1)i

2
=

2ẑ(t0−1)i + 2ŷi − y1i − y2i
2

= ẑ(t0−1)i.

Now suppose that they are all smaller than (or equal to) x̂t0−1,i. Then:

z1(t0−1)i − ẑ(t0−1)i = |x̂t0i − x̂(t0−1)i| − |x1
t0i
− x̂(t0−1)i| = x1

t0i
− x̂t0i = y1i − ŷi

Similarly, z2(t0−1)i − ẑ(t0−1)i = y2i − ŷi. So

z1(t0−1)i + z2(t0−1)i

2
=

2ẑ(t0−1)i − 2ŷi + y1i + y2i
2

= ẑ(t0−1)i.

Then, in both cases, ẑ(t0−1)i =
z1
(t0−1)i

+z2
(t0−1)i

2
.

With the very same arguments we can show that
z1t1i

+z2t1i
2

= ẑt1i.

Then, Ŝ is the half sum of S1 and S2, contradicting the fact that Ŝ is basic.

Now we can bound the number of fractional objects w.r.t. (t0, t1).

Lemma 2.2. |F (t0, t1)| ≤ t1 + 1− t0.

Proof. P (t0, t1) is a polyhedron corresponding to a linear relaxation of a k −DLP ,
with k = t1 + 1− t0. Since ŷ is basic, using Theorem 2.1 (and the note after) there
are at most k = t1 + 1− t0 variables ŷi such that ai < ŷi < bi. But by definition of
F (t0, t1), for all i ∈ F (t0, t1) ai < ŷi < bi. Then |F (t0, t1)| ≤ t1 + 1− t0.
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Now we can easily prove Theorem 2.3.

Proof. First note that if x̂ti and x̂(t+1)i are integral, then so is ẑti. Then, if an object
i is fractional at least one x̂ti is fractional, and so i will appear in (at least) one set
F (t0, t1).

We consider all pairs (t0, t1) with 1 ≤ t0 ≤ t1 ≤ T . Thanks to Lemma 2.2,
|F (t0, t1)| ≤ t1 + 1− t0. So, the total number of fractional objects is at most:

NT =
T∑

t0=1

T∑
t1=t0

(t1 + 1− t0) ≤ T 3

Indeed, there are less than T 2 choices for (t0, t1) and at most T fractional objects
for each choice.

Note that with standard calculation we get NT = T 3+3T 2+2T
6

, so for T = 2
time steps N2 = 4: we have at most 4 fractional objects, the same bound as in
Proposition 2.1.

2.3.2 A PTAS for a constant number of time steps

Now we can describe the PTAS. Informally, the algorithm first guesses the ℓ objects
with the maximum reward in an optimal solution (where ℓ is defined as a function
of ϵ and T ), and then finds a solution on the remaining instance using the relaxation
of (ILP −MK). The fact that the number of fractional objects is small allows to
bound the error made by the algorithm.

For a solution S (either fractional or integral) we define gi(S) as the reward of
object i in solution S: gi(S) =

∑T
t=1 ptixti +

∑T−1
t=1 ztiBti. The value of a solution S

is g(S) =
∑

i∈N gi(S).
Consider the algorithm ALP which, on an instance of (ILP −MK) of Multi-

stage Knapsack:

• Finds an optimal (basic) solution Sr = (xr, zr) of the continuous relaxation
(LP −MK) of (ILP −MK);

• Takes at step t an object i if and only if xr
ti = 1.

Clearly, ALP outputs a feasible solution, say SALP
, the value of which verifies:

g(SALP

) ≥ g(Sr)−
∑
i∈F

gi(S
r) (2.1)

where F is the set of fractional objects in Sr. Indeed, for each integral (i.e., not
fractional) object the reward is the same in both solutions.
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Now we can describe the algorithm PTASConstantMK , which takes as input an
instance of Multistage Knapsack and an ϵ > 0.

Algorithm PTASConstantMK

1. Let ℓ := min
{⌈

(T+1)T 3

ϵ

⌉
, n

}
.

2. For all X ⊆ N such that |X| = ℓ, ∀X1 ⊆ X, ...,∀XT ⊆ X:

If for all t = 1, . . . , T wt(Xt) =
∑
j∈Xt

wtj ≤ Ct, then:

• Compute the rewards of object i ∈ X in the solution (X1, . . . , XT ), and
find the smallest one, say k, with reward gk.

• On the subinstance of objects Y = N \X:

– For all i ∈ Y , for all t ∈ {1, . . . , T}: if pti > gk then set xti = 0.

– Apply ALP on the subinstance of objects Y , with the remaining ca-
pacity C ′

t = Ct − wt(Xt) for each t, where some variables xti are set
to 0 as explained in the previous step.

• Let (Y1, ..., YT ) be the sets of objects taken at time 1, . . . , T by ALP .
Consider the solution (X1 ∪ Y1, ..., XT ∪ YT ).

3. Output the best solution computed.

Theorem 2.4. The algorithm PTASConstantMK is a (1−ϵ)-approximation algorithm

running in time O
(
2O(T 5/ϵ)nO(T 4/ϵ)

)
for Multistage Knapsack.

Proof. First, there are O(nℓ) choices for X; for each X there are 2ℓ choices for
each Xt, so in all there are O(nℓ2ℓT ) choices for (X1, . . . , XT ). For each choice
(X1, . . . , Xt), we compute the reward of elements, and then apply ALP . Since ℓ ≤
⌈T 3(T + 1)/ϵ⌉, the running time follows.

Now let us show the claimed approximation ratio. Consider an optimal solution
S∗, and suppose wlog that gi(S

∗) are in non increasing order. Consider the itera-
tion of the algorithm where X = {1, 2, . . . , ℓ}. At this iteration, consider the choice
(X1, . . . , XT ) where Xt is exactly the subset of objects in X taken by S∗ at time
t (for t = 1, . . . , T ). The solution S computed by the algorithm at this iteration
(with X and (X1, . . . , XT )) is S = (X1 ∪ Y1, . . . , XT ∪ YT ) where (Y1, . . . , YT ) is the
solution output by ALP on the subinstance of objects Y = N \X, where xti is set
to 0 if pti > gk.

Note that we consider ℓ =
⌈
(T+1)T 3

ϵ

⌉
, otherwise we would get an optimal solution

for the problem.
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Note that since we consider the iteration where X corresponds to the ℓ objects of
largest reward in the optimal solution, we do know that for an object i > ℓ, if
pti > gk then the optimal solution does not take object i at time t (it would have
a reward greater than gk), so we can safely fix this variable to 0. The idea behind
putting these variables xti to 0 is to prevent the relaxed solution to take fractional
objects with very large profits. These objects could indeed induce a very high loss
when rounding the fractional solution to an integral one as done by ALP .
By doing this, the number of fractional objects (i.e., objects in F ) does not increase.
Indeed, if we put a variable xti at 0, it is not fractional so nothing changes in the
proof of Theorem 2.3.

The value of S∗ is g(S∗) =
∑

i∈X gi(S
∗) +

∑
i∈Y gi(S

∗). Thus, by Equation 2.1,
we have:

g(S) ≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
r)−

∑
i∈F

gi(S
r)

≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)−

∑
i∈F

gi(S
r),

where F is the set of fractional objects in the optimal fractional solution of the
relaxation of the LP on Y , where xti is set to 0 if pti > gk.

Each object of F has a profit at most gk at any time steps and a transition profit
at most

∑T−1
t=1 Bti, so

∀i ∈ F gi(S
r) ≤ Tgk +

T−1∑
t=1

Bti

Now, note that in an optimal solution each object has a reward at least
∑T−1

t=1 Bti

(otherwise simply never take this object), so for all i ∈ F gk ≥ gi ≥
∑T−1

t=1 Bti. So
we have:

∀i ∈ F gi(S
r) ≤ (T + 1)gk

Since gi(S
∗) are in non increasing order, we have gk = gℓ(S

∗) ≤
∑

i∈X gi(S
∗)

ℓ
. So

for all objects i in F , gi(S
r) ≤ (T+1)

∑
i∈X gi(S

∗)

ℓ
. By Theorem 2.3, there are at most

T 3 of them, thus:

g(S) ≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)−

∑
i∈F

gi(S
r)

≥
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗)− (T + 1)T 3

ℓ

∑
i∈X

gi(S
∗)

≥ (1− ϵ)
∑
i∈X

gi(S
∗) +

∑
i∈Y

gi(S
∗) ≥ (1− ϵ)g(S∗)
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By Theorem 2.4, for any fixed number of time steps T , Multistage Knapsack
admits a PTAS.

2.3.3 Generalization to an arbitrary number of time steps

We now devise a PTAS for the general problem, for an arbitrary (not constant)
number of steps. We actually show how to get such a PTAS provided that we have
a PTAS for (any) constant number of time steps. Let Aϵ,T0 be an algorithm which,
given an instance of Multistage Knapsack with at most T0 time steps, outputs
a (1− ϵ)-approximate solution in time O(nf(ϵ,T0)) for some function f .

The underlying idea is to compute (nearly) optimal solutions on subinstances
of bounded sizes, and then to combine them in such a way that at most a small
fraction of the optimal value is lost.

Let us first give a rough idea of our algorithm PTASMK .
Given an ϵ > 0, let ϵ′ = ϵ/2 and T0 = ⌈ 1

ϵ′
⌉. We construct a set of solutions

S1, . . . , ST0 in the following way:
In order to construct S1, we partition the time horizon 1, . . . , T into ⌈ T

T0
⌉ consec-

utive intervals. Every such interval has length T0, except possibly the last interval
that may have a smaller length. We apply Aϵ,T0 at every interval in this partition.
S1 is then just the concatenation of the partial solutions computed for each interval.

The partition on which is based the construction of the solution Si, 1 < i ≤ T0,
is made in a similar way. The only difference is that the first interval of the partition
of the time horizon 1, . . . , T goes from time 1 to time i− 1. For the remaining part
of the time horizon, i.e. for i, . . . T , the partition is made as previously, i.e. starting
at time step i, every interval will have a length of T0, except possibly the last one,
whose length may be smaller. Once the partition is built, we apply Aϵ,T0 to every
interval of the partition. Si, 1 < i ≤ T0, is then defined as the concatenation of the
partial solutions computed on each interval. Among the T0 solutions S1, . . . , ST0 ,
the algorithm chooses the best solution.

The construction is illustrated on Figure 2.1, with 10 time steps and T0 = 3.
The first solution S1 is built by applying 4 times Aϵ,T0 , on the subinstances cor-
responding to time steps {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and {10}. The solution S2 is
built by applying 4 times Aϵ,T0 , on the subinstances corresponding to time steps
{1}, {2, 3, 4}, {5, 6, 7}, and {8, 9, 10}.

More formally, given an ϵ > 0, the algorithm PTASMK works as follows.

• Let ϵ′ = ϵ/2 and T0 =
⌈
1
ϵ′

⌉
. Let It = [t, . . . , t + T0 − 1] ∩ [1, . . . , T ] be the set

of (at most) T0 consecutive time steps starting at t. We consider It for any t
for which it is non empty (so t ∈ [−T0 + 2, . . . , T ]).
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2.1: The three solutions for T0 = 3 and T = 10.

• For t ∈ {1, . . . , T0}:

– Apply Aϵ′,T0 on all intervals It′ with t′ ≡ t (mod T0). Note that each
time step belongs to exactly one of such intervals.

– Define the solution St built from the partial solutions given by the appli-
cations of Aϵ′,T0 .

• Choose the best solution S among the T0 solutions S1, . . . , ST0 .

Theorem 2.5. The algorithm PTASMK is a polynomial-time approximation scheme
for Multistage knapsack.

Proof. The algorithm calls the Aϵ′,T0 algorithm ⌈T/T0⌉ times for each of the T0

generated solutions. Yet, the running time of Aϵ′,T0 is nf( 1
ϵ′ ,T0) = nf( 2

ϵ
,⌈ 2

ϵ
⌉), i.e. a

polynomial time for any fixed ϵ. So, the running time of the algorithm for any T is

T0 ×
⌈

T
T0

⌉
nf( 2

ϵ
, 2
ϵ
) = O(Tnf( 2

ϵ
, 2
ϵ
)), a polynomial time for any fixed ϵ.

Each solution St of the T0 generated solutions may loose some bonus between
the last time step of one of its intervals It+kT0 and the first time step of its next
interval It+(k+1)T0 (in Figure 2.1 for instance, S1 misses the bonuses between steps
3 and 4, 6 and 7, and 9 and 10). Let loss(St) be this loss with respect to some
optimal solution S∗. Since we apply Aϵ′,T0 to build solutions, we get that the value
g(St) of St is such that:

g(St) ≥ (1− ϵ′)g(S∗)− loss(St)

Since the output solution S is the best among the solutions St, by summing up
the previous inequality for t = 1, . . . , T0 and dividing by T0, we get:

g(S) ≥ (1− ϵ′)g(S∗)−
∑T

t=1 loss(S
t)

T0
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Now, by construction the bonus between steps j and j + 1 appears in the loss
of exactly one St (see Figure 2.1). So the total loss of the T0 solutions is the global
transition bonus of S∗, so at most g(S∗). Hence:

g(S) ≥ (1− ϵ′)g(S∗)− g(S∗)

T0

≥ (1− 2ϵ′)g(S∗) = (1− ϵ)g(S∗)

2.4 Pseudo-polynomiality and hardness results

We complement the previous result on approximation scheme by showing the fol-
lowing results for Multistage Knapsack:

• First, it does not admit an FPTAS (unless P=NP), even if there are only two
time steps (Section 2.4.1) and the bonus is uniform (Bti = B for all i, all t);

• Second, the problem is pseudo-polynomial if the number of time steps T is a
fixed constant (Section 2.4.2) but is strongly NP-hard in the general case even
in the case of uniform bonus (Section 2.4.3).

2.4.1 No FPTAS

Theorem 2.6. There is no FPTAS for Multistage Knapsack unless P=NP,
even if there are only two time steps and the bonus is uniform.

Proof. We prove the result by a reduction from CARDINALITY(2 −KP ), known
to be NP-complete (Theorem 2.2)

For an instance I of CARDINALITY(2 − KP ), we consider the following in-
stance I ′ of Multistage Knapsack:

• There are T = 2 time steps, and the same set of objects N = {1, 2, ..., n} as
in I.

• The weights w1i and w2i are the same as in I, for all i ∈ N .

• p1i = p2i = 1 for all i ∈ N .

• B1i = 2 for all i ∈ N .
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We show that the answer to I is Yes (we can find K objects fulfilling the 2
knapsack constraints) if and only if there is a solution of value at least 2K + 2n for
the instance I ′ of MK.

If we have a set A of K objects for I, then we simply take these objects at both
time steps in I ′. This is feasible, the knapsack revenue is 2K and the transition
revenue is 2n.

Conversely, consider a solution of value at least 2K+2n in I ′. In such a solution,
we necessarily have x1j = x2j, i.e., an object is taken at the time 1 if and only if it is
taken at the time 2. Indeed, assume that there is one i ∈ N such that x1i ̸= x2i, then
consider the solution where x1i = x2i = 0. This is still feasible; the knapsack revenue
reduces by 1 but the transition revenue increases by 2, a contradiction. Thus the
same set of objects A is taken at both time steps. Since the value of the solution is
at least 2K + 2n, the size of A is at least K. Hence the answer to I is Yes.

Note that in I ′ the optimal value is at most 4n. We produce in this reduction
polynomially bounded instances of Multistage Knapsack (with only two time
steps), so the problem does not admit an FPTAS. Indeed, suppose that there is an
FPTAS producing a (1− ϵ)-approximation in time p(1/ϵ, n), for some polynomial p.
Let ϵ = 1

4n+1
. If we apply the FPTAS with this value of ϵ on I ′ we get a solution S

of value at least (1 − ϵ)OPT (I ′) ≥ OPT (I ′) − OPT (I′)
4n+1

> OPT (I ′) − 1. Yet all the
possible values are integers so S is optimal. The running time is polynomial in n,
impossible unless P=NP.

2.4.2 Pseudo-polynomiality for a constant number of time
steps

We show here that the pseudo-polynomiality of the Knapsack problem generalizes
to Multistage Knapsack when the number of time steps is constant. More
precisely, with a standard dynamic programming procedure, we have the following.

Theorem 2.7. Multistage Knapsack is solvable in time O(T (2Cmax + 2)Tn)
where Cmax = max{Ci, i = 1, . . . , T}.

Proof. For any T -uple (c1, . . . , cT ) where 0 ≤ ci ≤ Ci, and any s ∈ {0, . . . , n}, we
define α(c1, . . . , cT , s) to be the best value of a solution S = (S1, . . . , ST ) such that:

• The weight of knapsack at time t is at most ct: for any t,
∑

i∈St
wti ≤ ci;

• The solution uses only objects among the first s: for any t, St ⊆ {1, . . . , s}.

The optimal value of Multistage Knapsack is then α(C1, . . . , CT , n). We com-
pute α by increasing values of s. For s = 0, we cannot take any object so α(c1, . . . , cT , 0) =
0.



52 CHAPTER 2.

Take now s ≥ 1. To compute α(c1, . . . , cT , s), we simply consider all the 2T

possibilities for taking or not object s in the T time steps. Let A ⊆ {1, . . . , T} be
a subset of time steps. If we take object s at time steps in A (and only there), we
first check if A is a valid choice, i.e., wts ≤ ct for any t ∈ A; then we can compute
in O(T ) the corresponding reward rs(A) (

∑
t∈A pts plus the transition bonus). We

have:

α(c1, . . . , cT , s) =

max{rs(A) + α(c′1 − w1s, . . . , c
′
T − wTs, s− 1) : A ⊆ {1, . . . , T} valid}

with:

c′i = ci − wis if i ∈ A

c′i = c− i otherwise

The running time to compute one value of α is O(T2T ). There are O(nΠT
t=1(Ci+

1)) = O(n(Cmax + 1)T ) values to compute, so the running time follows. A standard
backward procedure allows to recovering the solution.

2.4.3 Strongly NP-hardness

Definition 2.5. Binary Multistage Knapsack is the sub-problem of the Mul-
tistage Knapsack where all the weights, profits are all equal to 0 or 1 and capac-
ities are equal to 1.

For the usual Knapsack problem, the binary case corresponds to a trivial prob-
lem. For the multistage case, we have the following:

Theorem 2.8. Binary Multistage Knapsack is NP-hard, even in the case of
uniform bonus.

Proof. We prove the result by a reduction from the Independent Set problem
where, given a graph G and an integer K, we are asked if there exists a subset of
K pairwise non adjacent vertices (called an independent set). This problem is well
known to be NP-hard, see Garey and Johnson (1979).

Let (G,K) be an instance of the Independent Set problem, with G = (V,E),
V = {v1, . . . , vn} and E = {e1, . . . , em}. We build the following instance I ′ of
Binary Multistage Knapsack:

• There are n objects {1, 2 . . . , n}, one object per vertex;

• There are T = m time steps: each edge (vi, vj) in E corresponds to one time
step;
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• At the time step corresponding to edge (vi, vj): objects i and j have weight 1,
the others have weight 0, all objects have profit 1, and the capacity constraint
is 1.

• The transition bonus is bti = B = 2nm for all i, t.

We claim that there is an independent set of size (at least)K if and only if there is
a solution for Binary Multistage Knapsack of value (at least) n(m−1)B+mK.

Suppose first that there is an independent set V ′ of size at least K. We take the
K objects corresponding to V ′ at all time steps. This is feasible since we cannot
take 2 objects corresponding to one edge. The built solution sequence has knapsack
profit mK and transition profit n(m− 1)B (no modification).

Conversely, take a solution of Binary Multistage Knapsack of value at
least n(m − 1)B + mK. Since B = 2nm, there must be no modification of the
knapsack over the time. Indeed, otherwise, the transition profit would be at most
n(m− 1)B−B, while the knapsack profit is at most mn, so the value would be less
than n(m− 1)B. So we consider the set of vertices corresponding to this knapsack.
Thanks to the value of the knapsack, it has size at least K. Thanks to the capacity
constraints of the knapsacks, this is an independent set.

Since B is polynomially bounded in the proof, this shows that Multistage
Knapsack is strongly NP-hard.

2.5 Conclusion

We considered the Multistage Knapsack problem in the offline setting and we
studied the impact of the number of time steps in the complexity of the problem.
In the next chapter, we present the study in the online setting of the large family
of subset maximization problems in the multistage framework, the multistage
knapsack problem being part of this family, and measure the importance of the
knowledge of the future on the quality of solutions.
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Chapter 3

Online Multistage Subset
Maximisation Problems

3.1 Introduction

In this chapter, we focus on the online case, where at time t no knowledge is available
for instances at times t+1, . . . , T . When it is not possible to handle the online case,
we turn our attention to the k-lookahead case, where at time t the instances at times
t+1, . . . , t+k are also known. This case is of interest since in some applications like in
dynamic capacity planning in data centers, the forecasts of future demands may be
very helpful (see Lin et al. (2012); Liu et al. (2014) for examples of application). Our
goal is to measure the impact of the lack of knowledge of the future on the quality
and the stability of the returned solutions. Indeed, our algorithms are limited in
their knowledge of the sequence of instances. Knowing that the number of time
steps is given, we compute the competitive ratio of the algorithm after time step T :
since we focus on maximization problems, we say that a (deterministic) algorithm is
α-competitive (with competitive ratio α) if its value is at least 1

α
times the optimal

value on all instances.

As it is usual in the online setting, we consider no limitations in the computa-
tional resources available. This implies that at every time step t, where instance It
is known, we assume the existence of an oracle able to compute the optimal solution
for that time step. Notice also that our lower bounds do not rely on any complexity
assumptions. Some recent results are already known for the online multistage model
(Bampis et al. (2018b); Gupta et al. (2014)), however all these results are obtained
for specific problems. In this chapter, we study multistage variants of a broad family
of maximization problems. An extended abstract of this chapter has been presented
at ESA (European Symposium on Algorithms) 2019 (Bampis et al. (2019b)).

55
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3.1.1 Problem definition

The family of optimization problems that we consider is the following.

Definition 3.1. (Subset Maximization Problems.) A Subset Maximization prob-
lem P is a combinatorial optimization problem whose instances I = (N, p,F) each
consists of

• A ground set N ;

• A set F ⊆ 2N of feasible solutions such that ∅ ∈ F ;

• A non-negative weight p(S) for every S ∈ F .

The goal is to find S∗ ∈ F such that p(S∗) = max{p(S) : S ∈ F}.

We will consider that the empty set is always feasible, ensuring that the feasible
set of solutions is non empty. This is a very general class of problems, including the
maximization Subset Selection problems studied by Pruhs and Woeginger (2007)
(they only considered linear objective functions). It contains for instance graph
problems where N is the set of vertices (as in any maximization induced subgraph
problem verifying some property) or the set of edges (as in matching problems).
It also contains classical set problems (knapsack, maximum 3-dimensional match-
ing,. . . ), and more generally 0-1 linear programs (with non negative profits in the
objective function).

Given a problem in the previous class, we are interested in its multistage ver-
sion (Gupta et al. (2014); Eisenstat et al. (2014)). The stability over time of a
solution sequence is classically captured by considering a transition cost when a
modification is made in the solution. Here, dealing with maximization problems as
in the previous chapter, we will consider again a transition bonus B for taking into
account the similarity of two consecutive solutions. In what follows, we will use the
term object to denote an element of N (so an object can be a vertex of a graph, or
an edge,. . . , depending on the underlying problem).

Definition 3.2. (Multistage Subset Maximization Problems.) In a Multistage Sub-
set Maximization problem P, we are given

• a number of steps T ∈ N, a set N of n objects;

• for any t ∈ T , an instance It of the optimization problem. We will denote:

– pt the objective (profit) function at time t

– Ft ∈ 2N the set of feasible solutions at time t

• B ∈ R+ a given transition profit.
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• the value of a solution sequence S = (S1, . . . , ST ) is

f(S) =
T∑
t=1

pt(St) +
T−1∑
t=1

b(St, St+1)

where b(St, St+1) is the transition bonus for the solution between time steps t
and t + 1 (a definition of the bonus is given in Definition 3.3). We will use
the term profit for pt(St), bonus for the transition bonus b(St, St+1), and value
of a solution S for f(S);

• the goal is to determine a solution sequence of maximum value.

The fact that T is known may be regarded as rather uncommon the field of online
algorithms. At the end of Subsection 3.1.2, we relate it to our results and justify it.

There are two natural ways to define the transition bonus. We will see that these
two ways of measuring the stability induce some differences in the competitive ratios
one can get.

Definition 3.3. (Types of transition bonus.) If St and St+1 denote, respectively,
the solutions for time steps t and t+ 1, then we can define the transition bonus as:

• Intersection Bonus: B times |St ∩ St+1|: in this case the bonus is proportional
to the number of objects in the solution at time t that remain in it at time
t+ 1.

• Hamming Bonus: B times |St ∩ St+1|+ |St ∩ St+1|. Here we get the bonus for
each object for which the decision (to be in the solution or not) is the same
between time steps t and t+1. In other words, the bonus is proportional to |N |
minus the number of modifications (Hamming distance) in the solutions. The
multistage knapsack problem was studied considering Hamming Bonus in
Chapter 2.

Note that by scaling profits (dividing them by B), we can arbitrarily fix B = 1.
So from now on, we assume B = 1. Note that this was also the case with the uniform
bonus presented in Chapter 2.

In this chapter, we will consider two possible ways for the data to evolve.

Definition 3.4. (Types of data evolution.)

• Static Set of Feasible Solutions (SSFS): only profits may change over time, so
the structure of feasible solutions remains the same (Ft = F for all t).

• General Evolution (GE): any modification (but the set of objects) in the in-
put sequence is possible. Both the profits and the set of feasible solutions may
change over time. In this latter model, for knapsack, profits and weights of
object (and the capacity of the bag) may change over time; for maximum in-
dependent set, edges in the graph may change,etc.
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3.1.2 Summary of Results and Overview

The contribution of this chapter is a framework for online multistage maximization
problems (comprising different models) and almost tight upper and lower bounds
on the best-possible competitive ratio for these models. The focus here is on deter-
ministic algorithms.

We increase the complexity of the considered models over the course of the chap-
ter. We start with the arguably simplest model: Considering a static set of feasible
solutions clearly restricts the general model of evolution; while such a straightfor-
ward comparison between the Hamming and intersection bonus is not possible, the
Hamming bonus seems simpler in that, compared to the intersection model, there are
(somewhat comparable) extra terms added on the profit of both the algorithm and
the optimum. As we show in Subsection 3.2.1, there is indeed a simple 2-competitive
algorithm: At each time t, it greedily chooses the set St that either maximizes the
transition bonus w.r.t. St−1 (that is, choosing St = St−1, which is possible in this
model) or maximizes the value pt(St). We complement this observation with a
matching lower bound only involving two time steps.

We then toggle the transition-bonus model and the data-evolution model sep-
arately and show that constant competitive ratios can still be achieved. First, in
Subsection 3.2.2, we consider intersection bonus. We show that, after modifying
the profits (internally) to make larger solutions more profitable, a (2 + 1/(T − 1))-
competitive algorithm can be achieved by a greedy approach again. We also give an
(almost matching) lower bound of 2 again. Next, we toggle the evolution model. In
Subsection 3.3.1, we adapt the greedy algorithm from Subsection 3.2.1 by reweight-
ing to obtain a (3 + 1/(T − 1))-competitive algorithm using a more complicated
analysis. We complement this result with a lower bound of 1 +

√
2.

In Subsection 3.3.2, we finally consider the general-evolution model with inter-
section bonus, for which we give a simple lower bound showing that a constant-
competitive ratio is not achievable. This lower bound relies on forbidding to choose
any item in the second step that the algorithm chose in the first step. We circum-
navigate such issues by allowing the algorithm a lookahead of one step and present
a 4-competitive algorithm for that setting. A similar phase transition has been ob-
served for a related problem (Bampis et al. (2018b)), but our algorithm, based on
a doubling approach, is different. We also give a matching lower bound of 4 on the
competitive ratio of any algorithm in the same setting. We summarize all results
described so far in Table 3.1.

We note that the lower bounds mentioned for the Hamming model are only shown
for a specific fixed number of time steps, and that in general there is no trivial way
of extending these bounds to a larger number of time steps. One may however argue
that the large-T regime is in fact the interesting one for both practical applications
and in theory, the latter because the effect of having a first time step without bonus
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static set of feasible solutions general evolution

Hamming bonus
2− o(1) ≤ c⋆ ≤ 2 1 +

√
2 ≤ c⋆ ≤ 3 + o(1)

Theorems 3.2 and 3.1 Theorems 3.8 and 3.6

Intersection bonus
2 ≤ c⋆ ≤ 2 + o(1)

c⋆ =∞
c⋆ = 4 for 1-lookahead

Theorems 3.5 and 3.4 Theorems 3.10, 3.12, and 3.11

Table 3.1: Our bounds on the best-possible competitive ratio c⋆ for the different models.
The Landau symbol is with respect to T →∞.

vanishes. At the end of the respective sections, we therefore give asymptotical lower
bounds of 3/2 and roughly 1.696 for the cases of a static set of feasible solutions and
general evolutions, respectively. These bounds are non-trivial, but we do not know
if they are tight.

It is plausible that the aforementioned upper bounds can be improved if extra
assumptions on characteristics of the objective function and the sets of feasible solu-
tions are made. In Subsection 3.3.1, we show that already very natural assumptions
suffice: Assuming that at each time the feasible solutions are closed under taking
subsets and the objective function is subadditive, we give a (21/8+o(1))-competitive
algorithm for the model with a general evolution and Hamming bonus, improving
the previous (3 + o(1))-competitive ratio. Our lower bounds for general evolution
and Hamming bonus in fact fulfill the extra assumptions.

We observe that all our algorithms except for the one discussed in Subsec-
tion 3.2.1 require that T is known in that their behavior in the last step is different
from the behavior in the steps before. This assumption is crucial: In all these mod-
els, there are examples in which one can in the first time step choose either a small
profit or a potentially large bonus not knowing if there is another timestep to realize
the bonus. Such examples imply a superconstant lower bound on the competitive
ratio in these models. This justifies our assumption that T is known.

In Section 3.4, we summarize our results and mention directions for future re-
search that we consider interesting.

3.2 Model of a Static Set of Feasible Solutions

We consider here the model of evolution where only profits change over time: Ft =
F for any t. We first consider the Hamming bonus model and show a simple 2-
competitive algorithm. We will then show that a (asymptotic) competitive ratio
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of 2 can also be achieved in the intersection bonus model using a more involved
algorithm. In both cases, this ratio 2 is shown to be (asymptotically) optimal.

3.2.1 Hamming-Bonus Model

Theorem 3.1. In the SSFS model with Hamming bonus, there is a 2-competitive
algorithm.

Proof. We consider the very simple following algorithm. At each time step t, the
algorithm computes an optimal solution S∗

t with associated profit pt(S
∗
t ). At t = 1

we fix S1 = S∗
1 . For t > 1, if pt(S

∗
t ) > n then fix St = S∗

t , otherwise fix St = S∗
t−1

(which is possible thanks to the fact that the set of feasible solutions does not
change).

Let f ∗ be the optimal value. Since any solution sequence gets profit at most
pt(S

∗
t ) at time t, and bonus at most n between two consecutive time steps, we get

f ∗ ≤
∑T

t=1 p(S
∗
t ) + n(T − 1).

By construction, at time t > 1, either the algorithm gets profit pt(S
∗
t ) when

pt(S
∗
t ) > n, or bonus (from t− 1) n when n ≥ pt(S

∗
t ). So in any case the algorithm

gets profit plus bonus at least
pt(S∗

t )+n

2
. At time 1 it gets profit exactly p1(S

∗
1). So

f(S1 . . . , ST ) ≥ p1(S
∗
1) +

T∑
t=2

pt(S
∗
t )

2
+

n(T − 1)

2
≥ f ∗

2

which completes the proof.

Theorem 3.2. Consider the SSFS model with Hamming bonus. For any ϵ > 0,
there is no (2− ϵ)-competitive algorithm, even if there are only 2 time steps.

Proof. We consider a set N = {1, 2, . . . , n} of n = 1 +
⌈
1
ϵ

⌉
objects, T = 2 time

steps, and an additive profit function. There are three feasible solutions: S0 = ∅,
S1 = {1} and S2 = {2, . . . , n}. At t = 1, all the profits are 0. Let us consider an
online algorithm A. We consider the three possibilities for the algorithm at time 1:

• At time 1, A chooses S0: at time 2 we give profit 1 to all objects. If A takes
no object at time 2, it gets profit 0 and bonus n. If it takes S1, it gets profit
1 and bonus n − 1. If it takes S2, it gets profit n − 1 and bonus 1, so in any
case the computed solution has value n. The solution consisting of taking S2

at both time steps has profit n− 1 and bonus n, so value 2n− 1.

• At time 1, A chooses S1: at time 2 we give profit 0 to object 1, and profit 1 to
all other objects. Then, if the algorithm takes S0 (resp, S1, S2), at time 2 its
gets value n− 1 (resp, n, n− 1) while the solution consisting of taking S2 at
both time steps has value 2n− 1.
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• At time 1, A chooses S2: at time 2 we give profit n to object 1, and 0 to all
other objects. Then if the algorithm takes S0 (resp, S1, S2) at time 2 its gets
value 1 (resp, n, n), while the solution consisting of taking S1 at both time
steps has value 2n.

In any case, the ratio is at least 2n−1
n

= 2− 1
n
> 2− ϵ.

We complement this lower bound with an asymptotical result for large T .

Theorem 3.3. Consider the SSFS model with Hamming bonus. For every ϵ > 0,
there is a T sufficiently large such that there is no (3/2− ϵ)-competitive algorithm.

Proof. Let N := {1, 2}. The static set of feasible solutions is F = {∅, {1}, {2}}.
Initially, p1({1}) = 0 and p1({2}) = 1. As long as the algorithm has not picked
item 2 until some time t, we set pt+1({1}) = 0 and pt+1({2}) = 1 again. Note
that, in order to be (3/2− ϵ)-competitive, the algorithm however has to pick item 2
eventually. Further, the ratio between the profit of the optimum and the algorithm
during this part is 3/2− o(1) as the length of this part approaches ∞.

The remaining time horizon is partitioned into contiguous phases. Consider a
phase that starts at time t. The invariant at the beginning of the phase is that
both the algorithm and the optimum have picked the same item in the previous
time step t− 1. Let this item be w.l.o.g. item 2; the other case is symmetric. Then
pt({2}) = 1 and pt({1}) = 3. By the same reasoning as above, we can assume the
algorithm chooses an item at t. Let i ∈ {1, 2} be that item. Then pt+1({i}) = 0 and
pt+1({3− i}) = 1. As long as the algorithm is still not picking item 3− i during the
time interval [t + 1, t′], pt′+1({i}) = 0 and pt′+1({3 − i}) = 1. Once the algorithm
picks item 3− i at some time, the phase ends regularly ; otherwise it ends by default.

Now consider a phase of length ℓ that ends regularly (note ℓ ≥ 2). We claim
that the values of the algorithm and the optimum have a ratio of at least 3/2. This
is because of the following estimates on the algorithm’s and optimum’s value:

• In either case for i, the algorithm obtains a value of 3 in time step t. Further-
more, the total bonus in all subsequent time steps is (ℓ − 2) · 2, because the
algorithm has to switch from item i to item 3− i at time t+ l− 1. There is an
additional profit of 1 at time t+ℓ−1. Therefore, the total value is 4+(ℓ−2) ·2

• The value of the optimum is at least 6+(ℓ−2) ·3: It chooses item 3− i already
at time t and keeps it until time t+ ℓ− 1, obtaining a value of 3 in that time
step and another 3 in each subsequent time step.

This proves the claim and thereby the theorem as a phase that ends by default can
be extended to one that ends regularly by modifying the optimum’s and algorithm’s
values by constants.
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3.2.2 Intersection Bonus Model

In the Intersection Bonus model things get harder since an optimal solution S∗
t may

be of small size and then gives very small (potential) bonus for the next step. As
a matter of fact, the algorithm of the previous section has unbounded competitive
ratio in this case: take a large number n of objects, F = 2N , and at time 1 all
objects have profit 0 up to one which has profit ϵ. The algorithm will take this
object (instead of taking n − 1 objects of profit 0) and then potentially get bonus
at most 1 instead of n− 1.

Thus we shall put an incentive for the algorithm to take solutions of large size,
in order to have a chance to get a large bonus. We define the following algorithm
called MP-Algo (for Modified Profit algorithm). Informally, at each time step t,
the algorithm computes an optimal solution with a modified objective function p′t.
These modifications take into account (1) the objects taken at time t− 1 and (2) an
incentive to take a lot of objects. Formally, MP-Algo works as follows:

1. At t = 1: let p′1(S) = p1(S) + |S| for each solution S ∈ F . Choose S1 as an
optimal solution for the problem with modified profits p′1.

2. For t from 2 to T − 1: let p′t(S) = pt(S) + |S ∩ St−1| + |S|. Choose St as an
optimal solution for the problem with modified profit function p′t.

3. At t = T : let p′T (S) = pT (S) + |S ∩ ST−1|. Choose ST as an optimal solution
with modified profit function p′T .

The cases t = 1 and t = T are specific since there is no previous solution for t = 1,
and no future solution for t = T .

Theorem 3.4. In the SSFS model with intersection bonus, MP-Algo is
(

2
1−1/(T−1)

)
-

competitive.

Proof. Let (Ŝ1, . . . , ŜT ) be an optimal sequence. Since St is optimal with respect to
p′t, for t = 2, . . . , T − 1 we have:

p′t(St) = pt(St) + |St ∩ St−1|+ |St| ≥ p′t(Ŝt) ≥ pt(Ŝt) + |Ŝt|. (3.1)

Since St−1 is also a feasible solution at time t, we have:

p′t(St) = pt(St) + |St ∩ St−1|+ |St| ≥ 2|St−1|. (3.2)

Similarly, at t = T p′T (S) = pT (S) + |S ∩ St−1| so

pT (ST ) + |ST ∩ ST−1| ≥ pT (ŜT )and (3.3)

pT (ST ) + |ST ∩ ST−1| ≥ |ST−1|. (3.4)
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At t = 1, p′t(S) = pt(S) + |S|, so

p1(S1) + |S1| ≥ p1(Ŝ1) + |Ŝ1|. (3.5)

Now, note that |St ∩St−1| is the transition bonus of the computed solution between
t − 1 and t. By summing Equation (3.1) for t = 2, . . . , T − 1, Equation (3.3) and
Equation (3.5), we deduce:

f(S1, . . . , ST ) +
T−1∑
t=1

|St| ≥
T∑
t=1

pt(Ŝt) +
T−1∑
t=1

|Ŝt|.

Since in the optimal sequence the transition bonus between time t and t + 1 is at
most |Ŝt|, we get:

f(S1, . . . , ST ) +
T−1∑
t=1

|St| ≥ f(Ŝ1, . . . , ŜT ). (3.6)

Now we sum Equation (3.2) for t = 2, . . . , T − 1 and Equation (3.4):

f(S2, . . . , ST ) +
T−1∑
t=2

|St| ≥ 2
T−1∑
t=2

|St−1|+ |ST−1| =
T−2∑
t=1

|St|+
T−1∑
t=1

|St|.

From this we easily derive:

f(S1, . . . , ST ) ≥
T−2∑
t=2

|St|. (3.7)

By summing Equations (3.6) and (3.7) we have 2f(S1, . . . , ST ) ≥ f(Ŝ1, . . . , ŜT ) −
|ST−1|. The competitive ratio follows from the fact that f(Ŝ1, . . . , ŜT ) ≥ (T −
1)|ST−1| (since ST−1 is feasible for all time steps).

We note that competitive ratio 2 can be derived with a similar analysis when the
number of time steps is 2 or 3. Let us now show a matching lower bound (which is
also valid in the asymptotic setting).

Theorem 3.5. Consider the SSFS model with intersection bonus. For any ϵ > 0
and number of time steps T = ⌈1/ϵ⌉, there is no (2− ϵ)-competitive algorithm.

Proof. Let ϵ > 0 and T =
⌈
1
ϵ

⌉
. We consider T time steps, and a set N of n = T

objects. The objective function is linear, and feasible solutions are sets of at most
1 object. At t = 1, the profit of each object is 1. Then, at each time step, if the
algorithm takes an object, this object will have profit 0 until the end. While an
object is not taken by the algorithm, its profit remains 1.
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Since the algorithm takes at most one object at each time step, there is an object
which is never taken till the last step. The solution of taking this object during all
the process has value 2T −1. But at each time step the algorithm either takes a new
object (and gets no bonus) or keeps the previously taken object and gets no profit.
So the value of the computed solution is at most T . The ratio is 2− 1

T
≥ 2− ϵ.

3.3 Model of General Evolution

We consider in this section that the set of feasible solutions may evolve over time. We
will show that in the Hamming bonus model, we can still get constant competitive
ratios, though ratios slightly worse than in the case where only profits could change
over time. Then, we will tackle the intersection bonus model, showing that no
constant competitive ratio can be achieved. However, with only 1-lookahead we can
get a constant competitive ratio.

3.3.1 Hamming Bonus Model

In this section we consider the Hamming bonus model. We first show in Section 3.3.1
that there exists a

(
3 + 1

T−1

)
-competitive algorithm. Interestingly, we then show in

Section 3.3.1 that a slight assumption on the problem structure allows to improve the
competitive ratio. More precisely, we achieve a 21/8 (asymptotic) competitive ratio
if we assume that the objective function is subadditive (so including the additive
case) and that a subset of a feasible solution is feasible. These assumptions are
satisfied by all the problems mentioned in introduction. We finally consider lower
bounds in Section 3.3.1.

General Case

We adapt the idea of the 2-competitive algorithm working for the Hamming bonus
model for a static set of feasible solutions (Section 3.2.1) to the current setting where
the set of feasible solutions may change. Let us consider the following algorithm
BestOrNothing: at each time step t, BestOrNothing computes an optimal solution
S∗
t with associated profit pt(S

∗
t ) and compares it to 2 times the maximum potential

bonus, i.e. to 2n. It chooses S∗
t if the associated profit is at least 2n, otherwise it

chooses St = ∅. A slight modification is applied for the last step T .
Formally, BestOrNothing works as follows:

1. For t from 1 to T − 1:

(a) Compute an optimal solution S∗
t at time t with associated profit pt(S

∗
t )

(b) If pt(S
∗
t ) ≥ 2n set St = S∗

t , otherwise set St = ∅.
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2. At time T :

(a) if ST−1 = S∗
T−1, then ST = S∗

T .

(b) Otherwise: if pt(S
∗
t ) ≥ n set ST = S∗

T , otherwise set ST = ∅.

We show an upper bound on the competitive ratio achieved by this algorithm.

Theorem 3.6. In the GE model with Hamming bonus, BestOrNothing is
(
3 + 1

T−1

)
-

competitive.

Proof. Let us define J ⊆ {1, . . . , T − 1} as the set of time steps t < T where
pt(S

∗
t ) ≥ 2n.
If J ̸= ∅, let t1 be the largest element in J . We first upper bound the loss of the

algorithm up to time t1. We will then deal with the time period from t+1 up to T .
The global profit of an optimal solution up to time t1 is at most 2n(t1 − |J |) +∑

t∈J pt(S
∗
t ). Its bonus (including the one from time t1 to t1 + 1) is at most nt1. So

its global value is at most n (3t1 − 2|J |) +
∑

t∈J pt(S
∗
t ).

The solution computed by BestOrNothing gets profit at least
∑

t∈J pt(S
∗
t ). Note

that it chooses the empty set always but |J | times, so it gets transition bonus n at
least t1−2|J | times (each step in J may prevent to get the bonus only between t−1
and t, and between t and t+1). So the global value of the computed solution up to
time t1 is at least nmax{0; t1 − 2|J |}+

∑
t∈J pt(S

∗
t ).

Up to time t1, the ratio r between the optimal value and the value of the solution
computed by BestOrNothing verifies

r ≤
n (3t1 − 2|J |) +

∑
t∈J pt(S

∗
t )

nmax{0; t1 − 2|J |}+
∑

t∈J pt(S
∗
t )
≤ 3t1

max{0; t1 − 2|J |}+ 2|J |
,

where we used the fact that
∑

t∈J pt(S
∗
t ) ≥ 2n|J |, r ≥ 1 and decreasing in

∑
t∈J pt(S

∗
t ).

Since max{0; t1 − 2|J |}+ 2|J | ≥ t1 the ratio is at most 3 up to time t1.

Now, let us consider the end of the process, from time t1 +1 (or 1 if J is empty)
up to time T . If t1 = T − 1 then we take the best solution at time T and get no
extra loss, so the algorithm is 3-competitive in this case.

Now assume t1 < T − 1. We know that BestOrNothing chooses the empty set
up to T − 1. Let us first assume that pT (S

∗
T ) < n. Then on the subperiod from

t1 + 1 to T BestOrNothing gets value n(T − t1 − 1) (bonuses), while the optimum
gets bonus at most n(T − t1− 1) and profit at most 2n(T − t1− 1)+n. The optimal
value is then at most n (3T − 3t1 − 2) = 3n(T − t1 − 1) + n.

Now suppose that pT (S
∗
T ) ≥ n and t1 < T − 1. On the subperiod from t1 + 1 to

T BestOrNothing gets value n(T − t1− 2)+ pT (S
∗
T ), while the optimum gets bonus

at most n(T − t1 − 1) and profit at most 2n(T − t1 − 2) + pT (S
∗
T ). The worst case
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ratio occurs when pT (S
∗
T ) = n ≤ 3n(T−t1−1)+pT (S∗

T )

n(T−t1−2)+pT (S∗
T )

that is decreasing in pT (S
∗
T ). In

this case, as before, the value of the computed solution is n(T − t1 − 1), while the
optimal value is at most n (3T − 3t1 − 1) = 3n(T − t1 − 1) + n.

Then, in all cases we have that the optimal value is at most 3f(S1, . . . , Sn) + n.
But f(S1, . . . , Sn) ≥ (T − 1)n (the computed solution has value at least t1n up to
t1, and then at least n(T − t1 − 1)), and the claimed ratio follows.

Improvement for Sub-additivity and Subset Feasibility

In this section we assume that the problem have the following two properties:

• subset feasibility: at any time step, every subset of a feasible solution is feasible.

• sub-additivity: for any disjoint S, S ′, any t, pt(S ∪ S ′) ≤ pt(S) + pt(S
′).

Note that this implies that, if a feasible set X is partitioned into (disjoint) subsets
X1, . . . , Xh, then X1, . . . , Xh are feasible and pt(X) ≤

∑
i pt(Xi).

We exploit this property to devise algorithms where we partition the set of objects
and solve the problems on subinstances. As a first idea, let us partition the set of
objects into into 3 sets A,B,C of size (roughly) n/3; consider the algorithm which
at every time step t computes the best solutions SA

t , S
B
t , S

C
t on each subinstance

on A, B and C, and chooses St as the one of maximum profit between these 3
solutions. By sub-additivity and subset feasibility, the algorithm gets profit at least
1/3 of the optimal profit at each time step. Dealing with bonuses, at each time step
the algorithm chooses a solution included either in A, or in B, or in C so, for any
t < T , at least one set among A,B and C is not chosen neither at time t nor at time
t+ 1, and the algorithm gets transition bonus at least n/3. Hence, the algorithm is
3-competitive.

We now improve the previous algorithm. The basic idea is to remark that if for
two consecutive time steps t, t + 1 the solution St and St+1 are taken in the same
subset, say A, then the bonus is (at least) 2n/3 instead of n/3. Roughly speaking,
we can hope for a ratio better than 1/3 for the bonus. Then the algorithm makes
a trade-off at every time step: if the profit is very high then it will take a solution
maximizing the profit, otherwise it will do (nearly) the same as previously. More
formally, let us consider the algorithm 3-Part. We first assume that n is a multiple
of 3. A parameter x ∈ R+ will be defined later.

1. Partition N into three subsets A,B,C of size n/3.

2. For t ∈ {1, . . . , T}: compute a solution S∗
t maximizing pt(S)

• Case (1): If pt(S
∗
t ) ≥ xn: define St = S∗

t
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• Otherwise (pt(S
∗
t ) ≤ xn): compute solutions with optimal profit SA

t , S
B
t ,

SC
t included in A, B and C. Let at, bt and ct be the respective profits.

– Case (2): if t ≥ 2 and Case (1) did not occur at t− 1, do:
If St−1 ⊆ A (resp. St−1 ⊆ B, St−1 ⊆ C), compute max{at+2n/3, bt+
n/3, ct + n/3} (resp. max{at + n/3, bt + 2n/3, ct + n/3}, max{at +
n/3, bt + n/3, ct +2n/3}) and define St as S

A
t , S

B
t or SC

t accordingly.

– Case (3) (t = 1 or Case (1) occurred at t− 1) do:

∗ Define St as the solution with maximum profit among SA
t , S

B
t ,

SC
t .

If N is not a multiple of 3, we add one or two dummy objects that are in no
feasible solutions (at any step). We prove an upper bound on the competitive ratio
of this algorithm.

Theorem 3.7. Consider the GE model with Hamming bonus. Under the assumption
of subset feasibility and sub-additivity, 3-Part is (21/8+O(1/T+1/n))-competitive.

Proof. We mainly show that in each case (1), (2) or (3) the computed solution
achieves the claimed ratio.

• Let us first consider a time step t ≥ 2 where Case (2) occurs. It means that
Case (2) or (3) occurred at the previous step, so St−1 is included in A, B or
C. Suppose w.l.o.g that algorithm took St−1 ⊆ A. Then SA

t gives a bonus at
least 2n/3 (between t − 1 and t), and SB

t and SC
t gives a bonus at least n/3.

By computing max{at + 2n/3, bt + n/3, ct + n/3}, we derive:

pt(St) + b(St, St−1) ≥
at + 2n/3 + bt + n/3 + ct + n/3

3
≥ pt(S

∗
t )

3
+

4n

9
,

where S∗
t is a solution maximizing the profit at time t, using the fact that

pt(S
∗
t ) ≤ at+ bt+ ct by subset feasibility and submodularity. Since in Case (2)

pt(S
∗
t ) ≤ xn, we derive:

pt(St) + b(St, St−1) ≥ r2 (pt(S
∗
t ) + n) (3.8)

with r2 =
3x+4
9(1+x)

.

• Now, consider a time step t ≥ 2 where Case (3) occurs. Then necessarily Case
(1) occurs at step t− 1. So St−1 = S∗

t−1. Also, St has profit at least pt(S
∗
t )/3.

So
t∑

ℓ=t−1

pℓ(Sℓ) + b(Sℓ, Sℓ−1) ≥ pt−1(S
∗
t−1) +

pt(S
∗
t )

3
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So
∑t

ℓ=t−1 pℓ(Sℓ) + b(Sℓ, Sℓ−1) ≥ r3
(
pt−1(S

∗
t−1) + n+ pt(S

∗
t ) + n

)
with

r3 =
pt−1(S

∗
t−1) +

pt(S∗
t )

3

pt−1(S∗
t−1) + 2n+ pt(S∗

t )
.

Since pt−1(S
∗
t−1) ≥ xn, we get:

r3 ≥
xn+

pt(S∗
t )

3

(2 + x)n+ pt(S∗
t )

= r4.

where we use the fact that r3 ≤ 1 and is increasing in pt−1(S
∗
t−1).

Since pt(S
∗
t ) ≤ xn, provided that we choose x ≥ 1 such that x/(2 + x) ≥ 1/3,

we get:

r3 ≥
xn+ xn/3

(2 + x)n+ xn
=

2x

3(1 + x)
.

where we use the fact that r4 ≥ 1
3
and is decreasing in pt(S

∗
t )

• Finally, suppose that Case (1) occurs at some step t ≥ 2. Then St = S∗
t and

p(S∗
t ) ≥ xn, so

pt(St) + b(St, St−1) ≥ pt(St) = pt(S
∗
t ) ≥ r1(pt(S

∗
t ) + n).

with r1 =
x

1+x
.

By setting x = 4
3
, we get r1 ≥ r2 = 8/21 and r1 ≥ r3 ≥ 8

21
.

It remains to look at step 1. If p1(S
∗
1) ≥ xn (Case (1)), then S1 = S∗

1 , so there
is no profit loss. Otherwise, p1(S

∗
1) ≤ xn, Case (3) occurs and the loss it at most

2p1(S
∗
1)/3 ≤ 2xn/3 ≤ n. Since the optimal value is at least n(T − 1), the loss it a

fraction at most 1/(T − 1) of the optimal value.
If n is not a multiple of 3, adding one or two dummy objects add T−1 or 2(T−1)

to solution values, inducing a loss which is a fraction at most O(1/n) of the optimal
value.

Lower Bounds

We complement the algorithmic results with a lower bound for two time steps and an
asymptotical one. Interestingly, these bounds are also valid for the latter restricted
setting with subset feasibility and sub-additivity.

Theorem 3.8. Consider the GE model with Hamming bonus and T = 2 time steps.
For any ϵ > 0, there is no (1 +

√
2− ϵ)-competitive algorithm.
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Proof. We consider a knapsack problem with n objects (n = 2 suffices to show the
result, but the proof is valid for any number n of objects), and T = 2 time steps.
At time 1, all objects have weight 1 and profit α =

√
2− 1; the capacity of the bag

is n.
Let S1 be the set of objects chosen at Step 1 by the algorithm (possibly S1 = ∅).

At t = 2 the algorithm receives the instance I2(S1) where:

• the capacity is c2 = n− |S1|.

• each object not in S1 receives weight and profit 1.

• each object in S1 has a weight greater than c2.

Then at Step 2 the algorithm receives value 1 for each object not in S1 (either by
transition bonus from Step 1, or by taking it at Step 2). The value of its solution is
α|S1| + n − |S1|. Now, the solution consisting of taking S1 at both time steps has
value α(n− |S1|) + n− |S1|+ n = n(2 +α)− |S1|(1 +α). The chosen α is such that
2 + α = 1+α

1−α
, so the solution (S1, S1) has value 1+α

1−α
(n− |S1|(1− α)). The ratio is

1+α
1−α

= 2 + α = 1 +
√
2.

Theorem 3.9. Consider the GE model with Hamming bonus. For every ϵ > 0,
there is a T sufficiently large such that, there is no (α − ϵ)-competitive algorithm

where α =
6· 3
√

9+
√
87

3
√

6·(9+
√
87)2− 3√36

≈ 1.696.

Proof. Consider some ϵ > 0 and some online algorithm A. The ground set only
consists of the single item 1, that is, N = {1}.

At time 1, it is not feasible to pick the item, that is, F1 = {∅}. We partition
the remaining time horizon {2, 3, . . . , T} into phases. Hence, the first phase starts
in time step 2. In any phase, as long as A has not included item 1 in its solution
until time t < T , both including and not including it is feasible at t + 1, that is,
Ft+1 = {∅, {1}}. Once A includes the item in its solution at time t < T (meaning
St = {1}), including it becomes unfeasible at the next time, that is, Ft+1 = {∅}.
The current phase also ends at this time. In this case, we say that the phase ends
regularly. At t = T , the current phase ends by default in any case. If a phase
however ends regularly at time t+ 1 < T , a new phase starts at time t+ 2.

There is no profit associated with the empty set, that is, pt(∅) = 0; the profit
pt({1}) is β whenever t is the first time step of a phase, and it is γ in all other cases
(note that, however, it may be unfeasible to include item 1 in the solution). The
remaining part of the proof is concerned with finding β, γ so as to maximize the
competitive ratio.

For the analysis, denote by S∗ = (S∗
1 , S

∗
2 , . . . , S

∗
T ) the optimal solution, and

denote by S = (S1, S2, . . . , ST ) the solution that A finds. We consider phases sepa-
rately. First consider a phase of length ℓ starting at time t0 ending regularly (at time
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t0+ℓ−1). Note that ℓ ≥ 2 and that the initial situation is independent of t0 and ℓ in
that 1 /∈ St0−1. For each time t that is part of the phase, we count b(St−1, St)+pt(St)
and b(S∗

t−1, S
∗
t ) + pt(S

∗
t ) towards the values of the algorithm and optimum, respec-

tively. If ℓ = 2, the resulting values of the algorithm and optimum are max{β, 2} ≥ 2
and β, respectively. If ℓ > 2, the value are max{β+(ℓ−2)(1+γ), ℓ} ≥ β+(ℓ−2)(1+γ)
and (ℓ − 2) + γ, respectively. Hence, in phases of length at most 2, the optimum
does not pick the item; in longer phases, it picks the item at all times when it can.

To express the lower bound that we can show, first note that assuming that each
phase ends regularly is only with an additive constant loss in both the algorithm’s
and the optimum’s value, so we may make this assumption for the asymptotical
competitive ratio considered here. Since the algorithm chooses the phase lengths,
the lower bound α that we can show here is equal to the largest lower bound on the
ratio between the optimum’s and the algorithm’s value within any phase, which is
lower bounded by

min

{
2

β
, inf
ℓ∈N;ℓ≥3

β + (ℓ− 2)(1 + γ)

(ℓ− 2) + γ

}
(3.9)

according to the above considerations.
Note that the infimum in (3.9) is minimized when its argument is identical across

all γ. This is the case when

1 + β + γ

1 + γ
= 1 + γ ⇔ γ =

1

2
· (
√

4β + 1− 1).

Furthermore, (3.9) is minimized when both its arguments are identical, meaning

1 +
1

2
· (
√

4β + 1− 1) =
2

β
⇔ β =

3

√
3 · (9 +

√
87)2 − 3

√
36

3 · 3
√

9 +
√
87

and therefore

α =
2

β
=

6 · 3
√

9 +
√
87

3

√
6 · (9 +

√
87)2 − 3

√
36
≈ 1.696.

This shows the claim.

3.3.2 Intersection Bonus Model

We now look at the general evolution model with intersection bonus. This model
is different from the ones considered before: We first give a simple lower bound
showing that there is no constant-competitive algorithm.

Theorem 3.10. In the GE model with intersection bonus, there is no c-competitive
algorithm for any constant c.
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Proof. We consider an instance with no profit. Let T = 2, N = {1, 2}, and F1 =
{∅, {1}, {2}}, that is, there are two items, and at time 1 it is only forbidden to take
both of them. Assume w.l.o.g. that the algorithm does not pick item 2 at time
1. Then picking item 1 becomes infeasible at time 2 while picking item 2 remains
feasible. Then the algorithm achieves 0 profit and bonus while the optimum can
achieve a bonus of 1.

Note that in this model, by adding dummy time steps giving no bonus and
no profit, the previous lower bound extends to any number of time steps. This
lower bound motivates considering the 1-lookahead model: at time t, besides It, the
algorithm knows the instance It+1. It shall decide the feasible solution chosen at
time t. We consider an algorithm based on the following idea: at some time step t,
the algorithm computes an optimal sequence of 2 solutions (S∗

t,1, S
∗
t,2) of value z

∗
t for

the subproblem defined on time steps t and t+ 1. Suppose it fixes St = S∗
t,1. Then,

at time t + 1, it computes (S∗
t+1,1, S

∗
t+1,2) of value z∗t+1. Depending on the values z∗t

and z∗t+1, it will either choose to set St+1 = S∗
t,2, confirming its choice at t (getting

in this case value z∗t for sure between time t and t+ 1), or change its mind and set
St+1 = S∗

t+1,1 (possibly no value got yet, but a value z∗t+1 if it confirms this choice at
t + 2). When a choice is confirmed (St = S∗

t,1 and St+1 = S∗
t,2), then the algorithm

starts a new sequence (fix St+2 = S∗
t+2,1,. . . ).

More formally, let (S∗
t,1, S

∗
t,2) be an optimal solution of the subproblem defined on

time steps t and t+1, and denote z∗t its value (including profits and bonus between
time t and t+1). To avoid unnecessary subcases, we consider at time T the solution
(S∗

T,1, S
∗
T,2) where S∗

T,2 = ∅ and z∗T is the profit of the optimal solution for the single
time step T , S∗

T,1. Then consider the algorithm Balance which:

1. At time t = 1 compute (S∗
1,1, S

∗
1,2) and fix S1 = S∗

1,1.

2. For t = 2 to T : compute (S∗
t,1, S

∗
t,2).

• Case (1): If t ≥ 3 and if at t− 1 the algorithm chose St−1 equal to S∗
t−2,2

(i.e., Case (3) occurred), then fix St = S∗
t,1.

• Case (2): Otherwise, if z∗t > 2z∗t−1, then fix St = S∗
t,1.

• Case (3): Otherwise fix St = S∗
t−1,2.

Theorem 3.11. In the GE model with intersection bonus and 1-lookahead, Balance
is a 4-competitive algorithm.

Proof. Let V be the set of time steps in which Case (3) occurred. In the proof,
intuitively we partition the time period into periods which end at some time t ∈ V ,
and prove the claimed ratio in each of these sub-periods.
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Formally, let u, v (u < v) be two time steps in V such that w ̸∈ V for any
u < w < v. Note that since Case (3) occurred at time u, Case (1) occurred at u+1,
so u ̸= v − 1, and Case (2) occurred at time u+ 2, . . . , v − 1. So z∗t > 2z∗t−1 for t =
u+2, . . . , v−1. By an easy recurrence, this means that, for all t ∈ {u+1, . . . , v−1},
we have z∗t < z∗v−1/2

v−1−t. By taking the sum, we get
∑v−1

t=u+1 z
∗
t < 2z∗v−1. Since

Case (3) occurred at v, z∗v ≤ 2z∗v−1. Finally:

v∑
t=u+1

z∗t ≤ 4z∗v−1

Now, at each time v for which case (3) occurred, we choose Sv = S∗
v−1,2. As previ-

ously said, Case (3) did not occur at v − 1, so we choose Sv−1 = S∗
v−1,1. Then the

algorithm gets value at least z∗v−1 for these two time steps v − 1 and v. In other
words f(S1, . . . , ST ) ≥

∑
v∈V z∗v−1. Consider first the case where T ∈ V (Case (3)

occurred at time T ). Then we get a partition of the time steps into subintervals
ending in v ∈ V . So

T∑
t=1

z∗t ≤ 4
∑
v∈V

z∗v−1 ≤ 4f(S1, . . . , ST )

. Let (Ŝ1, . . . , ŜT ) be an optimal solution. We have ∀t pt(Ŝt)+pt+1(Ŝt+1)+b(Ŝt, Ŝt+1) ≤
z∗t . So f(Ŝ1, . . . , ŜT ) ≤

∑T−1
t=1 z∗t , and:

f(Ŝ1, . . . , ŜT ) ≤
T∑
t=1

z∗t ≤ 4f(S1, . . . , ST )

Note that this is overestimated, as pt(Ŝt) appears two times in the sum.
Now, if T ̸∈ V , then T − 1 ∈ V : indeed, Case (2) cannot occur at time T (since

z∗T ≤ z∗T−1). So we have in this case:

T−1∑
t=1

z∗t ≤ 4
∑
v∈V

z∗v−1 ≤ 4f(S1, . . . , ST )

But again since f(Ŝ1, . . . , ŜT ) ≤
∑T−1

t=1 z∗t , we have

f(Ŝ1, . . . , ŜT ) ≤
T−1∑
t=1

z∗t ≤ 4f(S1, . . . , ST )

This completes the proof.
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We prove a matching lower bound. The idea is as follows: As can be seen from
the proof of Theorem 3.11, the estimate on the profit has slack for the 4-competitive
algorithm. We give a construction in which there is no profit and in which the bonus
when not “committing” to the solution from the previous time step is geometrically
increasing over time; otherwise the bonus is 0. As it turns out, however, when the
factor is 2 in each time step, we cannot show a lower bound of 4 in case the algorithm
does not commit until the last time step. Interestingly, if we use the minimum factor
to show a lower bound of 4− ϵ in case the algorithm commits at any time step but
the last, we can find a large enough time horizon such that, in case the algorithm
commit only in the last time step, we can also show a lower bound of 4− ϵ.

Theorem 3.12. Consider the GE model with intersection bonus. For any ϵ > 0,
there is a Tϵ such that, for each number of time steps T ≥ Tϵ, there is no 4 − ϵ
competitive algorithm.

Proof. Consider some 1-lookahead algorithm A and ϵ ∈ (0, 1). We will show that
there is some number of time steps Tϵ such that for all numbers of time steps T ≥ Tϵ

A is not (4 − ϵ)-competitive. The construction is based on an increasing sequence
a1, a2, . . . , aTϵ of natural numbers that we will determine later (along with Tϵ). In
the ground set, there is precisely one item (i, j) for each i ∈ N with 1 ≤ i ≤ Tϵ and
j ∈ N with 1 ≤ j ≤ max1≤k≤Tϵ ak. We denote the set {(i, j) | 1 ≤ j ≤ at} by Ri,t.
In this instance, value can only be obtained from transition bonuses.

Depending on the actions of A, we will define some time t⋆ with 2 ≤ t⋆ ≤ Tϵ. At
time t > t⋆, the empty set will be the only set that can be selected. At time t = 1, 2,
selecting any set Ri,t for some i or the empty set is feasible. If A selects the empty
set in either the first or the second time step, we simply set t⋆ := 2.

Otherwise, at time t with 2 < t ≤ t⋆, selecting any set Ri,t for some i such that A
has not selected Ri,t′ at any time t′ ≤ t− 2 or the empty set is feasible. If A selects
Ri,t−1 and Ri,t for some i and t ≥ 2, we say that A confirms at time t. Then,A
confirms if A chooses the empty set at time t and set t⋆ := t+1; if A never confirms,
then t⋆ := Tϵ. Note that this is a feasible construction for the 1-lookahead model.

We consider the competitive ratio in different cases:

• If A chooses the empty set at some time t ≤ t⋆, A does not obtain value
at all while the optimum can obtain positive value (at least a1), so A is not
competitive.

• If A confirms at time t ≥ 2, it obtains value at−1. Note that there exists some
i⋆ so that A never chooses Ri⋆,t′ for any t′. The optimum chooses Ri⋆,t′ for all
time steps t′ = 1, . . . ,min{t+ 1, Tϵ}. We distinguish two cases.

– We have t + 1 ≤ Tϵ. Then the total value of the optimum is
∑t

j=1 aj,

leading to competitive ratio
∑t

j=1 aj/at−1.
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– We have t + 1 > Tϵ, implying t = Tϵ (otherwise A could not have con-
firmed at t). Then the total value of the optimum is

∑Tϵ−1
j=1 aj, leading to

competitive ratio
∑Tϵ−1

j=1 aj/aTϵ−1.

• If A never confirms, A does not obtain value either while the optimum can
obtain value

∑Tϵ−1
j=1 aj > 0. So in this case A is not competitive either.

For convenience, we will now describe a sequence a′1, a
′
2, . . . , a

′
Tϵ

of rational num-
bers; a1, a2, . . . , aTϵ can then be obtained by multiplying all numbers in the former
sequence with a suitable natural number. Let ϵ′ ∈ (0, ϵ) be rational. Now the goal
can be reformulated to choose a′1, a

′
2, . . . , a

′
Tϵ

such that the ratios∑t
j=1 aj

at−1

=

∑t
j=1 a

′
j

a′t−1

for all t < Tϵ (3.10)

and ∑Tϵ−1
j=1 aj

aTϵ−1

=

∑Tϵ−1
j=1 a′j
a′Tϵ−1

(3.11)

(corresponding to the above ones) are all at least 4 − ϵ′. To do so, we start by
setting a′1 := 1. Now we inductively define a′t for t ≤ Tϵ − 2 (note that Tϵ is yet to
be defined). Assuming all a′1, . . . , a

′
t−1 are defined, we set a′t to be such that (3.10)

for t is precisely 4− ϵ′. Equivalently, set a′t := (4− ϵ′) · a′t−1 −
∑t−1

j=1 a
′
j.

We claim there exists a (first) t0 such that

(4− ϵ′) · a′t0 −
t0∑
j=1

a′j ≤ a′t0 (3.12)

(meaning the (t0 + 1)-st element of the sequence a1, a2, . . . would become smaller
than a′t0). Then we set Tϵ := t0 + 2 and a′t0+2 = a′t0+1 = a′t0 . Note that then indeed,
by (3.12) and a′t0+1 = a′t0 , (3.10) is at least 4 − ϵ′ for t = Tϵ − 1 (and therefore, by
the previous argument, for all). Furthermore, since a′t0+2 = a′t0+1, (3.11) is identical
to (3.10) for t = Tϵ − 1 and therefore also at least 4− ϵ′.

So it remains to show the claim. Define

bt :=
(4− ϵ′) · a′t −

∑t
j=1 a

′
j

a′t
.

for all t including the first element where the fraction becomes at most 1 (if it
exists; otherwise the sequence is infinite). Further note that for all such t ≥ 3
we have

∑t
j=1 a

′
j = (4 − ϵ′) · a′t−1 (by using the definition for at−1). Therefore

bt = (4− ϵ′) · (1− at−1/at) = (4− ϵ′) · (1− 1/bt−1).
We now show two properties of the sequence b1, b2, . . . :



3.4. CONCLUSION 75

• If bt ≥ 1 for t ≥ 3, then bt+1 < bt. Note that this expression simplifies to to
b2t − (4− ϵ′) · bt + (4− ϵ′) > 0, which is true for all bt ≥ 1.

• The sequence b1, b2, . . . does not converge to a value at least 1. Suppose it
did. This would imply there exists x ≥ 1 with x = (4− ϵ′) · (1− 1/x), which
however does not have a real solution.

By basic calculus, this proves that there exists a t with bt ≤ 1, implying the claim,
which in turn implies the theorem.

3.4 Conclusion

In this chapter, we have developed techniques for online multistage subset maximiza-
tion problems and thereby settled the achievable competitive ratios in the various
settings almost exactly. Disregarding asymptotically vanishing terms in the upper
bounds, what remains open is the exact ratio in the general-evolution setting with
Hamming bonus (shown to be between 1 +

√
2 and 3 in this chapter) and exact

bounds for the models with Hamming bonus when T → ∞. Furthermore, it is
plausible that the ratios can be improved for (classes of) more specific problems.

In the next chapter is presented a direct application of the multistage framework
in a musical context.
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Chapter 4

Target-based computer-assisted
orchestration problem

We previously presented some theoretical analysis of the multistage framework, both
in the offline setting studying theMultistage knapsack problem in Chapter 2 and
in the online setting with the study of the large family of the subset maximization
problems in the multistage framework in Chapter 3. In this chapter, the Target-
based computer-assisted orchestration problem is addressed, being a direct
application of the multistage framework in a musical environment. In Sections 4.1
and 4.2, a global introduction of the musical application is given (this introduction
is mostly based on the YouTube tutorial by C. E. Cella (Cella (2020a) - link accessed
on Sept. 2020). Note that some of the figures of these sections are taken from this
video. Then, Section 4.3 are presented the problem we focus on and our results.

An extended abstract of this chapter will be put on arXiv and submitted to a
journal by the time of the thesis defense.

4.1 Introduction

Among the different aspects of musical writing, musical orchestration is probably
the most empirical one and it has been traditionally taught in an intuitive and non
formalized way. Treatises in orchestration are often made of a sequence of recipes
on instruments and do not take into account the theoretical studies made on the
orchestration problem directly.

More recently, however, musical composers started imagining highly complex
timbres made of extended instrumental techniques and needed a more systematic
approach to orchestration and to composition in general.

This motivated the development of computational tools able to assist the pro-
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cess of musical composition and consolidated in an import research area known as
Computer-Assisted Composition (CAC) (Fernández and Vico (2013),Ariza (2005)).
Within CAC, target-based computer-assisted orchestration is an important exam-
ple of how computers can be used for assisting musical orchestration (Maresz (2013)).

Target-based computer-assisted orchestration can be defined as follows.

Definition 4.1. (Assisted orchestration) Assisted orchestration can be seen as the
process of searching for the best combinations of orchestral sounds to match a target
sound under specified metric constraints.

The notions presented in this definition will be discussed and addressed later in
this section.

In a nutshell, target-based computer-assisted orchestration is the fact of making
a connection between the symbolic space of music which is the score of a music (note
that the score of a music in this section will refer to its music sheet), seeing music
as a combination of symbols describing it with notes, pitches, instruments and so
on, and the signal space of music which is the timbre of a sound, the sound itself.

4.1: Assisted orchestration as the connection between symbolic space and signal space

While at the origin of computer-assisted composition, contemporary composer
focused more on the symbolic space of musical writing, in the last thirty years the
attention shifted on the acoustic space of music. Composers started thinking music
more in term of sound spectra than simple chords and this converged in the defini-
tion of spectralism, an important musical aesthetics that was developed in France
since the early 90’s.
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4.1.1 Target-based music orchestration

This section will introduce some basic definitions about sounds and signal that will
be used later in the chapter.
Preliminaries

A sound is a periodic wave. It is possible to decompose this periodic wave, seen
as a periodic function, using Fourier series which are weighted sums of sinusoids.

The different sinusoids, being distinct from one another in terms of their fre-
quencies, compose the harmonic series of a sound. In this series, the fundamental
harmonic, i.e., the harmonic with the lowest frequency and the one that is the most
noticeable to a human ear, is called the first partial and the other frequencies, i.e.
the other partials of a sound, create the rest of the sound.

The first partial usually define the pitch of a sound, represented by notes letter
from A to G#.

The timbre of a sound can be seen as the quality of a sound, each instrument
like a cello or a violin producing its own quality of sound. It is the timbre that gives
the possibility to a human ear to identify and recognize one instrument from an-
other. Formally, it is directly created by the harmonic series, i.e. the set of partials
of a sound.

The amplitude of a sound is its volume, measured in dB.

Brief history The first well known application of assisted orchestration is a
piece done by the English composer J. Harvey called Mortuos Plango, Vivos Voco
(1981 ). Harvey tried in this piece to transcribe the sound of the bell. The tran-
scription was done manually by looking at the partials of the recorded bell sound.
Later in 2008, in a piece called Speakings, J. Harvey used Orchidee, a system for
static target-based orchestration discussed later in the chapter, in order to replicate
the sound of a human voice.

To write a music score, a composer writes symbol on a music sheet. Then, the
symbols are “played” to generate a sound.
Assisted orchestration can be seen as the inverse process. Given a sound, assisted
orchestration retrieves its corresponding score. This differs from music transcrip-
tion. In assisted orchestration the sound can be anything like bells, noise, voices
and so on, for which there is no corresponding score. In a general sense, assisted
orchestration can be thought of as a generalisation of musical transcription.
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4.2: Representation of the note A

The assisted orchestration problem can also be seen as the problem correspond-
ing to, given an orchestration, reproducing a target timbre within a compositional
context. Namely, given specific musical constraints by the composer like an orchestra
with a set of chosen instruments, playing styles, dynamics and so on, is it possible
to be as close as possible to the target sound.

Let us present an example in order to show the hardness of the problem.

Example 4.1. Given a target sound, one is asked to reconstruct the sound using
instruments of a restricted orchestra composed of only two instruments being able to
play only two notes at a fixed single dynamic.
To solve this problem, one has to find the best combination of sounds, being the clos-
est one to the target sound, among the set of possible combinations. Indeed, one can
choose to take the first note on the first instrument and on the other instrument, the
second note on the first instrument and on the other instrument, the first note on
the first instrument and the second note on the other instrument, the second note
on the first instrument and the first note on the other instrument. For each of the
four combinations, one has to compute a distance between the combination and the
target sound. Under this specific set of very restricted constraints it is easy to find
the best possible solution in a small amount of time.
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However, in practice the set of feasible solutions is way larger: each instrument
of an orchestra has the possibility to play around forty notes, several dynamics,
articulations, playing styles and so on. The number of different combinations in a
basic setting is around 230000 making the problem intractable. An analysis of the
problem complexity will be presented later in this chapter.
Typical solutions to this problem are orchestral scores that include specific instru-
ments, notes, dynamics and playing styles such that, when played, they sound per-
ceptually similar to the target sound. In principle, to find the combination of or-
chestral sounds that is the closest to the target, it would be enough to compute all
possible combinations of the sounds in the database and rank them by a distance
measure with the target sound. This approach, while conceptually justified, is nor-
mally not computable given the large amount of possible combinations.

The intractability of the problem leads to the introduction of heuristics to nav-
igate the combinatorial space. The general structure of the algorithm (see Figure
4.3) consists of,

• Given:

– a target sound

– a set of symbolic constraints i.e. musical constraints

– a set of sounds in the database

• a search engine computing:

– the feature forecast: for each combination its feature are forecast using
specific strategies

– the dissimilarity measure: measure evaluating the distance between
two sounds

• the search engine then optimizes the instance and gives a score as an output

The outcome of an assisted orchestration algorithm is a score, i.e. a set of sym-
bols, and not sounds. One can play the score using some sound database containing
the instruments of the solution in order to be able to directly compare the solution
sound to the target sound, but the aim of the algorithm is to help a composer re-
produce a given sound with a set of instruments.

Note that the choice of the dissimilarity measure and its distance is still an open
question in the literature. The hardness of this choice comes from the fact that
the two compared sounds have to be close for example regarding their respective
spectrum (this notion will be defined later), but this does not necessarily imply that
the two sounds will be close perceptually.



82 CHAPTER 4.

4.3: General structure of the assisted orchestration algorithm

4.1.2 The search engine: features forecast and dissimilarity
measure

Let us now develop the search engine and the notions behind the feature forecast
and the dissimilarity measure.

The sounds of the database are described by features. Each feature (a few of
them exist in the literature) describes the sound with a specific metric and has a
fixed number of dimensions. For example, in Figure 4.4, each sound is described by
a feature of dimension K, i.e., to each sound is associated a vector value of dimen-
sion K: d1, . . . , dK (note that, in our analysis presented later in the chapter, we say
that to each sound i is associated a vector value of dimension M : pi1, . . . , piM). In
the first assisted orchestration algorithm that we will present, one makes a random
combination between the sounds (the techniques used by the algorithm will be de-
veloped later in the chapter). Then, with the combination obtained, one needs to
find the features of the combination, i.e. the features of the sounds selected by the
algorithm. However, in practice, it is not possible to compute the exact features
of the combination, being too large and taking too much time to compute. This
is where the notion of features forecast is introduced. Indeed, features are only
predicted and their calculation themselves is a difficult problem, the features being,
for most of the cases non linear features (two ways of computing the features will
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be presented in the chapter).
Once the features forecast of the combination is predicted, one needs to describe
the target sound with the same features (note that here, the features of the target
sound are its “real” features, the complexity of computing them being small because
the calculation is being applied only to one sound). Only then, a distance is com-
puted, the dissimilarity measure, between the features of the target sound and
the features of combination found by the algorithm.

4.4: The search engine

We see in Figure 4.4 (taken from Carpentier (2008)) an illustration of the search
engine, the set S of sounds on the left of the figure being the sounds of the database
described with K dimension features. A random combination of sounds is then
generated and its features description predicted. We see on the right of the figure
the target sound T described also with K dimension features. The two of them
are then compared using a distance, the dissimilarity measure Dk

T (S)|k = 1, . . . , K,
applied on the features. The measure will be developed later in the document (note
that the choice of the problem parameters notations will be different, for the sake of
clarity, in our analysis presented later in this chapter with a different notation for
the distance, a number of dimensionM and pij the value of a sound i in dimension j).
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4.2 An overview of target-based music orchestra-

tion

In this section we will present the Target-based computer-assisted orchestration and
the software called Orchidea doing it.

The main reference page is www.orch-idea.org (last accessed on September
2020) where are presented the software, the system and the information.
The Orchidea software is an assisting tool that does not orchestrate but helps the
composer to orchestrate. It was developed by a few researchers including Carmine
Cella, currently teaching at University of California, Berkeley and that is the author
of the latest version of the software. He worked with IRCAM (Institut de recherche et
coordination acoustique/musique), UC Berkeley and HEM (Haute Ecole de Musique
de Geneve).

The approach implemented in Orchidea works as follows, and will be developed
more into details in this chapter:

• a target sound and a database of orchestral sounds are embedded in a high-
dimensional feature space;

• the target sound is cut into segments that represent the temporal variations;

• each segment is timbrally matched against a large number of combinations of
sounds of the database by means of a multi-stage algorithm that optimise both
the features and the symbolic constraints;

• the best match for each segment is then connected temporally to the other
best matches in order to produce a musically meaningful score.

The approach discussed above is depicted in Figure 4.5 in the subsection pre-
senting the Orchidea software.

4.2.1 The original software: Orchidee

Let us now present the idea behind the assisted orchestration software called Or-
chidee.
Indeed, a solution to the target-based music orchestration problem proposed in Car-
pentier et al. (2007), consists in using a multi-objective genetic heuristic and a
constraint solver that are jointly optimized. The target sound and the sounds in
the database are embedded in a low-dimensional feature space (in contrasts with
the high-dimensional one for Orchidea) and each generated combination of sounds

www.orch-idea.org
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Segmentation Timbral
match

Timbral
match

Temporal
modeling

Features Symbolic
constraints

Sound DB

Dynamic
target

4.5: An overview of Orchidea, the state-of-the-art system for dynamic target-based
orchestration. The three main stages of the algorithm implemented in Orchidea are the
segmentation of the target, the timbral match and the temporal modelling of the solutions.

is evaluated with a distance metric. This approach is solely focused on the so-called
static aspect of the problem: the target sound is considered as time-invariant and
the algorithm does not consider any timbral change over time.
Using only a few features, the sound is embedded in a low dimension space. The
selected features describing the sound of the database are called perceptual features
i.e. relevant for the perception features such as the pitch, the energy, the brightness,
the bandwith,. . ..

Then a multiobjective optimization algorithm is applied to the instance, mini-
mizing jointly all the features describing the sounds with value Dk

T (S)|k = 1, . . . , K.
The algorithm then generates a set of solutions that can be represented as a Pareto
front.

Indeed, each solution on the Pareto front would be better according to a given
feature, for example, one solution would have the best pitch, another would have
the best brightness and so on.
This approach was very useful for the composers that could choose between the set
of all the Pareto dominating solutions according to their personal listening prefer-
ences between the features. The assisted orchestration problem was implemented
this way around 2007 in the Orchidee software.
This approach was developed and presented in the thesis by Carpentier in 2008
(Carpentier (2008)).

In order to address a risk of combinatorial explosion, a genetic algorithm was
developed to thwart the impossibility of computing all the combinations of sounds.
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The genetic algorithm indeed generates a random combination of sounds “good
enough”, i.e. not optimal, but close to it.
Let us now present informally the genetic algorithm used in the Orchidee software.
It starts with a random combinations of sounds, for example 500 random combi-
nations of sounds, and then the fitness of the combination is calculated, ranking
it in comparison to the target. Then, genetic transformations called crossovers and
mutations are applied to the best found combination of sounds. The crossover trans-
formation takes, given two combinations, part of one combination and part of the
other combination. Then, the algorithm generates a new combination of sounds
being a mix of the two combinations. Next, the algorithm applies a mutation on
the produced combination of sounds, i.e. altering the combination of sounds by a
random factor. Finally, the fitness of this last combination is computed again, in
order to be able to rank again the solutions found. Then, the mutation and the
crossover operations are applied again on the best found solution, generating a new
solution on which the fitness is computed again. The algorithm does these series
of operations over and over again until the solutions found converge, i.e., the value
of the solution does not change too much between two series of genetic operations.
The solution found at the end is “good enough”. To be more precise, the genetic
algorithm of Orchidee works as follows:

Genetic assisted orchestration algorithm

1. Initialization:

• Generate randomly an initial combination of sounds,

• Compute the fitness of the combination of sounds.

2. While the fitness of the solution has not converged do:

• Rank the solution found and find the best combination of sounds,

• Apply the crossover operation to the best solution found,

• Apply the mutation operation to the best solution found,

• Compute the fitness of the solution.

3. Output the solution

This algorithm was developed in 2008 and is the foundation of the current assisted
orchestration tool that we are going to present now.
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4.2.2 Orchidea

While the problem adressed by the Orchidee software is an interesting problem, in
practice no real sounds exhibit a time-invariant nature. As such, the computer-
assisted orchestration problem can be formulated in a dynamic manner: the param-
eters of the algorithm should change over time, to account to the timbral changes
of the target sound. This approach, that requires many more parameters and has
a greater computational complexity, has been discussed in Cella and Esling (2018),
Cella (2020b) and is implemented in the Orchidea toolbox for assisted orchestra-
tion (www.orch-idea.org), currently considered the state-of-the-art system for target-
based computer-assisted dynamic and static orchestration.

Orchidea is the assisted orchestration tool on which our theoretical studies pre-
sented later in the document were based on. Orchidea focuses on both static and
dynamic/temporal target sounds. Indeed, the target sound can now be dynamic,
like a whole piece of music, a series of sounds, . . . To deal with the temporal aspect
of assisted orchestration, Orchidea introduces two new approaches in the assisted
orchestration framework, a joint time-target optimization and connection models.
These two approaches will be developed later in the section.
The implementation of Orchidea began in 2017 and is still on going, a first public
and usable version with a modular interface was presented in 2019 on the visual
programming language MAX/MSP (see 4.6), as well as a standalone application.

The current architecture of the Orchidea software can be described as:

• A high-dimensional mono-objective optimization function with high-dimensional
embedding and dynamic symbolic constraints. This contrasts with the previ-
ous approach that was multi-objective with low-dimensional description. The
choice of this new approach, increasing the abstraction level, was motivated
by being closer to composers, to what they are looking for when they are using
the assisted orchestration tool and less focused on the sound analysis itself;

• A greedy strategy is used to generate the initial population of sounds. This
contrasts also with the existing approach where random combinations were
used. The greedy strategy, called stochastic pursuit strategy, finds the closest
best solution and generates the initial combination of sounds;

• A neural network to predict the features of the sound combinations contrasting
with the previous genetic approach developed in Orchidee;

• An asymmetric distance for the evaluation of the solutions (the dissimilar-
ity measure). This new distance uses two new variables called positive and
negative penalizations. This will be developed later in the document;
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4.6: The Orchidea software in MAX/MSP

• A joint time-frequency optimization called hysteresis of the orchestration where
the solutions found on previous time steps are weighted in order to connect
the solutions of the current time step to the previous ones. This will also be
developed later in the document;

• Temporal modeling graph: a representation of the dynamic orchestration prob-
lem as a graph and the introduction of the continuity model (note that this
model will be presented further in the chapter).

A dynamic sound target is decomposed into slices respecting the temporal varia-
tions and generates a segmentation of the target with a fixed number of time steps.
To be more precise, to each time step is associated a static target sound on which
calculations are applied.

First, a dynamic target is segmented and decomposed into static target sounds,
i.e. the temporal target is cut into slices. Then, the features of sound combinations
are forecast using a neural network. Next, the forecast is matched with the tar-
get sounds using the stochastic matching pursuit and the evolutionary optimization
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algorithms subject to a set of symbolic constraints. Finally, temporal modeling is
calculated with a joint time-frequency optimization algorithm taking into account
the continuity of the solutions, i.e., the continuity model.

4.7: Temporal modeling of Orchidea

Figure 4.7 presents the way temporality is addressed in the Orchidea software.
Given a temporal target sound, a segmentation is generated according to a novelty
measure, i.e. each time the sound is “new” a new slice/time step is generated. On
each time step/segment generated is applied relaxed pursuit and high-dimensional
mono-objective optimization. All solutions are represented as a graph (we use the
same technique later in the chapter, the construction of the graph will be detailed
then) and joint-optimization is applied on both paths of the graph and the target
of the next time step in the instance of dynamic orchestration. Indeed, a best-path
connection is done connecting the different segment/time steps of the dynamic or-
chestration, in order to minimize both the distance to the target sound and the
changes in the solution between two consecutive time temps, i.e. for the solution to
be as stable as possible across the time horizon. This stability echoes the multistage
framework.

The stability of a solution in a dynamic orchestration problem is evaluated using
a so-called continuity model, limiting as much as possible the movements in the
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solution. This means that when a sound is taken it is best to keep it at the next
time step. Indeed, if a sound is kept for two consecutive time steps, the solution will
“connect” the different time steps together. This connection implies better results
acoustically as the sound generated by the instrument will be continuous. In Figure
4.8 is presented a representation of the model where a red line connecting several
dots means that a same instrument is selected in the solution for consecutive time
steps.

4.8: Illustration of the continuity model

4.3 Target-based computer-assisted orchestration:

a theoretical analysis

We presented in the previous section the musical problemTarget-based computer-
assisted orchestration and its applications. Now we will address the problem
from a theoretical point of view, as it is closely related to the multistage framework,
and compare results obtained with an ILP formulation to the Orchidea ones.

4.3.1 Problems definition and results

We now formally define the target-based orchestration problems we focus on in this
chapter.

Sounds. We have a set N = {s1, s2, . . . , sn} of n sounds, corresponding to the
database of sound samples. Each sound is produced by an instrument. Formally,
N is partitioned into N1, . . . , NZ where Z is the number of instruments. Besides its
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instrument, each sound si is characterized by its values on several dimensions (fea-
ture space): formally, to si are associated M nonnegative values pij, j = 1, . . . ,M ,
where M is the number of dimensions.

We also have a target sound G, typically not in the database N . As any sound,
G has a description in the feature space, i.e., it has a value Gj on each dimension
j = 1, . . . ,M .

Subset of sounds. The goal of the problem is to choose a subset of sounds to
be played by the orchestra to reproduce in the best possible way a given target. To
evaluate the quality of such a subset of sounds, we first give its value in the feature
space (dimensions), and then define how to evaluate the quality of this subset with
respect to a target.

Let S ⊂ N denotes a non empty subset of sounds. The value of S on dimension
j is the average value of each sound in S on this dimension. Formally, writing
pj(S) =

∑
si∈S pij, the value of S on dimension j is

pj(S)

|S| .

Distances. As explained before the value of (a subset of) sounds on the dimen-
sions allows to define a distance between them, measuring how different they are
(also called before the dissimilarity measure). Formally, let S, S ′ be two non empty
subset of sounds. The distance between these two subsets is defined as

d(S, S ′) =
M∑
j=1

∣∣∣∣pj(S)|S| − pj(S
′)

|S ′|

∣∣∣∣
Note that d(S, S ′) = 0 if and only if S and S ′ have the same value on each dimension.

Orchestration constraints. As explained in Section 4.1, in the target-based
orchestration problem, we want to reproduce with an orchestra a given target sound.
Then, the sounds we select in the database (to be played by the orchestra) must
respect some constraints based on the orchestra composition (if there are two trans-
verse flute, then we cannot select more than two sounds played by a transverse flute).
Formally, we can have:

• For each instrument z, a constraint Lz on the number of selected sounds played
by instrument z that can be selected. The constraint is hence |S ∩Nz| ≤ Lz.

• A constraint on the total number of chosen sounds: |S| ≤ L (this could be
the total number of instruments, or a more restrictive constraint imposed by
a composer).

Static target-based orchestration problem
Now we are able to define the static target-based orchestration problem S-TOP.

Definition 4.2. In the problem S-TOP, we are given a set N of sounds, a target
sound G, and a set of orchestration constraints. The goal is to find a nonempty set
S of sounds which minimizes d(S,G), while fulfilling the orchestration constraints.
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In the theoretical analysis of S-TOP, we will first focus on a simple version of
the problem, where there is one instrument, no orchestration constraints, and only
one dimension. We will denote this problem as S-TOP-1D.

Dynamic target-based orchestration problem.
Now let us look at the Dynamic Target-based Orchestration Problem D-TOP.

Think for instance that we want to reproduce a human pronouncing a sentence (the
target). As explained in Section 4.2, the target is first cut into segments, say T
segments, and each segment t corresponds to a target sound Gt. The sentence can
be for instance cut into syllables, giving a sequence of syllables/targets Gt.

Then, we shall select at each time step (segment) t a subset of sounds St ⊂ N to
reproduce Gt. The distance d(St, G

t), measuring how far St is from Gt, should be
minimized. Besides, from a musical perspective, it is also interesting to select subset
of sounds that do not differ too much in consecutive time steps, i.e., d(St, St+1) should
also be small. Typically, if selected subsets are similar, use the same instruments
and/or notes, the solution sounds more melodious (see Section 4.2).

In the model we consider, we linearly aggregate these distances, and get the
following problem.

Definition 4.3. In the problem D-TOP we are given a set N of sounds, a set of
orchestration constraints, a time horizon T ∈ N∗, a target Gt for each t ∈ {1, . . . , T},
and a penalty Ct ≥ 0 for each t ∈ {1, . . . , T}.

We are asked to select T subsets of sounds S1, . . . , ST , such as each St fulfills the
orchestration constraints. The goal is to minimize

f(S1, . . . , ST ) =
T∑
t=1

d(St, G
t) +

T−1∑
t=1

Ctd(St, St+1)

Note that the set of sounds N , the value pij of sounds on dimensions, and the
orchestration constraints are static (do not evolve during the time horizon).

In this objective function f , the first part measures the (average) distance of
subset St with respect to target Gt, we will call it orchestration cost. The second
part measures the cost from moving from subset St to subset St+1, we will refer to
it as transition cost. Coefficients Ct allow to balance between these two costs.

4.3.2 Contributions and organization of the chapter

The main contribution of this chapter is a theoretical analysis of algorithmic proper-
ties of S-TOP and D-TOP. We first focus on the computational complexity of the
problems, both in the static case and in the dynamic case. We show that the static
problem S-TOP is NP-hard, even in the very restricted case of S-TOP-1D (with
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Pseudo-polynomial Polynomial time
Problem Complexity exact algorithm approximation algorithm

S-TOP-1D NP-hard O(n3pmax) OPT + ϵpmax in time O(n3/ϵ)
S-TOP NP-hard O(L2nM+1pMmax) OPT + ϵpmax

in time O(L2n(nM/ϵ)M)
D-TOP-1D NP-hard O(n3pmax + Tn2p2max) OPT + ϵpmax(1 + Cmax)

in time O(Tn3/ϵ+ T 3n2/ϵ2)
D-TOP NP-hard O(TL2(npmax)

2M) OPT + ϵpmax(1 + Cmax)
in time O(TL2(2nMT/ϵ)2M)

4.9: Summary of results. pmax = maxi,j pij and Cmax = maxtCt. OPT denotes the
optimal value (so error are additive in the last column).

only one dimension, one instrument and no constraint). We then show that S-TOP
is solvable in pseudo-polynomial time (when the number of dimensions is fixed), by
a dynamic programming (DP) procedure. Combining this procedure with a shortest
path representation capturing temporality, we show that the pseudo-polynomiality
result extends to the dynamic case. We also propose approximation algorithms for
both problems based on rounding techniques from the DP procedures. Table 4.9
sums up the results we obtain.

We also perform some experiments to generate orchestrations on specific tar-
gets. We evaluate our results both in a qualitative and a quantitative manner. The
qualitative evaluation is performed by acoustic inspection of the solution and direct
comparison with the solutions of the same target generated by Orchidea. The quan-
titative evaluation uses the objective function of the considered model to compare
solutions.

The remainder of the chapter is organized as follows. In Section 4.4 we focus
on the restricted static problem S-TOP-1D. We tackle the general static problem
S-TOP in Section 4.5, and the dynamic problems D-TOP in Section 4.6. Experi-
mental results are given in Section 4.7.

4.3.3 Related works in the multistage framework

As explained in Section 4.3.1, in the problem with temporality D-TOP, we build a
sequence of subset sounds S1, . . . , ST , which induces two costs: the orchestration cost∑

t d(St, G
t), which measures how close we are from the target, and the transition

cost
∑

t d(St, St+1) which should be minimize from an acoustic viewpoint to get
solution sequences that can be connected in a melodious way.

This situation, where we have a time horizon, a solution sequence to build,
and an objective function mixing quality of individual solutions and transition cost
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corresponds to the multistage framework with a static set of solutions studied in the
thesis.

4.4 S-TOP-1D: complexity and approximation

In this section, we focus extensively on the problem S-TOP-1D, where there is one
instrument, no orchestration constraint, and only one dimension. Basically, each
sound si is characterized by one value pi ≥ 0.

We first show that even this very restricted case of the orchestration problem is
already NP-hard. Let us consider the decision version of this problem, Decision S-
TOP-1D, where we are given K ≥ 0 and we are asked if there is a feasible solution
of value at most K.

We will prove the NP-hardness by a reduction from the Equipartition prob-
lem, known to be NP-complete Garey and Johnson (1979):

Definition 4.4. Equipartition :
INSTANCE: Finite set A of q elements and a size v(a) ∈ N∗

+ for each a ∈ A.
QUESTION: Is there a subset A′ ⊆ A of size q/2 such that

∑
a∈A′ v(a) = B

2
, with

B =
∑

a∈A v(a).

Note that q and B are assumed to be even.

Theorem 4.1. Decision S-TOP-1D is NP-Complete, even with K = 0.

Proof. The problem is obviously in NP.
Given an instance of Equipartition on the set A = {a1, . . . , aq} with q = 2p

elements with B =
∑q

i=1 v(ai), we build the following instance I ′ of S-TOP-1D:

• There is a set N = {s0, . . . , sq} of q + 1 sounds: each element ai (i ≥ 1)
corresponds to one sound si, with value pi = v(ai). s0 has a large value
Ω = B(q + 2).

• The target is G = Ω+B/2
p+1

, and K = 0.

Note that if G is not integer, we can multiply the value of each sound by p + 1
and get an equivalent instance with an integer target.

With K = 0, the problem is equivalent to finding a subset S ⊆ N s.t p(S)
|S| = G.

Suppose that there is a set A′ of size p = q/2 of sum B/2. Then the corresponding
set of p sounds, plus s0, is a set S of p + 1 sounds, with p(S) = Ω + B/2, so
p(S)
|S| = Ω+B/2

p+1
= G.

Conversely, suppose that there is a nonempty set S of sounds of average value G.
First, notice that S necessarily contains s0, otherwise p(S) ≤ B, and p(S)/|S| ≤ B,
while B < G (as Ω > B(p+ 1)).

Then, S = {s0} ∪ S ′. We show that |S ′| = p:
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• Suppose first that |S ′| ≥ p + 1. Then p(S)
|S| ≤

Ω+B
p+2

. But with the choice of Ω,
Ω+B
p+2

< Ω+B/2
p+1

= G, a contradiction.

• If |S ′| ≤ p − 1, then p(S)
|S| ≥

Ω
p
. But with the choice of Ω, Ω

p
> Ω+B/2

p+1
= G, a

contradiction.

Then |S ′| = p, and Ω+p(S′)
1+p

= G = Ω+B/2
1+p

, so p(S ′) = B/2. The corresponding set A′

of p elements shows that the answer to the equipartition instance is yes.

We now show that S-TOP-1D is solvable in pseudo-polynomial time, using
dynamic programming.

Theorem 4.2. S-TOP-1D is solvable in time O(n3pmax) with n the number of
sounds and pmax the maximum value of a sound in N .

Proof. To solve the problem, we build a truth table Tab such that Tab(i, j, k) =
true if and only if there exists a subset of the first i sounds that sums to j with
exactly k sounds (i.e. of size k). TAB is defined for i = 1, . . . , n, j = 0, . . . ,

∑n
i=1 pi,

and k = 0, . . . , n.
Note that as

∑n
i=1 pi ≤ npmax, the size of the table is O(n3pmax).

We initialize Tab when i = 1 or j = 0 or k = 0, using the following four different
cases:

• TAB(i, 0, 0) = true for all i ∈ {1, . . . , n}

• TAB(i, 0, k) = false for all i ∈ {1, . . . , n}, all k ∈ {1, . . . , n}.

• TAB(i, j, 0) = false for all i ∈ {1, . . . , n}, all j > 0.

• If j ≥ 1 and k ≥ 1, TAB(1, j, k) = true if j = p1 and k = 1, false otherwise.

Then, for i ≥ 2, j ≥ 1 and k ≥ 1 we compute TAB(i, j, k) using the recursion:

{
TAB(i, j, k) =

TAB(i− 1, j, k) || TAB(i− 1, j − pi, k − 1) if pi ≤ j
TAB(i− 1, j, k) otherwise

Indeed, to get a sum of j with exactly k sounds, we can either take the sound si
(TAB(i− 1, j − pi, k − 1)) if pi ≤ j, or not take si (TAB(i− 1, j, k)).

Once all the Tab is filled with respect to the previous rules, by simply browsing
through the Tab, and finding the cell where | j

k
− G| is minimal, we get the value

of an optimal solution. Then a standard backward procedure allows to recover the
solution. As each cell is filled in constant time, the overall complexity of O(n3pmax).



96 CHAPTER 4.

Now, we consider approximation algorithms. The problem consisting of knowing
whether the optimal value is 0 or not is NP-hard (Theorem 4.1). Thus it is not
possible to get any c-approximation polynomial time algorithm, as any such algo-
rithm allows to detect when the optimal value is 0 or not. Thus, an additive term is
mandatory in the approximation result. Here, we show that by standard rounding
technique, one can use the previous dynamic algorithm to get a polytime algorithm
with only additive error - and no multiplicative error. More precisely, we have the
following result (where OPT is the optimal value and pmax = max pi).

Theorem 4.3. For any ϵ > 0, S-TOP-1D admits an algorithm which outputs a
solution of value at most OPT + ϵpmax in time O(n

3

ϵ
).

Proof. Let ϵ > 0. Given an instance I of S-TOP-1D, we construct an instance I ′

of the same problem by rounding the pi: for all sound si in N , p′i = ⌊
pi
λ
⌋, where

λ = pmaxϵ
2

. We also round the target: G′ = G
λ
. The algorithm simply computes an

optimal solution S ′ on I ′ using the dynamic programming algorithm and outputs it.
Note that the complexity of the algorithm is O(n3p′max), i.e., O(n3pmax/λ) = n3/ϵ)
as claimed.

Let S∗ be an optimal solution for the original instance I. The remainder of the
proof is to show that

d(S ′, G) ≤ d(S∗, G) + 2λ = d(S∗, G) + ϵpmax (4.1)

For any subset of sounds S, let m(S) = p(S)
|S| and m′(S) =

∑
i∈S p′i
|S| . From the

inequality pi
λ
≥ ⌊pi

λ
⌋ ≥ pi

λ
− 1, we get m(S)

λ
≥ m′(S) ≥ m(S)

λ
− 1. From this, we

immediately deduce:

m(S) ≥ λm′(S) ≥ m(S)− λ (4.2)

λm′(S) ≤ m(S) ≤ λm′(S) + λ (4.3)

Now, let us look at d(S,G) = |m(S)−G|:

• if m(S)−G ≥ 0 then |m(S)−G| = m(S)−G ≤ λm′(S)+λ−G = λ(m′(S)−
G
λ
) + λ

• if m(S)−G < 0 then |m(S)−G| = G−m(S) ≤ G−λm′(S) = λ(G
λ
−m′(S)).

Then, in both cases we have:

|m(S)−G| ≤ λ

∣∣∣∣m′(S)− G

λ

∣∣∣∣+ λ (4.4)

Regarding |m′(S)−G′|, we get:



4.5. THE STATIC TARGET-BASED ORCHESTRATION PROBLEM 97

• if m′(S)− G
λ
≥ 0 then |m′(S)− G

λ
| = m′(S)− G

λ
= λm′(S)−G

λ
≤ m(S)−G

λ
.

• if m′(S)− G
λ
< 0 then |m′(S)− G

λ
| = G

λ
−m′(S) ≤ G

λ
− (m(S)

λ
−1) = G−m(S)

λ
+1

Then, we have:

|m′(S)− G

λ
| ≤ |m(S)−G|

λ
+ 1 (4.5)

Thus, using Equations (4.4) and (4.5) we can bound the loss incurred by the
scaling technique when considering S ′ as a solution of the initial distance:

|m(S ′)−G| − |m(S∗)−G| ≤ λ

∣∣∣∣m′(S ′)− G

λ

∣∣∣∣− λ

∣∣∣∣m′(S∗)− G

λ

∣∣∣∣+ 2λ (4.6)

= λ(

∣∣∣∣m′(S ′)− G

λ

∣∣∣∣− ∣∣∣∣m′(S∗)− G

λ

∣∣∣∣) + 2λ (4.7)

By optimality of S ′ on I ′, we have |m′(S ′)− G
λ
| − |m′(S∗)− G

λ
| ≤ 0.

Thus we get |m(S ′)−G| − |m(S∗)−G| ≤ 2λ, ie, Equation (4.1).

4.5 The static target-based orchestration prob-

lem

We now consider the general static orchestration problem S-TOP. We recall that,
with respect to S-TOP-1D, in S-TOP:

• Each sound si has M evaluations pij, j = 1, . . . ,M . We will denote p⃗i =
(pi1, . . . , piM) the vector of evaluations of sound si.

• The set N of sounds is partitioned into Z sets Nz, z = 1, . . . , Z. Nz, of size nz,
is the set of sounds played with a given instrument. The number of sounds
chosen in Nz cannot exceed Lz, while the global number of sounds cannot
exceed L.

S-TOP is of course NP-hard, as it generalize S-TOP-1D. In this section, we
show how the dynamic programming algorithm and the approximation algorithm
generalizes to S-TOP. We first start by the dynamic programming algorithm, show-
ing that S-TOP remains pseudo-polynomial when the dimension M is fixed.

Theorem 4.4. S-TOP is solvable in time O(L2nM+1pMmax).

Proof. The algorithm proceeds instrument by instrument.
Let v⃗ be a vector of M positive integers. For each instrument z, we define the

table Tabz(i, v⃗, k, ℓ) which equals true if there is a subset S of sounds such that:
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• |S| = k;

• p⃗(S) = v⃗ (ie, on each dimension j,
∑

si∈S pij = vj);

• S takes only sounds among the instruments up to z−1, or in the first i sounds
of Nz.

• |S ∩Nz| = ℓ.

We define this value for i = 0, . . . , nz, for any vector in {0, npmax}M (as no value
can exceed npmax on a dimension), k = 0, . . . , L and ℓ = 0, . . . , Lz.

Note that the size of TABz is O(nz(npmax)
ML2) (as Lz ≤ L), so the total size of

these tabs is O(n(npmax)
ML2).

For i ≥ 1, we use a recurrence relation similar to the one in the restricted case
of S-TOP-1D. Let szi be the ist sound of Nz, with evaluations p⃗zi . Then:

• If k = 0 or ℓ = 0, or if there exists j ∈ {1, . . . ,M} such that pzij > v⃗j, then we
cannot take szi , so Tabz(i, v⃗, k, lz) = Tabz(i− 1, v⃗, k, lz).

• Otherwise, we can either take szi or not, meaning that

Tabz(i, v⃗, k, ℓ) = Tabz(i− 1, v⃗, k, ℓ) ∨Tabz(i− 1, v⃗ − p⃗zi , k − 1, ℓ− 1)

Now we consider initialization, when i = 0. When z = 1 (first instrument), we have
Tab1(0, v⃗, k, ℓ) = true iff k = ℓ = 0 and v⃗j = 0 for all j.

For z ≥ 2, the initialization of Tabz uses the values of Tabz−1. If ℓ > 0 then
Tabz(0, v⃗, k, ℓ) is clearly false. Otherwise, it is true iff we have one true value in the
table Tabz−1 for one number of sounds in Nz−1:

Tabz(0, v⃗, k, 0) = ∨Lz−1

ℓ=0 Tabz−1(nz−1, v⃗, k, ℓ)

Once the tables Tabz have been filled, we look at the last table Tabz with
i = nZ . We look at all the couples (v⃗, k), with k ∈ {1, . . . , L}, for which there exists
ℓ ≤ Lz such that Tabz(nZ , v⃗, k, ℓ) = true. This corresponds to a solution S of value

d(S,G) =
∑M

j=1

∣∣∣ v⃗jk −Gj

∣∣∣. This way we can find the optimal value, and an optimal

solution with standard backward procedure.

Now, let us consider approximation algorithms, and see how Theorem 4.3 gen-
eralizes. Note that the algorithm in Theorem 4.5 runs in polynomial time when M
is a fixed constant (as L ≤ n).

Theorem 4.5. For any ϵ > 0, S-TOP admits an algorithm which outputs a solution

of value at most OPT + ϵpmax in time O
(
L2n

(
2nM
ϵ

)M)
.
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Proof. Let ϵ > 0. Given an instance I, as for S-TOP-1D we create an instance I ′

by rounding the valuations: p′ij = ⌊
pij
λ
⌋, where λ > 0. We also round the target: the

new target G′ is defined as G′
j =

Gj

λ
. We compute an optimal solution on I ′ using

the dynamic programming algorithm, and output it.
Let S ′ be an optimal solution on I ′, and S∗ be an optimal solution on I. Following

the proof on Theorem 4.3, we get that on each dimension j:∣∣∣∣pj(S ′)

|S ′|
−Gj

∣∣∣∣− ∣∣∣∣pj(S∗)

|S∗|
−Gj

∣∣∣∣ ≤ λ

(∣∣∣∣p′j(S ′)

|S ′|
− Gj

λ

∣∣∣∣− ∣∣∣∣p′j(S∗)

|S∗|
− Gj

λ

∣∣∣∣)+ 2λ (4.8)

Thus, by summing on the dimensions, we have:

d(S ′, G)− d(S∗, G) ≤ λ (d′(S ′, G′)− d′(S∗, G′)) + 2Mλ

As S ′ is optimal on I ′, we deduce d(S ′, G) ≤ d(S∗, G)+2Mλ. By choosing λ = ϵpmax

2M

we get the claimed bound on the value of the solution.

As p′max = maxi,jp
′
i,j ≤ pmax/λ = 2M/ϵ, the algorithm has complexityO

(
L2n

(
2nM
ϵ

)M)
.

4.6 The dynamic target-based orchestration prob-

lem

We now consider the problem D-TOP, where we have a sequence of targets, and
both orchestration cost and transition cost. We show that the static DP procedures
combined with a shortest path formulation of the problem capturing temporality, al-
low to solve the problem in pseudo-polynomial time (when the number of dimensions
is fixed).

As for the static case, we first focus on the problem D-TOP-1D which is the
restriction of D-TOP when there is only one instrument, no orchestration con-
straint, and one dimension. We tackle then the general problem. Of course, as
generalizations of S-TOP-1D, D-TOP-1D and D-TOP are NP-hard.

4.6.1 D-TOP-1D

Now, consider T time steps, a sequence G1, . . . , GT of targets, and we seek a sequence

S1, . . . , ST minimizing
T∑
t=1

d(St, G
t) +

T∑
t=2

Ct d(St, St−1). The problem is pseudo-

polynomial, as stated in the following theorem.
Note that we consider for the theorems and proofs that Ct is fixed to 1.

Theorem 4.6. D-TOP-1D is solvable in time O(n3pmax + Tn2p2max).
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Proof. We first apply the dynamic procedure devised for the static case to get for
each time step t a table TAB such that Tabt(i, j, k) = true if and only if there
exists a subset of the first i sounds that sums to j with exactly k sounds (i.e. of
size k). This is done in time O(n3pmax). Using the backtrack procedure, we get a
set of sounds for each cell with value true. Note that the distance d(S, S ′) between
two sounds S and S ′ are fully determined by p(S), p(S ′) and |S|, |S ′|. Thus we can
keep only one solution per cell.

Let Ω = (S1, . . . , Sℓ) be the set of solutions corresponding to true cells for i = n.
Each such solution corresponds to a sum j and a size k. Note that there are at most
npmax of them. Now, the goal is to select a sequence (S1, . . . , ST ), where St ∈ Ω, in
order to minimize the global cost. This can be done by computing a shortest path
in a directed acyclic graph.

We define a graph G composed with T layers: in each layer t we have a copy of
Ω. There is an arc between any solution Sq

t of layer t to any solution Sm
t+1 of layer

t+1. This arc has weight d(Sm
t+1, G

t+1)+d(Sq
t , S

m
t+1), corresponding to the orchestral

cost of Sm
t+1 and its transition cost from Sq

t .
We also add a source s, with an arc to any solution Sq

1 of the first layer, with
weight d(Sq

1 , G
1), and a sink t with an arc with weight 0 from any vertex of the last

layer to t.
From the construction, it is clear that s−t-path correspond to (feasible) sequence

of solutions, and the weight of each such path is the cost of the corresponding
sequence.

As there are T |Ω|+2 vertices, and each vertex has at most |Ω| predecessors, the
shortest path can be computed in time O(T |Ω|2). As |Ω| ≤ npmax, the complexity
of computing a shortest path is O(Tn2p2max).

We now show that the scaling technique applies also to the dynamic setting.
We get a polynomial time algorithm with additive error ϵpmax(1 + Cmax), where
Cmax = maxT−1

t=1 Ct.

Theorem 4.7. For any ϵ > 0, D-TOP-1D admits an algorithm which outputs a

solution of value at most OPT + ϵpmax(1 + Cmax) in time O
(
n3 T

ϵ
+ n2 T 3

ϵ2

)
.

Proof. Let ϵ > 0. Given an instance I of D-TOP-1D, we construct an instance I ′

of the same problem by rounding the pi and the targets Gt in the same way as in
the static version of the problem: p′i =

⌊
pi
λ

⌋
and G′

t =
Gt

λ
. We fix λ = ϵpmax

2T
.

The algorithm outputs an optimal solution S ′ = (S ′
1, . . . , S

′
T ) on I ′, using the

DP algorithm.
Let S∗ = (S∗

1 , . . . , S
∗
T ) be an optimal solution on I. We bound the loss incurred

by the scaling, ie we upper bound f(S ′)− f(S∗), both in the orchestration cost and
in the transition cost.
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For the orchestration cost, we can use the same inequality as in the static case
(see Equation 4.4) and get that, for any t:

|m(S ′
t)−Gt| − |m(S∗

t )−Gt| ≤ λ(|m′(S ′
t)−G′

t| − |m′(S∗)−G′
t|) + 2λ (4.9)

Let us now look at the transition costs. Let S1 and S2 be two subsets of sounds,
and let us bound |m(S2)−m(S1)|.

• if m(S1) −m(S2) > 0, then |m(S1) −m(S2)| = m(S1) −m(S2) ≤ λm′(S1) +
λ− λm(S ′

2).

• if not, we have: |m(S1)−m(S2)| = −m(S1)+m(S2) ≤ −λm′(S1)+λ+λm(S ′
2).

Thus we have:

|m(S1)−m(S2)| ≤ λ(|m′(S1)−m′(S2)|) + λ (4.10)

With a similar argument, we get that:

|m′(S1)−m′(S2)| ≤
|m(S1)−m(S2)|

λ
+ 1 (4.11)

Combining Equations (4.10) and (4.11), we get that for any t < T :

|m(S ′
t+1)−m(S ′

t)|−|m(S∗
t+1)−m(S∗

t )| ≤ λ(|m′(S ′
t+1)−m′(S ′

t)|−|m′(S∗
t+1)−m′(S∗

t )|)+2λ
(4.12)

By summing over t equations (4.9) and (4.12), we obtain:

f(S ′)− f(S∗) ≤ λ(f ′(S ′)− f ′(S∗)) + 2λT + 2λ(T − 1)Cmax

≤ λ(f ′(S ′)− f ′(S∗)) + 2λT (1 + Cmax)
(4.13)

where Cmax = maxT−1
t=1 Ct, and f ′ is the objective function on I ′. As S ′ is optimal

on I ′, with λ = ϵpmax

2T
we have that f(S) ≤ f(S∗) + ϵpmax(1 + Cmax).

In I ′, p′max ≤ pmax/λ = 2T/ϵ, so the running time follows.

4.6.2 D-TOP

In this section we go back to the general problem D-TOP. We can use similar ar-
guments as the ones for D-TOP-1D and get the following results, showing pseudo-
polynomiality when M is a fixed constant (Theorem 4.8), and a polynomial time
(when M is a fixed constant) approximation algorithm with additive error (Theo-
rem 4.9).

Theorem 4.8. D-TOP is solvable in time O(TL2(2nMT/ϵ)2M).
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Proof. As for S-TOP-1D, we first use the static dynamic programming algorithm to
fill truth tables Tabz(i, v⃗, k, ℓ). This takes times O(L2nM+1pMmax). We are interested
in table TABZ , (z = Z, all instruments are considered), for i = nZ (all sounds are
considered). For each (v⃗, k) we know if there exists a feasible (static) solution of size
k and with evaluations equal to v⃗ (by looking at all possible values of ℓ).

Let Ω be a set of such feasible solutions, one for each (v⃗, k) with such a solution.
Ω has size at most O((npmax)

ML). The shortest path procedure takes time O(TΩ2),
ie O(TL2(npmax)

2M).
The global complexity is O(L2nM+1pMmax) +O(TL2(npmax)

2M), which is
O(TL2(npmax)

2M).

Theorem 4.9. For any ϵ > 0, D-TOP admits an algorithm which outputs a solu-
tion of value at most OPT + ϵpmax(1 + Cmax) in time O(TL2(npmax)

2M).

Proof. As for the case of 1 dimension, we scale the profits and target to get an
instance I ′, and use the DP algorithm to get an optimal solution S ′ on I ′. Then we
get a loss of at most 2λT (1+Cmax) on each dimension (see Equation (4.13). As the
global cost is the sum of cost on each dimension, the global loss is upper bounded
by 2MλT (1 +Cmax). By fixing λ = ϵpmax

2MT
we get an additive error ϵpmax(1 +Cmax).

As in I ′ p′max ≤ pmax/λ = 2MT/ϵ, the running time follows.

4.7 Towards practical solutions: some experimen-

tal results

We conduct some experiments to solve the orchestration problems on some specific
target sounds, both in the static and in the dynamic frameworks. Our experiments
use the database TinySOL used in the software Orchidea (see Section 4.7.1), con-
taining around 1500 sounds. We compare our results with the solutions output by
the evolutionary algorithm used in the software Orchidea.

We first consider the static case (Section 4.7.2). While a pseudo-polynomial time
algorithm has been obtained (Theorem 4.4), the number of dimensions of sounds
in the database is M = 1024, which makes DP inefficient as its time complexity
is exponential in M . Rather, we propose an ILP formulation of the problem, that
allows to solve the problem efficiently on the TinySol database.

For the dynamic case (Section 4.7.3), an ILP formulation turns out to be way
too slow, even for a few time steps. To solve the problem, we propose a heuristic
based on the shortest path formulation used in Theorems 4.6 and 4.8.

4.7.1 Dataset

Database. The database of orchestral sounds used in our experiments is called
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TinySOL and is distributed with the software Orchidea. TinySOL is a streamlined
version of the Studio On Line (SOL) database created by IRCAM, that contains
over 117,000 instrument samples, including extended techniques and contemporary
playing styles. TinySOL, on the other hand, contains only 1,529 samples from
12 instruments. The instruments come from different orchestral families: strings,
woodwinds, and brass. Each sample is one instrument playing a single note in the
ordinario playing style, with one of three dynamics: pp, mf, or ff (for example
Flute-C4-pp or Clarinet-D5-mf).

Each sample (sound) in the database is described by its value on M = 1024
dimensions, called its spectrum (related to the spectrum analysis of the sound).

Orchestra. In the experiments, we always use the same orchestra: it contains
23 instruments: 2 Flutes (Fl), 2 Oboes (Ob), 2 Clarinets in Bb (ClBb), 2 Bassoon
(Bn), 2 French Horns (Hn), 2 Trumpets in C (TpC), 2 Trombones (Tbn), 1 Bass
Tuba (BTb), 2 Violins (Vn), 2 Violas (Va), 2 Cellos (Vc) and 2 Contrabasses (Cb).
This specifies the orchestration constraints of our problems.

Targets. There are two types of target sounds:

• Static targets: we conducted experiments with real instrument sounds such as
the note of a clarinet or a wind harp, with extract of orchestral sounds, and
with some real life sounds such as a boat docking, a girl screaming, or a car
horning.

• Dynamic targets: we conducted experiments with real instruments sounds,
and real life sounds such as the sound of drops falling.

Note that the target sounds are listenable at http://www.orch-idea.org/.

4.7.2 Static case

We first focus on the static case. As explained above, with M > 1000 dimensions,
DP is impossible to use, even with rounding, as there is a factor nM in the time
complexity of the algorithms. We give an ILP formulation of the problem, and use
it to solve the static orchestration problems on some real target sounds.

ILP formulation

For each sound si we consider a binary variable xi equal to 1 iff si is taken in
the solution S. We have mainly to linearize the objective function d(S,G) =∑M

j=1

∣∣∣pj(S)|S| −Gj

∣∣∣. To do so, we introduce a variable δj which will correspond to
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the cost |pj(S)|S| −Gj| on dimension j. We have the following formulation with n+M

variables (n binary and M continuous) and a number of constraints of the same
order (we remind that Lz is the number of available instruments of type z in the
orchestra, and L an upper bound on the number of selected sounds).



min
M∑
j=1

δj

s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δj
∑n

i=1 xi ≥
n∑

i=1

pijxi −Gj

∑n
i=1 xi ∀j ∈ {1, ...,M}

δj
∑n

i=1 xi ≥ Gj

∑n
i=1 xi −

n∑
i=1

pijxi ∀j ∈ {1, ...,M}∑
i:si∈Nz

xi ≤ Lz ∀z = 1, . . . , Z

n∑
i=1

xi ≤ L

xi ∈ {0, 1} ,∀i = 1, . . . , n

However, this is not yet a linear formulation as the left hand side of the first
two families of constraints is quadratic. A first way to deal with it is to introduce
nM variables yij, and force them to be equal to δjxi by putting the following set of
constraints (where R is a sufficiently large positive number):

• yij ≤ δj

• yij ≥ δj −R(1− xi)

• yij ≤ Rxi

• yij ≥ 0

This adds nM variables and Θ(nM) constraints.

A second way to linearize is to fix the number of sounds
∑n

i=1 xi selected, by
adding a constraint

∑n
i=1 xi = C (and use C in the first two constraints), and to solve

several ILPs, one for each value of C, from 1 to the total number L of instruments
in the orchestra, i.e. L = 23 in our case. This does not increase the size of the
formulation but we have to solve several ILPs (in fact, L of them).

We use this latter solution in our experiments as it turned out to be much more
efficient, avoiding the introduction of nM > 106 variables yij.
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Results on some target sounds

The aim of these tests were (1) to test whether the ILP formulation is efficient to
solve real-world instances or not, and (2) to compare and evaluate the ILP model
with the current Orchidea software which uses an evolutionary algorithm.
In the software two specific ingredients are used:

4.10: Representation of the harmonic filter

(1) An harmonic filter. It is a filter that reduces the set of sounds in order
to apply algorithms on smaller database and running faster. Looking at the spec-
tral envelope of the static target sound, it is possible to extract the fundamental
harmonic (the first partial) and its corresponding note as well as the other present
harmonics and notes. The partials and their specific notes are represented by peaks
in the spectral envelope. The partial filtering, i.e. the harmonic filter, uses then a
threshold applied on the spectral envelop and only keep in the database the notes
corresponding to the peaks above the threshold.

Figure 4.10 illustrates the harmonic filter. In the example, the peaks above the
threshold have corresponding notes/partials A3, A4 and E4. This implies that in
the database will be present only sounds with the notes A3, A4 and E4, removing all
the other notes for all instrument and reducing considerably the size of the database
to use.

(2) Upper and lower penalties The distance measure d(S,G) used in the
software is actually not symmetric. For musical purpose, it is less problematic on a
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dimension to be lower than the target than higher than it regarding the amplitude
of the spectral envelopes of both sounds. This induces a slight modification in the
objective function.

Figure 4.11 is a representation of the penalties. The blue curve represents the
spectral envelop of the target sound and the red one the solution envelop. Positive
penalties (+) are applied when the solution curve peaks are below the target ones
and negative penalties (-) when they are above the target spectral envelop.

4.11: Representation of the penalties with the blue curve the spectral envelop of the
target sound and the red one the solution envelop

To make a fair comparison between with the solutions computed by the Orchidea
software and by the ILP, we chose to include these two ingredients in ILP experi-
ments, i.e., the calculations were applied on the same databases and with the same
penalty factors.

For illustrative purpose Figure 4.12 represents the target Clarinet A3 (in red)
and its optimal solution (in blue). The horizontal axis represents frequencies, and
the vertical axis the value in the spectral analysis. We see that the solution produces
a sound which essentially uses the same frequencies.

In Table 4.13 are presented our results on some static targets sounds. The ILP
was able to solve optimally all instances. Concerning the solutions themselves, it is
noticeable that for some instances the two algorithms (note that Evolutionnary
refers to the algorithm used in Orchidea) chose disjoint sets of sounds. Concerning
the values, ILP gives optimal solutions so the values are of course better, but we note
that the improvements with respect to the solutions computed by the evolutionary
algorithm are significant. These elements indicate that an LP approach is certainly
interesting for the static orchestration problem. Even if the solution were better
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4.12: Representation of the solution with the static target Clarinet A3

according to their values (calculated on the objective function of the ILP), some
solutions of the evolutionary algorithm seemed to “sound” better. This is due to
the hardness of the dissimilarity measure choice and to the ILP formulation being
a simpler modelization than the evolutionary one.

target sound ILP Evolutionary
Archeos Bell 508 2803
Bass Clarinet 1114 6074

Beethoven Chord2 490 2401
Boat Docking 463 2363

Car Horn 1017 3968
Girl Scream 2651 3581

Winchester Bell 897 2302
Wind Harp 736 1656

YaBn mul PG ST12 757 5660

4.13: Results of the ILP and the Evolutionary algorithms on some static target sounds.

In practice, there is a significant difference between the model and the reality.
To overcome this difference and have results closer to real world applications, the
script dbgen was developed in order to analyze the results. dbgen is a script that,
given a sound or a set of sounds generates its feature description, i.e. it creates a
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value vector of dimension the size of the chosen feature type (here 1024 as it is the
spectrum feature that was used).
In the following results (see 4.14), a sound was first generated based on the spectral
description of the solution and then dbgen was applied to it, generating again a
spectral description of the sound on which the distances were computed.

target sound ILP post dbgen Evolutionary post dbgen
Archeos Bell 3323 6436
Bass Clarinet 4785 14153

Beethoven Chord2 1145 2513
Boat Docking 1470 3922

Car Horn 1674 9414
Girl Scream 4096 4555

Winchester Bell 3097 3434
Wind Harp 3101 6288

YaBn mul PG ST12 1304 8255

4.14: Results of the ILP and the Evolutionary algorithms on some static target sounds
using dbgen.

Concerning the values presented in 4.14, ILP post dbgen still gives solutions with
better values but it is interesting to notice that for most of the target sounds the
solutions of the evolutionary algorithm and the ILP ones are much closer than in
the previous tab because of the fact that the evolutionary algorithm was calibrated
using dgben.

4.7.3 Dynamic Case

We give an ILP formulation of the assisted orchestration problem in its dynamic
version. The idea behind the formulation is to emphasize the similarities and links
with the multistage framework.
For the dynamic case, we now need to minimize

∑T
t=1 d(St, G

t)+
∑T−1

t=1 Ctd(St, St+1).
As said before, the function can be seen as a multistage framework function.

Indeed, one needs to seek a trade-off between:

• the quality of the solution: on each of the T time steps of the time horizon is
computed a distance between the solution and the target sound

• the stability of the solution for consecutive time steps: for all consecutive time
steps is computed the distance between the consecutive time steps solutions.
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Note that in our formulation of the problem, the distance to the target sound
and the distance between consecutive time steps solutions is the same. The fact of
using the same distance for the two ingredients of the objective function differs with
the approach used in Orchidea software. Indeed, a lot of different functions could be
considered in order to evaluate the stability of a given solution to the problem. It
could be interesting for example to seek a solution that minimizes: the instruments
modifications (if an instrument is played at a time step t, a bonus is obtained for
taking the same instrument at the next time step), the note modifications (keeping
the same note on any instrument) or a combination of the two. This is interesting
if a composer is giving importance to the continuity of its solutions (see Figure 4.8)
which is represented in the continuity model. Our choice of using the same distance
measure gives us the possibility to model the problem as an ILP problem and not
as a multi-objective problem, the two elements of our function being comparable.
Note also that in some cases, if the target pitch, i.e. its notes, change a lot between
two consecutive steps, it is not relevant to keep the same note as the result would
be certainly far from the target sound.

Let us now focus on the ILP formulation. We need now to consider nT binary
variables xit, indicating whether si is taken in St or not. To linearize the objective
function, we can introduce Θ(nT ) variables: δjt which will be equal to |pj(St)/|St|−
Gj|, and αjt which will be equal to |pj(St)/|St|−pj(St+1)/|St+1||. Then the objective

is to minimize
∑T

t=1

∑M
j=1 δjt +

∑T−1
t=1

∑M
j=1 αjt, and we put the constraints:

• δjt ≥ pj(St)

|St| −Gjt and δjt ≥ Gjt − pj(St)

|St| ;

• αjt ≥ pj(St)

|St| −
pj(St+1)

|St+1| and αjt ≥ pj(St+1)

|St+1| −
pj(St)

|St| .

In order to linearize these constraints, as in the static case we can:

• Either add some extra variables, to avoid quadratic terms in the constraints;

• Or fix the number of selected sounds at each time step, and solve the ILP for
all the possible combinations of sizes of solutions St.

In the first case we need to introduce Ω(nMT ) variables to linearize the constraints.
In the second case we need to solve LT ILP, where L is the maximum number of
sounds selected at one time step, L = 23 in our orchestra.

Both approaches were not able to solve our instances (recall that n and M are
of order of 1000), as soon as T > 2.

The number of variables of the linear program is very large, in fact there are: NT
variables x,N2T variables y,MT variables δ,M(T − 1) variables γ, NMT variables
α, N(T − 1) variables β, N(T − 1) variables λ, N2(T − 1)M variables θ.
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In practice, we apply the harmonic filter on the TinySol dataset and apply the
algorithm on around 1400 sounds, i.e. N = 1400, of dimension M equal to 1024
and it is possible to have around 20 time steps, i.e. T = 20. The number of
variables is thus extremely large. For exemple, only for the θ variable we have
14002× 20× 1024 = 40140800000 = 40 billion θ variables. So it is impossible to run
the program, even on powerful engines.

However, to verify it, we run the algorithm on a very restrictive instance with
only T = 2 time steps, a hard filter on the dataset, allowing only one note to
be picken and thus around N = 250 sounds, a small metric called moments with
M = 4. Even is this special case, the number of variables is quite large with around
2 ∗ 2502 ∗ 4 = 500000 θ variables.

To overcome this difficulty, we rather propose in the following a heuristic, called
SPH, the idea of which is to combine (1) the fact that we can solve the static
problems (as explained in the previous section) (2) a shortest path formulation that
allows to efficiently combine solutions found in different time steps.

SPH: Shortest Path Heuristic

In Theorems 4.6 and 4.8, the principle was to use DP to produce a set of solutions
at each time step, and then to solve a shortest path problem to find the best combi-
nations of solutions. As explained previously, with M = 1024 dimension we cannot
use DP to produce solutions at each time step, but the shortest path idea is still
interesting. Then, the principle of SPH (shortest path heuristic) is (see Figure 4.15):

• To compute, for each time step t, a set Ωt of feasible solutions;

• Then to find the best tuple (S1, . . . , ST ) ∈ Ω1×· · ·×ΩT , by solving a shortest
path problem on a DAG on vertex set ∪Ωt (and two vertices s and t).

The second step can be done very efficiently, and the problem boils down to
finding interesting sets of solutions (independently) for each time step.
Recall that, for the static case, we solve the instances using an ILP for each number of
sounds i, from 1 to the maximum number of sounds L. This produces an interesting
bunch of L static solutions. Our heuristic SPH is precisely to use for Ωt this set
At of L feasible solutions. Once obtained these static solution, the shortest path
problem is on LT nodes (plus s and t).
Note that overall the computation time is (nearly) linear in T .

Results on some dynamic target sounds

As previously, we compare SPH with the solution output by the current software
Orchidea.
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Ω1 Ω2 Ω...
ΩT−1 ΩT

4.15: Representation of the SPH algorithm for the D-TOP

Also, we were interested in evaluating the choice of sets Ωt = At in SPH. To do
so, we also consider the set Et of solutions output by the evolutionary algorithm of
Orchidea on target at time t. We consider in the experiments 3 possible choices:

• Ωt = At (SPH);

• Ωt = At ∪ Et;

• Ωt = Et.

target sound Ωt = At Ωt = At ∪ Et Ωt = Et Orchidea T
A Minor 5354 5354 7236 8316 16
Brahms 3446 3446 4235 4845 8
Drops 5902 5902 8270 8925 12

Jarret Vienna 1727 1727 2304 2531 6

4.16: Summary of results of the LP and the Evolutionary algorithms on some dynamic
target sounds

Figure 4.16 shows the results we obtained for the dynamic instances, where T
is the number of time steps which go from 6 to 16. Here again SPH significantly
improves the result on the computed solutions with respect to the current used
heuristic. As previously, we point out that this comparison is valid only in the
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considered abstract model and in the considered settings (database, constraints,...),
which is clearly different from the acoustically perceived quality of solutions.

We also note that the fact of adding Et in Ωt never lead to an improvement of
the result. The solutions output by the ILP at each time step seem to make a good
set of individual solutions in SPH.

4.8 Conclusion

We provide in this chapter the first, to our knowledge, theoretical analysis of the
static and dynamic target-based orchestration problems S-TOP andD-TOP, show-
ing both NP-hardness, pseudo-polynomial and approximation results. We also note
the dynamic case naturally falls into the multistage optimization framework (Gupta
et al. (2014)). Finally, we propose an experimental study of our model, comparing
it to the Orchidea software.



Conclusion and outlook

In this thesis we presented a wide variety of results for maximization optimization
problems in the multistage framework and study a direct application of the multi-
stage setting.

In Chapter 2, we presented a PTAS for the multistage knapsack problem in
the offline setting. As an outlook, it would be interesting to address other maximiza-
tion optimization problems in the offline setting, as the presence of an approximation
scheme for the NP-hard knapsack problem contrasts with inapproximability re-
sults for polynomially solvable problems in their classical version. Furthermore, we
could try to understand the origin of the contrasts between optimization problems
in their classical versions and in the multistage setting in order to be able to give a
global characterization of multistage problems in the offline setting.

In Chapter 3, we presented a framework for multistage subset maximization
problems in the online setting looking at different models with different types of
data evolution and transition bonus. An outlook would be to look at the family of
multistage subset minimization problems and see if similar results are findable or
not.
We also emphasize that we have focused on deterministic algorithms in this chap-
ter. Indeed, some of our bounds can be improved by randomization (assuming an
oblivious adversary):

• In the general-evolution model with Hamming bonus assuming sub-additivity
and subset feasibility, there is a simple randomized (2 + o(1))-competitive
algorithm (along the lines of the algorithms in subsection 3.3.1): Initially
partition N uniformly at random into two equal-sized sets (up to possibly one
item) A and B. At each time, select the optimal solution restricted to A.
Again, the algorithm is (2 + o(1))-competitive separately on both profit and
bonus.

113
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• While the strong lower bound without lookahead in the general-evolution
model with intersection bonus still holds, we can get a simple 2-competitive
algorithm for lookahead 1: Initially flip a coin to interpret the instance as a
sequence of length-2 instances either starting at time 1 or 2. Thanks to looka-
head 1, the length-2 instances can all be solved optimally. The total value
of all these length-2 instances adds up to at least the optimal value, and the
expected value obtained by the algorithm is half of that.

While we believe that we have treated several of the most natural ways of defining
transition bonus and data evolution in multistage subset maximization problems,
other ways can be thought of, to some of which our results extend. For instance,
Theorem 3.1 also works for time-dependent or object-dependent bonus without ma-
jor modifications (whereas, e.g., Theorem 3.4 does not).

We have not considered computational complexity ; indeed, often we use an ora-
cle providing the optimal solution to instances of a potentially hard problem. How-
ever, we mention that, if only an approximation algorithm to the problem at hand
was known, we would be able to obtain similar online algorithms whose competitive
ratio would depend on the approximation guarantee of the approximation algorithm.

Finally in Chapter 4, we gave the first theoretical analysis of the static and
dynamic target-based orchestration problems. The experiments we conducted give
hope for possible practical improvements using ILP and shortest path formulations.
As said previously, this is only a first step in this direction - there is probably
a gap between a good solution for the abstract model we consider and what a
composer would consider as a harmonious solution - but a promising step. Also, if
one manages to understand better the problem itself and especially to find a unique
best dissimilarity measure between different sounds, it would be possible to decrease
the difference between the abstract solution given by our model and the best solution
from a composer standpoint.
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