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Abstract

This PhD project was initiated by the French national project DEFIDIAG, focusing on
Intellectual Disorders (ID) diagnosis among children. It was supported by MIAI, the Grenoble
Multidisciplinary Institute in Artificial Intelligence. In a context involving a large multi-
centric database gathering MRI data from children with a large age range, we addressed
several challenges and proposed new image processing tools in order to pave the way for
further radiomic analyses.

The first concern about the DEFIDIAG project was the population age range and its
consequences on further analyses. After a bibliographic review about brain development, we
assessed the importance of biological covariates such as age, sex or ID on brain trajectories.
Moreover, we were able to set up a coherent pre-processing workflow in order to homogenize
the data while preserving the biological variations induced by age. This was mainly done
by using an open access age-specific templates database, representing averaged brains at 6
months intervals.

The second concern was MR data homogeneity between the multiple sites of acquisition.
The process of removing site or scanner related noises while preserving biological information
in scans is called data ‘Harmonization’ and has become our main point of focus.

In the first step, we reviewed several data harmonization solutions that have been pro-
posed in the literature with a special focus on nonlinear analyses using Artificial Intelligence
tools.

Then, we compared a recent deep learning-based solution, ‘cycleGAN’, to ComBAT, a
statistical solution considered as a reference in the domain. This study on real and synthetic
data led to interesting results that emphasized the great potential of deep learning-based
approaches. On the other hand, cycleGAN’s architecture was limited to ‘two site harmo-
nization’ only and was thus difficult to use in most multi-centric studies scenarios. Other
practical limitations were identified and we concluded that no existing harmonization solution
was suited for our needs.

Therefore, we proposed an original DL harmonization solution called ImUnity and pro-
posed complementary experiments to validate our approach. Harmonization on traveling
subjects led to state-of-the-art harmonization results. Using two classification tasks (1: site;
2: status), we showed that ImUnity was able to remove site effects and preserve biological
information. Additionally, it was shown that the solution could generalize its training to data
coming from unseen sites.

In a final study, we estimated the need and impact of MR harmonization in brain de-
velopmental analysis. This was done through multiple approaches that included: 1) An
investigation on brain development evolution with age compared to literature results. 2)
The introduction of a metric to compare trends before and after harmonization with ref-
erence from literature 3) Statistical tests using a linear mixed model approach to better
estimate harmonization impact on features (biological or not). 4) A group analysis effect
ran to highlight brain surface areas mostly concerned by harmonization. Overall, we ob-
served significant improvement of ROIs volume evolutions after harmonization with similar
performance for healthy volunteers and autistic patients. The impact on cortical thickness
evolution was less significant and negative impacts of harmonization were even observed in
some ROIs. Further investigations are thus required in order to fully understand the effect
of harmonization on this type of metrics.

In conclusion, our investigations on MRI data coming from children from a large age
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range as well as multiple acquisition sites have led to the development of innovative image
processing tools. Even if new features can be added (3D approach, multiple contrasts analy-
ses, etc.) and further validations can be performed (impact of geometrical distortions, study
on larger databases, etc.), ImUnity seems to be able to provide high quality images in all
directions, remove site/scanner bias, and improve patients’ classification and brain develop-
mental volume trajectories in both large and small brain regions. It could be used in further
studies that will use the DEFIDIAG data and lead to potential improvement in ID patient
care.
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Chapter 1

Introduction

1.1 DEFIDIAG

This PhD project emerged as a side project of the French national project called DE-
FIDIAG (Binquet et al., 2022). It was supported by MIAI, the Grenoble Multidisciplinary
Institute in Artificial Intelligence, within the multiomics chair.

DEFIDIAG, for Intellectual Disability Diagnostic, is a pilot project funded by the pro-
gram "Plan France Médecine Génomique 2025; PFMG 2025 (PFMG 2025)" and focuses on
intellectual disability (ID). Among rare diseases, ID is the leading cause of consultation in
pediatric genetic centers and it is estimated that 1 to 3% of the population is ID. It is ex-
tremely difficult to diagnose because hundreds of genes are involved in the pathology, which
makes it challenging to identify the causes of the disease and adapt to patient care. DE-
FIDIAG aims ‘to demonstrate the feasibility of complete genome sequencing, as well as its
effectiveness, first-line, in the determination of genes involved in intellectual disability’. In
total, it is expected that 1,275 patients as well as their two biological parents will participate
in the study which will last 30 months. Professionals hope to achieve a 60% diagnostic yield
using the full genome sequencing. This will ‘allow more families to know more quickly the
causes of the disease, to benefit in a shortened time from appropriate care and perhaps to
prevent the occurrence of specific complications.’

Intrinsically, DEFIDIAG focuses on genetic analyses but the study will also gather brain
MR imaging data from subjects across 11 sites all around France. Due to our laboratory’s
expertise on medical image processing, our PhD project initially aimed at combining these
radiomic data with the genetic analysis to gain knowledge on these rare diseases and further
improve diagnostics results.

As of today, the DEFIDIAG data is still being collected. In consequence, all of the present
work has been devoted to developing image processing tools adapted to the specifics of the
DEFIDIAG data and paved the way for future analyses. In particular, 2 major concerns have
gained our attention: (1) the subjects in the database are mainly children, and the effect
of age on brain development from early childhood to late adolescence must be taken into
account during the analyses in order to avoid confounding factors. (2) In the DEFIDIAG
context, and in general for all studies focusing on rare diseases, the number of patients
may be very small and may limit the robustness of the results. Therefore, it is common to
try to pool data coming from different acquisition centers. However, the image acquisition
for the DEFIDIAG program did not follow a specific protocol, each inclusion site following
its own imaging procedures. This can lead to large unwanted variations in the dataset

1



2 Chapter 1. Introduction

because of different scanners and possibly different acquisition protocols. Since the number
of patients per site is small, these induced site fluctuations may have larger effects than the
biological variations of interest. Methods for correcting for these multi-centric effects are
called harmonization methods and have become our main point of focus.

1.2 MR harmonization
Harmonization is a recent and exciting topic in the medical images analysis research field.

It concerns all scanning modalities (MR, CT, PET, etc...) and is a direct consequence of the
qualitative nature of these acquisitions. For example, standard anatomical MR data (T1w
or T2w) acquired from the same patient but at different acquisition sites often lead to dif-
ferent MR images. This is due to the qualitative nature of the acquisitions which produces
weighted images (such as T1w or T2w) that are sensitive to technical choices (hardware, se-
quence parameters) as well as scanner specific properties and artifacts. Consequently, pooling
images from multi-center MR studies in order to approach a particular clinical or biological
question does not guarantee an increase in statistical power because of a parallel increase
in non-biological variance. These unwanted variations in image intensities also prevent large
dissemination of machine learning tools that are trained on a specific site and may not gener-
alize their model to other image providers (Liu et al., 2020). According to us, ‘Harmonization’
refers to the process of removing site or scanner related noises while preserving bi-
ological information in scans. It is thus a crucial pre-processing step in multi-centric
clinical analysis. In the last few years, several image harmonization solutions have been
proposed (see section 2.2 for a review) with an increasing focus on nonlinear analyses using
Artificial Intelligence tools.

A recent study by Bottani et al. (2022) highlighted important intra-hospital variations
in a context of a clinical care study. These results revealed important technical variations
within hospitals, either caused by the use of different machines, or due to their evolutions
over time. In consequence, it would be very interesting to evaluate the capacity of existing
harmonization solutions to be included in routine clinical care.

1.3 Artificial Intelligence - Deep Learning
With the increase of computational power, and the availability of large datasets, Machine

Learning (ML) tools have become incredibly popular amongst the medical image community.
ML consists in developing computational models that learn from sample data known as
‘training data’ and that relies on mathematical optimization theory, a very active research
domain. ML algorithms are capable of recognising different input patterns to make their
final predictions. Most popular examples of ML uses are image recognition, natural language
processing and computer vision. Support Vector Machine (SVM), Random Forest or K-
means algorithms are some very popular ML models and are still considered as ‘state of
the art’ nowadays. More recently, as a consequence of the explosion of digital data and
computational power, we have witnessed the uprising of Deep-Learning (DL), a sub-group of
ML algorithms. DL models are known to be very efficient in learning how to extract relevant
features. For example, in computer vision, Convolutional Neural Networks (CNN) have
become very famous as they can learn during their training phase how to extract various
features from input images, like shapes, edges or textures. As a consequence, CNN have
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been used to successfully detect and segment lesions in medical images, used as computer-
aided diagnosis (CAD) tools, or to generate images with better SNR or corrected artifacts. A
particularly interesting application of DL in the context of multi-centric image harmonization
is the possibility to learn image style (such as a particular painter’s artistic style) and to apply
this learned style to another unrelated image. Drawbacks of DL models involve their lack
of explainability as well as their need for large training datasets. As a consequence, several
organizations have been established to gather data coming from different centers in order
to maximize dataset’ sample size and thus improving final results. It is thus also directly
concerned by harmonization issues.

1.4 Strategy adopted
Given our context, this PhD thesis has focused on the development of new DL tools for

medical image harmonization. As the DEFIDIAG data was not available, it was chosen to
test our solutions on large available open access imaging datasets, with characteristics as
close as possible to the DEFIDIAG one. The ABIDE database Di Martino et al. (2014),
which is a large multi-centric database focusing on Autism Spectrum Disorder (ASD) among
children, was eventually chosen as a reference. Every study performed during this work was
done on the ABIDE database. Two additional databases were used for validation purposes
as they contain data from traveling subjects (scanned at different sites) and allow for direct
quantitative evaluation.

• Bibliographic review.
The first part of this thesis consisted in gathering literature results related to our
project. It began with a literature review focusing on normal brain development dur-
ing childhood (see subsection 2.1.1). This was key for further investigations, as they
would be done on children data to match with the initial context. In addition to con-
trol subjects, we then turned our attention to neurological brain disorders and their
impacts on brain development. Once again, because DEFIDIAG’s main concern is
the diagnosis of intellectual disability diagnosis. Finally, we looked at the impact of
brain development for brain co-registration to a reference template, which is a com-
mon pre-processing step in medical imaging analysis. These templates are meant to
represent an average brain of the population under investigation. Because of the large
brain variations expected during childhood and adolescence, special templates had to
be found.
Our second literature review focused on data-harmonization (see section 2.2). This
topic was first introduced in 1998 and many approaches have been proposed since.
Statistical solutions based on histogram matching algorithms were the first ones to give
promising results and many variations have been proposed. Subsequently, solutions
inspired from the genomic world where the ‘batch effect’ should be removed, have been
proposed. ComBAT is one of them, and is still considered today as a reference for MR
data-harmonization. Finally, influenced by the increasing popularity of deep learning,
models originally developed for image segmentation or generation have been adapted
to harmonization. Most recent studies are based on DL, using U-Net, cycleGAN or
VAE architectures, and have shown encouraging results.
These points are presented in detail in chapter 2 and a comparative table of existing
harmonization techniques is proposed at the end of the chapter.
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• State of the art methods comparison.
We present in chapter 3, a study that evaluates two harmonization solutions chosen
from the literature. The idea was to compare a recent DL model (cycleGAN), to a
reference linear solution (ComBAT) to estimate the potential of DL-based harmoniza-
tion solutions. Another key point was to propose an original workflow to evaluate
harmonization results. In our study, we focused on removing the actual site induced
information but also on harmonization impact on synthetic noises that we artificially
added to the images. We considered two types of noises: (1) ‘Global noises’ that mimic
scanner induced noises and that we wanted to suppress after harmonization, and (2)
‘local noises’ that were assimilated to biological local variation (trauma, stroke, tumor
...), and were meant to be preserved after harmonization. Evaluations were based on
extracted radiomic features from images before and after harmonization. Then a SVM
classifier was used to detect the presence or absence of signal of interest (site induced,
synthetic global or local noise).

• Proposition of an original DL harmonization model.
Our first study showed that DL techniques can be adapted to data-harmonization,
reaching state of the results under specific conditions. However, as found in the litera-
ture review, each DL solution also presents specific requirements due to their intrinsic
architecture. For example cycleGAN is limited to two site harmonization only, and
seems to produce very good results in this condition. However, this is rarely met in
practice and is not adapted to large multi-centric databases. Some other unrealistic
requirements involve:

— the need for traveling subjects to fit the solution

— the need to fine tune the solution every time data from a new site or scanner is
added

— the need to re-harmonize the data for every clinical application. Ideally, one
would want to use the harmonization method once as a tool in the pre-processing
workflow.

In chapter 4, we propose an original DL harmonization approach that does not rely
on these requirements and is therefore adapted to clinical practice. The new solution
is called ImUnity and is based on a VAE-GAN architecture. A significant effort was
devoted to validate our tool through different experiments, focusing on site removal
effect, diagnosis prediction of ASD and similarity improvement using traveling subjects’
data.

• Harmonization validation based on a brain developmental study.
In order to push our validation process further, we eventually tested ImUnity on a
clinical application related to the DEFIDIAG program. The study is presented in
chapter 5. We evaluated the effect of harmonization on brain apparent volume and
cortical thickness evolution during childhood. This was done on both healthy subjects
and ASD patients of the ABIDE database, combining the 11 acquisition sites. The
age trends generated before and after harmonization were compared to those found in
the literature in large mono-centric studies. Part of the study was conducted in col-
laboration with Constance Sohler, a master student doing her ‘end of study’ internship
under my supervision. Our work suggests a positive impact of ImUnity, which reduces
site effect while improving biological scores. Further statistical analyses still need to
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be performed in order to properly conclude but this type of work could also be used
as a generalizable way to evaluate harmonization tools and could be adapted to any
multi-centric database.

In conclusion, our investigations on data coming from children from a large age range as
well as multiple acquisition sites have led to the development of innovative image processing
tools. They have laid the foundations for further studies that will use the DEFIDIAG data
and lead to potential improvement in ID patient care.

1.5 Side projects related to the thesis
In parallel with my PhD project, I had the chance to participate in several side projects

related to medical image processing or genetic data analysis. These experiences with other
labs and scientists are summarized at the end of the manuscript.

From September to October 2019, I was involved in the JFR2019 challenge with Pixyl, a
French startup from Grenoble developing AI patient care solutions for different pathologies
like Multiple Sclerosis (MS). The challenge consisted in predicting MS patient’s EDSS score
based on a FLAIR acquisition and several clinical features such as age or sex. My work was to
develop a deep learning learning model that takes the FLAIR images, the mask of MS lesions
previously segmented by Pixyl solutions and the age of the patient as input. The model’s
prediction was then pooled with other models (random forest, SVM) results to produce a
final ensemble prediction. Eventually, we came in first place in this challenge, in front of very
competing teams like Nvidia or Icometrix. A paper detailing this experience was published
in Roca et al. (2020), and is presented in supplementary materials section 9.1.

A major point during this thesis was to develop a set of AI tools to analyze large databases.
In order to make these tools easily accessible to other scientists, I developed an in-house deep-
learning framework named ‘dl-generic’ which is described in more detail in supplementary
materials section 9.2. The purpose of this framework was to enable people with different
backgrounds (from students in IT to neurologists) to use deep-learning tools for their personal
applications. This framework has already been used in the lab by an engineering student
(Yunshi Han) during her 6-months internship focusing on Glioma segmentation and transfer
learning. Moreover, Loïc Legris, a neuro-radiologist from CHUGA, with no IT background
has also been able to implement DL tools for his own research studies on predicting ischemic
stroke using our framework.

As a result of DEFIDIAG duality between genetic and imaging data, and the large scope
of interests of the MIAI foundation, I regularly exchanged with other scientists from various
backgrounds on our problems. In particular, I collaborated with Dr Kevin Yauy, a geneticist
also involved in the DEFIDIAG project. He played a crucial role as an expert to help
me better understand the DEFIDIAG purposes. Reciprocally, I helped him in his research
project and contributed to one of his publications Yauy et al. (2022), which is presented in
supplementary materials section 9.3.

Finally, details about different teaching experiences I had during these 3 years can be
found in supplementary materials section 9.4. This includes lectures and practical sessions
given at Grenoble INP and a practical course on contrastive learning that I co-organized
during the 2022 international winter school AI4Health.

https://pixyl.ai/
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2.1 Analyzing developing brains

The DEFIDIAG project, and more generally studies involving brain images from children
and adolescents, present specific challenges. During brain development, brain volumes change
globally, but also locally in cortical and subcortical regions. In order to be able to process
the data correctly and pool multiple data from different age ranges, we started by looking
for references on brain development studies and then on appropriate tools for brain image
pre-processing.

2.1.1 Brain development through childhood

Many research teams around the world have investigated the developmental trajectories
of human brains during childhood. In this section, we only focus on volume and thickness
evolution of different cortical and subcortical brain regions with brain aging. We present
mono-centric, longitudinal studies (i.e the monitoring of biological parameters on same pa-
tients over a period of time) found in the literature. We investigate brain evolution among
healthy controls but also patients presenting ASD to have an idea of structural changes in-
duced by intellectual disorders. These results will also be used in chapter 5 as references to
evaluate the effect of image harmonization.

Giedd et al. (1999) present main brain area volumetric evolution through childhood and
adolescence, focusing on global cortical regions. This longitudinal study was run on structural
MRIs acquired from 145 healthy subjects from 5 to 22 years old (y.o.). Subjects were scanned
between 1 and 3 times within a 2 years time lap. Results present a clear shift between males
and females results for all brain regions. It suggests that brain development is highly impacted
by sex and that this covariate should be taken into account when studying brain development.
As presented in Figure 2.1, results also suggest an inverted U-shape tendency for GM volumes
during this age range while WM brain volumes tend to increase more linearly over the
years. These tendencies have been confirmed by more recent longitudinal studies, (Brain
Development Cooperative Group, 2012; Lenroot et al., 2007; Wierenga et al., 2014) which
present brain structures volumetric evolution with age in more details, as they investigated
more cerebral regions. In particular, Lenroot et al. (2007) present both cortical or subcortical
brain regions volume evolution with age using a large longitudinal pediatric neuroimaging
study (829 scans from 387 subjects, ages 3 to 27 years). As shown in Figure 2.2, this study
also highlights the need to consider sex matching in studies of brain development and propose
equations of brain volumes in function of age and sex, suggesting different model types (linear,
quadratic or cubic) according to the observed ROI.

Similarly, the Brain Development Cooperative Group (2012) presents brain volumes evo-
lution for 325 healthy subjects from 4 to 18 y.o. It takes into account biological features like
age sex and body mass index (BMI) but also social ones like family income and parental
education. Their results, presented in Figure 2.3, suggest that evolution trajectories may
differ between males and females (predominantly curvilinear in females and linear in males),
a global decrease (resp. increase) of GM (resp. WM) volume over the years, a greater age-
related variance in lobar structures and small systematic associations of volumes with BMI
but not with IQ, family income, or parental education.
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Figure 2.1 – Illustration of main cortical brain area volumetric evolution with age during
childhood. Adapted from Giedd et al. (1999); Lenroot and Giedd (2006)

2.1.2 Autism Spectrum Disorder and brain evolution

On top of other covariates, intellectual disorders can also alter structural developmental
trajectories in children as reported in Ma et al. (2021). Because the data used in our PhD
thesis mainly come from the ABIDE database, we also investigated the impact of ASD on
different brain structures evolution. As mentioned in Langen et al. (2009), this impact has
long been unclear. For example, Voelbel et al. (2006) reported larger volumes in autism of
the caudate nucleus while Gaffney et al. (1989) did not. Other examples reporting opposite
results on ASD impact on brain development can be found in the literature. It seems that
these differences could be due to the use of neuroleptic drugs that can be associated with
volume increases (Langen et al., 2009). Lange et al. (2015) present a longitudinal study on
100 male participants with ASD and 56 typically developing controls with scans obtained
with a 2.7 years interval over an 8-year period. As reported in Figure 2.4, authors suggest
a significant reduction of cortical WM mean volume among autistic patients, relatively to
the controls. On the contrary, they report an increase of mean ventricular volume across
the broad age range studied (6–35 y.o). Their results also suggest that ASD is a dynamic
disorder with complex changes over time in whole and regional brain volumes, from childhood
to adulthood.

Similarly, Zielinski et al. (2014) present changes in cortical thickness in a longitudinal
study gathering 97 male individuals with ASD and 60 typically developing male control sub-
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(a) Global brain structures (b) Gray Matter evolution

(c) White Matter evolution

Figure 2.2 – Cortical and subcortical brain structures volumetric evolution with age during
childhood and adolescence. Adapted from Lenroot et al. (2007)

jects aged from 3 to 39 y.o. They show significant differences in brain structure thickness for
most ROIs. As presented in Figure 2.5, they also show that the impact of ASD varies across
the lifespan, affecting ROIs thickness differently in childhood, adolescence, and adulthood.

Due to a significant majority of male subjects in ASD studies, scientists have observed a
3:1 ratio between males and female patients Loomes et al. (2017), which matches the ratio
in the ABIDE database. Consequently, published literature studies about females presenting
ASD are rarer than for men. Walsh et al. (2021) still reports several studies results on this
topic. Similarly to male, ASD seems to affect brain development among females, however
the changes seem to be different. For example Retico et al. (2016) report in Figure 2.6 an
increase of GM volumes among ASD patients aged from 2 to 7 y.o for both genders but their
study also reveals a greater spatial extent in ASD females than ASD males.

2.1.3 Co-registration of developing brains

One crucial point to analyze group images is the ’registration’ step, consisting in the
alignment of all patient scans to a specific brain of reference also known as ’template’. This
template is usually meant to represent a healthy average human brain and the most popular
template is the MNI which averages healthy adult brains in specific spatial representations.
However, a couple of studies (Sanchez et al., 2012a,b) have reported that using one of these
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Figure 2.3 – Illustration of brain regions volumetric evolution with age. Adapted from Brain
Development Cooperative Group (2012)

templates as a reference for children studies can lead to a loss of information. This is a direct
consequence of brain morphology and structural variations with age subsection 2.1.1. Other
works (Wilke et al., 2002, 2003; Yoon et al., 2009) have also pointed out that differences
in shape, size, composition and contrast, impact tissue segmentation or diagnosis prediction
when co-registering pediatric brains to an adult template. Thus having adapted children’s
brain templates seems primordial for our study. To tackle this issue, Sanchez et al. (2012a)
proposed an open access database containing brain templates in 6 months intervals for the age
range from 4.5 to 19.5 y.o. These templates are represented in the MNI-152 space. Figure 2.7
illustrates variations between age specific templates over the years and the pipeline used to
create them.
In this PhD thesis, for every experiment involving children’s data, we used this open access
database of age-specific templates for brain co-registration.

2.2 MR image harmonization

As already mentioned in section 1.2, even after appropriate coregistration of brain images,
unwanted variations in image intensity can still corrupt multi-sites analyses. Therefore, MR
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(a) Abnormal age-related cortical volume trajectories in ASD.

(b) Percent changes in group mean growth curves between controls and autistic
subjects

Figure 2.4 – Impacts of ASD on brain ROIs volume throughout lifespan. Adapted from Lange
et al. (2015).

image harmonization will play a crucial part in the DEFIDIAG study. As shown in Figure 2.8,
the interest for MR harmonization has increased over the last 30 years, probably due to an
increase of multi-centric studies. In the next sections, we will point out the main challenges
of harmonization, and how the field has evolved from classical statistical solutions to more
complex solutions with the popularization of DL approaches. Additionally, we will summarize
current technical solutions and understand their main strengths and weaknesses.

2.2.1 Statistical methods

As presented in Sled et al. (1998), the first papers that have looked at the issue of scanner-
induced bias in multi-site MR studies have focused their attention in reducing extreme varia-
tions seen in surface coil images. With the growing interest in automatic segmentation, new
methods involving ’histogram matching’ or ’intensity non-uniformity correction’ algorithms
have been developed. As a result of these studies, the N3 algorithm (a non-parametric ap-
proach for field bias intensity correction) was presented. Later on, more complex solutions
have been proposed, each time trying to tackle previous solution’s drawbacks. Most statis-
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Figure 2.5 – Impacts of ASD on brain ROIs thickness throughout lifespan. Top: coloured
brain regions identify significant group differences in age-related cortical thickness changes.
Bottom: Regional differences in group mean cortical thickness during childhood, adoles-
cence, and adulthood. Values are percentage differences in ASD relative to typically devel-
oping control subjects. R = right; L = left. Adapted from Zielinski et al. (2014)

tical solutions published in the literature focus on image intensity distribution and usually
involve histogram matching algorithms and its revised versions.

Principle of histogram matching

Histogram matching is a classical processing step in image analysis and is used to adjust
the contrast of one image according to the contrast of another image. It is based on both
images’ intensities distribution.
This principle consists in a few steps:

1. Extract brain tissue voxels of interest, as the intensities of background or cranial voxels
are not meant to be aligned.

2. Considering every selected voxel, compute histograms for the reference image and the
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(a) Male (b) Female

Figure 2.6 – Discrimination map highlighting the differences between subjects with ASD from
matched controls. The regions in red scale represent the brain areas where GM is greater in
groups with ASD with respect to controls. Figures adapted from Retico et al. (2016)

(a) Mid-sagittal slice of templates across ages (b) Pipeline for age-specific template creation

Figure 2.7 – Brain Templates across age. a) Templates visualization and b) pipeline repre-
sentation used for their creation. Figures adapted from Sanchez et al. (2012a)

ones to harmonize as follows:

h(i) =
Nx∑

x=1

Ny∑

y=1

Nz∑

z=1

{
1 if f(x, y, z) = i

0 otherwise
(2.1)

3. Compute histograms cumulative distribution functions (CDF):

CDF (j) =

j∑

i=1

h(i) (2.2)
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Figure 2.8 – Results per 100,000 citations in PubMed for the query: (’mri’ OR ’ct’ OR ’mr’)
AND (’harmonization’ OR ’normalization’)

4. Once the CDF functions for the image and reference are known, for each gray level G1

(usually G1 ∈ [0; 255]) find G2 such that CDFimg(G1) = CDFref (G2). This gives the
final histogram matching function M(G1) = G2 that is applied to all voxels values.

To our knowledge, Wang et al. (1998) published the first study that applied histogram match-
ing to MR harmonization. Using a version of this algorithm that considered histogram bins,
they could improve MS lesion volume measurements.

Histogram matching based solutions

Several years later, Shah et al. (2011) presented a succinct review of existing published
MR harmonization solutions, pointing out some crucial points faced when developing har-
monization solutions. The current statistical methods were derived from intensity histogram
matching algorithms as presented above in section 2.2.1 and included even-order histogram
matching (Christensen, 2003); multiplicative correction field for matching a template his-
togram to a reference model density by minimizing KL divergence between distributions
(Weisenfeld and Warfteld, 2004); region specific normalization using GMM (Hellier, 2003);
and an intensity normalization method mapping the problem to an image registration one
(Jager et al., 2006). Even if these solutions had first shown promising results in their spe-
cific context, Shah et al. (2011) point out several points limiting their use and generalization.
First, they were not validated to unseen domains, therefore limiting their use to the ones used
to fit the models. Similarly, validation on various pathologies were missing. This stressed out
for the first time the real challenge when developing harmonization solutions: the validation
part is not straightforward and can be complex. Additionally, some solutions were found
to be too slow, clearly limiting their use as a pre-processing step when working with large
databases. Finally, a challenge for harmonization solutions was to improve ‘any’ multi-center
clinical analyse, meaning that the technique had to generalize its training to all unseen data
and had to be adapted to any pathology that can locally impact images intensity (lesions
might induce local hyper or hypo intensities variations for example).

Subsequently, Shah et al. (2011) presented a new solution with better performances in
terms of speed, usability and area generalization. The ‘Decile normalization’ algorithm was
first introduced in Nyul et al. (2000), and had already been chosen in various clinical ap-
plications as an intensity normalization step. It consists in an histogram matching solution
discretized by percentiles followed by a control that all harmonized images have the same
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percentiles values. This technique is less strict than classical histogram matching algorithms,
and allows better inter subject local variations which have to be preserved as they reflect
natural variation between all subjects. It was shown that ‘Decile normalization’ (Nyul et al.,
2000) could reduce inter-scanner variability, resulting in more homogeneous intensity values
for voxels of the same tissue type. Harmonization could also improve MS lesion segmenta-
tion, improving the Dice score of every segmentation method, with a greater impact of the
decile method when more complex classifiers are used (Bayesian classifier). Same results were
found for tissue types classification, meaning a better differentiation of the lesions but also
of the tissues after decile harmonization. Figure 2.9 illustrates the workflow of the ‘Decile
normalization’ method and the results obtained by Shah et al. (2011) using it.

(a) Training phase

(b) Inferring phase

(c) Results

Figure 2.9 – Decile normalization. A): The figure illustrates the training stage with the
intensity landmarks from 2 input images (top and bottom) mapped to the standard scale
(middle). The standard scale intensity landmarks are then obtained by taking the means of
the mapped intensity landmarks. B): The figure illustrates the transformation stage where
a new input image histogram (on the horizontal axis) is mapped to the standard scale in a
piecewise linear fashion. C): Results comparing the effects of linear normalization (red bars)
to the decile normalization (yellow bars) on various MS lesion identification approaches.
Dice scores were computed with a consensus labeling of 5 experts. Illustrations adapted from
(Nyul et al., 2000; Shah et al., 2011).
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The legacy of histogram matching

Later on, and in view of the last results, Shinohara et al. (2014) listed for the first time
7 principles a harmonization solution should meet. These principles form the ’Statistical
Principles of Image Normalization’ (SPIN) and are listed below. A good harmonization
method should:

1. have a common interpretation across locations within the same tissue type;

2. be replicable;

3. preserve the rank of intensities;

4. have similar distributions for the same tissues of interest within and across patients;

5. not be influenced by biological abnormality or population heterogeneity;

6. be minimally sensitive to noise and artifacts;

7. not result in a loss of information associated with pathology or other phenomena;

According to the authors, previously mentioned histogram matching based solutions ‘suffer
from the lack of biological interpretability of the normalized units’. It also seems that ‘Decile
Normalization’ (Nyul et al., 2000; Shah et al., 2011) violates a couple of SPIN principles. For
example, due to some strong assumptions (the distribution of tissue-type is the same across
subjects and visits; subjects’ brains do not have abnormal pathology; technical artifacts do
not exist), variations in intensities are difficult to interpret, making any histogram-matching
method inappropriate for any study of images from multiple subjects. In their study, Shino-
hara et al. (2014) report a ‘false erosion of GM on a magnitude much larger than would be
expected’ (in the case of Alzheimer’s disease (AD) patients for example), meaning that such
normalization would lose this relevant variation.

White-Stripe normalization

In 2014, Shinohara et al. (2014) presented a novel normalization solution in accordance
with the SPIN principles. It is an adapted tissue-specific histogram matching normalization.
More precisely, they presented the "White-Stripe normalization" protocol able to match mo-
ments of the white matter (WM) voxels intensity distribution. The method applies a z-score
transformation to all voxels intensity using parameters estimated from Normal-Appearing
White Matter (NAWM) intensities. Unlike classical histogram matching methods, it satisfies
SPIN as it is designed to be robust to artifacts and pathologies which is a crucial point when
working with multi-centric data presenting lesions (MS, glioma, etc...). They even proposed
a hybrid extension algorithm when multi-modality images are available, normalizing images
using tissue from the white stripe in all modalities. They showed great improvements com-
pared to classical histogram matching approaches, especially for GM regions on raw image
that disappeared after histogram matching but are preserved by their algorithm as shown
in Figure 2.10. Authors validated this solution on different datasets involving AD, MS and
healthy subjects from several multi-centric databases. The proposed hybrid solution could
reduce intra-tissue variance while preserving inter-tissue variance without worsening lesion
detection. This technique remains widely used in research as a pre-processing step and will
also be used in further experiments presented in this thesis section 4.2.
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Figure 2.10 – White-Stripe normalization. Impact of different normalization methods show-
ing the failure of histogram matching methods in preserving GM regions. The red square
indicates the region of gray matter on the raw image that disappears after histogram match-
ing. The green line shows the histogram for the image shown in the left column. Illustrations
taken from (Shinohara et al., 2014).

The RAVEL method

Even if the White-Stripe normalization method showed great results, Fortin et al. (2016)
and Dewey et al. (2019) reported that it does not remove all unwanted variations impacting
gray matter voxels intensity distribution. It is in fact an overall inconvenience for all his-
togram matching based methods which have the unfortunate tendency to skip local contrast
information and instead assume global histogram correspondence between images. This can
be problematic in cases including subjects with pathological differences. Global biological
variations can affect the proportions in the global histogram, without any change in contrast.
This is why Fortin et al. (2016) proposed an extension of ’White-Stripe’ normalization previ-
ously described called ’Removal of Artificial Voxel Effect by Linear regression’ (RAVEL). For
the authors, the normalization step was necessary but not sufficient for a fully harmonization
procedure. The RAVEL technique is inspired by three genomics studies (Gagnon-Bartsch
and Speed, 2012; Leek and Storey, 2007, 2008) and aims at removing remaining scanner bias
after intensity normalization. To do so, they estimate the remaining unwanted variation in
control regions and then correct this effect on all brain regions. They choose the cerebrospinal
fluid (CSF) as reference as it is highly unlikely that its intensities would be associated with
any disease status Fortin et al. (2016). They validated this solution showing greater correla-
tion between voxels intensity and AD status after RAVEL. This suggested a positive impact
of RAVEL correction on the discovery of brain regions associated with disease and could
facilitate the development of biomarkers using MRI intensities. In fact, as shown in Fig-
ure 2.11, the RAVEL method was able to align intensity distributions better than previously
mentioned methods and could enhance the classification metrics of AD patients. However, as
it strongly suggests that the chosen control region does not carry any biological information,
it may be inappropriate when there are great demographic differences between population
inter-sites. For example, when groups have different aging distributions, then RAVEL will
remove this biological signal of interest, as age affects CSF voxels intensity. An even worse



2.2. MR image harmonization 19

scenario would be if the control region is directly associated with the outcome of interest of
the study. On the other hand, it is also primordial that the control region carries information
about sites or scanners otherwise it would not be able to remove it properly in other brain
regions.

(a) Intensity histogram impact (b) Impact on AD and MCI classification

Figure 2.11 – RAVEL. A): Different pre-processing steps effect on CSF, GM and WM inten-
sity histogram. B): RAVEL improves ROC curves for Alzheimer’s disease (AD) and Mild
Cognitive Impairment (MCI) classifiers. Predictions were based on mean hippocampus voxel
intensity, considering a threshold to classify subjects’ status. Illustrations adapted from
(Fortin et al., 2016).

ComBAT: the gold standard?

The Combined Association Test (ComBAT) was first proposed by Johnson et al. (2007) to
reduce batch effects on genetic data. It was then adapted for diffusion imaging harmonization
by Fortin et al. (2017). The ComBAT model can be summarized as follows. Presuming that
data come from m imaging sites, with ni scans (i = 1, 2, ...,m), for every voxel position v of
scan j acquired at site i, the intensity yijv is modeled as below :

yijv = αv +Xijβv + γiv + δivϵijv (2.3)

Where αv is the overall intensity measurement for voxel v, X is the matrix of biological co-
variates of interest (age and sex in further chapters) and βv a vector of regression coefficients
corresponding to X at voxel v. The model assumes that the error term ϵijv follows a normal
distribution N (0, σ2). γiv and δiv represent unwanted terms to be removed, and follow nor-
mal N (γi, τ

2
i ) and Inverse-Gamma(λi, θi) distributions respectively. Model parameters are

updated through empirical Bayes iterations to reduce their variance. Finally, a statistical
distribution is obtained for each parameter, allowing to remove the unwanted information:

yComBat
ijv =

yijv − α̂v −Xijβ̂v − γ̂iv

δ̂iv
+ α̂v +Xijβ̂v (2.4)
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In a subsequent study, the team that proposed RAVEL published a review comparing
several existing solutions for Diffusion Tensor Imaging (DTI) derived metrics (FA and MD)
harmonization (Fortin et al., 2017). In this review, the authors highlighted the need for har-
monization and presented 5 harmonization solutions: ‘Global Scaling’, ‘Functional normal-
ization’, ’RAVEL’, ‘SVA’ and ‘ComBAT’. They compared them through different validation
experiments, and reported that ComBAT performed best at modeling and removing the un-
wanted inter-site variability in FA and MD maps. In fact, as presented in Figure 2.12, their
study showed that ComBAT both preserved biological variability and removed the unwanted
variation introduced by site much better than other techniques. It was the first harmonization
solution designed to model both biological and unwanted variations.

(a) Mean-difference between sites FA maps (b) ComBat improves statistical power for FA val-
ues in WM

Figure 2.12 – ComBat. A): Mean-difference plot for the FA maps for the different harmo-
nization methods. At each voxel in the WM, the y-axis represents the difference between
the average FA value at site 1 and the average FA value at site 2, and the x-axis represents
the average FA value across all participants from both sites. B): Voxel-wise t-statistics in
the WM, testing for association between FA values and age. 4 combinations of the data:
Dataset 1 and Dataset 2 analyzed separately, Dataset 1 and Dataset 2 combined without
any harmonization, and Dataset 1 and Dataset 2 combined and harmonized with ComBat.
Illustrations adapted from (Fortin et al., 2017).

Although it relies on a strong hypothesis for parameters prior distributions, ComBAT
is known to be robust to small sample sizes and is considered as the state of the art sta-
tistical technique for diffusion images harmonization. Furthermore, this solution has been
widely used for MR harmonization in general (Acquitter et al., 2022; Bell et al., 2022; Es-
haghzadeh Torbati et al., 2021; Mahon et al., 2020; Orlhac et al., 2019).
Note that ComBat can be used directly on image intensities to generate harmonized images
but is also very efficient in harmonizing derived metrics like volumes, thickness or radiomic
features. Several studies report great effect on multiple MR sequences (Bell et al., 2022;
Eshaghzadeh Torbati et al., 2021), but also on MR derived metrics like radiomic features
(Acquitter et al., 2022; Mahon et al., 2020; Orlhac et al., 2019). More details on how to use
ComBAT for direct T1w images harmonization are presented in chapter 3.
Also note that authors developed an user-friendly open-access python module ‘NeuroCom-
bat’ allowing users to use ComBAT on their own datasets. Even if its use requires to be
fitted for every new site or scanner, ComBAT is still considered as a reference in terms of
harmonization, mostly for being easy and fast to use, and quite efficient on small sample size
datasets.

https://github.com/Jfortin1/neuroCombat
https://github.com/Jfortin1/neuroCombat
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ComBAT based solutions

After the original publication, ComBAT has been widely used, and other derived versions
of the code have been proposed Beer et al. (2020); Da-ano et al. (2020); Pomponio et al.
(2020):

• ComBAT-GAM
In their study, Pomponio et al. (2020) proposed a non-linear ComBat version based on

the Generalized Additive Model (GAM). This was motivated by the fact that age has
a non-linear effect on brain development (see subsection 2.1.1). Instead of modeling
biological effects on voxels intensity linearly, as done in Equation 2.3. They substituted
for it a GAM which is a function of the covariates (age, sex, and ICV), to allow for
nonlinear age trends in ROI volumes informed by the data. Replacing the term α̂v −
Xijβ̂v by fv(Xij, Zij, ωij) = α̂v + g(Xij) + bv ∗ Zij + cv ∗ ωij, with g being an estimated
smoothed nonlinear function for age. This leads to the final equation for ‘ComBat-GAN
corrected’ intensity voxels:

yComBat
ijv =

yijv − fv(Xij, Zij, ωij)− γ̂iv

δ̂iv
+ fv(Xij, Zij, ωij) (2.5)

Gathering 10,477 healthy scans from 18 sites, authors reported a positive impact of this
non-linear ComBat version. For age prediction, their method led to better harmonized
data than the linear-ComBat, as authors obtained the smallest Mean Absolute Error
(MAE) with the ComBat-GAM harmonized data.

• M-ComBat
At the same time, Da-ano et al. (2020) proposed 3 original ComBat versions: ‘M-

ComBat’ and ‘B-ComBat’ and the hybrid ‘BM-ComBat’. The first one was initially
developed for genetic batch effects removal and presented by Stein et al. (2015). The
main idea relies in changing the standardizing mean and variance of the estimates, α̂v

and δ̂v to center-wise estimates, α̂iv and δ̂iv, such that the standardized values are then
given by

Zijv =
yijv − α̂iv −Xijβ̂v

δ̂iv
(2.6)

Then the user chose a site i=r as the reference and the final M-ComBat adjusted voxels
intensities are:

yM−ComBat
ijv =

α̂rv

δ̂iv

(
Zijv − δ̂iv

)
+ α̂rv +Xijβ̂v (2.7)

• M&B-ComBat
In their study, Da-ano et al. (2020) also presented the B-ComBat version, ‘B’ standing

here for ‘Bootstrap’. This version is also compatible with the ‘M-ComBat’ presented
above. It consists of resampling (B=1000 times) with replacement of the initial esti-
mates obtained in the fitted ComBAT (Equation 2.4). Once the B estimates for each
coefficient are obtained, the final estimates of the coefficients are computed using Monte
Carlo method by getting the mean of the B estimates. Then the user simply replaces
previous estimates in Equation 2.4 or Equation 2.7 by the ones obtained. In their study,
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the authors tested these methods on radiomic features extracted from 2 multi-center
clinical studies, gathering in total 217 scans from 8 different sites. In all cases, au-
thors reported a successful site-differences removal on observed radiomic features. The
proposed ComBAT version could also slightly but consistently improve the predictive
power of resulting radiomic models.
Figure 2.13 presents the main results of this study, highlighting the positive effect of
all harmonization methods and the interest of the proposed ComBAT version.

(a) PCA representation of radiomic features (b) Harmonization impact on predictive models

Figure 2.13 – M&B-ComBat. A): Scatter plots of top 2 principal components of the ra-
diomic features across the three labels (centers from the first multi-centric database) using
untransformed data or data transformed with the 4 versions of ComBAT. B):Performance
metrics evaluation of predictive models in both multi-center datasets (LACC and LALC)
testing sets using the three ML pipelines. Presenting the ‘Balanced accuracy’ (BAcc) and
‘Matthews correlation coefficient’ (MCC, worst value = -1; best value = +1) metrics for
comparison.Illustrations adapted from (Da-ano et al., 2020).

• Longitudinal-ComBat
The last updated ComBat-version presented in the literature is called ‘Longitudinal

ComBat’. As indicated, it has been developed by Beer et al. (2020) for longitudinal
multi-center studies harmonization. As for the ‘M-ComBat’ algorithm, the main mod-
ification occurs in the standardization step. To properly account for the dependence
of repeated within-subject observations, authors proposed to use a feature-wise linear
mixed effects model with a random subject-specific intercept ζjv ∼ N(0, ρ2v). They
estimate the fixed effect parameters αv, βv, γiv using the best linear unbiased estimator
(BLUE), the subject random effect variance ρ2v and error variance σ2

v with the restricted
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maximum likelihood (REML) estimator, and subject-specific intercepts ζjv using the
best linear unbiased predictor (BLUP). We finally have the following standardization
algorithm at time t:

Zijv(t) =
yijv(t)− α̂iv

BLUE −Xij(t)β̂v

BLUE
− ζ̂jv

BLUP

δ̂iv
REML

(2.8)

Giving finally, for the final longitudinal-ComBat correction the equation:

ylong−ComBat
ijv (t) =

α̂iv
REML

δ̂iv

(
Zijv(t)− δ̂iv

)
+ α̂iv

BLUE +Xij(t)β̂v

BLUE
+ ζ̂jv

BLUP
(2.9)

The ADNI database was used for this study. It gathers data from 663 subjects (197
controls, 324 presenting late MCI, and 142 AD patients) across 58 sites involving 152
different scanners. Structural MRI brain scans were acquired at 6 or 12 month intervals
for up to 3 years from baseline, and many participants have been scanned on different
scanners across visits. Accordingly, authors highlight the crucial need for harmonization
when dealing with this multi-centric database. As reported in Figure 2.14 for the
frontal cortical thickness, scanners have significant additive and multiplicative effects
on the observed features before harmonization. These differences remain after ComBat
harmonization but not after longitudinal ComBat harmonized data.
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Figure 2.14 – Longitudinal-ComBat. Distributions of left superior frontal cortical thickness
residuals across scanners before harmonization (A), after cross-sectional ComBat (B), and
after longitudinal-ComBat (C; REML method). Showing in each case, the Kenward-Roger
(KR) (resp. Fligner-Killeen (FK)) p-value testing for additive (resp. multiplicative) scanner
effects. Illustration taken from (Beer et al., 2020).

2.2.2 Generative Deep-Learning harmonization

Over the last 10 years, deep-learning has been widely used in medical imaging studies
in general. It is also true for MR-harmonization which can be seen as a domain adaptation
(DA) problem.
In this section, we will focus on generative DL solutions. As their name suggests, these
models aim at removing unwanted signals as well as generating ‘corrected’ harmonized images.
Generative solutions can be seen as pre-processing steps, and once done, the harmonized scan
can be used in any clinical process. To be efficient, these solutions should be adapted to any
site or scanner and should not require additional information than the scan to be harmonized.
Otherwise their integration to the clinical pipeline would be compromised. With the growth
of DL, many new generative techniques have been proposed, and are, for most of them, based
on GAN Goodfellow et al. (2014) and U-Net Ronneberger et al. (2015) architectures.

• DeepHarmony The first DL model adapted to MR-harmonization is called ‘DeepHar-
mony’ Dewey et al. (2019). It is based on a U-Net Ronneberger et al. (2015) model
architecture but the authors applied some variations to the original architecture as pro-
posed by Zhao et al. (2017). DeepHarmony was tested on two databases. The first one
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gathers 12 traveling subjects (10 subjects with MS and 2 healthy subjects) that were
scanned twice within 30 days on two separate Philips Achieva 3T scanners. The second
one is a longitudinal database collected from 45 patients with relapsing remitting MS
over 10 years presenting acquisitions with the same two protocols. Each acquisition
included a T1-weighted image, a T2-FLAIR image and a dual-echo PD-/T2-weighted
image.
The model was trained to match contrast variations induced by the two different ac-
quisition protocols. As traveling subjects were used in this study, ground truth was
available. Therefore, the MAE loss could be directly used during training. As men-
tioned in the paper, they also compared the model’s ability to correct for protocol
variations when all contrasts available (4 in the present study) were given as input.
Additionally, the authors proposed to use the model in a 2.5D way, which consisted
in training 3 equivalent models along the 3 natural axes (axial, sagittal, and coronal).
They proposed to combine prediction using the voxel-wise median as it seemed more
robust to outliers than the mean.
The authors reported very promising results, as shown in Figure 2.15 where they were
able to reduce induced protocol bias and to align brain atrophy trajectories for longitu-
dinal data acquired with both protocols. They also demonstrated the benefit of using a
2.5D approach instead of a classical 2D model. Similarly, it is interesting to note that
the use of multiple contrasts as input helped the model to produce better harmonized
outputs.
DeepHarmony was the first DL study tackling directly MR-harmonization, and showed
the great potential of DL in general for this field of study. However, the fact that its
training requires traveling subjects data is not viable for clinical practice. Moreover,
this solution has been tested on only two given protocols, and it is very unlikely that
its training would generalize to unseen protocols.

• CycleGAN is a deep-learning model originally developed in 2016 to resolve Image-to-
Image translation tasks in Zhu et al. (2018). As illustrated in Figure 2.16, its principle
relies on two Generative Adversarial Models (GAN) learning how to map images trans-
lation in opposite order (GAN1 : A → B; GAN2 : B → A). Here A and B refer to
two different sites or scanners. In other words, each GAN will learn how to map an
image from one site to its equivalent in the second site domain representation. When
the training is successful, it is possible to recover the original input at the output of
the second GAN. In the context of data harmonization, an important feature of this
model is that its training is unsupervised. In fact, no ground truth (traveling subject)
is required for training.
In chapter 3, we evaluate its performances in different contexts and compare it to
ComBAT. Refer to subsection 3.2.3 for more insights on how to use cycleGAN for
MR-harmonization.
Unfortunately, although this model shows great potential in harmonizing scans between
two sites, it cannot be generalized to any unseen site or scanner. It must be trained
for each pair of sites in the database, which makes the solution unsuitable for use in
clinical practice.

• Disentangled latent space representation was first introduced by Dewey et al.
(2020). It consists in representing both the anatomical and the contrast information in
two distinct latent spaces. Then, a decoder takes it as input to reconstruct an image
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(a) Visual effects

(b) Effect on atrophy trajectories

Figure 2.15 – DeepHarmony. Top: Representative sagittal slices for the same subject showing
acquired images on the left and DeepHarmony-harmonized on the right.Bottom: Longitu-
dinal trajectories for cortical gray matter (in % from baseline). Protocol1 is shown in blue
and Protocol2 is shown in orange. Illustrations adapted from (Dewey et al., 2019).

Figure 2.16 – CycleGAN. Illustrations representing CycleGAN architecture composed of two
GAN networks consisting of two mapping functions G : X → Y and F : Y → X, and associ-
ated adversarial discriminators DY and DX . DY encourages G to translate X into outputs
indistinguishable from domain Y, and vice versa for DX and F. Authors introduce two cycle
consistency losses to ensure that if we translate from one domain to the other and back again
we arrive where we started. Illustration adapted from (Zhu et al., 2018)

combining both encoded anatomical and contrast information. The authors trained 3
U-Net (Ronneberger et al., 2015) models for encoders (for contrast and anatomy) and
decoder. The model requires 2 MR sequences from each subject (e.g. T1w and T2w
sequences) from training. By using two contrasts with similar anatomies, the model
can learn how to transfer contrast information while preserving the anatomy. Once the
whole model is trained, one can apply the contrast of a chosen site to any anatomical
information to perform image harmonization.
This solution was the first to propose such a disentangling procedure. It is based on
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unsupervised learning, using the dual information of T1w and T2w scans to generate
outputs from different combinations. This way, one can adapt the contrast of any scan
while preserving the anatomy. It is indeed crucial for harmonization as the induced
bias impacts mainly the contrast. However, even if the authors showed a positive effect
of this method on contrast and similarity scores on traveling subjects data, this disen-
tangled approach requires to be validated on larger datasets with a clinical application.
Moreover, such solutions require the acquisition of both T1w and T2w sequences for
each training subject, and will likely need fine tuning for each new site to be harmo-
nized.

• Calamity is a deep generative generative network developed by Zuo et al. (2021b) that
is able to modify MR-scan contrast while preserving the anatomy. It is based on the
previous research study by Dewey et al. (2020) on disentangled latent space represen-
tation. In this study, the authors proposed to validate the disentangled approach using
a new architecture. Their proposed network is made of:

— a contrast encoder made from a variational encoder (Kingma and Welling, 2014).
— a anatomical encoder made from a U-Net Ronneberger et al. (2015)
— a discriminator connected to the anatomical encoder, ensuring that the encoder

does not capture site-specific features
— a U-Net decoder connected to both encoders output

The encoders learn a global representation of the data in their respective latent spaces.
Once trained, the model is able to adapt any anatomical information to a given con-
trast. Its unified architecture allows it to harmonize as many domains (site or scanner)
as there are in the training dataset.
The architecture proposed was also developed in a 2.5D fashion as proposed in Dewey
et al. (2019). Instead of using the median, they use a 3D fusion convolutional neural
network taking as input the reconstructed 3d outputs of each model trained along the
three natural axis.

This model made a great improvement in the field of deep generative models for MR-
harmonization by validating the disentangled approach proposed by Dewey et al. (2020).
The results were very impressive as they could improve similarity score for different
acquisitions among traveling subjects, and preserve the anatomical information of the
original scan while removing domains related noises. However, the main downside of
this solution is that it requires to be fine tuned every time a new domain is encountered.
This downside by itself makes the solution hard to introduce in clinical practice as new
domains are very likely to be met. Note also that its training requires T1w and T2w
acquisitions for every subject, which can be limiting in some situations.

• StarGAN is an original DL model proposed by Choi et al. (2018). It allows simultaneous
training of multiple datasets with different domains within a single network. A single
generator is trained to transfer a given image into a given target domain. This archi-
tecture presents great advantages over the previous ones. Its unified model does not
require paired images and is able to perform multi-site (n_site > 2) harmonization. It
is also meant to generalize its training to unseen sites without the need for fine tuning.
This solution has been used for MR-harmonization by Bashyam et al. (2021). Authors
trained this model on 8,876 subjects from 6 sites. They validated StarGAN harmo-
nization using an age prediction model. They could show a significant improvement
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of age prediction metrics after harmonization. However, in their study, the model was
trained and used on all present scans without using cross-validation which is a critical
point for the following validation steps. Moreover, the study did not report any direct
qualitative improvements (MAE, SSIM, PSNR, etc...) on traveling subjects data. In
addition, such architecture seems less adapted to MR-harmonization than the previous
two, as not disentangling anatomical and contrast information.

2.2.3 Unlearning Deep-Learning harmonization

Inspired by domain adaptation techniques, some research teams have proposed to ad-
dress MR-harmonization directly at the level of clinical application. Instead of generating
harmonized images, these solutions propose to estimate unwanted noises while addressing a
clinical application (segmentation, classification, etc...). Usually this is done by integrating
an additional unlearning module to the main model. This module is usually connected to the
latent space representation of the initial data. It will act as a ‘filter’, forcing the encoder to
produce scanner invariant representation. Another unlearning technique is called ‘Pruning’
and consists of removing neural connections inside the model to prevent it from over-fitting
or learning domain related features.
At first sight, these solutions seem very interesting as they skip the classical harmonization
step: ’Generating a corrected image’. This part usually requires a lot of data and models
can be very hard to train (see subsection 2.2.2). On the other hand, as these models do not
generate harmonized images, unlearning modules will have to be introduced and trained for
every clinical application. On the contrary, generative harmonization models seek to produce
images that can be used and reused once harmonized.

• Unlearning of dataset bias was first proposed by Dinsdale et al. (2021). Directly in-
spired by a domain adaptation technique called Domain Adversarial Neural Networks"
proposed by Ganin et al. (2016) and illustrated in Figure 2.17(a). The main contri-
bution consists in a generic framework that optimizes the feature representation for a
label predictor related to the main clinical objective, and a domain classifier that aims
to predict the source of the data. Eventually, the network tries to minimize the loss of
the label predictor and to maximize the loss of the domain classifier. In an adversar-
ial fashion, the feature extractor (usually a CNN encoder) will try to fool the domain
classifier. As the number of domains is usually greater than one, it forces an uniform
output by minimizing a confusion loss defined as bellow:

lconfusion(P ) = −(1/N)
N∑

i=1

S∑

s=1

log(psi )/S (2.10)

With P = [p1; ...; pS] being the softmax output from the domain classifier, correspond-
ing to the probability to belong to different domains (1, ..., S), Y is the ground truth
domain affiliation vector, and N is the sample size.
The authors validated this framework using three different databases for a total of 8418
T1w scans. All results were obtained using a 5-fold cross validation procedure. They
used two clinical experiments to evaluate the impact of such an unlearning module.
First, as already done in previous harmonization studies Bashyam et al. (2021); Pom-
ponio et al. (2020), they considered the task of brain age prediction from T1w scan.
As shown in Figure 2.17(b), classical age prediction models could not generalize their
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training to unseen databases. After introducing the unlearning module, MAE scores
were much closer and the model could generalize its training to other datasets. Simi-
larly, the authors showed a positive impact of such techniques for brain segmentation
tasks (WM, GM and CSF in the study).
This study demonstrates the real benefit of introducing an unlearning module to any
model when dealing with multi-centric datasets.

(a) Domain Adversarial Neural Network architecture

(b) Impact on age prediction

Figure 2.17 – Unlearning modules. A): The proposed architecture by Ganin et al. (2016)
including the feature extractor (green), the label predictor (blue) and the domain classifier
(pink). B): Results comparing unlearning to training the network in different combinations
on the datasets. Mean absolute error is reported in years. B = Biobank, O = OASIS, W =
Whitehall. In Exp 8-11, authors used class weights for domain classifier training so that it is
not driven by the largest dataset. Illustrations taken from Ganin et al. (2016) and Dinsdale
et al. (2021).

• Attention-guided deep domain adaptation was proposed by Guan et al. (2021).
Authors developed an attention-guided deep domain adaptation framework for multi-
site MRI harmonization and applied it to automated brain disorder identification. Their
solution is made of four main components, 1) a feature encoding model for MRI feature
extraction, 2) an attention discovery module to locate disease-related regions in brain
MRIs, 3) a disease classifier and 4) a domain discriminator encouraging the encoder
to learn domain-invariant MRI features. Unlike the previously proposed unlearning
framework, here the domain classifier loss is directly integrated in the global model
loss, meaning that one domain is selected to be the ‘target’ during all training. How-
ever, instead of just aligning feature distributions of source and target domains as done
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in Dinsdale et al. (2021), their method also aligns the attention maps learned from
convolution layers.
Authors evaluated their proposed solution through 4 classification experiments related
to AD: 1) AD classification; 2) MCI conversion prediction, which is a crucial diagnosis
in Alzheimer disease routine; 3) AD vs. MCI classification and finally 4) MCI vs. con-
trol classification.
Authors reported impressive results on all experiments, and also compared their so-
lution to other harmonization solutions. In all cases, they could outperform other
methods, reaching the highest classification metrics. However, it is important to note
that the authors did not report the actual effect of the domain adaptation component,
as they did not present the results without this component. In addition, their model
was designed to harmonize image into one selected ‘target’ domain, and this choice is
likely to have an impact on the models performance.

• Model pruning is an original solution designed to prevent models from over-fitting. A
primary cause of this over-fitting is the vast number of parameters in classical CNNs
such as U-Net (Ronneberger et al., 2015). Introduced by Molchanov et al. (2017),
pruning consists here in successively removing neural layers inside the model. Results
showed that the parameters of the smallest magnitude generally have the least impact
on the network’s output and this affects the choice of the layers that will be removed.
Dinsdale et al. (2022) proposed to use such a technique in an MR-segmentation task.
They iteratively trained for 1 epoch and pruned a U-Net model until the model perfor-
mance was penalized or the desired model size was reached.
Doing so, Dinsdale et al. (2022) showed that U-Net could better generalize its training
to unseen datasets for similar segmentation tasks. This approach is really interesting
as it reduces the over-fitting effects to training datasets but also reduces the number of
parameters constituting the model, resulting in a lighter model.

2.2.4 Methods summary

We have seen that many harmonization solutions have been proposed over the years. We
propose in Table 2.1 to summarize these methods with their main features, pros and cons.
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Solution
type

Preserves
Local
variations

Tested on
clinical
applica-
tion

No need
for trav-
eling
subjects

Fine-
tuning
for new
clinical
question

Fine-
tuning for
unseen
sites

Max.
number
of target
sites

Disentan-
gling
approach

Genera-
tive solu-
tion

Nyul et al.
(2000)

Statistical ✗ ✓ ✓ _ ✗ Undefined ✗ ✓

Shinohara
et al.
(2014)

Statistical ✗ ✓ ✓ _ ✗ Undefined ✗ ✓

Fortin
et al.
(2016)

Statistical ✗ ✓ ✓ _ ✓ N = 2 ✗ ✓

Fortin
et al.
(2017)

Statistical ✓ ✓ ✓ _ ✓ n training ✗ depends

Pomponio
et al.
(2020)

Statistical ✓ ✓ ✓ _ ✓ n training ✗ ✗

Da-ano
et al.
(2020)

Statistical ✓ ✓ ✓ _ ✓ n training ✗ ✗

Beer et al.
(2020)

Statistical ✓ ✓ ✓ _ ✓ n training ✗ ✗

Zhu et al.
(2018)

Deep-
Learning

✓ ✓ ✓ _ ✓ N = 2 ✗ ✓

Dewey
et al.
(2019)

Deep-
Learning

✓ _ ✓ _ ✓ N = 2 ✗ ✓

Dewey
et al.
(2020);
Zuo et al.
(2021a)

Deep-
Learning

✓ ✓ ✓ _ ✓ n training ✓ ✓

Bashyam
et al.
(2021)

Deep-
Learning

✓ ✓ ✓ _ ✗ Undefined ✗ ✓

Dinsdale
et al.
(2020),
Guan
et al.
(2021)

Deep-
Learning

✓ _ ✓ ✗ _ _ ✗ ✗

Table 2.1 – Harmonization methods summary. ✓ means that the solution verifies the condition while ✗ means the
opposite. In addition, the green color signifies that a verified condition is a positive argument for the harmonization
solution.
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Chapter 3

ComBat versus cycleGAN for two sites
MR images harmonization

Abstract
In this chapter, we present the effect of two harmonization methods, ComBAT (section 2.2.1)
and cycleGAN (subsection 2.2.2) when used to harmonize images from two acquisition sites.
Both solutions were chosen as they seem, according to the literature, adapted for MRI har-
monization but were never compared in that context. Once the images harmonized, it is also
difficult to evaluate the benefits for further clinical applications. Through five experiments,
performed on synthetic and real data, we propose here to benchmark these two methods.
Focusing on T1-weighted MR images, we investigate the effects of each harmonization ap-
proach using radiomic features (meant to represent different aspects and properties of images)
and Support Vector Machine (SVM). The study reports that both methods perform well for
removing various types of noises while preserving manually added synthetic lesions. They
also seem to be adapted for removing site effects on data coming from 2 different sites while
preserving biological information. Moreover, while each method improves autism data clas-
sification, they have different impacts on radiomic features and appear complementary in
several aspects. This work was presented as a digital poster during the 2021-AI4Health win-
ter school. It was also accepted for an oral presentation at the national French conference
SFRMBM-2020. Unfortunately due to Covid restrictions the event was canceled.

Keywords— Brain, MRI, harmonization, deep-learning, radiomic features, ASD classification
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3.1 Introduction

A general introduction to MRI data harmonization was presented in section 1.2. In this
study, we propose to compare 2 promising methods for the harmonization of T1-weighted
MRIs. ComBat, a statistical method proposed by Fortin et al. (2017) for DTI harmonization,
and cycleGAN, a deep-learning model introduced by Zhu et al. (2018). In order to describe the
effects of both approaches comprehensively, we ran five different experiments performed on
synthetic data as well as real in vivo images. We first assessed the capacity of the 2 methods
to remove manually added global noises in the images as well as the ability to preserve
manually added lesions. We also investigated harmonization’s benefits on image analysis like
site classification and Autistic Syndrome Disorder (ASD) detection. Harmonization effects
were evaluated using radiomic features, known to be sensitive to harmonization (Da-ano
et al., 2020; Orlhac et al., 2019). Finally, we evaluated the impact of harmonization solutions
on different radiomic features groups. These derived metrics are meant to represent main
features of images, like shape, contrast or texture. It is likely that induced site biases will
affect each family of features differently, and so will the harmonization methods.

3.2 Materials and methods

3.2.1 Data

As for all experiments in this PhD thesis, the open access ABIDE database was used. It
is a multi-center project led in 2014 by Di Martino et al. (2014), focusing on autism disor-
ders among children. It gathers more than 800 pediatric autistic patients and controls. In
this study, we used healthy 3DT1-MRI scans from 2 different sites A (GU) and B (OHSU),
selected as the ones presenting the largest collection of subjects. Age range was from 8 to 14
years old for both sites with similar sex distribution. All acquisitions were realized on two
different 3T Siemens TIM trio scanners (each one coming from one site).
MR images were first co-registered to age specific 152-MNI templates publicly available
(Sanchez et al., 2012a). The brain was then extracted using Robex (Iglesias et al., 2011)
and N4Bias (Tustison et al., 2010) was used to correct for inhomogeneities of intensity. Af-
ter a manual quality check, we removed 11 scans presenting either acquisition artifacts or
brain extraction issues. Finally, 51 scans were extracted for site A (56 for site B). Data was
eventually re-scaled between [-1;1].

3.2.2 The Combined Association Test: ComBat

As presented in section 2.2.1, as a result of two studies (Fortin et al., 2018, 2017), Com-
BAT has quickly been considered as a gold standard harmonization solution. Although
relying on a strong hypothesis for parameters prior distributions, ComBat is known to be
robust to small sample sizes and is easy and fast to use. Later studies, like Orlhac et al.
(2019), showed ComBAT’s efficiency for harmonizing radiomic features derived from PET,
another imaging modality.

In this study we used the open-access python module ‘NeuroCombat’ (2020 version, dep-
recated today) developed by Fortin et al. (2018).

http://fcon_1000.projects.nitrc.org/indi/abide/
https://github.com/Jfortin1/neuroCombat
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3.2.3 cycleGAN

As introduced in subsection 2.2.2, cycleGAN is a deep-learning model that can resolve
Image-to-Image translation tasks. It was initially developed by Zhu et al. (2018). The
principle relies on two GANs learning how to map images translation in opposite order, the
architecture is represented in Figure 3.1.
A more recent study (Modanwal et al., 2020) reports the great potential of such a bidirectional
model to overcome multi-centric induced bias for MR breast scan harmonization.
We used cycleGAN in a 2D fashion, working on axial slices. As these models are known to
require a large amount of data for a successful training, and to avoid over-fitting, using 2D
images is a way to increase our sample size and to reduce the number of parameters to fit
(2D models are less complex than their 3D equivalent ones).
Each GAN has a Pix2Pix (Isola et al., 2018) architecture, consisting af an UNet (Ronneberger
et al., 2015) generator and a patchGAN as a discriminator. The choice of the discriminator’s
field of view size was motivated by the results obtained by Modanwal et al. (2020). We used
the LeakyReLU activation function for the encoder part of the generators and discriminators.
Classical ReLU function was used for the decoder part of the generators. Downsampling
(resp. upsampling) was done through convolutional (resp. transposed-convolutional) layers.
Finally the model loss was composed of classical binary cross-entropy loss (ldisc) (used to
train discriminators), a l1-cycle loss consistency (lcycle) and a l1-loss (l1) between the input
and output of each generator. This final term was found to be helpful for training and led
to better convergence.

Discriminator  
Da

Site A Site B

a

Discriminator  
Db

b

synthetic

real

synthetic

real

Generator
Gb

Generator 
Ga

Affiliation score to 
site b

Affiliation score to 
site A

Reconstruction error

Reconstruction error

L1 loss

L1 loss

Figure 3.1 – CycleGAN architecture used for MRI data harmonization in this study

Note that the model presented above differs from the original cycleGAN architecture.
Based on latest publications (Isola et al., 2018; Yi et al., 2018), we use U-Net as a generator
instead of a modified Resnet. This type of implementation is commonly used: for instance,
on TensorFlow’s website, the proposed implementation in the cycleGAN tutorial contains U-
Nets as generators. This U-Net model has become a standard for medical image segmentation
and generation. Furthermore, the skip-connections between the encoder and decoder layers
allow the model to better preserve image anatomy, which is a crucial aspect in MRI data
harmonization.
In addition, we added the l1 term to prevent the model from well-known instabilities leading

https://www.tensorflow.org/tutorials/generative/cyclegan
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to drastic changes to the image. This term is also helpful for training as these kinds of models
are known to be difficult to train. The order of magnitude of this l1 is however very small
(10−4) compared to the global training loss (its order of magnitude was 10). Thus, we do not
expect a major impact on training results.

lcycleGAN = λ1ldisc + λ2lcycle + λ3l1 (3.1)

With, λ1 = −1;λ2 = 100;λ3 = 3; lcycle = ∥a − Ga(Gb(a))∥1 + ∥b − Gb(Ga(b))∥1; ldisc =
(log(1−Da(Ga(b))) + log(1−Db(Gb(a)))); l1 = ∥a−Gb(a)∥1.

The model was trained through 500 epochs, using a batch size of 8. Learning rate was
initialized to 6.10−4 and then reduced (model independently) on validation loss plateau by a
factor 0.8. All training was done using Tensorflow 2.0 on a Quadro P2000 GPU / Intel Core
i7-8700K CPU. Each training session took about 2 hours.

For all experiments, we used 10-fold cross-validation to train and infer all control sub-
jects. To infer subjects with ASD, we trained a model on all control subjects and used it on
patients’ data.
Algorithm 1 presents the workflow used for cycleGAN for all experiments. Note that cycle-
GAN is used to harmonize data between 2 sites. At the time of the inference, we only use
one generator (Gb) to harmonize only the data from site A into the domain of site B.

Algorithm 1 CycleGAN overall workflow: Training-Validation-Inference protocol
Gather same sequence MRIs from 2 sites : OHSU & GU sites from the ABIDE database

#Prepocessing steps
Brain extraction with Robex algorithm
Co-registration to age-specific MNI templates
Intensity Biais field correction using N4 Bias algorithm
Visual quality check : brain extraction & image acquisition
Rescaling data between [−1; 1]
Extracting 2D axial slices while removing background slices

#Training steps → Inferring control subjects
Splitting control data in 10 folds for cross validation
for i = 0; i < 10; i++ do

Train cycleGAN using (Fi : F(8+i)%11) as training sets, F(9+i)%11 as validation set, and
F(10+i)%11 as test/inference set.

end for

# Second training phase → Inferring ASD subjects
Gather all control subjects in one fold and ASD ones in another
Select randomly 10 control subjects for validation steps
Train cycleGAN on training control subjects
Once the model trained, run inference on ASD subjects
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3.2.4 Experiments

To compare the 2 harmonization methods, we ran 3 experiments on synthetic data and 2
on real in vivo data (detailed in next sections). Synthetic data were used to assess the ability
to remove global noise or preserve known local structures or local biological variations. On
the other hand, real data were used to estimate methods efficiency to remove site effects, and
their ability to improve further clinical analyses.
CycleGAN was trained from scratch for each experiment. For all classification tasks, we used
SVM with a radial basis function kernel to classify data before and after harmonization. To
evaluate the specificity and sensitivity of our classifier, we used the Area Under Curve (AUC)
of the Receiver Operating Characteristic (ROC) curve. As visual inspection is not sufficient
to evaluate the effect of harmonization on the images, we extracted radiomic features, known
to be sensitive to site effects (Orlhac et al., 2019). We used the pyradiomics python API
developed by van Griethuysen et al. (2017) to extract 101 features. These features aim to
represent different aspects of MRI images such as shape, contrast or texture. Radiomic fea-
tures are organized in families which are described on the API’s website. In all cases, we
first selected the ‘most correlated features’ using Pearson tests (ran independently for each
feature) with the characteristic of interest (site affiliation, presence of added noise, etc...) us-
ing 10−3 as p-value threshold. This step was essential to focus on the effects of the methods
on characteristics of interest only. We also ran Pearson tests after harmonization on previ-
ously selected radiomic features to better understand the impact of both methods on these
features. Finally, we investigated correlations between radiomic features and biological ones
(sex and age). Our hypothesis was that harmonization should increase or at least preserve
correlations when existing.
All classification procedures were done using a 8-folds cross-validation (while a 10-fold cross-
validation was used to train our cycleGAN model) repeated 10 times in order to have various
sets combinations and to be able to compute statistical evaluations on the performance of
the classifiers. To visualize the results, we reduced the dimension with PCA and TSNE
(Maaten and Hinton, 2008). PCA was first used to assure orthogonal representation of our
data (8 components used, representing around 95% of total variance), and then TSNE to
visualize our data along 2 axes. Once dimensions were reduced, it was possible to observe
two clusters of points corresponding to different sites or data types. For validation, we only
used PCA-reduced data, using the 8 first principal components (representing more than 95%
of the total variance), as there was no need for data visualization using the TSNE algorithm.
Finally Welch’s t-tests (Welch, 1947) were run to validate if results were statistically signif-
icant or not. We ran these tests on every combination of data under the null hypothesis
"method does not impact SVM accuracy" and "both methods have same performances". We
then observed the p-values of these tests and rejected the H0 if p < 0.05. Because variances
of the results obtained by the two methods could not be considered as equal, we used the
Welch t-test to compare whether the differences observed were statistically significant.

Experiments 1-2: ability to remove synthetic global noises

This first experiment evaluated the ability of both methods to remove synthetic global
noises added manually to the images. First, a synthetic global Gaussian intensity shifts was
added, centered in the middle of images in order to simulate variations in RF coil homogeneity.
This added Gaussian noise follows a 2D N(0, 0.32) distribution. It was then multiplied by a

https://pyradiomics.readthedocs.io/en/latest/features.html
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factor 1.6 so that its intensity in the middle of the images was increased by 60%. Secondly, a
classical Gaussian noise was added to induce multiple artifacts and to reduce contrast in the
images. This was done by adding independently ϵ ∼ N(0, 0.62) to every voxel. Figure 3.2
illustrates the global noises added during these experiments.
Here, both methods were fitted using all the data from site A, including the ones altered with
synthetic global noises. We considered the presence of synthetic noise as induced site noise
and then used cycleGAN and ComBAT to harmonize modified and original data together.
Doing so, we could consider two different domains of images, the original ones and the altered
ones. The objective was then to use both methods to learn how to remove these noises. To
better stick to a realistic situation, we did not train the cycleGAN in a supervised way
for noise reduction. In fact we could have added an additional loss (between the output
and the original data) to force it to remove the known added signal. However, as the idea
was to simulate an unknown global signal induced by scanners, we chose to stay in real life
conditions.
As presented in Figure 3.3, the SVM was used here to classify the presence of added global
noise in the considered images. As the harmonization solutions aim to remove the global
added signal, we expect to see a reduction of the SVM accuracy metrics on the processed
data compared to the original ones.

Experiment 3: ability to preserve synthetic lesions

Contrary to global variations, local variations are most likely of biological origin. There-
fore, harmonization must preserve these local variations as we do not want to lose any bio-
logical information in the process.
To assess if local changes in image intensities were retained after harmonization, a synthetic
localized spherical Gaussian intensity shift was added to some randomly sampled data. This
mimics hyperintensities that can be found in patients presenting several pathologies (e.g.
AD, gliomas or tumors) or among subjects with stroke or trauma. For this experiment, cy-
cleGAN and ComBAT were trained on unmodified healthy data, and then used on the whole
dataset (original + altered data). As for global noise removal, we followed the same workflow
presented in Figure 3.3. Hyper-intensities preservation was estimated by SVM classification
accuracy before and after harmonization. To verify that harmonization improves, or at least
preserves, synthetic lesions classification, we used SVM to classify the presence of synthetic
lesions. This experiment was run several times with different ‘lesion’ radius, so that we
could evaluate the impact of harmonization with respect to the size of local variations. Ra-
diomic features extracted on the all brain were used as input for our classifier. Moreover, we
computed first order statistics (mean and variance) in the altered regions to probe possible
geometrical modifications due to the harmonization process.

Experiment 4: Site effect removal

One of the key points of data harmonization is the removal of site or scanner induced
bias. These biases often lead to easy discrimination of the origin of the data and it is usually
possible to predict the origin of each scan in multi-centric datasets (Fortin et al., 2017; Liu
et al., 2020). This demonstrates a domain specific signal in the data and the need for data
harmonization.
As in previous experiments, we evaluated data harmonization of the 2 selected sites through
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(a) Original data (b) Synthetic Gaussian shift (c) Synthetic Gaussian noise

Figure 3.2 – Illustration of the synthetic global noises added for experiments 1&2. A) Original
scan; B) Global 2d Gaussian shift centered in the middle of each slice; C) Global Gaussian
noise. Expérience n°1&2 : Ajout de bruits

Noise

Raw data
Altered data

Harmonization 
method

Harmonized 
data

Classification via 
SVM

Raw data

Altered data

20Figure 3.3 – Synthetic Noise harmonization workflow.

SVM accuracy metrics. The hypothesis here was that no classifier should be able to accu-
rately detect data origin. We thus tried to classify data origin before and after harmonization
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to see how harmonization could penalize the classifier.
To estimate the impact of harmonization on image features, we also ran Pearson tests with
all radiomic features independently for site affiliation and age correlation. For this task, the
hypothesis was that harmonization should preserve or enhance correlation between radiomic
and biological (age here) features. On the other hand, harmonization should reduce correla-
tion between radiomic features and site correlation. To evaluate data harmonization effect,
we compared the numbers of significantly (p << 5E10−2) correlated features with site affil-
iation before and after harmonization (expected to decrease). We also compared the same
numbers for features correlated with age (expected to increase).

Experiment 5: ASD patients classification

This last experiment focuses on the second main aspect of data harmonization: ‘it must
preserve biological information’ in order to improve further analyses. This part is often hard
to quantify, and there is no reference protocol proposed in the literature.
In this study, we ran a clinical classification task (ASD patients vs healthy controls) on data
from site A and B to evaluate if SVM performs better on harmonized data than on raw data.
Similarly to section 3.2.4, cycleGAN was trained on control data from both sites. Inference
was done on all subjects from site B using a 10-fold cross-validation procedure. For this
experiment, radiomic features were extracted on the whole brain.

3.3 Results

Table 3.1 (exp1-2) shows that ComBAT performs well on removing simple global noises
(Gaussian intensity shift and Gaussian noise) while cycleGAN does not remove these noises
correctly. SVM AUC metrics drop from 1 to 0.44 ± 0.02 after ComBAT while remaining
close to 1 after cycleGAN. Figure 3.4 illustrates the effect of each method on the global
noises considered.
On the other hand, Table 3.2 presents SVM AUC metrics on synthetic lesions (local noises)
classification when the lesions size (here its radius) varies. It shows that, in all cases, each
method does not penalize the AUC of the SVM. Furthermore, for small synthetic lesions, we
cannot assure a benefit from both methods as they could not be detected before nor after
harmonization. For larger lesions radius, (≥ 24mm) it is clear that SVM performs better on
harmonized data. Table 3.2 also shows that in these cases (larger radius), cycleGAN better
improves SVM performance, reaching an AUC of 1 for a radius larger than 32mm. Note that
we want an AUC as close to 1 as possible as we want the classifier to detect local variations
after harmonization.

Figure 3.5 illustrates the impacts of both methods on one original image. Both outputs
seem very realistic, which is necessary, but insufficient. One can also observe a difference in
both corrections, where ComBAT impact seems less homogeneous than cycleGAN and seems
to have detected unwanted noise on the bottom of the brain. Similarly Figure 3.6 presents
harmonization impact on intensity distributions between the 2 sites considered. The hypoth-
esis here was that harmonization should align both intensity histograms. Note that we do
not seek a perfect alignment here as the two site populations are different. We can see on
Figure 3.6 that it was the case. While there was a clear shift between both histograms before
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Experiment Noise Raw data After ComBAT After cycle-
GAN

1 Global Intensity
Gaussian shift

1 0.43 1

2 Global Gaussian
noise

0.96 0.46 0.85

Table 3.1 – SVM AUC on testing data for synthetic global noises classification (Exp1-2). In
bold, the best performances (here the smallest values, as we seek a total noise removal after
harmonization).

Figure 3.4 – Methods’ effects on global noises during exp 1-2 (section 3.2.4). Results for global
Gaussian intensity shift (exp. 1) are represented in the top row, and global Gaussian noise
(exp. 2) in bottom row. From left to right: noise added to the image; absolute difference
between original scan and comBat-denoised image; absolute difference between original scan
and cycleGAN-denoised image.

harmonization, it was not the case anymore after ComBAT and cycleGAN.

For experiment 4 (section 3.2.4), Figure 3.7 demonstrates the need for site harmonization
as we can easily observe two clusters representing both sites when classifying the raw data
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Synthetic le-
sion radius

Raw data After ComBAT After cycle-
GAN

8 0.50 0.50 0.50
16 0.50 0.50 0.50
24 0.50 0.57 0.70
32 0.83 0.75 1
40 1 1 1

Table 3.2 – Test SVM AUC evolution for synthetic lesions classification (Exp3). In bold,
the best performances (here the largest ones as we want to detect local variations as well as
possible).

(a) Original data (b) CycleGAN-harmonized output (c) Absolute difference between
before and after cycleGAN

(d) Original data (e) ComBAT-harmonized output (f) Absolute difference between
before and after ComBAT

Figure 3.5 – Impact of both methods on one scan. A&D) Original data before data harmo-
nization; B) ComBAT harmonized result; C) differential image showing induced modifica-
tions by ComBAT; E) cycleGAN harmonized result; C) differential image showing induced
modifications by cycleGAN

(left). These clusters vanish after data harmonization from both methods (all data-points
are then confounded in one same cluster). Moreover, using SVM AUC metrics, we see in
both cases that the AUC drops, reaching a minimal value of 0.58 (resp. 0.68) after cycleGAN
(resp. ComBAT) harmonization.

Finally, for experiment 5 (section 3.2.4), Figure 3.8 confirms the positive impact of both
methods. The SVM achieves better performance on patient classification on harmonized
data. ComBAT can increase the AUC metric from 0.67 to 0.74, while it reaches an AUC
score of 0.89 after cycleGAN harmonization.
Additionally, Table 3.3 confirms these results as for both experiments on site and ASD clas-
sification, we have a significant improvement of SVM AUC after both methods. Moreover,
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(a) Original data (b) After ComBAT (c) After cycleGAN

Figure 3.6 – Intensity distribution across sites before and after both methods. A) Original
data before harmonization; B) after ComBAT; C) after cycleGAN

while ComBAT and cycleGAN show similar performances for site classification, we can ob-
serve better results after cycleGAN for ASD classification. The bottom right cell of Table 3.3
indicates that AUC scores obtained after cycleGAN harmonization are significantly higher
than the ones obtained after ComBAT.
Additionally, Table 3.4 shows that each method significantly reduces the number of features
correlated to site affiliation, while increasing the number of correlated features with age. This
result is in agreement with the previous ones, highlighting the positive impact of both meth-
ods. Interestingly, even if both solutions have a positive impact on age and sex correlation,
one can observe that ComBAT reduces the correlation to site more than cycleGAN, while
this latter can better enhance features correlation with age. Another interesting point to
mention is that the two methods do not impact the same features, as presented in the last
column of Table 3.4. This result suggests that each method affects specific images’ aspects
and that they could complete one another. This final point is in line with all previously
mentioned results as both methods performed differently for all experiments.

Classification original data
vs. ComBAT

original data
vs. cycleGAN

ComBAT vs.
cycleGAN

Site 6.5 ∗ 10−5 2.4 ∗ 10−5 0.13
ASD 9.4 ∗ 10−2 7 ∗ 10−3 4 ∗ 10−2

Table 3.3 – P-values of Welch’s t-test comparing SVM performances on different types of
data (Exp4 and Exp5). In bold significant differences of performance.

Original data After ComBAT After cycleGAN common features
Site 71 6 19 3
Age 27 49 34 22

Table 3.4 – The number of radiomic features significantly correlated with site affiliation
and age, among the 101 extracted and obtained with a Pearson’s test. The last column
corresponds to the number of significantly correlated features common to both methods.
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3.4 Discussion
Our results strongly support the need for data harmonization and show the efficiency of

ComBAT and cycleGAN to tackle multi-center MRI study issues. This study shows that both
methods reduce global added noises and site effects, while retaining local modifications, and
improving the accuracy of the SVM for classifying synthetic lesions and ASD patients. How-
ever, it is important to point out differences between both methods’ performances. While
ComBAT seems to be more adapted to remove global noises and to improve correlation
between radiomic features and site affiliation or age, cycleGAN shows better results at pre-
serving local modifications and at improving statistical analysis of clinical studies. Note that
the added l1 term in cycleGAN training loss 3.1 could contribute to its lower performances
on global noises as it forces the model not to modify the image too much. On the opposite
this term is likely to explain the preservation of local hyper-intensities.

The last mentioned results about the differences between numbers of significantly corre-
lated features in Table 3.4 is interesting. It could be explained by the fact that the ComBAT
algorithm is built to remove site affiliation effects while preserving correlations with age (as
it takes age and site affiliation as inputs). On the other hand, cycleGAN only takes MR
images as input. It might be interesting to add other biological inputs like age and sex to
the network to see how this could affect the results of Table 3.4.
While giving a closer look to Pearson’s tests on radiomic features, we found that both meth-
ods preserve shape-related features, as expected. The opposite would have been problematic
indeed, as site related noises do not alter images anatomy but mainly impact their contrast.
The impacts of the two methods on other features families were found to be complementary:
ComBAT performed well on GLRLM 1 features while GLSZM 2 In this study, we presented a
workflow to evaluate harmonization techniques. We showed the importance of data harmo-
nization when dealing with data from at least 2 centers. Indeed, we were able to precisely
distinguish data from two acquisition sites, even though they both used the same type of scan-
ners. We used our workflow to investigate the performances of two harmonization algorithms
for anatomical MRI multi-center studies, ComBAT and cycleGAN. The two approaches could
effectively remove unwanted site effects while preserving biological information. Both showed
positive impact in all investigated experiments, as expected they could improve classification
metrics for ASD patients classification. In this specific case, cycleGAN led to better results
than ComBAT while the latter could better reduce global noises in images.
CycleGAN results demonstrated that a deep-learning method (non linear) was well-suited
for harmonization and could outperform state of the art statistical methods (linear) such as
ComBAT in certain conditions. We could have expected that the former outperformed the
latter. Surprisingly, we also showed that this was not always the case. The two methods
appear complementary in several aspects and had not the same effects on radiomic features.
This could determine the choice of the techniques depending on the goal to achieve. Addi-
tionally, this opens a pathway to new solutions able to take advantages of both presented
methods. One could think about combining both solutions for example of just developing
ComBAT versions adapted to the clinical data. This has since been investigated in several
studies which proposed upgraded ComBAT versions like comBAT-GAM, B&M-comBAT and
the longitudinal-comBAT presented in section 2.2.1.

1. Gray Level Run Length Matrix
2. Gray Level Size Zone Matrix
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Moreover, the fact that both solutions can not be used on new sites emphasizes the need of
a more suitable solution. Otherwise, it is very unlikely that any harmonization solution will
be used in clinical practice.
This last point connects directly to chapter 4 in which we present an original solution designed
to take over various drawbacks already mentioned. ones benefited better from cycleGAN har-
monization. Other families were similarly impacted by both algorithms. An interesting point
would thus be to investigate combinations of both methods (e.g. feed cycleGAN with data
harmonized by ComBAT, or the other way around).

Another point worth mentioning is that ComBAT harmonizes all data when cycleGAN
only modifies data from one site. This has an impact on our experiments. If transforma-
tions induce a noise while harmonizing, we should favor the one less impacting the images,
here cycleGAN. Moreover, the ComBAT algorithm relies on a strong prior hypothesis for
modeling voxels intensities, when cycleGAN tries to map the parameters directly without
priors. CycleGAN also requires a much bigger sample size to be trained than ComBAT.
Fortin et al. (2017) pointed out that ComBAT performs well even on small sample sizes. To
illustrate these last points, we also ran experiment 4 (section 3.2.4) on sites A and B using
20 control subjects only. We found that cycleGAN was limited by the sample size and was
not able to correct for site effects while ComBAT presented similar results as with the full
dataset. Finally, we can point out that for each method, a new model has to be fitted for
every new site encountered. This can be very time consuming and redundant, especially for
cycleGAN which takes longer to be fitted than ComBAT. Thus, it could be very useful to
investigate a way to generalize cycleGAN and ComBAT harmonization to every site and look
for predictable features or biomarkers directly impacted by site or scanner noises.

3.5 Conclusion

In this study, we presented a workflow to evaluate harmonization techniques. We showed
the importance of data harmonization when dealing with data from at least 2 centers. Indeed,
we were able to precisely distinguish data from two acquisition sites, even though they both
used the same type of scanners. We used our workflow to investigate the performances of two
harmonization algorithms for anatomical MRI multi-center studies, ComBAT and cycleGAN.
The two approaches could effectively remove unwanted site effects while preserving biological
information. Both showed positive impact in all investigated experiments, as expected they
could improve classification metrics for ASD patients classification. In this specific case, cy-
cleGAN led to better results than ComBAT while the latter could better reduce global noises
in images.
CycleGAN results demonstrated that a deep-learning method (non linear) was well-suited
for harmonization and could outperform state of the art statistical methods (linear) such as
ComBAT in certain conditions. We could have expected that the former outperformed the
latter. Surprisingly, we also showed that this was not always the case. The two methods
appear complementary in several aspects and had not the same effects on radiomic features.
This could determine the choice of the techniques depending on the goal to achieve. Ad-
ditionally, this opens a pathway to new solutions able to take advantage of both presented
methods. One could think about combining both solutions for example of just developing
ComBAT versions adapted to the clinical data. This has since been investigated in several
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studies which proposed upgraded ComBAT versions like ComBAT-GAM, B&M-ComBAT
and the longitudinal-ComBAT presented in section 2.2.1.
Moreover, the fact that both solutions can not be used on new sites emphasizes the need of
a more suitable solution. Otherwise, it is very unlikely that any harmonization solution will
be used in clinical practice.
This last point connects directly to chapter 4 in which we present an original solution designed
to take over various drawbacks already mentioned.
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(a) Original data
AUC = 0.98

(b) After ComBAT
AUC = 0.68

(c) After cycleGAN
AUC = 0.58

Figure 3.7 – Sites SVM classification (Exp4) with corresponding classification AUC metric,
A) on raw data; B) after ComBAT; C) after cycleGAN.
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Figure 3.8 – SVM train / test AUC metric, for ASD classification on data from sites A and
B (Exp5).
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Chapter 4

ImUnity: a generalizable VAE-GAN
solution for multicenter MR image
harmonization

Abstract
ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image
harmonization. A VAE-GAN network, coupled with a confusion module and an optional
biological preservation module, uses multiple 2D slices taken from different anatomical lo-
cations in each subject of the training database, as well as image contrast transformations
for its training. It eventually generates ‘corrected’ MR images that can be used for vari-
ous multi-center population studies. Using 3 open source databases (ABIDE, OASIS and
SRPBS), which contain MR images from multiple acquisition scanner types or vendors and
a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art meth-
ods in terms of quality of images generated using traveling subjects; (2) removes sites or
scanner biases while improving patients classification; (3) harmonizes data coming from new
sites or scanners without the need for an additional fine-tuning and (4) allows the selection
of multiple MR reconstructed images according to the desired applications. Tested here on
T1-weighted images, ImUnity could be used to harmonize other types of medical images.
This work was presented at SFRMBM 2021, ISMRM 2022 and OHBM 2022. It is currently
under review in MEDIA.

Keywords— Brain, Deep Adversarial Network, Data harmonization, Self-supervised learning,
Radiomic features
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4.1 Introduction

A general introduction to MRI data harmonization was presented in section 1.2.

As seen in section 2.2, many solutions have been proposed in the literature to tackle
the issue of MR harmonization. In chapter 3, we investigated the capacity of two different
methods to harmonize data from two acquisition sites. This study led to interesting results,
highlighting the potential of such methods to reduce site related noises while preserving bi-
ological information in order to improve further clinical studies. In addition, both solutions
seemed to have complementary impacts on data. However some drawbacks make them diffi-
cult to use in clinical practice. First, they both require to be fitted every time data from a
new site is added. Second, CycleGAN is intrinsically limited to two-sites harmonization. In
practice, multi-centric databases gather data from much more than two sites (e.g. 11 sites
in the ABIDE database).

subsection 2.2.2 and 2.2.3 stress out the great potential of deep-learning to respond to
the harmonization issue. Many approaches have been proposed in the last decade. However,
there is a need for a more adapted solution, generalizable enough to be used in clinical
practice. Table 4.1 summarizes the main DL solutions and their intrinsic features.

Traveling sub-
jects

Fine-tuning for new
clinical question

Fine-tuning
for unseen
sites

Max. number of
target sites

Zhu et al. (2018)
(CycleGAN)

not required not required required N = 2

Dewey et al.
(2019) (Deep-
Harmony)

required not required required N = 2

Zuo et al.
(2021a)
(Calamity)

not required not required required N = number of
training sites

Dinsdale et al.
(2020), Guan
et al. (2021)

not required required not required N > number of
training sites

ImUnity (this
study)

not required not required not required N > number of
training sites

Table 4.1 – Versatility of deep-learning harmonization models

Inspired by latest advances in harmonization generative (Dewey et al., 2020; Zuo et al.,
2021a) and unlearning solutions (Dinsdale et al., 2020; Guan et al., 2021), we propose in
this chapter a new type of harmonization method, called ImUnity. It is based on 2.5D deep-
learning and extends previous techniques to offer a fast and flexible harmonization solution.
ImUnity generates ‘corrected’ MR images that can then be utilized for various population
imaging studies. To avoid the need for traveling subjects or multiple MR sequences in
the database, our self-supervised Variational AutoEncoder (VAE-GAN) architecture uses
for its training, multiple slices from the same individual and randomized image contrast
transformations. It also unlearns center bias using a confusion module connected to its
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bottleneck while an optional biological module can ensure that clinical features are preserved
in the latent space. Once trained, this architecture should allow data coming from new
sites or scanners to be harmonized without the need for fine-tuning. The architecture also
allows estimates towards multiple target sites and then, users can choose multiple MR image
reconstructions according to the chosen target domain (site or scanner).

To overcome the intrinsic problem of 2D generative models, i.e. the discontinuity in final
outputs along the third axis, we introduce a 2.5D model that combines the outputs of 3
models, each one trained along a specific axis. This approach was first introduced to the
MR harmonization field by (Dewey et al., 2019), highlighting the great potential of such an
approach.

To evaluate the efficiency and flexibility of our harmonization tool, we tested the approach
using 3 open source databases that contain images from multiple acquisition sites, scanner
vendors or strength of magnetic fields, and a large range of patients’ ages. For most of the
experiments, ImUnity was trained using data from only one of the databases and then applied
to the other two to evaluate generalisation of the model. Quality of the reconstructed images,
capacity of removing site or scanner bias and ability to classify patients were evaluated after
data harmonization.

4.2 Materials and methods

4.2.1 Data

We used three open-source databases: (1) ABIDE, a multi-center project led by Di Mar-
tino et al. (2014), which focuses on Autism Spectrum Disorder (ASD). It gathers more than
1,000 autistic patients and controls. For this study, we used T1-weighted scans from 11
different sites and scanners from 3 different constructors (3T scanners at 10 different sites
and one 1.5T scanner at one site). Sites presenting data from a large range of ages (from
6 to 47 years, mean age = 12 years) were selected. In total, 621 T1-weighted scans (309
patients and 312 controls) were collected. (2) OASIS (LaMontagne et al. (2019)) gathers T1-
weighted scans from healthy (N=605) and Alzheimer’s Disease (AD) (N=493) adult subjects
who underwent several MR sessions on 4 different scanners from the same site. We used these
traveling subjects (N = 1098) to validate the ability of our model to perform multi-scanners
harmonization.
(3) SRPBS (Tanaka et al. (2021)) is a multi-site database gathering multi-disorder subjects.
We used 9 healthy adult traveling subjects to validate harmonization results between the
different acquisition sites of the database (6 sites, 12 scanners from 3 different construc-
tors). Note that SRPBS contains healthy adult brain scans while ABIDE (resp. OASIS)
mainly includes healthy and pathological infant (resp. AD adult) brain scans, leading to
large anatomical differences between images in the databases.

For each subject in each database, the brain was extracted using Robex (Iglesias et al.,
2011) and N4Bias (Tustison et al., 2010) was used to correct for intensity inhomogeneities.
MR images were first co-registered, using fsl-FLIRT (Jenkinson and Smith, 2001), to the
publicly available and age specific 152-MNI templates (Sanchez et al., 2012a). Then, White-
Stripe normalization (Shinohara et al., 2014) was run to align white matter (WM) peaks
between all subjects (each WM peak was aligned to 0.7 after rescaling the whole image
between [0:1]).

http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.oasis-brains.org/
https://bicr-resource.atr.jp/srpbsts/
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After visual inspection to detect images with ROBEX defects or other artifacts, we eventu-
ally included 545, 1072 and 81 T1-weighted scans from ABIDE, OASIS and SRPBS databases
respectively.

Figure 4.1 – ImUnity’s architecture. The model involves: a modified VAE generator (4.2.2), a
CNN discriminator, an additional Site Unlearning module (4.2.2) and an optional Biological
module (4.2.2). Here the bottleneck corresponds to the encoder’s mean and variance outputs.

4.2.2 ImUnity’s model

The architecture of our model derives from convolutional VAE-GANs and is described
in Figure 4.1. We adopted adversarial settings to ensure realistic outputs using a classical
CNN as a discriminator. The generator (here a VAE) learns how to represent input data
into a lower dimension latent space (bottleneck). Information is then decoded to generate
an output image. Inspired by Dinsdale et al. (2020), an unlearning center-bias module is
connected to the bottleneck to limit the impact of site or scanner information. A biological
preservation module can be inserted to maintain biological information in the latent space
representation. Technical details are provided below.

Modified VAE generator

Inspired by Zuo et al. (2021a), our generator takes two 2D-structural images in the same
orientation as input, randomly taken at two different locations in the 3D-MR stack of images
of each subject to consider. The first (S1) image is used by the first CNN to encode the
’anatomical’ information using only convolutional filters to ensure preservation of spatial
information. The second image (S2) differs from S1 because it is randomly taken in another
part of the same brain and provides the initial ‘contrast’ information. At least 10 slices
separate S2 from S1 (i.e. in our case 10 mm) ensuring that S1 and S2 have different anatomy
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(different location in the brain) but similar contrast (same scan). S2 contrast is modified
using a gamma function (or exponential correction): Iγ = range

(
I

range

)γ
, where I represents

voxels intensities and ‘range’ is the difference between maximum and minimum intensity
values. The ‘gamma’ parameter γ is sampled uniformly between 0.5 and 1.5 for each new
input 2d slice. This modified Sγ

2 slice is used as input to a second CNN to encode the
‘contrast information’ followed by a dense layer to reduce spatial information. An example
of different gamma transformations applied to MR brain scans from the same subject is
given in Figure 4.2. Once encoded, the two independent representations of S1 and Sγ

2 are
concatenated to give a latent space representation which is decoded to create the output Ŝγ

1

using transposed convolutional filters. Eventually, this output is compared to the reference
gamma modified slice Sγ

1 . Note that this generator is trained in a self-supervised fashion as
output labels are generated during the training phase and this training can be done on any
MR dataset. It does not require additional information such as scanner, center or biological
information.

Site/Scanner-bias unlearning module

To ensure the task of “removing site or scanner bias”, a module is directly connected to
the encoders’ outputs (latent space representation of inputs). The module can be seen as
a domain (site or scanner) discriminator and is trained independently from the encoder to
predict the scan’s origin based on the latent space representation. On the other hand, the
encoder is trained in an adversarial fashion. A confusion loss is used to unlearn domain
information. This principle has been introduced in the field of domain adaptation by Ganin
et al. (2016) and has been adapted to medical imaging studies by Dinsdale et al. (2020).
Originally, the module was incorporated directly in the model to unlearn datasets bias and
to improve predictions. Here, it is used in the bottleneck as a “datasets bias filter”, forcing
the encoder to learn a domain-invariant data representation. Note that the architecture of
ImUnity differs from that of Dinsdale et al. (2020), and so does the position of the bottleneck.
Overall, the generator learns a shared latent space that encodes all information needed to
generate harmonized scans. We also chose to avoid skip-connections in our network to ensure
that site/scanner related information (present in input data) does not flow directly through
these connections (as it would be the case in a UNet (Ronneberger et al., 2015) for example).
The loss function for the site/scanner unlearning module is:

lsite(P, Y ) = − 1

N

N∑

i=1

S∑

s=1

1(yi = s)log(psi ) (4.1)

While the confusion loss used in the encoders’ training is :

lconfusion(P ) = − 1

N

N∑

i=1

S∑

s=1

log(psi )

S
(4.2)

Here P = [p1; ...; pS] is the softmax output from the module, corresponding to the probability
to belong to different sites (1, ..., S) , Y is the ground truth site affiliation vector, and N is
the sample size.
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Biological preservation module

An optional module ensures the “preservation” of biological information. It acts as a
classifier of available biological information. For instance, features such as age or the presence
of diseases can be introduced. Contrary to the unlearning module, the encoder is trained
to minimize its loss function. This module is not mandatory, and a fully self-supervised
learning model can be adopted when it is turned off. Then, the loss function of the biological
preservation module for our particular application using the ABIDE database is:

lbiological(P, Y ) = − 1

N

N∑

i=1

∑

f∈features

N∑

i=1

yfi log(p
f
i ) + (1− yfi )log(1− pfi ) (4.3)

Here P represents module predictions for biological features of interest, N is the sample
size, and Y is the ground truth vector. Note that in this study, the binary cross entropy
formulation was used for the loss function because only two features (age and patient status,
i.e. ASD) were considered.

A 2.5D solution

The presented architecture is in 2D. As presented in Figure 4.4-right panel, one can see
that a 2D model generates high-quality images along the training axis. However, its final 3D
reconstruction suffers from artifacts along the two other axes. This is why in this study, we
propose to use the above model in a 2.5D way. It consists of using three 2D models along each
axis and to combine their results in order to have sharper output. We fuse predictions using
the median value, an approach less sensitive to outliers than the mean value used in Dewey
et al. (2019). Using a 2.5D approach generates higher quality images while keeping a number
of parameters reasonable (∼ 5.10E6 for each model) without requiring more training datasets.
The introduction of a 3D architecture would highly increase the number of parameters to
estimate (∼ 30.10E6), therefore requiring more training datasets.

4.2.3 Training

For each model, training involves several independent steps, due to the adversarial con-
text and the use of the additional modules.

— Training the discriminator consists in minimizing the binary cross-entropy ldiscriminator

between its predictions and the labels corresponding to the nature of the inputs (real
or fake). Adversarially, the generator learns how to maximize this loss function, forcing
the generation of realistic outputs.

— Training the site/scanner unlearning module consists in minimizing the categorical
cross-entropy (Equation 4.1) between its predictions and the site-affiliation labels. Ad-
versarially, the generator is trained to minimize the confusion loss (Equation 4.2). It
forces a site and scanner invariant representation of the dataset in the latent space,
leading to uniform outputs of the unlearning module.
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— In our ABIDE experiment, training the biological preservation module consisted in min-
imizing binary cross-entropy losses associated with each biological feature taken into
account (here sex and patient status). Unlike the previous module, the loss lbiological
was directly integrated into the generator. This ensures the conservation of biological
features in the latent space.

— In addition to previous loss functions involved in training the generator, a l1 loss func-
tion is used to ensure a good mapping between input (S1;S

γ
2 ) and the generated output

Ŝγ
1 (l1 = mean(|Ŝγ

1 − Sγ
1 |)). Moreover, the use of the Kullback-Leibler divergence lKL

(see Equation 4.5) between feature distributions and a Gaussian distribution ensures a
dense data representation in latent space. Therefore, the global generator’s loss function
to minimize is:

lgenerator = −λ1ldiscriminator + λ2lconfusion + λ3lbiological + λ4l1 + λ5lKL (4.4)

lKL(P,Q) =
∑

i

P (i)log
P (i)

Q(i)
(4.5)

Here, λ factors control the relative contribution of each loss. In our study, we used:
λ1 = 1; λ2 = 1; λ3 = 1; λ4 = 100; λ5 = 10−3 found empirically and with P and Q,
two discrete distributions. Note that because the generator searches to fool the site-
classification module by forcing an uniform prediction, we integrate the confusion loss
(Equation 4.2) and not the module’s loss (Equation 4.1) in Equation 4.4.

Note that for all the following experiments, ImUnity-2.5d was used.
The code of ImUnity is in open source access here: https://github.com/nifm-gin/dl_generic.

4.2.4 Experiments

The datasets extracted from the three databases were used to evaluate different aspects
of our model. The impact on image quality in multi-site or multi-scanner harmonization
was assessed using data from traveling subjects (ground truth) from the OASIS and SRPBS
datasets. Ability to remove site information was evaluated using the ABIDE dataset. Fi-
nally, the benefits of harmonization between data provider centers were assessed using autism
disorder prediction in children from the ABIDE dataset. To demonstrate the flexibility of
ImUnity, all experiments were performed with the same model trained on data coming from
the ABIDE database, unless specified. OASIS and SRPBS were used for the validation parts
only. Each model was trained on 2D slices with at least 1% of brain tissue voxels. Training
was run on a Nvidia GeForce 2080 RTX for 300 epochs using a learning rate of 10−4 and
Adam optimizer.

Experiment 1 : Harmonization on traveling subjects (OASIS+SRPBS)

We first evaluated the ability of our model to transform images from one domain (site or
scanner) to their equivalent in another domain. As SRPBS and OASIS databases contain

https://github.com/nifm-gin/dl_generic
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Figure 4.2 – Inputs and outputs of the model: Different slices from the same patient are
used to encode the anatomical information. Gamma transformations are used to encode the
contrast information. Rows represent different anatomical slices (S1, S2 and S3) taken from
the same subject. The first two rows present Gamma transformations used to train the model
(Sγ

1 and Sγ
2 ). The last raw shows model outputs (Ŝγ

3 ) for estimated Gamma transformations
for the slice S3 not present in the training set. From left to right columns: original slices,
Gamma modified slices with parameter 0.5, Gamma modified slices with parameter 1.5.
Three 2D models along each direction are combined for the 2.5D approach.

traveling subjects, ground truth was available to assess ImUnity performance. In practice,
one domain (acquisition site or scanner) was first selected as the reference for every subject.
Individual scans were co-registered to their equivalent in the reference domain (to avoid vari-
ations between acquisitions due to movement). Then, all the images were transformed by the
model into the reference domain. During this step, the slices to be harmonized (anatomy)
were fed to the model along with the corresponding computed contrast slice from the ref-
erence domain. Finally, results obtained after transformation were compared to the ground
truth, i.e. images acquired in the reference domain (traveling subject). Visual verification,
image intensities histograms, and the Structural Similarity Index Metric (SSIM, Wang et al.
(2003)) were used to assess image likeness. Paired t-tests were used for statistical significance.



60
Chapter 4. ImUnity: a generalizable VAE-GAN solution for multicenter MR image

harmonization

Furthermore, the same model, trained on ABIDE data, was used for every site / scan of the
other two databases to evaluate ImUnity’s ability to generalize to sites never seen before. This
experiment also evaluates ImUnity’s versatility, either for the source domain or for the target
domain (last two columns of Table 4.1). Additionally, we also trained and tested ImUnity on
different sites combinations to evaluate the impact of the sample size and the population type.

Experiments 2 : Harmonization’s effects on sites classification (ABIDE)

The second experiment evaluated the ability to detect the origin of data before and after
harmonization. Harmonized data were obtained using a 5-fold cross-validation procedure on
the ABIDE data. As no ground truth was available for this experiment, we considered har-
monization impacts on classification algorithms. Standard Support Vector Machine (SVM)
with a radial basis function kernel was used to classify the ABIDE data. The classifier worked
on all radiomic features (N=101) extracted using the pyradiomics python API (van Griethuy-
sen et al., 2017). These features aim to represent different aspects of MRI images, such as
shape, contrast, or texture, and are known to be sensitive to site effects (Orlhac et al., 2019).
The most ’correlated features’ with sites affiliations before harmonization were selected for
classification using Pearson tests (ran independently for each feature) using 10−3 as p-value
threshold (30 features in total). Accuracy and Area Under Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve were used to evaluate the specificity and sensitivity
of the site classifier.

Experiments 3 : Harmonization’s effects on autism syndrome disorder prediction
(ABIDE)

Similarly to Experiment 2, Experiment 3 evaluated the ability of our classifier to detect
patients with ASD from the ABIDE database, before and after harmonization. Here, results
were obtained following a 10-fold cross-validation procedure. The same trained model was
used for different numbers of sites (and different combinations of sites) included in the ABIDE
database.

4.3 Results
Experiment 1 : Figure 4.3-A shows the results obtained for one traveling subject from

the SRPBS database (section 4.2.4). Images are shown for one acquisition at site (A) before
harmonization (Figure 4.3-A, left), corrected by ImUnity to fit with acquisition at site B
(Figure 4.3-A middle) and the corresponding ground truth acquired at site B (Figure 4.3-A
right). One can notice the difference in image contrast between the 2 sites, highlighting the
need for image harmonization, as well as the visual similarity between the harmonized image
and the ground truth. It is interesting to observe that the anatomical structures of the input
contrast reference are not propagated through the model, which explains small anatomical
differences (e.g. superior sagittal sinus) between the model estimates and the ground truth.
It is also worth noting that although each model was trained on 2D slices, combining outputs
by taking the median for each voxel gives a final 3D reconstruction of the estimates of high
quality in each orientation. Figure 4.4 highlights the positive impact of the 2D models fusion.
For some subjects, 2D models present artifacts along the third axis that disappear after the
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Figure 4.3 – Harmonization results on traveling subjects from the SRPBS database. A)
Left: 3D images from one patient (axial, sagittal, coronal views) acquired in site A before
harmonization, Middle: ImUnity’s harmonization to fit with acquisition at site B, Right:
image acquired at site B (ground truth). B) Images intensity distributions (all patients)
before (Left) and after ImUnity’s harmonization (Right). The red histogram corresponds to
the site taken as reference for the harmonization process (target site). GM = gray matter;
WM = white matter

median 2.5D combination. Figure 4.3-B shows the effects of ImUnity’s harmonization on
image intensity distributions for all selected subjects from the SRPBS database. The model
was used to harmonize every image to a target site (indicated in red). An alignment of
histograms is clearly observed after harmonization, with both gray and white matter peaks
shifted. Changes in intensity distribution of the site of reference are due to pre-processing



62
Chapter 4. ImUnity: a generalizable VAE-GAN solution for multicenter MR image

harmonization

(see details in Figure 4.6, top row). The images obtained after ImUnity’s harmonization of
the OASIS datasets are also provided in Figure 4.5.

Task Multi-scanner harmonization. Multi-site
harmonization

Dataset OASIS
scanner F →
scanner E

OASIS
all scanners →
scanner E

SRPBS
all sites →
UTO site

Raw data 0.871 ± 0.045 0.845 ± 0.059 0.853 ± 0.021
Zhu et al.
(2018)
CycleGAN∗

0.873 ± 0.046 - -

Zuo et al.
(2021a)
Calamity∗

0.884 ± 0.046 - -

ImUnity# 0.918 ± 0.071 ∗∗ 0.920 ± 0.067 ∗∗ 0.882 ± 0.060
∗∗

ImUnity∗ 0.951 ± 0.013
∗∗

0.942 ± 0.011
∗∗

0.901 ±
0.035∗∗

ImUnity+ 0.832 ± 0.067 0.835 ± 0.063 0.883 ± 0.059

Table 4.2 – SSIM in traveling subjects for multi-scanner (healthy subjects from the OASIS
database) and multi-site (SRPBS database) harmonization. Results are compared to the
literature when available.
∗: Model trained on OASIS database (n=1072); #: Model trained on ABIDE database
(n=545); +: Model trained on SRPBS database (n=81) ∗∗: Significant improvement (p <<
10−5)

Figure 4.4 – Impact of the 2.5d median fusion approach (section 4.2) on one traveling subject
from the OASIS database, spotting out some discontinuities when using only one 2d ImUnity
model.

Quantitative results obtained with the SSIM metric in all traveling subjects are summa-
rized in Table 4.2. Both multi-site (SRPBS) and multi-scanner (OASIS) experiments are
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shown. For the latter, results from the literature are also given for reference. It can be seen
that when trained on the ABIDE database, ImUnity significantly increases the structural
similarity in all cases and provides better performances compared to other deep learning ap-
proaches. Moreover, results from multi-scanner harmonization show that ImUnity performs
well independently of the chosen reference domain. The last 2 rows in Table 4.2 present
results obtained after training ImUnity on OASIS (to better match literature protocols) and
SRPBS (to highlight sample size impact on the model’s generalization) data. These models
were used to harmonize OASIS as well as SRPBS data. Note here that multi-scanner harmo-
nization results were obtained on healthy subjects only to match literature results. Similar
results were obtained when including AD subjects (not shown).
In the same way, Table 4.3 presents the additional quantitative results for multi-scanner har-
monization. In this table we can observe a significant improvement (in our case, a decrease)
of MAE and MSE metrics after ImUnity data harmonization. Confirming the positive effect
of the proposed solution.

OASIS scanner F → scanner E OASIS all scanners → scanner E
MAE MSE MAE MSE

Before ImUnity 0.0224 ±
0.0108

0.0040 ±
0.0045

0.0232 ±
0.0108

0.0042 ±
0.0044

After ImUnity 0.0139 ±
0.0009

0.0012 ±
0.0002

0.0142 ±
0.0018

0.0013 ±
0.0003

Table 4.3 – MAE and MSE in traveling subjects for multi-scanner (OASIS database) harmo-
nization. Here the model used was trained on the ABIDE database only (n=545). Results
in bold present a significant (p << 10−5) improvement after ImUnity.

Experiment 2 : 4.7(a) shows ImUnity’s harmonization effects on site classification on the
ABIDE datasets (section 4.2.4) using tSNE (Maaten and Hinton, 2008), a dimension reduc-
tion algorithm, on radiomic features. Before harmonization, the presence of site clusters is
clear. Once the data are harmonized using ImUnity, the points are shuffled and the accu-
racy of the SVM site prediction decreases from 0.74 to 0.37 (before and after harmonization
respectively). This confirms the removal of site bias by ImUnity as the classifier is no longer
able to correctly separate the sites. Note that 4.7(a) also shows that small clusters remain
after harmonization, which could be explained by remaining site or scanner bias or by dif-
ference in demographic (age or sex)or biological (pathology) features between the respective
groups of subjects. Additional results on the influence of the pre-processing step on site
classification are provided in Figure 4.6.

Experiment 3 : 4.7(b) shows the capacity of our model to improve ASD prediction from
the ABIDE datasets. Here, we used the same trained models to test the influence of different
numbers of sites included in the database (from 2 to 11) as well as different combinations
of those sites (for example 55 combinations of 2 sites taken among the 11 sites available).
In every case, we observed a clear improvement of classification of autistic patients after
harmonization as shown by increases in AUC provided by the SVM classifier. We show the
results obtained with the best combination of sites as well as average and standard deviation
of AUC with all combinations of sites. The pre-processing also has a positive impact on the
prediction as shown in Figure 4.6-bottom row.
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Figure 4.5 – Multi-scanner harmonization (section 4.2.4) results between 2 scanners for the
same subject extracted from the OASIS database. ImUnity’s model was trained on datasets
extracted from the ABIDE database. Top row: Slice acquired at site A (left) and correspond-
ing harmonized image (right) matching acquisitions at site B. Bottom row: Slice acquired
at site B (right) and corresponding harmonized image (left) matching acquisitions at site A.
Left (resp. right) column allows to visually compare the ground truth and the estimated
image for site A (resp. for site B).

4.4 Discussion

We have presented ImUnity, an original 2.5D harmonization tool for multi-center MRI
databases. ImUnity shows high performances in terms of quality of the generated harmonized
images, as well as clear removal of the idiosyncratic bias attached to site-dependent image
acquisition conditions. Moreover, the performed experiments clearly demonstrate ImUnity’s
versatility. By training ImUnity’s model on datasets extracted from one database (here
ABIDE) and looking at images harmonized from traveling subjects provided by two different
databases (here OASIS and SRPBS), we show that ImUnity does not require new training
phase to generalize to unseen sites or scanners (see Figure 4.3). The performances were
maintained independently of the site selected as reference (see Table 4.2). While the model
was trained on ABIDE data only, it provided better results than the state-of-the-art methods
in terms of image quality (+4%, see Table 4.2).
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Figure 4.6 – Impact of pre-processing steps (N4Biais, White-Stripe normalization) on our
different experiments. From top to bottom row: impact on images intensity, impact on sites
classification (4.2.4), impact on patients classification (4.2.4)

The last two rows of Table 4.2 present SSIM metrics obtained when training ImUnity on
the other 2 datasets (OASIS and SRPBS). As no biological features were available in these
databases, the biological module was disabled and the model was trained in a self-supervised
way. First, we noted additional improvements for scanner harmonization when the model was
trained and applied on the same database (here OASIS, +2.5%). Second, the score obtained
for multi-site harmonization (SRPBS) was the highest when trained on OASIS(N = 1098)
data (with a slightly better score than with the other databases). It is interesting to observe
the impact on these scores of the dataset size, the number of site/scanner involved in the
training, the use of the biological module and the anatomical differences between datasets
(ABIDE mainly contains children data while OASIS and SRPBS focuses on adults). While
OASIS results suggest a better generalization on unseen data because more training data
were available, ABIDE results suggest that anatomical differences could be compensated
by a large training dataset presenting more site/scanner variability than OASIS (11 sites for
ABIDE vs. 4 sites for OASIS). On the other hand, results from multi-scanners harmonization
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(a) Sites classification (b) Autistic patients classification

Figure 4.7 – A) Harmonization effects on ABIDE sites classification. 2D scans represen-
tation of ABIDE database using tSNE reduction algorithm are presented before and after
harmonization. Colors correspond to different sites. B) Harmonization effects on ABIDE
patients classification. AUC metrics for classification of patients with autism spectrum dis-
order (ASD) using SVM and extracted radiomic features (Experience 3, 4.2.4), are shown
for different numbers of sites included in the database (from 2 to 11 sites). Top row: Results
obtained from the best (largest change in AUC before and after harmonization) combination
of sites. Bottom row : Average and standard deviation of AUC estimates for all combinations
of sites. The same trained model and harmonized data were used for different site combina-
tions.

depict the difficulty of the model trained on SRPBS data to generalize its training to the
OASIS data. This indicates an over-fitting effect in this situation, as there was not enough
training data (here N=81 distributed over 9 sites). This suggests that ImUnity may not be
adapted to small sample size scenarios, which provides useful information for understanding
why the model is less effective in some contexts. Note that data augmentation could have
been performed to improve the results in this experiment.

To better estimate the impact of the biological module, we have also run Experiment 3
(section 4.2.4) with this option disabled. We found (see Figure 4.8) that the biological module
has a positive impact on the results with a contribution representing about 20 percent of the
total harmonization effect and suggesting that additional input features along the image
could lead to better harmonized outputs. Additionally, in Experience 1, we tested different
combinations of training and testing data. In the situation: ’ training = OASIS’ and ‘testing
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= SRPBS’, no biological features were available, thus the biological module was not used.
Our solution still showed good generalization on the testing dataset. Based on this set
of results, we may assume that the addition of some biological information to the model
would also lead to better results on traveling subjects. Because ImUnity is designed to
reconstruct images and to create a new harmonized database, it does not need new training
for new clinical or biological questions. Beyond classification, new clinical data investigation
should be conducted with ABIDE (or other multi-center clinical databases) to have better
understanding on the impact of our method on clinical research studies.

Figure 4.8 – Impact of the biological module on experiment 3 (4.2.4). Patient classification
accuracy and AUC metrics are presented for data before harmonization (blue), after ImUnity
without biological module (orange) and after ImUnity (green).

Like the majority of deep networks used for medical image analysis, the MR images used
as inputs of our network were first pre-processed for intensity normalization, co-registration
or brain extraction. Usually, the impact of these transformations is not examined in harmo-
nization studies. Figure 4.6 highlights the fact that these steps are already able to remove
some of the sites and scanners biases with positive impacts on intensity distributions across
sites or patients classification. Intrinsically, the use of White-Stripe normalization (Shinohara
et al., 2014) forces the alignment of intensity distributions. Yet, a perfect alignment is not
the ultimate goal of harmonization as we also seek to preserve informative biological varia-
tions which should persist independently across sites. Eventually, we observe that the best
results are obtained for all experiments after the whole ImUnity process, with better aligned
intensity distributions, removal of persistent datasets’ noises, and most importantly improve-
ment in patients classification results. On the contrary, other experiments (not reported) also
showed that the VAE-GAN network alone performed poorer when the pre-processing steps
were omitted, suggesting that these steps are needed to simplify the training process and
improve generalization of the results.

As harmonization is a direct application of domain adaptation, we could investigate dif-
ferent architectures like Choi et al. (2018); Huang and Belongie (2017) and include Adaptive
Instance Normalization instead of classical batch normalization layers. Then, very promising
results were reported with the use of the StarGAN model for MR harmonization (Bashyam
et al., 2021). Finally the inclusion of a cycle consistency loss as presented in (Liu et al.,
2021) could enhance our contrast encoder and force a good contrast-style representation in
the latent space.
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In our study, we only report results with anatomical T1-weighted images. We show
that a single type of sequence, combined with computed image transformations with the
Gamma function, are sufficient to learn contrast mapping. This greatly facilitates the use
of our model because of few data requirements (the origin of each scan is the only pre-
required information) and the possibility of self-supervised training. Yet, we believe that this
approach is not only dedicated to T1 contrast harmonization and can easily be generalized
to any MRI sequences. Presently, the model needs to be fine-tuned in order to harmonize
a new medical imaging type. It could however be interesting to investigate its capacity to
learn how to harmonize multiple sequences at once. This could be done by mixing sequence
types in our training dataset and ensuring the conservation of this information by adding a
new conservation module in the bottleneck. It could also be interesting to add other types of
artificial contrast transformations (Schettini et al., 2010) for our training in order to account
for other types of sites or sequence biases. Similarly we could also include global geometrical
distortions to account for biases impacting images geometry. Finally, although using a 2.5D
approach is time efficient, it inherently limits the quality of generated images compared to
a fully 3D approach. However, this would induce more parameters (∼ 32.10E6) to estimate
and therefore would require more computational power and the availability of larger training
datasets.

4.5 Conclusion
We presented ImUnity, an original and effective tool dedicated to MRI harmonization.

Our proposed 2.5D model derives from the VAE-GAN architecture. It ensures realistic out-
puts and allows removal of idiosyncratic datasets bias and the preservation of biological in-
formation. Our results show that the method reaches state-of-the-art performance in terms
of image quality on traveling patients of the OASIS and SRPBS databases and improves
autistic patients classification from the ABIDE database. The proposed 2.5D model is ver-
satile, requiring only one type of MR sequence without the need of matching subjects, can
be generalized to sites unseen during the training phase and can be used to harmonize MR
images to different reference domains without a new training phase.

Perspectives of enhancement still remain. The introduction of more complex contrast
variations during the training phase and the use of domain adaptation techniques could
benefit our proposed solution, especially for multiple MR sequences harmonization.
Even if the proposed solution has been validated in a clinical experiment and has proven to be
effective, it still needs to be tested more generally. Several harmonization studies (Beer et al.,
2020; Fortin et al., 2018) have studied the impact of harmonization on brain development, on
which we have strong results from large mono-centric studies as presented in subsection 2.1.1.
The next chapter (chapter 5) focuses on this point, evaluating the impact of ImUnity on brain
development and comparing it to ComBAT.

4.6 Compliance with ethical standards
This research study was conducted retrospectively using human subject data made avail-

able by the following open sources: ABIDE, OASIS, SRPBS. Ethical approval was not re-
quired as confirmed by the license attached with the data.

http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.oasis-brains.org/
https://bicr-resource.atr.jp/srpbsts/


Chapter 5

Harmonization impact on brain structure
volume and thickness evolution with age
on ASD and control subjects

Abstract
In this chapter, we propose to investigate the impact of Imunity’s harmonization on brain
volumetric and thickness analysis. As seen in chapter 4, promising results have been obtained
using multiple databases and under different experimental conditions such as increasing struc-
tural similarity index between traveling subjects or improving autism patients classification.
In the present chapter, we evaluate ImUnity for its capacity to improve the study of brain
volume and thickness developmental trajectories with age. As in chapter 3, we also chose to
compare ImUnity to ComBAT in order to push further the validation process of our method.
We gathered data from 271 healthy and 253 ASD children from 5 to 25 years old, acquired at
11 sites provided by the ABIDE database. We used Freesurfer to investigate the effect of har-
monization on the evolution with age of 28 brain regions of interest. Comparing the results
to those obtained in the literature, we could demonstrate the need for image harmonization
and the positive effect of ImUnity in most regions of interest. Indeed, ImUnity corrects the
volume evolution trajectories (linear or quadratic) to bring them closer to the literature.
Comparing ImUnity to ComBAT (used here to directly harmonize T1w images), we showed
that ImUnity provided better estimates of volume trajectories (e.g. putamen, thalamus or
accumbens nucleus) in both control and ASD subjects. These results were confirmed with
a statistical approach based on a mixed linear model effects model. Additionally, we could
not observe such positive impacts of ImUnity nor ComBAT on thickness evolution for the
regions of interest investigated.
This work was conducted with Constance Sohler, a engineer student who realized her ‘end
of study project’ working on this topic under my supervision.

Keywords— Brain, Data harmonization, Volumetric, ASD, Thickness, Radiomic features
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5.1 Introduction
Refer to section 1.2 for a general introduction to MR-harmonization.

Several harmonization methods have been proposed in the last few years in response to the
creation of large open access databases (Fortin et al., 2016; Shinohara et al., 2014). A popular
harmonization approach is the statistical ComBined Association Test (or ComBAT), already
introduced and presented in subsection 3.2.2. Nonlinear harmonization methods that use im-
age generation networks and domain adaptation techniques have also been recently proposed
(Dewey et al., 2019; Zuo et al., 2021b). Amongst them, ImUnity, presented in chapter 4
is an original deep learning model designed to avoid some practical harmonization difficul-
ties. ImUnity does not require data from traveling subjects for its training, its architecture
allows users to harmonize images contrast into an arbitrary chosen contrast domain and,
once trained, the model can easily be used to harmonize images that were never seen before,
without the need for fine tuning. ImUnity has already been tested using traveling subjects
from two databases (LaMontagne et al., 2019; Tanaka et al., 2021) and out-reached state
of the art metrics between the multiple acquisitions although it was trained on a different
database. Moreover, it was able to remove site or scanner biases of the ABIDE database
(Di Martino et al., 2014) while improving classification of patients with Autism Spectrum
Disorder (ASD).

In the present chapter, we assess the quality of harmonized reconstructed images by con-
ducting a brain development study on subjects from 5 to 25 years old, taken from the ABIDE
database. Previously, in chapter 3 and chapter 4, we observed an important need for har-
monization when running a multi-centric analysis on the ABIDE database. These unwanted
variations are likely to impact the apparent biological brain development, altering in conse-
quence regions of interest (ROIs) evolution tendencies with age. Here, data coming from 11
sites were pooled and analyzed before and after images harmonization. For every subject (of
different ages), volumes and thickness of cortical and subcortical ROI were extracted from
original and harmonized MR images. Volume and thickness trends, before and after data
harmonization, were compared to literature trends previously obtained from large monocen-
tric studies. For comparison purposes, we also ran ComBAT harmonization directly on the
images (see section 2.2.1).

5.2 Materials and methods

5.2.1 Data

As for chapter 4, the data used in this study comes from three open source databases.
That is to say:
• OASIS LaMontagne et al. (2019) gathers T1w scans from adult subjects who underwent

several MR sessions on 4 different scanners from the same site;
• SRPBS Tanaka et al. (2021) is a multi-site database containing nine healthy adult trav-

eling subjects acquired at nine different centers, making a total of 81 T1w scans;
• ABIDE , a multi-center project Di Martino et al. (2014), which focuses on Autism Spec-

trum Disorder (ASD). It gathers more than 1,000 ASD infants and healthy controls.
From ABIDE, we selected T1w healthy and ASD scans from 11 different sites and
scanners from 3 different constructors (3T scanners at 10 different sites and one 1.5T
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scanner at one site). We selected only subjects between 5 and 25 years old, because
beyond that too few subjects were represented. In total, 524 scans were pooled from
this database.

5.2.2 ImUnity

ImUnity was used in this chapter as it was originally presented in section 4.2. We trained
three models, one for each axis and combined the three outputs using the median. Each model
was trained on 3 subsets of the 1,698 images pooled from OASIS, SRPBS and ABIDE. OASIS
and SRPBS data were randomly distributed between training and validation sets (respectively
80% (923 images) and 20% (230 images)). Then, in a 3-folds cross validation way, we added
the ABIDE data subsets to each training, validation and test sets, i.e. 175 images each.
We carefully controlled that training, validation and testing sets were perfectly independent
ensuring that each harmonized image was produced by a model not trained or validated with
the corresponding raw ABIDE image. For each cross-validation step, the three 2D models
were trained in parallel for each direction, axial, coronal and sagittal respectively, using the
same data subsets. Hyper-parameters were set as in section 4.2, except for the biological
loss which was set to zero as no biological feature was used during training (not available for
both OASIS and SRPBS databases). In this study, we considered control subjects but also
ASD patients present in the ABIDE database. This allows an observation of harmonization
impacts on both populations.

5.2.3 ComBAT

The ComBAT method was used in the same way as in subsection 3.2.2. That is to say, it
was used independently for every voxel location, therefore harmonizing directly the image’s
voxels intensity. It is very frequent in the literature that ComBAT is used to harmonize
derived metrics like radiomics (Acquitter et al., 2022), volumes or thickness (Fortin et al.,
2018). However this practice has the defect of not harmonizing the images, thus requiring
harmonization for every metric of interest. Furthermore, our use of ComBat is closer to
ImUnity’s process.

5.2.4 Data preprocessing

As for previous studies (chapter 3, chapter 4), we used Robex Iglesias et al. (2011) for brain
extraction and N4Bias Tustison et al. (2010) for intensity inhomogeneities correction. MR
images were first co-registered to the publicly available and age specific 152-MNI templates
Sanchez et al. (2012a). Then, White-Stripe normalization Shinohara et al. (2014) was used to
align white matter peaks across all subjects (each WM peak was aligned to 0.7 after rescaling
the whole image between [0:1]). After visual inspection with ROBEX to detect artifacts, we
eventually included 1072, 81 and 524 T1w scans from OASIS, SRPBS and ABIDE databases
respectively. All tissues and cortical or subcortical volumes were extracted using FreeSurfer
Fischl (2012) from original and harmonized images (see subsection 5.2.5). The Desikan-
Killiany atlas Desikan et al. (2006) was considered for cortical volume extraction.
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5.2.5 Experiments

As first introduced in section 5.1, we focus in this chapter on the impact of harmonization
on brain development. We used 271 controls and 253 ASD ABIDE subjects between 5 and 25
y.o. to evaluate the impact of ImUnity on volume and thickness evolution with age in different
ROIs. Age distribution of the selected ABIDE subjects is presented in Figure 5.1. The multi-
centric ABIDE database has already been shown to be impacted by site and scanner induced
biases (chapter 3, chapter 4), leading to poor results when pooling all data (Sherkatghanad
et al., 2019). Assuming that data harmonization will help recovering expected developmental
trajectories, we referred to several literature trends already presented in chapter 2 (Ducharme
et al., 2016; Lenroot and Giedd, 2006; Vijayakumar et al., 2016; Wierenga et al., 2014) to
evaluate ImUnity and ComBat effects. These trends were gathered from large mono-centric
studies, preventing any harmonization related issue. The effect of harmonization was defined
by its impact on volume evolution trends, and how harmonization moved them closer to
those reported in literature. For this experiment, we considered separately healthy controls
and subjects with ASD because ASD has significant impact on cortical and subcortical brain
regions development during early childhood (see subsection 2.1.2).

(a) Healthy subjects (b) ASD subjects

Figure 5.1 – ABIDE subjects age distribution between 5 and 25 years old for each sub-
population considered during the experiments.

• Volume and thickness evolutions: visual comparison to the literature

In a first investigation, we selected 80 brain ROIs, based on the Desikan-Killiany at-
las, with known development evolution with age. Extracted metrics (here volume and
thickness) were regressed out with age, leading to a linear or a quadratic evolution
based on published literature results. Considering biological covariates effects like the
sex of the status (ASD vs. healthy in our case), we considered independently each
sub-population. We chose regions with large differences in size to better understand
how harmonization corrected global (e.g. frontal or parietal lobes) or local (e.g. puta-
men or hippocampus) regions. For comparison purposes, ComBAT was also run on
similar data. In a classical way, we provided to ComBAT images and site affiliation
information as well as all biological features available (sex, age and status).
In this first experiment, we only considered visual evaluation of the trends evolution
before and after harmonization, compared to the literature reference curves. Our hy-
pothesis was that harmonization should bring observed trends closer to the literature
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ones. First, we considered only volume trends for control subjects and then included
ASD subjects to observe if the clinical status influences harmonization quality. In this
experiment, we could not include ASD females as not enough literature results could be
gathered. Similarly, for brain ROIs thickness evolution, only males (healthy and ASD)
were considered. An example of the trend found for the total gray matter volume evo-
lution in healthy males is given in Figure 5.2. Original data are indicated in red and
seem to increase with age. This is clearly not in line with the reference data found in
the literature and indicated in black. Both harmonization methods (ImUnity in green,
Combat in blue) modify the tendency and seem to bring it closer to the reference.

• Introduction of a quantitative metric to evaluate harmonization impact.

Although the visual results provided in Figure 5.2 seem to indicate that both harmo-
nization methods have a positive impact on the trends, it is difficult to conclude if one
is better than the other. Initially (red line), the tendency is inverted compared to the
literature. It is corrected after ComBat (blue line) but is ‘less inverted’ after ImUnity
(green line). However, it is also possible that Combat corrections were too strong.
In order to be able to compare the methods more accurately, we proposed to compute
a derived metric from the equation of a given observed volume trend and its equivalent
reference equation found in the literature. The idea was to obtain a value reflecting the
trends similarity between both equations. This metric is defined as follows:

Hmetric =

∫ 25y

5y

|f ′(x)− g′(x)|dx (5.1)

Where f corresponds to the reference equation of the ROIs and g is the one observed.

— : Literature reference
— : Original data
— : After ImUnity  
— : After ComBAT

Figure 5.2 – Total Gray Matter volume evolution. In black the literature trends; respectively
in red, blue, green the trends before harmonization, after ComBAT and after ImUnity.

The formula returns a value reflecting the ‘distance’ of the observed trend to the litera-
ture one. A value of zero corresponds to a perfect match of the two trends, while a high
value will mean that the trends are different. Using this metric allows us to consider
only the trends and not the shifts between the equations (the derivative is used). In
fact, a shift between the literature and the observed equation is expected, mostly due to
differences in hardware between studies (supposed to have a constant impact for every
subject independently). However, there should not be trend differences, as the observed
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Figure 5.3 – Harmonization metric workflow. Starting from the equation, and following
Equation 5.1 one can compute the metric value for each type of data (before and after har-
monization). 1) Observed trends; 2) Derivative results for the observed trends; 3) Absolute
difference results between the curve of interest (raw data or after harmonization) and the
literature.

population are similar (healthy subjects from the same age range). Figure 5.3 illus-
trates the workflow to obtain the presented score, used to compute the metric for each
data type and each ROI. Our hypothesis is that the metric value should get closer to 0
after harmonization as we expect harmonization to bring trends closer to the literature
by removing unwanted site effect variations.
Due to some important volume variance between ROIs (which directly influences the or-
der of magnitude of the metric), we eventually computed the ratio Metricafter harmonization

Metricoriginal data

to compare the methods. Doing so, we expected to have a ratio lesser meaning that
harmonization had a positive effect and moved the trend closer to the litterature. In
the previous example Figure 5.2, we have a metric value of 202,986 before harmoniza-
tion, 59,114 after ImUnity and 114,852 after ComBAT. This gives us a ratio of 0.29
for ImUnity, and 0.57 after ComBAT. As expected, we have a positive impact of both
methods on this ROI volume (both ratios < 1). However, we have a smaller ratio for
ImUnity, mainly due to the fact that ComBAT inverted too much the tendency. This
observation is coherent with what we can observe when giving a close look at Figure 5.2.
This metric can be used to quantitatively compare harmonization effects, independently
for every ROI. Similarly to the first experiment based on visual inspection, we can ob-
serve positive or negative harmonization effects based on the metric value. In addition,
it can also be used to quantify the need of harmonization for the ROI considered. This
is an important point as some regions might need more correction than others. To do
so, for each ROI, the associated metric is divided by its mean volume between 5 and
25 y.o. This is motivated by the fact that it is not possible to directly compare the
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metrics as their orders of magnitude vary significantly across all the ROIs. Dividing the
original metric by the ROIs’ mean volume leads to a metric without unit that can be
used to quantify the need for harmonization. This metric can be used to spatially visu-
alize harmonization needs. As one might expect non-homogeneous induced site noises,
resulting in some brain areas more altered than others. Additionally, this information
can also be used to observe any changes of harmonization performance regarding its
original need. We expect to have a more significant positive effect (ratio < 1) for ROIs
mostly concerned by harmonization. On the other hand, ROIs trends already in line
with the literature are less likely to have such a ratio. Ratios should also be lower than
1 as harmonization should not degrade the trends.

• Mixed Linear Model analysis
In another type of experiment, inspired by Beer et al. (2020), a linear mixed effect
model analysis was run on volume and thickness estimates, considering all available
features: age, sex, status, site. Then, by considering site affiliation as a cluster factor,
we could estimate its impact on the estimates (volumes or thickness). This was done
with the Kenward-Roger (KR) tests (Kenward and Roger, 1997), testing for estimates
and images origin joint significance and using the pbkrtest R package (Halekoh and
Højsgaard, 2014). In other words, a statistical-test was done for each parameter under
the hypothesis H0: "the parameter has no influence on the observed estimate (volume
or thickness)". For each test, according to its associated p-value, we would reject
(p < 0.05) or not H0 (p ≥ 0.05). Our hypothesis was that the groups (site affiliation)
would have a significant impact (p < 0.05) on brain development before harmonization
and this effect would vanish after harmonization (p ≥ 0.05). Site effects are likely to
be constant and to affect every patient in the same way. In fact, these noises affect
the images independently of the patient and his/her biological features. On the other
hand, we expect to have an increase of biological features significantly correlated to the
estimates. Note that this part is difficult to analyze, as every ROI in the brain is not
affected in the same way by these biological features and harmonization must not force
biological correlations.

• Surface-based group analysis - Freesurfer
Finally, the last experiment consisted in a surface-based thickness group analysis on
ABIDE healthy controls, using site origin as groups and integrating biological covariates
(age and sex) in our model. Surface thickness and group analysis were obtained with
Freesurfer. Cluster-wise correction (Hagler et al., 2006) was used with a threshold of
10−3 as recommended in Greve and Fischl (2018) to avoid false positive clusters. This
procedure allows to visualize groups impacts (here site affiliation) on brain development,
and to visualize brain areas most affected by these variations and to observe the effects
on these clusters. This comes in complement to the previous experiment based on the
derived metric used to quantify the need of harmonization in different ROIs. However,
no brain atlas parcellation was used here and the brain surface was considered as a
whole. The hypothesis here is that this procedure should detect some surface clusters
significantly influenced by site affiliation for original data and none after harmonization.
Also note that harmonization must not induce new clusters.

https://andysbrainbook.readthedocs.io/en/latest/FreeSurfer/FS_ShortCourse/FS_08_GroupAnalysis.html


5.3. Results 77

5.3 Results

5.3.1 Volumetric analysis on healthy subjects

Figure 5.4 – Effect of ImUnity on the evolution with age of cortical (left) and subcortical
(right) gray matter regions volume, for healthy males and females independently. Black lines
correspond to literature trends while green (resp. red) lines refer to trends found on ImUnity–
harmonized (resp. without harmonization) data. 95% confidence intervals are displayed for
both without and with ImUnity harmonization.

Figure 5.4 presents the evolution with age (linear or quadratic interpolated trends with
associated 95% confidence interval) of the volume of different cortical and subcortical struc-
tures when considering only healthy subjects. The age distributions are provided for males
and females, centered around 10 years old with less data above 17 years old. In almost every
region, before harmonization (red curve), there is a trend for the volume to increase with
age which is clearly not coherent with the literature (black curve). Although the total brain
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(a) ComBat

(b) ImUnity

Figure 5.5 – Average harmonization methods impact on brain regions volume for healthy
females. A) Effect of ComBAT, B) Effect of ImUnity. Red: negative effect of harmoniza-
tion (ratio > 1.1); Blue: no noticeable effect (0.9 > ratio > 1.1); Green: positive effect of
harmonization (0.9 > ratio); White: non-investigated.

volume is known to increase during this age range, it should not be the case for every ROI’s
volume. For example, as seen in subsection 2.1.1, the total GM volume is known to decrease
while the WM tends to increase. For every ROI presented in Figure 5.4, harmonization with
ImUnity (green curve) improves trends results and brings them closer to the reference values
(see for example hippocampus or amygdala). In some regions ImUnity reverses the original
trend (e.g. putamen), changing from linear increase to linear decrease. In frontal (female) or
temporal (male) lobes, ImUnity changes the trend from quadratic increase to quadratic de-
crease. The harmonization results do not depend on the size of the region as similar findings
can be found in small subcortical (e.g. caudate) or large cortical (e.g. frontal and temporal
lobes) regions. We note that harmonization does not perfectly correct all structure trends.
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In certain regions (e.g. parietal lobe), the trend is improved but not perfectly aligned with
the literature.

Table 5.1 presents the results of ImUnity and ComBAT on the metric introduced in
subsection 5.2.5. It highlights the positive impact of both methods on volumetric trends for
healthy male and female subjects and confirms the previous results. To be more precise,
we can observe that ImUnity does not degrade trends whereas ComBAT seems to be less
adapted for some specific ROIs, especially for female data-harmonization. We can also note
the robustness of ImUnity for gender, as it presents very good results for both, whereas
ComBAT has difficulties with female data. This is highlighted by Figure 5.5, 5.6(a) and
5.6(c), showing the ROIs (temporal lobe, accumbens) for which ComBAT struggles while
ImUnity seems to have had a global positive impact.

Based on previous results, and highlighted by Fig. 5.6(e), we can observe that the ‘lateral
ventricles’ and the ‘corpus callosum’ volumes are the most concerned by harmonization. To
a lesser extent, the volumes of the ‘brain stem’, the ‘white matter’, the ‘thalamus’ and the
‘pallidum’ also diverged greatly from the literature. The evolution of the trends of all these
volumes were corrected through harmonization. Finally, we can point out the minimal effect
of combat on ‘accumbens’ and ‘temporal lobe’ volumes while ImUnity seems to have improved
volume trends for all regions with a less noticeable effect for the ‘amygdala’.

Male Female
ComBAT ImUnity ComBAT ImUnity

Metric ratio <
0.9

85% 95% 53% 94%

Metric ratio >
1.1

15% 0% 41% 0%

Table 5.1 – Harmonization volume metric ratio for ComBAT and ImUnity, on healthy sub-
jects. As presented in Section 5.2.5, a ratio < 1 corresponds to a volume trend alignment
after harmonization towards the reference trend. Here we present the percentage of ROIs
with ratio < 0.9 (improvement) or > 1.1 (degradation), ratios in between are considered as
‘untouched’.
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(a) ComBAT volume impact (b) ComBAT thickness impact

(c) ImUnity volume impact (d) ImUnity thickness impact

(e) Volume harmonization need (f) Thickness harmonization need

Figure 5.6 – Thickness and volume harmonization impacts for healthy males from the ABIDE
database.
A) Effect of ComBAT on volumes metric; B) Effect of ComBAT on thickness metric; C)
Effect of ImUnity on volumes metric; D) Effect of ImUnity on thickness metric;
Color code for A-D) Red: negative effect of harmonization (ratio > 1.1); Blue: no noticeable
effect (0.9 > ratio > 1.1); Green: positive effect of harmonization (0.9 < ratio); White: Non
investigated;
E) ROIs volume metric need for harmonization; F) ROIs thickness metric need for harmo-
nization.
Color code for E-F ) Yellow: ROIs needing less harmonization (0 < ratio < 0.5); Orange:
ROIs requiring harmonization (0.5 < ratio <1); Red: ROIs requiring strong harmonization
(1 < ratio); White: non investigated.
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5.3.2 Thickness analysis on healthy subjects

Figure 5.7 presents harmonization impacts on thickness development across the age range
5 to 25 y.o. In contrast to volume results (Figure 5.4), it seems that harmonization did not
have such a positive impact. For some ROIs (Cuneus, Medial orbito frontal), ImUnity even
degraded thickness trends. Table 5.2 confirms this point. Although harmonization was bene-
ficial for about one-third of the ROIs considered, it shows that for nearly 50% of them, both
harmonization solutions worsened the observed trends. This result goes against the initial
harmonization hypothesis and requires more investigations.

Fig. 5.6(b) and Fig. 5.6(d) visually presents the effect of both solutions on ROIs in-
vestigated. Once again we can observe that harmonization did not go as well as expected.
This can first be explained using Fig. 5.6(f), where we can clearly observe a lesser need for
harmonization for the thickness than for the volumes. This is also illustrated in Fig. 5.6(f),
in which we can spot the difference between volume and thickness evolution needed for har-
monization. In fact, harmonization seems to be more needed when considering ROIs volumes
than thickness. This point could explain previous results on thickness harmonization as some
ROIs did not require harmonization and thus it was more likely to worsen further extracted
metrics.

Based on these figures, it seems that the ‘temporal’ and ‘occipital’ lobes are the main
two regions concerned by thickness harmonization. Even in these two regions, ComBat could
not correct the metric trends whereas ImUnity could improve ‘occipital lobe’ thickness trend
only.

Male
ComBAT ImUnity

Metric ratio <
0.9

36% 31%

Metric ratio >
1.1

46% 49%

Table 5.2 – Harmonization volume metric ratio for ComBAT and ImUnity, on healthy males.
As presented in Section 5.2.5, a ratio < 1 corresponds to a volume trend alignment after
harmonization towards the reference trend. Here we present the percentage of ROIs with ratio
< 0.9 (improvement) or > 1.1 (degradation), ratios in between are considered as ‘untouched’.
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Lingual Average mean

Medial Orbito frontalMiddle temporal

Cuneus Temporal

Occipital Para-hippocampal

Parietal Caudal anterior cingulate

— : Literature reference
— : Original data
— : After ImUnity  
— : After ComBAT

Figure 5.7 – Effect of ImUnity and ComBAT on the evolution with age in considered brain
ROIs’ thickness, for healthy males. Black lines correspond to literature trends while green
(resp. blue) lines refer to trends found on ImUnity-harmonized (resp. ComBAT-harmonized)
data. Red lines correspond to trends obtained on original data before harmonization. 95%
confidence intervals are displayed.
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5.3.3 Impact on ASD patients

So far, we have only presented results for healthy subjects. In this section, we present the
impact of harmonization in the case of ASD patients. As mentioned in subsection 2.1.2, we
only present results for ASD males as we could not gather enough literature results for ASD
females brain development.

Table 5.3 presents our metric ratio for ROIs volume and thickness. Similarly to previous
results on healthy subjects, we observed a clear positive impact of harmonization on ROIs
volumes for about 90% of ROIs both methods could bring their trends closer to the literature.
On the other hand, it was less beneficial for ROIs thickness, and in nearly 40% of investigated
ROIs, the harmonization was negatively impacting the trends. Figures 5.8(e) and 5.8(f)
confirm these results and highlight harmonization benefits for ROIs volume metric whereas
its effect is less clear for the thickness. Similarly to subsection 5.3.2, this can be explained
by a lesser need for harmonization for the thickness as illustrated in Figure 5.8.

Volume Thickness
ComBAT ImUnity ComBAT ImUnity

Metric ratio <
0.9

94% 88% 53% 53%

Metric ratio >
1.1

6% 6% 45% 37%

Table 5.3 – Harmonization volume & thickness metric ratio for ComBAT and ImUnity, on
ASD males. As presented in Section 5.2.5, a ratio < 1 corresponds to a volume trend
alignment after harmonization towards the reference trend. Here we present the percentage of
ROIs with ratio < 0.9 (improvement) or > 1.1 (degradation), ratios in between are considered
as ‘untouched’.

Figure 5.8 can also be used for harmonization needs comparison between healthy and
ASD subjects. For example, we found a similar harmonization need for the volumes (lateral
ventricles, white matter and thalamus). However, for the thickness, results seem to be
impacted by the subject’s status. While the thickness of temporal and occipital lobes were
concerned by harmonization for healthy males, it was not the case for ASD subjects for which
the frontal lobe thickness were the metrics the most affected by sites induced noises.
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(a) ComBAT volume impact (b) ComBAT thickness impact

(c) ImUnity volume impact (d) ImUnity thickness impact

(e) Volume harmonization need (f) Thickness harmonization need

Figure 5.8 – Thickness and volume harmonization impacts for ASD males from the ABIDE
database.
A) Effect of ComBAT on volumes metric; B) Effect of ComBAT on thickness metric; C)
Effect of ImUnity on volumes metric; D) Effect of ImUnity on thickness metric;
Red: negative effect of harmonization (ratio > 1.1); Blue: no noticeable effect (0.9 > ratio
> 1.1); Green: positive effect of harmonization (0.9 < ratio);
E) ROIs volume metric need for harmonization; F) ROIs thickness metric need for harmo-
nization.
Yellow: ROIs needing weak harmonization (0 < ratio < 0.5); Orange: ROIs requiring har-
monization (0.5 < ratio <1); Red: ROIs requiring strong harmonization (1 < ratio); White:
non-investigated.

5.3.4 Mixed Linear Model analysis

As mentioned in subsection 5.2.5, we eventually ran statistical tests to observe the impact
of harmonization on biological and acquisition features. Table 5.4 and Table 5.5 present the
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number of tests for which H0 was rejected (p < 5.10−5), independently for volume and
thickness metrics investigation. Except for the last line of the table, it was expected to reject
H0 as these biological features directly impact brain development. This is different for the
last line of the table which focuses on the site affiliation correlation. For this case, the idea
was not to reject H0 as site affiliation should not impact brain development. The reported
number is expected to be low.

Table 5.4 highlights the need for harmonization as the number of correlated volumes to
sites affiliation is fairly high (81%). As expected, this number drops after harmonization (15
after ImUnity and 9 after comBAT), signifying the positive effect of harmonization. On the
other hand, results for biological features are less encouraging, as in most cases, the number
of correlated volumes decreases after harmonization. This is mainly the case for ComBAT
which seems to have removed the variations induced by the status (here being ASD). ImUnity
was able to preserve most of the biological variation and was able to increase the number of
volumes correlated to age (26 -> 29).

Table 5.5 presents the equivalent results for ROIs thickness metrics. Here we can first
observe that brain thickness development is less impacted by harmonization issues, as only
2% of brain regions (frontal and cingulate areas) have their thickness significantly impacted
by site affiliation. This is in line with the previous results (see subsection 5.3.2). After
ComBAT, only one remaining region (the frontal lobe) seems to be impacted by site effects.
On the other hand, ImUnity seems to have had a negative effect as 5 regions thickness
are significantly impacted by site effects after harmonization (the cingulate, temporal, and
frontal areas). In addition, both harmonizations could not improve biological correlations.
Note that except for ImUnity and the age, both methods seem to have induced a global loss
of biological information in the data as the number of correlated thickness evolution reduced
after harmonization.

Original data ImUnity ComBAT
Age 26 29 17
Sex 8 4 3
Status 29 16 0
Age² 28 24 9
Age.Sex 12 4 2
Age.Status 34 18 0
Sex.Age² 19 5 1
Status.Age² 35 23 0
Site affiliation 73 15 9

Table 5.4 – Number of KR tests rejecting H0: "the feature has no influence on the observed
volume" over the 80 ROIs investigated.
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Original data ImUnity ComBAT
Age 84 55 17
Sex 17 6 9
Status 12 4 5
Age² 38 16 17
Age.Sex 7 10 10
Age.Status 19 5 6
Sex.Age² 5 6 9
Status.Age² 56 6 9
Site affiliation 3 5 1

Table 5.5 – Number of KR tests rejecting H0: "the feature has no influence on the observed
thickness" over the 124 ROIs investigated (independently for left and right hemispheres).

5.3.5 Freesurfer group analysis

Our last experiment consisted in a surface based group analysis ran through the Freesurfer
software. For this experiment, we only considered healthy subjects. We also considered sex as
a biological covariate of interest in order to avoid cluster effect due to sex related differences.

Figure 5.9 presents the obtained results, showing in yellow the clusters detected by the
model that are significantly impacted by site affiliation. As for previous experiments, results
before and after harmonization are illustrated. It is interesting to point out the positive effect
of harmonization. Three clusters were identified on original data, only one after ComBAT and
none could be detected after ImUnity. Once again, this highlights the need for harmonization
and also confirms the site removal effect of both methods. Note however that, similarly to the
experiment run in section 4.2.4, this result is necessary but not sufficient. In fact if we refer
to our definition of harmonization (‘removing site or scanner related noises while preserving
biological information in scans’), this experiment only verifies the first point.
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Figure 5.9 – Surface-based thickness group analysis results for both hemispheres, on raw
data (top row), after ImUnity harmonization (middle row) and after ComBAT (bottom row).
Spots in yellow indicate clusters areas impacted by site or scanner affiliation, accounting for
biological (sex and age) covariates.

5.4 Discussion

In this chapter, we further evaluated our proposed harmonization solution. The first
validation steps using traveling subjects, site and patients classifications (section 4.3) already
demonstrated the potential of our method. This chapter completes these previous works and
demonstrates the positive effect of ImUnity on brain development trajectories. Experiments
were also ran on ComBat-harmonized data for comparison purposes. Using a derived metric
(Equation 5.1) to quantify trend variations, we were able to assess the effect of both solutions.
It was also helpful to visualize the need for harmonization of each ROI taken independently.

Regarding brain volumetry, ImUnity demonstrated its ability to remove site or scanner
biases, while having a positive effect on the study of cortical and subcortical developmental
trajectories. ImUnity and ComBAT could adapt images contrasts while preserving geo-
metrical information. In our first experiment, we showed that this is sufficient to improve
the apparent trends in brain volume evolution and bring them closer to the results from
large mono-centric studies. This was confirmed by the metric (Equation 5.1), with a global
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improvement for volume tendency. Most of the ROIs volumes seemed to be impacted by
harmonization issues, and we could improve about 95% (resp. 88%) ROI’s volume evolu-
tion among healthy subjects (resp. ASD males). Note that all these results are based on
the derived metric proposed to compare ROI development tendencies to the literature. No
statistical test was run for this part, but these results give an interesting data interpretation
and a good intuition for harmonization impacts. Moreover, these results were confirmed by
the linear mixed model approach, a well known statistical model that can be used to test
for significant features effect. In our case, it was used to model the impact of all available
features (age, sex, status and origin) plus some combinations of them up to the order 3
(age2, sex.age2, status.age2) on ROIs volume evolution. It allowed to highlight the need for
harmonization as the origin (here the site) of images was significantly impacting most of
ROIs volume trend before harmonization. This was reduced after harmonization. On the
other hand, harmonization seemed to have reduced biological correlations, which goes against
our initial hypothesis. Both methods showed similar results but our method seemed more
adapted as ComBat removed more biological significant correlations and corrected less ROI
volume trends than ImUnity. It is however important to note that it is not clear from the
literature review that every ROI should be significantly correlated to every biological feature
taken into account in this study. For example, several studies (Vijayakumar et al., 2016;
Wierenga et al., 2014) present either linear or quadratic correlation with age depending on
the brain region considered. Some reports also show contradictory results in specific regions
of interest. In order to be able to conclude, a thorough analysis of the trends found in various
mono-centric studies still needs to be performed and the results compared to the ones found
in our statistical analysis.

We also analyzed the impact of harmonization on brain thickness development. Results
were less encouraging as harmonization was less beneficial on the trends evolution with age.
We could even point out several cases for which harmonization degraded the tendencies. Our
results are not in line with previous studies on the topic (Beer et al., 2020; Fortin et al., 2018).
However, it is important to note the different way of using ComBat in our study where we
harmonize images intensity first and then extract the metrics of interest (here brain volumes
and thickness) while the metrics are used directly in ComBat in the previous studies. We used
this pipeline in a realistic clinical situation, in which harmonized images could contribute to
the analysis of different clinical assumptions. But these different usages of ComBat might
explain the differences between the results. Also note that further investigations using our
derived metric (Equation 5.1), and the linear mixed model approach also seemed to point
to large differences in the need for harmonization between brain volumes and surface time
evolution.

Another interesting point to mention is the crucial role of image contrast in standard
image analysis workflows. Indeed, our studies show that both harmonization methods only
modify images contrast and preserve the anatomies (see section 4.3). Yet, these induced
variations directly impacted Freesurfer (which is a widely used software) extraction metrics.
Thus, as the domain of acquisition highly impacts image contrast, it is likely to also impact
further analyses using Freesurfer or any other such software.

In our work, the reference contrast for the harmonization process was chosen arbitrarily.
Yet, ImUnity could be used to harmonize all images to any of the reference domains. It
could thus be interesting to see how this choice impacts the results. It is very likely that
there is an optimal contrast domain for a specific application, as a radiologist would adapt the
observed contrast to best see a specific image feature. As the chosen reference contrast has an
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impact on Freesurfer metrics extraction, it is very likely that this could explain the difficulties
encountered regarding the thickness trends. In addition, it could be interesting to enlarge
the age range by adding sites from other databases (e.g. UK Biobank, Sudlow et al. (2015))
and see how ImUnity generalizes the results knowing that it has already been trained on
images from adult volunteers of the OASIS and SRPBS databases. Given these encouraging
results, ImUnity could be used to look at the brain volume trajectories in patients with brain
diseases. In this case, it could also be easily adapted to other types of MRI sequences such
as diffusion and resting-state fMRI acquisitions.
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Chapter 6

Conclusion and perspectives

This study was initiated by the French national project DEFIDIAG, focusing on Intel-
lectual Disorders (ID) diagnosis among children, and was supported by MIAI, the Grenoble
Multidisciplinary Institute in Artificial Intelligence, within the multiomics chair. In a context
involving a large multi-centric database gathering data from children with a large age range,
several challenges had to be addressed.

The first concern about the DEFIDIAG project was the population age range and its
consequences on further analyses. After a bibliographic review about brain development, we
assessed the importance of biological covariates such as age, sex or ID on brain trajectories.
Moreover, we were able to set up a coherent pre-processing workflow in order to homogenize
the data while preserving the biological variations induced by age. This was mainly done
by using an open access age-specific templates database, representing average brains at 6
months intervals.

The second concern was MR data-harmonization between the multiple sites of acquisition
and has become our main point of interest. Harmonization is a very active research field and
has gained visibility due to the increase in the number of multi-center databases such as
DEFIDIAG, ABIDE, ENIGMA, UKBIOBANK, ADNI, etc. As mentioned in section 1.2,
Bottani et al. (2022) highlighted important intra-hospital variations in a context of a clinical
care study. It would be very interesting to evaluate the capacity of existing harmonization
solutions to be included in routine clinical care. In these important multi-site databases, we
have observed in our work the importance of taking into consideration the site induced noises
during the analysis and predictions of ML models. As described in chapter 2, several data
harmonization solutions have been proposed since the late 90s. In chapter 3, we proposed to
compare a recent Deep-Learning (DL) based solution, ‘cycleGAN’, to ComBAT, a statistical
solution considered as a reference in the domain. This study on real and synthetic data led
to interesting results that emphasized the great potential of DL based approaches. On the
other hand, even if cycleGAN provided good results, its architecture was limited to ‘two
site harmonization’ only and was thus hard to use in most multi-centric studies scenarios.
Other practical limitations were identified and we concluded that no existing harmonization
solution was suited for our needs. Therefore, we proposed an original DL harmonization
solution called ImUnity. In chapter 4, we described this tool and presented complementary
experiments to validate our approach. Harmonization on traveling subjects led to state of the
art harmonization results. Using two classification tasks (1: site; 2: status), we showed that
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ImUnity was able to remove site effects and preserve biological information. Additionally, it
was shown that the solution could generalize its training to data coming from unseen sites.
In a final study presented in chapter 5, we tried to estimate the need and impact of MR
harmonization in brain developmental analyses. This was done through multiple approaches
that included: 1) an investigation on brain development evolution with age compared to
literature results; 2) the introduction of a metric to compare trends before and after harmo-
nization with reference trends from literature; 3) statistical tests consisting in a linear mixed
model approach to better estimate harmonization impact on features (biological or not); 4) a
group analysis effect ran to highlight brain surface areas mostly concerned by harmonization.
Overall, we observed significant improvement of ROIs volume evolutions after harmonization
with similar performance for healthy volunteers and ASD patients. The impact on thickness
evolution was less significant and negative impacts of harmonization were even observed in
some ROIs.

Several limitations of our work can be noted. First, our proposed solution is a 2.5D
setup. Although it requires less parameters to fit than a 3D solution, it also tends to produce
outputs of lesser quality. Second, ImUnity was only tested for harmonizing anatomical T1w
images and we have not tested the model on other types of sequences. Theoretically, our
method should produce similar results (as it was not designed specifically for T1w data),
but it could be very interesting to evaluate its performances on MR diffusion images or
images produced by CT scanners. Ultimately, ImUnity should also allow for multi-sequence
harmonization (e.g. T1w and T2w). This is a real challenge that has not been investigated
in the literature yet but could have a major impact on clinical practices. We have started
a study on a combined T1w and CT harmonization, and the promising preliminary results
warrant further investigations.

Additionally, geometrical distortions should be included as well as contrast variations.
The last presented results (section 5.3) suggest that all ROIs are not impacted similarly and
that contrast alignment was not enough to remove the entire site’s induced signal. This
goes against the global hypothesis that these variations only impact images contrast and not
their geometry. To tackle this point, in the same way as in the first study (chapter 3), we
could first introduce synthetic local geometrical distortions (using elastic transformations for
example) and observe harmonization impact on it. In a second time, these variations could
be introduced in ImUnity’s training (alongside contrast variation) in order for the model to
learn how to detect these local geometrical variations and to correct them.

Another crucial point to mention is the choice of the reference contrast used during ImU-
nity inference. Our last study highlighted the sensitivity of conventional software, such as
Freesurfer, to contrast variations. One assumption was that there should be an optimal ref-
erence contrast for each task. A study to find the best reference contrast should be done.
This would lead to better harmonization results, and probably significant improvements in
brain cortical thickness estimates.

On top of technical developments, deeper investigations into brain developmental tra-
jectories have to be made. While results were clear for brain ROIs volume evolution, the
results for cortical thickness were insufficient to conclude. We note that the age distribution
(Figure 5.1) of the subjects was non uniform, with a distribution close to a Gaussian curve
centered around 15 years old. Adding subjects from other databases could homogenize the
distribution for each population and reduce the confidence interval of the regressions. Simi-
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larly, experiments could be run on different multi-centric databases presenting adult subjects
with less biological variations. Another critical point, already mentioned in section 5.4, is
the investigation of biological impact on each independent ROI. Based on literature results
from large mono-centric results, we should be able to better estimate the impact of each
biological feature on the observed volumes or thicknesses and actually count the number of
ROIs positively or negatively impacted by the harmonization methods.

A last point that would be helpful to better evaluate harmonization need and impact is
the creation of a large ‘traveling database’ presenting important biological variations. This
could focus on a specific pathology among children that would successively be scanned in
several sites. If the number of subjects is large enough, we should be able to better estimate
sites induced noises, biological information etc... This would allow an easier comparison of
harmonization solutions but also a better understanding of the effects of each scanner on
final images.

In conclusion, it seems that the tools developed during our project can be used to an-
alyze the DEFIDIAG data when available. Even if new features can be added and further
validations can be performed, ImUnity seems to be able to provide high quality images in
all directions, remove site/scanner bias, and improve patients classification and brain de-
velopmental volume trajectories in both large and small brain regions. Our work has been
submitted for publication in a peer reviewed journal and presented in several national and
international conferences. As a consequence, collaborations with French institutes (CRE-
ATIS in Lyon and ARAMIS in Paris) and US laboratories have been established to share
and further test the potentials of our approach.
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Chapitre 7

Résumé du manuscrit

Résumé

Ce projet de thèse s’inscrit dans le cadre du projet national français DEFIDIAG. Il s’agit
d’un projet multi-centrique axé sur le diagnostic de déficience intellectuelle chez l’enfant. De
ce contexte spécifique, plusieurs préoccupations ont émergé et ont été abordées au cours de
cette thèse.

La première étude a porté sur le développement du cerveau, de la petite enfance au début
de l’âge adulte. Ce manuscrit présente le développement normal du cerveau avec l’âge ainsi
que l’impact des covariables biologiques comme le sexe ou lea pathologie. Ces résultats sont
cruciaux pour mieux comprendre l’impact des variables biologiques sur le développement du
cerveau et pour pouvoir observer les changements induits par des pathologies d’intérêt. En
parallèle, la prise en compte de ces variations lors de l’étape de pré-processing est essentielle.
C’est pourquoi nous présentons les recommandations de la littérature concernant ces étapes.

En raison de la nature qualitative des acquisitions IRM, produisant des images pondérées
c’est-à-dire non quantitatives, ce projet s’est rapidement concentré sur l’harmonisation des
données IRM. Les séquences IRM, telles que T1w ou T2w, sont sensibles à la variabilité
des scanners entre les fournisseurs (matériel, logiciel), aux choix techniques (par exemple,
les paramètres de la séquence) et aux artefacts d’acquisition. Par conséquent, la mise en
commun d’images provenant d’études multi-centriques afin d’aborder une question clinique
ou biologique spécifique ne garantit pas une augmentation de la puissance statistique, en
raison d’une augmentation parallèle de la variance non biologique. Pour ces raisons, une revue
de la littérature portant sur les méthodes d’harmonisation a été réalisée afin de rassembler
les solutions existantes et de comprendre les principaux défis restants.

Sur la base de notre analyse bibliographique, il nous est apparu que les solutions d’harmo-
nisation existantes ne pouvaient pas être adaptées à un usage clinique en raison de limitations
intrinsèques. Par exemple, la plupart d’entre elles ne peuvent pas généraliser leur appren-
tissage à des données non vues. Par conséquent, nous avons proposé un modèle original
d’apprentissage profond (deep-learning) d’harmonisation, ’ImUnity’. Adoptant une approche
2.5D, il dérive d’une architecture de type VAE-GAN à laquelle se greffent un module biolo-
gique et de ‘désapprentissage’. Cette approche a été évaluée à l’aide de 3 bases de données
open source (ABIDE, OASIS et SRPBS), contenant des IRM provenant de plusieurs types
de scanners d’acquisition ou de fournisseurs, avec des sujets d’une large tranche d’âge.

Par la suite, nous avons évalué l’impact d’ImUnity sur le développement des volumes céré-
braux et des épaisseurs corticales, en utilisant la base de données ABIDE. ImUnity a permis
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de rapprocher l’évolution du volume cérébral avec l’âge, avec des tendances de la littérature
basées sur de grandes études mono-centriques. Cela fut moins évident pour l’épaisseur corti-
cale, car elle semble moins concernée par les problèmes d’harmonisation. Des investigations
plus approfondies doivent être menées pour compléter cette dernière étude sur l’impact de
l’harmonisation sur le développement du cerveau.

Keywords— Dévelopement cérébral, Deep Adversarial Network, harmonisation de données
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7.1 Introduction

Ce projet de thèse a émergé du projet national français DEFIDIAG (Binquet et al., 2022).
Il est soutenu par MIAI, le ’Multidisciplinary Institute in Artificial intelligence’ de Grenoble,
et fait partie de la chaire multiomique.

DEFIDIAG, pour ‘Intellectual Disability Diagnostic’, est un projet pilote financé par
le programme "Plan France Médecine Génomique 2025 PFMG 2025" portant sur l’étude
de la déficience intellectuelle (DI). Parmi les maladies rares, la DI est la première cause
de consultation dans les centres de génétique pédiatrique et on estime que 1 à 3% de la
population est atteinte de DI. Elle est extrêmement difficile à diagnostiquer car des centaines
de gènes sont impliqués dans ces pathologies, rendant difficile l’identification des causes de
la maladie et l’adaptation des soins aux patients. DEFIDIAG vise à "démontrer la faisabilité
du séquençage complet du génome, ainsi que son efficacité, en première intention, dans la
détermination des gènes impliqués dans la déficience intellectuelle". Au total, 1 275 patients
ainsi que leurs deux parents biologiques devraient participer à l’étude sur une durée de plus
de 3 ans. Cela "permettra à davantage de familles de connaître plus rapidement les causes de
la maladie, de bénéficier dans un délai plus court d’une prise en charge adaptée et peut-être
de prévenir la survenue de complications spécifiques" (https://defidiag.inserm.fr/accueil/the-
defidiag-program).

Intrinsèquement, DEFIDIAG se concentre sur les analyses génétiques. L’étude recueille
également des données d’imagerie cérébrale par résonance magnétique sur des sujets répartis
sur 11 sites dans toute la France. Grâce à l’expertise de notre laboratoire en matière de
traitement d’images médicales, notre projet de thèse vise à combiner ces données radiomiques
avec l’analyse génétique afin d’acquérir des connaissances sur ces maladies rares et d’améliorer
leur diagnostic.

A ce jour, les données DEFIDIAG sont toujours en cours de collecte. Par conséquent,
nos travaux ont été consacrés au développement d’outils de traitement d’images adaptés aux
spécificités des données DEFIDIAG et permettant d’ouvrir la voie aux analyses futures. En
particulier, 2 préoccupations majeures ont retenu notre attention : (1) les sujets de la base de
données sont principalement des enfants, et l’effet de l’âge sur le développement du cerveau
au cours de cette tranche d’âge (5-25 ans) doit être pris en compte afin d’éviter les facteurs
de confusion. (2) Dans le contexte de DEFIDIAG, et en général pour toutes les études por-
tant sur des maladies rares, le nombre de patients peut être très faible et peut limiter la
fiabilité des résultats. Par conséquent, il est courant de rassembler des données provenant de
différents centres d’acquisition. Cependant, au cours du programme DEFIDIAG, ces acquisi-
tions n’ont pas été réalisées en suivant un protocole d’imagerie spécifique à l’étude. Chaque
site d’inclusion a suivi ses propres procédures d’imagerie. Nous attendons donc de grandes
variations dans l’ensemble de données en raison des différents scanners et éventuellement des
différents protocoles d’acquisition. Le nombre de patients par site étant limité (quelques di-
zaines voire quelques centaines), ces fluctuations induites par les sites peuvent avoir des effets
plus importants que les variations biologiques d’intérêt. Il est donc primordial de considérer
ces variations et d’essayer de les supprimer. Les méthodes permettant de corriger ces effets
multi-centriques sont appelées ‘méthodes d’harmonisation’ et sont devenues notre principal
point d’intérêt durant cette thèse.

Compte tenu du contexte énoncé, cette thèse s’est focalisée sur le développement de
nouveaux outils de Deep-Learning (DL) pour l’harmonisation d’IRM cérébrales. Les données

https://defidiag.inserm.fr/accueil/the-defidiag-program
https://defidiag.inserm.fr/accueil/the-defidiag-program
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DEFIDIAG n’étant pas disponibles, il a été choisi de tester nos solutions sur des bases de
données d’imagerie en accès libre, présentant des caractéristiques aussi proches que possible
de celles de DEFIDIAG. La base de données ABIDE Di Martino et al. (2014), qui est une
importante base multi-centrique axée sur les Troubles du Spectre Autistique (TSA) chez
l’enfant, a finalement été choisie comme référence. Toutes les études réalisées au cours de
cette thèse ont été effectuées sur cette base ABIDE. Deux autres bases de données ont été
utilisées à des fins de validation car elles présentent des acquisitions de ‘traveling subjects’
(sujets scannés sur différents sites) et permettent une évaluation quantitative.

• Revue bibliographique
La première partie de cette thèse a consisté à rassembler les résultats de la littérature
en rapport avec notre projet. Elle a commencé par une revue de la littérature portant
sur le développement normal du cerveau durant l’enfance (voir sous-section 2.1.1).
Cette étude fut essentielle pour les recherches ultérieures, qui ont été effectuées sur des
données d’enfants afin de correspondre au contexte initial. En plus des sujets sains, nous
nous sommes ensuite intéressés aux troubles cérébraux neurologiques et à leurs impacts
sur le développement cérébral. Enfin, nous avons examiné l’impact du développement
du cerveau pour son recalage sur un atlas de référence, une étape de pré-processing
classique en imagerie médicale. En raison des grandes variations cérébrales attendues
au cours de l’enfance et de l’adolescence, des atlas adaptés à chaque tranche d’âge ont
été sélectionnés.
Notre deuxième analyse bibliographique a porté sur l’harmonisation de données (voir
section 2.2). C’est un sujet qui fut introduit pour la première fois en 1998, suivi par de
nombreuses avancées depuis. Les solutions statistiques basées sur l’algorithme de corres-
pondance des histogrammes ont été les premières à donner des résultats prometteurs et
beaucoup de solutions s’en sont inspirées. Par la suite, des solutions inspirées du monde
de la génomique, où le ‘batch effect’ doit être supprimé, ont été proposées. ComBAT est
l’une d’entre elles, et est toujours considérée aujourd’hui comme une référence en har-
monisation de données IRM. Enfin, sous l’influence de la popularité croissante du DL,
des modèles initialement développés pour la segmentation ou la génération d’images
ont été adaptés à l’harmonisation. La plupart des études récentes sont basées sur le
DL, utilisant les architectures U-Net, cycleGAN ou VAE, et ont montré des résultats
très prometteurs.

• Comparaison des méthodes de l’état de l’art
Notre première étude (chapitre 3) a comparé deux solutions d’harmonisation de la
littérature. L’idée était de comparer un modèle DL récent (cycleGAN) à une solution
linéaire de référence (ComBAT) afin d’estimer le potentiel des solutions d’harmonisation
basées sur DL. Cela a aussi permis de proposer un workflow original pour évaluer les
résultats de l’harmonisation. Dans notre étude, nous nous sommes concentrés sur la
suppression des bruits induits par le site mais aussi sur l’impact de l’harmonisation sur
des bruits synthétiques que nous avons artificiellement ajoutés aux images. Nous avons
considéré deux types de bruits : (1) les ’bruits globaux’ qui imitent les bruits induits
par le scanner et que nous souhaitons supprimer, et (2) les ’bruits locaux’ pouvant être
assimilés à des variations locales biologiques (traumatisme, accident vasculaire cérébral,
tumeur...), devant être préservés après l’harmonisation. L’évaluation s’est basée sur les
‘données radiomiques’ extraites des images avant et après harmonisation. Un Support
Vector Machine (SVM) a ensuite été utilisé pour détecter la présence ou l’absence du
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signal d’intérêt (bruit induit par le site, bruit synthétique global ou local).
• Proposition d’un modèle original d’harmonisation DL

Suivant notre première étude qui a montré que les techniques DL peuvent être adaptées
à l’harmonisation de données IRM, nous avons constaté dans la revue de la littérature
que chaque solution DL présente des conditions spécifiques d’utilisation, dues à leur
architecture. Par exemple, cycleGAN est limité à l’harmonisation de données de deux
sites seulement. Cette condition est rarement satisfaite en pratique rendant ce modèle
non adapté aux grandes bases de données multi-centriques. D’autres exigences peu
réalistes concernent 1) le besoin de ‘traveling subjects’ pour entraîner la solution ; 2) le
besoin d’ajuster la solution à chaque fois que des données provenant d’un nouveau site
ou d’un nouveau scanner sont ajoutées ; 3) le besoin de ré-harmoniser les données pour
chaque application clinique. Dans chapitre 4, nous avons proposé une approche originale
d’harmonisation qui ne repose pas sur ces conditions et est donc adaptée à la pratique
clinique. Cette nouvelle solution s’appelle ImUnity et est basée sur une architecture
VAE-GAN. L’étape de validation de cette méthode a représenté la principale innovation
proposée dans cette thèse. Cette étude rassemble différentes expériences portant sur
l’effet de suppression de site, la prédiction du diagnostic de TSA et l’amélioration de
la similarité en utilisant des ‘traveling subjects’.

• Effets de l’harmonisation sur le développement cérébral
Afin d’approfondir notre processus de validation, nous avons finalement testé ImUnity
sur une application clinique liée au programme DEFIDIAG. L’étude est présentée dans
le chapitre 5. Nous avons évalué l’effet de l’harmonisation sur l’évolution du volume
apparent du cerveau et de l’épaisseur corticale au cours de l’enfance. Cette évaluation
a été réalisée sur des sujets sains et des patients atteints de TSA, combinant les 11 sites
d’acquisition de ABIDE. Les évolutions des mesures de volumes et d’épaisseur corticales
avec l’âge, mesurées avant et après harmonisation, ont été comparées à celles trouvées
dans la littérature dans de grandes études mono-centriques. Une partie de l’étude a été
menée en collaboration avec Constance Sohler, une étudiante ingénieur qui a effectué
son stage de fin d’études sous ma supervision. Notre travail suggère un impact positif
d’ImUnity, qui a réduit l’effet de site tout en améliorant les scores biologiques. D’autres
analyses statistiques doivent encore être effectuées afin de conclure correctement cette
étude.

7.2 Résumé de chapitre : Bibliographie
Le projet DEFIDIAG, et plus généralement les études impliquant des images du cerveau

d’enfants, présentent des défis spécifiques. Au cours du développement du cerveau, les volumes
cérébraux changent globalement, mais aussi localement dans les régions corticales et sous-
corticales. Afin d’être en mesure de traiter les données correctement et de mettre en commun
des données multiples provenant de différentes tranches d’âge, nous avons commencé par
rechercher des références sur le développement cérébral, puis sur les outils appropriés pour
le pré-processing de ces images.

Nous nous sommes premièrement concentrés sur l’évolution cérébrale (volume et épaisseur
corticales) avec l’âge. Nous avons rassemblé les résultats d’études mono-centriques et longi-
tudinales de la littérature. Ces études s’intéressent à l’évolution du cerveau chez des sujets
sains mais aussi chez des patients atteints de TSA, ce qui a permis de mieux comprendre les
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changements structurels induits par ces troubles intellectuels. Ces résultats ont été utilisés
dans le dernier chapitre (chapitre 5) comme références pour évaluer l’effet de l’harmonisation
des images.

Le second sujet documenté est l’étape de "recalage", qui consiste à aligner les scans sur
un cerveau de référence spécifique, également appelé "template". Ce template représente
un cerveau humain moyen en bonne santé. Cependant, des études ont montré que l’utili-
sation de templates classiques (type ’MNI’) pour des études traitant des données d’enfants
peut entraîner une perte d’informations. Ceci est une conséquence directe de la morphologie
du cerveau et des variations structurelles avec l’âge, que ce soit globalement ou localement
sous-section 2.1.1. Pour pallier ce problème, Sanchez et al. (2012a) ont proposé une base de
données en libre accès contenant des templates à intervalles de 6 mois pour la tranche d’âge
de 4,5 à 19,5 ans. Dans cette thèse, nous avons utilisé cette base de données pour l’étape de
recalage dans toutes les expériences impliquant des données d’enfants.

Notre revue de la littérature s’est ensuite intéressée aux principaux défis de l’harmonisa-
tion, et comment le domaine est passé de solutions statistiques classiques à des solutions plus
complexes avec la popularisation du DL. section 2.2 présente en détails les solutions actuelles
afin de mieux comprendre leurs principales forces et faiblesses.

Nous présentons dans un premier temps les solutions statistiques adaptées à l’harmoni-
sation existantes (sous-section 2.2.1). Celles-ci sont principalement inspirées de l’algorithme
d’alignement d’histogrammes (section 2.2.1) visant à aligner les distributions d’intensité des
sites considérés. Ces méthodes ont montré de bonnes fonctionnalités en termes de temps de
calcul et d’efficacité. Cependant, elles ont le défaut de supprimer certaines variations locales
d’intensité, ce qui pénalise fortement les analyses futures dans le cas où celles-ci sont d’origine
biologique.

Les principales solutions qui ont succédé aux méthodes d’alignement d’histogrammes ont
été le fruit de travaux d’une équipe du département de bio-statistiques de l’Université de
Pennsylvanie. Ils ont proposé 3 solutions importantes, à savoir le ‘White-Stripe normaliza-
tion’, ‘RAVEL’ et l’adaptation de ComBAT à des données IRM. Cette dernière solution a
particulièrement fait parler d’elle et est encore aujourd’hui considérée comme référence dans
le domaine de l’harmonisation. Lors d’une étude comparative, Fortin et al. (2017) ont mon-
tré que ComBAT était plus performant pour modéliser et supprimer la variabilité indésirable
entre les sites dans les cartes FA et MD que les autres méthodes existantes. ComBAT semble
préserver à la fois la variabilité biologique et supprimer les variations indésirables introduites
par le site beaucoup mieux que les autres techniques. Depuis le papier original en 2017,
plusieurs études proposant des versions modifiées de ComBAT ont été publiées (Beer et al.,
2020; Da-ano et al., 2020; Pomponio et al., 2020).

Au cours des dix dernières années, l’apprentissage profond a été largement utilisé dans
les études d’imagerie médicale en général. Ce fut également le cas pour l’harmonisation de
données IRM, qui peut être considérée comme un problème de ‘domain adaptation’ (DA).
Nous nous sommes donc intéressés aux solutions de DL existantes pour l’harmonisation
d’images médicales. Ces modèles génératifs visent à supprimer le bruit propre aux sites en
générant des images "corrigées". Une fois réalisé, le scan harmonisé peut être utilisé dans
n’importe quel processus clinique. Pour être efficaces, ces solutions doivent être adaptées à
n’importe quel site ou scanner et ne doivent pas nécessiter d’informations supplémentaires par
rapport au scan à harmoniser. Dans le cas contraire, leur intégration dans le pipeline clinique
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serait compromise. De nombreuses nouvelles techniques génératives ont été proposées, et sont
pour la plupart basées sur le principe du Generative Adversarial Network (GAN ; Goodfellow
et al. (2014)). Les modèles présentés en détails (sous-section 2.2.2) sont ‘DeepHarmony’
(Dewey et al., 2019), ‘CycleGAN’ Zhu et al. (2018), ‘Calamity’ (Zuo et al., 2021b) et StarGAN
(Choi et al., 2018).

Inspirées par les techniques de DA, certaines équipes ont proposé d’aborder l’harmonisa-
tion directement dans leur modèle utilisé pour leur application clinique. Au lieu de générer des
images harmonisées, ces solutions proposent d’estimer les bruits indésirables tout en abordant
une application clinique (segmentation, classification, etc...). Elles consistent généralement à
intégrer un module de ‘désapprentissage’ au modèle en le connectant à l’espace latent. L’éla-
gage (‘Pruning’) est une autre technique de ‘désapprentissage’ et consiste à supprimer les
connexions neuronales à l’intérieur du modèle pour l’empêcher l’overfitting ou d’apprendre
des caractéristiques liées aux différents sites.
Ces solutions semblent très intéressantes car elles ne génèrent pas de nouvelles images. Cette
étape nécessite généralement beaucoup de données et les modèles peuvent avoir du mal
à converger (voir sous-section 2.2.2). D’autre part, comme ces modèles ne génèrent pas
d’images harmonisées, des modules de ‘désapprentissage’ doivent être introduits et entraî-
nés pour chaque application clinique. À l’inverse, les modèles génératifs d’harmonisation
cherchent à produire des images qui peuvent être utilisées pour toute application clinique.
sous-section 2.2.3 présente en détails les solutions existantes. A savoir ‘Attention-guided deep
domain adaptation’ (Guan et al., 2021), ‘Unlearning module’ Dinsdale et al. (2021), et ‘model
pruning’ Dinsdale et al. (2022).

Enfin, nous avons proposé un tableau comparatif (2.1) des méthodes DL qui résume leurs
différentes caractéristiques.

7.3 Résumé de chapitre : Évaluation de ComBAT et cy-
cleGAN pour l’harmonisation de 2 sites

Dans cette étude, nous avons comparé ComBat et cycleGAN dans le cadre d’harmo-
nisation de données T1w. Nous avons réalisé cinq expériences différentes sur des données
synthétiques ainsi que sur des images réelles in vivo. Nous avons d’abord évalué la capacité
des 2 méthodes à supprimer des bruits globaux ajoutés manuellement dans les images ainsi
que leur capacité à préserver des variations locales ajoutées manuellement. Nous avons égale-
ment étudié l’impact de ces méthodes sur des tâches de classification de sites et la détection
des Troubles du Syndrome Autistique (TSA). Les effets de l’harmonisation ont été évalués en
utilisant des métriques radiomiques, connues pour être sensibles à l’harmonisation (Da-ano
et al., 2020; Orlhac et al., 2019). Enfin, nous avons évalué l’impact des solutions d’harmoni-
sation sur différents groupes de données radiomiques. Ces métriques sont censées représenter
les principales caractéristiques des images, comme la forme, le contraste ou la texture.

Pour comparer ces 2 méthodes, nous avons réalisé 3 expériences sur des données synthé-
tiques et 2 sur des données réelles in vivo. Les données synthétiques ont été utilisées pour
évaluer la capacité à supprimer le bruit global ou à préserver les structures locales connues
ou les variations biologiques locales. D’autre part, les données réelles ont été utilisées pour
estimer l’efficacité des méthodes à supprimer les effets de site, et leur capacité à améliorer
les analyses cliniques ultérieures. CycleGAN a été entraîné à partir de zéro pour chaque ex-
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périence. Pour toutes les tâches de classification, nous avons utilisé un SVM pour classifier
les données avant et après harmonisation. Pour évaluer la spécificité et la sensibilité de notre
classificateur, nous avons utilisé l’aire sous la courbe (AUC) de la courbe ROC (Receiver
Operating Characteristic). L’inspection visuelle n’étant pas suffisante pour évaluer l’effet de
l’harmonisation sur les images, nous avons extrait des métriques radiomiques. Nous avons
utilisé l’API python pyradiomics développée par van Griethuysen et al. (2017) pour extraire
101 métriques. Dans tous les cas, nous avons d’abord sélectionné les "métriques les plus
corrélées" à l’aide de tests de Pearson (exécutés indépendamment pour chaque métrique)
avec la métriques d’intérêt (affiliation au site, présence de bruit ajouté, etc...). Nous avons
également effectué des tests de Pearson après harmonisation sur des métriques radiomiques
préalablement sélectionnées afin de mieux comprendre l’impact des deux méthodes sur ces
métriques. Enfin, nous avons étudié la corrélation entre les métriques radiomiques et les va-
riables biologiques (sexe et âge). Notre hypothèse était que l’harmonisation devait augmenter
ou au moins préserver la corrélation lorsqu’elle existait. Toutes les procédures de classifica-
tion ont été effectuées en utilisant une ‘8-fold cross validation’ (tandis qu’une ‘10-fold cross
validation’ a été utilisée pour entraîner notre modèle cycleGAN) répétée 10 fois afin d’avoir
différentes combinaisons d’ensembles et de pouvoir calculer des évaluations statistiques sur
la performance des classifieurs. Pour visualiser les résultats, nous avons réduit la dimension
avec PCA et TSNE : (Maaten and Hinton, 2008). La PCA a d’abord été utilisée pour assurer
une représentation orthogonale de nos données (8 composantes utilisées, représentant envi-
ron 95% de la variance totale), puis TSNE pour représenter visuellement nos données selon
2 axes. Une fois les dimensions réduites, il a été possible de visualiser deux groupes de points
correspondant à des sites ou des types de données différents. Pour la validation, nous avons
uniquement utilisé les données réduites par la PCA, en utilisant les 8 premières composantes
principales.
Enfin, des ‘Welch t-tests’ (Welch, 1947) ont été exécutés pour valider si les résultats étaient
statistiquement significatifs ou non. Nous avons effectué ces tests sur toutes les combinaisons
de données sous les hypothèses nulles "la méthode n’a pas d’impact sur les performances du
SVM" et "les deux méthodes ont les mêmes performances". Nous avons ensuite observé les
p-valeurs de ces tests et rejeté l’hypothèse H0 si p < 0.05. Comme les variances des résultats
obtenues par les deux méthodes ne pouvaient pas être considérées comme égales, nous avons
utilisé le ‘Welch t-test’ pour comparer si les différences observées étaient statistiquement
significatives.

Pour la première expérience qui visait à évaluer la capacité des deux méthodes à supprimer
les bruits globaux ajoutés manuellement aux images, nous avons ajouté une variation Gaus-
sienne globale d’intensité centrée au milieu des images. Ensuite, un bruit Gaussien classique
a été ajouté pour induire des artefacts multiples et réduire le contraste des images.

Pour vérifier que les variations locales des intensités étaient conservées après l’harmo-
nisation, une variation Gaussienne d’intensité a été ajoutée localement à certaines données
échantillonnées de manière aléatoire. Cela imite les hyper-signaux que l’on peut trouver chez
les patients présentant plusieurs pathologies (AD, les gliomes ou les tumeurs) ou chez les
sujets ayant subi un accident vasculaire cérébral ou un traumatisme. Pour cette expérience,
cycleGAN et ComBAT ont été entraînés sur des données saines non modifiées, puis utilisés
sur l’ensemble du jeu de données (données originales + données modifiées).

La quatrième expérience évaluait l’harmonisation de 2 sites sélectionnés via la capacité
d’un SVM à classifier l’origine de chaque image. L’hypothèse ici était qu’aucun classificateur
ne devrait être capable de détecter avec précision l’origine des données. Nous avons donc
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essayé de classer l’origine des données avant et après l’harmonisation pour voir comment
l’harmonisation pouvait pénaliser le classificateur.

Dans notre dernière expérience, nous avons exécuté une tâche de classification clinique
(patients atteints de TSA vs. sujets sains) sur les données des sites A et B. Cette classification
a été effectuée avant et après harmonisation afin d’évaluer si les SVM sont plus performants
sur des données harmonisées que sur des données brutes. L’hypothèse ici était que l’harmo-
nisation devait préserver l’information biologique. Ainsi, nous nous attendions à obtenir de
meilleures métriques de classification après harmonisation.

Les résultats obtenus ont confirmé la nécessité d’harmoniser les données et ont mon-
tré l’efficacité de ComBAT et de cycleGAN pour l’harmonisation de données lors d’études
multi-centriques. Cette étude a montré que les deux méthodes réduisaient les bruits globaux
ajoutés et les effets de site, tout en conservant les modifications locales, et en améliorant la
précision du SVM pour la classification des lésions synthétiques et des patients atteints de
TSA. Cependant, il est important de souligner les différences entre les performances des deux
méthodes. Alors que ComBAT semble être plus adapté pour supprimer les bruits globaux
et améliorer la corrélation entre les métriques radiomiques et l’affiliation au site ou l’âge,
cycleGAN montre de meilleurs résultats pour préserver les modifications locales et améliorer
l’analyse statistique des études cliniques.

Les résultats concernant les différences entre les nombres de caractéristiques significative-
ment corrélées dans tableau 3.4 sont très intéressants. Cette différence peut s’expliquer par
le fait que l’algorithme ComBAT est conçu pour éliminer les effets de l’affiliation au site tout
en préservant les corrélations avec l’âge (puisqu’il prend l’âge et l’affiliation au site comme
entrées). A l’inverse, cycleGAN ne prend que les images originales en entrée. Il pourrait donc
être intéressant d’ajouter d’autres entrées biologiques comme l’âge et le sexe au réseau pour
voir comment cela pourrait affecter les résultats de tableau 3.4. En examinant les résultats
des tests de Pearson sur les métriques radiomiques, nous avons constaté que les deux mé-
thodes préservent les variables liées à la forme, comme prévu. Le contraire aurait en effet été
problématique, car les bruits liés au site n’altèrent pas l’anatomie des images mais impactent
leur contraste. Les impacts des deux méthodes sur les autres familles de métriques se sont ré-
vélés complémentaires : ComBAT a obtenu de bons résultats sur les caractéristiques GLRLM
alors que les caractéristiques GLSZM ont mieux bénéficié de l’harmonisation de cycleGAN.
Les autres familles ont été affectées de manière similaire par les deux algorithmes. Il serait
donc intéressant d’étudier des combinaisons des deux méthodes.

Pour illustrer l’adaptabilité des 2 méthodes à un faible jeu de données, nous avons égale-
ment réalisé l’expérience 4 (section 3.2.4) sur les sites A et B en utilisant 20 sujets témoins
uniquement. Nous avons constaté que cycleGAN était limité par la taille de l’échantillon et
n’était pas en mesure de corriger les effets de site, tandis que ComBAT a présenté des résul-
tats similaires à ceux obtenus avec l’ensemble des données.

Pour conclure, nous avons montré durant cette étude l’importance de l’harmonisation
lorsqu’il s’agit de données provenant d’au moins 2 centres. En effet, nous avons pu distinguer
avec précision les données provenant de deux sites d’acquisition, bien qu’ils aient utilisé le
même type de scanners. Les deux approches ont permis de supprimer efficacement les effets
de site indésirables tout en préservant les informations biologiques. Elles ont montré un
impact positif dans toutes les expériences étudiées, comme prévu. Elles ont de plus permis
d’améliorer les mesures de classification des patients atteints de TSA. Dans ce cas précis,
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CycleGAN a donné de meilleurs résultats que ComBAT, tandis que ce dernier a pu mieux
réduire les bruits globaux dans les images. Les résultats de CycleGAN ont démontré que les
solutions de DL semblent adaptées à l’harmonisation et pourraient surpasser les méthodes
statistiques classiques (linéaires) telles que ComBAT dans certaines conditions. De manière
surprenante, nous avons également montré que cycleGAN n’étaient pas toujours meilleur
que ComBAT. Les deux méthodes apparaissent complémentaires sur plusieurs aspects et
n’ont pas les mêmes effets sur les familles radiomiques. Cela pourrait déterminer le choix des
techniques en fonction de l’objectif à atteindre. En outre, cela ouvre la voie à de nouvelles
solutions capables de tirer parti des deux méthodes présentées. De plus, le fait que ces deux
solutions ne puissent pas être utilisées sur de nouveaux sites souligne la nécessité d’une
solution plus adaptée. Sinon, il est très peu probable qu’une solution d’harmonisation soit
utilisée dans la pratique clinique.

7.4 Résumé de chapitre : ImUnity, un VAE-GAN adapté
à l’harmonisation de données IRM multi-centrique

Inspirés par les dernières avancées dans les solutions d’harmonisation générative (Dewey
et al., 2020; Zuo et al., 2021a) et de ‘désapprentissage’ (Dinsdale et al., 2020; Guan et al.,
2021), nous avons proposé un modèle original d’harmonisation, ImUnity. Cette solution est
basée sur un modèle de DL 2.5D et permet une harmonisation rapide et flexible. ImUnity
génère des images RM "corrigées" qui peuvent ensuite être utilisées pour diverses études
d’imagerie. Ce modèle, basé sur une architecture VAE-GAN, utilise pour son apprentissage
plusieurs coupes provenant du même individu et des transformations de contraste d’image
aléatoires. Il désapprend également l’information liée aux sites à l’aide d’un module de confu-
sion connecté à l’espace latent. De façon similaire, un module biologique assure la préserva-
tion de l’information clinique (sexe, age, pathologies...). Une fois entraînée, cette architecture
doit permettre d’harmoniser les données provenant de nouveaux sites ou scanners sans qu’il
soit nécessaire de ré-entraîner le modèle. Il est aussi possible d’harmoniser les images vers
plusieurs ‘contrastes de référence’. L’utilisateur peut alors choisir arbitrairement plusieurs
reconstructions d’images RM en fonction du contraste choisi. L’architecture de ImUnity est
représentée en figure 4.1. Le code de ImUnity est en accès libre ici.

Notre modèle 2.5D combine les prédictions de 3 modèles 2D, chacun entraîné le long d’un
axe spécifique. Cette approche a été introduite pour la première fois dans le domaine de
l’harmonisation par (Dewey et al., 2019), soulignant le grand potentiel d’une telle approche.
Comme l’illustre figure 4.4, cela permet d’obtenir un résultat final de meilleure qualité sans
discontinuité suivant un axe comme il est fréquemment le cas avec des modèles 2D.

Pour évaluer l’efficacité et la flexibilité de notre outil d’harmonisation, nous avons évalué
l’approche en utilisant 3 bases de données open source contenant des images provenant de
plusieurs sites d’acquisition, scanners ou d’intensité de champs magnétiques, et d’un large
éventail d’âges de patients. Pour la plupart des expériences, ImUnity a été entraîné en utili-
sant les données d’une seule des bases de données, puis appliqué aux deux autres pour évaluer
la capacité de généralisation du modèle. La qualité des images reconstruites, la capacité à
éliminer les biais liés au site ou au scanner et la capacité à classer les patients ont été évaluées
après harmonisation des données.

Les données extraites des trois bases ont été utilisées pour évaluer différents aspects de

https://github.com/nifm-gin/dl_generic
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notre modèle. L’impact sur la qualité de l’image dans le cadre d’une harmonisation multi-sites
ou multi-scanner a été évalué à l’aide de données provenant de ‘traveling subjects’ (permet-
tant d’avoir une vérité terrain) issues des ensembles de données OASIS et SRPBS. La capacité
à supprimer les informations liées au site a été évaluée en utilisant les données ABIDE. En-
fin, la capacité du modèle concernant l’harmonisation inter-sites a été évaluée en utilisant
la prédiction des troubles autistiques chez les enfants de la base ABIDE. Pour démontrer la
flexibilité d’ImUnity, toutes les expériences ont été réalisées avec le même modèle, entraîné
sur des données provenant de la base ABIDE, sauf indication contraire. OASIS et SRPBS
ont été utilisés uniquement pour les parties de validation. Chaque modèle a été entraîné sur
des coupes 2D comportant au moins 1% de voxels de tissu cérébral. L’apprentissage a été
effectué sur une Nvidia GeForce 2080 RTX pendant 300 époques en utilisant une ‘learning
rate’ de 10−4 ainsi que l’optimiseur Adam.

Les résultats obtenus ont montré des performances élevées en termes de qualité d’images
harmonisées, ainsi qu’une élimination claire du biais lié aux conditions d’acquisition des
images. De plus, les expériences réalisées ont clairement démontré la polyvalence d’ImUnity.
En entraînant le modèle sur des ensembles de données extraits d’une base de données (ici
ABIDE) et en s’intéressant à l’harmonisation de ‘traveling subjects’ fournis par deux bases
de données différentes (ici OASIS et SRPBS), nous avons montré qu’ImUnity ne nécessite pas
de nouvelle phase d’entraînement pour s’adapter à des sites ou des scanners non vus (voir
figure 4.3). De plus, les performances ont été maintenues indépendamment du site choisi
comme une référence (voir tableau 4.2). Bien que le modèle ait été entraîné sur les données
ABIDE uniquement, il a démontré de meilleurs résultats que la littérature en termes de
qualité d’image (+4%, voir tableau 4.2).

Le tableau 4.2 présente les mesures SSIM obtenues lors de l’entraînement de ImUnity sur
les deux autres ensembles de données (OASIS et SRPBS). Comme aucune caractéristique
biologique n’était disponible dans ces bases de données, le module biologique a été désac-
tivé et le modèle a été entraîné de manière auto-supervisée. Premièrement, nous avons noté
de meilleurs résultats concernant l’harmonisation multi-scanners lorsque le modèle a été en-
traîné et appliqué sur la même base de données (ici OASIS, +2,5%). Deuxièmement, le score
obtenu pour l’harmonisation multi-sites (SRPBS) était le plus élevé lorsque le modèle était
entraîné sur les données OASIS (N = 1098) (avec un score légèrement meilleur qu’avec les
autres bases de données). Nous avons aussi pu observer l’impact sur ces scores de la taille du
jeu de données, du nombre de sites/scanner impliqués dans la formation, de l’utilisation du
module biologique et des différences anatomiques entre les jeux de données (ABIDE conte-
nant principalement des données d’enfants alors que OASIS et SRPBS se concentrent sur
les adultes). Alors que les résultats d’OASIS suggèrent une meilleure généralisation sur des
données non vues parce que plus de données d’entraînement étaient disponibles, les résultats
d’ABIDE suggèrent que les différences anatomiques pourraient être compensées par un grand
ensemble de données d’entraînement présentant plus de variabilité site/canner que OASIS
(11 sites pour ABIDE contre 4 sites pour OASIS). D’autre part, les résultats de l’harmoni-
sation multi-scanners ont montré la difficulté du modèle entraîné sur les données SRPBS à
généraliser son entraînement aux données OASIS. Cela indique un effet d’‘overfitting’ dans
cette situation, car il n’y avait pas assez de données d’entraînement (ici N=81 réparties sur
9 sites). Cela suggère que ImUnity n’est peut-être pas adapté aux scénarios de petite taille
d’échantillon, ce qui fournit des informations utiles pour comprendre pourquoi le modèle
est moins efficace dans certains contextes. L’augmentation des données aurait pu aussi être
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ajoutée pour améliorer les résultats de cette expérience.
Pour mieux estimer l’impact du module biologique, nous avons également exécuté l’ex-

périence 3 (section 4.2.4) sans celui-ci. Nous avons constaté (voir figure 4.8) que le module
biologique a un impact positif sur les résultats avec une contribution représentant environ
20% de l’effet d’harmonisation total et suggérant que des informations supplémentaires en
entrée en plus de l’image pourraient conduire à de meilleurs résultats en sortie. De plus,
dans l’expérience 1, nous avons testé différentes combinaisons de données de formation et de
test. Dans la situation : ’training = OASIS’ et ’testing = SRPBS’, aucune caractéristique
biologique n’était disponible et le module biologique n’a donc pas été utilisé. Notre solution
a tout de même montré une bonne généralisation sur l’ensemble de données de test. Sur la
base de cet ensemble de résultats, nous pouvons supposer que l’ajout de certaines informa-
tions biologiques au modèle conduirait également à de meilleurs résultats sur les ‘traveling
subjects’.

En conclusion, ce chapitre présente ImUnity qui est un outil original et efficace dédié à
l’harmonisation de données IRM. Le modèle 2.5D que nous proposons dérive de l’architecture
VAE-GAN. Il garantit des résultats réalistes et permet de supprimer les biais liés aux sites
et de préserver les informations biologiques. Nos résultats montrent que la méthode atteint
les performances de la littérature en termes de qualité d’image sur les ‘traveling subjects’ des
bases de données OASIS et SRPBS. ImUnity a de plus permis d’améliorer la classification
des patients autistes de la base de données ABIDE. Le modèle ne nécessite qu’un seul type de
séquence IRM sans qu’il soit nécessaire de faire correspondre les sujets, il peut être généralisé
à des sites non vus pendant la phase d’entraînement et peut être utilisé pour harmoniser les
images IRM vers différents contrasts de référence sans nouvelle phase d’entraînement.

Des perspectives d’amélioration subsistent. Comme l’introduction de variations de contraste
plus complexes durant l’entraînement et l’utilisation de techniques de DA plus spécifiques
pourraient permettre l’harmonisation de plusieurs séquences d’IRM à la fois. Même si la solu-
tion proposée a été validée sur une expérience clinique et s’est avérée efficace, elle doit encore
être testée de manière plus générale. Plusieurs études d’harmonisation (Beer et al., 2020;
Fortin et al., 2018) ont étudié l’impact de l’harmonisation sur le développement du cerveau,
sur lequel nous disposons de résultats solides issus de grandes études mono-centriques comme
présentées dans sous-section 2.1.1.

7.5 Résumé de chapitre : Proposition d’évaluations des
effets de l’harmonisation sur le développement céré-
brale chez l’enfant

Dans ce dernier chapitre, nous avons évalué la qualité des images harmonisées via une
étude sur le développement du cerveau entre de 5 à 25 ans. Les sujets considérés sont issus
de la base de données ABIDE. chapitre 3 et chapitre 4 ont témoigné d’un important besoin
d’harmonisation sur la base de données ABIDE. Ces variations indésirables impactent très
probablement le développement biologique observé du cerveau, modifiant en conséquence
les tendances d’évolution des ROIs avec l’âge. Ici, les données provenant de 11 sites ont
été regroupées et analysées avant et après harmonisation. Pour chaque sujet, les volumes
et l’épaisseur des régions corticales et sous-corticales d’intérêt ont été extraits via l’outil
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FreeSurfer. À des fins de comparaison, nous avons également utilisé ComBAT (section 2.2.1).
Nous avons utilisé 271 sujets sains et 253 patients atteints de TSA âgés de 5 à 25 ans.

Partant du principe que l’harmonisation des données aiderait à retrouver les trajectoires de
développement attendues, nous nous sommes référés à plusieurs tendances de la littérature
déjà présentées au chapitre 2 (Ducharme et al., 2016; Lenroot and Giedd, 2006; Vijayakumar
et al., 2016; Wierenga et al., 2014), ce qui nous a permis d’évaluer les effets de ImUnity
et ComBat. Ces tendances ont été recueillies à partir de grandes études mono-centriques,
évitant tout problème lié à l’harmonisation. L’effet de l’harmonisation a été défini par son
impact sur les tendances d’évolution du volume, et la façon dont l’harmonisation les a rap-
prochées de celles rapportées dans la littérature. Pour cette expérience, nous avons considéré
séparément les sujets sains et les sujets atteints de TSA car cette pathologie a un impact
significatif sur le développement des régions corticales et sous-corticales du cerveau pendant
la petite enfance (voir sous-section 2.1.2). Dans cette étude, nous n’avons pas pu inclure les
femmes atteintes de TSA car nous n’avons pas pu recueillir suffisamment de résultats de la
littérature. De même, pour l’évolution de l’épaisseur corticale des ROIs du cerveau, seuls les
hommes (sains et ASD) ont pu être considérés.

Cette étude s’est déroulée en 4 expériences. Une première évaluation visuelle des tendances
a été effectuée afin d’observer l’impact des méthodes d’harmonisation sur celles-ci. Notre
hypothèse était que l’harmonisation devait rapprocher les tendances observées de celles de
la littérature. Dans un premier temps, nous avons considéré uniquement les tendances des
volumes pour les sujets sains, puis nous avons inclus les sujets atteints de TSA afin d’observer
si le statut clinique influence la qualité de l’harmonisation. Dans la majorité des cas, il est
simple d’évaluer si l’effet a été positif ou négatif. Par exemple, l’évolution du volume total de
matière grise chez les hommes sains est donnée dans figure 5.2. Les données originales sont
indiquées en rouge et semblent augmenter avec l’âge. Ceci n’est clairement pas en accord avec
les données de référence fondées dans la littérature et indiquées en noir. Les deux méthodes
d’harmonisation modifient la tendance et la rapproche de celle de la littérature.

Or, n’ayant pas de métrique quantitative, certaines situations se sont avérées complexes
à juger. Comme dans l’exemple figure 5.2, il est difficile de conclure si une méthode est
meilleure que l’autre. Au départ, la tendance est inversée par rapport à la littérature. Elle est
corrigée après ComBat mais est ’moins inversée’ après ImUnity. Cependant, il est également
possible que les corrections de Combat aient été trop fortes. Afin de pouvoir comparer les
méthodes de manière plus précise, nous avons proposé d’utiliser une métrique à partir de
l’équation d’une tendance de volume observée et de son équation de référence trouvée dans
la littérature. L’idée était d’obtenir une valeur reflétant la similarité des tendances entre les
deux équations.

Cette métrique peut être utilisée pour comparer quantitativement les effets d’harmoni-
sation, indépendamment pour chaque ROI. Comme pour la première expérience basée sur
l’inspection visuelle, nous avons pu observer des effets d’harmonisation positifs ou négatifs
en fonction de la valeur de la métrique. En outre, elle peut également être utilisée pour
quantifier le besoin d’harmonisation pour la ROI considérée. C’est un point important car le
bruit induit par un site étant probablement non-homogène, certaines zones du cerveau sont
plus altérées que d’autres. En outre, cette information peut également être utilisée pour ob-
server tout changement de performance de l’harmonisation par rapport à son besoin initial.
Nous nous attendions à avoir un effet positif plus significatif pour les ROIs principalement
concernés par l’harmonisation. D’autre part, les tendances des ROIs déjà en phase avec la
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littérature sont moins susceptibles d’avoir un tel effet. Il faut toutefois faire attention à ne
pas pénaliser les tendances qui sont déjà en accord avec la littérature.

Notre troisième expérience a consisté en une analyse par modèle linéaire mixte. Nous avons
chercher à modéliser les évolutions de volumes et d’épaisseurs corticales, en considérant toutes
les variables disponibles : âge, sexe, statut, site. En considérant l’affiliation au site comme
un facteur de regroupement, nous avons pu estimer son impact sur la métrique observée
(volumes ou épaisseurs). Pour ce faire, nous avons utilisé les tests de Kenward-Roger (KR)
(Kenward and Roger, 1997), testant la corrélation entre les variables observées et l’origine
des images. Ce test statistique a été effectué pour chaque paramètre sous l’hypothèse H0 :
"le paramètre n’a aucune influence sur la métrique observée (volume ou épaisseur)". Pour
chaque test, en fonction de sa p-value associée, nous rejetons (p < 0.05) ou non H0 (p ≥
0.05). Notre hypothèse était que l’impact des groupes (affiliation au site) avait un impact
significatif sur le développement du cerveau avant l’harmonisation et que cet effet devait
disparaître après harmonisation. D’autre part, nous nous attendions à une augmentation de
variables biologiques significativement corrélées à ces métriques observées, sachant d’après
la littérature, que l’âge, le sexe ou les pathologies comme le TSA ont un fort impact sur le
développement cérébral.

Notre dernière expérience a consisté en une ‘analyse de groupe’ via FreeSurfer sur les sujet
sains de ABIDE, en utilisant l’origine du site comme groupe et en intégrant des covariables
biologiques (âge et sexe) dans notre modèle. Une ‘cluster-wise correction’ (Hagler et al., 2006)
a été utilisée avec un seuil de 10−3 comme recommandé dans Greve and Fischl (2018) pour
éviter les clusters faux positifs. Cette procédure permet de visualiser les impacts des groupes
(ici l’affiliation au site) sur le développement du cerveau, et de visualiser les zones du cerveau
les plus affectées par ces variations et d’observer les effets sur ces clusters. Ceci venait en
complément de l’expérience précédente basée sur la métrique dérivée utilisée pour quantifier
le besoin d’harmonisation dans différents ROIs.

Les résultats de volumétrie cérébrale ont démontré la capacité d’ImUnity à éliminer les
biais liés au site ou au scanner tout en ayant un effet positif sur l’étude des trajectoires
de développement cortical et sous-cortical. La première expérience a montré que cela était
suffisant pour améliorer les tendances apparentes de l’évolution du volume cérébral et les
rapprocher des résultats des grandes études mono-centriques. Ceci a été confirmé par la
métrique (équation 5.1), avec une amélioration globale pour la tendance des volumes. La
plupart des volumes des ROIs semblaient être affectés par le problème d’harmonisation,
et nous avons pu améliorer environ 95% (resp. 88%) de l’évolution du volume des ROIs
chez les sujets sains (resp. les hommes atteints de TSA). Ces résultats ont été confirmés
par l’approche du modèle linéaire mixte. Cela a permis de mettre en évidence la nécessité
d’une harmonisation. Le site avait un impact significatif sur l’évolution du volume de la
plupart des ROI avant harmonisation. Celui-ci a été réduit après l’harmonisation. D’autre
part, l’harmonisation semble avoir réduit les corrélations biologiques, ce qui va à l’encontre
de notre hypothèse initiale. ImUnity et ComBAT ont montré des résultats similaires mais
ComBat a supprimé plus de corrélations biologiques et a corrigé moins de tendances de
volume des ROIs que ImUnity.

Les résultats concernant l’épaisseur corticale ont été moins encourageants. Les deux mé-
thodes n’ont pas significativement supprimer les effets site et semblent avoir du mal a preser-
ver les corélations biologiques. De plus, l’harmonisation semble avoir dégradé les tendances
de certaines ROIs. Nos résultats ne sont pas en accord avec les études précédentes sur le
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sujet : (Beer et al., 2020; Fortin et al., 2018). Cependant, il est important de noter la manière
différente d’utiliser ComBat dans notre étude où nous avons harmonisé d’abord l’intensité des
images puis extrait les métriques d’intérêt (ici les volumes et épaisseurs du cerveau) alors que
les métriques sont utilisées directement dans ComBat dans les études précédentes. De plus,
nous avons pu observer un besoin d’harmonisation moins marqué concernant les épaisseurs
corticales, ce qui peut expliquer que nous n’observons pas d’effet significativement positif de
l’harmonisation sur ces observations.

7.6 Conclusion et perspectives

Plusieurs limitations de notre travail peuvent être notées. Premièrement, la solution que
nous avons proposée est une configuration 2,5D. Bien qu’elle nécessite moins de paramètres à
ajuster qu’une solution 3D, elle tend également à produire des résultats de moindre qualité.
Deuxièmement, ImUnity n’a été testé que pour harmoniser des images anatomiques T1w et
nous n’avons pas testé le modèle sur d’autres types de séquences. Théoriquement, notre mé-
thode devrait produire des résultats similaires (puisqu’elle n’a pas été conçue spécifiquement
pour les données T1w), mais il pourrait être très intéressant d’évaluer ses performances sur
des images de diffusion IRM ou des images produites par des scanners X. A terme, ImUnity
devrait également permettre l’harmonisation multi-séquences (par exemple, T1w et T2w).
Il s’agit d’un véritable défi qui n’a pas encore été étudié dans la littérature mais qui pour-
rait avoir un impact majeur sur les pratiques cliniques. Nous avons commencé une étude
sur une harmonisation combinée de T1w et de tomodensitométrie X (CT), et les résultats
préliminaires prometteurs justifient des investigations supplémentaires.

De plus, les distorsions géométriques devraient être incluses en plus des variations de
contraste. Les derniers résultats présentés (section 5.3) suggèrent en effet que que toutes les
ROIs ne sont pas impactées de la même manière et que l’alignement des contrastes n’était pas
suffisant pour supprimer la totalité du signal induit par les sites. Ceci suggère que l’hypothèse
globale selon laquelle ces variations n’impactent que le contraste des images et non leur
géométrie est remise en cause.

En plus des développements techniques, des recherches plus approfondies sur les trajec-
toires de développement du cerveau doivent être effectuées. Si les résultats sont clairs pour
l’évolution du volume des ROIs du cerveau, les résultats pour l’épaisseur corticale sont insuf-
fisants pour conclure. Nous notons que la distribution d’âge (figure 5.1) des sujets n’était pas
uniforme, avec une distribution Gaussienne centrée autour de 15 ans. L’ajout de sujets prove-
nant d’autres bases de données pourrait uniformiser la distribution pour chaque population
et réduire l’intervalle de confiance des régressions. Un autre point critique mentionné dans
section 5.4, est l’étude de l’impact biologique sur chaque RCI indépendant. En se basant sur
les résultats de la littérature provenant de grands résultats mono-centriques, nous devrions
être en mesure de mieux estimer l’impact de chaque caractéristique biologique sur les volumes
ou épaisseurs observés et de compter réellement le nombre de ROIs impactées positivement
ou négativement par les méthodes d’harmonisation.

En conclusion, il semble que les outils développés au cours de notre projet peuvent être
utilisés pour analyser les données DEFIDIAG lorsqu’elles seront disponibles. Même si de
nouvelles fonctionnalités peuvent être ajoutées et que des validations supplémentaires peuvent
être effectuées, ImUnity semble être en mesure de fournir des images de haute qualité dans



7.6. Conclusion et perspectives 111

toutes les directions, de supprimer les biais liés aux sites et aux scanners, et d’améliorer la
classification des patients et les trajectoires des volumes de développement cérébral dans les
grandes et petites régions du cerveau. Nos travaux ont été soumis pour publication dans
un journal et présentés dans plusieurs conférences nationales et internationales. Par ailleurs,
des collaborations avec des instituts français (CREATIS à Lyon et ARAMIS à Paris) et des
laboratoires américains ont été établies pour partager et tester davantage les potentiels de
notre approche.



112 Chapitre 7. Résumé du manuscrit



Chapter 8

Personal information

8.1 My resume

113



3rd year PhD Student · University Grenoble Alpes · MIAI

Stenzel Cackowski
Grenoble Institute of Neurosciences, La Tronche, 38700

 +33 07-66-69-61-04 |  stenzel.cackowski@univ-grenoble-alpes.fr |  Stenzel Cackowski | @Cackowski_S

Education
Grenoble Institut of Neurosciences - MIAI Grenoble
PHD STUDENT - AI AND MRI ANALYSIS TOOLS TO CHARACTERIZE BRAIN ALTERATIONS:
APPLICATIONS TO INTELLECTUAL DISABILITY DISORDERS - MEDICAL IMAGING HARMONIZATION

2019 - present

• Advisor: Dr. Emmanuel L. Barbier
• Advisor: Dr. Michel Dojat
• Advisor: Dr. Thomas Christen

Grenoble INP - ENSIMAG - University Grenoble Alpes Grenoble
MASTER 2 OF SCIENCE IN INDUSTRIAL AND APPLIED MATHEMATICS - DATA SCIENCES 2016 - 2019
• Honors

Bordeaux INP Bordeaux
SCIENTIFIC PREPARATORY CLASS 2014 - 2016
• Special subjects : Mathematics, IT

Professional Experience
June 2022 Poster presentation about MRI harmonization during OHBM, international conference, Glasgow
May 2022 Oral presentation about MRI harmonization during ISMRM, international conference, London
November

2021
Oral presentation about MRI harmonization during 3IA doctoral workshop, Toulouse

September
& October

2021
Oral presentation about MRI harmonization during two conferences : SFRMBM &Workshop 3IA, Grenoble

October
2020

My thesis in 180 seconds - MIAI DAY - Festival Transfo, Grenoble

October
2019

1st place of ”JFR 2019 Data Challenge” - Predicting EDSS score from FLAIR MRI, Pixyl, Grenoble

March -
August
2019

6months internship - Development of deep-learningmodels for MRI organs segmentation and CT scans
generation, CSIRO Brisbane, Australia

Summer
2018

Engineer Assistant Internship - Image classification project using Deep-Learning in a High Performance
Computing environment, Atos, Grenoble

2018
Research project - Eclipse Attack on Ethereum - Report published on Ensimag’s “Ensiwiki”, University
Grenoble Alpes

Summer
2017

Head of backend development for a Start-up’s website, Nsigma, Grenoble

SEPTEMBER, 2022 STENZEL CACKOWSKI · CURRICULUM VITAE 1



8.2. Scientific production 115

8.2 Scientific production

Journal papers

Roca P., Attye A., Colas L., Rubini P., Cackowski S. 2020, Artificial intelligence to
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9.1 JFR-2019 Data challenge with Pixyl
At the beginning of my PhD project, I joined the Pixyl team in the JFR2019 challenge.

Pixyl is a French startup from Grenoble developing AI patient care solutions for different
pathologies like Multiple Sclerosis (MS). The challenge was held in Paris between September
and October 2019, and consisted in predicting MS patient’s ‘Expanded Disability Status
Scale’ (EDSS) score based on a FLAIR acquisition as well as several clinical features such
as age or sex. EDSS is a score quantifying disability in multiple sclerosis, starting from 0
(so MS symptom) to 10 (death due to MS). According to wikipedia, ‘EDSS steps 1.0 to 4.5
refer to people with MS who are fully ambulatory while steps 5.0 to 9.5 are defined by the
impairment to ambulation’. The challenge can be seen as a regression problem, trying to
predict an increasing non linear metric. The challenge organizers provided us with data to
use to train our solution. Then, a different dataset (testing) was given at the time of the
challenge and each team had 3 hours to turn in their predictions.

As a computer science engineer, my work was to develop a deep learning learning model
taking the FLAIR image, the mask of MS lesions previously segmented by Pixyl solutions
and the age of the patient considered as input. I chose to develop a classical Convolutional
Neural Network (CNN) that learned features extractions from the FLAIR image and the
associated lesions mask. Then the extracted features were concatenated with the biological
ones and fed to a tiny dense neural network that made the final prediction.

The model’s prediction was then pooled with other models (random forest, SVM) results
that had been developed by other members of the team. By gathering all these predictions,
we trained a last model to make the final prediction. This procedure is known as ’Ensemble
learning’. This was motivated by the fact that each model appeared to have complementary
performance with the others.

On top of developing efficient solutions, we had to be able to process all the testing data
within the 3 hours imposed by the organizers. We thus deployed our trained solutions on
several virtual machines that we used in parallel to compute the predictions.

Eventually, we came first in the competition, in front of competing teams like Nvidia or
Icometrix. Our solution made the best EDSS predictions in terms of MAE. Moreover, our
team was the first to process all the data, which took about 1 hour. This last point is quite
impressive when competing with Nvidia’s teams, for example, which had massive computing
power at their disposal.

As a result of this first place, a paper detailing this experience was published (Roca et al.,
2020). It is presented below.

Overall, this was a very rewarding experience which gave me the opportunity to meet
research engineers working in a startup with similar interests to mine. I could feel the
pressure for the startup members during the development phase of our solution. In fact,
as they mobilized most of the employees for that challenge, they expected the first place or
nothing. It was a big bet for a small startup like Pixyl at that time. Ever since, I have kept
in touch with Pixyl members who have always treated me very well.

https://pixyl.ai/
https://en.wikipedia.org/wiki/Expanded_Disability_Status_Scale
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a  r  t  i  c  l  e  i  n  f  o

Keywords:
Artificial intelligence
Machine learning
Multiple sclerosis
Disability prediction
Magnetic resonance imaging (MRI)

a  b  s  t  r  a  c  t

Purpose:  The  purpose  of this  study  was to create  an  algorithm  that  combines  multiple  machine-learning
techniques  to predict  the expanded  disability  status  scale  (EDSS)  score  of  patients  with  multiple  sclerosis
at two  years  solely  based  on  age,  sex  and  fluid  attenuated  inversion  recovery  (FLAIR)  MRI  data.
Materials  and  methods:  Our  algorithm  combined  several  complementary  predictors:  a  pure  deep  learning
predictor  based  on a convolutional  neural  network  (CNN)  that learns  from  the  images,  as  well  as classical
machine-learning  predictors  based  on random  forest  regressors  and  manifold  learning  trained  using the
location  of  lesion  load  with  respect  to  white  matter  tracts.  The  aggregation  of  the  predictors  was  done
through  a weighted  average  taking  into  account  prediction  errors  for different  EDSS ranges.  The  training
dataset  consisted  of  971  multiple  sclerosis  patients  from  the  “Observatoire  franç ais  de  la  sclérose  en
plaques”  (OFSEP)  cohort  with  initial  FLAIR  MRI  and  corresponding  EDSS  score  at two  years.  A  test  dataset
(475  subjects)  was  provided  without  an  EDSS  score.  Ten  percent  of  the  training  dataset  was  used  for
validation.

Abbreviations: 2D, Two-dimensional; 3D, Three-dimensional; AI, Artificial intelligence; CNN, Convolutional neural network; EDSS, Expanded disability status scale;
FLAIR, Fluid attenuated inversion recovery; MNI, Montreal Neurological Institute; MRI, Magnetic resonance imaging; MS,  Multiple sclerosis; MSE, Mean square error; OFSEP,
Observatoire franç ais de la sclérose en plaques; UMAP, Uniform manifold approximation and projection; WMH,  White matter hyperintensities.

∗ Corresponding author at: Pixyl, Research and Development Laboratory, 38000 Grenoble, France.
E-mail address: contact@pixyl.ai (P. Roca).
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Results:  Our  algorithm  predicted  EDSS  score  in  patients  with  multiple  sclerosis  and  achieved  a  MSE  = 2.2
with  the validation  dataset  and  a MSE  =  3  (mean  EDSS  error  =  1.7)  with  the  test dataset.
Conclusion:  Our  method  predicts  two-year  clinical  disability  in  patients  with  multiple  sclerosis  with  a
mean EDSS  score  error  of  1.7,  using  FLAIR  sequence  and  basic  patient  demographics.  This  supports  the
use  of our  model  to  predict  EDSS  score  progression.  These  promising  results  should  be  further  validated
on  an  external  validation  cohort.

© 2020  Société  franç aise  de  radiologie.  Published  by  Elsevier  Masson  SAS.  All  rights  reserved.

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the central nervous system, which remains the leading
cause of non-traumatic disability in young people and is associ-
ated with a high economic burden on society partly due to the
high cost of the available treatments [1,2]. In most patients with
MS,  the initial phase of the disease consists of reversible episodes
of neurological deficits and over time, the development of perma-
nent neurological deficits and progression of clinical disability [3].
Correctly predicting short-term outcome in patients with MS  is an
important issue as this could help identify patients who  may  benefit
from a more aggressive treatment.

So far, knowledge of natural disability evolution of MS  is
mainly based on cohort studies and focused on long-term clinical
progression. As a consequence, baseline factors strongly predictive
of worsening disability have not yet been fully identified [4,5].
Advanced statistical modeling using support vector machine and

S. Vukusic (Hospices civils de Lyon, Hôpital Pierre Wertheimer, Service de neurologie A, Lyon/Bron, France), , Investigators R. Marignier (Hospices civils de Lyon, Hôpital
Pierre  Wertheimer, Service de neurologie A, Lyon/Bron, France), M.  Debouverie (Centre hospitalier régional universitaire de Nancy, Hôpital central, Service de neurologie,
Nancy,  France), G. Edan (Centre hospitalier universitaire de Rennes, Hôpital Pontchaillou, Service de neurologie, Rennes, France), J. Ciron (Centre hospitalier universitaire
de  Toulouse, Hôpital Purpan, Service de neurologie inflammatoire et neuro-oncologie, Toulouse, France), A. Ruet (Centre hospitalier universitaire de Bordeaux, Hôpital
Pellegrin, Service de neurologie, Bordeaux, France), N. Collongues (Hôpitaux universitaire de Strasbourg, Hôpital de Hautepierre, Service des maladies inflammatoires du
système nerveux – neurologie, Strasbourg, France), C. Lubetzki (Assistance publique des hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de neurologie, Paris, France),
P.  Vermersch (Centre hospitalier universitaire de Lille, Hôpital Salengro, Service de neurologie D, Lille, France), P. Labauge (Centre hospitalier universitaire de Montpellier,
Hôpital Gui de Chauliac, Service de neurologie, Montpellier, France), G. Defer (Centre hospitalier universitaire de Caen Normandie, Service de neurologie, Hôpital Côte de
Nacre, Caen, France), M.  Cohen (Centre hospitalier universitaire de Nice, Université Nice Côte d’Azur, Hôpital Pasteur, Service de neurologie, Nice, France), A. Fromont (Centre
hospitalier universitaire Dijon Bourgogne, Hôpital Franç ois Mitterrand, Service de neurologie, maladies inflammatoires du système nerveux et neurologie générale, Dijon,
France), S. Wiertlewsky (Centre hospitalier universitaire de Nantes, Hôpital nord Laennec, Service de neurologie, Nantes/Saint-Herblain, France), E. Berger (Centre hospitalier
régional universitaire de Besanç on, Hôpital Jean Minjoz, Service de neurologie, Besanç on, France), P. Clavelou (Centre hospitalier universitaire de Clermont-Ferrand, Hôpital
Gabriel-Montpied, Service de neurologie, Clermont-Ferrand, France), B. Audoin (Assistance publique des hôpitaux de Marseille, Centre hospitalier de la Timone, Service
de  neurologie et unité neuro-vasculaire, Marseille, France), C. Giannesini (Assistance publique des hôpitaux de Paris, Hôpital Saint-Antoine, Service de neurologie, Paris,
France), O. Gout (Fondation Adolphe de Rothschild de l’œil et du cerveau, Service de neurologie, Paris, France), E. Thouvenot (Centre hospitalier universitaire de Nîmes,
Hôpital  Carémeau, Service de neurologie, Nîmes, France), O. Heinzlef (Centre hospitalier intercommunal de Poissy Saint-Germain-en-Laye, Service de neurologie, Poissy,
France),  A. Al-Khedr (Centre hospitalier universitaire d’Amiens Picardie, Site sud, Service de neurologie, Amiens, France), B. Bourre (Centre hospitalier universitaire Rouen
Normandie, Hôpital Charles-Nicolle, Service de neurologie, Rouen, France), O. Casez (Centre hospitalier universitaire Grenoble-Alpes, Site nord, Service de neurologie,
Grenoble/La Tronche, France), P. Cabre (Centre hospitalier universitaire de Martinique, Hôpital Pierre Zobda-Quitman, Service de Neurologie, Fort-de-France, France), A.
Montcuquet (Centre hospitalier universitaire Limoges, Hôpital Dupuytren, Service de neurologie, Limoges, France), A. Créange (Assistance publique des hôpitaux de Paris,
Hôpital Henri Mondor, Service de neurologie, Créteil, France), J.-P. Camdessanché (Centre hospitalier universitaire de Saint-Étienne, Hôpital Nord, Service de neurologie,
Saint-Étienne, France), J. Faure (Centre hospitalier universitaire de Reims, Hôpital Maison-Blanche, Service de neurologie, Reims, France), A. Maurousset (Centre hospitalier
régional  universitaire de Tours, Hôpital Bretonneau, Service de neurologie, Tours, France), I. Patry (Centre hospitalier sud francilien, Service de neurologie, Corbeil-Essonnes,
France), K. Hankiewicz (Centre hospitalier de Saint-Denis, Hôpital Casanova, Service de neurologie, Saint-Denis, France), C. Pottier (Centre hospitalier de Pontoise, Service
de  neurologie, Pontoise, France), N. Maubeuge (Centre hospitalier universitaire de Poitiers, Site de la Milétrie, Service de neurologie, Poitiers, France), C. Labeyrie (Assistance
publique des hôpitaux de Paris, Hôpital Bicêtre, Service de neurologie, Le Kremlin-Bicêtre, France), C. Nifle (Centre hospitalier de Versailles, Hôpital André-Mignot, Service
de  neurologie, Le Chesnay, France), , Imaging group R. Ameli (Hospices civils de Lyon, Service de radiologie, Lyon, France), R. Anxionnat (CHU Nancy, Service de radiologie,
Nancy, France), A. Attye (CHU de Grenoble, Service de radiologie, Grenoble, France), E. Bannier (Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes,
France), C. Barillot (INRIA, Rennes, France), D. Ben Salem (CHU Brest, Service de radiologie, Brest, France), M.-P. Boncoeur-Martel (CHU Limoges, Service de radiologie,
Limoges, France), F. Bonneville (CHU Toulouse Purpan, Service de radiologie, Toulouse, France), C. Boutet (CHU Saint-Etienne, Service de radiologie, Saint-Etienne, France),
J.-C.  Brisset (Median technologies, Valbonne, France), F. Cervenanski (CREATIS, Villeurbanne, France), B. Claise (CHU Clermont-Ferrand, Service de radiologie, Clermont-
Ferrand, France), O. Commowick (NRIA, Rennes, France), J.-M. Constans (CHU Amiens–Picardie, Service de radiologie, Amiens, France), P. Dardel (CH Chambéry, Service
de  radiologie, Chambéry, France), H. Desal (CHU Nantes, Service de radiologie, Nantes, France), Vincent Dousset (CHU Bordeaux, Service de radiologie, Bordeaux, France),
F.  Durand-Dubief (Hospices civils de Lyon, Service de Neurologie, Lyon, France), J.-C. Ferre (CHU Rennes, Service de radiologie, Rennes, France), E. Gerardin (CHU Rouen,
Service  de radiologie, Rouen, France), T. Glattard (CREATIS, Villeurbanne, France), S. Grand (CHU de Grenoble, Service de radiologie, Grenoble, France), T. Grenier (CREATIS,
Villeurbanne, France), R. Guillevin (CHR Poitiers, Service de radiologie, Poitiers, France), C. Guttmann (Harvard Medical School, Boston, USA), A. Krainik (CHU Grenoble
Alpes, Service de radiologie, Grenoble, France), S. Kremer (CHU Strasbourg, Service de radiologie, Strasbourg, France), S. Lion (Centre de coordination national de l’OFSEP,
Lyon/Bron, France), N. Menjot de Champfleur (CHU Montpellier, Service de radiologie, Montpellier, France), L. Mondot (CHU Nice, Service de radiologie, Nice, France),
O.  Outteryck (CHRU Lille, Consultations de neurologie D, Lille, France), N. Pyatigorskaya (ICM, Service de radiologie, Paris, France), J.-P. Pruvo (CHRU Lille, Service de
radiologie, Lille, France), S. Rabaste (Hospices civils de Lyon, Service de radiologie, Lyon, France), J.-P. Ranjeva (APHM - CHU Marseille Timone, Service de radiologie,
Marseille, France), J.-A. Roch (Hôpital privé Jean Mermoz, Service de radiologie, Lyon, France), J.C. Sadik (Fondation A. de Rothschild, Service de radiologie, Paris, France),
D.  Sappey-Marinier (Hospices civils de Lyon, Service de radiologie, Lyon, France), J. Savatovsky (Fondation A. de Rothschild, Service de radiologie, Paris, France), J.-Y.
Tanguy (CH Angers, Service de radiologie, Angers, France), A. Tourbah (Hôpital Raymond Poincaré, Service de Neurologie, Garches, France), T. Tourdias (CHU Bordeaux,
Service  de radiologie, Bordeaux, France),

random forest has been recently applied on 1582 patients to
predict short-term expanded disability status scale (EDSS) score
progression after 2 years from a comprehensive list of baseline
factors [6]. These factors included clinical factors (such as age,
gender, ethnicity, number of relapses 1 and 3 years prior to
study, disease duration, prior treatment, EDSS score) and imaging
factors (number of lesions, lesion volume and brain parenchymal
fraction) [6]. Nevertheless, the predictor models showed poor
discriminating capabilities so that there is a need for alternate
predictors [6].

Artificial intelligence (AI) has demonstrated utility in the iden-
tification of abnormalities on imaging studies [7–11]. However,
the capabilities of AI as directly applied to fluid-attenuated inver-
sion recovery (FLAIR) MRI  data have received little attention so far
because of the well-known “clinico-radiological paradox”. Indeed,
the clinical course of MS  based on the burden of lesions is known to
be unpredictable [12–14]. It is not clear whether this paradox relies
on a lack of information, for example regarding the gray matter MS
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Table  1
MRI  characteristics of the different datasets.

MRI characteristic Training set Validation set Test set

Three-dimensional
Two-dimensional

557 (557/856; 65%)
299 (299/856; 35%)

67 (67/96; 70%)
29 (29/96; 30%)

410 (410/475; 86%)
65 (65/475; 14%)

3T
1.5T

445  (445/856; 52%)
411 (411/856; 48%)

58 (58/96; 60%)
38 (38/96; 40%)

237 (237/475; 50%)
238 (238/475; 50%)

Siemens/Philips/GE/Canon
(%)

42/45.1/12.4/0.5 40/49/11/0 44/41/14.6/0.4

Period of MR image
acquisition (years)

2008–2017 2009–2017 2015–2019

Dataset counta 856 96 475

Siemens: Siemens Healthineers; Philips: Philips Healthcare; GE: General Electric Healthcare; Canon: Canon Medical Systems.
a 19 subjects were excluded from training and validation sets due to poor image quality or small field of view.

injuries, or due to the absence of appropriate tools to analyze the
white matter spatial distribution of MS  lesions.

The purpose of this study was to create an algorithm that com-
bines multiple machine-learning techniques with the ability to
predict EDSS score of patients with MS,  based on age, sex and FLAIR
MRI  data.

2. Materials and methods

2.1. Study population

The FLAIR MRI  data were provided as part of the “Multiple Scle-
rosis” challenge organized during the 2019 edition of the Journées
franç aises de radiologie, which is the annual meeting of the French
Society of Radiology (Société franç aise de radiologie). Two training
datasets of patients with MS  with initial FLAIR MRI  and EDSS score
at two years were used. A first dataset (DS1) included 480 subjects
and a second one (DS2) 491 subjects. A third new test dataset with-
out EDSS values (DS3) of 475 subjects was the reference to evaluate
the exactness of the model. Datasets DS1, DS2, and DS3 were part of
the OFSEP (“Observatoire franç ais de la sclérose en Plaques”) cohort,
registered on clinicaltrials.gov (NCT02889965) and compliant with
French data confidentiality regulations.

The MRI  characteristics of the different datasets are summa-
rized in Table 1. This multi-centric dataset originated from 37
institutions in 13 French cities and contained a variety of FLAIR

sequences (i.e., two-dimensional [2D] or three-dimensional [3D]
acquisition, sagittal/axial or coronal planes, contrast-enhanced or
not, and various imaging parameters) acquired using various MRI
units (Siemens Healthineers, General Electric Healthcare, Philips
Healthcare, Canon Medical Systems) and magnetic fields (1.5 T or
3 T).

2.2. MS disability prediction

Different complementary strategies were combined. They
included intensity bias field correction, FLAIR normalization to a
customized brain template, data augmentation, tract-based lesion
load computation, pre-training, ensemble aggregation of a pure
deep learning model [15] and predictor models using “hand-crafted
features” based on a priori anatomical knowledge, and parallel
deployment on the Pixyl Cloud Infrastructure. Fig. 1 presents the
flowchart of our pipeline.

2.3. Preprocessing and training/validation split

FLAIR images were first corrected for inhomogeneities using
the N4 algorithm [16] and registered to a common home-made
FLAIR template provided by the Montreal Neurological Institute
(MNI) using linear and nonlinear registrations of the ANTS library
[17]. After this step, FLAIR images were normalized to zero mean
and unit variance and resized to 148 × 148 × 154 voxels. The FLAIR

Fig. 1. Flowchart of the prediction pipeline. CNN: convolutional neural network; EDSS: expanded disability status scale; FLAIR: fluid attenuated inversion recovery; GHICL:
Groupement des Hôpitaux de l’Institut Catholique de Lille; CHUG: Centre Hospitalier Universitaire de Grenoble.
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Fig. 2. Drawing shows the architecture of the convolutional neural network predictor. EDSS = expanded disability status scale;.

template was built using a subset of 195 3D FLAIR images from
DS1 first registered to the MNI  space using an affine transform by
two observers (A.T., P. Ro.) [18].

In order to train and validate the predictor models, we divided
the union of DS1 and DS2 into a training set (90%) and a valida-
tion set (10%) in a stratified way guaranteeing that each subgroup
follows the same EDSS distribution.

2.4. Deep learning predictor

To facilitate the prediction task, we divided the problem into two
steps. First, we segmented white matter hyperintensities (WMH)
from linearly normalized FLAIR MRI, leading to a lesion map  in nor-
malized space. Second, we predicted the two-year EDSS score from
age, normalized FLAIR MRI  and lesion map.

WMH  were segmented using the Pixyl.Neuro CE-marked solu-
tion (https://pixyl.ai/). This solution used a convolutional neural
network (CNN) based on a multi-level patch-based series of con-
volutions and max  pools in TensorFlow. The CNN was pre-trained
on hundreds of FLAIR images from multiple MRI  manufactur-
ers, labeled by experts, augmented using noise, inhomogeneities
and geometric deformations. The CNN was retrained using an
additional dataset of 29 FLAIR images of MS  patients from the
“Groupement des Hôpitaux de l’Institut Catholique de Lille” man-
ually segmented by three expert radiologists (S.V., J. D., L. C.).

To predict the EDSS score, a 3D-CNN composed of three con-
volutional blocks, each corresponding to a succession of two 3D
convolutional layers followed by 3D max-pooling layer was devel-
oped (Fig. 2). A ReLU activation was added after each convolutional
layer and batch-normalization was used after the second convolu-
tional layer. After extraction of the features we added a succession
of dense layers. Patient age was added as a new feature in the last
layer as it is one of the most relevant features for EDSS score predic-
tion and it would help increase algorithm performance. Finally, this
densely connected layer of 65 features predicted the EDSS score.
We addressed the EDSS score prediction from a regression point of
view as the EDSS scores are ordered by disability severity. Weights
were initialized using a truncated normal distribution centered

on 0 with a standard deviation of 0.02. The model was trained on
batches of size 16, using Adam optimizer with a learning rate of
10e-3 to minimize the mean squared error (MSE) loss function.

Two instances of the model were trained: one using the FLAIR
and lesion map  linearly normalized to the MNI space which takes
into account brain atrophy specific to each subject, and a second
one based on the non-linear registration computed previously less
sensitive to atrophy. Indeed, the non-linear registration allows a
better matching of anatomical structures, but can mask relevant
differences, particularly those associated with brain atrophy.

2.5. Classical machine learning predictors using anatomical
knowledge

A dimension reduction was performed using handcrafted fea-
tures summarizing the impact of lesions on the brain network
through tract-based lesion load computation, and more general
volumetric measures. Quantitative analysis of white matter lesion
burden was  performed in 60 tracts of interest from the ICBM-DTI-
81 white matter labels [19–21] and the sensorimotor tracts atlases
[22] in MNI  space using nonlinear registration. In addition, mea-
sures of whole-brain lesion load and volume of the lateral ventricles
were performed. These volumetric measures, combined with age,
gender and 3D/2D nature of FLAIR sequence constituted 65 features
used to train two  additional EDSS score predictors.

The first predictor used random forest regressors from scikit-
learn [23,24] with 200 estimators and three samples minimum per
leaf to reduce overfitting. The random forest regressor was  trained
twice, firstly on the whole training dataset (R̈F single)̈  then on a
subset containing 3D FLAIR images only. These two models were
combined in a unique predictor (“RF dual”) using the 3D nature of
the input data (Fig. 3).

A second complementary predictor using manifold learning was
built using the uniform manifold approximation and projection
(UMAP) algorithm, chosen for its good property to preserve the
global structure of the data [25]. Then the EDSS score was  pre-
dicted in a 2D reduced space by a local interpolation of the targets
associated with the nearest neighbors in the training set.
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Fig. 3. Flowchart associated with the random forest dual predictor. Depending on the three-dimensional (3D) nature of the input data, the model uses either a model trained
exclusively on 3D FLAIR or one trained on both 3D and 2D FLAIR to predict the EDSS score. FLAIR: fluid attenuated inversion recovery; EDSS: expanded disability status scale.

2.6. Ensemble aggregation and implementation

To evaluate the performance of each predictor, we  classified
EDSS scores in ten groups according to the EDSS integer part: group
p = 0 : EDSS < 1, group p = 1 : 1 ≤ EDSS < 2, . . .,  group p = 9 : 9 ≤
EDSS < 10,  group p = 10 : EDSS = 10. For each predictor k the mean
square error across each EDSS group (MSEk (p) , for p = 1 · ·10) was
computed on the validation dataset. The EDSS score predictors
were then aggregated using a weighted average where the weights
associated with each predictor relied on its performance on the
validation dataset as follows:

For each subject x:

edssagg (x) =
∑

k

wk (floor (edssk (x))) edssk (x)

×
(

1/
∑

k

wk (floor (edssk (x)))

)

where edssk is the EDSS score predicted by the kth predictor, and
wk (p) , the weight associated with this predictor for the EDSS group
p, is equal to the inverse of MSEk (p) presented previously. In order
to study the contribution of this aggregated predictor compared
to age only, an additional predictor using Ridge linear regression
based on age was built.

To provide the prediction in DS3 within two  hours, we  inte-
grated all processing steps, from preprocessing to ensemble

aggregation, in an automated pipeline that predicted the EDSS score
from a raw FLAIR sequence, as well as age and gender. By having a
stand-alone pipeline, we  were able to use Pixyl’s infrastructure to
run all the analyses in parallel.

3. Results

3.1. Datasets characteristics

In addition to the heterogeneity in MRI  quality, the EDSS score
distribution was  very unbalanced (Fig. 4). There were more low
scores than high scores (81% of EDSS scores ≤ 4) and > 22% of the
samples corresponded to an EDSS score of 0. In addition, integer
scores were over-represented (75% of EDSS > 0) by comparison with
non-integer scores (25%).

3.2. Score, ranking and predictor performances

We achieved a MSE  score of 3 (associated with an estimated
mean EDSS score error of 1.7) on this new dataset of 475 subjects
and submitted the results in one hour and a half, scoring first in the
data challenge. Fig. 5 presents the most informative features, with
the associated measure of importance given by the random forest
model trained on 3D FLAIR.

Our different predictors demonstrated similar performance in
terms of global MSE  on the validation dataset (Table 2), with the
random forest model specific to 3D/2D data ranking first with a

Fig. 4. Histogram of expanded disability status scale scores in the training set, reflecting the unbalanced nature of EDSS distribution. There are more low scores than high
scores  (81% of EDSS scores inferior or equal to 4) and more than 22% of the samples correspond to an EDSS score of 0. Integer (1, 2, 3, etc.) scores are more represented (75%
of  EDSS > 0) than non-integer (1.5, 2.5, etc.) scores (25%), this could be due to a human bias towards integer scores when scoring. EDSS: expanded disability status scale.
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Fig. 5. Diagram shows the most informative features associated with the random forest single predictor model. “L” and “R” mean “Left” and “Right” respectively. WM:  white
matter; ROI: region of interest.

Table 2
Mean square error of each model with the validation set.

Method MSE  on the
validation set

MSE on the
test set

Age-only ridge regression 3.779 Unknown
CNN with linear registration 2.705 Unknown
CNN with nonlinear registration 2.714 Unknown
Random forest dual 2.560 Unknown
Random forest single 2.697 Unknown
Manifold 3.216 Unknown
Aggregated model 2.210 3

CNN: Convolutional Neural Network; MSE: mean square error.

MSE  of 2.56. The aggregated model reached a MSE  of 2.21. For
comparison purposes, the Ridge regression model based on age
only had a MSE  of 3.8. Fig. 6 shows the example of two patients
with MS  for whom the aggregated model correctly predicted the
EDSS scores while the Ridge regression model did not. These two
patients (A and B) were 45- and 55-year-old, respectively and had
close imaging characteristics at baseline but a different EDSS at
two years (3 and 6.5 respectively). Our quantitative image anal-
ysis revealed differences between the two  patients in terms of
volume of lateral ventricles (60 mL  and 84 mL  for A and B respec-
tively) and left posterior corona radiata lesion load (33% and 48%
for A and B respectively) (Fig. 6). We  obtained the best predic-

Fig. 6. FLAIR images of two patients with multiple sclerosis (MS) for which the aggregated model correctly predicted the expanded disability status scale scores while the
Ridge  regression model using age did not. A. 46-year-old woman with MS,  volume of lateral ventricles = 60 mL,  left posterior corona radiata lesion load = 2.5 mL (33%), EDSS
at  two  years = 3. B. 55-year-old man  with MS,  volume of lateral ventricles = 84 mL,  left posterior corona radiata lesion load = 3.6 (48%), EDSS at two  years = 6.5. The age-only
Ridge  regression model predicted an EDSS of 3 and 3.5 for A and B respectively.
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Fig. 7. Graph shows results of each model on the validation set: MSE  for each EDSS group. The log-scale was used in order to facilitate the visualization. CNN: convolutional
neural  network; EDSS: expanded disability status scale; MSE: mean square error.

tion for middle EDSS scores (predictors presenting a MSE  < 1.1
when 1 < EDSS score < 4.5), and the worst prediction for high EDSS
scores (MSE > 9.6 for EDSS score ≥ 8). For EDSS score = 0, no model
performed particularly well (MSE superior to 2.4 for all models),
despite the relatively large number of training examples (n = 189
corresponding to 22% of the training set). Fig. 7 shows the high vari-
ability of model performances across EDSS scores of the validation
set.

4. Discussion

Our method can predict two-year clinical disability with a mean
square EDSS score error of 3 only based on a single, baseline, routine
FLAIR MRI  examination with some basic clinical information, with
heterogeneous imaging quality from various MRI  equipments and
centers. The most informative variables were the age, the volume
of the lateral ventricles, and the lesion load in main white mat-
ter tracts such as corona radiata, thalamic radiation, and cerebellar
peduncle.

The aggregation of complementary predictor models, through a
weighted average taking into account prediction errors for differ-
ent EDSS score ranges, allowed us to benefit from the strength of
each predictor. Indeed, not a single predictor performs well on each
one of the EDSS scores. On the contrary, the best predictor varies
across EDSS score groups and as expected, the aggregated model
presented shows improved performance compared to the best indi-
vidual predictor. The features characterizing the impact of lesions
on the brain network (using tract-based lesion loads) demonstrate
their usefulness over features learned using a pure image-based
deep learning approach for middle EDSS scores, reaching a very
low MSE  < 0.36 for EDSS of 3 and 3.5 on the validation set. We
also achieve better prediction accuracy (MSE = 2.2) on this dataset
compared to an age-only Ridge regression model (MSE = 3.8), high-
lighting the importance of imaging features in the prediction.
Further studies including quantitative metrics coming from T1-
weighted-based segmentation could be interesting to understand
the influence of atrophy on the clinical disability.

Our study has some limitations. First, our aggregated model
had difficulty to predict EDSS score = 0 at two years. The injection

of a priori anatomical knowledge on brain connections was not
sufficient to overcome the clinico-radiological paradox for these
patients. This could be due to various factors including intra- and
inter-variability when scoring EDSS, particularly with low scores
[26], underestimation of damage to the normal-appearing brain
tissue, neglect of spinal cord involvement, or masking effect of cor-
tical plasticity. Second, for EDSS scores > 8, the aggregated model
reached an MSE  over 9 on the validation set. This result could be
explained by the unbalanced EDSS score distribution of the train-
ing set which presented a limited number of examples of these
high EDSS scores. A training session on a larger cohort of patients
could overcome this limitation or different solutions could be tested
to artificially increase the number of high EDSS scores during the
training such as oversampling of high EDSS score examples or
generating synthetic data. Last, the initial EDSS scores (associated
with the baseline MRI  examination) were not available during this
challenge, thus making it impossible to estimate clinical disabil-
ity progression over the follow-up. In addition, we received no
information about patient treatment, so we  were not able to study
therapeutic effects on our disability prediction.

In conclusion, our model helps predict the EDSS score at two
years for patients affected by MS  by relying solely on a single FLAIR
sequence and basic demographic information. This performance
was achieved through the combination of multiple predictors based
on images, anatomical priors, and white matter lesion load using
MRI  from multiple clinical centers. These promising results should
be further validated on an external larger test cohort and have the
potential to be highly relevant for disability prediction and the eval-
uation of disease-modifying treatments. This supports the use of
our model to predict EDSS score progression and/or the improve-
ment of the current prediction using additional factors such as
baseline EDSS score.
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9.2 Dl-Generic: A deep-learning framework dedicated to
medical imaging analyse

In line with my PhD activities, I developed an ‘in-house’ python deep-learning framework
called ‘dl-generic’. This project was initially designed to allow people with no IT background
to be able to use classical deep-learning models for their own studies. This could concern
biologists from the lab who are interested in new DL techniques but often lack the technical
knowledge to actually develop the associated tools. In consequence, the framework had to be
user-friendly and to propose at least one model for each type of ‘classical’ DL task (regression,
classification, generation or segmentation). It also had to be collaborative, in a sense that
every user should be able to develop their own specific models (in coherence to the global
architecture) and make them available to other users afterwards.

To begin with, I developed classical CNN and U-Net models, which are very popular for
medical analysis. It allows users to run regression, segmentation or image generation tasks.
These models were tested on dedicated tasks. For CNN, I tried to predict the age of a subject
based on a T1w acquisition using the ABIDE database. The segmentation part (U-Net) was
evaluated on a brain mask task. The generating capacity of the U-Net was tested on a
zero-Gado study in which we tried to predict the effect of gadolinium on a T1w sequence.

Regarding image generation, I quickly upgraded the U-Net model to a GAN version by
adding a CNN-discriminator into the model. As in classical adversarial networks, the CNN
tries to predict if a given input is generated by the U-Net or is actually real. On the other
side, the U-Net, by integrating CNN’s loss into its own one, will learn how to fool the CNN.
This procedure is used in most state-of-the-art generating models. It forces the generator to
produce more realistic outputs.

Further on, during my investigation into data-harmonization, I developed a cycleGAN
(subsection 3.2.3 model implementation. The model was used to translate images style
between two domains (in my case sites), using two complementary GANs. During all my
research in MR harmonization more complex models have been included in the project, like
VAE, VAE-GAN and ImUnity.

This project is in open-access here: https://github.com/nifm-gin/dl_generic.
The usage of all models has been organized as follows:

1. Dispatch the data into three folders train/val/test, each using the BIDS nomenclature.

2. Generate patches from the data. This is done with the script ’patches_generation.py’.
This step is crucial as every further step will work on those generated patches. The user
can generate patches of the desired shapes (either in 2D or in 3D). Additional optional
arguments can be specified for a more specific usage, like for example if the user wants
some overlap between the patches, or to use 2D patches for a 2.5D approach.

3. Use the model of user’s choice on the patches previously generated. This is done with
the script ’use_model.py’. It can be used to train the model and run inference or just
one of these two steps. For this step the user can specify every training parameter
needed (learning rate, batch-size, optimizer, number of layers, the loss etc...).

4. In the case of a segmentation or generation task, the user can reconstruct the model’s
outputs. In fact, as working on patches, the outputs are based on input patches so a
reconstruction step has to occur to have the final output. This is done with the script
’reconstruction.py’, which will do the opposite of the patch generation script.

https://github.com/nifm-gin/dl_generic
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Every model can be used in a 2D, 2.5D (segmentation and generation models only) or
3D fashion. The user can also specify if training should be run on GPU or CPU and he/she
can also specify the number of GPU to use. A visualization of training is also possible via
the integration of Tensorboard. Users can also stop any training and resume it later on as
model checkpoints are saved regularly during training.

So far, the framework has been mainly used by 3 students with different backgrounds.
1) Loïc Legris, a neuro-radiologist used it during his medicine thesis. He was focusing on
the diagnosis of hemorrhagic transformation for patients in patients with stroke. His project
was to use DL techniques to compare the obtained results to the literature. He had no
IT background which made the task challenging. He used dl_generic for his studies which
allowed him to implement and train a CNN for his classification task. He was able to handle
the framework very quickly and became autonomous quickly. 2) Yunshi Han, an engineering
student who did her ‘end of study’ project at the GIN in 2021. She worked on multi-classes
segmentation focusing on Glioma data. As she had a very good IT knowledge, she became
autonomous very quickly. She first used the classical U-Net developed for classical one-class
segmentation and then upgraded it to a multi-class version. Additionally, she also worked on
transfer-learning concerning medical segmentation tasks. These two options were added to
the dl_generic project. 3) Finally Constance Sohler, an engineering student doing her ‘end
of study’ project under my supervision, used dl_generic for her project. As she was focusing
on MR harmonization, she used the cycleGAN and ImUnity implementations. Having no
previous experience in DL, she was able to handle the tools very quickly and helped me by
correcting several issues in the code.
At the moment, there is a research engineer from CREATIS in Lyon who is using ImUnity
for her project and would like to observe the effect of harmonization on her data. I am very
curious to see the results as she is working on pelvis MRI data. Another team from Chapel
Hill in the US has requested access to our code to use ImUnity in their studies.
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9.3 Colaboration with Kévin Yauy
During my PhD project I was also in contact with other members of the multiomic

MIAI chair. This includes PhD students involved in different medical fields, like genomic or
proteomic. Once in a month, we met to exchange about our personal project and present
our latest advances. It was a great opportunity to get external views on our work and to get
relevant recommendations from specialists from different fields.

In particular, I had several exchanges with Kevin Yauy, a Medical Geneticist PhD student
who worked with SeqOne under the supervision of Dr Julien Thevenon. As a geneticist, he
gave me more insights into the main challenges of the DEFIDIAG project and how we could
process the data efficiently. On the other hand, as a data science engineer, I helped him for his
needs for data visualization or dimensional reduction. As a result, I contributed to the paper
entitled ‘Genome Alert!: A standardized procedure for genomic variant reinterpretation and
automated gene–phenotype reassessment in clinical routine’ (Yauy et al., 2022) which has
been published this year. You will find below the open access version of the manuscript.
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Pascale Richard6, Sophie Coutant3, Mélanie Broutin2, Raphael Lanos2, Quentin Fort2,
Stenzel Cackowski7, Quentin Testard1,5, Abdoulaye Diallo2, Nicolas Soirat2,
Jean-Marc Holder2, Nicolas Duforet-Frebourg2, Anne-Laure Bouge2, Sacha Beaumeunier2,
Denis Bertrand2, Jerome Audoux2, David Genevieve8, Laurent Mesnard9,10, Gael Nicolas3,
Julien Thevenon1, Nicolas Philippe2

A R T I C L E I N F O

Article history:
Received 30 November 2021
Received in revised form
7 February 2022
Accepted 7 February 2022
Available online 17 March 2022

Keywords:
ClinVar
Gene–phenotype associations
Sequencing reinterpretation
Variant pathogenicity

A B S T R A C T

Purpose: Retrospective interpretation of sequenced data in light of the current literature is a
major concern of the field. Such reinterpretation is manual and both human resources and
variable operating procedures are the main bottlenecks.
Methods: Genome Alert! method automatically reports changes with potential clinical signifi-
cance in variant classification between releases of the ClinVar database. Using ClinVar
submissions across time, this method assigns validity category to gene–disease associations.
Results: Between July 2017 and December 2019, the retrospective analysis of ClinVar sub-
missions revealed amonthlymedian of 1247 changes in variant classificationwith potential clinical
significance and 23 new gene–disease associations. Re-examination of 4929 targeted sequencing
files highlighted 45 changes in variant classification, and of these classifications, 89% were expert
validated, leading to 4 additional diagnoses. Genome Alert! gene–disease association catalog
provided 75 high-confidence associations not available in the OMIM morbid list; of which, 20%
became available in OMIM morbid list For more than 356 negative exome sequencing data that
were reannotated for variants in these 75 genes, this elective approach led to a new diagnosis.
Conclusion: Genome Alert! (https://genomealert.univ-grenoble-alpes.fr/) enables systematic and
reproducible reinterpretation of acquired sequencing data in a clinical routine with limited hu-
man resource effect.
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Introduction

Genetic tests are increasingly prescribed and included in
health care pathways for diverse clinical indications.1,2

Several countries have developed population genomics or-
ganizations that are revolutionizing medical practices.3,4

However, many of these genomic analyses remain incon-
clusive owing to limitations in genomic and medical
knowledge available at the time of analysis.

The American College of Medical Genetics and Geno-
mics/Association for Molecular Pathology (ACMG/AMP)
recommendations for variant classification aim at standard-
izing variant interpretation practices in genomic centers, in
the context of medical interpretation.5 Recently, tools have
been published to automatically classify genomic variants
on the basis of these recommendations.6-8 Meanwhile,
evolving medical knowledge and rapid adoption of clinical
genome sequencing have influenced the standard practices
and have created additional needs. A current and major
preoccupation in this field is the definition of standards for
periodic and prospective reanalysis of existing sequencing
data. Indeed, reanalyzing existing genomic data improves
diagnostic yield (7% increase per year).9,10

In practice, such an in-depth reinterpretation is mainly
manual and time-consuming, with major bottlenecks such as
human and funding resources or lack of consistency be-
tween centers. Clinical recommendations from the Amer-
ican and European Societies of Human Genetics reinforce
the need for a standardized and automated approach to the
reinterpretation of genomic analyses.11-14 Some companies
offer paid black box services, with poorly detailed methods
that cannot be reproduced.15,16

Clinical knowledge of rare diseases is contained in expert-
curated databases (such as OMIM17 or Clinical Genome
Resource [ClinGen]18), peer-reviewed medical literature, and
information sharing between health practitioners through
community-based platforms (such as MatchMaker Ex-
change19 or ClinVar20). Reliability and exhaustiveness of
information vary widely across these data sources. Further-
more, careful monitoring of clinical knowledge by every
laboratory represents an organizational challenge for a pro-
spective reanalysis of acquired data. To enable a systematic,
reproducible, and prospective genome interpretation, a
collaborative approach for clinical knowledge aggregation
combined with automated medical knowledge monitoring
and curation is needed.

The main community-based repository of genomic
knowledge is ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), a shared variant interpretation database that
featured 1 million submissions in 2020. ClinVar is updated
weekly with several thousands of modifications of variant
classifications that could affect the diagnostic yield of pre-
vious analyses. There is currently no monitoring system that
can highlight these changes at a scale for the complete
database. Besides variant classification, gene–phenotype

association catalogs are crucial because they are
commonly used to design phenotype-specific gene panels
for dry-lab filtering and set the frontiers for clinical genome
analysis.21,22 Although not their primary purpose, variant-
centered databases could also theoretically provide a com-
plementary resource to gather gene–phenotype knowledge.

In this article, we detail an automated method for the
reassessment of variant pathogenicity and gene–phenotype
associations through ClinVar follow-up. This procedure,
called Genome Alert!, aims at performing a routine and
systematic reinterpretation of existing genomic data. The
procedure’s effectiveness was evaluated through a 29-month
multicentric series (2018-2019) of 5959 consecutive in-
dividuals screened using targeted sequencing (4929 in-
dividuals with hereditary cancers) and exome sequencing
(1000 analyses including 356 undiagnosed individuals with
suspected Mendelian disorders).

Materials and Methods

Genome Alert! standardized procedure

ClinVCF, Variant Alert!, and ClinVarome are a suite of
tools that constitute the heart of the Genome Alert! stan-
dardized procedure.

ClinVCF: A ClinVar quality processing method
Before comparing different versions of the same source,
data consistency needs to be verified. This first step is based
on ClinVCF tool, and once every submission has been
tracked, data will be processed for the next step.

ClinVCF imports monthly updated ClinVar Xtensible
Markup Language (XML) files. XML format was preferred
over VCF mainly because of better consistency and trace-
ability across versions for the ClinVar Variation ID, the
history of changes in each variant classification, and the
additional gene–phenotype data availability in XML.
ClinVCF considers an automatic reclassification of variants
with at least 4 submissions and conflicting interpretations of
pathogenicity status. Consensus classification according to
ClinVar policies sets the conflicting interpretations of
pathogenicity status when at least 1 conflict in submission is
observed, except if an expert consortium (as ClinGen) has
defined classification (details available in Supplemental
Method 1). On the basis of the provided classifications
transformed from literal transcription (eg, likely pathogenic)
to class number (eg, class 4), if ≥4 submissions are avail-
able, a new consensus is proposed after outlier submissions
removal according to the 1.5* Interquartile Range (IQR)
Tukey method.23 We only reclassify variants from con-
flicting status to likely pathogenic or pathogenic status.
ClinVCF provides a 3-tier reclassification confidence score
detailed in Supplemental Figure 1. As an output, ClinVCF
writes a Variant Calling File (VCF) v4.2 file.
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Variant Alert!: A variant knowledge monitoring tool
Variant Alert! tool aims at identifying changes in variant
classification across 2 versions of the database. Changes
were defined as (1) a modification in the classification of an
existing variant and (2) the creation or suppression of a
variant entry.

Stratification of the consequences in classification
modification was proposed (Supplemental Table 1). Major
classification modification was defined as a change that may
affect the clinical management of a patient (eg, uncertain
significance to likely pathogenic status). Minor classification
modification was defined as a change that may not affect the
clinical management of a patient (eg, pathogenic to likely
pathogenic status).

Variant Alert! writes 2 files: (1) the list of variants that
were modified, added, or removed and (2) the list of genes
that were added to or removed from the database. This gene
list is notably used by ClinVarome.

ClinVarome: A method for automated gene–disease
association evaluation
ClinVarome tool aims to periodically and automatically
evaluate gene–disease association in the ClinVar database.
To differentiate genes on the basis of their clinical validity,
the work from European Molecular Biology
Laboratory–European Bioinformatics Institute Gene2Phe-
notype,24 ClinGen,18 and Genomic England PanelApp25

were first compared. Although theoretically comparable,
their rationales and contents were partially overlapping and
with conflicting classifications. To discriminate candidate
genes from definitive gene–disease associations, we decided
to use an unsupervised clustering model. Only the genes
with at least 1 likely pathogenic or pathogenic variant
(single nucleotide variant or indel affecting a single gene) in
ClinVar were considered in a list called ClinVarome. As a
consensus criterion, we chose to assess the strength of a
gene–disease association through the quantification of 4
variables: (1) count of likely pathogenic and pathogenic
variants, (2) highest variant classification (CLNSIG, likely
pathogenic or pathogenic), (3) highest ClinVar review
variant confidence (CLNREVSTAT, from 0 to 4 stars), and
(4) time interval between the first and the last pathogenic
variant submission (replication of the gene– disease asso-
ciation event). For these 4 variables, values were gathered
through periodic monitoring of changes in the database
following the ClinVCF and Variant Alert! tool procedures.
Clustering variants according to these variables allowed us
to define clusters of genes according to their clinical val-
idity. The scikit-learn Agglomerative Clustering tool
(parameters: Euclidean affinity, ward linkage) was used, and
t-distributed stochastic neighbor embedding representation
(parameters: 2 components, perplexity 150, 2000 iterations,
and 1000 iterations without progress) was performed. Gene-
disease validity classification was computed per gene but
not per disease. The Gene Curation Coalition (GenCC)
(https://thegencc.org/) database was released recently and
was used to evaluate ClinVarome. To compare ClinVarome

clusters and GenCC classification, GenCC submissions
were summarized into 3 categories (Green, Orange, Red)
(Supplemental Methods 2).

Study design and participants

To evaluate the clinical impact of Genome Alert!, we
collected 5929 consecutive germline sequencing data sam-
ples from 3 centers in France between July 2017 and
December 2019 as part of their routine genetic investigation:
(1) a variant database gathering all class 3 (uncertain sig-
nificance), class 4 (likely pathogenic), and class 5 (patho-
genic) variants identified in a colon cancer–targeted
sequencing (14 genes) sequenced in 2540 individuals in the
Rouen University Hospital; (2) a cancer-targeted sequencing
data set of 2389 individuals by the Cerba laboratory (66
genes); and (3) exome sequencing data of individuals with
developmental disorders, rare kidney diseases, or other rare
diseases as follows: 108 probands from the Rouen Univer-
sity Hospital, 477 probands (with 356 negative analysis)
from the Cerba laboratory, and 415 probands from the
Eurofins Biomnis laboratory. Patient samples, together with
a basic phenotype description and molecular diagnosis
(when available), were anonymized. Two main clinical
evaluations were performed: (1) variant-centered reanalysis,
which aims at matching individuals that carry exact variants
with potential clinical significance reported by Genome
Alert!, and (2) gene-centered reanalysis, which aims at
matching individuals who carry candidate variants in high-
confidence clinical genes referenced in ClinVarome and
not in OMIM. Initial analyses were performed between
0 and 2 years before this reanalysis.

Selection of variants with potential clinical
significance

All sequencing data were systematically reinterpreted ac-
cording to Genome Alert!’s report and compared with the
initial variant interpretation. For targeted sequencing and
exome reanalysis, genomic positions of variants with major
changes in classification were queried in the existing pa-
tient’s variant calling files (variant-centered analysis). For
exome data, we performed a reanalysis of variants in VCF
with the following criteria: (1) among 75 ClinVarome
morbid genes, which were not available in OMIM, and with
a second event of gene–disease validation (including a likely
pathogenic or pathogenic variant with ClinVar review
confidence ≥ 2 stars and a likely pathogenic or pathogenic
variant entry subsequent to the initial entry); (2) variant not
shared with another individual in the series; (3) sufficient
sequencing quality (variant allele fraction > 25% and read
depth > 20 reads); (4) rare in Genome Aggregation Data-
base26 population (frequency <10–5 if heterozygous geno-
type or 10–4 if homozygous genotype); and (5) protein
consequence among nonsense, frameshift, missense
(missense are selected with Combined Annotation
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Dependent Depletion27 score > 30 and MetaSVM28 = D),
or splice variants (based on dbscsnv RF29 predicted impact
score > 0.6) (gene-centered reanalysis).

Results

ClinVar knowledge dynamics

To get insights into variant classification and gene–disease
association and to estimate the amount of new clinically
relevant information in the ClinVar database available
through time, a retrospective analysis of ClinVar sub-
missions over 29 months was performed (July 2017
[included] to December 2019). Of note, VCF genomic po-
sitions in ClinVar were introduced in July 2017 and prob-
ably are associated with the largest injection in the ClinVar
database.

The number of variants with ACMG/AMP classification5

increased from 144,943 to 491,838. Among modifications in
the database, the count of major changes was 107,167 in
ACMG/AMP classification, and among these, 103,615
resulted in a pathogenicity status, which was previously
unreported, whereas 3552 resulted in the revocation of a
previously established pathogenicity (Figure 1A). These
changes varied significantly according to disease groups the
between gene panels (according to Genomics England
PanelApp), in which the oncogenetic panels were on top of
the list of panels. The panels and disease groups presenting
most of the changes per gene are presented in Figure 1B and
C and Supplemental Table 2. Clinical gene entries in Clin-
Var were also monitored. A median of 23 ClinVar morbid
genes per month that were newly associated with Mendelian
disease was observed (Figure 2).

Changes in variant classification

To evaluate the robustness of clinical variant information,
the consistency of variant classification was explored and is
described in Supplemental Table 3. Among 144,943

Figure 1 ClinVar variant classification monitoring between
July 2017 and December 2019. A. Bar chart distribution of every
2 months of changes in variant classification. The bar chart was

split for better readability. Bold numbers and dark red color
represent new (likely) pathogenic variant entries, green represents
number of revoked (likely) pathogenic variants, orange represents
number of minor change variants (eg, pathogenic to likely patho-
genic), yellow represents number of changes with uncertain clinical
impact (VUS or conflict entry), and purple represents number of
changes leading to variant disappearance. B. Bar chart of top
panels with clinically significant changes per gene (major changes).
Dark red color represents (likely) pathogenic variant entries, and
green represents revoked (likely) pathogenic variants. C. Bar chart
of top disease group with clinically significant changes per gene
(major changes). Dark red color represents (likely) pathogenic
variant entries, and green represents revoked (likely) pathogenic
variants. GI, gastrointestinal tract; VUS, variant of uncertain
significance.
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variants available in July 2017, 10,254 (7%) were reclassi-
fied between July 2017 and December 2019, ie, we
observed only a small portion of variants being reclassified
over time. These reclassifications included automatically
reclassified variants with conflicting interpretations. More
precisely, among the 11,417 likely pathogenic variants,
1125 (9.94 %) variants were reclassified as benign variants,
likely benign variants, variants of uncertain significance, or
variants with conflicting interpretations of pathogenicity.

Automatic variant reclassification with conflicting
interpretations

A criticism of the ClinVar database is the misclassification
of pathogenic variants, such as the well-known HFE path-
ogenic variant NM_000410.3:c.845G>A. We observed that
it was mostly due to a unique outlier submission with a
classification for a distinct condition (eg, cutaneous photo-
sensitivity porphyrinuria phenotype). We evaluated our
method to remove such outlier submissions. Among all the
variants available in ClinVar in December 2019, 22,973 of a
total of 503,994 (4.5%) variants were classified with a
conflicting interpretation of pathogenicity. Genome Alert!
automatic reclassification method proposes to detect outlier
submissions to suggest a consensus classification. This

allowed the reclassification of 188 variants from conflict to
likely pathogenic or pathogenic classification in 135 genes
and 1625 variants in 436 genes from conflict to likely
benign or benign classification (Supplemental Table 4,
Supplemental Figures 1 and 2).

Variants automatically reclassified as likely pathogenic or
pathogenic in cancer (n= 9) and cardiogenetic disease (n= 11)
were presented to FrenchNational experts in the field. Of these
20 automatic reclassifications, 17 were confirmed as accurate
by experts and 3 remained as variants of uncertain significance,
lacking evidence of pathogenicity for our experts.

Clinical impact of changes in variant classification

To assess the clinical impact of Genome Alert!’s changes in
variant classification, previously analyzed cancer-
predisposition targeted sequencing data were assessed
(4929 individuals from 2 genetic centers) (variant-centered
reanalysis, Figure 3). Among all variants detected in this
cohort, this method highlighted 45 variants with major
changes between the time of analysis and December 2019,
which were proposed for manual review by their referring
geneticists (Supplemental Tables 5 and 6).

Among the 45 variants, 30 had been already manually
reported by the clinical geneticists as likely pathogenic or

Figure 2 ClinVar clinical genes entries associated with new or deprecated Mendelian disease (morbid status) distribution between
December 2017 and December 2019. The bar chart was split for better readability. Dark red represents morbid genes entries (first variant
with likely pathogenic or pathogenic status), and green represents revoked morbid genes. White numbers represents number of new morbid
gene entries by 2 months.
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pathogenic at the initial time of analysis, meaning that these
classifications were ahead of the ClinVar database. The 15
unreported variants were manually curated, looking for
additional diagnoses. Among them, 14 variants were newly
classified as likely pathogenic or pathogenic and 1 was
downgraded as a variant of uncertain significance (VUS) in
ClinVar. The manual curation of these 14 variants lead to
the conclusion that 6 corresponded to a carrier status for a
recessive disorder, 3 were manually classified as VUS, and 5
were submitted to a multidisciplinary meeting for external
review. Finally, 4 of these latter 5 were classified as likely

pathogenic or pathogenic by experts leading to additional
diagnoses. One variant remained classified as a VUS, and
complementary studies on the patient’s messenger RNA
were proposed before conclusion (PALB2,
NC_000016.9(NM_024675.3):c.3350+4A>G). Finally, an
89% validation rate (40 of 45) of major changes were
observed. This variant reclassification tracking system
allowed an additional diagnosis per 1000 analyses.

Replication of the variant-centered reanalysis was per-
formed in the exome sequencing cohort, looking for variant
exact match. Selective reanalysis in previous exome

45 variants identified

4,929 targeted sequencing from 0 to 2 years
since time of analysis were enrolled

15 variants with major change remained in
negative analysis and reviewed by expert

30 variants were already
considered likely pathogenic or

pathogenic

4 variants were classified  
likely pathogenic or pathogenic

3 patients had a direct impact on patient care

1 variant needed additional splicing
studies to confirm 

1 variant in a gene not yet
recommended by institution

6 variants as carriers status for
autosomal recessive disease

1 variant remains Likely pathogenic
despite downgrade to VUS in ClinVar

Variant-centered reanalysis 
(December 2019)

3 variants remain VUS despite
ClinVar classification

Figure 3 Experimental design of the variant-centered reanalysis. Flow charts describing how the sequencing data were reinterpreted
according to variant reclassification only. Green box represents new diagnosis. Light green boxes represent confirmed variant classification.
Orange boxes represent excluded variants. VUS, variant of uncertain significance.
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sequencing analysis (1000 individuals in 3 genomic centers)
highlighted <1 variant per exome (only 297 variants) with
major changes between the time of analysis and December
2019. These 297 variants were then explored by clinical
geneticists. Among all 297 variants, 1 variant (POLG,
NM_002693.2:c.2243G>C) was automatically reclassified
as pathogenic by our IQR outlier submission method and
was initially reported as VUS, thus helping us to confirm the
diagnosis. Compound heterozygosity was observed for a
pathogenic variant (POLG, NM_002693.3:c.1399G>A).
Exome sequencing reanalysis with the variant-centered
reanalysis also provides an additional diagnosis per 1000
analyses.

Monitoring ClinVar gene–disease association
knowledge

A focus has been toward exploring rarely explored
gene–disease association in ClinVar data. To discriminate
candidate genes from definitive gene–disease associations in
ClinVarome, unsupervised clustering was performed on the
basis of the following criteria: (1) count of likely pathogenic
and pathogenic variants, (2) highest variant classification,
(3) highest ClinVar review variant confidence, and (4) time
interval between the first and the last pathogenic variant
submission. According to distances between clusters and
model dendrogram, the number of clusters was set to 4
(Figure 4). Careful observation of these clusters identified
objective patterns to understand the classification. We
observed that all genes in the first and second clusters had a
reproducibility event (a new likely pathogenic or pathogenic
variant entry, the confirmation of the likely pathogenic or
pathogenic classification by another submitter or expert
panel) in pathogenicity status, thus giving them strong
confidence. Genes from the first cluster hold pathogenic
variants with ClinVar’s ≥2 stars of review confidence and
the second cluster genes include pathogenic variants with
different entry dates and <2 stars of review confidence.
Genes in the third cluster had 1 strong argument for path-
ogenicity but needed another event to be fully confirmed
(the third cluster genes contained at least 1 pathogenic
variant and all pathogenic entries were added at the same
date). Because genes in the fourth cluster were only likely
pathogenic variants, their gene–disease association
remained to be confirmed (Supplemental Table 7).

To assess the exhaustivity of the ClinVarome, a compar-
ison with the OMIM database was performed. In December
2019, there was a 95% overlap (3675/3858) between OMIM
morbid clinical genes and ClinVarome morbid genes. Over-
all, 365 genes were referenced only in OMIM and not in
ClinVarome. We observed patterns that were not available in
ClinVar. These patterns include nonconfirmation of a disor-
der as a genuine Mendelian disorder (only 1 publication or
isolated patient reports), susceptibility to multifactorial dis-
orders or infection, referencing of genes belonging to

molecular mechanism distinctive from a single gene disorder
as microdeletion or microduplication syndromes, Mendelian
traits that are not diseases, epigenetic loci, genes with targeted
pathogenic complex variants, and very recently described
diseases. The evaluation focused on these 519 specific genes,
referenced only in ClinVar and not in OMIM, to assess their
potential value in additional diagnoses.

Among the 519 ClinVarome only genes in December
2019, 15 genes were in the first cluster, 60 genes were in the
second cluster (ie, 75 high-confidence genes), 140 genes
were in the third cluster, and 304 genes were in the fourth
cluster. Then, we monitored their inclusion in the OMIM
morbid list in the upcoming months. Among the 519 genes
exclusively referenced in ClinVarome in December 2019,
55 were reported OMIM morbid 8 months later in August
2020, including 15 of the 75 (20%) initial high-confidence
genes. Moreover, 125 of the 140 OMIM morbid genes
additional entries between December 2019 and August 2020
were also referenced in ClinVarome release of August 2020.
This observation suggested that candidate genes in

Figure 4 ClinVarome morbid genes exploration and
gene–disease validity classification. A. Agglomerative clustering
dendrogram of ClinVarome in December 2019. B. t-distributed
stochastic neighbor embedding representation of ClinVarome 4
variables by gene data. Green represents fourth cluster (390 genes),
yellow represents third cluster (987 genes), blue represents second
cluster (1538 genes), and purple represents first cluster (1377
genes).
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ClinVarome may be considered as diagnostic genes before
the OMIM validation of the gene–disease causality.

Clinical impact of ClinVarome morbid genes not
available in OMIM

We evaluated the relevance of this approach by performing
a selective reanalysis of a subsample of the new entries in
the ClinVarome, focusing only on the 75 genes that were
absent from OMIM morbid list and were referenced in
ClinVarome’s first and second clusters (gene-centered
reanalysis). This experiment highlighted 42 variants in 356

negative exome sequencing data. In this data set, 42 variants
were prioritized and were proposed for further interpreta-
tion. Among them, 39 were excluded by the expert. The
experts’ arguments included the presence of variants unre-
lated to the disease phenotype or a single case series
available in the literature. A total of 3 variants were further
explored with Sanger sequencing validation, of which 2
were excluded because of artifact status or discordant in-
heritance pattern (Figure 5).

Overall, this method could ascertain a new diagnosis
from the 356 negative exome sequencing data. A nonsense
DLG4 variant NM_001128827.1:c.1840C>T was reported

42 variants identified

356 consecutive exome sequencing patients with negative
results from 0 to 2 years since time of analysis were

enrolled

1 variant was classified likely pathogenic and had a direct
impact on patient care

3 variants were discussed through multidisciplinary meeting
and Sanger validation if needed

39 variants were excluded 
- discordant phenotype with
literature 
- not enough informations in
the literature

Selection of variants with potential clinical
significance:

good sequencing quality,  
rare in general population (gnomAD) 

in silico predicted impact if missense or affecting splice 

 2 variants were excluded 
- 1 artifact 
- 1 discordant inheritance 

Gene-centered reanalysis 
75 genes in cluster 1 and 2 and not OMIM morbid  

(December 2019)

Figure 5 Experimental design for a targeted gene-centered reanalysis. These 75 genes were reported in ClinVarome and not in OMIM
and classified as related to a disease (clusters 1 and 2). This list of 75 genes was used for the reinterpretation of negative exome sequencing
data (n = 346). Green box represents new diagnosis. Orange boxes represent excluded variants. gnomAD, Genome Aggregation Database.
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as likely pathogenic, responsible for the patient’s phenotype
(intellectual disability and microcephaly). Although the first
report of DLG4 association to intellectual developmental
disorder was described back in 2016, this gene–disease as-
sociation was added to the OMIM database only in
February 2020.

ClinVarome comparison with the GenCC database

A comparison of gene–disease validity confidence and
exhaustivity of ClinVarome with the GenCC database was
performed. In October 2021, there was a 65% (3332 of
5187) gene overlap between the 2 databases. Nonoverlap-
ping genes represent mostly the uncertain gene–disease as-
sociations from these 2 databases. Exclusive genes in
GenCC (n = 334) were significantly enriched in orange and
red genes (151 of 745 orange genes [P < .0001], 158 of 252
red genes [P < .0001]). Exclusive genes in ClinVarome (n =
1471) were significantly enriched in third and fourth cluster
genes (407 of 501 third cluster genes [P < .0001], 448 of
743 fourth cluster genes [P < .0001]). The 2 databases
present a high concordance in gene–disease association
confidence (Supplemental Table 8).

Discussion

With the increasing amount of genetic testing performed in
health care, there is a critical need for standardized methods
to enable prospective genomic data reinterpretation in clin-
ical routine. Through the reassessment of variant pathoge-
nicity and gene–phenotype associations in ClinVar, Genome
Alert!’s data mining method proposes the automatic report
of a handful of variants that can reasonably be manually
interpreted. Our method was applied to a multicentric series
of 4929 sequencing tests with various local bioinformatic
systems. Genome Alert! successfully allowed new di-
agnoses in targeted and exome sequencing through query of
laboratory’s VCFs or variant database and proposed a
portable and open-source framework for an automated
reanalysis of sequencing data.

Retrospective monitoring of the cutting-edge medical
literature on existing genomic data is a major concern for
paving the way to genomic medicine.30 There are numerous
technical and medical challenges in setting up a routine
procedure for reanalysis. This work explored the dynamics
of change across all fields of genomic medicine in ClinVar.

Several medical indications for genomic testing were
noticed to bear numerous changes in variant classification.
Retrospective analysis of the ClinVar database provided an
estimation of new clinically relevant information reported
each month, which may lead to additional diagnoses in the
existing data.31 Overall, 9.94 % (1125) of likely pathogenic
variants were eventually downgraded and reclassified as
benign variants, likely benign variants, variants of uncertain
significance, or variants with conflicting interpretation of

pathogenicity in ClinVar over the study period
(Supplemental Table 3). This analysis highlights the
required carefulness in returning results to the families for
likely pathogenic variants because such information could
be used for genetic counseling and patient management.

Genome Alert! methods are based on the processing of
submissions from the ClinVar full XML release, with no
distinction made between submissions with different con-
texts (eg, somatic or germline status and distinct conditions).
Besides, Genome Alert! attributes a unique variant ID on the
basis of VCF nomenclature. As such, these variants with
potential clinical significance reported by Genome Alert!
should be queryable a priori in each genomic center.
However, VCF nomenclature is not easy to use with com-
plex variation, which could lead to errors. A switch to the
Variation Representation specification from the Global
Alliance for Genomics and Health could provide an inter-
esting improvement step.

Clinical effect of changes in variant classification
(variant-centered reanalysis) provided in our targeted and
exome sequencing cohort provided an additional diagnosis
per 1000 analyses. Because time from initial analysis varies
from 0 to 2 years, this diagnostic yield will certainly in-
crease with time. This automated system is better for large
cohorts of targeted sequencing, with a low number of var-
iants to reinterpret and reaching 10% diagnostic yield in the
re-examined variants. Recent literature emphasizes the
importance of a standardized procedure adapted for
sequencing data reanalysis for considering few candidate
variants after an accurate annotation of new gene–phenotype
associations and filtering procedure.30

A particular effort was made to evaluate confidence in the
reported information to reach a consensus across multiple
annotations. The prospective reassessment of ClinVar high-
lighted numerous conflicts in variant classification. Although
our system rarely reclassifies variants with conflicting in-
terpretations, this automatic reclassification method aims to at
least remove these potential errors. The expert review of
ClinVCF automatic reclassification validates this method on
the basis of outlier submission removal using the IQR
method, and succeeds in reclassifying abnormalities such as
the HFE pathogenic variant NM_000410.3:c.845G>A. This
work highlights the value of the persistence over time of a
classification for relevant genomic information. This work
specifically focused on oncogenetics and cardiogenetics,
fields in which variant interpretations are particularly con-
flicting and shifting.32,33 Overall, in the ClinVar database,
188 variants could be reclassified in 29 months (ranging from
2017 to 2019). After 8 months, in August 2020, a total of 307
variants were reclassified, highlighting the importance of a
systematic and partially automated variant reassessment
(Supplemental Figure 2).

Existing literature for gene-centered reanalysis has
emphasized the importance of OMIM as an updated resource
but not exhaustive.34 To explore and evaluate specifically the
ClinVar database for gene-centered reanalysis, we chose to
focus our reanalysis on 75 high-confidence ClinVarome
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morbid genes (first and second clusters) not available in
OMIM morbid genes list. Complementary to OMIM morbid
genes, these high-confidence ClinVarome morbid genes from
the first and second clusters could provide additional di-
agnoses in exome or genome sequencing analysis (gene-
centered reanalysis). One additional diagnosis was identified
with this tight subsampling of variants among the 356
negative exomes, validating the proof of concept. Additional
experiments could be performed to fully evaluate the Clin-
Varome, such as reanalysis with the full list of ClinVarome
morbid genes not found in OMIM, additional cohorts, or an
extended analysis considering the variants with different
phenotypes not reported in the literature.

On the basis of literature data and feature engineering
processes from all ClinVarome features during clustering
model development, we identified 4 discriminative features
for gene–disease clinical validity available in ClinVarome
data. Overall, the evaluation relies mainly on the amount of
knowledge but also on reported review confidence and more
importantly on the time-scale of entries. The Genome Alert!
gene-curation via machine learning methods provides an
original attempt for automated evaluation of gene confi-
dence in disease. Genome Alert! proposes a standardized
clinical validity confidence score that could allow a pro-
spective gene–phenotype association assessment. As such,
this approach could be useful to update in silico gene panels.
This procedure proposes a complementary approach to the
aggregation of multiple expert-reviewed databases such as
DDG2P, Genomic England PanelApp, or ClinGen
gene–disease validity available in the GenCC database.35

However, ClinVarome gene–disease validity confidence is
defined for all diseases associated with a gene, which is less
precise than curations submitted to the GenCC database. As
ClinVarome is a more exhaustive database, this resource
could prioritize genes to be curated by GenCC submitters,
particularly in the first and second clusters.

In summary, Genome Alert! highlights changes with po-
tential clinical significance and provides a large retrospective
study of a partially automated system for sequencing data
reinterpretation. This procedure enables the systematic and
reproducible reinterpretation of acquired sequencing data in a
clinical routine, with a limited human resource effect and a
diagnostic yield improvement. Genome Alert! provides an
open-source accessible framework to the community, thus
hoping to be applicable in every genetic center.

Data Availability

Software summary
Project name: Genome Alert!
Project home page: https://genomealert.univ-grenoble-alpes.
fr/
Operating system(s): UNIX (Mac, Linux)
Programming language: Nim, Python, R
License: Apache Licence 2.0

Any restrictions to use by nonacademics: No
Genome Alert! results are publicly available at https://

genomealert.univ-grenoble-alpes.fr/. Relevant data used to
generate Genome Alert! results are available from ClinVar
FTP (all monthly ClinVar full XML release data were
downloaded from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
xml/) and in the following resources: OMIM (https://
omim.org/), Genomic England PanelApp (https://panelapp.
genomicsengland.co.uk/), and RefSeq annotation (ftp://ftp.
ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_
latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz).
All codes for generating Genome Alert! procedures are
available at public GitHub repositories: ClinVCF tool for
ClinVar XML full release processing and extraction to VCF
format (https://github.com/SeqOne/clinvcf), Variant Alert!
tool to compare ClinVCF release (https://github.com/
SeqOne/variant_alert), ClinVarome tool to evaluate clin-
ical validity of ClinVar morbid genes (https://github.com/
SeqOne/clinvarome), and the Genome Alert! shiny app
(https://github.com/SeqOne/GenomeAlert_app).
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142 Chapter 9. Supplementary Material

9.4 Teaching & supervising experience
During these three years, I had the opportunity to teach at the Grenoble INP Ensimag

and Phelma. My first teaching experience was at Ensimag in January 2020 where I super-
vised a class of 30 students working on a one month project. This project was a ’software
engineer project’ in which groups of 5 students had to develop a compiler for a programming
language close to Java. The project was composed of lectures to introduce the project and
the main challenges, then the students would work in groups by themselves and would have
some practical sessions to check their progress. Each group had also three intermediate pre-
sentations before the final rendering. During these ones, I was in charge of evaluating their
progress and alerting them if they had fallen too far behind on the overall project. Finally
I had to evaluate their compiler by testing it on a large testing database developed by my
colleagues.
This course counted for 55 hours of teaching and I did it again in January 2021. I chose not
to do it in 2022 because of a busy schedule at this time, this project having been my main
occupation for a month the previous years.

Over April and May 2021, I supervised C programming practical sessions at Phelma. The
students were in their first year of engineering and had taken an introductory C programming
course before. I gave 14 hours of practical sessions.
In September 2022 I was recruited again to supervise C programming practical sessions, as
for 2021 this contract was for 14 hours as well.

My last teaching experience was during the AI4Health winter school in January 2022.
With some colleagues from the GIN, we organized a practical session focusing on Deep gen-
erating models for gadolinium contrast generation based on T1w acquisitions. We introduced
the concept of GAN, transfer learning and contrastive learning. This course lasted 8 hours
and was given twice.

In overall I gave 138 hours of teaching, I really enjoyed these teaching experiences. This
gave me the opportunity to discover the teaching in different contexts.
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