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Cellular Automata for the Observation of Complex Systems

In this thesis, we propose to study the observability of cellular automata (CA),
i.e. how we can efficiently reconstruct the state of a CA from a limited number of
measurements. To do so, we draw our inspiration from the notion of observability
in classical control theory. This notion guarantees that the state of a system can be
perfectly reconstructed from the measurements.

In order to apply results in classical control theory to CA, we adopt the CA
definition of El Yacoubi (2008) and use it to define the notions of measurements and
sensor networks for CA. Utilising these definitions we then develop the concepts of
observability, reconstructibility, and adaptability in the context of cellular automata.

Subsequently, we define analytical criteria to verify these three notions for specific
families of CA. We start with additive and affine CA for which we transpose the
rank condition developed by Kalman and adapt it to provide similar conditions for
reconstructibility and adaptability. Next, we focus on non-linear CA. We optimise
observability and reconstructibility criteria for Boolean networks. We also propose a
method for decentralising the observability analysis which may be applied to check
observability and reconstructibility for very large CA.

We propose then another observation method with a totally different approach
based on synchronisation. It avoids the computational complexity issues encoun-
tered using previous methods. In particular, in the case of small initial error, we
propose an improved synchronisation method that drastically increases observation
performance.

We conclude the thesis by illustrating the developed methods on three examples.
We apply reconstructibility and synchronisation methods to a forest fire propagation
model. We compare the observation performance of both methods. Then, we use
reconstructibility and decentralised reconstructibility on a road traffic model. Finally,
we use the observability of additiveCA to reconstruct a sequence of numbers produced
by a CA-based random number generator.

Keywords: Cellular Automata – Observation – Observability – Mobile sensors
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Automates cellulaires pour l’observation de systèmes complexes

Dans cette thèse, nous nous proposons d’étudier l’observation des automates cellu-
laires (AC), c’est-à-dire comment nous pouvons efficacement reconstruire l’état d’un
AC à partir d’un nombre limité de mesures. Pour cela, nous puisons notre inspiration
dans la théorie du contrôle classique, en particulier dans la notion d’observabilité.
Celle-ci garantit que l’état du système peut être reconstruit parfaitement à partir des
mesures.

Afin d’appliquer les résultats de la théorie classique du contrôle aux AC, nous
adoptons la définition desACprésentée parEl Yacoubi (2008) et l’utilisons pour définir
les notions de mesures et de réseaux de capteurs. En utilisant ces définitions, nous
développons ensuite les concepts d’observabilité, de reconstructibilité et d’adaptabilité
dans le contexte des automates cellulaires.

Ensuite, nous définissons des critères analytiques pour vérifier ces trois notions
pour des familles spécifiques d’AC. Dans un premier temps, pour les AC additifs
et affines pour lesquels transposons la condition de rang développé par Kalman.
Nous adaptons cette condition pour fournir des critères similaires pour la recon-
structibilité et l’adaptabilité. Ensuite, nous nous intéressons spécifiquement aux AC
non linéaires. Nous optimisons un critère d’observabilité et de reconstructibilité
utilisé pour les réseaux booléens et nous proposons aussi une méthode de décentrali-
sation de l’observabilité, celle-ci permettant de vérifier l’observabilité pour des AC de
très grande taille.

Nous présentons une autreméthode d’observation qui ne se base pas sur la théorie
du contrôle. Celle-ci permet d’éviter les problèmes de complexité calculatoire causés
par les méthodes précédentes. Nous nous intéressons en particulier au cas où l’erreur
initiale est faible, ce qui permet, dans certains cas, d’augmenter drastiquement les
performances d’observation.

Nous terminons en appliquant les outils développés dans cette thèse sur des
exemples concrets. Nous appliquons la reconstructibilité et la synchronisation sur
un modèle de propagation d’incendie de forêt. Nous en profitons pour comparer
les performances d’observations de ces deux méthodes. Ensuite, nous utilisons la
reconstructibilité ainsi que la reconstructibilité décentralisée sur un modèle de trafics
routiers. Puis, nous utilisons l’observabilité des AC additifs pour reconstruire une
séquence de nombres produite par un générateur de nombres aléatoires basé sur un
AC.

Mots-clés : Automates cellulaires – Observation – Observabilité – Capteurs mobiles
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Long French Abstract

La modélisation des phénomènes naturels est un enjeu crucial tant pour la com-
préhension du monde qui nous entoure que pour la prédiction d’événements futurs.
D’autant plus que le monde subit des changements majeurs dus au changement cli-
matique. Il devient urgent de développer de telles méthodes pour faire face à ces
problèmes. Ces approches peuvent être appliquées dans un large éventail de domaines
et d’applications différentes. Ceci encourage le développement d’une formalisation
théorique afin de faciliter le déploiement de ce type d’outil dans le futur. La thèse va
dans ce sens et fournit également quelques exemples appliqués.

Pour donner un peu de contexte, intéressons-nous aux feux de forêt dans le sud
de la France. Entre 2015 et 2019, plus de 8 700 feux de forêt ont été signalés dans
la zone méditerranéenne française2. Selon une récente étude interinstitutionnelle
sur l’impact du changement climatique sur les risques d’incendie de forêt en France
(Chatry et al., 2010), le risque d’incendie de forêt, actuellement concentré sur la
zone méditerranéenne de la France, s’étendrait à la grande majorité de la France et
particulièrement au nord de la France d’ici 2070. Il est donc nécessaire de fournir
aux autorités des méthodes efficaces pour estimer le risque d’incendie et pour suivre
l’évolution des incendies lorsqu’ils se produisent.

Pour développer de telles méthodes, il est nécessaire d’avoir une représentation
du phénomène étudié. Cette représentation est appelée « modèle » et est construite à
partir de données quantitatives exprimées en termes formels. De cette représentation,
on déduit des observations possibles qui sont ensuite confrontées à des résultats
expérimentaux. Elle peut être exprimée à l’aide d’équations mathématiques, ou au
moyen d’autres descriptions plus adaptées.

Pour les systèmes physiques répartis dans l’espace, les modèles utilisent largement
les équations aux dérivées partielles (EDP) comme outil de représentation. Les EDP
sont un ensemble d’équations mettant en relation les dérivées de variables physiques
par rapport à l’espace et au temps. Elles ont été largement utilisées par les physi-
ciens depuis plusieurs siècles. Cependant, le développement de tels modèles d’EDP
prend souvent beaucoup de temps et nécessite des connaissances expertes dans le
domaine d’application considéré, mais aussi un solide bagage en mathématiques et en
informatique. L’existence de solutions et les simulations numériques sont déjà des
2Données de Prométhée, qui étudie les feux de forêts en Corse, en région PACA, en région Languedoc Roussillon ainsi qu’en
Ardèche et dans la Drôme. Plus d’informations sur https://www.promethee.com
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problèmes très complexes en soi. Tous ces problèmes impliquent généralement des
simplifications radicales du modèle. Malgré cela, seules des solutions numériques
sont réalisables. Elles nécessitent généralement des efforts de calcul intensifs et une
expertise en analyse numérique.

Lorsque l’utilisation des EDP devient trop compliquée, d’autres méthodes implé-
mentent directement l’espace et le temps de manière discrète peuvent être utilisées.
Dans ce contexte, les automates cellulaires (AC) apparaissent comme une bonne alter-
native, car l’espace et le temps sont représentés de manière discrète, mais aussi, car
seule la dynamique locale du phénomène est représentée. La dynamique globale est
obtenue comme la superposition de toutes les dynamiques locales.

ORGANISATION DU MANUSCRIT

L’objectif de cette thèse est de présenter les automates cellulaires (AC) comme un outil
d’observation des systèmes complexes. Le manuscrit est organisé en 6 chapitres
qui présentent le contexte, l’ensemble des travaux, ainsi que quelques exemples
d’application. Le premier chapitre sert d’introduction en présentant le contexte
et l’originalité des travaux. Le deuxième sert de définition aux AC et aux différentes
notions liées à l’observation. Le troisième chapitre présente des critères analytiques
permettant de vérifier les trois notions définies précédemment. Le quatrième chapitre
présente une méthode d’observation alternative basée sur la synchronisation des AC.
Le cinquième chapitre illustre les travaux précédents au travers de trois exemples
simples. Le dernier chapitre conclut cette thèse en donnant un aperçu des perspectives
et en exposant les travaux futurs qui pourraient découler des recherches effectuées
dans cette thèse.

Chapitre 2

Le chapitre 2 présente les bases nécessaires à la compréhension des autres chapitres.
Nous commençons par présenter la définition formelle aux automates cellulaires
(El Yacoubi, 2008). À partir de celle-ci, nous présentons les différentes règles de
transition que nous utiliserons dans les chapitres suivants. Parmi ces différentes
règles, les plus utilisés dans le reste du manuscrit sont les automates cellulaires élé-
mentaires de Wolfram et les automates cellulaires additifs et affines. Dans la seconde
partie du chapitre, nous décrivons différentes notions liées à l’observation des auto-
mates cellulaires. Les notions d’observabilité et de reconstructibilité sont des notions
déjà existantes que nous avons adaptées aux automates cellulaires. L’adaptabilité, au
contraire, est une nouvelle notion facilitant le lien entre l’observabilité et la recon-
structibilité.
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Chapitre 3

Dans le chapitre 3, nous donnons des critères qui permettent de vérifier l’observabilité,
la reconstructibilité et l’adaptabilité pour certaines familles d’automates cellulaires.
Dans un premier temps, nous étendons le critère d’observabilité classique de Kalman
(Kalman, 1960) aux automates cellulaires additifs et affines. Nous donnons aussi un
critère de reconstructibilité et d’adaptabilité pour cette même famille. Ensuite, nous
utilisons la représentation par graphe de transition d’état, ainsi que des résultats de
l’observabilité et de la reconstructibilité des réseaux booléens (Wang et al., 2012), pour
proposer un algorithme permettant de vérifier l’observabilité et la reconstructibilité
des automates cellulaires non linéaires (non additifs). Finalement, nous présentons
une méthode d’observation des automates cellulaires qui permet de définir un critère
d’observabilité régionale et de décentralisation de l’observabilité pour les automates
cellulaires non linéaires.

Chapitre 4

Dans le chapitre 4, nous présentons la synchronisation des automates cellulaires et
nous l’étudions comme un estimateur d’état. Cette approche est sensiblement dif-
férente de celles présentées au troisième chapitre, car la bonne reconstruction de
l’état par l’estimateur n’est pas caractérisée par l’observabilité ou la reconstructibilité,
mais par une étude statistique. Dans un premier temps, nous présentons la synchroni-
sation des automates cellulaires de Bagnoli (Bagnoli et al., 2010) et nous détaillons en
quoi celle-ci est très proche de la formulation d’un estimateur d’état de la théorie du
contrôle classique. Ensuite, nous caractérisons la propagation de l’erreur initiale dans
les automates cellulaires élémentaires lorsque l’erreur initiale est faible. Finalement, à
partir de cette caractérisation, nous pouvons présenter une nouvelle méthode de syn-
chronisation lorsque l’erreur initiale est faible et nous comparons ses performances
d’observation à la précédente.

Chapitre 5

Dans le chapitre 5, nous appliquons les méthodes d’observation présentées dans les
chapitres précédents sur trois exemples concrets. Pour le premier exemple, nous
étudions un modèle de propagation de feu de forêt. Cet exemple permet de détailler
la méthode de construction d’un estimateur d’état en utilisant à la fois l’observabilité
et la synchronisation d’un automate cellulaire non linéaire. Dans le second exemple,
nous étudions un modèle de trafic routier et plus particulièrement le problème de
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la reconstructibilité décentralisée permettant de construire un observateur d’état
modulaire pour la surveillance des réseaux routiers. Nous terminons avec un exem-
ple d’automate cellulaire affine générateur de nombres aléatoires. Nous utilisons
l’observabilité pour trouver les nombres aléatoires générés par celui-ci.

CONTRIBUTIONS MAJEURES

Contributions majeures La thèse propose 4 contributions majeures : la définition
de l’observabilité pour les automates cellulaires, la généralisation de la condition de
Kalman aux automates cellulaires additifs et affines, l’adaptationdu critère d’observabilité
des réseaux booléens aux automates cellulaires, et la formalisation de la synchronisa-
tion des automates cellulaires comme estimateur d’état.

Dans le chapitre 2, nous avons formalisé les notions d’observabilité, de recon-
structibilité et d’adaptabilité pour les automates cellulaires. L’observabilité et la recon-
structibilité ont déjà été définies pour d’autres types de systèmes par le passé (système
linéaire invariant en temps, réseau booléen, etc.). La contribution de cette thèse réside
dans la transposition de ces caractérisations aux automates cellulaires. Nous avons
également décrit l’injectivité comparée, une généralisation de l’injectivité par rapport
à une autre fonction qui est intimement liée à la notion de reconstructibilité. Ensuite,
nous avons formalisé la notion d’adaptabilité issue des travaux de Laschov et al. (2013)
pour dériver une condition nécessaire d’observabilité qui peut être vérifiée avant la
construction de la séquence de sortie. Cette notion est particulièrement importante,
car elle joue un rôle direct dans le placement des capteurs lorsque nous souhaitons
assurer l’observabilité.

Dans le chapitre 3, nous avons généralisé la condition du rang de Kalman comme
critère d’observabilité pour les automates cellulaires additives et affines. Nous avons
proposé des critères similaires pour l’adaptabilité et la reconstructibilité. Il ne s’agit
pas d’une condition de rang, mais sur le noyau de la matrice de sortie ou d’observation.
Le critère d’adaptabilité exige que les noyaux soient disjoints et la reconstructibilité
exige l’inclusion des noyaux. Les critères d’observabilité et de reconstructibilité sont
également complétés par un corollaire qui prévoit la possibilité de reconstruire l’état
initial ou actuel du système à partir de la séquence de sortie.

Toujours dans le chapitre 3, nous avons amélioré les critères d’observabilité et de
reconstructibilité des réseaux booléens en bénéficiant des avantages des automates
cellulaires. Ceci permet de développer un algorithme qui vérifie à la fois l’observabilité
et la reconstructibilité pour chacune des configurations initiales. Contrairement
aux autres méthodes, cet algorithme peut prendre en compte les conditions sur les
configurations initiales et ainsi réduire considérablement le nombre de configurations
à étudier. Ceci réduit la complexité algorithmique en offrant la possibilité d’évaluer
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l’observabilité ou la reconstructibilité de l’AC avec un grand nombre de cellules. Dans
le cas où cette réduction ne s’applique pas ou ne réduit pas suffisamment la complexité,
nous avons présenté une méthode de décentralisation de l’analyse d’observabilité qui
permet de linéariser la complexité en divisant le problème en problèmes plus petits.
Cette méthode ne fonctionne pratiquement que sur l’AC unidimensionnelle, car elle
nécessite un grand nombre de capteurs pour les dimensions supérieures.

Dans le chapitre 4, nous avons formalisé la synchronisation de l’AC comme esti-
mateur d’état. Cette approche est radicalement opposée à la précédente puisque nous
ne cherchons pas à vérifier au préalable si l’observation fonctionnera, mais seulement
à étudier statistiquement ses performances. Nous avons également développé une
méthode optimisée qui assure la coordination des capteurs mobiles si l’erreur initiale
est composée d’une seule cellule erronée. Dans l’exemple de la propagation d’un feu
de forêt, la synchronisation optimisée et l’approche de reconstructibilité atteignent
des performances moyennes d’observation similaires.

Cette thèse pose les bases de l’observation de l’AC en fournissant des définitions
de l’observation et deux méthodologies d’estimation d’état. Cependant, nous sommes
encore loin du déploiement d’un réseau de capteurs utilisant des automates cellulaires
pour la surveillance de systèmes physiques. Plusieurs perspectives concernant les
futurs travaux qui découlent de cette thèse sont présentées dans le chapitre 6.
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CHAPTER 1

Introduction, Motivations and State of the Art

The modelling of natural phenomena is a crucial issue in understanding the world
around us, for the prediction of future events or for the monitoring of current events.
Especially as the world is undergoing major changes due to climate change. It is
becoming urgent to develop such methods to cope with climate change issues. These
approaches can be applied in a wide range of different domains and applications. This
encourages the development of a theoretical formalisation in order to facilitate the
deployment of this kind of tool in the future. The thesis goes in this direction and
provides a few applied examples as well.

To give some context, let us look at the forest fires in the south of France. Between
2015 and 2019, over 8 700 forest fires were reported in the French Mediterranean
area1, the most affected region of France. According to a recent inter-institutional
study on the impact of climate change on wildfire hazards in France (Chatry et al.,
2010), the risk of wildfires, currently concentrated in the Mediterranean area of
France, would spread to the vast majority of France and particularly to the north
of France by 2070. It is therefore necessary to provide the authorities with efficient
methods to estimate the risk of fires and to monitor the progress of fires when they
occur.

Forecasting and monitoring methods are not only useful for monitoring forest
fires but can also be used to study other systems, e.g. to study the spread of epidemics
(Keeling and Eames, 2005), to predict desertification in sub-Saharan Africa (Koné
et al., 2020), or to detect fake news in social media (Zhou et al., 2020). The examples
are numerous and that is why we wish to study these methods theoretically without
being constrained to a single type of system or field of application.

To build such methods, two elements are needed: a good knowledge of the dy-
namics of the phenomena and information about it at a given time. From this we can
predict, with an accuracy that depends on the two elements provided, how it will
evolve. Information about the system is determined through measurements, which
can be satellite imagery or data from sensors placed in the environment. The knowl-

1Data from Prométhée, which studies forest fires in Corsica, the PACA region, the Languedoc Roussillon region as well as in
Ardèche and Drôme. More information on https://www.promethee.com

1
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edge of the dynamics, called a model, can take different forms (cellular automata,
partial differential equations, etc.). These notions of model and measurement, at the
core of this thesis, will be developed with more detail in the next paragraphs.

This thesis proposes different methods to build useful tools for the monitoring
of natural phenomena, and more generally complex systems. Hereafter, we start by
an introduction to the different concepts discussed in this thesis. To begin with, we
will focus on the notion of model and what it means. We will present different forms
that a model can take and we will explain why we have chosen cellular automata
for our study. Then, we will present the notions of measurements and observation
of a system. The notion of observation, when studied through system theory, has
a particular definition that we will present in detail. Then, finally, we will present
the plan of this thesis which will put forward the methods of observation that we
developed.

1.1 MODELLING OF COMPLEX SYSTEMS

1.1.1 System and Model

Before discussing the notions of modelling and system model, we need to introduce
what a system is and what it is about.

What is a system?

A system is a set of components that interact with each other to form a meaningful
group. Systems can represent physical, digital or even conceptual entities. As an ex-
ample of a system, we could mention several systems with very different components:
A car is a system where the components are the parts of the car ; The internet is a
system where the components are servers, computers and communication channels ;
A forest fire is a system where the components are the trees that compose the forest,
the wind that helps the fire to spread, and even the firefighters that prevent the spread
of the fire. There are as many systems as there are ways of looking at reality. Systems
can be classified into large families that encompass similar behaviour. We will discuss
only about two: complex systems and distributed parameter systems.

Complex systems represent systems with a very large number of components. They
are often characterised by the emergence of phenomena that occur at the system level
and cannot be explained at the component level solely. Among these systems, we find
economic systems such as the stock market, ecological systems such as ant colonies
or digital systems such as the internet.
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Distributed parameter systems (DPS) represent systems whose components vary
continuously according to different coordinates (often space and time). They are
usually represented by partial differential equations (see hereafter). As an example
of DPS, we could propose the propagation of a forest fire, as the forest and the wind
depends on both time and position.

As stated in the title of this thesis, we will pay particular attention to complex
systems and in particular to those who are also DPS. Once the system and its com-
ponents have been identified, the system can be modelled. This is the first stage in
studying or predicting the evolution of a system.

What is a model?

A system model, or more simply model, is a representation for a system. It can take
different forms, either deterministic or probabilistic, continuous or discrete, linear or
non-linear. In physics, the model is constructed from quantitative data expressed in
formal terms. From the model one derives possible observations that are confronted
with experimental results. The model itself may be expressed using mathematical
equations, or by means of other descriptions that are more suited, for instance, for
a computer implementation. From this, two types of models can be distinguished,
knowledge-based models and data-based models. In a knowledge-based model, the
model uses internal variables that represent a physical quantity, for example the
temperature for a forest fire propagation model. On the opposite, in a data-based
model, the variables are "hidden", the model describes the behaviour of the system
without taking into account the internal states of the system. It is usually constructed
from a large amount of data. Such models are very common in deep learning. And
there are a large number of models that fall somewhere in between. For example, the
FARSITE simulator describes the propagation of fire as elliptical, without taking into
account the temperature of the fire. The physical variables are "hidden" but the global
dynamics of the system are not.

When is a model considered valid?

A model is associated with a domain of validity which describes in which context
and to what extent the model is valid. To show the interest of the domain of validity
of a model, let us take as an example two different models of gravitation. The first
is the universal law of gravitation described by Newton between 1665 and 1685
which explains that any two bodies exert a similar but opposite force which depends
on the distance. The second is the law of general relativity presented by Einstein
around 1915 which describes that gravity is no longer a force, but a curvature of
space-time which depends on the mass. These two models describe the gravitational
force but at different scales. To calculate the trajectory of a tennis ball both model
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will provide a solution but Einstein’s model is too sophisticated for this situation.
Similarly, Newton’s model would not be as accurate for modelling gravity when the
gravitational field is too intense, for example near a black hole, or to explain the
apsidal precession of Mercury.

What is important to remember is that a model is defined in terms of a domain
of validity and that there is no point in taking a model that is too complex to solve
much less complex problems. As Einstein said2, "Everything should be made as simple
as possible, but no simpler.".

1.1.2 Different Methods to Build a Model

As we have seen, there are many different models, but there are also many different
methods of representing these models. We are going to present several knowledge-
basedmethods to build complex orDPSmodels. The difference between severalmajor
types of models lies in the way the spatial phenomena in the system are represented.
Indeed, they can be either represented through a continuum or discrete variable.
On the one hand, the continuous solution provides a way to represent the evolution
continuously with respect to time and space. On the other hand, discrete variable
model are easier to handle. In the next few sections, we present 4 different methods:
partial differential equations, network-based models, cellular automata, and agent-
based models. The first one is a continuous one whereas the others are discrete.

In the discrete approach, the dynamics are often described locally. The system is
modelled as a set of subsystems that interact with each other and not as a single large
entity as in the continuous approach. This type of method is simpler to implement
because scientists often describe local interactions between subsystems more easily
than a whole system. The downside is that the equation that describes the system
globally is not straightforward to find based on the local interactions. This problem
will be investigated in the thesis since the observation of systems (see section 1.2)
requires the expression of the system global dynamics.

Partial Differential Equations

Partial Differential Equations (PDE) are a set of equations relating derivatives of physical
variables with respect to space and time. They have been widely used by physicists for
several centuries. Examples are the Navier-Stokes equation for modelling Newtonian
fluids, the Maxwell’s equations for modelling electromagnetic fields or the equations
governing a reaction–diffusion system. PDE can also be used to model more specific

2This quote is commonly attributed to Einstein, but it could be the paraphrase of an idea attributed to Einstein. More on this
at https://quoteinvestigator.com/2011/05/13/einstein-simple/

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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systems: Rothermel (1972) uses PDE to model the propagation of fires ; Black and
Scholes (2019) use PDE to describe the dynamics of the stock market.

However, the development of such PDE models often takes a long time and
requires expert knowledge in the considered application field, but also a strong
background in mathematics and numerics. Existence of solutions and numerical
simulations are already very complex problems by their own, not to mention analysis
of their dynamical properties. All those problems typically involve radical model sim-
plifications. Even so, only numerical solutions are achievable. They typically require
intensive computational efforts and numerical analysis expertise. To overcome this,
we can use methods that directly implement space and time in a discrete manner.

Network-Based Models

Network-based models are characterised by the presence of a number of components
(nodes) that are only connected to a certain part of the other components. The
behaviour of these components is then defined locally from the interactions made
with the other components of the network. This type ofmodel is widely used tomodel
systems that are already present as networks such as social networks or computer
networks. It can also be used to model other types of systems such as epidemics
where two people are connected on the network if there is a possibility that they will
transmit the disease (e.g. through in-person interaction).

Boolean networks are a particular type of network-based model. The components
are logical variables (usually Boolean). Boolean networks are particularly used in
bioinformatics where they are used to model the interactions between genes in the
DNA. We will discuss the properties of Boolean networks in section 3.3, as an intro-
duction to the study of observability for non-linear cellular automata.

Agent-Based Models

Agent-based models represent models where system components are modelled by
agents. Each agent is an entity that interacts with other agents, but unlike network-
based models, there is no constraint on how agents can interact. It is also possible to
add a social aspect to the agents so that they function as an organisation, this is called
a multi-agent system. This type of model is rather difficult to study at the system level
because the interactions between the agents may not follow predetermined formal
rules.

Cellular Automata

Cellular automata (CA) are a special case of network-based models. The components,
called cells, are placed on a lattice, often uniform, and interact with nearby compo-
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nents only. This makes it easy to model systems with local spatial dynamics. For
example, CA can be used to model the dynamics of fluids through the interaction
of particles in the fluid (Hardy et al., 1973). In addition, CA are also widely used
in the modelling of a wide variety of systems, from the modelling of clotting pro-
cesses (Ouared and Chopard, 2005) to the modelling of desertification in sub-Saharan
Africa (Koné et al., 2020). Chopard and Droz (1998) provides numerous tools on the
modelling of physical systems through cellular automata.

Several CA, with different domains of validity, can be used to model the propaga-
tion of a forest fire. The simplest one we can think of is to represent the evolution of
the fire by discrete states: tree, burning tree and burnt tree. The fire spreads from one
cell to its neighbours. Karafyllidis and Thanailakis (1997) propose a more complex
model that uses the burnt biomass as a state, which can take into account different
parameters such as wind or topography. CA are also used in more complex fire
propagation simulators such as FlamMap (Finney, 2006). These simulators are used
by firefighters to anticipate fire spread and act accordingly. This simulator simulates
several variables such as fire, wind or humidity that interact together.

Another advantage of cellular automata is the ease of parallelisation. Indeed, the
computation of the state of each cell depends only on the state of the neighbouring
cells at the previous time. Therefore, it is very easy to parallelise the computation
of each cell, as for agent-based models. When the neighbourhoods used by the CA
are regular then it is possible to parallelise on GPU which increases even more the
possibility of parallelisation and allows a gain of performance when it comes to the
speed of calculation compared to the PDE.

Translated with www.DeepL.com/Translator (free version)

1.2 OBSERVATION OF COMPLEX SYSTEMS

Now that we understand the notion of system, we can make the observation of it.
But first what is observation? In this context, we define the observation as the action
of gradually reconstructing the state of the system on the basis of measurements.
Measurements represent partial information on the system taken by sensors. There
are two main types of reconstruction, one based on data and the other on model.
The first one uses a large number of measurements and process the data to extract
the state of the system. Such methods are used for instance with Wireless Sensor
Network or Big Data. The other method uses a smaller number of measurements
but takes advantage of a model of the system to carry out the reconstruction. Such
methods are used in control theory to build controllers which are widely used in
different fields of engineering.

In this thesis, we will focus on the second method, more specifically on control
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theory approaches and how they can be applied to CA. In the next few paragraphs,
we will present a short history of control theory, the main problems of studying DPS
through control theory and the state of current research on control theory for CA.

1.2.1 Control Theory and Distributed Parameters System

Initially, control theory referred to the regulation of a physical process. In this sense,
it has existed for several centuries (e.g. the centrifugal regulators of JamesWatt created
in 1788). This thesis refers instead to the recent formalisation of control theory that
emerged in the 1950s based on dynamical systems representation (state space or
external). Among the works of this time, the best known are those of Kalman (1960)
on linear systems with notably the definition of controllability and observability.
Roughly speaking, controllability guarantees that there exists a regulator for this
system and observability guarantees that the state of the system can be reconstructed
correctly from measurements. It is the latter that we will study in this thesis. Since
then, control theory has become widely known in a field of engineering known as
control engineering.

Control theory can study linear or non-linear systems, continuous or discrete
time, with one or more inputs. The study of DPS, however, remains largely open.
The spatial dimension poses various problems related to infinite dimensional space
and operators. Roughly speaking, this means studying a spatial continuum of time-
dependent variables. In addition to the computational difficulties of studying PDE,
many results of classical control theory do not apply to DPS directly. For example, the
notion of observability is separated into two different notions: an exact observability
and an approximate observability. Exact observability is similar to usual observability,
whereas approximate observability guarantees that the state of the system can be
reconstructed only approximately Glowinski and Lions (1995). The two notions
coincide in the case of classical systems.

In some cases, the observability of the system can only be assured for a part of the
system. El Jai et al. (1993) present a regional study of observability and controllability
that provides methods to study only a small region of the system. Controllability
and observability therefore have particular definitions that relate to the region under
study. Even if the verification is more complicated, it still ensures partial observability
where it would not otherwise be possible.

1.2.2 Control Theory of Cellular Automata

There is little work addressing the control theory of CA. El Yacoubi (2008) proposes a
definition of cellular automata that encompasses the notions of actuators and control.
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The regional controllability is presented and illustrated in the context of an additive
CA. Regional controllability has also been studied by Dridi et al. in different ways. In
(Dridi et al., 2020), it is evaluated using graph theory and Hamiltonian paths, in (Dridi
et al., 2019) it is checked using a Markov chain. The studies of these two authors
focus on regional controllability where, contrary to the cases of classical theory, the
duality between controllability and observability is not trivial. In (Urıas et al., 1998),
the observability of an additive CA is studied in a hidden way. The authors place
sensors so as to ensure that a matrix is invertible, which is a hidden application of the
Kalman condition.

Alternatively, if we constrain the definition of CA to bounded and finite state CA
then it can be studied as a Boolean network. The control theory of Boolean networks
has been widely studied since the early 2000s with contributions from Cheng (2005)
on the semi-tensor product and Laschov et al. (2013) on the observability graph.

Nonetheless, CA exhibit certain advantages compared to PDE. Indeed, they rep-
resent the spatial dimension in a discrete way. Consequently, for a finite space, the
number of variables is finite. This leads to the use of the results of the classical finite
dimensional control theory in the case of a DPS. In particular, it is possible to use
Kalman rank condition on controllability and observability.

1.3 CONTRIBUTION AND CONTENT OF THE THESIS

In this thesis, we will focus on the observation of complex systems and in particular
DPS. PDE are very powerful tools for the study of such systems, but their studies can
be very difficult. Among discrete systems, CA seem to be the most suitable models for
modelling DPS, due to the strong spatial component. CA are models where the time
and space are discrete. We will use them as a model for DPS. Therefore, the systems
modelled by CA are not strictly DPS but will have the same behaviour regarding their
validity domain. Although CA are less precise than PDE, their domain of validity
will be sufficient for the purpose of the thesis, which is the observation of spatially
distributed physical systems. This thesis contributes to the observation of complex
systems in three ways:

• firstly with a formal definition of observability, reconstructibility and adapt-
ability, three notions related to the reconstruction of the state of a system from
measurements. Observability and reconstructibility are two notions that we
have applied to cellular automata while adaptability is a new notion presented
in this thesis that provides a way to verify that the sensors are well suited for
the observation of the system.

• secondly, by providing analytical criteria to verify the previous notions. For
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additive and affineCA, theKalman condition for observability is adapted forCA
and similar criteria are given for reconstructibility and adaptability. For non-
linear CA, the criteria are derived from the observation of Boolean networks.
They are adapted to take advantage of the benefits of CA in order to reduce the
algorithmic complexity. A decentralised observability and reconstructibility
verification method is given to further reduce the complexity in the case of CA
with a large number of cells.

• thirdly, by studying the synchronisation of CA as a state estimator. Thismethod
is not derived from control theory and does not depend on observability or
reconstructibility. Its efficiency is statistically evaluated through a large number
of simulations. An efficient synchronisationmethod is given for the observation
of a system where the initial error is small.

Themanuscript is organised in 6 chapters that present the contributions, examples
and conclusions on future work.

Chapter 2 serves as a definition for CA and notions related to observation. It
presents in detail the definition of CA by El Yacoubi as well as different properties of
CA that will be used in the sequel. The notions of observability, reconstructibility
and adaptability are presented and serve as a basis for the control theory of CA.

Chapter 3 presents analytical criteria to verify the three notions defined previously.
First, criteria are given for additive and affine CA by generalising the Kalman rank
condition. Then, criteria are given for non-linear CA which are studied as Boolean
networks. Finally, in the last part of this chapter, methods are presented to handle
the algorithmic complexity raised by the criteria through the decentralisation of the
verification for observability.

Chapter 4 presents an alternative observation method based on CA synchronisa-
tion. We present synchronisation as a state estimator for CA observation. We then
present a more efficient method for CA observation when the initial error is very
small.

Chapter 5 presents three examples which aim to illustrate the methods presented
in this thesis on simple examples. The first example deals with a forest fire propa-
gation model that we use to compare the performance of reconstructibility against
synchronisation. Secondly, we present a road traffic model for which we try to apply
the proposed observation decentralisation approach. We end with an example on the
reconstruction of random numbers generated by a CA random number generator,
which allows us to describe the use of the methods on additive or affine CA.

Chapter 6 concludes this thesis by providing an overview of the prospects and
outlining future work that might follow on from the research carried out in this
thesis.





CHAPTER 2

Cellular Automata as a Modelling Tool

RÉSUMÉ

L’objectif de ce chapitre est de présenter les bases nécessaires à la compréhension des autres
chapitres. Dans ce but, nous présenterons les automates cellulaires comme un outil de
modélisation des systèmes complexes, mais aussi les notions d’observabilité et de recon-
structibilité, liées à l’observation de ceux-ci. Dans une première partie, nous définirons les
automates cellulaires ainsi que les différentes règles de transition que nous utiliserons dans
la suite du manuscrit. Dans la seconde partie, nous présenterons les notions de capteurs,
d’observabilité, de reconstructibilité et d’adaptabilité, liées à l’observation des automates
cellulaires.
Les principales contributions de ce chapitre sont les définitions proposées d’observabilité,
de reconstructibilité et d’adaptabilité, adaptées aux automates cellulaires. Ces définitions
s’appliquent au cas de l’observation par un réseau de capteurs, fixes ou mobiles.
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2.1 INTRODUCTION

The observation of a complex system may be realised through the use of a math-
ematical description of the process to be observed. This description is a partial
representation of the reality written with mathematical equations and is called a
mathematical model or a system model. To describe a system (whether complex or not)
with such a mathematical model, it is necessary to have both a working knowledge of
its parts and a precise idea of the applications for which the model will be used. The
model is thus intimately related both to the system and its application.

For complex systems (i.e. with a large number of subsystems), the use of PDE
becomes too complicated. The different time and spatial scales, as well as the different
variables of the subsystems, make it extremely difficult to establish equations that
describe the whole system. In this context, cellular automata (CA) appear as a good
alternative because only the local dynamics (i.e. relating the variables characterising
neighbour subsystems) are used as equations. The global dynamics is obtained as the
superposition of all the local dynamics.

The objective of this chapter is to present CA as a tool for modelling complex
systems and to give all the theoretical tools necessary to understand this work. We
start with a short history of CA followed by a mathematical formalisation of these.
Then, we present the elements that make a CA a good tool for modelling complex
systems and finally, we describe the tools necessary to observe complex systems
modelled by CA.

2.2 GENERALITIES ON CELLULAR AUTOMATA

2.2.1 Brief History of Cellular Automata

The history of CA begins in the 1940s with the collaboration of John Von Neumann
and StanislawUlam, twomathematicians from theNational Laboratory of LosAlamos
in NewMexico (USA). John Von Neumann was working on self-replicating systems
and Stanislaw Ulam on crystal growth using a grid. This collaboration led to the
creation of the first cellular automaton: the "universal copier and constructor", a self-
replicating system that uses a two-dimensional grid.

CA were not extensively studied in the 40s and 50s due to the lack of computing
power provided by computers at this period. It is only from the end of the 60s that
CA start to be widespread in the mathematical community, notably thanks to the
works of Gustav A. Hedlund, who studied CA as a dynamic system in its own right.

It is in the 70s and 80s that the foundations of today’s cellular automata are
laid with notably the works of: John Horton Conway on the game of life (Conway
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et al., 1970); Stephen Wolfram on elementary cellular automata (Wolfram, 1983); and
Hardy, Pomeau, and De Pazzis on the HPP model (Hardy et al., 1973). John Horton
Conway proposed the game of life, a CA defined by extremely simple rules but able
to show complex global behaviour (notably proven to be a universal Turing Machine).
Hardy, Pomeau, and De Pazzis developed the HPP model, a CA capable of simply
modelling the behaviour of fluids through the interaction of its particles, which would
later become lattice gas automata (Wolf-Gladrow, 2004, Chap 3) or lattice Boltzmann
methods (Wolf-Gladrow, 2004, Chap 5). StephenWolframpublished in the 80s a series
of systematic studies on elementary CA (the simplest ones) showing the existence of
different types of behaviour and allowing classifying elementary cellular automata
according to their properties.

Finally, it is from the beginning of the 90s that cellular automata start to be
widespread as a tool for modelling physical (Chopard and Droz, 1998) or biological
systems.

2.2.2 Definition of Cellular Automata

There are many definitions of CA, both formal and informal, which vary from one
application to another and from one domain to another. Among all these definitions,
there are two central points. The first is the "cellular" aspect of the CA, whereby the
space is divided into elementary parts called cells and each of these has a state that
describes its nature. The second point concerns the evolution of the state of the cells
over time. The evolution of a cell’s state depends both on the state of this cell and on
the states of neighbouring cells. This rough definition allows us to consider the use of
CA for applications involving a large number of entities that interact locally (complex
systems), in fluid mechanics (local interaction of the particles making up the flow of
the fluid) or in the representation of spatially distributed transport phenomena (such
as forest fire spread), just to cite a few examples.

Our objective is to formally define cellular automata as a tool for the observation of
complex systems. We will therefore use a definition of CA adapted to the observation
problem, namely the one proposed by El Yacoubi (2008). The author proposes therein
a definition of bounded cellular automata suitable for control. In addition to this
definition, the corresponding state equation, as well as the notions of actuators and
regional controllability, are also presented. Wewill detail these notions in section 2.3.1,
when considering the duality between observation and control problems. For the
time being, we restrict ourselves to the definition 2.1 of bounded cellular automata.
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Definition 2.1 (Cellular Automata). A bounded cellular automaton is defined by
a quadrupleA = (L,S,N , 5 ) where:

• L is a 3-dimensional finite lattice of cells (a generic cell will be denoted 2 , in
the sequel) which are spatially arranged according to their shape. We denote
by # ∈ N the number of cells in L.

• S denotes a finite set of admissible state values for the cells. We usually rep-
resent a set of :-states by the finite commutative ring S = {0, 1, . . . , : − 1}
which uses modular arithmetic. S may also be written as S = Z/:Z.

• N is a mapping which defines the cell’s neighbourhood. This neighbourhood is
usually the same for all cells but it can vary through space and time. It is given
by:

N : L → L=

2 ↦→ N (2) = {21, 22, . . . , 2=}
(2.1)

where the cells 28 , for 8 ∈ J1, =K, are linked to the cell 2 by an influence relation.
In most of the case, the cell 2 is in its neighbourhood. In the case of bounded
cellular automata, it is necessary to take into account the lattice boundary
conditions (see Figure 2.2) in the construction of the neighbourhoods.

• 5 is a transition function which determines the cell’s state at time C + 1 given
the state of the neighbouring cells at time C . It is defined by:

5 : S= → S
BC (N (2)) ↦→ BC+1(2) = 5 (BC (N (2)))

(2.2)

whereBC (2) represents the state of the cell2 at time C andBC (N (2)) = {BC (2′) |2′ ∈
N (2)} is the state of the cells in the neighbourhood at time t.

This definition, although very general, largely limits the possible applications
with this kind of CA. The bounded lattice removes the universal Turing machine
property and the finite number of states hinders the representation of continuous
state CA such as the forest fire spread model of Karafyllidis and Thanailakis or the
Lattice Boltzmann methods, both discussed in the introduction.

In the following subsections, we clarify the different components presented in
definition 2.1. We present the most common lattices, neighbourhoods and boundary
conditions that are used in CA.
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Global Transition Function �

In some cases, in particular to solve the observation problem (see section 2.3.3), we
need tomodel the local transition function 5 as a so-called global transition function. It
applies simultaneously to all the cells of the CA and not only to the neighbouring cells.
It is used for example to define the state transition diagram or the state representation,
two very important notions that we will use in chapter 3.

Therefore we start by defining the state of all cells in the CA, BC ∈ SL , called the
configuration at time C . It is defined by the application :

BC : L → S
2 ↦→ BC (2)

(2.3)

The transition from one configuration to another is determined by the global
transition function � defined by :

� : SL → SL

BC ↦→ � (BC ) = BC+1
(2.4)

The transition function 5 describes the local evolution (i.e. at the cell level) of the
CA, whereas the global transition function � describes the global evolution (i.e. at the
configuration level). However, the transformation from one transition function into
the other is not a simple problem. One of the first issues in solving the observation
problemwill be to obtain the global transition function � becausemost CA are defined
through the local transition function 5 .

Due to the finiteness of the state space S and the lattice L of the CA, we provide
the definition 2.2 which allows us to represent the configuration BC by a number in
base : . For example, 230012|4 represents the configuration BC such that BC (21) = 2,
BC (22) = 3 and so on. This configuration corresponds to the number 2822 in base 10.

Definition 2.2 (Numerical Notation of Configuration). By arranging the cells of
the lattice in any given arbitrary order, we can represent the configuration BC by an
# -digit number in base : , denoted by BC |: . It also has a unique equivalent in base 10.

Lattice of Cells L

In the vast majority of cases, the topology of the lattice is regular, i.e. it consists of a
single shape and size of cell to cover the space. In the one-dimensional case, the cells
are points arranged in a line, but it is usual to represent them as a line of square cells.
In the two-dimensional case, several regular lattices exist, the most commonly used
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being the square, triangular or hexagonal cell lattices. The use of one lattice or another
can change the possible dynamics of the modelled system. For example, in the case of
the HPPModel (Wolf-Gladrow, 2004, Chap. 3/sec. 1), the lattice of square cells allows
the particles to spread in 4 directions, whereas in the FHP Model (Wolf-Gladrow,
2004, Chap 3/sec. 2), 6 directions can be available by using a lattice of triangular cells.

Set Space S

In definition 2.1, the state of the cell S is presented as a finite set of natural integer
S = {0, 1, . . . , : − 1}. In chapter 3, when we discuss the observability of additive and
affine CA, we will need to perform some mathematical operations on these states (in
particular the inverse of the modular multiplication). Therefore, it will be necessary
to consider S as a finite field (or Galois field), in this case a finite commutative ring
with a prime number of states : .

However, in some specific cases discussed in the introduction, the state of the cells
is not an integer but a word (tree or burning tree as in the trivial example of the fire
spreadmodel), a colour (black orwhite as in the game of life) or any other discrete value.
In those particular cases where the state of the cells is not represented by integers,
values of the state space S are simply arbitrary values which correspond to the states
of the cells. For example, in Conway’s Game of Life (Conway et al., 1970), colours
white and black can be respectively represented by the integer 0 and 1. definition 2.1
can still represent CA that do not have integer states (as described in the definition).

NeighbourhoodN

Most of the work on CA use uniform neighbourhood, that is the neighbourhoods are
identical for all the cells in the lattice and defined through a distance to the central
cell. If some cells in some particular neighbourhood have no influence on the future
state of the considered cell, then the transition function will be chosen appropriately,
while the neighbourhood definition itself remains the same for all cells. Therefore,
we can define the neighbourhood formally by the following relation:

N : L → L=

2 ↦→ N (2) = {2′ ∈ L| ‖2′ − 2 ‖8 ≤ A }
(2.5)

where ‖2 ‖8 represents the 8-norm. Among the possible norms, the most used are the
taxicab norm (8 = 1) or the infinity norm (8 = ∞).

These two norms allow different cells to be included in the neighbourhoods,
norm 1 includes only cells that are adjacent by a side whereas norm∞ includes cells
adjacent by a side but also by a corner. This difference is visible, on Figure 2.1, in the
case of a two-dimensional mesh with square cells.
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In the one-dimensional case, these two norms are equivalent because there are no
corner-adjacent cells. In the case of a two-dimensional lattice with square cells, these
two norms correspond to the Von Neumann (8 = 1) and Moore (8 = ∞) neighbour-
hoods. Figure 2.1 shows different neighbourhoods with different distances for 2D
lattices with square cells. For a hexagonal cell lattice, these two neighbourhoods are
equivalent (as for a 1D square cell lattice) andwe use the term uniform neighbourhood.

(a) 8 = 1; A = 1 (b) 8 = ∞; A = 1 (c) 8 = 1; A = 2 (d) 8 = ∞; A = 2

FIGURE 2.1. Different neighbourhoods for two-dimensional lattice of square cells as a function of the 8-norm
and the distance A . Neighbourhoods from left to right: Von Neumann of distance 1; Moore of
distance 1; Von Neumann of distance 2; and Moore of distance 2.

Boundary Conditions of the Lattice

In the case of a bounded CA (such as in definition 2.1) the lattice is finite and the
neighbourhood of the cells on the border depends on cells that do not exist in the
lattice. We must therefore consider the value of the cells directly outside the lattice.
These are called boundary cells. In addition, since some physical systems admit
natural boundaries, it is natural to be able to define these boundaries in their CA
models. This is known as a boundary condition. Three types of boundary conditions
are usually considered: periodic, reflexive, and fixed (see Figure 2.2).

• Periodic boundary conditions allow the system to be looped back on itself,
whereby the state of the boundaries on one side corresponds to the state of the
cells on the other side of the lattice. In the two-dimensional case, a lattice with
periodic boundaries is in fact the surface of a torus.

• Reflexive boundary conditions correspond to the situation where the cells
located on the boundary of the lattice have themselves as neighbours.

• Fixed boundary conditions correspond to boundary cells that have a value that
is determined by the CA designer. This value can vary from one cell to another
and can also vary as a function of time (known as a boundary trajectory). In
some applications it is also referred to as a null boundary condition, which
corresponds to a fixed boundary condition of 0. In many cases it has a special
meaning, for instance, the "void" or "quiescent" state.
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(a) Periodic Boundary Conditions (b) Reflexive Boundary Conditions (c) Fixed Boundary Conditions

FIGURE 2.2. Examples of the boundary conditions for a two-dimensional cellular automaton with a 3× 3 lattice
of square cells. The letters from 0 to 8 represent the cells of the CA and the cells on either side of
the CA represent the boundary cells.

In some particular cases, especially when we address the decentralisation of
observability (see section 3.4 on page 71), we are only interested in one region of the
CA. To study the observability of this region, we model it by a separate CA, while the
rest of the outer cells are only considered through the boundary conditions. They
do not respect any of the three types of conditions defined previously as they are
simply the state of cells of the larger CA. These are called here unknown boundary
conditions.

2.2.3 Families of Cellular Automata

To carry out a systematic study, which applies to all CA, proves to be an impossible
task. Therefore, the properties of CA are often studied for some specific families
which are obtained by introducing constraints on the definition. One of the earli-
est and most influential studies of this kind was conducted on elementary cellular
automata (CA with one-dimensional lattices, Boolean state space, and neighbour-
hood of radius 1) by Wolfram (1983). More recently, several studies by Chaudhuri
et al. have been published in a book (Chaudhuri et al., 1997) gathering results on
additive cellular automata (CA with linear transition function). Many other studies
have been conducted on other families of CA such as totalistic CA by Wolfram (1984)
or two-dimensional CA by Packard and Wolfram (1985).

In this section we will introduce many families, but we shall concentrate on the
one we will consider later. We will define these families through the definition 2.1,
which will allow us to use them in the following chapters of this thesis.

Wolfram’s Elementary Rules

The elementary rules of Wolfram have been defined in Wolfram (1983) with the
purpose of performing a systematic study of the behaviour of CA. These rules are
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considered elementary because they are the simplest non-trivial CA: the lattice is one-
dimensional, the state space has 2 state (Boolean state space) and the neighbourhood
of distance 1 (it includes only the two directly adjacent cells and the cell itself). Based
on the definition 2.1, Wolfram’s elementary cellular automata (ECA) are defined by:

• L = J0;# − 1K is a one-dimensional lattice of # cells.

• S = {0, 1} is a Boolean state space. In a Boolean state space, we have the
possibility to use Boolean or modular arithmetic. In this case, we will use three
operators (logical AND "·", logical OR "+" and logical NOT " 0 ") for the Boolean
arithmetic and two operators (product modulo 2 "·" and addition modulo 2 "⊕")
for the modular arithmetic. The logical AND and the multiplication modulo 2
are equivalent as well as the addition modulo 2 "⊕" and the logical XOR.

• N : 28 ↦→ {28−1, 28, 28+1} is the neighbourhood of distance 1 which includes the
central cell and its two direct adjacent cells. By default, we use the periodic
boundary conditions but any other boundary conditions can be used.

No specific constraint has been placed on the transition function 5 as the purpose
of Wolfram was to study the behaviour of every possible transition function. In a
similar way to a ternary logical operator, the transition function 5 is defined by a truth
table that maps the state, at time C , of the 3 neighbouring cells to the state, at time C +1,
of the central cell (see Table 2.1). Since each of the three cells in the neighbourhood
have a Boolean state, there are 23 = 8 entries in the truth table and they are associated
with a digit that represents the state of the central cell at the next time step. The
transition function of the ECA is therefore described by these 8 digits. Each of the
possible transition functions can be represented by an 8-bit number calledWolfram’s
elementary rule number. These numbers are arranged in descending order of the
integer number whose development in base 2 is obtained from the binary values of
the 3 neighbouring cells (i.e. the neighbourhood value 101 corresponds to the integer
value 5), as shown in Table 2.1. An example of the evolution of this rule is given in
Figure 2.3 for 15 cells and periodic boundaries.

BC (N(28 )) 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

BC+1 (28 ) 0 1 0 1 1 0 1 0

TABLE 2.1. Truth table of the transition function of the Wolfram’s ECA 90, or simply rule 90. The first row
represents the possible states of the neighbourhood at time C and the second row represents the
state of the central cell at time C + 1 corresponding to the neighbourhood of the column.

The notation "rule 90", which will be abbreviated toR90, gives all the information
about the behaviour of the transition function but nothing about the size of the lattice
or the boundary conditions. Therefore, we define a more detailed notation RX-N-B
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1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0
0 0 0 1 0 1 1 1 0 0 1 1 0 1 1

FIGURE 2.3. Example of configuration evolution of the ECA of Table 2.1. The cells on the ends are the boundary
condition cells (here periodic condition) used in the neighbourhood calculation.

which includes not only the rule number X, but also the number of cells N as well
as the nature of the boundary conditions B as described in Table 2.2. In addition, it
is possible to refer to RX-N, RX-B or RX if the number of cells or the nature of the
boundaries are not specified.

Boundary condition Null Fixed Periodic Reflexive Unknown
Notation B NB FB PB RB UB

TABLE 2.2. The boundary conditions notation for writing ECA in the form RX-N-B where B is the term dedi-
cated to boundary conditions. For example, the ECA 90 of Figure 2.3 with 15 cells and periodic
boundaries has the notation R90-15-PB.

Although initially defined by a truth table, the transition functions of ECA can
also be written in algebraic form using either modular arithmetic (see eq. (2.6)) or
Boolean arithmetic (see eq. (2.7)). These algebraic forms, although equivalent, are
used in different scenarios depending on their ease of use. For example, if one is
interested in Boolean derivatives of transition functions then modular arithmetic
is preferred and if one is attempting to emulate CA with logic gates then Boolean
arithmetic is preferred.
Example 2.1

The following are the two algebraic forms of R90 defined by the truth table in
Table 2.1. The first uses modular arithmetic and the second Boolean arithmetic.

BC+1(28) ↦→ BC (28−1) ⊕ BC (28+1) (2.6)

BC+1(28) ↦→ (BC (28−1) · BC (28+1)) + (BC (28−1) · BC (28+1)) (2.7)

Although these CA are elementary, they are not without interest for the modelling
of complex systems. In mathematics for instance, ECA can be used for the generation
of fractal figures like the Sierpiński triangle with R126 on Figure 2.4 (other rules like
R60, R90, R150 generate variants of this figure). R110 (with an infinite lattice) has
the property of being Turing Complete (Cook et al., 2004), i.e. R110 can simulate
Turing machines where the writing of the algorithm is carried out in the choice of
the initial configuration. Physical systems can also be modelled using these ECA:
R30 can generate the figures naturally present on the shells of the Conus Textile1 (see
1More information on the Conus textile can be found on https://en.wikipedia.org/wiki/Conus_textile

https://en.wikipedia.org/wiki/Conus_textile
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FIGURE 2.4. Generation of the Sierpiński triangle with R126. Evolution of R126-50-PB from a single black cell.
The black cells represent 1 and the white cells represent 0. Time is going down on the vertical axis.

FIGURE 2.5. R184 interpreted as a simulation of traffic flow. Each 1 cell corresponds to a vehicle, and each
vehicle moves forward only if it has open space in front of it. Image from David Epstein, English
Wikipedia.

Figure 2.6), a species of sea snail; R184 can model a very simple road network (see
Figure 2.5) or the deposition of particles on a surface (Chopard and Droz, 1998).

(a) R30-30-PB (b) Conus Textile

FIGURE 2.6. Example of the evolution of R30-30-PB for a time horizon of 30 and a picture of the Conus Textile
shell. Image from Richard Ling on Wikipedia.

Additive Cellular Automata

Additive cellular automata (ACA) have first been used to study the algebraic properties
of CA (Martin et al., 1984). In this paper, Martin et al. use ACA to study the state
transition diagram and the length of the cycle in the graph, we discuss that point on
section 2.2.4. They have since been used in different ways, such as a random number
generator (Tomassini et al., 2000), or a hash function (Chaudhuri et al., 1997, Chap. 8).
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Many of the possible applications of ACA have been compiled in the book "Additive
cellular automata: theory and applications" by Chaudhuri, Chowdhury, Nandi, and
Chattopadhyay. The element that bounds together all these CA is the nature of their
transition function. Indeed, the transition function is defined as a weighted sum of
the states of the neighbouring cells. Using definition 2.1, the transition function 5
can then be defined as:

5 : S= → S

BC (N (28)) ↦→ BC+1(28) =
=∑
9=1

0 9 · BC (2 ( 9)8 )
(2.8)

where 2 ( 9)
8

is the 9 th cell in the neighbourhood of the cell 28 as shown in Figure 2.7, 0 9
is the weight applied to the state of the cell 2 ( 9)

8
, and = is the number of cells in the

neighbourhood.
Note that the 8 does not represent the cell number but the position of the cell

in the neighbourhood. Indeed, the weights of the transition function are defined in
relation to the position of the cell within the neighbourhood, as shown in Figure 2.7,
and not in relation to a particular cell in the CA.

FIGURE 2.7. Example of the weights applied for a 2D additive cellular automaton with a Moore neighbourhood
and a state space with (at least) 6 states. The number in the upper left corner of each cell repre-
sents the 9 number of that cell in the neighbourhood while the central number represents the 0 9
weight applied in the sum.

Remark 2.1. Two-dimensional ACA (or one-dimensional ACA represented in the
form of a 2D ACA of size 1 × # ) can be computed through a 2D convolution using
the neighbourhood with the weights (as in Figure 2.7) as the convolution filter. The
CA must still be augmented by representing the boundary conditions as cells, so that
they are taken into account in the convolution.

Since the transition function is linear over the state of all cells in the neighbour-
hood, 5 is therefore a linear form2 over the commutative ringS. Using the properties
2A short definition of linear forms can be found on Wikipedia. https://en.wikipedia.org/wiki/Linear_form

https://en.wikipedia.org/wiki/Linear_form


2.2 GENERALITIES ON CELLULAR AUTOMATA J 23

of linear form, the local transition equation 5 can be written with a matrix product
between the row vector 0 of the sum weights and a column vector composed of the
states of the neighbourhood cells.

BC+1(28) =
[
01 02 . . . 0=

]
·


BC (2 (1)8 )
BC (2 (2)8 )

...

BC (2 (=)8 )


(2.9)

By slightly adapting this function, we are able to describe the evolution of the
state of a cell as a function of the configuration, i.e. the state of all the cells of the
CA and not only those of the neighbourhood. To do this, we apply the weight 0 on
the cells that are not in the neighbourhood. Moreover, we note GC ∈ S# the vector
representation of the configuration BC ∈ SL . For consistency with definition 2.2
on the numerical notation of configurations, the same order of cells must be taken
for the arrangement of GC and BC |: . Therefore, we obtain the equation (2.10) which
describes the evolution of the cell 28 as a function of the configuration GC .

BC+1(28) = �8 · GC =
[
08,1 08,1 . . . 08,1

]
·


BC (21)
BC (22)
...

BC (2# )


(2.10)

where 08, 9 is the weight applied to the state of cell 2 9 in the calculation of the state
of 28 . If the cell 2 9 is in the neighbourhood (2 9 ∈ N (28)) then the value of 08, 9 is the
weight associated to its position in the neighbourhood and it is 0 otherwise.

Having formulated the evolution of the state of a cell according to the configura-
tion BC , we can build the global transition function � which uses the matrix� which
is composed of the rows�8,∀8 ∈ J1;# K.

� : S# → S#

GC ↦→ GC+1 = � · GC =


01,1 01,2 . . . 01,#
02,1 02,2 . . . 02,#
...

...
. . .

...

0#,1 0#,2 . . . 0#,#


·


BC (21)
BC (22)
...

BC (2# )


(2.11)

This matrix expression of the global transition function � will allow us to apply
the results from linear system theory to CA, as discussed in chapter 3.
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Affine Cellular Automata

Additive cellular automata represent only a small fraction of the possible CA. For
example, only 8 of the 256 ECA are additive (R0,R60,R90,R102,R150,R170,R204,
R240) knowing that R0 and R204 are respectively the null and identity CA. Some
of Wolfram’s ECA are linear with respect to the Boolean negation of a cell. This is
notably the case of R195 which is defined by BC+1(28) = BC (28−1) ⊕ BC (28). In Boolean
arithmetic, the NOT operation ( 0 ) is equivalent to the XOR operation (or addition
modulo 2) with 1, so the negation operation is represented by the addition of the
constant 1. Therefore, in order to include these CA, and more generally every ACA
with constants, we can adapt the definition by adding a constant vector [ ∈ S# in
the transition function (2.11) which then reads:

� : S# → S#

GC ↦→ GC+1 = � · GC + [
(2.12)

We refer to these CA as affine cellular automata (or additive with a constant).
In the following, we will use the term ACA to designate both affine and additive

cellular automata. Indeed, the results of chapter 3 apply to affine CA and thus also to
the particular case of affine CA with a null constant, additive CA. We could simply
use the term affine CA, but we wish to use both terms as additive CA is widely used
within the CA community whereas the term affine (and linear to refer to affine with
null constant) is more used in the system theory community.

Hybrid Cellular Automata

Some cellular automata, notably the Tomassini et al. (2000) random number generator
studied in chapter 5, have a local transition function 5 that varies from one cell to
another. Such cellular automata are known as hybrid CA. We can adapt definition 2.1
by adding a dependency on the cell position to the transition function. Then 58 will
be defined as:

58 : S= → S
BC (N (28)) ↦→ BC+1(28) = 58 (BC (N (28)))

(2.13)

In the case of hybrid ECA, the notation 〈90, 160, 253, 126〉 is used (Choudhury
et al., 2009) to describe the rule of each cell of the CA. In this case, the first cell
follows R90, the second R160 and so on. Using the notation of Table 2.2, we can
replace the number of the rule X and the number of cellsN by the notation 〈·, ·, ·〉.
Therefore, if the hybrid ECA 〈90, 160, 253, 126〉 has periodic boundaries, we can
write R〈90,160,253,126〉-PB.
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For additive and ACA, the transition function, defined by (2.8) is described by the
weights 0 9 and the constant [. Thus, the weights will depend on both the position
of the cell 2 9 in the neighbourhood and on the position of the cell 28 on the lattice.
Therefore the transition function is defined by :

58 : S= → S

BC (N (28)) ↦→ BC+1(28) =
=∑
9=1

08, 9 · BC (2 ( 9)8 ) + [8
(2.14)

Probabilistic Cellular Automata

In some cases it is necessary to use probabilities when modelling a physical system.
For example, probabilities are used to model a fire outbreak in a forest fire spread
model or to reproduce an accident in a road traffic model. We must then transform
the transition function of the CA into a random process. Therefore, probabilistic CA
(PCA) may be defined in many different ways. We will use the formal definition from
Mairesse and Marcovici (2014).

In the probabilistic case, the local transition function 5 does not allow computing
the deterministic value for the state of the cells at the next time, but instead the
probability distribution of a random variable with values inS. We will denoteM(S),
the set of variables with random value in S. Consequently, the global transition
function � does not provide a particular configuration, but instead a random variable
with value inM(SL). It will be defined as:

� : M(SL) → M(SL)

The vast majority of the definitions and results given in the rest of this thesis
do not apply to PCA. For example, for a given configuration, there are several pos-
sible subsequent configurations, which makes many results, such as observability
and reconstructibility (see section 2.3.3), irrelevant. The different observability and
reconstructibility criteria given in chapters 3 and 4 will therefore not apply to PCA.
On the other hand, other definitions and results may be easily adapted to PCA, like
those on the state transition graph (see section 2.2.4 on State Transition Diagram and
Attractor) which can be considered, in the probabilistic case, as the graph representa-
tion of a Markov process with a well-defined corresponding Markov matrix (once
the transition probabilities have been defined). Furthermore, PCA are discussed in
section 3.4 where they are used as a tool for observing deterministic CA.
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2.2.4 Properties of Cellular Automata

Some properties are common to many (if not all) CA such as reversibility, state
transition diagrams and complexity classes are directly related to the observability of
CA. These will be used throughout this work and are defined in this section.

State Transition Diagram and Attractor

In the case of the CA definition 2.1 , the number of cells is finite as is the number of
states for a cell. In addition, since the configuration BC is the application that associates
a cell with its state, the number of configurations is also finite. Configurations are
ordered arrangements of # cells with values from the set ( (with : states), so a
total of :# possible configurations. Moreover, with the finiteness of the space of
configurationsSL , it is possible to represent the global transition function � as a map
which connects one configuration to another (which may be itself). By representing
this lookup table as a binary relation (this representation is detailed in section 3.3 on
page 54), we can define a graph (see Figure 2.8) from the adjacency matrix. This graph
is called the State Transition Diagram and was first presented for CA by Martin
et al. (1984). In addition, in their paper, Martin et al. use this diagram to illustrate
the existence of attractor cycles. After a certain number of iterations and whatever
the initial configuration, the state of the CA is in a cycle. The number and size of the
cycle depend on every parameter of the CA.

1000 0001

00100100
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1111

1110 0111

10111101
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1010
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0110

1001

FIGURE 2.8. State transition diagram of the elementary Wolfram cellular automaton R184-4-PB. This CA has 5
different cycles: 2 of size 1, 2 of size 4, and 1 of size 2.

The state transition diagram represents the transition function as a graph and
therefore make using graph theory results on CA possible. Using the numerical
notation of the configurations BC (see definition 2.2), it is possible to number each node
of the state transition diagram and thus define an adjacencymatrix� and a state vector
GC that represents the configurations. For example, the configuration 0000010 of ECA
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has 2 for decimal value and is represented by the vector GC =
[
0 0 1 0 . . . 0

]′.
The first element of GC corresponds to the configuration with the value 0, the second
to the configuration 1, and so on.

In this work, the notion of attractors and cycles was not explored but could have
been used as a criterion of observability or reconstructibility as it was done by Laschov
et al. (2013) (more details in 3.3.1). Hamiltonian circuits were used as a criterion for
controllability of CA by Dridi et al. (2020) and the transmission, through duality, of
such results to observability remains an open question, and not necessarily a trivial
one.

Classes of Cellular Automata

In 1984, Wolfram proposed a classification of CA into four different classes. Initially
studied with totalistic CA (CA whose evolution is described by the sum of the states
of the cells of the neighbourhood as in the game of life), Wolfram extends these classes
to every CA. They are defined according to the behaviour of the CA, for the vast
majority of initial configurations, after a certain number of iterations. These classes
are defined by :

• Class 1: Initial configurations evolve into a stable, homogeneous, and unique
configuration for all cells. R32 shown in Figure 2.9a is an example of a class 1
ECA.

• Class 2: Initial configurations evolve into a stable configuration or an oscillat-
ing pattern (which is neither homogeneous nor unique). This class serves as
a "filter" for the randomness of the initial configuration whereby only a few
structures remain, the others being filtered out. R172 shown in Figure 2.9b is
an example of a class 2 ECA.

• Class 3: Initial configurations evolve into a chaotic or pseudo-random (ergodic)
pattern: no stable or repetitive state is reached. Wolfram defines a criterion
of spatial 3 (G) and temporal 3 (C) chaoticities that quantify the chaoticity of the
CA. Wolfram also proves that the injectivity of � (reversibility) is a sufficient
(but not necessarily) condition for maximal chaoticity 3 (G) = 1. R30 shown in
Figure 2.9c is an example of a class 3 ECA.

• Class 4: Initial configurations evolve into different structures, which may be
similar to other classes, interacting in complex ways. Wolfram conjectured that
some of the rules would be Turing Complete (have the ability to simulate any
Turing machine) which was proven for the rule R110 (Cook et al., 2004) and
Conway et al.’s Game of Life. R110 shown in Figure 2.9d is an example of a
class 4 ECA.
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(a) Class 1: R32-30-PB (b) Class 2: R172-30-PB (c) Class 3: R30-30-PB (d) Class 4: R110-30-PB

FIGURE 2.9. Example of evolution for ECA to show the behaviour of different classes of CA presented by Wol-
fram. Time is going down on the vertical axis for 30 time step.

Reversibility of Cellular Automata

Reversibility is a property of cellular automata that describes the possibility of finding
the previous configuration BC−1 from the current configuration BC . This property must
apply for all configurations of the CA. Reversibility is identical to the injectivity of the
global transition function � which ensures, for each configuration, the uniqueness of
its antecedent.

Some configurations have no predecessors, they exist only as initial configurations.
These configurations are called gardens of Eden and are related to the surjection of the
transition function � . Moore (1962) and Myhill (1963) define the Garden of Eden’s
theorem which binds the injection and surjection of CA, that is the non-existence of
the Garden of Eden to the notion of reversibility.

Reversiblity is notably used for applications such as random number generation,
hash tables, etc. In the case of Cellular Automata Random Number Generator (CA
RNG) reversibility is used with a maximum cycle size to ensure equiprobability of the
configurations (the random numbers) of the CA. An example of CA RNG is described
in more detail in the chapter 5: Application to Monitoring of Complex Systems
(see section 5.4 on page 129) where the notion of observability is used to retrieve
information about the random number generator flow.

2.3 OBSERVABILITY AND RECONSTRUCTIBILITY OF CELLULAR AUTOMATA

The objective of the observation of a CA is to determine its internal state (i.e. its
configuration BC ) using only partial measurements made on it. For this purpose, we
will use a state estimator (or state observer). This is a system that has its own state
(known to the user) and which we seek to converge to the actual state of the system.
The first step is to choose the approach for estimating the state, but also to ensure
that it works well for all (or for a large part of) the possible scenarios.

In classical control theory, it is possible to characterise whether or not there is a
state estimator to reconstruct the state of the system given the dynamics of the system
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and the dynamics of the measurements. This characterisation, called observability,
is given by Kalman and can be easily evaluated for linear systems. For non-linear
systems, the verification is more challenging as it requires a deeper understanding of
dynamical systems. Furthermore, when the time is discrete, Kalman observability
separates into two different notions: observability and reconstructibility. The former
characterises the reconstruction of the initial state of the system (i.e. B0) and the latter
the reconstruction of the current state (i.e. B) ).

In this section, we will start with a formalisation of the notion of measurement
and sensors for AC. This will allow us to define observability and reconstructibility
for CA. We will also present a third characterisation called adaptability that serves as
a link between these two notions.

2.3.1 State Representation of Cellular Automata

In classical control theory, the state representation is used to represent the studied sys-
tem by including the notion of input and output. The best-known state representation
is the one describing a linear time-invariant (LTI) system:{

GC+1 = �GC + �DC
~C = �GC + �DC

(2.15)

GC ,~C andDC are vectors that respectively represent the state, the output and the
input of the system at time C . G is called the state vector, ~ the output vector and
DC the input vector. �, �,� and � are matrices that described the behaviour of the
system. � is called the state matrix which represents the dynamic of the system. � is
the input matrix which describes how the input impact the system. � is the output
matrix that describes how the system is measured. And � is the feedforward matrix
which represents the direct impact of the input on the output.

Within the scope of this work, we are only interested in the observation of systems,
so there is no input (i.e. D = 0), the simplified state representation is:{

GC+1 = �GC
~C = �GC

(2.16)

In many cases, the considered system is not linear, so the linear state represen-
tation cannot work. The state representation for non-linear systems may be given
as: {

GC+1 = 5 (GC )
~C = ℎ(GC )

(2.17)
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where the map 5 describes the evolution of the state (state dynamics), while ℎ is the
output map.

Equation (2.18) describes the non-linear state representation adapted for the
observation of CA. The state of the system is the configuration BC and its evolution is
determined by the global transition function � . The output operator� represents the
sensor network and \C represents the measurements taken by the sensors at time C .{

BC+1 = � (BC )
\C = � (BC )

(2.18)

With this representation, the state of the CA at time C can be calculated from the
initial configuration B0 using � C which represents the composition of � C times:{

BC = � C (B0)
\C = � (� C (B0))

(2.19)

The definition of� and\C is the subject of the following sectionwhere the notions
of sensors, measurements and output operators will be discussed for the observation
of cellular automata by a mobile sensor network.

2.3.2 Sensors, Measurements and Output Operator

Sensors play an important role in the observation of systems. It is through the in-
formation provided by them that the state of the system can be reconstructed. In
all this work, we consider sensors as mathematical objects capable of measuring a
part of the system. The reality is quite different, sensors are often very complex parts
and require work in different disciplines, both in physics to convert the measured
value into an electrical signal, and in signal processing to amplify, quantify, and filter
the measurement. In addition, the sensor has to be adapted to the application: a
temperature sensor for a freezer is not the same as one that measures the temperature
of the Sun. For this reason, we will consider sensors only as mathematical entities
measuring the BC (2) state of a cell. For example, in the case of the Karafyllidis and
Thanailakis forest fire spread model, the cell state is the biomass consumed. This
value could be obtained from temperature sensors placed on trees, from satellite
imagery of infrared radiation or from any other method. We will consider all these
methods as one sensor, the sensor that measures the consumed biomass.

Before discussing measurements we need to define the notion of sensors, in
particular its position (i.e. the position of these measurements) in relation to the CA
model of the observed system. A sensor can measure the state of several cells at once,
as shown in Figure 2.10, therefore we define L@8 ⊂ L as the set of cells measured by
the sensor @8 . Moreover, several sensors can measure the system at the same time,



2.3 OBSERVABILITY AND RECONSTRUCTIBILITY OF CELLULAR AUTOMATA J 31

so we define the set of all measured cells L@ is defined by the union of the sets of
measured cells of all sensors as presented in definition 2.3.

Definition 2.3 (Sensors). We denote @8 , 8 ∈ J1;&K, the sensor measuring the states
of a set of cell L@8 and @, the set of& sensors that observes the set of cells L@ ⊂ L
with:

L@ =
&⋃
8=1
L@8 (2.20)

On several occasions we will consider mobile sensors, that is sensors which have
the ability to move or to change their measurement area. In this case, the set of cells
observed by a mobile sensor evolves in time. We adapt then definition 2.3 by adding
the time dependence. L@8,C will denote the set of cells measured by the sensor @8 at
time C , while L@,C denotes the set of all cells, measured by all the sensors, at time C .

FIGURE 2.10.Two sensors measuring a one-dimensional CA. Grey cells are measured by a sensor, either @1 or
@2.

When using a sensor network, it can be considered that the network is dynamic.
Sensors may have been added to the network while others may be defective and no
longer being able to take measurements. In general, it must be possible to consider
that sensors can enter and leave the network, which has an impact on the measured
cells. In this case, the set of sensors @ can evolve over time (if sensors enter or leave
the network). However, it can also be considered that a sensor of the network can be
inactive and in this case the set of sensors @ does not change but the set of observed
cells does. Therefore, the expression of the set of observed cells is defined by :

L@,C =
&⋃
8=1
(_8,C � L@8,C ) (2.21)

where _8,C ∈ {0, 1} equal 0 if the sensor @8 is inactive at time C and 1 if it’s active. The
operator � is defined by:

� : {0, 1} × P(L) → P(L)(
_8,L@8

)
↦→ _8 � L@8 :=

{
∅ if _8 = 0
L@8 else

(2.22)

At each time step, sensors take measurements on all the measured cells and return
their state. These measurements are represented by the output vector \C which, in
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the same way as the BC configuration, describes the state of the measured cells at time
C . We define the sensor measurement operation on the system by the output operator
�C which constructs the measurements \C from the measured system state BC .

Definition 2.4 (Output Operator). The output operator�C maps, at each time C , the
state BC of the cellular automatonA to the output vector \C ∈ O = SL@C :

�C : SL → O
BC ↦→ \C := BC (L@,C )

(2.23)

where BC (L@,C ) denotes the state of all cells in set L@,C at time C .

Remark 2.2. In some cases, the sensors do not measure the state of a particular
cell but a value from several cells. For instance, in the example on the CA RNG (see
section 5.4 on page 129), the sensor measures the sum modulo 2 of all the cells in the
CA. Only one value is returned by the sensor but it depends on all cells. Therefore,
definition 2.4 cannot be applied and we must generalise� as:

�C : SL → O
BC ↦→ \C := ℎ

(
BC (L@,C )

) (2.24)

where ℎ is the function that converts the cell state into a \C measure.

In general, when observing a system, making a single measurement is not enough
to know the state of the system. Measurements must be taken regularly, with a given
time step (sampling) and only after a certain period of time, the number of measure-
ments becomes sufficient to determine the current or initial state of the system. The
vector composed of the successive output vectors (measurements) generated by the
output operator�C is called an output sequence. The output sequence spanning from
C0 to C) is noted Θ0,) = (\0, \1, . . . , \)−1).

For the analysis of observability, whose criterionwill be defined in the next section,
we will need to study all possible output sequences. In this case, we derive from the
state equation (2.19) the application Θ) which constructs the output sequence Θ0,)
from the initial configuration B0 by :

Θ) : B0 ↦→ Θ0,) = (�0(B0), �1 ◦ � (B0), . . . , �)−1 ◦ �)−1(B0)) (2.25)

Similarly to what has been done for definition 2.1 of CA, we define the sensor
network H which represents the set of sensors @, the measured cells L@ and the
output operator�C .
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2.3.3 Definition of Observability and Reconstructiblity

Observability and reconstructibility, as defined by Kalman (1963), determine whether
or not it is possible to reconstruct the state of a system based on the measurements
obtained from one or more sensors. Observability focuses on reconstructing the
initial state of the system whereas reconstructibility focuses on reconstructing the
current state of the system. In the case of discrete-time systems, both of these are
not equivalent. With a deterministic system, observability is a more general concept
since knowing the initial state implies knowing all the evolution of the system. Re-
constructibility, on the other hand, is less general but can be easier to assess (as shown
in section 5.3 on page 122).

An initial configuration B0 is considered observable if from the measurements
taken by the sensors (i.e. the output sequenceΘ) (B0)) it is possible to uniquely identify
B0. In other words, the output sequence Θ) (B0) must be unique to B0. Moreover, if
all configurations of the CA are observable then the CA is considered observable.
Formally, we can define the observability of a CAA as follows.

Definition 2.5 (Observability). A cellular automatonA is observable by a sensor
networkH at time) if and only if:

∀B′0, B′′0 ∈ SL,Θ) (B′0) = Θ) (B′′0 ) =⇒ B′0 = B
′′
0 (2.26)

This definition of observability is equivalent to the injectivity of the output se-
quence Θ) . Therefore, proving that a CA is observable by sensors is equivalent to
proving the injectivity of the output sequence.

Reconstructibility can similarly be defined as the ability to reconstruct the current
state B) = �) (B0) from the output sequence Θ) (B0). However the formulation of
definition 2.6 is not the injectivity of Θ) but the injectivity of Θ) with respect to3
�) .

Definition 2.6 (Reconstructiblity). A cellular automatonA is reconstructible by a
sensor networkH at time) if and only if:

∀B′0, B′′0 ∈ SL,Θ) (B′0) = Θ) (B′′0 ) =⇒ �) (B′0) = �) (B′′0 ) (2.27)

These two definitions are the basis for observation as they ensure that the initial or
current state can be reconstructed. It will be necessary to check before the observation
phase that the chosen sensor network (by considering the positions or trajectories of
each sensor) allows observability and reconstructibility.
3The notion of compared injectivity is presented in appendix A. A definition and properties, including a characterisation for
the linear case, are given there.
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Remark 2.3. In the case where the CA is reversible, then observability and recon-
structibility are equivalent notions. Indeed, with reversibility it is possible to find
B0 from B) because each configuration has a unique antecedent by � . This also re-
sults from proposition A.3 on page A-3 and the injectivity (reversibility) of � (and by
extension �) .).

While studying the algorithmic complexity of computing observability of Boolean
networks (a notion presented in detail in section 3.3.1), Laschov et al. (2013) present
an observability criterion for an observability graph, an augmentation of the state
transition diagram with the measurements made by the sensor. To be observable, the
graph must satisfy two conditions: no configuration has two predecessor configura-
tions with the same output; all cycles generate different output sequences. These two
conditions are presented in detail in section 3.3.1 but we will focus here on the first
one which can be formally written as:

Definition 2.7 (Adaptability (or Laschov property)). A sensor networkH is adapted
for the observation of a CAA if and only if:

� : ∀B′0, B′′0 ∈ SL and B′0 ≠ B
′′
0 , � (B′0) = � (B′′0 ) =⇒ � (B′0) ≠ � (B′′0 ) (2.28)

Laschov et al presented this condition as a criterion of observability but it turns
out that this condition is not necessary for reconstructibility (see proposition 2.1).
Therefore, we generalise this condition as a property of a sensor network with respect
to a CA. This condition makes it possible to check before the observability computa-
tion that a sensor networkH is adapted to the observation of a CAA. In some cases,
this property can even be used to condition the placement of sensors.

Proposition 2.1. Let A a cellular automaton andH a sensor network. The following
assertions are true:

(a) IfH is not adapted to the observation ofA thenA is not observable byH for any
) > 0.

(b) IfH is adapted to the observation ofA andA is not observable byH for) > 0
thenA is not reconstructible byH at time) .

Proof. Proof of (a): Suppose thatH is not adapted to the observation of A, then
there exists B′0, B

′′
0 ∈ SL and B′0 ≠ B

′′
0 such that � (B′0) = � (B′′0 ) ∧ � (B′0) = � (B′′0 ). Let

B1 = � (B′0) = � (B′′0 ), we have
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=⇒ � (B′0) = � (B′′0 ) ∧ ∀: > 1, � (�: (B′0)) = � (�: (B′0)) = � (�:−1(B1))
=⇒ ∀) > 0,Θ) (B′0) = Θ) (B′′0 )
=⇒ For any) > 0,A is not observable byH

Proof of (b): Suppose that A is not observable byH for ) > 0, then there exists
B′0, B

′′
0 ∈ SL such that Θ) (B′0) = Θ) (B′′0 ) ∧ B′0 ≠ B′′0 . Then:

∀0 ≤ C < ),� (� C (B′0)) = � (� C (B′′0 )) ∧ B′0 ≠ B′′0

However, with the contraposition of (2.28) we have:

∀B′0, B′′0 ∈ SL and B′0 ≠ B
′′
0 , � (B′0) = � (B′′0 ) =⇒ � (B′0) ≠ � (B′′0 )

Hence:
∀0 ≤ C < ), �C+1(B′0) ≠ �C+1(B′′0 ) ∧ B′0 ≠ B′′0

Especially for C = ) − 1, we have �) (B′0) ≠ �) (B′′0 ) so:

Θ) (B′0) = Θ) (B′′0 ) ∧ �) (B′0) ≠ �) (B′′0 )

This proves thatA is not reconstructible byH at time) �
The proposition 2.1 guarantees, before the calculation of the output sequence,

whether or not the sensor network allows observability. When the proposition allows
it but observability is not ensured, then it is unnecessary to evaluate the reconstructibil-
ity. Therefore, we only evaluate reconstructibility when the adaptability property
does not hold. Moreover, when the CA is reversible, i.e. � is injective (there is no
B′0, B

′′
0 such that B′0 ≠ B

′′
0 ∧ � (B′0) = � (B′′0 )), the property� is always satisfied and thus

all sensor networks are adapted for observation (but does not necessarily ensure
observability).

In the case of a time-dependent sensor network H , definition 2.7 cannot be
applied, it should be verified that the output operator is suitable for all times. In that
case, we propose the following definition.

Definition 2.8. A time-dependent sensor networkH is adapted for the observation
of a CAA at time C if and only if:

�C : ∀B′C , B′′C ∈ � C (SL) and B′C ≠ B′′C , � (B′C ) = � (B′′C ) =⇒ �C (B′C ) ≠ �C (B′′C ) (2.29)
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Given this property�C , the output operator�C is adapted to the observation over a
time horizon) if the following property

� = �0 ∧�1 ∧ · · · ∧�)−1 (2.30)

holds.

Only property (b) of proposition 2.1 holds in the case of a time-dependent sensor
network. Indeed, the property (b) is easily proved because if we have� then�C is true
for all C < ) . However, property (a) only holds when¬�0. If we assume�0∧¬�1 then
∀8 ≥ 1, � (B′8 ) = � (B′′8 ) (see the proof (a) of proposition 2.1) although no evidence is
present for �0(B′0) = �0(B′′0 ), which might be sufficient to guarantee observability.
Therefore we define proposition 2.2 by:

Proposition 2.2. LetA a cellular automaton andH a time-dependent sensor network.
The following assertions are true:

(a) IfH is not adapted to the observation ofA at time C = 0 thenA is not observable
byH for any) > 0.

(b) If H is adapted to the observation of A for any time 0 ≥ C < ) and A is not
observable byH for) > 0 thenA is not reconstructible byH at time) .

2.4 CONCLUSION

Throughout this second chapter, we have laid the foundations for the observation of
cellular automata (CA) that will be used in the following chapters. In the first part of
this chapter, we presented in detail the definition of CA from El Yacoubi. From this
definition, we have presented several families of CA that will be used in chapters 3 to 5
for the presentation of different observation criteria. Among these, we will study in
particular the additive (or affine) cellular automata (ACA) at the beginning of chapter 3
and the elementary cellular automata (ECA) throughout chapter 4.

In the second part of this chapter, we have formally defined all the tools necessary
for the observation of CA. First, we defined the notions of sensors and the output
operator, which allows the use of a sensor network, containing both static and mo-
bile sensors. Then, we defined the notions of observability, reconstructibility and
adaptability for CA. Observability and reconstructibility are concepts from "classical"
control theory that have been adapted to CA.Whereas adaptability is a notion defined
by Laschov et al. (2013) as a criterion for observability of Boolean networks (BN), it
has been translated as specific notion for the observation of CA.

The main contributions of this chapter are the definition of tools for the verifi-
cation of observability and reconstructibility and the generalisation of the Laschov
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criterion by defining adaptability as an observation tool. The definition of observabil-
ity and reconstructibility have been presented in several publications (Plénet et al.,
2020a, 2022a). The discussion on adaptability has not been published yet.

In the following chapters, we will use the definitions made in this chapter to
providemethods for observing CA. The criteria of observability and reconstructibility
are studied in chapter 3. The chapter 4 focuses on state estimation through CA
synchronisation, without checking for observability and reconstructibility.





CHAPTER 3

Observability and Reconstructibility

RÉSUMÉ

Dans le chapitre précédent, nous avons défini les automates cellulaires, ainsi que des notions
d’observabilité et de reconstructibilité qui s’appliquent à ceux-ci. Dans ce chapitre, nous
allons donner des critères qui permettent de vérifier à la fois l’observabilité et la recon-
structibilité pour certaines familles d’automates cellulaires.
Dans un premier temps, nous étendrons le critère d’observabilité classique de Kalman aux
automates cellulaires additifs. Nous donnerons aussi un critère de reconstructibilité pour
cette famille. Ensuite, nous utiliserons la représentation par graphe de transition d’état,
ainsi que des résultats de l’observabilité et de la reconstructibilité des réseaux booléens,
pour proposer un algorithme permettant de vérifier l’observabilité et la reconstructibilité
des automates cellulaires non linéaires (non additifs). Finalement, nous donnerons un
critère d’observabilité régionale et de décentralisation de l’observabilité pour les automates
cellulaires non linéaires.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Kalman Criterion for Additive and Affine Cellular Automata . . . . . . . . 40

3.2.1 Affine and Additive State Representation . . . . . . . . . . . . . . 40
3.2.2 Conditions for Observability and Reconstructibility . . . . . . . . 44
3.2.3 Tools for the Verification of the Kalman Criterion . . . . . . . . . 51

3.3 Observability and Reconstructibility for Non-Linear Cellular Automata . . 54
3.3.1 Observability and Reconstructibility of Boolean Network . . . . . 54
3.3.2 Binary Relation Representation of Cellular Automata . . . . . . . 62
3.3.3 State Estimator for Non-Linear Cellular Automata . . . . . . . . . 67

3.4 Decentralisation of Observability and Reconstructibility . . . . . . . . . . 71
3.4.1 Observability and Reconstructibility of Sub-CA . . . . . . . . . . 72
3.4.2 Deterministic Method for Distribution . . . . . . . . . . . . . . . 74
3.4.3 Probabilistic Model for Estimated Boundaries . . . . . . . . . . . 75

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

39



40 I CHAP. 3 OBSERVABILITY AND RECONSTRUCTIBILITY

3.1 INTRODUCTION

In the previous chapter, we presented the definition for observability, reconstructibil-
ity and adaptability. However, we did not provide any useful method to verify those
properties. In this chapter we present different methods to check verify those three
criteria. Firstly, for ACA and secondly for non-linear CA.

ACA are linear systems with a finite number of variables. We can therefore apply
some results from the control theory of linear time invariant (LTI) systems. However,
we must be careful as we are dealing with finite-state variables. We present the
Kalman rank condition for observability of ACA. We present a similar condition for
reconstructibility and adaptability.

In the second part, we study non-linear CA by making them Boolean networks.
Therefore, we adapt the workmade on observability and reconstructibility of Boolean
network to non-linear CA. The computational complexity of this method makes it
impossible to apply it on large CA (more than a few cells). We present two different
approaches to reduce the complexity. The first use some condition on the initial
configuration and the second uses a decentralisation of the observability or recon-
structibility.

3.2 KALMAN CRITERION FOR ADDITIVE AND AFFINE CELLULAR AUTOMATA

The Kalman (1963) rank condition (or Kalman criterion) is a necessary and sufficient
condition for a linear system to be controllable. Due to the duality of control and
observation, this condition also applies to observability. The obtained observability
condition is then based on the full rank of the observability matrix, which ensures
the injectivity of the output sequence. Initially defined for linear time invariant
systems, many other types of systems such as discrete-time systems (Sarachik and
Kreindler, 1965) have a Kalman condition for controllability and observability. In
this section, we propose an extension of the Kalman observability condition for ACA,
and corresponding criteria for reconstructibility and adaptability. Finally, we present
numerical methods for the verification of observability and reconstructibility for CA
with a large number of cells.

3.2.1 Affine and Additive State Representation

In order to apply the Kalman criterion, we need a linear state space representation
similar to the one presented in equation (2.16). In addition, we also need to be
able to express the output sequence (2.25) with a matrix representation in order to
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verify its injectivity. We can extend the ACA to an affine sensor network when the
corresponding output operator is an affine map. Such an affine output operator can
be written as

� : S# → S&

GC ↦→ ~C = �GC + W =


21,1 21,2 . . . 21,#
22,1 22,2 . . . 22,#
...

...
. . .

...

2&,1 2&,2 . . . 2&,#


·


BC (21)
BC (22)
...

BC (2# )


+


W1
W2
...

W&


(3.1)

Note that, in many scenarios, sensors directly measure the state of a cell and therefore
theweights28, 9 of thematrix� are ones and the constantsW8 are zeros. Using the global
transition function of an ACA (2.12), together with the affine output operator (3.1),
the state-space representation of the ACA extended with its affine sensor network
reads: {

GC+1 = �GC + [
~C = �GC + W

(3.2)

We can express both GC and~C as a function of the initial configuration G0:{
GC = �CG0 + �C−1[
~C = �C�

CG0 +�C �C−1[ + W
(3.3)

with �C =
∑C
:=0�

:

Finally, by adapting the definition of the output sequence (2.25) with the previous
formulation, we can give the matrix writing for the output sequence Θ) .

Definition 3.1 (Affine Output Sequence). The output sequence Θ) can be repre-
sented in affine form using the affine forms of the transition function and the output
operator. We note .) the output sequence for) outputs:

.) =


~0
~1
...

~)−1


=


�0
�1�
...

�)−1�)−1

︸        ︷︷        ︸
$)

G0 +


W0

�1�0[ + W1
...

�)−1�)−2[ + W)−1

︸                  ︷︷                  ︸
Γ)

= $)G0 + Γ) (3.4)

where$) is called the observability matrix and Γ) is a constant vector. The linear
map represented by the observability matrix$) carries the injectivity property of
the output sequence and therefore the observability property.
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Example 3.1
In order to illustrate the results given in this section, we will apply them in a
simple and didactic example where the necessary calculations will be detailed.
In this first example, we will define the CA and the sensor networks which will
also be used in examples 3.2 and 3.3 for the verification of observability and
reconstructibility. In order to be able to detail the calculations, the � and $
matrices, whose sizes depend on the number of cells in the CA, must remain
"readable". Therefore we decided to use the one-dimensional ACA with 8 cells
defined by:

• L = {0, 1, . . . , 7}, a one-dimensional lattice of 8 square cells.

• S = {0, 1, 2, 3, 4}, a set of: = 5 states. We have chosen: as a prime number
in order to apply observability and reconstructibility.

• N(28) = {28−1, 28, 28+1}, the neighbourhood of cell 28 , with the periodic
boundaries conditions 2−1 = 27 and 28 = 20.

• 5 : BC (N (28)) ↦→ BC+1(28) = 2 ·BC (28−1) +3 ·BC (28) +1 ·BC (28+1) +4, an affine
transition function

In order to obtain the matrix form of the CA evolution, we will use the defini-
tion of the matrix� from (2.11). The weight 08, 9 are derived from the weight of
the local expression of 5 :

∀8, 9 ∈ L, 08, 9 =


3 if 9 = 8
2 if 9 ≡ 8 − 1 mod =
1 if 9 ≡ 8 + 1 mod =
0 else

Therefore, we obtain the following matrix formulation:

GC+1 = �GC + [ =



BC+1(20)
BC+1(21)
BC+1(22)
BC+1(23)
BC+1(24)
BC+1(25)
BC+1(26)
BC+1(27)


=



3 1 0 0 0 0 0 2
2 3 1 0 0 0 0 0
0 2 3 1 0 0 0 0
0 0 2 3 1 0 0 0
0 0 0 2 3 1 0 0
0 0 0 0 2 3 1 0
0 0 0 0 0 2 3 1
1 0 0 0 0 0 2 3


·



BC (20)
BC (21)
BC (22)
BC (23)
BC (24)
BC (25)
BC (26)
BC (27)


+



4
4
4
4
4
4
4
4


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FIGURE 3.1. Example of evolution of the ACA from the initial configuration 01004324 for 15 time steps.
Time is going rightward.

In order to illustrate the use of both mobile and static sensors, we will define
H (1) and H (2) , two sensor networks. H (1) describes two static sensor that
measures the left-end and right-end cells. H (2) describes a mobile sensor that
observes the left-end cell but moves to the right cell (with a loop due to the
periodic boundaries) at every time steps. The measurement sets ofH (1) andH (2)
are denoted respectively !2 (1)@ and !2 (2)@ :

• L (1)@ = {20, 27}

• L (2)@,C = {28 | with 8 = C mod 5}

Both sensor networks directly measure the state of the cells. Thus both� (1) and
�
(2)
C are additive output operators which satisfy definition 2.4. Their correspond-

ing� matrices can be written respectively as:

• � (1) : � =

[
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

]
• � (2)C :

– �0 =
[
1 0 0 0 0 0 0 0

]
– �1 =

[
0 1 0 0 0 0 0 0

]
. . .

– �7 =
[
0 0 0 0 0 0 0 1

]
In this first example, we presented a one-dimensional ACA as well as two sensor
networks, one of which is time-dependent. Later, we will study observability
(example 3.2) as well as reconstructibility (example 3.3) for those sensor networks.
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3.2.2 Conditions for Observability and Reconstructibility

In this section, we present theorems 3.1 and 3.3, both derived from the Kalman
condition of classical control theory, which provide characterisations respectively
for observability and reconstructibility. Each of these two theorems is accompanied
by a corollary that allows either the reconstruction of the initial or the current state
when respectively observability or reconstructibility is satisfied.

Theorem 3.1 (Kalman Condition). LetA andH be an ACA and time-dependent sensor
network, with the associated matrices respectively denoted� and�C .

The ACAA is observable by the sensor networkH if and only if there exists a time
) > 0 such that:

A0=: $) =


�0
�1�
...

�)−1�)−1


= # (3.5)

The following proof demonstrates theorem 3.1 for an affine CA and an affine
sensor network. For additive CA or sensor network, the proof is essentially the same
with the only difference that the constants W and [ are zero vectors.

Proof. LetA be an affine CA with� and [ its associated matrix and constant vector.
Let H be a time-dependent affine sensor network associated with the matrix �C
and the constant vector WC . Then, let G0 ∈ S# be the initial configuration and
.) =

[
~0 ~1 . . . ~)−1

]
the output sequence generated by the sensor network

such that .) = $)G0 + Γ) .
Considering the definition 2.5 of observability, then:

A is observable byH ⇐⇒ ∀B′0, B′′0 ∈ SL,Θ) (B′0) = Θ) (B′′0 ) =⇒ B′0 = B
′′
0

⇐⇒ ∀G′0, G′′0 ∈ S# ,$)G′0 + Γ) = $)G
′′
0 + Γ) =⇒ G′0 = G

′′
0

⇐⇒ ∀G′0, G′′0 ∈ S# ,$) (G′0 − G′′0 ) = 0 =⇒ (G′0 − G′′0 ) = 0
⇐⇒ ker $) = {0}
⇐⇒ A0=: $) = dim((# ) − dim(ker $) ) = #

�

In the general case, the number of measurements (i.e. the dimension of the output
sequence) is not necessarily equal to the number of cells. As a result, the matrix$) is
not a square matrix. It is therefore impossible to find the inverse of the observability
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matrix even if$) is full rank. There is, however, a pseudo-inverse (Ben-Israel and
Greville, 2003, Chap 1) matrix$†

)
which acts as a left inverse such that$†

)
$) = �# .

Using this pseudo-inverse, it is possible to state the corollary 3.1.

Corollary 3.1. If the Kalman criterion is satisfied, then it is possible to reconstruct the
initial state by pseudo-inverting the observability matrix. Indeed, based on the formulation
(3.4) we obtain

G0 = $
†
)
(.) − Γ) ) (3.6)

Proof. Consider an ACA A observable by an affine sensor network H such that
∀G0 ∈ S# , .) = $)G0 + Γ) and A0=: $) = # . To simplify the notations, we shall
simply note$ and Γ to respectively represent$) and Γ) .
As A0=: $ = # , it means that it exists % such that %$ = � (but not necessarily$% = �

because$ is full column rank not full-row rank). We can find % = $† by computing
the pseudo-inverse of$ . Using the equation (3.4) we find that:

.) = $G0 + Γ ⇐⇒ $†(.) − Γ) = $†$G0 ⇐⇒ $†(.) − Γ) = G0 (3.7)

If$ is full column rank,$† = ($′$)−1$′. If$ is square then$† = $−1. �

A characterisation theorem, similar to theorem 3.1, may also be formulated for the
adaptability property. Recall that a sensor network is said adapted for the observation
of a CA when no configuration has two predecessors with the same output (see
definition 2.7). In the case of ACA, the adaptability characterisation theorem may be
formulated as follows.

Theorem3.2. LetA andH be an ACA and affine sensor network, with associatedmatrices
respectively denoted� and� . The sensor networkH is adapted to the observation of the
ACAA if and only if :

ker� ∩ ker� = {0} (3.8)

Proof. Let A an ACA and � and [ its associated matrix and constant vector. Let
H be a sensor network associated with the matrix � and the constant vector W .
The adaptability condition (2.28) in definition 2.7, when applied to the state space
representation (3.2) for ACA, reads:

∀G′0, G′′0 ∈ S# ∧ G′0 ≠ G′′0 , �G′0 + [ = �G′′0 + [ =⇒ �G′0 + W ≠ �G′′0 + W
⇐⇒ ∀G′0, G′′0 ∈ S# ∧ G′0 ≠ G′′0 , �(G′0 − G′′0 ) = 0 =⇒ � (G′0 − G′′0 ) ≠ 0
⇐⇒ ∀G0 ∈ (# ∧ G0 ≠ 0, G0 ∈ ker� =⇒ G0 ∉ ker�
⇐⇒ ker� ∩ ker� = {0}
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�

Using theorem 3.2, it is possible to find conditions on the� matrix of the output
operator by carefully placing the sensors so that it respects the theorem. In example 3.2,
in addition to checking whether or not the sensor networks H (1) and H (2) are
adapted to the observation, an example is given to provide a condition on the position
of the sensor for the sensor network to be adapted to the observation.

Example 3.2
In this example, we take the ACA and the two sensor networks of example 3.1
and we will check the observability. If it is validated, then we will reconstruct the
initial state using the output sequences generated by the output operators on the
execution of Figure 3.1.

Before assessing the observability, we must verify if the sensors are adapted
to the observation of the ACA. Therefore we find the eigenvectors of ker� which
are

E
(1)
�

=



2
2
0
1
2
2
0
1


; E (2)
�

=



3
1
1
0
3
1
1
0


Considering 48 , the vectors of the canonical basis of (# , we can write the

vectors+ (1)
�

and+ (2)
�

as:

+
(1)
�

= 240 + 241 + 43 + 244 + 245 + 47
+
(2)
�

= 340 + 41 + 42 + 344 + 45 + 46

Thus every element G of ker� can be written in the form U+
(1)
�
+ V+ (2)

�
with

(U ; V) ∈ S × S. In the canonical basis, we obtain

G = U+
(1)
�
+ V+ (2)

�

= (2U + 3V)40 + (2U + V)41 + V42 + U43 + . . .
· · · + (2U + 3V)44 + (2U + V)45 + V46 + U47
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When a sensor directly measures the state of a cell, all these measurements
are only sensitive to changes in that cell. Thus, the kernel of the output operator
is composed of all the other cells. The eigenvectors of ker� (1) are therefore 41,
42, 43, 44, 45 and 46. For� (2)C , these are all 48 so that 8 ≠ C .

To guarantee the adaptability of the sensor network, it is necessary to find
ker� ∩ ker� = {0}, thus it is necessary to be able to nullify the coefficients
in front of the 48 in the writing of G for those which are not ker� , i.e. those
corresponding to the measured cells. If there exists some values of U and V , for
which U+ (1)

�
+ V+ (2)

�
∈ ker� and (U ; V) ≠ (0; 0), then ker� ∩ ker� ≠ {0} the

adaptability is not respected.
Finally, we can see thatH (2) is not adapted to the observation whatever C

is, because there exists non-zero solutions for each of the vectors: (1, 1) is a
solution of 2U + 3V = 0; (1, 3), (2, 1), (3, 4) and (4, 2) are solutions of 2U + V = 0;
(0, V ≠ 0) is a solution of U = 0 and (U ≠ 0, 0) is a solution of V = 0. However,
H (1) is adapted as the non-zero solutions are not compatible, (1, 1) is not solution
of U = 0. More generally, any output operator that observes a combination of at
least two cells 28 and 2 9 , with 8 . 9 mod 4, is suitable for the observation of this
ACA.

Even if the sensor networkH (2) cannot ensure observability, we will still
compute the observability matrix (this will be useful when computing recon-
structibility) and check its rank. First, we must decide on a time horizon ) in
order to construct the matrix $) . Let ) = 4 (this is justified by the Cayley-
Hamilton Theorem presented later on) for the static sensor and) = 8 for the
mobile one, we obtain the following expression for .) in the case ofH (1) and
H (2) :

.
(1)
)

=



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
3 1 0 0 0 0 0 2
1 0 0 0 0 0 2 3
3 1 1 0 0 0 4 2
1 1 0 0 0 4 2 3
3 3 4 1 0 3 1 1
3 4 1 0 3 1 1 3


· G0 +



0
0
4
4
3
3
2
2



.
(2)
)

=



1 0 0 0 0 0 0 0
2 3 1 0 0 0 0 0
4 2 3 1 1 0 0 0
3 1 1 3 3 4 1 0
2 1 3 0 1 0 2 2
2 0 1 0 0 3 0 0
4 1 4 3 1 1 4 3
1 2 0 4 0 3 2 4


· G0 +



0
4
3
2
1
0
4
3


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In the case of H (2) , the rank of the observability matrix is 7 which is not
enough to ensure observability. The verification of the reconstructibility will be
done in example 3.3. The computation of the rank must be done in modular arith-
metic, which is not the case for the usual rank operators. Indeed, the observability
matrix forH (2) is not full rank, although using the usual rank operator it would
be full rank since its determinant is 5 (which is 0 in modular arithmetic modulo
5).

On the contrary,H (1) ensures the observability because the rank of its observ-
ability matrix is 8. We will now compute the$† matrix in order to reconstruct
the initial configuration.

In this case$† is a square matrix, so we will use the inverse computed from
the determinant and the adjugate matrix (transpose of the cofactor matrix)$−1 =
34C ($)−1 · 03 9 ($). Knowing that the determinant is 4, its inverse is 4 because
4 · 4 = 1 mod 5. Thus, the inverse of$ is expressed by:

$† = 34C ($)−1 · 03 9 ($)

= 4 ·



4 0 0 0 0 0 0 0
3 2 4 0 0 0 0 0
3 4 1 2 4 0 0 0
0 4 2 3 4 2 4 0
4 0 3 4 2 3 0 3
3 2 4 4 0 1 0 0
3 4 0 2 0 0 0 0
0 4 0 0 0 0 0 0


=



1 0 0 0 0 0 0 0
2 3 1 0 0 0 0 0
2 1 4 3 1 0 0 0
0 1 3 2 1 3 1 0
1 0 2 1 3 2 0 2
2 3 1 1 0 4 0 0
2 1 0 3 0 0 0 0
0 1 0 0 0 0 0 0


With the corollary 3.1 and the$† matrix, we are able to reconstruct the initial

state G0 from the output sequence .) :

G0 = $
†
)
(.) − W) )

=



1 0 0 0 0 0 0 0
2 3 1 0 0 0 0 0
2 1 4 3 1 0 0 0
0 1 3 2 1 3 1 0
1 0 2 1 3 2 0 2
2 3 1 1 0 4 0 0
2 1 0 3 0 0 0 0
0 1 0 0 0 0 0 0


·

©­­­­­­­­­­­«



0
4
3
0
0
2
0
0


−



0
0
4
4
3
3
2
2



ª®®®®®®®®®®®¬
=



0
1
0
0
4
3
2
4


In this example we were able to verify the observability of the output operator
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H (1) and to reconstruct the initial state. However, theH (2) output operator does
not guarantee observability, so we will check observability in example 3.3.

In the case of time-continuous linear systems, observability and reconstructibility
are equivalent concepts (Antoulas, 2005, section 4.2.2). The Kalman criterion ensures
observability. However, in discrete time, there are systems which are reconstructible
but are not observable (see for instance the road traffic example in section 5.3 on
page 122). For this reasonwe propose a new theorem, similar to the Kalman condition,
that provides a necessary and sufficient condition for an ACA to be reconstructible.

Theorem 3.3 (Reconstructibility Criterion). LetA andH be an ACA and affine sensor
network. We denote �, � their matrix form. The ACAA is said reconstructible by the
sensor networkH if and only if there exists) > 0 such that:

ker$) ⊂ ker�) (3.9)

Proof. Let A an ACA and � and [ its associated matrix and constant. LetH be a
time-dependent affine sensor network associated to the matrix�C and the constant
WC at time C . Then, let G0 ∈ S# be the initial state and .) =

[
~0 ~1 . . . ~)−1

]
the

output sequence generated by the output operator such that .) = $)G0 + Γ) .

Consider the definition 2.6 of the global observability, then:

(A,H) is reconstructible
⇐⇒ ∀B′0, B′′0 ∈ SL,Θ) (B′0) = Θ) (B′′0 ) =⇒ �) (B′0) = �) (B′′0 )
⇐⇒ ∀G′0, G′′0 ∈ S# ,$)G′0 + Γ) = $)G

′′
0 + Γ) =⇒ �)G′0 + �)−1[ = �)G′′0 + �)−1[

⇐⇒ ∀G′0, G′′0 ∈ S# ,$) (G′0 − G′′0 ) = 0 =⇒ �) (G′0 − G′′0 ) = 0
⇐⇒ :4A $) ⊂ :4A �)

�

Corollary 3.2, hereafter, provides a reconstruction of the current state G) from
the output sequence and the observability matrix. Example 3.3 describes the process
of constructing the matrix ' in the case of a one-dimensional ACA. This method can
easily be extended to multidimensional ACA.
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Corollary 3.2. If the reconstructibility criterion is verified, then it is possible to find a
matrix ' such that:

G) = '(.) − Γ) ) + �)−1[ (3.10)

And Penrose (1956) defines ' as a set of solution depending onF :

'′ = �)$†
)
+ (� −$†$)F (3.11)

where vectorF is arbitrary and since O is not of full rank, its pseudo-inverse is obtained
through the matrix of its singular value decomposition* , Σ, and+ as$† = + Σ†* ′.

Proof. Consider an ACAA (with a matrix� and a constant [) reconstructible by an
affine sensor networkH such that .) = $)G0 + Γ) and ker$) ⊂ ker�) .

As ker$) ⊂ ker�) , it means there exists a matrix ' such that�) = '$) . With this
property, we can find that:

.) = $)G0 + Γ) ⇐⇒ '(.) − Γ) ) = '$)G0
⇐⇒ '(.) − Γ) ) + �)−1[ = �)G0 + �)−1[
⇐⇒ G) = '(.) − Γ) ) + �)−1[

�

Example 3.3
In this last example, we will check the reconstructibility of the sensor network
H (2) , defined in example 3.1, for the case) = 8. We proved observability is not
satisfied. To prove reconstructibility, we start by finding the eigenvectors of the
kernels of$) and�) :

E
(1)
$

=



0
3
1
1
0
3
1
1


; E (1)
�

=



2
2
0
1
2
2
0
1


; E (2)
�

=



3
1
1
0
3
1
1
0


We can fairly easily see that E (1)

$
= E

(1)
�
+ E (2)

�
is a linear combination of the

eigenvectors of ker�) . Thus ker$) ⊂ ker�) andH (2) ensures reconstructibil-
ity. We will therefore use corollary 3.2 to reconstruct the current state, namely
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G8. However, we did not find any algorithm to compute the pseudo-inverse or
the singular value decomposition using modular arithmetic. Nevertheless, to
reconstruct the current state, we could always use a state estimator like the one
presented in section 3.3.3.

Finally, through these three examples we were able to verify the observability
and reconstructibility for ACA. We were able to show the use of both a mobile
sensor and a "network" of two static sensors. In section 5.4 on page 129 we will
present an example about random number generator attack, where the use of
observability for ACA will find a more concrete and natural application.

3.2.3 Tools for the Verification of the Kalman Criterion

In this section, we present tools that aim to simplify the computations for observability
and reconstructibility. The Cayley-Hamilton theorem is used to bound the time
horizon in the observability calculation with a static sensor network (only the lower
bound applies when using a mobile sensor network). Different tools are presented to
assist in the numerical verification of observability and reconstructibility.

Cayley-Hamilton Theorem

In linear algebra, the Cayley-Hamilton theorem states that any square matrix� (of
size=×=) over a commutative ring (in our caseS) satisfies its characteristic equation,
i.e. �= is a linear combination of�8 with 8 ∈ J0;= − 1K. It can be coupled with the
Kalman Condition to give an upper bound on the time horizon) .

Theorem3.4 (Cayley-HamiltonTheorem). Suppose a CA observed by a time-invariant
sensor network� (i.e. by a static sensor), the observability matrix$) is of size # ×&.) .
For the matrix$) to be of full column rank, the time horizon) is bounded according to:

#

&
≤ ) ≤ # (3.12)

Proof. Let us prove the two inequalities separately:
Proof of) ≤ # : The Cayley-Hamilton theorem guarantees that the rank of$) will
not increase beyond T = N as��# is a linear combination of the��8 , for 0 ≤ 8 ≤ # .
Proof of) ≥ # /& : For$) to have a rank of# , it needs at least# rows and columns,
thus&.) ≥ # . �

Remark 3.1. In the case of a mobile sensor (i.e. a time-dependent sensor network),
only the lower bound of the theorem 3.4 stands true. The Cayley-Hamilton theorem
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does not apply because�)�) is a linear combination�) +�)� + · · · +�)�)−1 and
not of the type�0 +�1� + · · · +�)−1�)−1, where�C depends explicitly on the time
value C .

The Cayley-Hamilton Theorem is particularly useful to limit the amount of time
horizons to consider. In example 3.2, for the first output operator� (1) , the Cayley-
Hamilton theorem states that ) is bounded between 4 and 8. Because of it, if the
system was not observable at time ) = 8 then it would have been meaningless to
consider a larger time horizon in the expectation that the additional measurements
would provide additional information to guarantee observability.

Numerical Tools

When the number of cells of the CA becomes too large, it is impossible to build
manually thematrices and do the computations of observability and reconstructibility.
In this section, we propose a method for constructing the � matrix as well as a
description of the algorithmic complexity of the observability computation.

In the one-dimensional case, the matrix� is often almost similar to a tridiagonal
matrix (or with more diagonals if the neighbourhood is larger). The non-zero values
outside themain diagonals are typically close from the angles of thematrix and related
to the boundary conditions. Except for the case of reflexive boundary conditions, the
matrix� can be described as a Toeplitz matrix (Gray, 2006), where the coefficients
0±8 correspond to the weights used in the sum (2.8)1.

� =



00 01 02 . . . . . . 0=−1

0−1 00 01
. . .

...

0−2 0−1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 01 02
...

. . . 0−1 00 01
0−(=−1) . . . . . . 0−2 0−1 00


(3.13)

The coefficient 00 corresponds to the weight of the central cell, 08 to the cells on the
right and 0−8 to the cells on the left. In the case of periodic boundaries, the weights
are also periodic: 0=−1 = 0−1 and 0−(=−1) = 01. In example 3.1, 00 = 3, 01 = 1 and
0−1 = 2. For reflexive boundaries, wemay consider first a null boundaries CA and add
the boundaries afterwards by considering the following matrix (for a neighbourhood
of distance 3):

1When considering a two-dimensional (or higher-dimensional) CA, the matrix� is no longer a Toeplitz matrix
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� = �=D;; +



3 · 00 0 0 . . . . . . 0

(3 − 1) · 0−1 0 0 . . .
...

(3 − 2) · 0−2 0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0 (3 − 2) · 02

...
. . . 0 0 (3 − 1) · 01

0 . . . . . . 0 0 3 · 00


(3.14)

In most cases, the state of a cell is observed directly, i.e. each element of the output
vector~ is the state of one of the cells of the CA. Therefore the matrix� has only one
non-zero element in each row at the position corresponding to the observed cell.

The rank of a matrix is usually computed by performing a Gaussian elimination in
order to find the number of independent columns (or rows) that represent the rank of
the matrix. As the operations use modular arithmetic, the Gaussian rank elimination
must use modular arithmetic. In example 3.2, the rank of the observability matrix
differs whether the rank is done in modular arithmetic or not. Standard Gaussian
elimination has an asymptotic algorithmic complexity $ (# 3), but more efficient
algorithms exist to compute the rank more efficiently. For instance, (Cheung et al.,
2013) propose an algorithm to compute the rank of a#×"matrixwith an algorithmic
complexity of$ (#"l−1), withl ≤ 2.38. When the Gaussian elimination is applied
to the rank of the observability matrix$) of size# ×&.) , the complexity is therefore
$ (&)#l−1).

In this section we have been able to study the observability, reconstructibility and
adaptability of affine and additive cellular automata. The Kalman rank condition
of classical control theory has been adapted to ACA as an observability condition.
The reconstructibility and adaptability conditions are based on the kernel of linear
applications. The three examples presented provided an opportunity to detail the
computations of the different conditions, but also to present the potential computa-
tional difficulties related to modular arithmetic. Finally, we discussed typical matrix
representation for typical 1D ACA and matrix algorithm complexity issues for the
computation of observability and reconstructibility tests.

Although the presented methods perform well in the context of ACA, few CA
can be considered as ACA. Still inspired by the classical linear control theory, other
issues could be worth studying for ACA. First, the development of a state estimator
could be investigated. It would be necessary to ensure that the observability and
reconstructibility criteria allow the convergence of the state estimator, as well as to
adapt the estimation algorithms to take into account the modular arithmetic. Second,
a linearisation method could be found which would make it possible to analyse the
observability/reconstructibility of non-linear CA through corresponding results for
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their lineasized ACA. This generalisation of results which exists for the state space
representation (the linearisation or indirect approach) would allow the use of the
results developed here above for a much larger number of CA systems. However,
in this thesis, we have instead chosen to exploit the discrete and finite aspect of CA
in order to develop a direct approach for the observability and reconstructibility
analysis for non-linear CA.

3.3 OBSERVABILITY AND RECONSTRUCTIBILITY FOR NON-LINEAR CELLULAR AUTOMATA

In the previous part, we have studied the observability and the reconstructibility of
ACA. They represent a very small part of the existing CA: for instance, only 16 rules
out of the 256 Wolfram’s ECA can be considered additive or affine.

In order to study the observability and reconstructibility of non-linear CA (i.e.
neither additive nor affine), we will not focus on the algebraic expression of the
transition function aswe have donewithACA. Instead, wewill study the links between
the configurations through the state transition diagram presented in Figure 2.8.

This method has already been studied many times for the verification of the
observability and reconstructibility of Boolean Networks (BN) (Laschov et al., 2013;
Cheng et al., 2010). In this section, we adapt these formulations to bounded CA
and propose numerical methods to verify their observability and reconstructibility.
We will start by briefly defining BN, their links with CA as well as the different
observability and reconstructibility criteria that are available in literature for BN.

3.3.1 Observability and Reconstructibility of Boolean Network

Described by Kauffman (1969), Random Boolean Networks (RBN) are historically
used as a tool for modelling genetic circuits, a new concept on the behaviour of
genes inside a cell discovered a few years earlier by Jacob and Monod (winners of the
1965 Nobel Prize in Physiology or Medicine). Since their creation, they have been
widely used in biology and particularly for the study of biological systems (Wang
et al., 2012). It is only in the early 2000s that they start to be studied mathematically,
through the study of fixed points or basins of attraction (Albert and Barabási, 2000).
Different variants of BN are appearing, such as Probabilistic Boolean Network (PBN)
(Shmulevich et al., 2002) and Boolean Control Networks (BCN) (Cheng and Qi, 2009).
The study of BCN by Cheng with the use of the semi-tensor product (Cheng, 2005)
introduced Boolean Network to the control community in the 2000s. Since then, BN
have been the subject of numerous studies on the controllability (Cheng and Qi, 2009)
and the observability (Laschov et al., 2013).
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In this section, we will present BN and the relation with CA. We will also present
two observability criteria for BN, the first one using the semi-tensor product, a
generalised matrix product, to give an algebraic condition for observability and the
second one using the state transition diagram to give a structural condition on the
graph in order to guarantee observability of the BN.

Presentation of Boolean Network

A Boolean network is composed of a set of Boolean variables whose state is described
by a Boolean function (potentially different for each variable). This function uses
the state of several other Boolean variables to compute the next state of the variable
it represents. This interconnection between the variables realised by the Boolean
functions can be represented as a graph (see Figure 3.2a) where the nodes represent the
Boolean variables and the edges represent a dependency by the transition function.
The graph is complemented by a system of state equations (see Figure 3.2b) that
describes the algebraic expression of the Boolean functions.

(a) Boolean Network


�C+1 = �C
�C+1 = �C .�C

�C+1 = �C ⊕ �C
(b) System of equation

FIGURE 3.2. Simple example of a three-variable Boolean network described by the graph and the equation sys-
tem.

Because of the non-linearity (from the point of view of linear algebra) of the
logical operators of the Boolean algebra (only the operators XOR andNOT can be
considered as linear), it is difficult to study Boolean networks in an algebraic way.
Many studymethods, especially those of the basins of attraction and cycles, use instead
the state transition diagram (see Figure 3.3), which describes the behaviour of the BN
on the configuration graph.

FIGURE 3.3. State transition diagram of the Boolean network in Figure 3.2. The Boolean variables are arranged
in the order ��� for the representation of configurations.

From the definition of BN, we quickly notice that Boolean CA are a particular
case of BN (Gershenson, 2002). Indeed, the lattice and the neighbourhood represent
the interactions between the cells of the CA. It is a particular case of Boolean network
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where the network must respect the topology of the lattice and the neighbourhood.
The restrictive requirement of the Boolean function (i.e. two states) can be overcome
by using a =-ary logical function (Cheng and Qi, 2005). Therefore CA, even non-
boolean CA, can be considered as Boolean networks. However, the state transition
diagram will have more nodes, e.g. :# for a logic with : states and # variables.

Semi-Tensor Product and Observability

Described by Cheng in the early 2000s, the semi-tensor product (STP) is a generalisa-
tion of the usual matrix product when the two matrices do not have compatible sizes.
Unlike the Kronecker product (tensor product) and Hadamard product (element-wise
product), the STP is equivalent to the usual matrix product when the sizes of the
two matrices match. In addition to its purely algebraic definition, the STP has very
concrete applications such as control theory, to find a singular feedback linearisa-
tion, or to find a matrix representation of logical operators (what we will be doing
thereafter) (Cheng, 2005).

In this section, we will present in detail the STP and how it is used to represent
logical functions and more specifically BN. Then, we will present how Cheng and Qi
use the state representation provided by the STP to verify the observability of BN.
Finally, we present the drawbacks of using such a technique.

The semi-tensor product allows the product of two matrices � ∈ "?×@ and
� ∈ "<×= even when they do not have adequate sizes (i.e. @ =<) but requires that the
sizes of the matrices are multiples of each other (i.e. ∃: ∈ N, @ = :< or< = :@). If
this constraint is respected then the semi-tensor product is defined by definition 3.2
(an example of the detailed calculation is presented in example 3.4) and satisfies the
associativity and distribution rule with respect to matrix addition.

Definition 3.2 (Semi-tensor product (Cheng, 2005)). Let� ∈ "?×@ and � ∈ "<×= .
The semi-tensor product is defined by:

� n � = �(� ⊗ �:) ∈ "?×:= , if @ = :<

� n � = (� ⊗ �:)� ∈ ":?×= , if :@ =<

where ⊗ is the Kronecker product and �: is the identity matrix in":×: .

In order to be able to use the STP for BN and CA, it is necessary to be able to
model the logical expressions in amatrix form. Cheng andQi (2005) starts by defining
a logical domain �: with : states by:

�: = J0;: − 1K (3.15)

To usematrix expression each element 8 ∈ �: is identifiedwith a vector E8 ∈ "1×:
as:
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8 ∈ �: ⇐⇒ E8 = X
:
8 , with 8 ∈ J0;: − 1K

where X:8 is the 8-th column of identity matrix �: . Therefore, in a Boolean logic (i.e.
: = 2) 0 corresponds to E0 =

[
1 0

]′ and 1 to E1 [
0 1

]′. In 5-state logic, state 0 cor-
responds to the vector E0 =

[
1 0 0 0 0

]′ and state 3 to E3 = [
0 0 0 1 0

]′.
Remark 3.2 (Difference from Cheng and Qi definition). In order to be consistent
with the definitions of cellular automata given in chapter 2, we have adapted the
definition of the �: domain. In their definition, Cheng and Qi uses the fractional
values 8/(: − 1) instead of integer values, for the domain �: , in order to relate to
fuzzy logic. Furthermore, the elements of �: were arranged in descending order. We
reversed the order to correspond as well as possible to the configurations of the CA
where 0 is the first value and : − 1 the last one (with respect to the usual order).

A basic B-ary logical operator (an operator with B operands) is a mapping f : �: ×
�: × · · · × �: → �: which can be represented by a : × :B logical matrix2 "f . The
application of this operator to logical variables G (8) is done with the STP as follows:

f (G (0), G (1), . . . , G (B−1)) = "f n G (0) n · · ·n G (B−1) (3.16)

In addition to the basic logical operators, Cheng shows that any logical function
; can be modelled by a logical matrix "; of size : × :B , where B is the number of
inputs to the function. This can be determined analytically with the help of the STP,
the logic matrices of the basic operators as well as various tools such as reduction
matrices"A (matrix aiming at reducing the order of a variable, for instance such as
"A n � = � n �) or swap matrices, (matrix which makes it possible to invert
the variables, such as e.g., n � n� = � n �). We will not describe explicitly the
procedure for the construction of this logical matrix, but the details of the operations
to construct the matrix ! can be found in appendix B or in (Cheng, 2005; Cheng and
Qi, 2010).

In (Cheng and Qi, 2009), the authors present a method to write a BN with =
:-logical variables G (8) in the form:

GC+1 = ! n GC (3.17)

where ! is a := × := logical matrix and GC = G0C n G1C n · · ·n G=−1C .
This form provides a state representation for BN (and by extension CA) even

when the logical functions used are non-linear. The construction of ! from logical
2A logical matrix is matrix representation of a binary relation. It consists in a matrix of 0 and 1 that represents the pair in a
finite set. More information on section 3.3.2 and https://en.wikipedia.org/wiki/Logical_matrix

https://en.wikipedia.org/wiki/Logical_matrix
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expressions is performed in a similar way to"; . Cheng and Qi also propose a method
for finding the logical functions ; from the logical matrix !.

The state variable GC represents a logical vector that describes the state of the logic
variables (see example 3.4). This vector represents the node of the state transition
diagram of the system at time C . Thus, ! plays the same role as an adjacency matrix
and we can write ! = �′ where � is the adjacency matrix of the state transition
diagram.

Example 3.4
Considering the Boolean network in Figure 3.3, we can represent its state -C
when�C = 0, �C = 1 and�C = 1 by :

-C = �C n �C n�C

=

[
1
0

]
n

[
0
1

]
n

[
0
1

]
= (

[
1
0

]
⊗

[
1 0
0 1

]
) ·

[
0
1

]
n

[
0
1

]

=


1 0
0 1
0 0
0 0

 ·
[
0
1

]
n

[
0
1

]
=


0
1
0
0

 n
[
0
1

]
=



0
0
0
1
0
0
0
0


From this representation, it quickly follows that the output operator of the sensor

networkH can be represented as a logical matrix as well. The logical matrix� is of
size :@ × := , where @ is the number of sensors. Each column of the� represents the
output associated with the configuration represented by the column (i.e. the number
of the configuration). For example, if we observe the variable� in the BN of Figure
3.2, then~C is

[
0 1

]′ when the configurations are 100, 101, 110 or 111 and [
1 0

]′
otherwise. Thus the matrix� can be written as follows:

� =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]
The state representation of the BN can be written as:{

GC+1 = ! n GC = !
C+1 n G0

~C = � n GC = � n !C n G0
(3.18)
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The equation (3.19) defines the observabilitymatrix$ from! and� . Each column
of this matrix represents the output sequence associated with the configuration of the
column. Thus, the observability criterion of theorem 3.5 follows which ensures that
each output sequence (column) is unique. However,$ is not, unlike ! and� , a logical
matrix. The logical matrix corresponding to the output sequence$) is obtained by
the product .) = ~0 n · · ·n ~)−1 and by factoring by G0. This operation is used to
obtain the logic matrix associated to the output sequence but it is not necessary to
calculate the observability.

$) =


�

� n !
...

� n !)−1


(3.19)

Theorem 3.5 (Observability of Boolean Network (Cheng and Qi, 2009)). The system
(3.18) is observable at time ) if and only if the observability matrix $) has all distinct
columns.

The adaptability property of definition 2.7 also applies to BN. It is precisely for
the observability of BN that Laschov et al. (2013) have given this criterion. In a logical
matrix, the value of an application is given by its column, therefore the adaptability
criterion is defined by the following proposition.

Proposition 3.1. Let ! be the logical matrix of a BN with # variables and : states. An
output operator� is adapted for the observation of the BN if and only if:

∀8, 9 ∈ :# with 8 ≠ 9,�>;8 (!) = �>; 9 (!) =⇒ �>;8 (� ) ≠ �>; 9 (� )

Reconstructibility is slightly more difficult to verify than observability. Indeed, it
is necessary to make sure that for the configurations which have identical columns in
$) also have an identical current state B) . In this case, the columns in �) must also
be identical. We can therefore formulate the following theorem:

Theorem 3.6. The system (3.18) is reconstructible at time) if and only if the matrices$)
and �) satisfy the following property::

∀8, 9 ∈ :# with 8 ≠ 9,�>;8 ($) ) = �>; 9 ($) ) =⇒ �>;8 (�) ) = �>; 9 (�) )

To summarise, this method provides a state representation for BN and CA. How-
ever, the size of the matrices depends on the number of configurations and not on the
number of cells of the CA, as it was the case for the previous section. If we consider
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# the number of cells,& the number of sensors, : the number of states in the state
space and) the observation horizon, the matrices !,� and$ are respectively of size
:# × :# , :& × :# and :& ·) × :# . Therefore, this method can hardly be applied if
the lattice of the CA exceeds several dozen or hundreds of cells.

Graph Condition for Observability

Laschov et al. (2013) rewrote the results of Cheng and Qi (2009) on observability and
formulated an equivalent criterion using a structural condition on the state transition
diagram to prove that verifying the observability of a BN is an NP-Hard problem.
This means that there is no general method to check observability with a polynomial
complexity depending on the number of Boolean variables (or cells in the case of CA),
except for simplifications (like the case of ACA). In this section, we will present the
Laschov observability criterion and relate it with the algebraic method presented
previously.

Laschov et al. merged together the state transition diagram and the output op-
erator into an observability graph (see Figure 3.4). The graph associated with the
state transition diagram is modified to include the output. The edges of the graph
are coloured (have a certain value called colour) which represents the ~C output
of the system. The output sequence is then defined as the set of colours obtained
during a graph run from the initial node. For example in Figure 3.4a, if the vari-
able � is the output and the initial node is 011 then the coloured output sequence
is (2>=C8=D>DB, 30Bℎ43, 2>=C8=D>DB, etc.) which corresponds to the Boolean output
sequence (0, 1, 0, . . . ).

(a) L@ = {�}

(b) L@ = {� }

FIGURE 3.4. Example of an observability graph for the BN of Figure 3.2. The continuous edge represents an
output of 0 and the dashed edge an output of 1. The outputs of (a) and (b) correspond respectively
to the Boolean variables � and�.

The observability criterion based on this observability graph � is defined by
theorem 3.7. However the notion of cycle in this theorem differs from the notion of
cycle presented in section 2.2.4. The term cycle refers here to a sequence which is
looped for example the cycle 2 → 3 → 4 → 1 → 2 is considered different from
the cycle 4→ 1→ 2→ 3→ 4. If nodes 1 and 3 are associated with colour 21 and
2 and 4 with colour 22 then the two previous cycles have the same output sequence
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(22, 21, 22, 21, 22). It is, however, a single cycle in the sense of the definition made in
section 2.2.4.

Theorem 3.7 (Observability of Boolean Network (Laschov et al., 2013)). An observ-
ability graph� is observable for some time) > 0 if and only if� does not satisfy any of
the two following properties:

1. There exists a node with two input edges of the same colour.

2. There exist two cycles generating the same output sequence.

For example, we can quickly see that the observability graph in Figure 3.4a is
not observable because the 000 node has two input edges that have the same colour
(dashed). The second graph is, however, observable as there is no node that has
the same input colour twice and the only two cycles (000 → 101 → 000 and
101→ 000→ 101) have different output sequence.

Unlike other observability theorems, theorem 3.7 does not give the time horizon
) from which the BN is observable, it only guarantees that it exists. In the proof of
this theorem, Laschov et al use)<0G = + 2 + 1 (+ the number of vertices or nodes) as
the upper bound of the time horizon. This time is however very large compared to
the minimal observability time. For example, the observation graph in Figure 3.4b
has a maximum time horizon of)<0G = 65 while it is observable for) = 5 (the output
sequences of 111 and 011 are only distinguishable from) = 5).

The notion of reconstructibility is not addressed by Laschov et al but it follows
from theorem 3.7 on observability. Indeed, property 1, "There exists a node with two
input edges of the same colour", is not necessary for reconstructibility. This property
is the equivalent of the adaptability property presented in definition 2.7. If a node
has two inputs of the same colour, then it is not possible, from the point of view of
the output sequence, to differentiate between these two nodes but they both have the
same current node. Reconstructibility is therefore not affected. Property 2 is still
necessary as two different cycles necessarily have a different current node (even if
they are on the same attractor cycle from section 2.2.4).

Laschov et al. also proposed algorithms to check the two properties necessary
for observability. Property 1 is evaluated with the logic matrices ! and � as in
proposition 3.1. For the second property, they rely on the Jungers and Blondel
(2011) algorithm which allows to check if a graph has the property 2. This algorithm
constructs another graph�2 whose nodes are pairs of distinct nodes of� and two
nodes are linked by the same colour. If�2 admits a cycle, then property 2 holds true
for � . The search for the cycle is performed by a breadth-first algorithm. For an
observability graph with ? vertices and @ possible edge colours, the complexity of
this algorithm is$ (?4@). The algorithmic complexity for a BN with # variables, :
states per variable and& measured variables is$ (:4#+& ).
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The previous algorithm has exponential complexity (hence not polynomial) but
there could be algorithms in polynomial time. Therefore, in order to prove that
observability evaluation is an NP-Hard problem, Laschov et al. created a special BN
whose observability graph is an # -cycle with 2 colours (continuous, dashed) but only
one node has the continuous colour. Thus, the observability problem for this BN
can be reduced to a 3-variable Boolean satisfiability problem (or 3-SAT) which is a
well-known NP-complete problem. Except in the eventuality where % = #% (one
of the millennium prize problems) and the observability problem can be reduced
to an NP problem, there is no general solution in polynomial time. However, the
NP-hardness does not prevent algorithms from being found in polynomial time under
certain hypotheses (for example, when we consider only ACA).

In conclusion, this method allows the observability and reconstructibility of BN
to be evaluated from the observability graph which is constructed from the state
transition diagram and the sensor network. Like the algebraic method presented by
Cheng and Qi the complexity of evaluating observability and reconstructibility is
exponential as a function of the number of cells, but this method makes it possible
to know whether a BN is observable without having to search, by trial and error,
for a valid time horizon. The downside is that this method does not provide the
observation horizon, which makes it difficult to apply this method to the monitoring
of complex systems.

3.3.2 Binary Relation Representation of Cellular Automata

As we have seen in the previous section, CA can be seen as a special case of BN.
Moreover, the observability and reconstructibility of BN have been widely studied
for over two decades, either in an algebraic way with the use of logic matrices and
the semi-tensor product (Cheng and Qi, 2009), or in a structural way with the use
of the state transition diagram Laschov et al. (2013). These two representations are
related: the logic matrix ! is merely the transpose of the adjacency matrix of the state
transition diagram. The criteria which result from these different representations
make it possible to check the observability of the Boolean network in various ways.

With these two representations, verifying the observability is algorithmically
complex: Laschov et al. have shown that it is an NP-hard problem. Moreover, the
algorithms which verifies the observability often depend on the number of configura-
tions (it is the case for the theorem 3.5 where each column represents a configuration)
which grows exponentially according to the number of cells. This exponential com-
plexity prevents the use of the algorithm when this number of cells exceeds several
dozens or hundreds.

In order to reduce both the algorithmic andmemory complexity, we can represent
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the logical matrix by sparse matrices (Buluç et al., 2009), an advantageous formulation
for matrices that have few non-zero elements. Moreover, by using the Yale format (or
Compressed Row Format) observability can be evaluated by checking that a 1D array
does not contain duplicates. Therefore, the algorithmic complexity to evaluate the
observability of a CA with (# configurations is$ ((# ). The structural analysis of the
graph, requiring to verify observability with theorem 3.7, can also have simplifications
that reduce the complexity, or at least the computation time.

Even using sparse matrices, the calculation of observability or reconstructibility
for CA becomes impossible when it exceeds a hundred cells. The objective is therefore
to benefit from some properties of CA in order to simplify the computations of
observability and reconstructibility. The first property concerns in particular CA
with constraints on the initial configurations. Many initial configurations can be
excluded from the observability computation because they are impossible in the
concerned application case. If we take the example of section 5.2, as we know the
topology of the forest and that we consider that the fire can only start on one cell
of the CA, the number of initial configurations to study goes from 35054 to only
5055. The second property is based on the ease of distribution of the computation of
CA (Millán et al., 2017). Indeed, when the number of cells is large, it could be more
efficient to compute several times the local function 5 than the global function � once.
Therefore the computation of the observability matrix $ is no longer performed
from the product of ! and� but from a large number of simulations of the CA. The
output sequence of each initial configuration is evaluated independently and the
measurements are from simulations of the CA (often performed on GPU).

In order to benefit from those properties, we propose a definition of observability
and reconstructibility based on binary relations. It associates two elements, here the
initial configuration B0 (or current configuration B) if we study the reconstructibility)
and the associated output sequence Θ) (B0). When we build this binary relation, we
add the pair (B0,Θ) (B0)) only if the initial configuration B0 is part of the initial config-
urations to study. In this formulation, the calculation ofΘ) can be done by simulation
or by matrix product using ! and� according to what is more efficient. Therefore,
we can define the observability binary relation RΘ and the reconstructibility
binary relation R̃Θ by:

Definition 3.3. The observability and reconstructibility binary relation RΘ and R̃Θ

associated to the output sequence Θ) is defined as follows:

RΘ = {(B0,Θ0,) ) |B0 ∈ W and Θ0,) = Θ) (B0)} (3.20)
R̃Θ = {(B) ,Θ0,) ) |B0 ∈ W and Θ0,) = Θ) (B0) and B) = �) (B0)} (3.21)

whereW ⊂ SL represents the set of admissible initial configurations.
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Remark 3.3. If we consider the whole set of initial configurations (i.e.W = SL )
then RΘ,"$ , Θ) represent the same relation except that RΘ is in set representation
and"$ in binary matrix form.

Theorem 3.8. A CAA is observable (resp. reconstructible) by a sensor networkH at
time) if and only if the binary relation RΘ (resp. R̃Θ) is injective.

Proof. For the observability condition, the theorem follows directly from defini-
tion 2.5 which represents the writing of the injectivity ofΘ, since RΘ is the relational
writing of Θ.

The reconstructibility condition (2.27) in definition 2.6 may be written, using the
binary relation representation, as:

∀B′0, B′′0 ∈ W,Θ) (B′0) = Θ) (B′′0 ) =⇒ B′) = B′′)

⇐⇒ ∀B′) , B′′) ∈ �) (W), R̃Θ(B′) ) = R̃Θ(B′′) ) =⇒ B′) = B′′)
⇐⇒ R̃Θ is injective

�
From the BN presented in Figure 3.2, we are able to construct the observability

and reconstructibility relations. We will use the output operators presented in Figure
3.4, namely L@ = {�} and L@ = {�} with a time horizon) = 5. Table 3.1 presents
all the elements of the two relations RΘ and R̃Θ. As in the previous section, we notice
that measuring the state of� ensures observability contrarily to the measurement of
the state of�. Moreover in this example, we can also guarantee that measuring the
state of� ensures reconstructibility because identical output sequences are associated
with the same current configurations.

L@ = {�} L@ = {� }
(000, 01010) (000, 01010)
(001, 01010) (001, 11010)
(010, 01010) (010, 00010)
(011, 01010) (011, 10110)
(100, 10101) (100, 00101)
(101, 10101) (101, 01010)
(110, 10101) (110, 01101)
(111, 10101) (111, 11011)

(a) Observability Relation RΘ

L@ = {�} L@ = {� }
(101, 01010) (101, 01010)
(101, 01010) (101, 11010)
(101, 01010) (101, 00010)
(101, 01010) (101, 10110)
(000, 10101) (000, 00101)
(000, 10101) (000, 01010)
(000, 10101) (000, 01101)
(000, 10101) (000, 11011)

(b) Reconstructibility Relation R̃Θ

TABLE 3.1. Observability and reconstructibility relations for the BN of Figure 3.2 with a time horizon) = 5.

In order to numerically verify the observability or reconstructibility of the CA,
we must first construct the relations RΘ and R̃Θ and then verify their injectivity.
Therefore we propose algorithm 1 on the facing page that constructs simultaneously
the relations RΘ and R̃Θ and also to check their injectivity during their construction.
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When the algorithm detects that the observability or the reconstructibility is not
verified, it has an exit condition without having to study all the initial configurations.

Similarly to the observability and reconstructibility relations, we could construct
the adaptability relation R� which associates the state B1 = � (B0) with the output
\0 = � (B0). In order to guarantee adaptability, it is necessary that the relation R�
can be constructed without duplicates. Indeed, if there is a duplicate, then B′0 and B

′′
0

exist so that B′0 ≠ B
′′
0 and B1 = � (B′0) = � (B′′0 ) and \0 = � (B′0) = � (B′′0 ). However, as

with algorithm 1, we evaluate observability and reconstructibility simultaneously,
the adaptability property is not necessary. Indeed, if for a given configuration B0
observability is not verified but reconstructibility remains possible, then adaptability
is not true (corollary of property (b) of proposition 2.1).

Algorithm 1: Verification of observability and reconstructibility of (A, � )
Function AssessObsRec (W, � ,Θ) )

Inputs :A set of admissible initial configurationW;
a global transition function � ;
an output sequence operator Θ)

Outputs :The observability HashmapObs;
the reconstructibility Hashmap Rec;
the observability status is_Obs;
the reconstructibility status is_Rec

Declare Obs and Rec as two empty Hashmap
Declare is_Obs and is_Rec as two boolean variables initialised to true
foreach B0 ∈ W do
(Θ0,) , B)−1) ← Θ) (B0)
B) ← � (B)−1)
if Obs[Θ0,) ] already exists then

is_Obs← false
else

Obs[Θ0,) ] ← B0

if Rec[Θ0,) ] already exists then
if Rec[Θ0,) ] ≠ B) then

is_Rec← false

else
Rec[Θ0,) ] ← B)

return Obs,Rec, is_Obs, is_Rec

In order to construct the observability relation, the output sequence is computed
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for each of the possible initial configurations B0 ∈ W. However, to obtain the output
sequenceΘ) (B0) we need the configurations from B0 to B)−1, so we can take advantage
of B)−1 to compute B) in order to build the reconstructibility relation. As for the
evaluation of the injectivity, we use a specific data structure called Hashmap to record
the relations RΘ and R̃Θ. This type of data structure stores a value with a key and to
guarantee the uniqueness of the key. In this manner, by using the output sequence as
a key and the initial configuration (or current configuration) as a value we are able to
verify two things. The first is to make sure that each output sequence is associated
to only one configuration and thus to check the injectivity of the observability and
reconstructibility relations. The second is to be able to easily find the configuration
related to the output sequence and therefore know the initial configuration when
measurements are performed on the system.

Algorithm 1 is separated into two parts, the first where the output sequence
and the current configuration are computed and the second where these values are
stored in the Hashmap. The first part has a complexity of$ ()� ) where) is the time
horizon and � is the complexity of the global transition function � . If we consider
that the global transition function � is evaluated as the local function applied to
all cells, then its complexity is of the order of $ (# ). However, due to the ease of
parallelisation of these operations, especially on a GPU, then the computation time
is largely reduced because a very large number of these operations (or even all of
them) are evaluated at the same time when the computation is performed on a GPU.
Moreover, the observability horizon) is at worst of the order of # in an observation
problem. Indeed, if this horizon is much larger than # , then the disturbance we
are trying to estimate (a forest fire, a road traffic, etc.) has had time to propagate
over the whole system before we are able to reconstruct it. This is even more true
for dimensions greater than 1 where the dynamics propagates faster compared to
the number of cells. The second part of the algorithm has a constant complexity of
$ (1) as the operations of read and writes of Hashmap have both a complexity of
$ (1). Finally, the total algorithmic complexity is$ (,# 2) where, is the number
of admissible configurations.

If we consider that all initial configurations are studied (i.e.W = SL ) then the
complexity of the algorithm is O(:## 2). Compared to the algorithm that verifies
observability for affine CA presented in section 3.2.3, this algorithm has a greater
complexity. The algorithmic complexity for verifying observability is polynomial
for affine CA O()&#l−1) and exponential for non-linear CA O(:## 2), with #
representing the number of cells,& the number of sensors, : the number of states
and) the time horizon.
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3.3.3 State Estimator for Non-Linear Cellular Automata

In this section we will define a state estimator for non-linear CA in order to estimate
the state of the CA from the measurements. It will be notably necessary for the
decentralisation of the observation that we will present in the next section. The
state estimator that we will present is similar to those that we can find in (Yang et al.,
2020) and (Braga-Neto, 2011). It is defined for Boolean networks and provided an
estimation of the current state of the system. We will see with theorem 3.9 that
reconstructibility is necessary to correctly estimate the state of the system. We will
first define the tools needed to build the state estimator and prove theorem 3.9.

Tools for the State Estimator

The state vector GC defined in section 3.3.1 for the observation of BN represents the
configuration of the system at time C . This state vector has a single 1 coordinate which
represents the current configuration, while all other coordinates are 0. It may be
extended to a vector with more non-zero coordinates to represent a set of configura-
tions, and to coordinates which are greater than 1 to put different weights on some
of these configurations. This extension is for instance widely used in graph theory
with the adjacency matrix which is generalised to represent the number of paths
between two nodes. Such an extended vector GC represents therefore an equivalent
set of configurations which is explicitly given in the following definition.

Definition 3.4. The state vector GC can be written as a subset-C of SL by:

-C = {BC ∈ SL |BC |: = 8 ∧ G (8)C = 1} (3.22)

where BC |: is the decimal value of the configuration state (see section 2.2.4 on State
Transition Diagram and Attractor) and G (8)C is the 8-th element of the vector GC .

From this set, we can also compute the image sets of the functions � , � and Θ
(simply by computing the function on each of the elements of-C ). For instance

-C+1 = � (-C ) = {� (BC ) |BC ∈ -C }
The set -C+1 = � (-C ) is equivalent to the state vector GC+1 = !GC . If � is not

reversible, then there exists B′0, B
′′
0 ∈ -0 and B′0 ≠ B′′0 such that � (B′0) = � (B′′0 ). In

that specific case, the element corresponding to B1 = � (B′0) = � (B′′0 ) in G1 will have
the value 2, one for � (B′0) and one for � (B′′0 ). We could normalise the result in order
to have values in {0, 1}. However, in the case of the state estimation problem and
algorithm, itwill be useful to have these extended values (greater than one) to construct
a good estimate of the cell state as it provides more information on the number of
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initial configurations that have converged toward B1. In terms of set definitions, this
means that-1 contains the configuration B1 twice, once for � (B′0) and once for � (B′′0 ).
This is a particular definition of a set with several iterations of the same element. We
can adapt definition 3.4 to allow its use with non-unitary coefficients by using the
following notation:

-C = {BC ∈ SL |BC |: = 8 ∧ G (8)C ≥ 1}
For the construction of the state estimator, we will need an operation, similar

to the intersection of the sets -C , for the state vectors GC . For this, we will use the
Hadamard product � (or element-wise product) which multiplies element by element
the two operands (the two operands must have the same size). Therefore we propose
the following to compute the intersection between the two set from the state vector:

Proposition 3.2. Let G′C and G
′′
C be two state vectors and - ′C , -

′′
C their set representations.

The intersection -C between these two sets can be computed from the state vector with the
help of the Hadamard product as:

GC = G
′
C � G′′C

Proof. Let-C be the set representation of GC = G′C � G′′C and G′C . Equation (3.22) in 3.4
may be written with the set representations:

-C = {BC ∈ SL |BC |: = 8 ∧ G (8)
′

C · G
(8) ′′
C = 1}

= {BC ∈ SL |BC |: = 8 ∧ G (8)
′

C = 1 ∧ G (8)
′′

C = 1}
= {BC ∈ SL |BC ∈ - ′C ∧ BC ∈ - ′′C }
= - ′C ∩ - ′′C

�
In the case where the vectors have non-unitary coefficients then the Hadamard

product will multiply these coefficients. If a configuration appears twice in a set and
twice in another set, the intersection with the Hadamard product will produce a set
where this configuration appears 4 times. This is why we impose that at least one of
the vectors GC use in the Hadamard product has unitary values. It will avoid increasing
the coefficient in the intersection vector. In the next section, when we will study the
state estimator, the reciprocal of the output operator (� ′) is a state vector with unitary
value, so we will be able to use the Hadamard product as an intersection operator.

Definition of the State Estimator

The state estimator is constructed from the measurements made on the system. The
output~C which represents themeasurement of the system is considered as an input to
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the state estimator. The latter represents the set of configurations that are consistent
with the measurements made on the system. Thus, the set of estimated configurations
-̂C evolves at each acquisition of a new measurement: all the configurations which
are not compatible with the measurement are withdrawn from -̂C . Considering that
at time C = 0 the set of possible configurations is the set of admissible configurations
-̂0 =W, we can therefore define the evolution of the state estimator as :

-̂C+1 = {� (BC ) |BC ∈ -̂C ∧ � (BC ) = ~C } (3.23)

Using the reciprocal function of the output operator � , we can determine the
set of configurations BC that have the output ~C . In the case of a logical matrix, the
reciprocal is the transpose of� . Hence, G̃C = � ′~C is the state vector that has, as its
element, all configurations which have~C as their output. We simply adapt (3.23) in
order to use -̃C the set representation of G̃C = � ′~C :

-̂C+1 = {� (BC ) |BC ∈ -̂C ∩ -̃C } (3.24)

From (3.24) we propose the definition 3.5 which adapts the state estimator in the
form of a state representation.

Definition 3.5. LetA be a CA defined by the logical matrix ! and observed by a
sensor networkH defined by the logical matrix� . The estimation ĜC of the state GC
is realised through the measurements~C by:{

ĜC+1 = !(ĜC � � ′~C )
Ĝ0 = 1:#

(3.25)

where 1:# is a column vector of size :# compose of 1.

The estimated state vector ĜC is a set of the estimated configuration of the system.
From this we can estimate the state of the cell 28 by using the output operator� (8)

which measures the cell directly. The estimate of the cell 28 equals Ĝ (8)C = � (8)ĜC and
is a column vector where each coordinate represents the number of configurations in
-̂C that have the corresponding state value (state 0 for the first coordinate and so on).
Example 3.5 hereafter details this for the BN of Figure 3.2.

Example 3.5

Consider the BN defined in Figure 3.2 and the estimated set -̂C = {001, 111, 101}.
From -̂C we can easily see that the node � has the state 1 for 2 out of the 3
configurations, the node � for 1 out of 3 configurations and the node� for every
configuration. We can compute the same results from � (�) , � (�) , � (�) and ĜC
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which are defined by:

ĜC =
[
0 1 0 0 0 1 0 1

]′
� (�) =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]
� (�) =

[
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

]
� (�) =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
From these elements we can calculate Ĝ (�)C , Ĝ (�)C and Ĝ (�)C the estimates of cells

�, � and� at time C by :

Ĝ
(�)
C = � (�)ĜC =

[
1
2

]
=⇒ �C = 0 for 1 conf. and�C = 1 for 2 conf.

Ĝ
(�)
C = � (�)ĜC =

[
2
1

]
=⇒ �C = 0 for 2 conf. and �C = 1 for 1 conf.

Ĝ
(�)
C = � (�)ĜC =

[
0
3

]
=⇒ �C = 0 for 0 conf. and�C = 1 for 3 conf.

Lemma 3.1. Consider an initial configuration, unknown to the state estimator, and the
associated output sequence Θ at time C > 0. The state estimator ĜC constructed from the
output sequence corresponds to all configurations that have this output sequence. Formally
we can write this as :

∀B0, BC ∈ SL such that BC = � C (B0),ΘC (B0) = Θ =⇒ BC ∈ -̂C

Proof. By definition (3.23) implies that if -̂C respects lemma 3.1 then -̂C+1 also respects
the lemma 3.1 because:

BC ∈ -̂C ∧ � (BC ) = ~C =⇒ ∀= ∈ J0, CK, � (B=) = ~= =⇒ Θ(B0)C+1 = ΘC+1

By definition, -̂1 respects the lemma 3.1 as Θ1 = (~0). Therefore, with an inductive
reasoning, we conclude that the lemma 3.1 holds for all C > 0. �
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From lemma 3.1 and definition 2.6 on reconstructibility, we know that at
some point ) there is only one current configuration GC that respects the output
sequence given as input to the state estimator. Thus we give the theorem 3.9 that
guarantees perfect estimation of the system if the reconstructibility is insured.

Theorem 3.9. If a CA is reconstructible at time) then the state estimator of definition 3.5
gives a perfect estimate of the current state at time) (i.e. Ĝ) = G) ).

This state estimator has two major problems. The first one is the use of logical
matrices which implies an exponential complexity with respect to the number of
cells. The use of the set representation -̂C permits to use the paradigm proposed in
section 3.3.2 with the reduction of the plausible initial configurations. Even then, the
state estimator is meant to be used during the observation phase, unlike observability
and reconstructibility which are evaluated beforehand. In order to use the state
estimator for monitoring complex systems, the computation time of an iteration (i.e.
ĜC+1 from ĜC ) must be smaller (or even much smaller) than the time period of the
system evolution.

The second problem is the robustness of the state estimator to error, and par-
ticularly to measurement error. Indeed if the sensors provide, at a given time C , an
erroneous measurement~C then the state estimator will not be able to correctly esti-
mate the current state. The inverse output operator� ′(~C ) includes all the states that
have~C as output, but as the measurement is incorrect, the current state of the system
is not in � ′(~C ). This non-robustness to errors does not allow the use of this state
estimator for physical system observation. To increase the robustness of the state
estimator Guo et al. (2018) uses a stochastic output operator to model the probability
of sensor error.

In this section we have given a state estimator for non-linear CA. We also proved
that the state estimator converges to the state of the system when reconstructibility
is satisfied. However, this state estimator has the same algorithmic and memory
complexity problems as the study of observability and reconstructibility of BN itself.
These complexity issues and the robustness problem do not allow the use of the
approach for monitoring real large-scale physical systems.

3.4 DECENTRALISATION OF OBSERVABILITY AND RECONSTRUCTIBILITY

In the previous two sections, we were able to define observability and reconstructibil-
ity criteria for additive, affine and non-linear cellular automata. The Kalman criterion
for ACA can easily be evaluated on a computer for CA for several thousand cells. In
the case of non-linear CA, although further optimisations could be made, unless the
number of plausible initial configurations is drastically reduced, it is simply impossi-
ble to evaluate observability beyond a hundred cells. In this section we will propose a
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method to reduce the algorithmic complexity by dividing the CA into many smaller
CA.

Considering cellular automata as Boolean networks, the links between cells being
determined by the neighbourhood, CA are not very connected (few links between
cells). This is particularly true for one-dimensional CA where the number of links
is 2 compared to 4 or 9 for two-dimensional CA (depending on the chosen neigh-
bourhood). Therefore it seems possible to decompose the observability problem into
smaller ones with the goal to drastically reduce the algorithmic complexity. The
observability would be computed for each part and be extended to the whole CA.
The complexity factor would be reduced from the size of the CA to the size of its
part. To achieve this, sensors and subdivisions must be judiciously chosen to ensure
observability or reconstructibility of any cell in the CA.

The distribution of observability and reconstructibility has recently been studied
for large BN (Zhang and Johansson, 2020). The authors grouped the highly connected
nodes into sub-BNwhose observability calculation is simpler. Interactions with other
sub-BN are modelled as inputs as for BCN. In the case where the network composed
of sub-BN is acyclic, the observability of all sub-BN implies the observability of the
BN. In the cyclic case, the generalisation of the observability of the sub-BN to the
observability of the initial BN is more complex. This method is very poorly applicable
to CA because cells are mutually dependent on their neighbours, which directly
implies a cyclic relationship between the cells of the CA.

In this section, we first propose a definition for the sub-CA used for decentrali-
sation of observability and reconstructibility analysis. Then, we present a method
adapted to the observation of one-dimensional CA (the cost for observation being
too high for two-dimensional CA) as well as several ideas for improvements in the
decentralisation of observability and reconstructibility.

3.4.1 Observability and Reconstructibility of Sub-CA

In order to reduce the algorithmic complexity, we will divide the observability prob-
lem into several observability problems of lower complexity. It consists in dividing
the L lattice ofA into several smaller lattice L (8) ⊂ L. We call the CA defined on
the subdomain L (8) the sub-CAA (8) ofA.

Sub-CA do not have any more autonomous dynamics: they are no longer isolated.
Their boundary conditions represent interactions with cells of the bigger CA and
will be referred to as unknown boundary conditions. As these cells are not within
the sub-CA, they belong to other sub-CA that estimate their values. Neighbouring
sub-CA will thus mutually exchange the values of the boundary cells. The boundary
conditions of the sub-CA can be considered as inputs and we can define the sub-CA
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as a CA with inputs.

Definition 3.6. A sub-CAA (8) over a domain L (8) ⊂ L of a CAA is defined by
(3.26) where B (8)C and \ (8)C are respectively the configuration and the output of the
sub-CA at time C . 1 (8)C represents the value of the boundaries cells at time C . � and�
have been adapted to include the subdomain L (8) and the 1 (8)C boundaries as inputs.


B
(8)
C+1 = �

(
B
(8)
C , 1

(8)
C

)
\
(8)
C = �

(
B
(8)
C

) (3.26)

These boundaries can a priori take any admissible state values at each time step.
Therefore we have to define a new notion of observability and reconstructibility for
CA with unknown boundary conditions. The observation of a system with unknown
inputs has already been studied for linear systems (Basile and Marro, 1969) but the
results cannot be applied to non-linear CA. We therefore find another criterion using
the finiteness of the set of possible inputs. For a specific evolution of the bigger
CA, the boundary conditions of the sub-CA are well known and therefore the state
configuration B (8)C has a fixed trajectory. This trajectory may be different for each
initial configuration of the bigger CA. This is the reason why we consider it necessary
to check the observability or reconstructibility for each fixed boundary trajectory.
We propose the following proposition for the observability or reconstructibility of a
sub-CA.

Proposition 3.3. A sub-CA A (8) with unknown boundary conditions is observable
(reconstructible) by a sensor networkH (8) at time)8 if and only if the sub-CA is observable
(reconstructible) for every admissible boundary trajectories.

Proposition 3.3 guarantees observability and reconstructibility for the sub-CA
A (8) regardless of the initial configuration of the CAA. Thus the state of all the cells
of the sub-CA is known at time)8 . The corollary 3.3 follows immediately from this
proposition. If the set of observable (reconstructible) sub-CAA (8) covers the whole
CAA (i.e.

⋃
8 L (8) = L) then the set of cells of L are observable (reconstructible).

Corollary 3.3. A CAA is observable (reconstructible) if there exists a set of observable
(reconstructible) sub-CA (�(8))8∈N such that

⋃
8∈N L (8) = L.

Remark 3.4. If the sub-CA do not cover the whole CA, then only a region of the CA is
observable (reconstructible), we can speak of regional observability or reconstructibil-
ity (Fekih and Jai, 2006). However, this is a special case of regional observability where
the sensors are placed directly in the region to be observed and the dynamic of the
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system outside the region is not modelled (except through the boundaries). In some
cases, sensors placed outside the region of observation ensure the observability of
this region. Note also that some of the results for the regional controllability (Dridi
et al., 2019, 2020) of CA could be transposed to observability by duality of the two
properties.

The placement of the sensors is more important in the case of the decentralised
observation than in the classical approach because the state values at the boundary
must then be eithermeasured or estimated. In the casewhere an estimation is provided
to the sub-CA, it may happen that the observable time horizon is not reached yet
and the estimation is not yet perfect. We discuss this issue in section 3.4.3 when a
probabilistic sub-CAmodel is used to cope with this uncertainty of the estimation. In
the next section, we consider first the case with measured boundary cell state values.

3.4.2 Deterministic Method for Distribution

To ensure the observability or reconstructibility of a sub-CA with proposition 3.3,
it is necessary to measure the value of boundary cells at each time step. Therefore,
for each sub-CA we must at least measure cells that are boundaries for other sub-
CA. However, more cells could be measured, in order to insure the observability or
reconstructibility. The value of those measured cells are both used in the observability
criterion and as the boundary for the neighbouring sub-CA.

For one-dimensional CA, the sensors can be placed directly on both sides of the
sub-CA and thus act as a sensor for the sub-CA and as a boundary cell sensor for
the neighbouring sub-observers (see Figure 3.5). In this way, each sensor has the
dual purpose of measuring the boundary cells and estimating the cells of the CA. Of
course, if this sensor is not sufficient to ensure observability or reconstructibility,
other sensors can be added within the sub-CA but, then, their sole purpose is to
estimate the state of the sub-CA.

FIGURE 3.5. A one-dimensional CA subdivided into 3 sub-CA. Grey cells are measured by a sensor.

This method significantly reduces the complexity of the observability of one-
dimensional CA because the subdivision reduces the number of cells whose observ-
ability needs to be checked. Consider a one-dimensional CA with# cells and : states.
If we divide this CA in 9 equal parts, then the number of initial configuration goes
from :# to :

#
9 . However, we have to evaluate the observability for each possible
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boundary trajectory. For 2 boundary cells and a time horizon) there are :2) pos-
sible boundary trajectories. Finally, the total number of operations to compute the
observability is :

#
9 × :2) = :

#
9
+2) . If the sub-CA that compose the CA are not of the

same size, then observability must be checked independently for each sub-CA which
will increase the complexity linearly to the number of sizes.

This method works very well for one-dimensional CA because the size of the
boundary is independent of the number of cells in the CA: there are always 2 boundary
cells. However, in two dimensions (or more) the number of boundary cells increases
with the number of cells. For a # × # sub-CA, there are 4# boundary cells for a
Von Neumann neighbourhood and 4(# + 1) boundary cells for a Moore neighbour-
hood. The more boundary cells there are, the more boundary trajectories have to
be considered and the more operations are needed to assess the observability. For a
# × # sub-CA with Von Neumann neighbourhood under a time horizon) , there is
:#

2+4#) operations. In addition, the minimal sensor density also increase compared
to 1D CA. For a # × # sub-CA, it is necessary to measure the state of the 4(# − 1)
cells on the edge which are boundary cells for the other sub-CA. The sensor density
for a sub-CA is 4(# − 1)/# 2 against 2/# for a one-dimensional sub-CA of size # .

3.4.3 Probabilistic Model for Estimated Boundaries

In order to use the decentralisation of observability and reconstructibility in the
two-dimensional case, an alternative to the measurement of boundary cells must be
found. The idea is to provide, to the sub-CA, only an estimate of the state of these cells.
However, as long as the observation horizon is not reached (i.e. C < ) ), the state of the
sub-CA is not perfectly known, i.e. there are still several initial configurations which
have the same output sequence ΘC . Using the state estimator given in definition 3.5
we can deduce an estimate for the state of cell on the boundary. Giving a value
for the boundaries based on the statistical majority will lead to not considering the
minorities, certainly less probable but still existing. In order not to lose information in
the process, the proportion of each state value should be provided for each boundary
cell. This formulation leads necessarily to the modelling of the sub-CA which have
several potential evolution depending on the proportion of the state of the boundaries.
This is precisely the case for probabilistic CA (PCA) (see section 2.2.3 on Probabilistic
Cellular Automata) where the estimated state of the boundaries is used as a probability.
This leads not only to a newmodel for sub-CA but also to a newprobabilistic approach
to observability and reconstructibility.

Probabilistic observability differs from the observability given in definition 2.5 in
that for a given initial configuration there may be several output sequences Θ(B0). In
the probabilistic case, the objective is still the same: to identify the initial configuration
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from an output sequence, but this is more complicated due to the non-determinism
of � . In the case of probabilistic sub-CA, we have the advantage of having a determin-
istic output operator because the system we observe is deterministic (if we do not
seek to handle measurement error as explain as the end of section 3.3.3). Fornasini
and Valcher (2019) studied this special case (i.e. probabilistic � and deterministic� )
for probabilistic Boolean networks (PBN). They provided a definition for observ-
ability and two definitions for reconstructibility, one strong and one weak. Several
algorithms to check these three criteria were also given.

Definition 3.7 (Observability and Strong/Weak Reconstructibility). Fornasini and
Valcher (2019) define the following notion for observability and reconstructibility of
PBN.

• A PBN is observable at time) if for every admissible output sequence Θ) the
initial configuration B0 can be uniquely identified.

• A PBN is strongly reconstructible at time) if for every admissible output
sequence Θ) the current configuration B) can be uniquely identified.

• A PBN is weakly reconstructible at time ) if for every admissible output
sequenceΘ) the intermediate configurations BC , for 0 < C < ) , can be uniquely
identified.

The observability and the strong reconstructibility are similar to those we defined
in section 2.3.3. Weak reconstructibility, on the other hand, is a proper notion due to
the non-determinism of � . Indeed, if we know BC for C < ) then we do not necessarily
know B) because of the non-determinism of � . The approach used to model PBN is
similar to (3.18). The PBN logical matrix ! is defined as a discrete function which is
equal to a deterministic logical matrix !8 with a probability ?8 as follows:

! =


!1 with a probability ?1
. . .

!" with a probability ?"
(3.27)

As sub-CA models a deterministic system with unknown input by a probabilistic
model, there are as many different !8 as there are different inputs. Thus :� inputs for
a sub-CA with � boundary cells and : states.

To verify observability and reconstructibility, Fornasini and Valcher do not check
if all the output sequences of the initial configurations are different but they construct
the setX(Θ) ) which contains all initial configurations B0 which have Θ) as output
sequence. X(Θ) ) is constructed as the intersection ofXC (~C ) which represents the
set of configurations which have~C as their C-th output. To do this, they use� ′ to find
all the configurations BC that have~C as output and then they use the mapping PC to
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find all the antecedents B0 of the configurations BC . ThereforeX(Θ) ) is constructed
as:

X(Θ) ) =
)−1⋂
C=0
XC (~C ) =

)−1⋂
C=0
PC (� ′~C ) (3.28)

If X(Θ) ) is either empty or a singleton then the output sequence is uniquely
associated to a single configuration. This approach works well algorithmically as
there are many exit conditions (e.g. if for a given output sequence,X has more than
two or more elements then observability is not checked). However, the construction
of the predecessors with P can be complex when the number of matrix !8 is large.
Similarly, the number of possible output sequences is at least as large as the set of
initial configurations, which necessarily results in high computational complexity for
general CA.

Once observability or reconstructibility has been verified, the state of the bound-
ariesmust be estimated. The state estimator is made in a similar way as the determinis-
tic one. Themain differences are that the logical matrices areMarkovianmatrices and
that the weights are probabilities. For the state vectors, these are the probabilities of
each configuration and for the matrices they are the probabilities of transitions from
one configuration to another (i.e. ! =

∑
?8!8 ). However, it is necessary to normalise

the Hadamard product so that the result remains a probability vector. Convergence
to a unique current configuration BC has not been demonstrated in this work but
we have the intuition that strong reconstructibility is a sufficient condition. Weak
reconstructibility does not seem to be relevant for this state estimator but we believe
it can be adapted for it.

In conclusion, we have shown that the use of a probabilistic sub-CA model pro-
vides a solution for the decentralised approach to observability and estimation of the
deterministic sub-CA. However, the probabilistic CA model raises new issues such as
the new definitions of observability and reconstructibility. We have not been able to
go further in the study of probabilistic sub-CA,mainly due to lack of time, but we have
the intuition that they could be very useful for the observation of two-dimensional
non-linear CA.

3.5 CONCLUSION

In this third chapter, we have given different criteria to evaluate the notions of ob-
servability, reconstructibility and adaptability proposed in the previous chapter. In
the first section, we focused on ACA and in the next two other sections we studied
non-linear CA.
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The use of ACA provides a way to assess the injectivity of the output sequence
using linear algebra. The observability criterion is then a transposition of the Kalman
criterion from classical control theory. The adaptability and reconstructibility criteria
are verified using the kernel of the associated operators. The use of ACA provides
criteria with polynomial algorithmic complexities that allow the evaluation of these
criteria with a large number of cells. However, ACA represent only a very small part
of all possible CA. Therefore, the case of non-linear CA is discussed in the second
part of this chapter.

In this second part, we first made the link between BN and CA. This allowed us to
transpose the results concerning the observability and reconstructibility of BN to CA.
We then proposed a different approach that takes advantage of the regularity of the
lattice to propose better observability and reconstructibility criteria. These criteria
can be used on any CA derived from definition 2.1, but the exponential algorithmic
complexity makes it difficult to use for CA with more than a dozen cells.

In the last part, we proposed a method for the decentralisation of observability
analysis. This method split the observability and reconstructibility problems in order
to reduce the algorithmic complexity. The decentralisation works well only for
one-dimensional CA. For two-dimensional CA, we suggested an approach using a
probabilistic CA for the state estimator. This should reduce the number of sensors in
each sub-CA that are used to measure the boundary cells state values.

Concerning section 2.2.3, the main contributions of this chapter are the use of the
Kalman criterion for CA and the definition of the reconstructibility and adaptability
criteria for ACA. For non-linear CA, the contribution of the thesis lies in the transposi-
tion of the observability and reconstructibility criteria from BN to CA. The relational
approach and the decentralisation of observability are also two major contributions
of the thesis as they easily reduce the algorithmic complexity in particular cases. All
these results have been published in (Plénet et al., 2022b) (currently in press) for ACA
and in (Plénet et al., 2022a) for non-linear CA.

In chapter 4 we will study observation through the synchronisation of CA. The
approach used will be different from the one used here. The synchronisation will
be used as a state estimator without checking the reconstructibility, as we did in sec-
tion 3.3.3. The performance of the state estimator will be studied statistically through
a large number of simulations. chapter 5 will provide illustrations of observation
analysis and estimation developed in this chapter, on large and physically-motivated
examples: a simplistic forest fire propagation model, a road traffic model inspired by
R184 and a high quality random number generator. These examples will be used to
apply the different criteria presented throughout this chapter, but also to compare
them with the results of chapter 4.



CHAPTER 4

Synchronisation as State Estimator

RÉSUMÉ

Dans ce chapitre, nous présenterons la synchronisation des AC et nous l’étudierons comme un
estimateur d’état. Cette approche est sensiblement différente de celles présentées au chapitre
précédent, car la bonne reconstruction de l’état par l’estimateur n’est pas caractérisée par
l’observabilité ou la reconstructibilité, mais par une étude statistique.
Dans un premier temps, nous présenterons la synchronisation des automates cellulaires
de Bagnoli et nous détaillerons en quoi celle-ci est très proche de la formulation d’un
estimateur d’état. Ensuite, nous caractériserons la propagation de l’erreur initiale dans
les AC élémentaires lorsque l’erreur initiale est faible. Finalement, nous présenterons une
nouvelle méthode de synchronisation lorsque l’erreur initiale est faible et nous la comparerons
à la précédente.
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4.1 INTRODUCTION

In the previous chapter, we defined observability and reconstructibility criteria for
additive, affine and non-linear CA. These two notions guarantee that the state of the
system can be deduced from the measurements made by the sensors. In section 3.3.3
we described a state estimator which makes it possible to determine the state of the
systemwhile it is beingmeasured. It depends on the verification of the reconstructibil-
ity criterion that is a necessary condition to ensure the good convergence of the state
estimator. However, the algorithmic complexity makes it difficult to use these tools
for CA with a large number of cells. In this chapter we present a different method.
We first define a state estimator and then, we evaluate its observation "quality" sta-
tistically from a large number of simulations. For this purpose, we will use the CA
synchronisation as a state estimator.

CA synchronisation is a direct application of the synchronisation of physical
systems. It is a concept that has been studied for many centuries and has recently been
adapted for CA. The study of the synchronisation of two systems consists of pairing
two distinct physical systems by some kind of coupling and study whether their
states become identical or not. The most famous example of synchronisation was
discovered by Christian Huygens in 1965 when he found that two unsynchronised
pendulums (i.e. with an arbitrary phase) placed on the same surface would eventually
synchronise (in phase opposition for Huygens’s discovery but more recently studies
by Fradkov and Andrievsky (2007) have shown that in-phase synchronisation can
exist).

When we study the synchronisation of CA, there are two identical CA with
different initial configurations. The coupling between the two CA is achieved by
coupling some cells from the "driver" to the "replica". This is called unidirectional
coupling. When a cell is coupled, the state of this cell on the driver is copied to the
same cell on the replica. The synchronisation between the two CA varies according
to the nature of the coupling and the methods used. Dogaru et al. (2009) studies
the synchronisation of chaotic ECA using a single coupling cell and characterises
the synchronisation according to the number of cells and the ECA rule. Urıas et al.
(1998) studies the synchronisation of linear ECA with several coupling cells and
characterises the position of the coupling cells to ensure full synchronisation of the
replica on the driver. This approach is similar to the one we presented in section 3.2
when studying ACA. On the contrary, Bagnoli et al. (2010) study synchronisation of
one-dimensional CA (mainly ECA and totalistic CA) using a coupling probability
which represents the probability of a cell of theCA to be a coupling cell. The results are
not characterisations of the synchronisation but rather statistical results that identify
the critical probability for synchronisation to be achieved. This critical probability
can also be approximated using the CA Lyapunov exponent (Bagnoli and Rechtman,
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1999).
In this chapter we will start with a general presentation of CA synchronisation by

presenting the different properties of synchronisation. Then, we will present how
synchronisation can be used as a state estimator and its link with the state estimators
of classical control theory. Finally, we will introduce a sensor placement method
to improve synchronisation performance for CA with small initial error. We will
compare the two synchronisation methods for the observation of ECA.

4.2 GENERALITIES ON THE SYNCHRONISATION OF CELLULAR AUTOMATA

Throughout this chapter, we will focus on the synchronisation proposed by Bagnoli
et al. (2010) as it combines the use of a mobile sensor network, non-linear CA and
also (and most importantly) a statistical study of the synchronisation performance.
This leads to a low algorithmic complexity compared to the evaluation of observation
performance. In (Bagnoli et al., 2010), the synchronisation of the replica with the
driver is achieved through copying the state of some cells (called coupled cells) of the
driver in the matching cells of the replica. The coupled cells can change at each time
step, which allows the representation of mobile sensors.

4.2.1 Presentation of the Synchronisation

The objective of this chapter is to introduce CA synchronisation as a state estimator
and to evaluate its observational performance. We present this in more detail in the
next section. In order to remain consistent throughout the chapter, we use, from now
on, the notations of the state estimator, i.e. BC for the state of the system (the driver)
and B̂C for the estimate (the replica). Similarly, the coupling cells between the driver
and the replica represent the cells measured by the sensors, thus the set of coupled
cells is the set of measured cells L@ . Consequently, the B̂C state of the replica can be
expressed as :

B̂C (28) =
{
BC (28) if 28 ∈ L@
B̂C (28) else (4.1)

Before giving the state representation of synchronisation, we shall start with some
reformulations of the notions defined in chapter 2. To model the coupling between
the two CA, we use a vector representation for the configurations that can easily
separate the cells that are coupled and those that are not. To achieve this, we use the
vector representation that we have already used in section 2.2.3 for the definition of
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ACA and in section 3.2 for the study of the observability and reconstructibility of ACA.
This representation provides a vector representation of the BC configurationwhere the
states of each BC (28) cell is arranged as a vector GC =

[
BC (21) BC (22) · · · BC (2# )

]′.
Secondly, as we will not be using synchronisation only for ACA then the global
transition function � is not necessarily an affine map, hence we shall keep using the
notation GC+1 = � (GC ) for the evolution of the CA.

The coupling between two CA is done by copying the state of the cells from the
driver to the replica. In this case the sensor network strictly respects the definition 2.4
and the output operator is additive and can be expressed with the matrix�C . However,
we will not use the matrix� to represent the coupled cells but the diagonal matrix
%C = �′C�C . The diagonal matrix % indicates which cells are coupled, the value 1
indicates that the corresponding cells are coupled. Consequently, %C selects only the
coupled cells of GC whereas � − %C selects the cells that are not coupled. Finally, the
state representation of the synchronisation is expressed as :

Definition 4.1 (Bagnoli et al. Synchronisation). Let A be a CA and � its global
transition function. LetH be a time-dependent sensor network associated to the
matrix %C . The synchronisation of the replica ĜC over the driver GC is done by the
following:

{
GC+1 = � (GC )
ĜC+1 = (� − %C ) · � (ĜC ) + %C · � (GC )

(4.2)

In (Bagnoli et al., 2010), the coupled cells are chosen randomly at each iteration
from a coupling probability ? . Different coupling methods exist and are presented in
section 4.3. We will study their synchronisation performance in relation to the state
estimation problem.

To investigate the synchronisation, we use the synchronisation error 4C defined
by eq. (4.3). By doing so, we can represent the difference between the replica and the
driver independently of the states of the replica and the driver. Figure 4.1 shows an
example of synchronisation for the ECA R110-100-NB.

4C = ĜC − GC (4.3)

The system is considered to be synchronised when Ĝ = G but it is possible to
provide more accurate information by considering the cells that are synchronised
Ĝ28 = G28 . To do this we define the normalised synchronisation error nC in defini-
tion 4.2 which represents the percentage of cells that are not synchronised at time C .
Figure 4.2 describes the evolution of the normalised synchronisation error from
the synchronisation example presented in Figure 4.1. This new expression for the
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(a) Driver GC (b) Replica ĜC (c) Synchronisation Error 4C

FIGURE 4.1. Example of random synchronisation of the ECA R110-100-NB for a time horizon ) = 150 and a
coupling probability ? = 0.2. The black cells represent 1 and the white cells represent 0. Time is
going down on the vertical axis.
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FIGURE 4.2. Evolution of the normalised synchronisation error of the ECA R110-100-NB for the example given
in Figure 4.1.

synchronisation error makes it easier to represent synchronisation in a temporal
perspective in order to analyse the results. It would have been difficult to deduce the
time at which the replica is synchronised with the driver from Figure 4.1.

Definition 4.2 (Normalised Synchronisation Error). The percentage of unsynchro-
nised cells within the replica is called the normalised synchronisation error n and
is express by:

nC =
1
#

∑
28∈L

(
1 − X

(
4
(28 )
C

))
(4.4)

where X
(
4
(28 )
C

)
represents the Kronecker delta of 4 (28 )C , it is equal to 1 if 4 (28 )C = 1

and 0 otherwise.
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For the example of ECA synchronisation in Figure 4.1, we have chosen arbitrarily
coupling probability ? = 0.2 and we notice that the replica took about 110 iterations
to synchronise to the driver (see Figure 4.2). For the chosen ECA, a coupling prob-
ability of 20% represents a total of about 20 coupled cells per iteration. However,
we have seen in the previous chapter that not only the position of the sensor is im-
portant but also the number of sensors (see example 3.2). Similar concerns can be
raised for the synchronisation of the CA. What is the impact of the coupling proba-
bility on the synchronisation? Is there a minimal coupling probability that ensures
synchronisation?

In order to answer these questions, we shall explore some examples of synchronisa-
tionwith different coupling probabilities. On Figure 4.3, we canmake two hypotheses:
First ? impacts the synchronisation of the replica (for ? = 0.1 and ? = 0.2 the replica
does not synchronise and the bigger ? is, the faster it synchronises); second, ? impacts
the normalised synchronisation error decrease (the bigger ? is, the fewer black cells
at time) ). The influence of the coupling probability (number of sensors) on the speed
of convergence seems to be consistent with the results of the observation, and in
particular with the lower bound of the Cayley-Hamilton Theorem which decreases
with the number of sensors. Moreover, after conducting several simulations (not
presented here), it seems that the replica never synchronises for ? = 0.1 and always
synchronises for ? = 0.3 and ? = 0.4. The case of ? = 0.2 is more peculiar since the
replica synchronises in about one fifth of the simulations in this case.

(a) ? = 0.1 (b) ? = 0.2 (c) ? = 0.3 (d) ? = 0.4

FIGURE 4.3. Example of the synchronisation error for different coupling probabilities ? for ECA R110-100-NB.
Time is going down on the vertical axis for 100 time step. The initial configurations of the driver
and the replica were randomly initialised but were unchanged for the four examples.

In order to analyse more precisely the impact of the coupling probability on the
synchronisation error, we performed a large number of simulations and calculated the
mean normalised synchronisation error. This value is represented by the continuous
curve in Figure 4.4. Considering the particular case of ? = 0.2, we notice that
n = 0.08. However, as there are some cases where the replica is fully synchronised
(i.e. n = 0), there is a lack of information to deduce the impact of ? on the normalised
synchronisation error (apart from the complete synchronisation of the replica). For
this purpose, we represent the synchronisation rate, i.e. the total synchronisation rate
of the replica over all simulations, by the dashed curve.
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FIGURE 4.4. Evolution of the normalised synchronisation error (continuous) and the synchronisation rate
(dashed) at time ) = 150 as a function of the coupling probability ? for the ECA R110-100-NB.
The mean is computed through 104 simulations.

Thuswe notice that the first cases of total synchronisation appear around? = 0.15
and the synchronisation rate continues to grow to reach 100% around ? = 0.31. This
confirms our first hypothesis on the direct impact of the coupling probability on
the total synchronisation of the replica on the driver. Moreover, by comparing the
synchronisation rate with the normalised synchronisation error for probabilities
lower than ? = 0.15, we observe a decrease in the normalised synchronisation error
without an increase in the synchronisation rate. For ? = 0.05, about 40% of the cells
are not synchronised while only 22% of the cells are not synchronised for ? = 0.15.
Adding coupling cells brings more information than just the value of the cell itself.
We can finally conclude that an increase in the probability decreases the normalised
synchronisation error independently of the synchronisation rate confirming our
second hypothesis.

In this section we have presented synchronisation and more precisely the syn-
chronisation model of Bagnoli et al. (2010). This model is designed to synchronise
a replica to a driver by using randomly chosen coupling cells. We have studied an
example of synchronisation for the ECA R110-100-NB for which we have been able
to estimate the critical coupling probability ?2 ≈ 0.31 which permits a perfect syn-
chronisation of the replica on the driver. This perfect synchronisation of the replica
on the driver makes it possible to use synchronisation as an observation tool. The
state estimator would be the replica that we seek to synchronise with the system in
order to determine its state. It is precisely this application of synchronisation that we
shall study in the following section.
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4.3 SYNCHRONISATION AS STATE ESTIMATOR

In this section, we present the use of synchronisation as a state estimator. Wewill start
by presenting the connection with state estimation in classical control theory. We
will also present how coupling cells can be seen as sensors and how the type of sensor
directly impacts the synchronisation performance. We will conclude by presenting
some ideas for improving the state estimator for a particular system by using a certain
type of sensor or by modifying the state estimator model.

In the case of so-called classical synchronisation, there is not much of a bridge
between synchronisation and state estimation because the coupling between the two
systems is bidirectional. The state estimator is not supposed to influence the system
it observes. In the case of CA synchronisation, it is precisely this unidirectionality
of the coupling that makes the link with state estimation possible. Indeed, the state
estimator constructs an estimate of the state of the system from measurements made
on it, and the estimate is considered "perfect" when the state of the system and the
estimator are equal (or at least close enough). We directly relate the state estimator to
the replica, the system to the driver and the sensors to the coupling cells.

Moreover, the synchronisation equation (4.2) is similar to the state estimator of
linear systems presented in (Kalman, 1960). Indeed, we can compare the expression
of the replica of an ACA (4.5) with the expression of the state estimator of LTI systems
(4.6). We notice a similar expression where the coupling matrix % represents the
product !� (! is the gain matrix which guarantees the convergence of the state
estimator) with the difference that the measurements are taken at time C + 1 for the
synchronisation and at time C for the state estimation.

Synchronisation: ĜC+1 = (� − %C ) · � (ĜC ) + %C · � (GC )
= �ĜC + %C (GC+1 − ĜC+1)

(4.5)

State Estimator: ĜC+1 = �ĜC + !� (GC − ĜC ) (4.6)

Remark 4.1. The gain matrix ! is usually computed using a pole placement method
(Ackermann, 1972) or a constrained optimisation synthesis (Kalman et al., 1960).
These methods could, under the requirement of a proof, be applied to ACA in order
to create a state observer for ACA.

Asmentioned, the coupling cells represent the sensors of the system. The synchro-
nisation model of Bagnoli et al. (2010) takes into account a time-dependent coupling
matrix and therefore can handle mobile sensors. However, what is the coupling
probability in case of mobile sensors? One can consider that if the cells are randomly
observed then it can be considered that they are mobile sensors whose speed of move-
ment is largely superior to the dynamics of the system (sensors can move anywhere in
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the lattice at each time). This may also be the situation of a sensor network where only
certain sensors are active (as presented in eq. (2.21)). In Figure 4.5, we represented the
normalised synchronisation error for random sensors but also for fixed and mobile
sensors. The initial position of the sensors is determined randomly in a similar way
to the random sensors. In mobile sensor network, their initial position is determined
randomly and each sensor moves one cell to the right (as in example 3.1).
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FIGURE 4.5. Evolution of the normalised synchronisation error at time ) = 150 of the ECA R110-100-NB for
different types of sensors. The mean is computed through 104 simulations.

A notable difference between these three methods is immediately apparent in
terms of synchronisation performance. The mobile sensor network performs better
than the random sensor network, which itself performs better than the fixed sensor
network. These results are, however, very specific to the rule studied. Indeed, if we
consider the ECA R184-100-PB, which is an example of the road traffic model (see
Figure 2.5 and section 5.3), the synchronisation performances represented on Figure
4.6 are quite different. Indeed, in this model the "cars" (cell with state 1) move one
cell to the right at each time step. It is therefore impossible for the mobile sensor
moving at the same speed to measure the car if it is not on the same cell as the sensor.
On the contrary, for the fixed sensor network, as the car is moving on the lattice, it
will, sooner or later, be measured and therefore synchronised. Finally, in order to
be the least sensitive to this kind of detail during the general studies, we shall stick
to random synchronisation. This also allows us to apply the different results of the
synchronisation. However, when we apply state estimation with synchronisation in
the context of physical system observation (see chapter 5), we will compare in more
detail the sensor network topologies aswell as the impact of the different coordination
methods on the synchronisation performance.

For some applications, in addition to the sensor placement method, the replica
model can also be adapted to improve synchronisation performance. The replica
model will differ from the driver, whichmay permit to the replica to converge faster to
the driver. In the forest fire example (see section 5.2), the fire spread model is slightly
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FIGURE 4.6. Evolution of the normalised synchronisation error at time ) = 150 of the ECA R184-100-PB for
different types of sensors. The mean is computed through 104 simulations.

modified. In the initial model, it is the fire that propagates in the forest, but in the
"improved" model, the ashes also propagate. Therefore, when a sensor measures ash,
it indicates that a fire was present on that cell some time ago, so the neighbouring cells
have also burnt and are now ash. This has the effect that the measurement of a cell
with ashes is useful for synchronisation when initially it would not have contributed
to reducing the synchronisation error (beyond its own value).

In this section we have seen how the replica of the CA synchronisation can be
used as a state estimator. The coupling cells can be considered as sensors. We also
observed that sensor density has an influence on the normalised synchronisation error.
The sensor network coordination method has an influence on the critical density
that guarantees the full synchronisation of the replica. In the following section, we
investigate the particular case of a small initial synchronisation error (a few cells of
error). The objective will be to model the propagation of the initial error in order to
improve the synchronisation algorithm.

4.4 STATE ESTIMATION OPTIMISATION FOR SMALL INITIAL ERROR

In this section, we will consider synchronisation when the initial error is small.
Indeed, as we stated in the previous chapter, it is likely that for some applications
there are constraints on the plausible initial configurations. In this case, the initial
synchronisation error is limited. To borrow from the example of the propagation of
a forest fire, if the topology of the forest is known and only one cell can be ignited at
initialisation, thus there is only one error cell. The synchronisation error is then very
small. We will therefore study how this initial error propagates in order to develop an
optimised synchronisation method for monitoring systems with a low initial error.
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4.4.1 Impact of the Initial Error on the Synchronisation Error

In order to study if and how the initial synchronisation error impacts the evolution
of the normalised synchronisation error, we show in Figure 4.7 the normalised syn-
chronisation error nC as a function of time for different initial error n0 values. These
results were obtained through several synchronisation of the ECA R18-100-PB and
coupling probability ? = 0.1. The initial configuration G0 was randomly initialised
and and Ĝ0 was initialised to the value of the driver with some erroneous cells (1 cell
for n0 = 1%, 2 cells for n0 = 2% and son on). The initial synchronisation error n0 has
a clear impact on the overall normalised synchronisation error. Its first influence is
on the speed of convergence towards the asymptote. Indeed, the 10% curve seems to
converge faster than the 20% and 50% curves which converge earlier than the 1% and
2% curves. The second effect of the initial error is on the value of the asymptote when
n0 is small enough. For 10%, 25% and 50%, nC converge towards the same asymptote
value, around 0.23. However if n0 is sufficiently small, the reached asymptote is lower
than this "generic" one.

0 50 100 150

Time t

0

0.1

0.2

0.3

0.4

N
o
rm

a
lis

e
d
 S

y
n
c
h
ro

n
is

a
ti
o
n
 E

rr
o
r 

t

 = 1%

 = 2%

 = 10%

 = 25%

 = 50%

FIGURE 4.7. Normalised synchronisation error as a function of time of the ECA R18-100-PB for different initial
error n0. The mean is computed through 104 simulations.

To understand the difference between the two asymptotes, we studied the evolu-
tion of the error as a function of time for the particular case of a single cell of initial
error (n0 = 1%). As we can see on Figure 4.8, there are two very different kind of evo-
lution of the synchronisation error 4C . On one hand, in Figure 4.8a, the error spreads
until it covers the whole CA and reaches the asymptotic non-zero value. On the other
hand, in the very specific case depicted on Figure 4.8b, the replica synchronise with
the driver and the normalised synchronisation error reaches zero. Therefore, when
we average these two cases, which we did for Figure 4.7, we obtain a lower asymptotic
value. For the remaining of the study, we chose to dissociate the two cases and to not
consider the total synchronisation cases when we study the asymptotic value.
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(a) Asymptotic Synchronisation (b) Total Synchronisation

FIGURE 4.8. Evolution of the synchronisation error for ECA R18-100-PB from a single cell error (n0 = 1%). The
time is represented on the vertical axis. A black pixel is an erroneous cell in the lattice of the replica.

To characterise the impact of the initial error on the performance of the synchro-
nisation, we only consider the cases of total synchronisation which do not influence
the average value. Figure 4.9 represents this asymptotic value as a function of the
initial error. First, if we consider only the asymptotic synchronisation (without special
cases of early complete synchronisation), the value of the asymptote does not depend
on the initial error. Second, the value from which the average error with and without
total synchronisation become different depends on the coupling probability ? : the
stronger, the greater the chance of total synchronisation.
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FIGURE 4.9. Value of the asymptotic behaviour of the normalised synchronisation error as a function of initial
error n0 of the ECA R18-100-PB. The continuous lines consider only the asymptotic synchronisa-
tion whereas the dashed lines include both asymptotic and total synchronisation. The mean is
computed through 104 simulations.
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4.4.2 Modelling of the Error Spreading Dynamics

In order to explain the dynamics of the evolution of the synchronisation error, we
study how the error propagateswithin theCA as a function of the coupling probability.
To do so, we start by studying the propagation of the error within the simple case of a
single erroneous cell and then, we generalise these results to two or more cells. To
study the propagation of the synchronisation error, we shall study the propagation of
a single ECA and generalise the results to all ECA. To decide which rule we shall study,
we have reported the synchronisation error with null coupling probability in Figure
4.10 as a function of the class of the ECA. Class 1 shows no interest as regardless of
the initial configuration, the state of all cells becomes rapidly uniform. Class 2 is also
not very interesting because the error does not propagate over the whole lattice. Class
4 seems to be more interesting. However the propagation structure varies strongly
depending on the initial configuration. Finally, we will be interested in class 3 but
not in theR30 rule because it is not symmetrical. We eventually choose theR18 ECA
because it is the smallest symmetrical class 3 ECA.

(a) Class 1: R32-50-PB (b) Class 2: R172-50-PB (c) Class 3: R30-50-PB (d) Class 4: R110-50-PB

FIGURE 4.10.Examples of synchronisation error from a single erroneous cell for ECA of different classes. Time
is going down on the vertical axis for 25 time step.

Through simulations with the ECA R18, we seek to model the propagation of the
synchronisation error as a function of the coupling probability ? . First, we present
on Figure 4.11 the typical synchronisation error propagation dynamics for R18 from
a single erroneous cell.

(a) ? = 0 (b) ? = 0.05 (c) ? = 0.10 (d) ? = 0.15

FIGURE 4.11. Evolution of the error for elementary R18-500-NB from a single erroneous cell. Time is going down
on the vertical axis for 250 time step.

Comparing the different error propagation for the ECA R18 in Figure 4.11, we
adopted a triangle as a simple geometric model for these dynamics. Therefore, to
describe how the synchronisation error spreads, two parameters will be used: the
first being the aperture angle of the propagation triangle, and the second being the
shift angle between the altitude and the median of the triangle. Indeed, the median
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of the triangle seems to vary from one simulation to another. Figure 4.12 describes
the geometry associated with these angles U and V which describe respectively the
aperture angle and the shift angle. From Figure 4.11, it appears that for R18 the
aperture angle of the triangle is inversely proportional to the coupling probability ?
and the shift angle is null.

FIGURE 4.12.Schematic of the theoretical propagation triangle of the synchronisation error from a single initial
error cell.

For the sake of simplicity, we will not use directly the U and V angles but their
tangents, which represents spread velocities (the opposite side is the altitude which is
the time here). We will simply call U and V the velocities associated to the angles and
not the angles themselves. Therefore, the error spreading ratio U represents the
mean number of cells by which the triangle base increases at each time step and error
shift ratio V the mean number of cell shift at each time step. By default, a positive
error shift ratio reflects a shift to the right and a negative error shift ratio a shift to the
left. As this is the synchronisation of ECA, the error can only propagate, at each time
step, a maximum of one cell to the right and one cell to the left. Thus, the coefficient
U cannot exceed 2 and the coefficient V cannot exceed 1. The case where V = 1 can
only happen if U = 0 because the middle of the base of the triangle is shifting less
quickly than its edges (found for example with R184).

Based on Figure 4.12, we can express the width 3 and the middle 21 of the error
at time) by 21 = 20 + V · ) and 3 = U · ) . The width 3 must also be restricted by
the size of the lattice # . Subsequently, from the width of the error 3 , we are able to
deduce the normalised synchronisation error nC from the asymptotic value of the
error W and the proportion of the lattice that is covered by the error 3/# . The value
of the asymptotic synchronisation error W is the value of nC when the timing error is
present over the entire lattice. The average value of the asymptote is given in Figure
4.9 for three values of ? . We finally propose the following corollary which gives the
expression of nC .

Corollary 4.1. The normalised synchronisation error nC can be estimated from the param-
eter U as well as the value of the asymptote W associated to the coupling probability ? . Thus,
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the normalised synchronisation error nC is defined by :

n) =
W

#
· min(# ; U ·) )

We can calculate the mean value of the error spreading ratio by measuring the
area of the error at time ) and divide by current time to obtain the tangent of U .
Figure 4.13 describes the evolution of the average spread ratio as a function of the
coupling probability. For the first part, up to ? = 0.2, it is similar to an affine function
of which we experimentally obtained the equation U = −8.41 · ? + 1.95 using linear
regression. This expression of the error spread ratio supports the hypothesis raised by
Figure 4.8 which claims thatU is inversely proportional to the coupling probability. As
specified in the previous section, we are not interested in cases where synchronisation
is total because the propagation of error is zero. However, as we get closer to the
critical coupling probability ?2 = 0.3, the number of total synchronisation increases
significantly. The average is therefore no longermade on several thousand simulations
but only a few hundred, which implies that the precision of the results decreases as
we get closer to the critical coupling probability.
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FIGURE 4.13.The error spread ratio U as a function of coupling probability for the ECA R18-500-NB. The con-
tinuous curve is obtained by taking the mean of U over 104 simulations. The dashed curve is the
curve obtained by linear regression.

In Figure 4.13, we have plotted the mean values of alpha as a function of ? , but for
a given value of ? , the U coefficients are normally distributed. The same observation
can be made for the error displacement coefficient V . In order to have a better
representation of U and V , we can calculate their mean and standard deviation as a
function of the coupling probability as we have done for the mean value of U in Figure
4.13. They are shown in Figure 4.14. However, as in Figure 4.13, the number of total
synchronisations sharply increases as we approach the critical probability so that the
statistics are made with fewer non-zero values.

Using the corollary 4.1, we are going to make an example for ? = 0.1. For this
coupling probability, the error spread ratio U follows a normal distribution with
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(a) Mean of U
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(b) Standard Deviation of U
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(c) Mean of V
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(d) Standard Deviation of V

FIGURE 4.14.Mean and standard deviation of the error spread ratio U and the error shift ratio V as a function of
coupling probability for the ECA R18-500-NB. The mean and standard deviation were computed
over 104 simulations.

mean 1.124 and standard deviation 0.136, the asymptotic synchronisation error
value taken from Figure 4.9 is approximately W = 0.221. From the same figure,
we can compute g , the rate of total synchronisation among all simulation, whose
value is g = 0.305 for ? = 0.1. It must also be taken into account in order to
represent the normalised synchronisation error of Figure 4.7. On Figure 4.15, the
mean normalised synchronisation error nC computed through simulations is displayed
as well as the estimated error with an U fixed at the mean and an U that follows
the normal distribution. We notice that the use of the normal distribution in the
calculation of the error explains the rounded curve when the error approaches the
asymptote. However, the two theoretical curves have a difference with the real curve
which is explained by a faster increase of the error during the first iterations which
is caused by a higher U as the error is not yet detected by the sensor, and therefore
unsynchronised.

This method allows us to simply represent the propagation of the error in the
case where a single cell is erroneous in the initial configuration. If we consider two
or more erroneous cells then the modelling becomes more complex. Indeed, the
multiple initial errors propagate independently until they collide; as shown in Figure
4.16. Thus, we must consider that the errors merge in a single (larger) source of error.
Considering that the collision takes place at time C1, we can consider that the error
spread ratio U for two initial erroneous cells is expressed as:

U (C) =
{
U0 + U1 , if C ≤ C1
(U0−V0+U1+V1)

2 , if C ≥ C1
(4.7)
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FIGURE 4.15.Evolution of the normalised synchronisation error as a function of time fromsimulations of theR18-
500-PB as well as the two theoretical cases when U is constant or follows a normal distribution.

FIGURE 4.16.Schematic of the theoretical propagation triangle of the synchronisation error from two initial error
cells.

The time C1 of the collision depends on the initial distance between the two initial
errors, whose probability distribution depends on the boundary conditions used.
Indeed, if we consider that the two erroneous cells are at the two extremities of the
lattice, then the distance between the two is either 0 for periodic boundaries or # for
the other boundary conditions. Therefore, C1 can be expressed as :

U0

2
· C1 +

U1

2
· C1 = 31 ⇐⇒

U0 + U1
2
· C1 = 30 + (V1 − V0) · C1

⇐⇒ C1 =
30

V0 − V1 + U0+U1
2

(4.8)

Moreover, since each of these initial errors is subject to the total and fast syn-
chronisation (of probability g ), the model must include, with probability 2g (1 − g), a
propagation with only one initial error using the model of Figure 4.12. With more
than two erroneous cells, the operation is the same but it is necessary to take into
account several collisions occurring at different times as well as the different scenarios
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of fast and total synchronisation. Using the different parameters U , V , W , and g used
for Figure 4.15, we can do the same thing for two initial error cells. Figure 4.17 shows
the three curves: that of the simulations, the constant theoretical value and the values
following normal distributions.
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FIGURE 4.17. Evolution of the normalised synchronisation error as a function of time fromsimulations of theR18-
500-PB as well as the two theoretical cases when U is constant or follows a normal distribution.

In this section, we first confirm the proportionality between the error propagation
speed and the coupling probability. This makes it possible to model the propagation
of the synchronisation error for one or two erroneous cells at initialisation. This
model could be extended to more erroneous cells, but it becomes more complicated
to model beyond several cells. In the next section, we will use this error propagation
model to propose a more efficient sensor placement in the case of a single erroneous
cell.

4.4.3 Optimisation of Algorithm for a Single Erroneous Cell

In this section we propose a method for coordinating sensors for synchronisation
where the initial synchronisation error is small. The objective is to identify the cells in
the replica lattice that may be in error and then concentrate the sensors in these areas
to increase the chances that the error is measured and synchronised. We will first
present the construction of the possible error area and then adapt the synchronisation
of definition 4.1 using this possible error area and compare the performance of the
two methods.

In order to identify the error area, the sensor networkmust first measure an error.
From the position of this error cell, the synchronisation error propagation model can
be used to find the possible positions of the original error cell. Let us note 4̂0 the initial
error zone which corresponds to the set of cells that can lead to errors measured at
time C . Then, by using the model of the propagation of the synchronisation error, it is
possible to find 4̂C , the set of cells which can be erroneous at time C by considering 4̂0
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the initial error zone. Figure 4.18 shows the geometric construction of the 4̂0 error
zone with a backpropagation of the error measured by the sensor array as well as the
4̂C error zone at time C . The error spread ratio U<0G corresponds to a ratio U large
enough to include all (or a large part) of the possible error spread ratios at the given
coupling probability. As U follows a normal distribution, a ratio U<0G = U<40= + 3f
encompasses 99.7% of the possible spreading ratios. However, as we have seen in
Figure 4.15, the error spread ratio is larger at the beginning since the error is still too
low to be synchronised. We must then consider the maximum ratio for this case, i.e.
Umax = 2.

FIGURE 4.18.Schematic of the backpropagation of the synchronisation error to find the initial error area 4̂0

In a formal sense, we define the initial error zone 4̂0 corresponding to the erro-
neous cell 28 at time C as:

ΞU,C : 28 ↦→ 4̂0 = {2 ∈ L| |2 − 28 | ≤
U · C
2
} (4.9)

Similarly, we define the error zone 4̂C at time C from 4̂0 by :

ΦU,C : 4̂0 ↦→ 4̂C = {2 ∈ L| ∃ 28 ∈ 4̂0, |2 − 28 | ≤
U · C
2
} (4.10)

As new errors are detected by the sensor network, we can adapt the initial error
zone. Indeed, as we know that there is only one erroneous initial cell, we know
that this cell is in every 4̂0. Therefore the initial error area can be refined using the
intersection of all the initial error areas of all the errors detected by the sensors. In
this way, it is possible to reduce the size of the error zone at time C but also to locate
the position of the initial error. We can express the evolution of this by 4̂ (C)0 (4.11)
whereYC represents the set of erroneous cells measured by the sensor network at
time C . {

4̂
(C+1)
0 = 4̂

(C)
0 ∩

⋂
2∈YC ΞU,C (2)

4̂C = ΦU,C (4̂ (C)0 )
(4.11)
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Now that the error area can be estimated, it remains to position the sensors. The
method consists in placing the sensors only in the area where the error could be
present. The sensors are still placed randomly based on the coupling probability. As
the area of observation is reduced, we can increase the probability of coupling in
proportion to the reduction of the area of observation. Thus, the density over the
whole lattice remains the same but the density over the error area increases. This
new method will result in a lower critical coupling probability ?2 as shown in Figure
4.19. The coupling probability in the error area 4̂C is described by:

?4AA>A = ? ·
#

|4̂C |
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FIGURE 4.19.Evolution of the normalised synchronisation error at time ) = 750 of the ECA R18-500-PB for the
regular and the optimised synchronisation. The mean is computed through 103 simulations.

As shown in Figure 4.19, the optimised synchronisation performs better than
the usual one with a critical control strength ?2 at 0.05 instead of 0.21. However,
when the control is too weak, the difference between the two is negligible because the
first error cell is detected too late by the sensors. The error area 4̂C is too large and
therefore the optimised coupling probability ?4AA>A is not sufficient to synchronise
the replica on the driver.

In Figure 4.20, we have compared the optimised synchronisation to the regular
one for the ECA belonging to different classes presented in Figure 4.10. The results
obtained by using the maximum error spread ratio used for the backpropagation
U<0G = 2. In the three examples, the optimised synchronisation performs better
than the regular one. R172-500-PB, and more generally Class 2 ECA, exhibit a
lower critical coupling probability due to the fact that the error does not spread on
the whole lattice and remains constant after a few iterations. Because the error is
only located on certain cells of the CA, the synchronisation time directly affects the
synchronisation performance. Indeed, if it is synchronised for a sufficiently long time,
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then all the error cells have been coupled and therefore synchronised in a random
manner. In this case, the synchronisation performance depends strongly on the
synchronisation time horizon and less on the synchronisation method (classical or
optimised synchronisation). Therefore, using the optimised synchronisation results
in a lower (or even insignificant) performance gain than for the other examples. The
use of optimised synchronisation with R30-500-PB does reduce the normalised
synchronisation error, but not the critical coupling probability. This is due to the fact
that the use of optimised synchronisation allows the replica to be synchronised in a
large number of cases, but it is necessary to reach the critical coupling probability ? ≈
0.3 in order for the complete synchronisation to occur. The average is therefore lower
but, as in Figure 4.7, it is an average between synchronised cases and unsynchronised
cases at the asymptote.

(a) Class 2: R172-500-PB (b) Class 3: R30-500-PB (c) Class 4: R110-500-PB

FIGURE 4.20.Evolution of the normalised synchronisation error at time) = 750 for different ECA for the regular
and the optimised synchronisation. The mean is computed through 103 simulations.

The presented sensor placement method only works for one error cell. If the
second error cell is not in 4̂0 after the first measurement, then no sensor will be able
to measure that error because the probability outside the error area is 0. It is therefore
necessary to consider two initial error zones 4̂ (1)0 and 4̂ (2)0 for the two error cells. If
the sensors measure an error cell that does not correspond to one, it is the other.
Thus, if the errors are sufficiently distant at the beginning then it is possible to have
two disjoint error zones. Otherwise it is more difficult to know which error triangle
the measured error cell belongs to.

Several ideas could be put in place to deal with this case. For example, Plénet
et al. (2020b) use sensors with different roles to monitor the propagation of forest
fires. The fire model is represented by a CA but they do not use synchronisation, the
replica does not have the same dynamics as the driver. In this example, some of the
sensors called "followers" have the objective to measure the cells in the error zone
while the others, called "explorers", measure the outside of the zone in order to detect
new ignitions. In the case of CA synchronisation, in the error zones, the trackers have
a sufficiently high coupling probability to guarantee synchronisation and outside the
zone the explorers have a lower probability but sufficient to "detect" new errors.



100 I CHAP. 4 SYNCHRONISATION AS STATE ESTIMATOR

4.5 CONCLUSION

In this chapter we have studied the synchronisation of cellular automata. We have
first seen how it can be used as a state estimator and especially that its definition is
very close to the state estimators of classical control theory. Next, we studied the
synchronisation for the particular case where the initial synchronisation error is
very small. We were able to model the propagation of this initial error using basic
geometry in the case of one or two error cells. We ended this chapter by proposing
a sensor placement method that uses this model to determine the error area. This
method of sensor placement is more efficient than the usual synchronisation and in
some cases allows a lower critical coupling probability to be obtained.

Finally, synchronisation appears to be a good alternative to the notions of ob-
servability and reconstructibility when the studied CA have a large number of cells.
However, the study of the performances provides a statistical estimation of the obser-
vation performances but does not guarantee, as opposed to the reconstructibility, the
correct observation of the system. In the next chapter, we shall illustrate synchronisa-
tion, observability and reconstructibility on practical examples and will be able to
compare in detail the synchronisation with the approaches proposed in chapter 3.



CHAPTER 5

Application to Monitoring of Complex Systems

RÉSUMÉ

Dans ce dernier chapitre, nous allons appliquer les méthodes d’observation présentées dans
les chapitres précédents sur trois exemples concrets. Pour le premier exemple, nous allons
étudier un modèle de propagation de feu de forêt. Cet exemple permettra de détailler la
méthode de construction d’un estimateur d’état en utilisant à la fois l’observabilité d’AC non
linéaire et la synchronisation. Dans le second exemple, nous étudierons un modèle de trafic
routier et plus particulièrement le problème de la reconstructibilité décentralisée permettant
de construire un observateur d’état modulaire pour la surveillance des réseaux routiers.
Nous terminerons avec un exemple d’AC générateur de nombres aléatoires. Nous utiliserons
l’observabilité des AC affines pour trouver les nombres aléatoires générés par celui-ci.
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5.1 INTRODUCTION

The main objective of this last chapter is to illustrate the observability assessment
methods and tools presented so far by applying them to three very different exam-
ples. The aim is not to solve these systems’ observation problems but to clarify our
approach.

For the first example, we will study a forest fire propagation model. The objective
will be to set up a method to detect and monitor the fire spread in an efficient way. To
do this, we will first use a relatively simple fire spread model and compare it with a
more complexmodel. Wewill then detail the method of constructing a state estimator
using both non-linear CA observability and synchronisation. We will then conclude
this example by comparing the advantages and drawbacks of both methods.

In the second example, we will study a road traffic model. We will first study its
reconstructibility and then we will study the decentralised reconstructibility. We will
finish by studying the reconstructibility of an intersection model with the objective
of building a modular state estimator for larger road network monitoring.

For the last example, we will study a CA-based random number generator. We
will use the observability of affine CA to find the series of random numbers generated
by it from a small number of observations. We will show how observability can be
used in a hardware attack.

5.2 DETECTION AND MONITORING OF FOREST FIRE SPREAD

In this first example, we will study a forest fire propagation model with the intention
of providing forest fire detection and monitoring. We will start by choosing a fire
propagation model that corresponds to the definition 2.1 for CA, that we made at
the beginning of chapter 2. Then, we will present the different parameters that
the model can take into account. Afterwards, we will study the observability, the
reconstructibility, and the synchronisation of this model in order to build a state
estimator. This example will serve for the comparison between the two different
methods we have studied in this thesis.

5.2.1 Presentation of the fire propagation model

In the introduction to this thesis, we discussed two fire propagation models, the
first proposed by Karafyllidis and Thanailakis (1997) which uses the percentage of
biomass consumed as a state and the second, a trivial fire propagation model which
has discrete states to represent the fire. However, as we pointed out at the end of
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section 2.2.2, the cell state of the Karafyllidis and Thanailakis model is continuous
and cannot be represented with the definition of cellular automata by El Yacoubi.
Therefore, the results on observability and synchronisation can only be applied to
the second model.

In this section, we first present theKarafyllidis andThanailakismodel by highlight-
ing the different aspects it canmodel. Then, wewill define, in relation to definition 2.1,
the trivial fire propagation model and we will demonstrate that this trivial model
can be used to model some of the propagation dynamics present in the Karafyllidis
and Thanailakis model. Finally, we will present several properties of the trivial fire
propagation model, such as percolation, which is essential to understand some results
on observability and synchronisation.

Karafyllidis and Thanailakis Model

Karafyllidis and Thanailakis (1997) developed a CA model of forest fire propagation
that is able to model the circular propagation of forest fire and to take into account
some external factors such as the wind or the terrain elevation. The model makes use
of a regular lattice of square cells where the cell state represents the percentage of
biomass consumed by the fire. The state varies continuously between 0 and 1, where
0 represents an unburnt forest square and 1 a fully burnt one.

To spread the fire, the authors chose to define the consumed biomass at time C
as the sum of the consumed biomass of the neighbours, with factors that depend on
different parameters presented in the next paragraph. This method is very similar to
the oneweuse forAdditiveCA (ACA).However, theCAofKarafyllidis andThanailakis
is not an ACA due to the saturation of the cell state. Indeed, the consumed biomass is
defined between 0 and 1; therefore the transition function uses saturation arithmetic
between 0 and 1. Consequently, by considering the local transition function (2.8) and
adding the saturation, we obtain the following local transition function where the 0 9
represents the weight values for the neighbourhood cells:

BC+1(28) = min

(
1;

=∑
9=1

0 9 · BC (2 ( 9)8 )
)

(5.1)

In this CA, the Moore neighbourhood is used. When the coefficients for all
the cells are equal, the fire propagation front has a square shape (see Figures 5.5a
and 5.5b). To solve this problem and have a circular fire propagation front, the authors
used a Moore neighbourhood with lower weights in the 4 corners. In this way, the
neighbourhood offers an "octogonal" shape (see Figure 5.1a) because the corners are
only covered at 83%. We denote this parameter� 9 which is equal to 0.83 if the cell
2 9 is in the corner of the neighbourhood and 1 otherwise. The parameters related
to the wind and the terrain topography are directly managed in the neighbourhood
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(a) Octagonal Moore Neighbourhood (b) Wind-Elevation Neighbourhood

FIGURE 5.1. Definition of the neighbourhoods for the Karafyllidis and Thanailakis fire propagation model.

coefficients. For example, a northwind accelerates the propagation of the fire towards
the south, on the neighbourhood. This is transcribed by a stronger coefficient on the
cell located in the north than the other cells. Topography is modelled in the same
way, higher grounds have higher coefficients. Figure 5.1b shows the coefficients
and their position in the neighbourhood,� 9 represents the coefficient related to the
topography on cell 9 and,9 represents the coefficient related to the wind on cell 9 .
As the topography varies with the position of the cell (this can also be the case for the
wind), the coefficients of the neighbourhood change depending on the cell, so the CA
is hybrid. The last parameter taken into account is the burning rate of the plant in the
cell. In the same way as the topography, this changes according to the cell but applies
uniformly to all the neighbours of the target cell. Karafyllidis and Thanailakis defined
this value by ' = 0/C , where ' is the burning speed</B , C is the burning time (s) and
0 is the cell length (m). Finally, given the neighbourhood coefficient�, ',, and� ,
equation (5.1) can be written as :

BC+1(28) = min

(
1; BC (28) + ' ·

9∑
9=2

� 9 · � 9 ·,9 · BC (2 ( 9)8 )
)

(5.2)

The impact of these four parameters can be seen in Figure 5.2 where the fire
fronts are represented in four different scenarios highlighting each of the parameters.

(a) Homogeneous flat forest (b) Heterogeneous flat for-
est

(c) Homogeneous flat forest
with a west-east wind

(d) Homogeneous forest
with elevation

FIGURE 5.2. Successive fire fronts for different scenarios. The unit on both axes are arbitrary. Image taken
directly from (Karafyllidis and Thanailakis, 1997).
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While capturing some of the important parameters of fire propagation, the model
proposed by Karafyllidis and Thanailakis (1997) has some flaws. Several other authors
have improved the model. Encinas et al. (2007a) have slightly modified the neighbour-
hood construction in order to provide a circular propagation of the forest fire. In
(Encinas et al., 2007b), they also adapted the CA with a hexagonal cell mesh. Berjak
and Hearne (2002) added the moisture factor and validated it on a savannah fire in
South Africa. Although there are many variants of this model, it is fundamentally a
deterministic model which is not able to model certain factors such as new fire starts
due to firebrands (Perryman et al., 2012).

In the next section, wewill present a simple fire propagationmodel which respects
definition 2.1 and forwhichwewill study observability and synchronisation. We could
have quantified the continuous states of this CA into : different states, similarly to
what is done in fuzzy logic, where the state 0 ∈ S represents the percentage 0/(: −1)
of consumed biomass. However, this model would not have been as accurate as the
Karafyllidis and Thanailakis model anyway. Instead, we chose to study a discrete and
trivial model with only 4 states: empty, tree, burning tree and burnt tree. We will see
that even if its formulation is trivial, it is still a model that can deal with different
factors such as the circular propagation of the fire or wind, despite the fact that it has
less granularity than the continuous model of Karafyllidis and Thanailakis.

Trivial Fire PropagationModel

What we will call the trivial fire propagation model is a discrete-state model where
the cells can assume the following four states: empty, tree, burning tree, and burnt tree.
The local transition function may vary from one application to another and from one
type of model to another. Indeed, this model has already been studied many times,
both as a deterministic model (Alexandridis et al., 2011) and as a probabilistic one
(Almeida and Macau, 2011). In our example, the transition function is deterministic
and is represented by the diagram in Figure 5.3. A tree only catches fire when at least
one of its neighbours (a discussion about the neighbourhood will follow further on)
is on fire. In this case, the cell remains in the burning tree state for one iteration and
becomes a burnt tree. The empty and burnt tree states are absorbing as well as the tree
state as long as there is no fire.

In order to be able to apply the results we developed for observability and recon-
structibility, we will formulate this CA according to definition 2.1. Therefore, we will
consider a mesh of # ×" square cells as well as a state space with the integer values
0, 1, 2, and 3 which correspond respectively to the state: empty, tree, burning tree and
burnt tree. Formally, the parameters L, S and 5 can then be formulated as :

• L = {0, 1, . . . , # − 1} × {0, 1, . . . , " − 1}
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• S = {0, 1, 2, 3}

• 5 : BC+1(28, 9 ) =


0 = if BC (28, 9 ) = 0
1 = if BC (28, 9 ) = 1 and @ 2 ∈ N (28, 9 ), BC (2) = 2
2 = if BC (28, 9 ) = 1 and ∃ 2 ∈ N (28, 9 ), BC (2) = 2
3 = if BC (28, 9 ) = 3 or BC (28, 9 ) = 2

FIGURE 5.3. Diagram of the state changes of the local transition function of the trivial fire propagation model.

The choice of the neighbourhood provides the possibility to change the shape
of the fire propagation and consequently to perform a circular propagation as it
is the "natural" propagation shape. For their fire propagation model, Karafyllidis
and Thanailakis used a Moore neighbourhood with lower coefficients for the angles.
While using discrete states, we cannot use this artefact and the fire propagation
shapes for the Von Neumann andMoore neighbourhood are far from circular (see
Figures 5.5a and 5.5b). For this reason, we decrease the density of the forest. At the
initialisation of the forest not all cells will be trees, but somewill be empty. The density
is defined as the probability for a cell to be initiated as a tree cell. For example, with a
density 3 = 0.7 each cell has a probability ? = 0.7 of being a tree and a probability
? = 0.3 of being empty. Therefore, by decreasing the density sufficiently, the fire
cannot propagate in a straight line (see Figure 5.4). When taking the mean for several
fire spreads (or when considering a much larger number of cells), the mean fire front
becomes circular.

(a) C = 0 (b) C = 10 (c) C = 20 (d) C = 30

FIGURE 5.4. Example of the evolution of the trivial CA of fire propagation for a Moore neighbourhood with den-
sity 3 = 0.5. The CA used is of size 50 × 50 and state snapshots are taken every 10 iterations.

In order to have a circular shape, we use a density 3 = 0.7 for the Von Neumann
and a density 3 = 0.5 for the Moore neighbourhoods (see Figures 5.5c and 5.5d). A



5.2 DETECTION AND MONITORING OF FOREST FIRE SPREAD J 107

lower density can be used for the Moore neighbourhood because the neighbourhood
contains more cells. The choice for these density values are discussed in the next
section when studying the percolation of the system. The density cannot be decreased
below the percolation threshold because the fire would not propagate anymore. For
the considered fire propagation model, we will use the Moore neighbourhood with
the density of 0.5. As both neighbourhoods offer circular propagation, we prefer to
use the Moore neighbourhood as it will allow a wider range of wind directions (see
next paragraph).

(a) Von Neumann and 3 = 1 (b) Moore and 3 = 1 (c) Von Neumann and 3 = 0.7 (d) Moore and 3 = 0.5

FIGURE 5.5. Example of the mean evolution of the fire front as a function of the chosen neighbourhood and the
tree density at initialisation. Means are obtained over 1000 simulations.

To model the impact of wind on fire propagation, Karafyllidis and Thanailakis
(1997) use different coefficient values for the neighbourhood cells. As already men-
tioned, this is impossible with the trivial model. Therefore, we will enlarge the
neighbourhood in the wind direction and thus accelerate the propagation speed in
one direction only. This method has already been studied by Trunfio et al. (2011)
where the shape, size and direction of the neighbourhood is the main feature to model
the progression of the forest fire. The new neighbourhood is constructed like the
previous one with an additional cell depending on the wind direction. Figure 5.6a
shows the position of this additional cell in the neighbourhood as a function of wind
direction. Figures 5.6b and 5.6c show the progression of the fire with a northwest or
east wind. The wind direction could change over time and space, but then the hybrid
CA formulation presented in section 2.2.3 should be used.

With this model it is difficult to model the heterogeneity of the forest or the
topography of the terrain. These two notions require a greater finesse in the speed
of fire propagation. While remaining discrete, we have the possibility to deepen the
model by lengthening the transient phase, i.e. the burning phase of the tree. This
would provide the ability to model trees with different burning times C2 . In their
work, Schlotterbeck et al. (2016) use three different plants with different combustion
period: tree (C2 = 200), shrub (C2 = 70) and grass (C2 = 1). This increase in the transition
period can be modelled in different ways. The first, which respects definition 2.1,
consists in adding intermediate states (e.g. burning tree 1 to burning tree 200). The
second requires the use of memory-based CA, a variant of CA where the next state
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(a) N depending on wind direction (b) Northwest wind (c) East wind

FIGURE 5.6. Example of the evolution of the fire front according to the wind direction. Simulations are obtained
through the mean over 1000 simulations.

BC is computed from the = previous states (BC−1, BC−=). This method does not add an
extra state, but changes the formulation of the local transition function. For example,
the condition of the fourth line of the transition function of the trivial model with a
combustion period C2 becomes :

if BC (28, 9 ) = 3 or ∀ 0 ≤ 8 < C2, BC−8 (28, 9 ) = 2 and BC−C2 (28, 9 ) = 1

The trivial model we just presented provides a circular propagation of the fire
while taking wind into consideration. Although there are several ways to improve
the model, taking into account several parameters necessary for the good modelling
of the propagation of a fire, it remains rather unconfigurable. Nevertheless, it will
provide us with the opportunity to study the observability and synchronisation for a
simplistic fire propagation model that captures some of the important properties of
fire propagation. In sections 5.2.2 and 5.2.3, we will focus on windless propagation in
a flat, homogeneous forest. In the next section, we will present two properties of this
model related to percolation and Wolfram class.

Properties of the Model

In this part we will study the propagation properties of the fire in this CA and how it
directly impacts the observation of it. We will start by studying the percolation, i.e.
the way the fire propagates as a function of the forest density. Then we will discuss
small and very large isolated forest areas and we will finish with a short study on
the class of this CA in relation to the Wolfram classes defined in section 2.2.4. These
different properties need to be studied before carrying out the study of observability,
reconstructibility, and synchronisation as they provide essential elements to under-
stand the behaviour of the system. Sensors must be correctly placed according to the
dynamic of the system in order to efficiently measure the system.

Percolation initially refers to a fluid passing through a porous material. In our
case, and more generally in complex systems, it is a question of finding out whether a
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disturbance in the system can spread throughout the system. For a forest fire, it is a
matter of determining whether a fire in a given place can ignite the whole forest (or
at least a very large part of it). The percolation is directly related to the density of the
forest. If the density is too low, then the trees are too far apart and the fire does not
spread. On the opposite, if the whole system is composed of trees, then the fire will
have no difficulty in spreading over the whole lattice. To evaluate the percolation of
the system, the forest is randomly initialised with a fixed density and one and only
one tree is ignited. The fire spreads until there are no more fire cells,then we measure
the burning tree rate, i.e. the percentage of trees that have burnt. Figure 5.7 shows
the percolation for the trivial fire model with the two neighbourhoods: Moore and
Von Neumann. The two curves, although having different values, are both sigmoid
with similar slopes. They both have a very slow, almost stable, growth phase at the
beginning and end. In between appears a phase transition of very fast growth. As
Moore’s neighbourhood is larger, the fire has an improved ability to spread (especially
using the diagonals). This distinction between the two neighbourhoods explains the
difference between the two curves.
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FIGURE 5.7. Percolation of the trivial CA as a function of the neighbourhood. The simulations were performed
on a CA of size 100 × 100 with an average over 1000 simulations.

Earlier we mentioned specific density values to obtain a circular propagation.
These values were chosen to get a burnt rate of 95%. This means that the vast majority
of the forest burns, but some parts remain isolated and will only ignite when the
fire starts in those parts. These isolated forest areas have a number of cells that are
distributed exponentially with parameter _ ≈ 0.7. This means that more than half
of these areas are composed of only one cell. The fact that there are isolated forest
areas makes it more difficult to verify reconstructibility. Indeed, if these areas did not
exist, the whole forest would be burnt whatever the starting point of the fire is. The
final state BC for which the whole forest is burnt is the same for all initial conditions.
Therefore the reconstructibility is trivial with one and only one final configuration.
In this case, the objective of a finer reconstructibility analysis would be to ensure
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it as soon as possible, before the fire has spread to the whole system. Whatsoever,
the existence of isolated zones avoids this particular case of trivial reconstructibility.
Note that this does not impact in any way the study of observability, as we are then
interested in the initial state, not the current one.

The objective in this example is to monitor the spread of the fire. It is therefore
necessary to reconstruct the BC state of the system before the forest has burnt down.
In order to know the maximum time horizon for the study of observability and
reconstructibility, we first need to estimate the average time of the fire propagation.
Using the same simulation set as in Figure 5.7, i.e. a 100 × 100 cell lattice, with
a density of 3 = 0.5, we find that the mean burning time is 108 iterations with a
standard deviation of 23 iterations.

Finally, with the previous results we can quickly deduce that the trivial CA we are
studying is of class 2. That is, a CA that reaches a fixed or oscillating state (more details
in section 2.2.4). Indeed, after a certain time, the system reaches a heterogeneous
steady state where no cell is on fire anymore. However, the error may spread over the
whole system before stabilising (if the density is high enough). In this case, the "filter"
aspect of class 2 cannot be applied. As a result, the findings of the synchronisation on
class 2 CA should be treated with caution as the error spread coefficient will not be
as small as it should be. Additionally, there are two special cases (for densities 3 = 0
and 3 = 1) for which the state of all cells is the same at the end of the simulation. For
these two cases, the CA is class 1.

In this section we have been able to study different properties that will directly
impact the study of observability or synchronisation. The placement of the sensors
will be a crucial element in order to measure all the "small" isolated forest areas.
However, this CA has a relatively simple dynamic that seems to facilitate its study. In
the next two sections we will build, or at least provide the tools to build, a forest fire
monitoring system in order to know the state of the system as soon as possible, and
especially before the forest has completely burnt down.

5.2.2 Observability

In this section we will study the observability and reconstructibility of the trivial CA
model for the forest fire propagation. Wewill focus on a CA of size 100×100. In order
to perform the study in a feasible time, we set conditions on the initial configurations
that the system can take (as stated in section 3.3.2). At initialisation, there will be at
most one cell that is in the burning tree state, all others will be either in the tree or
empty state. We will also notice that ensuring the observability or reconstructibility
of this system is not an easy task. That is why the objective of this example is not to
deliver a sensor network capable of observing the forest, but only to demonstrate that
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the tools proposed in this thesis can be used for the monitoring of the propagation of
a forest fire.

The study of observability and reconstructibility for this system is not easy. Indeed,
the system is made up of several disconnected areas of forest, the largest of which
contains on average 95% of the trees and the smallest, present in very large numbers,
have only one or two cells. In order to verify observability and reconstructibility, it
will be necessary to be able to determine in which zone the fire is located. To do this,
sensors will have to be placed in each of these areas. Therefore, a large number of
sensors will be needed, firstly to ensure the observability of the largest area, but also
to ensure the observability in all the smaller areas.

The study of observability and reconstructibility will be carried out on a single
forest topology. We choose the topology presented in Figure 5.8a which is a 100×100
cell lattice initialised with a density 3 = 0.5. This forest generated has a total of
5054 trees distributed in a total of 50 distinct zones (see Figure 5.8b for more details
on the sizes of these zones). In order to limit the number of operations (detailed
in section 3.3.2) to evaluate observability, we will limit ourselves to the study of a
single fire outbreak. At initialisation, there will be a maximum of one cell that is on
fire. As a result, the observability and reconstructibility study will be carried out on
5055 initial configurations: 5054 configurations for all possible fire outbreaks and 1
configuration without any fire outbreak.

(a) Forest topology

Area size Quantity
1 28
2 6
3 3
4 6
6 1
7 2
8 1
16 1
20 1
4917 1

(b) Size and quantity of forest areas

FIGURE 5.8. Topology of the forest that will be used throughout this example. The forest is of size 100 × 100
and built with density 3 = 0.5.

As stated at the beginning of this section, we want to know the state of the system
in order to monitor the spread of the fire. Thus, if the time horizon required for
observability is too large, the state estimation is useless. In the previous section,
we estimated the average time of the fire at 108 iterations for a density 3 = 0.5.



112 I CHAP. 5 APPLICATION TO MONITORING OF COMPLEX SYSTEMS

We will choose a time horizon) = 30, this choice is arbitrary and can be adapted
according to the purpose of the monitoring. To perform the observability analysis,
we need to choose first the sensor network. The choice of the position or trajectory
for the sensors in the network remains an open problem (and not very well studied
in the case of mobile sensors). The aim of this example is not to give a solution for
forest fire monitoring, but to show that the methods presented in this thesis can be
important tools for fire monitoring. In this sense, we will use a network of 150 static
sensors placed randomly (see Figure 5.9a) on the trees in the forest (more details on
the credibility of this type of sensor in remark 5.1). We will discuss possible sensor
placement methods with more details towards the end of this section.

Remark 5.1. The choice of this kind of sensor is not necessarily irrelevant for forest
firemonitoring. Indeed, the objective of these sensors is not tomeasure the 4 different
states of the system but only the transient state of the fire. The only possible change
of state is from tree to burnt tree through the state of burning tree. If the sensor detects
fire, we know that all previous states were tree and that all subsequent states will be
burnt tree. We can imagine that these sensors are similar to smoke detectors, and as
soon as the sensor detects fire, it sends a message to the state estimator which takes
into account the measurement. Thus, even if the sensor does not survive the fire, this
will not impact the state estimation because once the burning tree state is measured
all the following states are identical. This type of sensor can also be cost-effective
compared to the use of satellite imagery or heat-resistant mobile sensors.

(a) Sensor Map (b) Observability/Reconstructiblity Map

FIGURE 5.9. Map of the sensor network and the non-observable and non-reconstructible configurations. The
non-observable configurations are shown in red and the non-reconstructible configurations in blue.
Note that a non-reconstructible configuration is necessarily non-observable (see section 2.3.3).

By evaluating the observability and reconstructibility with algorithm 1 for the
sensor network and the time horizon) = 30, we realise that out of the 5055 initial
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configurations 527 are non-observable and 117 are non-reconstructible. By rep-
resenting the configurations by the position of the fire at the initialisation, we can
represent on the lattice the position of the non-observable and non-reconstructible
cases (see Figure 5.9b). Firstly, we immediately notice that all non-reconstructible
configurations are located in small areas of the forest that do not have any sensors.
This means that the large area of 4917 cells is reconstructible for a time horizon
) = 30. Then, the large concentration of non-observable configurations (especially
in the right bottom corner) is justified by a low concentration of sensors in this area.
A more efficient coverage of the sensors could have solved this problem.

The observability and reconstructibility evaluation for the 5055 configurations
takes only a few dozens of seconds1. Without any simplification on the initial con-
ditions, the number of initial configurations to evaluate amounts to 410000. Even
knowing the topology of the forest and evaluating all possible cases (i.e. each non-
empty forest elements can be either a tree, a burning tree, or a burnt tree), the number
of configurations is far too high (35054) to be considered. For systems of this dimen-
sion, the use of simplification in the number of initial configurations is necessary to
evaluate observability due to the exponential complexity.

Now that we have evaluated the reconstructibility, we can implement the state
estimator as presented in section 3.3.3. Hence, the initial state of the state estimator
Ĝ0 will be composed of the 5055 initial configurations used for the observability and
reconstructibility evaluation. In the case where a configuration is not reconstructible,
then there will be no convergence to a single current configuration. However, as
all non-reconstructible configurations are non-reconstructible because there are no
sensors in those areas, this means that they will be mistaken for an absence of fire. As
the isolated areas are small, the total error will be small. Then, to be able to compare
with synchronisation later on, we will study the evolution of the error as a function
of time for this estimator. The estimated state of each cell will be calculated from
the majority of the state of that cell over all current configurations present in ĜC . For
example, if for a given cell 28 , 40% of the configurations in ĜC have the tree state for
that cell (BC (28) = 1) and 50% have the burnt tree state (BC (28) = 3) and the rest have the
burning tree state (BC (28) = 2), the estimated state of that cell will be burnt tree as it is
the majority. In Figure 5.10, we have plotted the average error of the state estimator
as a function of time. The error increases until C = 5 and then starts to decrease
until it reaches a fixed value at C = 29. The starting time concerns the propagation
of the fire before the sensors detect the fire, which is when the number of possible
configurations is greatly reduced. The value at C = 29 is not zero (but n29 = 2.94−5)
because of the 2.3% of non-reconstructible configurations.

To place the sensors correctly, it is not necessary to study the whole forest, but
the individual areas. Indeed, as fire cannot spread from one area to another, each area
1The simulations were performed on a personal computer using Matlab without an y particular optimisation of algorithm 1.
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FIGURE 5.10.Evolution of the normalised synchronisation error as a function of the time for the state estimation
of the sensor network presented in Figure 5.9a. The mean is computed through 103 simulations.

can be considered as independent. Thus, the observability and reconstructibility of
each zone can be ensured independently and, in the same way as for decentralised
observability, the observability of the system is the combination of the observability of
each zone. Therefore, at least one sensor per zone is required. However, one question
arises as to the interest of such a method. Indeed, the objective is to monitor the
propagation of the fire, but if the fire breaks out in a very small area, there will be
no propagation over the entire forest. Therefore, the minimal area to be measured
depends directly on the objective of the monitoring. Should any fire be detected in
the forest? Should the spread of the fire be measured in order to fight it?

At first glance, the placement of the sensors seems relatively simple. Indeed, by
using randomly placed fixed sensors, we are able to ensure reconstructibility for a
large majority of the lattice, 97.7% of the initial configuration are reconstructible.
This is largely explained by the property of this class 2 CA for which three quarters
of the states in S are absorbing states. If in our case, we wanted to ensure observ-
ability then we would have to spend more time on sensor placement. In that case,
placing the sensors randomly or by trial and error would appear to be inefficient. We
could use a heuristic sensor placement methods such as the Monte Carlo algorithm
(Chakraborty et al., 2020; Castello et al., 2010), or evolutionary methods such as the
genetic algorithm (Liu et al., 2008) where the objective is to minimise the number
of unobservable or unreconstructible configurations. The management of mobile
sensor networks is much more complex than for fixed sensors, because in addition
to the initial position, the sensor trajectories must be carefully managed. Demetriou
and Hussein are working on coordination methods for mobile sensors in the con-
text of observation (Demetriou and Hussein, 2009; Demetriou, 2010). Decentralised
methods of coordination could also be used, such as the multi-agent systems used
by Schlotterbeck et al. (2016) for forest fire monitoring. In the latter, the observa-
tion method used is more related to synchronisation than to observability, but the
observability criteria could be included in the behaviour of the agents.
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In conclusion, in this section we have been able to study the observability and
reconstructibility for the trivial fire propagation model. The reduction in the number
of plausible initial configurations makes it possible to calculate observability and
reconstructibility for a CA with several thousand cells. In this example, we did not try
to place the sensors in such a way as to solve the problem of monitoring the spread
of a forest fire. However, the simplicity of the model makes it possible for recon-
structibility with a random placement of static sensors. In the next section, we will
study synchronisation. The simulations will be done with the same number of sensors
and on the same forest topology in order to be able to compare the performances of
two observation methods.

5.2.3 Synchronisation

The objective of this section is to use the results of chapter 4 on CA synchronisation
for monitoring the propagation of a forest fire. For this purpose, we shall use the
same hypotheses as for the previous observability analysis, i.e. the forest topology
is known and the fire can only start in one of the cells. We shall be able to compare
the performances of the usual synchronisation and the optimised synchronisation
for low initial errors. We will start by augmenting the trivial fire propagation model
presented in Figure 5.3 to better fit the use of synchronisation as a state estimator.

Contrary to what we did in chapter 4, the replica and the driver will not be ini-
tialised randomly but with the forest topology presented in Figure 5.8. This will allow
us to compare more easily the results of this section with those from the previous
section. Thus, only the position of the fire outbreak will be randomly initialised
(among the 5054 possible positions). For each simulation, we will use a sensor net-
work consisting of 150 randomly initialised sensors. By default we will use random
synchronisation but we will present the performances of different types of sensors
thereafter. The results on the synchronisation will be studied statistically through
the average of 104 simulations. In addition, as the empty cells state values cannot
change, the normalised synchronisation error will be calculated with respect to the
number of cells whose state can effectively change. Therefore, in the calculation of
the normalised synchronisation error (4.4), # will be taken as # = 5054 instead of
# = 10000.

The fire spread model shown in Figure 5.3 is a simple way to represent the spread
of a forest fire. We have also seen that it allows to cope with different parameters by
playing on the density of the forest and the shape of the neighbourhood. However,
this model is not well adapted for synchronisation purpose because its absorbing
states do not propagate. Indeed, if a coupled cell measures a cell with the burnt tree
state, then this cell state will be copied to the same cell in the replica. As a burnt tree
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is measured, this means that fire was present on this cell not so long ago and that
its neighbours are either burning or burnt. It is not possible for a burnt tree to be
directly adjacent to a tree because we have not implemented fire extinguishment and
there are no burnt tree cells in the initial configuration. However, with the current
model, the burnt tree that was just measured will not impact the neighbouring cells
of the replica even though we know that the neighbouring cells are necessarily burnt
or burning. Therefore, we will augment the replica model so that a tree cell next to a
burnt tree cell becomes a burnt tree cell, as shown in Figure 5.11.

FIGURE 5.11. Diagram of the state changes of augmented trivial fire propagation model.

In Figure 5.12 we show the evolution of the normalised synchronisation error
for both models. For each simulation, the sensors were positioned identically for
both models. The normalised synchronisation error of the augmented model is
significantly lower (i.e. 66% lower) than the error for the classical model. The error
starts to decrease earlier in the augmented case (at C = 10, compared to C = 17 for
the classical model) due to the propagation of the ash, so that the replica can start
to synchronise as soon as burnt trees are measured. On the other hand, we notice
that perfect synchronisation is not reached in the time horizon) = 100 for any of
the two models. The error for the augmented model is really low compared to the
classical model (n100 = 3.94−5 for the augmented model and n100 = 6.04−4 for the
classical one). It is not until C = 150 that the classical model reaches such a low error.
Like in the previous section, it is necessary that all isolated areas are measured. In
that sense, the augmented model does not provide a more efficient way to measure
these isolated parts of the CA. However, measuring only one burnt or burning cell
from these isolated parts is enough.

Aswe have seen in chapter 4with Figure 4.5 and Figure 4.6, the type of sensor used
for the coupling of the cells is of a great influence on the synchronisation performance.
This difference also depends largely on the system we are studying. For this purpose,
we will study in the case of the forest fire spread for 3 types of sensors: fixed sensors,
mobile sensors and random sensors. We had already noted that the random sensors
were mobile sensors with a speed largely higher than the dynamics of the system,
therefore, we will study mobile sensors with relatively low speeds. We will study two
sensor networks with mobile sensors. At each iteration, the sensors will move to a
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FIGURE 5.12.Evolution of the normalised synchronisation error as a function of the time for the classical and
augmented fire propagation model. The mean is computed through 104 simulations.

valid cell (i.e. not an empty cell) randomly chosen in its range of motion. For this
study, we will use two mobile sensor networks, one with a speed of 1 and the other
with a speed of 2. A speed of 1 corresponds to the speed of propagation of fire. To
compare the performance, the four sensor networks will be initialised in the same
way, the 150 sensors will have a random position which will be the same for the four
sensor networks. Figure 5.13 shows the average synchronisation error for these 4
sensor networks with the classical model and the augmented model for the replica.

(a) Classical Model (b) Augmented Model

FIGURE 5.13.Evolution of the normalised synchronisation error as a function of the time for the classical and
augmented fire propagation model. The mean is computed through 104 simulations.

For the classical model (see Figure 5.13a), the fixed sensor network performs
best, both with respect to the time at which the error starts to decrease and to the
error value at C = 100. The other three sensor networks have approximately the
same time for the error to decrease and the same final value. The difference between
the mobile and the random sensors is the growth of the synchronisation error at
the beginning which is 25% lower for the random sensors. With a high speed of
movement, the random sensor network can scan the whole lattice and measure more
cells, even if these cells are mostly trees and burnt trees. The performance of the fixed
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sensor network is explained by the non-displacement of the sensors. Indeed, when
the front progresses on the lattice, the mobile sensors can skip a cell and measure
ashes before measuring fire, this cannot happen with fixed sensors. They will never
measure ash before measuring fire. This also explains why the performance of the
fixed sensor array is identical regardless of the model used. With the augmented
model (see Figure 5.13b), the mobile and random sensors benefit from the model
augmentation because they can measure ashes before fire. In addition, the faster they
move, the further they canmeasure burnt trees from their initial position. Comparing
the two mobile sensor networks, it can be seen that increasing the speed increases the
synchronisation performance. Furthermore, as the random sensors can be considered
as mobile sensors with a very high speed, it can be easily conjectured that the random
sensor network is the limit of the mobile sensor network when increasing the speed.
Thus, without adding any additional behaviour, the combination of augmentedmodel
and random sensor network seems to be the most suitable to solve this problem. It is
also important to note that if we want to use the optimised synchronisation, it works
when the sensors are moving fast. If they are too slow, they will not be able to reach
the error area before the fire has spread on a large part of the lattice, which makes the
optimised synchronisation useless.

In section 4.4.3, we presented a method of coordinating the sensor network when
the initial error is small. We were able to apply the results to the fire propagation
model by adding a dimension to the lattice. Therefore, the error propagation no longer
has a triangular shape but a pyramidal shape with a square base (because this is the
shape of the neighbourhood). The height of the pyramid represents the time. At each
iteration, the error can propagate to 8 other cells (see Figure 2.1b for the shape of the
neighbourhood), but to only 1 in each direction (including the diagonals). By making
this slight change, we are able to apply the optimised synchronisation method to the
forest fire propagation model. In Figure 5.14 we have plotted the average evolution
of the normalised synchronisation error for the classical model and increased using
the classical and optimised synchronisation (presented in section 4.4.3). Figure 5.15
shows the same error but on a semi-log scale for amore detailed study of the evolution
of the error.

Firstly, we notice that the time at which the error starts to reduce is reduced,
the type of model used seems to have no impact when used with the optimised
synchronisation. The time is C = 5 for the synchronisation and C = 10 and C =

17 for the classical synchronisation with respectively the augmented and classical
model. This decreasing time is the same as for the use of state estimation with
reconstructibility (see Figure 5.10), but we will compare the two methods in more
detail in the next section. Then, we notice that the decrease of the synchronisation
error is stronger with the use of the optimised synchronisation (which is even more
importantwhenpairedwith the augmentedmodel), this can be seen verywell in Figure
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FIGURE 5.14.Evolution of the normalised synchronisation error as a function of the time for the classical and
augmented fire propagation model and the classical or optimised synchronisation. The mean is
computed through 104 simulations.

5.15, where the decrease is linear for the classical synchronisation and exponential
for the optimised one. However, the impact of the optimised synchronisation is lower
when the time increases. At C = 20 the decrease becomes linear similar to the one
using the classical synchronisation. The use of the augmented model results in a 17%
faster error decrease, which explains why the error of the augmented model with
the classical synchronisation catches up with the classical model with the optimised
synchronisation (at C = 97). On the other hand, none of the four configurations
provide a null error at C = 100. Finally, it can be concluded that the use of the
augmented model with optimised synchronisation seems to be the most suitable for
monitoring, as the rapid reduction of the synchronisation error provides a faster
information on the fire propagation.

FIGURE 5.15.Evolution of the normalised synchronisation error on a semi-log scale for the classical and aug-
mented fire propagation model and the classical or optimised synchronisation. The mean is com-
puted through 104 simulations.
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As in the case of rule R30 (see Figure 4.20b), the synchronisation error with the
augmented model and the optimised synchronisation at time C = 100 is not perfect
because there are a number of simulations (1.9% at C = 50, 0.63% at C = 75 and 0.17%
at C = 100) where the error is non-zero. In 70% of the cases, these are small errors
that group fewer than 10 cells. To compensate for this, the coordination should be
improved and the areas should be measured in a regular and balanced way. This will
ensure that the fire front is detected sooner and the earlier it is detected, the more
effective the optimised synchronisation is due to the error zone size increasing with
time. To enable good sensor management, Schlotterbeck et al. (2016) use a set of
forces to ensure that the sensors are evenly distributed over the space. This method
could be adapted to this model by making the empty areas have a repulsive force as
borders can have. Other methods such as fair space division have been studied in
(Plénet et al., 2020b) allowing sensors to move randomly but only within a given area.
In this way, the sensors share the space, but can also concentrate when the error is
detected so that optimised synchronisation can be applied.

In this section, we have been able to develop an efficient state estimator using
synchronisation. To do this, we had to augment the replica model to take into account
a model-specific phenomenon. We also studied the types of sensors and concluded
that the use of the augmented model with random sensors was the best performing
pair. Finally, we implemented the optimised synchronisation presented in chapter 4
for the monitoring of forest fire spread. In the next section, the last one concerning
the forest fire study, we will compare the results of the state estimator presented in
this section with the one presented in the previous section.

5.2.4 Conclusion

In the previous two sections, we have developed two state estimators. The first one
is based on reconstructibility while the second one uses synchronisation. In Figure
5.16, we have represented the average evolution of the errors in both cases. It is
immediately noticeable that the performances are similar, the synchronisation admits
a faster decrease of the error between C = 5 and C = 15, but has a slightly higher error
at C = 30. In the case of synchronisation, this error will continue to decrease as more
measurements are taken by the sensors. On the contrary, the error in the case of state
estimation with reconstructibility will be stable. In both cases, these errors represent
a small portion of the simulations that have low error rates. However in the case of
synchronisation this error may be over the large, connected, forest area.

Although the average performance of both estimator is very similar, the two state
estimators are very different. The first one, based on reconstructibility, uses a fixed
sensor network, so it could be improved to make the sensors move and measure
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FIGURE 5.16.Evolution of the normalised synchronisation error for the augmented/optimised synchronisation
of Figure 5.14 and the state estimation of Figure 5.10.

isolated areas. However, the state estimator algorithm is much more algorithmically
heavy as it requires the simulation of several thousand configurations simultaneously.
On the other hand, the synchronisation uses a network of mobile sensors with the
presence of coordination (optimised synchronisation). The choice of one method
or another will depend on the types of sensors available and the computing power
available for the state estimator. On one hand, the characterisation of reconstructibil-
ity is more interesting as it ensures that the state will be reconstructed correctly.
However, as long as the state estimator is not error tolerant this method cannot be
applied in consideration of real scenarios. In addition, reconstructibility must be
assessed for every small variation in the system, including wind, forest topology,
etc. On the other hand, synchronisation, provides more freedom in coordination as
reconstructibility does not need to be verified. It offers an easier framework to use
decentralised coordination method such as multi-agent systems or wireless sensor
network. The study of synchronisation through statistics must be done with care to
avoid scenarios where the error does not synchronise at all.

With this example, we were able to present a method for setting up a state estima-
tor. We started by making a trivial model of fire propagation. Then, we were able to
study its observability and reconstructibility as well as the synchronisation. We were
able to compare the two estimators in terms of performance and the advantages and
disadvantages of each. In the next two examples, we will address notions not used in
this example, such as the decentralisation of the observation or the observability of
the ACA.
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5.3 MONITORING OF A ROAD NETWORK THROUGH A TOLL BOOTH

In this example we will study the observability and reconstructibility of a road traffic
model. We plan to use fixed sensors as these are already present on the road as radar or
road tolls. Several road traffic models have been developed since the 1970s, the most
famous being the ECA R184. However, the lack of granularity in traffic modelling
has led to the use of other types of models.

Nagel and Schreckenberg (1992) propose a specific traffic model for motorways
by adding the notion of speed. With this model, they manage to model typical traffic
behaviours such as traffic synchronisation or wide moving jams. Several years later,
Knospe et al. (2002) extended this model to a two-lane road. Other models are
proposed, especially for city traffic where the modelling is based on the presence of
traffic lights. With a CA model, Brockfeld et al. (2001) propose to optimise traffic
lights to maximise traffic in cities.

Usually, a road has unidirectional dynamics in the direction of traffic, in the case
where there are several lanes, each of these have little interaction with one another.
We could therefore conveniently apply observability or reconstructibility because
of the few boundary cells. However, the complexity of this method requires the use
of a small number of cells and states, which is why we will study the simplest traffic
model, the ECA R184.

5.3.1 Presentation of Wolfram Elementary Rule R184

R184 is one of the most used of Wolfram’s elementary rules. It has been used in
many fields to model physical systems such as traffic flows (Maerivoet and De Moor,
2005) and the particle deposition (Krug and Spohn, 1988). As with all ECA, R184
is a boolean, one-dimensional, deterministic CA but there are a number of variants
of this rule. Rosenblueth and Gershenson (2011) augmented the model to simulate
traffic light intersections. The cells of the intersection change their rule as a function
of time to allow vehicles to pass or not. This method will be presented in detail in
section 5.3.3 when we study the road network of a city. Higashi et al. (2021) have
transposed the R184 rule to Fuzzy Cellular Automata, which allows them to have
a car density rather than a boolean value. Nishinari and Takahashi (1998) showed
that R184 is a special case of the discretisation of the Burgers equation, a partial
differential equation used for modelling gas dynamics, acoustics or road traffic. But
finally, we will focus on the simple case of the ECA R184 for the moment.

In R184 as a traffic model, the state of the cells represents the presence, or not,
of a car as shown in Figure 5.17. All cars move in the same direction, in this case to
the right, and they can only move forward if they have an empty space in front of
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FIGURE 5.17.Wolfram elementary rule R184 interpreted as a simulation of traffic flow. Each 1 cell corresponds
to a vehicle, and each vehicle moves forward only if it has open space in front of it. Image from
David Epstein, English Wikipedia.

them. Therefore, to have a continuous flow of cars, you need a maximum of # /2 cars
for a lattice of # cells otherwise traffic jams will appear. On Figure 5.18, we present
two simulations of the CA R184-100-PB, in the first case, the traffic jam (in black)
disappears because the road is not saturated. In the second case, on the contrary, the
traffic jam only moves in the opposite direction of the cars.

(a) R184-100-PB with 46 cars (b) R184-100-PB with 64 cars

FIGURE 5.18.Example of the evolution of R184-100-PB for different numbers of cars on the network. The dense
black parts represent traffic jams. Time is going down on the vertical axis.

On the opposite to what we were able to do in the previous example, we cannot
make simplifications on the initial configurations of the system. The number and
position of vehicles is unknown at the initialisation. Because of this, we cannot study a
CAwith more than a dozen cells. Therefore, we will study the ECAR184-10-PB. The
periodic boundary ensures that there are always cars in the system, the cars leaving
the system are also entering it at the other end. Thus, using definition 2.1, the CA can
be defined as :

• L = J0; 9K

• S = {0, 1}
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• N(28) = {28−1, 28, 28+1}, with the periodic boundaries conditions 2−1 = 29 and
210 = 20.

• 5 : BC (N (28)) ↦→ BC+1(28) = BC (28−1) ⊕BC (28) · [BC (28+1) ⊕BC (28−1)] , with respect
to the modular arithmetic of S as presented in eq. (2.6).

Now thatwe have definedCA,we can study its observability and reconstructibility.
We will also use decentralised reconstructibility in order to increase the size of the
road we can monitor. Then, in the last section, we will extend this model to have a
2-dimensional road network with intersections in order to study its reconstructibility.

5.3.2 Study of Observability and Reconstructibility

We will study the observability and reconstructibility for the ECA R184-100-PB
presented in the previous section. As this CA is non-linear, we will use the results
from section 3.3. However, as we are studying all initial configurations and it is not
very large, we will use the matrix approach presented in section 3.3.1. The matrix
! of the transition function � is of size 1024 × 1024 and this is quite a reasonable
size for doing multiplication operations. We did not construct the matrix ! with the
methods using the semi-tensor product, but as an adjacency matrix, i.e. by evaluating
which configuration BC+1 corresponds to � (BC ).

This CA poses another problem regarding observability: it cannot be evaluated
with few sensors. Indeed, to differentiate the two initial configurations presented
in Figure 5.19, it would be necessary to observe 2 of the 3 cells that are non-zero
among the two initial configurations. This problem can be shifted over the whole
CA and it would thus be necessary to place a sensor every two cells to resolve this
issue. Conversely, this convergence of two initial configurations does not pose any
difficulty with respect to the reconstructibility. Because of this, we will not try to find
a sensor network that ensures the observability but only the reconstructibility.

(a) Configuration 0010100000 (b) Configuration 0001100000

FIGURE 5.19.Evolution of R184-10-PB for two similar initial configurations. Time is going down on the vertical
axis.
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We have the intuition that reconstructibility can be provided by a single sensor,
wherever it is. Indeed, because the system propagates in one direction only, a sensor
could see all the non-zero states pass and deduce their future positions. To carry
on with the traffic flow analogy, this sensor could be a tollbooth which, at a certain
moment, measures all the cars. However, as our objective is to study a large road
network through decentralisation, we will place, as shown in Figure 3.5, a sensor at
each end of the lattice. Thus, by measuring the 20 and 29 cells with fixed sensors, the
sensor network can be defined as :

• L@ = {0, 9}

• � : \C := � (BC ) =
[
BC (20)
BC (29)

]
To verify the reconstructibility of the CA, we will first construct the observability

matrix $) from the matrix ! and the matrix of � . Then observability and recon-
structibility are respectively verified with theorems 3.5 and 3.6. As we cannot apply
the Cayley-Hamilton theorem, we start by assessing the observability and recon-
structibility with a minimum time horizon) = 0 and will increase it gradually until
one of them is verified. If neither the observability nor the reconstructibility is veri-
fied by) = 20 we will stop here and look for another sensor network. In addition, to
the evaluation of observability and reconstructibility, we count the number of unob-
servable and unreconstructible configurations and plot this number as a function of
the time horizon) in Figure 5.20. After a few seconds of simulation, we find that the
system is reconstructible (but not observable as we expected) from) = 13. Increasing
the observation horizon does not reduce the number of unobservable configurations
beyond 75% of the total number of configurations.

FIGURE 5.20.Percentage of unobservable/unreconstructible configurations as a function of the time horizon)
for the ECA R184-10-PB.
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Finally, we aim to extend our model to observe a larger road network. For this, we
intend to observe a CA of 1, 000 cells but the algorithmic complexity of algorithm 1
is far too important. Instead, we plan to divide the CA of 1, 000 cells into several
sub-observers of equal, smaller sizes. However, the complexity of the decentralised
reconstructibility presented in section 3.4.2 is far too important to for a sub-observer
of size 10. Indeed, with a time horizon) = 13, there will be 413 possible boundary
trajectories. We must use a sub-observer of smaller size in order to decrease the
reconstructibility time horizon. Therefore, we will use 200 sub-observers with 5 cells,
each of themmeasured by the sensor topology shown in Figure 3.5, one sensor at each
end of the lattice. Similarly to what we have done for the study of reconstructibility,
we have no constraint on the time horizon ) , except that it must be larger than
5, the time needed to ensure reconstructibility if we consider the previous system
with only 5 cells. Figure 5.21 shows the evolution of the percentage of boundary
trajectories that are not reconstructible, i.e. boundary trajectories for which the CA is
unreconstructible.

FIGURE 5.21.Percentage of unreconstructible boundary trajectories as a function of the time horizon ) for the
ECA R184-5-UB.

The sub-observer is never reconstructible for a time horizon shorter than 12.
Beyond that, the time to check reconstructibility is too long for our machine. As
an attempt to still ensure reconstructibility, we have added a sensor in the middle,
the 22 cell, of the sensor network. Even though the number of unreconstructible
trajectories is lower, the system is still not reconstructible. The reason for this is that
if the right-end boundary cell is in the 1 state for the entire duration, then the cars
in the CA cannot move out of the lattice. It is therefore impossible to measure all
of them and we cannot distinguish between the 00001 and 00011 configurations.
And this is true for a time horizon as large as it is. To achieve reconstructibility, we
would need to be able to detect when a large traffic jam is forming and optimise the
placement of the sensors to ensure that we measure the blocked cars.

As a small part of the configurations are unreconstructible, we could do as in
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the previous example and perform a state estimator and consider that it will work.
However the unreconstructible configurations represent the whole lattice, not just
small isolated areas as in the fire propagation model. The state of the sub-observer
(except for themeasured areas)will be unknown. With the use ofmeasured boundaries,
this error will not propagate and can be identified by the state estimator if the state
does not converge. If the boundaries were not measured, the error would propagate
throughout the system and affect the proper functioning of the observation. In this
case, it would be necessary to think about implementing error management.

This method with the sub-observers allowed to ensure the reconstructibility for
the whole CA which would have been impossible without it. Indeed, with 1000 cells
the number of operations to evaluate the reconstructibility is 21000 with the usual
method against 210 · 22∗7 = 224 for the reconstructibility with the sub-observers.

5.3.3 Extending the Model to New York Traffic

The model studied in the previous section represents a straight road without any
particular signalling or slowing down (other than that caused by overloading the
network). Rosenblueth and Gershenson (2011) have added the possibility of having
intersections governed by traffic lights. Their model uses only elementary rules,R184
for traffic roads and R252 and R136 for traffic lights. As the traffic lights change
with time, so do the cell rules (see Figure 5.22). The central cell does not change its
rule but its neighbourhood depends on the time, it always contains the two cells that
are not restricted by the lights. As the transition function will change over time, the
evaluation of observability and reconstructibility is time-dependent. Indeed, the$)
matrix will be different depending on the starting time, which was not the case with
a time-invariant transition function.

(a) Cars move horizontally (b) Cars move vertically (c) Evolution of the CA for a single direction.

FIGURE 5.22.Elementary Rule of the cells according to the traffic lights.

For this example, we will use the lattice shown in Figure 5.22, i.e. with 13 cells.
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We will use periodic boundaries, the vertical and horizontal lines will be looped on
themselves. As far as the sensors are concerned, we will use 5 of them: one on each
end and one in the centre, on the intersection.

FIGURE 5.23.Percentage of unobservable/unreconstructible configurations as a function of the time horizon)
for the intersection CA.

In the sameway as before, we will evaluate the observability and reconstructibility
using the method presented in section 3.3.1. Due to the large number of configura-
tions, we will use the sparse matrix representation for the !matrix. In Figure 5.23, we
show the evolution of the number of unobservable/unreconstructible configurations
as a function of the time horizon. We see that the system is unreconstructible from
) = 30 but not observable. Given the time needed to ensure reconstructibility, we
will not study decentralised reconstructibility.

If we ever manage to ensure decentralised reconstructibility for both the intersec-
tion and the road (see previous section), then we would be able to build a square road
network, similar to the one in Manhattan. Indeed, observability and decentralised
reconstructibility work as long as the values of the boundaries are provided to them,
no matter which CA is next door. This means that a modular state estimator can be
constructed from elementary blocks. The time horizon for the reconstructibility of
the system will be the longest horizon of all sub-observers.

5.3.4 Conclusion

In this example, we have studied R184 and in particular its interpretation as a road
traffic model. We were able to study its observability and reconstructibility with the
theorems 3.5 and 3.6 because there were no constraints on the initial conditions. The
observability could not be verified because it requires too many sensors. Once the re-
constructibility was verified, we wanted to verify the decentralised reconstructibility
in order to increase the size of the studied route. For this purpose we want to divide



5.4 RANDOM NUMBER RECONSTRUCTION J 129

the lattice into sub-observers of 5 cells. However, the reconstructibility could not be
verified for the chosen time horizon and can never be verified with the chosen sensor
network. The use of toll booths (i.e. static sensors at the beginning and end of the
road) cannot ensure reconstructibility. A different sensor network with one or more
sensors, mobile or not, between the sensors at the ends must be used. The purpose of
these additional sensors would be to measure the state of the traffic jamwhen the tolls
are no longer effective. In addition, we could put conditions on the values taken by
the borders so that they are more faithful to reality. A traffic jam cannot last forever.

Subsequently, we chose to study an extension of the model proposed by Rosen-
blueth and Gershenson (2011) which allows to model an intersection managed by
road traffic. We were able to verify the reconstructibility of this CA using 5 sensors.
This intersection model allowed us to demonstrate the use of reconstructibility for
a CA whose dynamics depend on time. In the end, if we had been able to verify the
reconstructibility of the two models studied, we would have 2 sub-observers that
would have allowed us to build a modular state estimator for a square road network
similar to that of New York.

5.4 RANDOM NUMBER RECONSTRUCTION

In cybersecurity, pseudo-random number generator (RNG) are a crucial element in
many applications (Marton et al., 2010). They are used to secure https connections
with SSL, to secure connections to wifi networks withWPA2 and many others. The
robustness of RNGdepends on both the probability distribution and the predictability
of the generator. It is evaluated using randomness tests which allow the quality of the
RNG to be assessed according to several criteria. Among these tests, the best known
are the Diehard tests (Marsaglia, 1996) and the TestU01 (L’ecuyer and Simard, 2007).
As a crucial element of cybersecurity, RNG are a source of several vulnerabilities that
are grouped under the term "Random Number Generator Attack" (Kelsey et al., 1998)
where the objective is to obtain information about the past or future generations of
random numbers.

Cellular automata randomnumber generators (CARNG)have beenwidely studied
for more than three decades (Chaudhuri et al., 1997). The local, simple and regular
interactions of CAmake them a goodway integrated at large scales. Initially, CA RNG
are one-dimensional (Chaudhuri et al., 1997; Hortensius et al., 1989; Tsalides et al.,
1991) but CA with two or more dimensions turn out to generate random numbers of
better quality Chaudhuri et al. (1997); Tomassini et al. (2000) but are more complex to
set up. For that, different algorithms have been developed to build "automatically"
these CA RNG (Tomassini et al., 2000).

In this example, we will use the observability of affine cellular automata (ACA) to
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reconstruct present, past and future random numbers using information obtained by
a random number generator attack. The objective of the attack is to obtain partial
information on the state of the CA RNG that will subsequently be used to apply the
results of section 3.2. The nature of the attack, as well as the method used, does not
matter in the context of applying the Kalman criterion, only the information obtained
from the attack is important. The attack will be seen as a sensor that observes the state
of the random number generator and therefore represented by the output operator
� which will depend solely on the information obtained by the attack. Of these three
examples, the first will use knowledge of a single random number to deduce past and
future numbers, the second will use information about a single bit of the random
number and the last will be based on the binary parity of the generated random
number. Throughout these examples, we will use the Tomassini et al. (2000) 2D CA
RNG which we define in the next section.

5.4.1 Cellular Automata Random Number Generator

For this example, we will study a CA RNG generating high quality random numbers
proposed by Tomassini et al. (2000). The quality of the random numbers generated
by this CA RNGwas evaluated according to the Diehard tests defined by Marsaglia
(1996) whichwere all passed successfully. This CARNG is a two-dimensional Boolean
CA that generates a number consisting of 64 hexadecimal random digits. The CA
generates a random number every 4 iterations but for the simplicity of the example,
we will consider that it generates a 64 bits random number every iteration rather
than a 64 hexadecimal digits random number every 4 iterations.

The CA RNG is defined as follows:

• L = {0, 1, . . . , 7} × {0, 1, . . . , 7}

• S = {0, 1}

• N : 28, 9 ↦→ {28−1, 9 , 28, 9−1, 28, 9 , 28+1, 9 , 28, 9+1} with null boundaries so B (2−1) = 0
and B (28) = 0.

In their paper, Tomassini et al. describe three boundary conditions: cyclic, fixed
(full) and fixed (reduce). We can easily model fixed (full) and cyclic boundary condi-
tions but the reduced version requires to model an CA of 10 × 10 but only the 8 × 8
cells in the middle represents the random number. In our example, we will use the
fixed (full) version with a zero value at the boundaries.

The CA RNG of Tomassini et al is a hybrid CA, the local transition function
5 depends on the cell position. Figure 5.24 describes the transition function that
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rule 15rule 15

rule 63

rule 31

rule 47

FIGURE 5.24.A 8 × 8 hybrid CA RNG proposed by Tomassini et al. (2000). The colour of the cells represents the
transition function associated to this cell according to equation (5.3).

applies to each cell as a rule whose value is defined by the 6-bit string XCNWSEwhich
corresponds to the following transition function:

BC+1(28, 9 ) = - +� · BC (28, 9 ) + # · BC (28−1, 9 ) +, · BC (28, 9−1)
+ ( · BC (28+1, 9 ) + � · BC (28, 9+1)

(5.3)

Therefore, according to the previous generic transition function, the rules 15, 31,
47 and 63 correspond respectively to the transition functions :

• BC+1(28, 9 ) = BC (28−1, 9 ) + BC (28, 9−1) + BC (28+1, 9 ) + BC (28, 9+1)

• BC+1(28, 9 ) = BC (28, 9 ) + BC (28−1, 9 ) + BC (28, 9−1) + BC (28+1, 9 ) + BC (28, 9+1)

• BC+1(28, 9 ) = 1 + BC (28−1, 9 ) + BC (28, 9−1) + BC (28+1, 9 ) + BC (28, 9+1)

• BC+1(28, 9 ) = 1 + BC (28, 9 ) + BC (28−1, 9 ) + BC (28, 9−1) + BC (28+1, 9 ) + BC (28, 9+1)

Regardless of the rules number, the transition function (5.3) is an affine map.
Therefore every CA that respect Tomassini’s definition can be represented with the
state representation (2.12). However, as the CA RNG is hybrid we cannot construct
the matrix� as a Toeplitz matrix (see section 3.2.3). The "shape" of the matrix remains
the same but the value of the 08 change depending on the value of the rule (e.g. 00 is
the value of the bit�).

To construct these CA RNGs, Tomassinni et al. use a genetic algorithm with
random tests as fitness function. Moreover, the presence of large cycles is also a
guarantee of quality because it allows the generation of a very large number without
"looping". Hence, they are able to easily generate CA RNGwith different sizes that
generate good quality random numbers (from the point of view of DieHard tests).
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Additionally, the CA RNG presented in Figure 5.24 is reversible, which does not seem
to be a property sought by the authors but rather a consequence of the criteria of the
method used.

In the following sections, we will present two purely theoretical attacks which
aim to show a use of Kalman criterion. In each of the examples, we will briefly present
the attack and the associated output operator that reconstruct the state of the system.
However, the details of the calculations will not be presented due to the large number
of cells.

5.4.2 Regular Measurement Attack

In this first example, we study the observability of the CA RNG where the sensors
have partial information on the generated random numbers. The aim is to study the
observability when the sensor measures one bit of information on each iteration. We
could have used more information bits, which would have potentially decreased the
observability time horizon as a consequence of the Cayley-Hamilton Theorem. As
specified in the introduction of this section, we are not interested in the "physical"
method used to obtain the information on the CA RNG, for example this could
have been recovered using an intrusive hardware attack (Samyde et al., 2002) or
side-channel attack (Standaert, 2010).

To reconstruct random number stream, we need only one bit of information on
the random number at each time step. The measurement can be done on a single
digit (read digit as the position of the bit in the random number) or can change with
time. The only information needed is the position of the measured digit at each time
step. Therefore, we can create the operator�C which corresponds to the digit of the
random number (or the cell associated with this bit) measured at time C . The operator
�C is of the form :

�C =
[
0 . . . 0 1 0 . . . 0

]
, where the 1 corresponds to the measured bit.
Before assessing observability, we will check whether the output operator is

adapted for observation. As we specified in the previous section, Tomassinni’s CA
RNG are constructed to be reversible and therefore injective. From definition 2.7, the
injectivity of the CA guarantees that all output operators are suitable for observation.
Moreover, remark 2.3 specifies an equivalence between observability and recon-
structibility, so it will not be necessary to evaluate reconstructibility if observability
is not verified.

Then, we need to know the operators�C associated with the measurements~C and
from there construct the observability matrix$) over a time horizon 64. The system
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is observable (i.e. rank$) = 64) regardless of the bit measured in the static case as
well as for the different trajectories we have tried. However, it is not reasonable to
test all the possible trajectories (there are 6464 trajectories) so we will still have to
verify if the system is observable with the given trajectory. Using the corollary 3.1,
it is possible to find the initial generated random number (i.e. the state G0) and to
deduce the future generated random number until the CA RNG is initialised with
another seed (a pseudo-random generator process that consists of manually setting
the state of the CA RNG).

Furthermore, since we know that the CA RNG is reversible, it is possible to
deduce the previous states of the system. Indeed, the matrix� is invertible and given
the initial state G0 reconstructed using the Kalman criterion, we can express all states
G8 as: {

GC = �C · G0 + �C−1 · [
G−C = �−C · G0 − �−1C · [

where�−C is the inverse of� to the power C and �−1C =
∑C
:=1�

−:

In other words, once we have successfully obtained a random number, we are
able to deduce all future and past random numbers. In the next example, we deal with
the case where the sensors cannot obtain a particular bit but a property of the whole
number, the parity bit of the random number.

5.4.3 Parity Attack

The objective of this attack is to reconstruct the random number sequence using only
the parity bit of the random numbers. The parity bit is the binary sum of all the bit of
the number. With this method, it is possible to reconstruct the initial state even if the
random number information is not directly accessible. One method that seems to
be feasible is to correlate the energy consumption of the system with the memory
consumption (Standaert, 2010).

Regardless of the method used, we assume to have access to the binary parity of
the random number generated at each iteration. Therefore, the state of the system
can be represented by the following:


GC+1 = �GC + [

~C =

64∑
8=0

G8C

The sum uses binary modular arithmetic.
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The output operator�C associated with parity is a row vector composed of 64 1
which does not depend on time. From there, the observabilitymatrix can be computed
with ) = 64 and it is full rank matrix. The system is observable with the parity
measurement, which allows us to reconstruct the initial state as well as the past and
future states due to the reversibility of the CA RNG.

5.4.4 Conclusion

In those two examples, we have been able to reconstruct the random number stream
from the partial information about the random numbers. The information obtained
by making attacks on the random number generators is not described because the
reconstruction of the state is independent of these methods. These attacks vary
according to the hardware or digital support used by the CA RNG. The use of the
Kalman criterion is therefore added after the recovery of the information by the
attacks as a reconstruction of the random number stream.

The purpose of those examples was to show the usefulness of observability for
the reconstruction of a random number stream in a RNG attack context. Although
very efficient to reconstruct the random number stream, this method still have short-
comings: the dynamic of the CA RNGmust be perfectly known; the random number
seed (i.e. the state of the CA) must not be manually modified by the user during the
measurement; the CA RNG must not have non-linearity (which has been recom-
mended in (Meier and Staffelbach, 1989)). By implementing one of the above cases,
the application of the Kalman criterion for this CA RNG becomes impossible. The use
of a non-linear CA RNG is also possible because the number of cells is large enough
to not allow the use of the results of section 3.3.

5.5 CONCLUSION

In this chapter we were able to apply the observation methods of the thesis to three
concrete examples. The first one on a forest fire model, the second on a road traffic
model and the third on a random number generator.

In the first example we were able to apply and compare the two observation
methods presented in the thesis. The first one using reconstructibility and the second
one using synchronisation. The forest fire model chosen was very simple, but the
placement of the sensors to ensure reconstructibility and observability was not trivial.
It will be necessary to set up methods to place the sensors in order to avoid a trial
and error placement which takes a lot of time, especially considering the number of
sensors.
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The second example was a demonstration of the use of decentralised observability.
The example also aimed to illustrate how decentralised observability could be applied
to the construction of a modular road traffic network. However, we could not solve
this problem for the chosen road traffic model. The verification of decentralised ob-
servability or reconstructibility (or more generally of a CAwith unknown boundaries)
is more time consuming and complex than for other types of boundaries.

The last example served as an illustration for the observability ACA for the ob-
servation of a random number generator. In this example, we easily manage to
reconstruct the random number sequence from very partial information on the gener-
ated numbers. This state estimator can greatly facilitate the exploitation of a security
vulnerability. We have presented several suggestions to prevent this kind of attack by
making it impossible to use this reconstruction method.

The next and final chapter serves as a conclusion to the thesis. It highlights the
main contributions of the thesis and presents some ideas for continuing the work on
the observation of CA.





CHAPTER 6

Conclusions and Perspectives

The observation of natural phenomena is a crucial issue for the understanding of
the world around us, especially those with important spatial dynamics. In the in-
troduction, we have seen that cellular automata are good alternatives to PDE to
describe spatially distributed systems. This thesis lays the foundations for the obser-
vation of CA models, by presenting two profoundly different tools: observability and
synchronisation.

MAIN CONTRIBUTIONS

This thesis proposes 4 major contributions: the definition of observability for CA, the
generalisation of the Kalman condition for ACA, the adaptation of the observability
criterion of BN toCA, and the formalisation of the synchronisation as a state estimator.
In the following paragraphs, we will describe each of these contributions in more
details.

Firstly, we formalised the notions of observability, reconstructibility and adapt-
ability for cellular automata. Observability and reconstructibility have already been
defined for other types of systems (linear time invariant system, boolean network, etc.)
in the past. The contribution of this thesis lies in the transposition of these characteri-
sations to cellular automata. We have also described the compared injectivity, a special
form of injectivity with respect to another function which is intimately connected
to the reconstructibility. Then, we have formalised the notion of adaptability from
the work of Laschov et al. (2013) to derive a necessary condition for observability
that can be checked before the construction of the output sequence. This notion is
particularly important as it plays a direct role in the placement of sensors when we
wish to ensure observability.

Secondly, we generalised the Kalman rank condition as an observability crite-
rion for additive and affine CA. We proposed similar criteria for adaptability and
reconstructibility. These are not a condition on the rank, but respectively on the
kernel of the output or observation matrix. The former requires that the kernels
be disjoint and the latter requires the inclusion of the kernels. The observability
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and reconstructibility criteria are also completed by a corollary that provides the
possibility to reconstruct the initial or current state of the system from the output
sequence.

Thirdly, we have improved the observability and reconstructibility criteria of
Boolean networks by benefiting from the advantages of CA. This allowed us to de-
velop an algorithm that verifies both observability and reconstructibility for each of
the initial configurations. Unlike other methods, this algorithm can take into account
conditions on the initial configurations. This greatly reduces the algorithmic com-
plexity by providing the ability to evaluate observability or reconstructibility of CA
with a large number of cells. In the case where this reduction does not apply or does
not reduce the complexity sufficiently, we have implemented a method for decentral-
ising the observability analysis which provides a linearisation of the complexity by
dividing the problem into smaller problems. This method works practically only on
one-dimensional CA as it requires a large number of sensors for higher dimensions.

Lastly, we have formalised the synchronisation of CA as a state estimator. This ap-
proach is radically opposed to the previous one as we do not seek to check beforehand
if the observation will work but only to study statistically its performance. We have
also developed an optimised method that provides coordination of mobile sensors if
the initial error is composed of a single erroneous cell. In the forest fire propagation
example, the optimised synchronisation and the reconstructibility approach achieve
similar average observation performance.

This thesis lays the foundation for CA observation by providing definitions of
observation and two methodologies for state estimation. However, we are still a long
way from the deployment of a sensor network using cellular automata for monitoring
physical systems. We present hereafter the perspectives to continue this work. We
divide them temporally in the order in which we suggest they should be carried out.

PERSPECTIVES FOR SHORT-TERM RESEARCH

Extension to Continuous State CA

Many CA such as the fire model of Karafyllidis and Thanailakis describe the state of
the cells by a continuous value. This type of model has by definition a greater accuracy
of modelling than the finite state models. However, they do not fit the definition of El
Yacoubi and are therefore not taken into account in this work. The Kalman criterion
and the synchronisation still appear to be applicable. The former can be applied as it
does not require the finiteness of the state but of the number of variables, i.e. that the
lattice is finite. The synchronisation can be applied with continuous values but the
properties need to be verified.
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For the study of non-linear CA, it would be necessary, however, to seek inspiration
once again from classical control theory and its study of non-linear systems which
has been widely studied for several decades. Another alternative would be to quantify
the variable, this would provide, when the state is bounded as in the Karafyllidis and
Thanailakis model, a way to use fuzzy logic and thus use the results of this thesis.

Probabilistic Observability and Reconstructibility

At the end of Chapter 3, we introduced probabilistic observability and explained that
it might support the use of sub-observers on multidimensional CA. It is necessary to
study this since we have simply presented the idea and some definitions of probabilis-
tic observability. Furthermore, establishing criteria for probabilistic observability
and reconstructibility would provide a direct way to study probabilistic CA. Although
they are less used than deterministic models, they provide a means of modelling
features that are impossible for the deterministic one.

Controllability of Cellular Automata

In this thesis we studied the observability and reconstructibility of CA, but not the
controllability. Many applications combine the two, hence it is necessary to study this
issue. In addition, for linear time invariant systems these two concepts are decoupled,
i.e. they can be studied separately. It has already been studied by Dridi et al. (2020),
but it remains to establish the connection between the two so that a state estimator
can be made that is used for system control. The Kalman criterion can be applied in
the same way for controllability and it has also been studied for Boolean networks.
Bagnoli et al. (2012) have also studied synchronisation as a controller.

PERSPECTIVES FOR INTERMEDIATE-TERM RESEARCH

Error tolerance

Error tolerance is an essential element of the state estimator. Without it, a measure-
ment error or uncertainty in the model could result in the incorrect reconstruction of
the state. In classical control theory, state estimators are constructed to respect error
margins that guarantee a certain tolerance to error. In order to apply CA estimation
to actual problems, it is necessary to develop these notions of error margins for the
estimators presented in this thesis.
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Construction of a Robust State Estimator

In this thesis, we have presented the construction of a state estimator. However,
the choice in the position of the sensors is not an easy task. It would be necessary
to develop methods to automatically place the sensors in such a way as to ensure
observability. Adaptability could be used as a condition to do this. The choice of the
sensor network and the synthesis of the state estimator must also take into account
the error tolerance required for the chosen application.

PERSPECTIVES FOR LONG-TERM RESEARCH

Finally, the long-term objective of this research is the application to a real case.
This requires all the steps shown in this thesis, from modelling the system by a
cellular automaton, to the realisation of a robust state estimator. All this to allow the
monitoring of a complex system with a sensor network using a cellular automaton
model. In the case of a physical system, this requires additional specific knowledge,
for example in engineering for the construction of sensors.







APPENDIX A

Compared Injectivity

In this appendix we present the notion of compared injectivity, a notion close to clas-
sical injectivity. As discussed in section 2.3.3 on page 33, injectivity is to observability
what compared injectivity is to reconstructibility. This new notion of injectivity is
originally related to the notion of reconstructibility but we have chosen to define it
in this appendix to make it independent of the context of the thesis and to allow its
use to the widest possible audience.

This appendix is separated in three parts, the first one presents formally the
definition of compared injectivity, the second presents different properties, and the
last one proposes a method to verify the compared injectivity when considering linear
algebra.

In order not to confuse the term injectivity with compared injectivity, we will use
the term usual injectivity to refer to the classical definition of injectivity. First, we
will define some notations that we will use throughout this appendix:

• 5 : - → . the application 5 from- into .

• 5 (- ) the codomain of 5

• 83- the identity application on-

• .- the set of all application 5 : - → .

A.1 DEFINITION OF COMPARED INJECTIVITY

While the usual injectivity ensures the uniqueness of the antecedent for the codomain,
the compared injectivity ensures the uniqueness of another codomain for all ele-
ments of the codomain.

DefinitionA.1 (Compared Injectivity). The application 5 : - → . is injectivewith
respect to the application 6 : - → / if and only if :

∀G′, G′′ ∈ -, 5 (G′) = 5 (G′′) =⇒ 6(G′) = 6(G′′) (A.1)

A-1
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FIGURE A.1. The sets- ,. and/ are represented by the ellipseswith the black dots representing the elements of
these sets. The green and red continuous arrows represent the elements associated respectively
by the applications 5 and 6. The blue dashed arrows represent the links created by the compared
injectivity of 5 with respect to 6.

Directly, we establish that the usual injectivity can be defined as an injectivity
with respect to the identity 83- . Moreover, this new formulation allows to formulate
an injection between the two codomains, where each element of 5 (- ) is associated
with a single element of 6(- ) as on the Figure A.1. The compared injectivity can thus
be expressed as follows:

∀~ ∈ 5 (- ), ∃!I ∈ /, ∃G ∈ -,~ = 5 (G) and I = 6(G)

A.2 PROPERTIES OF COMPARED INJECTIVITY

Several properties exist concerning compared injectivity, notably the transitivity
property when one of the two functions is usually injective.

Proposition A.1 (Transitivity). If 5 is injective with respect to 6 and 6 is injective with
respect to ℎ, then 5 is injective with respect to ℎ.

Proof. Consider the applications 5 : - → . , 6 : - → / and ℎ : - →, . Since 5 is
injective with respect to 6 and 6 with respect to ℎ then the following two statements
are true.

∀G′, G′′ ∈ -, 5 (G′) = 5 (G′′) =⇒ 6(G′) = 6(G′′)
•• ∀G′, G′′ ∈ -,6(G′) = 6(G′′) =⇒ ℎ(G′) = ℎ(G′′)

Immediately, it is clear that:
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∀G′, G′′ ∈ -, 5 (G′) = 5 (G′′) =⇒ 6(G′) = 6(G′′) =⇒ ℎ(G′) = ℎ(G′′)

We can conclude that 5 is injective with respect to ℎ. �

Proposition A.2. If 5 is usually injective, then 5 is injective with respect to every appli-
cations 6.

Proof. Consider the applications 5 : - → . and 6 : - → / . If 5 is usually injective,
then 5 is injective with respect to 83- . Moreover, the following statement is true for
all 6 ∈ .- :

∀G′, G′′ ∈ -, G′ = G′′ =⇒ 6(G′) = 6(G′′)
Therefore, 5 is injective with respect to every application 6 ∈ /- . �

Proposition A.3. If 5 is injective with respect to 6 and 6 is usually injective, then 5 is
usually injective.

Proof. Consider the applications 5 : - → . and 6 : - → / . If 6 is usually injective,
then6 is injectivewith respect to 83- . Using the transitivity property (propositionA.1),
if 5 is injective with respect to 6 then 5 is injective with respect to 83- , therefore 5 is
usually injective. �

A.3 COMPARED INJECTIVITY IN LINEAR ALGEBRA

When we consider that the functions 5 and 6 are linear applications, it is possible to
check the comparative injectivity more easily.

Proposition A.4. Let � and� be the matrix of the two linear map 5 and 6. 5 is injective
with respect to 6 if and only if :

ker � ⊂ ker �

Proof. Consider the matrices � and� of the applications 5 : - → . and 6 : - → / .
Suppose that 5 is injective with respect to 6, then :

∀G′, G′′ ∈ -, 5 (G′) = 5 (G′′) =⇒ 6(G′) = 6(G′′)
⇐⇒ ∀G′, G′′ ∈ -, �G′ = �G′′ =⇒ �G′ = �G′′

⇐⇒ ∀G′, G′′ ∈ -, � (G′ − G′′) = 0 =⇒ � (G′ − G′′) = 0
⇐⇒ ∀G′, G′′ ∈ -, G′ − G′′ ∈ ker � =⇒ G′ − G′′ ∈ ker �
⇐⇒ ker � ⊆ ker �

�





APPENDIX B

Semi-Tensor Product

In this appendix, we will present in detail the construction of the logic matrix ! which
describes the dynamics of the Boolean network. We will start by presenting some
properties of the Semi-Tensor Product (STP) before applying this method to the BN
presented in chapter 3, the example is presented below in Figure B.1.

B.1 PROPERTIES OF THE SEMI-TENSOR PRODUCT

We present here three properties described by Cheng (2005) that will be useful for the
construction of the matrix !. The first two will be used as a pseudo-commutativity
and the last one will be used to reduce the exponent of a boolean variable.

Remark B.1. It is important to note that the matrices described by Cheng et al in
their articles are different from ours because of the changes we made as presented as
remark 3.2.

The STP has a pseudo-commutativity property when one of the two elements is
a vector, this will allow us to isolate the elements of the vector GC from the elements
of the matrix !. It is defined as:

Proposition B.1. Assume� ∈ "<×= is given. Let / be a column vector of size C . Then

/ n� = (�C ⊗ �) n / (B.1)

Next, we define swap matrices, they will be used to have a pseudo commutativity
between two vectors. They are defined as:

Definition B.1 (Swap Matrices). The swap matrix,[<,=] is an<= × <= matrix.
Its columns are labelled by (11, 12, . . . , 1=, . . . ,<1,<2, . . . ,<=) and its rows by
(11, 21, . . . ,<1, . . . , 1=, 2=, . . . ,<=). Then the element in the position ((� , � ), (8, 9))
is defined by:

F (� � ),(8 9) =

{
0, � = 8 and � = 9

1, otherwise

B-1
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From this matrix, we can define the proposition that allows us to invert two
vectors- and . .

Proposition B.2. Let - and . be two column vectors respectively of size< and =.

- n . =,[=,<] n . n - (B.2)

To calculate!, wewill need a reductionmatrix"A whichwill reduce the exponents
of the matrix"A� = �2. They are defined as :

"A =


1 0
0 0
0 0
0 1

 (B.3)

More generally, Cheng proposes in (Cheng and Qi, 2010, theorem IV.6) to con-
struct the matrix ! of the system (B.4) in a systematic way with the equation (B.5).

GC+1 = "1GC"2GC . . . "=GC = !GC (B.4)

! = "1

=∏
9=2

[
(�2= ⊗ " 9 )Φ=

]
(B.5)

where Φ: is defined by :

Φ: =
:∏
8=1

�28−1 ⊗
[
(�2 ⊗,[2,2:−8 ])"A

]
(B.6)

In the next section, we will calculate the ! matrix from the BN shown in Figure
B.1.

B.2 DETAILED EXAMPLE ON A SIMPLE BOOLEAN NETWORK

In this section, we will give an example of how we can calculate ! from the Boolean
expressions of the BN. We will use the example presented in chapter 3, it is described
in Figure B.1.

First, we will calculate the matrices"�,"� and"� . This is expressed from the
logic matrices of the elementary operators which correspond to their truth tables.
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(a) Boolean Network


�C+1 = �C = "��C
�C+1 = �C .�C = "��C�C

�C+1 = �C ⊕ �C = "��C�C

(b) System of equation

FIGURE B.1. Simple example of a three-variable Boolean network described by the graph and the equation sys-
tem.

"� = "not =

[
0 1
1 0

]
"� = "and =

[
1 1 1 0
0 0 0 1

]
"� = "xor"not =

[
1 0 0 1
0 1 1 0

] [
0 1
1 0

]
=

[
0 1 1 0
1 0 0 1

]
From the definition of-C = �C�C�C we can write that :

-C+1 = �C+1�C+1�C+1

= "��C"��C�C"��C�C

= "� (�2 ⊗ "�)�C�C�C"��C�C

= "� (�2 ⊗ "�) (�8 ⊗ "�)�C�C�C�C�C

Once the part of the logical matrices is isolated, we can be interested in grouping
�C�C�C�C�C under the form�C�C�C so as to be able to express-C+1 in function of-C .

�C�C�C�C�C = �C�C,[4,2]�C�C�C

= (�4 ⊗,[4,2])�C�C�C�C�C
= (�4 ⊗,[4,2])�C,[2,2]�C�C�C�C
= (�4 ⊗,[4,2]) (�2 ⊗,[2,2])�C�C�C�C�C
= (�4 ⊗,[4,2]) (�2 ⊗,[2,2])"A�C"A�C�C

= (�4 ⊗,[4,2]) (�2 ⊗,[2,2])"A (�2 ⊗ "A )�C�C�C

Finally we have that the matrix ! is defined by :
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! = "� (�2 ⊗ "�) (�8 ⊗ "�) (�4 ⊗,[4,2]) (�2 ⊗,[2,2])"A (�2 ⊗ "A )

From definition B.1, we obtain that swap matrices,[2,2] and,[4,2] are :

,[2,2] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


,[4,2] =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


Considering the matrices"�,"� and"� defined above, we obtain that ! is:

! =



0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


We can check that the matrix ! is correct by looking at the adjacency matrix of

the graph in Figure Figure 3.3. It is the transpose of the matrix ! which confirms that
the matrix ! is correct.

In this example, we were able to construct the matrix ! algebraically. We did the
calculations by hand, but using equation (B.5), we can set up an automatic method.
However, the number of operations to calculate ! is large compared to the number
of cells, but these could be optimised with the use of sparse matrices.
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