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Abstract

Les circuits quantiques supraconducteurs, comprenant un large éventail d’éléments, ont
contribué à des avancées majeures dans le domaine de l’optique quantique micro-onde.
Parmi ces éléments, les amplificateurs paramétriques atteignant la limite quantique ont
démontré leur importance dans la mesure de systèmes quantiques dont l’énergie est intrin-
sèquement basse (dizaines d’µeV). Ils peuvent aussi servir à créer des états non-classiques
de lumière qui peuvent être utilisés pour créer des détecteurs innovants. Les amplificateurs
paramétriques supraconducteurs, tout comme les qubits, utilisent la plupart du temps une
jonction Josephson comme source de nonlinéarité non dissipative et contrôlable en champ
magnétique. Le contrôle en champ magnétique n’est pas la norme dans l’industrie et com-
mence déjà à être un problème dans les circuits comprenant beaucoup d’éléments. Ces
dernières années, un concept alternatif a émergé avec l’utilisation de jonctions Josephson
faites à base de semiconducteurs afin d’avoir un contrôle électrique de la nonlinéarité, notam-
ment avec la démonstration de résonateurs micro-ondes et de qubits utilisant des nanofils
semiconducteurs, un gaz d’électrons 2D, des nanotubes de carbone ainsi que du graphène.
Cependant, les amplificateurs paramétriques n’ont pas encore été réalisés en utilisant une
jonction semiconductrice. Le travail présenté dans ce manuscrit de thèse de doctorat montre
la conception, la fabrication et les performances d’un amplificateur paramétrique utilisant
une jonction Josephson à base de graphène.

Le graphène est encapsulé entre deux couches de h-BN afin d’augmenter sa qualité. En
utilisant une telle jonction, nous réalisons une amplification avec un gain de 20 dB qui est
un jalon important pour que le bruit ajouté par les amplificateurs classiques du reste de
la chaine d’amplification soit négligeable. L’amplificateur paramétrique étant construit à
partir d’une structure résonante (autour de 6 GHz), il ne peut qu’amplifier une bande de
fréquence réduite de l’ordre de quelques Mégahertz. L’utilisation d’une grille latérale permet
de contrôler le graphène électriquement modifiant l’inductance de la jonction Josephson et
ainsi la fréquence de résonance de l’amplificateur. Nous démontrons la possibilité d’ajuster
la fréquence d’amplification sur un intervalle de l’ordre d’un Gigahertz grâce à cette grille
latérale, ce qui est comparable en terme d’ajustabilité à l’utilisation d’un SQUID contrôlé en
champ magnétique pour un circuit similaire. Par ailleurs, il a été montré que le graphène
possède des pertes nonlinéaires lorsqu’il est exposé à un champ micro-onde important à
cause d’excitations / désexcitation d’états d’Andreev. La dissipation est synonyme d’une aug-
mentation du bruit intrinsèque ajouté par les amplificateurs paramétriques et peut donc être
un problème pour atteindre la limite quantique. Nous démontrons que malgré la présence de
pertes nonlinéaires, l’amplificateur paramétrique à base de graphène se rapproche de la limite
quantique. Un modèle de pertes à deux photons est utilisé pour décrire le comportement du
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dispositif mais nous démontrons qu’un modèle plus complet est nécessaire afin de prendre
en compte la nature complexe de la dissipation ainsi que la relation courant phase non sinu-
soïdale. Nous avons également étudié la plage dynamique et montrons que l’amplificateur
paramétrique à base de graphene peut atteindre un point de compression à 1dB de -123
dBm, ce qui comparable à ce qui peut être obtenu avec une jonction tunnel unique. Nos
résultats élargissent l’ensemble des éléments existant pour le contrôle électrique des circuits
quantiques supraconducteurs et offrent de nouvelles opportunités pour le développement de
technologies quantiques comme l’informatique quantique, la détection quantique ainsi que
la science fondamentale.

With a large portfolio of elemental quantum components, superconducting quantum
circuits have contributed to dramatic advances in microwave quantum optics. Of these
elements, quantum-limited parametric amplifiers have proven to be essential for low noise
readout of quantum systems whose energy range is intrinsically low (tens of µeV). They
are also used to generate non classical states of light that can be a resource for quantum
enhanced detection. Superconducting parametric amplifiers, like quantum bits, typically
utilize a Josephson junction as a source of magnetically tunable and dissipation-free non-
linearity. The magnetic control is not an industry standard for devices and starts already
to be an issue in large scale circuits. In recent years, efforts have been made to introduce
semiconductor weak links as electrically tunable nonlinear elements, with demonstrations of
microwave resonators and quantum bits using semiconductor nanowires, a two dimensional
electron gas, carbon nanotubes and graphene. However, given the challenge of balancing
nonlinearity, dissipation, participation, and energy scale, parametric amplifiers have not yet
been implemented with a semiconductor weak link. The work presented in this PhD thesis
demonstrates the design, fabrication and performances of a parametric amplifier leveraging
a graphene Josephson junction.

The graphene is encapsulated in between h-BN flakes in order to improve its quality.
Using such high quality junctions, we demonstrate amplification with 20 dB gain which is
the milestone for overcoming noise of the classical amplifiers in the rest of the amplification
chain. The Josephson parametric amplifier being based on a resonant structure (around 6
GHz) suffers from the gain bandwidth product limiting the amplification to a few MegaHertz
frequency range. The use of a side gate to electrically tune the graphene gives control of
the Josephson junction inductance and thus the resonant frequency of the amplifier. We
demonstrate a near 1 GHz tunability of the amplification frequency with the use of a side
gate which is as good as the tunability offered by using a magnetic flux on a SQUID for
similar amplifier designs. Moreover, graphene has shown to exhibit nonlinear loss under a
strong microwave irradiation arising because of dynamics in the Andreev states. Dissipation
is known to add intrinsic noise on quantum amplifiers and could be a problem for quantum
limited parametric amplification. We demonstrate that despite the presence of nonlinear
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loss, graphene based Josephson parametric amplifiers can reach near quantum limited am-
plification. A two photon loss model was used to describe the behaviour of the device but
we show that a more complex model is required in order to take into account the nonlinear
dissipation and the non-sinusoidal current phase relation. We also studied the dynamic
range and showed that the graphene based Josephson parametric amplifier can reach a 1 dB
compression point of -123 dBm which is as good as single tunnel junctions based parametric
amplifiers. Our results expand the toolset for electrically tunable superconducting quantum
circuits and offer new opportunities for the development of quantum technologies such as
quantum computing, quantum sensing and fundamental science.
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Introduction

The rise of quantum technologies was allowed by the considerable development of
nanofrabrication techniques which led to the fabrication of on chip circuits whose quan-
tum degrees of freedom can be controlled individually (i.e. qubits). A leading approach
to build such quantum circuits was the use of superconducting materials together with
Josephson junctions. By doing so, artificial atoms were created, and like real atoms, they
can be controlled by the use of light. The superconducting nature of the circuit imposes
the energy scale of photons that can be used to monitor them. Their energy cannot be
above twice the superconducting gap which is typically of the order of 1 meV. This is why
the operation and control of superconducting quantum circuits rely on the use of microwaves.

Typically, the measurement of qubits rely on measuring a few microwave photons. Their
energy being five orders of magnitude smaller than the energy of optical photons makes this
task incredibly hard and requires the use of ultra low noise amplification. The best cryogenic
’classical’ amplifiers, high electron mobility transistors, add typically 10 to 20 photons of
noise because of internal dissipation, which is enough to hide the qubit signal. Therefore,
the idea of using a superconducting material presenting no dissipation to build an amplifier
emerged, and relied also on the use of Josephson junctions in order to bring the required
nonlinearity to perform ’parametric amplification’. Yurke was the first to demonstrate such a
Josephson parametric amplifier (JPA) with noise performances close to the minimum allowed
by quantum mechanics (also called quantum limited amplifier [1]) in 1989 [2]. JPAs enable
also the possibility of squeezing vaccum or thermal noise making one quadrature smaller
than the minimum allowed by quantum mechanics [2]. This was 10 years before the first
superconducting qubit [3] was even demonstrated which could explain why at this time, his
work did not catch a huge interest in the scientific community. In the early 2000’, tremendous
development was made in superconducting quantum circuits [4, 5, 6, 7] making the need
for quantum limited amplifier more important. In this context, Castellanos-Beltran et al. [8]
developed a Josephson parametric amplifier based on the coupling of a superconducting
resonant structure to Josephson junctions. This architecture became the state of the art man-
ner of building such amplifiers for the next decade and allowed numerous advances. One
can cite single shot measurement of superconducing qubits as well as the observation of
quantum jumps [9], readout of spin qubits [10] but also electron spin resonance detection
[11], imporvement in the detection of gravitational waves [12] and in the detection of axionic
dark matter [13].

Traditionally, superconducting quantum circuits were built with tunnel Josephson junc-
tions where a thin insulator forms a tunnel barrier between two superconductors. This can be
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explained because back at the time of the initial development of superconducting quantum
circuits, it was much easier to build tunnel junctions with the required properties than using
another material to form the junctions. Nevertheless, the use of an insulator does not allow
any intrinsic control of the circuit. Such a control is particularly important when two or more
elements are coupled together. For this purpose, single Josephson junctions were replaced by
Superconducting quantum interference devices (SQUID) enabling the use of a magnetic flux
to control their energy. Nowadays, far from the single qubit demonstration in an academic
lab, large companies such as Google and IBM started a race to create a quantum computer and
are using circuits containing tens of qubits [14]. However, already in a two-qubit experiment,
the use of a magnetic field can create magnetic field cross-talk resulting in unwanted cou-
pling between distant qubits [15]. Moreover, magnetic fields are generated sending current
through conductive lines dissipating heat due to Joule effect. One can imagine that this could
be a problem in a future device with a large number of qubits because it would make the
cooling power required to keep the circuit at cryogenic temperature very important (and even
impossible to reach). A possible solution to overcome the two problems cited above and im-
prove the scalability is to change the nature of the Josephson junction and use a gate tunable
material instead of the insulating barrier. With such junctions, a gating line creating a very
local electric field and no electrical current would directly solve the aforementioned issues
while allowing for circuit control. As we will see later in this PhD manuscript, a lot of efforts
have been made in this direction since 2015 with the successful achievement of gate tunable
qubits and superconducting cavities. However, given the challenge of balancing nonlinearity,
dissipation, and energy scale, parametric amplifiers have not yet been implemented with
such a gate controllable junction. The work presented here, demonstrates the possibility of
using graphene, a gate tunable 2D material, as a Josephson junction in a parametric amplifier
using a current pumping scheme.

The manuscript is divided as follows:

Chapter 1 introduces the basic properties of graphene as well as an introduction of prox-
imity effect which is key to understand how graphene can be used as a Josephson junction.
Specific results on proximitized graphene will then be given. Eventually, we will present
an overview of the use of gate tunable Josephson junctions in superconducting quantum
circuits.

Chapter 2 presents the theory behind current pumped parametric amplification. We will
see how a Josephson junction coupled to a superconducting resonant structure (lumped or
distributed) can give rise to a Kerr type Hamiltonian. Using the input/output formalism we
will see how such a system, coupled to external baths, can lead to parametric amplification
with the use of a strong microwave tone (called pump tone) giving the required energy for
amplification. We will then address the important limits of resonant parametric amplification
and present a broad overview of some successful implementations of parametric amplifiers.

Chapter 3 gives the details about the fabrication process of graphene based Josephson
parametric amplifiers starting from graphene exfoliation and encapsulation to the supercon-
ducting circuit fabrication. In a second part the different measurement setups are presented.
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Chapter 4 focuses on the linear characterization of the graphene based Josephson para-
metric amplifier. First, microwave circuits basics will be presented. Then, explanations about
the device geometry as well as electromagnetic simulations will be given and compared to
measurements. A characterization of the DC and RF properties of the graphene Josephson
junction is also given.

Chapter 5 is the most important chapter of this work because it demonstrates the possibil-
ity of using graphene to build a gate tunable Josephson parametric amplifier. All the figures
of merit are studied. The first one is the gain provided by the amplifier. This quantity is
very important because it should be large enough to overcome the noise added by the other
amplifiers in the amplification chain. A 20 dB gain is often taken as a milestone to reach such
a purpose. The second figure of merit is the bandwidth of the amplifier i.e. the frequency
range that can be amplified. We will show that using a gate voltage one can compensate
for a small bandwidth by shifting the amplified frequency. The third figure of merit is the
compression point, i.e. how much power can be amplified without losing gain. This quantity
is important because the amplifier should be able to amplify at least a few photons for realistic
applications. The last figure of merit is the noise added by the amplifier which should be as
close as possible to the quantum limit.
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In this chapter we will review some properties of graphene and see how they can be
controlled with a gate voltage. We will then introduce the proximity effect and show specific
examples on Josephson junctions made of graphene. This will demonstrate the possibility of
using SNS junctions as gate tunable element in superconducting quantum circuits and we
will show recent examples of such implementations.
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Chapter 1. Graphene and superconducting weak links

1.1 Introduction to graphene physics

Graphene is a two-dimensional (2D) material made of a monolayer of carbon atoms
arranged in a honeycomb lattice as shown in Fig. 1.1a. Its 2D nature and lattice arrangement
is responsible for particular electronic properties. It was successfully isolated and measured
for the first time in 2004 [16, 17] and was then an active field of research. In this work,
graphene was used as a way of controlling a superconducting circuit with an electric field and
we will thus only present the properties directly impacting our work. The reader interested
in a detailed description of the electronic properties of graphene can refer this review [18] or
a very complete PhD thesis [19].

1.1.1 Graphene band structure

a1

a2

a b

Figure 1.1: (a) Atomic structure of graphene. (b) Graphene band structure. Close to the K and
K′ points the dispersion relation is linear and charge carriers behave as massless relativistic
fermions. Figure (b) adapted from [19].

The graphene atomic structure is shown in Fig. 1.1a. Atoms are arranged in a hexagonal
pattern that can be decomposed into two triangular lattices with a basis of two atoms per unit
cell and lattice vector a1 and a2. The bonds between atoms are made of a sp2 hybridization
between the s, px and py orbitals of carbon and are responsible of the mechanical and thermal
properties of graphene. The pz orbitals of carbon form π-bonds with neighbor atoms, leading
to one free electron per atom determining the electronic properties of the material.

By using a tight-binding model, where we consider that electrons on one site can only
hope to the nearest neighbor sites with a characteristic energy t ≈ 2.7 eV, we can compute the
dispersion relation E(k) of electrons in graphene, i.e. its band structure. We obtain this way
two solutions:

E±(k) = ±t

√
3 + 2 cos(

√
3kya) + 4 cos

(√3
2

kya
)

cos
(3

2
kxa
)

(1.1)

with a ≈ 1.42 Å the inter atomic distance. There are thus two symmetric bands: the valence
band (negative energy) and the conduction band (positive energy). Because each site is
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1.1. Introduction to graphene physics

occupied by one electron and each level can be occupied by two electrons of opposite spin,
all the valance band energy levels are filled for undoped graphene, leaving the conduction
band empty. There are particular k points, called Dirac points, for which the valence band
and the conductance band are equal and E+ = E− = ED = 0:

K =
(2π

3a
,

2π

3a
√

3

)
, K’ =

(2π

3a
,− 2π

3a
√

3

)
(1.2)

A linearization around the Dirac points gives:

E±(q) = ±h̄vF|q|+O
(∣∣∣ q

K

∣∣∣2) (1.3)

where we introduced k = K + q with |q| << K, as well as the Fermi velocity:

vF =
1
h̄

∂E±
∂q

∣∣∣
k=K

≈ 3at
2h̄

(1.4)

that can be computed from the values we gave previously: vF ≈ 1 x 106 m.s−1. The dispersion
relation in the vicinity of the Dirac points is linear in q and analogous to the dispersion relation
of light. Around these points, electrons are thus behaving like massless relativistic fermions.
Fig. 1.1b shows the conduction band (blue) and valence band (red) of graphene. We can see
that near the Dirac points, the 2D dispersion relation is a cone.

1.1.2 Density of states and gate tunability

1.1.2.a Density of states and carrier density

Using the expression of the dispersion relation close to the Dirac points we can compute
the density of state ρ(E):

ρ(E) =
2

π(h̄vF)2 |E| (1.5)

where we took into account the spin degeneracy as well as the valley degeneracy (K and
K′ are at the same energy). The density of state is thus symmetric for electrons and holes
and vanishes at the Dirac point. We can now compute the charge carrier density n at the
temperature T = 0:

n(T = 0) =
∫ +∞

−∞
ρ(E) fFD(E, T = 0)dE = sign(EF)

E2
F

πh̄2v2
F

(1.6)

with fFD the Fermi-Dirac distribution and EF the Fermi energy. We can thus express the
Fermi energy as:

EF = h̄vF|kF| = sign(n)h̄vF

√
π|n| (1.7)

The 2D nature of graphene, as well as its low carrier density close to the Dirac point,
makes it an ideal material for field effect because of reduced charge screening. By applying an
electric field with a gate voltage Vg, we can thus change the charge carrier density resulting in
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Chapter 1. Graphene and superconducting weak links

a change of the doping (or Fermi energy). The charge carrier density is linked to gate voltage
as:

n =
Cg|Vg − VCNP|

e
(1.8)

where Cg is the capacitance between the graphene flake and the gate. We also introduced
VCNP, because there is always some residual doping coming from the graphene environment
or the graphene itself. The residual doping changes the Fermi energy of graphene and pushes
the Dirac point away from Vg = 0. At Vg = VCNP, the charge carrier density is thus zero
explaining why this point is also called the charge neutrality point (CNP). At Vg > VCNP,
electrons are injected in the upper part of the Dirac cone and at Vg < VCNP holes are injected
in the lower part of the Dirac cone. Finally we can rewrite the Fermi level dependence on the
gate voltage as:

EF = h̄vF|kF| = sign(Vg − VCNP)h̄vF

√
πCg

e
|Vg − VCNP| (1.9)

1.1.2.b Diffusive transport in graphene

0

2

4

6

8

-100 0 100

0

3

T = 5 K

T = 70 K 

T = 300K

ρ
( k
Ω
)

Vg (V)

Vg (V)

σ (mΩ-1
)

-100 -50 0 50 100

Graphene

Metallic contacts

a

b

c

Figure 1.2: (a) Scheme of a graphene Hall bar on a Si/SiO2 substrate. (b) Scanning electron
microscopy of the device presented in (a). (c) Conductivity (at 70 K) and resistivity ρ as a
function of the back gate voltage. Figures adapted from [16].

One can also express the conductivity of graphene:

σ = |e|nµ (1.10)

where µ is the mobility of graphene and can be computed using the Drude model:

µ =
|e|τs

m∗ (1.11)
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1.1. Introduction to graphene physics

with τs the averaged time between two scattering events and m∗ = h̄kF/vF the effective
mass of charge carriers. Note that even if the charge carriers are said to behave like massless
particles (because of the dispersion relation), they do have an effective mass as accounted for
in the Drude model (which vanishes only at the Dirac point) despite the fact that they always
travel at the Fermi velocity. The conductivity can thus be expressed as:

σ =
ne2τs

m∗ (1.12)

This shows that by controlling n with a gate voltage we can control the conductivity of
graphene. It also means that, in this model, the conductivity vanishes at the Dirac point.
Fig. 1.2 illustrates the gate dependence of the conductivity. A graphene flake was deposited on
a doped Si substrate with a layer of oxide and patterned into a Hall bar as shown in Fig. 1.2a
and b. It was possible to apply a back gate to the flake through the insulating oxide part.
Fig. 1.2c shows the dependence of the conductivity as well as the resistivity of the graphene
with respect to the gate voltage. We can see that the conductivity exhibits a minimum (and
the resistivity a maximum) at Vg ≈ 40 V corresponding to the charge neutrality point where
the charge carrier density vanishes. We can see that when the temperature increases, the
maximum of resistivity decreases because electrons get thermally excited in the conduction
band.

1.1.2.c Ballistic transport in graphene

When the averaged time between two scattering events in the Drude model is bigger than
the time the charge carriers need to travel across the full graphene flake, the transport is said
to be ballistic (in the former case the transport is diffusive). In this case, they are on average
no scattering events and the Drude model does not hold. A more adapted model to describe
the transport properties is given by the Landauer formalism where each conducting channel
is associated with a transmission coefficient τ and a conductance e2/h. We can estimate the
number of conducting channels by comparing the width W of the graphene to the Fermi
wavelength of the charge carriers λF = 2π/kF which represents the physical size of charge
carriers participating to the electrical transport. The number of channels N can be expressed
as:

N = 4
W
λF

= 2

√
|n|
π

W (1.13)

where we took into account the spin and valley degeneracy. For perfectly transmitting
channels (τ = 1) the conductance is thus:

G =
2e2

h
N = 2

e2

h

√
|n|
π

W (1.14)

For ballistic transport, the conductance scales as
√
|n| and not as |n| like in diffusive transport.

n being gate voltage dependent, it is still possible to change the conductance of graphene in
the ballistic case.
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Chapter 1. Graphene and superconducting weak links

1.2 Superconducting proximity effect

A normal material, coupled to a superconducting material, can acquire superconducting
properties. This phenomenon is called the superconducting proximity effect and explains why
we can use graphene in a Josephson parametric amplifier. The experimental work presented
in this PhD manuscript is mainly focused on the measurement of parametric amplification
and not proximity effect signatures. We will thus not develop the full microscopic model of
proximity effect and only give important aspects. Details about the microscopic description
can be found in PhD manuscripts [20, 21] or review [22] and a very meaningful semi-classical
picture is given in [23].

1.2.1 Josephson junctions and different regimes

Josephson junctions (JJ) are an important element in superconducting circuits because
they allow to add nonlinearity. We will see in the next chapter that this nonlinearity is
a key parameter to perform parametric amplification. A general definition of a JJ would
be a weak link separating two superconductors such that supercurrent can flow between
each of them. In superconducting quantum circuits, most of the times, JJs are made by
creating a thin insulating barrier (typically 1 nm) between two superconductors such that
cooper pairs can tunnel through this barrier. This type of junctions are called tunnel or
SIS (superconducting-insulating-superconducting) junctions. They obey to the Josephson
relation:

I(t) = Ic sin
(ϕJ(t)

φ0

)
(1.15)

where ϕJ(t) is the generalized flux associated to the voltage across the JJ and φ0 = h̄/2e the
superconducting flux quantum. In the following we will change the notation and deal with
the phase ϕ across the junction (ϕ = ϕJ(t)/φ0). Weak links forming the JJ can also be made of
normal metals, semiconductors or even semi-metals. These types of junctions are called SNS
junctions (superconducting-normal-superconducting) and obey to different physics that we
will describe in the next section.

SNS JJs can be in different regimes: long/short, diffusive/ballistic and dirty/clean. The
JJ is said to be ballistic when the length L of the JJ is smaller than the mean-free-path lm f p
of electrons in the normal material. In this case the coherence length can be expressed as
ξ = h̄vF/∆ where ∆ is the superconducting gap. If lm f p < L, the junction is diffusive and the
coherence length is expressed as ξ =

√
h̄D/∆ with D the diffusion coefficient D = vFlm f p/2.

The relevant energy scale becomes the Thouless energy Et = h̄D/L2 whereas it was the
superconducting gap in the ballistic case. Once we know the coherence length of the JJ, we
can compare it to its physical length. If ξ < L the JJ is long and if ξ > L the junction is short.
We can also compare the coherence length to the mean free path. If ξ < lm f p the JJ is clean
and if ξ > lm f p the junction is dirty.

1.2.2 Andreev reflection

Andreev reflection is the key mechanism to understand proximity effect. Let us consider
a normal material of Fermi energy EF in contact with a superconducting material with a
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Figure 1.3: (a) Spatial representation of a specular and an Andreev reflection. When the
Andreev reflection occurs, a Cooper pair is created into the superconducting material. (b)
Energy representation of the Andreev reflection. The electron is reflected as a hole with an
opposite energy compared to the Fermi energy and creates a Cooper pair at the Fermi energy
in the superconducting material.

superconducting gap ∆ as shown in Fig. 1.3. Electrons in the normal material can be de-
scribed as Bloch waves of wave vector k, energy Ek and spin σ. When an electron of energy
|Ek − EF| < ∆ is incident on the surface, two mechanisms can happen:

• The electron cannot penetrate in the superconducting material because of the supercon-
ducting gap forbidding the electron to pass and therefore it undergoes a regular specular
reflection.

• The electron undergoes an Andreev reflection.
Andreev reflections [24] is a phase coherent process where an electron can be reflected as a
hole of opposite spin and wave vector. This is only possible if a Cooper pair is created in the
superconducting material in order to have a conservation of charge, spin and momentum.
Fig. 1.3 illustrates the Andreev reflection process.

The microscopic description of this system can be done using the Bogoliubov-de Gennes
equation. It allows to compute the wave functions of excitations (electron and hole) in a
system with a spatially varying superconducting gap. By doing so we can find that the
electrons and holes are linked by a phase coefficient. When Andreev reflection occurs, the
reflected hole acquire a phase δϕe = ϕR + arccos(Ek/∆) where ϕR is the macroscopic phase of
the superconductor. The fact that the phase of the incident electron, hole and superconductor
are linked makes this mechanism a phase coherent process. Note that the probability of an
electron undergoing a regular specular reflection depends on the quality of the electrical
contact between the normal and the superconducting material. It is characterized by the
transparency t = 1/(1 + Z2) where Z is the barrier strength. In the case of a perfect contact
Z = 0 and thus t = 1, regular specular reflections are forbidden. On the opposite, when
Z = ∞ ⇒ t = 0, Andreev reflections are not possible and the system becomes a tunnel
barrier.
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Figure 1.4: (a) Scheme of coherent transfer of Cooper pairs by the Andreev reflection process.
(b) Andreev bound states for a short SNS junction with a single conductive channel of
transmission τ.

1.2.3 Cooper pair transport in a SNS junction and Andreev bound states

Let us now consider a normal material making a junction between two superconducting
materials (SNS junction) as shown in Fig. 1.4a. As we saw earlier, an electron can be Andreev
reflected as a hole of opposite spin, energy and wave vector. This hole will travel back the
SNS junction, and can be Andreev reflected itself into an electron on the opposite interface.
This process requires the destruction of a Cooper pair in the superconducting material in
order to have a charge, energy and momentum conservation. This time, the associated phase
shift is δϕh = −ϕL + arccos(Ek/∆). We can now understand how the phase coherent process
of Andreev reflection enables non dissipative Cooper pair transport through a SNS junction.
Electrons undergoing an Andreev reflection create Cooper pairs on one side of the junction
while holes undergoing Andreev reflection destroy Cooper pairs on the other side of the
junction.

The phenomena we just described only dominates the superconducting transport when a
resonance condition leading to the formation of energy bound states holds. The resonance
condition is that the phase accumulated in the Andreev process should be a multiple of 2π.
This ensures constructive interference of the wave functions making the process dominant
compared to other transport process that can happen. As we saw earlier, the electron acquires
a phase δϕe when being Andreev reflected, and the conjugated hole a factor δϕh. Moreover
they also acquire a dynamic phase when traveling along the normal material:

ϕe = keL =

√
2m
h̄2 (EF + E)L ≈

√
2m
h̄2 EF(1 +

E
2EF

)L

ϕh = khL =

√
2m
h̄2 (EF − E)

(
− L

)
≈
√

2m
h̄2 EF

(
1 − E

2EF

)(
− L

) (1.16)

where the approximation holds because in general EF is of the order of 1 eV and E is smaller
than the superconducting gap being of the order of 1 meV. So the resonance condition leads
to:

ϕe + δϕe + ϕh + δϕh = 2 arccos(
E
∆
)± (ϕR − ϕL) + kFL

E
EF

= 2πn (1.17)

where the ± sign depends on the direction of the roundtrip made by the Andreev reflected
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Figure 1.5: Current phase relation for a short SNS junction with a single conductive channel
of transmission τ. The dashed curves represent a sine function with the same amplitude as
the associated CPR.

hole and electron, and n is an integer. It is possible to show that the resonance condition leads
to the presence of bound states called Andreev bound states (ABS). In the one dimensional
case and short junction regime, we can neglect the dynamic phase term and each conductive
channel i with a transmission probability τ has an ABS energy:

EABS
i = ±∆

√
1 − τi sin2(

ϕR − ϕL

2
) (1.18)

There are thus two levels of energy for each conductive channel as shown in Fig. 1.4b. We can
see that the phase dependence of these levels depends strongly on τ. When τ is close to unity,
ABS are very sensitive to the phase difference. We can also see that when the phase difference
is zero, all the ABS are pinned to the superconducting gap. When the phase difference is
non zero, ABS lay inside the superconducting gap and reach an extremum at ϕR − ϕL = π.
When τ = 1, an extremum is reached at ϕR − ϕL = 2π and there is a crossing of the two ABS
at ϕR − ϕL = π. Finally when τ = 0, ABS are not present inside the gap as expected for a
tunnel junction. In the case of long junctions, a single conducting channel can create multiple
ABS that lay inside the gap (with an energy level spacing of πh̄vF/L) and are less sensitive to
phase modulation [25, 26]. Moreover we did not address here the case where the interface
between the superconductors and the normal part is not perfect. Such interfaces result in
detaching the ABS of the gap at zero phase [26].

1.2.4 Current phase relation

For now we described qualitatively the mechanism of charge transport in a SNS JJ and
showed the phase coherent Andreev reflection process leads to the formation of ABS inside
the superconducting gap. The current associated with these ABS is the result of a phase
difference, and in the short junction regime can be expressed as:

IABS
i =

2e
h̄

dEABS
i

dϕ
(1.19)
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where we adopted the notation ϕR − ϕL = ϕ. Using Eq. 1.18 we find:

IABS
i = ∓ e∆

2h̄
τi sin(ϕ)√

1 − τi sin2(ϕ/2)
(1.20)

We can see that the current of the negative energy ABS flows in opposite direction compared
to the positive energy ABS. Eq. 1.20 links the current to the phase and is called the current
phase relation (CPR). One can also rewrite Eq. 1.20 using the Landauer formalism where each
conductive channel has a conductance Gi

N = (2e2/h)τi (including the spin degeneracy):

IABS
i = ∓Gi

N
π∆

e
sin(ϕ)√

1 − τi sin2(ϕ/2)
(1.21)

Fig. 1.5 shows the CPR of a SNS JJ composed of a single conductive channel. We can see that
when τ tends to zero, the CPR is sinusoidal as expected for a tunnel junction. When τ > 0,
the CPR deviates from the sinusoidal shape and exhibit forward skewness: compared to a
sine function of the same amplitude, the CPR is bent forward and reaches a maximum at
ϕ > π/2.

For now we considered the temperature being zero (T = 0) where only the negative
energy states are populated and contribute to the supercurrent. By using the Fermi-Dirac
distribution we can compute the total current at a temperature T:

IABS = ∑
i

Gi
N

π∆
e

sin(ϕ)√
1 − τi sin2(ϕ/2)

tanh
( ∆

2kBT

√
1 − τi sin2(ϕ/2)

)
(1.22)

which reduces when τi << 1 ∀i to the Ambegaokar-Baratoff formula [27]:

IcRN =
π∆
2e

tanh
( ∆

2kBT

)
(1.23)

which describes well tunnel junctions and where we have defined the normal resistance
RN = 1/(∑i Gi

N) and the critical current Ic as the maximum supercurrent that can be carried
by the JJ. The demonstration we just provided shows that the supercurrent flowing through
the JJ depends on the number of conductive channels. This is a key mechanism to understand
how a gate tunable material can be used to tune the properties of the JJ. By applying a gate
voltage, it is possible to change the critical current of the JJ which has a direct impact on its
nonlinear inductance as we will see in the next chapter.

1.2.5 Multiple Andreev reflections

When a DC voltage V is applied across the JJ, the Fermi level of one of the superconductor
will be shifted by eV. It was shown that this could lead to a phenomenon called multiple
Andreev reflections (MAR) allowing for dissipative transport [28, 29, 30]. We will present
the semi-classical picture of this phenomenon given in [28] and illustrated in Fig. 1.6. An
electron of the left superconducting reservoir can enter into the normal region and be Andreev
reflected as a hole on the right superconductor because of the presence of the superconducting
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Figure 1.6: Scheme representing the multiple Andreev reflection process.

gap. This hole has an opposite energy compared to the electron with respect to the Fermi
energy of the right superconductor. The hole will then be Andreev reflected as an electron on
the left superconductor because of the presence of the gap. Again, the electron has an opposite
energy compared to the hole with respect to the Fermi energy of the left superconductor. As
we can see in Fig. 1.6, the energy acquired during these two Andreev reflections is higher
than the superconducting gap and allows thus the electron to be transmitted into the right
superconductor. This shows how dissipative current can flow when applying a voltage across
a SNS JJ. The example that we described is a third order process implying three trajectories
inside the JJ. MARs manifests as peaks in the conductance at voltages V = 2∆/n where n is
an integer and characterize the number of trajectories leading to the dissipative transport.
Note that in the scheme presented in Fig. 1.6, the purple color does not represent the density
of states of electrons in the normal material but rather the density of state of the quasiparticles
in the BCS theory. Indeed, if it was the opposite, at T = 0, in the normal material, the
energy levels would have been filled until the Fermi energy, forbidding the electron of the
left superconductor to enter in the normal region.

1.3 Proximity effect in graphene

In the previous section we described the ideal case of a SNS junction with transparent
contacts and we focused particularly on the short regime. This allowed to understand the
mechanism of superconducting proximity effect but it cannot be used directly to model what
is happening in graphene. First, the graphene JJs (gJJ) that we are using in this work do not
have perfectly transparent contacts. Moreover, the Hamiltonian describing graphene around
the Dirac point is not the same as a 2D electron gas which modifies the Bogoliubov-de Gennes
equation. This is why we will present here results oriented on proximity effect in graphene.
A recent review on the subject can be found here [31].
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Figure 1.7: (a) and (b) IcRN product with respect to the gate voltage for short ballistic gJJs
(Ti/Al) and long ballistic gJJs (Nb) respectively. Figure (a) adapted from [32] and Figure (b)
adapted from [33].

1.3.1 Short review on superconducting graphene Josephson junctions

The first experiment on proximity effect in graphene was performed by Heersche in 2007
[34]. At this time, most of the work was focused on short diffusive gJJs because the graphene
was not isolated from its enviromnent causing important degradation of its electronical
properties, and small superconducting gap materials (like Aluminum) where used (giving
thus a long coherence length) [34, 35, 36, 37, 38, 39]. The use of higher superconducting gap
materials like Niobium or Lead allowed to study the long diffusive regime [40, 41, 42, 43, 44].
The next major improvement was performed by Calado in 2015 [45] where graphene was
encapsulated in between hexagonal boron nitride flakes (see Chapter 3) allowing for a drastic
improvement of the JJ quality leading to ballistic transport [46, 47, 48, 33, 49, 50, 32]. The
coupling of graphene with superconductors offers a unique way of combining relativistic
physics to superconductivity and is thus an active subject of research.

Concerning the theoretical part, Titov and Beenakker were the first to solve the Bogoliubov-
De Gennes equation with a Dirac Hamiltonian for a short ballistic and large (W >> L) gJJ
with ideal interfaces [51]. They found that such gJJs should have an IcRN product of ≈ 2.5∆/e.
Even if this paper refers to an ideal gJJ, this IcRN value is often cited as a reference for short
ballistic junctions. More complex theories exist but we will not discuss them here and the
interested reader can refer to [31]. For long diffusive gJJs, the study of Dubos et al. [52] is often
used to predict the IcRN product and gives IcRN = 10.82Et/e. Nevertheless this study was
not developed specifically for graphene and does not take into account the relativistic nature
of the charge carriers. Here is a complete picture of the IcRN product at zero temperature in
non-graphene junctions:

• short diffusive IcRN = 2.07∆/e [53]
• short ballistic IcRN = π∆/e [54]
• long diffusive IcRN = 10.82Et/e [52]
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• long ballistic IcRN = Et/e [55]

Fig. 1.7a and b show the measured IcRN product for ballistic gJJs made of Ti/Al and Nb
respectively. In both cases the transparency of the contact is high, but in (b) the gJJ length are
longer than the coherence length meaning that the junctions are in the long ballistic regime.
In the case of short junctions, the IcRN product is close to what is predicted by Titov and
Beenakker (best value reported for planar gJJs to my knowledge). In the case of long gJJs the
IcRN product decreases as 1/L. The coherence length is estimated to be around 100 nm and
the shorter gJJ (black curve) has a length of 250 nm. Note that to my knowledge, the best
IcRN product in diffusive gJJs in the literature is ≈ 1∆/e.

The temperature dependence of the critical current of a SNS JJ is often compared to
the Kulik-Omel yanchuk (KO) model [54, 53]. Nevertheless this theory is not adapted for
graphene because it was designed for point type junctions (with negligible width) [56, 32]. A
model developed by Takane and Imura (TI) [57, 58] including both carrier inhomogeneities in
graphene and reduced transparency of superconducting contacts, has shown to be effective
to predict the temperature dependence of Ic [32].

1.3.2 Current phase relation in graphene

The CPR of graphene has been measured both in diffusive and ballistic regime. Fig. 1.8a
shows the measured CPR for a ballistic gJJ in the long regime (but with ξ of the same order of
L). We can see that, as for a single channel SNS JJ, the CPR deviates from a sine function that
we would expect for a tunnel junction. To characterize this deviation, the skewness of the
JJ is defined as S = 2ϕmax/π − 1 such that S = 1 when ϕmax = π (equivalent to a perfectly
transparent single channel SNS JJ), and S = 0 when ϕmax = π/2 (corresponding to a tunnel
JJ). Fig. 1.8b and c show the skewness measured at different gate voltages for diffusive and
ballistic gJJs respectively. We can see that both regimes show skewness at any doping and
that the ballistic gJJs tend to have larger skewness. This shows that in principle, the models
used to describe quantum circuits with gJJs should account for this deviation compared to SIS
JJ. Nevertheless, the skewness being rather small (closer to 0 than to 1), a sine approximation
of the CPR can be used as a first approximation to understand the general behavior of such
system.

1.3.3 Andreev bound states in graphene

ABS can be computed in proximitized graphene using a tight-binding approach. Fig. 1.9a.
shows the result of such calculations from diffusive to ballistic in the long regime. We can
see that in the diffusive regime, there is a region inside the superconducting gap where no
ABS are present. This region is called a minigap and is expected for diffusive SNS junctions
[63] and was already measured using tunneling spectroscopy in a SNS junction made of a
Ag wire as shown in Fig. 1.9b. When the junction becomes weakly diffusive (lm f p ≈ L), we
can see the appearance of ABS inside the minigap. The extreme case of a purely ballistic
junction without doping inhomogeneity shows that ABS can be everywhere inside the super-
conducting gap. This is due to the fact that the junction is long and wide which can create
transverse ABS that are not pinned to the gap. When including doping inhomogeneity in
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Figure 1.8: (a) Current phase relation of a ballistic gJJ at the limit of the short regime for a
fixed gate voltage. (b) Measured skewness for diffusive gJJs and ballistic gJJs (c) with respect
to the gate voltage. The skewness is computed by comparing the phase giving a maximum in
the CPR to π/2 (the maximum for a sine CPR). Figure (a) and (c) adapted from [59]. Figure
(b) adapted from [60]

.

ballistic graphene, it looks like the number of ABS is reduced inside a region that we can call
a soft gap. Interestingly, the mini/soft gap in the ABS reduces when going away from zero
phase across the junction and closes at ϕ = π whatever the regime.

Tunneling spectroscopy has been performed on a ballistic gJJ (Fig. 1.9c) and shows that
even at ϕ = 0 (B = 258 µT), there is no minigap but rather a soft gap similar to what is
predicted for a long ballistic gJJ with doping inhomogeneity. Going away from ϕ = 0 reduces
the soft gap. Note that in Fig. 1.9c, the gJJ is long but its length is close to the coherence
length. For a short ballistic gJJ with doping inhomogeneity, we can expect the number of ABS
detached from the gap at ϕ = 0 to reduce but not vanish because of the finite width allowing
transverse ABS to form. A recent study showed evidence of a minigap in a short ballistic gJJ
by transport measurement [64]. Such minigap can exist in ballistic SNS JJ and depends on
the type of boundary between the normal metal and the superconductor [65]. The fact that in
[64] the graphene is only partially proximitized might play a role in the appearance of such a
mini gap in a short ballistic device.
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Figure 1.9: (a) Andreev spectrum obtained with tight binding calculations for long gJJs in
different regimes. (b) Tunnel spectroscopy on an Ag SNS junction at different locations. The
red circle indicates the position of the SNS junction. (c) Tunnel spectroscopy on a long ballistic
gJJ placed in a superconducting loop. This geometry allows to tune the phase across the
gJJ with the use of a magnetic field B. B = 258 µT corresponds to a zero phase. Figure (a)
adapted from [61], Figure (b) adapted from [62] and Figure (c) adapted from [26].

1.3.4 Microwave dissipation in graphene

We focused in the last section on the ABS in gJJs because they play an important role in
their microwave response or equivalently in their admittance Y = Gs + iBj. Superconducting
quantum circuits are working in the microwave regime making the study of this quantity
important. While the imaginary part Bj of the admittance is linked to the CPR, the real part
Gs is linked to dissipation. A recent study investigated the admittance of a short diffusive
gJJ [66] by using a λ/4 resonator inductively coupled to a gJJ placed in a loop as shown in
Fig. 1.10a. By sending a DC magnetic flux they were able to control the phase across the
junction and by measuring the reflection response (Γ) of the resonator they were able to
extract the inductive part of the admittance (associated to a frequency shift), as well as the
dissipative part (associated to a change in the quality factor). Fig. 1.10b shows the measured
dissipative part of the admittance with respect to the phase across the gJJ for three different
gate voltages. We can see that at ϕ = 0, Gs = 0 for every gate voltages which means that
there is no microwave dissipation at 0 phase (in the model Gs is placed in parallel with the
inductive part of the JJ meaning that a low Gs is associated to a low dissipation). Nevertheless,
when ϕ > π/2 we can see that Gs increases meaning that microwave dissipation is present.
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Figure 1.10: (a) Scheme of the circuit to measure the admittance of the gJJ (represented as a
cross). The resonator was designed to resonate at 3GHz and was probed such that the mean
number of photons inside it is around 100. The gJJ is placed in a loop allowing phase control.
(b) Dissipative part of the admittance of the gJJ with respect to the phase for three different
gate voltages. The charge neutrality point correspond to Vg = -0.44 V. Figures adapted from
[66].

It also seems that dissipation is more important in the n-doped region (VCNP = −0.44 V).

As we saw earlier, each ABS participates to the transport of supercurrent. At T = 0, only
the ABS below the Fermi energy are occupied. Therefore, there is no fluctuation in the critical
current meaning that there is no dissipation according to the fluctuation dissipation theorem.
Nevertheless, the presence of microwaves changes the distribution function which is no more
the Fermi-Dirac distribution. This is why ABS above the Fermi energy can be populated when
excited with a sufficiently large energy. This variation of population introduces a variation
in the critical current and thus leads to dissipation. We can now understand why the phase
across the JJ has an important role on the microwave assisted dissipation. As we saw in
the last section, going away from zero phase tends to close the mini/soft gap making the
excitation energy smaller between ABS below and above the Fermi level. Therefore, as the
phase is increased, the probability of ABS excitation increases as well leading to additional
dissipation. Once positive energy ABS are excited, they can also relax creating even more
critical current fluctuation. Another study using a similar technique but with a multimode
resonator was able to compare the importance of the microwave frequency on a long diffusive
gJJ [61]. They compared the dissipation at 2 GHz and 19 GHz and showed that at 19 GHz
dissipation could appear even at zero phase. It means that the energy of microwaves photons
was large enough to excite ABS above the minigap even at zero phase. One can also mention
a study [67] where microwave power dependent dissipation was observed in a gJJ.

Dissipation is not desirable in quantum circuits especially when performing quantum
limited amplification because it has the effect of adding noise on the amplified signal (see
Chapter 2). One can thus use some strategies to minimize it. We saw that long SNS JJs create
more ABS which also detach from the gap at zero phase. Therefore it is critical to be in the
short regime. Moreover, the 2D nature of gJJs offers the possibility of transverse ABS to form
inside the gap. Therefore there is a compromise between decreasing the width to decrease the
number of transverse ABS while keeping enough of critical current (the number of conductive
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Figure 1.11: (a) Gate voltage tunable superconducting resonator with the use of a gJJ. The
reflection coefficient of the resonator is measured with respect to the frequency and gate
voltage. The red colored line manifests the presence of a deep in the reflection coefficient
which indicates the resonance frequency. By changing the graphene number of conductive
channels with the gate, it is possible to change the resonance frequency of the resonator.
(b) and (c) Voltage controlled quantum bus. Two gatemons (made with a nanowire) are
coupled through a gate tunable resonator (coupled itself to a nanowire serving as a switch).
By applying a gate voltage Vsw on the switch, it is possible to change the coupling g12 between
the two qubits. By switching the gate voltage V2 on the qubit 2, we can change its energy to
make it equal to the energy of the qubit 1. The avoided level crossing indicates the strengths
of the coupling. We can see that when the switch is on (c) the level avoided crossing is 8
times bigger than when the switch is off (b). Figure (a) adapted from [68], Figure (b) and (c)
adapted from [69].

channel scales with the width). Bad contact transparency is not desirable because it detaches
the ABS from the gap. Concerning the junction transparency, it could be advantageous to
have a low transparency in order to have ABS being less dependent on the phase, but this
would also reduce the critical current.

1.4 Conclusion and state of the art on gate tunable quantum
circuits

In this chapter we explored the properties of graphene, proximity effect and gJJs. The main
goal was to show that by applying a gate voltage on a gJJ, it is possible to change the number
of conductive channels and thus the number of ABS carrying supercurrent. By doing so, the
gate voltage is a direct way of tuning the JJ properties and offers an alternative to magnetic
field control in a SQUID loop geometry. The goal of the project is to use graphene to build a
gate tunable Josephson parametric amplifier which was never reported before. Nevertheless,
using a SNS JJ to build gate tunable quantum circuits has already been demonstrated and we
will briefly present the main achievments here [70].
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The first gate tunable qubits were implemented in 2015 [71, 72] in the form of transmons
with a SNS junction made of an InAs nanowire. It was possible to tune the qubit frequency
from 3 to 6 GHz [71] with a side gate and a coherence time of the order of 1 µs was measured
[72]. Such a coherence time is lower than what can be obtained with transmons made with
a tunnel junction (≈100 µs) [73] and flux tunable transmons using a SQUID (≈40 µs) [74].
This type of gate tunable transmons are called ’gatemons’. Gatemons also showed a single
qubit fidelity above 99% and two-qubit controlled-phase gates with fidelities around 91% [75]
which is also much lower to what is obtained with standard flux tunable transmons [76]. Not
only nanowires were used to build gatemons but also a 2D electron gas where a coherence
time up to 2 µs was measured [77], or even graphene [78] with a coherence time limited to
tens of nanoseconds.

The use of gate tunable SNS JJ in a superconducting resonator can also allow for the
control of its resonance frequency as it was demonstrated with graphene [68] where a 1 GHz
tunability was achieved as shown in Fig. 1.11a. This can be particularly useful to modify
the coupling between two qubits. Such a device, called a quantum bus, where two qubits
are coupled through a gate tunable superconducting resonator was demonstrated with InAs
nanowires [69]. By tuning the resonance frequency of the resonator with a gate voltage, the
coupling between the two states could be switched ’on’ and ’off’ with a ratio of 8 as shown in
Fig. 1.11b and c.

Tunnel junctions are most of the time made of Al-Al2O3 and cannot resist to magnetic
fields above 10 mT. Another advantage of SNS JJ is that they can be made using superconduc-
tors with a higher critical field. For example a nanowire was coupled to Pb [79], or graphene
was coupled to MoRe [80].

Among all these realizations, gate tunable Josephson parametric amplifiers were still
missing. In the following chapters we will present such a realization using a graphene JJ.
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2Theory of the Josephson
parametric amplifier

In this chapter we will review the theory of the Josephson parametric amplifier consisting
of a Josephson junction coupled to a resonant structure using the input/output formal-
ism. We will then discuss the limitations of such devices and present a broader view on
superconducting parametric amplifiers.
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Chapter 2. Theory of the Josephson parametric amplifier

2.1 Quantum LC oscillator
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Figure 2.1: (a) LC circuit scheme. (b) Quantum LC circuit energy levels and wavefunctions.
The width of the energy levels must be smaller than the energy level spacing. Figure (a) taken
from [81] and figure (b) adapteted from [82].

The theory of Josephson parametric amplifiers (JPAs) relies on resonant structures with
nonlinearity. It is thus of fundamental importance to study the simplest resonant circuit: the
LC oscillator. Quantum circuits are often made of superconducting lines deposited on a low
dielectric loss substrate such as sapphire or intrinsic silicon. The superconducting lines have
thus an intrinsic inductance and a capacitance with the nearby ground plane, and there is
also mutual inductance and mutual capacitance. We can define the total capacitance C and
inductance L of the circuit behaving thus as a LC oscillator. Its total energy is the sum of the
charging and inductive energy. We can write its Hamiltonian as:

HLC =
Q2

2C
+

Φ2

2L
(2.1)

where Q(t) =
∫ t
−∞ dt′ I(t′) is the charge on the capacitor and Φ =

∫ t
−∞ dt′V(t′) the magnetic

flux threading the inductor created by the circulating current. This circuit is characterized with
an angular resonance frequency ω0 =

√
1/LC and a characteristic impedance Z0 =

√
L/C. It

is useful to rewrite Eq. 2.1 in a way we can compare it directly to a mechanical oscillator:

HLC =
Q2

2C
+

1
2

Cω2
0Φ2 (2.2)

This way we see that Φ is equivalent to the position X, Q to the conjugate momentum P and
C to the mass m. We can thus follow the standard canonical quantization procedure where Q
and Φ become operators satisfying the commutation relation:

[Φ̂, Q̂] = ih̄ (2.3)

We define the creation Â and annihilation Â† operators following the same logic as:

Φ̂ = Φzp f (Â† + Â), Q̂ = iQzp f (Â† − Â) (2.4)
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2.2. Josephson junction

with Φzp f =
√

h̄Z0/2 and Qzp f =
√

h̄/2Z0 being the magnitude of the zero-point fluctuations
of the flux and the charge respectively. We can rewrite the Hamiltonian of Eq. 2.1 in terms of
the creation and annihilation operators:

ĤLC = h̄ω0(Â† Â +
1
2
) (2.5)

resulting in the well known quantum harmonic oscillator Hamiltonian.

We will now briefly explain why a quantum description of the system is needed. First,
the superconducting resonators are designed to work at frequencies f above 1 GHz. A
quick calculation gives T = h f /kB = 50 mK where h and kB are the Planck and Boltzmann
constant respectively. This proves that in a dilution fridge reaching a temperature of 20 mK,
the thermal noise is smaller than the energy level spacing. Moreover, because of the super-
conducting nature of the circuit, it is possible to reach sufficiently high quality factors such
that the energy levels of the LC circuit do not overlap. Thus, the energy damping rate 2γ,
corresponding to the frequency width of the energy levels, is such that 2γ/h̄ << ∆E where
∆E is the spacing between two consecutive energy levels as shown in Fig. 2.1. Theses two
aspects prove that quantum effects are indeed important in superconducting circuits. In
the rest of the manuscript we will drop the hat on the operators and precise the nature of
variables/operators when confusion can arise. We will also adopt a convention where we
drop the zero-point energy corresponding to the factor 1/2 in ĤLC.

2.2 Josephson junction

Graphene

Insultator

Superconductor

SIS

SNS

a b CJ

Ic

Ic, CJ

Figure 2.2: (a) Scheme of a SIS JJ and a SNS JJ with graphene as a normal part. (b) Equivalent
circuit representation of a JJ. A nonlinear element (cross) of inductance LJ and critical current
Ic is shunted by a capacitor CJ . An equivalent representation is a cross in a square.

A simple LC oscillator is not enough to build a JPA. One needs to introduce a source
of nonlinearity that can be used to transform a simple oscillator into an amplifier. The
key element that is often used for bringing nonlinearity to superconducting circuits is the
Josephson junction (JJ). A general definition was given in Chapter 1. We saw that most of
the times, JJs are made by creating a thin insulating barrier (typically 1 nm) between two
superconductors such that cooper pairs can tunnel through this barrier (superconducting-
insulating-superconducting or SIS junctions) as depicted in Fig. 2.2a. While the following
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Chapter 2. Theory of the Josephson parametric amplifier

theories we will present are based on SIS junctions, the goal of my work was to use graphene
as a JJ to make a JPA (superconducting-normal-superconducting or SNS junctions) as de-
picted in Fig. 2.2b. For now we come back to SIS JJs, because to my knowledge, no specific
theories about SNS JJ based JPAs exist. Such a theory would account for the non-sinusoidal
current phase relation (CPR) and would change the form of the Josephson energy that we
will introduce in the next paragraphs.

The constitutive equations describing a tunnel junction are:

I(t) = Ic sin(ϕJ(t)/φ0) (2.6)

ϕJ(t) ≡
∫ t

−∞
dt′V(t′) (2.7)

where I is the current, Ic the critical current i.e. the threshold current above which the JJ leaves
the superconducting state, V the voltage across the JJ, ϕJ the generalized flux associated to
the voltage across the JJ and φ0 = h̄/2e the superconducting flux quantum. By differentiating
Eq. 2.6 with respect to time and using Eq. 2.7, we find the following equations:

V =
LJ

cos(ϕJ(t)/φ0)

dI
dt

=
LJ√

1 − (I/Ic)2

dI
dt

= L′
J
dI
dt

(2.8)

with LJ = φ0/Ic. We can see from these equations that the JJ behaves like a nonlinear in-
ductance L′

J . The nonlinearity comes from the fact that L′
J depends on the current flowing

through the JJ. The current (or equivalently power) dependence of the Josephson inductance
is a key feature to perform parametric amplification. One can also note that the strength of
the nonlinearity is proportional to 1/Ic. The critical current is thus an important parameter to
set the amount of nonlinearity in the system. We saw in Chapter 1 that Ic depends on the
charge carrier density that can be controlled with a gate in a gJJ. This proves that gJJs provide
a gate tunable Josephson inductance which is a feature that does not exist in SIS junctions.
Besides the inductance, the thin insulating barrier between the two superconductors creates
an additional capacitance CJ . In a SNS JJ, CJ is often negligible because the distance separating
the two superconductors is higher and the total area smaller. The JJ being an inductance as
well as a capacitor forms a LC oscillator by itself, and resonates at an angular frequency ωJ
called the plasma angular frequency. The plasma frequency is often of the order of tens of Gi-
gahertz, higher than the energy at play in our system such that we can neglect it in our models.

We can also compute the energy of the JJ which will be useful when computing the
Hamiltonian of the JPA. By using Eq. 2.6 and the derivative of Eq. 2.7, the energy E can simply
be expressed as :

E =
∫

I(t)V(t)dt

= −EJ cos(ϕJ(t)/φ0)
(2.9)

with EJ = φ0 Ic. A high Josephson energy corresponds thus to a small Josephson inductance
or equivalently a small nonlinearity.
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2.3. Josephson junction in a resonant structure

2.3 Josephson junction in a resonant structure

A JJ in a resonant structure can lead to parametric amplification when driven by a strong
pump. We will thus derive the Hamiltonian of such a system in this section.

2.3.1 Josephson junction in a lumped LC oscillator

C L EJ CJ LC EJ CJ

C' L' ENL

(no signal)

ωsignal

ωpump

ωidler

ω
sigal + ω

idler = 2ωpump

ωpump

ωsignal

ωidler

a b

Figure 2.3: (a) Equivalent representation of the JJ integrated in a parallel LC circuit. The spider
symbol stems for the nonlinear part of the Josephson potential. (b) Amplification scheme for
a Kerr medium. The pump modulates the nonlinear inductance (Eq. 2.8 where L′

J depends
on the current going through the JJ) which enables electromagnetic waves conversion from
the pump mode to the signal and idler modes. At the input of the JJ the idler mode shows no
signal but in practice quantum fluctuations are always present.

We consider a JJ placed in parallel with a lumped LC oscillator as shown in Fig. 2.3a. The
total energy of this system is the sum of energy of the LC circuit (Eq. 2.1) and the energy of
the JJ (Eq. 2.9):

H =
Q2

2(C + CJ)
+

Φ2

2L
− EJ cos

( ϕJ

φ0

)
(2.10)

Because the voltage is the same across each element, the magnetic flux is the same meaning
that Φ = ϕJ . For small Φ we can expand the Josephson energy:

EJcos
( Φ

φ0

)
≈ EJ ∑

n=0
(−1)n

( Φ
φ0

)2n 1
2n!

= EJ −
EJ

2

( Φ
φ0

)2
+

EJ

24

( Φ
φ0

)4
+O

( Φ
φ0

)6

= − Φ2

2LJ
+ ENL

(2.11)

where we dropped the constant EJ because it does not impact the dynamics of the system

and defined ENL =
EJ
24

(
Φ
φ0

)4
+O

(
Φ
φ0

)6
. The presence of only even power terms is a direct

consequence of the sinusoidal CPR of the SIS JJ. We can thus rewrite the total energy of the
system as:

H =
Q2

2C′ +
Φ2

2L′ + ENL(Φ) (2.12)
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Chapter 2. Theory of the Josephson parametric amplifier

This way we isolated the nonlinear part of the Josephson energy (quartic and higher order in
Φ). This part is represented as a spider symbol as shown in Fig. 2.3a. We can see that after
this transformation the new effective LC oscillator parameters are:

L′ =
LLJ

L + LJ
C′ = C + CJ ω′ =

√
1

L′C′ Z′ =
√

L′/C′ (2.13)

In the following calculations we will just keep the quartic term of ENL. By using Φ̂ =
Φzp f (Â† + Â), the commutation relation [A, A†] = 1, and the rotating wave approximation,
i.e. neglecting the terms where there is not the same number of A and A† (because the only
way of having energy conservation would be to create photons at different frequencies, but
the rotating wave approximation averages out these terms to zero because they oscillate
faster than the relevant dynamics of our system) we find:

ENL =
1
24

EJ

(Φzp f

φ0

)4
(A + A†)4

=
1
24

EJ

(Φzp f

φ0

)4
(6A† A† AA + 12A† A + 3)

= − h̄
2

K(A† A† AA + 2A† A)

(2.14)

where we used the new effective LC oscillator flux zero-point fluctuation Φzp f =
√

h̄Z′/2,
dropped the constant term and defined the Kerr coefficient K:

K ≡ −1
h̄

e2

2C′
L′

LJ
(2.15)

We can thus rewrite the total energy of the system as:

H = h̄ω′A† A − Kh̄A† A − h̄
2

KA† A† AA

= h̄ωr A† A − h̄
2

KA† A† AA
(2.16)

where we defined the angular resonance frequency of the full nonlinear system ωr = ω′ − K.

The Kerr term is of fundamental importance in the amplification process. It allows the
signal we want to amplify to interact with an external source of energy leading to ampli-
fication. By using a pump as an external source of photons, it is possible to convert two
pump photons (A( fp)A( fp)) into two entangled signal photons (A†( fs)A†( fi)). This is called
a 4-wave mixing process because it implies 4 electromagnetic waves. Conservation of energy
imposes that the pump frequency fp and the entangled photons frequency fs and fi, obey to
2 fp = fs + fi. We refer to the photons at frequency fs as signal photons and the photons at
frequency fi as idler photons. The amplification procedure is shown in Fig. 2.3b.

We will now come back to the Kerr coefficient itself which is the parameter fixing the
amount of nonlinearity in the system. First, we can see that K is proportional to the charging
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2.3. Josephson junction in a resonant structure

energy EC = e2/(2C′). Then, while it could have been easy to think that the Josephson
inductance was the only parameter determining the amount of nonlinearity, it is actually the
ratio of the total inductance L′ over the Josephson inductance LJ . The quantity η = L′/LJ is
called the participation ratio. When LJ >> L, η → 0 meaning that the Kerr coefficient will
be small. This might sound counter intuitive because a strong LJ implies a high nonlinear
inductance L′

J with which we would expect a strong Kerr term. But this is the result of
considering a parallel resonant circuit. When doing the same calculation but with a series LC
circuit, one can find similar results with a participation ratio η = LJ/L′ where L′ = L + LJ .
This time, a higher Josephson inductance results in a higher Kerr coefficient. We will see later
in this chapter conditions on K for operating the JPA in ideal conditions.

2.3.2 Josephson junction in a distributed LC oscillator

The lumped model that we studied in the previous section is important because it allowed
to get general results that hold even in more complicated cases. Nevertheless, during this
work, the resonant structures I designed could not entirely be considered as lumped because
their physical length were of the same order of magnitude than the Gigahertz wavelengths
that we used to monitor the device. This means that the electric and magnetic filed, i.e. the
current and voltage, cannot be considered as constant on the whole circuit length. I thus used
a model closer to the experimental circuit to extract the important parameters. The following
demonstration is entirely based on [83] where the Hamiltonian of a JJ embedded in a half
wave transmission line resonator is derived.

2.3.2.a Lagrangian of the system

a b

Figure 2.4: (a) Schematic representation of the distributed transmission line with an em-
bedded Josephson junction and input/output capacitance Ci,o (b) Lumped representation of
the distributed transmission line where the nonlinear part of the Josephson potential is in
parallel with the normal modes of the resonator dressed by the Josephson linear inductance
and capacitance. (a) and (b) were adapted from [83].

A transmission line (TL) can be decomposed as a succession of infinitesimal lumped LC
oscillators as shown in Fig. 2.4a. The total length of the TL is 2l and the JJ is placed at position
xJ . We will take as a reference the center of the TL for defining the position 0. The TL has a
constant inductance and constant capacitance per unit of length of L0 and C0 respectively
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Chapter 2. Theory of the Josephson parametric amplifier

and is terminated by an input and output capacitance Ci and Co respectively. One can also
define the characteristic impedance Z =

√
L0/C0 and the group velocity v = 1/(

√
L0C0).

The classical Lagrangian of the bare resonator can be expressed as:

Lr =
∫ l

−l

[
C0

2
Φ̇2(x, t)− [∂xΦ(x, t)]2

2L0

]
dx (2.17)

The Lagrangians associated with the input and output capacitance are:

Li,o =
Ci,o

2
[Φ̇(±l, t)− Vi,o(t)]2 (2.18)

where Vi,o is the voltage bias at the input and output ports. The contribution of the linear part
of the JJ is:

LJ =
CJ

2
δ̇2 −

EJ

2

( δ

φ0

)2
(2.19)

where δ = Φ(x+J , t)− Φ(x−J , t). The contribution of the nonlinear part of the JJ ENL is given
in Eq. 2.11 where Φ is replaced by δ. The total Lagrangian is thus :

L = Lr + LJ + Li + Lo + ENL ≡ LL + ENL (2.20)

2.3.2.b Normal modes of the linearized circuit

Solving the Euler-Lagrange equation for the linear Lagrangian:

∑
ν=x,t

∂ν

( δLL

δ[∂νΦ(x, t)]

)
− δLL

δΦ(x, t)
= 0 (2.21)

away from the JJ and the input/output capacitance gives a simple wave equation:

Φ̈(x, t) = v∂xxΦ(x, t) (2.22)

The solutions are thus propagating waves with the dispersion relation ωm = kmv with km the
wave vector of the mode m. We can decompose Φ over all these propagating mode:

Φ(x, t) = ∑
m≥1

Φm(t)um(x) (2.23)

where u(x) is the envelop of the mode m and Φm is oscillating at the frequency ωm. To find
the boundary conditions, it is useful to transform the integral in a discretized form [84]:

Lr = lim
n→∞

n

∑
j=1

∆x

(
C0

2
Φ̇2

j (t)−
[Φj(t)− Φj−1(t)]2

2L0∆2
x

)
(2.24)

where ∆x = 2l/n. The Euler-Lagrange equations are now ∂t(δL/δΦ̇j)− δL/δΦj = 0. Solving
those equations at x = −l, xJ , l gives:

Φ̈(−l, t)− 1
CiL0 ∂xΦ(x = −l, t) = V̇i (2.25)

Link back to ToC ↑ 30



2.3. Josephson junction in a resonant structure

Φ̈(l, t)− 1
CoL0 ∂xΦ(x = l, t) = V̇o (2.26)

1
L0 ∂xΦ(x = x−J , t) =

1
L0 ∂xΦ(x = x+J , t) = CJ δ̈ +

δ

LJ
(2.27)

We note that to obtain these equations, the capacitance ∆xC0 of the first unit cell, the last unit
cell, and the unit cell containing the JJ was neglected compared to the capacitance Ci, Co and
CJ . While this is justified because ∆x is chosen to be infinitesimal, it should at least be the size
of the JJ because we considered the JJ being part of one unit cell. For an SNS JJ CJ can be very
small making this approximation wrong. Nevertheless, we will see at the end of the section
that it does not change the results of the model. Eq. 2.25 and 2.26 means that the current
flowing through the input and output capacitors I = Ci,o∂tU = Ci,o∂2

t Φ must be equal to the
sum of the current flowing through the inductor I = (1/L0∆x)

∫
Udt = (1/L0)∂xΦ and the

capacitor (but we neglected it). The same principle applies for Eq. 2.27 where the current on
the left and on the right of the JJ should be the same as the current flowing through the JJ.
At resonance we expect a standing wave forming in the resonator such that at the input and
output we expect to have V̇i,o = 0. The solutions of the wave equation with these specific
constrains are:

um = am

{
sin[km(x + l)− φi

m] − l ≤ x ≤ x−J
bm sin[km(x − l) + φo

m] x+J ≤ x ≤ l
(2.28)

There are thus 5 parameters to determine: am, bm, km, φi
m and φo

m.
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Figure 2.5: (a) Numerical solutions of Eq. 2.31 where we plotted the right and left hand side
of the equation. Each solution corresponds to a different mode. (b) Examples of the three first
normal modes envelopes with the junction placed in the middle of the resonator. We can see
that the junction only affects the odd modes. Figure (b) was taken from [83].

We can now use the previous equations to determine all the parameters. We can solve
Eq. 2.25 and 2.26 knowing that Φm(t) is of the form Deiωt where D is a constant and um

expressed above, to get an equation on φi,o
m and km:

tan(φi,o
m ) =

1
Ci,oZ0kmv

(2.29)

Link back to ToC ↑ 31



Chapter 2. Theory of the Josephson parametric amplifier

Using the first equality of Eq. 2.27 we get an equation on bm, km and φi,o
m :

bm =
cos[km(xJ + l)− φi

m]

cos[km(xJ − l) + φo
m]

(2.30)

By using the expression of um in Eq. 2.27 and using Eq. 2.30 we find the following equation:(
tan[km(xJ − l) + φo

m]− tan[km(xJ + l)− φi
m]
)(L0l

LJ
− (kml)2 CJ

C0l

)
= kml (2.31)

By using Eq 2.29 we can express km as a function of φi,o
m and inject this in Eq. 2.31 to have an

equation with a unique unknown parameter φi,o
m . This equation has to be solved numerically

and one can find several solutions corresponding to the different modes m as shown in
Fig. 2.5a. Once we get φi,o

m we can compute km with Eq. 2.31 and then bm with Eq. 2.30. The
last parameter to determine is am which can be done using the inner product [85]:

⟨um · un⟩ ≡
∫ l

−l
dxC0um(x)un(x) + Cium(−l)un(−l) + Coum(l)un(l) + CJ∆um∆un = CΣδmn

(2.32)
where we have defined ∆um = um(x+J )− um(x−J ). One has to mention that ∆um is the most
important parameter of this model because it tells how much the JJ perturbs the mode and
plays a role in the participation ratio and the Kerr coefficient as we will see later. Fig. 2.5b
shows a typical solution of um for the first three modes. We can see that the JJ only affects
odds modes by creating a gap ∆um.

As we will see later, it is also useful to define the inner product of the mode envelopes
[85]:

⟨∂xum · ∂xun⟩ =
∫ l

−l

dx
L0 ∂xum(x)∂xun(x) +

1
LJ

∆um∆un =
δmn

Lm
(2.33)

where we have defined the mode inductance L−1
m ≡ CΣω2

m taking into account the linear
part of the Josephson inductance. Fig. 2.4b represents thus the lumped representation of
the distributed resonator where the nonlinear part of the JJ is biased by a series of LC
oscillators corresponding to each resonant mode. Note that when the approximation CJ >>
∆xC0 leading to Eq. 2.27 is not true, it would transform Eq. 2.31 such that CJ/(C0l) →
(CJ + ∆xC0)/(C0l). In practice we neglect CJ because we are working far from the plasma
frequency, and because ∆x << l we could also neglect the modification appearing because
of the ’wrong’ approximation that we did earlier.

2.3.2.c Hamiltonian of the system

The Hamiltonian of the system can be obtained by doing the Legendre transformation
of the Lagrangian by using the generalized momenta Qm = ∂L/∂Φ̇m corresponding to the
charge conjugate of Φm. We will directly jump to the final result were we reintroduced the
nonlinearity (more details can be found in [83]):

H = H◦ + ∑
m′

[ Q′2
m′

2C′
m′

+
Φ′2

m′

2L′
m′

]
− ENL

(
∑
m′

Φ′
m′

)
(2.34)
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where H◦ is the Hamiltonian part whose modes are not affected by the junction (even modes),
m′ the modes affected by the junction (odd modes), Q′

m′ = Qm′/∆um′ , Φ′
m′ = Φm′∆um′ ,

L′
m′ = Lm′∆u2

m′ , C′
m′ = CΣ/∆u2

m′ and ENL obeying to Eq. 2.11. We can see that the Hamiltonian
is similar to the lumped model Hamiltonian given in Eq. 2.12 but with Φ being the sum on
all the modes and with parameters renormalized by mode envelope gap ∆um′ that we can
compute thanks to the procedure given in the last section. We can quantize the Hamiltonian
by introducing the creation and annihilation operators of excitations in mode m′ Am and A†

m
respectively:

Φ′
m′ =

√
h̄

2C′
m′ωm′

(A†
m′ + Am′) (2.35)

Q′
m′ =

√
h̄Cm′ωm′

2
(A†

m′ − Am′) (2.36)

By considering only the modes affected by the junction and expanding ENL only to the quartic
term as for the lumped system, we get:

H ≈ ∑
m′

h̄ω′
m′ A†

m′ Am′ − ∑
m′

h̄
Km′m′

2
A†

m′ A†
m′ Am′ Am′ (2.37)

where we used the rotating wave approximation and neglected terms with interactions
between two different modes. In this expression we defined Km′m′ as :

Km′m′ =
1
h̄

E′
C,m′ηl,m′ =

1
h̄

e2

2CΣ

Lm′

LJ
∆u4

m′ (2.38)

with E′
C,m′ = e2/(2C′

m′) the charging energy associated to the total capacitance C′
m′ and

ηl,m′ = L′
m′/LJ the participation ratio of the junction. We also defined:

ω′
m′ = ωm′ − ∑

n′
Km′n′ (2.39)

with Km′n′ = 2
√

Km′m′Kn′n′ the cross Kerr coefficients. Km′m′ has a similar expression as for the
lumped resonator but is corrected by a factor ∆u4

m′ because of the renormalization of the total
capacitance and inductance caused by the presence of the JJ. In the rest of the manuscript we
will only focus on the first mode m′ = 1. This means that the Hamiltonian of the distributed
model is exactly the same as for the lumped model but with a renormalized K and a angular
resonance frequency shifted slightly further because of cross Kerr interactions. In practice
ωm′ >> Kmn meaning that this shift is negligible. We also point out that interactions between
different modes that we neglected lead to cross Kerr nonlinear terms and beam-splitter-like
terms [83].

2.4 Input/output theory for the JPA

We studied in the previous section the isolated system resonator + JJ and saw that its
Hamiltonian presents a four-wave mixing term that could be used for amplification. We
will now study this system coupled to external ports and how it should be driven to create
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amplification. This is done by using the input/output theory [86] and following carefully
the work done by Yurke and Buks [87] where nonlinear loss is included in the model. They
created this model to account for the nonlinear loss observed in high kinetic inductance
transmission line. In our case we do not have high kinetic inductance, but the SNS nature of
the JJ can create nonlinear dissipation as we saw in Chapter 1.

2.4.1 Equations of motion

JPA

A

Hr = ωrℏA†A + (ℏ/2)KA†A†AA

Signal / pump
reservoir

a1 / b1

Linear loss
 reservoir

a2

Nonlinear loss
reservoir

a3

γ1

γ2

γ3

Figure 2.6: Scheme of the model where the JPA is coupled to three ports. The port 1 is the
port from where are coming the input tones. The ports 2 and 3 stem for linear and nonlinear
loss respectively.

The schematic of the studied system is shown in Fig. 2.6. The JPA is coupled to three
thermal baths. The first thermal bath correspond to the port through which are sent input
tones and through which we measure what is reflected. The second and the third thermal
baths correspond to linear and nonlinear loss (two-photon loss) respectively. In this model,
the Hamiltonian of the JJ embedded in a resonator is equivalent to the Hamiltonian that was
derived in the last section:

Hr = h̄ωr A† A +
h̄
2

KA† A† AA (2.40)

where A is the intracavity annihilation operator and K and ωr can be computed from Eq. 2.38
and 2.39 respectively. The Hamiltonians of the thermal bath i = 1, 2, 3 are:

Hi =
∫

dωh̄ωa†
i (ω)ai(ω) (2.41)

with ai the annihilation operator in the thermal bath i. We define a linear coupling with the
bath 1 and 2:

Hc1,2 = h̄
∫

dω
[
κ1,2A†a1,2(ω) + κ∗1,2a†

1,2(ω)A
]

(2.42)

and the two-photon coupling for the bath corresponding to nonlinear loss:

Hc3 = h̄
∫

dω
[
κ3A† A†a3(ω) + κ∗3 a†

3(ω)AA
]

(2.43)

The fact that κ1,2,3 do not depend on ω is part of the Markov approximation [86]. The total
Hamiltonian is:

H = Hr + H1 + H2 + H3 + Hc1 + Hc3 + Hc3 (2.44)
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In the Heisenberg picture, we can use the Heisenberg equation to get the equation of motion
of A:

dA
dt

= − i
h̄
[A, H]

= −iωr A − iKA† AA − iκ1

∫
dωa1(ω)− iκ2

∫
dωa2(ω)− 2iκ3

∫
dωA†a3(ω)

(2.45)

Applying the same procedure for ai using the commutation relation
[

ai(ω), a†
j (ω

′)
]

=

δi,jδ(ω − ω′):
da1,2(ω)

dt
= −iωa1,2(ω)− iκ∗1,2A (2.46)

da3(ω)

dt
= −iωa3(ω)− iκ∗3 AA (2.47)

We can integrate Eq. 2.46 to obtain:

a1,2(ω) = at0
1,2(ω)e−iω(t−t0) − iκ∗1,2

∫ t

t0

A(t′)e−iω(t−t′)dt′ (2.48)

with at0
1,2(ω) the value of a1,2(ω) at the initial time t0 < t. It is useful to define ain

1,2(t) as the
inverse Fourier transform of at0

1,2(ω) at t = t0. Doing the same procedure but considering
a time t1 > t allows to define aout

1,2 (t), the inverse Fourier transform of at1
1,2(ω) at t = t1. A

similar procedure for Eq. 2.47 gives:

a3(ω) = at0
3 (ω)e−iω(t−t0) − iκ∗3

∫ t

t0

A2(t′)e−iω(t−t′)dt′ (2.49)

and we can define ain/out
3 similarly as for the mode 1 and 2. Inserting the equations on a1,2,3

in Eq. 2.45 gives the equation of motion:

dA
dt

= −iωr A − iKA† AA − γA − γ3A† AA − i
√

2γ1eiϕ1 ain
1 − i

√
2γ2eiϕ2 ain

2 − 2i
√

γ3eiϕ3 A†ain
3

(2.50)
where γ = γ1 + γ2 and:

κ1,2 =

√
γ1,2

π
eiϕ1,2 κ3 =

√
γ3

2π
eiϕ3 (2.51)

We can see in Eq. 2.50 that there are two real terms proportional to A: −γA − γ3A† AA mean-
ing that they are dissipation terms. The first one is associated to linear loss in port 1 and 2, the
second one is proportional to the number of photons inside the resonator A† A. This means
that the nonlinear loss increases linearly with the number of intracavity photons in this model.

One can compute the input-output relations for the ports 1 and 2 by using Eq. 2.48 and
the definition of ain

1,2 and aout
1,2 . A similar procedure can be done for the ports 3. We find:

aout
1,2 − ain

1,2 = −i
√

2γ1,2e−iϕ1,2 A(t)

aout
3 − ain

3 = −i
√

γ3e−iϕ3 A(t)A(t)
(2.52)

Now that we have expressed all the equation of motions, we will first solve them in the
classical limit which is useful to understand the behavior of the JPA biased by a strong pump.
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2.4.2 Classical nonlinear response
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Figure 2.7: (a) Amplitude of the intracavity field with respect to the angular frequency of the
pump for different input fields. (b) Magnitude of the S11 parameter with respect to pump
frequency for different input fields. The dashed line indicates the linear dependence of the
minimum of |S11| with respect to the input power. The parameters are: γ1 = 0.01ωr, γ2 =
0.5γ1, K = -10−4ωr, γ3 = -0.01K/

√
3.

As we saw in Fig. 2.3b, the parametric amplification process needs the presence of a strong
pump tone. We will now derive the effects of such a strong incoming and outgoing coherent
classical field:

ain,out
1 = bin,out

1 e−i(ωpt+Ψ1) (2.53)

where bin,out
1 , the amplitude of the incoming/outgoing pump field is a real constant number,

ωp the angular frequency of the pump and Ψ1 its phase. Because of the classical nature
of the pump, ain

1 is not an operator anymore but a complex number. The incoming fields
coming from ports 2 and 3 are noise and quantum fluctuations and can thus be neglected
here: ain

2,3 = 0. We can also rewrite the intracavity field:

A = Be−i(ωpt+ϕB) (2.54)

where B is a real constant number. By using the equation of motion of A we find:

[i(ωr − ωp) + γ]B + (iK + γ3)B3 = −i
√

2γ1bin
1 ei(ϕ1+ϕB−Ψ1) (2.55)

and by using the input/output equation on the modes a1:

bout
1 = bin

1 − i
√

2γ1Be−i(ϕ1+ϕB−Ψ1) (2.56)

By combining these two equations we obtain the reflection coefficient or the S11 parameter:

bout
1

bin
1

= S11 = 1 − 2γ1B[
i(ωr − ω) + γ

]
B + (iK + γ3)B3

(2.57)

We can see that in the limit where there are no nonlinear effects, i.e. K = γ3 = 0, this
expression is similar to the S11 parameter of a half wave resonator with γ1 = ωr/(2Qc),
γ2 = ωr/(2Qi) where Qc and Qi are respectively the external and the internal quality factors
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(see Chapter 4). By multiplying each side of Eq. 2.55 by its complex conjugate we obtain a
cubic equation in B2 that allows to compute the intracavity field:

B6 +
2[(ωr − ωp)K + γγ3]

K2 + γ2
3

B4 +
(ωr − ωp)2 + γ2

K2 + γ2
3

B2 − 2γ1

K2 + γ2
3
(bin

1 )2 = 0 (2.58)

Fig. 2.7a shows the computed amplitude of the field with respect to the pump angular
frequency for different input powers. We can see that at low input power, B is centered
around the resonance frequency ωr. When the input power increases, the maximum of B
shifts to lower frequency due to the negative Kerr shift. This can be directly computed, by
using ∂(B2)/∂ωp = 0 we find that at resonance:

ωp = ωr + KB2 (2.59)

meaning that the resonance occurs at ωr + KB2 instead of ωr. Once the input field reaches a
value above a threshold field called the critical field bin

1c, the system goes from having one real
solution and two complex solutions (not physical) to three possible real solutions as shown
for the purple curve. Two of these solutions are stable and one is unstable. In this case, the
device is said to be in a bistable state. While the bistability can be used for amplification
(Josephson bifurcation amplifier [88, 89]), the JPA works at power just below the critical
power in a region where linear amplification is possible.

The intracavity field at the critical input field leads to a double condition. The first one is
that ∂(B2)/∂ω = ∞ or equivalently ∂ω/∂(B2) = 0. This condition means that the slope is
infinite at the critical power. But as we can see in Fig. 2.7a, this condition is also true above the
critical power. This leads to the second condition ∂2ω/∂2(B2) = 0 where the two solutions
appearing at the critical power coalesce into a single point. From these two conditions it is
possible to derive important equations giving some quantities at the critical point. The first
one is on the critical input field bin

1c:

(bin
1c)

2 =
4

3
√

3

γ3(K2 + γ2
3)

γ1(|K| −
√

3γ3)3
(2.60)

The intracavity critical field can be expressed as:

B2
c =

2γ√
3(|K| −

√
3γ3)

(2.61)

and the Kerr frequency shift associated to the critical point:

ωr − ωp = −γ
K
|K|

[4γ3|K|+
√

3(K2 + γ2
3)

K2 − 3γ2
3

]
(2.62)

These equations show that the linear and nonlinear loss have the effect of pushing the critical
point at a higher input power. Because of this, the critical intracavity field is larger as well
as the critical Kerr frequency shift. When γ3 > |K|/

√
3, the nonlinear loss is too high and

bifurcation is not possible anymore. Eqs. 2.62 and 2.60 are very useful for experimental
data fitting because they allow to fix fitting parameters thanks to accessible experimental
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parameters like the critical power and the critical frequency shift as long as we are able to
find the critical point accurately (see Chapter 5).

It is also instructive to look at the S11 power dependency as shown in Fig. 2.7b because it
is a quantity that we can directly measure. We can see that at the critical power, the slope
of |S11| is also infinite at one point. We can also see that the depth of the resonance dip
associated to internal loss is increasing linearly with the input power. This is because of the
two-photon loss being proportional to γB2 according to Eq. 2.50.

2.4.3 Linearized reponse for quantum fields

2.4.3.a Solving the linear equation

In the previous section we studied the effect of a classical field on the system. We will
now reintroduce quantum fields on top of the classical field and keep only linear orders in
the quantum fields because they are small by nature. This is equivalent of considering both
a pump and a small signal at the input of the JPA. We can thus write the input and output
fields as:

A = Be−i(ωpt+ϕB) + ae−iωpt

ain
1 = bin

1 e−i(ωpt+ψ1) + cin
1 e−iωpt

ain
2,3 = cin

2,3e−iωpt

aout
1 = bout

1 e−i(ωpt+ψ1) + cout
1 e−iωpt

aout
2,3 = bout

2,3 e−i(ωpt) + cout
2,3 e−iωpt

(2.63)

where a, cin
1,2,3 and cout

1,2,3 are quantum fields and B, bout
1,2,3 classical fields that can be computed

from the previous part. Using equation of motion (Eq. 2.50) on A and keeping only linear
terms in a, we find:

da
dt

+ Wa + Va† = F (2.64)

with:

W = i(ωr − ωp) + γ + 2(iK + γ3)B2

V = (iK + γ3)B2e−2iϕB

F = −i
√

2γ1eiϕ1cin
1 − i

√
2γ2eiϕ2cin

2 − 2i
√

γ3Bei(ωpt+ϕB+ϕ3)cin
3

(2.65)

where we also used the equation of motion on the classical intracavity field only (Eq. 2.55) to
simplify the terms depending only on B. By doing so, we assumed that the classical field B is
not affected by the presence of the quantum field a (which is true as long as a is negligible
compared to B). This approximation is called the stiff pump approximation. By isolating a†

in Eq. 2.64 and plugging it into the adjoint of Eq. 2.64 we find (note that according to Eq. 2.58,
B does not depend on time):

d2a
dt2 + 2Re(W)

da
dt

+ (|W2| − |V|2)a = Γ(t) (2.66)
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where
Γ(t) =

dF
dt

+ W∗F − VF†(t) (2.67)

By rewriting the operators using their Fourier decomposition : O(t) = 1
2π

∫ ∞
−∞ dωO(ω)e−iωt,

we find:

a(ω) =
Γ(ω)

−ω2 − 2iωRe(W) + (|W|2 − |V|2) =
Γ(ω)

(−iω + λ0)(−iω + λ1)
(2.68)

where we have defined:

λ0 = γ + 2γ3B2 −
√
(K2 + γ2

3)B4 − (ωr − ωp + 2KB2)2

λ1 = γ + 2γ3B2 +
√
(K2 + γ2

3)B4 − (ωr − ωp + 2KB2)2
(2.69)

and where Γ(ω) is expressed as:

Γ(ω) = −i
√

2γ1

[
(−iω + W∗)eiϕ1cin

1 (ω)− Ve−iϕ1cin†
1 (−ω)

]
− i
√

2γ2

[
(−iω + W∗)eiϕ2cin

2 (ω)− Ve−iϕ2cin†
2 (−ω)

]
− 2i

√
γ3B

[
(−iω + W∗)ei(ϕ3+ϕB)cin

3 (ωp + ω)− Ve−i(ϕ3+ϕB)cin†
3 (ωp − ω)

] (2.70)

We want now to express cout
1 (i.e. the output quantum field on the measurement port) as a

function of all the other input operators in order to compute the gain. For this purpose we
use the input/output equation (Eq. 2.52) with the linearized field and find:

cout
1 (ω) = cin

1 (ω)− i
√

2γ1e−iϕ1 a(ω) (2.71)

and insert it in Eq. 2.68 to find:

cout
1 (ω) =

[
(1 − γ1χs)

]
cin

1 (ω) +
[
γ1e−2iϕ1χi

]
cin†

1 (−ω)

−
[√

γ1γ2ei(ϕ1−ϕ2)χs

]
cin

2 (ω) +
[√

γ1γ2e−i(ϕ1+ϕ2)χi

]
cin†

2 (−ω)

−
[√

2γ1γ3Bei(ϕ1−ϕ3−ϕB)χs

]
cin

3 (ωp + ω) +
[√

2γ1γ3Be−i(ϕ1+ϕ3+ϕB)χi

]
cin†

3 (ωp − ω)

(2.72)

Where we defined:

χs =
2(−iω + W∗)

(−iω + λ0)(−iω + λ1)

χi =
2V

(−iω + λ0)(−iω + λ1)

(2.73)

2.4.3.b Kerr medium and frequency mixing

We see here that the output mode cout
1 (ω) is the sum of contributions coming from the

input modes 1 and 2 (we ignore the mode 3 for now) at the angular frequency ω with
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common factors χs, and the sum of contributions of the sames modes but at the angular
frequency −ω and a common factors χi. While the terms in χs are trivial because one can
expect all the incoming field at the a given frequency to impact the outgoing field at the same
frequency, the terms in χi show that modes at different frequencies contribute also to this
outgoing signal. This is a specificity of Kerr mediums which can mix frequencies as shown in
Fig. 2.3b. The signal mode has an angular frequency ω = ωs and the idler mode an angular
frequency −ω = ωi. We point out that we defined the linear fields with a factor e−iωpt on
each operator. This means that the angular frequency ω = 0 corresponds to ω = ωp. There
is thus the relation ωs + ωi = 2ωp. One can see that χi ∝ V ∝ (iK + γ3)B2. This shows that
the mixing frequency term would cancel in a system with no Kerr effect and nonlinear loss.
An interesting fact is that even without Kerr nonlinearity, the presence of nonlinear loss can
create wave mixing. Because of the nonlinear nature of γ3, the contributions of the mode 3 to
the mode 1 corresponds to angular frequencies 2ωp and 0.

2.4.3.c Discussion on the added noise

Let us consider a system with no intrinsic loss (γ2 = γ3 = 0). We can see in Eq. 2.72 that
cout

1 (ω) has two contributions, one being cin
1 (ω) the signal we want to amplify, and one being

cin
1 (−ω) being the idler mode associated to the signal mode. This means that even if no signal

is sent at the idler frequency, there will always be quantum fluctuations on the idler mode
that will contribute to the output signal. When the only source of added noise is the quantum
fluctuations associated to the idler mode, the amplifier is said to be at the quantum limit. We
can see that when there are modes associated to loss (γ2 ̸= 0, γ3 ̸= 0), it adds other sources
of noise and prevents the JPA to be quantum limited. One can estimate the contribution of
the loss modes by putting all the phases to 0, making the approximation χi ≈ χs = χ >> 1
which is justified for high amplification gain. In this case Eq. 2.72 can be written as:

cout
1 (ω) = −γ1χcin

1 (ω) + γ1χ

[
cin†

1 (−ω)−
√

γ2

γ1
cin

2 (ω) +

√
γ2

γ1
cin†

2 (−ω)

−
√

γ3

γ1
Bcin

3 (ωp + ω) +

√
γ3

γ1
Bcin†

3 (ωp − ω)

] (2.74)

We can see that the linear loss mode will contribute with a factor
√

γ2/γ1 to the added noise
and the nonlinear loss mode with a factor

√
γ3B2/γ1. For now, we only looked at noise on

cout
1 (ω), but we are only able to measure |cout

1 (ω)|2. One can thus expect the loss modes to

increase the added noise by a factor 1 + γ2+γ3B2

γ1
.

2.4.4 Gain

2.4.4.a Gain calculation

The previous calculation allowed to explain how the JPA, acting as a Kerr medium, is
able to mix frequencies and what is the impact of losses on its noise performances. We will
now compute its gain G which is an important figure of merit of the device. We already saw
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Figure 2.8: (a) Signal gain at ω = 0 with respect to the pump angular frequency for different
input powers. (b) Signal gain with respect to the signal frequency. The pump frequency was
chosen to maximize the gain and was extracted from (a). The parameters are: γ1 = 0.01ωr, γ2
= 0.5γ1, K = -10−4ωr, γ3 = -0.01K/

√
3.

that the output mode is a combination of many different inputs such that it is not possible to
define a unique gain because we cannot write |cout

1 |2 = G|cin
1 |2. We thus define the classical

parametric gain or signal gain Gs as the gain where cin
1 (ω) represents a classical signal at

frequency ω and all the other modes are set to zero:

Gs ≡
|cout

1 (ω)|2

|cin
1 (ω)|2

= |1 − γ1χs|2 =
|(−iω + λ0)(−iω + λ1)− 2γ1(−iω + W∗)|2

(ω2 + λ2
0)(ω

2 + λ2
1)

(2.75)

where the last expression shows the explicit signal angular frequency dependence of Gs. One
can also define the intermodulation gain Gi as the gain where cin

1 (−ω) represents a classical
signal and all the other modes are put to zero:

Gi ≡
|cout

1 (ω)|2

|cin
1 (−ω)|2

= |γ1χi|2 =
4γ2

1|V|2

(ω2 + λ2
0)(ω

2 + λ2
1)

(2.76)

We can see that Gi and Gs are maximal at ω = 0, i.e. when the signal frequency is at the
pump frequency. It is possible to show that the bifurcation conditions ∂ωp/∂(B2) = 0 and
∂2ωp/∂(B2)2 = 0 implies λ0 = 0. It means that getting close to the bifurcation point makes
the maximum gain higher and even infinite when the JPA is exactly at the bifurcation point.
This is of course not physical because the gain takes its energy from the pump which has not
an infinite energy. This arises because we considered the pump as stiff in the calculations.
Fig. 2.8a shows the signal gain as a function of the pump angular frequency for ω = 0 in
order to have the maximum of gain. We can see that the higher is the input power, the higher
is the gain and the higher is the Kerr shift. It also shows that for a given pump power, one
has first to find the optimal pump frequency to get the maximum of gain. Once the optimal
pump frequency is found, one can plot the gain with respect to the signal frequency as shown
in Fig. 2.8b. We can also see parameters for which the gain is negative (i.e. smaller than 1
in linear unit). This happens because we did put loss in the model through γ2 and γ3 (see
parameters in the caption of Fig. 2.8).
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2.4.4.b Gain approximation

We will now make approximations on the gain equations in order to derive useful results.
We will work in the vicinity of the pump frequency such that ω << γ. Moreover we will
only consider the high gain regime i.e. close to the bifurcation point where λ0 << γ and thus
λ1 ≈ 2(γ + γ3B2). Close to the critical point, we can rewrite W taking into account Eq. 2.62
and taking K >> γ3:

W = γ + γ3B2 + i(2KB2 + ωr − ωp) ≈ γ + γ3B2 + i
K
|K|

√
3

3
γ (2.77)

The numerator of Eq. 2.75 has only one dominant term: −2γ1W∗ and we neglect the term in
ω4 in the denominator. The parametric gain can thus be written as:

Gs ≈
(4γ2

1|W|2)/(λ0λ1)

1 + ω2/λ2
0

(2.78)

Which is a lorentzian of maximal gain G = (4γ2
1|W|2)/(λ0λ1) and width ∆bw:

∆bw = 2λ0 ≈ 2γ1|W|√
G(γ + γ3B2)

≈ 2γ1
√
(γ + γ3B2)2 + γ2/3√

G(γ + γ3B2)
≈ 2γ1√

G
(2.79)

Thus, the JPA follows a gain bandwidth product of the form ∆bw
√

G = 2γ1 meaning that the
bandwidth of the gain will reduce with increasing gain and be larger with a better coupling
to the input signal port.

One can also compare the signal gain to the idler gain. By keeping the same approximation
as before, the gains just differ by one term, |W|2 for Gs and |V|2 for Gi. We have :

|W|2 = (γ + γ3B2)2 +
γ2

3
|V|2 =

4
3

γ2 + (γ3)B2 (2.80)

Because in practice γ >> γ3B2, the idler and signal gains are very close to each other in the
high gain limit. Precise calculations, in the limit where γ2 = γ3 = 0 shows that Gi = Gs − 1
even away of the high amplification limit [90].

2.5 Gain limitation

We saw in the last section that an infinite gain could occur when the JPA is driven exactly
at the bifurcation point. This is obviously not possible because an infinite gain implies
an infinite energy. It is strongly related to the linearization procedure we did to solve the
equation of motion of A = Be−i(ωpt+ϕB) + ae−iωpt. We first solved Eq. 2.58 which is the
equation of motion of the classical intracavity field B when the pump is sent to the JPA. We
then used B computed this way to solve Eq. 2.66 which is the linearized equation of motion
on the quantum field a. By doing so, we considered that the pump field (B) is not affected by
the quantum field (stiff pump approximation), and we dropped nonlinear terms in a. These
dropped nonlinear terms are (−iK − γ3)(B∗eiϕB a2 + 2Be−iϕB a†a + a†a2). We can decompose
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2.5. Gain limitation

them in second order terms that are names c2 terms (terms in a2 and a†a), and third order
terms that are names c3 terms (terms in a†a2). These two approximations fail when the JPA is
in the high gain regime, i.e. when the quantum field is not negligible compared to the classical
field. Moreover, to obtain the Kerr type Hamiltonian, we only developed the Josephson
energy to the quartic order. This is also an approximation that can probably change the
computed gain. We will study the impacts on the gain of all these approximations in the rest
of the section.

2.5.1 Pump back-action

2γ/|K|

2γ/|K|

G
s

Gs

a b

Figure 2.9: (a) Gain as a function of the input number of photon per unit of bandwidth for
different ratio 2γ/K. (b) 1-dB compression point as a function of the ratios 2γ/K for different
gains. Figure (a) and (b) adapted from [90].

A way to include back-action on the pump is developed in [91, 90]. It is a mean field
approach that takes into account the c2 terms that we neglected in the linearized equation of
motion (Eq. 2.64) : 2iK⟨a†a⟩B and iK⟨a2⟩B. These terms are not incorporated in the linearized
equation of motion (Eq. 2.64) but in the equation of motion (Eq. 2.58) for the classical field
A = Be−i(ωpt+ψ1). So, the classical equation of motion has terms depending on the quantum
operator a. This is why we refer to this mechanism as pump back-action. By solving the
modified Eq. 2.50 and Eq. 2.64 self-consistently, we can obtain the gain dependence with
respect to the input quantum signal power.

In [90], they considered the incoming signal field as white noise with an average photon
number nth per unit of time and bandwidth, and no internal loss. They show the maximum
gain as a function of nth (Fig. 2.9a). We can see that the gain is constant at low input number
of photons and then starts to decrease above a certain value. This value scales with the ratio
2γ/K. The blue curve shows that for a ratio 2γ/K = 103, even at nth = 0 the gain is limited.
When this ratio is small, the quantum fluctuations in the JPA are enough to affect the gain.
We can define nth,1dB, the input number of photons at which the gain is decreased by 1 dB.
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Chapter 2. Theory of the Josephson parametric amplifier

Fig. 2.9b shows the dependence of nth,1dB with the ratio 2γ/K for different maximal gains.
One can see that the ratio 2γ/K should be above 1000 to be able to amplify at least one photon
with a 20 dB gain without being in the pump back-action regime.

We can also understand the pump back-action mechanism by thinking about the Kerr
effect itself. The amplified quantum operator a (that is taken into account in the classical field
equation of motion with the mean field approach) is making the total field inside the JPA
more intense. Because of this, the Kerr frequency shift is more pronounced making the pump
power and frequency not optimal anymore to reach the maximum of amplification. It can be
shown that by shifting the pump at slightly lower frequency, one can push the compression
point at higher input powers [92] because the Kerr ’extra’ shift is compensated. Note that
the mechanism we named ’pump back-action’ is sometimes named pump depletion [90].
Nevertheless I find this name misleading. Indeed, pump depletion seems to indicate that
the gain decreases because the pump lost too much of energy. However, it looks like gain
decreases because of an extra Kerr shift appearing because the field is too intense in the cavity.

We can also guess the importance of γ and K without introducing a more complex theory.
Let us assume that the output signal has a form |cout

1 |2 = G|cin
1 |2 and that back-action of this

amplified field affects the pump when the ratio of the pump amplitude over the amplified
amplitude |bin

1 |2/|cout
1 |2 reaches a threshold value rT (typically 20 to 15 dB). The JPA works

close to the bifurcation point and this fixes the pump power to a value dependent on the
JPA parameters according to Eq. 2.60. It shows that we cannot put an arbitrarily large pump
power to compensate for a large gain because in this case, the JPA would be out of the good
operation point. We can compute the threshold input field amplitude |cin

1,T|2 above which
pump back-action starts to occur (using Eq. 2.60 in the limit where γ2 = γ3 = 0):

|bin
1c|2

|cout
1,T|2

∝
γ2

K
1

G|cin
1,T|2

= rT

⇐⇒ |cin
1,T|2 ∝

γ2

K
1

GrT

(2.81)

We can thus see that the maximum input field amplitude before the saturation occurs increases
with higher γ and decreases with higher K.

2.5.2 Neglected nonlinear terms during the linearization procedure

Kochetov et al. studied the compression mechanism in a different way. Instead of consid-
ering the back-action of the amplified signal on the pump, they went beyond the linearization
procedure leading to Eq. 2.64 where only linear terms in a and a† were kept. In their model,
they modified the equation of motion on the quantum field (Eq. 2.64) by keeping the c2 terms
as well as the c3 terms. The classical field equation being not modified, this procedure cannot
be considered as back-action on the pump. Moreover, it goes beyond the pump back-action
model because it also incorporates terms arising only from the nonlinearity itself, i.e. terms
depending on powers of a without a prefactor depending on the classical field B (c3 terms that
where not accounted for in the pump back-action model). They were also able to separate the
saturation effect contribution of the specific contribution of the c3 terms as shown in Fig. 2.10.
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Figure 2.10: (a) Maximum gain as a function of the input field operator for different ratios
2γ/|K|. The computation was done for the full sine nonlinearity (red), the cubic nonlinearity
(green), and only with c3 terms correction (blue). (b) |⟨a⟩|/|B| ratio as a function of |K|/2γ
computed with a mean field approach where only c2 terms contribute (for a fixed input
power). Ξ as a function of |K|/2γ for c2 and c3 contributions. Figure (a) adapted from [93].
Figures (b) and (c) adapted from [94].

It shows that the main contribution to saturation are the c3 cubic terms that were not taken
into account in the back-action model. We can also see that the saturation scales with the
ratio 2γ/K as for the pump back-action.

Another approach was developed by Boutin et al. [94] by solving the steady state of
the master equation with a Hamiltonian taking into account c2 and c3 terms. As for the
Kochetov et al. study, the equation of the classical field is not modified (no back-action on
the pump field). In this mean field approach, c3 terms do not participate to the equation
of motion because [a, ⟨a†a†⟩⟨aa⟩] = 0, but c2 terms do because [a, a†⟨aa⟩] ̸= 0. Fig. 2.10b
shows the evolution of a/B (the ratio of the quantum filed and the pump field) with respect
to the ratio |K|/2γ coming from the c2 terms. We can see that they are responsible for an
increase of ⟨a⟩/B for increasing |K|/2γ. This means that saturation will occur faster at higher
ratio |K|/2γ. One can also compute a quantity Ξ translating how the moments ⟨a2⟩ − ⟨a⟩2

and ⟨a†a⟩ − ⟨a⟩2 deviates from the ideal JPA (Ξ → 0 for an ideal JPA and Ξ → 1 when
the corrections are important). Fig. 2.10c shows Ξ as a function of the ratio |K|/2γ. We
can again see that higher |K|/2γ makes the JPA deviate from the ideal JPA, but it looks like
c2 corrections have a greater impact than c3 terms which is opposite to what was found in [93].

2.5.3 Neglected nonlinear terms in the Josephson potential

During the calculation of the Hamiltonian, we only developed the Josephson energy
up to the quartic term (or equivalently the CPR up to the cubic term). Considering higher
nonlinear terms would modify the behavior of the JPA with respect to the input power. The
full development of the CPR in the Hamiltonian was also taken into account by Kochetov
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et al. [93] where the full Taylor expansion of the sinus term can be expressed with respect
to Bessel functions. Such an analysis shows that the gain decreases when keeping the same
driving parameters as for the simple quartic Hamiltonian. Nevertheless, by adjusting the
pump power and frequency it is always possible to get back the same gain as for a quartic
Hamiltonian. The only measurable difference is an increase of the Kerr shift for reaching the
same gain. We note that this model did not take any source of loss into account. Concerning
the saturation behavior, they were able to compare the saturation power of the quartic Hamil-
tonian (cubic nonlinearity in the CPR) to the full cosine development (sine nonlinearity in the
CPR). Fig. 2.10a shows that considering the full cosine development in the Josephson energy
barely changes the saturation power (green curves overlapping the red curves).

To conclude, while the full development of the Josephson energy does not have a great
impact on the saturation point, it is not fully clear whether c2 or c3 terms are dominant in
the saturation mechanism. The fact that the approach of Boutin shows that c2 terms are
dominating while the study of Kochetov shows it is c3 terms might come the mean field
approach where c3 terms do not impact ⟨a⟩ in Boutin’s approach. Moreover, Boutin does
not study the input power dependence meaning that c2 terms might dominate at low input
powers while c3 terms have a larger impact at higher input powers. Nevertheless, it has
been shown that for JPA working in a three wave mixing scheme, the main source of gain
saturation is the c3 terms [94, 95, 96].

2.6 Stability conditions and parameters optimization

While the previous section showed that the exact mechanism causing limitation of the
gain and the dynamic range is unclear, it showed that all the detrimental effects scale as
|K|/(2γ). One could think that we just need to make K arbitrarily small and γ arbitrary large
to improve infinitely the JPA performances. Nevertheless, it is not as simple as that because
there are other conditions that the JPA needs to fulfill in order to operate correctly.

2.6.1 Classical description of the JPA

For now we used quantum mechanics to describe the JPA and were able to understand
the amplification mechanism as a four wave mixing process arising because of the nonlinear
inductance of the JJ creating a Kerr type Hamiltonian. It is also useful to describe the system
classically because we can gain some insight on the type of physics we can expect. For this
purpose let us consider a JJ biased by an arbitrary linear network as shown in Fig. 2.11a.
It is always possible to consider the Norton equivalent circuit where the arbitrary linear
network is replaced by a current source shunted with an admittance Y(ω) as shown in
Fig. 2.11b. If Y(ω) has a resonance, it is always possible to model it as a parallel or series
RLC resonator [97]. We will here briefly study the case where Y(ω) can be approximated by
a parallel resonator as shown in Fig. 2.11c in which we decomposed the nonlinear part of
the inductance of the JJ as in Fig. 2.3a. Here, the inductance L′ = LLJ/(L + LJ) is the total
inductance with the parallel contribution of the linear part of the Josephson inductance LJ
and the inductance of the resonator L. As we saw in Sec. 2.2, the current phase relation of the
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Figure 2.11: (a) Josephson junction biased through a linear network. The Josephson capaci-
tance was neglected. (b) Norton representation of the circuit where the voltage source and
linear network have been replaced by a equivalent current source and shunted admittance.
The shunted admittance takes into account the linear inductance part of the Josephson junc-
tion. The spider-like symbol represent the nonlinear contribution of the Josephson inductance.
(c) The admittance of (b) has been replaced by an RLC circuit.

JJ is:

I = Ic sin(ϕJ/φ0) ≈
1
LJ

ϕJ(t)−
1

6LJ φ2
0

ϕ3
J (t) + O[ϕ5

J (t)] (2.82)

Where the last approximation is true for small ϕJ/φ0. By applying the Kirchoff law we find
that the circuit obeys the following relation:

C
ϕ̈J

φ0
+

1
R

ϕ̇J

φ0
+

1
L′

ϕJ

φ0

(
1 − L′

6LJ

( ϕJ

φ0

)2
)

= Ip cos(ωt) (2.83)

This system is thus equivalent to a driven oscillator with a mass 1/C, a friction coefficient
1/R, quality factor Q = R

√
C/L′ a spring constant 1/L′ containing a quadratic nonlinear part

proportional to L′/6(LJ) = η/6 where we defined the parallel participation ratio η = L′/LJ .
This type of driven oscillator is called a Duffing oscillator.

Duffing oscillators are known to show the same kind of bifurcation physics that we found
with the semi-classical approach when solving the equation of motion for the classical field B
[98]. They are also known to show chaotic behavior when the small oscillation approximation
(ϕJ/φ0 << 1 ) is not true anymore. By increasing ϕJ/φ0, the solution of the equation of
motion can exhibit a period doubling, transitioning in between regular and chaotic dynamics
(pitchfork bifurcations) and eventually reach a full chaotic behavior [93]. The important ratio
to look at is Ibi f /Ic where Ibi f is the current in the system at the critical point when bifurcation
is reached, and Ic is the critical current above which the JJ exhibits a resistive behavior. The
higher is this ratio, the higher will be ϕJ/φ0. It was shown that Ibi f /Ic scales as

√
1/(Qη),

and thus ensuring the condition:
ηQ >> 1 (2.84)

is necessary to avoid chaotic behavior [98].

We focused here on a parallel RLC resonator but similar results can be found for a series
RCL resonator (using the Thevenin theorem). In this case the equations of motion are not of
Duffing type, because the nonlinearity is on the effective mass of the oscillator and not the
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spring constant. Nevertheless, at low drives and large Q one can show that we can recover
Duffing type dynamics. In this case, the participation ratio is defined as LJ/L′ and the same
stability condition can be derived [98].

2.6.2 Stability conditions for a distributed system

We can try to derive the condition of the bifurcation current being smaller than the critical
current, for a distributed system, in order to operate the JPA in a non chaotic behavior. This
approach is similar to what was develop in [90]. Let us consider again the same system as in
Sec. 2.3.2 where a distributed resonator is coupled to an input port with a capacitance Ci and
an output port with a capacitance Co. Now we will consider that Ci and Co are very small
such that φi

m = φo
m = π/2 and we will consider the JJ in the middle of the resonator (xJ = 0).

In this case we find bm = 1 and ∆um = 2am cos(kml). We will also consider that CJ ≈ 0
(which is valid because we are interested in frequencies well below the plasma frequency of
the JJ) such that Eq. 2.31 becomes:

2lkm tan kml =
L0l
LJ

(2.85)

We will study what is happening at the position of the JJ (x = 0− but we could do the same
for x = 0+) because it is precisely at this position that the current ratio has to be respected.
At the JJ’s position (x = 0−) we can express: um = am cos(kml). So, the total flux is :

Φm(t, x = 0−) = Φm(t)um(x = 0−) = Φzp f ,m(Am + A†
m)am cos(kml) ≈ Φzp f ,mαam cos(kml)

(2.86)
Where the last approximation consists of considering a classical coherent field.

One can now define the maximum classical field inside the junction as the coherent field
αmax,m making Φm(t, x = 0−) = φ0, or equivalently, the coherent field at which the current
flowing into the JJ reaches the critical current Ic. We have thus the relation:

αmax,m =
φ0

Φzp f

1
am cos(kml)

=
φ0

Φzp f

L0l
2amLJkml sin(kml)

(2.87)

where the last equation was obtained using Eq. 2.85.

From the input/output model, we know the number of photons inside the JPA at the
bifurcation point (Eq. 2.61) B2

c = 2γ/(
√

3|K|) (we neglected γ3) with K obtained from the
distributed model:

K = Kmm = Ecη(∆um)
4 =

1
h̄

e2

2CΣ

Lm

LJ
(2 cos(kml))4 =

(Φzp f

φ0

)2
ωm4 cos4(kml)

Lm

LJ
(2.88)

We can now express the ratio of the number of photons at the bifurcation power and the
number of photons such that the current reaches the critical current:

Nbi f

Nmax
=

B2
c

|αmax,m|2
=

2γ√
3

|am|2
ωm4 cos2(kml)

LJ

Lm
(2.89)
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We will now focus on the limit LJ << lL0 (i.e. the Josephson inductance being small
compared to the geometric inductance). In this case the solution of Eq. 2.85 is of the form
kml ≈ π/2 + ϵ where epsilon is a small quantity. By doing so we find:

kml ≈ π

2
1

1 + 2LJ/(L0l)
≈ π

2
(1 −

2LJ

L0l
) (2.90)

Using this result we have cos(kml) ≈ (πLJ/L0l), am ≈ 1 (obtained with Eq. 2.32) and
Lm ≈ L0l (obtained with Eq. 2.33). By noting that the quality factor is expressed as 2γ/ωm
and using the approximation LJ << L0l we obtain finally:

Nbi f

Nmax
∝

1
Q

L0l
LJ

(2.91)

In the limit LJ >> lL0, solution of Eq. 2.85 gives kml ≈ 0, cos(kml) ≈ 1, am ≈ 1 and Lm ≈ LJ
such that we get:

Nbi f

Nmax
∝

1
Q

(2.92)

We obtain a similar result as in the previous section but for a distributed system. It is not
surprising because any distributed resonant structure can be modeled as a lumped circuit
close to its resonance.

To conclude on the ideal JPA parameters, we saw that the dynamic range scales as 2γ/|K|
and it is thus desirable to have a low Kerr coefficient (absolute value) and a low quality factor.
Nevertheless we just saw that we cannot decrease arbitrarily the quality factor because then,
the ratio between the current at the bifurcation point and the critical current increases and can
lead to chaotic behavior. The other possibility is to reduce the Kerr coefficient and this can be
done by integrating the JJ inside a distributed resonator such that the nonlinearity of the JJ
gets diluted by the geometric inductance of the transmission line resonator. Nevertheless
there is also a limit to this strategy because when LJ << L0l, the ratio of the current at the
bifurcation point over the critical current increases as L0l/LJ such that it is not possible to
dilute infinitely the Josephson inductance.

2.7 Broader view on superconducting parametric amplifiers

For now we only analyzed the resonant JPA in a four wave mixing (4WM) scheme because
the graphene JPAs that are studied in this work are of this type. We will now have a broader
look on the vast topic of superconducting parametric amplifiers.

2.7.1 Definitions

2.7.1.a Degenerate and non-degenerate parametric amplifier

The degenerate parametric amplifier (DPA) is an amplifier with only one physical cavity
mode Â. For example, the resonant 4WM JPA that we studied is a degenerate JPA because
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there is only one cavity (with many modes but they are all located in a single cavity). We can
define the ideal DPA Hamiltonian as:

ĤDPA

h̄
= ωA Â† Â + igAA

(
Â2ei(ΩAAt+θ) − Â†2e−i(ΩAAt+θ)

)
(2.93)

It is easy to show that in the case of the resonant 4WM JPA, when we decomposed the
fields in a classical part and a quantum part (Eq. 2.63), keeping only the linear terms in â in
the equation of motion and neglecting the loss terms is equivalent to have this ideal DPA
Hamiltonian. Therefore, an ideal DPA gives an output field:

ĉout
1 (ω) =

√
Gĉin

1 (ω) +
√

G − 1ei(θ) ĉ†in
1 (−ω) (2.94)

On the other hand, the non-degenerate parametric amplifier (NDPA) have several physical
cavity modes (Â and B̂ for example, note that B̂ is an operator and is not related to the
semiclassical field B introduced earlier). Its Hamiltonian can be written (in the case of two
physical cavity modes):

ĤNDPA

h̄
= ωA Â† Â + ωBB̂†B̂ + igAB

(
ÂB̂ei(ΩABt+θ) − B̂† Â†e−i(ΩABt+θ)

)
(2.95)

In this case the ideal NDPA gives an output field:

ĉout
1 (ωs) =

√
Gĉin

1 (ωs) +
√

G − 1ei(θ)d̂†in
1 (−ωi) (2.96)

where d̂in
1 is the input mode on the physical cavity associated with the mode B̂. Note that in

this case, the signal frequency lays in mode Â while the idler frequency lays in the mode B̂.
This can be useful to have a large separation between the idler and the signal modes.

2.7.1.b Phase preserving and phase sensitive

The creation and annihilation operators can be decomposed in the phase plane as in-plane
and out-of-plane quadratures. They can be defined as:

X̂ = Â(ω) + e−iθ Â†(−ω) P̂ = Â(ω)− eiθ Â†(−ω) (2.97)

with θ the phase difference between the signal and the pump. An amplifier is said to be
phase preserving if both the quadratures are amplified the same way, which is equivalent
to conserve their phase in the phase space. On the other hand, a phase sensitive amplifier
amplifies one quadrature by

√
G and the other one by 1/

√
G such that amplification depends

on the phase (in the (X̂, P̂) plane) of the incoming signal compared to the pump.
It is easy to check that in the case of a DPA, because the output field mode depends on the
same input field at signal and idler frequency, one has Xout =

√
GXin and Pout = (1/

√
G)Pin.

Therefore we can conclude that resonant 4WM JPAs that are studied in this work are phase
sensitive amplifier. The fact that a phase sensitive amplifier amplifies a quadrature while
reducing the other, means that it is possible to squeeze quantum noise where the uncertainty
on one quadradure becomes lower than the quantum limit (associated to a standard deviation
corresponding to the square root of a quarter of a photon) [99]. We note that there is another
definition of phase sensitive amplifiers. In our definition, when measuring the gain at an
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angular frequency ωs ̸= ωp =⇒ ωs ̸= ωi, we will not measure any phase dependence
because the operators c1(ω) and c†

1(−ω) are not correlated. Phase dependence only arises
when ωs ≈ ωi. This is why another definition commonly found for a phase sensitive amplifier
is a degenerate amplifier working at ωs = ωi [100, 92]. We emphasize here that in this PhD
we did not perform measurements precisely at ωs = ωi and therefore no phase dependence
is expected. In addition, it means that the minimal amount of noise added by the amplifier is
half a photon coming from the quantum fluctuations at the idler frequency being added to
the amplified signal frequency.

2.7.2 Other works on parametric amplification in superconducting circuits

2.7.2.a Josephson bifurcation amplifier
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Figure 2.12: (a) Voltage as a function of the drive frequency for different drive current. At
a given drive frequency and current, the system can be either in the state OL or OH. (b)
Associated phase response. Figures adapted from [89].

Josephson bifurcation amplifiers (JBA) are very close to the JPA we studied throughout
this chapter in the sense that it is the same system but operated in another regime. While
for parametric amplification we have to drive the JPA with a pump just below the critical
power (just before bifurcation), the bifurcation amplifier works with a drive above the critical
power where the system shows a bistability. In this regime, the JBA can be either in a low
amplitude state OL or a high amplitude state OH as shown in Fig. 2.12. A small signal coupled
to this system can change the critical current Ic and make the system switch from OL to OH.
This results in an important phase shift as shown in Fig. 2.12b making the JBA a sensitive
detector to variation in Ic. Successful qubit readout measurements were done using this
system [88, 89].

2.7.2.b RF flux driven Josephson parametric amplifier

The use of a SQUID instead of a single JJ offers a new way of modulating the Josephson
inductance (and thus energy) by the use of a RF magnetic flux Φext. The Josephson energy of
a SQUID composed of identical JJs can be written as:

ESQUID
J = EJ cos(|Φext

2φ0
|) (2.98)
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By using an external flux of the form:

Φext =
π

2
φ0(1 + ϵ cos(Ωt)) (2.99)

with ϵ << 1, and Ω = 2ωA (ωA being the angular resonant frequency of the mode of the res-
onator coupled to the SQUID), we can expand the term ESQUID

J cos(Φ) in Φ and in ϵ cos(Ωt)
to obtain the DPA hamiltonian [99, 96]. Note that the terms in Â2 and Â†2 do not vanish
because they are multiplied by the flux pump at a frequency 2ωA such that the total energy is
conserved. This amplification scheme is thus a three wave mixing (3WM) scheme because
one photon of the pump is converted into one idler and one signal photon. This has the
advantage of having the pump at a different frequency than the signal. Indeed when ωs = ωi,
the pump is at twice the frequency of the signal which makes the pump tone elimination
obsolete [8]. Note that it is also possible to use a double pump tone avoiding the pump
frequency issue in the case of current pumped JPA [91, 95]. But having a double pump makes
the scheme more complicated and increases the number of parameters to adapt in order to
get amplification.

The first implementation of the RF flux driven JPA was made using a λ/4 resonator
with a SQUID terminating the line [101] and repeated for squeezing experiments [102, 100].
Typical gains of 20 dB were reached together with a 1 dB compression point around -130 dBm
(equivalent to a single JJ current pumped JPA) and added noise close to the quantum limit.
Another study [103] used a lumped model version of the flux driven JPA and also used the
possibility of tuning the resonance frequency by applying a DC magnetic flux through the
SQUID (changing the total inductance of the resonator). They managed to obtain gains above
20 dB with a frequency tunability between 5 and 7 GHz. They also measured saturation
power above -120 dBm and added noise corresponding to the quantum limit.

2.7.2.c Josephson ring modulator

For now we have only discussed about DPA which are intrinsically phase sensitive. As
we saw earlier, DPAs will always amplify one quadrature while reducing the other one. But
if the information on both the quadrature are important one might need a NDPA. Moreover,
the fact that the idler mode of the NDPA is located at a frequency nearby a second physical
mode (B̂) means that the difference in frequency of the signal and idler is not limited to the
bandwidth of the amplifier and can be arbitrarily large. Therefore, such a system is also useful
as a photon converter (Josephson parametric converter). The Josephson ring modulator was
implemented by several groups [105, 106, 104, 107, 108] and consists of four identical JJs
forming a loop as shown in Fig. 2.13a. To this ring are coupled three electrical modes Â, B̂, Ĉ
such that the Hamiltonian can be written as:

Ĥ
h̄

= ωA Â† Â + ωBB̂†B̂ + ωCĈ†Ĉ + gABC(Â + Â†)(B̂ + B̂†)(Ĉ + Ĉ†) (2.100)

One can show that for the specific conditions:

ωc > ωb > ωa > γ1,C >> γ1,A ≈ γ1,B >> gABC (2.101)
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Figure 2.13: (a) Electrical scheme of the Josephson ring modulator coupled to three modes. It
is possible to tune the resonance frequency of the modes by applying a magnetic flux through
the loop. (b) Angular resonant frequency of the mode A with respect to the external magnetic
flux applied to the loop without the pump. (c) Gain profiles with respect to the angular
resonance frequency ωA. Figure (a) adapted from [99] and figures (b) and (c) adapted from
[104].

and when the C mode is driven by a strong coherent field at an angular frequency ωc =
ωa + ωb, the Hamiltonian can be approximated by :

Ĥ
h̄

= ωA Â† Â + ωBB̂†B̂ + igAB

(
ÂB̂ei(ΩABt+θ) − B̂† Â†e−i(ΩABt+θ)

)
(2.102)

which is the NDPA Hamiltonian in a 3WM scheme. With such a device, amplification
over 20 dB was performed with 1 dB compression points reaching -118 dBm together with
quantum limited noise performances. Thanks to the JJ loop it was also possible to tune the
amplification frequency on a 500 MHz frequency range by applying a magnetic flux as shown
in Fig. 2.13b and c [104].

2.7.2.d Josephson junction chain

We saw that the limiting factor for JPAs comes from the ratio K/(2γ) (both for 3WM
and 4WM because even in the 3WM there are parasitic Kerr terms). The goal is to reduce
this factor either by reducing K or increasing γ. The stability conditions make that it is not
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Figure 2.14: (a) Scheme of a SQUID chain coupled to a transmission line of impedance Z0. (b)
Asymmetric SQUID scheme. This building block is also called a SNAIL (Superconducting
Nonlinear Asymmetric Inductive eLement). (c) Gain profiles of a SNAIL chain with a
large number of unit cells such that many modes are present in between 4 and 12 GHz. The
numbers below the double arrows indicate the mode number. The different colors correspond
to different magnetic flux tuning the frequency of the mode. Figure (b) adapted from [109]
and (c) adapted from [110].

possible to have an arbitrarily large γ, and that adding geometrical inductance to dilute
the Josephson inductance and thus decrease K creates instability as well. Another way of
decreasing K is by using a chain of JJs. It might sound counter-intuitive because one could
think JJs as nonlinear elements, and thus adding JJs would increase the nonlinearity and thus
K. But by doing so, the total flux Φ is divided into N equal parts across the N JJs forming the
chain (if the chain is sufficiently small to be considered as lumped). Therefore, the quadratic
term in the development of the Josephson energy (Eq. 2.11) becomes:

EJ

2

( Φ
φ0

)2
→

N

∑
i=1

EJ

2

( Φ
Nφ0

)2
=

EJ

2N

( Φ
φ0

)2
(2.103)

and the quartic term becomes:

EJ

24

( Φ
φ0

)4
→

N

∑
i=1

NEJ

24

( Φ
Nφ0

)4
=

1
N3

EJ

24

( Φ
φ0

)4
(2.104)

We see that the quadratic term scales as 1/N meaning that additional capacitance is needed
to compensate for change in the linear part of the Josephson inductance. Compensating
the factor N with an increase of capacitance makes the impedance grow as 1/N (because
the inductance scales as N and the capacitor as 1/N) and thus Φzp f scales as

√
N. Because

the quartic term scales as Φ4
zp f /N3 ∝ 1/N, the Kerr coefficient does too. In an inductor the

relation Φ = LI means that if the flux Φ is divided equally across all the JJs, the current
seen by each junction is Φ/N which is equivalent of having a critical current increased by a
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factor N. The quantity Nbi f and Nmax scale thus both as N making the ratio Nbi f /Nmax un-
changed together with a smaller Kerr coefficient [90]. Note that considering the flux equally
distributed along all the JJs is an approximation and that a precise study of the nonlinearity
is needed and can be found in [111].

In practice SQUID chain (Fig. 2.14a) are used rather than JJ chain because they allow for
the control of the resonant mode frequency and thus the gain frequency. The first successful
use of a SQUID chain for a resonant current pumped JPA was done by Castellanos-Beltran et
al. where they obtained frequency controllable gains above 20 dB, close to the quantum limit
[8] and they also performed squeezing experiments [112]. Moreover, multiple SQUIDs can
also be used in a 3WM process (with RF flux pump) [113] where the compression point was
18 dB above what it would have been with a single SQUID thanks to the reduced nonlinearity.
Coupling of two SQUID arrays allowed also to obtain a resonant 4WM JPA that can be
operated either in a degenerate or non-degenerate mode [114]. One can also cite the use
of asymmetric SQUIDs (Fig. 2.14b) to reduce the parasitic Kerr terms (c3 terms) in a 3WM
process and push further the dynamic range (a compression point of -110 dBm was reached
this way) [109, 115, 116]. Last but not least, the SQUID chain has many resonant modes
with frequency spacing depending on the number SQUIDs inside the chain. By using chains
containing more than 1000 SQUIDs it was possible to have several frequency tunable modes
between 4-12 GHz which is the typical frequency range used for microwave experiments
[117, 110]. By using the tunability of each mode it was possible to perform quantum limited
amplification of 20 dB on almost the full 4-12 GHz frequency range as shown in Fig. 2.14c,
with an averaged 1 dB compression point of -108 dBm (using asymmetric SQUIDs) [110].

2.7.2.e Kinetic inductance as a source of nonlinearity

For now we only focused on JJs as a source of nonlinearity for parametric amplification in
superconducting circuits. It is also possible to use the kinetic inductance of superconducting
materials. Kinetic inductance (Lk) arises when the carrier density of the superconducting
material is low in the normal state. Its current dependence can be written as:

Lk(I) = L0

[
1 +

( I
I∗

)2]
(2.105)

where L0 is the per-unit-length kinetic inductance of the material without a current I, and
I∗ determines the strength of the current dependence and scales as Ic, the critical current of
the material. This relation is equivalent to the Josephson inductance meaning that kinetic
inductance can be used in JPA and is equivalent to a Kerr process [87]. Tholén et al. used
a Niobium resonator to perform kinetic inductance based parametric amplification [118].
Because the kinetic inductance is linked to the carrier density they used in another study
some local superconducting constrictions (width < 50 nm) to increase the nonlinear effect
[119]. A recent study [120] used NbTiN which has a high kinetic inductance and used an
additional DC current in addition to the microwave pump making the kinetic inductance
take the form:

Lk(I) = L0

[
1 +

( IDC

I∗

)2
+ 2

IDC Imw

I2
∗

+
( Imw

I∗

)2]
(2.106)

The term proportional to I2
mw is a standard Kerr term but the term proportional to Imw makes

3WM process possible. By measuring I∗ they found that the Kerr terms leading to parasitic c3
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Figure 2.15: (a) Klopfenstein impedance taper of a RF flux pumped JPA. Zwb is the wirebonds
impedance. The inset shows the spatial dependence of the impedance in the impedance taper.
(b) Gain profile, saturation and noise of the impedance matched JPA (IMPA, blue) with the
impedance matching element shown in (a), and JPA without impedance matching (green). (c)
JPA matched with a combination of a λ/4 and λ/2 transformer. (d) Gain profile, saturation
and noise of the impedance matched JPA with the impedance matching element shown in (c).
Figures (a) and (b) taken from [121]. Figures (c) and (d) taken from [122].

terms (see Sec. 2.5) were negligible (effective Kerr coefficient K/2π ≈ 0.13 Hz) making the
ratio 2γ/K > 108. With this, they were able to measure quantum limited gains above 40 dB
and 1 dB compression points of -70 dBm at a 20 dB gain which is far above all the studies we
presented earlier.

2.7.2.f Impedance engineered JPA

For now, all the JPAs presented were based on a the presence of a nonlinear element
coupled to resonator modes. This makes the gain profile lorentzian with the gain bandwidth
relation ∆BW

√
G ∝ 2γ (Sec. 2.4.4.b) with γ limited because of JPA stability reasons (Sec. 2.6).

Therefore, for a 8 GHz amplifier with a quality factor Q = 10 (which is on the lower limit
of what can be used), a gain of 20 dB makes the bandwidth of the amplifier being 80 MHz
which is small compared to the frequency ranged used in superconducting circuits (typically
1-12 GHz). As we saw, the tunability of the resonance frequency can make the full frequency
accessible, but at the cost of parameters tuning. This is why broader band parametric am-
plifiers are needed to be able to amplify signals at multiple frequencies without adapting
any parameters. A way of doing that it to use impedance engineering on the resonant struc-
ture. In standard resonant JPA there is an abrupt change in impedance between the 50 Ω
transmission line through which the signal is sent and the resonant structure of the JPA. By
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using an impedance matching element it is possible to make a smooth change of impedance
between the 50 Ω transmission line and the resonant structure as shown in Fig. 2.15a. Doing
that is equivalent to changing the coupling Hamiltonian in Eq. 2.42 with κ being frequency
dependent. The pumpistor model [123, 124] allows to describe JPAs as a negative resistance
elements and implies that the gain-bandwidth product is only limited by the Bode-Fano
theorem [125, 126].

Mutus et al. were the first to use an impedance matching technique on a JPA and did it
on a RF flux pump device with a Klopfenstein taper in order to minimize the wiggles in the
gain profile (Fig. 2.15a). They managed to get a quantum limited gain of 15 to 20 dB with a
compression point between -120 and -110 dBm and a gain-bandwidth product of 700 MHz
as shown in Fig. 2.15b. A similar device was used later for qubit measurement [127]. Roy
et al. used an easier-to-build impedance matching element consisting of a combination of
a λ/4 and λ/2 transmission line resonator transformer to match a current pumped JPA as
shown in Fig 2.15c. They managed to obtain quantum limited gains above 20 dB with a
640 MHz bandwidth and a compression point of -110 dBm as shown in Fig. 2.15d. Similar
results were performed later with a RF flux pumped JPA [128]. We can see that the impedance
engineering allows to increase the saturation point and the bandwidth by one order of
magnitude compared to similar single JJ resonant JPA. Another study used a SQUID chain
together with an impedance matching element consisting of a three-pole coupled-resonator
bandpass network [125]. Combining these two techniques allowed to get gains above 20 dB
with a 1.6 GHz bandwidth and a saturation point of -90 dB which is two orders of magnitude
above single JJ impedance matched JPA. Nevertheless, no information was given about the
added noise.

2.7.2.g Traveling wave parametric amplifier

We saw that resonant JPA could be impedance matched in order to increase their gain-
bandwidth product. Another approach consists of not using any resonant structure but a
transmission element with the same impedance as the 50 Ω line through which is arriving
the input signal. This type of amplifier is called traveling wave parametric amplifier (TWPA).
While resonant JPAs allow strong interaction between the nonlinear cavity and the signal by
increasing their interaction time, TWPAs amplify the signal during its traveling time and
require thus a long nonlinear element. As for the JPAs, the nonlinearity can come either from
a long JJ chain [129] or from kinetic inductance [130]. The first near quantum limited TWPA
was demonstrated in 2015 [131].

TWPAs are more difficult to build than JPAs because of the necessity of creating a long
nonlinear element, matched to the 50 Ω impedance of the external environment, and it
requires phase matching condition for the pump, the signal and the idler fields [132]. This is
why TWPAs are a full topic of research and we will not go in a detailed description of their
behavior. We just point that one of the main challenge is to avoid the phase mismatch caused
by the nonlinear interaction of the pump with the medium making the pump traveling faster
than the idler and signal fields, as well as linear phase mismatch caused by the dispersion re-
lation of the medium itself. Several approaches were proposed to correct the phase mismatch
[92]:

• Opening a stop band in the dispersion relation of a Josephson array [129, 131, 133] or a
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photonic gap in the dispersion of a high kinetic inductance transmission line [130, 134, 135,
136]

• Changing the sign of the Kerr nonlinearity [137, 138, 139]
• Switching from 4WM to 3WM and neutralizing the Kerr terms [116, 140].

TWPAs performances show that it is possible to have gains over 20 dB with a bandwidth
of a few GHz and compression points over -100 dBm. Nevertheless the added noise by
TWPAs is at best twice the standard quantum limit and it is still an active subject of research
to improve this value [132].

2.8 Conclusion

We demonstrated that JPAs work as a nonlinear medium where pump photons can be
converted into signal and idler photons. The JPAs studied in this work are pumped with
a microwave current which corresponds to a four wave mixing process where two pump
photons are converted into one idler and one signal photon. We studied this mechanism theo-
retically using the input/output formalism and demonstrated the possibility of having large
gains when tuning the pump with optimal power and frequency, and that the JPA follows a
gain bandwidth relation ∆BW

√
G ≈ 2γ. We also showed that the ratio |K|/(2γ) was limiting

the dynamic range of the JPA. Because of stability conditions it is not possible to have an
arbitrarily large γ (Q ⩾ 10) and it is not possible to dilute infinitely the Josephson nonlinearity
with geometric inductance. A study of the literature about JPAs showed that other schemes
of amplification exist, that nonlinearity can also be provided by kinetic inductance and that
the gain-bandwidth product can be developed by using impedance engineering techniques
or TWPAs. Other ways of performing quantum limited amplification were not detailed like
dissipation engineering allowing to escape the gain-bandwidth product [141, 142, 143] or the
DC SQUID amplifier [144, 145, 146, 147, 143].
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3Device fabrication and
experimental techniques

A important part of the work was dedicated to the fabrication of samples. This chapter
aims to describe how we created graphene Josephson parametric amplifiers, from empty sub-
strates and macroscopic van der Waals crystals, to sub-micron structures and manipulation
of atomic monolayers. In a second part, we describe the experimental needs to measure such
devices and our experimental setups.
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Chapter 3. Device fabrication and experimental techniques

3.1 Device fabrication

All the parameters involved in the fabrication process are detailed in Sec. 3.1.5.

3.1.1 Substrates preparation

3.1.1.a RF substrates

The first step is to prepare the substrates that will host the circuits. We use Sil’tronix 2
inches intrinsic Si wafers with a 275±25 µm thickness and a room temperature resistivity
>8000 Ω.cm. The circuits being in a microstrip geometry, we first back-coat the wafer with
200 nm of gold in order to have a well defined ground plane when the substrate is in a
copper sample holder (rather than relying only on the copper sample holder whose distance
to the microstrip might slightly vary from sample to sample). We create alignment markers
by electron-beam (ebeam) lithography (Nanobeam NB5 system, 80 kV). The ebeam is only
able to shift the electron beam in a limited squared area called main field (≈ 500 µm2) when
writing a pattern. Every pattern is divided in numerous main fields such that when one main
field is written, the ebeam precisely shifts the chuck holding the sample to give access to the
next main field. We make sure that all the markers are in the center of a main field because
it is the position where the ebeam writing is the most accurate. This is important because
all the further lithography steps will use these markers and we want an alignment precision
better than 100 nm between two successive writings. After the marker deposition (Ti/Au),
we dice the wafer into 7.5x7.5 cm2 substrates. We cannot prepare the samples on a wafer
scale because of the uniqueness of h-BN/graphene/h-BN stacks that are manually deposited
on the top of each of them.

Before depositing any stack, we perform an additional lithography step in order to protect
the substrate from parasitic flakes. During the stacking process, a lot of flakes are picked-up
next to the stack and deposited on the final substrate. These parasitic flakes can have a
thickness larger than the circuit metallic lines and can thus break them. It is possible to
modify the geometry of the device to avoid these parasitic flakes, but the geometry being
complex, and for the sake of reproducibility, we found a way of getting rid of them. We
cover the substrate with a 70 nm thick Polymethyl methacrylate (PMMA) layer and write a ≈
100x100 µm2 square. After development, the whole substrate is protected except the square
where we deposit the stack. Removing the PMMA removes all the parasitic flakes that were
deposited on the top of it. An illustration will be shown in Sec. 3.1.2.d.

3.1.1.b Exfoliation substrates

In addition to the substrates hosting the RF circuits, we also prepare substrates just for
exfoliation and flakes selection. We use 4 inches Sil’tronix Si wafers with a 285 nm layer of
SiO2. This thickness of oxide gives the best optical contrast on graphene allowing to see
graphene flakes under an optical microscope. We do not use this type of substrate to design
the circuit because the oxide layer is known to induce RF losses. Nevertheless, we are aware
of recent works where decent internal quality factors are reached using this type of substrate
[148, 66]. The cleanliness of these substrates is of great importance. Any contamination on a
2D material can affect its properties. Therefore we do not put any resist on the wafer before
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manually dicing it in 1 cm2 substrates. We thus have silicon particles on the surface that
we partially wash with a 5 to 10 mins ultrasonic acetone bath. We then rinse out acetone
with isopropyl alcohol (IPA) and dry the substrates with a nitrogen gun. At this point, it is
possible to functionalize the SiO2 surface by doing an oxygen plasma in order to have a better
adhesion. This makes the flakes bigger during the exfoliation step. We do not perform this
step because the final Josephson junction is very small ≈0.3x1.5 µm making big flakes not
necessary, and greater adhesion can make the stacking process more complicated because the
flakes stick more to the substrate making them more difficult to extract.

3.1.2 Stack fabrication

3.1.2.a The need of high quality devices

Unlike qubits, JPAs are designed to work in a weak nonlinear regime in order to have
a decent dynamic range. In the previous chapter we saw that the nonlinearity depends on
the inductance of the Josephson junction (JJ) which is inversely proportional to its critical
current Ic. Therefore, a high critical current is needed and we aimed to have a value around
1 µA. As we saw in the Chapter 1, the critical current scales as 1/RN where RN is the normal
resistance of the graphene JJ (gJJ) [51]. It is thus of crucial importance to have a low normal
resistance. The natural answer to do this would be to make the junction large enough in
order to increase the number of conductive channels and thus lower RN. But we wanted to
limit the width, because as we saw in Chapter 1, a large width increases as well the number
of Andreev bound states and especially the number of transverse Andreev bound states.
Transverse Andreev bound states are known to lay in the gap region [26], which is increasing
microwave induced nonlinear dissipation in the system [66, 67]. A high dissipation can lead
to an increase of the added noise by the JPA and is thus not desirable. We can conclude that
a prerequisite for reducing RN without relying on a very wide junction is to make a high
quality device with low normal resistance.

3.1.2.b h-BN as an ideal substrate

Graphene is extremely sensitive to its direct environment because of its two-dimensional
nature. SiO2 substrates have shown to create charge puddles, strain and local doping on
graphene devices reducing their electronic performances from what is theoreticaly predicted
[149, 150, 151]. Indeed, all these effects can create charge scattering because of local electro-
static potentials. Electrons scattering has the same effect of adding disorder in graphene
resulting in lower conductivity. Therefore SiO2 substrates are not well suited for making
gJPAs because we want to minimize the resistivity in order to get high critical currents. This
discussion also applies to Si substrates because there is always a thin layer of natural oxide
on the surface. Therefore, we use another Van der Waals material, hexagonal boron nitrite
(h-BN), to isolate graphene from its environment. h-BN is an insulator with a dielectric
bandgap of 5.9 eV, has a honeycomb lattice structure with a 1.7% mismatch compared to
graphene and is atomically flat [152, 153]. Strong in-plane ionic bonding makes the probabil-
ity of dangling bonds and charge trapping relatively low. This makes h-BN ideal to reduce
all the disorder effects mentioned previously. By making h-BN/graphene/h-BN stacks,
we drastically increase the quality of the device by isolating the graphene flake both from
the substrate and from contamination with the resists used during the further fabrication
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steps [154]. Moreover, this allows to make one-dimensional metallic contacts on graphene
improving the contact transparency. This is also good to limit the number of Andreev bound
states in the superconducting gap of the JJ [26] as mentioned in the chapter 1.

3.1.2.c Exfoliation method
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Figure 3.1: (a) Picture of an exfoliated graphene flake on an Si/SiO2 substrate with a 285 nm
SiO2 layer taken with an optical microscope. The white length scale is 10 µm. The yellow bar
represents the linecut taken to plot the intensity profile presented in (b) with the software
ImageJ.

Thanks to the configuration of Van der Waals materials, i.e successive layers of atomic
planes bonded to each other with a weak Van der Waals force, it is possible to extract single
or few layers of these materials with an exfoliation technique. The exfoliation is carried out
by putting a thin piece of graphite or h-BN crystal (≈ 1 mm2) on a scotch tape (3M Magic
Scotch tape). We then repeatedly fold, press and unfold the tape without overlaps such that
the initial crystal is now separated in thinner crystals overall the tape. We then put the
tape on a Si/SiO2 substrate and wait a few minutes. Only for graphene exfoliation, we heat
the substrate to 60-90 ◦C for a few minutes. We finally peel off the tape from the substrate
making a final exfoliation step. It is worth mentioning that when peeling off the tape from the
substrate, because some of the crystals are once more divided, the final remaining thin layers
on the substrate were thus never in contact with the scotch tape glue, ensuring a minimal
contamination. We then find graphene and h-BN flakes by checking the substrates under
an optical microscope. We are aiming at graphene monolayers and can distinguish them
from multilayers thanks to color and contrast analysis. The microscope parameters are kept
constant between each exfoliation and we use the software ImageJ to plot the intensity profile
of a line cut on the flake. We used Raman spectroscopy to match the contrast obtained by
optical pictures to the number of layers. We found that the optical contrast of monolayers
is 3-4% and 5-6% for bilayers. Fig. 3.1a shows an optical picture of a graphene monolayer.
We analyzed the contrast in Fig. 3.1b and obtained 3.9%. This indicates that it is indeed a
monolayer. For h-BN flakes, we are able to distinguish the thickness with a ±5 nm precision
by looking at the color of the flakes.

We did not perform AFM on each exfoliated flakes before making a h-BN/graphene/h-BN
stack for a few reasons. First, by playing with the optical contrast on h-BN pictures, we were
able to see thickness inhomogeneities and glue contamination. Of course, this is limited
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to the resolution of the optical microscope but it is giving a good hint of the cleanliness of
the flake. Then, the final JJ being small compared to the size of the encapsulated graphene
(0.3x1.5 µm2), we can always choose a clean spot to make the JJ (we perform AFM on the
finished stack). We found that for our purpose it was then enough to perform AFM only on
the final stack.

3.1.2.d Encapsulation process

The encapsulation process that I will describe here was first developed by a former
PhD student, Goutham Nayak who shared his process with me when I started my PhD.
Modifications have been made since, but more in depth view of the process can be found in
his thesis [155].

Pick-up stamp

a b

Glass plate

PDMS Gelpak 4 

PPC

PDMS blocks

Magic tape 3

Tesa crystal Clear

Figure 3.2: Scheme (a) and picture (b) of the stamp used to make h-BN/graphene/h-BN
heterostructure. The dotted circle indicates the position of the assembly shown in (a).

The encapsulation process is made possible thanks to polymers that have two crucial
properties. They need to have a greater adhesion with h-BN flakes than the adhesion between
h-BN and SiO2. This allows to pick up h-BN flakes from the substrate. h-BN is also ideal
because its adhesion to graphene is greater than the adhesion between graphene and SiO2.
This allows to pick up graphene flakes from the substrate. Moreover, they need to have an ap-
propriate response with temperature. We want the polymer to be solid at room temperature,
and liquid at a temperature easily accessible in a lab in order to release the picked-up flakes.
We used polypropylene carbonate (PPC) for this purpose which has a melting temperature
near 120 ◦C. The PPC layer is prepared by dissolving 3 g of PPC crystals in 20 mL of anisole.
The solution is kept at 50 ◦C and agitated with a magnetic stirrer for one day minimum. We
then filter the solution with a 1-2 µm particles filter and spincoat it on clean substrates.

The PPC layer needs to be integrated to a stamp in order to be manipulated and make
the stack. Fig. 3.2a and b show respectively a scheme and a picture of the stamp. The first
element is a glass plate that we can easily manipulate with hands, on top of which we place
the other small elements. We then add two blocks of polydimethylsiloxane (PDMS Gelpak
4) that are maintained on the glass plate with Tesa crystal clear tape. This creates a dome
shape which is very important to pick-up the flakes slowly and smoothly. The PDMS blocks
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have the advantage of being soft which helps to reduce the mechanical stress on the flakes
during the pick-up. The tape is chosen transparent because we need to see through the whole
stamp with an optical microscope when making the stack. Because the tape is not perfectly
flat, harder than PDMS and might presents some dirt, we add a layer of PDMS Gelpak 4 on
top of it. This is important because the PPC layer lays on the top of this part and is very thin
(<= 1 µm) making it very sensitive to its support layer. To extract the PPC layer from the
substrate on which it is spincoated, we take a piece of Magic tape 3 through which we dig a
hole. We then put the tape on the substrate hosting the PPC layer and peel it off from the
substrate. We then put this tape with the PPC stuck on it onto the dome. Because peeling off
the PPC from the substrate induces stress making ripples in the PPC, we heat the stamp at
90 ◦C close to the melting temperature during 2-5 min in order to relax it.

Transfer setup

The transfer setup is shown in Fig. 3.3. Its purpose is to enable a fine control of the stamp
and a precise alignment of the successive picked up flakes. Therefore, an optical microscope
is needed to see the flakes and optically align them. A camera is added to the microscope in
order to numerically zoom, increase contrast and use other numerical tools that can be very
useful when manipulating very low contrast and very small objects like graphene flakes. In
order to control the stamp, we use a 3-axis micro-manipulator allowing to move the stamp
with a precision close to one micron. The substrate hosting the flakes is placed on a sample
stage maintaining it via pumping through a hole. The sample stage also integrates a heater
enabling the control of the temperature with a 0.1 ◦C precision. A piezoelectric platform
allows to control the position of the sample stage in the three dimensions of space helping
the alignment between the stamp and the substrate.

a b
sample holding stageoptical microscope camera

vacuum pump

heater

control joystick piezoelectric positioning stage micro-manipulator

objectives

stamp

Figure 3.3: (a) and (b): pictures of the transfer setup. (b) corresponds to a zoom of the region
inside the blue rectangle in (a).

Stacking process
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Fig. 3.4 shows a scheme of the successive steps required to make a h-BN/graphene/h-BN
heterostructure. We first place the stamp in the micro-manipulator and put a substrate with
h-BN flakes on the substrate stage heated at 38 ◦C. We then move the stage such that the
flake of interest is seen under the microscope. We align the stamp above the flake thanks to
the microscope. We can now slowly move down the stamp until a single point of contact
appears. If the contact point is too far from the flake we lift up the stamp and move it thanks
to the micro-manipulator. The idea is to move the position of the stamp in order to have a
contact point a few hundreds of micrometers away from the flake. Once the contact point
is in a good spot, we can slowly move down the stamp. This will expand the contact zone
and we stop when the contact zone it at the limit of the flake. Even if the micro-manipulator
allows to move in the vertical direction slowly, it is still too fast to slowly cover the flake.
We thus increases the temperature of the substrate holder with 0.5 ◦C steps. This creates a
thermal expansion of the PPC allowing to cover the flake with PPC very slowly. We want to
go as slow as possible in this step to limit the stress on the h-BN flake. Once the flake is fully
covered (usually around 43 ◦C), we perform what we call a "hard pick-up". h-BN adhesion
with SiO2 can prevent the flake from being picked-up when lifting the stamp. We figured out
that lifting the stamp very fast increases drastically the probability of picking up the flake,
this is the hard pick-up technique. Once the h-BN flake is picked up, we put the glass plate
on a hot plate at 90 ◦C in order to relax the stress on the PPC.

We can now perform the same process but with the graphene flake. This requires to align
the picked-up h-BN with the graphene with a precision of a few microns and we use the same
temperature steps to put the flakes into contact. This time, it is not the PPC that will stick to
the graphene, but the picked-up h-BN flake itself. Because the adhesion between graphene
and h-BN is way stronger than the adhesion between graphene and SiO2, there is no need to
do a hard pick-up. We thus pick up the flake very slowly by controlling the vertical position
with the micro-manipulator. Once the graphene is picked up, we again put the glass plate on
the heater at 90 ◦C.

We pick up the last h-BN flake with the same technique as for the first h-BN flake. Efforts
are made to go as slowly as possible to limit air trapped between the flakes.

The last step consists of dropping the stack on the intrinsic Si substrate that will host the
final device. As mentioned in Sec. 3.1.1.a, there is PMMA on the final substrate, preventing
the deposition of parasitic picked up flakes, except on the spot where we drop the stack. We
first put the stack in contact with the substrate with the help of the micro-manipulator and a
slow increase of temperature. Once the stack is in contact with the substrate, we increase the
temperature up to 140 ◦C with 20 ◦C steps. The PPC being in a liquid state at this temperature,
we can slowly lift up the stamp without picking up the stack. At the end, the stack lays on
the substrate with melted PPC residues on the top.

An additional cleaning step is then performed. We put the substrate in acetone for 12
hours minimum and use a pipette to gently blow acetone all over the substrate, rinsing with
IPA and drying it with nitrogen. This removes the PPC residues and the PMMA enabling to
lift all the parasitic flakes. During the stacking process, bubbles of hydrocarbon and water can
form in between the different flakes. They might appear because the flakes were put in contact
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Si

Graphene

38-43 °C 38-43 °C 38-43 °C

PPC

h-BN

SiO2

38-140 °C

Intrinsic Si

PMMA

Figure 3.4: Scheme of the stacking process. The flakes are succesively picked up from the
Si/SiO2 substrates with the PPC stamp. During each step, the PCC stamp is put in contact
with flakes very slowly by gradually increasing the temperature in order to limit stress and
the apparition of gas trapped bubbles. When the stack is finished, we slowly put it in contact
with the intrinsic Si substrate and increase the temperature up to 140 ◦C to release it from the
PPC.

too fast, or just because the surface of h-BN and graphene is covered by these substances in
ambient conditions [156]. The presence of bubbles induces local strain and possible charge
effects limiting the benefits of using h-BN to isolate graphene from its environment. Therefore,
it is crucial not making a JJ in a area where bubbles are present. By annealing the sample at
350 ◦C in high vacuum (≈10−7 mbar) during two hours, we manage to make the bubbles
move and merge either on the edges of the graphene flake, or on places were a defect is
present. Therefore, we go from a large number of bubbles uniformly spread on the flakes to
few large bubbles at precise location. It then possible to chose a clean spot to make the gJJ.
Fig. 3.5 shows a picture taken with an optical microscope of the stack before and after the
annealing step. We can see that bubbles (dark dots) tend to migrate further on the edges of
the flake or can even totally disappear.

3.1.3 One dimensional contacts

The one dimensional contact process is inspired by the pioneering work of Wang et al.
who developed an etch-fill technique [154].
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Graphene

Before annealing After annealing

8 µm

Bubbles

Figure 3.5: Pictures of the stack with an optical microscope before and after annealing. The
graphene flake being invisible when the stack is finished and deposited on the intrinsic
Si substrate, we superimposed the picture of the stack with a picture taken during the
encapsulation process when the stack consisted only of one flake of h-BN and one flake of
graphene. At this step, the graphene flake being visible, we superimpose this picture with
the final stack picture to locate graphene. We circled the graphene part which appears as a
lighter color compare to its surrounding. The bubbles appear as dark blue dots. We indicated
a few of them with arrows.

3.1.3.a AFM and alignment

Once the stack is annealed we perform atomic force microscopy (AFM) in order to localize
precisely the trapped bubbles. Fig. 3.6a shows the thickness of a stack with respect to position
taken with AFM. We added a dotted line around the graphene flakes edges in order to make
it easier to see. One can note that there are still bubbles inside the stack despite the annealing
step, appearing on the AFM data as dots with a greater thickness. We can align the AFM
picture with optical pictures taken with an optical microscope containing alignment markers.
This allows to chose the JJ spot with a 100-200 nm precision. Fig. 3.6b shows an optical picture
of the stack, right after the development of the contact lithography step, superimposed with
the AFM picture shown in Fig. 3.6a. There are two lines coming from right and left separated
with a small gap. This gap is not exposed and is the future gJJ. Thanks to the AFM picture it
was possible to chose a spot without bubbles which is crucial to have a high quality device.
The line coming from the bottom part of the picture is the side gate that will tune graphene
doping (see Chapter 4).

3.1.3.b One dimensional contacts fabrication

All the metallic lines (transmission line, resonator, gate and DC lines) and the one dimen-
sional contacts on graphene are made in one electronic lithography step. Fig. 3.7 shows the
different fabrication steps. We first spincoat PMMA on the substrate. In order to keep a good
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Figure 3.6: (a) AFM picture showing the thickness of the stack. The graphene has been
surrounded by a dotted line to improve its visibility. (b) Optical picture taken right after the
development of the contact lithography step superimposed with the AFM picture. An arrow
indicates the location of the future JJ.

focus everywhere on the substrate, four global markers close to each corner of the substrate
are used to detect and correct a tilt in the substrate plane. The JJ is placed in the center of
a square delimited by four markers placed at 500 µm of each other allowing to correct the
focus specifically around the JJ and to perform alignment. Once the development is done,
resist remains on the graphene part that we want to keep in order to make a JJ. We perform a
10s O2 reactive ion etching (RIE) in order to remove potential resist residues that would still
be there after the development. We then perform a CHF3 and O2 RIE in order to etch the top
h-BN flake and give access to the graphene flake edges. We calibrated the etching rate to be
17±2 nm/s. To be safe, we always etch 10 nm more than the top h-BN thickness in order to be
sure that the graphene edges are accessible. The stack is not etched exactly vertically because
the PMMA is also etched from the sides during the process making a slope in the etched stack
sides. This makes the graphene edges more exposed to the metal deposition. We like not
to etch fully the bottom h-BN flake because keeping h-BN helps to reduce the gate voltage
at which we start to see current leakage between the gate and the device. After the etching,
we can see that the graphene edges are exposed to the environment. We therefore quickly
transfer the device from the RIE machine to the electron beam metal deposition machine. We
then deposit 5 nm of Ti with a speed of 0.5 nm/s and 60 nm of Al with a speed of 0.1nm/s,
both with a angle of 4◦. We use a thin layer of Ti because its work function is close to the work
function of graphene enabling a good contact transparency [157]. The 4◦ angle deposition
makes sure that metal is well deposited on graphene edges. We then perform a lift-off by
putting the sample in acetone over the night and with the help of a pipette we blow acetone
and remove the unwanted metallic parts.
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h-BN/graphene/h-BN
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Spincoating Development
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Figure 3.7: Schematics of the etch-fill technique steps in order to make one dimensional
contacts on graphene. All the schemes show a side view of the substrate.

3.1.3.c Discussion about the resist layer

The thickness of PMMA is of great importance because it sets limits on the length of
the gJJ. Ideally, one wants to have the minimum resist thickness such that the lift-off is still
possible. Thicker resist induces a loss of precision of the ebeam pattern because of forward
scattering of the ebeam electrons (electrons scattered by the resist molecules) and secondary
generated electrons (electrons created by the ionization of the resist molecules) that will
expose unwanted areas. The rule of thumb is to have a 1:3 ratio between the thickness of
metal and resist in order to have a reproducible lift-off. The ebeam exposition is done with a
80 kV gun helping to reduce the forward scattering in the resist. As we saw in the previous
section, etching is done in order to access the graphene edges. This results in a thinner resist
layer and compromises the 1:3 ratio. Using a thicker resist lowers the precision of the writing
but also increases the "dog ears" on the edges of the JJ. Fig. 3.7 shows what dog ears are: when
the metal is deposited, it will also be deposited on the edges of the resist placed above the
junction. Because they have a strong adhesion with the bottom layer of metal, these parts
are not always removed during the lift off. When the resist thickness increases, the height of
the dog ears increases. If they are high enough and bend above the JJ, they can create a short
circuit bypassing the JJ.

To remove the dog ears we tried to use a PMMA double layer. If the molecular weight of
the first PMMA layer is lower than the molecular weight of the second one, the first PMMA
layer will have more exposed areas than the second one. This creates resist undercuts helping
the removal of dog ears. Nevertheless, we also found that superposing two different resist
layers was increasing the global strain caused by the presence of the stack. Because of this
strain, we observed cracks in the resist after development, located between sharp angles of
the written pattern (from either side of the JJ or between the side gate and bottom corners of
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the JJ) as shown in Fig. 3.8a and b. Making round angles helps a lot to reduce the probability
of cracks but is sometimes not enough when the h-BN flakes are small. Small h-BN flakes
means that the JJ might be located closer to edges of the stack where the strain in the resist is
maximal. So, getting rid of the dog ears with a PMMA double layer is at the cost of possible
shorts, and getting rid of them by decreasing the resist thickness is at the cost of lift-off
difficulties.

In addition, we noticed that when the device contains a lot of exposed areas (broad lines
and big bonding pads), there is a thin line of resist above the center of the JJ that will be
exposed despite not being on the writing layout. When metal is deposited, the JJ is thus
shorted as shown in Fig. 3.8c. Because this is never happening when there is no stack, and
because it does not look like a crack appearing at sharp corners, we suspect that the h-BN
acts as an insulating substrate perturbing the lithography. Because electrons do not find an
easy path to the ground beneath the substrate, they can travel back to the resist exposing
unwanted areas. To cancel this effect we spincoat an additional conductive resist (Electra
92) on the top of the PMMA. After the writing, we simply remove this resist with deionized
water (DI) before developing the PMMA.
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Figure 3.8: (a) Topography of a device around the JJ taken with AFM and (b) scanning
electronic microscopy (SEM) of the same device. We can see a bridge of metal linking the
bottom corners of the JJ. The AFM image shows that the metal has not the same thickness
than the other metallic lines of the circuit. This indicates that is was probably a thin crack
in the resist that we often observed between sharp angles of the circuit around the stack. (c)
Topography of another device around the JJ taken with AFM. We can see a metallic line in
the middle part of the JJ (dotted circle) despite it was not in the writing layout. This line is
straight and has the same thickness as the other metallic lines of the circuit. It indicates that it
is not a crack in the resist (which usually happen in the sharp corners of the pattern) but an
unwanted exposed area which might occur because of proximity effect and the insulating
nature of h-BN (this pattern does not appear without a stack). Using a conductive resist
solves the problem.
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3.1.4 Delimiting the Josephson junction

While the first lithography step allows to create the whole circuit and the contacts on
graphene, the JJ geometry is still not well defined. Fig. 3.9 shows the steps to finalize the
device. The first scheme is a top view of the device corresponding to the last step of Fig. 3.7.
We can see that the graphene is shorting the circuit (two horizontal lines) and the side gate
(bottom line). Moreover, we want the JJ to be located in the gap between the two horizontal
metallic lines which is not the case here. Therefore, we do an additional ebeam lithography
step and expose the parts of the stack that we want to remove. We take advantage of the
graphene being contacted with the side gate in order to extend the side gate closer to the JJ. By
doing so we bring the side gate at a distance of 200 nm from the JJ. We use the same alignment
markers and focus mapping technique as in the previous lithography step in order to have
good alignment between the two writings. We perform RIE with 10s of O2 plasma followed
by the same recipe as in the previous lithography step and etch 10 nm more than the top h-BN
flake thickness. After etching, graphene is only located at the end of the side gate line and
in-between the two superconducting lines. After this nanofabrication process, we perform
AFM on the JJ and side gate area in order to check if there is no shorts connecting both sides
of the JJ or connecting the JJ to the side gate. The device is then ready to be measured.

Spincoating

ebeam exposure

Development

Dry etching

Lift-off

h-BN Graphene in between h-BN

Si

Metal Metal

PMMA

Figure 3.9: Schematics of the last lithography delimiting the JJ and extending the side gate.
All the schemes show a top view of the substrate.

3.1.5 Nanofabrication parameters
We present here all the parameters used during the fabrication of the device.
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steps parameters
preparation 3 g of PPC crystal in 20 mL of anisole

resting minimum 1 day at 50 ◦C + stirring
filtering 1-2 µm particle filter

spincoating 3750 rpm, 2000 rpm/s, bake 90 ◦C for 5 min

Table 3.1: PPC preparation

steps parameters
Undercut resist (optional) prebake 180 ◦C 2 min, PMMA 4% 50K, 4000 rpm, 4000 rpm/s, 30 s,

bake 180 ◦C 5 min
ebeam resist PMMA 4% 950K, 4000 rpm, 4000 rpm/s, 30 s, bake 180 ◦C 5 min

Conductive resist electra 92, 3500 rpm, 3500 rpm/s, 60s, bake 90 ◦C 2 min
ebeam writing 70 to 100 µC/cm−2

Development 1 min DI, 1 min MIBK:IPA (1:3), 30 s IPA
RIE chamber cleaning O2, 45 sccm, 0.07 mbar, 20 W, 10 min

On sample O2, 45 sccm, 0.07 mbar, 10 W, 10 s
RIE chamber preparation CHF3 20 sccm + O2 2 sccm , 0.02 mbar, 15 W, 5 min

On sample CHF3 20 sccm + O2 2 sccm , 0.02 mbar, 15 W, 17 nm/min
Ti deposition 5 nm, 0.5 nm/s, 4◦

Al deposition 60 nm, 0.1 nm/s, 4◦

Lift-off acetone over night, IPA 30 s

Table 3.2: Etch-fill techinique

steps parameters
ebeam resist prebake 180 ◦C 2 min, PMMA 4% 950K, 4000 rpm, 4000 rpm/s, 30 s,

bake 180 ◦C 5 min
ebeam writing 100 µC/cm−2

Development 1 min MIBK:IPA (1:3), 30 s IPA
RIE chamber cleaning O2, 45 sccm, 0.07 mbar, 20 W, 10 min

On sample O2, 45 sccm, 0.07 mbar, 10 W, 10 s
RIE chamber preparation CHF3 20 sccm + O2 2 sccm , 0.02 mbar, 15 W, 5 min

On sample CHF3 20 sccm + O2 2 sccm , 0.02 mbar, 15 W, 17 nm/min
Lift-off acetone over night, IPA 30 s

Table 3.3: Junction patterning
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3.2 Measurement setup

We will now discuss the measurement requirements and how we can reach them experi-
mentally. Our way of interacting with the system is through electromagnetic radiations. The
superconducting nature of the device imposes conditions on the energy scales involved in the
measurement. The superconducting gap of bulk aluminum is around 200 µeV corresponding
to a frequency 2∆ ≈ 100 GHz. This sets the maximum frequency we can use to irradiate the
device because exciting with a higher frequency would destroy Cooper pairs and thus the
superconductivity. The temperature is also very important because we want it to be below
the critical temperature of aluminum (1.2 K), but also low enough to have almost no thermal
photons compared to the number of photons involved in our experiment. Because our exper-
iment deals with vacuum noise, we want the number of thermal photons way below one in
average. This sets a lower limit on the frequency we can use. We thus use a dilution fridge
that can reach a base temperature of 25 mK corresponding to kBT/h ≈500 MHz. Therefore,
the frequency range should be such that 500 MHz<< f <100 GHz. Having this frequency
range as a physical limit, the setup was designed to work from 4 to 12 GHz.

3.2.1 Dilution fridge

300K stage

100K stage

20K stage

4K stage

1K stage

200mK stage

35mK stage

25mK stage
sample holder

sample

7.5mm

ba

c

Figure 3.10: (a) Picture of the sionludi L showing all the different temperature stages. On this
picture only the 25 mK shields are mounted. (b) Zoom on the 25 mK stage without the shield.
The sample holder is closed. (c) Picture of the sample holder with a sample microbonded to
the PCB.

During the PhD, three different fridges were used. A small inverted wet dilution fridge
(sionludi L) in which most of the microwaves measurement were performed, a large inverted
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wet dilution fridge (sionludi XL in the team of Nicolas Roch) on which noise measurements
were performed, and a small wet fridge (Diluette) to perform DC measurements with the
possibility of an additional large magnetic field. Pictures of the sionludi L are shown in
Fig. 3.10a and b. It was designed and fabricated in the lab thanks to Eric Eyraud and Wolf-
gang Wernsdorfer. Its small size makes the cool-down duration very short such that it is
possible to reach 25 mK in 8 hours, with a fully equipped fridge, making it a precious tool for
device testing. It is composed of successive stages at different temperatures, some of them
being shielded with a cooper shield (100K, 20K, 4K, 25mK) to block black body radiation
coming from hotter stages. The 25 mK stage also includes a magnetic shield made for mag-
netic field screening because even small magnetic fields can perturb and decrease the critical
current of the gJJ. The fridge has two input microwave lines (only one was used during the
experiment) and was improved by adding 12 DC lines thanks to Kazi Rafsanjani Amin, a
post-doc with whom I was sharing the setup, and who made most of the fridge improvements.

The sample is put in a copper sample holder as shown in Fig. 3.10c. A printed circuit
board (PCB) allows to connect the sample microstrip lines to the fridge semirigid coaxial
cables. The connection between the sample and the PCB is made by microbonds which can
induce parasitic resonances due to their inductance. The PCB is thus designed such that the
sample fits perfectly the center hole and such that the 50 Ω copper lines are aligned with
the lines of the circuit. This allows to reduce the length or the wirebonds and thus their
inductance. Moreover, each connection is made with a minimum of three wirebonds in order
to also reduce the total inductance. When installing the sample in the dilution fridge, we close
the sample holder with an additional copper part as show in Fig. 3.10b to provide further
shielding of the sample.

3.2.2 Microwave setup

Fig. 3.11a and b show the measurement setup of the sionludi L and the sionludi XL
respectively. Both the setups allow standard microwave measurements. A vector network
analyzer (VNA) it used to send microwaves and to measure the scattering parameters of
the device. An additional microwave source is used as a pump tone to reach parametric
amplification, and is coupled to the VNA tone with a power splitter. The lines are then
heavily attenuated in order to reduce the 300 K noise coming from the instruments at room
temperature. Because we measure the reflection of the JPA, we add a directional coupler in
Fig. 3.11a and a circulator in Fig. 3.11b to separate the reflected signal from the input signal.
Isolators are then used to attenuate the output lines from the noise that could be sent by the
high electron mobility transistor (HEMT) amplifier at 4K. We also used low pass filters (K&L
6L250-00089) at the input and output of the sample to cut the high frequency noise coming
from inner part of the cables. We amplify the output signal with a HEMT having an added
noise of ≈4-6 K and a gain of 41-42 dB. We then use room temperature amplifiers to amplify
even more the signal.

It is of crucial importance that the first amplifier of the chain adds the minimum amount
of noise because in a chain of amplifiers with gain Gi and added noise Ni, the total added
noise is: Ntot = N1 + N2/G1 + N3/(G1G2) + .... Therefore, having a high G1 makes the total
noise being Ntot = N1. It is thus the noise of the first amplifier who determines the noise of
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Figure 3.11: Measurement setup of the sionludi L (a) and sionludi XL (b).
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the chain of amplifiers (if G1 is sufficiently high). This is why HEMT are used because they
are the best high gain and low noise amplifier on the market.

Both the setups have a filtered DC line used to gate the gJJ with a DC generator delivering
a voltage Vg. The sionludi setup integrates other filtered DC lines: a lockin is used to measure
the differential resistance of the gJJ and another DC source allows to DC bias the system (Vb).
We also added a multimeter in order to measure the integrated resistance of the device. The
sionludi XL setup integrates a shot noise tunnel junction (SNTJ) provided by the NIST (José
Aumentado and Florent Lecocq) biased through a filtered DC line. The SNTJ acts as a self
calibrated noise source allowing noise measurement of the JPA. To do so, we use the SNTJ
as a source instead of the VNA, and measure the power spectral density with a spectrum
analyzer. References of the instruments can be found in here.

3.2.3 Importance of microwave lines attenuation and filtering

109 1010 1011

Frequency (Hz)

10−8

10−6

10−4

10−2

100

n
(#

p
h
o
to

n
s)

attenuators

attenuators + low pass filter

25 mK thermal noise

ain aout

bin

bout

300 K

4 K

4.15K

t

attenuator 
a b

Figure 3.12: (a) Beam splitter model of an attenuator. We show here the dissipation happening
at the 4 K stage with an attenuation of 33 dB equivalent to t=0.0005 (b) Thermal noise coming
from the inner part of the cables on the sample with respect to the frequency. The blue curve
shows the mean number of noise photons at the output of the last attenuator before the
sample. The orange curve shows the noise when a 12 GHz low pass filter is added after the
last attenuator. The dotted line indicates the thermal noise of a 25mK black body.

As we saw in the introduction, the sample needs to be at a temperature of 25 mK to
limit the population of thermal photons that can either perturb the noise measurement of
the JPA or destroy cooper pairs if the noise frequency is above twice the superconducting
gap. In the setup, the sample is thermalized at 25 mK, but what about the cables linking the
instruments at room temperature to the sample ? In order to limit the thermal conductivity,
we use stainless steel instead of copper for the microwave cables outer conductor and we
thermalize them to each stage of the fridge. By doing so we thermilize the outer part of
the cables but not the inner part. The only way of thermalizing the inner part is to use a
dissipative element like an attenuator. Attenuators have a double advantage: they allow the
thermalization of the inner part of the cable, and they attenuate the high temperature noise
coming through them. This is why attenuators are anchored at the different stages in order to
be well thermalized because heat will be dissipated through them.
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We can make a model to compute the power spectral density coming from the thermal noise
following [158]. The attenuator can be modeled as a beam splitter (Fig. 3.12a) with two
incoming amplitudes ain and bin being respectively the hot noise that we want to thermalize
and the stage noise coming from the stage on which the attenuator is anchored. The outgoing
amplitudes are aout and bout being respectively the noise signal going at lower temperature
and the noise signal dissipated by the attenuator. If the noise amplitudes are not correlated,
i.e. ⟨ainbin⟩ = 0 and if ⟨ain⟩ = ⟨bin⟩ = 0, we have the relations:

⟨|aout|2⟩ = t⟨|ain|2⟩+ (1 − t)⟨|bin|2⟩ (3.1)

⟨|bout|2⟩ = t⟨|bin|2⟩+ (1 − t)⟨|ain|2⟩ (3.2)

where t is the transparency of the attenuator (t=1/attenuation). The goal is to have on the
sample an averaged input noise photon number n equivalent to the black body radiation of a
25 mK source that we can compute with the Bose-Einstein distribution:

n =
1

exp( h̄ω
kBT )− 1

(3.3)

For ω/2π=6 GHz we find n ≈ 5.10−6. We can compute the PSD associated to the noise
amplitude:

PSD(ω) =
⟨|aout|2⟩

4Z0
=

h̄ω

exp( h̄ω
kBT )− 1

(3.4)

where Z0 is the 50 Ω impedance of the cable. Here we do not use the Johnson-Nyquist
relation because it does not hold for the temperature and frequencies at play. Indeed, the
Johnson-Nyquist relation is valid only when the frequencies of interest are smaller than
f = kBT/h ≈ 500 MHz << 6 GHz for T =25 mK. In the sionludi L there is 33 dB of atten-
uation at the 4K stage. We can compute the number of noise photons after the attenuators
nout(ω) = PSD(ω)/(h̄ω) using Eq. 3.4 and 3.1. We find nout=13 photons at 6 GHz which is
equivalent to a 4.15 K noise emitted by the 50 Ω line at the output of the attenuator (domi-
nated by the 4K stage thermal noise).

By using this method on the successive attenuators, we can compute the input thermal
noise coming from room temperature through the cables to the sample. We plotted in
Fig. 3.12b the number of incoming noise photons due to the thermal noise propagating in the
inner part of the cable through all the attenuators with respect to the frequency. We can see
that until 2 GHz, the incoming noise is well thermalized to 25 mK. But at larger frequencies,
the incoming noise starts to be hotter than a 25 mK black body (due to the strong 4K noise
coming from the 4K stage). Near 6 GHz where most of the experiments are carried out, the
incoming noise is n ≈ 10−4 photons which is one order of magnitude higher than a 25 mK
black body but still very low compared to the vacuum fluctuations. In order to improve the
thermal noise at higher frequencies we added 12 GHz low pass filters at the input and output
of the device. By considering the low pass filter as a perfect first order low pass filter acting
like an attenuator (following the beam splitter model), we computed the incoming noise
using Eq. 3.4 and 3.1. We can see in Fig. 3.12b that it lowers the thermal noise by one order
of magnitude at 26 GHz. Above this frequency, the microwave cables start to add a lot of
attenuation giving even more filtering (not computed in Fig. 3.12b).
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Chapter 3. Device fabrication and experimental techniques

3.3 Conclusion

We showed that to minimize the nonlinearity of the graphene Josephson junction while
avoiding losses due to the dynamics in the population of the Andreev bound states, the
junction should be as narrow as possible with a sufficiently high critical current. To reach
this purpose, a high quality graphene junction is required. We described the encapsulation
procedure of graphene in between h-BN flakes allowing to reach such high quality devices.
A first lithographic step allows to create all the superconducting lines of the circuit while
connecting the graphene stack with one dimensional contacts. A second lithographic step
allows to etch the graphene stack in order to define its shape and disconnect it from the side
gate. Finally we gave a description of the different cryogenic setups used in this work. While
we focused on the device fabrication in this chapter, the next chapter will describe the device
geometry and characterization.
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In this chapter we will provide the linear characterization of graphene based Josephson
parametric amplifiers (gJPA). We will briefly introduce the basic notions of microwave
engineering allowing to create and understand resonant structures. We will then present the
geometry of the device and the modeling of its microwave response. DC measurements and
linear characterization are then detailed in order to extract the key physical parameters of the
gJPA that will help to understand its behavior when operated in the nonlinear regime.
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Chapter 4. Device linear characterization and modeling

4.1 Microwave circuits basics

In low frequency circuits, the wavelength are often much larger than the physical size
of the circuit. For example, a f = 50 Hz electromagnetic wave propagating in vacuum has
a wavelength λ = c/ f = 6000 km where c is the speed of light. Therefore, we can consider
elements of the circuit as lumped because the electromagnetic wave is spatially constant
over the size of these elements. This is what we are used to do when we describe circuits
with simple resistors, capacitors, inductors... In the case of microwaves, at f = 6 GHz,
we have λ = 5 cm in vacuum which is smaller than some part of the experimental setup
(cables for instance). We saw in the previous chapter that the silicon chip on which the JPA
lays has a length of 7.5 mm which is smaller than 5 cm. But the wavelength of the wave
propagating through silicon with a relative dielectric constant ϵr = 11.4 can be approximated
by λ = c/( f

√
ϵr) = 1.4 cm which is very close to the size of the chip. Thus it is impossible to

consider the wave constant over the size of the circuit. We will now recapitulate the basics of
microwave physics needed to understand the geometry of the device. More details can be
found in [97].

4.1.1 Modeling a transmission line

∆x

I(x,t)

x

V(x,t)

∆x

I (x, t) I (x+∆x t)

R∆x L∆x

G∆x C∆x V ∆x, t)V(x, t)

+

-

+

-

+

-

a b

(x+

Figure 4.1: (a) Schematic of a section of transmission line of length ∆z. (b) Lumped element
modeling of a section of transmission line. Figure adaptated from [97]

Cables or conductive lines on a chip making a circuit can be described as transmission lines
(TL). Fig. 4.1a shows a schematic of a TL. Microwaves are sent in the top part representing the
conducting wire. This creates a current I and a voltage V between the wire and the ground.
It is possible to use lumped element theory by dividing the TL into infinitesimal sections
of size ∆x such that λ >> ∆x. This way, the electrical quantities (I, V) can be considered
as constant over each section. Fig. 4.1b shows the lumped element representation of such a
small section of TL where R is the series resistance per unit of length, L the series inductance
per unit of length, G the shunt conductance per unit of length and C the capacitance per unit
of length. We can use Kirchhoff’s laws on a section and derive what are called the telegrapher
equations:

∂V(x, t)
∂x

= −RI(x, t)− L
∂I(x, t)

∂t
∂I(x, t)

∂x
= −GV(x, t)− C

∂V(x, t)
∂t

(4.1)

If the input wave has a cosine form with angular frequency ω, we can combine these equations
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4.1. Microwave circuits basics

with steady state condition and find:

d2V(x)
dx2 − γ2V(x) = 0

d2 I(x)
dx2 − γ2 I(x) = 0

(4.2)

where:
γ = α + iβ =

√
(R + iωL)(G + iωC) (4.3)

These are propagation equations with solutions:

V(x) = V+
0 e−γx + V−

0 eγx

I(x) = I+0 e−γx + I−0 eγx (4.4)

where V+
0 , V−

0 , I+0 and I−0 are determined with boundaries conditions. We define the charac-
teristic impedance Z0 such that:

V+
0

I+0
= Z0 =

−V−
0

I−0
(4.5)

Giving:

Z0 =

√
R + iωL
G + iωC

(4.6)

4.1.2 Terminated transmission line

l = λ/2
ZL = ∞ 

x

0

V(x), I (x)

Z0, VL

IL
+

–
ZLα β,

l

a b V

l

l

n = 1

n = 2

Zin

Z0,α β,

C LV

+

–

RZin

I

Figure 4.2: (a) Transmission line terminated by a loaded impedance ZL. (b) Transmission line
of length l = λ/2 terminated by an open circuit. In blue are shown the first two modes of the
renonance. Figure adaptated from [97]

The previous formalism allows to describe how microwaves or equivalently current
and voltage propagate in a TL of characteristic impedance Z0 with a complex propagation
constant γ = α + iβ. We will now show that terminating a TL with a loaded impedance
ZL necessarily creates a reflected wave and that it can be used to create resonant structures.
Fig. 4.2a shows such a terminated TL. This imposes the impedance of the transmission line at
the position x = 0: V(0)/I(0) = ZL leading to:

V−
0 = V+

0
ZL − Z0

ZL + Z0
= ΓV+

0 (4.7)
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Chapter 4. Device linear characterization and modeling

This means that the presence of the load impedance will create a reflected wave if ZL is not
perfectly matched with Z0, i.e ZL ̸= Z0. The reflection coefficient is Γ = ZL−Z0

ZL+Z0
. We can

compute the impedance at an arbitrary position x using Eq. 4.4 with the boundary condition
at x = 0 and find:

Z(x) =
V(x)
I(x)

= Z0
eiγx + Γe−iγx

eiγx − Γe−iγx (4.8)

If the TL is terminated with an open-circuit, then ZL = ∞ meaning that the wave is fully
reflected (Γ = 1). At this position there is no current and a maximum voltage. In addition, if
the length l of the TL is such that l = λ/2, it can behave as a resonant structure as shown in
Fig. 4.2b where we plotted the two first modes of the resonator. In the mode n = 1, only half
a wavelength is resonant inside the TL, this is why we call it a λ/2 resonator. Using Eq. 4.8
with Γ = 1 and x = l we find impedance at the input of the transmission line:

Zin =
Z0

tan(γl)
= Z0

1 + itan(βl)tanh(αl)
tanh(αl) + itan(βl)

(4.9)

Taking l = λ/2 and working around the resonance frequency ω = ω0 + ∆ω such that
∆ω << ω0, it is possible to approximate Zin in the following form:

Zin ≈ Z0

αl + i(∆ωπ/ω0)
(4.10)

which has the same form as the impedance of a lumped parallel RLC circuit resonator:

Z|| ≈
R

1 + 2i∆ωRC
(4.11)

This shows that a l = λ/2 transmission line terminated by an open-circuit behaves like a
resonator and that it can be modeled by an effective lumped element circuit.

4.1.3 Capacitively coupled λ/2 resonator

In this work, the JPA is made of a λ/2 resonator that is capacitively coupled to a 50 Ω
transmission line (see Sec. 4.2). We will derive useful equations about this system in this
section.

4.1.3.a Impedance computation

Let us consider a resonator with an impedance Z0 coupled to a TL by a capacitance Ci.
This is equivalent to having the λ/2 resonator in series with a capacitance. We can thus write
the normalized input impedance of this circuit using Eq. 4.9 as:

z =
Zin

Z0
= −i

(
1

ωCiZ0
+ cot(βl)

)
= −i

(
tan(βl) + bc

bctan(βl)

)
(4.12)

with bc = Z0ωCi. We have for now put α = 0 meaning that we compute z in the dissipationless
limit. When the system is at resonance, the magnetic and electric energy stored by the circuit
are equal, which imposes the impedance to be real, i.e. Im(z) = 0 [97], thus:

tan(βl) + bc = 0 (4.13)
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4.1. Microwave circuits basics

We can now make a Taylor expansion around resonant angular frequency ω0:

z ≈ z(ω0) + (ω − ω0)
dz
dω

(ω0) + . . . (4.14)

Because z is purely imaginary, at resonance z(ω0) = 0. Thus:

z ≈ (ω − ω0)
dz

d(βl)
d(βl)
dω

(ω0) (4.15)

We can compute dz
d(βl) :

dz
d(βl)

= i
1

sin2(βl)
= i

1 + tan2(βl)
tan2(βl)

= i
1 + b2

c
b2

c
(4.16)

where we used Eq. 4.13 to obtain the right part of the equation. We will see later from the
extracted Z0, ω0 and Ci of our circuit that in practice bc << 1. Thus:

dz
d(βl)

≈ i
1
b2

c
(4.17)

Knowing that β = ω
vp

where vp is the phase velocity and injecting Eq. 4.17 in Eq. 4.15 we get:

z ≈ i(ω − ω0)
1
b2

c

l
vp

≈ i(ω − ω0)
1
b2

c

π

ω0
(4.18)

Where we used f0 =
vp
2l with l = λ/2.

We can now reintroduce small losses for a high internal quality factor (Qi) resonator by
taking a complex resonance angular frequency: ω0 → ω0(1 + i

2Qi
). So:

z =
ω − ω0

ω0

π

b2
c

1
2Qi

+
π

b2
c

1
2Qi

+ i

[
ω − ω0

ω0
− 1

(2Qi)2

]
π

b2
c

(4.19)

We can simplify the real part by dropping the first term because: ω−ω0
ω0

<< 1. We can also
simplify the imaginary part by dropping the second term, because by assumption the quality
factor is high, thus: 1

(2Qi)2 << (ω−ω0)
ω0

. We can write the final expression for z:

z =
π

b2
c

1
2Qi

+ i
(
(ω − ω0)

π

ω0b2
c

)
(4.20)

The system is working like a series RLC resonator because its impedance has the form
Z = R + iωL − i 1

ωC . We can thus derive the equivalent resistance:

R =
Z0π

2b2
c Qi

(4.21)

The coupling coefficient is defined as g = Z0/R = Qi/Qc, where Qc is the coupling quality
factor, thus:

Qc =
π

2b2
c

(4.22)

We can rewrite z as:
z =

Qc

Qi
+ 2iQc

ω − ω0

ω0
(4.23)
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4.1.3.b Computation of S11

In practice, during the microwave measurement, we will measure the S11 parameter
which is the reflection coefficient of the microwave on the resonator. We saw in Sec: 4.1.2 that
the reflection coefficient Γ can be written as Γ = Zin−Z0

Zin+Z0
= 1 − 2

1+z = S11. By introducing the
loaded quality factor: Q−1

l = Q−1
c + Q−1

i , we get the important equation:

S11 = 1 − 2Ql/Qc

1 + 2iQl
ω−ω0

ω0

(4.24)

It is worth noting that this result is similar to what is obtained in a quantum model using
input/output formalism where a resonator is coupled to both a transmission line and a linear
loss channel as shown in Chapter 2. We only note an exactly opposite phase sign on the
imaginary part of S11 obtained this way which manifests as a positive phase shift at resonance.
We chose the sign of the imaginary term such that it corresponds to the measured phase shift
(i.e. negative phase shift at resonance). We believe this difference arises because of some
conventions made in the equations describing the quantum system.

4.1.4 Microstrip geometry

metal

metal

W

h
dielectric

εr

E⃗

Figure 4.3: Schematic of a microstrip line with a cross section view.

So far we have been quite general on what is a transmission line and how it can be used
to create resonant circuits. We will now focus on how we make them on chip. As we saw
earlier, one needs to have a minimum of two conductors in order to create a TL. There are
many possibilities with respect to geometry having each advantages and drawbacks. In this
work we made all the circuits with a microstrip geometry. Fig. 4.3 shows a schematic of what
is a microstrip circuit. It consists of a metallic line deposited on a dielectric substrate with a
relative electric permittivity ϵr with a ground plane on the bottom surface. The microstrip
geometry has the advantage of being easy to fabricate with lithographic methods because one
needs to draw only one line. Because the dielectric medium is not the same above (vacuum)
and beneath (dielectric) the metallic line, there is an effective dielectric constant ϵe such that
1 < ϵe < ϵr. We can approximate ϵe:

ϵe =
ϵr + 1

2
+

ϵr − 1
2

1√
1 + 12h/W

(4.25)
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It is also possible to approximate the characteristic impedance of the microstrip line:

Z0 =
60√

ϵe
ln
(8h

W
+

W
4h

)
(4.26)

valid in the case W/h ≤ 1.

4.2 Device modeling

In this part we will focus on how we were able to simulate the device and what we can
extract from the simulations.

4.2.1 Geometry of the device

An on-scale scheme of the top view of the graphene Josephson parametric amplifiers
(gJPA) we built is shown in Fig. 4.4. The colored parts represent areas where metal is deposited
and different colors are used for different elements of the circuit. White parts represent the
bare substrate. The red part is a 50 Ω TL making the link between the PCB and the device. All
the incoming microwaves are sent through this line. A λ/2 resonator (purple) is capacitively
coupled to this TL thanks to a gap of 5 µm between the two interconnected structures (inset
1). We showed previously that a capacitively coupled λ/2 resonator does not behave like a
parallel RLC resonator anymore but like a series RLC resonator. The resonator has a length
l = 8.950 mm, a width of 10 µm and locally narrows down in the center where the graphene
Josephson junction (gJJ) is located (inset 2). It allows to incorporate DC lines (blue) from
each side of the gJJ with a minimal effect on the resonator. In fact, to DC probe the gJJ,
there must be at least one probe line from each side of the gJJ. The center of the resonator
being at a voltage node, resonant microwaves are not leaking too much in these added lines
(simulations will be shown later). The DC lines are terminated with a pad and a loop inductor
for filtering purpose. The pads are then wirebonded to 50 Ω transmission lines wirebonded
themselves to the PCB. A side gate (green) allows to tune the doping of the gJJ (also visible in
the inset 2). The width variation of the gating line and the loop inductor are also made for
filtering purposes.

We made the choice of using a side gate because it has the advantage of being easy to
do with respect to the lithographic process. Indeed we saw in the previous chapter that all
the circuit can be written in only one lithographic step. Moreover, the main reason pushing
us using a side gate was the fear of additional loss processes coming from another way of
gating. Top gates or bottom gates are very ’intrusive’ in the sense that they are very close
to the device. This is why we did not wanted to introduce additional dielectric materials
for a topgate nor a graphite backgate. These losses can limit the properties of a Josephson
parametric amplifier and we wanted thus to minimize other potential sources because gJPA
were not yet demonstrated. For example, a graphite bottom gate or a HSQ top gate could
induce additional losses. Nevertheless a recent work showed that gJPA can work with a
graphite bottom gate [148].
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500µm

5µm

1

2

Figure 4.4: On scale scheme of the top view of the microstrip graphene Josephson parametric
amplifier. Inset 1 shows a zoom on the interconnected transmission line and resonator. Inset
2 is an optical picture of the gJJ on which we can also see the side gate (vertical line). The gJJ
length is ≈ 300 nm and the width is 1.5 or 2.0 µm depending on the device.
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Figure 4.5: Simulated microwave response (amplitude (a) and phase (b) of the S11 parameter)
with Sonnet with and without the DC lines.

4.2.2 DC probe lines

We modeled the microwave response of the device using the software Sonnet v16.54. The
gJJ is simulated by a lumped inductor whose inductance is put to 0 to simulate the bare device
(device where the gJJ is replaced by a superconducting continuum). This allows to model the
device at low input power where the non linear Josephson inductance can be approximated
by a linear inductance. Simulations were important because of the numerous circuit free
parameters: coupling between the resonator and the 50 Ω transmission line, length and width
of the resonator, length of the DC lines, position of the DC lines. Making and measuring a
device for each set of parameters would have taken a lot of time and resources. The most
challenging part was to incorporate the DC probe lines without affecting the resonator first
mode, and without creating resonance features below the resonator first mode. Indeed,
the Josephson inductance LJ being tunable with a gate voltage, it is possible to lower the
resonance frequency of the resonator. This makes the presence of parasitic resonance fea-
tures due to DC probe lines not desirable below the resonance frequency of the bare resonator.

Fig. 4.5a and b show the simulated magnitude and the phase of the reflection coefficient
(S11) respectively with respect to the incoming wave frequency, for the device with and
without DC probe lines. The dips in the magnitude are caused by resonant effects where the
incoming wave can enter into the resonator and exhibit dissipation due to internal losses.
The resonances also create a shift in the phase of S11. We can see that without the DC lines
there is only one peak in the amplitude associated with a 2π phase shift corresponding to the
first mode of the resonator. The 2π phase shift indicates that the resonator is overcoupled,
meaning that the coupling quality factor is smaller than the internal quality factor. Because of
the capacitance between the transmission line and the resonator, the rate at which photons are
dissipated inside the resonator (internal loss) is low compared to the rate at which photons
can escape from the resonator through this capacitance. When comparing the response
with and without the DC probe lines, we can see that adding these lines creates resonant
features above the first mode frequency. As we explained before, this is not a problem for
our experiment because the tunable gJPA will work below the bare resonance frequency. We
need also to compare the effect of DC lines on the first resonant mode. With the presence
of DC lines, the resonance frequency slightly shifts downwards (50 MHz) maybe due to an
increased capacitance caused by the additional lines. We also see that the width of the first
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mode is similar, indicating that the quality factor does not change. The width is ≈ 90 MHz
with and without the DC lines giving a quality factor Q = 72. This shows that the additional
DC lines are not degrading the performance of the resonator because microwave leakage
through theses lines would have lowered the quality factor.

4.2.3 Gating line
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Figure 4.6: Simulated microwave response (amplitude (a) and phase (b) of the S11 parameter)
with Sonnet with and without the gating line.

We performed additional simplified simulation to study the effect of the gating line.
The simplified device resonator consists of a straight line of the same length than the real
resonator, with a constant width of 10 µm, without DC probe lines, and with a different
coupling gap with the transmission line. We wanted the total capacitance of the gating line
to be high in order to lower the cutoff frequency of the RC filter formed by the DC wires in
the fridge up to the end of the gating line. This is why we put a 500 µm2 pad as well as a
long gating line. The problem of a long gating line is that it can be a resonant structure at
frequencies similar or lower than the resonance frequency of the resonator. Because there is a
coupling between the two structures, it means that microwaves can leak from the resonator
to the gating line, or that noise coming from the gating line can enter into the resonator. To
limit this effect, we adopted a Bragg geometry for the gating line: we alternated elements
of length λ/4 with a different intrinsic impedance Z0 by varying the width of the line. It
is similar to what we can find in optics where refractive index of a medium is alternated
to create destructive interference at a given frequency. Fig. 4.6 shows the S11 parameter of
the simplified resonator without a gating line, and with a gating line length of 3λ/4 with
alternating width (10 µm/ 220 µm/ 10 µm). We see in Fig. 4.6a that the presence of the gating
line induces a small narrow peak in the magnitude of S11 at f ≈ 6 Ghz . The peak having an
intensity smaller than 0.1 dB, it is actually very hard to see it on experimental data. We can
see in Fig. 4.6b that the phase shift associated with this resonance feature is also very small
(≈ 10−2 rad) which is also too small to be measured. We can conclude that the presence of
the gating line does not affect the circuit.
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Figure 4.7: (a) Simulated magnitude of the reflection coefficient of the device for different
values of LJ . (b) Extracted resonance frequency as a function of LJ from the Sonnet simulation.
The fit correspond to a lumped element model where we used Eq. 4.29.

4.2.4 Josephson inductance
The presence of the gJJ can also be simulated by Sonnet when the input power is low

enough such that we can neglect the nonlinearity of the junction. The gJJ is thus modeled
as a discrete inductor LJ . Close to the resonance frequency, we saw that the resonator can
be modeled by a lumped element RLC resonator. Therefore its resonance frequency can be
written as:

2π f0 =
1√
L0C

(4.27)

where L0 and C are the equivalent inductance and capacitance of the resonator. When there
is no gJJ, L0 and C are purely geometry dependent (L0 having however a small kinetic part).
But when the gJJ is added in the middle of the resonator we can consider that it adds a series
inductance such that L = L0 + LJ (L0 being the geometric inductance). We can then rewrite
the resonance frequency of the resonator with a gJJ:

2π fr =
1√

(L0 + LJ)C
(4.28)

Where we neglected the change in capacitance due to the junction because of its small size.
Fig. 4.7a shows the magnitude of the S11 parameter simulated for different values of LJ . As
predicted by Eq. 4.28, the additional inductance caused by the presence of the gJJ lowers the
resonant frequency of the resonator. By combining Eq. 4.27 and Eq. 4.28 we get:

fr =

√
L0

L0 + LJ
f0 (4.29)

LJ being fixed to a known value and fr and f0 being obtained by the simulation, it is possible
to extract the geometric inductance L0. Fig. 4.7b shows the simulated fr with respect LJ and
the fit we did with Eq. 4.29. We can see that the lumped element model is very close to the
simulated distributed resonator with an average error on fr of 4 MHz. The fit allowed to
extract L0 = 3.9±0.1 nH. Having L0 and f0 we can compute the total capacitance of the device
and find C = 0.157 pF.
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4.3 Bare device and DC characterization

After the simulations, we will now focus on measurements prior to gJPA measurements.
The first step is to characterize the bare device, i.e. the device where the gJJ is replaced by a
superconducting continuum such that LJ = 0 nH, in order to compare it to the simulations.
Then, we also created purely DC devices to characterize the gJJs themselves.

4.3.1 Bare device characterization

4.3.1.a Normalization
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Figure 4.8: Magnitude (a) and phase (b) of the S11 parameter with and without a normaliza-
tion with the S11 parameter measured at 1.1 K.

We measured the bare resonator in the sionludi L fridge at a base temperature of 25 mK.
Fig. 4.8a and b show the measured S11 parameter (blue). We can see oscillations in the
amplitude of a few dB such that it is not possible to see the resonance peak. There is also
a positive linear slope after 5 GHz. The phase also exhibits oscillations, but because the
resonance creates a 2π phase shift (overcoupled resonator), it is easy to see where it is located.
We call this non-flat background the microwave background. Ideally it should be flat if all
the impedances of the elements in the measurement setup would be exactly 50 Ω at each
frequency (by assuming a flat gain of the amplifiers present in the measurement setup). But it
is of course not the case for various reasons: it is very hard to have a constant impedance over
a wide frequency range, each connection made by hand can slightly change the impedance
depending on the tightening strength, there is a temperature dependence which differs
depending on the element, the amplifiers are frequency dependent... Therefore, we use trace
taken right before the Ti/Al resonator transits to a superconducting state to normalize the
trace at 25 mK. In practice, when the metal is not in a superconducting state, the resonator
is way too lossy to show any resonance feature in S11. So, in theory we only measure the
microwave background. We see in Fig. 4.8 that normalizing with such a trace allows to
reduce the magnitude and phase wiggles such that it is possible to guess a resonance peak
in the magnitude around 6.4 GHz. Nevertheless, we see that the microwave background
is not perfectly suppressed. This might come from the aluminum microbonds transiting as
well to a superconducting state between the two measurements. This induces an impedance
modification that is not corrected by the trace at 1.1 K. The change in temperature might
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4.3. Bare device and DC characterization

also slightly change the impedance of the other elements on the 35 and 25 mK stages of the
dilution fridge.

4.3.1.b Circle fit method
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Figure 4.9: Magnitude (a) and phase (b) of the normalized S11 parameter and corresponding
fit obtained by the circle fit method. The environment amplitude term a has been removed
from the amplitude in order to have |S11| = 0 dB when the wave is fully reflected.

After the normalization method, we used a fitting method to extract the interesting
parameters of the device. We showed in Sec. 4.1.3.b that the S11 parameter of a capacitively
coupled λ/2 resonator can be written as:

Sλ/2
11 (ω) = 1 − 2Ql/Qc

1 + 2iQl
ω−ω0

ω0

(4.30)

where ω0 is the resonant angular frequency, Qc the coupling quality factor, Ql the loaded
quality factor such that Q−1

l = Q−1
i + Q−1

c , where Qi is the internal quality factor. In practice,
we have to take into account the environment effect by multiplying the ideal Sλ/2

11 by a
complex term and by taking a complex coupling quality factor |Qc|e−iϕ [159]:

S11(ω) = aeiαe−iωτ
[
1 − 2(Ql/|Qc|)e−iϕ

1 + 2iQl
ω−ω0

ω0

]
(4.31)

where a takes into account a modification of the amplitude, α quantifies a phase offset and τ
an electronic delay happening because the microwaves do not propagate at infinite speed
in the cables. We point out that this expression is derived for a notch type resonator (a
capacitively coupled resonator to a two ports transmission line) which is not the case here.
Especially the complex quality factor with a phase ϕ accounts for a asymmetric coupling at
the port 1 and 2 of the transmission line. Here we have a one port circuit so we should have
ϕ = 0.

To fit the data with Eq. 4.31 we used the circle fit method [160]. This method has been
shown to be robust to fit noisy S11. It is based on the fact that S11 form a circle in the complex
plane whose diameter and position are linked to the fitting parameters. We used the code
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circle_fit2019 released be the authors of [160] to perform the fit. Fig. 4.9a and b show the
amplitude and the phase of the S11 parameter and the corresponding fit. We can see that
the phase is very well fitted allowing to extract Qc precisely: Qc = 101±1. Because the
microwave background oscillations have a weight comparable to the resonance peak, the
magnitude fit is less accurate making the estimation of Qi less accurate too: Qi = 2.1 x 103±2
x 102. The difficulty of extracting Qi comes from the fact that the loaded quality factor is
dominated by Qc which is way smaller than Qi. In order to get a more accurate estimation
of Qi we performed additional measurements on notch type resonators where Qc > Qi.
Depending on the device we got internal quality factors ranging between 2000 and 10000
which is coherent with what we got from the bare device circle fit. Finally we extracted
a bare resonance frequency f0 = 6.44 GHz. The measurement of the bare device allowed
thus to extract important parameters for the gJPA. We can see that the simulations predicted
accurately the bare resonance frequency and the absence of the resonant features below the
first mode of the resonator which will be essential when the g-JPA will be tuned at lower
frequency. We note that the predicted quality factor is higher in the real device than in the
simulation. In fact, from the width at half maximum, we extracted a quality factor of 70 in the
case of the simulation. As we will see later in this chapter, it might come from an unexpected
oscillation behavior of the coupling quality factor with respect to the resonance frequency of
the circuit.

4.3.2 DC devices for critical current and gate tunability characterization

4.3.2.a Room temperature DC measurement

outA

B

R

Lockin

Probe station

Electrical outlet

Device

Figure 4.10: Measurement setup to test the device integrity at room temperature before
cooling down. The metallic plate holding the device substrate is grounded by connecting it
to the grounding pin of an electrical outlet. The orange ground in bracket is removed once
the left probe is in contact with the device.

Before cooling down any device with a gJJ, we performed basic room temperature DC
measurements to verify the device integrity. This step is important because in case there is a
problem with the device, we can know it before cooling down the fridge allowing to save time
and resources. Particular caution must be taken during this step because gJJs are extremely
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sensitive to electrostatic discharge such that it is very easy to destroy them if grounding is not
made carefully. Fig 4.10 shows the experimental setup used to perform room temperature
DC measurement. It is a 2 probes current bias experiment made with a lockin and a probe
station under a binocular microscope. The user must always be grounded when touching the
setup. The plate carrying the probes and on which the sample is deposited is grounded by
connecting it to the grounding pin of an electrical outlet. An additional ground is connected
after the resistor (orange) when we put the probes in contact with the sample. This ground is
then removed to allow the current to flow in the device. By doing that, both the probes are
grounded when put in contact with the sample. We use a 1 or 10 MΩ resistor and bias with
10-100 mV such that the bias current is 10-100 nA. The differential resistance of a working
device ranges between a few hundred Ohms to two thousand Ohms. We also measure the
differential resistance between the side gate and each side of the gJJ in order to check if the
gate is not shorted. Typical values range between 20 and 30 kΩ because the intrinsic silicon
is not insulating at room temperature.

4.3.2.b Critical current and tunability

The critical current is a crucial parameter because it fixes the Josephson inductance and
thus the nonlinearity of the device as shown in Chapter 2. Before making gJPAs, we had
to make sure that the critical current for a given junction width was high enough to have a
sufficiently low nonlinearity. Moreover, we had to make sure that a side gate was able to
control the carrier density well enough in order to have a good critical current control. In
this prospect we fabricated pure DC devices, i.e. devices without a resonator and only gJJs
connected to DC pads with a side gate. We tested two different metals for the superconduct-
ing contacts: Ti/Al with a low superconducting gap (≈ 200 µeV) implying a large coherence
length, and sputtered MoGe, a disordered superconductor with a large superconducting gap
(> 1 meV) implying a smaller coherence length. Fig. 4.11a and b show DC devices with Ti/Al
and MoGe superconducting contacts respectively. When the encaspuslated graphene was big
enough, is was possible to create several gJJs from the same stack.

The measurement of the DC devices was done in the small Diluette fridge at a base
temperature of ≈ 100 mK. The measurement setup is the same as the DC measurement setup
in the sionludi L but with additional low pass filters at low temperature. It consists of a two
probes current bias experiment where a small AC probe current (17 Hz) is sent together with
a DC bias current Ib. Fig. 4.11c and d show the differential resistance dV/dI measured by the
output of the lockin amplifier with respect to the DC current bias and gate voltage Vg for a
Ti/Al device and a MoGe device respectively. We can see dark areas where the differential
resistance vanishes meaning that the device is in the superconducting state. When the bias
current goes above a threshold value, the device starts to be resistive, meaning that it is no
longer in the superconducting state. This value of current is called the switching current: the
current at which the device switches from a superconducting to a normal state. We can see
that the switching current is not the same at negative bias and at positive bias especially for
the MoGe device. We will discuss the possible reasons later in this section.

In this work, we define the critical current Ic of the gJJ being the maximal switching
current for a given gate voltage, i.e. the value of the switching current measured when the
device switches from the superconducting to the normal state. We can see in Fig. 4.11c and d
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Figure 4.11: (a) and (b) optical microscope picture of DC devices with superconducting
contacts made of Ti/Al and MoGe respectively. Each DC device consists of a gJJ with a side
gate (5 devices in (a) and 6 devices in (b)). The red bar indicates 8 µm. (c) and (d) differential
resistance of a Ti/Al and a MoGe device respectively. The wire resistance has been subtracted
such that the differential resistance is zero when the device is in the superconducting state.
The bias current is swept from negative to positive for each gate voltage. Cyan and purple
linecuts are plotted on the right of the 2D graphs.

Link back to ToC ↑ 94



4.3. Bare device and DC characterization

that the critical current reaches 0.8 µA for the Ti/Al device and 2 µA for the MoGe device. By
considering the device quality and contact transparency as equal between the two devices,
and by neglecting the SNS junction specificity, it is possible to understand why the MoGe
device has a bigger critical current. According to the Ambegaokar-Baratoff formula [27], at
T = 0:

IcRN =
2∆
e

(4.32)

where RN is the normal resistance. This means that for the same normal resistance, ∆MoGe
≈ 1 meV > ∆Ti/Al ≈ 0.2 meV implies a bigger critical current for MoGe devices. Note that
the Ambegaokar-Baratoff formula is working only for tunnel junctions, but we saw in the
Chapter 1 that similar expressions exist depending on the regime of the SNS junction. We can
conclude from the DC devices that both MoGe and Ti/Al give critical current of the order of
1 µA which is typically used for parametric amplification [88].

Fig. 4.11c and d also show that a side gate allows to tune the critical current on almost
one order of magnitude. As we saw in Chapter 1, increasing the doping in the graphene,
i.e. reducing its normal resistance, will increase its critical current. The electric field created
by the side gate only penetrates the graphene flake locally such that the carrier density is
modified only in a portion of less than 500 nm on the edge of the junction [161]. We can thus
consider the junction as two parallel sections, one being doped by the side gate with a 500 nm
width, and one being at the native doping with a width equals to W minus 500 nm where
W is the total width of the gJJ. Therefore, the section with the smaller resistance dominates
the behavior of the gJJ. For example, it is always possible to increase the critical current with
the side gate because the associated section resistance is made low and thus dominates the
behavior. But it is harder to reduce the critical current, because when increasing the resistance
of the gate controlled section, it no longer dominates the total resistance because the other
section will have a lower resistance. It shows that it is important to have low native doping
in order to have more control over the critical current.

The asymmetry of the critical current between negative and positive gate doping is al-
ways seen in gJJs. The Fermi level mismatch between the electrodes and graphene induces
local electron doping close to the contacts. Thus, when the gate induces a positive doping
in graphene, it forms a n-p-n junction [32]. As a result, the resistance of the gJJ is higher
for positive doping than for negative doping. And as we saw previously, the critical cur-
rent is scaling as 1/RN explaining the asymmetry. We can also note in Fig. 4.11c that the
differential resistance shows intense peak features with respect to the bias current at fixed
gate voltage. Theses peaks are attributed to multiple Andreev reflections (MAR) that were
presented in Chapter 1 [28, 162]. The fact that the intensity of these peaks is way stronger in
the Ti/Al device might come from the fact that the coherence length in Ti/Al device is higher
than in MoGe device because of the superconducting gap difference. This means that elec-
trons and holes will lose coherence faster in MoGe devices leading to a less pronounced effect.

We now come back to the asymmetry in the switching current. It can have two possible
origins: an increase in the electronic temperature or a junction in the underdamped regime.
During the experiment, the bias current is swept from negative to positive values. By doing
so, when the measurement starts, the device is in a normal state because Ib > Ic, meaning

Link back to ToC ↑ 95



Chapter 4. Device linear characterization and modeling

that heat is dissipated due to Joule effect. This is locally heating the device, increasing the
temperature of the electrons inside the gJJ, and in turn reducing the switching current [163].
This could be the reason why at negative bias current, the switching current is lower than
at positive bias current, where the device switches from a superconducting state to normal
state, meaning that no heating was done before the switch. Another reason would be that
the junction is in the underdamped regime. A Josephson junction can be described by the
resistively and capacitively shunted junction (RCSJ) model. In this model, the junction is
shunted by a resistor R and capacitance C. When computing the voltage current relation
there are two possible regimes depending on the Stewart-McCumber parameter βc =

2πR2CIc
Φ0

where Φ0 is the flux quantum. If βc << 1, the junction is in the underdamped regime which
shows hysteresis behavior in the switching current. For a typical resistance of 200 Ω and a
critical current of 1 µA one find that βc = 1 will be obtained for C ≈ 10−14 F. The difficulty
is to know what are the contributions to the capacitance. In practice, the small size of the
junction makes its capacitance to be way lower than femto Farads. But the capacitance of
the leads might also have an effect on the capacitance that we have to consider in the model
[68]. We can estimate the capacitance of the DC device by approximating it as a l = 5 mm
long microstrip line with a width of w = 75 µm (approximation close to the geometry and
dimensions of the device) such that [164]:

C =
ϵrl

60c ln(8h
w + w

4h )
(4.33)

where h = 275 µm is the thickness of the substrate, c the speed of light in vacuum and ϵr =
11.9 the relative permittivity of intrinsic silicon. We find C ≈ 10−14 F which corresponds to βc
≈ 1. So, if we consider that the whole capacitance of the device must contribute, the junction
might be indeed in or close to the underdamped regime. The fact that the effect is stronger in
MoGe devices where the critical current is higher than for Ti/Al devices let us think that the
hysteresis is more a temperature effect because higher power is dissipated. But the fact that
the critical current is higher means that βc is higher too, making the junction more likely to
be in the underdamped regime.

The DC devices allowed to see that the critical current measured on both Ti/Al and MoGe
devices is suitable for parametric amplification purposes and that the side gate allows a good
control of its value. Because of a lack of time we could not test the two materials for the
fabrication of gJPA and we finally chose to use Ti/Al. The fabrication of the devices is indeed
easier with metal evaporation of Ti/Al than with MoGe sputtering (especially during the lift
off). Moreover, the smaller superconducting gap of Ti/Al ensure the junction to be in the
short regime. As shown in Chapter 1, this helps to reduce the number of Andreev bound
states inside the junction which are held responsible for microwave dissipation in gJJs.

4.4 Characterization of the parametric amplifier in the linear
regime

We will now focus on the characterization of the gJPA itself in the linear regime, i.e when
the incoming power is low enough to neglect the non linear effects coming from the junction.
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The device presented here corresponds to a gJJ width of 1.5 µm and was measured in the
Sionludi L dilution fridge.

4.4.1 Gate tunability
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Figure 4.12: (a) Measurement of the differential resistance with respect to the bias current
and gate voltage. For each gate voltage the bias current was swept from negative value to
positive value. The resistance of the wires was subtracted such that the resistance of the
device vanishes in the superconducting state. The blue rectangle shows the area where we
did a more precise measurement shown in (b). (c) Phase of the S11 parameter with respect
to the gate voltage and input microwave frequency. The input microwave power was ≈
-140 dBm such that non linear effects can be neglected. (d) Fitted coupling (blue) and internal
(red) quality factors with respect to the fitted resonance frequency. The red shaded area
corresponds to the standard deviation error on the internal quality factor given by the fit.

Fig. 4.12a and b shows the differential resistance of the device with respect to the gate
voltage and bias current. We can see that the critical current is tunable from 100 nA up to
more than 1.3 µA. The critical current is minimum near Vg = -3 V corresponding to the Dirac
point of graphene where the normal resistance is maximum. We could not go at lower gate
voltages because below Vg = -12 V, a gate leakage current was observed. As we saw earlier,
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the critical current of the device is compatible with parametric amplification purposes.

Fig. 4.12c shows the phase of the S11 parameter with respect to the input microwave
frequency and gate voltage. For each gate voltage, we swept the microwave frequency and
measured the S11 parameter. As for the bare device, the resonance corresponds to a 2π phase
shift because the resonator is overcoupled. The limit between the red and blue part of the 2D
map corresponds thus to the resonance frequency of the device. As we saw earlier, changing
the critical current allows to change the Josephson inductance LJ such that the resonance
frequency of the resonator changes. We can indeed see that when the critical current is large
(corresponding to a small LJ) on Fig. 4.12a, the resonance frequency fr ≈ 6.2 GHz is close
to the bare resonance frequency f0 = 6.44 GHz of the device without a gJJ. And when the
critical current reaches its minimal value at the Dirac point (maximum of LJ), the resonance
frequency is minimal: fr ≈ 5.2 GHz. Thanks to the control of the critical current with a gate
voltage, we have a 1 GHz tunability of the resonance frequency.

Fig. 4.12c allows to create a normalization procedure to remove the microwave back-
ground. In the case of the bare resonator we used a trace at 1.1 K before the device transited
to a superconducting state. Here, in order to avoid the impedance mismatch created by the
aluminum microbonds becoming superconducting, we averaged the S11 parameter measured
between -4.5 V and 18 V, corresponding to the gate voltages at which ∂ fr/∂Vg is the highest.
By doing so, we averaged out the resonance features and obtained a microwave background
cleaner than the one obtained by using at trace at 1.1 K. Fig. 4.12c was itself normalized with
this method.

We performed the circle fit method on the S11 trace measured at each gate voltage. This
allowed to extract the resonance frequency and the coupling quality factor for each gate
voltage. Fig. 4.12d shows the fitted coupling (blue) and internal (red) quality factors with
respect to the fitted resonance frequency. We can see that the coupling quality factor oscillates
between 75 and 250. We did not simulate the effect of the Josephson inductance on the
coupling quality factor and it is not clear why an oscillation behavior appears. It might come
from the impedance of the environment changing with respect to the frequency. We see that
the coupling quality factor decreases with the resonance frequency which is expected because
Qc scales as 1/ f 2

r . As for the bare resonator, it is difficult to extract the internal quality factor
because Qi > Qc. The error is computed only by comparing the fit to the data altered by the
microwave background. We can imagine a situation where a decent fit is obtained, but where
the resonance dip amplitude is mostly due to the microwave background. This would create
a small error but the extracted Qi would be far from the real value. Therefore, the computed
error is shown as an indication but is not trustful. We can see a correlation between the
coupling quality factor and the error on the internal quality factor. When the coupling quality
factor decreases, the error on Qi increases because the ratio Qi/Qc gets higher making the
fit more difficult. It is hard to rely on the extracted values of Qi but it looks like the sample
exhibit more loss when the resonance frequency is close to its lowest value, corresponding to
graphene being close to the Dirac point. It is not clear why the dissipation increases close to
the charge neutrality point. A recent study did not find an increased dissipation at this point
[66] but it is hard to extrapolate because the physics depends a lot on the device itself, i.e the
size and width, corresponding to different regimes. They used a diffusive Ti/Al device with
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a 1 µm width and a width over length ratio of ≈ 2 giving a maximum critical current of ≈
200 nA. In our case the width is 1.5 µm for a width over length ratio > 5 and a maximum
critical current of 1.3 µA. The big difference in the critical current for a similar width shows
that our junction might be in a different regime (ballistic).

4.4.2 Josephson inductance and current phase relation
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Figure 4.13: (a) Josephson inductance extracted by the critical current measurement (DC)
and by the microwave measurement (RF). (b) Resonance frequency extracted by the critical
current measurement (DC), and by the fit of the measured S11 parameter (RF). The shaded
area represents the error on the resonance frequency extracted by DC method.

All the models used to understand the behavior of JPAs developed in Chapter 2 are based
on sinusoidal current phase relation (CPR). Nevertheless, we saw in Chapter 1 that gJJs do
not to follow an exact sinusoidal CPR and it is thus important to see how it deviates from it.
The Josephson inductance LJ of the gJJ is directly linked to the CPR and influences the Kerr
coefficient which is a key parameter for parametric amplification. It can be defined as :

LJ =
Φ0

2π

( ∂I
∂ϕ

)−1
(4.34)

where ϕ is the phase across the gJJ. In practice, ϕ is small for a weakly driven junction such
that

LJ =
Φ0

2π Ic
(4.35)

for a sinusoidal CPR. With the measured critical current we can thus compute LJ and see
what would be LJ with a sinusoidal CPR. On the other hand, we measured fr(Vg), and from
the sonnet simulation with a discrete inductance LJ , it is possible to map the measured fr to
the simulated fr and thus to LJ such that we get the gate dependence of LJ . By comparing LJ
obtained from the critical current measurement and from the RF measurement, it is possible
to see how the CPR deviates from a sinusoidal form.

We also used another method to extract LJ from the measured fr(Vg) which is useful to
compute the Kerr coefficient. Unlike the lumped element model, this method consists of
finding the normal modes of a distributed transmission line resonator with an embedded JJ
[83]. We developed this model in details in Chapter 2. The input parameters of this model are
the inductance and capacitance per unit of length l0 and c0, the coupling capacitance with the
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50 Ω transmission line Ci and the bare angular resonance frequency ω0. Ci can be computed
from Eq. 4.22 and the measured coupling quality factor that we approximated to a constant
value of Qc = 150:

Ci ≈
√

π

2Z2
0ω2

0Qc
(4.36)

Z0 =
√

l0/c0 being the characteristic impedance of the resonator. Because Z0 =
√

l0/c0
depends on the unknown c0, we used the total capacitance (C = 0.157 pF) obtained from the
lumped model to have an additional equation:

C =
x
2

c0 + Ci (4.37)

where x is the total length of the resonator. By doing so we get an equation on Z0 with only
known parameters:

Z2
0C − Z0

√
π

2ω2
0Qc

= l0
x
2

(4.38)

with l0 obtained from the total inductance extracted from the lumped element model (L0 =
3.9 nH):

L0 =
2x
π2 l0 (4.39)

By solving Eq. 4.38 we find Ci ≈ 10 fF and Z0 ≈ 256 Ω. By using standard calculation for
microstrip lines (Eq. 4.25 and 4.26) we find Z0 = 125 Ω. One reason of such a discrepancy
could come from the fact that Eq. 4.25 and 4.26 are valid when the width w of the microstrip
line is of the same order of magnitude than the substrate thickness h. Here w = 10 µm and h
= 275 µm which is far from the approximation w ≈ h.

Using the model with the previously obtained parameters allows to compute fr with
respect to LJ . By mapping the measured fr(Vg) to the model, we can extract LJ(Vg). Fig. 4.13a
shows the computed LJ from the DC critical current measurement assuming a sinusoidal
CPR (orange), LJ extracted from the microwave measurement and the sonnet simulation
(blue), and LJ extracted from the microwave measurement and the distributed model (green).
We can see that at high electron doping, LJ extracted by the RF measurement and sonnet is
higher than LJ extracted by DC measurement. This is compatible with a forward skewness of
the CPR, because a forward skewness for an equivalent critical current means that the term
∂I
∂ϕ is smaller and thus makes LJ higher. This result is compatible with the previous studies
about gJJ CPR [59, 61, 66]. On the other hand, below Vg = 12 V it looks like the opposite way.
This was also seen in [67] and was attributed to the definition of the critical current that we
use. Indeed, we define the critical current as the switching current when the device switches
from the superconducting state to the normal state. It means that we give a lower bound on
the critical current because the switching current is always impacted by thermal effects for
example. When looking at Fig. 4.12c, we can see that the time spent in the normal state is
way higher when the critical current is low. This might cause an increase in the electronic
temperature which is not decreasing fast enough to be neglected (because the time spent in
the superconducting state is low at low critical current). Therefore it could explain why the
switching current is smaller than the critical current. Moreover, the DC lines of the sionludi
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dilution fridge L used to perform the measurement of the critical current was not equipped
with low pass filters thermalized on a cold stage. This results in a the presence of a thermal
noise that can also decrease the switching current.

On the other hand, the Josephson inductance obtained by mapping the measured fr to
the distributed model is always higher than the one obtained by the critical current, which is
compatible with a forward skewness of the CPR whatever the gate voltage. Nevertheless, it
is not clear why LJ is higher than what is obtained with the sonnet simulation. In a 1D SNS
point contact JJ, for a fixed critical current, the maximum skewness is achieved for a perfect
contact transparency in the zero temperature limit, and leads to a Josephson inductance
twice higher than what would give a sinusoidal CPR. We thus doubt of the extracted LJ
by this method which is higher by a factor ranging between 2 and 2.6 with respect to LJ
extracted by sonnet simulations. A possibility would be that the computed L0 and C from the
lumped element model cannot be used for determining l0 and c0. The fact that the predicted
resonance frequency with the distributed model at very low LJ matches the measured bare
resonance frequency indicates that the product of these parameters must be correct, but
that they might differ individually. In the distributed model, the DC lines are not taken
into account, but we performed similar sonnet simulation without the DC lines and it is
not enough to explain the difference (at best there is a 0.5 nH increase). We also used the
distributed model with different coupling capacitance Ci because we assumed above that the
quality factor was constant which is not the case. This was also not able to make the extracted
LJ smaller. The computed Ci is such that it is negligible compared to the total capacitance
C. Decreasing Ci does not change the extracted LJ but increasing Ci increases the extracted
LJ . So, the high value of LJ are not caused by a problem on the estimated coupling capacitance.

Fig. 4.13b shows the predicted resonance frequency from the DC measurement (by in-
jecting the computed LJ from the critical current measurement in Eq. 4.28) and the fitted
resonance frequency from the RF measurement with respect to the gate voltage. We can
clearly see that there is a correlation between the DC and RF measurements proving that the
resonance frequency variation is caused by a variation in the critical current and thus in LJ .
At high electron doping the difference in inductance between DC and RF does not affect a lot
the resonance frequency because LJ is negligible compared to L0 = 3.9 nH. On the other hand,
the difference has a stronger effect when LJ gets closer to L0.

The Josephson inductance and resonance frequency extracted by the DC method shows
some abrupt variation close to the charge neutrality point where the critical current is low.
This comes from the fact that the critical current measurement used to compute these values
was done by sweeping the bias current with steps of 20 nA, meaning that the extracted critical
current is a multiple of this value. This step size is not negligible compared to 100 nA, the
minimum critical current, and explains the discrete jumps in LJ and fr. We used Eq. 4.29 and
4.35 to compute the error ∆ fr on the resonance frequency considering only the error on the
critical current ∆Ic being 20 nA (the bias current step):

∆ fr =
f0ϕ0

4πL0 I2
c

(
1 +

ϕ0

2πL0 Ic

)− 3
2

∆Ic (4.40)
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4.4.3 Estimation of the Kerr coefficient
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Figure 4.14: (a) Computed participation ratio with respect to the gate voltage. The orange
curve is obtained by using LJ extracted from the RF measurement associated with sonnet
simulations and using the lumped equation of η. The blue curve is obtained with the
distributed model. (b) Kerr coefficient computed from η obtained in (a). The distributed
model accounts for a correction on the total capacitance making K smaller. The energy
damping rate 2γ is computed from the fitted Ql.

With the determination of LJ it is possible to estimate the Kerr coefficient:

K = ECη/h̄ (4.41)

where EC = e2/(2C) is the charging energy and η is the participation ratio of the gJJ. By
taking the lumped element model we built for the device, we can express η as:

ηlumped =
LJ

LJ + L0
(4.42)

In the distributed model discussed in the previous section, η can also be computed and is
corrected by a factor (∆u)2 where ∆u is the flux mode amplitude envelop difference across the
JJ (see Chapter 2). Fig 4.14a shows the computed η from the distributed model and from LJ
and L0 obtained from a lumped model by associating sonnet simulations and measurements.
We can see that the participation ratio is very similar between the two models despite the
distributed model giving higher LJ . This comes from the fact that η is corrected by (∆u)2:

ηdistributed =
LJ L0

LJ + L0

1
LJ

(∆u)2 (4.43)

Note that in the distributed model, the junction is in parallel with the rest of the circuit
justifying the difference between the definition of ηdistributed and ηlumped.

We can now compute K thanks to Eq. 4.41. In the distributed model, the total capacitance
is corrected by a factor 1/(∆u)2 as shown in Chapter 2. The total expression of K in this
model is thus:

K = EC
L0

LJ + L0
(∆u)4 (4.44)
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Fig 4.14b shows the computed K from the distributed model and from LJ and L0 obtained
from a lumped model by associating sonnet simulations and measurements. We can see
that K estimated with the distributed model is always smaller than the one estimated with
the lumped model especially at higher gate voltages. Indeed, at higher gate voltages, the
inductance of the JJ is smaller making the jump in the flux mode amplitude envelop across the
JJ (∆u) smaller resulting in an important decrease of K. It is hard to trust fully the distributed
model because we saw that the Josephson inductance estimated this way is probably too
high. Nevertheless, we saw that the correction factor (∆u)2 specific to the distributed model
on η allowed to obtain similar participation ratio than the lumped model associated with
sonnet simulation. This let us think that the distributed model can be trusted here. Knowing
that ∆u < 1, the values obtained by the lumped model are an upper limit of the real K.

The values of K have to be compared to the total energy damping rate 2γ in order to
predict the behavior of the JPA. Indeed, we saw in Chapter 2 that the dynamic was dependent
on the ratio K/γ meaning that when this ratio is high, the compression point is low, which
is a problem in the limit where less than one photon can be amplified without reducing the
gain. From the fitted Qi and Qc we can compute the loaded quality factor Q−1

l = Q−1
i + Q−1

c
for each gate voltage and thus compute γ:

γ =
ωr

2Ql
(4.45)

We can see in Fig 4.14b that close to the charge neutrality point, both models predict a value
of K close to 2γ meaning that the compression point of the JPA will be low. On the other hand,
the lumped model predicts a ratio K/γ close to one on the whole gate voltage range whereas
this ratio decreases drastically in the distributed model. The fact that the nonlinearity is
diluted with the geometric inductance can also be a problem for the stability of the JPA as
shown in Chapter 2.

4.4.4 IcRN Product

The IcRN product is often used as an indicator of the quality of a Josephson junction. It
has been predicted for a short ballistic gJJ without defects that eRN Ic/∆ ≈ 2.5 where ∆ is
the induced superconducting gap [51]. In order to extract ∆, we analyzed the differential
conductance with respect to the voltage across the gJJ (Vb). Experimentally we performed a
current bias experiment, we did thus not have a direct access to Vb. We extracted Vb using
the total voltage measured with a multimeter and subtracting the bias current times the
resistance of the wires. We show in Fig. 4.15a the differential resistance with respect to the
bias current and the associated bias voltage. When the device is in the superconducting state
(dV/dI = 0), we see that the voltage vanishes as expected for a JJ. By combining these two
sets of data we plotted the differential conductance dI/dV with respect to the bias voltage
in Fig. 4.15b. In a SNS Josephson junction, multiple Andreev reflections (MAR) manifest
themselves as peaks in the differential conductance at voltage values equal to 2∆/n where ∆
is the induced superconducting gap and n integer values [28]. From the n=1 peak we can
extract an induced gap ∆=147.5 µeV. Fig. 4.15c shows the normal resistance of the gJJ at 25 mK
with respect to the gate voltage measured with a bias current Ib=7 µA such that Ib >> Ic. As
expected for graphene, the resistance profile shows a maximum at the charge neutrality point
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Figure 4.15: (a) Two-probes measurement of the differential resistance (blue) and voltage (red)
across the gJJ with respect to the bias current at Vg = 25 V. We subtracted the resistance of the
wires. (b) Differential conductance with respect to the voltage across the gJJ. The dotted line
indicates the position of the first conductance peak at a voltage 2∆/e. (c) Normal resistance
of the gJJ with respect to the gate voltage at 25 mK measured at Ib = 7 µA. We subtracted the
resistance of the wires. (d) IcRN product in induced superconducting gap unit with respect to
the gate voltage. The induced superconducting gap is extracted from (c) and is approximated
as independent of the gate voltage.

at Vg ≈ -3 V which is consistent with the value extracted by the critical current measurement.
The important broadness of the peak is explained by the low efficiency of the side gate. The
measured dV/dI (=RN) and critical current enables to plot the eRN Ic/∆ product with respect
to the gate voltage in Fig. 4.15d. We see that the product reaches 1.4 and decreases close to
the Dirac point which is generally observed in gJJ [32]. The high eRN Ic/∆ product indicates
the high quality of the device. To my knowledge, the best eRN Ic/∆ product in a diffusive gJJ
that we can find in the literature is of the order of unity. This means that our gJJ is probably
ballistic with a coherence length ξ = h̄vF/∆ ≈ 4.5 µm making the junction in the short regime.
The fact that a side gate is used to change the doping might limit the maximum value of
the eRN Ic/∆ product because the charge carrier concentration is not homogeneous in the
junction. Moreover, we supposed the superconducting induced gap as constant with respect
to Vg which is probably not accurate. Another analysis suggesting the high transparency of
the gJJ in presented in Appendix A.

4.4.5 Gate instability

By using the gate on the device, we noticed some effects that we attribute to charge fluctu-
ations and trapping, and also to the use of a side gate. The first noticeable effect is a different
behavior when sweeping the gate voltage from positive to negative voltages and the opposite
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Figure 4.16: Phase of S11 with respect to the gate voltage when sweeping the gate from
negative to positive voltages (a) and positive to negative voltages (b). Phase of S11 with
respect to time on a short (c) and a long (d) timescale. (c) is taken right after a voltage sweep
from -12 V to 17.5 V with a speed of 0.17 V.s−1, (d) is taken a few minutes after (c). The gate
leakage current is plotted beneath each graph.

way. In Fig. 4.16a and b, we plot the phase of S11 when sweeping the gate voltage from
negative to positive values (a) and positive to negative values (b). We see in Fig. 4.16a that
gating in this direction allows a precise control of the resonance frequency (corresponding
to a 2π phase shift). On the other hand, gating in the other direction (Fig. 4.16b) shows
little effect until an abrupt change around Vg = -10.2 V. All the measurements relying on a
gate presented in this work were taken in the configuration of Fig. 4.16a, i.e. sweeping from
negative to positive gate voltages.

We also plotted the current leaking from the gate in the bottom panel of Fig. 4.16a and
b. We can see that in Fig. 4.16a a small leakage current of 250 pA at Vg > 30 V with a linear
slope corresponding to a resistance of 20 GΩ. It is also possible to see that the leakage
current increases exponentially close to Vg = -12 V forbidding lower gating. It was shown
that gating current leakage can be responsible for reduction of the critical current in narrow
superconductor constrictions. High energy electrons can tunnel from the gate contact to
the constriction, resulting in quasiparticle generation that can reduce the critical current
[165, 166]. We argue that this mechanism is negligible hear because we are able to increase
the critical current (associated to an increase of fr) even if the gate current leakage increases.
Moreover Fig. 4.16b shows that there is no correlation between the gate current leakage
and the abrupt change in the resonance frequency. The gate leakage is probably due to
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standard gate leakage mechanisms as Frenkel-Poole transport through the Si substrate or
Fowler-Nordheim tunneling [167].

The second effect is an evolution of the resonance frequency as a function of time after
a gate voltage sweep. In Fig. 4.16c and d, we plotted the phase of S11 with respect to time
for a fixed gate voltage. Fig. 4.16c was taken right after a large gate sweep (parameters in
the description of the figure) and Fig. 4.16d a few minutes after the gate sweep. We see in
Fig. 4.16c a resonance frequency shift of more than 100 MHz in 2 minutes. The shift is faster
during the first seconds and is associated with a high leakage current (up to 750 pA). In
Fig. 4.16d we see that the drift continues even over hours but on a slower pace. We noticed
that the speed of the drift depends on the speed of the gate sweep leading to the gate voltage
of interest. By looking at the gate leakage current, we see a correlation between the speed of
the frequency shift and the intensity of the current. We argue that the gate leakage current
is created by some charge reorganization in the gJJ (leading to the associated change in
resonance frequency or equivalently critical current) and not the opposite. In the previous
paragraph describing the ’adiabatic’ case where the gate is swept very slowly, the charges
had enough of time to reorganize while the measurement of a single gate was performed.
This explains why in this case, a change in the resonance frequency is not correlated with a
gate leakage current.

We also noticed that the time frequency shift was more intense for gate voltages at which
fr is more sensitive to Vg. For example, it is more important between Vg = 10 V and Vg = 18 V
making the JPA less stable in the associated frequency range. In order to limit the drift and to
obtain reproducible datasets, we swept the gate voltage very slowly and waited after each
gate change. For instance in Fig. 4.16a, we used the following parameters: a gate voltage step
of 0.05 V and a S11 trace time of 75 s for each gate voltage.

In the future, we believe that the use of a top (or bottom) gate should allow to suppress
those effects. It will indeed be much more efficient than the side gate presented here, allowing
the use of smaller voltages, and also screening charges in an efficient manner. Interestingly,
recent experiments of Nicolas Aparicio, a PhD student in our research team, showed that the
hysteresis on the critical current is reduced for narrow gJJs (width < 500 nm). Narrower gJJ
are fully penetrated by the gating electric field, indicating that the hysteresis behavior might
come from the charging of areas not directly affected by the gate voltage.

4.4.6 Summary of the parameters of the gJPA

We showed that the device resonance frequency can be tuned in a frequency range going
from 5.2 to 6.3 GHz and that the presence of DC lines does not affect the resonance. The
comparison of LJ extracted from DC measurement and RF measurement showed evidence of
a forward skewness of the CPR which indicates that JPA models based on a sinusoidal CPR
might lose accuracy. Calculations in Appendix A show that the skewness can be estimated
to 0.2. Moreover, the quality factor of the device depends on the gate voltage such that the
loaded quality factor ranges between 75 and 200. From the estimation of the Josephson
inductance, we could deduce the participation ratio η of the gJJ. The estimations given by
the lumped model and the distributed model are very close and give a participation ratio
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ranging between 0.05 and 0.35. This satisfies the condition ηQ >> 1 needed to keep the
microwave current small enough compared to the critical current which avoids chaotic
behavior [98, 93, 90] as we saw in Chapter 2. We note that at high electron doping, the
product ηQ reaches a minimal value of 4 which does not exactly satisfies the condition. We
also computed the values of K and compared them to the total energy damping rate 2γ. This
allowed to see that the compression point of the gJPA should be low close to the charge
neutrality point but should increase at higher electron doping.

Link back to ToC ↑ 107



Chapter 4. Device linear characterization and modeling

Link back to ToC ↑ 108



C
H

A
P

T
E

R

5Graphene based Josephson
parametric amplifier

In this chapter we present the main results about the graphene based Josephson parametric
amplifier (gJPA). We first show the nonlinear behavior of the device and the limits of the
theoretical model. We then address the amplifier key characteristics: the gain, the added
noise and the compression point.
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5.1 Nonlinear resonator

5.1.1 Model to describe the gJPA
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Figure 5.1: (a) and (b) Magnitude of the S11 parameter with respect to the input frequency at
different input powers for a gate voltage of 15 V and 18 V respectively. The measurement
were taken with a VNA by making a frequency sweep and then changing the power. In both
(a) and (b) the blue curve corresponds to P << Pc and the green curve to P = Pc. Both (a) and
(b) were normalized with an average of the gate dependence of S11 at low power. The red
arrows shows the negative frequency shift due to Kerr effect. The black arrow and dotted
lines show an increase in the resonance dip amplitude corresponding to nonlinear losses.

The presence of the graphene Josephson junction (gJJ) inside the resonator provides non-
linearity. Fig. 5.1 shows the magnitude of the reflection coefficient |S11|2 with respect to the
incoming microwave frequency at different incoming microwave powers P. In Fig. 5.1a, the
lowest input power (P = -115 dBm) corresponds to the limit where nonlinear effects are negli-
gible. The resonance manifests as a dip in the magnitude around the resonance frequency.
We can see that when the input power increases, the resonance frequency shifts toward lower
frequencies. This is the Kerr effect happening because of the presence of the gJJ. When the
input power reaches the critical power Pc, the derivative of the S11 with respect to the fre-
quency diverges in one point such that there is a infinite slope at this point. The green curve
(P = -105 dBm) corresponds to the measured magnitude at the critical power. We will call the
frequency shift between the low power resonance frequency and the critical power resonance
frequency ∆ωc. Besides the Kerr effect, we can see that the amplitude of the resonance dip
increases with the input power. We saw in the previous chapter that the internal quality factor
Qi is higher than the coupling quality factor Qc. This means that either the internal losses are
increasing or that the coupling is decreasing with increased power. We saw that Qc depends
on the resonance frequency but the shift in Qc associated to the frequency shift at the critical
power is negligible and do not explain the increased resonance dip. Therefore, the only possi-
bility is that the internal loss is power dependent which is also confirmed by the literature in
gJJs [67] and is attributed to dynamics in the Andreev bound state as we showed in Chapter 1.

Because of the nonlinear loss, we chose to use the two-photon loss model of Yurke [87]
which is the only model of JPAs taking it into account to our knowledge. This model is
studied in details in Chapter 2. In this model, the nonlinear loss is proportional to the number
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of photons inside the resonator. We will briefly recapitulate the important results that we
used to fit our data. The S11 parameter can be expressed as:

S11 = 1 − 2γ1A[
i(ωr − ω) + γ

]
A + (iK + γ3)A3

(5.1)

where A is the intracavity field, ωr the resonant angular frequency, 2γ1 = ωr/(Qc) the
coupling energy damping rate, 2γ = 2γ1 + 2γ2 = ωr/(Ql) the total energy damping rate,
2γ2 = ωr/(Qi) the internal energy damping rate, 2γ3 the two-photon loss energy damping
rate and K the Kerr coefficient. In the limit K = γ3 = 0, S11 does not depend on the intracavity
field intensity anymore and is equivalent to S11 found with basic circuit theory (Eq. 4.24). The
intracavity field A can be found by solving a cubic equation in A2:

A6 +
2
[
(ωr − ω)K + γγ3

]
K2 + γ2

3
A4 +

(ωr − ω)2 + γ2

K2 + γ2
3

A2 − 2γ1

K2 + γ2
3

(
bin)2

= 0 (5.2)

where bin is the classical incoming field that we can relate to the incoming microwave power
by bin =

√
P/(h̄ω). It is also possible to compute the critical incoming field bin

c at which the
device bifurcates:

(bin
c )2 =

4
3
√

3

γ3(K2 + γ2
3)

γ1(|K| −
√

3γ3)3
(5.3)

and the resonance frequency shift due to Kerr effect at the critical power:

∆ωc = −γ
K
|K|

[
4γ3|K|+

√
3(K2 + γ2

3)

K2 − 3γ2
3

]
≈ −

√
3γ

K
|K| (5.4)

where the last approximation can be done when γ3 << K.

The model depends thus on six parameters: ωr, γ1, γ2, γ3, K and bin making the fit difficult
because of the large parameter space. Moreover, as we saw in the previous chapter, microwave
background can be non negligible compared to the magnitude of S11. This is particularly
a problem for extracting the internal loss because γ1 >> γ2. Fig. 5.1a and b have been
normalized with an averaged gate dependence of S11 as in the previous chapter. Nevertheless,
the gate dependence was taken with an additional room temperature 20 dB attenuator such
that impedance mismatch is not exactly the same between the power dependence and the gate
dependence. We can see in Fig. 5.1b that the amplitude of the resonance dip is small compared
to wiggles of the microwave background despite the normalization. In this condition, we
barely see the resonance and it is thus very complicated to deduce the internal loss and the
two-photon loss. This is why we had to develop a special fitting method in order to get rid of
the microwave background.

5.1.2 Fitting methods
Because it was not possible to fit directly the data with all the free parameters for reasons

we explained in the previous section, we developed two fitting methods. The first method
is the simplest one but is strongly affected by the microwave background. The second one
allows to get rid of the microwave background at the cost of making the fitting procedure
easily trapped in local minimums, and more sensitive to discrepancies in the model.

Link back to ToC ↑ 111



Chapter 5. Graphene based Josephson parametric amplifier

5.1.2.a Fitting method 1

This first fitting method does not allow to remove perfectly the microwave background
and is thus not ideal to extract γ2 and γ3. The first step consists of fitting S11 at low power
with the circle fit method [160] which allows to remove some environmental contributions
and get ωr, γ1 and γ2 with an important error on γ2 when the internal losses are low. It
means that only three parameters have to be found: K, bin and γ3. bin is not a free parameter
as such because it is linked to the input power that we control. We thus compute bin with the
experimental input power. Even with only two parameters we had issues for fitting the data
and we will show the reasons later. We thus adopted another procedure.

First, we noticed that at the critical power, K can be computed from Eq. 5.3 if γ1, γ2, γ3 and
bin

c are known. Therefore we manually picked the critical power from the power dependence
on S11 by looking at which input power an infinite slope appeared in phase and amplitude.
Then, because the change in the magnitude dip with power is only caused by nonlinear
loss, we fitted the minimal value of |S11| with γ3 as only free parameter. During the fitting
procedure, K is computed from Eq. 5.3 at each iteration because all the parameters are known.
This way of fitting allows to obtain all the parameters but suffer from the fact that it relies
on the minimum of |S11| which can be strongly perturbed by the microwave background.
For example, in Fig. 5.1b, the minimum does not correspond to the resonance dip amplitude
meaning that we would find γ3 = 0 Hz.

Fig. 5.2a and b show the measured phase of the S11 parameter with respect to the fre-
quency at the critical input power Pc and at low power P0 << Pc for two different operating
frequencies. We can see that for both operating frequencies, the fitted shift in the angular
resonance frequency ∆ωc at the critical power is larger than the experimental shift. According
to Eq. 5.4, when γ3 is negligible, ∆ωc depends only on γ, a parameter extracted from the
initial circle fit. The discrepancy in ∆ωc means that either the circle fit is wrong or that the
model does not describe our system properly.

One could argue that the fitting method 1 does not predict γ2 and γ3 accurately as dis-
cussed earlier. But according to Eq. 5.4, when γ3 is not negligible, the shift is even higher and
not smaller. Moreover, because the resonator is in the overcoupled regime, γ is dominated by
γ1 making the error on γ2 not so relevant in the frequency shift at the critical power. On the
other hand, we can see in Fig. 5.2a that the circle fit of the phase is broader than the measured
one, meaning that the fitted γ is higher than the experimental value. This could explain the
predicted ∆ωc being larger than the measured one because ∆ωc scales as γ.

Besides that, we saw in the previous chapter that gate drift could happen in the system
making the resonance frequency shift at higher frequency with respect to time. The power
dependence measurement being not instantaneous, it could also explain the mismatch in ∆ωc.
Indeed, the Kerr shift being negative, a positive frequency drift would make ∆ωc smaller.
But a measurement at low power was taken 10 minutes after the power dependence and
showed a shift of 5 MHz compared to what was measured at the beginning of the power
dependence. This sets an upper limit on the frequency shift happening during the power
dependence measurement itself (which lasted 5 minutes) and is not enough to explain the
observed difference in ∆ωc.
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Finally, by combining the effects caused by the inaccurate γ1 and γ2 extracted from the
circle fit, and the time drift, it might be sufficient to explain the ∆ωc discrepancy observed
in Fig. 5.2a. This is why we developed a second fitting model less sensitive to microwave
background.

On the other hand, in Fig. 5.2b corresponding to another operating point, the circle fit at
P0 fits very well the phase meaning that γ is found accurately. We also checked for a potential
time drift of the resonance frequency and we did not measure any. Despite that, the measured
Kerr frequency shift does not correspond to the model. This means that at this operating
point, the two-photon loss model is not working accurately. This also explains why it was
hard to fit directly the data even with a few free parameters.
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Figure 5.2: Phase of S11 at low power P0 and critical power Pc at two different resonance
frequencies fr = 5.85 GHz and fr = 6.17 GHz. (a) and (b) show the result of the fitting method
1 while (c) and (d) show the result of the fitting method 2.

5.1.2.b Fitting method 2

The trick of the fitting method 2 is to use a trace at a low power P0 << Pc as a nor-
malization trace. The microwave background being not power dependent, it should fully
remove it. The problem of this method is that we cannot use the circle fit to obtain the low
power parameters making the parameter space very large. Moreover, sensitivity of the ratio
S11(Pc)/S11(P0) with respect to changes in the parameters is complicated: each parameter can
affect a shift in frequency or a change in intensity of the features observed in S11(Pc)/S11(P0).
Therefore we used the experimental value of ∆ωc to fix γ2 with respect to γ1 using Eq. 5.4 in
the limit γ3 << K. We also used Eq. 5.3 to fix K with respect to γ1, γ3 and bin

c . By doing so
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we were able to remove two free parameters.

Here is the detailed fitting procedure:
• Circle fit on S11(P0) to extract ωr and a first guess on γ1 (here we suppose that P0 is low

enough to have ωr(P0) = ωr(P = 0)).
• Finding manually the critical power as in the fitting method 1 → get bin

c
• Obtaining ∆ωc by comparing ωr to the frequency at which the absolute value of the

derivative of the phase of S11(Pc) is maximum.
• Fitting |S11(Pc)/S11(P0)| with only γ1 and γ3 as free parameters, γ2 being obtained with

Eq. 5.4 and K with Eq. 5.3.
• Comparison of the numerically obtained S11(P0) to the measured S11(P0). If P0 is not

small enough compared to Pc there might be a slight frequency shift because the experimen-
tally fixed ∆ωc corresponds to the frequency shift at the limit P = 0. Moreover because of the
approximation γ3 << K, the computed γ2 obtained from Eq. 5.4 is smaller than its real value
meaning that the theoretical ∆ωc is smaller than the experimental one.
→ Correction of the resonance angular frequency ωr by comparing the frequency at which
the phase makes a 2π shift such that the numerically obtained S11(P0) matches the measured
S11(P0).

• Because ωr has changed, we modify ∆ωc accordingly as in the third step.
• Fitting |S11(Pc)/S11(P0)| with only γ1 and γ3 as free parameters as in the fourth step.

The advantage of the fitting method 2 is that it allows the estimation of γ3 even with a
strong microwave background. Moreover it allows to fix ∆ωc which is good if the two-photon
loss model describes accurately the data. Fig. 5.2c and d show the results of the fitting method
2 on the same data as Fig. 5.2a and b. We can see that for fr = 5.85 GHz, the fits at low power
and critical power match the data very well meaning that the problem with the fitting method
1 were probably not caused by an inaccurate model. On the other hand, for fr = 6.17 GHz,
the fitted phase at input power P0 is worse than the circle fit. In fact we saw in Fig. 5.2b that
the circle fit gave a perfect fit at P0 but that this was giving a too large ∆ωc. By forcing ∆ωc to
match the experimental value, we forced γ, i.e. the width of the resonance to be smaller and
thus not matching the experimental phase at P0.

To conclude, we always used the fitting method 2 as a starting point because it allows
to extract the internal loss γ2 and nonlinear loss γ3 with more accuracy. When the fitting
method 2 was not working, either because of difficulties to converge to a proper solution,
or when the model seemed not to describe the data, we adopted the fitting method 1 which
is more resilient in these cases in order to get an estimation of the parameters. In the next
section we will discuss of the possible origins of the model discrepancy.

5.1.3 Origin of the model discrepancy

5.1.3.a Full development of the Josephson potential

The model discrepancy manifests as an inaccurate predicted ∆ωc. Moreover, we see here
that it happened at a working frequency closer to the bare resonator frequency, meaning
that the nonlinearity is smaller and the critical power higher. In the two-photon loss model,
only the first nonlinear term (quartic term) is included in the development of the Josephson
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Figure 5.3: Computation of the number of solutions of the equation of motion incorporating
the full development of the Josephson potential for the operation frequency fr = 6.17 GHz.
The model depends only on the loaded quality factor Ql = 87 obtained by the circle fit. The
black dashed circle indicates the area where the bifurcation point is located. The intersection
of the white dashed lines corresponds to the bifurcation point if only the first nonlinear term
(quartic term) of the expansion of the Josephson potential is taken into account. The pink line
correspond to the frequency of the measured bifurcation point.

potential. Because of a higher critical power, neglecting the higher order nonlinear terms
might be the origin of the observed discrepancy. We therefore performed calculations with a
model accounting for the full development of the Josephson potential. Such a model was
proposed by Kochetov et al. but includes neither linear nor nonlinear losses [93].

In Fig. 5.3, we computed the number of solutions of the equation of motion of the system
with respect to the input frequency and the input field normalized by the critical input field
(bin

c,1) obtained by considering only the quartic nonlinear term in the Josephson energy (Eq. 5.3
with γ2 = γ3 = 0): [

1
4Q2 +

(1
2
− Ω +

J1(4
√

n)
4
√

n

)2
]

n =
bin

1 /bin
c,1√

27Q3
(5.5)

where Q is the total quality factor, Ω = ωp/ωr and J1 the Bessel function of the first kind
of order 1. We see regions with 0, 1, 2 or 3 solutions. However, as shown in Chapter 2, the
JPA physics shows that there are either one stable solution or three solutions (1 unstable/ 2
bistable) when the system bifurcates. Therefore, the areas where 0 or 2 solutions are found
correspond to numerical error. For example, the small orange areas in the wide blue area
must correspond to a unique solution and the same hold for the light blue area. The orange
areas in the red triangle must correspond to three solutions, i.e. bistable solutions.

In the graph, the point we are interested in is the bifurcation point which is the summit
of the bistable solution triangle. Because at this point all the solutions are very close to each
other, it is complicated to obtain them numerically. This explains why the summit is not very
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Figure 5.4: (a) and (b): Ratio of the amplitude of S11 at an input power P with S11 at an input
power P0 for different input powers at operation frequencies fr = 5.85 GHz and 6.17 GHz
respectively. The model curves where obtained with the two-photon loss model with the
parameters extracted from the fitting method 2. The purple curves correspond to the critical
power. (c) and (d): power dependence of the internal losses γ2 at working frequencies fr =
5.85 GHz and 6.17 GHz respectively. γ3 was set to zero during this fitting process.

sharp. The black dashed circle indicates the localization of this point. When the Josephson
energy is developed only to the quartic term, we can compute bin

c,1 and ∆ωc as indicated by the
white dashed line. The intersection of these lines corresponds to the bifurcation point of a JPA
where the Josephson energy is only developed to the quartic term, i.e. the bifurcation point
of the two-photon loss model. By comparing the position of the bifurcation point including
the full development of the Josephson energy (center of the black circle) to the bifurcation
point including only the quartic term (intersection of white lines), we can see if ∆ωc and bin

c,1
predicted by the two-photon loss model should be smaller or higher than what is predicted
by the full development of the Josephson energy. By doing so, we see that the measured
critical power of the gJPA might be slightly lower than what is predicted with the two-photon
loss model (bin

1 /bin
c,1 < 1). We also see that there might be a slight frequency shift but it is too

small to explain the error on ∆ωc. In fact, we indicated the frequency of the bifurcation point
extracted from the measurement by the pink vertical line and we see a 20 MHz difference. We
can conclude from this that the discrepancy is probably not caused by the neglected higher
order nonlinear terms in the expansion of the Josephson energy.

5.1.3.b Nonlinear loss

The two-photon loss model takes into account a loss in the form γ2 + γ3|A|2 meaning that
the total loss is increasing linearly with the power. This works as a first approximation but
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the microwave induced loss in a gJJ might have a more complex power dependence. From
the fit of S11 at the critical power and at low power with the methods presented before, we
get all the parameters of the device. This means that we can predict S11 whatever the input
power. In order to see the evolution of the loss with power, we plotted in Fig. 5.4a and b
the magnitude of the ratio of S11 at an input power P with S11 at the lowest input power P0
for the same operating frequencies as in Fig. 5.2. Both in Fig. 5.4a and b, the purple curves
correspond to the critical input power and are described properly by the two-photon loss
model. In Fig. 5.4a, each input power is well fitted by the model. Nevertheless, in Fig. 5.4b,
we can see that only the critical power is fitted properly. The model predicts a more intense
amplitude dip for lower powers meaning that the loss is too high in the model. Indeed,
because we extracted γ3 from S11 at the critical power, it is normal that the model is good
at this power value. But if the loss increases more than linearly with power, it means that
the nonlinear loss extracted at Pc is higher than the one at P < Pc. This would explain the
observed discrepancy in the power dependence at the working frequency fr = 6.17 GHz.

Because the two-photon loss model is intrinsically limited by considering only linear
dependent loss with power, we adopted another strategy to quantify the nonlinear loss. The
strategy was very simple and possible because at the working frequencies fr = 5.85 GHz and
6.17 GHz the microwave background is not dominant compared to the amplitude of the dip
in the magnitude of the S11 parameter at resonance. We first fitted S11(P0) with the circle
fit method to get γ1 and ωr. Because γ2 is the only parameter supposed to change the dip
amplitude at resonance, we only fitted the minimum of |S11| at each power with γ2 as the
only free parameter. This simple method allows not to take into account the frequency shift
caused by the Kerr effect which was an issue for the general fit.

Fig. 5.4c and d shows γ2 obtained this way with respect to the input power at operation
frequencies fr = 5.85 GHz and 6.17 GHz. The maximal power of each graph corresponds
to the critical power. We can see that at the working frequencies fr = 5.85 GHz, γ2 barely
increases with increasing power (we note that the normalization procedure of Fig. 5.4a can be
misleading because the dip amplitude mostly comes from the Kerr shift and not the internal
loss). In this case we saw that the two-photon loss model was modeling the data properly
with the fitting method 2. Indeed, γ2(P) could be fitted with a linear slope with respect to the
power which corresponds to the model. However, at the working frequency fr = 6.17 GHz,
we see that the internal loss does not evolve linearly with the input power. This explains
why the modeled S11 is off in Fig. 5.4b at P < Pc. Considering a linear evolution of the loss
with power and determining the nonlinear loss at P = Pc, is equivalent of having γ2 being
a straight line between the lowest and the highest power in Fig. 5.4d. We speculate that
evolution of the nonlinear loss with power is due to the high critical power at fr = 6.17 GHz
compared to fr = 5.85 GHz (15 dB of difference). Such a power would make the generalized
phase difference ϕ across the gJJ higher. This would mean that the device is not working close
to ϕ = 0 in the current phase relation (CPR) and could lead to additional dissipation because
of the reduced gap in the Andreev bound states energy levels as explained in Chapter 1.

5.1.3.c Non sinusoidal current phase relation

The characterization of the evolution of the loss with the input power showed that the
two-photon loss model is not accurate when the loss is not of two-photon type. We will now
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discuss the effects of a more complex loss model. Eq. 5.4 shows that ∆ωc, the Kerr frequency
shift at the critical power, depends linearly on γ in the limit where there is only linear loss.
When introducing nonlinear loss, another term appears which depends on γ3 and K. Again,
increasing γ3 would make this term bigger and so ∆ωc would increase as well. This comes
from the fact that adding losses makes the critical power higher because it has to compensate
for these losses. And a higher input power means more Kerr effect and thus more frequency
shift. From this, we can conclude that higher orders terms of losses should make ∆ωc even
higher. Nevertheless, we saw that for fr = 6.17 GHz, the measured ∆ωc is smaller than what
is predicted by the two-photon loss model. Even more surprising, by taking γ extracted from
the circle fit at low power, and taking γ3 = 0, we get |∆ωc/(2π)| = 62 MHz > 37 MHz which
is the measured |∆ωc/(2π)|. There is almost a factor 2 which cannot be explained by errors
on the fitted γ because the circle fit at low power was fitting the data very well (Fig. 5.2b).
It shows that a model including more precise nonlinear loss terms could not explain the
discrepancy in ∆ωc.
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Figure 5.5: (a) Normalized magnitude of S11 at different input powers. (b) Phase of S11 at
different input powers. The fits obtained in (a) and (b) are obtained by letting fr, γ2 and
K change with respect to the power in the two-photon loss model with γ3 = 0. The purple
curves correspond to the critical power. (c) Fitted γ2 with respect to the input power. (d)
Fitted fr and K with respect to the input power.

We developed a fitting method with γ3 = 0 but with a power dependent γ2 and ωr. The
goal was to see if simply allowing the resonance frequency to shift with the input power
could reproduce the data, i.e. see if ∆ωc was the only problem. In this fitting procedure, γ1
was extracted from the circle fit at low power and K from the fit of S11 at the critical power. By
doing so, we saw that it was not possible to fit the data by letting γ2 and ωr power dependent.
Despite obtaining a correct ∆ω at each power, the shape of the S11 parameter (the maximum
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of its derivative typically characterizing the ratio bin/bin
c ) was not correct. This means that

this model was not predicting correctly how far the JPA was from bifurcation at a given power.

In order to correct that, we made K being power dependent as well. Fig. 5.5a and b
respectively show the normalized magnitude and the phase of S11 at the working frequency
fr = 6.17 GHz, for different input powers. The dashed curves correspond to the fit obtained
with the fitting procedure we just described. We can see that the amplitude ratio is better
described by this model than the two-photon loss model (compared to Fig. 5.4b). Besides
that, the fit on the phase matches really well the experimental data. Fig. 5.5c shows the power
dependence of γ2. We can see that it is very similar to what was obtained with the simple
way of extracting γ2(P) that we used in Sec. 5.1.3.b. Fig. 5.5d show the power dependence
of K and fr. As expected from the discrepancy in the measured Kerr frequency shift, fr
shifts at higher frequencies with increasing power. We note that there is a plateau at lower
power. It looks like there is a correlation between γ2 and fr. When the slope of γ2(P) is
constant (nonlinear loss linear in P), fr does not depend on the power. When the slope of
γ2(P) increases (nonlinear loss not linear in P), fr has to be compensated meaning that the
Kerr shift do not respect the two-photon loss model. Moreover, we see that |K| is increasing
linearly with the power. This means that the 4th order nonlinear term of the form KA† A† AA
does not describe the system accurately.

To conclude, we demonstrated that a full development of the of the Josephson potential
cannot correct the Kerr frequency shift but might be needed to take into account the power
dependent non-linearity. We also showed that power dependence in the losses follows a
more complicated function than a linear slope. We argue that the model discrepancy could
come from the assumption that the CPR is sinusoidal in the two-photon loss model. We
indeed argued in the previous chapter that the device was showing evidence of a forward
skewness of the CPR. A non sinusoidal CPR could induce three wave mixing processes
and would modify the intensity of the four wave mixing process that is the only one at
play in the two-photon loss model. The three wave mixing could have been measured
experimentally with the use of a spectrum analyzer but we did not do it because we did
not have the same comprehension of the device at this time. Moreover, the CPR of a SNS
JJ can be strongly influenced by microwave irradiation [168]. So, an ideal model would
tackle the microscopic behavior of the gJJ by looking directly at the Andreev bound state
population. This would allow to compute the CPR, its power dependence and also non-
linear losses caused by excitation and relaxation of quasiparticles in the Andreev bound states.

5.1.4 Gate dependence of K and γ3

Despite the evidences on the two-photon loss model inaccuracy to describe the behavior
of our device, we used it anyway because it allowed to get estimations of the parameters and
see their evolution with respect to the gate. Moreover developing a new theoretical model
with all the mentioned ingredients is beyond the scope of this thesis. The goal here is to focus
on K which is an important parameter determining the dynamic range of the amplifier, and
γ3 which can only degrade the performances of the gJPA because it will add noise. Because
we estimated the error on the total attenuation of the microwave lines to be close to 4 dB,
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it implies an error of a factor 2.5 on K and γ3. Indeed, K and γ3 are proportional to the
intracavity number of photons in the equation of motion making them having the same error
as the power. This confirms that we only have access to order of magnitudes and legitimates
the use of the two-photon loss model. We performed input power dependencies at several
gate voltages in order to see the evolution of K and γ3 with respect to Vg. It was a challenge
to fit all of them because there are several reasons why fitting methods 1 and 2 can struggle
fitting the data:

- When γ3 > K/
√

3 the device cannot bifurcate, but both methods relies on fitting S11 at
the critical power.

- The fitting method 2 forces ∆ωc to match the experimental value. But we saw that this
quantity was often smaller than what is predicted by the model. So the fit has to make γ1
smaller which sometimes does not match experimental data. Therefore it can make γ2 go to
negative values because it is computed from γ1 and ∆ωc. This is of course not physical and
overestimate the fitted γ3 because it compensates for the non physical negative loss.

- The fitting method 2 uses Eq. 5.4 in the limit where K >> γ3 which is not always the
case.

- The fitting method 1 is very sensitive to microwave background such that the estimation
of γ3 is impossible when the amplitude of the background is larger than the amplitude of the
resonance dip in |S11|.

- The fitting method 1 assumes that the measured S11 at low power P0 is in the limit where
power has no effect on the resonator, i.e. when there is no Kerr shift. This is not always true
in the data sets we analyzed and was only realized after data analysis.

For all data sets we compared fitting method 1 and 2. By default we chose the fitting
method 2 when both fits where good because it cancels the microwave background and
correct the Kerr shift at P0. When the fitting method 2 was not working we chose the fitting
method 1. Except for the problem of ∆ωc, the fitting method 1 gives often great results for
fitting the phase and the normalized amplitude |S11(Pc)/S11(P0)|.

Fig. 5.6a shows the fitted resonance frequency with respect to the gate voltage for all the
power dependence data sets we fitted. We compared it to the resonance frequency fitted by
the circle fit obtained doing a slow gate voltage sweep. It is important to compare the power
dependence to this slow map because as we saw in the previous chapter, the device has some
gate instabilities. As expected, the difference between the fitted fr from the power depen-
dence data sets and the slow map is more important at gate voltages where the resonance
frequency is more sensitive to Vg (higher |∂ fr/∂Vg|). Because of this, it is more natural to
refer to the resonance frequency than the gate voltage to label the operating point of the
gJPA. Indeed, a resonance frequency corresponds directly to a Josephson inductance which
corresponds to a certain critical current that is the knob of control of the JPA. Tuning the gate
voltage allows to control Ic but we can see that for the same Vg there are many possible fr
and so, many possible Ic because of the gate instability.

Fig. 5.6b shows the fitted Kerr coefficient with respect to the gate voltage. The error bars
on K only consider the error on the input power of 4 dB meaning that K can be 4 dB higher
or lower than the fitted value. The error bars on Vg are obtained from Fig. 5.6a. We simply
took the maximal distance in Vg from fr extracted from the power dependence data sets to fr
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Figure 5.6: (a) Resonance frequency extracted from the circle fit of a slow gate voltage
dependence at low power (blue) and from the power dependence data sets we analyzed
using fitting method 1 (f1 in orange) or 2 (f2 in green). (b) Kerr coefficient with respect to the
gate voltage. The orange and blue curves are the modeled value of Kerr coefficient using
two different models and the device parameters extracted at low power input (see previous
chapter). The green points are values extracted by fitting the power dependence data sets
with fitting method 1 or 2 (f1 or f2). The dashed black line is obtained from the circle fit of a
slow gate voltage dependence at low power. (c) Fitted nonlinear loss coefficient and Kerr
coefficient with respect to the fitted resonance frequency with fitting method 1 or 2 (f1 or f2).
(d) Critical power and product of the nonlinear loss coefficient with the squared intracavity
field with respect to the gate voltage obtained by fitting method 1 or 2 (f1 or f2).

extracted from the slow map. By doing so we found an error of 2.5 V which is overestimated
because most of the points do not show such a shift. In the previous chapter we modeled the
device with a lumped model and a distributed model thanks to parameters obtained from
simulations and the bare device measurement. We can see that the data follow closely the
distributed model.

Fig. 5.6c shows the fitted γ3 and K with respect to the resonance frequency. These two
parameters have to be compared with γ ≈ γ1 to predict the performances of the gJPA. We
can see that close to the charge neutrality point, there is less than one order of magnitude
between 2γ and K meaning that the dynamic range of the JPA, which is influenced by their
ratio, will be limited. Moreover, we also see that γ3 is higher in this region which could
limit the maximum gain and increase the added noise. The graph shows a decrease of γ3
and the ratio |K/2γ| when the resonance frequency increases. This means that the dynamic
range should increase and the added noise caused by the nonlinear loss should decrease at
higher resonance frequencies. The nonlinear loss being proportional to the square of the field
amplitude in the device |A|2, we have to take into account the power at which is working the
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Chapter 5. Graphene based Josephson parametric amplifier

device. Fig. 5.6d shows the evolution of the critical power and the product γ3|A|2 with respect
to the working resonance frequency. We can see that the critical power has an exponential
dependence in fr which is not surprising because (bin

c )2 ∝ 1/K and K shows an exponential
dependence in fr as well. Nevertheless, this increased working power makes the effect of the
nonlinear loss higher at high fr. We have to compare the product γ3|A|2 to γ to estimated its
impact. We can see that γ3|A|2 is close to γ near the charge neutrality point, then decreases
and is more or less constant between 5.5 and 6.1 GHz to finally increase again above 6.2 GHz.

5.2 Amplification

Now that we have characterized the gJPA at higher input powers, we can focus on the
amplification regime. In this section, the VNA sends a small signal and measures how it is
amplified. An additional microwave source is used as a pump. We will focus here on the
gain at the signal frequency. Frequency mixing processes are studied in Appendix A.

−0.5π 0 0.5π π−π

−114 −112 −110 −108 −106 −104 −102 −100
Power (dBm)

5.80

5.81

5.82

5.83

5.84

5.85

Fr
e
q
u
e
n
cy

 (
G

H
z)

5.81

5.82

5.83

5.84

5.85

Fr
e
q
u
e
n
cy

 (
G

H
z)

arg(S11) (rad)

simulation

experiment

Starting point

a b

−105.0 −104.5 −104.0 −103.5
Pump power (dBm)

5.850

5.855

5.860

5.865

5.870

V
N

A
 f

re
q
u
e
n
cy

 (
G

H
z)

−5 0 5 10 15 20 Gain (dB)

Figure 5.7: (a) Measured and simulated VNA power dependence of the phase of S11 at Vg
= 15 V. The simulation is done using the two-photon loss model and the parameters are
extracted with the fitting method 2. The arrow indicates the starting point (frequency and
power) of the amplification research procedure. (b) Gain (measured |S11|2 divided by the
averaged |S11(Vg)|2 at different gate voltages as in the previous section) with respect to the
pump power and VNA frequency. The pump frequency is fp = 5.860 GHz. This figure has
been obtained after several repetitions of the amplification searching procedure.

5.2.1 Amplification procedure

The amplification process depends on several parameters: the VNA power and frequency
which is the small microwave signal that we want to amplify, the pump power and frequency
which gives the energy for the amplification process, and the gate voltage which sets the
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operating frequency of the device. We thus have to find an optimal set of 5 parameters
which is not trivial especially because of the gate instability which continuously changes
the parameters of the device. Therefore we adopted a systematic amplification searching
procedure:

- Fixing the gate voltage such that the gJPA resonates at a given frequency
- Measuring a VNA power dependence and note down at which frequency the Kerr shifts

starts to be sizable (as shown by an arrow on Fig. 5.7a) as well as an estimation of the critical
power

- Fixing the pump frequency at the frequency noted in the previous step
- Fixing the VNA power at -140 dBm in order to have a very low number of photons and

avoid saturation processes
- Taking VNA traces with VNA frequency centered around the pump frequency (because

amplification is maximal at the pump frequency) and sweep the pump power around the
critical power.

- Noting down the maximal gain obtained and then decrease the pump frequency
- Repeating the two last steps until finding the maximum gain: this way the optimal pump

power and frequency are obtained

We will now illustrate the amplification searching procedure. Fig 5.7a shows a typical
power dependence of the phase of the S11 parameter. This measurement was taken at Vg =
15 V by measuring S11 with the VNA at different VNA input powers and corresponds to the
data shown in Fig. 5.4a. We saw that at this resonance frequency, the two-photon loss model
was able to fit the data. Indeed, we can see in Fig 5.7a that the simulation reproduces well the
data until the critical power indicated by the vertical line. Around the critical power, we can
see that the slope of the 2π phase shift increases faster than what is predicted by the model
which means that we arrive at the limit of validity of the two-photon loss model. At a higher
VNA power we can see that the phase shift is no longer 2π but π. This always happens
above the critical power and sets the maximum pump power that we will use during the
amplification searching procedure. From Fig 5.7a we know that we can start with a pump
frequency between 5.84 and 5.85 GHz and sweep the pump power from -110 and -102 dBm.

Fig 5.7b shows a typical sweep of VNA frequency and pump power at a fixed pump
frequency in order to see what is the maximal gain corresponding to this particular pump
frequency. It was taken one hour after Fig 5.7a explaining why the system drifted at higher
resonance frequency because of the gate voltage instability (Vg = 15 V being a particularly
unstable point because of the important ∂ fr/∂Vg). The pump frequency is fixed at 5.86 GHz
and is visible as a single pixel dark red horizontal line on Fig 5.7b. It blinds the VNA at
this single frequency because it is approximately 40 dB more intense than the input signal.
At pump power below -104.5 dBm, we do not see amplification of the VNA signal except
at some local pump powers. This is linked to the gate voltage instability: when there is a
sudden charging effect, it changes the parameters of the gJPA and because the pumping
parameters are very close to the optimal ones, it can in turn create amplification. Around
-104.5 dBm, amplification appears and reaches a maximum with a near 20 dB gain around
-104 dBm. Above this power the gJPA is not optimally tuned and the gain decreases. We can
repeat the experiment done in Fig 5.7b at a lower pump frequency in order to see if we get a
better maximal gain. Repeating this process over and over gives the best amplification pump
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Chapter 5. Graphene based Josephson parametric amplifier

parameters. Nevertheless this process is delicate because of the gate instability. As we saw,
a small drift in the parameters of the gJPA can quench the amplification because the pump
power has to be optimal in a range smaller than 0.5 dBm and the pump frequency in a range
smaller than 5 MHz.

5.2.2 Amplification modeling and gate tunability
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Figure 5.8: (a) Magnitude of the S11 parameter with respect to the signal frequency with
and without the presence of the pump. The model uses the parameters extracted by the
fitting method 2 of a signal power dependence with the pump off. The pump frequency
fp is indicated by a dashed line. The data were normalized with an averaging of the gate
dependence of S11. (b) Measured and fitted phase of the S11 parameter at low power P0 after
the frequency drift with the pump off. (c) Gain profiles measured at several gate voltages.
The data were normalized with an averaging of the gate dependence of S11.

The two-photon loss model also allows to compute the gain of the device as we saw in
Chapter 2. Nevertheless it does not include saturation effects. This means that the gain should
be infinite if the pump is well tuned and the nonlinear losses are not present. This is why we
adopted a phenomenological approach to model the gain within this model. The experiment
fixes the pump frequency fp, pump power Pp and signal frequency fs. Fitting a signal power
dependence (one tone measurement) at the same operation point allows to extract fr, γ1, γ2,
γ3, Pc and K. Because there is some error on the way we extract Pc (manual determination
and possible gate drift in between the signal power dependence and the optimal gain mea-
surement) and thus K (because K is computed with Pc using Eq. 5.3), we fix Pp = 0.95Pc and
compute K accordingly. Two possible mechanisms of saturation were described in Chapter 2:
the pump back-action and some parasitic nonlinear terms in the equation of motion when
going beyond the linearization procedure. In both the mechanisms, putting a stronger input
signal makes the Kerr shift larger which causes the pump parameters to be detuned from
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the optimal ones [92]. We account for this increased Kerr shift by artificially shifting the
fitted resonance frequency fr until the maximum gain predicted by the model corresponds to
the maximal measured gain. Shifting fr at lower or higher frequency both enable to obtain
a reduced gain. We chose to shift fr at higher frequency because it corresponds to what is
happening physically. The extra Kerr shift means that the detuning between fr(P = Pc) and
fr(P = 0) becomes larger such that we have to increase fr(P = 0) to simulate this effect.

Fig 5.8a shows the measured magnitude of S11 with respect to the input signal frequency
when the pump is off and when it is on with optimally tuned parameters at Vg = 15 V. We
can see that the reflected signal is amplified by more than 20 dB around the pump frequency
indicated by the dashed line at 5.86 GHz. We used the fitting method 2 of the signal power
dependence map as well as the modeling method described above in order to model the gain.
We can see that the fitting method 2 predicts a narrower gain than the measured one. Indeed,
the measured gain bandwidth product is BW

√
G = 33 MHz which has to be compared to the

total energy damping rate 2(γ + γ3|A|2)/2π. The parameters extracted by the fitting method
2 are 2γ = 2π x 23.9 MHz and 2γ3|A|2 = 2πx2.6 MHz which makes a total modeled energy
damping rate of 2πx26.5 MHz. Nevertheless, as we saw in Fig 5.7b, the system slightly
drifted in between the signal power dependence that was used to extract the parameters,
and the amplification procedure. A fit of |S11|2 at low power after the drift enable to extract
2γ = 2πx29 MHz which makes a total energy damping rate of 31.6 MHz much closer to the
measured gain bandwidth product. Last but not least, there is some error on the fitted γ as
shown in Fig 5.8b where we can see that the fitted phase is narrower than the measured one.
It means that the fitted γ is smaller than the real value and it should explain why we predict
a gain bandwidth product of 31.6 MHz while we measured 33 MHz. This example shows
that the two-photon loss model can predict the shape of the gain profile.

As we saw in Fig 5.8a, the gain of the gJPA is limited to a narrow bandwidth around the
pump frequency which corresponds to the resonance frequency at the critical power. We
therefore used gate tunability of the device to change its resonance frequency and managed
amplification at different frequencies. Fig 5.8c shows measured amplification profiles at
different gate voltages. For each gate voltage, the pump parameters are tuned with the
procedure described in Sec. 5.2.1 to find the maximal gain. We can see that amplification
occurs on a 1 GHz frequency range with a gain higher than 15 dB. It corresponds to a
frequency range more than 100 times larger than the amplification bandwidth of the device
and shows that the gate voltage brings a very useful functionality to the device.

5.2.3 Limits of the model

While the two-photon loss model is able to describe the gain profile at Vg = 15 V cor-
responding to a working frequency of 5.85 GHz, there are some working frequencies for
which it does not work properly. Fig 5.9a, b and c show the gain profile and modeling for
different working frequencies (5.455 GHz, 6.13 GHz and 6.18 GHz respectively). The fitting
method 2 was not working to extract the parameters for Fig 5.9a and c and explains why only
the model using the fitting method 1 parameters is shown. In Fig 5.9a we can see that the
gain has a distorted lorentzian shape on the low frequency range compared to the pump.
This operating point was particularly unstable because of the gate instability and it might
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Figure 5.9: (a), (b), (c) Magnitude of the S11 parameter with respect to the signal frequency
with and without the presence of the pump. The model uses the parameters extracted by the
fitting method 1 and 2 (when possible) of a signal power dependence without the pump. The
pump frequency fp is indicated by a dashed line. The data of (a) and (c) were normalized
with an average of the gate dependence of S11. The data of (b) were taken in the XL dilution
fridge where we did not perform a gate dependence of S11. Thus the data where normalized
with a S11 trace of a 50 Ω PCB. (d) Gain as a function of the signal frequency and the pump
power. The data were normalized with an average of the gate dependence of S11.

explain the modified shape compared to the model. Fig 5.9b corresponds to the operation
point we analyzed in Fig. 5.2b and d. We could see that the fitting method 2 of S11 was too
narrow and that the fitting method 1 was fitting the width of the phase at low power perfectly.
Because at this operation point we did not measure any drift, it means that the width of the
modeled amplification with the fitting method 1 should correspond to the measured width.
Nevertheless we see that it is not the case meaning that the nonlinear loss γ3 is probably
underestimated. Moreover we saw in Fig 5.4d, that at this operation point the nonlinear loss
was not evolving linearly with the input power. This might be another reason why the model
fails to reproduce the experimental gain profile.

While in Fig 5.9a and b the gain profile is close to a lorentzian shape, it is not the case at the
working frequency 6.18 GHz as shown in Fig 5.9c. The amplification profile is broader than
what is predicted with the model, and we can see the presence of side lobes. Fig 5.9d shows a
pump power dependence of the amplification at the same operation point and we see the
appearance of amplification peak splitting at higher pump powers. This could be caused
by variations in the environmental impedance. Such variations will reflect the outgoing
amplified tones back into the JPA creating standing waves and thus affecting the device
gain because of the presence of constructive and destructive interferences [121]. Moreover,
changes in the environmental impedance can have the effect of creating two amplification
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Figure 5.10: Simplified noise measurement setup. The α coefficients indicate the attenuation
that we will use in Sec. 5.4.1.a.

lobes as we see in Fig 5.9d [122, 148]. Low quality factors (Q = 70 at this operation point)
makes the impacts of variation in the environmental impedance stronger because of the larger
range of frequency that the device interact with. One can suspect that it may play a role in
the oscillating coupling quality factor that we measured in Chapter 4. Moreover, it might
also perturb the power dependence behavior that we analyzed in Sec. 5.1.1 and be a cause to
the observed model discrepancy.

5.3 Noise performances

We saw in the last sections that the gJPA is able to provide amplification over a large
frequency range which is an important requirement that we can expect from a quantum
amplifier. The second aspect of such an amplifier is its added noise which should be as close
as possible to the quantum limit, i.e half a photon, the vacuum fluctuation coming from the
coupled idler mode (because we are not working at ωs = ωi). Nevertheless, we also saw the
presence of nonlinear losses which might be a problem to meet this requirement. Intrinsic
loss means coupling to some other modes which have there own vacuum fluctuations. In
return, coupling to additional modes can only increase the added noise of the gJPA.

5.3.1 Noise measurement

5.3.1.a Noise extraction

The noise measurement consists of sending a known signal to the amplifier and measure
how many photons were added to the known input signal. This process requires a very well
calibrated photon source because we would like to measure a photon difference between the
input and output of less than one photon. Noise measurements were performed in the XL
dilution fridge where we used a shot noise tunnel junction (SNTJ) as a broadband calibrated
noise source. The amplified signal was then measured with a spectrum analyzer (SA). A
simplified measurement setup is shown in Fig. 5.10 (note that the full measurement setup can
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be found in Chapter 3). We can model the power spectrum (PS) measured at the SA plane at
the frequency fs by:

PS( fs) = B
[
Gss(Ns + Nint) + GsiNi

]
(5.6)

where B is the bandwidth of the SA, Gss is the gain at the signal frequency fs, Gsi the con-
version gain from the idler to the signal frequency, Ns the power spectral density emitted
by the SNTJ at the signal frequency, Ni the power spectral density emitted by the SNTJ at
the idler frequency fi = 2 fpump − fs, and Nint the intrinsic noise added by the whole chain.
Because the SNTJ is a broadband noise source, the emitted signal at the idler frequency is
also amplified and converted to the signal frequency. This justifies the term GsiNi in Eq. 5.6
which contributes to the measured power at a frequency fs [169, 170].

We can express the power spectral density (PSD) emitted by the SNTJ as:

N( f ) =
1
2

[(
e(VSNTJ − Vshi f t) + h f

2

)
coth

(
e(VSNTJ − Vshi f t) + h f

2kBT

)

+

(
e(VSNTJ − Vshi f t)− h f

2

)
coth

(
e(VSNTJ − Vshi f t)− h f

2kBT

)] (5.7)

where T is the electronic temperature of the SNTJ, VSNTJ the voltage biasing the SNTJ and
Vshi f t an offset voltage. We can separate the gain contribution of the JPA and the rest of the
chain such that Gss = GchainGJPA,ss. We made the approximation GJPA,si = GJPA,ss − 1 which
is exact if there is no intrinsic loss in the JPA, and we simplify the notation: GJPA,ss = GJPA.
Eq.5.6 gives:

PS = BGchain

[
GJPA(Ns + Nint) + (GJPA − 1)Ni

]
(5.8)

with Ns and Ni given by Eq. 5.7 at frequency fs and fi respectively. At high gain, we can
make the approximation G = GJPA ≈ GJPA − 1 which shows that the total noise added by the
system is: Nadded = Nint + Ni where Ni = h fs/2 when there are only quantum fluctuations in
the idler channel. Thus, at best, if there is no intrinsic noise coming from the JPA, the minimal
added noise is half a photon coming from the idler channel: this is the standard quantum
limit (SQL).

From what was said previously, extracting the added noise at a given frequency requires
to fit the SNTJ bias voltage dependence of the measured PS with Eq. 5.8. Experimentally,
for each bias voltage we measure the spectrum of the amplified noise emitted by the SNTJ.
Fig. 5.11a shows the PS measured by the SA for different values of the SNTJ bias voltage
when the gJPA was set at an operating frequency of 6.13 GHz. Eq. 5.7 shows that the power
spectral density emitted by the SNTJ is minimal for VSNTJ = Vshi f t ≈ 0 µV. This is why the PS
measured by the SA is higher for increasing |VSNTJ |. We can see an increase in the measured
PS when approaching the pump frequency ( fp = 6.13 GHz) because of the gain of the gJPA
centered around this frequency. Approaching to much the pump frequency makes noise
fitting impossible because the pump strongly perturbs the measured PS. Fig. 5.11b shows the
measured PS at a fixed frequency of 6.143 GHz corresponding to the dotted line on Fig. 5.11a.
For each frequency, we fitted the data with Eq. 5.8 to extract the frequency dependent intrinsic
noise Nint of the gJPA.
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Figure 5.11: (a) Power spectrum measured by the spectrum analyzer for different SNTJ bias
voltages. The pump frequency is 6.13 GHz. (b) SNTJ bias voltage dependence of the PS at a
fixed frequency of 6.143 GHz corresponding to the dashed line in (a). The fit was performed
using Eq. 5.8

5.3.1.b Fitting procedure

Fitting the SNTJ bias voltage dependence of the measured PS with Eq. 5.8 is not straight-
forward because of the numerous fitting parameters: T, Vshi f t, Gchain, GJPA and Nint. We thus
perform a series of fits with less parameters in order to make the fit of Nint easier.

The experimental setup incorporates RF switches making possible to measure the noise
performances with the SNTJ signal going through a 50 Ω PCB instead of the gJPA. This is
useful to extract separately Gchain and thus reduce the number of parameters. For the PCB
measurement we thus have to modify Eq. 5.8 by putting GJPA = 1. We first determined
Vshi f t which is an easy parameter to fit because it is the only one shifting the minimum
of the fitted PS with respect to VSNTJ . To do so, we fix T = 150 mK and fit the PS of the
PCB measurement at each frequency with three unknown parameters: Vshi f t( f ), Gchain( f )
and NPCB

int ( f ) where NPCB
int ( f ) is the intrinsic noise of the measurement chain (without the

gJPA) at the frequency f . From this fit we only keep the frequency averaged fitted Vshi f t =
32±2 µV where the error is the standard deviation of the fitted frequency dependent Vshi f t( f ).

We then fit the same set of data with the same equation but with Vshi f t fixed to the previous
value and T( f ), Gchain( f ), NPCB

int ( f ) as free parameters. An example of such a fit is shown
in Fig. 5.12a where we show the PS as well as the fit for a single frequency f = 6.14 GHz.
From this fit we only keep the frequency averaged fitted T = 160±60 mK where the error is
the standard deviation of the fitted frequency dependent T( f ). Fig. 5.12b shows the fitted
electronic temperature with respect to the frequency. The value of the electronic temperature
depends on DC filtering and grounding of the SNTJ and it is not surprising that it largely
exceeds the base temperature of the dilution fridge. The electronic temperature might be
frequency dependent but the points are too scattered to actually see a variation with respect
to frequency. This is why we averaged over all the fitted T( f ) to in order to have a more
precise value. This is particularly important because T has a major impact at low bias voltage
and is the main source of error on the fitted intrinsic noise.

The last step consists of fitting one last time the same set of data with Vshi f t and T fixed to
the previous obtained values and with Gchain( f ), NPCB

int ( f ) as free parameters. This time we
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Figure 5.12: (a) SNTJ bias voltage dependence of the PS measured through the 50 Ω PCB at a
fixed frequency of 6.14 GHz. (b) Fitted electronic temperature for each frequency with the
power spectrum measured through the 50 Ω PCB. Each point of this graph corresponds to a
fit equivalent to what is shown in (a). Fitted added noise (c) and gain (d) of the amplification
chain with the measurement of the 50 Ω PCB.

do not average the parameters over frequency because the gain does vary over frequency
and the error is low compared to the frequency variation. Fig. 5.12c and d show respectively
the fitted added noise and the fitted gain of the amplification chain when sending photons
through the PCB. The error corresponds to the standard deviation of the fitted parameters.
We converted the fitted added noise power spectral density in photon number by dividing
NPCB

int ( f ) by h f . We can see that the noise added by the full chain is ranging between 15 and
25 photons which are typical values for a high electron mobility transistors (HEMT) amplifier.
The gain shows a negative trend which is confirmed by VNA measurement of the 50 Ω PCB
where we see the same profile on |S11|2.

Now that Gchain( f ), T and Vshi f t are obtained thanks to analysis of the PCB noise mea-
surement, we can come back to the gJPA noise measurement. The PCB noise measurement
was not performed right before the gJPA noise measurement making necessary to check
whether T and Vshi f t did not shift. We thus performed the same methodology to extract
them from the gJPA noise measurement. We obtained this way the same Vshi f t but a different
electronic temperature T = 220±60 mK. Because of saturation effect that we will discuss later,
the extracted parameters are less accurate on the gJPA noise measurement. For this reason
we chose to use T and Vshi f t extracted by the PCB noise measurement. We then fitted the PS
of the gJPA noise measurement with Eq. 5.8 and only two free parameters: GJPA and Nint.
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Figure 5.13: Power spectrum as a function of the SNTJ bias voltage at the frequency f =
6.137 GHz.

5.3.1.c Saturation

The fitting noise procedure is more accurate when we can fit the PS over a large SNTJ bias
voltage range. Nevertheless, the gJPA is not able to amplify an arbitrary large signal because
of saturation effects. Because of this, we were limited on the SNTJ bias voltage range we
could use to fit Nint. Fig. 5.13 shows the measured PS with respect to the SNTJ bias voltage at
f = 6.137 GHz. We can see that at high SNTJ bias voltage, the measured PS is lower than the
value predicted by the model. This is because the gJPA saturates and is not able to amplify a
stronger signal with the same gain. As a result, we had to limit the SNTJ bias voltage range
from -125 to 185 µV whereas the 50 Ω PCB measurements where performed with a range
from -400 to 400 µV.

5.3.2 Noise performances of the gJPA

5.3.2.a Fitted noise

By applying the fitting procedure described in the previous section, we obtained GJPA
and Nint for the gJPA set to operate at f = 6.13 GHz. Fig. 5.14 shows the added noise by
the gJPA (a and b), i.e. Nint plus half a photon coming from the vacuum noise on the idler
mode, and the fitted gJPA gain (c). The error on Nadded mainly comes from uncertainty on
the electronic temperature of the SNTJ. Increasing T has the effect of fitting a lower noise
and lowering T does the opposite. We fitted the added noise at T = 100 mK to fix a higher
bound on the extracted noise and at T = 220 mK to fix a lower bound. In addition, each
fit allows to extract the standard deviation ∆Nint on the extracted intrinsic noise. So, the
minimum part of the error bars are N220mK

added − ∆N220mK
int and the maximum part of the error

bars are N100mK
added + ∆N100mK

int .

We can see that when GJPA is close to 0 dB, the added noise is dominated by the intrinsic
noise of the HEMT (≈ 20 photons). When the gJPA gain increases, the total added noise
decreases because the HEMT contribution scales as 1/GJPA as we will see later. Therefore,
at high gain, the total added noise main contribution comes from the added noise of the
gJPA. We can see that for the maximal fitted gain, the added noise goes below twice the quan-
tum limit proving that the gJPA noise performance is comparable to standard resonant JPA [8].
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Figure 5.14: (a) Added noise of the gJPA with respect to the frequency. (b) Zoom of (a)
corresponding to the delimited area by the dotted red rectangle. (c) Fitted gain of the gJPA
with respect to the frequency.

Fig. 5.14 shows that the presence of intrinsic loss did not dramatically decrease the noise
performance of the gJPA. Linear intrinsic loss γ2 increases the added noise of the gJPA by
a factor 1 + γ2

γ1
[90]. The operating point presented here corresponds to the data shown in

Fig. 5.4b and d where we saw the presence of nonlinear loss. As a first approximation, we

can express the added noise factor including nonlinear loss as 1 + γ2+γ3|A|2
γ1

. By using the
fitted γ1, γ2 and γ3 we find that the noise should have a 10% increase compared to the SQL,
i.e. Nadded = 0.55 photon. This proves that our result is consistent, and that despite nonlinear
loss, the gJPA can still have noise performances very close to the quantum limit. Nonlinear
losses could be mitigated even further by lowering the coupling quality factor Qc ∝ 1

γ1
.

5.3.2.b Effects of attenuation

The error bars on the added noise indicate that the gJPA adds between 0.5 and 1.25 photon
of noise. Nevertheless we did not take into account attenuation in between the SNTJ and
gJPA in the noise fitting process. As we will show in the rest of the section, it has the effect of
overestimating the fitted intrinsic loss. We can rewrite Eq. 5.8 in a simpler way (without the
idler part) to simplify the following discussion (it does not change the conclusion):

PS = BGchainGJPA(Ns + Nint) (5.9)

Fig. 5.15 shows a simplified version of the measurement setup. The JPA provides a gain
GJPA and an intrinsic noise NJPA, the high electron mobility transistor (HEMT) a gain GHEMT
and intrinsic noise NHEMT, the room temperature amplifier a gain G300K and intrinsic noise
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Figure 5.15: Simplified scheme of the amplification setup in the SNTJ measurement. α
indicates the loss in between two components (α ≥ 1, meaning that a signal s becomes s/α
after attenuation). We chose not to take into account the loss in between the 300 K amplifier
and the spectrum analyzer because it does not bring anything to the discussion.

N300K. Because there is attenuation between each component (αJPA, αHEMT, α300K > 1), we
can rewrite Eq. 5.9 as:

PS = BGJPAGHEMTG300K

(
Ns

αtot
+
[ NJPA

αHEMTα300K
+

NHEMT

GJPAα300K
+

N300K

GJPAGHEMT

])
(5.10)

where αtot = αJPAαHEMTα300K is the total attenuation of the line. To derive Eq. 5.10 we took
into account that the noise added by the JPA is attenuated by the rest of the lines and is
amplified by all the amplifiers. A similar reasoning was applied for the HEMT and the room
temperature amplifier. In the following discussion we can neglect the noise added by the
room temperature amplifier because the gain of the HEMT is about 40 dB making the term in
N300K negligible. We can thus rewrite the PS measured by the SA as:

PS = B
GJPAGHEMTG300K

αtot

(
Ns +

[
αJPANJPA +

αJPAαHEMT NHEMT

GJPA

])
(5.11)

By fitting the PS measured by the SA without taking the loss into account, i.e. with Eq. 5.9,
the extracted gain is:

G =
GJPAGHEMTG300K

αtot
(5.12)

and the intrinsic noise is:

Nint = αJPANJPA +
αJPAαHEMT NHEMT

GJPA
(5.13)

We can first see that the HEMT contribution to the fitted intrinsic noise scales as 1/GJPA as
mentioned previously. This is why the first amplifier of the amplification chain sets the noise
performance of the whole amplification chain. Indeed, the following amplifiers intrinsic
noise contributions are strongly canceled by the first amplifier gain. In the limit of strong JPA
gain, we see that the extracted added noise is αJPANJPA > NJPA. This shows that not taking
into account the losses makes the extracted noise higher than the real added noise by a factor
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αJPA. On the other hand, the extracted gain is smaller than the real gain by a factor 1/αtot.
Nevertheless, because we first fit noise measurement data with the SNTJ sending photons
to the PCB, we extract Gchain = GHEMTG300K/αtot. The fitted GJPA is thus not affected by the
presence of attenuation.

We can now try to quantify how much we overestimated the noise by looking at the
insertion loss of the different components in between the SNTJ and the JPA:

- SNTJ packaging + bias tee: 1 dB [171]
- Directional coupler C20-0R518: 0.7 dB
- Cryo-switch Radiall R591722600: 0.3 dB
- Circulator LNF-ISC4_12A: 0.2 dB

The total insertion loss is thus 2.2 dB but probably lower because the data sheets of the
directional coupler, cryo-switch and circulator give maximal values measured at a tempera-
ture above 25 mK. This means that the fitted intrinsic noise should be reduced at maximum
by 2.2 dB. We emphasize once more that we plotted the added noise: Nint + 0.5 photon. In
Fig. 5.14b, we see that the added noise is ranges between 0.5 and 1.25 photon meaning that
the intrinsic noise ranges between 0 and 0.75 photon. By taking the 2.2 dB attenuation into
account, the intrinsic noise ranges between 0 and 0.45 photon. In conclusion, by taking the
attenuation into account, the added noise should range in between 0.5 and 0.95 photon which
is also compatible with the value we computed from γ1,2,3 in the previous section.

5.3.2.c Pump tone effect
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Figure 5.16: Minimum of the PS divided by the gJPA gain as a function of the frequency.
The grey part indicates the region where the pump contribution to the measured PS is not
negligible with respect to the SNTJ contribution.

In the previous section we saw that reaching a high gJPA gain is important to cancel out
the intrinsic noise of the HEMT. This means that the points close the pump frequency are
the most important to determine the gJPA noise contribution. Nevertheless, the pump tone
was affecting the PS measured by the SA close to the pump frequency. All the measurements
were carried with a SA bandwidth of 2 MHz (corresponding to the 3 dB bandwidth) but we
can see that the pump affects the measured PS in a bandwidth of 10 MHz around the pump
frequency which can be surprising at first. The specifications of the SA indicate that the ratio
between the 60 dB and the 3 dB bandwidth is 5. In our measurement we fixed a bandwidth
of 2 MHz meaning that we expect the pump to have a 60 dB attenuation at the extremity of a
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10 MHz bandwidth. The pump power reaching the device is -90±3 dBm meaning that the SA
measures -150 dBm times the gain of the chain at the extremity of a 10 MHz bandwidth. We
can compute the power emitted per unit of bandwidth by the SNTJ using Eq. 5.7. In a 2 MHz
bandwidth the SNTJ sends -166 dBm also amplified by the gJPA (contrary to the pump). At
the extremity of the 10 MHz bandwidth, the gain of the gJPA is ≈15 dB meaning that the SNTJ
contribution is -151 dBm times the gain of the chain. If we include the idler amplification, it
doubles this value meaning that the SNTJ contribution is -148 dBm. We can see that at the
extremity of a 10 MHz bandwidth, the contribution of the pump is not negligible compared
to the contribution of the SNTJ explaining why it is not possible to determine the noise in the
center region.

Fig. 5.16 shows the minimum of the PS divided by the gain of the gJPA measured with
the SA when illuminating the gJPA with the SNTJ. We can see that at low gain, the PS is
dominated by the noise emitted by the HEMT. When the gJPA gain increases, the contribution
of the noise of the HEMT decreases. We see that getting too close to the pump frequency
adds another contribution to the minimum of the PS (the pump) which is confirmed by our
calculation.

5.3.2.d Comparison with a quantum limited JPA
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Figure 5.17: (a) and (b) extracted added noise with respect to the frequency. The blue
curve represents the extracted added noise from the gJPA measurement. The purple curve
represents the added noise extracted by the PCB measurement. The red curve represents the
added noise computed from the added noise extracted by the PCB measurement and the
measured gain of the gJPA in the limit where the gJPA does not add intrinsic noise (Eq. 5.14).

Despite the fact that we could not extract the added noise in a regime where the gJPA gain
is high enough to fully neglect the HEMT noise contribution, and despite the fact that we did
not take into account the effect of attenuation, we have enough information to compare the
noise performance of the gJPA to a quantum limited JPA. The noise of a quantum limited
amplifier means that NJPA = 0 which makes the total noise:

NSQL =
αJPAαHEMT NHEMT

GJPA
(5.14)
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To compute it from the experimental data we use the fitted NPCB
int , and the fitted GJPA:

NSQL =
NPCB

int

G f it
JPA

(5.15)

By comparing Eq. 5.14 to Eq. 5.13 we see that the extracted noise for a quantum limited
amplifier obtained from the measurement of the PCB and the gJPA can only be smaller than
the extracted gJPA noise obtained from the measurement of the gJPA. This might sound
trivial, but as we saw earlier, because we did not take into account the effect of attenuation, it
is important to verify that we can indeed compare the two noise values. The above statement
is valid only if the attenuation between the SNTJ and the gJPA is the same as the attenuation
between the SNTJ and the PCB. Because of the presence of the circulator on the gJPA path,
there should be at maximum a 0.2 dB attenuation difference that we neglected. Fig. 5.17a and
b show the comparison of the added noise of the gJPA and the added noise of a hypothetical
quantum limited gJPA. We can see that the gJPA added noise is very close to what we would
have obtained if it was at the SQL. This is coherent with the theoretical value of 0.55 photon
of added noise that we computed earlier. To conclude, the fact that we extract an added noise
which seems to be at twice the quantum limit is only due to the limited gain which is not
high enough to fully overcome the added noise of the HEMT.

5.3.2.e Gate voltage dependence

We showed in the previous section that the gJPA was very close to the quantum limit
when set to operate at 6.13 GHz. We now try to characterize its noise performances for
different gate voltages corresponding to different operating frequencies. The task was more
complicated compared to the previous operating frequency. Indeed the 6.13 GHz operation
point was ideal in many aspects. First, it corresponds to a low ratio K/2γ meaning that the
gJPA saturates at higher power. As we saw earlier, saturation makes the SNTJ bias voltage
range that we can use to extract the added noise smaller and thus reduces the accuracy of
the fit. Moreover, the quality factor is lower at this frequency, meaning that the amplification
peak width is larger. This is important because the pump tone forbids to extract the noise
close to the maximal gain of the gJPA. As a result, having a broader amplification peak allows
to extract the added noise for frequencies where the gain is still high enough to suppress
sufficiently the HEMT noise. Last but not least, the gate voltage instability was not strong at
this operation point. This allowed to make longer measurements to increase the precision.

Fig. 5.18 shows the added noise of the gJPA with respect to the frequency at different
gate voltages corresponding to working frequencies of 5.742 GHz (a), 5.657 GHz (b) and
5.585 GHz (c). We can see that the added noise does not reach the SQL but for the reasons we
mentioned earlier, i.e. mainly due to the fact that we could not access large gain frequencies
because of the presence of the pump tone. This is why we also plotted the computed added
noise that we would have found if NJPA = 0 (i.e. if the gJPA was quantum limited) given the
measured GJPA and NPCB

int as explained in Sec. 5.3.2.d. Comparing the blue and red curves
indicates that the gJPA is close to the quantum limit for all the operation points shown here.
We note that in Fig. 5.18b, the measured added noise seems to go under the SQL JPA added
noise. At this operation point, the error on the fitted Nint is comparable to the temperature
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Figure 5.18: Added noise of the gJPA (blue) with respect to the frequency at different gate
voltages corresponding to working frequencies of 5.742 GHz (a), 5.657 GHz (b) and 5.585 GHz
(c). The theoretical added noise of a quantum limited JPA (given the measured gJPA gain)
obtained by the procedure described in the last section is shown in red. The data were taken
with a SA bandwidth of 2 MHz.

induced error. Because the error comprises only one standard deviation, it could explain why
we get such a non physical result.

5.4 Compression point

We have demonstrated in the previous sections that the gJPA can reach gains over 20 dB
with a gate tunable frequency and an added noise close to the standard quantum limit. The
last important characteristic to address is its saturation behavior. The compression point
tells how much photons can be amplified without reducing the gain. To characterize it,
we measure the input power at which the gain drops by 1 dB. We call this power the 1 dB
compression point (P1dB).

5.4.1 Compression point in the sionludi XL

5.4.1.a Attenuation calibration

Measuring the 1 dB compression point requires to know exactly the power reaching the
gJPA. Considering the large number of elements in between the VNA sending the input
power and the gJPA, it is hard to get a precise value because of the uncertainty on the attenu-
ation and loss of each of them. Nevertheless, the XL dilution fridge offers a way to calibrate
the attenuation in a more precise way. The presence of the SNTJ allows to extract the gain of
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the amplification chain as we saw in Sec. 5.3. Therefore, by combining the information of the
noise measurement and VNA measurement, we can deduce the attenuation in between the
VNA and the gJPA. Fig. 5.10 represents a simplified version of the experimental setup and
will be useful to understand the following discussion. Note that the complete measurement
setup can be found in Chapter 3.

From the noise measurement of the gJPA pump off, we can extract the gain and attenu-
ation between the SNTJ and the SA: αSNTJ−SA = 55±2 dB where the error comes from the
standard deviation on the fitted gain. From the VNA measurement of the PCB we can extract
the gain and attenuation from VNA to VNA: αVNA−VNA = -58.5±1 dB. Because the P1dB was
not measured at the same output powers than the calibration measurement, we added 1 dB
of error on αVNA−VNA. By taking the difference between the two, we get the attenuation
between the VNA and the directional coupler αVNA−DC = -113.5±3 dB.

αVNA−DC has to be corrected because αSNTJ−SA includes loss between the SNTJ and the
directional coupler which is not on the path of the VNA measurement. The loss of the
ensemble SNTJ + bias tee is estimated to 1 dB such that αVNA−DC = -114.5 dB. The value
of interest being the attenuation between the VNA and the JPA: αVNA−JPA, we need to add
the attenuation of the RF switch (0.3 dB), the circulator (0.2 dB) and the microwave cables
(0.65 + 0.45 dB at maximum): αVNA−JPA = -116.1±3 dB. Then, because we used the VNA
measurement of the PCB and we compared it to the SNTJ measurement of the device pump
off, we also need to correct the difference coming from not taking the same path between
the two switches. The presence of the circulator adds 2 x 0.2 dB and the loss of the device
pump off compared to the PCB is at max 2 dB. This means that the total corrected attenuation
between the VNA and the gJPA is -118.5±3 dB.

Computing the attenuation given by the specifications of all the components (including
the cables) in between the VNA and the gJPA gives a total attenuation of -118 dB by taking
typical attenuation found in the specifications sheets and can reach 130 dB by taking the
maximum indicated attenuation. This value is not straightforward to estimate because of the
temperature dependence (for the cables in particular) and uncertainty on the components
attenuation and loss. Nevertheless, the estimated value is consistent with the value extracted
from the measurements.

5.4.1.b Measurement of the compression point

The compression point was measured at the operating frequency 6.1285 GHz. The max-
imal gain was found using the method described in Sec. 5.2.1. We then performed a VNA
power dependence overall several frequencies as shown in Fig. 5.19a. We can see that for
a fixed frequency, the gain is constant over a certain range of signal power. Above a signal
power threshold, the gain starts to drop meaning that the gJPA is saturated. As a reference, we
chose to show the 1 dB compression for a gain of 20 dB in Fig. 5.19b. We can see a 1 dB drop
of the gain at an input power of -123 dBm. Because there is some uncertainty on the attenua-
tion we can conclude that at this operation point the 1 dB compression point is -123±3 dBm.
Such value is comparable to the best values obtained with single Josephson junction JPA [103].
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Figure 5.19: (a) Gain as a function of the signal power and frequency. The gain is computed
by dividing |S11|2 pump on by |S11|2 pump off. (b) Gain as a function of the signal power at
f = 6.1262 GHz corresponding to the dashed line in (a). The orange lines indicate the 1 dB
compression point.

The compression point should scale as 2γ/K as shown in Chapter2. At this operation
point we find a ratio 2γ/K = 2.4 x 103. As calculated in [90], this should correspond to a
1 dB compression point of 2-3 photons. One can estimate the number of signal photon in the
resonator using the following equations:

Pin = Pre f + Ploss (5.16)

Pre f = |S11|2Pin (5.17)

Ploss = 2γ2 < n > h̄ω (5.18)

where Pin is the input power, Ploss the power lost because of internal loss, Pre f the power
reflected by the JPA and < n > the mean number of photons inside the resonator. By using
this simple model with an input power of -123 dBm, we find < n > = 6 which is compatible
with the value given by the pump back-action model given the error on P1dB.

5.4.2 Compression point in the sionludi L
When measuring the gJPA in the sionludi XL, we only measured the compression point

at the operation point presented in the previous section. The rest of the compression point
measurements were done in the sionludi L which is not optimal because there is no SNTJ
to calibrate the attenuation αVNA−JPA in between the VNA and the gJPA. By summing the
attenuation of all the components we find αVNA−JPA = 124±4 dB. Moreover, because of the
gate instability it was difficult to maintain optimal amplification parameters long enough
to perform a precise compression point measurement. This was an issue because for low
compression points, the power of the input signal is very small requiring long averaging time.

Moreover, it was not always possible to reach a 20 dB gain making difficult the comparison
between the P1dB at different operation points. Fig. 5.20a shows the product of the measured
P1dB with the associated gain as well as the ratio 2γ/K at different operation points. When
the main source of saturation is pump back-action, the compression point has almost a linear
dependence on the gain and justifies to use such a quantity (Fig. 7.7 of [92]). In all the satura-
tion mechanisms presented in Chapter 2, the saturation point scales as 2γ/K. We can see in
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Figure 5.20: (a) Output power at the 1 dB compression point (red) and 2γ/K ratio (blue) for
different operating points frequencies fp. The error bars correspond to the 4 dB uncertainty
on the attenuation between the VNA and the gJPA. (b) Ratio of the output power at the 1 dB
compression point over the pump power for different operating points frequencies fp.

our data that the product P1dBG seems to decrease with decreasing 2γ/K ratio as predicted in
these models. By fixing G = 20 dB, we can see that P1dB is between -140 and -130 dBm on most
of the accessible frequency range. This is comparable to single tunnel Josephson junction
JPAs [100, 101]. Note that this result is compatible with the -123±3 dBm 1 dB compression
point measured in the XL dilution fridge. There is indeed 4 dB of error on the measurement
performed in the L dilution fridge. Moreover, the approximation considering the compression
point having a linear dependence with the gain is not exact neither.

Fig. 5.20b shows the ratio of the output power at the 1 dB compression point over the
pump power for different operation frequencies. This quantity is useful to compare the
pump power to the amplified signal and thus estimating if pump back-action was likely
to occur. Usually, pump back-action typically occurs when this ratio reaches -20 to -15 dB
[92]. We can see that many points are above this ratio. As indicated in the beginning of the
section, it was difficult to make long and precise measurement such that the error on this
ratio is on the order of a few dB. Nevertheless this does not explain all the points having
a P1dBG/Ppump ratio above 10 dB. Another reason could come from our way of measuring
the data. The amplification research procedure was done at an input power of -140±3 dBm
and was designed to find the maximum of amplification. So, there is a possibility that at this
input power the gJPA was already at saturation and that we found the optimal parameters
including the pump back-action effect. By compensating the pump back-action with a shift
in the parameters it is possible to have P1dBG/Ppump ratios higher than -15 dB. This possible
explanation is particularly relevant for points with a low saturation power (low 2γ/K) and
points with high gains. Indeed, the higher the gain, the lower the saturation point.

5.5 Summary of the gJPA performances

We saw in this chapter that the gJPA presents nonlinear loss that can partially be described
by the two-photon loss model. Despite the presence of nonlinear loss, we showed that the
gJPA could reach gains above 15 dB with a gate tunability of the amplification frequency close
to 1 GHz. We also demonstrated that the gJPA noise performances are close to the standard
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quantum limit for the studied operation points. Finally, the compression point is comparable
to JPAs built with a single tunnel junction. These results show that the gJPA can provide the
same performances as a standard JPA, but with an additional control knob: the gate voltage.
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Conclusion

In this work we demonstrated the possibility of using a graphene Josephson junction
to build a gate tunable Josephson parametric amplifier in a current pumped scheme. We
managed to obtain high quality graphene devices by encapsulating a single graphene layer
flake in between two h-BN flakes. The high quality is demonstrated by the extracted IcRN
product which is above any values given in the literature for diffusive devices indicating that
the graphene junctions are probably ballistic. This resulted in the measurement of a critical
current up to 1.5 µA for a junction width of 1.5 µm. We also demonstrated that the critical
current of graphene Josephson junctions can be controlled with a simple side gate. Despite
the limited graphene area impacted by the side gate, the critical current could be tuned by
more than one order of magnitude.

The parametric amplifier was made with a superconducting λ/2 resonator with a graphene
Josephson junction placed in the center of the cavity. We developed a design with DC lines
directly connected to the resonator which offers a platform allowing to probe the DC proper-
ties of graphene as well as performing RF measurement in a single device. The low impact of
these additional lines was demonstrated with electromagnetic simulations and measurements.
By using electromagnetic simulations as well as measurements together with a lumped and
a distributed model, we were able to extract the geometric parameters of the circuit and
compute the Josephson inductance with respect to the gate voltage. The extracted inductance
indicated a forward skewness of the current phase relation compatible with what is reported
in the literature. As expected from the critical current measurement, the Josephson inductance
can be tuned by more than one order of magnitude enabling to tune the resonance frequency
of the circuit between 5.2 and 6.3 GHz.

The analysis of the device response beyond the linear regime allowed to extract its nonlin-
ear properties. A two-photon loss model was used in order to take into account additional
loss appearing at higher input microwave power originating from the dynamics in Andreev
bound states population. We showed that this model could be used as a first approximation,
but needs to be corrected in order to capture the complex nature of loss and a current phase
relation deviating from the one of a tunnel junction. The limits of this standard two-photon
loss model, as well as the strong microwave background, forced us to develop fitting pro-
cedures that allowed to harvest information about the circuit. This way, we could extract
the Kerr coefficient which plays an important role in parametric amplification. By using the
circuit parameters extracted in the linear regime together with a distributed model of the
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device, we could also predict the value of the Kerr coefficient with respect to the gate voltage.
Comparison between this model and the values obtained in the nonlinear regime using the
two-photon loss model shows a good agreement.

Finally, we characterized the device in the linear amplification regime. We demonstrated
amplification with 20 dB gain which is the milestone for overcoming noise of the classical
amplifiers in the rest of the amplification chain. The Josephson parametric amplifier being
based on a resonant structure suffers from the gain bandwidth product limiting the ampli-
fication to a few Megahertz frequency range. We used the gate tunability of the device to
overcome this problem. By tuning the resonance frequency of the resonator, we performed
parametric amplification on a 1 GHz frequency range which is as good as equivalent circuits
controlled by a magnetic flux with the use of a SQUID. Moreover, we performed noise mea-
surements and demonstrated that despite the presence of nonlinear loss, graphene based
Josephson parametric amplifiers can reach near quantum limited amplification for all the
studied gate voltages. We also studied the dynamic range and showed that the graphene
based Josephson parametric amplifier can reach a 1 dB compression point of -123 dBm which
is comparable to single tunnel junctions based parametric amplifiers. The four properties
that we characterized: gain, tunability, noise and dynamic range, showed performances on
par with similar devices made of tunnel junctions. Our results expand thus the toolset of
electrically tunable superconducting quantum circuits and make them good candidates for
the future of quantum computing. Note that during the writing of the present manuscript,
works addressing this topic were published starting with the use of a quantum dot [172],
graphene [148] and a 2D electron gas [174]. Contrary to our work [173], the graphene Joseph-
son parametric amplifier made by Sarkar et al. is in a lumped geometry and is made of a
graphene multilayer controlled by a graphite back-gate. They reported gate tunable gains of
more 20 dB between 4.5 and 5.2 GHz with added noise close to the standard quantum limit
and a compression point of -130 dBm. This independent work confirms that graphene can
be used to build a gate tunable JPA and that different geometries should be explored in the
future to reach optimized performances.

Perspectives

In this work, we demonstrated a current pumped parametric amplifier with a single
graphene Josephson junction. Similar strategies in terms of pumping, impedance engineering
and Josephson array could be used to improve the performances of the amplifier. For example,
one could imagine an approach where graphene is pumped by a gate voltage at twice the
signal frequency. This would be equivalent to the flux pumping of a SQUID and would
allow a three wave mixing process in which the pump frequency is separated from the signal
frequency. The presence of the DC lines used to probe the DC properties of the graphene
junction could also be used to send a DC current allowing for another way of performing
three wave mixing [120, 135]. Moreover, given the small length of the graphene Josephson
junctions used in this work, it would be possible to make multiple junctions from a unique
graphene stack. Exfoliated flakes can easily reach a 10 µm length, meaning that it could be
possible to build around 20 junctions in series to reduce the Kerr nonlinearity and increase
the dynamic range of the amplifier. Given the important control allowed by the stacking
procedure, it is also possible to deposit multiple graphene stacks in the same area to increase
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even more the number of junctions.
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AAdditional measurements

A.1 Frequency mixing

We demonstrated in the Chapter 2 that the gJPA is able to mix different frequencies due to
the nonlinearity provided by the gJJ. The gain at the signal frequency fs has a component
depending on the idler frequency fi linked by fs + fi = 2 fp where fp is the pump frequency.
By reciprocity, if a signal is sent at a frequency fs, it will also contribute to the gain at the
frequency fi. Therefore, one should expect to measure a signal both at frequencies fs and fi if
a signal is sent only at a frequency fs. We performed a measurement where the gJPA was set
to operate at a frequency of 6.056 GHz (corresponding to fp). We sent a microwave tone at a
frequency fs and measured the power spectrum (PS) with a spectrum analyzer (SA).

Fig. A.1a shows the PS with respect to the measured frequency ( fSA) while sweeping the
signal frequency. The vertical line at f = 6.056 GHz corresponds to the pump tone. The
diagonal line starting from the bottom left corresponds to the tone sent at the signal frequency
fs. This is why it has a slope of one. We can see that there is a symmetric diagonal line
compared to the signal tone with respect to the pump frequency starting from the bottom
right. This corresponds to the created photons at idler frequency. We can also see that there
are diagonal lines with a smaller slope. For example, one line corresponds to a frequency f2
such that f2 = 2 fs − fp. This is a four photon process where 2 signal photons and 1 pump
photon are converted in a photon at the frequency f2. To this process is associated an idler
signal f2i symmetric with respect to the pump frequency. By zooming in (white rectangle),
we can see in Fig. A.1b that there is even a higher order process corresponding to a frequency
f3 = 3 fs − 2 fp which is a sixth order process where 3 signal photons and 2 pump photons are
converted into 1 photon at a frequency f3. Fig. A.1c shows a signal power dependence of the
PS. We can see that at low input power the processes leading to f2 and f2i are too small to be
measured. We also see an asymmetry in the intensity of the peak between the f2 process and
the f2i process, probably because of the idler gain being smaller. Fig. A.1d shows a line cut of
Fig. A.1c at a signal power of -23 a.u. (the power is given in arbitrary unit because the total
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Figure A.1: (a) PS with respect to the measured frequency ( fSA) and the signal frequency
( fs). Frequencies corresponding to different frequency mixing mechanisms are indicated.
(b) Zoom of (a) in the white rectangle. (c) PS with respect to the measured frequency and
the signal power. (d) Horizontal linecut of (c) corresponding to a signal power of -23 u.a.
(indicated by the white dashed line on (c)).

attenuation of the measurement chain was not properly calibrated in this experiment).

There are many reasons that could explain the appearance of these additional peaks at
f2 and f3. To compute the output quantum operator in Chapter 2 we considered only the
development of the Josephson energy to the quartic term. Higher order terms could make
the measured frequency mixing possible. Moreover, during the linearization procedure
we also dropped some nonlinear terms. Beside that, we saw that the nonlinear loss itself
could create some frequency mixing. The mixing terms associated to the two-photon loss
process do not correspond to the measured frequencies f2 and f3 (we saw in Chapter 2 that the
frequencies associated to them is 2ωp and DC). However we saw in Chapter 5 that gJJs exhibit
more complicated power dependent losses which could also lead to the measured frequency
mixing. Besides that, the skewed current phase relation would modify the Josephson energy
which is also a possible explanation.
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A.2 Combination of RF + DC measurements
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Figure A.2: (a) Phase of the reflection coefficient with respect to the input frequency and the
DC bias current at a fixed gate voltage. (b) Extracted fr from (a) by using the circle fit method.
A fit of the extracted fr is done with τ and Ic as free parameter. (c) and (d) Fitted Ic and τ
respectively for different gate voltages. The error bars represent the standard deviation on
the fitted parameters. Error bars on Ic are negligible.

The following measurements have been inspired from [67]. The design of the gJPA allows
to probe both DC and RF properties at the same time. We saw in Chapter 1 that the CPR of a
SNS JJ can be expressed as:

I =
N

∑
i

Gi
N

π∆
e

sin(ϕ)√
1 − τi sin2(ϕ/2)

(A.1)

where Gi
N is the conductance of the channel i and τi its transparency. By assuming N channels

with identical conductance (i.e same transparency τ) we can rewrite:

I = Ic
sin(ϕ)√

1 − τ sin2(ϕ/2)
(A.2)

with Ic = (π∆Nτe)/(2h) . Therefore, by fixing a DC bias current Ib inside the junction, it is
possible to control the phase difference ϕ across the JJ. We can find ϕ as a function of Ib by
inverting Eq. A.2. After a bit of algebra we obtain this expression that has to be solved to
obtain ϕ:

sin4(ϕ/2)−
4I2

c + τ I2
b

4I2
c

sin2(ϕ/2) +
I2
b

4I2
c
= 0 (A.3)
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The solution is thus:
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(A.4)

where we kept only the solution with a minus sign before the square root term because the
plus sign would have made the sinus greater than one. Finally we obtain:

ϕ = 2 arcsin

[√√√√1
2

(
4I2

c + τ I2
b

4I2
c

−

√(4I2
c + τ I2
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−
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)]
(A.5)

In Chapter 4 we developed a lumped model where the resonance frequency fr of the device
was given by:

fr =
1

2π

1√
(L0 + LJ)C

(A.6)

and we extracted L0 = 3.9 nH and C = 0.157 pF thanks to Sonnet simulations and measurement
of a similar device but where the gJJ was replaced by a superconducting link (i.e. a bare
device). Because LJ is linked to the CPR as:

LJ =
h̄
2e

( dI
dϕ

)−1
(A.7)

with:
dI
dϕ

=
Ic√

1 − τ sin2(ϕ/2)

(
cos(ϕ) +

1
4

τ sin2(ϕ)

1 − τ sin2(ϕ/2)

)
(A.8)

there is direct dependence of LJ with ϕ and thus with a DC bias current Ib. By using a
microwave measurement to probe fr with a VNA while sending a DC bias current allows to
extract the dependence of LJ with respect to the phase and thus to extract τ and Ic.

Fig. A.2a shows the phase of the reflection coefficient S11 measured with a VNA with
respect to the VNA input frequency and the DC bias current. The resonance frequency fr
corresponds to a 2π phase shift (blue to red) of S11. We can see that increasing the bias
current creates a downshift of fr because it has the effect of increasing LJ . We used the circle
fit method to extract the resonance frequency as a function of the bias current as shown in
Fig. A.2b. We then fitted fr(Ib) using Eq. A.6 with LJ computed from Eq. A.7 and Eq. A.8
with Ic and τ as free parameters. We can see that the fit does not follow exactly the extracted
fr. This might come from the simplistic model where the distributed resonator is considered
as lumped. By repeating this process for several gate voltages, we can extract Ic and τ
with respect to the gate voltage. Fig. A.2c and d show the extracted Ic and τ respectively
with respect to the gate voltage. The values of Ic are equivalent to what was measured and
presented in Chapter 4 indicating that the model is coherent. We can see that the averaged
transparency τ depends on the gate voltage and ranges between 0.56 and 0.81. It looks like τ
is smaller close to the charge neutrality point (VCNP ≈ 3 V).
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Extracting τ allows to compute the skewness S of the CPR which is an indicator of how
much the Josephson energy will differ compared to the the Josephson energy of a tunnel
junction. The skewness is defined as S = (2ϕmax/π)− 1 where ϕmax is the phase at which
the CPR reaches a maximum (S = 1 for τ = 1 and S = 0 for τ = 0). Fig. A.3a and b show
the computed S and fitted τ respectively with respect to the resonance frequency at Ib = 0.
Fig. A.3c and d show the same quantities but with respect to the fitted critical current. We can
see that the average transparency is smaller at low critical current and reaches a maximum
close to Ic = 1 µA. The skewness ranges between 0.15 and 0.26 which are typical values for
gJJs [67, 59, 60].
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Figure A.3: (a) and (b) Computed skewness and fitted τ respectively with respect to the
resonance frequency at zero bias current. (c) and (d) Computed skewness and fitted τ
respectively with respect to the fitted critical current. The error bars represent the standard
deviation on the fitted parameter. Error bars on S were not computed.

A.3 Additional device

We measured a similar device with a gJJ width of 2 µm, a resonator width of 5 µm and less
on-chip gate filtering. In Fig. A.4a we plot the differential resistance dV/dI as a function of
the bias current Ib and the gate voltage Vg. Close to Vg=-8 V and Vg=6 V the device exhibited
current leakage through the gate. We were thus not able to reach the Dirac point. The critical
current can be modulated from 0.5 µA to 1.2 µA. This enabled the control of the resonance
frequency from 5.8 GHz to 6.05 GHz as we can see in Fig. A.4b where the phase of the S11
parameter is plotted with respect to the gate voltage. The S11 parameter was here normalized
with a trace taken at 1.1 K before the device entered in the superconducting state. In Fig. A.4c
the gain of the graphene based JPA is plotted for three gate voltages (-7.2 V, -6.1 V, -3.5 V). The
gain is above 15 dB on the full range of frequency reachable by the device. We also measured
the gain on another device which was not electrically tunable.
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Figure A.4: Additional device measurement. (a) Differential resistance as a function of the
bias current and gate voltage. (b) S11 as a function of gate voltage. (c) Gain measured for
three different gate voltages.
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List of instruments

• VNA: Anritsu MS46522B-20

• Pump and additional microwave source : R&S SMB 20GHz

• Gate: Keithley 2400

• DC bias source: Yokogawa 7651

• Lockin amplifier: SRS 830

• Multimeter: HP34401A

• Spectrum analyzer: R&S FSQ signal analyzer
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List of abbreviations

• 2D: Two dimensional

• 3WM: Three wave mixing

• 4WM: Four wave mixing

• ABS: Andreev bound states

• CNP: Charge neutrality point

• CPR: Current phase relation

• CVD: Chemical vapor deposition

• DPA: Degenerate parametric amplifier

• ebeam: Electron beam

• gJJ: Graphene Josephson junction

• gJPA: Graphene Josephson parametric amplifier

• h-BN: Hexagonal boron nitrite

• HEMT: High electron mobility transistor

• IMPA: Impedance matched Josephson parametric amplifier

• IPA: Isopropyl alcohol

• JBA: Josephson bifurcation amplifier

• JJ: Josephson junction

• JPA: Josephson parametric amplifier

155



Appendix A. Additional measurements

• MAR: Multiple Andreev reflections

• NDPA: Non-degenerate parametric amplifier

• PDMS: Polydimethylsiloxane

• PMMA: Polymethyl methacrylate

• PPC: Polypropylene carbonate

• PS: Power spectrum

• PSD: Power spectral density

• RIE: Reactive ion etching

• SA: Spectrum analyzer

• SIS: Superconducting/insulator/superconducting

• SNAIL: Superconducting nonlinear asymmetric inductive element

• SNS: Superconducting/normal/superconducting

• SNTJ: Shot noise tunnel junction

• SQL: Standard quantum limit

• SQUID: Superconducting quantum interference device

• TL: Transmission line

• TWPA: Travelling wave parametric amplifier

• VNA: Vector network analyzer
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