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Abstract

Since the discovery of the Higgs boson, the field of high energy physics has entered a precision era.
The absence of clear deviations from the Standard Model predictions calls for a reassessment and overall
improvement of the frameworks and practical methods used to put models of new physics to the test.
We report in this thesis the development of novel methods and tools dedicated to the study of models
with multiple mass scales. In part I, we demonstrate that, using renormalisation group techniques, the
logarithmic contributions stemming from the regularisation of ultraviolet divergences can be systemat-
ically resummed if one supplements the MS scheme with multiple renormalisation scales. This method
is in principle applicable to any general gauge theory and appears as a powerful tool to enhance the
predictivity and overall insight into the structure of a large class of models of new physics. The only pre-
requisite is the knowledge of the beta-functions of the model, which can be obtained using the computer
tool PyR@TE 3, presented in this thesis. Part II is dedicated to the study of two specific multi-scale
extensions of the Standard Model. First, we develop a framework allowing to describe all interactions
in the general Two-Higgs Doublet model in terms of gauge-invariant quantities. Second, we show that
a novel kind of constraints on the scalar potential of Grand Unified theories can be derived from the
requirement of proper symmetry breaking towards the Standard Model gauge group. These findings are
exemplified in the context of a classically scale-invariant SO(10) model.

Résumé

Depuis la découverte du boson de Higgs, la physique des hautes énergies est entrée dans l’ère de la
précision. L’absence de nettes déviations par rapport aux prédictions du Modèle Standard nous amène
à reconsidérer et perfectionner le cadre théorique et les méthodes utilisés pour mettre à l’épreuve les
modèles de nouvelle physique. Dans cette thèse, nous présentons le développement de nouveaux outils et
méthodes dédiés à l’étude de modèles impliquant plusieurs échelles de masse. En partie I, nous démontrons
la possibilité, au travers des propriétés du groupe de renormalisation, de resommer systématiquement
les corrections logarithmiques liées à la régularisation des divergences ultraviolettes en incluant dans le
schéma MS plusieurs échelles de renormalisation. Cette méthode est en principe applicable à toute théorie
de jauge et ouvre la voie à une prédictivité accrue et une compréhension plus fine de la structure d’une
large classe de modèles de nouvelle physique. Il suffit pour cela de disposer des fonctions bêta pour les
couplages du modèle, calculables en pratique grâce au logiciel PyR@TE 3, présenté dans cette thèse. La
seconde partie est dédiée à l’étude de deux extensions spécifiques du Modèle Standard. Nous présentons,
dans un premier temps, un nouveau formalisme pour décrire l’ensemble des interactions dans le modèle à
deux doublets de Higgs en termes de quantités invariantes de jauge. Enfin, nous introduisons un nouveau
type de contraintes sur le potentiel scalaire des théories de grande unification, résultant d’un schéma de
brisure de symétrie compatible avec le groupe de jauge du Modèle Standard. Ces résultats sont illustrés
au travers de l’exemple d’un modèle SO(10) classiquement invariant d’échelle.
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Introduction

The second half of the past century was a golden age for particle physics. It has been marked by outstand-
ing progress in the development of quantum field theory, together with a largely successful experimental
programme designed to probe the subatomic world at increasingly high precision and energy. The un-
derstanding of fundamental interactions as stemming from local symmetries alongside the study of their
spontaneous breaking has led to the development of a unified theory of electromagnetic and weak in-
teractions. Together with quantum chromodynamics, a consistent description of all three fundamental
interactions based on the gauge group SU (3)C × SU (2)L × U (1)Y constitutes the Standard Model of
particle physics. Among many other achievements, the discovery in the early 80’s of the bosons W and
Z [1, 2, 3, 4], followed after decades by the measurement of the Higgs boson at the LHC in 2012 [5, 6]
have proven the robustness and the predictive power of this theoretical framework.

There are, on the other hand, reasons to believe that the Standard Model only provides an effective
description of particle physics phenomena, and emerges as the low-energy limit of a more fundamental
theory: for instance, the absence of neutrino mass terms or the inadequate amount of CP violation needed
to explain the observed asymmetry between matter and antimatter are, in this regard, often put forward.
While the conviction that new physics would lie around the TeV scale has prevailed in the past decades,
the absence of clear deviations from the Standard Model predictions has led the field of particle physics
to a precision era. Beyond the paradigm of TeV-scale supersymmetry, numerous scenarios of new physics
have emerged as many possible solutions to the shortcomings of the Standard Model. The proliferation of
such models and their possibly complicated structure calls for an improvement of the presently available
methods, in a quest for precision and predictivity.

The content of this thesis is overall related to the study of a general class of extensions of the Standard
Model, in which the scalar sector is extended with new degrees of freedom – which we shall refer to as
multi-scalar extensions of the Standard Model. Such models are in many aspects phenomenologically
relevant, yet largely unconstrained by experiment. In this context, it is crucial to predict to the highest
level of precision the phenomenological implications stemming from these additional scalar degrees of
freedom. A promising direction in this regard is the analysis, beyond leading-order, of the perturbative
structure of multi-scalar theories. Besides a valuable increase in precision for quantitative predictions,
some scalar theories may exhibit qualitatively new features beyond tree-level. Classically scale-invariant
theories are such an example, in which spontaneous symmetry breaking is triggered by the quantum
corrections to the scalar potential. In addition, the complexity of the calculations in multi-scalar models,
oftentimes already at tree-level, calls for an overall reassessment and improvement of the methods from
a theoretical, computational and algorithmic point of view. These various aspects are covered in this
thesis, where we present a number of original results.

After providing in chapter 1 an overview of the renormalisation procedure in general scalar theories
and introducing the perturbative renormalisation group, we discuss in chapter 2 the practical compu-
tation of beta-functions in general gauge theories, their extension to dimensionful couplings [10], and
their implementation in a public computer code, PyR@TE 3 [9]. In the subsequent chapters, we discuss
one of the most powerful applications of the renormalisation group, allowing to resum – to all orders
in perturbation theory – the logarithmic contributions stemming from the regularisation of ultraviolet
divergences. First, we focus in chapter 3 on theories containing a single scalar field. A number of crucial
results are derived, and a novel formalism is established to perform the resummation of all logarithmic
contributions. These results are extended in chapter 4 to general multi-scalar theories, where we propose
a generalisation of the traditional MS scheme allowing for multiple renormalisation scales. In this frame-
work, we demonstrate that the results previously obtained in single-scale theories can be extended, in
a straightforward manner, to any general theory with interacting scalar fields. This will constitute the
main result of part I of this thesis.
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Part II is based on the publications [7] and [8], where we approach from a novel perspective two
well-motivated extensions of the Standard Model.

• In chapter 5, based on [7], we explore the structure of one of the most studied extensions of the
Standard Model, where a second Higgs doublet is added in the scalar sector – the Two-Higgs Dou-
blet model (THDM). It has been previously shown that the scalar potential in the THDM can be
expressed in terms of gauge invariant operators (the bilinear fields) that transform covariantly under
unitary mixing of the doublets. Based on these bilinear fields, a compact and elegant formalism
has been developed, allowing to carry out in a very efficient manner the study of CP symmetry,
electroweak symmetry breaking and stability of the potential. We show in chapter 5 that such a
formalism can be extended beyond the scalar sector, allowing for a fully gauge invariant descrip-
tion of the interactions among scalars, gauge bosons and fermions, and we derive the full set of
corresponding vertices at leading order.

• In chapter 6, based on [8], we study the mechanism of radiative symmetry breaking in a Grand
Unified Theory (GUT) based on the SO(10) gauge group. We show that the consideration of
the breaking patterns of the SO(10) symmetry group which do not lead to the Standard Model
provides a novel kind of constraint on the parameters of the scalar sector. We propose a general
method, applicable in practice to any GUT, allowing to identify regions of the scalar parameter
space which cannot lead to proper breakdown towards the Standard Model, hence restricting the
phenomenologically allowed parameter space. In this study, scale invariance is imposed at the
level of the tree-level scalar potential, so that the mechanism of spontaneous symmetry breaking
is triggered by the renormalisation group evolution of the quartic couplings. Possible extensions of
our results as well as implications in the context of theories of quantum gravity are discussed.
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Part I

The renormalisation group





Chapter 1

Perturbative renormalisation in multi-scalar
theories

This chapter is an introduction to the elementary concepts of renormalisation in quantum field theory
(QFT), through the application of the dimensional regularisation (DR) procedure [12, 13]. In particular,
sections 1 to 3 consist in a generalisation of the usual textbook approach to dimensional regularisation
(see e.g. [14, 15]), in a general theory with N interacting scalars. In this context, we shall establish a
number of definitions and central results which will allow us to (i) extend the discussion to general gauge
theories in chapter 2, and (ii) explore in a novel approach the perturbative structure of general scalar
theories in chapters 3 and 4.

We establish in section 1 the formalism and the main definitions on which we shall rely throughout
this thesis. We explicitly carry out in section 2 the regularisation of the theory up to the two-loop
level. The results hence obtained will be useful to illustrate the discussion on the beta-functions and
the renormalisation group (RG) in sections 3 and 4. We discuss in section 5 the physically relevant case
where the ground state of the theory lies away from the origin, giving rise to spontaneous evolution of
scalar fields. We introduce for such theories the notion of effective potential, a central object whose
properties determine the location of the ground state in the field space. Finally, we provide in section 6
two alternative renormalisation prescriptions, laying the basis for the generalisation of MS renormalisation
to multi-scale theories in chapter 4.

1 Definitions
Throughout this chapter, we will consider a 4-dimensional theory with N real scalars, gathered in the
scalar multiplet φa (a = 1, . . . , N). Using a Minkowskian metric with signature (+,−,−,−), the La-
grangian density is given by:

L =
1

2
∂µφa∂

µφa − 1

2
Mabφ

aφb − 1

4!
λabcdφ

aφbφcφd . (1.1)

Physical observables such as cross-sections and decay rates can be computed from the one-particle irre-
ducible (1PI) correlation functions (or n-point functions), most easily obtained in a perturbative, dia-
grammatic approach using the Feynman rules

= i
[
p21−M + iε1

]−1
, (1.2)

= −iλabcd , (1.3)

where M stands for the N×N matrix with components Mab. Depending on the basis chosen to express the
scalar fields and couplings, the propagator matrix is not necessarily diagonal. It is, however, manifestly
diagonal in the basis where the mass matrix M is, referred to as the mass-basis in the following. Assuming

13
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at this stage that every scalar quantity has been rotated to such a basis, we may write

=
iδab

p2 −Mab + iε
. (1.4)

Beyond leading order, the n-point functions are decomposed as a perturbative series, most easily written
in terms of loop-diagrams. For instance, the amputated1 4-point function Γabcd reads

Γabcd(pi;M,λ) = Γ
(0)
abcd(pi;M,λ)+Γ

(1)
abcd(pi;M,λ)+ · · · = i +

 i + . . .

 + . . . ,

(1.5)
and is formally a function of the couplings and external momenta. Loop-contributions such as the one
depicted above may be formally infinite due to the integration over internal four-momenta. For instance,
one encounters a logarithmic divergence when computing

∼ λabijλklcd
∫

d4k

(2π)4
δik

k2 −Mik + iε

δjl

k2 −Mjl + iε
∼ log∞ . (1.6)

Therefore, with ill-defined correlation functions, the theory is unpredictive beyond leading-order and
must be regularised. The standard approach consists in viewing the couplings and fields in the original
Lagrangian (1.1) as unphysical quantities. As such, those can be formally infinite as long as the physical
observables computed from them are well-behaved. To insist on the unphysical nature of the original
couplings and fields, we re-parameterise the Lagrangian density as

L =
1

2
∂µφ

a
0∂

µφa0 −
1

2
M0
abφ

a
0φ

b
0 −

1

4!
λ0abcdφ

a
0φ

b
0φ
c
0φ
d
0 , (1.7)

where φ0, M0 and λ0 denote the bare (i.e. unphysical) fields and couplings. The next step to regularise
the theory is to express the bare quantities as functions of renormalised (i.e. finite) couplings and fields,
noted φ, M and λ. One possible way is to resort to dimensional regularisation (DR) [12, 13], where the
dimension of the spacetime is shifted by a small but finite amount, noted ε. In d = 4 − ε dimensions,
loop-integrals such as (1.6) are finite and scale as O(ε−k) with k some positive integer. With a Lagrangian
density of mass-dimension d = 4− ε, the bare coupling and fields must satisfy

[φ0] = 1− ε

2
,

[
M0
]
= 2,

[
λ0
]
= ε , (1.8)

so, in particular, λ0 is no longer a dimensionless quantity. We first define the field-strength renormalisation
matrix Z relating the bare field multiplet to its renormalised counterpart, such that2

φ0 = Zφ . (1.9)

The formally infinite contributions to the couplings in the 4D theory are absorbed by counterterms, which
are conventionally introduced as

M0
ab =Mab + δMab, λ0abcd = λabcd + δλabcd , (1.10)

where M and λ stand for the renormalised, finite couplings. Here, we propose a different (yet equivalent)
prescription for the relation between the bare and renormalised quantities that conveniently allows to re-
move any occurrence of the field-strength renormalisation matrix in the non-kinetic Lagrangian. Namely,
defining instead

M0
ab = (Mef + δMef )Z

−1
ea Z

−1
fb (1.11)

λ0abcd = µε (λefgh + δλefgh)Z
−1
ea Z

−1
fb Z

−1
gc Z

−1
hd , (1.12)

1If not otherwise stated, we will for simplicity use the term n-point function to refer to the amputated n-point functions,
of which the external legs do not receive self-energy loop-corrections.

2For a single scalar field, the renormalisation strength constant is conventionally defined as Z1/2. Here, with φ an
N -components multiplet, we rather choose to avoid the introduction of the square root of Z, which is only well defined if
Z is a positive-definite matrix.
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the Lagrangian density reads

L =
1

2
∂µφ

a
(
ZTZ

)ab
∂µφb − 1

2
(Mab + δMab)φ

aφb − µε

4!
(λabcd + δλabcd)φ

aφbφcφd , (1.13)

and the positive-definite matrix product ZTZ is expanded in terms of the counterterm δφ according to

ZTZ = 1+ δφ . (1.14)

An arbitrary energy scale µ has been introduced in Eqs. (1.12) and (1.13) in order for the renormalised
quartic couplings to remain dimensionless in d dimensions. Having expressed the Lagrangian density
in terms of renormalised couplings and fields, the amputated n-point functions take the same form as
previously (see e.g. (1.5)) but are now given as functions of the renormalised couplings and counterterms

ΓR[n](pi;M,λ) = Γ[n](pi;M + δM, λ+ δλ) . (1.15)

The theory can now be renormalised, requiring every ΓR[n] to be finite order by order in perturbation
theory. For instance, the renormalised 2-point function (the inverse propagator) is given, at leading
order, by

iΓRab(p
2;M) = i

[
p21−M − δM + p2δφ − iε1

]ab
+ (loops) . (1.16)

Gathering the loop contributions in the matrix of scalar self-energies, noted Π(p2), the inverse propagator
reads

iΓRab(p
2;M) = i

[
p21−M − iε1−Π(p2)− δM + p2δφ

]ab
, (1.17)

and must be finite order-by-order. Hence, the renormalised scalar self-energy,

ΠR(p
2) = Π(p2) + δM − p2δφ , (1.18)

must be finite, allowing to compute the expression of the field-strength and mass counterterms order-by-
order in perturbation theory. In turn, the renormalised propagator reads

iGR(p
2) =

i

p21−M + iε1−ΠR(p2)
, (1.19)

and is expanded perturbatively as

iGR(p
2) =

i

p21−M + iε1
+

i

p21−M + iε1

[
−iΠR(p2)

] i

p21−M + iε1
+ . . . . (1.20)

Finally, we note that the field-strength renormalisation matrix can always be made symmetric by first
expressing the polar decomposition of Z,

Z = Z ′O , Z ′ =
(
ZZT

)1/2
= Z ′T, OOT = 1 , (1.21)

and by performing a re-definition of the renormalised couplings and fields. Namely, if the relation between
the bare and renormalised scalar multiplet is rewritten as

φ0 = Zφ = Z ′Oφ = Z ′φ′, φ′ = Oφ , (1.22)

the Lagrangian density reads

L =
1

2
∂µφ

′aZ ′2
abφ

′b − 1

2
(M ′

ab + δM ′
ab)φ

′aφ′
b − 1

4!
(λ′abcd + δλ′abcd)φ

′aφ′
b
φ′
c
φ′
d
, (1.23)

where the primed couplings and counterterms have been rotated to the basis where the field-strength
renormalisation matrix is Z ′ = Z ′T. Re-defining the renormalised fields and couplings according to

φ′ → φ, Z ′ → Z, M ′ →M, λ′ → λ (1.24)

proves the above statement that the field-strength renormalisation matrix can always be made symmetric.
In addition, we will make the assumption that the mass matrix M is diagonal in the basis where Z = ZT

without impact on the main results derived in the following. Proper treatment of the case where M is
not diagonal will later be given in section 6.2.
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2 Renormalisation up to two-loop
We may now proceed with the practical regularisation of the theory. After introducing some useful
results, we successively perform the renormalisation of the 2- and 4-point functions to first and second
order in perturbation theory. For the formulae given in section 2.1, we refer to [15].

2.1 Technicalities
We first provide some useful results which will allow to compute the relevant one-loop 2- and 4-point
corrections in the following. What is perhaps the most central tool to handle loop-integrals in DR is the
Feynman parameterisation formula:

1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]
2 . (1.25)

Applying this formula will lead in the following to d-dimensional integrals of the form∫
ddk

(2π)d
1

[k2 −∆+ iε]
n =

∫
d̃dk

1

[k2 −∆+ iε]
n , (1.26)

where we have defined the shortcut notation d̃dk = ddk
(2π)d

. Such integrals can be expressed as

I(1)n (∆) =

∫
d̃dk

1

[k2 −∆+ iε]
n = i(−1)n (4π)

ε/2

16π2

Γ
(
n− 2 + ε

2

)
Γ(n)

1

∆n−2+ε/2
, (1.27)

with Γ the Euler gamma-function. We see that, as expected, the integral is only divergent for n ≤ 2
(quadratically for n = 1, logarithmically for n = 2). It is convenient to define the modified scale µ̃ such
that

µ̃2 = 4πe−γEµ2 , (1.28)

with γE the Euler–Mascheroni constant, appearing in the series expansions of Γ. We may then rewrite (1.27)
as

µεI(1)n (∆) = i
1

16π2
(−1)n 1

∆n−2

Γ̃
(
n− 2 + ε

2

)
Γ(n)

(
∆

µ̃2

)−ε/2

, (1.29)

with
Γ̃(x) = eγEε/2Γ

(
x+

ε

2

)
(1.30)

a modified gamma-function, of which the series expansion in ε around integer values no longer involves
the constant γE . In particular, one obtains for n = 1, 2 the following ε-expansions:

µεI
(1)
1 (∆) =

i

16π2
∆

{
2

ε
−
(
log

∆

µ̃2
− 1

)
+

1

4

[
1 + ζ2 +

(
log

∆

µ̃2
− 1

)2
]
ε

}
+O

(
ε2
)
, (1.31)

µεI
(1)
2 (∆) =

i

16π2

{
2

ε
− log

∆

µ̃2
+

1

4

[
ζ2 +

(
log

∆

µ̃2

)2
]
ε

}
+O

(
ε2
)
, (1.32)

where ζ stands for the Riemann zeta-function, with ζ2 = π2

6 .

2.2 One-loop 2-point function
At one-loop, a single diagram contributes to the scalar self-energy:

−iΠab(p2) = =
−i
2
µελabij

∫
d̃dk

iδij

k2 −Mij + iε
=
µε

2
λabiiI

(1)
1 (Mii) . (1.33)
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From Eq. (1.31), we directly obtain

Πab(p2) = − 1

16π2
λabiiMii

[
1

ε
− 1

2

(
log

Mii

µ̃2
− 1

)]
+O(ε)

= − 1

16π2
λabij

[
1

ε
Mij −

1

2

(
M Log

M

µ̃2
−M

)
ij

]
+O(ε) , (1.34)

where the second equality follows from M (and its logarithm, LogM) being diagonal. We stress that,
here and in the following, repeated indices are systematically summed over. We may now fix the countert-
erms from the definition of the renormalised self-energy (1.18), by minimally subtracting the divergent
contribution,

δφ = 0, δMab =
1

ε(16π2)
λabijMij , (1.35)

We hence obtain the following expression of ΠR(p2) at one-loop in the minimal subtraction (MS) scheme

ΠabR (p2) =
1

16π2

1

2
λabij

[
M

(
log

M

µ̃2
− 1

)]ij
. (1.36)

It should be emphasised that the absence of contributions to the field-strength renormalisation constant
comes from the fact that Π(p2) is independent of p2 at one-loop.

It is usual to adopt a modified prescription (defining the MS scheme) where the numerical factor
log (4πe−γE ) is absorbed in the counterterm, effectively replacing µ̃ with µ in the argument of the loga-
rithms involved in the finite contributions, yielding

−iΠab(p2) = − 1

16π2

1

2
λabiiMii

[(
2

ε
+ log 4π − γE

)
−
(
log

Mii

µ2
− 1

)]
+O(ε) , (1.37)

so that the MS counterterm reads

δMab = λabijMij
1

16π2

[
1

ε
+

1

2
log 4π − γE

2

]
. (1.38)

In order the remove the explicit occurrence of such numerical factors, it is always possible to either
re-scale the arbitrary parameter µ as

µ2 → µ2

4πe−γE
, (1.39)

or to introduce the modified quantity ε′ such that

1

ε′
=

1

ε
+

1

2
log 4π − γE

2
, (1.40)

followed by the re-definition ε′ → ε. Either way, the log (4πe−γE ) factors no longer explicitly appear in
the expression of the MS renormalised n-point functions and counterterms, and we obtain in particular

δMab =
1

16π2

1

ε
λabijMij , ΠabR (p2) =

1

16π2

1

2
λabij

[
M

(
log

M

µ2
− 1

)]ij
≡ 1

16π2

1

2
λabijA (Mij) ,

(1.41)
where we have defined, following [16],

A(x) = x

[
log

x

µ2
− 1

]
. (1.42)
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2.3 One-loop 4-point function
We now proceed with the computation of the one-loop contributions to the 4-point function. In that
case, three diagrams should be computed that are related by a crossing symmetry. Hence, we only need
in practice to derive the s-channel diagram3

−iΓ(1)
abcd =

a

b

c

d

, (1.43)

which is expressed, noting p = pa + pb such that p2 = s = (pa + pb)
2, as

−iΓ(1)
abcd =

1

2
µε(−iλabij)(−iλklcd)

∫
d̃dk

iδik
(p− k)2 −Mik + iε

iδjl
k2 −Mjl + iε

=
1

2
µελabijλklcdδikδjl

∫ 1

0

dx

∫
d̃dk

1

[x(p− k)2 + (1− x)k2 − xMik − (1− x)Mjl + iε]
2

=
1

2
µελabijλklcdδikδjl

∫ 1

0

dx

∫
d̃dk

1

[k2 + x(1− x)p2 − xMik − (1− x)Mjl + iε]
2

≡ iλabijλklcd Vijkl(p2) , (1.44)

where in the two last steps we have successively applied a shift on the integration variable, k → k + xp,
and defined the auxiliary function

Vijkl(p
2) = − i

2
µεδikδjl

∫ 1

0

dx I
(1)
2

(
xMik + (1− x)Mjl − x(1− x)p2

)
. (1.45)

Using Eq. (1.32), we find

Vijkl(p
2) =

δikδjl
(16π2)

[
1

ε
− 1

2

∫ 1

0

dx log

(∣∣xMik + (1− x)Mjl − x(1− x)p2
∣∣

µ̃2

)]

=
δikδjl

(16π2)

[
1

ε′
+

1

2
B
(
Mik,Mjl, p

2
)]

+O(ε′) ,

(1.46)

where, following [16], we have defined the function

B(M1,M2, p
2) = −

∫ 1

0

dx log

(∣∣xM1 + (1− x)M2 − x(1− x)p2
∣∣

µ2

)
. (1.47)

In turn, Γ(1)
abcd reads, after re-defining ε′ → ε,

Γ
(1)
abcd = −

1

(16π2)
λabijλijcd

[
1

ε
+

1

2
B
(
Mii,Mjj , (pa + pb)

2
)]

+O(ε) . (1.48)

The two remaining contributions – namely the t- and u-channel counterparts of (1.43) – are obtained
from a permutation of the external indices:

Γ
(1,all)
abcd = Γ

(1)
abcd + Γ

(1)
acbd + Γ

(1)
adbc . (1.49)

In particular, from the overall one-loop contribution Γ
(1,all)
abcd , we directly find the expression of the 4-leg

counterterm, requiring λabcd + δλabcd + Γabcd to be finite at one-loop:

δλabcd =
1

ε(16π2)
[λabijλijcd + λacijλijbd + λadijλijbc] . (1.50)

3We note that, since we are considering the amputated n-point functions, the self-energy corrections to the external lines
need not be considered.
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2.4 Two-loop 2-point function
To the next order in perturbation theory, the self-energy is given by the sum of four contributions

−iΠ(2)(p2) = + + +

= −iΠ(2,A)(p2)− iΠ(2,B)(p2)− iΠ(2,C)(p2)− iΠ(2,D)(p2) ,

(1.51)

where a cross on a vertex or internal line denotes a counterterm insertion. To begin with, the 4-leg-
counterterm diagram (A) can directly be read from the one-loop self-energy (1.34):

−iΠ(2,A)(p2) =
i

(16π2)
δλabij

[
1

ε
Mij −

1

2
A (Mij) +O(ε)

]
.

Since δλabcd has a ε−1-pole, the above expression is only sufficient if one is interested in studying the
2-loop pole structure. On the other hand, to capture the O(1) contributions, one would need to expand
the Taylor series up to order O(ε), yielding from Eq. (1.31)

−iΠ(2,A)(p2) =
i

(16π2)
δλabij

{
1

ε
Mij −

1

2
A (Mij) +

ε

4
Mij

[
1 + ζ2 +

(
log

Mij

µ2
− 1

)2
]}

+O(ε2) . (1.52)

However, we restrict the discussion to the singular parts, allowing us to compute beta-functions up to
the two-loop level in section 3. From the expression of the quartic counterterm in Eq. (1.50), we obtain

−iΠ(2,A)(p2) =
i

(16π2)2
(λabklλklij + 2λaiklλbjkl)

[
1

ε2
Mij −

1

2ε
A (Mij)

]
+O(1) . (1.53)

For the contribution Π(2,B)(p2), we find

−iΠ(2,B)(p2) =
i

(16π2)2
λabijλijklMkl

[
1

ε2
+

1

2ε
B(Mii,Mjj , 0)

]
+O(1) . (1.54)

The third diagram, corresponding to Π(2,C), contains two separate one-loop subdivergences and is readily
expressed as

−iΠ(2,C)(p2) = − i

(16π2)2
λabijλijkl

{[
1

ε2
+

1

2ε
B(Mii,Mjj , 0)

]
Mkl −

1

2ε
A(Mij)

}
+O(1) . (1.55)

The fourth diagram (often referred to in the literature as the sunset diagram) involves overlapping
divergences and is less straightforward to compute. Deferring this computation to appendix B, we obtain

−iΠ(2,D)(p2) = − i
6

1

(16π2)2
λaijkλijkb

{
2

ε2
(Mii +Mjj +Mkk)−

1

ε

(
p2

2
−Mii −Mjj −Mkk

)

− 2

ε

[
A(Mii) +A(Mjj) +A(Mkk)

]}
+O(1)

= − i

(16π2)2
λaijkλijkb

[
1

ε2
Mii +

1

2ε
Mii −

1

ε
A(Mii)−

1

12ε
p2
]
+O(1) , (1.56)

where, in the second equality, we have used the permutation symmetry under internal indices to simplify
the expression. Summing all the above contributions, we get the final result for the two relevant topologies:

−iΠ(2)

( )
=

i

(16π2)2
λabijλijklMkl

[
1

ε2
+O(1)

]
, (1.57)

−iΠ(2)

( )
=

i

(16π2)2
λaijkλbijk

[
Mii

(
1

ε2
− 1

2ε

)
+

p2

12ε
+O(1)

]
. (1.58)
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We may finally infer the two-loop contributions to the field-strength and mass-counterterms:

δabφ = − 1

(16π2)2
1

12ε
λaijkλbijk , (1.59)

δMab =
1

(16π2)2

[
1

ε2
λabijλijklMkl +

(
1

ε2
− 1

2ε

)
λaijkλbijkMii

]
. (1.60)

2.5 Two-loop 4-point function
We finally compute the two-loop contributions to the 4-leg vertex in order to derive the corresponding
beta-functions in the next section. As previously, we will restrict the discussion to the singular parts
of the diagrams. In addition, all external momenta will be taken to vanish in order to simplify the
computations. In the s-channel, five diagrams contribute

−iΓ(2)
abcd = + + + +

= − iΓ(2,A)
abcd − iΓ

(2,B)
abcd − iΓ

(2,C)
abcd − iΓ

(2,D)
abcd − iΓ

(2,E)
abcd (1.61)

− iΓ
(2,A′)
abcd − iΓ

(2,E′)
abcd ,

where Γ
(2,A′)
abcd and Γ

(2,E′)
abcd stand for the diagrams obtained by mirroring horizontally Γ

(2,A)
abcd and Γ

(2,E)
abcd .

The expression of the first diagram can directly be read from Eq. (1.48)–(1.49):

−iΓ(2,A)
abcd =

i

(16π2)
λabijδλijcd

[
1

ε
+

1

2
B
(
Mii,Mjj , 0

)]
+O(1)

=
i

(16π2)2
λabij (λijklλklcd + 2λicklλkljd)

[
1

ε2
+

1

2ε
B
(
Mii,Mjj , 0

)]
+O(1) , (1.62)

and

−iΓ(2,A′)
abcd =

i

(16π2)2
(λabijλijkl + 2λaijkλbijl)λklcd

[
1

ε2
+

1

2ε
B
(
Mkk,Mll, 0

)]
+O(1) . (1.63)

Diagram B is expressed without difficulty as

−iΓ(2,B)
abcd = − i

(16π2)2
λabijλijklλklcd

[
1

ε
+

1

2
B (Mii,Mjj , 0)

] [
1

ε
+

1

2
B (Mkk,Mll, 0)

]
+O(1)

= − i

(16π2)2
λabijλijklλklcd

(
1

ε2
+

1

2ε
[B (Mii,Mjj , 0) +B (Mkk,Mll, 0)]

)
+O(1) .

Without direct computation, it is easy to see that the poles of Γ(2,C)
abcd and Γ

(2,D)
abcd cancel at order O

(
ε−1
)
.

In turn, as explained in the next section, these diagrams do not contribute to the beta-function of λ.
Therefore, despite a non-zero contribution at order O

(
ε−2
)
, we will skip for conciseness the computation

of Γ
(2,D)
abcd . Finally, the fifth diagram can, in fact, be inferred from the sunset diagram introduced in

the previous section: the former can be constructed from the latter by replacing a mass insertion with
a 4-leg vertex, thereby doubling the corresponding propagator. We show in appendix A that any dia-
gram obtained by doubling a propagator can be straightforwardly expressed without the need for direct
computation. For instance, writing Eq. (1.56) in the form

−iΠ(2,D) = − i

(16π2)2
λaijkλijkb

[
1

ε2
Mii +

1

2ε
Mii −

1

ε
A(Mii)−

1

12ε
p2
]

≡ i

(16π2)2
λaijkλijkb I3(Mii) , (1.64)
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the four-leg diagram Γ
(2,E)
abcd is in fact equal to

−iΓ(2,E)
abcd =

i

(16π2)2
λabijλicklλkljd

I3(Mii)− I3(Mjj)

Mii −Mjj

=
i

(16π2)2
λabijλicklλkljd

[
− 1

ε2
− 1

2ε
+

1

ε

A(Mii)−A(Mjj)

Mii −Mjj

]
. (1.65)

It can be shown that
A(Mii)−A(Mjj)

Mii −Mjj
= −B(Mii,Mjj , 0) , (1.66)

so we may write

−iΓ(2,E)
abcd =

i

(16π2)2
λabijλicklλkljd

[
− 1

ε2
− 1

2ε
− 1

ε
B(Mii,Mjj , 0)

]
, (1.67)

and
−iΓ(2,E′)

abcd =
i

(16π2)2
λaijkλbijlλklcd

[
− 1

ε2
− 1

2ε
− 1

ε
B(Mkk,Mll, 0)

]
. (1.68)

Gathering all previous results, we finally obtain

−iΓ(2)
abcd

( )
=

i

(16π2)2
λabijλijklλklcd

[
1

ε2
+O(1)

]
, (1.69)

−iΓ(2)
abcd

( )
=

i

(16π2)2
(λabijλicklλkljd + λaijkλbijlλklcd)

[
1

ε2
− 1

2ε
+O(1)

]
, (1.70)

and the two-loop counterterm reads

δ(2)λabcd =
1

(16π2)2

{
1

ε2
[λabijλijklλklcd + λabijλicklλkljd + λaijkλbijlλklcd]

− 1

2ε
[λabijλicklλkljd + λaijkλbijlλklcd]

}
+
(
b↔ c

)
+
(
b↔ d

)
.

(1.71)

3 Beta-functions
If all couplings of the theory have been made finite through the process of renormalisation, they can-
not, however, be viewed as physical quantities. In particular, all couplings and fields have acquired a
dependence on the arbitrary scale µ introduced in the process of dimensional regularisation. Such a
dependence is governed by a set of differential equations: the renormalisation group equation (RGEs).
We call beta-function of a coupling its derivative with respect to the logarithm of the arbitrary scale µ,
in the 4-dimensional regularised theory:

β(X) ≡ µ
dX

dµ

∣∣∣∣
ε→0

. (1.72)

In a single-scale theory, one similarly defines the anomalous dimension of a scalar field with field-strength
renormalisation constant Zφ as

γφ =
d logZφ
d logµ

∣∣∣∣
ε→0

=
µ

Zφ

dZφ
dµ

∣∣∣∣
ε→0

. (1.73)

As illustrated in the following, both the beta-functions and the anomalous dimensions are computed from
the requirement that the bare couplings and fields are independent of the scale µ. In particular, to see
how the definition of the anomalous dimension generalises to the case of a multi-scalar theory, we write

µ
d

dµ
φ0 = 0 = µ

d

dµ
(Zφ) = µ

dZ

dµ
φ+ Z

dφ

dµ
. (1.74)
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Multiplying the right-hand side from the left by Z−1, one gets

µ
dφ

dµ
= −Z−1µ

dZ

dµ
φ , (1.75)

so the natural generalisation of the single-scale anomalous dimension γφ is the matrix γ such that

µ
dφ

dµ

∣∣∣∣
ε→0

= −γφ , (1.76)

meaning in turn that

γ = Z−1µ
dZ

dµ

∣∣∣∣
ε→0

. (1.77)

We note that, in addition, an alternative expression for γ can be found4 starting instead from the relation
φ = Z−1φ0:

φ = Z−1φ0 → γ = −µ dZ−1

dµ
Z

∣∣∣∣
ε→0

. (1.78)

Finally, it will be useful in the following to define the shortcut notations

γε = Z−1µ
dZ

dµ
= −µdZ

−1

dµ
Z, βε(X) = µ

dX

dµ
, (1.79)

such that
γ = γε|ε→0 , β(X) = βε(X)|ε→0 . (1.80)

Now turning to the computation of the quartic beta-function, we have

λ0efgh = µε (λabcd + δλabcd)Z
−1
ae Z

−1
bf Z

−1
cg Z

−1
dh , (1.81)

so that taking the logarithmic derivative with respect to the RG-scale on both sides yields, using
Eq. (1.78),

0 = µε
[
ε (λabcd + δλabcd) + βε(λabcd) +Dδλabcd

−
(
λibcdγ

ia
ε + λaicdγ

ib
ε + λabidγ

ic
ε + λabciγ

id
ε

)
−
(
δλibcdγ

ia
ε + δλaicdγ

ib
ε + δλabidγ

ic
ε + δλabciγ

id
ε

) ]
Z−1
ae Z

−1
bf Z

−1
cg Z

−1
dh ,

(1.82)

where we have defined the differential operator

D = µ
d

dµ
. (1.83)

In order to simplify the expressions, it is convenient to define a generalised anti-commutation operation
between a matrix X and a rank-n tensor T :

{X → T}a1,...,an ≡ Xa1bTb,a2,...,an + · · ·+XanbTa1,...,an−1,b , (1.84a)
{T ← X}a1,...,an ≡ Tb,a2,...,anXba1 + · · ·+ Ta1,...,an−1,bX

ban = {XT → T}a1,...,an , (1.84b)

so that Eq. (1.82) can be put into the more compact form

0 = µε
[
ε (λabcd + δλabcd)+βε(λabcd)+Dδλabcd−{λ← γε}abcd−{δλ← γε}abcd

]
Z−1
ae Z

−1
bf Z

−1
cg Z

−1
dh . (1.85)

Since the ε-dependent beta-functions and anomalous dimensions are finite in the limit ε→ 0, those can
generally be expanded in a power series in ε:

βε = β[0] + εβ[1] + ε2β[2] + . . . (1.86)
γε = γ[0] + εγ[1] + ε2γ[2] + . . . , (1.87)

4Equivalently, we may use the fact that µ d
dµ

(Z−1Z) = Z−1µ dZ
dµ

+ µ dZ−1

dµ
Z = 0.
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and we have in particular that
β = β[0], γ = γ[0] . (1.88)

In fact, in addition to β[0], only the O(ε) contribution β[1] can be non-zero. It is of leading order in
perturbation theory and characterises the anomalous scaling of the renormalised couplings compared to
their bare counterpart in the (4−ε)-dimensional theory. The quartic coupling beta-function is then equal
to

βε(λabcd) = β(λabcd) + β[1](λabcd)ε , (1.89)

and one can show that γ[1] = 0 by expanding the relation

Zγε = DZ = βε(λijkl)
∂Z

∂λijkl
(1.90)

in terms of powers of ε. That γ[1] vanishes is thus consistent with φ0 and φ having the same mass-
dimension. To further express βε(λabcd), we define the ε-expansion of the counterterm as

δλabcd =

∞∑
k=1

δ[k]λabcd

εk
, (1.91)

and write from Eq. (1.85):

0 = ε(λabcd + δλabcd) + βε(λabcd) + βε(λijkl)
∂δλabcd
∂λijkl

− {λ← γ}abcd − {δλ← γ}abcd . (1.92)

At order O(ε), we have
ελabcd + εβ[1](λabcd) = 0 , (1.93)

and therefore
β[1](λabcd) = −λabcd . (1.94)

At order O(ε0), one obtains in turn the generic form of the quartic beta-function:

β(λabcd) = −δ[1]λabcd + λefgh
∂δ[1]λabcd

∂λefgh
+ {λ← γ}abcd . (1.95)

We recover the standard result that the beta-functions are completely determined by the first-order pole
of the counterterms. For negative powers of ε, we obtain consistency conditions on the pole structure of
the counterterms. For instance, noting δ(n)[k] the n-loop contribution to the counterterm δ[k], we have at
two-loop that

δ
(2)
[2] λabcd =

1

2

∂δ
(1)
[1] λabcd

∂λefgh
δ
(1)
[1] λefgh . (1.96)

Inserting the expression of the one-loop counterterm (1.71) in (1.96) and only considering for simplicity
the s-channel contributions, we find

δ
(2)
[2] λabcd ⊃ λabijλijklλklcd , (1.97)

consistent/in agreement with Eq. (1.71).

From Eq. (1.95), we see that the quartic coupling beta-function contains contributions involving the
anomalous dimension matrix, which we now compute. From Eq. (1.77) and the fact that Z can be taken
to be a symmetric matrix without loss of generality (see the discussion at the end of section 1), we have

Zγ = DZ → ZγZ = (DZ)Z =
1

2
D
(
Z2
)
. (1.98)

From the decomposition

Z2 = 1 + δφ = 1 +

∞∑
k=1

δ
[k]
φ

εk
, (1.99)
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we obtain, evaluating Eq. (1.98) at order O(ε),

γ = −1

2
λabcd

∂δ
[1]
φ

∂λabcd
. (1.100)

We finally turn to the RG-dependence of the mass parameter Mab. In this regard, it is usual to define
the anomalous mass-dimension,

γM = µ
d logM

dµ
. (1.101)

However, such a definition is only appropriate to work with if the masses are renormalised multiplicatively,
which is indeed true for the scalar theory considered in this chapter. Had we included in the Lagrangian
density cubic couplings of the form

L ⊃ −τabcφaφbφc , (1.102)
the mass parameter would have received, already at the one-loop level, contributions of the type

∝ τaijτijb . (1.103)

Hence, in a general scalar theory, the mass parameter is not renormalised multiplicatively and we will
prefer in this discussion the use of the beta-function

β(M) = µ
dM

dµ

∣∣∣∣
ε→0

= βε(M)
∣∣∣
ε→0

. (1.104)

Starting from the relation between the bare and renormalised mass matrices,

M0
ef = (Mab + δMab)Z

−1
ae Z

−1
bf , (1.105)

one obtains
0 = βε(Mab) + βε(Mij)

∂δMab

∂Mij
+ βε(λefgh)

∂δMab

∂λefgh
− {M ← γ}ab , (1.106)

Evaluating the above expression at order O(ε0), we find

β(Mab) = λefgh
∂δ[1]Mab

∂λefgh
+ {M ← γ}ab . (1.107)

Using γ = γT, we summarise the main results obtained so far,

γ = −1

2
λabcd

∂δ
[1]
φ

∂λabcd
, (1.108)

β(Mab) = λefgh
∂δ[1]Mab

∂λefgh
+ {γ →M}ab , (1.109)

β(λabcd) = −δ[1]λabcd + λefgh
∂δ[1]λabcd

∂λefgh
+ {γ → λ}abcd , (1.110)

recalling that the anti-commutation operation between a matrix and a tensor was defined in Eq. (1.84).
The above expressions can be further simplified by observing that the operator

λefgh
∂

∂λefgh

counts the number of 4-leg vertices in a diagram. As mentioned above, for the scalar theory considered
here, such a number is in fact directly related to the loop-order n, and(

λefgh
∂

∂λefgh

)
δλ = (n+ 1)δλ , (1.111)(

λefgh
∂

∂λefgh

)
δM = n δM , (1.112)(

λefgh
∂

∂λefgh

)
δφ = n δφ , (1.113)
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Hence, perturbatively expanding the beta- and gamma-functions as

β = β(1) + β(2) + . . . , γ = γ(1) + γ(2) + . . . , (1.114)

we can rewrite Eqs. (1.108)–(1.110) in the simpler form

γ(n) = −n
2
δ
[1],(n)
φ , (1.115)

β(n)(Mab) = n δ
(n)
[1] Mab +

{
γ(n) →M

}
ab
, (1.116)

β(λabcd) = n δ
(n)
[1] λabcd +

{
γ(n) → λ

}
abcd

. (1.117)

At one-loop, applying Eqs. (1.115)–(1.117) gives

γ
(1)
ab = 0 , β(1)(Mab) =

1

16π2
λabijMij , β(1)(λabcd) =

1

16π2
(λabijλijcd + λacijλijbd + λadijλijbc) .

(1.118)

At two-loop, we obtain from the expression of the counterterms given in Eqs. (1.59), (1.60) and (1.71):

γ
(2)
ab =

1

(16π2)2
1

12
λaijkλijkb , (1.119)

β(2)(Mab) =
1

(16π2)2

[
−λaiklλbjklMij +

1

12
(λaijkλijkeMeb +Maeλeijkλijkb)

]
, (1.120)

β(2)(λabcd) =
1

(16π2)2

{
−
[
λabijλicklλkljd + λaijkλbijlλklcd +

(
b↔ c

)
+
(
b↔ d

)]
+

1

12

[
λaijkλijkeλebcd +

(
a↔ b

)
+
(
a↔ c

)
+
(
a↔ d

)]}
.

(1.121)

4 The Callan-Symanzik equation
It is remarkable that, despite the unphysical and arbitrary nature of the scale µ, all couplings and fields
maintain a residual, non-trivial dependence on this parameter in the 4-dimensional limit of a dimensionally
regularised theory. The transformation properties of the couplings and fields under variations of the scale
µ define the renormalisation group (RG), and µ is then referred to as the renormalisation scale (or RG
scale). On the other hand, we have seen that µ explicitly appears in the logarithmic contributions to
the renormalised n-point functions. As we shall now demonstrate, the implicit dependence (through
the beta-functions) and the explicit dependence (through the logarithmic contributions) exactly cancel,
so the renormalised (non-amputated) n-point functions are exactly RG-invariant. For instance, the
renormalised, amputated 2-point function, noted ΓRab, relates to its bare counterpart according to

ΓRab =
[
ZTΓ0Z

]ab
. (1.122)

Taking the RG-scale derivative on both sides, and using the independence of Γ0
ab with respect to µ gives

µ
dΓRab
dµ

=

[
(µ
dZ

dµ
)TΓ0Z + ZTΓ0(µ

dZ

dµ
)

]ab
=
[
γTΓR + ΓRγ

]ab
= ΓRibγ

ia + ΓRaiγ
ib . (1.123)

This relation is easily generalised to any n-point function ΓR(n) using the matrix-tensor anti-commutator
(see Eq. (1.84)),

µ
d

dµ
ΓR(n) =

{
ΓR(n) ← γ

}
. (1.124)

Decomposing the total RG-derivative in terms of its explicit and implicit components, we may write in
turn

µ
∂

∂µ
ΓR(n) +

∑
λi

β(λi)
∂

∂λi
ΓR(n) −

{
ΓR(n) ← γ

}
= 0 , (1.125)
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where λi generically denotes any coupling of the theory appearing in the expression of ΓR(n). The rela-
tion (1.124) – together with its expanded form, Eq. (1.125) – is usually referred to as the Callan-Symanzik
equation [17, 18], and is to be interpreted in the following way: the dependence of the amputated, renor-
malised n-point functions ΓR(n) on the renormalisation scale only stems from its open indices (legs). This
means in turn that the non-amputated n-point functions – of which the external lines receive self-energy
loop corrections – are exactly RG-invariant. This is a necessary condition to maintain overall physical
consistency in the renormalised theory. This brings us to the conclusion that a consistent theoretical
description of any scalar QFT not only relies on the expression of the renormalised n-point functions,
but also on that of the beta-functions.

Furthermore, the Callan-Symanzik equation reveals in fact an intimate connection between the log-
arithmic structure of the loop contributions and the beta-functions. As such, it is possible, as we shall
illustrate, to recover the expression of the beta-functions in the 4-dimensional regularised theory directly
from that of the renormalised n-point functions. Let us for instance consider the 4-point function, which
is expanded perturbatively as:

ΓRabcd = λabcd +
(
δ
(1)
abcd + Γ

(1)
abcd

)
+
(
δ
(2)
abcd + Γ

(2)
abcd

)
+ . . . . (1.126)

By construction, the terms in brackets stand for the finite (i.e. minimally subtracted) n-loop contributions.
Hence, we may alternatively rewrite the above perturbative expansion in terms of the n-loop finite
contributions to the renormalised 4-point function:

ΓRabcd = λabcd + Γ
R (1)
abcd + Γ

R (2)
abcd + . . . . (1.127)

We reiterate that the loop contributions to ΓRabcd thereby defined depend on the RG-scale µ in two ways:
(i) explicitly, from the occurrence of µ in the logarithms and (ii) implicitly, from their dependence on
the running couplings. A crucial consequence of this property is that the total RG-derivative of ΓR (n)

abcd

always contains two distinct contributions, with perturbative order n – from the explicit dependence –
and (n+ 1) + (n+ 2) + . . . – from the implicit dependence and the beta-functions – respectively. Since
the Callan Symanzik holds order-by order, we may write5

µ
d

dµ
ΓRabcd =

[
β(1)(λabcd) + µ

∂

∂µ
Γ
R (1)
abcd

]
+

[
β(1)

(
Γ
R (1)
abcd

)
+ β(2)(λabcd) + µ

∂

∂µ
Γ
R (2)
abcd

]
+ . . . , (1.128)

so the n-loop contributions to the beta-functions can be computed iteratively from the finite part of the
n-loops diagrams. For instance, at one-loop, we have from Eqs. (1.48)–(1.50):

Γ
R (1)
abcd = −1

2

1

16π2
[λabijλijcdB(Mii,Mjj , s) + λacijλijbdB(Mii,Mjj , t) + λadijλijbcB(Mii,Mjj , u)]

(1.129)
where s, t and u are the Mandelstam variables, describing the kinematics in the s, t and u channels.
The next step is to differentiate Eq. (1.129) with respect to the renormalisation scale. We remind the
expression of the B function,

B(M1,M2, p
2) = −

∫ 1

0

dx log

(∣∣xM1 + (1− x)M2 − x(1− x)p2
∣∣

µ2

)
. (1.130)

simply giving

µ
∂

∂µ
B(M1,M2, p

2) = 2 . (1.131)

5By a slight abuse of notation, we use β(n) as a shortcut notation for the differential operator

β(n) ≡
∑
λi

β(n)(λi)
∂

∂λi
.
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Therefore, from Eq. (1.128), we obtain at one-loop

µ
d

dµ
ΓRabcd =

[
β(1)(λabcd)−

1

16π2
(λabijλijcd + λacijλijbd + λadijλijbc)

]
+ . . . , (1.132)

from which we directly read the pure-vertex contribution to the one-loop beta-function: With γ(1) = 0,
Eq.(1.128) simply gives, to first order,

β(1)(λabcd) =
1

16π2
(λabijλijcd + λacijλijbd + λadijλijbc) . (1.133)

Therefore, we have been able to recover the expression of the one-loop quartic beta-function from that
of the renormalised 4-point function. The same conclusion holds at higher orders in perturbation theory.
However, such a property is not very useful in practice: Deriving the beta-functions is in general a simpler
exercise than obtaining the renormalised n-point functions. On the other hand, one truly remarkable
consequence of Eq. (1.128) is uncovered adopting the opposite perspective: We will show in chapters 3
and 4 that the expression of the beta-functions provides information – to all orders in perturbation theory
– on the structure of the logarithmic contributions to the n-point functions.

5 The effective scalar potential
5.1 Ground states away from the origin
In the previous sections, we have considered a scalar theory with a Lagrangian density of the form

L =
1

2
∂µφa∂

µφa − 1

2
Mabφ

aφb − 1

4!
λabcdφ

aφbφcφd =
1

2
∂µφa∂

µφa − V (φ) , (1.134)

with V the scalar potential, i.e. the part of the Lagrangian density describing the scalar interactions:

V (φ) =
1

2
Mabφ

aφb +
1

4!
λabcdφ

aφbφcφd . (1.135)

In such a description, M is viewed as the leading-order contribution to the mass of the propagating
(physical) fields, and φ as the dynamical component of these propagating fields around their expectation
value. In other words, we have implicitly assumed that the potential was minimal (at least locally) and
convex, that is with a positive (semi)definite Hessian matrix – the scalar mass matrix.

If, on the other hand, the mass matrix possesses at least one negative eigenvalue, the scalar potential
is no longer minimal at the stationary point 〈φ〉 = 0 which therefore constitutes either a saddle point or
a local maximum. Any variation of the dynamical fields around their expectation value 〈φ〉 = 0 will in
turn trigger spontaneous evolution of the system towards a configuration 〈φ′〉 which minimises the scalar
potential, i.e. where

∂aV
(
〈φ′〉

)
≡ ∂V

∂φa
(
〈φ′〉

)
= 0, a = 1, . . . , N , (1.136)

and where the matrix of the second derivatives of V is positive (semi)definite. In this new configuration,
the classical action is extremal and the ground state is now stable under fluctuations of the scalar fields
around their expectation value. It may still be possible, however, that the scalar potential is only locally
minimal at the point 〈φ′〉, i.e. that some 〈φ′′〉 satisfies

∂aV (〈φ′′〉) ≡ ∂V

∂φa
(
〈φ′′〉

)
= 0, V

(
〈φ′′〉

)
< V

(
〈φ′〉

)
. (1.137)

In that case, the state 〈φ′〉 is only meta-stable and can decay, with non-zero probability, to the deeper,
stable state 〈φ′′〉. For instance, the question of knowing whether the Standard Model vacuum is either
stable or meta-stable constitutes an active field of research [19, 20, 21, 22, 23, 24, 25, 26, 27].

Most importantly, this mechanism is at the origin of the phenomenon of spontaneous symmetry
breaking in theories satisfying global or gauge symmetries, upon which is based our current understanding
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of fundamental interactions. For these reasons, the in-depth study of the overall structure of the scalar
potential is crucial for many applications. In such cases, one wishes in particular to evaluate with the
highest accuracy the position of the minima of the scalar potential, defining the set of physically accessible
meta-(stable) ground states. The quantity obtained after inclusion of the quantum corrections is referred
to as the effective potential, and coincides with the zero-momentum limit of the 1PI effective action
evaluated at constant field values.

5.2 The renormalised vacuum energy
We have discussed in the previous sections the renormalisation procedure for the 2- and 4-point functions,
describing respectively the propagation and self-interactions of the scalar fields. In fact, one must in
general include a vacuum energy contribution to the Lagrangian at leading order, namely

V (φ) = Λ +
1

2
Mabφ

aφb +
1

4!
λabcdφ

aφbφcφd . (1.138)

As any other n-point function, the vacuum energy (that is, the 0-point function) receives loop-contributions
beyond leading order and must be renormalised. Diagrammatically, one has

Γ0 = Λ+ Γ
(1)
0 + Γ

(2)
0 + · · · = + + + . . . . (1.139)

To compute the one-loop contribution, Γ(1)
0 , can be computed using the formula presented in appendix A

for the doubling of propagators. Schematically, we may write

=
d

dMii
, (1.140)

where the dot on the propagator represents an open index i. This means in turn that
d

dMii

(
−iΓ(1)

0

)
=

1

2

∫
d̃dk

i

k2 −Mii
, (1.141)

and hence
Γ
(1)
0 =

1

2

∑
i

∫
d̃dk log

(
k2 −Mii

)
+ C , (1.142)

where the sum over i is taken to include the contributions of every scalar in the theory. The integration
constant can only vanish in order to obtain a finite result. Alternatively, we may perform integration
with respect to the mass parameter after evaluation of the loop-integral, yielding

=
1

16π2
Mijδ

ij

[
−1

ε
+

1

2

(
log

Mii

µ̃2
− 1

)]
+O(ε) , (1.143)

and, in turn,

Γ
(1)
0 =

1

4

1

16π2

[
−2M

2
ii

ε
+M2

ii

(
log

Mii

µ2
− 3

2

)]
+O(ε) , (1.144)

where the integration constant was taken to vanish consistently with our previous observation. Minimally
subtracting the pole finally gives the expression of the renormalised one-loop vacuum energy:

Γ
(1)
0 + δ(1)Λ =

1

4

1

16π2
M2
ii

[
log

Mii

µ2
− 3

2

]
. (1.145)

At two-loop, a direct computation gives

Γ
(2)
0 + δ(2)Λ =

1

8

1

(16π2)2
λiijjMiiMjj

[
log

Mii

µ2
− 1

] [
log

Mjj

µ2
− 1

]
=

1

8
λiijjA(Mii)A(Mjj) . (1.146)

As previously done for the renormalised 4-point function in Eq. (1.126), we define at each loop-order an
effective 0-point function, Λ(n), so the renormalised vacuum energy reads

ΓR0 = Λ+ Λ(1) + Λ(2) + . . . , (1.147)

with, as shown above,

Λ(1) =
1

4
M2
ii

[
log

Mii

µ̃2
− 3

2

]
, Λ(2) =

1

8

1

(16π2)2
λiijjA(Mii)A(Mjj) . (1.148)
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5.3 From the renormalised vacuum energy to the effective potential
Having expressed the renormalised vacuum energy in a theory where the fields have zero expectation
value (where the true vacuum lies at the origin), we may now generalise our results to a scalar theory
with a minimum away from the origin. In this case, the scalar fields can be decomposed in terms of
a background component (the classical field, corresponding to the expectation value) and a dynamical
component ϕ:

φ = φc + ϕ . (1.149)

Expressing the Lagrangian density, and in particular the scalar potential in terms of the newly defined
dynamical field ϕ, we obtain

V (φ) = V (φc) +
∂V

∂φa
(φc)ϕ

a +
1

2

∂2V

∂φa∂φb
(φc)ϕ

aϕb +
1

3!

∂3V

∂φa∂φb∂φc
(φc)ϕ

aϕbϕc

+
1

4!

∂4V

∂φa∂φb∂φc∂φd
(φc)ϕ

aϕbϕcϕd ,

(1.150)

Defining background-dependent couplings, the field ϕ is described by a theory with scalar potential

Ṽ (ϕ) = Λ̃ + σ̃aϕ
a +

1

2
M̃abϕ

aϕb +
1

3!
τ̃abcϕ

aϕbϕc +
1

4!
λ̃abcdϕ

aϕbϕcϕd . (1.151)

As for any scalar theory, every result derived above applies in the shifted-theory (we insist that φc is not
a quantum field but only a number). In particular, the renormalised vacuum energy reads

Γ̃R0 = Λ̃ + Γ̃
R (1)
0 + Γ̃

R (2)
0 + . . . , (1.152)

and must be minimal (extremal) to cancel the tadpole term σ̃ to all orders and minimise (extremise) the
quantum action. The renormalised vacuum energy in the shifted theory is referred to as the effective
potential,

Veff ≡ Γ̃R0 , (1.153)

of which the perturbative expansion is usually rewritten

Veff = V (0) + V (1) + V (2) + . . . , (1.154)

and where, using the results of the previous section,

V (0) = V (φc) =
1

2
Mabφ

a
cφ

b
c +

1

4!
λabcdφ

a
cφ

b
cφ
c
cφ
d
c , (1.155)

V (1) =
1

16π2
M̃2
ii

(
log

M̃ii

µ2
− 3

2

)
, (1.156)

V (2) ⊃ 1

8

1

(16π2)2
λ̃iijjA(M̃ii)A(M̃jj) . (1.157)

The background-field-dependent mass matrix reads

M̃ab =
∂2V

∂φa∂φb
=Mab +

1

2
λabcdφ

cφd , (1.158)

and the two-loop contribution V (2) is in fact incomplete due to the absence in the above expression of the
contributions involving the background-field-dependent cubic coupling τ̃ . Finally, as any renormalised
n-point function, the effective potential satisfies the Callan-Symanzik equation

d

dµ
Veff =

[
µ
∂

∂µ
+
∑
I

β(gI)
∂

∂gI
− φacγab

∂

∂φb

]
Veff = 0 , (1.159)

and is therefore exactly RG-invariant.
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6 Alternative renormalisation prescriptions
In this last section, we introduce two variations of the renormalisation procedure presented above that
will be extensively used in chapter 4 to extend the MS scheme to multiple RG-scales. The first one
consists in re-defining the renormalised couplings and fields in the (4− ε)-dimensional theory, by altering
the mass-dimension of the dimensionful quantities, so that the shift in the dimensionality compared to
a 4D theory is conveniently carried by the legs of every operator and tensor coupling. We will then
introduce a renormalisation scheme in which the diagonal structure of the mass matrix is preserved along
the RG-flow, through the introduction of a skew-symmetric contribution to the scalar-field anomalous
dimension matrix.

6.1 Consistent occurrences of the renormalisation scale
In the previous sections, we have used a renormalisation prescription where, to maintain the dimensionless
property of the quartic couplings in the (4− ε)-dimensional theory, an arbitrary scale µ was introduced
such that

L ⊃ −µ
ε

4!
λabcdφ

aφbφcφd , (1.160)

with renormalised fields of mass-dimension [φ] = 1 − ε/2. The starting point of the present discussion
is to observe that it is possible to re-define the scalar fields such that µ no longer appears in the above
expression. This is achieved by defining the auxiliary field

φ′ = µε/4φ , (1.161)

with mass-dimension [φ′] = 1− ε
4 , such that

L ⊃ − 1

4!
λabcdφ

′
aφ

′
bφ

′
cφ

′
d . (1.162)

Such a prescription is fact rather natural, since it enforces the constraint that dimensionless couplings
in the 4-dimensional theory must remain dimensionless in (4 − ε) dimensions, the required shift being
now carried by the renormalised scalar fields. Furthermore, it introduces a interesting regularity in the
dimensionality of every operator and coupling in the theory. To illustrate this point, we consider an
arbitrary operator built from n scalar fields (n ≥ 0) and the corresponding coupling Ca1...an :

L ⊃ −Ca1···anφa1 · · ·φan . (1.163)

In the (4− ε)-dimensional theory, with [φ] = 1− ε
2 , the tensor C must have mass-dimension

[C] = (4− n)− ε

2
(2− n) . (1.164)

Expressing instead the operator (1.163) in terms of the auxiliary field φ′,

L ⊃ −C ′
a1···anφ

′
a1 · · ·φ

′
an , (1.165)

the newly defined coupling C ′ has now mass-dimension

[C ′] = (4− n)− ε

4
(4− n) =

(
1− ε

4

)
(4− n) =

(
1− ε

4

)
[C ′]ε→0 , (1.166)

so that, manifestly, the quartic coupling remains dimensionless independently of the value of ε. The
dimension of every other coupling is simply obtained by multiplying its canonical mass-dimension (in the
4-dimensional theory) with the factor (1 − ε/4). Furthermore, every term appearing in the interaction
Lagrangian is guaranteed to be of dimension d = 4 − ε without the need to explicitly introduce powers
of the renormalisation scale. On the other hand, the auxiliary renormalised field φ′ being related to its
bare counterpart through

φ0 = µ−ε/4Zφ′ , (1.167)
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one introduces instead powers of µ in the kinetic Lagrangian:

Lkin =
1

2
µ−ε/2∂µφ

′TZ2∂µφ′ . (1.168)

As a direct consequence, the powers of the scale µ needed to maintain dimensional consistency during the
process of renormalisation now originate from the propagators instead of the vertices. This interesting
property, (already mentioned in [28]), will be central in chapter 4 to generalise dimensional regularisation
to multiple renormalisation scales µi.

For the remaining of this discussion, we shall explore the consequences on the regularisation process
of the theory as compared to the standard prescription. Starting from the most general (perturbatively
renormalisable) scalar theory with a bare Lagrangian density

L =
1

2
∂µφ

a
0∂

µφb0 − Λ0 − σ0
aφ

a − 1

2
M0
abφ

a
0φ

b
0 −

1

3!
τ0abcφ

a
0φ

b
0φ
c
0 −

1

4!
λ0abcdφ

a
0φ

b
0φ
c
0φ
d
0 , (1.169)

we define the renormalised field multiplet φ with mass-dimension 1− ε/4, satisfying

φ0 = µ−ε/4Zφ . (1.170)

In turn, the bare Lagrangian is rewritten in terms of the renormalised couplings as6

L =
1

2
µ−ε/2∂µφ

aZ2
ab∂

µφb − (Λ + δΛ)− (σa + δσa)φ
a − 1

2
(Mab + δMab)φ

aφb

− 1

3!
(τabc + δτabc)φ

aφbφc − 1

4!
(λabcd + δλabcd)φ

aφbφcφd .

(1.171)

where

Λ0 = Λ+ δΛ,

σ0
a = µε/4 (σe + δσe)Z

−1
ea ,

M0
ab = µε/2 (Mef + δMef )Z

−1
ea Z

−1
fb ,

τ0abc = µ3ε/4 (τefg + δτefg)Z
−1
ea Z

−1
fb Z

−1
gc ,

λ0abcd = µε (λefgh + δλefgh)Z
−1
ea Z

−1
fb Z

−1
gc Z

−1
hd .

(1.172)

Based on these relations, both the scale µ and the field-strength normalisation constant now exclusively
appear in the kinetic Lagrangian. A subtlety arises however regarding the mass term, which in this
configuration is no longer homogeneous to the momentum-squared p2 since [M ] = 2 − ε/2. Hence, in
order to maintain dimensional consistency in the expression of 2-point functions, it will be useful to define
the auxiliary renormalised mass couplings m with mass-dimension 2,

m ≡ µε/2M , (1.173)

and similarly for the corresponding counterterm δm, such that the bare mass matrix satisfies

M0
ab = µε/2 (Mef + δMef )Z

−1
ea Z

−1
fb = (mef + δmef )Z

−1
ea Z

−1
fb . (1.174)

The quadratic part of the Lagrangian may then be rewritten in the form

L ⊃ 1

2
µ−ε/2

(
∂µφ

aZ2
ab∂

µφb − 1

2
(mab + δmab)

)
φaφb . (1.175)

We reiterate that, as compared to the conventional prescription, the powers of µ maintaining the dimen-
sional consistency in loop computations here originate from the propagators. Restricting for simplicity
the discussion to a theory with Lagrangian density

L =
1

2
µ−ε/2

(
∂µφ

aZ2
ab∂

µφb − 1

2
(mab + δmab)φ

aφb
)
− 1

4!
(λabcd + δλabcd)φ

aφbφcφd , (1.176)

6We reiterate that one can always define the renormalised fields in a basis where Z = ZT.
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the leading-order propagator is modified according to

iGtree(p
2) =

i

µ−ε/2p2 − µ−ε/2m+ iε
=

iµε/2

p2 −m+ iε
, (1.177)

and, for instance, the one-loop contribution to the 4-point function reads

−iΓ(1)
abcd(s

2) =
1

2
λabijλijcd

∫
d̃dk

µε/2

(s− k)2 −mii + iε

µε/2

k2 −mjj + iε
, (1.178)

which is equivalent to Eq. (1.44) if one performs the replacement

M ↔ m. (1.179)

In fact, the only notable difference compared to the conventional prescription occurs in the expression
of the ε-dependent beta-functions and anomalous dimension. Reiterating the relation between the bare
and renormalised scalar fields, one has

φ0 = µ−ε/4Zφ , (1.180)

and it is natural to define a modified field-strength renormalisation matrix

Ẑ = µ−ε/4Z , (1.181)

so that all occurrences of the renormalisation scale are contained in Ẑ. The corresponding anomalous
dimension matrix, noted γ̂ε, hence reads

γ̂ε = Ẑ−1µ
dẐ

dµ
= Z−1µ

dZ

dµ
− ε

4
1 = γ − ε

4
1 . (1.182)

The bare quartic coupling is then rewritten as

λ0efgh = (λabcd + δλabcd) Ẑ
−1
ae Ẑ

−1
bf Ẑ

−1
cg Ẑ

−1
dh , (1.183)

so that (the anti-commutation operation between a tensor and a matrix was defined in Eq. (1.84))

0 = βε(λabcd) + µ
dδλabcd
dµ

− {λ← γ̂ε}abcd − {δλ← γ̂ε}abcd . (1.184)

Defining the auxiliary quartic coupling and counterterm

λ̂efgh = λabcd Ẑ
−1
ae Ẑ

−1
bf Ẑ

−1
cg Ẑ

−1
dh (1.185)

δλ̂efgh = δλabcd Ẑ
−1
ae Ẑ

−1
bf Ẑ

−1
cg Ẑ

−1
dh , (1.186)

with mass-dimension
[
λ̂
]
= ε, Eq.(1.183) simply becomes

λ0abcd = λ̂abcd + δλ̂abcd . (1.187)

We then observe that the counterterm can be rewritten in terms of the hatted couplings. For instance,
from the one-loop quartic counterterm

δλabcd =
1

ε(16π2)
λabijλijcd , (1.188)

we obtain
δλ̂abcd =

1

ε(16π2)
λ̂abijẐ

2
ikẐ

2
jlλ̂klcd . (1.189)

More generally, δλ̂abcd is obtained by replacing every vertex with its hatted counterpart, and every internal
index contraction by Ẑ2, namely

λijkl → λ̂ijkl, δij → Ẑ2
ij . (1.190)
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Since λ̂abcd has canonical mass-dimension in the (4 − ε)-dimensional theory, its beta-function is ε-
independent. Taking the RG-derivative of Eq. (1.187), one gets

0 = β(λ̂abcd) + µ
dδλ̂abcd
dµ

= β(λ̂abcd) + β(λ̂efgh)
∂δλ̂abcd

∂λ̂efgh
+ µ

dẐ2
ef

dµ

∂δλ̂abcd

∂Ẑ2
ef

. (1.191)

Then, using

µ
dẐ2

dµ
= 2Ẑγ̂εẐ = 2ẐγẐ − ε

2
Ẑ2 , (1.192)

we obtain, at order O(ε0),
0 = β(λ̂abcd)−

1

2
NI
[
δ[1]λ̂abcd

]
, (1.193)

where NI is an operator that “counts” the number of internal lines. From the Euler formula for planar
graphs, stating that

n = I − V + 1 , (1.194)
with n the number of loops, I the number of internal lines and V the number of vertices; and from the
fact that in the considered theory, the n-loop contributions to the 4-point function contain n+ 1 quartic
vertices, we have that

I = 2n . (1.195)
Therefore, expanding the beta-function perturbatively as

β(λ̂abcd) = β(1)(λ̂abcd) + β(2)(λ̂abcd) + . . . , (1.196)

one directly obtains
β(n)(λ̂abcd) = n δ

(n)
[1] λ̂abcd , (1.197)

with δ
(n)
[1] λ̂abcd standing for the n-loop contribution to the first-order pole of the quartic counterterm.

Finally, to obtain the beta-function of the original quartic couplings, one simply has to write

βε(λ̂abcd) =
[
β(λefgh)− {λ← γ̂ε}efgh

]
Z−1
ea Z

−1
fb Z

−1
gc Z

−1
hd , (1.198)

yielding
βε(λabcd) = −ελabcd + β(λ̂efgh)ZeaZfbZgcZhd + {λ← γ}abcd . (1.199)

Hence, we finally obtain for the n-loop contribution to β(λabcd):

β(n)(λabcd) = n δ
(n)
[1] λabcd +

{
λ← γ(n)

}
abcd

, (1.200)

consistently with the result obtain from the standard µ-prescription (see Eq. (1.117)).

The computation of the mass matrix beta-function is can either be carried out in the same way as in
section 3, starting from the relation

M0
ab = (mef + δmef )Z

−1
ea Z

−1
fb , (1.201)

or in analogy with the above computations, if one differentiates instead the relation

M0
ab = (Mef + δMef )Ẑ

−1
ea Ẑ

−1
fb . (1.202)

As compared to the standard prescription, the mass matrix M here exhibits an anomalous scaling,
consistently with the fact that its mass-dimension equals 2− ε

2 in the (4−ε)-dimensional theory. Defining

M̂ab =Mef Ẑ
−1
ea Ẑ

−1
fb (1.203)

and reiterating the above procedure, it is easy to obtain, starting from Eq. (1.202) ,

0 = β(M̂ab)−
1

2
NI
[
δ[1]M̂ab

]
, (1.204)

and in turn
β(n)(Mab) = nδ

(n)
[1] Mab + {M ← γ}ab , (1.205)

as expected from Eq.(1.116).
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6.2 Diagonal mass-matrix across scales
In the previous sections, we have made the assumption that the mass matrix M (and in turn the leading-
order propagator) is diagonal at the renormalisation scale µ. On the other hand, from the expression
of the beta-functions derived in section 3, we see that, starting from the one-loop level the mass matrix
will in general develop off-diagonal components when varying the renormalisation scale. For instance,
the one-loop contributions to the mass-matrix beta-function was shown in Eq. (1.118) to be equal to

β(1)(Mab) =
1

16π2
λabijMij . (1.206)

We show in this section that a modified renormalisation scheme allows to maintain the diagonal structure
of the mass matrix across scales, by introducing an RG-scale-dependent orthogonal matrix U such that

M̃ = UMUT = diag
(
M1, . . . , MN

)
. (1.207)

In turn, the Lagrangian density in the (4 − ε)-dimensional theory can be rewritten, using the modified
prescription introduced in the previous section, as

L =
1

2
µ−ε/2

[
∂µφ̃

aZ̃2
ab∂

µφ̃b − 1

2
(m̃ab + δm̃ab) φ̃

aφ̃b
]
− 1

4!

(
λ̃abcd + δλ̃abcd

)
φ̃aφ̃bφ̃cφ̃d , (1.208)

where, in particular,
φ̃ = Uφ, Z̃ = ZUT . (1.209)

The tilded renormalised couplings and fields are expressed in the basis that diagonalises the mass matrix
and are related to their bare counterpart via

φa0 = µ−ε/4Z̃abφ̃b , (1.210)

M0
ab = (m̃ef + δm̃ef ) Z̃

ea
−1Z̃

fb
−1 , (1.211)

λ0abcd = µε
(
λ̃efgh + δλ̃efgh

)
Z̃ea−1Z̃

fb
−1Z̃

gc
−1Z̃

hd
−1 . (1.212)

The renormalised propagator reads, in the mass basis:

iG̃R(p
2) =

i

µ−ε/2p21− M̃ − Π̃R(p2)
= µε/2

i

p21− m̃− π̃R(p2)
, (1.213)

where Π̃R(p
2) stands for the renormalised matrix of self-energies expressed in the mass basis, and π̃R(p2)

for its counterpart with mass-dimension 2. The latter reads

π̃R(p
2) = π̃(p2) + δm̃− p2δ̃φ , (1.214)

where the field-strength counterterm δ̃φ satisfies

Z̃TZ̃ = 1 + δ̃φ = UZ2UT = 1 + UδφU
T , (1.215)

and hence δ̃φ = UδφU
T. A perturbative expansion of the renormalised propagator yields, as previously,

iG̃R(p
2) =

i

µ−ε/2p21− M̃
+

i

µ−ε/2p21− M̃

(
−iΠ̃R(p2)

) i

µ−ε/2p21− M̃
+ . . .

=
iµε/2

p21− m̃
+

iµε/2

p21− m̃
(
−iπ̃R(p2)

) iµε/2

p21− m̃
+ . . . ,

(1.216)

so the leading-order propagator is diagonal. In turn, the renormalisation of the theory from counterterms
is performed in the same way as in section 2 where we had assumed that the mass matrix (and therefore
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the leading-order propagator) was diagonal. For instance, we find at one-loop the following expressions
for the counterterms

δ(1)M̃ab =
1

ε (16π2)
λ̃abefM̃

ef , (1.217)

δ(1)λ̃abcd =
1

ε (16π2)

(
λ̃abef λ̃efcd + λ̃acef λ̃efbd + λ̃adef λ̃efbc

)
. (1.218)

It is useful to note that, in the mass-basis, the counterterms take the same form as previously. This
means that, rotating the fields and couplings back to the original basis we exactly recover the expressions
obtained in section 2 where the mass-matrix was assumed to be diagonal. In fact, this non-trivial feature
is due to the absence of non-local divergences, i.e. of contributions involving logarithms of the mass
matrix in the counterterms. As previously, the n-loop beta-functions for the mass matrix and the quartic
coupling are given (see section 3 and 6.1) by

β(n)
(
M̃ab

)
= nδ

(n)
[1] M̃ab +

{
M̃ ← γ̃(n)

}
ab

(1.219)

β(n)
(
λ̃abcd

)
= nδ

(n)
[1] λ̃abcd +

{
λ̃← γ̃(n)

}
abcd

. (1.220)

On the other hand, the anomalous dimension matrix receives here an additional contribution stemming
from the rotation to the mass-basis:

γ̃ = Z̃−1DZ̃ = UZ−1
[
(DZ)UT + Z

(
DUT

)]
= UγUT + U

(
DUT

)
. (1.221)

The additional contribution involves the µ-derivative of the rotation matrix U , and can be shown to be
skew-symmetric by observing that

D
(
UUT

)
= 0 = (DU)UT + U

(
DUT

)
= V + V T , (1.222)

where
V ≡ (DU)UT = −V T = −U

(
DUT

)
. (1.223)

It is in fact a general feature that the anomalous dimension matrix acquires a skew-symmetric component
as soon as an RG-dependent rotation of the scalar fields and couplings is introduced in the theory. In
our case, the anomalous dimension matrix takes the form

γ̃ = UγUT − V , (1.224)

and the mass matrix beta function reads (in matrix form)

β(n)
(
M̃
)
= Uβ(n) (M)UT +

[
V (n), M̃

]
= Uβ(n) (M)UT +

{
V (n) → M̃

}
, (1.225)

where V (n) stands for the n-loop contribution in the perturbative expansion of V . In other words, the
beta-function of the diagonalised mass matrix M̃ is not only obtained by rotating β(M) to the mass basis,
but receives an additional contribution involving the skew-symmetric part of the anomalous dimension
matrix. The same observation holds for the quartic coupling λ̃, and one obtains

β(n)(λ̃abcd) = UaeU bfU cgUdhβ(n)(λabcd) +
{
V (n) → λ̃

}
abcd

. (1.226)

The explicit form of V (and of every V (n)) is computed from the requirement that the rotated mass
matrix M̃ must preserve its diagonal form along the RG-flow, namely that the off-diagonal components
of β(M̃) must vanish. Thus, we directly obtain from Eq. (1.225), for a 6= b:

V
(n)
ab =

[
Uβ(n)(M)UT

]ab
Ma −Mb

, (1.227)
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where Mi = M̃ii denotes the ith eigenvalue of the mass matrix. Hence, for instance, the one-loop beta-
function of the diagonal mass-matrix becomes

β(1)
(
M̃ab

)
=

1

16π2

λ̃abijM̃ij +
∑
e 6=a

λ̃aeijM̃ij

Ma −Me
M̃eb +

∑
e 6=b

λ̃beijM̃ij

Mb −Me
M̃ae

 , (1.228)

from which one can explicitly check that for a 6= b, β(1)
(
M̃ab

)
indeed vanishes.
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Appendix
A Double propagators
We consider a generic loop diagram with n+1 internal propagators, with masses squaredm2

i ,m
2
a1 , . . . ,m

2
an .

Such a diagram involves a loop integral of the generic form

I(m2
i ,m

2
a1 , . . . ,m

2
an) =

∫
d̃dk

1

k2 −m2
i

X(k2,m2
a1 , . . . ,m

2
an) , (1.A1)

where X is an arbitrary function of the masses of the n remaining propagating scalars. Doubling the
propagator of the scalar with mass m2

i yields

J(m2
i ,m

2
j ,m

2
a1 , . . . ,m

2
an) =

∫
d̃dk

1

k2 −m2
i

1

k2 −m2
j

X(k2,m2
a1 , . . . ,m

2
an) . (1.A2)

Then, since
1

k2 −m2
i

− 1

k2 −m2
j

=
m2
i −m2

j

(k2 −m2
i )
(
k2 −m2

j

) , (1.A3)

we directly obtain, for m2
i 6= m2

j ,

J(m2
i ,m

2
j ,m

2
a1 , . . . ,m

2
an) =

I(m2
i ,m

2
a1 , . . . ,m

2
an)− I(m

2
j ,m

2
a1 , . . . ,m

2
an)

m2
i −m2

j

. (1.A4)

The case where m2
i = m2

j is simply handled by expressing the derivative of I with respect to its first
argument, noted I ′,

I ′(m2
i ,m

2
a1 , . . . ,m

2
an) =

∫
d̃dk

1

(k2 −m2
i )

2
X(k2,m2

a1 , . . . ,m
2
an) , (1.A5)

directly leading to the result

J(m2
i ,m

2
i ,m

2
a1 , . . . ,m

2
an) = I ′(m2

i ,m
2
a1 , . . . ,m

2
an) = lim

m2
j→m2

i

I(m2
i ,m

2
a1 , . . . ,m

2
an)− I(m

2
j ,m

2
a1 , . . . ,m

2
an)

m2
i −m2

j

.

(1.A6)

B Two-loop sunset integral
We provide in this appendix the complete derivation of the pole structure of the two-loop sunset integral:

S(x, y, z, p2) =

x, k

y, p + k + q

z, q

=

∫
d̃dk

∫
d̃dq

1

k2 − x
1

(p+ k + q)2 − y
1

q2 − z
≡
∫
d̃dk

∫
d̃dq σ(x, y, z, p, k, q)

(1.B1)

It is convenient to first define and compute the auxiliary quantity Σ defined as

Σ(x, y, z, p2) = xS(x′, y, z, p2) + yS(x, y′, z, p2) + zS(x, y, z′, p2) + p2
dS

dp2
(x, y, z, p2) . (1.B2)
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The first term can be expressed in the form

xS(x′, y, z, p2) =

∫
d̃dk

∫
d̃dq

x

[k2 − x]2
1

(p+ k + q)2 − y
1

q2 − z

=

∫
d̃dk

∫
d̃dq

[
x− k2

]
+ l2

[k2 − x]2
1

(p+ k + q)2 − y
1

q2 − z

= −S(x, y, z, p2) +
∫
d̃dk

∫
d̃dq

k2

[k2 − x]2
1

(p+ k + q)2 − y
1

q2 − z
(1.B3)

and similarly

yS(x, y′, z, p2) = −S(x, y, z, p2) +
∫
d̃dk

∫
d̃dq

1

k2 − x
(p+ k + q)2

[(p+ k + q)2 − y]2
1

q2 − z
(1.B4)

zS(x, y′, z, p2) = −S(x, y, z, p2) +
∫
d̃dk

∫
d̃dq

1

k2 − x
1

(p+ k + q)2 − y
q2

[q2 − z]2
. (1.B5)

The p2-derivative is computed as

p2
dS

dp2
(x, y, z, p2) =

1

2
pµ

dS

dpµ
(x, y, z, p2)

= −
∫
d̃dk

∫
d̃dq

1

k2 − x
pµ(p+ k + q)µ

[(p+ k + q)2 − y]2
1

q2 − z

=

∫
d̃dk

∫
d̃dq

1

k2 − x
−(p+ k + q)2 + kµ(p+ k + q)µ + qµ(p+ k + q)µ

[(p+ k + q)2 − y]2
1

q2 − z
.

(1.B6)

Gathering all above expressions, we observe that Σ can be written as

Σ(x, y, z, p2) = −3S(x, y, z, p2)− 1

2

∫
d̃dk

∫
d̃dq kµ

∂σ

∂kµ
+ qµ

∂σ

∂qµ
. (1.B7)

Integrating by parts allows to further rewrite

Σ(x, y, z, p2) = −3S(x, y, z, p2) +
∫
d̃dk

∫
d̃dq

δµν
2

(
∂kν

∂kµ
+
∂qν

∂qµ

)
σ(x, y, z, p, k, q) , (1.B8)

and since, in d = 4− ε dimensions, one has

δµν
∂kν

∂kµ
= δµν

∂qν

∂qµ
= d = 4− ε , (1.B9)

we finally obtain
Σ(x, y, z, p2) = (1− ε)S(x, y, z, p2) . (1.B10)

In fact, one would have obtained the same result directly from dimensional analysis, given that the mass-
dimension of S equals 2− 2ε.

It is useful at this stage to define the master integral (for n = 1, 2)

In(x, y, z, p
2) =

∫
d̃dk

∫
d̃dq

1

[k2 − x]n
1

(p+ k + q)2 − y
1

q2 − z
, (1.B11)

so that Eq. (1.B10) takes the form

Σ(x, y, z, p2) = (1− ε)S(x, y, z, p2) =
[
xI2(x, y, z, p

2)+ (x↔ y)+ (x↔ z)
]
+ p2

∂I1
∂p2

(x, y, z, p2) . (1.B12)
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First performing the integral over q, we obtain (omitting the arguments of In for clarity):

In =

∫
d̃dk

∫
d̃dq

∫ 1

0

dη
1

[k2 − x]n
1

[q2 + η(1− η)(k + p)2 − ηy − (1− η)z]2

= i
(4π)ε/2

16π2
Γ
(ε
2

)∫
d̃dk

∫ 1

0

dη
1

[k2 − x]n
1

[−η(1− η)(k + p)2 + ηy + (1− η)z]ε/2

= i(−1)−ε/2 (4π)
ε/2

16π2
Γ
(ε
2

)∫
d̃dk

∫ 1

0

dη
1

[k2 − x]n
[η(1− η)]−ε/2[

(k + p)2 − ηy+(1−η)z
η(1−η)

]ε/2 . (1.B13)

Applying the generalised Feynman parameterisation formula,

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

dρ
ρα−1(1− ρ)β−1

[ρA+ (1− ρ)B]
α+β

, (1.B14)

yields, after a change of variables,

In = i
(4π)ε/2

16π2
(−1)−ε/2

Γ
(
n+ ε

2

)
Γ(n)

∫
d̃dk

∫ 1

0

dη

∫ 1

0

dρ
(1− ρ)n−1ρε/2−1 [η(1− η)]−ε/2[

k2 + ρ(1− ρ)p2 − (1− ρ)x− ρηy+(1−η)z
η(1−η)

]n+ε/2
(1.B15)

Integration over k gives

In = (−1)n−1 µ−2ε

(16π2)2
eεγE

Γ(n− 2 + ε)

Γ(n)

∫ 1

0

dη [η(1− η)]−ε/2
∫ 1

0

dρ∆2−n(1− ρ)n−1ρε/2−1∆̃−ε , (1.B16)

where we have introduced the quantity

∆ = ρ
ηy + (1− η)z
η(1− η)

+ (1− ρ)x− ρ(1− ρ)p2 (1.B17)

and its dimensionless counterpart
∆̃ =

∆

µ̃2
. (1.B18)

In order to apply Eq. (1.B12), we first proceed with the computation of I2. From Eq. (1.B16), we get

I2 = − µ−2ε

(16π2)2
eεγEΓ(ε)

∫ 1

0

dη [η(1− η)]−ε/2
∫ 1

0

dρ (1− ρ)ρε/2−1∆̃−ε . (1.B19)

The second order pole structure arises from the ε-expansion of Γ(ε), combined with the fact that the
integral over ρ diverges as ε−1. We have in particular that

eεγEΓ(ε) =
1

ε
+O(ε) , (1.B20)

and ∫ 1

0

dη [η(1− η)]−ε/2 = B
(
1− ε

2
, 1− ε

2

)
=

Γ
(
1− ε

2

)
Γ
(
1− ε

2

)
Γ(2− ε)

= 1 + ε+O
(
ε2
)
, (1.B21)∫ 1

0

dρ (1− ρ)ρε/2−1 = B
(
2,−ε

2

)
=

Γ (2) Γ
(
− ε2
)

Γ(2− ε
2 )

=
2

ε
− 1 +O(ε) , (1.B22)

where B denotes here the Euler beta-function, defined as

B(a, b) =

∫ 1

0

dxxa−1(1− x)b−1 . (1.B23)
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In fact, the above expansions are all we need to express the diverging contributions to I2. The reason is
that we may rewrite ∆ as

∆ = x

(
1 +

ρ

x

[
ηy + (1− η)z
η(1− η)

− (x+ p2)

]
+ ρ2

p2

x

)
, (1.B24)

so that

∆̃−ε =

(
x

µ̃2

)−ε [
1− ε log

(
1 +

ρ

x

[
ηy + (1− η)z
η(1− η)

− (x+ p2)

]
+ ρ2

p2

x

)
+O(ε2)

]
. (1.B25)

In this form, we see that the logarithm scales as O(ρ) when ρ → 0, hence taming the divergence of the
integral over ρ. In turn, the O(ε) contributions in the expansion of ∆̃−ε do not contribute to the pole
structure of I2, and we finally obtain

I2(x, y, z, p
2) = − µ−2ε

(16π2)2

[
2

ε2
+

1

ε

(
1− 2 log

x

µ̃2

)
+O(1)

]
. (1.B26)

Turning to the computation of the last term in Eq. (1.B12), we have from Eq. (1.B16)

I1 =
µ−2ε

(16π2)2
eεγEΓ(−1 + ε)

∫ 1

0

dη [η(1− η)]−ε/2
∫ 1

0

dρ∆ρε/2−1∆̃−ε . (1.B27)

Taking the p2-derivative tames the divergence in the integral over ρ since

∂∆

∂p2
= −ρ(1− ρ) . (1.B28)

It is then straightforward to arrive at the result

p2
∂I1
∂p2

=
µ−2ε

(16π2)2

[
p2

2ε
+O(1)

]
. (1.B29)

Inserting the above results in Eq. (1.B12), we obtain the final form of the diverging contributions to S:

S(x, y, z, p2) =
µ−2ε

(16π2)2

{
−2
ε2

(x+ y + z) +
1

ε

(
p2

2
− x− y − z

)
+

2

ε
[A(x) +A(y) +A(z)]

}
+O(1) .

(1.B30)



Chapter 2

Renormalisation group equations for general
gauge theories

We have arrived in the previous chapter at the conclusion that a consistent perturbative description of a
scalar field theory relies on (i) the expression of the renormalised n-point functions and (ii) the knowl-
edge of the full set of beta-functions and anomalous dimensions. This observation equally holds when it
comes to more general theories, and particular to gauge-Yukawa theories which constitute the standard
framework for the study of the Standard Model and its postulated extensions. We call renormalisation
group equations (RGEs) the set of differential equations governing the evolution of the couplings and
fields under variations of the renormalisation scale – among which the Callan-Symanzik equation, intro-
duced in section 4. The knowledge of the RGEs is therefore an essential component of the theoretical
description of a given perturbative QFT, and is required for many phenomenological applications.

We have exemplified in chapter 1 the procedure allowing to obtain the RGEs in a simple scalar theory
up to the two-loop level. If the resulting expressions, Eqs. (1.118), (1.119)–(1.121), have been obtained
at the cost of a reasonable effort, this task becomes increasingly difficult as additional degrees of free-
dom are introduced in the theory. On the other hand, performing the computations without explicitly
specifying the field content of the theory has the major advantage that the resulting expressions are, in
turn, applicable to any particular model sharing the same structure. For this reason, a long-standing
programme was initiated forty years ago [29, 30, 31, 32, 33, 34, 35] with the aim of deriving once and
for all the RGEs of a general gauge theory up to the two-loop level. Over the years, the formalism was
extended to take into account Abelian kinetic mixing [36, 37] and the mixing between scalar degrees of
freedom [38] induced by off-diagonal components in the anomalous dimension matrix. The application of
the dummy field method to derive the beta-functions of dimensionful couplings (as discussed in section 2)
was reviewed in [38]. Additionally, various mistakes and misprints in the original results have since been
uncovered.

More recently, an elegant formalism was developed in [39] to express and derive the RGEs of a general
gauge theory. In addition to systematically taking into account kinetic and scalar mixing, the full set
of 3-loop beta-functions for the gauge couplings was obtained, for the first time, in a theory based on a
semi-simple gauge group (generalising the results of [40] in theories based on a simple gauge group). The
approach of [39] relies on the local renormalisation group framework [41, 42, 43, 44, 45], which reveals
non-trivial relations between the beta-functions of gauge, Yukawa and scalar quartic couplings at differ-
ent loop-orders: the so-called Weyl consistency conditions. Not only these relations provide a powerful
way of cross-checking existing results; they also constitute a powerful tool in the determination of still
unknown higher-loop order beta-functions, as demonstrated in [46] where the four-loop gauge-coupling
beta-functions in the Standard Model were obtained for the first time.

With these general expressions at hand, one has in turn to specialise the formulae to any particular
gauge-theory of interest, whose phenomenological properties depend on the form of the beta-functions.
If performed by hand, this task proves in most cases remarkably difficult, and a more straightforward

41
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(and reliable) approach consists in implementing the general expressions in a computer code. For this
reason, a module of the Mathematica package SARAH [47] implements since its version 4.0 the general
results of [29, 30, 31, 35], and has been developed jointly with the dedicated Python tool PyR@TE [48, 49].

In this chapter, we present a new version of the tool PyR@TE – PyR@TE 3 [9] –, implementing
the new formalism developed in [39]. In addition to the possibility of computing the gauge-coupling
beta-functions up to three-loop, many improvements were made to the code which has, on this occasion,
been essentially rewritten. As compared to its previous versions, PyR@TE 3 is more flexible in the
implementation of the model, offering the possibility to compute the RGEs of a larger class of theories.
In addition, its performance was increased by a factor O(102) to O(105) for a class of relatively simple
extensions of the Standard Model.

We review section 1 the general formalism [39] allowing to parameterise the Lagrangian density of the
most general gauge-Yukawa theory. In section 2, we present the general form of the beta-functions in this
formalism and explicitly show how to obtain the RGEs for the dimensionful couplings using the dummy-
field method [10] – deferring to appendix (A) the presentation of the resulting expression. Finally, we
thoroughly discuss in section 3 their implementation in PyR@TE 3, including in particular a description
of some of the newly implemented algorithms and the validation of the results against other available
tools.

1 Definitions
1.1 Semi-simple gauge groups: a unified notation
We consider in this chapter a general theory, invariant under gauge transformation belonging to the the
semi-simple gauge group

G = G1 × · · · × GM , (2.1)

written as the product of M ≥ 1 simple Lie groups. We will at this stage make the assumption that G
contains at most one U(1) factor, ensuring the absence of kinetic mixing in the abelian sector. It will
be shown in a second step how to generalise the present formalism to the most general case, where an
arbitrary number of U(1) gauge factors can be considered.

To each gauge factor Gp (p = 1, . . . ,M) corresponds a set of Np = dimGp vector fields (Vp)
a
µ (a =

1, . . . ,Np) linearly transforming in the adjoint representation of Gp,

(Vp)
a
µ → (Vp)

a
µ +

1

gp
∂µθ

a(x)− (fp)
abc

θb(x) (Vp)
c
µ , (2.2)

where gp is the gauge coupling associated to Gp, and fp denotes the structure constants of the corre-
sponding Lie algebra. Hence, noting (Tp)

a the gauge generators in some representation of the algebra of
Gp, one has [

(Tp)
a
, (Tp)

b
]
= i (fp)

abc
(Tp)

c
. (2.3)

The notation is greatly simplified by introducing a set of indices A,B,C, . . . ranging from 1 to dimG,
where

dimG =

M∑
p=1

dimGp =
M∑
p=1

Np ≡ NG . (2.4)

In turn, all vector fields may be gathered in the NG-dimensional multiplet V Aµ (A = 1, . . . , NG), such
that

V Aµ =
(
(V1)

1
µ , . . . , (V1)

N1

µ , . . . , (VM )
1
µ , . . . , (VM )

NM

µ

)
. (2.5)

This newly defined vector multiplet linearly transforms in the adjoint representation of G:

V Aµ → V Aµ +
1

gA
∂µθA(x)− fABCθB(x)V Cµ , (2.6)
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where
gA =

(
g1, . . . , g1, . . . gM , . . . , gM

)
, (2.7)

and where f now stands for the structure constants of the whole semi-simple Lie algebra. In any of its
representation, the gauge generators TA (A = 1, . . . , NG) hence satisfy[

TA, TB
]
= ifABCTC . (2.8)

In a next step, the field-strength tensor FAµν is defined in the usual way

FAµν = ∂µV
A
ν − ∂νV Aµ + gAfABCV Bµ V

C
ν , (2.9)

so that the kinetic Lagrangian for the gauge fields reads

Lkin = −1

4
FAµνF

µν
A . (2.10)

Following [39], we may absorb the gauge coupling constants in the vector fields by defining the auxiliary
multiplet

V
A

µ = gAV
A
µ , (2.11)

and the corresponding field-strength tensor FAµν , expressed as1

F
A

µν = gAF
A
µν = ∂µV

A

ν − ∂νV
A

µ + fABCV
B

µ V
C

ν , (2.12)

and the kinetic Lagrangian may be rewritten in terms of FAµν

Lkin = −1

4
g−2
A F

A

µνF
µν

A = −1

4
G−2
ABF

A

µνF
µν

B , (2.13)

where we have conveniently defined the diagonal matrix G, such that

GAB = δABgA . (2.14)

As discussed in detail in [39, 9] the above notations can be straightforwardly generalised to the case where
multiple U(1) gauge factors are present, by letting G2

AB develop non-vanishing off-diagonal components
in the abelian sector. Considering a general gauge group with p abelian gauge factors,

G = U(1)p × GN.A. , (2.15)

the symmetric matrix G2 takes the generic block-diagonal form:

G2
AB =



h11 · · · h1p
...

. . .
...

hp1 · · · hpp
g2p+1

. . .
g2n


AB

≡
(
H2 0
0 G2

N.A.

)
AB

. (2.16)

The p× p symmetric block H2 can always be decomposed as

H2 = GmixG
T
mix , (2.17)

where Gmix is only defined up orthogonal transformations of the form

Gmix → GmixO , OOT = 1 , (2.18)

and can therefore always be chosen to be triangular (either upper or lower).

Finally re-defining V µ → Vµ and Fµν → Fµν , we arrive at the following general form for the gauge
kinetic Lagrangian

Lkin = −1

4
G−2
ABF

A
µνF

µν
B . (2.19)

1We have used the fact that g2AfABC = gBgCfABC due to the semi-simple structure of the algebra: fABC can only be
non-zero if all three indices correspond to the same simple sub-algebra.
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1.2 General gauge-Yukawa theories
We introduce in the gauge theory considered above a set of NF left-handed Weyl fermions gathered in
the multiplet ψi, and a set NS of real scalars noted φa. Under infinitesimal gauge transformations, these
multiplets undergo

ψi → ψi + iθA(x)
(
TAψ
)ij

ψj , (2.20)

φa → φa + iθA(x)
(
TAφ
)ab

φb , (2.21)

with Tψ and Tφ the corresponding gauge generators. In turn, the fermionic and scalar covariant derivatives
read

Dµψ
i = ∂µψ

i − iV Aµ
(
TAψ
)ij

ψj , (2.22)

Dµφ
a = ∂µφ

a − iV Aµ
(
TAφ
)ab

φb , (2.23)

respectively. We note that the gauge couplings do not appear explicitly in the expansion of the covariant
derivatives since they have been absorbed in the re-definition of the vector fields. The kinetic Lagrangian
involving the vector, fermion and scalar fields is then given in the form

Lkin = −1

4
G−2
ABF

A
µνF

µν
B + iψ†

i σ̄
µDµψ

i +
1

2
DµφaD

µφa , (2.24)

where σ̄µ = (1,−σ)µ, with σi (i = 1, 2, 3) the usual Pauli matrices. The most general interaction
Lagrangian is parameterised as

Lint =−
1

2

(
Yaijψ

iψj φa + h.c.
)
− 1

2

(
Mijψ

iψj + h.c.
)

− 1

2
µabφ

aφb − 1

3!
tabcφ

aφbφc − 1

4!
λabcdφ

aφbφcφd ,

(2.25)

where h.c. denotes the hermitian conjugate. The Yukawa and fermion-mass couplings both are symmetric
under exchange of their fermionic indices, while µ, t and λ are fully symmetric tensors populated with
real entries.

The authors of [39, 45] have introduced a convenient notation where the left-handed Weyl spinors and
their right-handed hermitian conjugate are gathered in the Majorana-like spinor Ψ, defined as

Ψi ≡
(
ψ
ψ†

)i
, i = 1, . . . , 2NF . (2.26)

The corresponding covariant derivative reads

DµΨ
i = ∂µΨ

i − iV Aµ (TΨ)
ij
Ψi , (2.27)

where the newly defined fermionic gauge generators take the following block-diagonal form

TAΨ =

(
TAψ 0

0 −(TAψ )∗

)
. (2.28)

In turn, Lkin can be rewritten in terms of Ψ as [39]

Lkin = −1

4
G−2
ABF

A
µνF

µν
B +

i

2
ΨT

(
0 σµ

σ̄µ 0

)
DµΨ+

1

2
DµφaD

µφa , (2.29)

where σµ = (1,σ)µ. Similarly, defining the Yukawa and fermion-mass couplings in the 2NF -dimensional
space as

yaij ≡
(
Ya 0
0 Y ∗

a

)
ij

, mij ≡
(
M 0
0 M∗

)
ij

, (2.30)

allows rewrite the interaction Lagrangian (2.25) in the form

Lint = −
1

2
yaijΨ

iΨj φa − 1

2
mijΨ

iΨj − 1

2
µabφ

aφb − 1

3!
tabcφ

aφbφc − 1

4!
λabcdφ

aφbφcφd . (2.31)
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2 Beta-functions
Following [39], we parameterise the all-order beta-functions of the dimensionless (i.e. gauge, Yukawa and
quartic) couplings as

βAB ≡
dG2

AB

dt
=

1

2

∞∑
n=1

κn
∑
perm

G2
ACβ

(n)
CDG

2
DB , (2.32)

βaij ≡
dyaij
dt

=
1

2

∞∑
n=1

κn
∑
perm

β
(n)
aij , (2.33)

βabcd ≡
dλabcd
dt

=
1

4!

∞∑
n=1

κn
∑
perm

β
(n)
abcd , (2.34)

where κ = 1/(16π2). The “RG-time” t is defined such that

d

dt
= µ

d

dµ
, (2.35)

meaning that t = log µ
µ0

with µ0 some arbitrary energy scale. The permutations are understood to be
taken among the two gauge indices A,B, the two fermionic indices i, j and the four scalar indices a, b, c, d
in Eqs. (2.32), (2.33) and (2.34), respectively. The beta-functions are given as a perturbative expansion in
terms of the β(n), with n denoting the loop-order. As mentioned in the introduction of this chapter, while
the expressions of β(1,2)

AB , β(1,2)
aij and β

(1,2)
abcd have been known for decades [29, 30, 31, 32, 33, 34, 35], the

authors of [39] have derived in this formalism the gauge coupling beta-functions up to the three-loop level,
β
(3)
AB , and reformulated the known expressions in the Yukawa and quartic sectors. They have however

not provided the corresponding beta-functions for the dimensionful couplings mij , µab and tabcd, which
we have computed in [10]. Following Eqs. (2.32) - (2.34), we define the beta-functions for fermion mass,
trilinear and scalar mass couplings as

βij ≡
dmij

dt
=

1

2

∞∑
n=1

κn
∑
perm

β
(n)
ij , (2.36)

βabc ≡
dtabc
dt

=
1

3!

∞∑
n=1

κn
∑
perm

β
(n)
abc , (2.37)

βab ≡
dµab
dt

=
1

2

∞∑
n=1

κn
∑
perm

β
(n)
ab , (2.38)

respectively. Assuming that the beta-functions for the Yukawa and quartic couplings are known, it is in
fact always possible to determine the full set of corresponding expressions for the dimensionful couplings.
Such a procedure has been referred to in the literature as the dummy-field method [35, 50, 38] and used
in the past to extend the formulae derived in the seminal works [29, 30, 31, 32, 33, 34]. In the following,
we briefly summarise this procedure as usually presented in the literature, and will show in a second
step that a conceptually different but strictly equivalent approach involving background fields can also
be followed.

We consider a general theory containing only dimensionless couplings, for which the expressions of
the beta-functions are known. In our notation, the interacting part of the associated Lagrangian density
is given by

Lint = −
1

2
yaijΨiΨjφ

a − 1

4!
λabcdφ

aφbφcφd . (2.39)

The starting point of the dummy-field method is to extend the theory with a non-propagating scalar field
with no gauge interactions. Reusing the notation from [38], this dummy field, noted φd̂, hence satisfies
Dµφd̂ = 0. Making explicit the terms involving φd̂ and discarding a constant as well as a term linear in
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φd̂, the Lagrangian (2.39) may be rewritten

Lint =−
1

2
yaijΨiΨjφ

a − 1

4!
λabcdφ

aφbφcφd

− 1

2
yd̂ijΨiΨjφd̂ −

1

4
λabd̂d̂φ

aφbφd̂φd̂ −
1

3!
λabcd̂φ

aφbφcφd̂ .

(2.40)

The above form makes it clear that the Lagrangian (2.31) of a theory containing dimensionful coupling
can be recovered if the following identifications are made:

yd̂ijφd̂ = mij , λabd̂d̂φd̂φd̂ = 2µab , λabcd̂φd̂ = tabc . (2.41)

The mapping (2.41) allows for a straightforward derivation of the individual contributions to the beta-
functions of the dimensionful couplings, starting from the known expressions in the dimensionless case.
For instance, the diagrams contributing to the fermion mass beta-function, β(n)

ij , are obtained from the
individual contributions to the Yukawa couplings beta-function, β(n)

aij , when the external scalar field φa is
taken to be the dummy field φd̂. Consequently, one should in practice perform the following replacements:

a→ d̂, yaij → mij , λabcd → tabc .

Similarly, starting from the quartic couplings RGEs, one may derive the beta-functions for the trilinear
and scalar mass couplings when one or two of the external scalar legs are replaced by a dummy field.
This procedure is applied on a diagrammatic basis, allowing in particular the identification of unphysical
tadpole contributions which need to be discarded [38].

In fact, the same results can be obtained without the need to introduce a dummy field, but rather
by introducing for the scalar fields in the original theory with Lagrangian (2.39) a classical background
component (see also [51]). Namely, we may define the dynamical fields ϕ around the classical background2

φc,
φ = φc + ϕ , (2.42)

so that the Lagrangian (2.39) takes the form

Lint(ϕ) = −
1

2
mij(φc)Ψ

iΨj − 1

2
yaijΨ

iΨj ϕa

− Λ(φc)− σa(φc)ϕa −
1

2
µab(φc)ϕ

aϕb − 1

3!
tabc(φc)ϕ

aϕbϕc − 1

4!
λabcdϕ

aϕbϕcϕd ,

(2.43)

with background field-dependent dimensionful couplings:

mij(φc) = yaijφ
a
c , (2.44a)

Λ(φc) =
1

4!
λabcdφ

a
cφ

b
cφ
c
cφ
d
c (2.44b)

σa(φc) =
1

3!
λabcdφ

b
cφ
c
cφ
d
c , (2.44c)

µab(φc) =
1

2
λabcdφ

c
cφ
d
c , (2.44d)

tabc(φc) = λabcdφ
d
c . (2.44e)

The Lagrangian density thereby obtained is very similar to Eq. (2.40), with the background-field multiplet
playing the role of the dummy field. In particular, since φc is a background field, it does not propagate,
has no gauge interactions, and satisfies ∂µφc = 0.

The beta-functions of the dimensionful couplings are then simply expressed starting from their ex-
pression in terms of the dimensionless ones and the background-field. For instance, the fermion mass
parameter satisfies (dropping φc in the argument of mij for better clarity)

βij ≡ β(mij) =
d

dt
mij =

d

dt
(yaijφ

a
c) = βaijφ

a
c − yaijγabφbc . (2.45)

2A similar procedure was applied in chapter 1, section 5.3 to define the effective potential.
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The first term is obtained by contracting the scalar leg of the Yukawa-coupling beta-function with the
background field (similar to the dummy-field prescription). The second term systematically removes any
contribution stemming from the leg corrections to yaij , in correspondence with the dummy-field method
prescription stating that the tadpole contributions must be individually discarded [38]. We obtain similar
relations for the dimensionful couplings of the scalar potential, involving the beta-function of the quartic
couplings. For instance,

βabc ≡ β(tabc) = βabcdφ
d
c − λabcdγdeφec , (2.46)

βab ≡ β(µab) =
1

2

(
βabcdφ

c
cφ
d
c − λabcdγceφecφdc − λabcdφccγdeφec

)
. (2.47)

In a second step, with the expression of the dimensionless-coupling beta-functions at hand, any contraction
involving the background field is substituted with its expression in terms of the dimensionful couplings.
For instance, the one-loop pure-scalar contribution to the quartic beta-function (computed in chapter 1)
reads

1

4!

∑
perm

β
(1)
abcd ⊃

1

4!

∑
perm

3λabijλijcd = λabijλijcd + λacijλijbd + λadijλijbc , (2.48)

and, with view on Eqs. (2.46) and (2.47), contributes to the trilinear and scalar mass couplings beta-
functions according to

1

3!

∑
perm

β
(1)
abc ⊃ (λabijλijcd + λacijλijbd + λadijλijbc)φ

d
c

= λabijtijc + λacijtijb + taijλijbc

=
1

3!

∑
perm

3λabijtijc , (2.49)

and

1

2!

∑
perm

β
(1)
ab ⊃

1

2
(λabijλijcd + λacijλijbd + λadijλijbc)φ

c
cφ
d
c

=
1

2
(2λabijmij + taijtijb + taijtijb)

=
1

2!

∑
perm

λabijmij + taijtijb , (2.50)

respectively. We therefore conclude from Eqs. (2.49) and (2.50) that the pure-scalar contributions to the
one-loop beta-functions of tabc and µab read

β
(1)
acd ⊃ 3λabijtijc , β

(1)
ab ⊃ λabijmij + taijtijb , (2.51)

in agreement with our previous findings [10] based on the dummy-field method. Either way, one is able
to derive all contributions to the beta-functions of the dimensionful parameters mij , tabc and µab. The
resulting expressions, which we have obtained in [10], are listed in appendix A. We finally note that
it could be useful in the future to also extend these results to the tadpole term σa and the vacuum
energy Λ: while the former can be absorbed by a shift of the scalar fields and the latter is irrelevant
in the determination of the vacuum of the theory at a fixed renormalisation scale, their RG-evolution
is in general non-trivial and needed to properly understand the properties of the scalar potential across
RG-scales.

3 Implementation in PyR@TE 3
Having presented the general formalism allowing to express the beta-functions for every (dimensionless
and dimensionful) coupling of a general gauge theory, we now proceed with their implementation in
PyR@TE 3. First, we discuss in section 3.1 the general structure of the programme, as well as some
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important technical aspects related to the improved performance compared to PyR@TE 2 [49]. The
subsequent sections will provide a pedagogical introduction to PyR@TE 3, covering the implementation
of the model and the various options and functionalities made available to the user. We shall finally
discuss in section 3.6 the validation of the output against previous versions of the software and other
available tools.

3.1 Technical overview
We provide in figure 2.1 a schematic representation of the main steps implemented in the program that
allows, starting from the model file, to eventually obtain the set of beta-functions for all couplings of the
model. Each of these main steps is detailed in the following, and will be illustrated for concreteness with
the example of the Standard Model (SM), based on the gauge group GSM = U (1)× SU (2)× SU (3). To
keep this presentation concise, we will more precisely focus on the quartic self-interaction of the Higgs
doublet, denoted Φ, and decomposed in terms of its real components according to3

Φ =
1√
2

(
π1 + iσ1
π2 + iσ2

)
. (2.52)

In turn, the quartic part of the Higgs potential is given by

V (Φ) ⊃ λ

2

(
Φ†Φ

)2
=
λ

8

(
π2
1 + π2

2 + σ2
1 + σ2

2

)2
, (2.53)

where the factor 1/2 is purely conventional and will slightly simplify the forthcoming expressions.

Mapping onto the general formalism
In input, all relevant information on the model is gathered in a model file with a syntax which will be
extensively described in the next sections; the minimal amount of information required to compute the
beta-functions being (i) the gauge group, (ii) the field content of the model, and (iii) the interaction
Lagrangian. The next step, corresponding to the block Mapping (1) in figure 2.1, consists in mapping
the model of interest onto the general formalism introduced in section 1. In this regard, one needs to

1. Express the general scalar multiplet φa in terms of the real components of every scalar field present
in the model,

2. Express the general Weyl multiplet Ψi in terms of every fermion present in the model,

3. Express the gauge coupling matrix GAB in terms of the gauge couplings of each individual gauge
factor composing semi-simple gauge group,

4. Obtain the explicit form of the gauge generators, TAΨ and TAφ ,

5. Express the various tensors involved in the expression of the general interaction Lagrangian density
(yaij , λabcd, µab, ...).

For the Standard Model, the real scalar multiplet φ – step (1.) – has NS = 4 components and takes the
form

φ =


π1
π2
σ1
σ2

 , (2.54)

while, for the Weyl multiplet Ψ – step (2.) – we arrive at NF = 15 components when taking into account
the chirality, weak-isospin and colour of every fermion (but not the generations). In step (3.), we obtain
for the SM gauge-coupling matrix the following structure:

GAB = diag
(
g1, g2, g2, g2, g3, . . . , g3︸ ︷︷ ︸

8 times

)
, (2.55)

3The factor 1/
√
2 enforces canonical normalisation in the kinetic Lagrangian written in terms of the real components.
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Input

Gauge group
Field content

Interaction Lagrangian

Mapping (1)

φa, Ψi

GAB ,
[
TAΨ
]ij , [TAφ ]ab,

yaij , λabcd, . . .

Mapping (2)

ĜI = [PG]
I
J gJ

λ̂I = [Pλ]
I
J λJ

ŷI = [Py]
I
J yJ

Computation

β(G2
AB),

β(λabcd), β(yaij)

Reverse mapping

β(λI) =
[
P−1
λ

]I
J
β(λaJbJcJdJ )

β(yI) =
[
P−1
y

]I
J
β(yaJ iJjJ )

Output

LATEX, Mathematica, Python

Gauge invariance ? Px exists for all x ?

Figure 2.1: General structure of the program. The various steps are described in detail and exemplified
in the main text.

with, in total, NG = 12 gauge degrees of freedom. The gauge couplings g1, g2 and g3 correspond to the
U (1), SU (2) and SU (3) gauge factors, respectively.

To obtain the expression of the gauge generators in step (4.), PyR@TE relies since version 2 on an
internal module called PyLie [49], allowing to obtain an explicit form for the representation matrices in
any given representation of a simple Lie group4. On subtlety arises however for complex scalars, for which
a translation must be given between the generation matrices in the complex representation of the Lie
algebra and the representation matrices of the real multiplet φ. Let us consider a general n-component
complex field of the form

Φ =
1√
2
(π + iσ) , (2.56)

and with a set of gauge generators TAΦ in the complex representation of the Lie algebra. We define the
real multiplet

φ =

(
π
σ

)
, (2.57)

with 2n components, and the corresponding set of gauge generators TAφ . It can be shown that TAφ is
given, in terms of TAΦ as

TAφ = i Im

{(
1 i
−i 1

)
⊗ TAΦ

}
, (2.58)

4In version 2, only the SU (N) and SO(N) Lie groups were included, while since version 3 it is possible, in addition, to
implement the symplectic Sp(2N) family as well as the exceptional Lie groups G2, F4 and E6,7,8.
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where ⊗ denotes the Kronecker product between two matrices. As required by the φ being a real scalar
field, TAφ is always a purely imaginary, skew-symmetric matrix. While the former property is manifest
from Eq. (2.58), the latter can be explicitly checked by writing5

(
TAφ
)T

= i Im

{(
1 −i
i 1

)
⊗
(
TAΦ
)∗}

= iIm

{[(
1 i
−i 1

)
⊗
(
TAΦ
)]∗}

= −iTAφ . (2.59)

Back to the example of the SM Higgs doublet (with hypercharge 1/2), the generators TAΦ (A = 1, 2, 3, 4)
under the electroweak gauge group U (1)× SU (2) are given by

T 1,2,3,4
Φ =

1

2

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
(2.60)

and applying Eq. (2.58) yields

T 1,2,3,4
φ =

i

2




0 0 1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 ,


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

(2.61)
We finally note that, for A = 5, . . . , 12, the matrices T 1

φ identically vanish since Φ transforms trivially
under SU (3).

Finally, step (5.) requires for instance to express the rank 4, NS-dimensional symmetric tensor λabcd
in terms of the couplings of the scalar potential. One way to proceed is to compute the fourth derivatives
of V with respect to the real field multiplet φ. Equivalently, PyR@TE 3 expands the Lagrangian in terms
of the real components φi (i = 1, . . . , NS), and subsequently identifies each coefficient with a particular
component of the tensor λabcd. For instance, in the SM, we have from Eq.(2.53)

V (Φ) ⊃ λ

8

(
π4
1 + 2π2

1π
2
2 + · · ·+ σ4

2

)
≡ 1

4!
λabcdφ

aφbφcφd , (2.62)

yielding for instance (properly taking into account the symmetry of λabcd under permutation of its indices)

λ1111 = 3λ, λ1122 = λ, . . . λ4444 = 3λ . (2.63)
Representing the 4-dimensional, rank 4 tensor λ in the form of a 4× 4 array of 4× 4 matrices yields the
overall structure6

[
λ
]
abcd

=




3λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ



0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 0



0 0 λ 0
0 0 0 0
λ 0 0 0
0 0 0 0



0 0 0 λ
0 0 0 0
0 0 0 0
λ 0 0 0


0 λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 0



λ 0 0 0
0 3λ 0 0
0 0 λ 0
0 0 0 λ



0 0 0 0
0 0 λ 0
0 λ 0 0
0 0 0 0



0 0 0 0
0 0 0 λ
0 0 0 0
0 λ 0 0


0 0 λ 0
0 0 0 0
λ 0 0 0
0 0 0 0



0 0 0 0
0 0 λ 0
0 λ 0 0
0 0 0 0



λ 0 0 0
0 λ 0 0
0 0 3λ 0
0 0 0 λ



0 0 0 0
0 0 0 0
0 0 0 λ
0 0 λ 0


0 0 0 λ
0 0 0 0
0 0 0 0
λ 0 0 0



0 0 0 0
0 0 0 λ
0 0 0 0
0 λ 0 0



0 0 0 0
0 0 0 0
0 0 0 λ
0 0 λ 0



λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 3λ





, (2.64)

5Note that the Kronecker product satisfies (A⊗ B)T = AT ⊗ BT and (A⊗ B)∗ = A∗ ⊗ B∗. In addition, we have used
the hermiticity of the representation matrices TA

Φ .
6To the human eye, this structure looks already rather complicated in case as simple as the Standard Model, with only

one quartic coupling and 4 scalar components.
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which, due to the symmetries of the model, is essentially composed of zero entries. This predominance of
null entries in the tensors (we will call such tensors sparse) is in fact characteristic of models with a high
degree of symmetry (and hence of any gauge theory). This observation is rather intuitive: the constraint
of a symmetric Lagrangian only allows a very specific subset of contractions between the components
of the scalar and fermion multiplets. Quite importantly, the large increase in performance compared to
the previous versions of the program stems from this property: The algorithms have been specifically
designed in PyR@TE 3 to take advantage of the sparsity of the tensors. In this regard, the highly efficient
dict() data structure in Python conveniently allows to store the content of the sparse tensors in the
form of a dictionary of keys.

If not otherwise specified by the user, PyR@TE 3 will check before continuing further that gauge
invariance is satisfied at the level of the full interaction Lagrangian. For instance, in the quartic sector,
gauge invariance translates into the following constraint on the tensor of quartic couplings λabcd:

(TAφ )aeλebcd + (TAφ )beλaecd + (TAφ )ceλabed + (TAφ )deλabce = 0 . ∀ a, b, c, d, A . (2.65)

Mapping onto a minimal subset of couplings
Once every tensor in the theory has been computed in terms of the user input (the representation matrices
and every tensor of couplings), an additional step before the actual computation consists in identifying
a minimal subset of beta-functions to be computed from the general formulae. For instance, it is clear
from Eq. (2.64) that computing β(λ1111) is sufficient to recover the expression of β(λ). In the general
case, PyR@TE first determines a minimal set of linearly independent components in each tensor. For the
quartic couplings, we shall denote this list of linearly independent components by λ̂. In this process, it is
explicitly checked that (i) λ̂ contains as many elements as the number of quartic couplings in the model,
and (ii) that the matrix Pλ relating the elements of λ̂ and λ, the Nλ-component vector populated with
the quartic couplings is invertible. In our example, Nλ = 1 and we (trivially) obtain

λ̂ = (λ1111) = (3λ) = (3) · (λ), λ = (λ) , (2.66)

so the 1× 1 matrix Pλ and its inverse read

Pλ = (3), P−1
λ = (

1

3
) . (2.67)

The computation will be aborted if there are less than Nλ linearly independent elements among the
components of the tensor λ (and similarly for every other tensor of couplings). Such a situation occurs if
the user has implemented a Lagrangian density containing a redundant basis of operators. In that case,
too many free parameters (couplings) are introduced in the model, and it is only possible to compute the
beta-functions for some linear combinations of these couplings.
Computation of the beta-functions

The final step is then to compute the beta-functions for each element of the vector λ̂ (and similarly for
Ĝ, ŷ, ...) using the general formulae of [39] and [10]. In our example, only one beta-function needs to
be computed: β(λ1111). For instance, the pure scalar contributions to this beta function at one-loop are
computed from Eq. (2.48):

β(1)(λ1111) ⊃
1

4!

∑
perm

3λ11ijλij11 = 3λ11ijλij11 = 36λ2 . (2.68)

Finally, inverting the relation between λ̂ and λ allows to obtain the beta-functions of each quartic coupling
of the model, through

λ = P−1
λ λ̂ → β(λI) =

[
P−1
λ

]I
J
β(λ̂J) . (2.69)

In our simple example, this yields

β(λ) =
1

3
β(λ1111) → β(1)(λ) ⊃ 12λ2 . (2.70)
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3.2 Download and installation
The new version of PyR@TE may be downloaded from the following GitHub web page:

https://github.com/LSartore/pyrate

No further installation procedure is needed and the user may start working in PyR@TE’s main folder.
However, PyR@TE relies on a number of Python modules which need to be installed by the user if not
already present on his/her machine. We show here the full list of dependencies:

• Python ≥ 3.6

• PyYAML ≥∗ 5.3

• Sympy ≥ 1.5

• h5py ≥∗ 2.10

• Numpy ≥∗ 1.18

• Scipy ≥∗ 1.4

• Matplotlib ≥∗ 3.1

Version requirements marked with an asterisk are not critical requirements, in the sense that PyR@TE
is likely to work properly with older versions of these modules. However, we note that during its de-
velopment, PyR@TE was only tested with the above listed versions. We also note that Scipy and
Matplotlib are solely required to run the Python output of PyR@TE (see section 3.5).

3.3 Definition of the model
The information on the particle physics model is contained in the so-called model file, which is the starting
point of any computation performed by PyR@TE. The overall structure of the model file is essentially
based on the previous versions [48, 49] of the software. However, a number of improvements were made
that we will review in the following. Let us begin this discussion with, as usual, the example of the
Standard Model. The full SM model file is provided in B. In the following we will go through this model
file step by step, making comments wherever useful.

General information – Three fields can be provided in this section, namely the Author , Date of
creation and Name of the model file. The first two are essentially informative while the last one will be
used by PyR@TE to generate its output (see section 3.5).

Author: Lohan Sartore
Date: 08.06.2020
Name: SM

Gauge groups – This is the first essential information to provide to PyR@TE. Here the full gauge group
of the SM is U(1)Y × SU (2)L × SU (3)c :

Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

Each gauge factor must be given a custom label and is described by the usual name of the associated
Lie group. Possible choices cover the entirety of the gauge groups associated with a simple Lie algebra,
namely U(1), SU (N), SO(N), Sp(N) and the five exceptional groups G2, F4 and E6,7,8. We emphasise
that this is an improvement compared to PyR@TE 2, where symplectic and exceptional groups were not
implemented.

Field content – The next step consists in defining the particle content of the model. Three kinds of
fields may be implemented in the model file, namely Fermions , RealScalars and ComplexScalars :

https://github.com/LSartore/pyrate
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Fermions: {
Q : {Gen: 3, Qnb: {U1Y: 1/6, SU2L: 2, SU3c: 3}},
L : {Gen: 3, Qnb: {U1Y: -1/2, SU2L: 2, SU3c: 1}},
uR : {Gen: 3, Qnb: {U1Y: 2/3, SU2L: 1, SU3c: 3}},
dR : {Gen: 3, Qnb: {U1Y: -1/3, SU2L: 1, SU3c: 3}},
eR : {Gen: 3, Qnb: {U1Y: -1, SU2L: 1, SU3c: 1}},

}

RealScalars: {
}

ComplexScalars: {
H : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2, SU3c: 1}},

}

In every case, the user must specify the quantum numbers of each particle under the gauge group of the
model. For Abelian gauge factors, we call quantum number the charge of the fields (e.g. the hypercharge
under U(1)Y ). For non-Abelian gauge factors, it corresponds instead to the irreducible representation
under which the field transforms. Most of the time, the usual notation based on the dimension of
the representation (e.g. 2 of SU (2), 3 of SU (3), ...) is sufficient to identify unambiguously a given
representation. In this notation, the conjugate representations are indicated by a negative quantum
number in the model file. For instance, it is understood that Qnb: {..., SU3c : -3} refers to the
anti-fundamental representation of SU (3)c. In addition, the quantum number 1 indicates that the field
transforms in the trivial representation, i.e., is unaffected by the gauge transformations of the associated
gauge factor. Another way to indicate that a field is not charged under one or several gauge factors is to
simply omit them in the definition of the quantum numbers. For instance, it is understood that eR is a
singlet under both SU2L and SU3c if the user writes:

eR : {Gen: 3, Qnb: {U1Y : -1}}

This remark also applies to Abelian gauge factors, in which case the charge of the corresponding field is
automatically set to 0 .

In a situation where a given gauge group possesses several representations with the same dimension
(e.g. the 15 and 15′ of SU (3)), the usual notation breaks down and the user must use the Dynkin labels
notation instead. To keep this presentation straightforward we defer the discussion on Dynkin labels and
their implementation in the model file to C.

In addition to the quantum numbers, the Fermions of the model may be assigned a generation num-
ber. This number can either be a positive integer or a symbolic number, for instance: Q : {Gen: nG, ...} .
In the latter case, the beta-functions will be expressed in terms of the symbolic generation numbers they
may explicitly depend on.

For ComplexScalars , the user must indicate the decomposition of the fields in terms of a real and
imaginary part. To this end, he/she must use the RealFields and Norm keywords. In our case, the
complex Higgs doublet is expressed as

H =
1√
2
(Π + iΣ) . (2.71)

We note that there is no need to define the real fields beforehand in the RealScalars section of the
model file. We also want to draw the reader’s attention to the influence of the norm of complex scalars
on the actual expression of the resulting beta-functions: varying the norm of a complex scalar field can
be seen as a rescaling of its real components, or, equivalently, a rescaling of the couplings of the model.

Finally, since the SM contains no real scalars (other than the real components of the Higgs doublet),
we show here an example of syntax:
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RealScalars: {
S : {Qnb: {U1Y: 1/2, SU2L: 1, SU3c: 1}}

}

A short-hand syntax may also be employed, removing the Qnb keyword:

RealScalars: {
S : {U1Y: 1/2, SU2L: 1, SU3c: 1}

}

A last important point concerns the conjugate fields of the model. In contrast to the previous version
of PyR@TE, the anti-particles should never be defined in the model file. Instead, every fermion and
complex scalar is automatically assigned a conjugate counterpart which can be accessed by appending
bar to its name. For instance, in our case, Qbar and Hbar would respectively correspond to the fields
Q̄ and H† of the Standard Model.

Potential – This section contains the expression of the Lagrangian density of the theory. Since kinetic
terms are not needed in PyR@TE, the only types of couplings which must be defined are:

• The Yukawa couplings ( Yukawas )

• The quartic scalar couplings ( QuarticTerms )

• The trilinear scalar couplings ( TrilinearTerms )

• The scalar mass couplings ( ScalarMasses )

• The fermion mass couplings ( FermionMasses )

The syntax used in these five sections to define the Lagrangian was revisited in PyR@TE 3. In order
for the user to have full control over the expressions of the various terms, the new syntax consists in
writing the terms as an explicit mathematical expression with contracted indices. As an illustration, the
down-type Yukawa coupling of the Standard Model,

Ydf1,f2 Q̄f1,i,aH
i d aR,f2 + h.c. , (2.72)

is implemented in the model file as:

Yukawas: {
Yd : Qbar[i,a] H[i] dR[a]

}

A few important remarks are in order.
First, in the definition of the Yukawa couplings (and fermion masses), the flavour indices are implicit.

Consequently, the order in which the two fermions appear in the expression has an influence on the
structure of the Yukawa matrices. In the example above, it is understood that Qbar is contracted with
the first flavour index of Yd and dR with the second one.

Then, a field which transforms non-trivially under more than one non-Abelian gauge factor will carry
more than one index. In this case, the order in which the indices should be written is based on the order
in which the gauge factors were defined. Therefore, in the above example, the SU2 index of Qbar comes
before the SU3 index.

Finally, we note that the hermitian conjugate is automatically inferred by PyR@TE and therefore
should not need to be defined explicitly. This behaviour always applies to Yukawa and fermion mass
couplings, but also to couplings involving scalar fields. In the latter case, however, the user has the choice
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to include or not the conjugate couplings in the model file. Let us consider as an illustration the λ5
quartic coupling of the Two-Higgs-doublet model:

1

2

[
λ5

(
φ†1φ2

)2
+ λ∗5

(
φ†2φ1

)2]
. (2.73)

There are essentially two ways of implementing this term:

QuarticCouplings: {
# First possibility - the conjugate counterpart is explicitly defined
lambda5 : 1/2 (phi1bar[i] phi2[i])**2,
lambda5star : 1/2 (phi2bar[i] phi1[i])**2

# Second possibility - let PyR@TE infer the conjugate automatically
lambda5 : 1/2 (phi1bar[i] phi2[i])**2

}

In the first implementation, the λ∗5 term is explicitly defined. In this situation, the suffix star must be
appended to the name of the coupling (here, lambda5star ) to enforce the relation of conjugation among
the two couplings. In the second implementation, where the conjugate counterpart is omitted, PyR@TE
will automatically detect that the term is not invariant under complex conjugation, and consequently
generate the λ∗5 term when constructing the Lagrangian of the model. Finally, there may be situations
where λ5 is assumed real. In this case, the natural way to proceed is to set λ∗5 = λ5 in Eq. (2.73), leading
to the first implementation shown below. Equivalently, the assumption7 real may be used to achieve
the same outcome:

QuarticCouplings: {
# lambda5 is assumed real
lambda5 : 1/2 (phi1bar[i] phi2[i])**2 + 1/2 (phi2bar[i] phi1[i])**2

# lambda5 is assumed real, shorthand
lambda5 : {1/2 (phi1bar[i] phi2[i])**2 , real}

}

Definitions – In order to help the user deal with this new syntax and produce a clear and readable
model file, a new section was introduced in PyR@TE 3. This is the Definitions section, which must
be implemented inside the Potential part of the model file (see the full SM model file in B). In this
section, the user may define quantities that will be used in the expression of the Lagrangian density. For
instance, in the SM, one has to introduce the conjugated Higgs field:

H̃ ≡ εH† , (2.74)

where ε = iσ2 is the Levi-Civita tensor of rank 2. Such an auxiliary quantity may be defined in the model
file in the following way:

Definitions: {
Htilde[i] : Eps[i,j]*Hbar[j]

}

The tensor Eps is a pre-defined object in PyR@TE 3. Levi-Civita tensors of rank higher than 2 may
be defined in the same fashion, increasing the number of indices accordingly. We emphasise that the
gauge indices must always appear explicitly, both on the right- and left-hand side. According to the
usual convention, repeated indices will be summed over internally. Any object defined this way can now
be used in the Lagrangian expression. In our case, the up-type Yukawa couplings may be written as:

7More detail about assumptions is given below.
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Yukawas: {
Yu : Qbar[i,a] Htilde[i] uR[a],

# ... is equivalent to ...
Yu : Qbar[i,a] Eps[i,j] Hbar[j] uR[a],

}

Not only the Definitions sections may help produce a clear and structured model file, but it also
introduces two additional features, namely:

1. The use of gauge group generators in the expression of the Lagrangian,

2. The possibility of using Clebsch-Gordan coefficients (CGCs) to produce terms that cannot be ex-
pressed simply in terms of products of fields with contracted indices.

Both rely on the group-theoretical module PyLie, first introduced in PyR@TE 2 [49]. This module
underwent a number of modifications and improvements presented in C. We also defer to this appendix
the treatment of the CGCs and their implementation in the model file. Here we focus on the first feature,
namely the definition of gauge generators in the model file.

As an illustration, let us consider a toy model in which the scalar sector of the SM is extended by a
complex SU(2) triplet δ. It is convenient to rewrite this triplet in the form of a 2×2 matrix by contraction
with the generators of the fundamental representation:

∆ ≡ ta δa . (2.75)

In the following, we demonstrate how to use the Definitions section to implement the quartic part of
the scalar potential:

V = λ1
(
H†H

)2
+ λ2 Tr(∆

†∆)H†H + λ3H
†∆∆†H + λ4 Tr(∆

†∆)2 + λ5 Tr(∆
†∆∆†∆) . (2.76)

First, we have to introduce the generators ta in order to define the matrix ∆. The general syntax to
define the generators of a given representation is t(group, representation) , where the representation
may be labelled either by its dimension or its Dynkin labels. We note that the generators thus defined
carry three indices with respective ranges D, Nr and Nr, where D is the dimension of the Lie group
(i.e. of its adjoint representation) and Nr that of the considered representation. The matrix ∆ and its
hermitian conjugate ∆† may therefore be implemented as8:

Definitions: {
# Define the generators of the fundamental rep of SU2 (indices are implicit)
tFund : t(SU2, 2),

# Define the matrix Delta and its adjoint
Delta[i,j] : tFund[a,i,j] delta[a],
DeltaDag[i,j] : tFund[a,i,j] deltabar[a]

# We may also define the traces
Tr2 : DeltaDag[i,j] Delta[j,i],
Tr4 : DeltaDag[i,j] Delta[j,k] DeltaDag[k,l] Delta[l,i]

}

Having also pre-defined the traces Tr(∆†∆) and Tr(∆†∆∆†∆), the scalar potential (2.76) can now be
implemented in a simple, concise form:

QuarticTerms: {
lambda1 : (Hbar[i] H[i])**2,
lambda2 : Hbar[i] H[i] Tr2,
lambda3 : Hbar[i] Delta[i,j] DeltaDag[j,k] H[k],

8In this example, we used the fact that SU (N) generators are hermitian. In general, we may conjugate the representation
matrices appending bar to the name of the generators. For instance, tFundbar[a,j,i] would correspond to (t∗a)

j
i = (t†a)ij .
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lambda4 : Tr2**2,
lambda5 : Tr4

}

Assumptions – In some cases, the user may want to assume some particular properties for the Yukawa
(or fermion mass) matrices. Four different assumptions can be implemented for such couplings in the
model file, namely: real , symmetric , hermitian and unitary . To impose one or more of these
properties to a Yukawa matrix, the general syntax is:

coupling: {expression, assumption1, assumption2, ...}

For instance, let us assume a real and symmetric Yukawa matrix in the leptonic sector of the SM:

Yukawas: {
# Without assumptions
Ye : Lbar[i] H[i] eR

# With assumptions
Ye : {Lbar[i] H[i] eR, real, symmetric}

},

Based on these assumptions, PyR@TE will automatically perform the appropriate simplifications in the
resulting RGEs. In the case illustrated above, Y †

e would be systematically simplified as Ye. We note
that in some cases, such assumptions should be necessarily included in order to guarantee explicit gauge
invariance of the Lagrangian, checked by PyR@TE 3 using the appropriate options (see section 3.4). As
stated previously, the real assumption may also be used for quartic, trilinear and scalar mass couplings.
At this point, it is important to note that depending on the model considered, such assumptions might
not be stable along the RG-flow. This may happen for instance if a coupling which is assumed real has
a beta-function with a non-vanishing imaginary part. In such cases, the simplifications made in the ex-
pressions of the beta-functions would not be valid at all scales and would generate an inconsistent RG-flow.

Finally, another possible assumption, squared , concerns only the scalar mass terms, and allows to
make the distinction between the two following notations:

L ⊃ µφ†φ and L ⊃ µ2φ†φ . (2.77)

The former case, where the mass dimension of µ equals 2, is the one assumed in PyR@TE by default. In
the latter case, the squared keyword may be added in order to indicate that the scalar mass coupling
has a mass dimension of 1:

ScalarMasses: {
mu : {Phibar[i] Phi[i], squared}

}

In this case, PyR@TE will internally use the relation

β(µ) =
1

2µ
β(µ2) (2.78)

to infer the value of β(µ).

Vacuum-expectation values – The 2-loop RGEs of vacuum-expectation values (VeVs) were imple-
mented in PyR@TE 3, based on the MS expressions of Refs. [52, 53]. To define a VeV, the only thing
to do is to identify the real scalar component which develops a non-zero expectation value. For instance,
considering that in the SM the VeV is developed by the real part of the second component of the Higgs
doublet, we simply have to write:
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Vevs: {
v : Pi[2]

}

Since VeVs break gauge invariance, the resulting RGEs are given in a general Rξ gauge and there-
fore explicitly depend on the ξ parameter. If the user wishes to fix the gauge, he/she may use the
GaugeParameter keyword:

# Let's work in the Landau gauge
GaugeParameter: 0

Anomalous dimensions – The 2-point anomalous dimensions of scalars and fermions may be computed
by PyR@TE. This is achieved by adding the optional ScalarAnomalous and FermionAnomalous sec-
tions in the model file. In order to compute the anomalous dimensions of one or several pairs of fields,
the following syntax may be used:

ScalarAnomalous: {
(Pi[1], Pi[1]),
(Sigma[2], Sigma[2])

}

FermionAnomalous: {
(Q[1,1], Q[1,1]),
(eR, eR),
(uR[1], dR[1])

}

We emphasise that the fields used as an input for computing the anomalous dimensions are the individual
components of the gauge eigenstates, and not the fields themselves (except of course if a given field is a
gauge singlet).

To compute all the possible anomalous dimensions of the model, the user may instead use the keyword
all :

ScalarAnomalous : all
FermionAnomalous : all

In this case, PyR@TE will display in its output all the non-vanishing anomalous dimensions of the fields
of the model.

We note finally that the anomalous dimensions depend in general on the gauge fixing parameter ξ. If
the gauge was fixed using the GaugeParameter keyword introduced above, its value will be substituted
accordingly in the expression of the anomalous dimensions.

Substitutions – Another new feature in PyR@TE 3 is the possibility of performing various kinds of
substitutions after the computation of the RGEs is carried out. To this end, the Substitutions section
can be implemented in the model file. The possible types of substitutions which may be performed are
listed and exemplified below.

(1) The first type of substitution consists in renaming some of the couplings. This is mainly useful
to rename the gauge couplings whose names are set by default to g[GroupName] . For instance, in the
SM, the three gauge couplings would respectively be labelled as gU1Y , gSU2L , gSU3c . If one wishes to
rename them to g1 , g2 and g3 , the following syntax must be used:

Substitutions: {
gU1Y : g1,
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gSU2L : g2,
gSU3c : g3

}

(2) Another possibility is to apply GUT normalisation factors to some of the gauge couplings. The
following code indicates that the normalisation g1 →

√
5/3 g1 must be adopted and substituted in the

beta-functions:

Substitutions: {
g1 : sqrt(5/3)*g1

}

(3) In some cases, the user may want to constrain the form of the Yukawa (or fermion mass) matrices,
for instance neglecting the first two generations or the off-diagonal couplings. The examples below show
how to proceed in these two cases:

Substitutions: {
# First example - Neglect the first and second generations

Yu : [[0, 0, 0 ],
[0, 0, 0 ],
[0, 0, 'yt']],

# A short-hand notation may be employed for diagonal matrices
Yd : [0, 0, 'yb'],
Ye : [0, 0, 'ytau'],

# Second example - Neglect the off-diagonal couplings
Yu : ['yu', 'yc', 'yt'],
Yd : ['yd', 'ys', 'yb'],
Ye : ['ye', 'ymu', 'ytau'],

}

It is important to note that the newly defined couplings (e.g. 'yt' , 'yb' , ...) are put inside quotation
marks '' . Furthermore, the user must be aware that in some cases, the form of the Yukawa matrices as
defined in the Substitutions section might not be preserved along the RG-flow. In other words, some
components of the Yukawa matrices which were set to 0 in the model file may have a non-vanishing
beta-function starting from the one- or two-loop level. In such cases, PyR@TE will generate a warning
message in the Latex output, informing the user that the RG-flow is inconsistent.

(4) The last possibility consists in defining new quantities, expressed in terms of the couplings of the
model. For instance, if the user wishes to obtain the beta-functions in terms of the αi = g2i /(4π) instead
of the coupling constants gi, he/she would have to define the following substitutions:

Substitutions: {
alpha1 : g1**2 / (4 pi),
alpha2 : g2**2 / (4 pi),
alpha3 : g3**2 / (4 pi)

}

In this situation, PyR@TE will internally take care of computing the beta-functions of the new couplings,
using the relation

β (αi) =
1

4π
2gi β (gi) , (2.79)

and then substituting g2i with 4π αi everywhere in the expression of the beta-functions.

Latex – In this section, the user is invited to define any substitution that should be performed in the
Latex output. Although it is possible to choose as the name of a coupling a simple Latex expression
(e.g. g_1 ), we recommend to avoid it in practice (and more generally to avoid the use of any special
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character in the name of the couplings) since it might lead to some unexpected behaviour. Instead, the
mapping to Latex expressions should be defined in the dedicated Latex section, so the user has full
control over the output.

3.4 Running PyR@TE
As for previous versions of the software, PyR@TE 3 can be run either from the console or from an
interactive IPython notebook. In the former case, the general syntax is:

$ python pyR@TE.py -m [path to model file] [-args]

We emphasise that the python alias must be associated with a Python 3 executable correctly linked to
the dependencies listed in section 3.2. In an interactive IPython notebook, PyR@TE would be run using:

%run pyR@TE.py -m [path to model file] [-args]

The only mandatory argument is the -m argument, used to specify the path (relative or absolute) to the
model file. The list of optional arguments is presented in Table 2.1. Compared to the previous versions,
the number of available command-line arguments was reduced in order to simplify to a maximum the use
of the software. Instead, most of the settings are gathered in a configuration file, 'default.settings',
which can be found in PyR@TE’s main directory. The list of options that are available in this file is given
in Table 2.2. For some of the options, there is an overlap between the default and command-line settings.
In this case, the latter always has priority over the former. For example, even if the gauge invariance of
the model is to be checked by default, the user may use the -no-gi command-line option to prevent this
behaviour.

We note in passing that the gauge invariance check of the model is a new feature in PyR@TE 3. When
enabled, the invariance of all types of couplings under infinitesimal gauge transformations is tested. For
instance, in the scalar quartic sector (as already mentioned in Eq.(2.65)), gauge invariance requires that

(TAφ )aeλebcd + (TAφ )beλaecd + (TAφ )ceλabed + (TAφ )deλabce = 0 (2.80)

for all a, b, c, d spanning the space of the scalar components of the model, and for all A = 1, . . . , NG. It
is strongly advised to check the gauge invariance of a model at least once, after which the option -no-gi
may be used to speed up the computation9.

The -l and DefaultLoopLevel settings should be followed either by a positive integer (1, 2 or 3) or
the keyword max, meaning that the computation should be carried out at the maximum loop-order, i.e.
3-loop for the gauge couplings and 2-loop for the other couplings. Another possibility is to use a list of
three elements10, e.g. [3,2,1] to set the respective orders of the gauge, Yukawa, and quartic couplings
RGEs to different values.

The -rb and RealBasis settings enable the use of a new feature available in PyR@TE 3, namely the
rotation of the generators of real representations. These representations have the property that there
exists a set of bases where their generators tA are imaginary, skew-symmetric matrices. In the following,
such bases will be referred to as a real bases. In addition, for adjoint representations (which are always
real), there exists a basis where the usual relation(

tA
)B
C
= −ifABC , (2.81)

with fABC the structure constants of the Lie algebra, is satisfied. However, the generators of real
representations originally computed by PyLie never satisfy the two above properties, preventing the user
from properly implementing models where one or several fields transform under real representations. In
order to circumvent this issue, a new algorithm was implemented in PyLie, allowing to systematically

9For large gauge groups and/or representations, the gauge invariance check may take up to a few minutes due to the
large number of tensor contractions to be computed. For simpler models, the computation takes a few seconds at most.

10On some operating systems, the use of square brackets in the command line may not work properly. In this case, putting
the list inside quotation marks should solve the problem.
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Option Short-hand Description
--Loops -l Set the loop-level of the computation
--Results -res Set the directory in which the output is stored
--RealBasis -rb Set the behaviour regarding the generators of real rep-

resentations
--Quiet -q Switch off informative output
--no-KinMix -no-kin Neglect the Abelian kinetic mixing
--CheckGaugeInvariance -gi Switch on the Lagrangian gauge invariance check
--no-CheckGaugeInvariance -no-gi Switch off the Lagrangian gauge invariance check
--LatexOutput -tex Switch on the Latex output
--no-LatexOutput -no-tex Switch off the Latex output
--MathematicaOutput -math Switch on the Mathematica output
--no-MathematicaOutput -no-math Switch off the Mathematica output
--PythonOuput -py Switch on the Python output
--no-PythonOuput -no-py Switch off the Python output

Table 2.1: Command-line options in PyR@TE 3. The second part of the table shows the various switches
which may be used by the user to override some of the default settings.

Option Description
VerboseLevel Set the verbose level : Info, Critical (only errors and warnings).
ResultsFolder Set the default folder in which the results are stored.
LogFolder Set the default folder in which the log files are stored.
DisableLogFiles True/False.
DefaultLoopLevel Default loop level of the computation.
CheckGaugeInvariance True/False.
PrintComputationTimes Display the computation times : True/False.
RealBasis Default behaviour regarding the generators of real representations.
CreateFolder Store the output in a folder named after the model: True/False.
CopyModelFile Copy the original model file in the results folder : True/False.
LatexOutput True/False.
AbsReplacements In the Latex output, replace x∗x with |x|2: True/False.
GroupTheoryInfo In the Latex output, display some information about the gauge groups and

their representations: True/False.
MoreGroupTheoryInfo Display information about the first N representations of the gauge groups:

N/False.
MathematicaOutput True/False.
MathematicaSolver In the Mathematica output, generate a ready-to-use RGE solver:

True/False.
PythonOutput True/False.
EndCommands Commands to be automatically run from the console after the output is

generated.

Table 2.2: Default settings available in PyR@TE’s configuration file.
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rotate the generators of real representations to a real basis; and in the case of adjoint representations, to
the basis where Eq. (2.81) is satisfied. To trigger this behaviour, the -rb (or RealBasis) option may be
assigned three possible values:

• ‘-rb adjoint’ rotates only adjoint representations,

• ‘-rb all’ rotates all real representations,

• ‘-rb False’ or ‘-rb None’ disables the rotation to real bases.

We emphasise that complex and pseudo-real representations are unaffected by this setting.

The EndCommands default settings allows to run one or several shell commands after the run. It was
designed to compile the Latex output automatically after its generation by PyR@TE. The general syntax
is:

EndCommands "command 1, command 2, ..."

For instance, we may call pdflatex twice using

EndCommands "pdflatex [name].tex, pdflatex [name].tex"

where [name] will be automatically replaced by the name of the model (and therefore of the output files)
before running the commands.

3.5 Output
After the computation, PyR@TE may generate three types of output, namely Latex, Mathematica, and
Python files. With the CreateFolder option enabled, all the output files will be gathered in a folder
named after the model (e.g. SM/ in our case).

The Latex output contains a detailed summary of the content of the model (gauge groups, particles,
Lagrangian, substitutions), and the results of the computations, i.e. the beta-functions of the various
couplings of the model. If the GroupTheoryInfo setting is enabled, some information about the gauge
groups and their representations will be added in an appendix, along with the expressions of the CGCs
possibly used in the definition of the Lagrangian. Using the MoreGroupTheoryInfo setting followed by
a positive integer will display information about the first few representations of the gauge groups, in
addition to the representations actually populated by the fields of the model.

The Mathematica output consists of a single file, containing the expressions of the beta-functions. In
addition, if the MathematicaSolver default setting is set to True, the file is enhanced with a ready-to-
use RGE solver. To solve the RGEs, the first thing that the user needs to do is to define the boundary
conditions, that is the value of the couplings of the model at some initial energy scale. Then, after
having defined the running scheme (the loop level for each type of couplings), the user may solve the
system of RGEs using the RGsolve[] function and finally plot the results using the RGplot[] function.

Finally, the Python output consists of three files, gathered in a PythonOutput folder. For instance,
in the case of the SM:

• RGEs.py contains the expressions of the beta-functions in the form of Python functions.

• SM.py contains various classes used to define the couplings of the model, the RGEs, and several
functions used to solve the RGEs and plot the running couplings. In principle, this file should not
be modified by the user, but may still serve as a basis for more sophisticated analyses.

• run.py is the file that should be modified and run by the user to perform the RG analysis. For
more details about the use of the classes and functions called in this file, we invite the reader to
refer to the documentation provided with PyR@TE in the doc/ folder.
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3.6 Validation
The output of PyR@TE 3 was validated against some of the results found in the literature, in particular
in the 3-loop gauge sector which is a new feature compared to the previous version. Full agreement was
found between PyR@TE 3 and the following references :

• SM gauge couplings RGEs at three-loop [54, 55, 56].

• Gauge, Yukawa and quartic sector of the general Two-Higgs-doublet model at respective orders
3-2-1 [57].

• 2-loop dimensionless and dimensionful RGEs of the toy model described in [38] in the SUSY limit11.

• 1-loop quartic RGEs of simple SU (5) and SO(10) models [58].

• 1-loop Yukawa sector of the minimal SU (5) model [59].

• 1-loop quartic, trilinear and scalar mass RGEs of the most general Georgi-Machacek model [60].
We find agreement for the 1-loop gauge coupling RGEs after correcting a trivial mistake in Eq.
(C1) of [60].

In addition, we compared the results of PyR@TE 3 against those of PyR@TE 2 for some of the models
presented in [48] and [49]. In doing so, we were able to compare the performance of the two versions of
the software in terms of execution time, as illustrated in Table 2.3. We first present the comparison of
the results for some of the models listed in [48]:

• Standard Model with a real scalar singlet: full agreement at 2-loop.

• Standard Model with a complex scalar doublet: full agreement at 2-loop.

• Standard Model with Majorana triplet fermion and Dirac doublet: full agreement in the gauge,
Yukawa and quartic sectors at 2-loop. Agreement is found for the scalar mass RGEs after correcting
a mistake in the latest version of the PyR@TE 2 code. For the fermion mass RGEs, we find
agreement once the corrected formulae presented in [38] are taken into account.

• SM extended by a complex triplet and vectorlike doublets: at 1-loop, we find many disagreements
in the quartic sector due to an incomplete implementation of the model. Indeed, in PyR@TE 1 it
was not possible to contract the same set of fields in different ways. As a consequence, couplings
(operators) allowed by gauge invariance were missing. In such a situation, the resulting RGEs are
arbitrary and vary depending on the choice of the n legs chosen to compute the various n-point
contributions to the beta-functions (see also footnote 11).

The limitation of PyR@TE 1 mentioned in the last point was overcome in PyR@TE 2, as illustrated
in [49] with the example of a toy model where the SM is extended with a scalar triplet. For this model,
the scalar potential is given by Eq. (2.76), and we were able to compare the results given by PyR@TE
2 and 3. Full agreement is found at 2-loop, after an obvious error in the model file from PyR@TE 2 is
corrected (an additional lepton doublet was unintentionally included).

Finally, we validated the output of PyR@TE 3 for the U(1)B−L extension of the SM described in [49].
In the gauge, Yukawa and quartic sector, full agreement is found between the two versions of the code
in presence of kinetic mixing in the Abelian sector. However, there is a disagreement for the scalar mass
beta-functions starting at 2-loop which we describe in the following. Letting

V ⊃ µHH†H + µχχ
†χ (2.82)

11As explained in [38], the toy model in its non-SUSY form is not well defined, leading to arbitrary results depending
on the details of the implementation. It is possible to get full agreement between the results from SARAH and PyR@TE
before taking the SUSY limit by a simple mapping. However, we refrain from providing these details here since they concern
unphysical results and the mapping is only simple because the implementation conventions used in SARAH and PyR@TE
are quite similar.



64 Chapter 2 – Renormalisation group equations for general gauge theories

Model Loop order PyR@TE 2 PyR@TE 3

SM B-L
1 114 1.5
2 8823 11

2 + 3 (gauge) / 23

SM + complex triplet
1 385 1.0
2 59936 3.2

2 + 3 (gauge) / 5.7

SM + scalar singlet
1 79 0.9
2 5765 4.3

2 + 3 (gauge) / 5.6

SM + complex doublet
1 153 1.2
2 39666 6.2

2 + 3 (gauge) / 9.4

SM + Majorana triplet
+ Vectorlike doublet

1 262 1.3
2 15653 10.7

2 + 3 (gauge) / 13.2

Table 2.3: Comparison of the running times of PyR@TE 2 and PyR@TE 3 for several models, using a
machine with a 1.8GHz Intel Core i7 processor. The running times are expressed in seconds.

be the quadratic part of the scalar potential V , where H is the usual SM Higgs doublet and χ is a
complex scalar field which is a SM singlet with (B-L)-charge 2, the disagreement occurs in the two-loop
contributions of β(µH) and β(µχ). More precisely, the problematic terms are of the generic form g4µH
and g4µχ, respectively, so we only include the terms of these forms in the expressions below. We note
that the gauge coupling matrix is taken to be(

g1 g12
g21 gBL

)
, (2.83)

while g2 stands for the SU (2)L coupling constant.

Expressions of β(2)(µH)

Using PyR@TE 2:

1

µH
β(2)(µH) ⊃ 1105

96
g41 −

145

16
g42 +

1105

96
g412 +

7

2
g21g

2
2 +

1105

48
g21g

2
12 + 17g21g

2
21 + 17g212g

2
BL (2.84)

+
7

2
g212g

2
2 +

40

3
g31g21 +

40

3
g312gBL +

40

3
g21g12gBL +

40

3
g1g

2
12g21 + 34g1g12g21gBL

Using PyR@TE 3:

1

µH
β(2)(µH) ⊃ 557

48
g41 −

145

16
g42 +

557

48
g412 +

15

8
g21g

2
2 +

557

24
g21g

2
12 + 17g21g

2
21 + 17g212g

2
BL (2.85)

+
15

8
g212g

2
2 +

40

3
g31g21 +

40

3
g312gBL +

40

3
g21g12gBL +

40

3
g1g

2
12g21 + 34g1g12g21gBL

Expressions of β(2)(µχ)

Using PyR@TE 2:

1

µχ
β(2)(µχ) ⊃ 648g4BL + 648g421 +

422

3
g21g

2
21 +

422

3
g212g

2
BL + 1296g221g

2
BL +

640

3
g1g

3
21

+
640

3
g12g

3
BL +

640

3
g1g21g

2
BL +

640

3
g12g

2
21gBL +

844

3
g1g12g21gBL (2.86)



3. Implementation in PyR@TE 3 65

Using PyR@TE 3:

1

µχ
β(2)(µχ) ⊃ 672g4BL + 672g421 +

422

3
g21g

2
21 +

422

3
g212g

2
BL + 1344g221g

2
BL +

640

3
g1g

3
21

+
640

3
g12g

3
BL +

640

3
g1g21g

2
BL +

640

3
g12g

2
21gBL +

844

3
g1g12g21gBL (2.87)

Although the above expressions alone do not allow one to discard any of the two sets of results,
there is a fact indicating that PyR@TE 2 is internally inconsistent when it comes to kinetic mixing:
running PyR@TE 2 with the option --KinMix to disable the effects of kinetic mixing, or taking the
limit g12, g21 → 0 in the two expressions above do not yield the same result, as would be expected.
Interestingly, the results obtained with the --KinMix option (i.e. disabling kinetic mixing in PyR@TE
2) completely agree with those of PyR@TE 3 in the limit where g12 and g21 vanish.

As a concluding remark, while we cannot make the claim that the results obtained with PyR@TE
3 are correct12, the treatment of kinetic mixing for the scalar mass RGEs in PyR@TE 2 appears to be
inconsistent. Furthermore, the implementation of kinetic mixing in the formalism described in Sec. 1.2
is quite natural whereas it has been incorporated a posteriori in PyR@TE 2 [49] by enhancing [37] the
expressions derived by Machacek & Vaughn 13. As a result, the implementation of the kinetic mixing in
PyR@TE 2 is quite involved and we were not able to directly identify the source of the inconsistency. In
any case, the process of validation performed above allowed us to highlight at least two flaws present in
the PyR@TE 2 code, and we recommend to systematically use PyR@TE 3 in the future instead of its
previous versions which are now deprecated.

12It is worth noting that complete agreement was found with Thomsen’s code RGBeta [61], based on the same formalism.
13A similar comment holds for the Mathematica package SARAH [47].
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Appendix
A Two-loop beta-functions for dimensionful couplings
We present in this appendix the general formulae for the beta-functions of fermion mass, scalar mass and
trilinear couplings obtained from the application of the dummy field method in the formalism of [39]. We
give in a first step the definition of various auxiliary quantities appearing in the resulting expressions,
allowing to provide in turn the comprehensive list of tensor structures and corresponding coefficients as
computed in [10].

We use a notation where the fermion indices are made implicit. In this context, m, ya, and any other
tensor carrying two fermion indices may be seen as matrices in the space of the fermions of the theory.
Following the notations of [39], to each such matrix Y corresponds a tilded counterpart Ỹ with opposite
chirality,

Ỹ = Σ1Y Σ1 , (2.A1)
where

Σ1 = σ1 ⊗ 1NF
=

(
0 1NF

1NF
0

)
, (2.A2)

so, for instance:

ỹa = Σ1yaΣ1 =

(
Y ∗
a 0
0 Ya

)
. (2.A3)

In a next step, closely following [39], we define a set of two-index quantities, which regularly appear as
substructures in the expressions of the beta-functions. We provide below the definition of each of these
auxiliary tensors structures, gathered by the nature of their indices and the number of loops they involve.

1-loop gauge:

[S2(F )]AB = Tr
[
TAΨ T

B
Ψ

]
, [S2(S)]AB = (TAφ T

B
φ )aa , [C2(G)]AB = fACDfCDB . (2.A4)

1-loop fermion:

C2(F ) = TAΨ T
B
ΨG

2
AB , Y2(F ) = yaỹa . (2.A5)

1-loop scalar:

[C2(S)]ab = (TAφ T
B
φ )abG

2
AB , [Y2(S)]ab = Tr [yaỹb] . (2.A6)

2-loop gauge:

[S2(F,CF )]AB = Tr
[
TAΨ T

B
ΨC2(F )

]
, [S2(F, YF )]AB = Tr

[
TAΨ T

B
Ψ Ỹ2(F )

]
,

[S2(S,CS)]AB = (TAΨ T
B
Ψ )ab [C2(S)]ba , [S2(S, YS)]AB = (TAΨ T

B
Ψ )ab [Y2(S)]ba . (2.A7)

2-loop fermion:

C2(F,G) = TAΨ T
B
Ψ

(
G2 [C2(G)]G

2
)
AB

, C2(F, S) = TAΨ T
B
Ψ

(
G2 [S2(S)]G

2
)
AB

,

C2(F, F ) = TAΨ T
B
Ψ

(
G2 [S2(F )]G

2
)
AB

, Y2(F,CF ) = yaC2(F ) ỹa ,

Y2(F,CS) = yaỹb [C2(S)]ab , Y2(F, YF ) = yaỸ2(F ) ỹa ,

Y2(F, YS) = yaỹb [Y2(S)]ab , Y4(F ) = yaỹbyaỹb . (2.A8)

2-loop scalar:

[C2(S,G)]ab = (TAφ T
B
φ )ab

(
G2 [C2(G)]G

2
)
AB

, [C2(S, S)]ab = (TAφ T
B
φ )ab

(
G2 [S2(S)]G

2
)
AB

,

[C2(S, F )]ab = (TAφ T
B
φ )ab

(
G2 [S2(F )]G

2
)
AB

, [Y2(S,CF )]ab = Tr [yaC2(F ) ỹb] ,

[Y2(S, YF )]ab = Tr
[
yaỸ2(F ) ỹb

]
, [Y4(S)]ab = Tr [yaỹcybỹc] . (2.A9)
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With these definitions at hand, we may now provide the expressions of the one- and two-loop beta-
functions for the fermion mass, trilinear and scalar mass couplings respectively.

Fermion mass beta-functions

At 1-loop:
β(1) = ξ

(1)
1 mC2(F ) + ξ

(1)
2 ybmyb + ξ

(1)
3 mỸ2(F ) . (2.A10)

At 2-loop:

β(2) = ξ
(2)
1 C̃2(F )mC2(F ) + ξ

(2)
2 mC2(F )C2(F ) + ξ

(2)
3 mC2(F,G)

+ ξ
(2)
4 mC2(F, S) + ξ

(2)
5 mC2(F, F ) + ξ

(2)
6 ybT

A
Ψ ỹbmT

B
ΨG

2
AB

+ ξ
(2)
7 Y2(F )T̃

AmTBΨG
2
AB + ξ

(2)
8 ybm̃yc [C2(S)]bc + ξ

(2)
9 ybC2(F )m̃yb

+ ξ
(2)
10 ybm̃ybC2(F ) + ξ

(2)
11 Y2(F,CS)m + ξ

(2)
12 Y2(F,CF )m

+ ξ
(2)
13 mỸ2(F )C2(F ) + ξ

(2)
14 ybỹcyd tbcd + ξ

(2)
15 ybỹcmỹbyc

+ ξ
(2)
16 ybm̃ycỹbyc + ξ

(2)
17 ybỹcmỹcyb + ξ

(2)
18 Y4(F )m

+ ξ
(2)
19 ybm̃Y2(F )yb + ξ

(2)
20 mỸ2(F, YF ) + ξ

(2)
21 ybm̃yc [Y2(S)]bc

+ ξ
(2)
22 Y2(F, YS)m . (2.A11)

Trilinear couplings beta-functions

At 1-loop:

β
(1)
abc = τ

(1)
1 [C2(S)]ae tebc + τ

(1)
2 λabef tefc + τ

(1)
3 [Y2(S)]ae tebc + τ

(1)
4 Tr [mỹaybỹc] . (2.A12)

At 2-loop:

β
(2)
abc = τ

(2)
1 (TAφ T

C
φ )aeG

2
ABG

2
CD (TBφ T

D
φ )bf tefc + τ

(2)
2 (TAφ T

C
φ )abG

2
ABG

2
CD (TBφ T

D
φ )ef tefc

+τ
(2)
3 [C2(S)]ae [C2(S)]bf tefc + τ

(2)
4 [C2(S)]ae [C2(S)]ef tfbc

+τ
(2)
5 [C2(S,G)]ae tebc + τ

(2)
6 [C2(S, S)]ae tebc

+τ
(2)
7 [C2(S, F )]ae tebc + τ

(2)
8 (TAφ )ae(T

B
φ )bfG

2
AB λefghtghc

+τ
(2)
9 λabef [C2(S)]fg tegc + τ

(2)
10 [C2(S)]ae tefgλfgbc

+τ
(2)
11 [C2(S)]ae λebfgtfgc + τ

(2)
12 λaefgλefghthbc

+τ
(2)
13 taefλeghbλfghc + τ

(2)
14 λabefλeghctfgh

+τ
(2)
15 λabefλefghtghc + τ

(2)
16 (TAφ T

C
φ )abG

2
ABG

2
CDTr

[
TDΨ T

B
Ψ m̃yc

]
+τ

(2)
17 (TAφ T

C
φ )abG

2
ABG

2
CDTr

[
TDΨ T

B
Ψ ỹcm

]
+ τ

(2)
18 [Y2(S,CF )]ae tebc

+τ
(2)
19 [C2(S)]ae [Y2(S)]ef tfbc + τ

(2)
20 λabef [Y2(S)]fg tegc

+τ
(2)
21 G

2
AB Tr

[
mTAΨ ỹaybT

B
Ψ ỹc

]
+ τ

(2)
22 G

2
AB Tr

[
yaT

A
Ψ m̃ybT

B
Ψ ỹc

]
+τ

(2)
23 [C2(S)]aeTr [yem̃ybỹc] + τ

(2)
24 [C2(S)]aeTr [yeỹbmỹc]

+τ
(2)
25 Tr

[
mỹaybỹcC̃2(F )

]
+ τ

(2)
26 Tr

[
yamybỹcC̃2(F )

]
+τ

(2)
27 Tr [mỹeyaỹf ]λefbc + τ

(2)
28 Tr [yaỹeybỹf ] tefc

+τ
(2)
29 Tr [mỹayeỹf ]λefbc + τ

(2)
30 Tr [yaỹbyeỹf ] tefc

+τ
(2)
31 [Y4(S)]ae tebc + τ

(2)
32 [Y2(S, YF )]ae tebc

+τ
(2)
33 Tr [mỹaybỹeycỹe] + τ

(2)
34 Tr [yam̃ybỹeycỹe]

+τ
(2)
35 Tr [yaỹbmỹeycỹe] + τ

(2)
36 Tr [mỹayeỹbycỹe]

+τ
(2)
37 Tr [mỹaybỹcY2(F )] + τ

(2)
38 Tr [yam̃ybỹcY2(F )] . (2.A13)
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Scalar mass beta-functions

At 1-loop:

β
(1)
ab = σ

(1)
1 [C2(S)]ae µeb + σ

(1)
2 λabefµef + σ

(1)
3 taef tefb

+σ
(1)
4 [Y2(S)]ae µeb + σ

(1)
5 Tr [mm̃yaỹb] + σ

(1)
6 Tr [mỹamỹb] . (2.A14)

At 2-loop:

β
(2)
ab = σ

(2)
1 (TAφ T

C
φ )aeG

2
ABG

2
CD (TBφ T

D
φ )bf µef + σ

(2)
2 (TAφ T

C
φ )abG

2
ABG

2
CD (TBφ T

D
φ )ef µef

+σ
(2)
3 [C2(S)]ae [C2(S)]bf µef + σ

(2)
4 [C2(S)]ae [C2(S)]ef µfb

+σ
(2)
5 [C2(S,G)]ae µeb + σ

(2)
6 [C2(S, S)]ae µeb

+σ
(2)
7 [C2(S, F )]ae µeb + σ

(2)
8 (TAφ )ae(T

B
φ )bfG

2
AB λefghµgh

+σ
(2)
9 λabef [C2(S)]fg µeg + σ

(2)
10 taef [C2(S)]fg tegb

+σ
(2)
11 [C2(S)]ae λebfgµfg + σ

(2)
12 [C2(S)]ae tefgtfgb

+σ
(2)
13 λaefgλefghµhb + σ

(2)
14 λaeghλbfghµef

+σ
(2)
15 λabef teghtfgh + σ

(2)
16 taef teghλbfgh

+σ
(2)
17 λabefλefghµgh + σ

(2)
18 taefλefghtghb

+σ
(2)
19 (TAφ T

C
φ )abG

2
ABG

2
CDTr

[
TDΨ T

B
Ψ m̃m

]
+ σ

(2)
20 [Y2(S,CF )]ae µeb

+σ
(2)
21 [C2(S)]ae [Y2(S)]ef µfb + σ

(2)
22 λabef [Y2(S)]fg µeg

+σ
(2)
23 taef [Y2(S)]fg tegb + σ

(2)
24 G

2
AB Tr

[
yaT

A
Ψ m̃mT

B
Ψ ỹb

]
+σ

(2)
25 G

2
AB Tr

[
yaT

A
Ψ ỹbmT

B
Ψ m̃

]
+ σ

(2)
26 G

2
AB Tr

[
yaT

A
Ψ m̃ybT

B
Ψ m̃

]
+σ

(2)
27 [C2(S)]aeTr [yem̃ybm ] + σ

(2)
28 [C2(S)]aeTr [yem̃myb]

+σ
(2)
29 Tr

[
yaỹbmm̃C̃2(F )

]
+ σ

(2)
30 Tr

[
yam̃ybm̃C̃2(F )

]
+σ

(2)
31 Tr

[
yam̃mỹbC̃2(F )

]
+ σ

(2)
32 Tr

[
mỹaybm̃C̃2(F )

]
+σ

(2)
33 Tr [yaỹeybỹf ]µef + σ

(2)
34 Tr [yaỹemỹf ] tefb

+σ
(2)
35 Tr [mỹemỹf ]λefab + σ

(2)
36 Tr [yaỹbyeỹf ]µef

+σ
(2)
37 Tr [yam̃yeỹf ] tefb + σ

(2)
38 Tr [mm̃yeỹf ]λefab

+σ
(2)
39 [Y4(S)]ae µeb + σ

(2)
40 [Y2(S, YF )]ae µeb

+σ
(2)
41 Tr [mỹamỹeybỹe] + σ

(2)
42 Tr [yaỹbmỹemỹe]

+σ
(2)
43 Tr [yam̃mỹeybỹe] + σ

(2)
44 Tr [yam̃ybỹemỹe]

+σ
(2)
45 Tr [yaỹbyem̃mỹe] + σ

(2)
46 Tr [yam̃yem̃ybỹe]

+σ
(2)
47 Tr [yam̃yeỹbmỹe] + σ

(2)
48 Tr [yaỹbmm̃Y2(F )]

+σ
(2)
49 Tr [yam̃ybm̃Y2(F )] + σ

(2)
50 Tr [yam̃mỹbY2(F )]

+σ
(2)
51 Tr [mỹaybm̃Y2(F )] . (2.A15)

Fermion mass coefficients

At 1-loop:

ξ
(1)
1 = −6, ξ

(1)
2 = 2, ξ

(1)
3 = 1. (2.A16)
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At 2-loop:

ξ
(2)
1 = 0, ξ

(2)
2 = −3, ξ

(2)
3 = −97

3
, ξ

(2)
4 =

11

6
, ξ

(2)
5 =

5

3
, ξ

(2)
6 = 12,

ξ
(2)
7 = 0, ξ

(2)
8 = 6, ξ

(2)
9 = 10, ξ

(2)
10 = 6, ξ

(2)
11 = 9, ξ

(2)
12 = −1

2
,

ξ
(2)
13 = −7

2
, ξ

(2)
14 = −2, ξ

(2)
15 = 2, ξ

(2)
16 = 0, ξ

(2)
17 = −2, ξ

(2)
18 = 0,

ξ
(2)
19 = −2, ξ

(2)
20 = −1

4
, ξ

(2)
21 = −1, ξ

(2)
22 = −3

4
. (2.A17)

Trilinear coefficients

At 1-loop:

τ
(1)
1 = −9, τ

(1)
2 = 3, τ

(1)
3 =

3

2
, τ

(1)
4 = −12 . (2.A18)

At 2-loop:

τ
(2)
1 = 6, τ

(2)
2 = 30, τ

(2)
3 = 0, τ

(2)
4 =

9

2
, τ

(2)
5 = −143

4
, τ

(2)
6 =

11

4
,

τ
(2)
7 =

10

4
, τ

(2)
8 = −9, τ

(2)
9 = 24, τ

(2)
10 = −9

2
, τ

(2)
11 = −9, τ

(2)
12 =

1

4
,

τ
(2)
13 = −3, τ

(2)
14 = −3, τ

(2)
15 = 0, τ

(2)
16 = −36, τ

(2)
17 = −36, τ

(2)
18 =

15

2
,

τ
(2)
19 = 0, τ

(2)
20 = −3, τ

(2)
21 = 0, τ

(2)
22 = 0, τ

(2)
23 = 12, τ

(2)
24 = 6,

τ
(2)
25 = −24, τ

(2)
26 = −24, τ

(2)
27 = 6, τ

(2)
28 = 6, τ

(2)
29 = 0, τ

(2)
30 = 0,

τ
(2)
31 = −3

2
, τ

(2)
32 = −9

4
, τ

(2)
33 = 24, τ

(2)
34 = 12, τ

(2)
35 = 12, τ

(2)
36 = 24,

τ
(2)
37 = 12, τ

(2)
38 = 12 . (2.A19)

Scalar mass coefficients

At 1-loop:

σ
(1)
1 = −6, σ

(1)
2 = 1, σ

(1)
3 = 1, σ

(1)
4 = 1, σ

(1)
5 = −4 , σ

(1)
6 = −2 . (2.A20)

At 2-loop:

σ
(2)
1 = 2, σ

(2)
2 = 10, σ

(2)
3 = 0, σ

(2)
4 = 3, σ

(2)
5 = −143

6
, σ

(2)
6 =

11

6
,

σ
(2)
7 =

10

6
, σ

(2)
8 = −3, σ

(2)
9 = 8, σ

(2)
10 = 8, σ

(2)
11 = −3, σ

(2)
12 = −3,

σ
(2)
13 =

1

6
, σ

(2)
14 = −1, σ

(2)
15 = −1

2
, σ

(2)
16 = −2, σ

(2)
17 = 0, σ

(2)
18 = 0,

σ
(2)
19 = −12, σ

(2)
20 = 5, σ

(2)
21 = 0, σ

(2)
22 = −1, σ

(2)
23 = −1, σ

(2)
24 = 0,

σ
(2)
25 = 0, σ

(2)
26 = 0, σ

(2)
27 = 2, σ

(2)
28 = 4, σ

(2)
29 = −8, σ

(2)
30 = −8,

σ
(2)
31 = −4, σ

(2)
32 = −4, σ

(2)
33 = 2, σ

(2)
34 = 4, σ

(2)
35 = 1, σ

(2)
36 = 0,

σ
(2)
37 = 0, σ

(2)
38 = 0, σ

(2)
39 = −1, σ

(2)
40 = −3

2
, σ

(2)
41 = 4, σ

(2)
42 = 8,

σ
(2)
43 = 8, σ

(2)
44 = 4, σ

(2)
45 = 4, σ

(2)
46 = 4, σ

(2)
47 = 4, σ

(2)
48 = 4,

σ
(2)
49 = 4, σ

(2)
50 = 2, σ

(2)
51 = 2 . (2.A21)
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B The SM model file
As an illustration of the overall structure of a model file in PyR@TE 3, we show below the full SM model
file. We note that this file can be found in PyR@TE’s models/ subdirectory, along with several BSM
model files.

# YAML 1.1
---
Author: Lohan Sartore
Date: 08.06.2020
Name: SM
Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

Fermions: {
Q : {Gen: 3, Qnb: {U1Y: 1/6, SU2L: 2, SU3c: 3}},
L : {Gen: 3, Qnb: {U1Y: -1/2, SU2L: 2}},
uR : {Gen: 3, Qnb: {U1Y: 2/3, SU3c: 3}},
dR : {Gen: 3, Qnb: {U1Y: -1/3, SU3c: 3}},
eR : {Gen: 3, Qnb: {U1Y: -1}},

}

RealScalars: {
}

ComplexScalars: {
H : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2}},

}

Potential: {

Definitions: {
Htilde[i] : Eps[i,j]*Hbar[j]

},

Yukawas: {
Yu : Qbar[i,a] Htilde[i] uR[a],
Yd : Qbar[i,a] H[i] dR[a],
Ye : Lbar[i] H[i] eR

},

QuarticTerms: {
lambda : (Hbar[i] H[i])**2

},

ScalarMasses: {
mu : -Hbar[i] H[i]

}

}

Vevs: {
v: Pi[2]

}

Substitutions: {
# Rename the gauge coupling constants
g_U1Y : g1,
g_SU2L : g2,
g_SU3c : g3,

# Possibly define GUT normalisations
g1 : sqrt(5/3) * g1

}

Latex: {
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# Particles

uR : u_R,
dR : d_R,
eR : e_R,

Pi : \Pi,
Sigma : \Sigma,

Htilde : \tilde{H},

# Couplings

g1 : g_1,
g2 : g_2,
g3 : g_3,

Yu : Y_u,
Yd : Y_d,
Ye : Y_e,

lambda : \lambda,
mu : \mu

}

C Group theory and PyLie
This appendix is dedicated to the description of the group theoretical functionalities available in PyR@TE 3.
All the group theory related computations are handled, since the previous version of PyR@TE, by the
PyLie module. PyLie is essentially a Python rewrite of the group theory module of SUSYNO [62] (also
part of the more recent tool GroupMath [63]). Such computations comprise for instance the possibility
of computing the generators of a given representation, the structure constants of the Lie algebra, or
the Clebsch-Gordan coefficients (CGCs) of a given set of representations. A lot of effort was put in the
development of PyR@TE 3 to improve the performances of PyLie’s main functions. This concerns in
particular the three kinds of calculations listed above. However, despite these efforts, some calculations
may be quite time-consuming when it comes to high-dimensional representations. Therefore, based on
the previous version of PyLie, we developed a database in which the results of the group-theoretical
computations are systematically stored for any later use. At various steps of the computation of the
RGEs, PyR@TE 3 interacts with this database through the PyLieDB module. The user may interact as
well with this database through an interactive IPython session or a Jupyter notebook in order to access
the results of PyLie’s computations.

After a discussion about the Dynkin labels as a way to uniquely identify the representations of a given
gauge group, we introduce the use of CGCs to build a Lagrangian in PyR@TE 3. A short tutorial (in
the form of an interactive Python notebook) available in the doc/ repository of PyR@TE 3 is dedicated
to the interaction with PyLie’s database. In order to keep this appendix as concise as possible, we invite
the interested user to refer to this tutorial if needed.

C.1 Dynkin labels
The Dynkin labels of an irreducible representation are a set of N positive integers, where N is the rank of
the algebra. They characterise the decomposition of the highest weight of the representation in terms of
the N fundamental weights of the algebra. In PyLie, they are used to identify uniquely the representations
of a given Lie algebra. In practice, the Dynkin labels take the form of Python lists, and can be used in
the model file in place of the usual notation for representations based on their dimensions. For instance,
one could define the quantum numbers of the quark doublet Q as:

Q: {Gen: 3, Qnb: {U1Y: 1/6, SU2L: [1], SU3c: [1,0]}}
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We invite the user who is not familiar with the Dynkin labels notation to refer to the document provided
with PyR@TE 3 in the doc/ directory, where the first few representations of some usual gauge groups
are listed along with their Dynkin labels. Several functions were also implemented in the PyLieDB module
that can be called by the user to get information on the representations and their Dynkin labels.

C.2 Clebsch-Gordan coefficients
In some cases, it may not be possible to express a given gauge invariant combination of the fields using
a notation with contracted indices involving only the gauge generators, the Levi-Civita tensor and the
fields themselves. In such cases, the user may use the Clebsch-Gordan coefficients (CGCs) generated by
PyLie.

Given a set of N fields Fk, k≤N transforming under the irreducible representations rk, k≤N of a given
Lie algebra, we call CGCs all the tensors IAi1,...,iN such that the quantity

IAi1,...iNF
i1
1 . . . F iNN (2.C1)

is gauge invariant. Since in PyR@TE we consider only renormalisable theories, N may only equal 2, 3
or 4. We note that there are M linearly independent CGCs, where M is the multiplicity of the trivial
representation in the decomposition of the tensor product r1 ⊗ . . .⊗ rN .

One of the main functionalities of PyLie consists in finding a basis of CGCs given a set of N fields.
These CGCs may be used by the user in the model file to build the Lagrangian. To this end, the CGCs
must be defined in the Definitions section of the model file using the two following possible syntaxes
:

Definitions: {
C : cgc(groupName, field_1, ... field_N, P),

# or, equivalently,
C : cgc(group, representation 1, ... representation N, P)

}

The last argument, P , is an integer indicating that we are asking for the Pth CGCs returned by PyLie.
If omitted, the first invariant tensor will be returned. Defined this way, C is a tensor with N indices
that may be used in the expression of the Lagrangian as any other tensor quantity defined in the model
file.

In order to illustrate the use of CGCs in a simple case, let us first consider the example of the up-type
Yukawa coupling in the SM. In a notation with contracted indices, one would simply write:

Yukawas: {
Yu : Qbar[i,a] Htilde[i] uR[a]

}

where Htilde is the conjugated Higgs field, defined in the Definitions section of the SM model file.
The SU (2) and SU (3) contractions rely on the two simple decompositions

SU (2) : 2⊗ 2 = 3⊕ 1 , (2.C2)
SU (3) : 3⊗ 3 = 8⊕ 1 , (2.C3)

from which it can be seen that only one gauge singlet may be constructed in each case. Using the CGCs
instead, the Yu term would be defined as:

Definitions: {
# SU2 contraction

c1 : cgc(SU2L, Qbar, Hbar),
# or, equivalently,
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c1 : cgc(SU2, -2, -2),

# SU3 contraction
c2 : cgc(SU3c, Qbar, uR),

# or, equivalently,
c2 : cgc(SU3, -3, 3)

},

Yukawas: {
Yu : c1[i,j] c2[a,b] Qbar[i,a] Hbar[j] uR[b]

}

Of course, the above example looks like an unnecessary complication since c1 and c2 actually corre-
spond to the rank 2 Levi-Civita tensor and the 3-dimensional Kronecker delta.

As a more sophisticated example, let us now consider a SU (5) model with the following field content:

Fermions : ψ5 ∼ 5 and ψ10 ∼ 10

Scalars : φ ∼ 5
(2.C4)

In order to construct the Yukawa sector, we make use of the decompositions

5⊗ 5⊗ 10 = 126⊕ 75⊕ 24⊕ 24⊕ 1 , (2.C5)

10⊗ 5⊗ 10 = 175
′ ⊕ 126⊕ 75⊕ 75⊕ 24⊕ 24⊕ 1 , (2.C6)

enabling one to define the two following Yukawa couplings

Y5 ψ5φ
†ψ10 and Y10 ψ10φψ10 . (2.C7)

The two above terms are usually expressed in a simple form, noticing that the 10-plet can be reor-
ganised in a 5× 5 antisymmetric matrix. However, in PyR@TE, the field ψ10 only carries a single SU (5)
index and we must use the CGC notation in order to build the Yukawa Lagrangian. We show below a
minimal implementation of this SU (5) toy model.

Groups: {SU5: SU5}

Fermions: {
psi5 : {Gen: 3, Qnb: {SU5: -5}},
psi10 : {Gen: 3, Qnb: {SU5: 10}}

}

ComplexScalars: {
phi : {RealFields: [phiR, phiI], Norm: 1/sqrt(2), Qnb: {SU5: 5}}

}

Potential: {
Definitions: {

c5 : cgc(SU5, psi5, phibar, psi10),
c10 : cgc(SU5, psi10, phi, psi10)

},

Yukawas: {
Y5 : c5[i,j,k] psi5[i] phibar[j] psi10[k],
Y10 : {c10[i,j,k] psi10[i] phi[j] psi10[k], symmetric}

}
}





Chapter 3

Renormalisation group improvement in
single-scale theories

It has been shown in chapter 1 that the expression of the renormalised n-point functions together with the
set of beta-functions describing the evolution of the couplings with the renormalisation scale define the
perturbatively renormalised theory in 4 dimensions. The physical consistency is in turn guaranteed by
the Callan-Symanzik equation, stating that the effective action is invariant under simultaneous evolution
of the explicitly µ-dependent contributions and of the couplings according to their beta-functions. For
practical applications, one is however limited by the difficulty of obtaining both the expressions of the
renormalised N -point functions and those of the beta-functions at high orders in perturbation theory.
The consequences of working at fixed order in perturbation theory are in turn not only quantitative
– N -point functions and observables cannot be computed at an arbitrary level of precision – but also
qualitative: By construction, the validity of the Callan-Symanzik equation relies on an interplay between
contributions at orders n and n + 1 in perturbation theory; any fixed-order truncation hence spoils the
invariance under the arbitrary renormalisation scale.

As we shall demonstrate in the following, the renormalisation group evolution of the couplings is
intimately connected to the structure of the logarithmic contributions to the renormalised N -point func-
tions. It is customary, as a way to alleviate the impact of the unphysical scale µ in practical calculations,
to evolve the couplings of the theory towards a renormalisation scale such that the logarithms are not
too large. Another simpler possibility, when µ is a free parameter of the theory, is to set its value so
that this (rather vague) requirement is satisfied. While for some applications such prescriptions may
lead to a sufficient level of precision, it is in general rather unsatisfactory or even unachievable. This
is true in particular for models with multiple, largely separated mass scales, where multiple logarithms
have to be kept under control with a single parameter µ. Another problematic situation concerns the
study of the effective potential, whose logarithmic contributions depend on the classical background field.
Therefore, tuning the renormalisation scale so as to suppress the logarithms for a particular value of the
background field cannot prevent the occurrence of large such logarithms in other regions of the field space.

It is important to stress that the occurrence of large logarithms in the UV does not invalidate the
perturbative expansion, contrary for instance to the occurrence of Landau poles in the RG-flow. On the
other hand, their presence signals a strong dependence of the various quantities under variations of the
scale µ. In turn, if large logarithms do not spoil perturbativity, they do, on the other hand, essentially
spoil predictivity. Consequently, proper treatment of the logarithmic contributions is in many cases a
necessary condition to establish reliable quantitative predictions, as well as to understand the qualitative
features of a number of theories with interacting fields and/or with a ground state away from the origin:
In brief, necessary for any phenomenologically relevant application.

Historically, the connection between UV-logarithms and the renormalisation group has led to call
renormalisation group improvement (RG-improvement) the procedure allowing to resum the logarithmic

75
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contributions stemming from regularisation of the UV divergences1. The main reason, as we will see, is
that the infinite series of logarithmic contributions takes the form of a Taylor expansion around logµ of
the N -point functions. Resumming the logarithmic contributions thus means reformulating this series
in a closed form, amounting, in turn, to evaluate an RG-dependent quantity at some RG-scale different
from the initial scale µ. Many works in the literature (see e.g. [64, 65, 66, 67, 68, 69]) have focused
on single-scale theories, i.e. theories where a single mass scale can occur in the UV-logarithms. In this
chapter, we shall likewise restrict the discussion to such theories, since there are many interesting lessons
one can learn about the interplay between the renormalisation group and the perturbative structure of
the N -point functions. Most of the results derived below will be crucial when generalising the discussion
to any general scalar theory in chapter 4.

In the first section, we consider a massive φ4 theory with a positive mass term – the φ4+ theory. As
we shall see, interesting conclusions can be drawn from this simple case: in particular, we derive the
all-order resummed N -point functions in a closed form and provide a method to systematically perform
their practical computations. In subsequent sections, we will consider a more general situation where the
mass term is allowed to take negative values – the φ4− theory. In this context, the true ground state of the
theory is in general non-trivial, and one must resort to the study of the effective potential to determine its
precise location. In particular, we derive the stationary point equation satisfied by the all-order resummed
potential, and outline a general method allowing to find its solutions in practice. Overall, the results
obtained in this chapter will lay the bases for an extension of the resummation procedure to general scalar
theories in chapter 4.

1 Resummed N-point functions in the massive φ4
+ theory

We consider in this section a simple scalar theory, with a single scalar field φ and a positive mass parameter
M :

L =
1

2
∂µφ∂

µφ− Λ− 1

2
Mφ2 − 1

4!
φ4 . (3.1)

In what follows, we establish some important results regarding the structure of the renormalised N -point
functions to all orders in perturbation theory, based on the application of the Callan-Symanzik equation.

1.1 All-order parameterisation of the N-point functions
In a slightly different notation compared to chapter 1, we note Γ[N ] the MS renormalisedN -point functions
in the 4-dimensional theory. For any N , Γ[N ] can be perturbatively expanded as

Γ[N ] = Γ
(0)
[N ] + κΓ

(1)
[N ] + κ2Γ

(2)
[N ] + · · · =

∞∑
n=0

κnΓ
(n)
[N ] , (3.2)

Where the loop-counting parameter κ = 1/(16π2) has been explicitly factored out from every fixed-order
contribution Γ

(n)
[N ], and where the leading-order renormalised N -point function Γ

(0)
[N ] simply stands for the

tree-level coupling. In particular,

Γ
(0)
[0] = Λ, Γ

(0)
[2] =M, Γ

(0)
[4] = λ . (3.3)

To any order in perturbation theory, the contribution Γ
(n)
[N ] can be conveniently decomposed in terms of the

powers of the mass-logarithm, log M
µ2 . Furthermore, it is a general feature that the n-loop contributions

depend at most on the n-th power of the mass logarithm. In turn, one can always write

Γ
(n)
[N ] =

n∑
p=0

c
(n)
[N ],p

(
log

M

µ2

)p
. (3.4)

1In the remaining of this chapter, we will use the terms RG-improvement, logarithmic resummation or simply resumma-
tion interchangeably.
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To prevent the proliferation of factors of 2 in the forthcoming expressions, we define the mass-logarithm
L such that

L ≡ 1

2
log

M

µ2
= log

√
M

µ
, (3.5)

and, by a re-definition of the coefficients c(n)[N ],p appearing in Eq.(3.4), we rewrite the logarithmic expansion
of Γ(n)

[N ] in the form

Γ
(n)
[N ] =

n∑
p=0

c
(n)
[N ],p L

p
. (3.6)

Inserting this expression in the perturbative expansion of Γ[N ], Eq. (3.2), we arrive at the most general
parameterisation

Γ[N ] =

∞∑
n=0

κn
n∑
p=0

c
(n)
[N ],p L

p
. (3.7)

A second parameterisation will be extremely useful in the following to study the overall structure of the
logarithmic series, which is obtained by exchanging the two sums in Eq. (3.7):

Γ[N ] =

∞∑
p=0

( ∞∑
p=n

κnc
(n)
[N ],p

)
L
p ≡

∞∑
p=0

c[N ],pL
p
. (3.8)

In this parameterisation, the renormalised n-point functions are simply given as a power series in the mass-
logarithm, with coefficients c[N ],p containing an infinite number of loop-contributions with perturbative
order n ≥ p. We insist that, in both parameterisations (3.7) and (3.8), the explicit dependence on the
renormalisation scale is exclusively contained in the powers of the mass-logarithm. On the other hand,
the coefficients c(n)[N ],p and c[N ],p are functions of the couplings of the theory and, as such, implicitly depend
on µ through their beta-functions.

1.2 Logarithmic contributions: resummation to all orders
We have shown in chapter 1 that the explicit and implicit dependence on the renormalisation scale µ
should properly cancel in order to maintain physical consistency of the theory – up to the RG-dependence
stemming from the self-energy corrections to the external legs. This invariance translates into the Callan-
Symanzik equation (1.124):

µ
d

dµ
Γ[N ] =

{
Γ[N ] ← γ

}
= Nγ , (3.9)

where the last equality follows from the specialisation to a theory with a single scalar field. It will be useful
in the following to define several differential operators, depending on the nature of the RG-dependence
they encompass. First of all, we define

D = µ
d

dµ
, (3.10)

the operator giving the total derivative with respect to the renormalisation scale. It can be decomposed
as

D = ∂µ +D , (3.11)

where
∂µ ≡ µ

∂

∂µ
(3.12)

stands for the explicit derivative, while

D ≡ β(Λ) d
dΛ

+ β(M)
d

dM
+ β(λ)

d

dλ
, (3.13)

accounts for the implicit dependence through the beta-function of the couplings.
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In a next preliminary step, we shall define an auxiliary scalar field φ̂ which is exactly invariant under
RG-transformations. Since the renormalised scalar field φ implicitly depends on µ according to

Dφ = Dφ = −γφ , (3.14)

it is always possible to explicitly integrate the above relation in order to obtain

φ(logµ) = exp

{
−
∫ log µ

log µ0

γ(t) dt

}
φ(logµ0) ≡ K(logµ)φ(logµ0) , (3.15)

for some initial scale µ0. Taking φ̂ = φ(logµ0) and going back to a simplified notation where the
arguments are made implicit, we get

φ = Kφ̂, Dφ̂ = 0, DK = −γK . (3.16)

In turn, we define the modified N -point functions Γ̂[N ],

Γ̂[N ] ≡ KNΓ[N ] , (3.17)

which are exactly invariant under RG-transformations, since

DΓ̂[N ] = NDKKN−1Γ[N ] +KNDΓ[N ] = −NγΓ̂[N ] +NγΓ̂[N ] = 0 . (3.18)

Finally, defining the new set of coefficients

ĉ
(n)
[N ],p ≡ K

Nc
(n)
[N ],p, ĉ[N ],p ≡ KNc[N ],p , (3.19)

we arrive at the following set of equations which will constitute the starting point of the forthcoming
analysis

Γ̂[N ] =

∞∑
n=0

κn
n∑
p=0

ĉ
(n)
[N ],pL

p
, (3.20)

Γ̂[N ] =

∞∑
p=0

ĉ[N ],pL
p
, (3.21)

DΓ̂[N ] = 0 . (3.22)

With these definitions at hand, we will now explore the consequences of the Callan-Symanzik equa-
tion (3.22) on the all-order structure of the (modified) N -point functions Γ̂[N ]. Using in a first step the
logarithmic series expansion, Eq. (3.21), we obtain:

0 = DΓ̂[N ] =

∞∑
p=0

(
D ĉ[N ],p

)
L
p
+ p ĉ[N ],p

(
DL
)
L
p−1

=

∞∑
p=0

(
D ĉ[N ],p

)
L
p
+

∞∑
p=0

(p+ 1) ĉ[N ],p+1

(
DL
)
L
p

=

∞∑
p=0

[(
D ĉ[N ],p

)
+ (p+ 1) ĉ[N ],p+1

(
DL
)]
L
p
. (3.23)

Defining L = 1
2 logM , the derivative of the mass logarithm simply reads

DL = D

(
1

2
log

M

µ2

)
= −1 +DL , (3.24)

so that Eq.(3.23) becomes

0 =

∞∑
p=0

[(
D ĉ[N ],p

)
− (p+ 1) ĉ[N ],p+1(1−DL)

]
L
p
. (3.25)
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Since the above equation must hold for any value of the RG-scale (and hence of the mass-logarithm L),
we arrive, for any p ≥ 0, at the recurrence relation

(p+ 1) ĉ[N ],p+1 =
1

1−DL
D ĉ[N ],p , (3.26)

allowing to obtain every coefficient ĉ[N ],p in terms of ĉ[N ],0, which we shall refer to as the all-order
leading coefficient. We insist that the operator D accounts for the RG-derivatives involving the all-order
beta-functions, which are in practice inaccessible. Similarly, only the first few perturbative orders in the
decomposition of the coefficient ĉ[N ],0 are known. Nonetheless, relation (3.26) gives valuable information
on the structure of the all-order renormalised N -point functions, with important consequences in the
limit of a truncated perturbative expansion.
An insightful approximation

Since the derivative of the mass-logarithm L = 1
2 logM is only implicit, it is a most of order O(κ1) in

perturbation theory, and one may express the denominator in Eq. (3.26) in the form of a power series,

1

1−DL
=

∞∑
k=0

(DL)k . (3.27)

Retaining only the first term in the above series yields the approximate relation

(p+ 1) ĉ[N ],p+1 ≈ D ĉ[N ],p , (3.28)

which can be analytically solved to give, for all p ≥ 0,

ĉ[N ],p =
1

p!
Dpĉ[N ],0 . (3.29)

Inserting this expression in the logarithmic-series expansion of Γ̂[N ] yields in turn

Γ̂[N ] =

∞∑
p=0

1

p!
Dpĉ[N ],0L

p
=

∞∑
p=0

1

p!

dp

d (logµ)
p ĉ[N ],0

(
1

2
logM − logµ

)p
. (3.30)

In the last equality, we have rewritten the expansion in a form which, manifestly, is nothing else than the
Taylor expansion of ĉ[N ],0 around logµ, evaluated at 1

2 logM . In other words, in the limit where DL is
negligible, the resummation of the logarithmic power-series yields

Γ̂[N ] ≈ ĉ[N ],0

(1
2
logM(logµ)

)
. (3.31)

This means in turn that the renormalised N -point functions obtained after resumming the infinite tower
of logarithmic contributions is equal, in a first approximation, to its leading coefficient evaluated at the
scale µ1 =

√
M(logµ). Of course, the quantity hence obtained is not exactly RG-invariant, but can be

expected in practice to provide a good approximation of the all-order result.

From the above approximation, it then appears that the explicit resummation of the logarithmic con-
tributions is equivalent to evaluating the leading coefficient at a scale which cancels the mass-logarithm.
Starting with the N -point function expressed at some scale µ0, we may evolve all couplings according to
their beta-functions up to the scale2 logµ1 = 1

2 logM(µ0). Since Γ̂[N ] is exactly RG-invariant, we then
obtain

Γ̂[N ] =

∞∑
p=0

ĉ[N ],p(logµ1)

(
1

2
logM(logµ1)− logµ1

)p
. (3.32)

If the running of M is indeed negligible – i.e. if DL ≈ 0 – we recover the above result, since
1

2
M(logµ1) ≈

1

2
M(logµ0) = log µ1 , (3.33)

and therefore
Γ̂[N ] ≈ ĉ[N ],0(logµ1) = ĉ[N ],0

(1
2
logM(µ0)

)
. (3.34)

2Although, given some RG-scale µ, its logarithm log µ is a dimensionless quantity, we will for simplicity sometimes refer
to log µ as a “scale”.
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Towards exact RG-invariance
From the above discussion, we observe in fact that a very natural and remarkably simple way of removing
exactly every logarithm in the perturbative expansion consists in evaluating every quantity at a scale µ∗
such that

1

2
logM(logµ∗) = log µ∗ . (3.35)

If such a scale exists (which is indeed the case as long as M > 0, and more generally, as long as the
couplings remain perturbative), and since Γ̂[N ] is exactly invariant under variations of the RG-scale, we
simply have to perform the running of every coupling from the initial scale µ to µ∗ in order to obtain the
exact all-order result

Γ̂[N ] = ĉ[N ],0(logµ∗) = ĉ[N ],0

(1
2
logM(µ∗)

)
, (3.36)

in which every mass-logarithm has been cancelled by the constraint (3.35). It is crucial to note that,
by construction, the scale µ∗ possesses no dependence whatsoever on the arbitrary initial scale. In fact,
Eq. (3.35) defines a fixed point for the function f such that

f : log µ 7→ 1

2
logM(logµ) = log

√
M(logµ) . (3.37)

The same conclusions can in fact be drawn by iterating the procedure described around Eq. (3.32). To
see how, let us define an initial scale µ0, and, as previously, the scale µ1 such that

logµ1 =
1

2
logM(logµ0) . (3.38)

As we have seen, the N -point function evaluated at logµ1 takes the form

Γ̂[N ] =

∞∑
p=0

ĉ[N ],p(logµ1)

(
1

2
logM(logµ1)− logµ1

)p
. (3.39)

We may now proceed and iterate the procedure by defining the scale µ2 such that

logµ2 =
1

2
logM(logµ1) = log

√
M(logµ1) , (3.40)

and in turn, the all-order N -point function can be expressed as

Γ̂[N ] =

∞∑
p=0

ĉ[N ],p(logµ2)

(
1

2
logM(logµ2)− logµ2

)p
. (3.41)

For all n ≥ 0, we may then define the scale µn such that

logµn+1 =
1

2
logM(logµn) = log

√
M(logµn) , (3.42)

bringing the N -point function into the form

Γ̂[N ] =

∞∑
p=0

ĉ[N ],p(logµn)

(
1

2
logM(logµn)− logµn

)p
, (3.43)

valid for any n ≥ 0, since Γ̂[N ] is overall independent of the RG-scale. We finally observe the scale µn can
be expressed in terms of µ0, the initial scale, in the form of repeated compositions of the RG-dependent
function f defined in Eq.(3.37):

logµn = log
√
M(logµn−1) = log

√
M(log

√
M(logµn−2)) = · · · =

(
f ◦ · · · ◦ f︸ ︷︷ ︸
n times

)
(logµ0) , (3.44)
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for all n ≥ 0. Therefore, the scale µ∗ defined such that

logµ∗ = lim
n→∞

µn = lim
n→∞

(
f ◦ · · · ◦ f︸ ︷︷ ︸
n times

)
(logµ0) (3.45)

is nothing else than the fixed point of the function f , satisfying

logµ∗ =
1

2
logM(logµ∗) , (3.46)

and therefore cancelling every power of the mass-logarithm.

To summarise: we have arrived at the conclusion that a scale µ∗ exists such that, when evaluated
at µ∗, the expression of the all-order N -point function, Γ̂[N ], does no longer involve the mass-logarithm.
Instead, Γ̂[N ] is simply given by its leading coefficient ĉ[N ],0 evaluated at the RG-scale µ∗. Additionally,
we have shown that at any arbitrary scale,

Γ̂[N ] =

∞∑
p=0

ĉ[N ],pL
p (3.47)

where, for all p ≥ 1

ĉ[N ],p =
1

p

1

1−DL
Dĉ[N ],p−1 . (3.48)

Interestingly, we may also conclude from the above discussion that the denominator in Eq. (3.48) is at
the origin of the infinite number of compositions of the function f : log µ 7→ log

√
M(logµ), generating

the fixed point structure and the convergence towards µ∗. Its presence is crucial to explain the exact
RG-independence of any renormalised quantity. As we shall explain in the next section, the presence of
this denominator can be taken into account in a compact and rather elegant way, by introducing a set
of modified beta-functions which automatically drive the couplings towards their value at the fixed point
µ∗.

1.3 The resummation operator
Let us now examine more closely the impact of the denominator 1/(1−DL) in the recurrence relations
between the various coefficients in the logarithmic series. From Eq.(3.48), we have

ĉ[N ],1 =
1

1−DL
Dĉ[N ],0 ,

ĉ[N ],2 =
1

2

1

1−DL
Dĉ[N ],1 =

1

2

1

1−DL
D

[
1

1−DL
Dĉ[N ],0

]
,

ĉ[N ],3 = . . . .

(3.49)

Explicitly performing the derivatives is not very insightful, since this leads to a proliferation of terms
involving higher derivatives of the mass-logarithm L (it is this complicated structure that, when resummed
explicitly, will lead to convergence towards the fixed point). On the other hand, it is possible to define
the differential operator D such that

D ≡ 1

1−DL
D , (3.50)

and in turn,

ĉ[N ],1 = D ĉ[N ],0 ,

ĉ[N ],2 =
1

2
D ĉ[N ],1 =

1

2
D2 ĉ[N ],0 ,

...

ĉ[N ],p =
1

p!
Dp ĉ[N ],0 . (3.51)
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Consequently, the all-order N -point function can be put in the rather compact form

Γ̂[N ] =

∞∑
p=0

1

p!
Dp ĉ[N ],0L

p
, (3.52)

or, more explicitly,

Γ̂[N ] =

∞∑
p=0

1

p!
Dp ĉ[N ],0(logµ0)

(
1

2
log

M(logµ0)

µ0

)p
, (3.53)

for any arbitrary fixed scale µ0. To further rewrite this expression, it is useful to define the functional
operator Eµ0 with parameter µ0 acting in the space of RG-dependent function, such that

Eµ0
[f ] =

∞∑
p=0

1

p!

(
1

2
log

M(logµ0)

µ0

)p
[Dp f ] (log µ0) , (3.54)

and which can be rewritten in the very compact form

Eµ0
[f ] =

[
eL(µ0)D(f)

]
(logµ0) , (3.55)

where

L(µ0) =
1

2
log

M(logµ0)

µ0
= log

√
M(logµ0)

µ0
. (3.56)

By construction, this operator is defined such that the function

F : µ0 7→ Eµ0
[f ] (3.57)

is constant on R. To explicitly prove this statement, we write

µ0
d

dµ0
F = µ0

d

dµ0

{ ∞∑
p=0

1

p!
[Dp f ]L

}

=

∞∑
p=0

1

p!
D (Dp f)L+ pDp f(DL− 1)

= (1−DL)

{ ∞∑
p=0

1

p!

(
Dp+1 f

)
L−

∞∑
p=1

1

(p− 1)!
(Dp f)

}

= (1−DL)

{ ∞∑
p=0

1

p!

(
Dp+1 f

)
L−

∞∑
p=0

1

p!

(
Dp+1 f

)}
= 0 . (3.58)

Consequently, it is always possible to write, for any arbitrary scale µ0

Eµ0
[f ] = Eµ∗ [f ] , (3.59)

that is, the parameter of the resummation functional operator can be equally taken to be µ∗. Hence,
one convenient way to interpret the effect of the resummation operator is the following3: When applied

3This operator can in fact be generalised as the following abstract object. Given some function g : x 7→ g(x), and given
the differential operator

Dg : f 7→
1

1− g′
f ′ ,

the functional operator Eg,x0 defined such that
Eg,x0 = exp

[(
g(x0)− x0

)
Dg

]
acts on any function f according to

Eg,x0 [f ] = f(x∗) ∀x0 , (3.60)
where x∗ is a fixed point of g. If g has many fixed point, we expect the function x0 7→ Eg,x0 [f ] to be locally constant, but
equal to f(xi

∗) where xi
∗ is a fixed point of g. However, g must certainly satisfy a number of constraints in order for the

operator to be well defined.
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on an RG-dependent function f , Eµ0
gives the value of f at the fixed point of the function g : logµ0 7→

1
2 logM(logµ0). With these definitions, the all-order resummed N -point functions are simply given by

Γ̂[N ] = Eµ0

[
ĉ[N ],0

]
= ĉ[N ],0 (logµ∗) , (3.61)

with µ0 any arbitrary energy scale.

1.4 RG-running towards µ∗

If the resummation operator defined above allows for a compact and elegant description of the resummed
N -point functions, it is not clear at this point how the above results can be used to perform practical
computations. This is the goal of the following discussion, where we show that it is possible to trade the
RG-scale for a dimensionless parameter z ∈ [0, 1], such that, for any RG-dependent function f ,

f(z = 0) = f(µ0), f(z = 1) = f(µ∗) . (3.62)

In turn, based on the initial value of the couplings at some scale µ0 and a set of differential equations,
we will implement a method allowing to systematically evolve the couplings towards the fixed-point scale
µ∗, where the N -point functions are free of any logarithmic contributions.

To begin with, we define for each RG-dependent quantity f(logµ) its counterpart f(z), where the
parameter z satisfies 0 ≤ z ≤ 1. In particular, we define

λ(z) such that λ(0) = λ(logµ0) ,

M(z) such that M(0) =M(logµ0) ,

and similarly for coefficients of the N -point functions, for which we define

ĉ[N ],p(z) such that ĉ[N ],p(0) = ĉ[N ],p(logµ0) .

It will also be useful to define the z-dependent mass-logarithm

L(z) =
1

2
logM(z) . (3.63)

Next, we define the beta-functions of the z-dependent couplings as

β(λ) ≡ β(λ)
∣∣∣
λ→λ

, β(M) ≡ β(M)
∣∣∣
λ→λ
M→M

, (3.64)

that is, we only replace every coupling with its z-dependent counterpart in the expression of the beta-
functions. In addition, the operator D, when applied to some combination of z-dependent couplings, will
simply be assumed to act as on its µ-dependent counterpart. Namely,

Df(λ,M) ≡ Df(λ,M)
∣∣∣
λ→λ
M→M

. (3.65)

Finally, the operator D defined in Eq. (3.50) as

D =
1

1−DL
D , (3.66)

will simply act on a z-dependent quantity as

Df(λ,M) =
1

1−DL
Df(λ,M) . (3.67)

Based on these definitions, the renormalised N -point functions (which are in the following formally
considered as numbers, and not functions of the RG-scale) can now be expressed as

Γ̂[N ] =

∞∑
p=0

ĉ[N ],p(0)L
p

0 , (3.68)
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where, as previously, L0 = 1
2 log

M(log µ0)
µ2
0

(this quantity will remain a constant for the remaining of the
discussion). This expansion can be rewritten in terms of the operator D as previously (see Eq. (3.52)),
but now in terms of the z-dependent coefficient ĉ[N ],0:

Γ̂[N ] =

∞∑
p=0

1

p!
Dpĉ[N ],0(0)L

p

0 . (3.69)

The next step is to observe that, if we define the derivative of ĉ[N ],0 with respect to the parameter z as

dĉ[N ],0

dz
(z) =

L0

1−DL(z)
D ĉ[N ],0(z) , (3.70)

then Eq. (3.69) simply becomes

Γ̂[N ] =

∞∑
p=0

1

p!

dp

dzp
ĉ[N ],0(0) , (3.71)

which is nothing less than the Taylor expansion of ĉ[N ],0 around z = 0, evaluated at z = 1. In turn, we
obtain the very following simple expression for the all-order, resummed N -point function:

Γ̂[N ] = ĉ[N ],0(1) . (3.72)

In other words, the all-order resummed N -point functions are obtained by evolving the coefficient ĉ[N ],0(z)
from its initial value,

ĉ[N ],0(0) = ĉ[N ],0(logµ0) , (3.73)

to its value at z = 1. Since the derivative of ĉ[N ],0(z) is known for all 0 ≤ z ≤ 1 (see Eq. (3.70)), what
one needs to do in practice in simply to solve (numerically) the differential equation

dĉ[N ],0

dz
(z) =

L0

1−DL(z)
D ĉ[N ],0(z), ĉ[N ],0(0) = ĉ[N ],0(logµ0) , (3.74)

from z = 0 to z = 1. Such a procedure will systematically drive the coefficient ĉ[N ],0(logµ0) towards its
value at the scale µ∗ at which all logarithms cancel. In other words,

ĉ[N ],0(1) = ĉ[N ],0(logµ∗) . (3.75)

In fact, since the z-derivative of ĉ[N ],0 explicitly depend on the couplings λ and M , one needs in practice
to solve the system of differential equations

dλ

dz
(z) =

L0

1−DL(z)
Dλ(z), λ(0) = λ(logµ0) , (3.76)

dM

dz
(z) =

L0

1−DL(z)
DM(z), M(0) =M(logµ0) , (3.77)

in order to obtain
λ(1) = λ(logµ∗), M(1) =M(logµ∗) , (3.78)

and infer the value of ĉ[N ],0(1) from its expression in terms of the couplings.

To summarise: The all-order resummed renormalised N -point functions are simply given by their
leading coefficient ĉ[N ],0 evaluated at the scale µ∗ which satisfies logµ∗ = 1

2 logM(logµ∗). The dependence
on µ of every coupling in the model can be traded for a dependence on a dimensionless parameter z ranging
from 0 to 1. The z-dependent couplings λ and M satisfy

λ(0) = λ(logµ0), λ(1) = λ(logµ∗), (3.79)
M(0) =M(logµ0), M(0) =M(logµ∗), (3.80)
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and their derivatives with respect to z are known for all 0 ≤ z ≤ 1:

dλ

dz
(z) =

L0

1−DL(z)
Dλ(z) (3.81)

dM

dz
(z) =

L0

1−DL(z)
DM(z) . (3.82)

Therefore, to obtain the value of the z-dependent couplings at z = 1, one simply needs in practice
to solve (numerically) the above system of differential equations. Evolving the z-dependent couplings
from their initial values at z = 0 towards z = 1 will automatically drive them to the values λ(logµ∗)
and M(logµ∗). Inserting these values in the expression of the leading coefficient ĉ[N ],0 (or, equivalently,
ĉ[N ],0) will in turn directly give the value of the all-order resummed N -point function, since

Γ̂[N ] = ĉ[N ],0(1) . (3.83)

1.5 Fixed-order truncations in perturbation theory
Having examined the structure of the resummed N -point functions to all orders in perturbation theory,
we shall now discuss the practical implications for fixed-order calculations. From the above results, there
are in fact two components in the definition of a fixed-order truncation: (i) The perturbative order at
which the leading coefficient ĉ[N ],0 is expressed and (ii) The loop-level at which the beta-function are
computed. As we shall explain, these two components can in fact be considered independently from each
other.

First of all, let us study the impact of the perturbative order of the beta-functions. As we have seen,
by construction, the resummation operator (3.55) can be applied to any RG-dependent function, and will
systematically drive this function to the fixed-point scale µ∗ such that

log
M(logµ∗)

µ2
∗

= 0 . (3.84)

Therefore, the resummation operator Eµ0
is blind to the precise form of the leading coefficient ĉ[N ],0 on

which it is applied to yield the resummed N -point function. It is however dependent on the precise
form of the beta-functions, which determine the RG-trajectory of the mas parameter M . Therefore, with
the initial value of the couplings being fixed at some scale µ0, we arrive in fact at a set of scales µ(n)

∗ ,
depending on the perturbative truncation used to generate the RG-trajectories. No matter the precise
value of n – the perturbative order of the beta-functions – the scale µ(n)

∗ is guaranteed, by construction,
to be independent of the initial scale. In turn, the N -point function obtained after resummation from
the n-loop RG-trajectories is guaranteed to be exactly independent under the n-loop RG-flow. For most
practical applications, µ(n)

∗ can be expected to converge rather quickly towards its all-order value, with
µ
(1)
∗ already giving a reasonable approximation.

Then, since the Eµ0
is a linear operator, any perturbative truncation at order m of the leading

coefficient will give the resummed N -point function

Γ̂[N ] = Eµ0

[
m∑
k=0

ĉ
(k)
[N ],0

]
=

m∑
k=0

Eµ0

[
ĉ
(k)
[N ],0

]
, (3.85)

with each individual contribution in the rightmost sum being exactly invariant under the n-loop RG-flow.

Example: resummed vacuum energy at two-loop
To exemplify the above results, we shall now provide the explicit form of the two-loop resummed vacuum
energy (i.e. the 0-point function) in the φ4+ theory, of which we recall the Lagrangian density

L =
1

2
∂µφ∂

µφ− Λ− 1

2
Mφ2 − 1

4!
φ4 . (3.86)
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We will therefore need the expression of the renormalised vacuum energy (noted Γ0 consistently with the
previous notation) to the two-loop level,

Γ0 = Γ
(0)
0 + κΓ

(1)
0 + κ2Γ

(2)
0 +O

(
κ3
)
, (3.87)

where

Γ
(0)
0 = Λ ,

Γ
(1)
0 = −3

8
M2 +

M2

4
log

M

µ2
,

Γ
(2)
0 =

1

8
λM2 − 1

4
M2λ log

M

µ2
+

1

8
λM2

(
log

M

µ2

)2

.

(3.88)

From the above expressions, we may also directly write down the leading coefficient, noted c0,

c0 = c
(0)
0 + κc

(0)
0 + κ2c

(0)
0 +O

(
κ3
)

= Λ− 3

8
κM2 +

1

8
κ2λM2 +O

(
κ3
)
.

(3.89)

We will also need the two-loop beta functions of λ and M :

β(λ) = κβ(1)(λ) + κβ(2)(λ) +O
(
κ3
)

= 3κλ2 − 17

3
κ2λ3 +O

(
κ3
)
,

(3.90)

β(M) = κβ(1)(M) + κβ(2)(M) +O
(
κ3
)

= κλM − 5

6
κ2λ2M +O

(
κ3
)
.

(3.91)

β(Λ) = κβ(1)(Λ) + κβ(2)(Λ) +O
(
κ3
)

=
1

2
κM2 −O

(
κ3
)
.

(3.92)

One of the conclusions of the previous sections was that, in order to obtain the resummed N -point function
(here, the vacuum energy), one only needs to express the derivatives of the z-dependent parameters, of
which we recall the expression:

dλ

dz
(z) =

L0

1−DL(z)
Dλ(z) (3.93)

dM

dz
(z) =

L0

1−DL(z)
DM(z) , (3.94)

dΛ

dz
(z) =

L0

1−DL(z)
DΛ(z) . (3.95)

We reiterate that L0 = 1
2 log

M(log µ0)
µ2
0

is only a constant, and that Dλ(z) and DM(z) are simply
obtained from the expression of the beta-functions, where the µ-dependent couplings are replaced with
their z-dependent counterpart. Therefore, it only remains to express the derivative of the mass-logarithm:

DL = D

(
1

2
logM

)
=
DM

2M
, (3.96)

which, from the expression of the beta-function of the mass parameter, Eq. (3.90), is explicitly computed
as

DL =
1

2
κλ− 5

12
κ2λ2 +O

(
κ3
)
. (3.97)
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In turn, we obtain the explicit form of the z-derivatives:

dλ

dz
=

L0

1− 1
2κλ+ 5

12κ
2λ2

(
3− 17

3
κλ

)
κλ2 +O

(
κ3
)
, (3.98)

dM

dz
=

L0

1− 1
2κλ+ 5

12κ
2λ2

(
1− 5

6
κλ

)
κλM +O

(
κ3
)
, (3.99)

dΛ

dz
=

L0

1− 1
2κλ+ 5

12κ
2λ2

κ

2
M2 +O

(
κ3
)
. (3.100)

Numerically solving this differential system is an easy task, and for any initial values of λ, M and µ0, and
it can be explicitly checked that the running of M always ends its course at the value M(1) such that
1
2 logM(1) = 1

2 logM(logµ∗) = log µ∗. From the values of λ(1), M(1) and Λ(1), the 2-loop resummed
vacuum energy is simply obtained from Eq. (3.89):

Γ0 = c0(logµ∗) = c0(1) = Λ(1)− 3

8
κM(1)2 +

1

8
κ2λM(1)2 +O

(
κ3
)

(3.101)

2 RG-improved potential in the massive φ4
− theory

Having shown how to properly perform the resummation of logarithmic contributions in the φ4+ theory,
we now release the constraint of a positive mass parameter. In particular, as discussed in chapter 1,
the ground state of the theory is in general no longer located at the origin of the field space, and we
must introduce a background field component to account for such a shift. In fact, every result previously
derived remains valid if the couplings are replaced with their background-field-dependent counterparts.
In the φ4 theory considered here, the mass M is now traded for its field-dependent counterpart, noted
m(φ), such that

m(φ) =
∂2V (φ)

∂φ2
=M +

1

2
λφ2 . (3.102)

In addition, every renormalised N -point function is now a function of the field φ, and in particular the
renormalised vacuum energy – that is, the effective potential.

The first step prior to being able to compute physical observables consists in finding the global
minimum of Veff(φ), defining the true vacuum of the theory. Once such a minimum is identified, the
background field can be set to the constant value

φ = φmin , (3.103)

and we recover the case of a φ4+ theory, in which every N -point function can be computed and resummed
according to the procedure described above. In the remaining of this section, we shall therefore concen-
trate on the determination of the true vacuum of the theory, that is, the minimisation of the effective
potential.

2.1 Field derivatives of the resummed potential
As the renormalised 0-point of the shifted theory, the effective potential (simply noted V for simplicity)
can be given in the form of a power series in the mass-logarithm

V (φ) =
∑

cp(logµ, φ)L(φ)
p , (3.104)

where, as before,

L(φ) ≡ 1

2
log

m(logµ, φ)

µ2
. (3.105)

As we have seen, resumming the logarithmic contributions simply brings V (φ) into the form

V (φ) = c0(logµ∗(φ), φ) , (3.106)
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where µ∗(φ) is the RG-scale at which the mass-logarithm cancels exactly. Namely,

logµ∗(φ) =
1

2
logm(logµ∗(φ), φ) . (3.107)

The minimisation condition for the effective potential (the stationary point equation) reads

dV

dφ
(φ) ≡ ∇φV (φ) = 0 . (3.108)

The field-derivative ∇φV (φ) can be explicitly computed from the resummed expression, Eq.(3.106),

∇φV (φ) = ∇φc0(logµ∗(φ), φ) = ∂φc0(logµ∗(φ), φ) + (∇φ logµ∗(φ))Dc0(logµ∗(φ), φ) , (3.109)

where two contributions arise, depending on the explicit or implicit nature of the φ-dependence. Dropping
the various arguments for clarity (keeping in mind in particular that µ∗ is field-dependent), we rewrite

∇φV = ∂φc0 + (∇φ logµ∗) Dc0 . (3.110)

To further express Eq.(3.110), one needs to compute the field derivative of the fixed-point scale µ∗(φ).
This is achieved by taking the derivative of its defining relation, Eq.(3.107):

∇φ logµ∗ =
1

2
∇φ logm =

1

2m
[∂φm+ (∇φ logµ∗)Dm] . (3.111)

Gathering the occurrences of ∇φ logµ∗ on the same side of the equation allows to obtain the expression

∇φ logµ∗ =
∂φm

2m−Dm
=

∂φL

1−DL
, (3.112)

where L = 1
2 logm. Consequently, the total field-derivative of the resummed potential takes the simple

form
∇φV = ∂φc0 +

∂φL

1−DL
Dc0 = ∂φc0 + ∂φLc1 , (3.113)

where c1 is the next-to-leading coefficient in the logarithmic series expansion of V (φ). The same result
would have been obtained by first taking the derivative of Eq.(3.104) and subsequently resum the loga-
rithms.

It will be very useful in the following to obtain the derivatives of V in the formalism where the
couplings are traded for their z-dependent counterpart. In particular, with at hand the expression of
∂φc0 for any 0 ≤ z ≤ 1, we will show in the next section that the minima of V can be obtained as
solutions, at z = 1, of a system of differential equations. Based on the results obtained in the previous
section, we define c0(z, φ) such that

c0(0, φ) = c0(logµ0, φ) ,
dc0
dz

=
L0(φ)

1−DL(z, φ)
Dc0 , (3.114)

where L0(φ) =
1
2 logm(logµ0, φ)− logµ0. In addition, we have shown that taking z = 1 is equivalent to

evaluating the RG-dependent quantities at the fixed-point scale µ∗, so that

c0(1, φ) = c0(logµ∗(φ), φ) . (3.115)

The procedure discussed in the next section to minimise the resummed potential will necessitate the
expression of the field-derivative of c0(z, φ) for any 0 ≤ z ≤ 1. At this time, we only have computed this
derivative at z = 1, leading to Eq. (3.113). We therefore need to examine more closely the behaviour of
c0 for intermediate values of z. There should exist a mapping of the form

c0(z, φ) = c0
(
logµ(z, φ), φ

)
, (3.116)
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where we have introduced the z-dependent renormalisation scale µ, such that

logµ(0, φ) = log µ0, logµ(1, φ) = log µ∗(φ) . (3.117)

In order to determine the explicit form of µ, we may first compute the z-derivative of the z-dependent
mass-logarithm L̄(z, φ), recalling that

d

dz
=

L0(φ)

1−DL(z, φ)
D , (3.118)

yielding

dL̄

dz
(z, φ) =

L0(φ)

1−DL(z, φ)
DL̄(z, φ)

=
L0(φ)

1−DL(z, φ)
(DL(z, φ)− 1)

= −L0(φ) .

Solving the above equation for z with the initial condition L̄(0, φ) = L0(φ) gives

L̄(z, φ) = (1− z)L0(φ) . (3.119)

Finally, since L̄(z, φ) = L(z, φ)− logµ(z, φ), we obtain

logµ(z, φ) = L(z, φ)− (1− z)L0 . (3.120)

In a next step, we wish to express the field-derivative of the newly introduced z-dependent RG-scale
µ. It is useful in this regard to explicitly replace L(z, φ) with its expression in terms of logµ(z, φ) in
Eq. (3.120) prior to taking the field derivative:

∇φ logµ(z, φ) = ∇φ
[
L(z, φ)− (1− z)L0

]
= ∇φ

[
L
(
logµ(z, φ), φ

)
− (1− z)L0

]
= ∇φ logµ(z, φ) DL

(
µ(z, φ), φ

)
+ ∂φL

(
µ(z, φ), φ

)
− (1− z)∂φL0(φ) .

Gathering the occurrences of ∇φ logµ(z, φ) on the same side of the equation leads to

∇φ logµ(z, φ) =
∂φL(z, φ)− (1− z)∂φL0(φ)

1−DL(z, φ)
. (3.121)

In the limit where z → 1, we recover the expression of the field-derivative of logµ∗:

∇φµ(1, φ) =
∂φL(1, φ)

1−DL(1, φ)
=

∂φL(1, φ)

1−DL(1, φ)
, (3.122)

previously derived in Eq. (3.112) in terms of the RG-dependent couplings. With this expression at hand,
we can finally express the field-derivative of c0 for any z between 0 and 1

∇φc0(z, φ) = ∇φc0
(
logµ(z, φ), φ

)
= [∇φ logµ(z, φ)]Dc0

(
logµ(z, φ), φ

)
+ ∂φc0

(
logµ(z, φ), φ

)
∇φc0 = ∂φc0 +

∂φL− (1− z)∂φL0

1−DL
Dc0 , (3.123)

where, in the last equality, we have dropped the arguments for better clarity.
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2.2 Minimisation of the resummed potential
Having established a set of expressions for the first field-derivatives of the resummed potential, we present
in this section a procedure allowing to determine the position of its minima. At least in cases where the
coefficient c0 is polynomial in the field, this procedure will allow for the determination of all solutions to
the stationary point equation.

The proposed minimisation procedure is based on the following observation: each solution φmin(1) of
the stationary point equation at z = 1 can be continuously evolved, using the differential evolution of the
z-dependent couplings, back to z = 0 where the input parameters of the theory are initially expressed.
We have derived in Eq. (3.123) the explicit form of the stationary point equation at every z:

∇φc0(z) = ∂φc0 +
∂φL− (1− z)∂φL0

1−DL
Dc0 = 0 . (3.124)

In order to simplify the expressions, we note that the full set of solutions at z = 1 is independent of
the ∂φL0 contribution, which can therefore be safely discarded. By doing so, we obtain the modified
z-dependent stationary point equation

∇φc0(z) = ∂φc0 +
∂φL

1−DL
Dc0 = 0 , (3.125)

which, once again, captures every solution at z = 1. It may be further simplified by multiplying both
sides with the denominator of the second contribution:

∂φc0 (1−DL) + (∂φL)Dc0 = 0 . (3.126)

We may also insert the explicit form of the derivatives of the logarithms,

DL =
1

2

Dm

m
, ∂φL =

1

2

∂φm

m
, (3.127)

leading to
P ≡ 2m ∂φc0 +Dc0 ∂φm−Dm ∂φc0 = 0 . (3.128)

In this form, the stationary point equation shares its overall structure with the coefficient c0. Of particular
interest is the case where c0 is polynomial in the fields, implying that Eq.(3.128) is also polynomial
(we recall that m is obtained from the second field-derivatives of c0). Based on this expression, the
minimisation procedure can be summarised in the following steps

1. We determine (in general, numerically) the full set of solutions of Eq. (3.128) at z = 0.

2. For each solution φ0min, we define the z-dependent quantity φmin(z) such that φmin(0) = φ0min and

P
(
z, φmin(z)

)
= 0, 0 ≤ z ≤ 1 . (3.129)

In other words, we require φmin(z) to remain a solution of the (modified) z-dependent stationary
point equation (3.128) all along the way from z = 0 to z = 1.

3. The above constraint translates into a differential equation on φmin(z) of the form

dφmin

dz
(z) = f(z) . (3.130)

This equation is solved numerically for every solution φmin initially found at z = 0, yielding in turn
the value of φmin(1). The quantity hence obtained is guaranteed to be a solution of the stationary
point equation (3.128), i.e. to correspond to a stationary point of the resummed effective potential.

In step 2, the differential equation governing the evolution of φmin(z) can be obtained by first writing the
z-dependent stationary point equation in the form

P
(
z, φmin(z)

)
= 0 , (3.131)
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and requiring that P
(
z, φmin(z)

)
= 0 for all z. Since φmin(0) is a solution of the initial stationary point

equation, i.e.
P
(
0, φmin(0)

)
= 0 , (3.132)

the above requirement translates to a vanishing z-derivative:

d

dz

[
P
(
z, φmin(z)

)]
= 0 . (3.133)

Explicitly, the above constraint yields

∂P

∂z

(
z, φmin(z)

)
+
dφmin

dz
(z)

∂P

∂φ
= 0 , (3.134)

which can be solved for dφmin

dz :
dφmin

dz
(z) = −∂zP

∂φP

(
z, φmin(z)

)
. (3.135)

Numerically solving this equation jointly with the set of differential equations for the z-dependent cou-
plings allows to evolve every solution φmin(z) from φmin(0) to φmin(1). Namely, we have found a method
allowing to obtain the solutions of the stationary point equation at z = 1, that is, the solutions to the
stationary point equation satisfied by the resummed potential. It is useful to note that, some solutions
to the (e.g. polynomial) stationary point equation at z = 0 may be complex, and turn into real solutions
at some 0 < zcrit < 1. Therefore, one way to proceed to capture such solutions as well is to solve the
differential equation in the complex plane. In the end, only the solutions whose imaginary part vanishes
will be retained at z = 1.





Chapter 4

Renormalisation group improvement in
multi-scale theories

Having established a number of important results in the framework of theories with a single scalar field,
we now extend the discussion to general scalar theories containing N interacting scalar fields. The re-
summation of logarithmic contributions (in particular in the effective potential) in such theories leads
to several conceptual difficulties, and for this reason, has been an active field of research in the last
decades [70, 71, 72, 73, 74, 75, 28, 76, 77, 78, 79, 80, 51]. The task is tedious, but the stakes are high:
understanding the perturbative structure of theories with interacting scalar fields (and more generally
interacting, non-degenerate massive states) is crucial in countless theoretical studies and phenomenolog-
ical applications. Proper understanding of spontaneous symmetry breaking (in particular in classically
scale-invariant theories [81]) in the Standard Model and its extensions, the study of decoupling in theories
with vastly separated mass scales (and the related hierarchy problem), the study of vacuum stability in
the Standard Model and beyond, and the overall search for precision and predictivity in any interacting
theory – to only cite a few – are such examples.

The main conceptual difficulty one encounters when dealing with theories with multiple mass scales
(or multi-scale theories) is usually formulated in the following way. While it is possible, in single-scale
theories, to tune the renormalisation scale so as to cancel the logarithms, when at least two masses occur
in the theory, it can only be tuned to cancel one such logarithm. For instance, in a theory with two mass
scales m2

1 and m2
2 where renormalised quantities contain UV-logarithmic contributions of the form(

log
m2

1

µ2

)p(
log

m2
2

µ2

)q
, (4.1)

setting µ = m1 (or, equivalently µ = m2) only resums part of the logarithmic series. In addition,
logarithms of the form

log
m1

m2
(4.2)

are generated, which generally violate the decoupling theorem in the case of widely separated mass scales.
In such cases, one solution consists in implementing “by hand” the decoupling theorem [65, 71, 77, 80],
or addressing the problem from the effective field theory (EFT) perspective [51]. Another path one can
follow is to solve this conceptual limitation by introducing multiple renormalisation scales in the theory
[28, 70, 73, 74, 75, 76], which can therefore be adjusted independently to cancel the logarithms. However,
at this time, none of these solutions is fully satisfactory. In the former case, the heavy physics is forced
to decouple, and the question of whether such a decoupling could naturally occur remains unanswered.
In the latter case, it has been shown that the introduction of multiple renormalisation scales inevitably
(unless the scalars are decoupled) induces an explicit dependence of the renormalised quantities on log-
arithms of the ratios of such scales, e.g. of the form log µ1

µ2
. In turn, reusing the above example, setting

µ2
1 = m1 and µ2

2 = m2 generates, once again, logarithms of the form log m1

m2
.
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Throughout this chapter, we will adopt the second point of view and introduce multiple renormalisa-
tion scales in the process of dimensional regularisation of the theory. While this has been discussed on
several occasions in the literature, there has been, to the best of our knowledge, no attempt to properly
generalise and perform an in-depth study of such a procedure beyond a few examples of two-mass sys-
tems. The forthcoming presentation constitutes an attempt to fill this gap, by rigorously generalising, in
section 1, the standard MS renormalisation procedure in the presence of several renormalisation scales.
This approach defines a new renormalisation scheme, referred to as the multi-scale MS (mMS) scheme in
the following. We shall in turn derive and examine the general structure of the multi-scale beta-functions
in section 2. Section 3 will finally be dedicated to the resummation of the logarithmic contributions
in the expression of the renormalised N -point functions. We will show that, from the structure of the
mMS-renormalised perturbation expansion, it is in fact possible to generalise the single-scale results in
a rather straightforward way, providing a theoretical framework as well as practical methods allowing to
systematically resum UV logarithms in a general scalar theory. Finally, we will summarise in section 4
our main findings and discuss their conceptual and practical implications.

1 Multi-scale renormalisation and the mMS scheme
As advertised in introduction, we now proceed with the renormalisation of a theory with N interacting
scalars in which several renormalisation scales are introduced. As mentioned above, the renormalisation
scheme hence obtained is referred to as the multi-scale MS (mMS) scheme. The starting point, as we shall
see, is to promote the renormalisation scale µ to an N ×N matrix, whose structure will be discussed in
section 1.2. The modified prescription for the occurrences of the renormalisation scale (matrix) introduced
at the end of chapter 1 will be extremely helpful to understand the precise role of the newly introduced
RG-scales in the process of computing the loop diagrams (section 1.3) and the beta-functions (section 2).

1.1 Definitions
We start from the alternative µ-prescription described in chapter 1, section 6.1:

L =
1

2
µ−ε/2∂µφ

aZ2
ab∂

µφb − 1

2
(Mab + δMab)φ

aφb − 1

4!
(λabcd + δλabcd)φ

aφbφcφd

=
1

2
µ−ε/2

[
∂µφ

aZ2
ab∂

µφb − 1

2
(mab + δmab)φ

aφb
]
− 1

4!
(λabcd + δλabcd)φ

aφbφcφd ,
(4.3)

where

φa0 = µ−ε/4Zaeφe ,

M0
ab = µε/2 (Mef + δMef )Z

−1
ea Z

−1
fb = (mef + δmef )Z

−1
ea Z

−1
fb ,

λ0abcd = µε (λefgh + δλefgh)Z
−1
ea Z

−1
fb Z

−1
gc Z

−1
hd .

(4.4)

In order to introduce multiple renormalisation scales in the theory, we promote the single RG-scale µ to
a matrix M, and first rewrite the relation between the bare and renormalised scalar fields as (in matrix
form)

φ0 = ZM−ε/4φ . (4.5)

While the matrixM is a priori general1, it will be shown in the next section that it can always be made
symmetric by a harmless field re-definition. Therefore, we will assume in the following that M =MT,
simplifying the forthcoming results and formulae accordingly.

1Apart from the fact that its eigenvalues must be positive in order to avoid the introduction of an imaginary part to the
Lagrangian density.
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From Eq. (4.5), the couplings are renormalised according to2:

M0
ab = (Mef + δMef )Mε/4

ei M
ε/4
fj Z

−1
ia Z

−1
jb = (mef + δmef )Z

−1
ia Z

−1
jb ,

λ0abcd = (λefgh + δλefgh)Mε/4
ei M

ε/4
fj M

ε/4
gk M

ε/4
hl Z

−1
ia Z

−1
jb Z

−1
kc Z

−1
ld ,

(4.6)

where the auxiliary mass matrix m with mass-dimension 2 and the corresponding counterterm satisfy

m =Mε/4MMε/4, δm =Mε/4δMMε/4 . (4.7)

It will be useful in the following to similarly define the auxiliary quartic couplings ` with mass-dimension
ε as

`abcd = λefghMε/4
ea M

ε/4
fb M

ε/4
gc M

ε/4
hd , (4.8)

and similarly for the corresponding counterterm, δ`. In turn, the relation between the renormalised
couplings read, in terms of m and `,

M0
ab = (mef + δmef )Z

−1
ea Z

−1
fb ,

λ0abcd = (`efgh + δ`efgh)Z
−1
ea Z

−1
fb Z

−1
gc Z

−1
hd .

(4.9)

When written in terms of M and λ, promoting the renormalisation scale to a matrix only affects the
kinetic part of the Lagrangian which takes the form

L =
1

2
∂µφ

a
[
M−ε/4Z2M−ε/4

]
ab
∂µφa − 1

2
(Mab + δMab)φ

aφb − 1

4!
(λabcd + δλabcd)φ

aφbφcφd . (4.10)

On the other hand, a dimensionally consistent description of the quadratic part of the Lagrangian involves
the mass-matrix m, such that

L ⊃ 1

2
∂µφ

a
[
M−ε/4Z2M−ε/4

]
ab
∂µφa − 1

2
φa
[
M−ε/4 (m+ δm)M−ε/4

]
ab
φb . (4.11)

In a next step, we apply a rotation of the scalar fields such that the mass matrix, and in turn the leading-
order propagator, is diagonal (see chapter 1, section 6.2). This is achieved by defining the orthogonal
matrix U such that

m̃ ≡ UmUT = diag
(
m1, . . . , mN

)
. (4.12)

Applying this rotation to every tensor quantity in the theory, we define in particular

Z̃ = ZUT, M̃ = UMUT, φ̃ = Uφ , (4.13)

and arrive at a new set relations between the bare and renormalised quantities3

φ0 = Z̃M̃−ε/4φ̃

M0
ab = (m̃ef + δm̃ef ) Z̃

−1
ea Z̃

−1
fb ,

λ0abcd =
(˜̀
efgh + δ˜̀efgh) Z̃−1

ea Z̃
−1
fb Z̃

−1
gc Z̃

−1
hd .

(4.14)

The propagator of the scalar mass eigenstates φ̃ reads

iG̃ =
i

M̃−ε/4Z̃TZ̃M̃−ε/4p2 − M̃ − δM̃

= M̃ε/4 i

Z̃TZ̃p2 − m̃− δm̃
M̃ε/4

= M̃ε/4 i

p21− m̃− δm̃+ p2δ̃φ
M̃ε/4 , (4.15)

2If not otherwise stated, Mε/2
ab is used as a shorthand notation for

(
Mε/2

)
ab

. That is, we first perform matrix expo-
nentiation, then take the element at position (a, b). This is in general not equivalent to exponentiating the element (a, b) of
M, in which case we shall use the explicit notation (Mab)

ε/2. A similar remark holds for the field-strength matrix Z, with
expressions of the type Z−1

ab ≡
(
Z−1

)
ab

.
3Note that UMxUT =

(
UMUT

)x for any real exponent x.
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and is renormalised according to

iG̃R = M̃ε/4 i

p21− m̃− π̃R(p2)
M̃ε/4

= M̃ε/4

[
i

p21− m̃
+

i

p21− m̃
(
−iπ̃R(p2)

) i

p21− m̃
+ . . .

]
M̃ε/4 . (4.16)

In the above expression, we have defined the renormalised matrix of self-energies with mass-dimension 2,
π̃R(p

2), such that
π̃R(p

2) = M̃ε/4Π̃R(p
2)M̃ε/4 , (4.17)

with Π̃R the renormalised matrix of self-energies with mass-dimension 2−ε/2 expressed in the mass-basis.
From Eq. (4.15), one has

π̃R(p
2) = UπR(p

2)UT = U
[
π(p2) + δm− p2δφ

]
UT = π̃(p2) + δm̃− p2δ̃φ , (4.18)

or, equivalently,

Π̃R(p
2) = M̃−ε/4π̃R(p

2)M̃−ε/4 = Π̃(p2) + δM̃ − p2
(
M̃−ε/4δ̃φM̃−ε/4

)
, (4.19)

which will be used in the next sections to fix the mass- and field-strength counterterms.

1.2 The structure of the renormalisation-scale matrix
As mentioned in the previous section, while the matrixM is a priori general, one is able by a re-definition
of the scalar fields to effectively promote it to a symmetric matrix. To see how, we first rewrite M−ε/4

in terms of its polar decomposition:

M−ε/4 =

[
M−ε/4

(
M−ε/4

)T]1/2
Rε , (4.20)

with R an orthogonal matrix of the form R = 1 + O(ε). The positive-definite matrix under the square
root can be approximated up to order O

(
ε2
)

using the Baker–Campbell–Hausdorff formula,

M−ε/4
(
M−ε/4

)T
= exp

(
−ε
4
L
)
exp

(
−ε
4
LT
)
= exp

(
−ε
4

(
L+ LT

))
+O(ε2) , (4.21)

where we have defined the matrix-logarithm4 of M:

L = LogM . (4.22)

We may write in turn

M−ε/4 =
[
exp

(
−ε
4

(
L+ LT

))
+O(ε2)

]1/2
Rε = exp

(
−ε
4

L+ LT

2

)
Kε , (4.23)

where the matrix K defined in the right-hand side satisfies K = 1 +O(ε). Hence, Eq. (4.5) can be put
in the form

φ0 = ZM−ε/4
sym Kεφ , (4.24)

where Msym is a symmetric matrix with logarithm LogMsym =
(
L+ LT

)
/2. Since the dimensionless

matrix Kε satisfies Kε → 1 in the 4-dimensional theory, we may absorb it in the scalar fields through
the re-definition

Kεφ→ φ , (4.25)

without effect on the physical properties of the regularised theory. Re-defining in addition

Msym →M (4.26)
4Here and in the following, we use for better clarity a different notation for the matrix logarithm, e.g. LogX, and the

logarithm of a scalar quantity, e.g. log x.
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proves our previous statement that M, although a priori general, can always be made symmetric. Con-
sequently, the matrix M can now be diagonalised by an orthogonal transformation, according to

µ = OMOT = diag
(
µ1, . . . , µN

)
. (4.27)

Hence, the new degrees of freedom introduced by promoting the single renormalisation scale µ to a matrix
can be factored in terms of N renormalisation scales µi (i = 1, . . . , N) and a set of angles parameterising
the orthogonal transformation O. In section 2, we will define, in a natural generalisation of the single-
scale case, the beta-functions of the couplings as their derivative with respect to the eigenvalues of the
RG-scale matrix, i.e. with respect to µi (i = 1, . . . , N). It will be shown in this context that the explicit
computation of the beta-functions involves the derivatives of M with respect to its own eigenvalues,
namely

µi
d

dµi
Mab = OiaOib . (4.28)

It is then important to note that a limiting case arises when M is proportional to the identity matrix,
i.e. whenM = µ1 for some scale µ. In such a case, the matrix O is not uniquely defined, meaning in turn
that neither are the beta-functions. Based on this observation, it therefore appears that an additional
renormalisation condition must be introduced in order for the theory to be properly renormalised. Such
a condition must unambiguously fix the orthogonal basis that defines the RG-scales µi (i = 1, . . . , N) at
each point in the RG-space (i.e. the N -dimensional space of renormalisation scales). While an infinite
set of such conditions may be given, defining a family of mMS renormalisation schemes, one choice of
particular interest consists in defining the renormalisation scales in the mass-basis, namely:

Mab = UTµU . (4.29)

As expected, this condition extends the validity of (4.28) even in the case where M ∝ 1, and comes
with an interesting interpretation: to each propagating mass-eigenstate φ̃i unambiguously corresponds a
renormalisation scale µi. In the remaining of this chapter, we shall assume that such a renormalisation
condition always holds, so that M and its matrix-logarithm L = LogM are diagonal in the mass basis,
namely:

M̃ ≡ UMUT = µ = diag
(
µ1, . . . , µN

)
(4.30)

L̃ ≡ ULUT = Logµ = diag
(
logµ1, . . . , logµN

)
. (4.31)

Nonetheless, when possible, we will carry out the forthcoming computations by keeping M̃ and L̃ in
a general matrix form in order to establish a set of general results holding independently of the above
renormalisation condition.

1.3 Two-loop renormalisation
One of the main goals of this chapter is to obtain the form of the beta-functions and anomalous dimensions
in the newly defined mMS scheme. In analogy with the single-scale case, one needs to express the
n-point functions beyond leading order, and to subsequently regularise them by minimally subtracting
the divergent contributions. From the expression of the counterterms, we will in turn be able in the next
section to compute the beta-functions from the requirement that the bare couplings are independent of
all renormalisation scales.

One-loop two-point function

We begin this discussion with the renormalisation of the two-point function at the one-loop level. In
order to consistently keep track of the non-integer powers of dimensionful quantities, it is a necessary
first step to compute the corrections to the matrix of self-energies with mass-dimension 2, π̃(p2) from
which Π̃(p2) can be later recovered using[

Π̃(p2)
]
ab

= M̃−ε/4
ae M̃−ε/4

bf

[
π̃(p2)

]
ef
. (4.32)
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As previously, the only diagram contributing to π̃(p2) at one-loop reads5

−iπ̃(1)
ab = =

1

2
M̃ε/4

ae M̃
ε/4
bf λ̃efijM̃

ε/4
ik M̃

ε/4
jl

∫
d̃dk

δkl

k2 − m̃kl + iε
. (4.33)

It is then useful to define the dimensionally-incomplete basis integral
[
I
(1)
2

]
ij

,

[
I
(1)
2

]
ij
=

∫
d̃dk

δij

k2 − m̃ij + iε
, (4.34)

with mass-dimension 2 − ε. We may construct in turn the basis integral integral noted
[
J
(1)
2

]abef
ij

with
canonical mass-dimension: [

J
(1)
2

]abef
ij

=
(
M̃ε/4

ae M̃
ε/4
bf

)(
M̃ε/4

ik M̃
ε/4
jl

[
I
(1)
2

]
kl

)
, (4.35)

bringing π̃(1)
ab into the form

−iπ̃(1)
ab = =

1

2
λ̃efij

[
J
(1)
2

]abef
ij

. (4.36)

Reusing the results of chapter 1, the integral I(1)2 is explicitly given by[
I
(1)
2

]
ij
= i

m̃ij

16π2

(
4π2e−γE

)ε/2 [2
ε
− (log m̃ij − 1)

]
+O(ε) , (4.37)

and inserting the ε-expansion of Mε/4 in Eq. (4.35) yields, up to order O(ε0),[
J
(1)
2

]abef
ij

=
i

16π2

{
2

ε
m̃ijδaeδbf −

[
m̃Log m̃− 1

2

{
m̃, L̃′

}
− 1

]
ij

δaeδbf

− 1

2
m̃ij

(
L̃′
aeδbf + δaeL̃′

bf

)}
+O(ε) ,

(4.38)

where we have defined the logarithm of the MS-corrected renormalisation scale matrix,

L̃′ = Log
[(
4π2e−γE

)1/2 M̃] = Log M̃′ . (4.39)

As compared to the single-scale computations, the logarithms of the RG-scales are now localised in the
diagram, giving rise to a rather intricate tensor structure already at the one-loop level. In particular,
the adimensionality of the logarithmic contributions is obtained from a non-trivial combination of the
logarithm of the mass matrix, m̃, with occurrences of L̃′ stemming from both internal and external legs.
It will help simplify the forthcoming expressions to define the tensor structure

[
A(m̃)

]abef
ij

as[
A(m̃)

]abef
ij

=

[
m̃Log m̃− 1

2

{
m̃, L̃′

}]
ij

δaeδbf −
1

2
m̃ij

(
L̃′
aeδbf + δaeL̃′

bf

)
, (4.40)

so that Eq. (4.38) takes the form[
J
(1)
2

]abef
ij

=
2i

16π2

(
1

ε
m̃ijδaeδbf −

1

2

[
A(m̃)

]abef
ij

)
+O(ε) , (4.41)

yielding in turn,

−iπ̃(1)
ab =

1

2
λ̃efij

[
J
(1)
2

]abef
ij

=
i

16π2

(
1

ε
λ̃abijm̃ij −

1

2
λ̃efij

[
A(m̃)

]abef
ij

)
+O(ε) . (4.42)

5We omit for clarity the argument p2 of which the self-energy is independent at one-loop.
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Finally, we may recover from Eq. (4.32) the expression of Π̃(1) in terms of the renormalised mass matrix
M , properly performing in addition the ε-expansion of each occurrence of m̃ outside the argument of the
logarithms. Doing so removes the logarithms of the RG-scales attached to the external legs, so that Π̃(1)

can be put into the form

−iΠ̃(1)
ab =

i

16π2
λ̃abij

(
1

ε
M̃ij −

1

2

[
A(M̃)

]
ij

)
+O(ε) , (4.43)

where [
A(M̃)

]
ij
=
[
M̃ Log m̃−

{
M̃, L̃′

}
− 1

]
ij

(4.44)

is the analogue of the single-scale function A(x) = x(log(x/µ2) − 1) defined in Eq. (1.42). We then
observe from Eq. (4.43) that the one-loop mass-matrix counterterm takes the same form as in the case
of single-scale renormalisation, that is

δM̃ab =
1

ε(16π2)
λ̃abijM̃ij . (4.45)

One-loop four-point function

Turning to the case of the 4-point function (which we shall only compute at zero-momentum), we write

−iΓ̃(1)
abcd =

1

2
λabefλghcdM̃ε/4

ei M̃
ε/4
fj M̃

ε/4
gk M̃

ε/4
hl

[
I
(1)
4

]
ik,jl

=
1

2
λabef

[
J
(1)
4

]
eg,fh

λghcd , (4.46)

where the 4-point basis integral I(1)4 , with mass-dimension −ε, is defined as

[
I
(1)
4

]
ab,cd

=

∫
d̃dk

δab

k2 − m̃ab

δcd

k2 − m̃cd
, (4.47)

and can be directly expressed by reusing the results of chapter 1:

[
I
(1)
4

]
ab,cd

= i
δabδcd

16π2

(
4π2e−γE

)ε/2 [2
ε
−
∫ 1

0

dx log [xm̃ab + (1− x)m̃cd]

]
+O(ε) . (4.48)

Its dimensionless counterpart, noted J
(1)
4 , is then computed as[

J
(1)
4

]
ab,cd

= M̃ε/4
ai M̃

ε/4
bj M̃

ε/4
ck M̃

ε/4
dl

[
I
(1)
4

]
ij,kl

=
i

16π2

[
2
δabδcd

ε
−
(∫ 1

0

dx δabδcd log [xm̃ab + (1− x)m̃cd]− L̃′
abδcd − δabL̃′

cd

)]
+O(ε)

=
2i

16π2

(
δabδcd

ε
+

1

2

[
B(M̃)

]
ab,cd

)
+O(ε) , (4.49)

where have defined the multi-scale analogue of the function B(x) (see Eq. (1.47)) as

[
B(M̃)

]
ab,cd

= −
∫ 1

0

dx δabδcd log [xm̃ab + (1− x)m̃cd]− L̃′
abδcd − δabL̃′

cd . (4.50)

From Eq. (4.49) we infer the expression of the one-loop quartic counterterm

δλ̃abcd =
1

ε(16π2)

(
λ̃abij λ̃ijcd + λ̃abij λ̃ijcd + λ̃abij λ̃ijcd

)
, (4.51)

taking the same form as in single-scale renormalisation.
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Two-loop two-point function
Turning to the two-loop contributions to π̃, the two relevant topologies can be schematically decomposed
as

−iπ̃(2)

[ ]
∼ + + , (4.52)

and

−iπ̃(2)(p2)

[ ]
∼ + , (4.53)

where it is understood that, in both cases, only the relevant quartic counterterm contributions are re-
tained. Conveniently expressing the first topology in terms of the one-loop basis integrals, we obtain

−iπ̃(2)
ab

[ ]
=

1

2
δλ̃efij

[
J
(1)
2

]abef
ij

+
1

2
λ̃abij

[
J
(1)
4

]
ij,kl

δm̃kl +
i

4
λ̃efij

[
J
(1)
4

]
ij,kl

λ̃klmn

[
J
(1)
2

]abef
mn

=
i

16π2

[
1

ε2
λ̃abij λ̃ijklm̃kl +O(1)

]
, (4.54)

and observe that the corresponding counterterm is, once again, equivalent to that obtained in the usual
MS scheme. Turning to the sunset topology, we define the momentum-dependent two-loop basis integral[

I
(2)
2 (p2)

]
ij,kl,mn

=

∫
d̃dk

∫
d̃dq

δij

k2 − m̃ij

δkl

(p+ k + q)2 − m̃kl

δmn

q2 − m̃mn
, (4.55)

and its counterpart with canonical mass-dimension,[
J
(2)
2 (p2)

]abef
ij,kl,mn

=
(
M̃ε/4

ae M̃
ε/4
bf

)(
M̃ε/4

iI M̃
ε/4
jJ

)(
M̃ε/4

kKM̃
ε/4
kK

)(
M̃ε/4

mMM̃
ε/4
nN

) [
I
(2)
2 (p2)

]
IJ,KL,MN

,

(4.56)
so that the contributions of the sunset topology to π̃ are given by

−iπ̃(2)
ab (p

2)

[ ]
=

1

2
δλ̃efij

[
J
(1)
2

]abef
ij

+
i

6
λ̃eikmλ̃fjln

[
J
(2)
2 (p2)

]abef
ij,kl,mn

. (4.57)

The sunset loop integral was computed in chapter 1, appendix B, from which the expression of
[
J
(2)
2 (p2)

]abef
ij,kl,mn

is obtained by properly expanding of the ε-dependent contributions. It is convenient to isolate the mo-
mentum dependence from the basis integral as follows:[

J
(2)
2 (p2)

]abef
ij,kl,mn

=
p2

2ε
δijδklδmn +

(
M̃ε/4

ae M̃
ε/4
bf

) [
J
(2)
2

]
ij,kl,mn

+O(1) , (4.58)

where we have gathered in
[
J
(2)
2

]
ij,kl,mn

the remaining pole terms with no dependence on p2, and con-
veniently factored out powers of the RG-scale matrix attached to the external legs: those will eventually
cancel when recovering Π̃(2)(p2) from the expression of π̃(2)(p2). Explicitly, we obtain:[

J
(2)
2

]
ij,kl,mn

=

{(
− 2

ε2
M̃ij +

1

ε
M̃ij +

2

ε

[
A(M̃)

]
ij

)
δklδmn

+
1

ε

({
M̃, L̃′

}
ij
δklδmn − M̃ijL̃′

klδmn − M̃ijδklL̃′
mn

)
+
(
ij ↔ kl

)
+
(
ij ↔ mn

)}
+O(1) . (4.59)
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We recognise in the first line of the above expression the same contributions which we had found from
the single-scale MS scheme computations (see Eq. (1.B30)). In turn, taking into account the counterterm
contributions is expected to properly cancel the mass-logarithms contained in A(M̃) and guarantee as
usual the absence of non-local divergences. On the other hand, additional contributions arise in the second
line of Eq. (4.59) involving logarithms of the RG-scale matrix. Sch contributions are characteristic of the
presence of multiple RG-scales in the theory and naturally cancel in the limit M → µ1. This is clear
from Eq. (4.59), since{

M̃, L̃′
}
ab
δcdδef − M̃abL̃′

cdδef − M̃abδcdL̃′
ef

M→µ1−−−−−→
(
2M̃ab − M̃ab − M̃ab

)
δcdδef logµ′ = 0 . (4.60)

Interestingly, these new contributions carry information on the structure of overlapping UV-divergences
(this justifies in particular their absence from the diagram with topology (4.54)): The non-trivial struc-
ture of the RG-scale matrix indeed implies that each occurrence of L = LogM is attached to an internal
propagator, i.e. is localised in the loop-diagram. We have in particular that the terms in the second line
of Eq. (4.59) signal the presence of a purely two-loop overlapping divergence, which cannot be reproduced
(and cancelled) by the composition of two one-loop integrals.

From Eqs (4.57)–(4.58), we obtain for the sunset contributions to Π̃(2)(p2) the following expression:

−iΠ̃(2)
ab (p

2)

[ ]
=

i

(16π2)2

{(
M̃−ε/4

ae M̃−ε/4
bf

) p2

12ε
λ̃eijkλ̃ijkf + λ̃aief λ̃bjef

(
1

ε2
− 1

2ε

)
M̃ij

+
1

2ε
λ̃aikeλ̃bjle

({
M̃, L̃′

}
ij
δkl − 2M̃ijL̃′

kl

)}
+O(1) ,

(4.61)

and, as expected from the above discussion, the two-loop counterterm acquires an explicit RG-scale
dependence:

δ(2)M̃ab =
1

(16π2)2

{
λ̃aief λ̃bjef

(
1

ε2
− 1

2ε

)
M̃ij +

1

2ε
λ̃aikeλ̃bjle

({
M̃, L̃′

}
ij
δkl − 2M̃ijL̃′

kl

)}
. (4.62)

We also obtain that the field-strength counterterm takes the same form as previously, namely:[
δ̃
(2)
φ

]
ab

= − 1

(16π2)2
1

12ε
λ̃aijkλ̃bijk . (4.63)

Two-loop four-point function
The case of the two-loop contributions to the four-point function is similar to that of the two-point
function, and we shall only report here the final result obtained using mMS renormalisation in the s-
channel configuration:

−iΓ̃(2)
abcd

[ ]
=

i

(16π2)2
λ̃abij λ̃ijklλ̃klcd

[
1

ε2
+O(1)

]
, (4.64)

−iΓ̃(2)
abcd

[ ]
=

i

(16π2)2

{
λabijλiklcλjkld

(
1

ε2
− 1

2ε

)
+

1

2ε
λabijλi′klcλj′k′l′d

[(
L̃′
ii′δjj′ + δii′L̃′

jj′

)
δkk′δll′ − δii′δjj′

(
L̃′
kk′δll′ + δkk′L̃′

ll′

)]
+
(
ab↔ cd

)}
+O(1) ,

(4.65)

2 Multi-scale beta-functions
With the expression of the two-loop counterterms at hand, one is able to derive the beta-functions and
anomalous dimensions in the mMS scheme. With multiple RG-scales at play, one has to define, for each
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coupling, a set of N beta-functions characterising their evolution along the multi-dimensional RG-flow.
In addition, a new feature compared to the single-scale case is the appearance of explicit logarithms of
the RG-scales in the counterterms, which will propagate to the expression of the beta-functions starting
from the two-loop level.

2.1 General considerations
As mentioned in section 1.2, a natural generalisation of single-scale renormalisation consists in defining
the beta-functions in terms of the eigenvalues of the RG-scale matrix M. We note, as previously,

µ = diag
(
µ1, . . . , µN

)
, (4.66)

the diagonal counterpart of M. We shall use the renormalisation condition introduced in section 1.2 by
imposing that the RG-scale matrix is diagonal in the mass-basis, namely:

µ = M̃ = UMUT . (4.67)

Hence, in the mass-basis, to each coupling corresponds a set of N beta-functions, defined as the ε-
independent contribution in the RG-derivative expansion, namely:

βA(λ̃abcd) ≡ DAλ̃abcd

∣∣∣
ε→0

, βA(M̃ab) ≡ DAM̃ab

∣∣∣
ε→0

, (4.68)

where we have defined the differential operators

DA = µA
d

dµA
, A = 1, . . . , N . (4.69)

Similarly, N anomalous dimension matrices are defined such that

DAφ̃
∣∣∣
ε→0

= −γ̃Aφ̃ , (4.70)

in analogy with standard MS renormalisation. The derivation of the beta-functions and anomalous di-
mension matrices is similar to the single-scale case although rather technical, and shall be deferred to
appendix A to keep this presentation concise. We will therefore concentrate on the main results, com-
menting on the major differences that arise in the mMS scheme compared to its single-scale counterpart.

We find in appendix A that the beta-functions can be written in a rather compact form, by first
defining the set of matrices γ[1]A such that[

γ
[1]
A

]ij
= −1

4
δiAδAj , (4.71)

and which occur in the ε-expansion of the anomalous dimension matrix in (4 − ε) dimensions. Their
presence is associated to the anomalous scaling of the renormalised fields with mass-dimension 1 − ε/4.
We similarly obtain that the RG-derivatives of the couplings contain at order O(ε) contributions of the
form

β
[1]
A (λ̃abcd) =

{
λ̃← γ

[1]
A

}
abcd

, β
[1]
A (M̃ab) =

{
M̃ ← γ

[1]
A

}
ab
. (4.72)

For instance, for the mass term, we explicitly have

DAM̃ab ⊃ εβ[1]
A (M̃ab) = −

ε

4

(
δaAM̃Ab + M̃aAδ

Ab
)
. (4.73)

With these definitions at hand, we show in appendix A that the multi-scale beta-functions and anomalous
dimension matrices take the form

γ̃A =
1

2
β
[1]
A (λ̃efgh)

∂δ̃
[1]
φ

∂λ̃efgh
− VA (4.74)

βA(λ̃abcd) = −β[1]
A (λ̃efgh)

∂δ[1]λ̃abcd

∂λ̃efgh
+
{
δ[1]λ̃← γ

[1]
A

}
abcd

+
{
λ̃← γ̃A

}
abcd

, (4.75)

βA(M̃ab) = −β[1]
A (λ̃efgh)

∂δ[1]M̃ab

∂λ̃efgh
− β[1]

A (M̃ef )
∂δ[1]M̃ab

∂M̃ef

+
{
δ[1]M̃ ← γ

[1]
A

}
ab

+
{
M̃ ← γ̃A

}
ab
, (4.76)
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where δ̃[1]φ , δ[1]λ̃ and δ[1]M̃ respectively denote the first-order pole contributions to the counterterms δ̃φ,
δλ̃ and δM̃ . The skew-symmetric matrices VA appearing in Eq. (4.74) are defined as

VA = (DAU)UT , (4.77)

where U is the orthogonal matrix which diagonalises the mass matrix according to

M̃ = UMUT . (4.78)

The explicit form of VA is obtained from the requirement that the mass matrix preserves its diagonal
structure along the RG-flow, and reads

[VA]
ab

=

[
UβA(M)UT

]ab
Ma −Mb

, (4.79)

with Mp = M̃pp the p-th eigenvalue of the mass matrix.

Intuitively, the interpretation of the first two terms in Eq. (4.75) and of the first three terms in
Eq. (4.76) is the following: each internal index contraction between two vertices, generically noted δij , is
successively replaced by

δij → 1

2
δiAδAj . (4.80)

It is in fact useful to define an operator DA which, when applied to a particular tensor structure, performs
such a replacement. As an illustration, let us consider the tensor structure

λ̃abij λ̃ijcd (4.81)

appearing in the expression of the one-loop quartic counterterm. When then have

DA
[
λ̃abij λ̃ijcd

]
=

1

2

(
λ̃abAj λ̃Ajcd + λ̃abiAλ̃iAcd

)
, (4.82)

or, in a diagrammatic notation,

DA

[ ]
=

1

2
+

1

2
, (4.83)

where the small circles signal the presence of an open index A. In turn, the beta-functions take a more
compact form when expressed in terms of DA:

βA(λ̃abcd) = DA
[
δ[1]λ̃abcd

]
+
{
λ̃← γ̃A

}
abcd

, (4.84)

βA(M̃ab) = DA
[
δ[1]M̃ab

]
+
{
M̃ ← γ̃A

}
ab
. (4.85)

A subtlety arises starting from the two-loop level, where the logarithms of the RG-scales may explicitly
appear in the expression of the counterterms. In such a case, applying the operator DA on a tensor
structure involving a contraction of the type

λabciL̃ijλjdef (4.86)

yields
DA

[
λ̃abciL̃ijλjdef

]
=

1

4

(
λ̃abcAL̃Aj λ̃jdef + λ̃abciL̃iAλ̃Adef

)
, (4.87)

which, since the RG-scale matrix is diagonal in the mass-basis, reduces to

DA
[
λ̃abciL̃ijλjdef

]
=

1

2
logµAλ̃abcAλ̃Adef . (4.88)
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2.2 Towards a basis-independent formulation
In the above discussion, the multi-scale beta-functions have been defined in the basis where the RG-
scale matrixM is diagonal, which also coincides with the mass-basis from the additional renormalisation
condition introduced in section 1.2. In their current form, the resulting expressions can hardly be extended
to the more general case where the couplings and fields are not initially expressed in such a basis, hence
breaking the manifest covariance which characterises the tensor formalism we have made use of throughout
this chapter. Let us consider as an illustration the one-loop quartic beta-function, β(λ̃abcd), obtained from
Eqs. (4.75) and (4.82):

β
(1)
A (λ̃abcd) =

1

16π2

[
λ̃abAiλ̃Aicd +

(
b↔ c

)
+
(
b↔ d

)]
+
{
λ̃← γ̃A

}
abcd

. (4.89)

From β
(1)
A (λ̃abcd), we may recover the beta-function of the quartic coupling λabcd expressed in the arbitrary,

original basis:

β
(1)
A (λabcd) = β

(1)
A

(
λ̃efghUeaUfbUgcUhd

)
=

[
β
(1)
A (λ̃efgh) +

{
λ̃← VA

}
efgh

]
UeaUfbUgcUhd

=
1

16π2

[
λabCiλDicd +

(
b↔ c

)
+
(
b↔ d

)]
UACUAD . (4.90)

Two comments are in order. First, having rotated the quartic couplings back to the original basis has re-
moved as expected the contributions coming from the skew-symmetric part of the anomalous dimension.
Second, expressing β(1)

A (λabcd) exclusively in terms of λabcd has generated occurrences of the orthogonal
matrix U , since the index A has not been rotated back to the original basis. In fact, in the above form,
it is not possible to covariantly transform the index A which merely labels the position of the renormali-
sation scale µA of which we are taking the derivative.

Nonetheless, we observe that the non-covariant contribution UACUAD appearing in Eq.(4.90) can in
fact be obtained by differentiating the logarithm of the RG-scale matrix, L with respect to one of its own
eigenvalues:

dLCD

d logµA
= µA

d

dµA
LCD = DA

[
UTL̃U

]CD
= UACUAD . (4.91)

This means in turn that β(1)(λabcd) can be expressed as

β
(1)
A (λabcd) =

1

16π2

[
λabCiλDicd +

(
b↔ c

)
+
(
b↔ d

)] (
DALCD

)
≡ βCD(λabcd)

(
DALCD

)
, (4.92)

where we have defined the two-index auxiliary beta-function β
(1)
CD(λabcd) as

β
(1)
CD(λabcd) =

1

16π2

[
λabCiλDicd +

(
b↔ c

)
+
(
b↔ d

)]
. (4.93)

It will be useful to introduce a compact notation allowing to rewrite Eq. (4.92) in the form

β
(1)
A (λabcd) =

(
DALCD

)
βCD(λabcd) ≡ [DAL · β] (λabcd) , (4.94)

where we have introduced the shortcut notation L · β = LCD · βCD.

Generalising the above example, we may in fact always re-define the actual beta-functions in terms
of a set of 2-index auxiliary beta-functions. This holds for the anomalous dimension matrix as well, and
one may take as the new definition of the beta-functions the following relations

γabA = DAL · γab , (4.95)
βA(λabcd) = [DAL · β] (λabcd) , (4.96)
βA(Mab) = [DAL · β] (Mab) , (4.97)
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holding in any basis, and with the two-index beta functions β and anomalous dimensions γ properly
transforming (i.e. covariantly) under an orthogonal change of basis. These newly defined two-index beta-
functions and anomalous dimensions are defined in complete analogy with their one-index counterparts:
With view on Eqs. (4.71) and (4.72), we define[

γ
[1]
AB

]ij
= −1

4
δiAδ

j
B , β

[1]
AB(λabcd) =

{
λ← γ

[1]
AB

}
abcd

, β
[1]
AB(Mab) =

{
M ← γ

[1]
AB

}
ab
, (4.98)

and establish in turn the two-index analogues of Eqs. (4.74)–(4.76) in the arbitrary, original basis:

γAB =
1

2
β
[1]
AB(λefgh)

∂δ
[1]
φ

∂λefgh
(4.99)

βAB(λabcd) = −β[1]
AB(λefgh)

∂δ[1]λabcd

∂λefgh
+
{
δ[1]λ← γ

[1]
AB

}
abcd

+ {λ← γAB}abcd , (4.100)

βAB(Mab) = −β[1]
AB(λefgh)

∂δ[1]Mab

∂λefgh
− β

[1]
AB(Mef )

∂δ[1]Mab

∂Mef
+
{
δ[1]M ← γ

[1]
AB

}
ab

+ {M ← γAB}ab .

(4.101)

We note that it is always possible to enforce the symmetry of the two-index beta-functions and anomalous
dimensions under exchange of their indices (e.g. A and B in the above expression) without impact on the
expression of the actual beta-functions. To do so, one simply needs to define γ

[1]
AB as[

γ
[1]
AB

]ij
= −1

4

δiAδ
j
B + δiBδ

j
A

2
, (4.102)

instead of [
γ
[1]
AB

]ij
= −1

4
δiAδ

j
B . (4.103)

Finally, before turning to the next section, it is convenient to introduce an additional notation, allowing
to disentangle the pure-vertex contributions to the beta-functions of λ and M and those stemming from
the anomalous dimensions. In particular, we decompose the above general beta-functions as

βAB(λabcd) = β̂AB(λabcd) + {λ← γAB}abcd , (4.104)

βAB(Mab) = β̂AB(Mab) + {M ← γAB}ab , (4.105)

where the definition of β̂AB(λabcd) and β̂AB(Mab) – the pure-vertex contributions to βAB(λabcd) and
βAB(Mab), respectively – directly follow from Eqs (4.100) and (4.101).

2.3 Two-loop beta-functions
Having established the general formalism allowing to compute the multi-scale beta-functions, we may
now specialise the above formulae to express the one- and two-loop beta functions of the general scalar
theory considered throughout this section. To keep the presentation general, we shall provide the relevant
expressions in the original basis using the two-index notation introduced above, keeping in mind that their
counterpart in the mass basis are straightforwardly obtained by (i) rotating all fields and couplings to
the mass-basis and (ii) taking into account the additional skew-symmetric contribution to the anomalous
dimension matrices, stemming from the relation

DAφ̃ = DA (Uφ) = −
[
UγAU

T − VA
]
φ̃ . (4.106)

At one-loop, anomalous dimension matrix vanishes and we obtain for the quartic coupling

β
(1)
AB(λabcd) =

[
1

2
+

1

2

]
+ (t-channel) + (u-channel)

=
1

16π2

1

2

[
λabAiλBicd +

(
b↔ c

)
+
(
b↔ d

)]
+
(
A↔ B

)
, (4.107)
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where we have used the symmetric definition of βAB . We similarly obtain for the mass-matrix:

β
(1)
AB(Mab) =

1

2
+

1

2
=

1

16π2

1

2
[λabAiMBi + λabBiMAi] , (4.108)

where a black dot on an internal line indicates a mass insertion. It is interesting to note that the single-
scale MS beta-functions may be recovered by contracting the two open indices, namely:

β(1)(λabcd)
∣∣∣
MS

= δABβ
(1)
AB(λabcd), β(1)(Mab)

∣∣∣
MS

= δABβ
(1)
AB(Mab) . (4.109)

At two-loop, the anomalous dimension matrix acquires its first non-zero contributions, obtained from the
expression of the field-strength counterterm in Eq. (4.63). From Eq. (4.99), we find

[
γ
(2)
AB

]
ab

=
1

24

[
1

4
+

1

4
+

3

2

]

=
1

(16π2)2
1

24

[
1

4
δaAλBijkλijkb +

1

4
λaijkλijkAδBb +

3

2
λaijAλijBb

]
, (4.110)

and contracting the indices A and B allows to recover the single-scale MS-result, namely

δAB
[
γ
(2)
AB

]
ab

=
1

(16π2)2
1

12
λaijkλijkb = γ

(2)
ab

∣∣∣
MS

. (4.111)

Turning to the two-loop mass-matrix beta-function, it is convenient to express the first order pole terms
in Eq. (4.62) in a diagrammatic form:

δ
(2)
[1] M = − 1

2ε
+

1

2ε

[
+ + (−2)

]
, (4.112)

where empty squares signal an insertion of the RG-scale matrix logarithm, L = LogM. For the contri-
bution independent of the RG-scale logarithms, we find

β
(2)
AB(Mab) ⊃ −

1

(16π2)2
1

8
[λaAjkMBfλfjkb + λaejkMeAλBjkb + 2λaeAkMefλfBkb] +

(
A↔ B

)
, (4.113)

and recover once again the MS result from the contraction of A and B. For the contributions which
explicitly depend on the RG-scale logarithm, the greater number of vertices produces a rather large
amount of terms, which for conciseness we will not report here. We reiterate however that, in the limit
M ∝ 1, the sum of the RG-scale-dependent contributions vanishes, so that their occurrence is a new
feature compared to the single-scale MS scheme. In fact, for some generic coupling λ, the two-index
beta-function can be parameterised, to all orders, as

βAB(λ) = β
[0]
AB(λ) + β

[1]
AB,CD(λ)L

CD + β
[2]
AB,CD,EF (λ)L

CDLEF + . . . , (4.114)

where the notation β
[k]
AB(λ) is introduced to label the contributions according to the power k of the

logarithms of the RG-scale they involve. Hence, the constraint of recovering the MS beta-functions in
the limit L → log(µ)1 translates into:

δABβ
[0]
AB(λ) = β(λ)

∣∣∣
MS

,

δABδCDβ
[1]
AB,CD(λ) = 0 ,

δABδCDδEFβ
[2]
AB,CD,EF (λ) = 0 ,

(4.115)

and similarly for the contributions with k > 2. In other words, for k ≥ 1, the quantity

β
[k]
AB,A1B1,...,AkBk

(λ) (4.116)
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is a traceless tensor, which furthermore can always be taken to be symmetric under the exchange of any
couple of indices with k ≥ 1, i.e. under any permutation of the type(

AiBi
)
↔
(
AjBj

)
, i, j ≥ 1 . (4.117)

Finally, as noted in [28], a set of consistency conditions exists on the structure of the beta-functions,
stemming from the requirement that differentiation with respect to µA and with respect to µB commute
for all A,B = 1, . . . , N . In other words, recalling that

DA ≡ µA
d

dµA
, (4.118)

this consistency condition (referred to as integrability condition in [28]) translates into

[DA, DB ] = 0, A,B = 1, . . . , N . (4.119)

It is a non-trivial observation that the validity of Eq.(4.119) is in fact guaranteed by the presence of the
logarithmic contributions in the beta-functions. For instance, for some generic coupling λ, we obtain up
to first-order in the RG-scale logarithm

[DA, DB ] (λ) = DAβB(λ)−DBβA(λ)

= DA

(
β
[0]
B (λ) + β

[1]
B,C(λ) log µC + . . .

)
−
(
B ↔ A

)
=
(
β
[0]
A ◦ β

[0]
B (λ)− β[0]

B ◦ β
[0]
A (λ)

)
+
[
β
[1]
B,A(λ)− β

[1]
A,B(λ)

]
, (4.120)

so that the requirement [DA, DB ](λ) = 0 implies, at leading order in the logarithm of the RG-scale, a
cancellation between contributions of the type β[0]◦β[0](λ) and β[1](λ). In other words, a set of non-trivial
relations exist among the contributions to the beta-functions at different orders in the logarithm of the
RG-scales, and furthermore, across various loop-orders.

2.4 Application to a two-scalar model
To provide better insight into the form of the multi-scale beta-functions, we specialise in this section the
above formulae to the case of a theory with N = 2 scalar fields φ1 and φ2. The corresponding Lagrangian
density reads

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ1∂

µφ1 − V (φ1, φ2) , (4.121)

and we shall for simplicity restrict the scalar potential to the form

V (φ1, φ2) =
1

2
M1φ

2
1 +

1

2
M2φ

2
2 +

1

24
λ1φ

4
1 +

1

24
λ2φ

4
2 +

1

4
λ3φ

2
1φ

2
2 . (4.122)

One-loop beta-functions
At one-loop, defining for conciseness the loop-counting parameter κ = 1/(16π2), we find for the masses
the following two-index beta-functions,

β
(1)
AB(M1) = κ

(
λ1M1 0
0 λ3M2

)
, β

(1)
AB(M2) = κ

(
λ3M1 0
0 λ2M2

)
. (4.123)

In the quartic sector we find

β
(1)
AB(λ1) = κ

(
3λ21 0
0 3λ23

)
, β

(1)
AB(λ2) = κ

(
3λ23 0
0 3λ22

)
,

β
(1)
AB(λ3) = κ

(
λ3(λ1 + 2λ3) 0

0 λ3(λ2 + 2λ3)

)
.

(4.124)

It is easily checked that taking the trace of each two-index beta-function (i.e. contracting βAB with δAB)
gives the MS result.
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Two-loop beta-functions
At two-loop, we obtain the following anomalous dimensions:

γ
(2)
AB(φ1) =

κ2

24

(
2λ21 + 3λ23 0

0 3λ23

)
, γ

(2)
AB(φ2) =

κ2

24

(
3λ23 0
0 2λ22 + 3λ23

)
, (4.125)

and recover the MS result by taking the trace of γ(2)
AB(φ1,2). Noting as previously the pure-vertex contri-

butions to the beta-functions β̂, we get at two-loop for the mass couplings:

β̂
(2)
AB(M1) = −

κ2

2

[((
2λ21 + λ23

)
M1 + λ23M2 0
0 λ23 (M1 + 3M2)

)

− log
µ1

µ2

(
λ23 (2M1 −M2) 0

0 λ23 (2M1 − 3M2)

)]
,

(4.126)

β̂
(2)
AB(M2) = −

κ2

2

[(
λ23 (M2 + 3M1) 0

0
(
2λ22 + λ23

)
M2 + λ23M1

)

+ log
µ1

µ2

(
λ23 (2M2 − 3M1) 0

0 λ23 (2M2 −M1)

)]
,

(4.127)

As expected, the RG-scale dependent contributions only depend on ratios of the multiple RG-scales,
properly cancelling in the limit where µ1 = µ2. In addition, taking the trace of the two-index beta-
functions yields

δABβ̂
(2)
AB(M1) = −κ2

[(
λ21 + λ23

)
M1 + 2λ23M2 − 2λ23(M1 −M2) log

µ1

µ2

]
δABβ̂

(2)
AB(M2) = −κ2

[(
λ22 + λ23

)
M2 + 2λ23M1 + 2λ23(M1 −M2) log

µ1

µ2

]
.

(4.128)

While the RG-scale-independent contributions indeed correspond in both cases to the MS beta-functions,
we observe that the terms proportional to log µ1

µ2
persist, and only cancel in the limit µ1 = µ2. Further-

more, it can be checked explicitly that the consistency condition on the commutator [D1, D2] exactly
holds up to the two-loop level. For instance, with view on Eq. (4.120), we may compute on the one hand

β
[0]
1 ◦ β

[0]
2 (M1)− β[0]

2 ◦ β
[0]
1 (M1) = 2κ2(M1 −M2)λ

2
3 +O(κ3) , (4.129)

and on the other hand

β
[1]
1 (M1)− β[1]

2 (M1) =

[
κ2

2
(M2 − 2M1)λ

2
3

]
−
[
κ2

2
(2M1 − 3M2)

]
= −2κ2(M1 −M2)λ

2
3 , (4.130)

so that
[D1, D2](M1) = O

(
κ3
)
, (4.131)

providing an explicit check that the consistency condition holds up to the two-loop level.

Finally, the expression of the quartic beta-functions does not qualitatively differ from those of the
mass parameters, so there is not much interest in reporting them here.

3 Resummation of logarithms
3.1 Parameterisation of the all-order N-point functions
We consider any renormalised N -point function, noted Γ for simplicity. In the traditional MS scheme, it
can be parameterised as

Γ = c+ ci1j1

[
Log

M

µ2

]i1j1
+ ci1j1,i2j2

[
Log

M

µ2

]i1j1 [
Log

M

µ2

]i2j2
+ . . . , (4.132)
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where the coefficients c themselves contain an infinite number of contributions in perturbation theory6.
Regardless, we are mainly interested at this stage in the logarithmic structure of the full perturbative
expansion. The various coefficients in the logarithmic expansion are now tensors, transforming covariantly
under basis transformations. However, it should be noted that, in the basis where M is diagonal, for each
couple of indices ikjk, we have that

ci1j1,...,ipjp = 0 if
p∨
k=1

ik 6= jk . (4.133)

In other words, in the mass-basis, one necessarily has ik = jk for every k and for every coefficient of the
logarithmic series. Any non-zero component such that ik 6= jk would be irrelevant since the diagonal
structure of the mass logarithm only selects the diagonal elements of the tensors it is contracted with.
Hence, in the mass basis, a more compact expansion can be given in terms of the eigenvalues of the mass
logarithm:

Γ = c+ ci1 log
Mi1

µ2
+ ci1,i2 log

Mi1

µ2

Mi2

µ2
+ . . . . (4.134)

Now turning to the mMS parameterisation, we have seen in the previous sections that the renormalised
N -point functions exactly reduce to their MS counterpart in the limit where M → µ1. We have also
observed the appearance of explicit logarithms of the RG-scales in the expression of the beta-functions at
two-loop. Such logarithms also generally occur in the expression of the renormalised N -point functions
beyond one-loop. These explicit occurrences of logarithms of the RG scales have the property to exactly
cancel in the limit M→ µ1, meaning that they only appear in the form of ratios, i.e.

log
µi
µj

, (4.135)

for some i, j ≤ N . In a matrix formalism, this means that, in the logarithmic expansion, such terms arise
from the contraction of the RG-scale matrix logarithm L with some traceless two-index tensor. That is,
schematically, contractions of the form

c...ij...Lij , δijc...ij... = 0 . (4.136)

In turn, when Lij becomes proportional to the identity matrix, δij , the contraction overall cancels as
expected. Another way of understanding this feature is to decompose the RG-scale matrix logarithm as

L =
1

N
Tr (L)1+

(
L − 1

N
Tr (L)1

)
≡ L1 +∆ . (4.137)

The first contribution is proportional to the identity, and with coefficient

1

N
Tr(L) = 1

N

N∑
i=1

logµi =
1

N
log

N∏
i=1

µi = log(µ1 · · ·µN )1/N ≡ log µ̃ . (4.138)

The scale µ̃ appearing in the rightmost logarithm is obtained from the geometric mean of all eigenvalues
of the RG-scale matrix7. For this reason, we shall refer to µ̃ as the average RG-scale. The matrix ∆
defined in Eq. (4.137) is, by construction, traceless. In the mass-basis, where L is diagonal, ∆ takes the
explicit form

∆ =
1

N

(logµ1 − logµ2) + · · ·+ (logµ1 − logµN ) 0
. . .

0 (log µN − logµ1) + · · ·+ (logµN − logµN−1)

 .

(4.139)
6We note also that, contrary to theories with a single scalar field, non-polynomial functions of the scalar masses can also

be involved in the coefficients c, and in particular logarithms of the form log Mi
Mj

for some i, j ≤ N . For Mi < Mj , a series

expansion can be given for such non-polynomial functions in terms of αij ≡ Mi
Mj

< 1, involving contributions of the type

O
(
αp
ij log(αij)

q
)

, with p, q ≥ 1. The absence of O(logαij) contributions prevents the occurrence of IR divergences.
7We can also write 1

N
Tr(L) = 1

N
Tr(LogM) = 1

N
log(detM), so that µ̃ = (detM)1/N .
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More concisely, the diagonal entry ∆ii (i = 1, . . . , N) reads in the mass basis

1

N

∑
1≤j≤N
j 6=i

logµi − logµj =
1

N

∑
1≤j≤N
j 6=i

log
µi
µj

, (4.140)

and therefore only depends on logarithms of ratios of the RG scales. In turn, any such ratio occurring
in the beta-functions or the renormalised N -point functions stems from the contraction of some tensor
with the traceless matrix ∆.

From the above discussion, we arrive at the conclusion that any renormalised N -point function Γ can
be parameterised, in the mMS scheme, in the form

Γ = c+
[
ca1b1 (LogM − L) + da1b1∆

a1b1
]

+
[
ca1b1,a2b2 (LogM − L)

a1b1 (LogM − L)a2b2 + da1b1,a2b2∆
a1b1 (LogM − L)a2b2

+ ea1b1,a2b2 (LogM − L)
a1b1 ∆a2b2 + fa1b1,a2b2∆

a1b1∆a2b2
]

+ . . . ,

(4.141)

where the tensors ci1j1,...ipjp are equal to those defined above, in the conventional MS scheme. This rather
intricate structure leads in fact to two different parameterisations, both of which will be helpful in the
resummation of logarithmic contributions. As a last preliminary step, we define the shorthand notations

L ≡ 1

2
LogM, L ≡ 1

2
LogM − LogM = L− L =

1

2
Log

M

M2
, (4.142)

where the matrix Log M
M2 is defined, by a slight abuse of notation, as the matrix with diagonal entries

log Mi

µ2
i

in the mass-basis8 (we recall that M is diagonal in the mass basis).

A first parameterisation can be given in terms of the logarithms L exclusively. Namely, allowing for
∆-dependent coefficients, noted Ci1j1,...,ipjp , we can write

Γ = C + Ci1j1L
i1j1

+ Ci1j1,i2j2L
i1j1

L
i2j2

+ Ci1j1,i2j2,i3j3L
i1j1

L
i2j2

L
i3j3

+ . . . , (4.143)

where the individual tensors C can themselves be decomposed in a series expansion in ∆. The leading
contributions to each of the C (that is, its ∆-independent term) corresponds to the MS coefficient c.

A second parameterisation is obtained from the opposite perspective, expressing the perturbative
series in terms of ∆. The L-dependent coefficients hence obtained are noted B, and we write

Γ = B +Bi1j1∆
i1j1 +Bi1j1,i2j2∆

i1j1∆i2j2 +Bi1j1,i2j2,i3j3∆
i1j1∆i2j2∆i3j3 + . . . . (4.144)

Rather importantly, the leading coefficient B corresponds in fact to the MS renormalised N -point function
(where log Mi

µ2 → log Mi

µ2
i

). From the contraction with ∆, every high order coefficient is traceless:

B...,ikjk,...δ
ikjk = 0 ∀k . (4.145)

In the following, both parameterisations (4.143) and (4.144) will be successively inserted into the
Callan-Symanzik equation to infer valuable information on the overall structure of the perturbative
expansion. From this point onward, we shall consider for clarity that every tensor and coupling is
expressed in the mass-basis, without using the tilde-notation used throughout the previous sections.

8A more rigorous definition could be Log M
M2 ≡ LogM−1MM−1.
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3.2 Callan-Symanzik equation in the ∆-parameterisation
In this parameterisation, we first need to express the derivatives of ∆ with respect to the RG-scale. This
is most easily achieved by using the trace-decomposition of the RG-scale logarithm,

∆ = L − L1 . (4.146)

The RG-derivatives of L and L1 being given by

DALij = δiAδ
j
A , DALij1 =

δij

N

N∑
k=1

DA logµk =
δij

N
, (4.147)

one has in turn
DA∆

ij = DA (L − L1)ij = δiAδ
j
A −

δij

N
. (4.148)

We shall in addition use the shorthand notation

Bi1j1,...,ipjp∆
i1j1 · · ·∆ipjp ≡ B{p} ·∆{p} , B{0} ·∆{0} ≡ B , (4.149)

so the ∆-parameterisation, Eq. (4.144), more simply reads

Γ =

∞∑
p=0

B{p} ·∆{p} . (4.150)

Finally, when taking the RG-derivatives to apply the Callan-Symanzik equation, we shall systematically
contract the open index A of DA derivative with ∆AA, defining in turn an auxiliary differential operator

(∆ ·D) ≡
N∑
A=1

∆AADA . (4.151)

This newly defined operator is introduced for mere convenience and will allow to maintain the forthcoming
expressions in a compact form. For instance, the (∆ ·D)-derivative of ∆ itself yields, from Eq. (4.148),

(∆ ·D)∆ij =

N∑
A=1

∆AADA∆
ij =

N∑
A=1

∆AAδiAδjA = ∆ij , (4.152)

where we have used in the last step the fact that ∆ is diagonal in the mass-basis.
As a last preliminary step, we define the modified N -point function Γ̂ in exact analogy with the single-

scale case (see section 1.2), by contracting its legs with the matrix K which factors the RG-dependence
out from the scalar field multiplet:

φ = Kφ̂, DAK = −γAK, DAφ̂ = 0 . (4.153)

Doing so allows to recover an exactly RG-invariant N -point function, bringing the Callan-Symanzik in
the simpler form

DAΓ̂ = 0 . (4.154)
Contracting the above open index A with ∆AA finally yields from Eq. (4.151)

(∆ ·D) Γ̂ = 0 , (4.155)

which constitutes our starting point to study the impact of the Callan-Symanzik equation on the structure
of the ∆-parameterisation. Let us then proceed and insert Eq. (4.150) in the above relation9:

0 = (∆ ·D) Γ̂

= (∆ ·D)

∞∑
p=0

B̂{p} ·∆{p}

=

∞∑
p=0

[
(∆ ·D) B̂

]
{p}
·∆{p} +

∞∑
p=0

pB̂{p} ·∆{p} . (4.156)

9The hatted coefficients B̂ are simply obtained after contraction of the open legs of B with the matrix K.
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Our notations allow indeed to maintain the expressions in a compact form, without the need to explicitly
write every index contraction. Gathering every contribution according to the powers of the matrix ∆ it
involves gives

0 =

∞∑
p=0

[
(∆ ·D) B̂

]
{p}
·∆{p} +

∞∑
p=0

pB̂{p} ·∆{p}

=

∞∑
p=0

[
(∆ ·D) B̂

]
{p}
·∆{p} +

∞∑
p=0

(p+ 1)B̂{p+1} ·∆{p+1}

=

∞∑
p=0

[
(∆ ·D) B̂

]
{p}
·∆{p} + (p+ 1)B̂{p+1} ·∆{p+1} . (4.157)

This equation must hold independently of the precise values of the RG-scales, and hence independently
of the precise form ∆. Consequently, it must hold order-by-order in ∆ and we obtain the relation[

(∆ ·D) B̂
]
{p}
·∆{p} + (p+ 1)B̂{p+1} ·∆{p+1} = 0 , (4.158)

allowing to obtain, for all p, the expression of B̂{p+1} ·∆{p+1} in terms of the previous coefficients:

B̂{p+1} ·∆{p+1} = − 1

p+ 1

[
(∆ ·D) B̂

]
{p}
·∆{p} . (4.159)

For p = 0, we infer from this recurrence relation that

B̂{1} ·∆{1} = − (∆ ·D) B̂ = −
N∑
A=1

∆AADAB̂ ≡ −∆ADAB̂ , (4.160)

where we have defined ∆A = ∆AA (A = 1, . . . , N) the vector populated with the diagonal entries of ∆.
For higher values of p, we obtain

B̂{2} ·∆{2} = −1

2

[
(∆ ·D) B̂{1} ·∆

]
=

1

2
∆A∆BDADBB̂

B̂{3} ·∆{3} = − 1

3!
∆A∆B∆CDADBDCB̂

. . .

B̂{p} ·∆{p} = (−1)p 1
p!
∆A1 · · ·∆ApDA1 · · ·DApB̂ . (4.161)

The last relation, valid for any p ≥ 0, allows to rewrite the entire ∆-expansion into the form

Γ̂ =

∞∑
p=0

(−1)p

p!
∆A1 · · ·∆ApDA1 · · ·DApB̂ , (4.162)

where each term in the expansion is now given in terms of the derivatives of the leading coefficient, B.
This expansion is very similar to a multivariate Taylor-expansion, and we shall now demonstrate that we
can indeed rewrite it in such a form. To see how, we recall that ∆ can be given in terms of L and L1
according to

∆ = L − L1 = − (L1 − L) . (4.163)

Since all coefficients are evaluated at the arbitrary RG-scales (logµ1, . . . , logµN ) populating the diagonal
entries of L, having expressed ∆ in the form (4.163) is indeed what we need to put Eq. (4.162) in the
form of a genuine multivariate Taylor expansion:

Γ̂ =

∞∑
p=0

1

p!

(
DA1

· · ·DAp
B̂
)
[L1 − L]A1 · · · [L1 − L]Ap . (4.164)
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This crucial result has a remarkable consequence: With every coefficient B̂... initially evaluated at the
scales (logµ1, . . . , logµN ), resumming the infinite tower of explicit logarithmic contributions amounts to
evolve every scale µi towards the average scale µ̃ = (µ1 · · ·µN )

1/N :

Γ̂ =

∞∑
p=0

1

p!

(
DA1

· · ·DAp
B̂
)
[L1 − L]A1 · · · [L1 − L]Ap = B̂L→L1 = B̂log µi→log µ̃ . (4.165)

In other words, resummation to all orders of the ratios log µi

µj
appearing in the expression of the N -

point functions exactly cancels each of them by taking µi → µ̃ for all i = 1, . . . , N . Once again, this
is a remarkable result: the multi-scale description of the theory is systematically brought back, upon
resummation of explicit RG-scale logarithms, to a MS-like description with a single renormalisation scale
µ̃. Recalling that the leading coefficient B corresponds to the MS resummed N -point function, this means

ΓmMS = ΓMS|µ=µ̃ . (4.166)

We insist that this result is completely general since it holds to all orders in perturbation theory, and for
any N -point function.

3.3 Callan-Symanzik equation in the L-parameterisation
It remains at this stage to explore the other possible parameterisation for the renormalised N -point
functions, expanded in terms of the mass-logarithms:

Γ = C + Ci1j1L
i1j1

+ Ci1j1,i2j2L
i1j1

L
i2j2

+ Ci1j1,i2j2,i3j3L
i1j1

L
i2j2

L
i3j3

+ . . . . (4.167)

Adapting our previous notations, we define

C{p}L
{p} ≡ Ci1j1,...,ipjpL

i1j1 · · ·Lipjp , C{0}L
{0} ≡ C , (4.168)

so as to rewrite

Γ̂ =

∞∑
p=0

Ĉ{p}L
{p}

. (4.169)

Inserting this expression into the Callan-Symanzik equation gives

0 = DAΓ̂ =

∞∑
p=0

(
DAĈ{p}

)
L
{p}

+ Ĉ{p}DA

(
L
{p})

. (4.170)

The situation is more involved here that in the case of the ∆-parameterisation, since the mass-logarithm
L depends implicitly on the scales µA (A = 1, . . . , N) through the beta-functions of M . Namely,

DAL
ij
= DA

(
1

2
LogM − L

)
= DAL

ij − δiAδ
j
A . (4.171)

From this point onward, we shall switch to a notation where the components of the (diagonal) matrices
are traded for vectors of eigenvalues. For instance,

L
A ≡ LAA =

1

2
log

MA

µ2
A

, LA ≡ LAA =
1

2
logMA, LA ≡ LAA = log µA . (4.172)

In turn, we have
Ĉ{p}L

{p} ≡ ĈA1,...,ApL
A1 · · ·LAp

, (4.173)

and, from Eq.(4.171),
DAL

B
= DAL

B − δBA ≡ −HAB , (4.174)

where we have defined the matrix H such that

HAB = δAB − 1

2
DAL

B (4.175)
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In turn, the Callan-Symanzik equation (4.170) takes the explicit form

0 = DAΓ̂ =

∞∑
p=0

DAĈA1,...,Ap
L
A1 · · ·LAp

−
∞∑
p=0

HAB
[
ĈB,A1,...,Ap + ĈA1,B,...,Ap + · · ·+ ĈA1,...,Ap,B

]
L
A1 · · ·LAp

=

∞∑
p=0

DAĈA1,...,Ap
L
A1 · · ·LAp −

∞∑
p=0

(p+ 1)HABĈB,A1,...,Ap
L
A1 · · ·LAp

, (4.176)

where the last equality follows from the symmetry of the coefficients under permutation of their indices.
Since this equality must hold independently of the precise value of the mass-logarithm eigenvalues, we
obtain the following recurrence relation:

HABĈB,A1,...,Ap
=

1

p+ 1
DAĈA1,...,Ap

. (4.177)

The matrix H departs from the identity starting at first-order in perturbation theory and can hence be
inverted. We define the differential operator

DA ≡
[
H−1

]AB
DB , (4.178)

as the analogue of the single-scale operator D defined in chapter 3 as

D =
1

1−DL
D . (4.179)

Iteratively applying Eq. (4.177) then gives

HABĈB = DAĈ → ĈB = DAĈ (4.180)

HABĈBA1
=

1

2
DAĈA1

→ ĈAB =
1

2
DAĈB =

1

2
DADBĈ , (4.181)

from which we conclude that, since ĈAB is symmetric under A ↔ B, the differential operators DA

(A = 1, . . . , N) necessarily commute:

[DA,DB ] = 0 ∀(A,B) = 1, . . . , N . (4.182)

For arbitrary p, the tensor contracted p times with the mass-logarithm then reads

ĈA1,...,Ap
=

1

p!
DA1

. . .DAp
Ĉ , (4.183)

and the L-expansion of the renormalised n-point function can be rewritten in the compact form

Γ̂ =

∞∑
p=0

1

p!

(
DA1

. . .DAp
Ĉ
)
L
A1 · · ·LAp

. (4.184)

It is important to reiterate that the derivatives involved in the above expression contain explicit occur-
rences of the RG-scale logarithms, which would only cancel after resummation of the ∆-expansion, as
explained in the previous section. In fact, the occurrence of these logarithms is a necessary condition in
order to for the differential operators DAk

to commute with one another.
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3.4 All-order resummation
We are now ready to proceed with the complete resummation of the logarithmic contributions to the
mMS resummation N -point functions. Starting with the L-expansion computed above,

Γ̂ =

∞∑
p=0

1

p!

(
DA1 . . .DApĈ

)
L
A1 · · ·LAp

, (4.185)

we first resum every ratio of RG-scale logarithms using the results obtained in the ∆-expansion. This
amounts to run every coupling from (logµ1, . . . , logµN ) to (log µ̃, . . . , log µ̃). At this stage, the beta-
functions involved in the above expression are now completely independent of the RG-scale since µi = µ̃
for all i = 1, . . . , N . Reusing the results of section 2, the operators DA applied to any function of the
couplings are now given by

DA =
∑
i

β
[0]
A (λi)

∂

∂λi
, (4.186)

where β[0]
A is the contribution to the beta-functions which was independent of the RG-scale logarithms

before their resummation, and where λi denotes any generic coupling of the theory.

The very final step allowing to resum the logarithmic contributions is, from a generalisation of the
procedure established in the single-scale case, to define a new set of z-dependent couplings, with z a
parameter ranging from 0 to 1. In particular, we define

λabcd(z), λabcd(0) = λabcd(log µ̃1) , (4.187)
Mab(z), Mab(0) =Mab(log µ̃1) , (4.188)

and similarly for any other coupling that would have been included in the Lagrangian density. We define
the z-derivatives of the couplings as

dλabcd
dz

(z) = L
A

0 DAλabcd = L
A

0

[
H−1

]AB
DBλabcd = L

A

0

[
H−1

]AB
β
[0]
B (λabcd) , (4.189)

dMab

dz
(z) = L

A

0 DAMabcd = L
A

0

[
H−1

]AB
DBMab = L

A

0

[
H−1

]AB
β
[0]
B (Mab) , (4.190)

where

L
A

0 =

[
1

2
logM(log µ̃1)− log µ̃1

]A
=

1

2
log

MA(log µ̃1)

µ̃2
, (4.191)

is kept constant under evolution of the parameter z (the subscript 0 emphasises this feature). Hence, LA0
simply stands for the eigenvalues of mass-logarithm evaluated at the initial average scale µ̃.

Exactly as in the single-scale case, having defined these z-dependent parameters and their derivatives,
the L-expansion of the renormalised N -point functions now takes the very simple form

Γ̂ =

∞∑
p=0

1

p!

dp

dzp
Ĉ , (4.192)

and, as previously, is nothing else than the Taylor expansion of the coefficient Ĉ around the initial value
z = 0, evaluated at z = 1. This brings us to the most important result of this chapter,

Γ̂ = Ĉ(1) . (4.193)

Namely, the renormalised N -point functions in which logarithmic contributions have been resummed to all
orders are obtained from their leading coefficient evaluated at z = 1. The z-dependence of the couplings
is governed by the set of differential equations, Eq. (4.189) and Eq. (4.190) (trivially generalised to models
with additional interactions), and their value at z = 0 simply coincides with their initial value in the
MS scheme at the scale µ̃.
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4 Summary and discussion
4.1 Summary of the results
Before discussing the possible implications of our findings, let us summarise the main steps that have
led us to the above results. First, we have carried out the renormalisation of a general scalar theory
using dimensional regularisation in the presence of multiple renormalisation scales, and obtained general
expression for the beta-functions in such a renormalisation scheme, called mMS. These multi-scale beta-
functions explicitly depend on (ratios of) the logarithms of the RG-scales. Following the discussion in
section 3.1, this means that, to all orders in perturbation theory, the mMS beta-functions of a generic
coupling λi take the form (for A = 1, . . . , N)

µA
d

dµA
(λi) ≡ βA(λi) = β

[0]
A (λi) + ∆Aβ

[1]
A (λi) + ∆A∆Bβ

[2]
A,B(λi) + . . . , (4.194)

where ∆A stands for the eigenvalues of the traceless component of the RG-scale matrix logarithm. In
this logarithmic series, the leading contributions β[0]

A are directly related to the conventional MS beta-
functions, since ∑

A

β
[0]
A (λi) = βMS(λi) . (4.195)

In addition, β[0]
A (λi) can be directly obtained from the general expression of the mMS beta function,

successively “opening” the internal propagators in the loop diagrams, replacing them with

δij → 1

2
δiAδ

j
A , (4.196)

and taking the sum of the diagrams with open index A thereby obtained. For instance, for the one-loop
quartic beta-functions, this procedure can be schematically summarised as

→ 1

2
+

1

2
. (4.197)

In the mMS scheme, the renormalised N -point functions have been shown to take the general form of a
logarithmic series involving both the mass-logarithm L,

L =
1

2
LogM − L mass basis−−−−−−→ L

ii
=

1

2
log

Mii

µ2
i

, (4.198)

and the traceless matrix ∆, populated with the logarithms of ratios of the RG-scales. Starting with a
description of the theory at an arbitrary set of scales (µ1, . . . , µN ), we have demonstrated in section 3.2
that the resummation of ∆ contributions was equivalent to performing the running of all couplings towards
the average scale µ̃ = (µ1 · · ·µN )

1/N , hence cancelling every ratio of the form log µi

µj
(that is, resumming

them). Such a resummation therefore brings the expression of every renormalised quantity back into its
MS form, evaluated at the single scale µ̃. On the other hand, instead of performing the ∆-resummation,
inserting in the Callan-Symanzik equation the mass-logarithm parameterisation gives a set of recurrence
relations between the coefficients, which one could not have obtained from MS renormalisation. First
removing the leg-dependence of the renormalised N -point function Γ by defining

Γ̂ = KNΓ, where DAK = −γA , (4.199)

these recurrence relations bring the all-order RG-invariant quantity Γ̂ into the form

Γ̂ =

∞∑
p=0

1

p!

(
DA1

. . .DAp
Ĉ
)
L
A1 · · ·LAp

, (4.200)

where the differential operator DA1
is the direct multi-variate generalisation of the operator D obtained

in chapter 3 in the process of resummation in single-scale theories (see Eq. 3.50):

DA =
[
H−1

]AB
DB , HIJ = δIJ −DIL

J , (4.201)
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where LJ denotes the J-th eigenvalue of L = 1
2 LogM . Similar to the denominator 1/(1 − DL) in

single-scale theories, H−1 is crucial in guaranteeing the exact RG-scale independence of the perturbative
expansion. Finally, directly generalising the methods established in chapter 3, we may trade the RG-
dependence of every coupling for a dependence on a dimensionless parameter 0 ≤ z ≤ 1. With couplings
originally evaluated at the MS-scale µ0, we define, for any generic coupling λ, its counterpart λ(z) such
that

λ(0) = λ(logµ01) , (4.202)

and
dλ

dz
(z) = L

A

0 DA(λ) , (4.203)

where LA0 = 1
2 log

MA(log µ0)
µ2
0

. Noting Ĉ(z) the z-dependent leading coefficient of the logarithmic expansion
of Γ̂, we have finally shown that, to all orders in perturbation theory,

Γ̂ = Ĉ(1) . (4.204)

In other words, running the z-dependent couplings towards z = 1 resums every mass-logarithm in every
N -point function of the theory (that is, in the full effective action), bringing them into a form where only
their leading coefficient contributes, and has to be evaluated at z = 1. We reiterate that, by construction,
this procedure fully eliminates the dependence on the initial renormalisation scale. Finally, we note that
the non-modified N point function Γ is simply recovered from

Γ = [K(1)]
−2

Γ̂ , (4.205)

where the z-dependent matrix K(z) is defined such that

K(0) = 1,
d

dz
K = −γA , (4.206)

where γ results from the application of the operator DA on the scalar fields, namely

γA =
[
H−1

]
AB

γB . (4.207)

4.2 Interpretation in terms of multi-scale RG-running
Similar to the single-scale case, the differential evolution of the couplings from z = 0 to z = 1 can be
interpreted in terms of a multi-scale RG-flow, where each of the µi, initially set at µi = µi, will be driven
towards their fixed-point value µi∗ such that

logµi∗ =
1

2
logMi (logµ1∗, . . . , logµN∗) . (4.208)

This means in turn that the cancellation of all logarithms can still be interpreted, as in the single-scale
case, in terms of the simultaneous evolution of the µi (at z = 0) towards µi∗ (at z = 1). To understand
this property, we first compute the derivative of the z-dependent mass logarithms L̄A (A = 1, . . . , N):

dL̄A

dz
= L

B

0

[
H−1

]
BC

DCL̄
A

= L
B

0

[
H−1

]
BC

(
DCL

A − δCA
)

= −LB0
[
H−1

]
BC

HCA

= −LA0 . (4.209)

In turn, since L̄A(0) = L
A

0 , this yields the following explicit dependence on z

L̄A(z) = (1− z)LA0 , ∀A = 1, . . . , N . (4.210)
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Solving the above relation for logµA, the z-dependent counterpart of the scale logµA, yields

logµA(z) = LA(z)− (1− z)LA0 , (4.211)

and we recover that

logµA(0) = LA(0)− LA0 = log µ ,

logµA(1) = LA(1) =
1

2
logM(1) ≡ logµA∗ .

(4.212)

Therefore, although made implicit in the formulation of the theory in terms of the z-evolution, there
are indeed multiple RG-scales µA involved in the process of resummation. All of them are set to the
same initial value µ, but individually run towards their fixed-point value logµA∗ when z departs from
z = 0 and approaches z = 1. In conclusion, this completes the proof that the multi-scale approach to
renormalisation group improvement is indeed able to resum the UV logarithms in the effective action in a
straightforward way. On the other hand, starting from the two-loop level, residual logarithms of the form
log Mi

Mj
are generated, for which it might be possible to perform a further resummation. The investigation

of such a possibility is left for future work.

4.3 Generalisations
There are a number of straightforward generalisations of the above results.
The effective potential
First, we have assumed in the previous discussion that the theory was formulated at its true vacuum
(or at least at a stable minimum of the effective potential). Exactly as in the single-scale case, one may
introduce a non-zero background-field component, so as to determine the location of the ground state
from minimisation of the resummed effective potential. Every result presented above still holds when the
couplings are replaced with their background-field-dependent counterparts. For instance, M has to be
replaced with the field-dependent mass matrix m(φ) such that

mab(φ) =
∂2V (0)

∂φa∂φb
(φ) . (4.213)

Most of the discussion of chapter 3 in the single-case case can be transposed and generalised. In particular,
skipping the details of the computation, it is not difficult to compute the field derivatives of RG-improved
potential. In particular, the field derivatives of the z-dependent leading coefficient Ĉ(z, φ) can be shown
to take the form (omitting the arguments for clarity)

d

dφi
Ĉ ≡ ∇iĈ = ∂iĈ +

[
∂iL

A − (1− z)∂iL
A

0

]
DAĈ , (4.214)

in exact analogy with the single-scale result. Following the discussion in chapter 3, section 2.2, the sta-
tionary point equation can be solved by continuously evolving the solutions φmin(z) from z = 0 towards
z = 1 based on a system of differential equations imposing ∇iĈ

(
z, φmin(z)

)
= 0 for all z ∈ [0, 1].

Global symmetries and degenerate masses
When global symmetries are imposed on the theory, degeneracies may in general appear in the scalar
spectrum. As long as the symmetry remains unbroken, the mass matrix takes, in the mass basis, a
block-diagonal form

M =

M[1]1n1 . . . 0
...

. . .
...

0 · · · M[P ]1nP

 , (4.215)

where P is the number of sub-multiplets transforming under particular representations of the Lie algebra,
and where nk denotes the dimension of the k-th such representation. In such a case, a consistent approach
to mMS renormalisation only requires to introduce P distinct RG-scales in the regularisation process.
That is, the general prescription consists in introducing one renormalisation scale per massive propagating
multiplet transforming under some representation of the Lie algebra.
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Extension to general gauge-Yukawa theories
Up to this point, we have only considered in our discussion the case of a theory containing N interacting
scalars. In practice, any phenomenologically relevant application would require to extend our formalism
to general gauge-Yukawa theories. We believe that such a generalisation is in fact very straightforward.
One simply needs in practice to assign to every propagating state a renormalisation scale µA, µi or µa,
depending on the species of the field – vector boson, fermion or scalar, respectively. In the (4 − ε)-
dimensional theory, we use a generalised prescription where the renormalisation scales are attached to
the kinetic terms. One should however carefully inspect the mass-dimension of each species in such a
prescription. The treatment of vector bosons, with canonical mass-dimension 1, is analogue to that of
the scalar field. However, for the fermion fields, one should inspect the dimensionless Yukawa couplings

yaijφ
aψiψj , (4.216)

in order to infer the mass-dimension of the fermion fields. Recalling that [φ] = 1− ε/4, we obtain

1− ε/4 + 2 [ψ] = 4− ε → [ψ] =
3

2

(
1− ε

4

)
, (4.217)

consistently with the observation that, in this prescription, the mass-dimension of the renormalised fields
is obtained by multiplying their canonical mass-dimension in 4-dimension with the factor (1− ε/4). Since
the bare fermion fields have mass-dimension

[ψ0] =
3

2
− ε

4
, (4.218)

an anomalous scaling for the renormalised fields will stem from the difference

[ψ]− [ψ0] = −
ε

8
, (4.219)

to be compared with the scalar- (or vector-)field anomalous scaling

[φ]− [φ0] =
ε

4
. (4.220)

As a direct consequence, the general prescription to compute the mMS beta-functions based on the
MS result is generalised to (introducing a new type of index, u, v, w, . . . , to label the multiple RG-scales)

Scalar propagators: δab
βMS→βmMS

u−−−−−−−−−−→ 1

2
δauδ

b
u ,

Vector propagators: δAB
βMS→βmMS

u−−−−−−−−−−→ 1

2
δAu δ

B
u ,

Fermion propagators: δij
βMS→βmMS

u−−−−−−−−−−→ 1

4
δiuδ

j
u .

(4.221)

Every subsequent result obtained in this chapter then follows from the expression of the multi-scale beta-
functions. In particular, every mass-logarithm involving scalars, fermions and massive bosons will be
resummed in the process of evolving every z-dependent coupling from z = 0 to z = 1. In this regard, the
general formalism presented in chapter 2 as well as its implementation in PyR@TE 3 [9] can prove very
useful.



120 Chapter 4 – Renormalisation group improvement in multi-scale theories

Appendix
A Multi-scale beta-functions: general derivation
While the explicit derivation of the beta-functions in the mMS scheme is analogue to the single-case,
the occurrence of a renormalisation-scale matrix, M, instead of a single renormalisation scale makes the
computation rather technical. We provide below the details of this calculation, the main results being
summarised in the main text in section 2.

A.1 Quartic beta-functions

In the quartic sector, it is convenient to use the relation between the bare couplings and ˜̀abcd (the auxiliary
quartic couplings with mass-dimension ε) as a starting point to derive the beta-functions. Namely, we
have

λ0abcd =
(˜̀
efgh + δ˜̀efgh) Z̃−1

ea Z̃
−1
fb Z̃

−1
gc Z̃

−1
hd , (4.A1)

leading after differentiation to

0 = DA
˜̀
abcd +DAδ˜̀abcd − {˜̀← γ̃′A

}
, (4.A2)

where the differential operator DA has been defined in Eq. (4.69) as

DA = µA
d

dµA
, (4.A3)

and where the auxiliary anomalous dimension matrix γ̃′A is defined as

γ̃′A = Z̃−1DAZ̃ , (4.A4)

and is to be distinguished from γ̃A, the anomalous dimension of the (1− ε/4)-dimensional renormalised
scalar fields. The latter is defined from the relation

φ0 = Z̃M−ε/4φ̃ , (4.A5)

yielding after differentiation

DAφ̃ = −
(
Z̃M−ε/4

)−1

DA

(
Z̃M−ε/4

)
≡ −γ̃Aφ̃ . (4.A6)

In turn, γ̃A can be expressed in terms of γ̃′A as

γ̃A =Mε/4γ̃′AM−ε/4 +Mε/4DAM−ε/4 ≡Mε/4γ̃′AM−ε/4 + γ
[1]
A ε , (4.A7)

where, since M̃ is diagonal, [
γ
[1]
A

]ab
=
[
Mε/4DAM−ε/4

]
= −1

4
δaAδ

b
1 . (4.A8)

The auxiliary anomalous dimension matrix γ̃′A has to be regarded as the anomalous dimension of the
scalar fields φ̃′ with canonical mass-dimension in the (4− ε)-dimensional theory,

φ̃′ =M−ε/4φ̃ . (4.A9)

Since ˜̀ has canonical mass-dimension, we expect the ε-dependent contributions to its beta-function to
vanish. For the same reason we shall assume that γ̃′A is independent of ε. To obtain the beta-function of˜̀, we then need to express the contributions at order O(ε0) in the derivative of the counterterm. This is
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most easily achieved by observing that, to all orders, δ˜̀ takes the same form as δλ̃ if one replaces λ̃ with˜̀ and every internal index contraction by powers of the RG-scale matrix M̃. For instance, at one-loop,
with view on Eq. (4.A1), one has

δ(1) ˜̀abcd = δλ̃efghM̃ε/4
ea M̃

ε/4
fb M̃

ε/4
gc M̃

ε/4
hd ⊃

1

ε(16π2)
λ̃efij λ̃ijghM̃ε/4

ea M̃
ε/4
fb M̃

ε/4
gc M̃

ε/4
hd

=
1

ε(16π2)
˜̀
abijM̃−ε/2

ik M̃−ε/2
jl

˜̀
klcd

=
1

ε(16π2)
˜̀
abijµ

−ε/2
i µ

−ε/2
j

˜̀
ijcd . (4.A10)

At higher orders, we have seen that powers of the logarithm of the RG-scale matrix, L̃, may occur in the
expression of the counterterms. In that case, the expression of δ˜̀ is simply obtained by performing the
additional replacement[

L̃p
]
ab

= (log µa)
p
δab −→

[
M̃−ε/4L̃pM̃−ε/4

]
ab

= µ−ε/2
a (logµa)

p
δab . (4.A11)

We further note that the explicit dependence of the counterterms on the logarithms of the renormalisation
scales does not introduce additional sources of order-O(ε0) contributions in Eq. (4.A2). It is then clear
that applying DA on the counterterms will select the first-order pole contributions through the derivatives
of the powers of the renormalisation scales, namely

DAµ
−ε/2
i =

−ε
2
δAiµ

−ε/2
i . (4.A12)

Contrary to the single-scale case, the selection of the first-order pole term δ[1] ˜̀keeps track of the position
of the renormalisation scales in the diagram, and we obtain for instance from Eq. (4.A10) that

DAδ
(1) ˜̀

abcd ⊃ −
1

2(16π)2

[˜̀
abAjµ

−ε/2
A µ

−ε/2
j

˜̀
Ajcd + ˜̀abiAµ−ε/2

i µ
−ε/2
A

˜̀
iAcd

]
. (4.A13)

Commuting the renormalisation scales through ˜̀back to their original position, we obtain

DAδ
(1) ˜̀

abcd ⊃ −
1

2(16π)2

[
λ̃efAj λ̃Ajgh + λ̃efiAλ̃iAgh

]
M̃ε/4

ea M̃
ε/4
fb M̃

ε/4
gc M̃

ε/4
hf . (4.A14)

More generally, we conclude that the contributions of order O(ε0) in Eq. (4.A2) are obtained by “opening”
each internal line in the diagrams contributing to the first-order pole contributions, noted δ[1] ˜̀, and
inserting at this position an open index A associated with the scale µA of which we are taking the
derivative. It is convenient to define an operator, noted DA, which performs this operation when applied
on a particular tensor structure. This allows in turn to derive a simple expression for the beta-function
of ˜̀,

βA
(˜̀) = DA

(˜̀) = 1

2
DA

(
δ[1] ˜̀)+ {˜̀← γ̃′A

}
, (4.A15)

which in the limit ε→ 0 coincides with the beta-function of the dimensionless, renormalised coupling λ̃.
Otherwise, one needs to differentiate the relation

`abcd = λefghM̃ε/4
ea M̃

ε/4
fb M̃

ε/4
gc M̃

ε/4
hd , (4.A16)

yielding
DAλ̃abcd = βA

(˜̀
efgh

)
M̃−ε/4

ea M̃−ε/4
fb M̃−ε/4

gc M̃−ε/4
hd + ε

{
λ̃← γ

[1]
A

}
abcd

, (4.A17)

where γ
[1]
A was defined in Eq. (4.A8). The inverse powers of the RG-scale matrix in the first term

systematically cancel those appearing in the expression of ` in Eq. (4.A15), yielding

βA

(˜̀
efgh

)
M̃−ε/4

ea M̃−ε/4
fb M̃−ε/4

gc M̃−ε/4
hd =

1

2
DA

(
δ[1]λ̃

)
+
{
λ̃← M̃ε/4γ̃AM̃−ε/4

}
, (4.A18)
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while the second term in Eq.(4.A17) is easily evaluated using Eq. (4.A8):{
λ̃← γ

[1]
A

}
abcd

= −1

4

(
δaAλ̃Abcd + δbAλ̃aAcd + δcAλ̃AcAd + δadλ̃abcA

)
. (4.A19)

Conveniently defining
β
[1]
A (λ̃abcd) =

{
λ̃← γ

[1]
A

}
abcd

, (4.A20)

we arrive at the following expression for DAλ̃:

DAλ̃abcd = εβ
[1]
A (λ̃abcd) +

1

2
DA

(
δ[1]λ̃

)
+
{
λ̃← M̃ε/4γ̃′AM̃−ε/4

}
. (4.A21)

The first contribution, of order O(ε) stems from the anomalous scaling of λ̃ in the (4 − ε)-dimensional
theory, and is the analogue of the single-scale MS contribution β(λabcd) ⊃ −ελabcd. It is in fact interesting
to note that taking the sum of Eq. (4.A21) over A, one effectively recovers the standard single-scale result:

N∑
A=1

DAλ̃abcd ⊃
N∑
A=1

εβ
[1]
A (λ̃abcd)

= −ε
4

N∑
A=1

(
δaAλ̃Abcd + δbAλ̃aAcd + δcAλ̃AcAd + δadλ̃abcA

)
= −ελabcd .

(4.A22)

Finally, while the second term in Eq. (4.A21) only contributes at order O(ε0) (i.e. to the beta-function),
the third term involving the anomalous dimension matrix produces an infinite series of positive powers of
ε. This is a new feature compared to the single-scale case, where the beta-functions of the renormalised
couplings were at most of order O(ε).

A.2 Anomalous dimension matrix
It remains at this stage to determine the expression of the anomalous dimension matrix γ̃′A. For this
purpose, we shall consider as our starting point the following relation:

DA

(
Z̃TZ̃

)
=
(
DAZ̃

T
)
Z̃ + Z̃T

(
DAZ̃

)
= γ̃AZ̃

TZ̃ + Z̃TZ̃γ̃A , (4.A23)

and, inserting the decomposition of the field-strength renormalisation matrix in terms of the corresponding
counterterm,

Z̃TZ̃ = UZ2UT = 1 + UδφU
T = 1 + δ̃φ , (4.A24)

we obtain
DAδ̃φ = γ̃′A + γ̃

′ T
A + δ̃φγ̃

′
A + γ̃

′ T
A δ̃φ . (4.A25)

In analogy with single-scale renormalisation – and with the expression of δ̃φ and hand – the next step to
compute γ̃′A is to decompose the RG-derivative of the counterterm according to

DAδ̃φ = DAλ̃efgh
∂δ̃φ

λ̃efgh
, (4.A26)

in order to isolate the order O(ε0) contributions. However, we have seen from Eq. (4.A21) that the
RG-derivatives of λ̃ involve an infinite series of ε-dependent terms, which by cancellation with the poles
of δ̃φ will a priori contribute to the finite part of the anomalous dimension. Fortunately, it is possible to
avoid such a difficult computation by providing another expression for DAδ̃φ, first observing that

DA

(
M̃ε/4δ̃φM̃ε/4

)
= M̃ε/4

[
DAδ̃φ + M̃−ε/4

(
DAM̃ε/4

)
δ̃φ + δ̃φ

(
DAM̃ε/4

)
M̃−ε/4

]
M̃ε/4 , (4.A27)
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yielding in turn

DAδ̃φ = M̃−ε/4
[
DA

(
M̃ε/4δ̃φM̃ε/4

)]
M̃−ε/4−M̃−ε/4

(
DAM̃ε/4

)
δ̃φ− δ̃φ

(
DAM̃ε/4

)
M̃−ε/4 . (4.A28)

As compared to Eq. (4.A26), the ε-expansion of every term in the above expression is finite, rendering
the O(ε0) contributions tractable. The computation of the first term is in fact completely analogue to
the case of DA

˜̀presented above, since the powers ofM can be commuted through the quartic couplings,
effectively trading λ̃ for ˜̀, whose beta-function does not contain powers of ε. For instance, at two-loop,
we have [

M̃ε/4δ̃φM̃ε/4
]
ab
⊃ − 1

12ε (16π2)2

[
M̃ε/4

]
ai
λ̃iefgλ̃efgj

[
M̃ε/4

]
jb

= − 1

12ε (16π2)2
˜̀
iefgµ

−ε/4
e µ

−ε/4
f µ−ε/4

g
˜̀
efgj . (4.A29)

As previously, differentiation with respect to the RG-scales will only generate positive powers of ε through
the explicit derivatives of µ−ε/2

x (x = e, f, g). Hence, we obtain after commuting powers of the RG-scale
matrix back to their original position:

DA

[
M̃ε/4δ̃φM̃ε/4

]
ab
⊃ 1

24 (16π2)2

[
M̃ε/4

]
ai

(
λ̃iAfgλ̃Afgj + λ̃ieAgλ̃eAgj + λ̃iefAλ̃efAj

) [
M̃ε/4

]
jb
.

(4.A30)
Making use of the operator DA defined above, we then arrive at the simple result

M̃−ε/4
[
DA

(
M̃ε/4δ̃φM̃ε/4

)]
M̃−ε/4 = −1

2
DA

(
δ̃
[1]
φ

)
+O

(
ε−1
)
, (4.A31)

where δ̃[1]φ stands for the first-order pole contributions to δ̃φ. With M̃ a diagonal matrix, the last two
terms of Eq. (4.A28) are easily evaluated and the components of DAδ̃φ can eventually be brought into
the form [

DAδ̃φ

]
ab

= −1

2

[
DA

(
δ̃
[1]
φ

)]
ab
− 1

4
δaA

[
δ̃
[1]
φ

]
Ab
− 1

4

[
δ̃
[1]
φ

]
aA
δAb +O

(
ε−1
)
. (4.A32)

We are finally able to determine the expression of the symmetric part of γ̃A by collecting the ε-independent
contributions in Eq. (4.A25), yielding[

γ̃′A + γ̃
′ T
A

]
ab

= −1

2

[
DA

(
δ̃
[1]
φ

)]
ab
− 1

4
δaA

[
δ̃
[1]
φ

]
Ab
− 1

4

[
δ̃
[1]
φ

]
aA
δAb , (4.A33)

which corresponds exactly to the expression one would have obtained from (see Eq. (4.A26))

γ̃′A + γ̃
′ T
A = β

[1]
A (λ̃abcd)

∂δ̃φ

∂λ̃abcd
, (4.A34)

with
β
[1]
A (λ̃abcd) = −

1

4

(
δaAλ̃Abcd + δbAλ̃aAcd + δcAλ̃AcAd + δadλ̃abcA

)
(4.A35)

the order-O(ε) contributions to DAλ̃ stemming only from the first term in Eq. (4.A21).

In a final step, we may recover the expression of γ′A, the anomalous dimension matrix in the original
basis,

γ′A = Z−1DAZ , (4.A36)

recalling that
Z̃ = ZUT , (4.A37)

with U is the orthogonal matrix which diagonalises the mass-matrix, m. From Eq. (4.A37), we have

γ̃′A = Z̃−1DAZ̃ = Uγ′AU
T + UDAU

T . (4.A38)
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As discussed in chapter 1, section 6.2, the introduction of the RG-dependent orthogonal matrix U effec-
tively induces a skew-symmetric component to the anomalous dimension matrix. Defining

VA = (DAU)UT = −V T
A , (4.A39)

we obtain from Eq. (4.A38), rewritten in the form

γ̃′A = Uγ′AU
T − VA , (4.A40)

that
γ̃′A + γ̃

′ T
A = 2UγAU

T . (4.A41)

In turn, the expression of γ′A rotated to the mass basis is simply obtained from Eq. (4.A34), yielding

UγAU
T =

1

2
β
[1]
A (λ̃efgh)

∂δ̃φ

∂λ̃efgh
, (4.A42)

in analogy with single-scale renormalisation. Finally, the skew-symmetric component of γ̃′A is computed
from the requirement of a diagonal mass matrix at all scales, namely that the off-diagonal components
of DAm̃ vanish. Explicitly, we write10

DAm̃ = DA

(
UmUT

)
=
[
(DAU)UT, m̃

]
+ U (DAm)UT = [VA, m̃] + U (DAm)UT , (4.A43)

and obtain from the evaluation of the vanishing off-diagonal components,

[VA]
ab

=

[
U (DAm)UT

]ab
ma −mb

, (4.A44)

where mp = m̃pp stands for the p-th eigenvalue of m. In the limit of a 4-dimensional theory where ε→ 0,
we arrive at

[VA]
ab

=

[
UβA(M)UT

]ab
Ma −Mb

, (4.A45)

in exact analogy with the single-scale case (see Eq.(1.227)).

A.3 Summary of the results
At this stage, it is useful to reiterate the main results that we have obtained from the above discussion.
First, the anomalous dimension matrix for the renormalised scalar fields φ̃ decomposes as

γ̃A =Mε/4γ̃′AM−ε/4 +Mε/4DAM−ε/4 ≡Mε/4γ̃′AM−ε/4 + γ
[1]
A ε , (4.A46)

where [
γ
[1]
A

]ab
= −1

4
δaAδ

b
A . (4.A47)

The auxiliary anomalous dimension matrix of the scalar fields with canonical mass-dimension, γ̃′A, de-
composes according to

γ̃′A = Uγ′AU
T − VA . (4.A48)

The first contribution is a symmetric matrix, and is obtained from the first-order pole contributions to
the field-strength counterterm,

Uγ′AU
T =

1

2
β
[1]
A (λ̃efgh)

∂δ̃φ

∂λ̃efgh
, (4.A49)

while VA is a skew-symmetric matrix accounting for the RG-dependent orthogonal rotation maintaining
the fields and couplings in the mass-basis.

10We reiterate that the orthogonality of U translates into the relation (DAU)UT + U
(
DAUT

)
= VA + V T

A = 0.
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In the quartic sector, we have shown that the RG-derivatives of the couplings are expressed in terms
of the first-order pole contributions to the counterterm,

DAλ̃abcd = εβ
[1]
A (λ̃abcd) +DA

(
δ[1]λ̃

)
+
{
λ̃← M̃ε/4γ̃′AM̃−ε/4

}
(4.A50)

where

β
[1]
A (λ̃abcd) =

{
λ̃← γ

[1]
A

}
abcd

= −1

4

(
δaAλ̃Abcd + δbAλ̃aAcd + δcAλ̃AcAd + δadλ̃abcA

)
. (4.A51)

Skipping the explicit computation for the mass matrix – carried out in exact analogy with the quartic
couplings – we only report here the final result,

DAM̃ab = εβ
[1]
A (M̃ab) +DA

(
δ[1]M̃

)
+
{
M̃ ← M̃ε/4γ̃′AM̃−ε/4

}
, (4.A52)

with
β
[1]
A (M̃ab) =

{
M̃ ← γ

[1]
A

}
ab

= −1

4

(
δaAM̃Ab + δbAM̃aA

)
. (4.A53)

The operator DA is defined in such a way that, when applied on a particular tensor structure, each
internal contraction δij is successively substituted with

δij →
1

2
δiAδAj . (4.A54)

It can be more rigorously defined in terms of the auxiliary differential operator D[1]
A acting on the couplings

of the theory, such that

D[1]
A (λ̃abcd) = −β[1]

A (λ̃abcd) , D[1]
A (M̃ab) = −β[1]

A (M̃ab). (4.A55)

In turn, for any tensor T with rank n, DA(T ) can be defined as

DA(T ) = D[1]
A (T ) +

{
T ← γ[1]

}
. (4.A56)

Explicitly, the corresponding contributions appearing in the RG-derivatives of the quartic couplings and
of the mass matrix then read

DA(λ̃abcd) ⊃ DA(δ[1]λ̃abcd) = −β
[1]
A (λ̃efgh)

∂δ[1]λ̃abcd

∂λ̃efgh
+
{
δ[1]λ̃← γ

[1]
A

}
abcd

, (4.A57)

DA(M̃ab) ⊃ DA(δ[1]M̃ab) = −β[1]
A (λ̃efgh)

∂δ[1]M̃ab

∂λ̃efgh
− β[1]

A (M̃ef )
∂δ[1]M̃ab

∂M̃ef

+
{
δ[1]M̃ ← γ

[1]
A

}
ab
. (4.A58)

Finally defining the beta-functions as

βA(λ̃abcd) = DAλ̃abcd

∣∣∣
ε→0

, βA(M̃ab) = DAM̃ab

∣∣∣
ε→0

, (4.A59)

we arrive at the final result of this appendix, namely the expression of the multi-scale beta-functions and
anomalous dimensions in the 4-dimensional regularised theory:

γ̃A =
1

2
β
[1]
A (λ̃efgh)

∂δ̃
[1]
φ

∂λ̃efgh
− VA , (4.A60)

βA(λ̃abcd) = −β[1]
A (λ̃efgh)

∂δ[1]λ̃abcd

∂λ̃efgh
+
{
δ[1]λ̃← γ

[1]
A

}
abcd

+
{
λ̃← γ̃A

}
abcd

, (4.A61)

βA(M̃ab) = −β[1]
A (λ̃efgh)

∂δ[1]M̃ab

∂λ̃efgh
− β[1]

A (M̃ef )
∂δ[1]M̃ab

∂M̃ef

+
{
δ[1]M̃ ← γ

[1]
A

}
ab

+
{
M̃ ← γ̃A

}
ab
. (4.A62)
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Chapter 5

The Two-Higgs Doublet model in a
gauge-invariant form

1 Introduction
The Two-Higgs Doublet Model (THDM) was introduced by T. D. Lee decades ago [82] in order to have
another source for CP violation – necessary in particular to address the imbalance problem of baryonic
matter over baryonic antimatter in the observable Universe [83]. Still today this argument remains one
of the main motivations to look for physics beyond the Standard Model of elementary particles [84].

The electroweak precision measurements give strong restrictions for extensions of the Standard Model
with respect to further Higgs multiplets. In particular the ρ parameter [84], relating the electroweak gauge
boson masses with the weak mixing angle, is in very good agreement with the prediction of the Standard
Model. In general, the ρ parameter is very sensitive to any new Higgs multiplets [85] which couple to
the electroweak gauge bosons. However, at least at tree level, the ρ parameter remains unchanged for an
arbitrary number of Higgs-boson doublets in the model. This opens the possibility to study models with
an extended number of Higgs-boson doublets. Here we want to consider the simplest extension with two
Higgs-boson doublets, the Two-Higgs Doublet model (THDM). In the past decades lots of effort has been
spent since the seminal work of T. D. Lee in the THDM; we refer in this respect to the review [86] and
some newer works like [87, 88, 89, 90, 91, 92, 93, 94, 95, 96].

Extending the Standard Model to two Higgs-boson doublets, it is clear that the model has a much
richer structure: First of all, the most general Higgs potential [97] which can be formed out of two
doublets contains already 14 real parameters compared to two in the Standard Model. Of course, not
all parameters can be chosen arbitrarily. For instance, in order to achieve stability, that is, a potential
bounded from below, the parameters are restricted. Similar, in order to achieve the observed electroweak-
symmetry breaking SU (2)L × U(1)Y→ U(1)em, further restrictions appear. In addition, following the
philosophy of the Standard Model to write down all Lagrangian terms not violating any symmetry of the
model and not violating renormalisability, the most general Yukawa couplings of the two-Higgs boson
doublets with the fermions of the model yield large flavour-changing neutral currents – not observed in
Nature. The usual way to avoid these unobserved interactions is to impose symmetries on the model. A
simple example is a Z2 symmetry, such that only one Higgs-boson doublet transforms non-trivially with
a sign flip. This restricts the Yukawa couplings to only one of the two Higgs-boson doublets. Symmetries
of the general THDM have been studied in some detail; see for instance [98, 99, 91, 100].

It has been shown that stability and electroweak symmetry breaking of any THDM can be studied
concisely with the help of bilinears [101, 102, 103]. In particular, all unphysical gauge degrees of freedom of
the Higgs doublets are systematically avoided. The principal idea is to consider the gauge-invariant scalar
products of the doublets instead of the gauge-dependent doublet components themselves. This formalism
has turned out to be rather powerful not only for the study of stability and the electroweak symmetry
breaking but also to study symmetries of the potential or the renormalisation-group equations [11, 9].
Since the gauge dependency obscures the physical content, new insights could be gained based on the
gauge-invariant formalism.

Let us also mention some of the interesting works based on bilinears. For an extension of bilinears to
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models beyond Higgs-boson doublets we refer to [104]. Custodial symmetry of the general NHDM has
been studied based on bilinears in [105]. We also refer to [106], where the bilinear formalism has been
extended to the Yukawa couplings.

In this work we want to show how to extend this formalism to the complete model, avoiding systemati-
cally gauge redundancies in the scalar trilinear and quartic couplings, the gauge-boson-Higgs interactions,
and the most general Yukawa couplings. We shall illustrate in examples how this can be achieved together
with the advantages of the method.

In the scalar sector, the starting point is to derive the squared mass matrix in a gauge-invariant way.
We shall see that this can be done without resorting to the actual form of the potential. Therefore, the
resulting expressions are valid for any THDM potential, at tree-level or effective, to any perturbation
order. In turn, the trilinear and quartic couplings are obtained by taking suitable derivatives of the mass
matrix, leading to concise and gauge-invariant expressions which reveal new insights. For instance, we
find an all-order expression for the mass of the charged Higgs boson, valid for any THDM.

Let us briefly outline this chapter: In order to make this work self-contained, we briefly recall in
section 2 the bilinear formalism and show how the electroweak-symmetry breaking behaviour can be
studied concisely. In section 3, we derive the scalar mass matrix to all orders in perturbation theory
in the THDM and apply these results to a general tree-level THDM potential. Then, we derive gauge
invariant expressions for the trilinear and quartic scalar interactions, the gauge-boson-Higgs interactions,
and the Yukawa interactions in the respective sections 4–6. Finally, in section 7, we summarise our main
results and draw some conclusions. A more detailed discussion of the structure of the scalar mass matrix,
extending section 3, is presented in appendix A. A list of analytic expressions for all relevant tree-level
couplings of the general THDM in gauge-invariant form can be found in appendix B.

2 Review of the bilinear formalism
Here, we briefly review the bilinears in the THDM [101, 103, 102] in order to make this article self
contained. We will also discuss basis transformations. In the convention with both Higgs-boson doublets
carrying hypercharge y = +1/2 corresponding to upper charged components, we write

ϕ1(x) =

(
ϕ+
1 (x)
ϕ0
1(x)

)
=

1√
2

(
π1
1(x) + iσ1

1(x)
π2
1(x) + iσ2

1(x)

)
,

ϕ2(x) =

(
ϕ+
2 (x)
ϕ0
2(x)

)
=

1√
2

(
π1
2(x) + iσ1

2(x)
π2
2(x) + iσ2

2(x)

)
.

(5.1)

Explicitly we have decomposed the complex fields into their real and imaginary components. From now
on we suppress the space-time argument of the fields. We will also write the real and imaginary upper
and lower components of the two doublets in the form of one eight-component vector:

φ =
(
π1
1 , π

2
1 , σ

1
1 , σ

2
1 , π

1
2 , π

2
2 , σ

1
2 , σ

2
2

)T
, with φ ∈ R8 . (5.2)

The most general, tree-level, gauge-invariant potential with two Higgs-boson doublets reads [97]

V 0
THDM(ϕ1, ϕ2) = m2

11(ϕ
†
1ϕ1) +m2

22(ϕ
†
2ϕ2)−m2

12(ϕ
†
1ϕ2)− (m2

12)
∗(ϕ†

2ϕ1)

+
1

2
λ1(ϕ

†
1ϕ1)

2 +
1

2
λ2(ϕ

†
2ϕ2)

2 + λ3(ϕ
†
1ϕ1)(ϕ

†
2ϕ2)

+ λ4(ϕ
†
1ϕ2)(ϕ

†
2ϕ1) +

1

2

[
λ5(ϕ

†
1ϕ2)

2 + λ∗5(ϕ
†
2ϕ1)

2
]

+
[
λ6(ϕ

†
1ϕ2) + λ∗6(ϕ

†
2ϕ1)

]
(ϕ†

1ϕ1) +
[
λ7(ϕ

†
1ϕ2) + λ∗7(ϕ

†
2ϕ1)

]
(ϕ†

2ϕ2).

(5.3)

In this potential we have two real quadratic parameters m2
11, m2

22, and one complex quadratic param-
eter m2

12 as well as seven quartic parameters λ1, . . . , λ7, where the first four are real and λ5, λ6, λ7
complex. Altogether this corresponds to 14 real parameters in the potential.

Bilinears systematically avoid unphysical gauge degrees of freedom and are defined in the following
way: First, the 2× 2 matrix of the two doublets,

ψ =

(
ϕT
1

ϕT
2

)
=

(
ϕ+
1 ϕ0

1

ϕ+
2 ϕ0

2

)
, (5.4)
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is introduced. All gauge-invariant scalar products of the two doublets ϕ1 and ϕ2 can be arranged in one
matrix

K = ψψ† =

(
ϕ†
1ϕ1 ϕ†

2ϕ1

ϕ†
1ϕ2 ϕ†

2ϕ2

)
. (5.5)

This by construction hermitian 2 × 2 matrix K can be decomposed into a basis of the unit matrix
and the Pauli matrices,

K =
1

2

(
K012 +Kaσa

)
, a = 1, 2, 3, (5.6)

with the usual convention to sum over repeated indices. The four real coefficients K0, Ka are called
bilinears. Building traces on both sides of this equation (also with products of Pauli matrices) we get the
four real bilinears explicitly,

K0 = ϕ†
1ϕ1 + ϕ†

2ϕ2, K1 = ϕ†
1ϕ2 + ϕ†

2ϕ1,

K2 = i
(
ϕ†
2ϕ1 − ϕ†

1ϕ2

)
, K3 = ϕ†

1ϕ1 − ϕ†
2ϕ2. (5.7)

Inverting these relations we can express any THDM potential in terms of bilinears:

ϕ†
1ϕ1 =

1

2
(K0 +K3) , ϕ†

1ϕ2 =
1

2
(K1 + iK2) ,

ϕ†
2ϕ1 =

1

2
(K1 − iK2) , ϕ†

2ϕ2 =
1

2
(K0 −K3) .

(5.8)

The matrix K is positive semi-definite. From K0 = Tr(K) and det(K) = 1
4 (K

2
0 −KaKa) we obtain

K0 ≥ 0, K2
0 −KaKa ≥ 0. (5.9)

As has been shown in [102] there is a one-to-one correspondence between the original doublet fields and
the bilinears apart from unphysical gauge-degrees of freedom. In terms of bilinears we can write any
tree-level THDM potential (a constant term can always be dropped) as

V 0
THDM(K0,Ka) = ξ0K0 + ξaKa + η00K

2
0 + 2K0ηaKa +KaEabKb, (5.10)

with real parameters ξ0, ξa, η00, ηa, Eab = Eba, a, b ∈ {1, 2, 3}. Expressed in terms of the conventional
parameters appearing in (5.3), these new parameters read

ξ0 =
1

2

(
m2

11 +m2
22

)
, ξ = (ξα) =

1

2

(
−2Re(m2

12), 2Im(m2
12), m2

11 −m2
22

)T
, (5.11)

η00 =
1

8
(λ1 + λ2) +

1

4
λ3, η = (ηa) =

1

4

(
Re(λ6 + λ7), −Im(λ6 + λ7),

1
2 (λ1 − λ2)

)T
, (5.12)

E = (Eab) =
1

4

λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7)
−Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7)

Re(λ6 − λ7) −Im(λ6 − λ7) 1
2 (λ1 + λ2)− λ3

 . (5.13)

As has been shown in [102], we can also form Minkowski-type four-vectors from the bilinears,

K̃ =

(
K0

K

)
, with K =

K1

K2

K3

 . (5.14)

Writing the parameters of the potential in the form

ξ̃ =

(
ξ0
ξ

)
, Ẽ =

(
η00 ηT

η E

)
, (5.15)

the tree-level potential (5.10) can be written as

V 0
THDM(K̃) = K̃Tξ̃ + K̃TẼK̃. (5.16)
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The conditions (5.9) for the bilinears can, with the help of

g̃ = diag(1,−13) , (5.17)

be expressed as
K0 ≥ 0, K̃Tg̃K̃ ≥ 0 . (5.18)

We will consider unitary mixing of the two doublets,

ϕ′
i = Uijϕj , with U = (Uij), U†U = 12 . (5.19)

These basis transformations correspond in terms of bilinears to

K ′
0 = K0, K ′

a = Rab(U)Kb , (5.20)

with Rab(U) defined by
U†σaU = Rab(U)σb . (5.21)

It follows that R(U) ∈ SO(3), that is, R(U) is a proper rotation in three dimensions. We see that
the potential (5.10) stays invariant under a change of basis of the bilinears (5.20) if we simultaneously
transform the parameters [102]

ξ′0 = ξ0, ξ′a = Rabξb, η′00 = η00, η′a = Rabηb, E′
cd = RcaEabR

T
bd . (5.22)

Note that by a change of basis we can diagonalise the real symmetric matrix E.
Let us also briefly recall from [102] how electroweak symmetry breaking translates into conditions on

the gauge-invariant bilinears. First, we suppose that the potential of the THDM is stable, that is, it is
bounded from below. Then at a minimum of the potential (5.4) becomes,

〈ψ〉 =
(
v+1 v01
v+2 v02

)
. (5.23)

Here, we have introduced the vacuum expectation values of the components of the doublets, that is,
v+1/2 = 〈ϕ+

1/2〉 and v01/2 = 〈ϕ0
1/2〉.

In case that we have a charge-breaking (CB) minimum, the matrix 〈ψ〉, and therefore also 〈K〉 =
〈ψ〉〈ψ〉†, has full rank and this translates to the condition (suppressing the angular brackets in the notation
indicating the vacuum)

CB: K0 > 0, K2
0 −KTK = K̃Tg̃K̃ > 0 . (5.24)

In contrast, in case we have a neutral, charge-conserving (CC) vacuum, the matrix 〈ψ〉 together with
〈K〉 has to have rank one resulting in

CC: K0 > 0, K2
0 −KTK = K̃Tg̃K̃ = 0 . (5.25)

A vacuum which does not break the electroweak symmetry at all corresponds to

K0 = 0 , (5.26)

where we also have K̃ = 0.
In case of a charge-conserving minimum we can, by a basis change, achieve that only the component ϕ0

1

gets a non-vanishing vacuum-expectation value and we set in this basis

〈ϕ0
1
′〉 = v01

′ ≡ v√
2

(5.27)

with the conventional factor 1/
√
2. This basis, in which only the neutral component of ϕ1 gets a non-

vanishing vacuum-expectation value, is sometimes called Higgs basis. The bilinears in this basis read
K̃ =

(
v2/2, 0, 0, v2/2

)T.
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For a stable potential, the minimum can be found from the gradient of the potential. In the case of
a charge-breaking minimum, the conditions read

CB: ∂µV ≡
∂V

∂Kµ
= 0 (5.28)

on the domain (5.24). An unbroken minimum is simply given for vanishing doublets, corresponding to
K0 = 0 and therefore for a vanishing potential. The correct electroweak-symmetry breaking minimum
can be found by introducing a Lagrange multiplier u in order to satisfy the second equation in (5.25),
that is, for a minimum with the correct electroweak symmetry breaking,

CC: ∂µV = 2u(g̃K̃)µ (5.29)

on the domain (5.25).
Let us also recall the dimensionless expressions of the bilinears. First we note that for K0 = 0 the

potential is trivially vanishing. We define for K0 > 0 [102]

ka =
Ka

K0
, a ∈ {1, 2, 3} and k =

(
k1, k2, k3

)T
. (5.30)

With (5.30) we can write the tree-level potential (5.10) in the form

V 0
THDM = K0

(
ξ0 + ξTk

)
+K2

0

(
η00 + 2ηTk + kTEk

)
(5.31)

defined on the compact domain, as follows from (5.9),

|k| ≤ 1 . (5.32)

We will follow the convention to use Greek indices µ, ν, . . . ∈ {0, . . . , 3} for the Minkowski-type four-
vectors, for instance we write Kµ. The two doublets themselves are distinguished by Latin indices i,
j, . . . ∈ {1, 2}. For the component fields of the two doublets (5.2) we also use Latin indices i, j, . . . ∈
{1, . . . , 8}. Let us note that we do not distinguish between upper and lower indices, that is, for instance
we have Kµ = Kµ with (Kµ) = (Kµ) =

(
K0,K1,K2,K3

)T as well as for the 8-component vector φi = φi.

3 Gauge-invariant scalar mass matrices
The conventional procedure to compute the scalar mass matrices in the THDM is to firstly check that the
potential is stable, that is, bounded from below. Secondly, a minimum (typically the global minimum)
has to be found. Thirdly, the electroweak symmetry-breaking behaviour of the minimum has to be
checked. For a physically acceptable minimum it has to be verified that the electroweak symmetry is
broken SU (2)L × U(1)Y → U(1)em. At a fixed gauge, the second derivatives of the potential with respect
to the excitation fields about the vacuum give then the squared mass matrices.

In contrast, here we want to express the mass matrices in terms of gauge-invariant quantities. The
mass matrices are defined as the second derivative of the Lagrangian with respect to the fields. Therefore
we have first to establish the connection of the component fields of the doublets (5.2), φi, i ∈ {1, . . . , 8}
to the bilinear fields Kµ, µ ∈ {0, . . . 3}.

The gauge invariants, that is, the bilinear fields can be written in terms of the components of the
doublets (5.2)

Kµ ≡ 1

2
∆µ
ijφ

iφj , i, j ∈ {1, . . . , 8}. (5.33)

For instance, in the basis given in (5.2), we find explicitly the four real and symmetric 8×8 matrices ∆µ
ij :

∆0 =


12

12

12

12

 , ∆1 =


12

12

12

12

 ,

∆2 =


12

−12

−12

12

 , ∆3 =


12

12

−12

−12

 , (5.34)
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where 12 is the 2×2 unit matrix and the the blank spaces have to be filled with zeros. It should be noted
that the matrices ∆1,2,3 resemble the Pauli matrices σ1,2,3, respectively, in that they satisfy a Clifford
algebra {∆a,∆b} = 2δab18 (but not a Lie algebra).

The connection between the bilinears and the component fields are therefore given by the four 8× 4
matrices Γ, defined as

Γµi ≡
∂Kµ

∂φi
= ∂iK

µ = ∆µ
ijφ

j . (5.35)

Note that the Greek indices correspond to the gauge invariants, whereas the Latin indices correspond to
the component fields φi.

We would now like to derive the algebra of the four 8× 8 matrices ∆µ
ij . To this end we compute

(
Γ2
)µν

=
(
ΓTΓ

)µν
= Γµi Γ

ν
i = ∆µ

ij∆
ν
ik φ

jφk =
1

2
{∆µ,∆ν}jk φ

jφk , (5.36)

where {∆µ,∆ν} is the anti-commutator of the ∆-matrices. From (5.36), we observe that Γ2 is a gauge-
independent object (since it only carries Greek bilinear-field indices) and that it depends quadratically
on the fields. Therefore, a rank-3 tensor Tµνλ can be defined such that(

Γ2
)µν

= Tµνλ Kλ . (5.37)

It then follows from Eqs. (5.33), (5.36) and (5.37) that

{∆µ,∆ν}ij = Tµνλ ∆λ
ij . (5.38)

Observing that the symmetric ∆-matrices obey a closure relation

∆µ
ij∆

ν
ij = ∆µ

ij∆
ν
ji = Tr(∆µ∆ν) = 8δµν , (5.39)

we can provide an explicit expression1 for Tµνλ :

Tµνλ =
1

8
Tr ({∆µ,∆ν}∆λ) . (5.40)

In particular, we obtain

Γ2 = 2


K0 K1 K2 K3

K1 K0 0 0
K2 0 K0 0
K3 0 0 K0

 = 2

(
K0 KT

K K013

)
. (5.41)

Since det(Γ2) = 16K2
0

(
K2

0 −K2
)
= 16K2

0 K̃
Tg̃K̃, the electroweak symmetry-breaking behaviour de-

pends on the nullspace structure of Γ2. As discussed in the last section, a charge-breaking minimum
satisfying (5.24) leads to a complete breakdown of the SU (2)L × U(1)Y group, whereas (5.25) leads to
the viable, charge-conserving SU (2)L × U(1)Y → U(1)em breaking. We now consider the scalar mass
matrix with respect to the charge-breaking (CB) and charge-conserving (CC) case separately.

The field-dependent scalar mass matrix is expressed in our formalism as(
M2
s

)
ij
= ∂i∂jV = ∂i

(
Γµj ∂µV

)
= ∆µ

ij∂µV + Γµi Γ
ν
j ∂µ∂νV . (5.42)

With the definition
Mµν = ∂µ∂νV (5.43)

and writing M = (Mµν) as well as ∆µ = (∆µ
ij) we express (5.42) in matrix form,

M2
s = ∆µ∂µV + ΓMΓT. (5.44)

1Note that an alternative expression can be given in terms of Pauli matrices:

Tµν
λ =

1

2
Tr

(
{σµ, σν}σλ

)
.



3. Gauge-invariant scalar mass matrices 135

With this form we have achieved an intuitive understanding of the scalar spectrum at a minimum of the
potential. In particular, for a charge-breaking minimum, where ∂µV = 0 according to (5.28), the 8 × 8
scalar mass matrix reduces to

M2
s
CB
= ΓMΓT (5.45)

and can only possess four non-zero eigenvalues (i.e. as many as the number of independent gauge-invariant
scalar operators). The four remaining massless states correspond to the would-be Goldstone bosons
associated with the four broken generators of the SU (2)L × U(1)Y gauge group. On the other hand, as
we will show below, at a charge-conserving minimum, where ∂µV = 2u(g̃K̃)µ or det(Γ2) = 0 according
to (5.29), the ΓMΓT matrix possesses at most three non-zero eigenvalues and the full scalar mass matrix

M2
s
CC
= 2u

(
g̃K̃
)
µ
∆µ + ΓMΓT (5.46)

contains five massive states and three Goldstone modes corresponding to the broken generators of
SU (2)L × U(1)Y → U(1)em. Now we want to consider an orthogonal rotation of the component fields,

φ̂i = U ijφj with U ijUkj = δik, i, j, k ∈ {1, . . . , 8} . (5.47)

In matrix notation we write simply φ̂ = Uφ with UTU = 18. By an orthogonal rotation - only applied
to the component fields, leaving the gauge invariants K̃ unchanged - we can always achieve a form for
the 8× 4 matrix Γ with the first four rows vanishing2,

Γ̂ = Uc Γ =

(
04×4

γ

)
, (5.48)

where we will call Uc a canonical rotation and the corresponding bases, where Γ̂ has this form, canonical
bases. The matrix γ is obviously a 4× 4 matrix. We get

Γ2 = ΓTΓ = Γ̂TΓ̂ = γTγ , (5.49)

meaning that the γ matrix can be obtained from a Cholesky-like3 decomposition of Γ2, and that the
resulting expression only depends on gauge invariants, i.e. the bilinear fields. Requiring γ to be lower-
triangular fixes its components uniquely, and we find

γ =
√

2K0

(√
1− kTk 0T

k 13

)
. (5.50)

In a canonical basis we can always express Γ̂ in terms of the field components φ̂ = Ucφ:

Γ̂ = UcΓ = Uc∆φ = Uc∆U
T
c φ̂ = ∆̂φ̂ , (5.51)

where ∆̂ = Uc∆U
T
c is simply obtained from the canonical orthogonal rotation Uc.

Moreover, two canonical bases can always be related by an orthogonal transformation since(
U4×4 04×4

04×4 14

)
Γ̂ = Γ̂ . (5.52)

We want to show now that in a canonical basis the electroweak-symmetry breaking behaviour of the
scalar mass matrix at the vacuum becomes manifest. First, at a charge-breaking minimum, Eq. (5.45)
directly yields4

M̂2
s
CB
= Γ̂MΓ̂T =

(
04×4 04×4

04×4 γMγT

)
. (5.53)

2The matrix Γ consists of four 8-component vectors spanning a 4-dimensional hypersurface. It is always possible to
choose a basis such that the 8-4 dimensional space orthogonal to the hypersurface is represented by the first four basis
vectors such that the corresponding components of the four 8-component vectors are zero.

3The usual Cholesky decomposition would have made γ an upper-triangular matrix, while it is in our case lower-triangular.
4Here and in the remainder of the section, hatted quantities are understood to be expressed in a canonical basis.
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Clearly, the mass matrix expressed in this basis takes a block-diagonal form, where the Goldstone and
physical sectors have been manifestly disentangled. In addition, the number of massive states, the
number of gauge singlets and the number of independent vacuum-expectation values all equal the number
of independent gauge invariant operators, namely four. This equality is characteristic of a maximal
breakdown of the gauge group5.

Turning to the case of a charge-conserving breaking, we show in App. A that the mass matrix (5.46)
in a canonical basis takes a block-diagonal form,

M̂2
s
CC
= 2u

(
g̃K̃
)
µ
∆̂µ + Γ̂MΓ̂T

= 2u

(
A55 05×3

03×5 B33

)
+

(
05×5 05×3

03×5 γ3MγT3

)
=

(
M̂2

CC 05×3

03×5 M̂2
neutral

)
,

(5.54)

where M̂2
CC accounts for mixed contributions between massive and Goldstone states, both possibly

charged under the new residual subgroup (here, U(1)em). The matrix γ3, which appears in (5.54) is
defined to be the non-vanishing, lower 3 × 4 block of the matrix γ evaluated at a charge-conserving
minimum where 1− k2 = 0:

γ
CC
=
√
2K0

(
0 0T

k 13

)
≡
(
01×4

γ3

)
. (5.55)

The matrices A55 and B33 read explicitly

A55 = 2K0

0 0T 0
0 kkT 0
0 0T 1

 , B33 = 2K0

(
13 − kkT

)
= −γ3g̃γT3 . (5.56)

By a further transformation from one canonical basis to another we can completely disentangle the
electrically neutral from the electrically charged contributions,

M̂2
s
CC
=

03×3

M̂2
charged

M̂2
neutral

 . (5.57)

In App. A we show in detail how we arrive at the form of the scalar mass matrix (5.57). Similarly, we
show that the charged mass matrix can be diagonalised,

M̄2
charged = diag

(
m2
H± , m2

H±

)
= diag

(
4uK0, 4uK0

)
, (5.58)

and the neutral scalar mass matrix reads

M̂2
neutral = γ3 (M− 2ug̃) γT3 . (5.59)

Having found the scalar mass matrices for the charge-conserving minimum, we go ahead and diagonalise
the neutral part (5.59). The similarity transformation to diagonalise the real symmetric matrix (5.59)
corresponds to a change of basis of the bilinears. Let us denote with R the corresponding rotation in the
3-dimensional bilinear field space, defined as

M̄2
neutral = RM̂2

neutralR
T = diag

(
m2

1, m2
2, m2

3

)
. (5.60)

As shown in Sec. 2, by this basis transformation the bilinears transform as

K̄0 = K0, K̄ = RK . (5.61)

With respect to the four vectors we write also

K̃ = R̃K̃ with R̃ =

(
1 0T

0 R

)
, (5.62)

5Generally speaking, maximally broken does not mean that the residual gauge group is trivial, but instead that the
number of gauge singlets is maximal given a specific field content. In the present case however, SU (2)L × U(1)Y is indeed
broken down to the trivial group.
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that is, R is a 3× 3 matrix, whereas R̃ a 4× 4 matrix. The dimensionless bilinears transform as k̄ = Rk.
Similar, we find for Γµi and ∆µ

ij the following transformation behaviour under a change of basis:

Γ̄µi = R̃µν Γ̂
ν
i , ∆̄µ

ij = R̃µν ∆̂
ν
ij with (R̃µν ) = R̃ . (5.63)

After applying this rotation in the bilinear field space, we obtain the expression of M2
s in a basis

which will be referred to as the mass basis in the following. In this basis, the scalar mass matrix finally
reads

M̄2
s = diag

(
0, 0, 0, m2

H± , m2
H± , m2

1, m2
2, m2

3

)
. (5.64)

We finally note that the vacuum-expectation value of the scalar multiplet φ, noted 〈φ〉, can readily be
computed in the mass basis from the relation

Γ̄µi = ∆̄µ
ij〈φ̄〉

j , (5.65)

and using the expressions of Γ̄ and ∆̄ given in Appendix A. Explicitly, one has

〈φ̄〉 =
√
2K0

04×1

α
k̄

 (5.66)

with α =
√

1− k̄Tk̄ vanishing at a charge-conserving minimum.

Let us briefly recap how we get the mass spectrum in any THDM for the charge-conserving vacuum,
that is, a vacuum respecting the observed electroweak symmetry breaking. First, we express the potential
V in terms of gauge-invariant bilinears employing (5.8). From the potential we compute M = ∂µ∂νV .
In turn we can compute M̂2

neutral in (5.59) with γ3 given in (5.55). Diagonalising the matrix M̂2
neutral

according to (5.60) we get the scalar mass squared eigenvalues. The degenerate charged Higgs-boson
masses squared follow directly from the minimum of the potential from (5.58).

We emphasise that we have not specified the explicit form of the potential V in this section. Indeed, it
can be any THDM potential, for instance the tree-level potential (5.16) or a higher loop effective THDM
potential. All the expressions given above in this section remain valid. This holds in particular for the
scalar mass spectrum given in (5.58) and (5.60). The charged Higgs-boson mass squared is m2

H± = 4uK0

for any THDM to any loop order – a quite remarkable result: From the minimum of the potential, that
is, from the solutions of (5.28)-(5.29), we get K0 and u at the minimum directly giving the charged Higgs-
boson mass squared. These results illustrate the benefits of working with gauge invariants in general,
and in particular in studying THDMs using the bilinear formalism. We emphasise that we have derived
the mass matrices in a completely gauge-invariant way.

3.1 Tree-level scalar mass matrix
Eventually, we would like to explicitly show our result in the case of a general THDM tree-level potential.
The charged scalar masses squared are

m2
H± = 4uK0 (5.67)

as discussed before. Furthermore, the neutral 3× 3 matrix (5.59) becomes in this case

M̂2
neutral = 4K0

[
η00kk

T + ηkT + kηT + E + u(13 − kkT)
]
. (5.68)

which is explicitly gauge invariant. This real symmetric matrix can be diagonalised with the rotation
matrixR, (5.60). Under this change of basis, the bilinears transform as shown in (5.61) and the parameters
of the tree-level potential transform as, (5.22),

ξ̄0 = ξ0, ξ̄ = Rξ, η̄00 = η00, η̄ = Rη, Ē = RERT . (5.69)

Therefore, the neutral mass matrix becomes

M̄2
neutral = 4K0

[
η00k̄k̄

T + η̄k̄T + k̄η̄T + Ē + u(13 − k̄k̄T)
]
. (5.70)
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Let us note that in practical calculations we can use (5.70) and (5.67) together with the parameters η00
and η̄ to fix the parameter matrix Ē of the THDM in terms of the scalar masses. The scalar mass squared
matrix for the tree level case, given in (5.70), agrees with the known result in the Higgs basis (where
k̄ =

(
0, 0, 1

)T
); see for instance [102]. In particular we get the squared masses of the scalar sector as

known from the conventional formalism.

4 Scalar trilinear and quartic interactions
Having found the scalar squared mass matrix in terms of gauge invariants in the last section, we can now
proceed and express the scalar trilinear and quartic couplings in a gauge-invariant way. The connection
between the bilinears and the component fields (5.1) is given in terms of the Γ matrices (5.35). From these
Γ matrices we can express the cubic and quartic couplings in terms of the squared mass matrix (5.42).
We emphasise that this matrix can be any THDM mass matrix, not restricted to the tree level THDM.

We find for the cubic and quartic interactions in any THDM

λijk =
(
∂iM

2
s

)jk
=
(
∆µ
ijΓ

ν
k +∆µ

ikΓ
ν
j +∆µ

jkΓ
ν
i

)
Mµν , (5.71)

λijkl =
(
∂i∂jM

2
s

)kl
=
(
∆µ
ij∆

ν
kl +∆µ

ik∆
ν
jl +∆µ

il∆
ν
jk

)
Mµν . (5.72)

In the mass basis (5.64), this yields

λ̄ijk =
(
∆̄µ
ijΓ̄

ν
k + ∆̄µ

ikΓ̄
ν
j + ∆̄µ

jkΓ̄
ν
i

)
M̄µν , (5.73)

λ̄ijkl =
(
∆̄µ
ij∆̄

ν
kl + ∆̄µ

ik∆̄
ν
jl + ∆̄µ

il∆̄
ν
jk

)
M̄µν . (5.74)

The expressions of ∆̄ and Γ̄ can be inferred from (5.63) in the last section. The matrix M is defined
in (5.43) and M̄ follows from M by (5.59) and then (5.60).

In order to get simple expressions, we first want to introduce new indices for the different scalars
appearing in (5.64). For the 8 × 8 matrix (5.64), we have

(
M̄2
s

)
ij

with i, j ∈ {1, . . . , 8}. The entries
i, j = 1 correspond to the neutral Goldstone mode G0, the two following entries, that is, i, j ∈ {2, 3} to
the charged Goldstone modes G±, whereas i, j ∈ {4, 5} correspond to the charged Higgs bosons H±, and
the entries i, j ∈ {6, 7, 8} to the three neutral scalars – in the CP conserving case usually denoted by h,
H, A or h0, H0, A0.

We use in the following the index G0 = 1 corresponding to i = 1, the indices G±
p , G

±
q ∈ {1, 2} referring

to the second and third index i, j, . . . ∈ {2, 3}. This means that the indices G±
p , G

±
q are shifted by one

unit down with respect to the indices i, j. Similar, for the charged Higgs bosons we use the indices
H±
p ,H

±
q ∈ {1, 2} referring to the original indices {4, 5}, that is, shifted by three units. Eventually, we

use the indices s, t, . . . ∈ {1, 2, 3} corresponding to i, j, . . . ∈ {6, 7, 8}, hence, shifted five units. With this
notation, we can write down all the non-vanishing components of the matrices Γ̄ and ∆̄:

Γ̄0
s =

√
2K0 k̄

s, Γ̄as =
√

2K0 δ
as, (5.75)

∆̄0
st = δst, ∆̄a

st = δsak̄t + δtak̄s − δstk̄a, (5.76)

∆̄µ

G±
p G

±
q
=
K̄µ

K0
δG

±
p G

±
q , ∆̄µ

H±
p H

±
q
=
g̃K̃

µ

K0
δH

±
p H

±
q , (5.77)

∆̄µ
G0G0 =

K̄µ

K0
, ∆̄a

sG0 = −εastk̄t . (5.78)

We recall that the index a ∈ {1, 2, 3} denotes the three spatial components of Minkowski-type vectors
with indices µ, ν, . . . ∈ {0, 1, 2, 3}. Similar, we have non-vanishing ∆̄µ matrices mixing the charged Higgs
and Goldstone components. The corresponding entries are not uniquely fixed due to the possibility of
rotating the corresponding real components (i.e. performing phase redefinitions of the charged fields).
However, one can always write

∆̄a
G±

p H
±
q
=

(
xa −ya
ya xa

)G±
p H

±
q

≡ (χa)
G±

p H
±
q , (5.79)
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where the 3-vectors x and y are defined such that (x,y, k̄) constitutes an orthonormal basis of the
3-dimensional bilinear field space, i.e.

xTk̄ = yTk̄ = xTy = 0 and xTx = yTy = k̄Tk̄ = 1 , (5.80)

oriented such that x× y = k̄. In fact, x and y characterise the orthogonal transformation RH allowing
to rotate k̄ to the Higgs basis which was used in App. A to diagonalise the mass matrix. Namely, one
has

RH =

−yT

xT

k̄T

 =

−y1 −y2 −y3
x1 x2 x3
k̄1 k̄2 k̄3

 , RHk =

0
0
1

 , (5.81)

which, from (5.80) is manifestly orthogonal. In turn, the reason why x and y are not uniquely defined is
clear: there exist infinitely many orthogonal transformations R′

H rotating k to the Higgs basis, related
by arbitrary rotations around the z-axis.

While the matrices χa are themselves not uniquely defined, it is useful to observe that since

xxT + yyT + k̄k̄T = 13 and x× y = k̄ , (5.82)

we obtain
xaxb + yayb = δab − k̄ak̄b and xayb − xbya = εabck̄

c . (5.83)

Therefore, for any two matrices χa and χb, one has

χaχ
T
b =

(
δab − k̄ak̄b εabck̄

c

−εabck̄c δab − k̄ak̄b

)
, (5.84)

independently of the basis chosen to express x and y.

4.1 Tree level scalar cubic and quartic interactions
Eventually, we would like to give the explicit expressions for the tree-level cubic and quartic interactions
in gauge-invariant form. These interactions are derived from the tree-level potential.

The neutral scalar mass matrix in the mass basis has been computed already in (5.70). Together with
the expressions (5.75)–(5.79) we get the cubic and quartic interactions (5.73), and (5.74), respectively. It
turns out to be convenient to define the following 3-vectors:

f̄a = 8K0

(
η00k̄

a + η̄a
)
− k̄am2

a , (5.85)
f̄a± = 8K0

[
(η00 − u) k̄a + η̄a

]
= 8K0

(
η00k̄

a + η̄a
)
− 2k̄am2

H± . (5.86)

Let us note that an index appearing with a mass does not imply summation, for instance in the expression
k̄am2

a.
The part of the Lagrangian containing the scalar cubic interactions can be written, after spontaneous

symmetry breaking and rotation to the mass basis, as

−L ⊃ 1

3!
λ̄stu h

shthu +
1

2
λ̄stG0 hshtG0 +

1

2
λ̄sG0G0 hsG0G0

+ λ̄sH±H± hsH−H+ + λ̄sG±G± hsG−G+ +
[
λ̄sG±H± hsG−H+ + h.c.

]
.

(5.87)

The complex charged fields H±, G± are given by

H± =
e±iωH

√
2

(
H±

1 ± iH
±
2

)
, (5.88)

G± =
e±iωG

√
2

(
G±

1 ± iG
±
2

)
, (5.89)

where the inclusion of ωH and ωG reflects the possibility of performing arbitrary phase redefinitions of the
complex fields. The analytic expressions for the various cubic couplings are readily derived through (5.73),
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(5.75)–(5.79) and put into the form

λ̄stu =
1√
2K0

{(
δst − k̄sk̄t

)
f̄u± + δstk̄u

(
m2
s +m2

t −m2
u

)}
+ (s↔ u) + (t↔ u) ,

λ̄stG0 = εstu
m2
t −m2

s√
2K0

k̄u ,

λ̄sG0G0 =
m2
s√

2K0

k̄s ,

λ̄sH±H± =
f̄s√
2K0

,

λ̄sG±G± =
m2
s√

2K0

k̄s ,

λ̄sG±H± =
m2
s −m2

H±√
2K0

ei(ωG−ωH) (xs + iys) .

(5.90)

From the last expression, we see that a phase redefinition involving ωG−ωH can always be compensated
by a redefinition of the vectors x and y already mentioned above. More precisely, by defining a new pair
of vectors x′ and y′ such that(

x′i
y′i

)
=

(
cos (ωG − ωH) − sin (ωG − ωH)
sin (ωG − ωH) cos (ωG − ωH)

)(
xi
yi

)
, (5.91)

the hsG±H± vertex is simply rewritten as

λ̄sG±H± =
m2
s −m2

H±√
2K0

(x′s + iy′s) . (5.92)

Therefore, here and in the following, we shall for clarity drop the arbitrary phases ωG,H from the ex-
pressions of the tree-level vertices without any loss of generality. Instead, one should keep in mind that
vertices involving two distinct charged fields can only be defined up to unphysical phase redefinitions.

The part of the Lagrangian corresponding to the scalar quartic interactions reads

−L ⊃ 1

4!
λ̄stuv h

shthuhv +
1

3!
λ̄stuG0 hshthuG0 +

1

4
λ̄stG0G0 hshtG0G0

+
1

3!
λ̄sG0G0G0 hsG0G0G0 +

1

4!
λ̄G0G0G0G0 G0G0G0G0

+
1

2
λ̄stH±H± hshtH−H+ + λ̄sG0H±H± hsG0H−H+ +

1

2
λ̄G0G0H±H± G0G0H−H+

+
1

2
λ̄stG±G± hshtG−G+ + λ̄sG0G±G± hsG0G−G+ +

1

2
λ̄G0G0G±G± G0G0G−G+

+

[
1

2
λ̄stG±H± hshtG−H+ + λ̄sG0G±H± hsG0G−H+ +

1

2
λ̄G0G0G±H± G0G0G−H+ + h.c.

]
+

1

4
λ̄H±H±H±H± H−H+H−H+ + λ̄G±G±H±H± G−G+H−H+

+
1

4
λ̄G±G±G±G± G−G+G−G+

+

[
1

2
λ̄G±H±H±H± G−H+H−H+ +

1

2
λ̄G±G±G±H± G−G+G−H+ + h.c.

]
.

(5.93)

The analytic expressions for the various quartic couplings in gauge-invariant form can be derived using
Eqs. (5.74), (5.75)–(5.79) and are given in App. B.1.
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5 Gauge sector
5.1 Definitions
Turning to the gauge sector, we are interested in expressing all relevant quantities (gauge boson masses
and vertices) in terms of gauge-invariant quantities. The gauge generators of the 8-component scalar
multiplet φ under SU (2)L × U(1)Y are denoted by TφA, A = 1, . . . , 4, where Tφ1 stands for the U(1)Y
generator while Tφ2,3,4 correspond to SU (2)L transformations. The kinetic part of the Lagrangian which
couples the scalar fields to the gauge bosons is given, before symmetry breaking, by6

L ⊃ 1

2
DµφiDµφ

i , (5.94)

where the scalar field covariant derivative can be generically written as

Dµφ
i = ∂µφ

i + iV Aµ G
AB
(
TφB

)ij
φj . (5.95)

In the above expression V Aµ stands for the vector fields whereas G is a 4× 4 diagonal matrix populated
with the gauge couplings g1 and g2 according to

G = diag (g1, g2, g2, g2) . (5.96)

Expanding (5.94) yields

L ⊃ 1

2
∂µφi∂µφ

i − iV µAG
AB
(
TφB

)ij
φi∂µφ

j +
1

4
V Aµ V

µ
BG

ACGBD
{
TφC , T

φ
D

}ij
φiφj . (5.97)

After spontaneous symmetry breaking, the scalar multiplet is shifted according to

φ→ 〈φ〉+ ω (5.98)

such that the Lagrangian contains in particular the following interactions

Lbroken ⊃
1

2

(
M2
G

)AB
V Aµ V

µ
B + gAijV

µ
Aω

i∂µω
j +

1

2
gABiV

A
µ V

µ
Bω

i +
1

4
gABijV

A
µ V

µ
Bω

iωj , (5.99)

where the gauge boson mass matrix and the vector-scalar-scalar (VSS), vector-vector-scalar (VVS) and
vector-vector-scalar-scalar (VVSS) couplings are respectively given by7

(
M2
G

)AB
=

1

2
GACGBD

{
TφC , T

φ
D

}ij
〈φ〉i〈φ〉j , (5.100)

gAij = −iGAB
(
TφB

)ij
, (5.101)

gABi = GACGBD
{
TφC , T

φ
D

}ij
〈φ〉j , (5.102)

gABij = GACGBD
{
TφC , T

φ
D

}ij
. (5.103)

5.2 Gauge-boson mass matrix
With the definitions of the previous subsection let us first examine the gauge-boson mass matrix M2

G.
With standard conventions for the gauge symmetry generators, the entries of M2

G cannot generally be
expressed in terms of bilinear fields in a basis-independent way. On the other hand, its matrix invariants
– and in particular its eigenvalues – can be expressed in such a way. From a direct calculation, it is
straightforward to show that M2

G can be rotated into the diagonal form

M̄2
G = diag

(
M2
γ ,M

2
W ,M

2
W ,M

2
Z

)
, (5.104)

6Here and in the following, we use a metric of signature (+,−,−,−).
7We have defined the couplings so that they match the conventions in [107], despite a different convention for the

Minkowski metric.
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where the eigenvalues are given in terms of the bilinear fields by

M2
W =

1

2

(
g2+ − g2−

)
K0 =

1

2
g22K0, M2

Z,γ =
1

2

[
g2+K0 ±

√
g4+K

2 + g4−(K
2
0 −K2)

]
, (5.105)

with
g2+ ≡

g21 + g22
2

and g2− ≡
g21 − g22

2
. (5.106)

At a charge-conserving minimum where K2
0 = K2, we obtain from (5.105) the familiar result

M2
Z = g2+K0 =

1

2

(
g21 + g22

)
K0, Mγ = 0 . (5.107)

In what follows, we are only interested in the physically relevant case of a charge-conserving minimum
where K2

0 = K2, that is a spontaneous symmetry breaking of the type SU (2)L × U(1)Y → U(1)em. In
that case, the gauge-boson mass matrix in the original basis (i.e. before diagonalisation) conveniently
reduces to

M2
G =

K0

2


g21 0 0 −g1g2
0 g22 0 0
0 0 g22 0

−g1g2 0 0 g22

 (5.108)

and is diagonalised according to

M̄2
G = RWM

2
GR

T
W = diag

(
0,M2

W ,M
2
W ,M

2
Z

)
, (5.109)

where

RW =


cos θW 0 0 sin θW

0 1 0 0
0 0 1 0

− sin θW 0 0 cos θW

 , (5.110)

with θW the weak-mixing angle, satisfying

cos θW =
g2√
g21 + g22

=
MW

MZ
. (5.111)

5.3 Scalar generators in the mass basis
While expressing the gauge-boson mass matrix in terms of bilinear fields at a charge-conserving minimum
was a trivial task, the derivation of the scalar-vector vertices/couplings in the physical basis is considerably
more involved. With view on (5.101)–(5.103), we see that such a computation reduces in fact to the
determination of the expression of the gauge generators in the mass basis. Recalling that the bilinear
fields are given by

Kµ =
1

2
∆µ
ijφ

iφj , (5.112)

the invariance of Kµ under infinitesimal gauge transformations of the form

φi →
(
18 + iθATφA

)ij
φj (5.113)

translates, for all µ ∈ {0, . . . , 3} and A ∈ {1, . . . , 4}, into the condition[
∆µ, TφA

]ij
= 0 . (5.114)

Clearly, the above relation remains valid after rotation of the scalar multiplet. In particular, defining the
scalar generators T̄φ rotated to the mass basis, (5.114) translates to[

∆̄µ, T̄φA

]ij
= 0 . (5.115)
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With the analytic expressions of ∆̄µ in terms of bilinear fields at hand, the derivation of T̄φA simply
amounts to solving a system of linear equations. Doing so yields a four-dimensional basis of purely
imaginary skew-symmetric matrices, noted {ΘB}, such that(

T̄φA

)ij
= XABΘijB . (5.116)

The matrix of coefficients XAB is most easily fixed by considering a set of quantities independent of the
basis chosen for the scalar multiplet. For instance, requiring that the quantity

Γµi Γ
ν
j

(
TφA

)ij
= Γµ TφA ΓνT (5.117)

remains unchanged (for all indices µ, ν, A) after rotation to the mass basis provides a set of linear
constraints on the coefficients XAB . Requiring in addition the gauge boson mass matrix M2

G to be
invariant under a change of basis allows to uniquely determine the expressions of T̄φA. Before presenting
the final expression, it is useful to define two generators T̄φ± such that(

T̄φ2
T̄φ3

)
=

(
cos θ − sin θ
sin θ cos θ

)(
T̄φ+
T̄φ−

)
=

(
cos θ T̄φ+ − sin θ T̄φ−
sin θ T̄φ+ + cos θ T̄φ−

)
, (5.118)

where the precise value of θ depends on the basis chosen to express the vectors x and y (we will come back
to this point further below). We may now provide the main result of this section, namely the expression
of the gauge generators T̄φ1,4 and T̄φ± in the mass basis. It is useful to reiterate that, in this basis, the
dynamical field multiplet reads

ϕ̄ =
(
G0, G±

1 , G±
2 , H±

1 , H±
2 , h01, h02, h03

)
. (5.119)

We have:

T̄φ1 =
1

2


0 0 0 0 0 ik̄T

0
0

σ2
0 0
0 0

02×3

0
0

0 0
0 0

σ2 02×3

−ik̄ 03×2 03×2 iΛk̄

 , T̄φ+ =
1

2


0 0 i 0 0 01×3

0
−i

0 0
0 0

0 0
0 0

−ik̄T

01×3

0
0

0 0
0 0

0 0
0 0

iyT

ixT

03×1 ik̄ 03×1 −iy −ix 03×3

 , (5.120)

T̄φ4 =
1

2


0 0 0 0 0 −ik̄T

0
0

σ2
0 0
0 0

02×3

0
0

0 0
0 0

σ2 02×3

ik̄ 03×2 03×2 −iΛk̄

 , T̄φ− =
1

2


0 −i 0 0 0 01×3

i
0

0 0
0 0

0 0
0 0

01×3

−ik̄T

0
0

0 0
0 0

0 0
0 0

−ixT

iyT

03×1 03×1 ik̄ ix −iy 03×3

 , (5.121)

where 0m×n is the m× n zero matrix and where the auxiliary matrix Λk is given by

(Λk̄)
ij
= εijkk̄

k . (5.122)

A few remarks are in order. First, we may check that the generator of the residual gauge group U(1)em
is given by

T̄φem = T̄φ1 + T̄φ4 =


0

σ2
σ2

03×3

 , (5.123)

as expected from the fact that only G± and H± are electrically charged. Then, the presence of x and y
in the expressions of T̄φ± (and, hence, of T̄φ2,3) indicates an unphysical dependence of the gauge generators
on the basis chosen to express these vectors (see also the discussion in Sec. 4). A similar statement holds
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regarding the angle θ introduced in (5.118). More precisely, if we apply a phase shift to every charged
field in the scalar-gauge sector,

W± → eiωWW± ,

H± → eiωHH± ,

G± → eiωGG± ,

(5.124)

the analytic expression of T̄φ2,3 remains unchanged if x, y are redefined according to (5.91) and θ according
to

θ → θ′ = θ − ωG − ωW . (5.125)
In other words, θ is arbitrary and may always be absorbed by a phase redefinition of G± and/or W±.
Hence, we shall take θ = 0 in the forthcoming analytic expressions without any loss of generality.

As a final remark, we note that the generators (T̄φA)
ij presented above have only been rotated to the

basis of the scalar mass eigenstates. To obtain in addition their expression in the basis of the gauge mass
eigenstates, one only needs to apply the rotation RW , defined in (5.110), to the gauge index:

(T̄φA)
ij → RABW (T̄φB)

ij . (5.126)

5.4 Vector-scalar interactions
Having determined the expression of the scalar generators in the mass basis, it is straightforward to
compute the expression of all vector-scalar interaction vertices at tree-level in terms of the bilinear fields,
using (5.101)–(5.103). The part of the Lagrangian density describing the vector-scalar interactions reads

LV−S = LV SS + LV V S + LV V SS , (5.127)
where, from (5.99),

LV SS = gAijV
µ
Aϕ

i∂µϕ
j , (5.128)

LV V S =
1

2
gABiV

A
µ V

µ
Bϕ

i , (5.129)

LV V SS =
1

4
gABijV

A
µ V

µ
Bϕ

iϕj . (5.130)

Applying (5.101)–(5.103) (the expectation value of the scalar multiplet in the mass basis can be read
from (5.66)) and retaining only non-zero couplings gives

LV SS = gsG0Zh
s∂µG

0Zµ + gH±H±ZH
−∂µH

+Zµ + gG±G±ZG
−∂µG

+Zµ

+ gH±H±γH
−∂µH

+Aµ + gG±G±γG
−∂µG

+Aµ

+ gsH±W±hs∂µH
+W−µ + gsG±W±hs∂µG

+W−µ + gG0G±W±G0∂µG
+W−µ , (5.131)

LV V S =
1

2
gsZZh

sZµZµ + gsW±W±hsW−µW+
µ + gG±ZW±G−ZµW+

µ + gG±γW±G−AµW+
µ , (5.132)

LV V SS =
1

4
gstZZh

shtZµZµ +
1

2
gstW±W±hshtW−µW+

µ + gsH±ZW±hsH−ZµW+
µ

+ gsG±ZW±hsG−ZµW+
µ + gsH±γW±hsH−AµW+

µ + gsG±γW±hsG−AµW+
µ

+
1

4
gG0G0ZZG

0G0ZµZµ +
1

2
gG0G0W±W±G0G0W−µW+

µ + gG0G±ZW±G0G−ZµW+
µ

+ gG0G±γW±G0G−AµW+
µ +

1

2
gH±H±ZZH

−H+ZµZµ +
1

2
gG±G±ZZG

−G+ZµZµ

+ gH±H±ZγH
−H+ZµAµ + gG±G±ZγG

−G+ZµAµ + gH±H±γγH
−H+AµAµ

+ gG±G±γγG
−G+AµAµ + gH±H±W±W±H−H+W−µW+

µ

+ gG±G±W±W±G−G+W−µW+
µ . (5.133)
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All couplings can be found in App. B.3.

6 Yukawa sector
6.1 A basis-invariant description
While the bilinear formalism offers, for any type of THDM, a compact and elegant basis-independent
formulation of the scalar interactions, it is a priori unable to describe the scalar-fermion interactions
which are by construction linear in the scalar fields. The purpose of this section is to show how such a
basis-independent formalism can in fact be extended to the Yukawa sector. Combined with the gauge-
invariant approach developed in this work, we will be able to derive every Yukawa coupling in terms of
gauge-invariant quantities, thus providing a complete description of the interactions among all physical
states (scalars, vectors and fermions) in the most general THDM.

The part of the Lagrangian describing the Yukawa interactions involving the two Higgs doublets ϕ1

and ϕ2 can be first parameterised in the standard way:

−LY =
[
QL
(
yu ϕ̃1 + εu ϕ̃2

)
uR +QL

(
yd ϕ1 + εd ϕ2

)
dR + L

(
ye ϕ1 + εe ϕ2

)
eR

]
+ h.c. . (5.134)

As usual, QL denotes the left-handed quark doublets and L the left handed lepton doublets, uR, dR are
the right-handed up- and down-type quark singlets, and eR the right-handed leptons. The corresponding
Yukawa coupling matrices are denoted by yu, yd, ye, as well as εu, εd, εe. The conjugate doublets ϕ̃a are
given, as usual, by

(ϕ̃a)
i
= εij (ϕ∗

a)j , with ε = iσ2 , (5.135)
where the indices i and j refer to the weak-isospin components of the doublets ϕa (a = 1, 2). We note that
the position of the family index a is relevant, since ϕa transforms under the fundamental representation
of U(2)H (the group describing unitary mixing of the two doublets), while ϕ∗

a and ϕ̃a transform under
the anti-fundamental representation of the family symmetry group.

For each fermion species f = u, d, e, the Yukawa matrices yf and εf can in fact be unified into a
single object F = U ,D, E , transforming under the (anti-)fundamental representation of the family group.
Namely, we define

Ua =

(
yu
εu

)
, U†

a =
(
y†u ε†u

)
, (5.136a)

Da =
(
yd εd

)
, D†a =

(
y†d
ε†d

)
, (5.136b)

Ea =
(
ye εe

)
, E†a =

(
y†e
ε†e

)
, (5.136c)

in order to rewrite the Yukawa Lagrangian (5.134) in the more compact form

−LY =
[
QL Ua ϕ̃a uR +QL Da ϕa dR + L Ea ϕa eR

]
+ h.c. , (5.137)

manifestly invariant under a change of basis in the Higgs family space, that is, a unitary transformation
U of the two doublets, provided

ϕa → Uab ϕ
b ⇒ Da → Db

(
U†)b

a
, Ea → Eb

(
U†)b

a
, Ua → Uab Ub . (5.138)

While the Yukawa interactions themselves are only linear in the scalar fields (and the Yukawa matrices),
some physically relevant quantities such as the fermion mass matrix squared, M2

F , depend on them
quadratically. For such quantities, the bilinear formalism can be appropriately used and can in fact be
extended to the basis-dependent objects D, E and U . In analogy with the definition of the bilinear fields
in (5.6) which we repeat here for clarity,

Ka
b = ϕaϕ†

b =
1

2
Kµ (σµ)

a
b , (5.139)
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we may write
UaU†

b ≡
1

2
Y µu (σµ)

a
b , (5.140)

as the definition of the bilinear up-type Yukawa coupling Yu. Similarly, the four-component bilinear
Yukawa couplings Yd and Ye can be defined through

DaD†b =
1

2
Y µd (σµ)

b
a , EaE†

b
=

1

2
Y µe (σµ)

b
a (5.141)

with (
Da(D

†)b
)ik

= Dij
a (D∗)

b
kj = (D∗)

b
kj D

ij
a . (5.142)

Contracting both sides of (5.140) with (σν)
b
a, and both sides of (5.141) with (σν)

a
b allows to obtain

the expressions of Yu,d,e:

Y νu = (σν)
b
a U

aU†
b , Y νd = (σν)

a
bDaD

b†, Y νe = (σν)
a
b EaE

b† . (5.143)

Explicitly, the components of Yf (f = u, d, e) are given by the hermitian matrices

Yu =


yuy

†
u + εuε

†
u

yuε
†
u + εuy

†
u

i
(
yuε

†
u − εuy†u

)
yuy

†
u − εuε†u

 , Yd =


ydy

†
d + εdε

†
d

ydε
†
d + εdy

†
d

−i
(
ydε

†
d − εdy

†
d

)
ydy

†
d − εdε

†
d

 , Ye =


yey

†
e + εeε

†
e

yeε
†
e + εey

†
e

−i
(
yeε

†
e − εey†e

)
yey

†
e − εeε†e

 . (5.144)

Under changes of basis, the four-component bilinear Yukawa couplings transform in the same way as K̃,
namely (for f = u, d, e)

Y 0
f → Y 0

f , Y af → R(U)ab Y bf , a = 1, 2, 3 , (5.145)

where R(U) is an orthogonal 3× 3 matrix defined in Eq. (5.21).

From these transformation properties, we may define in particular the Yukawa couplings Ū , D̄ and
Ē obtained after performing the change of basis which diagonalises the neutral mass matrix, described
in Eqs. (5.60) and (5.61). Similarly, the four-component bilinear Yukawa couplings in such a basis are
denoted by

Ȳf =

(
Y 0
f

Ȳf

)
(5.146)

for f = u, d, e.

6.2 Yukawa couplings in the mass basis
Having established a basis-independent formalism to describe the Yukawa sector of any THDM, we are
now interested in computing the tree-level Yukawa vertices involving the physical states, i.e. in expressing
such vertices in the mass basis. Having determined the form of the scalar generators in such a basis in
Sec. 5.3, one way to proceed to compute the Yukawa vertices is to rely on the gauge-invariance of the
Yukawa interaction Lagrangian. First, let us note that the Yukawa interactions can generically be written
as

−LY =
1

2
yIJi φiψIψJ + h.c. (5.147)

where all left-handed two-component spinors of the model were gathered in the fermion multiplet ψ.
Under SU (3)C × SU (2)L × U(1)Y , the scalar and fermion multiplets simultaneously transform as

φi →
(
1+ iθATφA

)ij
φj , ψI →

(
1+ iθATψA

)IJ
ψJ , A = 1, . . . , 12 , (5.148)

with Tψ the gauge generators of the left-handed fermion multiplet. Extending the notations of the
previous section, the generators Tφ,ψ1 , Tφ,ψ2,3,4 and Tφ,ψ5,...,12 correspond to U(1)Y , SU(2)L, and SU(3)C
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transformations respectively. The invariance of (5.147) under infinitesimal gauge transformations implies8

(
TψA

∗)IK
yKJi + yIKi

(
TψA

)KJ
−
(
TφA

)ij
yIJj = 0 (5.149)

for all values of the indices A, I, J and i. Since this relation must hold independently of the basis chosen to
express the various types of fields, we may in particular express it in the scalar mass basis, thus obtaining(

TψA
∗)IK

ȳKJi + ȳIKi

(
TψA

)KJ
−
(
T̄φA

)ij
ȳIJj = 0 , (5.150)

with ȳ denoting the tensor of Yukawa couplings obtained after rotation of its scalar index towards the
mass basis. This relation is linear in ȳ and can be solved without too much difficulty, based on the known
expressions of Tψ and T̄φ. While the linear system of equations thus obtained is underdetermined, we
may, as previously done in the gauge sector, supplement it with a set of relations which are independent
on the basis chosen to express the scalar fields. For instance, imposing

Γµi Γ
ν
j y
IJ
i yJIj = Γ̄µi Γ̄

ν
j ȳ
IJ
i ȳJIj (5.151)

suffices to compute the entries of ȳIJi unambiguously, completing the determination of the Yukawa inter-
actions in the mass basis.

After symmetry breaking towards U(1)em, the Yukawa interaction Lagrangian can be expanded, in
terms of two-component fermions, as

−LY =

{
ha
[
ξ̄ua u

†
LuR + ξ̄da d

†
LdR + ξ̄ea e

†
LeR

]
+G0

[
ξ̄uG0 u

†
LuR + ξ̄dG0 d

†
LdR + ξ̄eG0 e

†
LeR

]
+H−

[
ξ̄udH− u

†
LdR + ξ̄νeH− ν

†
LeR

]
+G−

[
ξ̄udG− u

†
LdR + ξ̄νeG− ν

†
LeR

]
(5.152)

+H+ ξ̄udH+ d
†
LuR +G+ ξ̄udG+ d

†
LuR

}
+ h.c. ,

where a sum on the index a = 1, 2, 3 (i.e. on the three neutral scalars) is implied in the first term.
In addition, if more than one generation of fermions are considered, we assume that the fermion mass
matrices have been properly (bi-)diagonalised so that uL,R, dL,R and eL,R correspond to fermion mass
eigenstates. The expressions of all Yukawa matrices involved in (5.152) in terms of bilinear fields are
given in App. B.4. These expressions involve the complex two-vector κ̄a, defined such that

K̄
a
b =

1

2
K̄µ (σµ)

a
b ≡ κ̄

aκ̄∗b . (5.153)

It should be noted that such a decomposition is made possible by K being of rank 1 at a charge-conserving
minimum (and, more generally, within the charge-conserving hypersurface). Explicitly, κ̄ can be written

κ̄ =

√
K0

2

1√
1 + k̄3

(
1 + k̄3
k̄1 + ik̄2

)
=

√
K0

2

( √
1 + k̄3√

1− k̄3 eiζ

)
, (5.154)

where the phase ζ was defined such that

k̄1 + ik̄2 =
√
k̄21 + k̄22 e

iζ =
√
1− k̄23 eiζ . (5.155)

From (5.154), it is straightforward to check that

κ̄aκ̄∗b =
K0

2

(
1 + k̄3 k̄1 − ik̄2
k̄1 + ik̄2 1− k̄3

)
(5.156)

as expected from (5.153). The complex 2-vector κ̄ thus defined allows to write the various Yukawa
vertices in a very compact form. For instance, the hau†LuR and had†LdR interactions given in (5.B58a)
and (5.B58b) read

ξ̄ua =
1√
2K0

(σa)
α
β κ̄

∗
αŪβ , ξ̄da =

1√
2K0

(σa)
α
β D̄ακ̄

β . (5.157)

8Note that the generators Tφ
A are purely imaginary such that Tφ

A

∗
= −Tφ

A.
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6.3 Fermion masses
After symmetry breaking, the scalar multiplet acquires a vacuum expectation value according to (5.66),
and the part of the Lagrangian describing the fermion mass terms reads

−L ⊃
{
u†LMuuR + d†LMddR + e†LMeeR

}
+ h.c. , (5.158)

where, for f = u, d, e,
Mf =

√
2K0 k̄

aξ̄fa =
√
2K0 k

aξfa . (5.159)

For instance, we find for the up-type quarks

Mu =
√
2K0 k

aξua = (kaσa)
α
β κ

∗
αUβ . (5.160)

To further simplify this expression, we note that since

Kα
β =

1

2
Kµ (σµ)

α
β =

K0

2

[
δαβ + (kaσa)

α
β

]
= κακ∗β , (5.161)

we find
(kaσa)

α
β =

2

K0
κακ∗β − δαβ , (5.162)

so that
Mu =

[
2

K0
κακ∗β − δαβ

]
κ∗αUβ =

(
2

K0
|κ|2 − 1

)
κ∗αUα . (5.163)

Finally,
|κ|2 = κ∗ακ

α = TrK = K0 (5.164)

so Mu is simply given by
Mu = κ∗αUα . (5.165)

In turn, the up-type quark mass matrix squared, M2
u is computed as

M2
u =MuM

†
u = κ∗ακ

βUαU†
β = Kβ

αUαU
†
β =

1

2
Kµ (σµ)

β
α U

αU†
β =

1

2
KµY

µ
u . (5.166)

Similarly, we obtain for the down-type quark and lepton mass matrices:

Md = D̄ακ̄α, M2
d =

1

2
KµY

µ
d , (5.167)

Me = Ēακ̄α, M2
e =

1

2
KµY

µ
e . (5.168)

7 Conclusions
In the THDM potential it has been shown that gauge-invariant expressions give new insights [108]. With
the introduction of bilinears [101, 103, 102] gauge-invariants have been introduced which have a one-to-
one correspondence to the Higgs-boson doublets - except for the non-physical gauge redundancies. In
particular, it has been shown, that bilinears form Minkowski-type four vectors. Stability, electroweak
symmetry breaking and the symmetries of the potential can be studied in a concise form based on
bilinears [102, 99, 98].

Here we have extended this gauge-invariant bilinear formalism to the squared mass matrices and the
interaction terms of the THDM, that is, the trilinear and quartic scalar couplings, the gauge and Higgs
boson interactions, and the Yukawa couplings.

With the help of the connection Γ, (5.35), between the component fields of the two doublets and
the bilinears we were able to get a completely gauge-invariant form of the scalar squared mass matrix.
We revealed the general expressions for the cases of full electroweak symmetry breaking as well as for
the charge-conserving breaking case, without specifying the actual form of the potential. We derived
the scalar mass spectrum for the general case in terms of gauge-invariant expressions. In particular,
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the respective Goldstone modes appeared in a very transparent way. From the gauge-invariant form of
the mass matrix we then derived the cubic and quartic scalar interactions. Then, from the expressions
of the scalar gauge generators in the mass-basis, we calculated the full set of vector-scalar couplings
in a gauge-invariant form. Finally, we have extended the bilinear formalism to the Yukawa sector and
obtained expressions for the fermion mass matrices squared that are invariant under mixing of the two
Higgs doublets. Starting again from the expression of the scalar generators and employing the gauge-
invariance of the Yukawa Lagrangian, we obtained gauge-invariant expressions for the Yukawa couplings
after electroweak symmetry breaking.

With these results, we have extended the bilinear formalism to all interactions in a general THDM,
making it a truly powerful tool to study any specific THDM.
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Appendix
A Structure of the scalar mass matrix
This appendix extends the discussion of section 3 on the structure of the scalar mass matrix. In particular,
we provide explicit forms for the various quantities involved in the expression of the mass matrix, both,
at a charge-breaking minimum and at a charge-conserving minimum. The various quantities expressed in
this appendix will allow in turn to compute analytically the derivatives of scalar eigenvalues, as required
to express the derivatives of the effective potential. First, let us recall the general form of the scalar mass
matrix in our formalism:

M̂2
s = ∆̂µ∂µV + Γ̂MΓ̂T . (5.A1)

In particular, the hatted quantities correspond to the canonical bases; see section 3. In this basis, the
connection matrices Γ are of the form (5.48). To simplify the forthcoming expressions, we define

α =

(
K̃Tg̃K̃

K2
0

)1/2

=
√

1− kTk (5.A2)

so that γ (5.50) can be written

γ =
√
2K0

(
α 0T

k 13

)
. (5.A3)

We now want to derive the explicit form of M̂2
s in a canonical basis. We first need to examine the

form taken by the ∆̂µ matrices. We may decompose the four symmetric 8 × 8 matrices ∆̂µ into 4 × 4
blocks

∆̂µ =

(
Aµ44 Cµ44

(Cµ44)
T

Bµ44

)
. (5.A4)

As we will show, Aµ44 and Cµ44 depend on the chosen basis, while Bµ44 is fixed by the requirement of
working in a canonical basis. In fact, it is possible to determine Bµ44 by first computing the quantity

Σµρσ = Γρi∆
µ
ijΓ

σ
j = Γρi∆

µ
jiΓ

σ
j = Σµσρ . (5.A5)

or, in matrix notation Σµ = ΓT∆µΓ. This quantity is constructed in a way that all field component
indices are contracted and therefore it is gauge invariant. In order to get an explicit expression for Σµ

we first compute

Γµi ∆
ν
ia = ∆µ

ij∆
ν
iaφ

j

= ∂a
(
∆µ
ij∆

ν
ikφ

jφk
)
−∆µ

ia∆
ν
ikφ

k

= ∂a
(
Γ2
)µν −∆µ

ia∆
ν
ijφ

j

= ΓλaT
µν
λ − Γνi∆

µ
ia , (5.A6)

where the rank-3 symmetric tensor T has been defined in (5.37) and we have used (5.33). By repeatedly
applying (5.A6) in the definition of Σµ, recalling that Γ2 ≡ ΓTΓ, that is, (Γ2)ρσ = ΓρiΓ

σ
i , we arrive at

Σµ =
1

2

[
Γ2Tµ + TµΓ2 −

(
Γ2
)µν

T ν
]
. (5.A7)

Let us show (5.A7) in detail, starting from the definition of Σµ, (5.A5), writing all indices explicitly and
using (5.A6) twice,

Σµρσ = Γρi∆
µ
ijΓ

σ
j = Γλj T

ρµ
λ Γσj − Γµi ∆

ρ
ijΓ

σ
j = Γλj T

ρµ
λ Γσj − Γµi (Γ

λ
i T

ρσ
λ − Γρj∆

σ
ij) . (5.A8)

For the first term on the right-hand side we get Γλj T
ρµ
λ Γσj = Tµ(Γ2)ρσ and for the second term Γµi Γ

λ
i T

ρσ
λ =

(Γ2)µλT ρσλ , for the third term Γµi Γ
ρ
j∆

σ
ij = Γµi ∆

σ
ijΓ

ρ
j = Γλj T

µσ
λ Γρj −Γσi ∆

µ
ijΓ

ρ
j = (Γ2)ρσTµ−Σµρσ altogether,

Σµρσ = Tµ(Γ2)ρσ − (Γ2)µλT ρσλ + (Γ2)ρσTµ − Σµρσ . (5.A9)
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This is equivalent to (5.A7).
With the explicit form for the Tµ matrices given in (5.40),

T0 = 214, Ti = 2

(
0 eTi
ei 03×3

)
, (5.A10)

we find
Σ0 = Γ2 = 2

(
K0 KT

K K013

)
, Σi = 2Kig̃ + 2

(
0 K0e

T
i

K0ei eiK
T +KeTi

)
. (5.A11)

On the other hand, we can express Σµ, (5.A5) in any basis, since it is gauge-invariantly defined. In the
canonical basis we have

Σµ = ΓT∆µΓ = Γ̂T∆̂µΓ̂ =
(
04×4 γT

)( Aµ44 Cµ44(
CT

44

)µ
Bµ44

)(
04×4

γ

)
= γTBµ44γ . (5.A12)

At a point of the bilinear field space where γ is non-singular (i.e., where det(γ) = 4K2
0α 6= 0), the relation

can be inverted using

γ−1 =
1

α
√
2K0

(
1 0T

−k α13

)
(5.A13)

and we finally get with (5.A11):

Bµ44 =
(
γT
)−1

Σµγ−1 that is B0
44 = 14, Bi44 = −ki14 +

(
0 αeTi
αei eik

T + keTi

)
. (5.A14)

Having found the result for Bµ44 valid in any canonical basis, we want to determine a possible form for
Aµ44 and Cµ44. As stated above, these two matrices are not uniquely determined since a continuous set of
canonical bases exist. However, requiring that ∆̂µ satisfies the same anti-commutation properties as ∆µ

in (5.38), namely {
∆̂µ, ∆̂ν

}
= Tµνλ ∆̂λ , (5.A15)

and that the components ∆̂a, a = 1, 2, 3 properly transform under rotations in the bilinear field space,
allows us to first determine the set of possible expressions for Cµ44, and then for Aµ44. These expressions are
valid anywhere in the field space, hence, in particular at the charge-conserving and the charge-breaking
hypersurfaces. We may now provide a complete set of Aµ44, Bµ44 and Cµ44 matrices valid for any values of
the bilinear fields but assuming a canonical basis:

A0
44 = 14, Aa44 = ka14 −

1

|k|2

(
0 αkak

T

αkak 2kakk
T−
(
[ea × k]kT + k [ea × k]

T
)) (5.A16)

B0
44 = 14, Ba44 = −ka14 +

(
0 α eTa

α ea eak
T + keTa

)
, (5.A17)

C0
44 = 04×4, Ca44 =

1

|k|

(
0 [ea × k]

T

|k|2ea − kak α
(
ka13 − eak

T
)) . (5.A18)

For the case of a charge-conserving minimum we have |k| = 1, corresponding to α = 0. In this case (see
(5.48))

Γ̂ =

(
04×4

γ

)
=

04×4

01×4

γ3

 (5.A19)

since
γ =

√
2K0

(
α 0T

k 13

)
CC
=
√
2K0

(
0 0T

k 13

)
≡
(
01×4

γ3

)
. (5.A20)
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Here we have defined the 3× 4 matrix γ3 with index 3 in order to distinguish it from the 4× 4 matrix γ.
As a consequence, the term Γ̂MΓ̂T in the mass matrix (5.A1) takes the form

Γ̂MΓ̂T =

(
05×5 05×3

03×5 γ3MγT3

)
. (5.A21)

Hence, at a charge-conserving minimum, the block-diagonal structure of ∆̂µ is more appropriately
reorganised as

∆̂µ =

(
Aµ55 Cµ53

Cµ35 Bµ33

)
, (5.A22)

where the expression of the newly defined blocksAµ55, Bµ33 and Cµ53 can be readily inferred from Eqs. (5.A16)–(5.A18).
Next, we express the first term of (5.A1) in the form

∆̂µ∂µV
CC
= 2u

(
g̃K̃
)
µ
∆̂µ = 2u

(
A55 C53

C35 B33

)
, (5.A23)

with

A55 = 2K0

0 0T 0
0 kkT 0
0 0T 1

 , B33 = 2K0

(
13 − kkT

)
= −γ3g̃γT3 ,

C53 = αK0

 0T

kkT − 13

−kT

 = 0 . (5.A24)

Note that although α and therefore C53 vanish at a charge-conserving minimum, for later convenience
we want to have the expression for ∆̂µ not only at the minimum of the potential. Eventually, we have
found that the off-diagonal blocks of M̂2

s of (5.A1) vanish, simultaneously for the term ∆̂µ∂µV and for
the term Γ̂MΓ̂T. This shows the convenience to choose a canonical basis, where this simple structure of
the scalar mass matrix appears. We may thus finally write with (5.A21),

M̂2
s
CC
= 2u

(
g̃K̃
)
µ
∆̂µ + Γ̂MΓ̂T =

(
M̂2

CC 05×3

03×5 M̂2
neutral

)
. (5.A25)

The block
M̂2

CC = 2uA55 (5.A26)
fully contains the Goldstone sector as well as the two massive charged Higgs fields H±. We can diagonalise
this matrix

M̄2
CC = UCCM̂2

CCU
T
CC = diag

(
0, 0, 0, 4uK0, 4uK0

)
= diag

(
0, 0, 0, m2

H± , m2
H±

)
.

(5.A27)
The rotation matrix UCC can explicitly be decomposed as

UCC =

1 0T 0
0 RH 0
0 0T 1

 (5.A28)

with RH given by the 3 × 3 matrix in the bilinear field space which rotates k to the Higgs basis with
k = (0, 0, 1)T. Turning to the neutral sector, the matrix

M̂2
neutral = γ3 (M− 2ug̃) γT3 (5.A29)

contains the masses of the three neutral states h, H and A. It is remarkable that M̂2
neutral can in fact

always (that is, not only for the tree-level case) be diagonalised by a rotation in the bilinear field space,
i.e. a change of basis:

M̄neutral = RM̂2
neutralR

T = diag
(
m2

1, m2
2, m2

3

)
. (5.A30)
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The orthogonal rotation which diagonalises the 8×8 scalar mass matrix in the canonical basis introduced
above reads

Ū =

(
UCC 05×3

03×5 R

)
. (5.A31)

With this rotation matrix Ū we get the transformations of ∆̂, Γ̂ from the canonical basis to the Higgs
basis:

∆̄µ = Ū∆̂µŪT, Γ̄ = Ū Γ̂ . (5.A32)

Gathering up the above results, the scalar mass matrix in the diagonal basis reads

M̄2
s = 2u

(
g̃K̃
)
µ
∆̄µ + Γ̄MΓ̄T = diag

(
0, 0, 0, m2

H± , m2
H± , m2

1, m2
2, m2

3

)
(5.A33)

This concludes our discussion on the structure of the scalar mass matrix at a charge-conserving minimum.
We stress that all of the above is valid at any order in perturbation theory. We think that this illustrates
the convenience of working with the gauge-invariant formalism.

As an example the scalar mass matrix squared (5.A29) for the tree-level THDM potential is computed
in (5.68).

B THDM couplings
In this section we present the analytic couplings of the general THDM in gauge invariant form. We recall
that the indices a, b, c, d, e ∈ {1, 2, 3} denote the three neutral Higgs-boson scalars. The squared masses
of the three neutral scalars are denoted by m2

a. For repeatedly appearing indices a, b, c, d, e we employ as
usual the sum convention. Note, that we do not distinguish between upper and lower indices. We note
that the index of the masses of the scalars does not imply any summation, for instance the expression
kama in (5.B1) is simply a vector with component a, whereas in an expression like εabck̄am2

a we have to
sum over the index a because it appears twice in tensor components, that is, in εabc and in k̄a.

B.1 Scalar couplings
The cubic and quartic neutral scalar couplings can be found in section 4. We repeat here for convenience
the 3-vector f̄a in terms of which some of the couplings below are expressed:

f̄a = 8K0

(
η00k̄

a + η̄a
)
− k̄am2

a . (5.B1)

The scalar mass squared matrix M̄2
neutral is given in (5.70). The 3-vectors x and y are defined in (5.80).

The couplings then read:

ha - hb - G0

λ̄abG0 =
1√
2K0

εabck̄
c
(
m2
b −m2

a

)
(5.B2)

h - G0 - G0

λ̄aG0G0 =
1√
2K0

k̄am2
a (5.B3)

ha - H± - H±

λ̄aH±H± =
f̄a√
2K0

(5.B4)

ha - G± - G±

λ̄aG±G± =
1√
2K0

k̄am2
a (5.B5)

ha - G± - H±

λ̄aG±H± =
1√
2K0

(
m2
a −m2

H±

)(
xa + iya

)
(5.B6)

ha - hb - hc - hd
λ̄abcd = gabcd + gcdab + gacbd + gbdac + gadbc + gbcad , (5.B7)
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with the auxiliary function

gabcd =
δab

2K0

(
δcd

2
k̄TM̄2

neutralk̄ + k̄ck̄d
(
m2
a +m2

b −m2
c −m2

d

))
+ 4
(
δab − k̄ak̄b

)(
k̄ck̄d(η00 −

m2
H±

4K0
) + η̄ck̄d + η̄dk̄c − η̄Tk̄δcd

)
. (5.B8)

ha - hb - hc - G0

λ̄abcG0 = f ′abc + f ′bca + f ′cab , (5.B9)
with the auxiliary function

f ′abc =
1

2K0

(
8K0

(
δab − k̄ak̄b

)
(η̄ × k̄)c − 1

2
δabεcde

(
m2
d −m2

e

)
k̄dk̄e − εabdk̄d

(
m2
a −m2

b

)
k̄c
)
. (5.B10)

ha - hb - G0 - G0

λ̄abG0G0 =
1

2K0

(
8K0(δ

ab − k̄ak̄b)
(
η00 −

m2
Hpm

4K0
+ η̄Tk̄

)
+ k̄ak̄b

(
m2
a +m2

b

)
− δabk̄TM̄2

neutralk̄ + 2εcadεcbek̄dk̄em2
c

)
(5.B11)

ha - G0 - G0 - G0

λ̄aG0G0G0 =
3

4K0
εabck̄bk̄c(m2

b −m2
c) (5.B12)

G0 - G0 - G0 - G0

λ̄G0G0G0G0 =
3

2K0
k̄TM̄2

neutralk̄ (5.B13)

ha - hb - H± - H±

λ̄abH±H± =
1

2K0

(
δab
(
k̄TM̄2

neutralk̄ − 16K0η̄
Tk̄
)

+ k̄ak̄b
(
8K0(η00 + η̄Tk̄)− (m2

a +m2
b)
)
+ 8K0

(
k̄aη̄b + k̄bη̄a

))
(5.B14)

ha - G0 - H± - H±

λ̄aG0H±H± =
1

2K0
εabcf̄ bk̄bk̄c (5.B15)

G0 - G0 - H± - H±

λ̄G0G0H±H± =
1

2K0
k̄af̄a (5.B16)

ha - hb - G± - G±

λ̄abG±G± =
1

2K0

(
8K0(δ

ab − k̄ak̄b)(η00 + η̄Tk̄)− δabk̄TM̄2
neutralk̄ + k̄ak̄b(m2

a +m2
b)

)
(5.B17)

ha - G0 - G± - G±

λ̄aG0G±G± =
1

4K0
εabck̄bk̄c(m2

b −m2
c) (5.B18)

G0 - G0 - G± - G±

λ̄G0G0G±G± =
1

2K0
k̄TM̄2

neutralk̄ (5.B19)

ha - hb - G± - H±

λ̄abG±H± = 4η̄c(xc + iyc)(δab − k̄ak̄b)+
1

2K0

(
k̄a(xb + iyb)(m2

b −m2
H±) + k̄b(xa + iya)(m2

a −m2
H±)− k̄c(xc + iyc)m2

cδ
ab

)
(5.B20)
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ha - G0 - G± - H±

λ̄aG0G±H± =
1

2K0
εabck̄b(xc + iyc)(m2

H± −m2
c) (5.B21)

G0 - G0 - G± - H±

λ̄G0G0G±H± =
1

2K0
k̄a(xa + iya)m2

a (5.B22)

B.2 Charged quartic couplings
H± - H± - H± - H±

λ̄H±H±H±H± =
1

K0

(
k̄TM̄2

neutralk̄ − 16K0η̄
Tk̄

)
(5.B23)

G± - G± - H± - H±

λ̄G±G±H±H± =
1

2K0

(
8K0

(
η00 −

m2
H±

4K0
+ η̄Tk̄

)
− 2k̄TM̄2

neutralk̄ +Tr
(
M̄2

neutral
))

(5.B24)

G± - G± - G± - G±

λ̄G±G±G±G± =
1

K0
k̄TM̄2

neutralk̄ (5.B25)

G± - H± - H± - H±

λ̄G±H±H±H± =
(
η̄a − k̄am

2
a

K0

)
(xa + iya) (5.B26)

G± - G± - G± - H±

λ̄G±G±G±H± =
1

K0
k̄a(xa + iya)m2

a (5.B27)

B.3 Vector - scalar couplings
ha - G0 - Z

ḡaG0Z = 2

√
mZ√
K0

k̄a (5.B28)

H+ - H+ - Z
ḡH+H+Z = −i

√
2
mZ − 2mW√

K0mZ

(5.B29)

G+ - G+ - Z
ḡG+G+Z = −i

√
2
mZ − 2mW√

K0mZ

(5.B30)

H+ - H+ - γ

ḡH+H+γ = 2i

√
2mW (mZ −mW )√

K0mZ

(5.B31)

G+ - G+ - γ

ḡH+H+γ = 2i

√
2mW (mZ −mW )√

K0mZ

(5.B32)

ha - H+ - W+

ḡaH+W+ = i

√
2mW√
K0

(xa + iya) (5.B33)

ha - G+ - W+

ḡaG+W+ = 2

√
mW√
2K0

k̄a (5.B34)
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G0 - G+ - W+

ḡG0G+W+ = −i
√
2mW√
K0

(5.B35)

ha - Z - Z
ḡaZZ = 4

mZ√
2K0

k̄a (5.B36)

ha - W+ - W+

ḡaW+W+ = 4
mW√
2K0

k̄a (5.B37)

G+ - Z - W+

ḡG+ZW+ = 2i

√
2mW√
K0mZ

(mW −mZ) (5.B38)

G+ - γ - W+

ḡG+γW+ = 2i

√
2(mZ −mW )√

K0mZ

mW (5.B39)

ha - hb - Z - Z

ḡabZZ =
4m2

Z

K0
δab (5.B40)

ha - hb - W+ - W+

ḡabW+W+ =
4m2

W

K0
δab (5.B41)

ha - H+ - Z - W+

ḡaH+ZW+ =
2 cos(θW )

K0

(
(2m2

W −m2
Z)(x

a − iya) + im2
Zε

abc(xb − iyb)k̄b
)

(5.B42)

ha - G+ - Z - W+

gaG+ZW+ = 4i
mW

mZ

m2
W −m2

Z

K0
k̄a (5.B43)

ha - H+ - γ - W+

ḡaG+γW+ = 4
m2
W

K0

√
m2
Z −m2

W

mZ
(xa − iya) (5.B44)

ha - G+ - γ - W+

ḡaG+γW+ = 4i
m2
W

K0

√
m2
Z −m2

W

mZ
k̄a (5.B45)

G0 - G0 - Z - Z
ḡG0G0ZZ = 4

m2
Z

K0
(5.B46)

G0 - G0 - W+ - W+

ḡG0G0W+W+ = 4
m2
W

K0
(5.B47)

G0 - G+ - Z - W+

ḡG0G+ZW+ = 4
mW

mZ

m2
Z −m2

W

K0
(5.B48)

G0 - G+ - γ - W+

ḡG0G+γW+ = −4m
2
W

K0

√
m2
Z −m2

W

mZ
(5.B49)

H+ - H+ - Z - Z
ḡH+H+ZZ = 4

(m2
Z − 2m2

W )2

K0m2
Z

(5.B50)
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G+ - G+ - Z - Z
ḡG+G+ZZ = 4

(m2
Z − 2m2

W )2

K0m2
Z

(5.B51)

H+ - H+ - Z - γ

ḡH+H+ZZ = 8mW (2m2
W −m2

Z)

√
m2
Z −m2

W

K0m2
Z

(5.B52)

G+ - G+ - Z - γ

ḡG+G+Zγ = 8mW (2m2
W −m2

Z)

√
m2
Z −m2

W

K0m2
Z

(5.B53)

H+ - H+ - γ - γ

ḡH+H+γγ = 8m2
W

m2
Z −m2

W

K0m2
Z

(5.B54)

G+ - G+ - γ - γ

ḡG+G+γγ = 8m2
W

m2
Z −m2

W

K0m2
Z

(5.B55)

H+ - H+ - W+ - W+

ḡH+H+W+W+ =
4m2

W

K0
(5.B56)

G+ - G+ - W+ - W+

ḡG+G+W+W+ =
4m2

W

K0
(5.B57)

B.4 Yukawa couplings
We note that we only give here the Yukawa couplings involving right-handed Weyl spinors. Their analo-
gous parts for left-handed spinors are simply obtained through complex conjugation.

h - f†L - fR

ξ̄ua =
1√
2K0

(σa)
α
β κ̄

∗
αŪβ (5.B58a)

ξ̄da =
1√
2K0

(σa)
α
β D̄ακ̄

β (5.B58b)

ξ̄ea =
1√
2K0

(σa)
α
β Ēακ̄

β (5.B58c)

G0 - f†L - fR

ξ̄uG0 =
i√
2K0

κ̄∗αŪα (5.B59a)

ξ̄dG0 = − i√
2K0

D̄ακ̄α (5.B59b)

ξ̄eG0 = − i√
2K0

Ēακ̄α (5.B59c)

H± - f†L - f ′R

ξ̄udH+ = − i√
K0

εαβκ̄
αŪβ (5.B60a)

ξ̄udH− = − i√
K0

εαβD̄ακ̄∗β (5.B60b)

ξ̄νeH− = − i√
K0

εαβ Ēακ̄∗β (5.B60c)
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G± − f†L − f ′R

ξ̄udG+ =
i√
K0

κ̄∗αŪα (5.B61a)

ξ̄udG− =
i√
K0

D̄ακ̄α (5.B61b)

ξ̄νeG− =
i√
K0

Ēακ̄α (5.B61c)



Chapter 6

Grand unification and the Planck scale:
An SO(10) example of radiative symmetry

breaking

1 Introduction
Unification of the Standard Model (SM) gauge groups into a grand unified theory (GUT) [109, 110, 111]
remains an attractive new-physics scenario: GUTs have the potential to (i) provide an explanation
for the seemingly coincidental near-equality of SM gauge couplings at the high-energy scale MGUT ≈
1015 GeV, see e.g. [112, 113]; (ii) (partially) explain the observed mass spectrum by unifying the fermionic
representations [114, 115, 116]; (iii) account for neutrino masses [117, 118, 119, 120, 121] with a suitable
see-saw mechanism [122, 123, 124]; and (iv) offer a scenario for leptogenesis, see e.g. [125, 126, 127, 128].

Yet, the explanatory power of a GUT – manifest in relations among SM couplings and charges – comes
with the caveat of having to construct a viable mechanism to break the large gauge group in just the
right way such as to obtain the SM. The unified gauge group can be reduced to the SM via spontaneous
symmetry breaking in a suitable scalar potential. Most GUT analyses to date simply assume that all
breaking chains, which are group-theoretically possible, can be realised by some – potentially contrived
and complicated – scalar potential. Oftentimes, the latter is not explicitly specified. Indeed, such po-
tentials remain largely arbitrary without specific knowledge about microscopic boundary conditions in
the theory space of couplings, for instance, at the Planck scale. As a result, the plethora of SM parame-
ters is effectively traded for a plethora of admissible breaking potentials. In particular, currently viable
GUTs require more free parameters than the SM itself1. In contrast to the Yukawa and gauge couplings,
the (quartic) couplings entering the GUT potential are not directly constrained by the experimental data.

On a seemingly unrelated note, in quantum gravity, any phenomenology is hard to come by. However,
several quantum-gravity scenarios hold the promise to predict Planck-scale boundary conditions, both for
the gauge-Yukawa sector and the scalar potential; in the context of GUTs, see [129, 130] for asymptotic
safety and e.g. [131, 132, 133, 134] for string theory.

Quantum gravity (QG) and grand unification are thus two friends in need. Quantitative progress
requires a link between Planck-scale initial conditions and GUT phenomenology. Naturally, such a link
would benefit GUT model builders and QG phenomenologists alike:

• GUTs would aid QG phenomenology: The requirement of viable initial conditions promises to
indirectly constrain any predictive QG scenario.

• QG would aid GUT model-building: Any predictive QG scenario will, in turn, predict/constrain
the Planckian parameter space and thereby may exclude (i.e., be incompatible with) specific GUTs.

1For instance, the SO(10) model with 45H ⊕ 126H possesses 16 parameters in the scalar potential [124]. Considering
its realistic 10H ⊕ 45H ⊕ 126H extension would further increase this number.
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To build this link, progress on both ends is required: On the one hand, Planck-scale predictions of QG
scenarios have to be obtained and solidified. On the other hand, viable Planck-scale initial conditions
have to be identified in specific GUTs.

In the present work, we focus on the GUT side of progress. In particular, we point out that the
requirement of viable radiative symmetry breaking – or rather the absence of non-viable radiative sym-
metry breaking – places strong constraints on the underlying Planck-scale initial conditions.
To do so, we treat the GUT as an effective field theory (EFT)2. The respective grand-unified effective field
theory (GUEFT) is fully specified by its symmetry group GGUT – including a local gauge group G(local)

GUT
as well as potential additional global symmetries G(global)

GUT – and the set of fermionic as well as scalar rep-
resentations FGUT and SGUT, respectively. The resulting EFT action includes all symmetry invariants
that can be constructed from the gauge and matter fields. The initial conditions for the corresponding
couplings specify an explicit realisation of the GUEFT.

We then assume that some UV dynamics provides said initial conditions of the GUEFT at some
ultraviolet (UV) scale. In the following, we identify this scale with the Planck scale and hence the UV
dynamics with QG. Still, the general framework presented here applies more widely.

Once the initial conditions are specified at the Planck scale MPl, the renormalisation group (RG)
equations evolve each such realisation towards lower energies, in particular down to the electroweak scale
where (some of) the couplings need to be matched to experiment. The evolution with RG scale µ is given
by the beta-functions, i.e.,

βci = µ
∂

∂µ
ci . (6.1)

Here, we focus solely on the perturbative regime. This allows us to make use of (i) the computational
toolkit PyR@TE 3 [9] to determine the full set of perturbative beta-functions and of (ii) perturbative
techniques for multidimensional effective potentials [136] (see also [137]). Non-perturbative RG schemes
such as the functional RG [138] (see [139, 140, 141, 142, 143] for multidimensional effective potentials in the
context of condensed-matter theory), in principle, allow to extend our framework to the non-perturbative
regime. We leave such an extension and, in particular, the inclusion of gravitational fluctuations and
thus any trans-Planckian dynamics at µ > MPl (cf. Sec. 6.3 for an outlook), for future work.

In this perturbative GUEFT setup, we will analyse the question of how radiative symmetry breaking
constrains the viable parameter space: We propose a blueprint that can be applied to any GUEFT and
demonstrate its application in a specific SO(10) example.

This chapter is organised as follows. In Sec. 2, we present the abstract blueprint for how to place
theoretical and phenomenological constraints on the parameter space at MPl. In particular, our blueprint
encompasses a novel set of systematic constraints on a viable (perturbative) scalar potential. In the Sec 3,
we review the required and previously mentioned (see (i) and (ii) in the paragraph above) perturbative
techniques. In Sec. 4 we focus on a particular non-superymmetric SO(10) model. We discuss the possible
breaking chains, including those that lead to the SM (admissible) but also many that do not (non-
admissible). In Sec. 5, we present the explicit results for said model. In particular, we demonstrate
how the Planckian parameter space is constrained with each individual constraint in the blueprint. In
Sec. 6, we close with a wider discussion of our results and an outlook on future work. In particular,
we briefly comment on how to (i) extend our results to a GUEFT with a realistic Yukawa sector and
(ii) eventually connect these to QG scenarios that may set the Planck-scale initial conditions. Technical
details on the one-loop RG-improved potential (App. A), the tree-level stability conditions (App. B), a
quantitative measure of perturbativity (App. C), cf. [144], the explicit scalar potentials (App. D), and
the perturbative beta-functions (App. E) are delegated into appendices.

Readers who are not interested in the methodology of RG-improvement or the details of the specific
GUT model are encouraged to read Sec. 2, 5, and 6, which are kept accessible to a broad audience.

2To prevent potential confusion, we note that by the term EFT, we refer to a quantum field theory with unknown initial
conditions and a finite cutoff scale. In principle, such a theory includes all dimensionful couplings but in the present chapter
we will focus on marginal couplings only. In particular, we will not address the treatment of higher-order operators such
as, for instance, in Standard Model Effective Field Theory (SMEFT) [135].
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2 The blueprint: How to constrain grand-unified effective field
theories

The following section can be read in two ways: either as a physical description of the methodology applied
to the specific SO(10) models in this work; or as a more general blueprint applicable to any grand-unified
effective field theory (GUEFT).

We define a GUEFT by its symmetry group GGUT – including a local gauge group G(local)
GUT as well as

potential additional global symmetries G(global)
GUT – and the set of fermionic as well as scalar representations

FGUT and SGUT, respectively. For instance, the two models that we will investigate in Sec. 5 as an explicit
example, are denoted by{

G(local)
GUT , FGUT, SGUT

}
=
{
SO(10), 16

(i)
F , 45H

}
, (see Sec. 5.1) (6.2){

G(local)
GUT , FGUT, SGUT

}
=
{
SO(10), 16

(i)
F , 16H ⊕ 45H

}
. (see Sec. 5.2) (6.3)

Herein, i = 1, 2, 3 denotes a family index. The model in Eq. (6.3) also exhibits an additional global
symmetry, G(global)

GUT = U (1), cf. App. D.2.
The purpose of the following blueprint is to constrain the possibility that such a GUEFT is a UV

extension of the SM. We distinguish the notions of UV extension and UV completion. By UV extension
of the SM, we refer to some high-energy EFT which contains the SM at lower scales. In particular, we do
not demand that the UV extension itself is UV-complete, i.e., extends to arbitrarily high energies with-
out developing pathologies. By UV completion of the SM, we refer to a UV extension which moreover is
UV-complete.

In principle, the respective EFT action includes all possible symmetry invariants that can be con-
structed from the gauge and matter fields. For this work, however, we will focus on the marginal couplings
only. This amounts to restricting the EFT-analysis to the perturbative regime around the free fixed point.
Close to the free fixed point, canonically irrelevant couplings will be power-law suppressed.

Moreover, we omit potentially sizeable mass terms. In the presence of mass terms, the following
constraints have to be re-interpreted but are still of relevance for phenomenology. We discuss this further
in Sec. 6.2.

In consequence, the GUEFT is parameterised by the initial conditions of all its marginal couplings
at an a priori unknown high-energy cutoff scale. In the following, we will tentatively identify the cutoff
with the Planck scale MPl.

In this setup, we first focus on a set of constraints in the scalar sector. These arise from radiative
symmetry breaking and are necessary but not sufficient for the GUEFT to be a UV extension of the SM.

(I.a) We demand tree-level stability at MPl.

(I.b) We demand the absence of Landau poles between the Planck scale MPl and the first symmetry-
breaking scale MGUT. (In addition, we define a perturbativity criterion, cf. [144] as well as App. C,
and demand that the GUEFT remains perturbative between MGUT and MPl.)

(I.c) We demand that the deepest minimum induced by radiative symmetry breaking3, is admissible,
i.e., the respective vacuum expectation value (vev) remains invariant under the Standard Model
gauge group GSM ⊂ G(local)

GUT .

Each of these necessary conditions may be applied on their own to constrain the set of initial conditions
at MPl. Applying the constraints in the above order turns out to be most efficient as we will explicitly
demonstrate in Sec. 5.

On top of these constraints on the scalar potential, one may apply more commonly addressed phe-
nomenological constraints on the gauge-Yukawa sector, namely:

3Here, we do not account for the possibility of a meta-stable but sufficiently long-lived minimum, cf. Sec. 6.
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(II.a) The requirement of gauge coupling unification and of a sufficiently long lifetime of the proton to
avoid experimental proton-decay bounds, cf. [145, 146, 147, 148] for previous work;

(II.b) The requirement of a viable Yukawa sector. (Realising a viable Yukawa sector is in itself a very
non-trivial question [149, 115, 150, 122, 151, 152, 153, 154, 155, 156, 157, 158, 159, 148, 153, 134].)

The necessary conditions (I) in the scalar sector and (II) in the gauge-Yukawa sector do, in principle,
depend on each other4. Ideally, one would thus want to include the gauge and Yukawa couplings in the set
of random initial conditions and apply (I) and (II) simultaneously. Alternatively, one may fix the gauge
and Yukawa couplings to approximate phenomenological values, see [160, 148, 161, 113]. Subsequently,
one has to then crosscheck that the constraints which we obtain from (I) are not significantly altered
when varying initial conditions in the gauge-Yukawa sector (see Sec. 5).

The above two sets of constraints can be viewed as necessary consistency constraints for a specific
realisation of a GUEFT to be a viable UV extension of the SM. In that sense, they realise a set of
exclusion principles in a top-down approach to grand unification. We refer to a specific realisation of a
GUEFT as admissible if it obeys the first set of constraints (I.a), (I.b), and, in particular, (I.c). We refer
to a specific realisation of a GUEFT as viable if it obeys both sets of constraints (I) and (II) (see Sec. 4.2).

In addition, one may specify an underlying UV completion. This extends the GUEFT to arbitrarily
high scales above MPl and – for each individual underlying quantum-gravity scenario – typically results
in additional constraints.

(III) Strong additional constraints may arise from demanding that the initial conditions can arise from
a specific assumption about the transplanckian theory, i.e., from a specific model of or assumption
about quantum gravity.

We review the significance of such constraints alongside existing literature as part of the discussion in
Sec. 6. An explicit implementation is left to future work.

3 Methodology: RG-flow, effective potential, and breaking pat-
terns

3.1 Renormalisation group-improved one-loop potential
In this work we are interested in the radiative minima of the potential generated due to the renormalisation
group (RG) flow of the quartic couplings. Hence the renormalisation group equations (RGEs) constitute
the principal tool in our analysis. The schematic form of the one-loop RGEs are given in the seminal
papers [29, 30, 31], see also the recent discussion [38, 39, 10].

In the absence of mass terms in the tree-level potential, any non-trivial minimum must be generated by
higher-order corrections to the scalar potential. The dependence of loop corrections on the arbitrary RG
scale can be alleviated using perturbative techniques of RG-improvement of the scalar potential [81, 70, 71,
162, 72, 75, 28, 77, 78]. We caution that the computation of the full quantum potential may be impacted
by higher-order operators, scheme dependence, and non-perturbative effects, cf. [163, 164, 165, 166] for
analysis in the context of the SM Higgs potential. In any case, perturbative RG-improvement techniques
provide an important step towards the full quantum potential and are expected to provide a better
approximation than fixed-order perturbation theory. For these reasons, we employ the RG-improved
one-loop potential to study the breaking patterns of a GUT model, in a formalism that we now briefly
review.

Considering a gauge theory with a scalar multiplet denoted by φ, and using the conventions of [136],
the one-loop contributions to the effective potential can be put in the form

V (1) = A+ B log
ϕ2

µ2
0

(6.4)

4Interdependence of (I) and (II) occurs not only via higher-loop corrections. For instance, the gauge coupling will impact
the radiative symmetry-breaking scale. At the same time, the symmetry-breaking scale will impact the RG flow of the
gauge couplings, even at one-loop order.
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where µ0 is the arbitrary renormalisation scale and where ϕ =
√
φiφi. The quantities A and B receive

contributions from the scalar, gauge and Yukawa sectors of the theory. In the MS scheme and working
in the Landau gauge, they can be expressed (see e.g. [136]) as

A =
1

64π2

∑
i=s,g,f

niTr

[
M4
i

(
log

M2
i

ϕ2
− Ci

)]
, (6.5)

B =
1

64π2

∑
i=s,g,f

niTr
(
M4
i

)
. (6.6)

where the numerical constants ni and Ci take the values

ns = 1, ng = 3, nf = −2,

Cs =
3

2
, Cg =

5

6
, Cf =

3

2
,

(6.7)

and where Ms,g,f respectively stand for the field-dependent mass matrices of the scalars, gauge bosons
and fermions of the model. The first two matrices can be straightforwardly computed once the scalar
potential and the gauge generators of the scalar representations have been fixed:

(
M2
s

)
ij
=
∂2V (0)

∂φi∂φj
(6.8)(

M2
g

)
AB

=
1

2
g2 {TA, TB}ij φ

iφj (6.9)

The 45H and 16H ⊕ 45H models considered in this work contain no Yukawa interactions, hence we will
take the Mf mass matrix to vanish.

The dependence of V (1) on the renormalisation scale µ0 is an artefact of working at fixed order in
perturbation theory, and introduces arbitrariness in the computations. In some circumstances, simple
prescriptions on the value of µ0 may be given that are appropriate for computations involving the quantum
potential. Such prescriptions are in particular suitable for single-scale models, thus giving a reasonable
approximation of the effective potential around this one scale. For computations involving a wider range
of energy scales, or in theories with multiple characteristic scales (e.g. several vevs and/or masses, possibly
spanning over orders of magnitude), one inevitably encounters large logarithms. Various RG-improvement
techniques were developed to resum such large logarithms (see e.g. [70, 71, 162, 72, 75, 28, 77, 78]), with
the aim of yielding a well-behaved quantum potential for multi-scale theories and/or over large energy
ranges.

The SO(10) model considered in this work (and generally any GUT model) is a multi-scale theory,
requiring an appropriate procedure of RG-improvement. Here we briefly review the method developed
in [136] and further extended in [137] to the case of classically scale-invariant potentials. The starting
point is to consider the Callan-Symanzik equation satisfied by the all-order quantum potential, stating
that the total derivative of the effective potential with respect to the renormalisation scale vanishes:

dV eff

d logµ0
=

(
∂

∂ logµ0
+
∑
i

β (gi)
∂

∂gi
− φiγij ∂

∂φj

)
V eff = 0 . (6.10)

The above relation describes the independence of the quantum potential on the renormalisation scale,
given that the couplings of the theory are evolved according to their beta-functions, and the field strength
renormalisation values according to their anomalous dimension matrix γ. Following [136, 137] and using
Eq. (6.10), we may simultaneously promote the RG-scale µ0 to a field-dependent quantity µ(φi), and the
couplings and fields to µ-dependent quantities. Formally, we have

µ0 −→ µ(φi) ,

λ −→ λ
(
µ(φi)

)
,

φ −→ φ
(
µ(φi)

)
.

(6.11)



164 Chapter 6 – Grand unification and the Planck scale

The cornerstone of the RG-improvement procedure presented in [136] is to note that for each point in the
field space, and as long as perturbation theory holds, there exists a renormalisation scale µ∗ such that
the one-loop corrections V (1) vanish5:

V (1)
(
φi, λi;µ∗

)
= A

(
φi(µ∗), λ

i(µ∗)
)
+ B

(
φi(µ∗), λ

i(µ∗)
)
log

ϕ2

µ2
∗
= 0 . (6.12)

The above relation gives the implicit definition of the field-dependent scale µ∗(φ
i), and allows for resum-

mation of a certain class of logarithmic contributions [136]. The full one-loop effective potential is then
given by its tree-level contribution, with the couplings and fields are evaluated at the scale µ∗:

V eff(φi) = V (0)
(
φi;µ∗(φ

i)
)
. (6.13)

The RG-improved effective potential takes the same form as the tree-level potential with field-dependent
couplings. This provides valuable insight on the conditions of radiative symmetry breaking in classically
scale-invariant models [136, 167, 137]. In particular, a necessary condition for symmetry breaking to
occur is that the tree-level stability conditions of the scalar potential must be violated at some scale
along the RG-flow. Crucially, this observation allows to determine whether the breaking of the SO(10)
symmetry towards a specific subgroup will happen at all, given some initial conditions for the quartic
couplings at the high energy scale.

3.2 Minimisation of the RG-improved potential
In order to identify the breaking patterns of the model, one needs to evaluate the depth of the RG-
improved potential at the minimum for each relevant vacuum configuration. The set of stationary-point
equations of the RG-improved potential are derived in App. A, and would in principle need to be solved
numerically in order to determine the position of its global minimum. Such a numerical minimisation
procedure, however, can be computationally very costly and therefore rather inappropriate in the context
of this work, where a scan over a large number of points is to be performed. Instead, we propose a
simple procedure allowing to estimate (rather accurately) the position and depth of the minimum of the
RG-improved potential.

In App. A, we derive the radial stationary-point equation (6.A9) which restricts the position of the
minimum to an (n− 1)-dimensional hypersurface in the n-dimensional field space. In the O(~) approxi-
mation, where only contributions that are formally of first order in perturbation theory are retained, it
reads:

4V eff + 2B = 0,
dA
dt
≈ 0 and dB

dt
≈ 0 . (6.14)

As discussed in App. A.1, the quantity B must be strictly positive at a minimum, thus implying

V eff < 0 . (6.15)

For all field values, V eff takes its classically scale-invariant tree-level form. In turn, the tree-level stability
conditions have to be violated at the RG-scale µmin

∗ , defined such that

∂V eff

∂〈φ〉i
(
〈φ〉i;µmin

∗
(
〈φ〉i

) )
= 0 and V (1)

(
〈φ〉i;µmin

∗
(
〈φ〉i

) )
= 0 . (6.16)

More concretely, µmin
∗ is the value of the RG-improved scale µ∗ evaluated at the vacuum 〈φ〉. For some

arbitrary high-energy scale µ0 at which the tree-level potential is assumed to be stable, there must exist
a scale µGW characterising the breaking of tree-level stability, such that

µmin
∗ < µGW < µ0. (6.17)

Hence, at the RG-scale µGW the tree-level potential (without RG-improvement) develops flat directions,
along which a minimum will be radiatively generated through the Gildener-Weinberg mechanism [168],
see also App. A.2.

5In presence of negative eigenvalues in the mass matrices, one may instead require the real part of the one-loop corrections
to vanish.
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A first important observation is that µGW gives an upper bound on the value of µ∗ at the minimum.
This bound can be further refined by observing that an additional scale µ̃ can be identified, at which the
quantity Ṽ (0) defined as

Ṽ (0) ≡ V eff +
1

2
B (6.18)

develops flat directions, see App. A. Since B > 0 near the minimum, one has

µmin
∗ < µ̃ < µGW , (6.19)

such that µ̃ provides an improved upper bound for µmin
∗ . In practice, the scale µ̃ provides, in most cases,

a remarkably accurate estimate for µmin
∗ , cf. Appendix A for further explanation and explicit numerical

comparison.
Based on this observation, we employ an efficient simplified procedure to identify and characterise

the minima of RG-improved potentials — the alternative being the minimisation via numerical methods,
the numerical cost of which increases for vacuum structures with increasing number of vevs. For a given
vacuum configuration, this minimisation procedure is summarised as follows:

1. Starting with random values for the quartic couplings at some high scale µ0, the stability of the
tree-level potential is asserted and unstable configurations are discarded.

2. Evolution of the quartic couplings according to their one-loop beta-functions is performed down
to some sufficiently low scale µ1. In the present context of Planck-scale initial conditions for an
SO(10) GUTs and for any phenomenologically meaningful choice of gauge coupling g, a natural
choice for this scale is µ1 ≈ 1011 GeV, where the gauge coupling usually runs into a Landau pole6.

3. The scale µ̃ at which Ṽ (0) develops flat directions is identified. To determine µ̃ in practice, we assert
the tree-level stability conditions at each integration step over the considered energy range.

4. At the scale µ̃, depending on the considered vacuum structure, the flat direction ~n is identified (see
App. B). Along this flat direction, the field values take the form

φ = ϕ~n (6.20)

5. The unique value of 〈ϕ〉 such that
V (1) (〈ϕ〉~n; µ̃) = 0 (6.21)

is identified. The field vector 〈φ〉 = 〈ϕ〉~n constitutes an estimate of the exact position of the
minimum.

6. Finally, the depth of the RG-improved potential at the minimum, i.e.,

V eff(〈φ〉) = V (0)(〈φ〉); µ̃) (6.22)

is evaluated.

In this form, the above procedure is essentially equivalent to a Gildener-Weinberg minimisation (see
App. A.2). However, as explained in App. A.3, it is can be straightforwardly extended to include O(~2)
corrections characteristic of the one-loop RG-improvement procedure. The accuracy of the this pro-
cedure compared to a full-fledged numerical minimisation of the RG-improved potential is studied in
Appendix A.4. From an algorithmic point of view, our method proves remarkably more efficient, in
particular for multidimensional vacuum manifolds. The reason is rather simple: Here, one avoids the
numerical minimisation of a multivariate function, whose evaluation at a point φ ∈ RN is itself rather
costly. (Evaluating the potential at some given field value involves a root-finding algorithm to determine
the RG-improved scale µ∗.) Instead, two one-dimensional numerical scans are performed, to find the
value of µ̃ at step 3, then and the value of 〈ϕ〉 at step 5, respectively.

6The precise value of µ1 is mostly arbitrary, since, in practice, one observes either the breakdown of SO(10) or the
occurrence of Landau poles along the way from µ0 down to µ1.
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3.3 Breaking patterns triggered by the RG-flow
As discussed above, the spontaneous breakdown of SO(10) — i.e., the occurrence of a non-trivial minimum
of the RG-improved potential — is triggered close to the RG scale at which the tree-level potential
turns unstable. While the knowledge of necessary stability conditions allows to discard points from
the parameter space for which the scalar potential is clearly unstable (see step 1. in the minimisation
procedure described above), the determination of the breaking patterns of the model requires additional
information.

Given some vacuum manifold, there are in general several qualitatively different ways of violating
the stability conditions (see App. B). More precisely, the set of stability conditions for a given vacuum
structure can in general be expressed as the conjunction of n individual constraints:

S = S1 ∧ · · · ∧ Sn . (6.23)

Defining S̄ as the condition for an unstable potential, one clearly has

S̄ = S̄1 ∨ · · · ∨ S̄n . (6.24)

The violation of any one of the Si will trigger spontaneous symmetry breaking, in general towards different
subgroups of original symmetry group. To illustrate this rather general statement, let us consider a
concrete example. For instance, for the 16H ⊕ 45H SO(10) model considered in the next section, a
possible vacuum configuration leading to a SU (5) breaking is obtained from Eq. (6.39) in the limit
ωR = ωB = ω/

√
5, χR = 0, where ω and χ are the 45H and 16H vevs, see Sec. 4,

〈V 〉SU (5) =

(
λ1 +

13

20
λ2

)
ω4 +

(
2λ8 +

5

2
λ9

)
ω2χ2 + λ6χ

4 , (6.25)

and matches the definition of a general 2-vev vacuum manifold given in Appendix B. Using the results
in Appendix B, we derive the following tree-level stability conditions7:

S1 : λ1 +
13

20
λ2 > 0 , (6.26)

S2 : λ6 > 0 , (6.27)

S3 : 2λ8 +
5

2
λ9 + 2

√
λ6

(
λ1 +

13

20
λ2

)
> 0 . (6.28)

With these definitions at hand, the sufficient and necessary stability condition for this vacuum manifold
is given by

S = S1 ∧ S2 ∧ S3 . (6.29)

Note that Eq. (6.29) only constitutes a set of necessary but not sufficient conditions for the stability of
the full SO(10) potential. Starting at an RG-scale µ0 were S holds, spontaneous symmetry breaking will
occur around the scale µGW < µ0 at which any one of the Si is violated. This can occur in three distinct
manners, generating in each case different vacuum configurations along the flat directions appearing at
µGW:

S̄1 : λ1(µGW) +
13

20
λ2(µGW) = 0 → (ω, χ) =

(
〈ω〉, 0

)
, (6.30)

S̄2 : λ6(µGW) = 0 → (ω, χ) =
(
0, 〈χ〉

)
, (6.31)

S̄3 :

[
2λ8 +

5

2
λ9 + 2

√
λ6

(
λ1 +

13

20
λ2

)]
(µGW) = 0 → (ω, χ) =

(
〈ω〉, λ〈ω〉

)
. (6.32)

Finally, based on group theoretical arguments, the residual symmetry group can be determined for each
vacuum configuration. Here, S̄2 and S̄3 generate an SU (5) minimum, although in the former case ω
vanishes. In contrast, the minimum associated with S̄1 preserves an additional U (1) gauge factor, such

7It is implicitly understood that in the definition of S3, S1 and S2 must be satisfied.
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that the residual symmetry group is SU (5)×U (1).

The above example shows how to determine the residual gauge symmetry associated with a flat
direction of the tree-level potential in a specific vacuum configuration. In addition, one must be able
to determine the location and depth of the minimum of the effective potential. For this purpose, the
procedure described in the previous section can be used in practice, allowing to estimate the position
and depth of the minimum based on the study of the flat directions of Ṽ0. Such a procedure is reiterated
for every relevant vacuum configuration, so that a deepest minimum can be identified. In turn, all other
minima can at most be local and their respective symmetry-breaking patterns do not occur in practice.

4 The model: minimal SO(10)

In this section, we present the specific SO(10)-GUT model to be investigated. In the persistent absence
of any observational hints for supersymmetry, we focus on non-supersymmetric GUTs. After constructing
the corresponding tree-level scalar potential, we establish a (non-exhaustive) classification of the possible
breaking patterns of the model, clarifying in passing the distinction between the standard and flipped
embeddings of the Standard Model into SU (5) × U (1) ⊂ SO(10). Our classification includes breaking
patterns towards subgroups of SO(10) that do not contain the Standard Model gauge group, allowing us
in Sec. 5 to establish a novel kind of theoretical constraint on the parameters of the scalar sector. Finally,
we explain why some of the breaking patterns never occur (at least at tree-level), despite being allowed
by the group-theoretical structure of the model.

4.1 SO(10) with fermionic 16F , scalar 16H and 45H

For the SO(10)-GUT the fermionic content of the Standard Model (together with right-handed neutrinos)
fits into a unifying 16F spinor representation [111]. The minimal scalar content to reproduce the Standard
Model electroweak theory is 16H ⊕ 45H . In terms of its group-theoretical specification, the model reads

(GGUT, FGUT, SGUT) = (SO(10), 16F , 16H ⊕ 45H) , (6.33)

The Lagrangian is given by

L = LK − V, (6.34)

where the LK is the fermionic, scalar and gauge kinetic part and V is the 16H ⊕45H potential. In order
to to break the electroweak symmetry, an additional real 10H representation is introduced. In this case,
a Yukawa interaction of the form 16F10H16F must be included and the Lagrangian reads

L = LK + LY − V. (6.35)

We give in App. D a possible parameterisation of the most general scalar potential (and of LY ) including
scalar representations 10H ⊕ 16H ⊕ 45H .

We stress that the studied model fails to produce a viable (i.e. SM-like) fermion sector at low energies
for the simple reason that the single Yukawa matrix characterising the 16F10H16F interaction can always
be diagonalised by a redefinition of the fermion fields. The question of constructing a minimal viable
SO(10) Yukawa sector cf. [149, 115, 150, 122, 152, 153, 154, 155, 156, 157, 158, 159, 148, 153, 134],
will not be discussed here. Nevertheless, one model with a potentially viable gauge-Yukawa sector
consists of a 10H ⊕ 45H ⊕ 126H scalar sector and features the same admissible breaking patterns as
the 10H ⊕ 16H ⊕ 45H model considered here, hence justifying our motivation to investigate its main
features despite its non-viable low-energy phenomenology.

We further simplify the setup by omitting the 10H representation and investigate models based on
the scalar representations 16H ⊕ 45H and 45H , respectively. In the former case, the tree-level scalar
potential reduces to

V (χ, φ) =
λ1
4

Tr(Φ2
16)

2 + λ2 Tr(Φ
4
16) + 4λ6 (χ

†χ)2 + λ7
(
χ†
+Γiχ−

)(
χ†
−Γ

iχ+

)
+ 2λ8 (χ

†χ)Tr(Φ2
16) + 8λ9 χ

†Φ2
16χ .

(6.36)
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where the λi denote the six quartic couplings of the potential and χ denotes the 16H multiplet. The
auxiliary fields Φ16 and χ± (associated with the 45H and 16F multiplets respectively) as well as the Γi
matrices are defined in App. D.

A series of articles in the early 1980’s studying the 16H ⊕ 45H model [169, 170, 171, 172] pointed
out that the only potentially viable minima of the (tree-level) potential induce a breaking towards either
SU (5)×U (1) (which require large threshold corrections to be consistent with gauge-coupling unification
[148]) or the non-viable (i.e., phenomenologically excluded) standard SU (5). The other possible vacuum
configurations in the Pati-Salam directions (see below for more detail) are not minima but saddle points of
the potential. For this reason, the model has been discarded 30 years ago. More recently, models featuring
a 45H have been revived in [173, 160, 161] where it was shown that one-loop quantum corrections to the
potential could turn admissible (cf. Sec. 2) saddle points into actual minima. This observation further
motivates the inclusion of quantum corrections to the scalar potential based on the formalism introduced
in the previous section.

4.2 Potential breaking chains of the minimal SO(10) model
A comprehensive discussion of symmetry breaking in the minimal SO(10) model introduced above would
require one to classify all potential breaking directions allowed by group-theoretical considerations. Here
we study a subset of possible breaking patterns, yet considerably extending existing results [169, 170,
171, 172, 113, 173, 174, 160, 161]. This includes all admissible breaking chains towards the Standard
Model (in fact, all of the potentially viable ones) as well as several non-admissible vacuum configurations
that break the SO(10) towards non-SM directions. As will become clear later, the inclusion of additional
non-admissible breaking patterns can impose significant additional constraints on the parameter space of
Planck-scale initial conditions.
Admissible breaking patterns
Following [161, 173], we observe that, in order to break SO(10) towards the Standard Model, the adjoint
field 45H must have, up to arbitrary gauge transformations, the following anti-diagonal8 vev texture:

φij = antidiag
(
ωR, ωR, ωB , ωB , ωB , −ωB , −ωB , −ωB , −ωR, −ωR

)
, (6.37)

where
√
3ωB and

√
2ωR respectively denote the vevs of the (1,1,1, 0) singlet and of the (1,1,3, 0) triplet

contained in the 45H , following a 3C2L2R1B−L labelling convention9. The above vev structure gener-
ally corresponds to a breaking towards 3C2L1R1B−L, and different breaking chains can be conveniently
recovered as particular cases:

ωR = 0 : SO(10) −→ 3C2L2R1B−L ,

ωB = 0 : SO(10) −→ 4C2L1R ,

ωR = ωB = ω5 : SO(10) −→ SU (5)×U (1)X .

In comparison to [161, 173], the standard and flipped SU (5)×U (1) configurations are not distinguished
at the level of the first breaking stage. The reason is that these two breaking chains are characterised by
a different embedding of the SM gauge group within SU (5) × U (1), independently of the embedding of
SU (5) × U (1) within SO(10) (which is essentially10 unique). In practice, in the case where ωR = −ωB
(identified in [161, 173] as the flipped SU (5)×U (1) vacuum structure), one can always perform a gauge
transformation effectively leading to ωR → −ωR, and hence to ωB = ωR. Of course, such a transformation
also affects the other scalar multiplets, and in particular 16H . This will be discussed in more detail in
what follows.

8We use the anti-diagonal matrix notation from bottom left to upper-right entry.
9We follow e.g. [161] and denote a multiplet of a semi-simple gauge group with n special unitary subgroups and m Abelian

subgroups by SU(N1) × · · · × SU(Nn) × U(1)1 × · · · × U(1)m. The respective multiplets are denoted by the dimensions
Di with which they transform under each SU(Ni) and their hypercharge Yj with respect to each U(1)j factor, i.e., by
(D1, . . . ,Dn, Y1, . . . , Ym). Further, we use the standard shorthands Nn for SU(Nn) and 1m for U(1)m.

10For instance, one always has the freedom to embed SU (5) × U (1) into SO(10) such that the branching rule of 16 is
either given by 16 → (10,−1) ⊕

(
5, 3

)
⊕ (1,−5), or 16 →

(
10, 1

)
⊕ (5,−3) ⊕ (1, 5), or any other physically equivalent

decomposition (see e.g. the discussion on symmetry breaking in [63]).
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We now turn to the vev structure of 16H . In addition to the vev of the (1,1,2,+ 1
2 ) doublet, denoted

by χR, we also consider a possibly non vanishing vev for the (1,−5) singlet under SU (5)×U (1), denoted
by χ5. For the labelling convention of 3C2L2R1B−L multiplets, introducing this additional vev, χ5, simply
results in two possible SM vevs in the (1,1,2,+ 1

2 ) doublet. With this notation (and in a basis in which
the adjoint field has the vev structure Eq. (6.37)) the scalar 16-plet can be put in the form11:

χ =
1√
2
diag

(
0, −iχ5, 0, −χR, 0, χR, 0, iχ5, 0, χ5, 0, −iχR, 0, −iχR, 0, χ5

)T
.

(6.38)
Inserting Eq. (6.37) and Eq. (6.38) into the expression of the tree-level scalar potential Eq. (6.36), we
find:

〈V 〉 = λ1
(
3ω2

B + 2ω2
R

)2
+
λ2
4

(
21ω4

B + 36ω2
Bω

2
R + 8ω4

R

)
+ 4λ6

(
|χR|2 + |χ5|2

)2
+ 4λ8

(
|χR|2 + |χ5|2

) (
3ω2

B + 2ω2
R

)
+ λ9

(
|χR|2 (3ωB − 2ωR)

2
+ |χ5|2 (3ωB + 2ωR)

2
)
.

(6.39)

When ωR, ωB 6= 0, a direct breakdown of SO(10) towards GSM = 3C2L1Y is triggered as soon as one of
the components of 16H acquires a non-zero expectation value:

χR 6= 0, χ5 = 0 : SO(10)
(1)−→ GSM ,

χR = 0, χ5 6= 0 : SO(10)
(2)−→ GSM ,

where the embedding of GSM into SO(10) may a priori differ between the breakings (1) and (2). In
the case (1), taking ωR = ωB , one exactly recovers the vacuum structure described in [161, 173] in a
situation where ωR = −ωB (therein identified as a flipped embedding of the SM into SU (5) × U (1)),
while the latter breaking would correspond to ωR = ωB (identified as the standard embedding). However,
as stated previously, the latter relation can be recovered from the former making use of a class of gauge
transformations effectively leading to

ωR ←→ −ωR , |χR| ←→ |χ5| . (6.40)

The gauge generators leading to Eq. (6.40) are clearly broken in any one of the SM vacua. Hence at
a minimum they are associated with Goldstone modes, so both minima belong to a larger, continuous
set of degenerate minima. Therefore, considering that the breaking towards the SM occurs at once –
i.e. corresponds to a one-step breaking – the standard and flipped embeddings are formally equivalent.
The degeneracy can however be removed if a large hierarchy exists among the vevs, allowing to adopt an
effective description of the theory based on either SU (5) or SU (5)×U (1) over a given energy range. In
particular, if χ5 � ωR, ωB (or equivalently χR � ωR, ωB), a first breaking towards SU (5) is triggered at
the GUT scale MGUT, and the breaking towards the SM will be assumed to occur at an intermediate scale
MI � MGUT. This case obviously corresponds to a standard embedding, since no U (1) factor can enter
in the definition of the hypercharge generator. Conversely, a first breaking can occur at MGUT towards
SU (5) × U (1), with a subsequent breaking towards the SM occurring at the lower scale MI . In this
case, one expects that the precise form of the scalar potential in the SU (5)×U (1) phase will determine
whether the SM embedding is standard or flipped, since RG-running effects in the SU (5)× U (1) phase
would have spoiled the SO(10) invariance of the vacuum manifold and therefore removed the degeneracy
of the minima.

Non-admissible breaking patterns
In addition to the admissible breaking patterns above, i.e. those involving intermediate gauge groups
which contain the SM, it is vital to also consider possible symmetry breakings towards other gauge
groups. Thereby, one can identify and exclude regions of the parameter space that specifically trigger
such breaking patterns. In particular, for the 16H ⊕ 45H model, we have identified a family of non-
admissible breaking patterns towards subgroups of SO(8) × U (1) (one of the maximal subgroups of

11This form is only unique up to gauge transformations preserving the vev structure of 45H .
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SO(10)). Similar to the SM case, this family of non-admissible breakings can be parameterised by a
general vacuum structure for the scalar fields 45H and 16H , namely:

φij = antidiag
(
−ω8, ω4, ω4, ω4, ω4, −ω4, −ω4, −ω4, −ω4, ω8

)
, (6.41)

and

χ =
1√
2

(
iχ4, −iχ5, 0, 0, 0, 0 iχ4, iχ5, −χ4, χ5, 0, 0, 0, 0, χ4, χ5

)T
. (6.42)

We stress that the vev χ5 that appears in the above expression has the same origin as the vev texture,
cf. Eq. (6.38), for the SM breakings. This common origin is manifest in the present choice of gauge. With
these vev textures, the vacuum manifold takes the general form

〈V 〉 = λ1
(
ω2
8 + 4ω2

4

)2
+
λ2
4

(
ω4
8 + 24ω2

8ω
2
4 + 40ω4

4

)
+ 4λ6

(
|χ4|2 + |χ5|2

)2
+ 8λ7|χ4|2|χ5|2

+ 4λ8
(
|χ4|2 + |χ5|2

) (
ω2
8 + 4ω2

4

)
+ λ9

(
|χ4|2 (ω8 − 4ω4)

2
+ |χ5|2 (ω8 + 4ω4)

2
)
.

(6.43)

Its similarity with the SM vacuum manifold is worth noticing. When ω4, ω8 6= 0 and either χ4 6= 0 or
χ5 6= 0, this vacuum manifold corresponds to a breaking towards SU (4) × U (1). Imposing particular
relations on the vevs yields larger residual gauge groups such as SO(8)×U (1), SO(7) and SU (4)×U (1)2,
as reported in Table 6.1.

Finally, we note that an additional vev texture for 45H is considered in this work, leading to an
alternative embedding of SU (4) × U (1)2 within SO(8) × U (1) (stemming from the so-called triality
property of SO(8)). This additional embedding only involves a non-trivial vev texture for 45H , given by

φij = antidiag
(
ω8, ω′

4, 0, 0, 0, 0, 0, 0, −ω′
4, −ω8

)
. (6.44)

It is interesting to note that the constraint ω′
4 = ω8 induces a breaking towards 4C2L1R, of which

SU (4)×U (1)2 is indeed a subgroup. As discussed in the next section, this alternative breaking can only
be triggered by a local minimum of the scalar potential and does not occur in practice.
Non-observable broken phases
In a gauge theory with a specified particle content, a limited number of gauge invariants can be formed.
Allowing these invariants to get non-zero expectation values defines orbits of gauge-equivalent field con-
figurations. Each orbit is associated with a residual symmetry group (the orbit’s little group), and the
set of orbits associated with the same residual symmetry forms a stratum [175]. Specifying the scalar
potential of the theory fixes the stratum structure, and therefore the number of subgroups that can be
obtained after spontaneous breakdown of the original symmetry. Those strata (and associated phases)
will be called observable if there exists a field configuration minimising the scalar potential and leading
to the spontaneous breakdown of the gauge group towards the associated subgroup [176, 177].

For the 45H ⊕16H model at hand, one can show that the strata corresponding to symmetry breaking
towards 3C2L1R1B−L, SU (4)×U (1)2 and

[
SU (4)×U (1)2

]′ are in fact non-observable. For concreteness,
we now provide a proof of this statement for the 3C2L1R1B−L breaking. While the model considered
in this work is classically scale-invariant, it is convenient for the purposes of the present discussion to
include the scalar mass term:

V (0) ⊃ −1

2
µφ Tr(Φ

2
16) . (6.45)

In this case, the 3C2L1R1B−L vacuum manifold reads:

V (0) = −µφ
(
3ω2

B + 2ω2
R

)
+ λ1

(
3ω2

B + 2ω2
R

)2
+
λ2
4

(
21ω4

B + 36ω2
Bω

2
R + 8ω4

R

)
. (6.46)

Solving the stationary point equations with respect to ωB,R yields the set of solutions (excluding the
trivial solution ωB = ωR = 0)(

ω2
B , ω

2
R

)
∈
{(

0,
µφ

4λ1 + 2λ2

)
,

(
2µφ

12λ1 + 7λ2
, 0

)
,

(
2µφ

20λ1 + 13λ2
,

2µφ
20λ1 + 13λ2

)}
. (6.47)
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These three solutions respectively belong to orbits associated with the residual subgroups 4C2L1R,
3C2L2R1B−L and SU (5)×U (1), and we conclude that the 3C2L1R1B−L broken phase is non-observable.
In fact, this statement persists in the classically scale-invariant model considered in this work (i.e. in the
absence of scalar mass terms), when one examines the residual gauge group along the flat directions of
the vacuum manifold. A similar reasoning applies to the SO(10)→

[
SU (4)×U (1)2

]′ vacuum manifold
which effectively corresponds to a SO(10)→ SU (5)×U (1) breaking after minimisation.

At this point, we would like to make an important comment regarding the 3C2L2R1B−L and 4C2L1R1B−L
breakings studied in e.g. [161, 113, 173, 160]. In particular, still in presence of a scalar mass term in the
tree-level potential, it is straightforward to compute the depth of the minimum in the following vacuum
configurations:

V min
3C2L2R1B−L

=
−3µ2

φ

12λ1 + 7λ2
, (6.48)

V min
4C2L1R1B−L

=
−µ2

φ

4λ1 + 2λ2
, (6.49)

V min
SU (5)×U (1) =

−5µ2
φ

20λ1 + 13λ2
. (6.50)

We can add to this list the depth of the minimum in a SO(8)×U (1) vacuum configuration:

V min
SO(8)×U (1) =

−µ2
φ

4λ1 + λ2
. (6.51)

With these expressions at hand, we may establish a hierarchy for the depth of the minima in these four
vacuum configurations12, see also [178]:

V min
SO(8)×U (1) < V min

4C2L1R1B−L
< V min

3C2L2R1B−L
< V min

SU (5)×U (1) if λ2
λ1

> 0 , (6.52)

V min
SO(8)×U (1) > V min

4C2L1R1B−L
> V min

3C2L2R1B−L
> V min

SU (5)×U (1) if λ2
λ1

< 0 , (6.53)

V min
SO(8)×U (1) = V min

4C2L1R1B−L
= V min

3C2L2R1B−L
= V min

SU (5)×U (1) if λ2 = 0 . (6.54)

Crucially, we observe that the 3C2L2R1B−L and 4C2L1R1B−L vacua cannot correspond to global minima,
except perhaps in the limiting case where λ2 = 0, in which loop corrections to the scalar potential would
have to be included to lift the degeneracy. Such phases are referred to as locally observable in Table 6.1,
reflecting their property to only corresponding to local minima at tree-level. They belong, at best, to a
degenerate set of global minima in a rather fine-tuned set of Planck-scale initial conditions.
Viability of admissible breaking patterns
We conclude this section with a discussion of the viability of the breaking chains eventually leading to
the Standard Model. These admissible breakings are summarised in Table. 6.1. Independently of the
observable property of the SO(10) vacua (which is a priori dependent of the perturbative order of the
quantum scalar potential), a viable breaking is understood to feature desirable (and non-excluded) phe-
nomenological properties in the low-energy regime (e.g. down to the electroweak scale). In its strongest
version, such a definition encompasses a large number of criteria such as proper gauge coupling unifica-
tion, a proton decay constant large enough to evade current experimental bounds, a fermion and scalar
spectrum containing the Standard Model and compatible with negative new physics searches, among
many others. In this work, we will solely retain the first two criteria since any further considerations are
beyond the scope of the present analysis13.

First focusing on the Georgi-Glashow route, the one-step unification SU (5) → 3C2L1Y is not sup-
ported by the current measurements of the Standard Model gauge couplings, thus bringing us to regard

12Note that when λ1 = 0, the conditions λ2
λ1

> 0 and λ2
λ1

< 0 must be respectively replaced by λ2 > 0 and λ2 < 0.
13Furthermore, as mentioned in Sec. 4.1, the SO(10) model investigated here is anyways unable to reproduce some

phenomenological features of the Standard Model.
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Table 6.1: Summary of the considered breaking patterns. In each case, we indicate which vevs should
be non-zero in order to trigger spontaneous breakdown towards the relevant subgroups. A starred vev
(e.g. ω∗

8) can however vanish without altering the nature of the vacuum. As explained in the main text,
non-observable phases correspond to minima which cannot be global, while non-admissible breakings
occur towards subgroups of SO(10) which do not contain the Standard Model. An admissible breaking
is called viable if it can obey the proton stability and gauge coupling unification constraints (more detail
is given in Sec. 4.2).

Breaking chain Vevs Observable? Admissible? Viable?
SU (5)×U (1) ωR = ωB Yes Yes Yes

SU (5) ω∗
R = ω∗

B , χ5 Yes Yes No
3C2L2R1B−L ωB , χ5 Yes, locally Yes Yes

4C2L1R ωR, χ5 Yes, locally Yes Yes
3C2L1R1B−L ωR, ωB No Yes Yes

3C2L1Y ωR, ωB , χ5 or χR Yes Yes Yes
SO(8)×U (1) ω8 Yes No No

SO(7) ω∗
8 , χ4 = χ5 Yes No No

SU (4)×U (1)2 ω∗
8 , ω4 Yes No No[

SU (4)×U (1)2
]′

ω∗
8 , ω′

4 No No No
SU (4)×U (1) ω8, ω4, χ4 or χ5 Yes No No

the SU (5) breaking as non-viable. On the other hand, the SU (5)×U (1)→ 3C2L1Y embedding (flipped
or standard, see Sec. 4.2) can be realised if large thresholds14 are present [148], thus implying large hier-
archies in the scalar and gauge boson spectrum at the SO(10)-breaking scale. Combined with constraints
stemming from the proton decay, this scenario is rather tightly constrained yet not ruled out.

For the Pati-Salam route15 including the breakdown of SO(10) towards 4C2L1R, 3C2L2R1B−L and
3C2L1R1B−L, we refer to [113] and conclude that gauge coupling unification and proton-decay constraints
can be satisfied for the first two breakings. On the other hand, SO(10)→ 3C2L1R1B−L is shown in [148]
to require sizeable threshold corrections in order to allow for a proper unification of the gauge-couplings.
This being said, we have mentioned in the introduction of this section that the 4C2L1R, 3C2L2R1B−L
and 3C2L1R1B−L breakings have long been disregarded due to the presence of tachyonic scalar modes in
their tree-level spectrum (put differently, the corresponding extrema can only be saddle points [181, 170,
171, 172]). More recently, it has been shown that the inclusion of one-loop corrections could stabilise the
scalar potential [173, 160, 161], rendering such breaking patterns potentially viable. What the authors
did not consider however is the eventuality that a deeper minimum triggering a breakdown towards
SO(8)×U (1) would prevent the Pati-Salam vacua to correspond to global minima. While this statement
was proven at tree-level in the previous section, one cannot infer a priori that the non-observability of
the Pati-Salam vacua would persist after including loop-corrections. In Sec. 5, we investigate this matter
and show that in fact, the inclusion of one-loop corrections does not change this overall picture (at least
in the particular model considered here).

Finally, we comment on the viability of the one-step SO(10)→ 3C2L1Y breaking. As compared to the
SU (5) → 3C2L1Y embedding mentioned above, gauge coupling unification does not necessarily have to
occur at once (i.e. at a single unification scale). In fact, an effective description of the model from the UV
to the IR regime can include multiple intermediate scales at which massive gauge bosons are integrated
out, and between which different sets of gauge couplings are assumed to run. This happens in particular
if a clear hierarchy appears between the various vevs involved in the description of the vacuum manifold
after minimisation of the scalar potential (see also the discussion on standard and flipped SU (5)×U (1)
embeddings in Sec. 4.2). Such a situation most likely involves rather fine-tuned relations among the
parameters of the scalar potential, which we however do not consider as a criterion for the non-viability

14Let us note that these corrections can be straightforwardly calculated within our approach and are indeed subject to
the investigation in the following paper [179]. This calculation will prove crucial for the low-energy observables such as
proton lifetime [180]. Here we simply assume that such a scenario can take place.

15This encompasses 3C2L2R1B−L and 4C2L1R as maximal subgroups of the Pati-Salam gauge group, SU(4)c×SU(2)L×
SU(2)R [110].
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of the model.

5 Results
With the formalism for the one-loop RG-improved potential, cf. Sec. 3, and the group-theoretical struc-
ture of the specified SO(10) GUTs, cf. Sec. 4.2, at hand, we now demonstrate how the EFT parameter
space of said GUTs is restricted by the various constraints introduced in Sec. 2. In order to determine
these constraints, we sample random initial conditions at MPl to map out how each constraint reduces
the available parameter space. We do so first for a model with 45H as the only scalar representation,
cf. Sec. 5.1. We then extend the analysis to a model with 45H and 16H scalar representations, cf. Sec. 5.2.
An extension of our analysis to a model with realistic Yukawa sector will be discussed in future work [179].

The RG evolution of the scalar couplings is not just driven by self-interactions but, more importantly,
also by contributions of the gauge coupling g. The gauge coupling g tends to destabilise the quartic scalar
potential, i.e., tends to induce radiative symmetry breaking [130]. Hence, the RG scale-dependent value
of g is a crucial input to explicitly determine constraints on the scalar potential. At the same time, g itself
also needs to be matched to the observed low-energy gauge-coupling values. To maintain this matching,
its viable initial value at MPl thus needs to be varied with any variations of the RG dependence of g and
of the intermediate gauge groups’ gauge couplings between MPl and MEW. The respective uncertainties
include higher-loop corrections but are dominated by the dependence on different breaking schemes and
breaking scales, cf. e.g. [113]. In principle, one thus also needs to sample over different values of g|MPl

.
A phenomenologically meaningful value for g|MPl

can be obtained by matching to the relevant breaking
schemes in [113]16. Evolving the gauge coupling from the respective GUT scale value g|MGUT

up to the
Planck scale using Eq. (6.E19) results in g|MPl

∈ [0.41, 0.44]. In the following, we work with the central
value

g|MPl
= 0.425 . (6.55)

We caution that [113] only includes Pati-Salam type breaking chains. As we will see below, other breaking
chains turn out to be the most relevant ones. When cross checking the dependence of our most important
results on varying gauge coupling, we thus vary over a significantly larger range, i.e., g|MPl

∈ [0.35, 0.5].
In principle, all of the above also holds for Yukawa couplings. Based on [130], we expect Yukawa cou-

plings to stabilise17 the quartic scalar potential, i.e., to delay the onset of radiative symmetry breaking.
Of course, this applies only to quartic couplings of representations involved in the Yukawa interaction.
Most excitingly, this provides a potential mechanism for a hierarchy of several breaking scales since some
of the scalar representations in a GUEFT couple to fermions via Yukawa couplings while others do not.
However, neither of the presently investigated scalar potentials admits Yukawa couplings to the fermionic
16F , i.e., to SM fermions.

In order to demonstrate the restrictive power of each constraint, cf. Sec. 2, we apply the constraints
individually: first, we demand tree-level stability (I.a); second, we demand perturbativity between MPl

and MGUT (I.b); third, we demand that the deepest vacuum be an admissible one (I.c), i.e., one which
still remains invariant under the SM gauge group GSM. Since the last constraint is conceptually new, we
emphasise two important remarks.

The first remark concerns the inclusion of non-admissible breaking chains. On the one hand, a
successful application requires the inclusion of all admissible vacua in order to make sure that the ruled-
out EFT parameter space is in fact not admissible. On the other hand, it does not require the inclusion of
all non-admissible vacua. Yet, the more non-admissible vacua are included, the more the EFT parameter
space will be restricted, cf. Sec. 4.2 for the respective group-theoretical discussion for the examples at
hand.

16In the notation of [113], the relevant breaking chains are VIIIb and XIIb. The respective values of MGUT can be found
in Tab. III in [113]. The respective values for g|MGUT

can be read off from Fig. II in [113].
17As we evolve the potential from the UV to the IR, Yukawa couplings have a stabilising effect. This is in line with the

notion that Yukawa couplings tend to destabilise the Higgs potential when the RG flow is reversed and evolved from the
IR to the UV.
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Figure 6.1: Successive constraints arising from an admissible scalar potential, cf. Sec. 2, on the Planck-
scale theory space of quartic couplings in an SO(10) GUT with 45H scalar matter content and with
g|MPl

= 0.425. The left-hand panel shows allowed regions arising from (I.a) stability (light-gray region)
and from (I.b) perturbativity (dark-gray region). The middle panel zooms in on the resulting stable
and perturbative region and shows the additional constraint. (I.c) arising from the deepest radiative
minimum occurring in a non-admissible direction (red upper region). The right-hand panel zooms in
on the remaining admissible region (lower green region in the middle panel) and shows the additional
constraint (II.a) from proton decay. The colour scale indicates log10(MGUT), with MGUT the breaking
scale. The breaking scale is constrained by proton decay, with only the lower green stripe remaining
potentially viable.

The second remark concerns the possible spontaneous symmetry breaking by additional mass terms,
which we neglect in the present study. We expect the admissibility-constraints to remain applicable as
long as additional mass terms are significantly smaller than the relevant radiative symmetry breaking
scale, cf. Sec. 6.2 for further discussion. Nevertheless, we consider an inclusion of mass terms as an
important future extension of our work.

In addition to these sets of constraints (I.a-I.c) arising from an admissible scalar potential, one may
also apply more commonly discussed constraints arising from (II.a) viable gauge unification and (II.b) a
viable Yukawa sector. As mentioned, (II.b) does not apply to the investigated models. The application
of the gauge-unification constraint (II.a) to the remaining admissible parameter space after application
of (I.a-I.c), is briefly discussed in case of the 45H , cf. Sec. 5.1.

5.1 Constraints on an SO(10) model with 45H scalar potential
An SO(10) GUT with the 45H as the only scalar representation cannot fully break to the SM. Nev-
ertheless, the 45H is responsible for the first breaking step in many realistic SO(10)-breaking chains,
cf. Tab. 6.1. It thus serves as a simplified toy-model for the first breaking step. The simplification is
justified whenever portal couplings to other scalar representations remain negligibly small. Note that it
is not consistent to simply set the portal couplings to zero since they are not protected by any global
symmetry and thus induced by gauge-boson loop corrections. The 45H -model is thus a good approx-
imation for a realistic first breaking step only in a regime in which portal couplings remain negligibly
small. The subsequent extension to a scalar potential with 45H and 16H representation, cf. Sec. 5.2, can
be interpreted as a test of this approximation. Indeed, we will see that the main constraint on the EFT
parameter space – while smeared out – will still remain important if the scalar potential is extended.

Group-theoretically, the 45H can break SO(10) to three different classes of observable vacua, cf. Tab. 6.1
and Sec. 4 for details:

• Admissible Georgi-Glashow direction: The 45H can break towards SU (5)×U (1) which still contains
the SM.

• Admissible Pati-Salam directions: The 45H can break towards two different Pati-Salam-type direc-
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tions, i.e., to 3C2L2R1B−L or 4C2L1R, which also still contain the SM.

• Non-admissible directions: The 45H can break SO(10) towards two non-admissible directions, i.e.,
to SO(8)×U (1) or SU (4)×U (1)2, which can no longer contain the SM and are therefore excluded.

One of the important results of this work is that we find that the Pati-Salam directions can never occur as
global minima: Either the Georgi-Glashow minima or the non-admissible minima is always deeper. This
statement is proven at tree-level in Sec. 4.2. We find that it persists when radiative effects are included.
In fact, we find that all initial conditions either break towards SU (5)×U (1) or towards SO(8)×U (1).

The 45H toy-model also demonstrates clearly how the three scalar-potential constraints, i.e., tree-
level stability (I.a), perturbativity (I.b), and admissibility (I.c), successively constrain the EFT parameter
space at MPl. This is presented in Fig. 6.1, where we summarise the results of a successive analysis of
uniformly distributed random initial conditions for λ1 and λ2.

First, we determine tree-level stability: Stable initial conditions are marked with light-gray points in
the left-hand panel of Fig. 6.1. As is apparent in this simple toy-model, the boundary of the tree-level
stable region simply corresponds to the analytical tree-level stability conditions such as Eq. (6.26).

Second, we apply the perturbativity constraint: Initial conditions which remain sufficiently perturba-
tive along the relevant RG-flow towards lower scales are marked with dark-gray points in the left-hand
panel of Fig. 6.1. Unfortunately, there is no strict perturbativity criterion since the perturbative series
is assumed to have zero radius of convergence [182]. The practical perturbativity criterion, extending a
proposed criterion in [144], is discussed in App. C. It amounts to the demand that the theory-space norm
of neglected 2-loop contributions does not outgrow a specified fraction α of the theory-space norm of
one-loop contributions. For all the results in this work, we pick α = 0.1 which might be overly conserva-
tive but allows us to avoid convergence issues in the subsequent numerical determination of the one-loop
effective potential and its deepest minimum. In practice, perturbativity is determined as follows: We pick
a random point in the interval λ1/2 ∈ [−2, 2]. (If the point violates tree-level stability, we pick again.)
We evolve the respective initial conditions towards lower scales until the analytical conditions in App. B
suggest that radiative symmetry breaking occurs. If the RG-flow remains perturbative until radiative
symmetry breaking occurs, the respective initial conditions pass the perturbativity criterion (dark-gray
region in the left-hand panel of Fig. 6.1). We iterate this procedure for > 107 points.

Third, we apply the admissibility criterion: For initial conditions which pass tree-level stability and
perturbativity, we determine the one-loop effective potential, the deepest minimum, and the respective
invariant subgroup (breaking direction). Construction of the one-loop effective potential following [136,
137] and the numerical method are detailed in Sec. 3. In agreement with tree-level expectations in
Sec. 4.2, we find that the global minimum occurs either in the admissible SU (5)×U (1) direction (green
region in the right-hand panel in Fig. 6.1) or in the non-admissible SO(8) × U (1) direction (red region
in the right-hand panel in Fig. 6.1).

We find that minima along Pati-Salam-type directions never occur as the deepest minimum of the
RG-improved potential. For example, Fig. 6.2 shows the ratio of logarithms of the depths of the respective
minima, depending on λ2|MPl

and at fixed λ1|MPl
. For any value of λ2|MPl

in Fig. 6.2 (and any combination
of λi|MPl

in general), there is always (at least) one such ratio which is larger than one, i.e., there is always
a non-Pati-Salam minimum which is deeper than the deepest Pati-Salam minimum. Hence, radiative
symmetry breaking towards a Pati-Salam minimum does not occur.

Fig. 6.2 also exemplifies that violations of the perturbativity criterion, cf. App. C, close to λ2|MPl
≈ 0,

cf. middle panel in Fig. 6.1, are accompanied by a near-degeneracy of different minima. The underlying
reason is that for initial conditions with λ2|MPl

≈ 0, the scale of radiative symmetry breaking is delayed
and approaches the onset of the gauge-coupling Landau pole near µ = 1011GeV, cf. right-hand panel in
Fig. 6.1. As this happens, perturbativity is violated and the vacua become near-degenerate.

Moreover, Fig. 2 provides the opportunity to demonstrate that our results and, in particular, the
absence of deepest minima breaking towards Pati-Salam directions, are robust under varying the gauge
coupling in the range g|MPl

∈ [0.35, 0.5]. While the ratios of the depths of the minima quantitatively
change when varying g|MPl

, the result – i.e., the absence of deepest minima breaking towards Pati-Salam
directions – persists.
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Figure 6.2: Ratio of the logarithm of depths, i.e., Vi/VPati-Salam with Vi = log
∣∣V min
i

∣∣, of the minima
corresponding to non-Pati-Salam breakings (SU (5) × U (1) in green and SO(8) × U (1) in red dashed)
and the depth of the deepest Pati-Salam minimum VPati-Salam (breaking towards either 3C2L2R1B−L or
4C2L1R). For any Planck-scale initial condition, there is always a non-Pati-Salam minimum which is
deeper than the Pati-Salam ones (i.e., there is always one of the ratios which remains larger than one).
As an example, we show the λ2-dependence at λ1 = 0.1 at gMPl

= 0.425, cf. Eq. (6.55). As a result,
symmetry breaking towards the Pati-Salam subgroups cannot occur. Gray regions indicate regions in
which the perturbativity (according to App. C) is violated, cf. Fig. 6.1. All curves and regions are also
given for gMPl

= 0.35 (thin dashed) and gMPl
= 0.5 (thin).

Finally, we also demonstrate that viability in the gauge-Yukawa sector (see (II) in Sec. 2) further
constrains the Planck-scale parameter space. In particular, the right-hand panel in Fig. 6.1 shows the
logarithm of the breaking scale for each admissible (i.e. towards SU (5)×U (1)) point in the Planck-scale
parameter space. Increasingly green-coloured points (below the falling diagonal) indicate a higher and
higher breaking scale. Increasingly red-coloured points (above the falling diagonal) indicate a lower and
lower breaking scale.

Gauge unification and experimental proton-decay bounds demand that MGUT remains sufficiently
high. A precise constraint depends on threshold effects [148]. Given that the present model lacks a
realistic Yukawa sector, we refrain from a more detailed analysis. Nevertheless, the right-hand panel in
Fig. 6.1 clearly demonstrates that such additional constraints from a viable gauge-Yukawa sector can be
addressed within our formalism.

In summary: First, the Planck-scale theory space of quartic couplings is significantly constrained by
demanding an admissible scalar potential. Second, the one-loop effective potential will never develop a
deepest minimum along a Pati-Salam-type breaking direction.

We proceed to test how robust these conclusions are, when including a 16H along with the 45H scalar
representation.

5.2 Constraints on an SO(10) model with 16H ⊕ 45H scalar potential
Including the 16H alongside the 45H scalar representation, the quartic parameter space, cf. Eq. (6.36),
is 6-dimensional, cf. App. (D.3). This entails additional breaking chains which are discussed in detail in
Sec. 4.2 and summarised in Tab. 6.1.

We obtain a large sample of uniformly distributed random points in the region λi ∈ [−1, 1] and pro-
ceed as in Sec. 5.1 by successively applying the three constraints on the scalar potential, cf. Sec. 2. For
each successive constraint, we only take into account points which have passed the previous constraints.
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Figure 6.3: Successive constraints (I.a-c), cf. Sec. 2, on the 6-parameter Planck-scale theory space of
quartic couplings (we suppress the subscript MPl in the λi|MPl

) in an SO(10) GUT with 16H+45H scalar
matter content. The left-hand panel shows a statistical scatter-plot matrix of constraints arising from
(I.a) stability (light-gray regions) and from (I.b) perturbativity (dark-gray regions). The right-hand panel
shows a zoomed-in scatter-plot matrix of additional constraints (I.c) arising from the deepest radiative
minimum occurring in a non-admissible direction (red/darker points). The green/lighter points in the
right-hand panel remain potentially viable, see also Fig. 6.4.

Figure 6.4: Probability-density functions (PDFs) of the admissible (green) and non-admissible regions
projected into the two-dimensional (λ1|MPl

, λ2|MPl
)-slice of theory space. Contour lines indicate the 1σ-,

2σ-, and 3σ-regions obtained with a Gaußian kernel of width 0.05. The different panels quantify the mild
gauge-coupling dependence (g|MPl

= 0.35, g|MPl
= 0.425, and g|MPl

= 0.5 from left to right, respectively)
of the regions in theory space.

The results are shown in Fig. 6.3. We present them in the form of statistical scatter-plot matrices which
project the 6D parameter space onto a full set of 2D slices. While such a projection reveals important
correlations, it also leads to a perceived blurring of presumably sharp boundaries in the full higher-
dimensional parameter space.

First, we determine tree-level stability: Stable initial conditions are marked with light-gray points in
the left-hand panel of Fig. 6.3. The stability-constraints on the pure-45H -couplings λ1 and λ2 remain
the same as for the case without 16H . There are similar constraints on the pure-16H -couplings λ6 and
λ7. Finally, also the portal couplings λ8 and λ9 are constrained by demanding tree-level stability of the
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initial conditions.
Second, we apply the perturbativity constraint: Initial conditions which remain perturbative between

MPl and MGUT, are marked in the left-hand panel of Fig. 6.3 as dark-gray points. We remind the
reader that we determine perturbativity by demanding that the theory-space norm of neglected 2-loop
contributions does not outgrow a fraction α = 1/10 of the theory-space norm of one-loop contributions,
cf. App. C for details. In keeping with an intuitive notion of perturbativity, the remaining points cluster
around λi = 0.

Third, we apply the admissibility criterion: We obtain the one-loop effective potential, the deepest
minimum, and the respective invariant subgroup (breaking direction) to determine whether the latter is
admissible, i.e., remains invariant under the SM subgroup. The results are presented in the right-hand
panel of Fig. 6.3 where due to significant constraints from perturbativity, we focus only on the remaining
subregion λi ∈ [−0.5, 0.5]. (Non-) Admissible points are shown in green (red).

We find that the pure-45H couplings λ1 and λ2 are still dominant in determining whether stable and
perturbative initial conditions are also admissible or not. Fig. 6.4 presents this dominant correlation in
the form of probability-density functions (PDFs).

At the same time, non-vanishing portal couplings can apparently alter admissibility-constraints on
the pure-45H couplings λ1 and λ2. This can, for instance, be seen by comparing the middle panel in
Fig. 6.1 with Fig. 6.4: Without the 16H , the boundary is λ2|MPl

≈ 0, with λ2|MPl
< 0 (λ2|MPl

> 0)
admissible (non-admissible). With the 16H , the projected boundary is smeared out. In particular, the
admissible region in a (λ1|MPl

, λ2|MPl
) projection of theory space grows when the 16H is included: This

occurs because there are additional admissible breaking patterns in comparison to the pure-45H case,
cf. Tab. 6.1. The additional breaking patterns include an admissible SU(5) breaking and, in principle, an
admissible direct breaking to the SM, i.e., to SU(3)× SU(2)× U(1). In particular, the SU(5)-breaking
can occur as the deepest vacuum, even for λ2 > 0. This adds admissible initial conditions with λ1–λ2
which were previously excluded in the pure-45H model.

Whether and if so which of these admissible vacua is the deepest one depends on the initial conditions
of all of the six quartic couplings. Fig. 6.5 shows the most prominent correlations that we were able to
identify. We emphasise that there are still no initial conditions with observable Pati-Salam type breaking.

Multiple local minima in the scalar potential of a GUT, cf. Sec 5, may be subject to additional
constraints in the context of cosmology. In cosmology, multiple (near-)degenerate minima may result
in long-lived cosmological domain walls [183, 184] which could obstruct a viable cosmological evolu-
tion [184, 185, 186, 187]. Indeed, we find regions in the parameter space of quartic couplings which result
in multiple (near-) degenerate minima, cf. e.g. Fig. 6.4. We caution that such near-degenerate minima
seem to be connected to regions of parameter space in which perturbativity (cf. App. C for our criterion)
breaks down.

In summary: The main constraints from stability and perturbativity are robust under the extension
of the 45H to the 16H ⊕ 45H scalar potential. While Pati-Salam type breakings remain non-observable,
multiple other admissible breakings can occur.

6 Discussion
We close with (i) a brief summary of our results, some comments on (ii) low-energy predictivity in grand
unification and on (iii) trans-Planckian extensions in existing quantum-gravity scenarios, and with (iv) an
outlook on what we consider the most important open questions.

6.1 Summary of the main results
We have initiated a systematic study of how radiative symmetry breaking to non-admissible vacua places
significant constraints on the initial conditions of any potentially viable grand-unified effective field theory
(GUEFT). We embed this novel constraint in a systematic set of constraints, some of which have been
previously discussed in the literature. The resulting blueprint is given in Sec. 2. It encompasses several
constraints on the scalar sector: (I.a) a tree-level stability constraint, (I.b) a perturbativity constraint on
quartic couplings, and (I.c) the above-mentioned novel requirement of admissible vacua. These scalar-
potential constraints supplement well-known requirements on a viable gauge-Yukawa sector, cf. Sec. 2 as
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Figure 6.5: Probability-density functions (PDFs) of pairs of different admissible breakings (SU(5) in
cyan; SU(5)×U(1) in dashed and magenta; SU(3)×SU(2)×U(1) in dot-dashed and orange) for selected
projections into 2-dimensional slices of theory space. Contour lines indicate the 1σ-, 2σ-, and 3σ-regions
obtained with a Gaußian kernel of width 0.05. We only show those projections which best discriminate
the two respective breaking patterns.

well as [145, 146, 147, 148, 149, 115, 150, 122, 152, 153, 154, 155, 156, 157, 158, 159, 148, 153, 134].
As a first application, we exemplify these constraints in an SO(10) GUT with three families of 16F

fermionic representations and a scalar potential build from a 16H and a 45H representation. Therein,
we have demonstrated how each successive application of the constraints (I.a), (I.b), and (I.c) reduces
the admissible parameter space of initial conditions.

In the absence of Yukawa couplings, the above concrete model cannot reproduce the SM fermion
sector. Still, we were able to draw some important specific conclusions. In particular, we find that
previously neglected non-admissible breaking directions prohibit any possibility of radiative symmetry
breaking to the Standard Model via Pati-Salam-type intermediate vacua. This conclusion exemplifies
that (I.c) poses a novel and highly restrictive constraint on GUEFTs.

6.2 Towards low-energy-predictive grand unification
Our first main motivation is to phenomenologically constrain GUT models. Here, we put our results into
context and emphasise why a quantitative understanding of scalar potentials is key to progress in GUT
phenomenology. Phenomenological viability and predictive power of grand unification have indeed been
extensively studied in the gauge-Yukawa sector (see e.g. [145, 146, 147, 148, 149, 115, 150, 122, 152, 153,
154, 155, 156, 157, 158, 159, 148, 153, 134]). Less focus has been given to complement such studies with
a quantitative analysis of the required symmetry breaking via scalar potentials. The latter is however,
for reasons detailed below, no less crucial.

On the one hand, the gauge-coupling unification paradigm provides strong constraints in the gauge
sector, enhanced by the consideration of a proton decay constant compatible with the current experimental
bounds. In the Yukawa sector, the common origin of SM fermionic representation tends to reduce the
number of free parameters in the unified description of the theory. Matching fermion masses and mixing
angles in the low-energy regime provides stringent constraints, conferring in some cases a certain predictive
power to the GUT framework (in particular in the neutrino sector). Both in the gauge and Yukawa sectors,
the lack of precise information on the structure of the scalar potential is handily compensated by the
introduction of a limited number of additional free parameters (threshold corrections in the gauge sector,
linear combinations of scalar expectation values in the Yukawa sector). Crucially, at one-loop (and up
to two-loop for the gauge couplings), the scalars do not contribute to the running in the gauge-Yukawa
sector.

On the other hand, the scalar potential determines both the scalar expectation values and the threshold
corrections, see e.g. the recent work [188]. Quantitative considerations in the scalar sector are thus a
crucial input for the gauge-Yukawa sector. However, the scalar sector comes with conceptual as well as
practical limitations. On the conceptual side, while the unification of vector and fermionic representation
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tends to reduce the size of the corresponding parameter space, the group-theoretical properties of large
scalar representations generally result in a vastly extended scalar potential18, hence negatively (and,
often, drastically) impacting the overall predictive power of the model19. On the practical side, the
required coexistence of vastly separated symmetry-breaking scales within the theory poses difficulties in
the construction of viable scalar sectors:

• One option is to introduce a sophisticated mechanism generating large hierarchies in the scalar
spectrum, possibly between states belonging to the same unified representation. This includes the
emblematic doublet-triplet splitting problem and its solutions in Georgi-Glashow SUSY models
(see e.g. [189, 190, 191]) or the ”missing vev” mechanism and its extensions in SO(10) GUTs
[192, 193, 194, 195, 196]. Oftentimes, additional scalar representations must be introduced, hence
reducing predictive power.

• Another option is to fine-tune relations among the free mass parameters to achieve cancellations
in the physical spectrum. Putting aside the question of whether and why such fine-tuned relations
would be expected to occur in nature, a fine-tuned parameter space poses practical difficulties in
attempting to make physical predictions. For example, a scalar mass coupling20 could be taken of
order MEW while others are typically of order MGUT. Such a setting is actually extremely unstable
along the RG flow (see for instance the expression of the beta-functions in Eqs. (6.E14)-(6.E18)).
In turn, physical observables become highly dependent on the renormalisation scale prescription,
rendering current perturbative methods unreliable.

• As a third option, radiative symmetry breaking presents an appealing mechanism to dynamically
generate mass scales within the theory. However, to our knowledge, the question of knowing whether
significantly separated mass scales can thereby be generated remains to be addressed.

In any case, understanding whether, and if so how, the unified theory can reproduce a viable phenomenol-
ogy from the GUT scale down to the EW scale requires a quantitative exploration of the scalar sector. We
note that, once the physical vev has been identified, identifying the correct gauge-invariant bound-state
spectrum may deviate from perturbative expectations [197, 198], cf. [199, 200] for studies in the context
of GUT gauge groups.

In this work, we have chosen to focus on radiative symmetry breaking. We have introduced a set
of perturbative methods to exclude regions of the scalar parameter space by examining the structure of
the scalar potential. In addition to applying stability and perturbativity constraints, we have discussed
how the consideration of non-admissible breaking patterns provides valuable insights on the local or
global property of minima otherwise leading to potentially viable breaking scenarios. Indeed, we have
demonstrated that such considerations can entirely rule out specific breaking patterns. In the 16H⊕45H
model, the non-observability of Pati-Salam breaking chains essentially obviates the need for a detailed
analysis of tachyons in the scalar spectrum21 [169, 170, 171, 172, 173, 160, 161, 188]. While our methods
were applied to a specific SO(10) model, we stress that these can be straightforwardly generalised to
any other GUEFT possessing non-admissible breaking chains in addition to those leading to 3C2L1Y . A
natural extension of the present work would be to transpose the analysis to the realistic 10H⊕45H⊕126H
model and to address, among other things, whether Pati-Salam breaking chains are observable or not.

A natural remaining question is how to generalise to scalar potentials including mass terms. We
expect the answer to depend on the ratio of the radiative symmetry-breaking scale and the bare mass
terms. First, mass terms can safely be neglected whenever they are significantly smaller than the radiative
symmetry-breaking scale. In this case, we expect all of our results to persist. Second, mass terms will
dominate if they are significantly larger than the radiative symmetry-breaking scale (obtained in the scalar
potential without mass terms). In this case, the mass terms dominantly drive symmetry breaking and the

18In particular, the lack of knowledge of the threshold corrections leads to very large uncertainties in the proton lifetime
and the Weinberg angle [180].

19The situation worsens if one goes beyond a perturbatively renormalisable description of the GUEFT, including higher-
dimensional operators in the scalar potential.

20More generally, a combination of scalar mass and/or trilinear couplings.
21We caution however that we have not proven that such breaking patterns would not become observable with other

parameterisations of the quantum potential (higher-order truncations or a different method of RG-improvement)
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presented constraints do not apply. Finally, the case of radiative symmetry breaking with comparably
sized mass terms requires a renewed analysis. Similar statements hold for the effect of higher-order
couplings.

Further, we do not account for the possibility of a meta-stable admissible vacuum in the presence of
a deeper non-admissible vacuum. In particular, for near-degenerate vacua, meta-stability could present
a way to evade the excluded regions in parameter space inferred with our blueprint.

After decades of active development, phenomenological studies of the gauge-Yukawa sector have
mostly saturated: In particular for SO(10), the complete perturbative Yukawa couplings to the fermionic
16F (containing the SM fermions) have been studied [157] and gauge-coupling unification has been
studied at the 2-loop level [113]. Moreover, we cannot expect to rule out this minimal potentially viable
model from improvement of direct experimental constraints, which are essentially limited to proton-decay
bounds.

Progress to rule out (or vice versa identify the most promising) GUT models needs to thus focus on
the scalar potential. Our results present an explicit first example as well as a more generally applicable
blueprint and technical toolkit to systematically rule out GUT models based on the scalar sector.

However, even if the investigated constraints can fully fix the scalar potential, the gauge-Yukawa sector
of the 10H ⊕ 45H ⊕ 126H still contains a similar amount of free parameters as the SM and some degree
of predictivity may be possible [159]. In order to significantly reduce the plethora of free parameters of
the SM, further theoretical input is necessary. The vicinity of the GUT and the Planck scale hints at
quantum gravity as a promising candidate.

6.3 Towards constraints on quantum-gravity scenarios
Our second main motivation is to systematically constrain the viable Planck-scale parameter space of
GUEFTs and thereby connect to quantum-gravity (QG) scenarios. If such a link can be drawn, the
predictive power of QG scenarios may provide a further set of constraints, cf. (III) in Sec. 2, on the
Planck-scale initial conditions. Vice versa, GUEFTs provide a possible arena for indirect experimental
tests of QG. This is because, as our work clearly demonstrates, viable IR phenomenology is impacted by
Planck-scale initial conditions.

Before providing an outlook on future work, we thus briefly comment on three QG scenarios22 in which
we see a promising route to make this link explicit. It is useful to distinguish between two possibilities.

On the one hand, there are QG scenarios which remain within the framework of quantum field theory.
In this case, gravitational fluctuations will provide additional contributions to the Renormalisation Group
(RG) flow of beta functions of the GUEFT, i.e.,

βci = β(GUEFT)
ci + β(gravity)

ci . (6.56)

Herein, ci denotes the collection of all GUEFT couplings. Typically, one then demands βci to lead to
a UV-complete theory. With sufficient insight into the gravitational contributions β(gravity)

ci , such a UV-
completion implies additional constraints on the parameter space at the Planck scale. We will comment
on two such scenarios – Complete Asymptotic Freedom as well as Asymptotic Safety – below.

On the other hand, there are QG scenarios which cannot be phrased in the framework of quantum
field theory. Nevertheless, in order to be consistent with observations, they have to provide a limit –
typically associated with the Planck scale – in which an EFT description emerges as a low-energy limit.
Hence, there again must be some way of extracting predictions about the GUEFT couplings at the Planck
scale. We will briefly comment on the case of string theory below.

Complete Asymptotic Freedom

The QG scenario in [201, 202, 203] suggests that, even at trans-Planckian scales, gravity decouples from
the matter sector. In practice, such a scenario thus amount to simply extrapolating the SM or, in the

22We are unaware of other QG scenarios in which predictions or constraints on the Planck-scale parameter space of
gauge-Yukawa theories have been obtained.
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present context, the respective GUEFT beyond the Planck scale, i.e.,

β(gravity)
ci = 0 , (6.57)

in Eq. 6.56. We note that, in any such QG scenario, the Standard Model remains UV-incomplete due to
the U(1) Landau-pole. This obstruction, however, can be avoided in a GUT where the U(1) Abelian gauge
group at high energies is part of a non-Abelian gauge group with self-interactions. Said self-interactions
can – depending on the respective gauge group and matter content – be sufficiently antiscreening to
provide for asymptotic freedom of the gauge coupling. Even asymptotically free gauge sectors can be
sufficient to also render Yukawa couplings and quartic couplings asymptotically free: a proposal known
as Complete Asymptotic Freedom (CAF) of gauge-Yukawa theories23. The conditions to achieve CAF in
gauge-Yukawa theories have been analysed, for instance, in [206, 207, 208, 209]. The requirement of CAF
without gravity, places additional non-trivial constraints on the viable parameter space at the Planck
scale. Such a QG scenario is thus probably the most straightforward example of additional constraints
from demanding a UV-completion.
Asymptotic Safety
The asymptotic-safety scenario for QG [210, 211] (see [212, 213] for textbooks and [214] for a recent
review) predicts quantum scale symmetry of gravity and matter at scales k beyond the Planck scale MPl.
(We use k instead of µ here to distinguish non-perturbative and perturbative RG schemes.) If asymptotic
safety is realised, the dimensionless Newton coupling g = Gk2 (with G the usual dimensionful Newton
coupling) transitions between classical power-law scaling g ∼ k2 below MPl and scale symmetry, i.e., scale-
independent behaviour g = g∗ = const, above MPl. The leading-order gravitational contribution to matter
couplings acts like an anomalous dimension and the transition can be described by, cf. [215, 216, 217]
and [218] for a recent review,

β(gravity)
ci =

{
fci ci +O(c2i ) + . . . k > MPl

0 k < MPl

. (6.58)

with fci constant, dependent on the gravitational fixed-point values, e.g. g∗, and, in principle, calculable
from first principles. As long as all GUEFT couplings ci remain in the perturbative regime, neglecting
O(c2i ) is a good approximation. Dots denote further terms arising from non-minimal couplings [219, 220,
221, 222, 223, 224, 225] and induced higher-order matter [226, 227, 228, 229, 230, 222, 223, 231, 232]
couplings.

Due to the universal nature of gravity, fci ≡ fg is universal for all gauge couplings; fci ≡ fy is
universal for all Yukawa couplings (invariant under the same global symmetry); and fci ≡ fλ is universal
for all quartic couplings. Functional RG calculations provide the following picture24: The gravitational
contribution to gauge couplings is found to be antiscreening, i.e., fg > 0 [245, 246, 247, 230, 216, 248]; the
screening or antiscreening nature of the gravitational contribution to Yukawa couplings depends on the
matter content of the universe [249, 250, 228, 229]; The gravitational contribution to quartic couplings
is found to be screening, i.e., fλ < 0 [219, 220, 251, 252, 253, 225, 254].

Clearly, the additional antiscreening contribution fg to the RG flow of gauge couplings will (in com-
parison to CAF without gravity) enlarge the Planck-scale parameter space with underlying UV-complete
dynamics, cf. [129] for an application in the context of GUTs.

To the contrary, the screening contribution to scalar quartic couplings (and scalar potentials in general)
is expected to provide sharp predictions for the shape of scalar potentials, cf. [255] for an application to
the SM Higgs potential, [251, 256, 257, 258, 225, 259] for applications to dark-matter, and [130] for a
previous discussion of GUT potentials. This is most exciting in the present context of GUEFTs since
it suggests that Asymptotic Safety may fully predict the scalar potentials and thus the breaking scales
and breaking directions of GUEFT models [130]. The methods developed in this work provide the basis

23More recently, it has also been found that gauge-Yukawa theories can develop interacting fixed points with UV-attractive
directions and may thus, in principle, be asymptotically safe without the presence of gravitational fluctuations [204]. We
caution that it is unclear whether commonly discussed GUTs can realise such a scenario [205].

24In perturbative dimensional regularisation schemes, gravitational contributions to matter couplings have also been
calculated [233, 234, 235, 236, 237, 238, 239, 240, 241], see also [242, 243] for recent progress on the relation between
functional RG and dimensional regularisation schemes and [244] for an application to gravity-matter systems.
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for a systematic study of these promising ideas. The biggest outstanding caveat is the question how
gravitational contributions and contributions from dimensionful terms will impact the presently applied
method to determine the multidimensional RG-improved potential, cf. Sec. 3.
String Theory
Let us first note that supersymmetric GUTs are quite natural in the context of string theory, see for
example [131, 260, 261, 262, 134] and references therein. Naturally, the blueprint in Sec. 2 can also be
applied to supersymmetric theories but requires renewed analysis. Since low-energy supersymmetry has
not been found, a viable breaking of sypersymmetry adds to the constraints on scalar potentials.

Concerning non-supersymmetric GUTs, non-supersymmetric vacua are notoriously hard to construct
in string compactifications. Yet, there exists a non-tachyonic SO(16) × SO(16)′ string theory without
supersymmetry [263, 264], in which – when compactified to four dimensions – an SO(10) GUT with 16F
spinor representation and 45H potential can be found [133].

In string theory all of the low energy couplings stem from expectation values of the radion fields, that
is the diagonal part of the metric in the compactified dimensions, see [265] for review. Hence, in a given
compactification of SO(16)× SO(16)′ to 4-dimensions, the quartic couplings λi are not free parameters,
but can, in principle, be calculated and compared with the Planck-scale parameter-space constraints
arising from an analysis as presented here.

6.4 Outlook
We see the following important extensions and applications.

First and foremost, a viable Yukawa sector [149, 115, 150, 122, 152, 153, 154, 155, 156, 157, 158,
159, 148, 153, 134] requires an extension of the specified scalar representations from 16H ⊕ 45H to
10H ⊕45H ⊕126H . Without such an extension, any application to specific quantum-gravity approaches
may still give tentative insights but does not address the full picture.

Within such a minimal but potentially viable grand-unified effective field theory (GUEFT), the pre-
sented blueprint will determine which regions in parameter space correspond to a potentially viable IR
phenomenology. In such a setup, it may prove important to reconsider the respective constraints arising
from non-admissible breaking directions in view of mass terms, cf. Sec. 2. In any case, the methods
presented here are general and can serve as useful starting point for further analyses such as the char-
acterisation of the physical spectrum, providing new input to traditional explorations of gauge-Yukawa
sectors.

With regards to applications to concrete quantum-gravity (QG) scenarios, it seems promising to study
all three approaches in Sec. 6.3. QG scenarios which reduce a study of Complete Asymptotic Freedom
(CAF) are directly applicable. The QG scenario of asymptotic safety requires an extension of the RG-
improved potential to include gravitational contributions.

Overall, we are convinced that this work is only the first step and that there is a promising route to
quantitatively connect QG approaches and EW-scale physics to restore predictive power in GUEFTs.
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Appendix
A One-loop RG-improved potential
In this appendix, we review a certain number of useful properties and relations satisfied by the one-
loop RG-improved potential introduced in section 3. In particular, we analytically justify the numerical
approach used in this work to efficiently estimate the depth of the RG-improved potential in every relevant
vacuum configuration in sections A.2 and A.3, and numerically evaluate its accuracy in section A.4.

A.1 Stationary point equation
In order to derive the station point equation for the RG-improved potential, it is first useful to note that
the field derivatives of any RG-improved quantity V

(
φi, µ∗(φ

i)
)

can be decomposed in the following way:

∇iV (φ, µ∗(φ)) =
dV

dφi
(φ, µ∗(φ)) =

∂V

∂φi
(φ, µ∗(φ)) +∇it∗

dV

dt
(φ, µ∗(φ)) . (6.A1)

Namely, the total derivative with respect to the field component φi splits into a partial derivative, and
a contribution stemming from the implicit dependence of the RG-scale t∗ = log µ2

∗ on the field values.
Next, we can readily express the stationary point equations satisfied by the RG-improved potential at an
extremum:

∇iV eff
(
φ, µ∗(φ

i)
)
=
∂V eff

∂φi
(φ, µ∗(φ)) +∇it∗

dV eff

dt
(φ, µ∗(φ))

= ∂iV
eff (φ, µ∗(φ)) + 2B (φ, µ∗(φ))∇it∗ (φ) = 0 , (6.A2)

where we used in the last step the first order truncated Callan-Symanzik equation (6.10) (see e.g. [137]):

dV (0)

dt
= 2B . (6.A3)

An expression for ∇it∗ may be derived, using the fact that V (1) (φ;µ∗(φ)) identically vanishes:

V (1) (φ;µ∗(φ)) = A (φ;µ∗(φ)) + B (φ;µ∗(φ)) log
ϕ2

µ2
∗
= 0 ∀φ . (6.A4)

Taking the field derivatives of the previous equation yields (we temporarily omit the functions’ arguments
for clarity):

∇iV (1) = ∇iA+∇iB log
ϕ2

µ2
∗
+ 2B

(
φi

ϕ2
− 2∇it∗

)
= 0

⇒ ∇it∗ =
φi

ϕ2
+

1

2B

(
∇iA+∇iB log

ϕ2

µ2
∗

)
. (6.A5)

Neglecting terms of order 2 in perturbation theory, the field derivatives of A and B can be simplified as25

∇iA =
∂A
∂φi

+∇it∗
dA
dt
≈ ∂A
∂φi

, (6.A6)

∇iB =
∂B
∂φi

+∇it∗
dB
dt
≈ ∂A
∂φi

. (6.A7)

In this approximation, it is straightforward to derive the radial stationary-point equation (6.14), by first
noting that

φi∇it∗ = 1 +
1

2B

(
φi
∂A
∂φi

+ φi
∂B
∂φi

log
ϕ2

µ2
∗

)
= 1 +

1

2B
4V (1) = 1 ,

(6.A8)

25This is the t
(0)
∗ approximation mentioned in [136, 137].
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where the last line stems from the homogeneity of A and B with respect to φ. Hence, we may write

φi∇iV eff = φi
∂V eff

∂φi
+ 2Bφi∇it∗ = 4V eff + 2B = 0 , (6.A9)

which is the radial stationary point equation derived in [137]. While this equation alone does not allow to
locate the minimum, it restricts its position to a (n−1)-dimensional hypersurface in the n-dimensional field
space. Going one step further, it is possible to reiterate the derivation beyond the one-loop approximation.
We first derive the exact form of ∇it∗, starting from Eq. (6.A5) and using once again the decomposition
in Eq. (6.A1):

∇it∗ =
φi

ϕ2
+

1

2B

(
∇iA+∇iB log

ϕ2

µ2
∗

)
=
φi

ϕ2
+

1

2B

(
∂A
∂φi

+
∂B
∂φi

log
ϕ2

µ2
∗

)
+

1

2B
∇it∗

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)
. (6.A10)

Collecting all the ∇it∗ terms in the left-hand side, one finally gets

∇it∗ = η

[
φi

ϕ2
+

1

2B

(
∂A
∂φi

+
∂B
∂φi

log
ϕ2

µ2
∗

)]
(6.A11)

where

η ≡
[
1− 1

2B

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)]−1

. (6.A12)

In other words, including the order 2 contributions introduces a multiplicative factor η in the expression
of ∇it∗, satisfying

η = 1 +O
(
~2
)
. (6.A13)

In particular, the set of stationary point equations now reads

∇iV eff = ∂iV
eff + 2ηB∇it∗ = 0 , (6.A14)

and the radial stationary point equation becomes

4V eff + 2ηB = 0 . (6.A15)

Clearly, in the O(~) approximation, where the running of A and B is neglected, Eq. (6.A15) reduces to
Eq. (6.A9):

4V eff + 2B = 0 . (6.A16)

The main advantage of the above approximation is that Eq. (6.A16) always takes a polynomial form in
the fields. More precisely, the quantity

Ṽ (0) ≡ V eff +
1

2
B (6.A17)

takes the same polynomial form as V (0) with one-loop corrected numerical coefficients and vanishes at a
minimum by (6.A9). It can be shown [137] that the second derivative of the potential along the radial
direction is proportional to B. Therefore, according to Eq. (6.A9), at a minimum, one has B > 0 and
V eff < 0.

A.2 RG-improvement and the Gildener-Weinberg approximation
In the Gildener-Weinberg approach [168], the renormalisation scale prescription consists in identifying
the RG-scale µGW at which the tree-level potential develops a flat direction. Along this flat direction,
the field values are expressed as

φ = ϕ~n . (6.A18)



186 Chapter 6 – Grand unification and the Planck scale

Based on the general expression of the one loop contributions to the scalar potential in Eq. (6.4) and on
the homogeneity of A and B with respect to the radial coordinate, one may write

V (1)(φ;µ) = A(φ;µ) + B(φ;µ) log
ϕ2

µ2
= A(~n;µ)ϕ4 + B(~n;µ)ϕ4 log

ϕ2

µ2
(6.A19)

so the tree-level and one-loop contributions to the scalar potential take the following form along the flat
direction:

V (0)(φ;µGW) = λ(~n;µGW)ϕ4 = 0 , (6.A20)

V (1)(φ;µGW) = A(~n;µGW)ϕ4 + B(~n;µGW)ϕ4 log
ϕ2

µ2
GW

. (6.A21)

Taking the derivative with respect to ϕ yields

∂V (0)

∂ϕ
(φ;µGW) = 4λ(~n;µ2

GW)ϕ3 = 0 , (6.A22)

∂V (1)

∂ϕ
(φ;µGW) = 4ϕ3

[
A(~n;µGW) + B(~n;µGW)

(
log

ϕ2

µ2
GW

+
1

2

)]
. (6.A23)

Hence at the minimum the radial coordinate satisfies the relation

log
〈ϕ〉2

µ2
GW

= −1

2
− A

B
. (6.A24)

Getting back to the RG improvement procedure described in section 3.1, one may define a RG-scale µ̃
such that the one loop corrections vanish at the field value 〈φ〉 = ~n 〈ϕ〉, namely:

V (1)(〈φ〉 ; µ̃) = 0 . (6.A25)

Let δt = t̃ − tGW = log µ̃2

µ2
GW

be the associated shift in the logarithm of the RG-scales. To first order in
δt, one has

V (0)(〈φ〉 , µ̃) = V (0)(〈φ〉 , µGW) + δt
dV (0)

dt
(〈φ〉 , µGW) +O

(
δt2
)
, (6.A26)

A(~n, µ̃) = A(~n, µGW) + δt
dA
dt

(~n, µGW) +O
(
δt2
)
, (6.A27)

B(~n, µ̃) = B(~n, µGW) + δt
dB
dt

(~n, µGW) +O
(
δt2
)
. (6.A28)

Discarding terms that are formally of order 2 in perturbation theory allows to simplify the last two
relations:

A(~n, µ̃) = A(~n, µGW) +O
(
δt2
)
, (6.A29)

B(~n, µ̃) = B(~n, µGW) +O
(
δt2
)
. (6.A30)

Had we retained terms of order (δt)2 in the above expansions, working in the one-loop approxima-
tion would have yielded Eqs. (6.A26), (6.A29), and (6.A30) anyways, since the O

(
δt2
)

terms formally
encompass O(~2) quantities. Combining Eqs. (6.A23) and (6.A29), Eq. (6.A30) allows to rewrite the
Gildener-Weinberg radial stationary point equation at the shifted scale µ̃:

0 =
∂

∂ϕ

(
V (0)(φ;µGW) + V (1)(φ;µGW)

)
= 4ϕ3

[
A(~n, µ̃) + B(~n; µ̃)

(
log

ϕ2

µ̃2
+ 2δt+

1

2

)]
= 4ϕ3B(~n; µ̃)

(
1

2
+ 2δt

)
, (6.A31)
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where Eq. (6.A25) was used in the last step. We conclude that, in the one loop approximation,

δt = −1

4
. (6.A32)

Considering the first order truncation of Callan-Symanzik equation (6.10),

dV (0)

dt
= 2B . (6.A33)

we finally obtain the relation

V (0)(φ;µGW) = V (0)(φ; µ̃)− 2B(φ;µGW)δt = V (0)(φ; µ̃) +
1

2
B(φ; µ̃) ≡ Ṽ (0)(φ; µ̃) , (6.A34)

where the quantity Ṽ (0) is defined similarly as in Eq. (6.A17). Quite importantly, the above relation
implies that in the one loop approximation, at the scale µ̃, the corrected tree-level potential Ṽ (0) has the
same structure than the tree-level potential evaluated at the scale µGW. In particular, Ṽ (0)(φ; µ̃) inherits
the flat direction of V (0)(φ;µGW), and therefore

Ṽ (0)(〈φ〉 ; µ̃) = 0 . (6.A35)

From the above equation, we may finally conclude that the Gildener-Weinberg vev 〈φ〉 satisfies the RG-
improved radial stationary-point equation (6.A9). It is worth emphasising that, 〈φ〉 is not, in general, a
solution of the full set of stationary-point equations (6.A2), i.e. it does not minimise the RG-improved
potential V eff . In what follows, we will show however that it constitutes a first order approximation of
the actual vev 〈φ〉min.

Denoting δφ = 〈φ〉min−〈φ〉 the shift between the actual vev and the Gildener-Weinberg solution, one
may write, to first order in δφ:

Ṽ (0)(〈φ〉min
) = Ṽ (0) (〈φ〉) + δφi∇iṼ (0) (〈φ〉) +O

(
δφ2
)
. (6.A36)

Since both 〈φ〉min and 〈φ〉 belong to the hypersurface where the radial stationary point equation is satisfied
(i.e. where Ṽ (0) = 0) and using the decomposition in Eq. (6.A1), the above relation reduces to

0 = δφi∇iṼ (0) (〈φ〉) = δφi∂iṼ
(0) (〈φ〉) + δφi∇it∗ (〈φ〉)

dṼ (0)

dt
(〈φ〉) . (6.A37)

The ∂i derivative in the right-hand side of the above equation vanishes since 〈φ〉 lies along the flat direction
of Ṽ (0)(φ; µ̃). In addition, to first order in perturbation theory, one can approximate

dṼ (0)

dt
(〈φ〉) = dV (0)

dt
(〈φ〉) +O(~2) , (6.A38)

and Eq. (6.A37) implies
δφi∇it∗ (〈φ〉) = 0 . (6.A39)

Furthermore, to first order in δφi

t∗(〈φ〉min
) = t∗(〈φ〉) + δφi∇t∗ (〈φ〉) , (6.A40)

so we can finally establish that, to first order in perturbation theory,

t∗(〈φ〉min
) = t∗(〈φ〉) +O

(
δφ2
)
⇒ µmin

∗ ≈ µ̃. (6.A41)

The above approximation constitutes the main result of this appendix, which can be summarised as
follows: The RG-scale µ̃ at which the corrected tree-level potential Ṽ (0) = V (0) + B/2 develops a flat
direction is a first order approximation of the value taken by field-dependent RG-scale µmin

∗ at the
minimum of the RG-improved potential. This observation justifies the procedure described in section 3.2
to estimate, in an algorithmically efficient way, the position and depth of the minimum of the RG-improved
potential.
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A.3 Minimisation beyond the one-loop approximation
The numerical procedure described in section 3.2 in the one-loop approximation of the radial stationary
point equation can be slightly improved by taking into account corrections that are formally of order 2 in
perturbation theory. For convenience, we rewrite below the exact radial stationary-point equation (6.A15)
obtained beyond the one-loop approximation:

4V eff + 2ηB = 0 . (6.A42)

where

η =

[
1− 1

2B

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)]−1

. (6.A43)

The expression of η can be further simplified by using

V (1) = A+ B log
ϕ2

µ2
∗
= 0 ⇒ log

ϕ2

µ2
∗
= −A

B
, (6.A44)

namely:

η =

[
1− 1

2

dA
dt B− AdB

dt

B2

]−1

=

[
1− 1

2

d

dt

A
B

]−1

. (6.A45)

In this latter form, it is clear that η does not depend on the radial field coordinate, but only on the
direction of the field vector in the field space. We conveniently make use of this property in an iterative
method allowing to estimate the position of the minimum beyond the one-loop approximation. We restate
below the minimisation procedure described in Section 3.2, where steps 3 and 4 have been modified to
include the effect of 2-loop corrections stemming from η, namely:

1. Starting with random values for the quartic couplings at some high scale µ0, the stability of the
tree-level potential is asserted, and unstable configurations are discarded.

2. Evolution of the quartic couplings according to their RG running is performed down to some lower
scale µ1.

3. At this point, we initialise the iterative procedure taking into account the effects of η 6= 1. For the
first iteration, we set

k = 0, ηk = η0 = 1 .

Defining
Ṽ (0)

∣∣∣
k
= Ṽ (0)

∣∣∣
η=ηk

= V (0) + 2ηkB ,

the scale µ̃k at which Ṽ (0)
∣∣∣
k

develops flat directions is identified.

4. At the scale µ̃k, the flat direction ~nk is identified. The value of

ηk+1 = η(~nk; µ̃k)

does not depend on the radial field coordinate, and is evaluated using Eq. (6.A45). If |ηk+1 − ηk| > ε,
we repeat step 3 with

k → k + 1, ηk → ηk+1 .

Otherwise, we consider that the iteration has converged (in practice we set ε = 10−5), and will use
~n = ~nk as the corrected generating vector of the flat direction, along which the field values take the
form

φ = ϕ~n .

5. The unique value of 〈ϕ〉 such that
V (1) (〈ϕ〉~n; µ̃) = 0

is identified. The field vector 〈φ〉 = 〈ϕ〉~n constitutes an estimation of the exact position of the
minimum.
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6. Finally, the depth of the RG-improved potential at the minimum, i.e. the quantity

V eff(〈φ〉) = V (0)(〈φ〉); µ̃)

is evaluated.

This modified minimisation procedure allows to achieve better accuracy (see the next section) on the
estimation of the position and depth of the minimum. This is the procedure that was systematically used
in our numerical study of the breaking patterns of the model.

A.4 Numerical performance and accuracy of the minimisation procedure
In order to confirm that the simplified minimisation procedure described in Section 3.2 and improved
above does provide a reasonable estimation of the depth and position of the minimum, we have compared
its outcome with that of a full-fledged numerical minimisation of the RG-improved potential. This com-
parison has been performed on a random sample of points, both in the case of 2- and 3-vev manifolds26,
for which the number of minima hence characterised amounts toN (2) = 2000 andN (3) = 500, respectively.
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Figure A.1: Gain in performance for 2-vev (left panel) and 3-vev (right panel) manifolds, using the
minimisation procedure described in Section 3.2 (yellow bars) and its improved version (blue bars),
compared to a full-fledged numerical minimisation.

As stated before, the main motivation for using a simplified minimisation procedure is to speed-up the
computations, therefore enabling one to perform a random scan over a large sample of points. Fig. A.1
illustrates the performance improvement in terms of execution time for both 2- and 3-vev manifolds.
Given a minimum, we define Tfull as the execution time of a full numerical minimisation and Tsimp as the
execution time of the simplified algorithms. The gain in performance Tfull/Tsimp is of order O

(
102
)

and
O
(
103
)

– O
(
104
)

for 2- and 3-vev manifolds respectively. Note that, on the computer used to perform
this analysis, the average execution time of the full numerical minimisation is 4 s for 2-vev manifolds and
460 s for 3-vev manifolds.

Of course, the major gain in performance comes at a price: our minimisation procedure only provides
an approximation of the position and depth of a minimum. However, as shown in Figures A.2–A.4,
the relative error on the quantities Vmin, ϕmin =

√
〈φ〉min

i 〈φ〉min
i and tmin

∗ = t∗(〈φ〉min
) are kept at a

reasonable level. Concretely speaking, defining the logarithmic relative error on the parameter X (with
X = Vmin, ϕ

min, tmin
∗ ) as

logrel(X) = log10 |δ(X)| = log10

∣∣∣∣100× Xsimp −Xfull

Xfull

∣∣∣∣ , (6.A46)

26By construction, the improved minimisation procedure described above is ensured to converge towards the true minimum
in the case of 1-vev manifolds.
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Figure A.2: Logarithmic relative error on Vmin for 2-vev (left panel) and 3-vev (right panel) manifolds,
using the minimisation procedure described in Section 3.2 (yellow bars) and its improved version (blue
bars), compared to a full-fledged numerical minimisation.
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Figure A.3: Logarithmic relative error on ϕmin for 2-vev (left panel) and 3-vev (right panel) manifolds,
using the minimisation procedure described in Section 3.2 (yellow bars) and its improved version (blue
bars), compared to a full-fledged numerical minimisation.

rare are the points for which logrel(X) > 1. In other words, the relative error (in particular on the depth
of the potential at a minimum, which is the most important quantity in this analysis) is almost always
kept under the 10% level. In fact, focusing on the quantity of interest, Vmin, we observe that:

• For 2-vev manifolds, δ(Vmin) > 10% for 0.8% of the points and δ(Vmin) > 5% for 2.4% of the
points,

• For 3-vev manifolds, δ(Vmin) > 10% for 0.6% of the points and δ(Vmin) > 5% for 3% of the points.

In addition, two comments are worth making regarding the left panel of Fig. A.2, showing the relative
error on Vmin in the case of 2-vev manifolds:

• The excess of points with a relative error of order O
(
10−10 %

)
to O

(
10−4 %

)
corresponds to sit-

uations where one of the two vevs actually vanishes along the flat direction. In such cases, one
effectively ends up minimising a 1-vev manifold, for which the improved minimisation procedure in
ensured to converge towards the true minimum (up to numerical errors).

• A small number of points (5 out of 2000) give logrel (Vmin) ≈ 3 or, equivalently, δ (Vmin) ≈ 1000%.
We have explicitly checked that those points are in fact characterised by the occurrence of two flat
directions of different nature at RG-scales very close to each other, leading to a situation where
either (i) two extrema coexist, one of them possibly corresponding to a local maximum [137], or
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Figure A.4: Logarithmic relative error on tmin
∗ for 2-vev (left panel) and 3-vev (right panel) manifolds,

using the minimisation procedure described in Section 3.2 (yellow bars) and its improved version (blue
bars), compared to a full-fledged numerical minimisation.

(ii) a single minimum emerges as a non-trivial combination of quantum corrections to the potential
around the two flat directions [266]. In the former case, our algorithm may wrongly characterise
a local maximum instead of the true minimum. In the latter case, it may fail to identify the true
minimum which could be rather distant from one of the flat directions. In any case, the rarity of
such events make them harmless in the overall interpretation of the results.

Finally, Figures A.2–A.4 show that, as expected, the improved minimisation algorithm described in
App. A.3 overall yields a better characterisation of the minima, both in the case of 2- and 3-vev manifolds
(at the reasonable cost of a slightly increased execution time).

B General tree-level stability conditions
The various breaking patterns studied in this work are characterised by vacuum manifolds consisting of
at most 3 vevs. In this appendix, we establish the conditions of tree-level stability for general potentials
of 1, 2 and 3 variables, as well as the circumstances of their violation along the RG-flow. We give in
particular a characterisation of the flat directions that appear at the precise energy scale at which the
violation of tree-level stability occurs.

For completeness, let us start the discussion with 1-vev vacuum manifolds (occurring for instance in
the SO(8)× U (1) breaking), for which the study of stability and its violation is trivial. Such a vacuum
structure is parameterised by

V (x) = ax4 , (6.B1)

so the condition for a stable (i.e. bounded from below) potential is simply

a > 0 . (6.B2)

Therefore, symmetry breaking will be uniquely triggered along the RG-flow as soon as the quartic coupling
a turns negative.

B.1 Stability of 2-vev vacuum manifolds
Now turning to vacuum manifolds consisting of 2 variables, we have in general:

V (x, y) = a0x
4 + a1x

2y2 + a2y
4 , (6.B3)

and it is straightforward to derive the conditions of a stable potential:

a0 > 0 ∧ a2 > 0 ∧ a1 + 2
√
a0a2 > 0 . (6.B4)
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Following the discussion in Sec. 3.3, the stability constraints can be violated in three distinct manners,
corresponding to the violation of any one of the three conditions in Eq. (6.B4). Below we examine the
generated flat direction in each of these three cases. We make the assumption that only one of the three
conditions in Eq. (6.B4) gets violated along the RG-flow, i.e. that the other two remain satisfied.

Case 1: a0 = 0. The potential simplifies as

V (x, y) = (a1x
2 + a2y

2)y2 , (6.B5)

and the other stability constraints are satisfied, namely

a2 > 0 ∧ a1 > 0 . (6.B6)

Clearly, the flat direction is parameterised by(
x
y

)
= λ

(
1
0

)
, λ ∈ R . (6.B7)

Case 2: a2 = 0. Similarly, the potential simplifies as

V (x, y) = (a0x
2 + a1y

2)x2 , (6.B8)

and since a0, a1 > 0, the flat direction occurs in the direction(
x
y

)
= λ

(
0
1

)
. (6.B9)

Case 3: a1 + 2
√
a0a2 = 0. In this case, the potential can be factored in the form

V (x, y) =
(√
a0 x

2 −
√
a2 y

2
)2
. (6.B10)

The other constraints are satisfied, namely

a0 > 0 ∧ a2 > 0 , (6.B11)

and two flat directions occur in the directions(
x
y

)
= λ

(
a
1/4
2

± a1/40

)
. (6.B12)

B.2 Stability of 3-vev vacuum manifolds
We finally turn to the study of 3-vev manifolds, which will need a much more elaborate discussion.
However it will be helpful to note that the 3-vev structures considered in this work can be put in the
form

V (χ, ω1, ω2) = αχ4 + β(ω1, ω2)χ
2 + γ(ω1, ω2) , (6.B13)

where β and γ take the general forms

β(ω1, ω2) = b0ω
2
1 + b1ω1ω2 + b2ω

2
2 =

(
b0 + b1X + b2X

2
)
ω2
1 = β̃(X)ω2

1 , (6.B14)
γ(ω1, ω2) = c0ω

4
1 + c1ω

2
1ω

2
2 + c2ω

4
2 =

(
c0 + c1X

2 + c2X
4
)
ω4
1 = γ̃(X)ω4

1 , (6.B15)

with X = ω2/ω1. For the above potential to be bounded from below, it must be non-negative for all
values of the vevs. First of all, positivity at ω1 = ω2 = 0 and at χ = 0 imposes the constraints

α > 0 ∧ γ(ω1, ω2) > 0, ∀(ω1, ω2) . (6.B16)

Reusing the results established above for 2-vev functions, the latter inequality requires

c0 > 0 ∧ c2 > 0 ∧ c1 + 2
√
c0c2 > 0 . (6.B17)
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Then, taking V as a quadratic polynomial in χ2, positivity requires its roots to be either complex or
negative. Defining27 ∆ = 4αγ − β2, the condition to have either complex roots or non-positive roots
reads

∆(ω1, ω2) > 0 ∨
(
∆(ω1, ω2) ≤ 0 ∧ β(ω1, ω2) > 0

)
, ∀(ω1, ω2) , (6.B18)

or, more concisely
∆(ω1, ω2) > 0 ∨ β(ω1, ω2) > 0, ∀(ω1, ω2) . (6.B19)

The quantity ∆(ω1, ω2) can be generically expressed as

∆(ω1, ω2) = 4αγ(ω1, ω2)− β(ω1, ω2)
2

= a0ω
4
1 + a1ω

3
1ω2 + a2ω

2
1ω

2
2 + a3ω1ω

3
2 + a4ω

4
2

=
(
a0 + a1X + a2X

2 + a3X
3 + a4X

4
)
ω4
1

= ∆̃(X)ω4
1 , (6.B20)

and in practice, when ω2 6= 0, one only needs to consider the simplified stability constraint

∆̃(X) > 0 ∨ β̃(X) > 0, ∀X . (6.B21)

Since β̃ and ∆̃(X) are polynomials of respective degree 2 and 4 in X, one could determine analytic
conditions for them to be positive for all X. However, we insist that the constraint in Eq. (6.B21) is not
equivalent to the following: (

∆̃(X) > 0, ∀X
)
∨
(
β̃(X) > 0, ∀X

)
, (6.B22)

since the latter is only a sufficient condition for the former to be satisfied. Instead, one should simul-
taneously inspect the shape of both polynomials in terms of their number of real roots and the sign of
their leading coefficient, in order to identify the regions where either one or the other is positive. Such
a case-by-case study is readily performed, as reported in Table B.1. Here, since we aim at determining
the conditions of a stable potential in Eq. (6.B13), we will consider that all other necessary conditions
determined previously must hold. In particular, Eq. (6.B16) holds. Hence, a useful observation to make
is that if β̃ = 0, then

∆̃(X) = 4αγ̃(X) > 0 . (6.B23)

In other words, ∆̃(X) is always strictly positive at the locations of the roots of β̃. This greatly reduces
the number of possibilities when inspecting the shapes of the two polynomials. Overall, ∆̃ can have either
0, 2 or 4 real roots, with a positive or negative leading coefficient a4., while β̃ can have either 0 or 2 real
roots with a positive or negative leading coefficient b2. At this point, a comment is worth making: we do
not consider the cases of multiple roots, nor those of a vanishing leading coefficient. The reason is that,
at the initial scale where potential stability must be asserted, the couplings (and therefore the value of
the coefficients appearing in the polynomials) are generated randomly. Hence, exact relations such that
a vanishing discriminant or coefficient will never occur. On the other hand, such quantities can very well
vanish at a given scale along the RG-flow and possibly trigger spontaneous breaking of the model. Such
situations are described in subsection B.3 below.

Finally, although this procedure can readily be performed numerically, we review here the analytical
conditions allowing to determine the number of real roots of the quartic polynomial ∆̃ [267, 268, 269].
Those conditions will also help understand how the stability condition in Eq. (6.B21) can be violated
along the RG-flow. The main quantity of interest here is the discriminant D of the polynomial ∆̃:

D = 256a30a
3
4 − 4a31a

3
3 − 27a20a

4
3 + 16a0a

4
2a4 − 6a0a

2
1a

2
3a4 − 27a41a

2
4

− 192a20a1a3a
2
4 − 4a32(a0a

2
3 + a21a4) + 18a2(a1a3 + 8a0a4)(a0a

2
3 + a21a4)

+ a22(a
2
1a

2
3 − 80a0a1a3a4 − 128a20a

2
4) .

(6.B24)

27Note the negative sign compared to the usual definition of the quadratic discriminant.
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Table B.1: Realisation of the stability constraint in Eq. (6.B21), depending on the number of roots of the
polynomials ∆̃ and β̃ and the sign of their leading coefficient. We write ∆(n)s and β(n)s to respectively
denote the number n of roots and the sign s of the leading coefficient of the polynomials ∆̃ and β̃. The
roots of ∆̃ are noted δi with δ1 < · · · < δn, those of β̃ are noted βi with β1 < β2. Cases where the
stability condition in Eq. (6.B21) is satisfied for any values of the roots are referred to as Stable, and
cases where the condition cannot be satisfied are referred to as Unstable. For cases where the realisation
of Eq. (6.B21) depends on the value of the roots, the additional constraints to be satisfied by them are
reported. Finally, two cases never occur because of the constraint of a positive ∆̃ at the location of the
roots of β̃.

β(0)+ β(0)− β(2)+ β(2)−

∆(0)+ Stable Stable Stable Stable
∆(0)− Stable Unstable / /
∆(2)+ Stable Unstable β2 < δ1 ∨ β1 > δ2 β2 < δ1 ∧ β1 > δ2
∆(2)− Stable Unstable β1 > δ1 ∧ β2 < δ2 Unstable
∆(4)+ Stable Unstable β2 < δ1 ∨ β1 > δ4 ∨

(
β1 > δ2 ∧ β2 < δ3

)
β1 < δ1 ∨ β2 > δ4

∆(4)− Stable Unstable
(
β1 > δ1 ∧ β2 < δ2

)
∨
(
β1 > δ3 ∧ β2 < δ4

)
Unstable

We will not show here the expression of D as a function of α, bi, ci here since it is rather lengthy. However,
we make the important remark that

D ∝ α2 , (6.B25)
which will help understand the symmetry breaking patterns in the next subsection. The nature of the
roots depend on the sign of D:

D > 0 : The four roots are either all complex or all real (6.B26)
D = 0 : There exists multiple roots (6.B27)
D < 0 : Two roots are complex, the other two are real (6.B28)

In the first case, D > 0, the nature of the roots can be determined by defining the following additional
quantities [269]

Q = 8a2a4 − 3a23 , R = 64a0a
3
4 + 16a2a

2
3a4 − 16a24(a

2
2 + a1a3)− 3a43 , (6.B29)

such that the four roots are complex if either Q > 0 or R > 0. In summary, we have:

D > 0 ∧
(
Q > 0 ∨R > 0

)
: No real roots (6.B30)

D < 0 : Two real roots (6.B31)

D > 0 ∧
(
Q ≤ 0 ∧R ≤ 0

)
: Four real roots (6.B32)

B.3 Stability violation for 3-vev manifolds
As previously done in the case of 2-vev manifolds, we now inspect the different ways in which the stability
conditions of 3-vev manifolds can be violated. Obviously, more cases will have to be considered here, due
to the richer structure of the potential and its stability conditions.

Case 1: α = 0. The potential simplifies as

V (χ, ω1, ω2) = β(ω1, ω2)χ
2 + γ(ω1, ω2) (6.B33)

We consider that all other stability condition are satisfied. In particular, γ is always positive, and since
α = 0, one has ∆(ω1, ω2) = −β(ω1, ω2)

2. Therefore, according to Eq. (6.B19), β is always positive, and
V can only vanish in the region where ω1 = ω2 = 0. In this case, the flat direction lies along χ

ω1

ω2

 = λ

1
0
0

 . (6.B34)
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This corresponds to a symmetry breaking exclusively driven by the vev χ. Specialising this result to the
SM vacuum manifold in Eq. (6.39) with χ = χ5 (or equivalently χ = χR) yields a breaking towards the
SU (5) subgroup.

Case 2: c0 = 0 or c2 = 0. Let us first consider the case where c0 = 0. In this case, the quantity γ(ω1, ω2)
vanishes along the flat direction (

ω1

ω2

)
= λ

(
1
0

)
, (6.B35)

and according to Eq. (6.B19), β(ω1, ω2) > 0. The potential simplifies as

V (χ, ω1, ω2) =
(
αχ2 + β(ω1, ω2)

)
χ2 , (6.B36)

and can only vanish if χ = 0. Hence, the flat direction is χ
ω1

ω2

 = λ

0
1
0

 . (6.B37)

This is a breaking triggered by the vev ω1 exclusively. Similarly, in the case where c2 = 0, the flat
direction is given by  χ

ω1

ω2

 = λ

0
0
1

 (6.B38)

and corresponds to a breaking driven by ω2. Considering the SM vacuum manifold in Eq. (6.39) with
ω1 = ωB , ω2 = ωR and either χ = χ5 or χ = χ5, the above cases respectively correspond to the
3C2L2R1B−L and 4C2L1R breakings.

Case 2: c1 + 2
√
c0c2 = 0. In this case, the quantity γ has a flat direction along(

ω1

ω2

)
= λ

(
c
1/4
2

± c1/40

)
. (6.B39)

Here again, the potential takes the form in Eq. (6.B36). Therefore the flat directions are given by χ
ω1

ω2

 = λ

 0

c
1/4
2

± c1/40

 (6.B40)

and the breaking is driven by the vevs ω1 and ω2. In the SM vacuum, this corresponds to the 3C2L1R1B−L
breaking28.

Case 3: a0 = 0 or a4 = 0. Here we consider the possibility that Eq. (6.B19) gets violated, in the
particular situation where the leading coefficient of either ω4

1 or ω4
2 vanishes along the RG-flow. Starting

with the case where a0 = 0, we have

∆(ω1, ω2) =
(
a1ω

3
1 + a2ω

2
1ω2 + a3ω1ω

2
2 + a4ω

3
2

)
ω2 . (6.B41)

Hence, ∆ clearly vanishes when ω2 = 0. We note that other roots with ω1, ω2 6= 0 may exist, but this
situation is taken into account in the more general Case 4 below. Here we restrict the discussion to the
case where ω2 = 0. In this case, we have

a0 = 4αc0 − b20 = 0 , (6.B42)
β(ω1, 0) = b0ω

2
1 , (6.B43)

28However, for reasons explained in Sec. 4.2, in this case the actual breaking direction is SU (5)× U (1) since in practice
one always has η =

√
2/3.



196 Chapter 6 – Grand unification and the Planck scale

so the full potential simplifies as

V (χ, ω1, 0) =
(√
αχ2 ±

√
c0ω

2
1

)2
. (6.B44)

Since α > 0 and c0 > 0, the only case yielding a flat direction corresponds to b0 < 0, and hence

V (χ, ω1, 0) =
(√
αχ2 −

√
c0ω

2
1

)2
. (6.B45)

In this case, the flat directions are given by χ
ω1

ω2

 = λ

 c
1/4
0

±α1/4

0

 . (6.B46)

Reiterating the above calculations in the case where a4 = 0 yields the following flat directions χ
ω1

ω2

 = λ

 c
1/4
0

0
±α1/4

 . (6.B47)

When considering the SM vacuum manifold, such flat directions correspond to a complete breaking of
SO(10) towards the SM, despite the fact that one of the ωi vanishes.

Case 4. Whereas all previous cases involved only one or two of the vevs, we now turn to the possibility
of violating the stability conditions in a non-trivial way, where none of the vevs vanishes. Concretely,
it means that the condition in Eq. (6.B19) or, equivalently, Eq. (6.B21) needs to be violated along the
RG-flow, in a case where χ, ω1, ω2 6= 0. A closer look at Eq. (6.B21) shows that the transition from a
stable to an unstable potential can only occur at a given value of X in the two following pictures

∆̃(X) > 0 ∧ β̃(X) < 0 −→ ∆̃(X) = 0 ∧ β̃(X) < 0 −→ ∆̃(X) < 0 ∧ β̃(X) < 0 , (6.B48)

∆̃(X) < 0 ∧ β̃(X) > 0 −→ ∆̃(X) < 0 ∧ β̃(X) = 0 −→ ∆̃(X) < 0 ∧ β̃(X) < 0 . (6.B49)

However, as mentioned before, ∆̃(X) can only be positive when evaluated a root of β̃. This observation
allows to rule out the scenario in Eq. (6.B49), making Eq. (6.B48) the only way of generating a flat
direction. Furthermore, the change of sign of ∆̃(X) due to a sign flip of its leading coefficient was already
covered in Case 3 above, so we can discard this possibility. The only remaining way to achieve the
transition in Eq. (6.B48) is for ∆ to acquire a multiple root at some value of X. This happens when the
discriminant D of ∆̃ vanishes at some RG-scale. The multiple real root that appears will be denoted δ,
and we have

X = δ ⇒ ω2 = δω1 . (6.B50)
Since ∆̃(δ) = ∆(ω1, δω1) = 4αγ(ω1, δω1) − β(ω1, δω1)

2 = 0 and β(ω1, δω1) < 0, the potential takes the
form

V (χ, ω1, δω1) =
(√

αχ2 −
√
γ(ω1, δω1)

)2
, (6.B51)

where √
γ(ω1, δω1) =

√
c0 + c1δ2 + c2δ4 ω

2
1 . (6.B52)

This means in turn that the potential vanishes if

χ = ±
(
c0 + c1δ

2 + c2δ
4

α

)1/4

ω1 , (6.B53)

so one concludes that the flat directions are given by χ
ω1

ω2

 = λ

±
(
c0+c1δ

2+c2δ
4

α

)1/4
1
δ

 . (6.B54)

This completes our discussion on the stability of 1-, 2- and 3-vev manifolds and on the classification of the
possible flat directions generated by the RG evolution of the quartic couplings. The symmetry breaking
patterns occurring in each case identified above are summarised in Table 6.1.
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C A quantitative measure of perturbativity
In this appendix, we develop a method allowing to obtain a quantitative measure of perturbativity based
on the comparison of the size of the one- and two-loop contributions to the beta-functions. In [144], one
of us has proposed a simple perturbativity criterion translating, using definition in Eq. (6.E1), into∣∣∣β(2)(gi)

∣∣∣ < 1

2

∣∣∣β(1)(gi)
∣∣∣ , ∀gi (6.C1)

where gi, i = 1, . . . , N generically denotes all the couplings of the theory. Note that the inclusion of the
factor 1

2 is rather arbitrary, since the boundary (in the space of the couplings of the model) between the
perturbative and non-perturbative regimes is anyways equivocal. This being said, the above criterion
allows in particular to systematically detect the occurrence of Landau poles in the RG-flow, indicating a
breakdown of perturbation theory.

While this criterion was successfully applied in [144] as a way to phenomenologically constrain (ex-
tensions of) the SM, it comes with a caveat: A change of sign in the one-loop beta-function of any of the
couplings systematically violates Eq. (6.C1), even in a region of the coupling space where the regime is
clearly perturbative. To circumvent this issue, we generalise the above criterion involving simultaneously
all the couplings of the theory. For p a positive integer and α > 0, this generalised perturbativity criterion
reads (

N∑
i=1

∣∣∣β(2)(gi)
∣∣∣p)1/p

< α

(
N∑
i=1

∣∣∣β(1)(gi)
∣∣∣p)1/p

, (6.C2)

or, in a more compact form, ∥∥∥β(2) (g)
∥∥∥
p
< α

∥∥∥β(1) (g)
∥∥∥
p
, (6.C3)

where ‖·‖p denotes the usual `p-norm and where

β(n) (g) =

β(n)(g1)
...

β(n)(gN )

 . (6.C4)

This generalised criterion will no longer fail if some of the one-loop beta-functions vanish. It will, however,
fail if all one-loop beta-functions vanish, i.e., if the one-loop system approaches a fixed point.

The free parameters p and α conveniently allow to adapt the (non-)conservative property of the
criterion. As a particular case of Eq. (6.C3), note that taking p→∞ yields

max
i

∣∣∣β(2)(gi)
∣∣∣ < αmax

i

∣∣∣β(1)(gi)
∣∣∣ (6.C5)

whereas p = 1 gives
N∑
i=1

∣∣∣β(2)(gi)
∣∣∣ < α

N∑
i=1

∣∣∣β(1)(gi)
∣∣∣ . (6.C6)

In a theory with a single coupling g, taking in addition α = 1
2 in the above expression allows to recover

the formula ∣∣∣β(2)(g)
∣∣∣ < 1

2

∣∣∣β(1)(g)
∣∣∣ , (6.C7)

which coincides with the original criterion in Eq. (6.C1). As a final remark, we have observed that, in
practice, the impact of a change in the value of p can be roughly compensated by a change in the value
of α. For all results in this chapter, cf. Sec. 5, we fix p = 1, therefore using Eq. (6.C6) as a quantitative
measure of the perturbativity of the studied models. Further, we specify to α = 0.1. This may be overly
conservative. However, such a conservative choice avoids convergence issues in the subsequent numerical
analysis of the one-loop effective potential, cf. Sec. 3 and App. A.
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D Scalar potential for the considered models
In this appendix, we provide the expression of the most general perturbatively renormalisable scalar
potential for the 10H ⊕16H ⊕45H SO(10) model. This will allow us in turn to specialise this expression
to the two simplified models considered in this work, where the scalar sector is reduced to 16H ⊕ 45H
and 45H respectively.

D.1 Definitions and conventions
The fundamental 10H multiplet is noted Hi in the following. We use a standard convention for the 45
gauge generators of the fundamental representation,

(TAB)
ij
=

i√
2

(
δiAδ

j
B − δ

j
Aδ

i
B

)
, A,B = 1, . . . , 10 , (6.D1)

where the factor
√
2 in the denominator fixes the value of the Dynkin index to T10 = 1. Next, based on

the decomposition
10⊗ 10 = 54S ⊕ 45A ⊕ 1 , (6.D2)

the adjoint 45H (as a special case of 45A) field is conveniently expressed as an antisymmetric 10 × 10
matrix, noted φij . Finally, reusing the notations from [161], the reducible 32-dimensional spinor field is
noted Ξ and can be decomposed under 32 = 16R ⊕ 16L as

Ξ =

(
χ
χc

)
. (6.D3)

The generators of the reducible 32-dimensional representation are given by

Sij =
1

4
√
2i

[Γi,Γj ] ≡
1

2

(
σij 0
0 σ̃ij

)
(6.D4)

with i, j = 1, . . . , 10. The Γi’s are 32× 32 matrices satisfying the anticommutation relations

{Γi,Γj} = 2δij132 , (6.D5)

characteristic of a Clifford algebra. An explicit form for Γi will not be provided here but can be found in
[172, 161]. Note that, as compared to [161], an additional factor of

√
2 was included in the denominator

of Eq. (6.D4) (and in the definition of σij) in order to match the convention where the Dynkin index of
16 equals 2 (instead of 4). Right- and left-handed projectors P+ and P− can be constructed such that

P+Ξ =

(
χ
0

)
≡ χ+, P−Ξ =

(
0
χc

)
≡ χ− . (6.D6)

We note in passing that the spinor field χc is obtained from a conjugation operation

χc = Cχ, C ∈ 16SO(10) , (6.D7)

characteristic of the discrete left-right symmetry D ⊂ SO(10), usually referred to as D-parity. Finally, it
will be useful to construct the auxiliary adjoint fields

Φ16 =
1

4
σijφ

ij and Φ32 =
1

2
Sijφ

ij . (6.D8)

in order to construct the various gauge invariant operators in a notation adapted to the presence of a
scalar spinorial representation.
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D.2 Scalar potential for the 10H ⊕ 16H ⊕ 45H model
With the above definitions at hand, we may now write down the most general renormalisable scalar
potential built from the scalar representations 10H , 16H and 45H :

V (H,χ, φ) = µ1HiH
i + µ2 χ

†χ+ µ3 Tr(Φ
2
16)

+ τ1
(
χT
−Γiχ+

)
Hi + τ∗1

(
χ†
+Γiχ

∗
−
)
Hi + τ2 χ

†Φ16χ

+ Λ1 Tr(Φ
2
16)

2 + Λ2 Tr(Φ
4
16) (6.D9)

+ Λ3

(
HiH

i
)2

+ Λ4

(
HiH

i
)
Tr(Φ2

16) + Λ5HiHj Tr
(
ΓiΦ32Γ

jΦ32

)
+ Λ6 (χ

†χ)2 + Λ7

(
χ†
+Γiχ−

)(
χ†
−Γ

iχ+

)
+ Λ8 (χ

†χ)Tr(Φ2
16) + Λ9 χ

†Φ2
16χ

+ Λ10 (HiH
i)(χ†χ) .

It is worth noticing that in the limit τ1 → 0, the above scalar potential is invariant under a global U (1)
transformation under which only 16H is charged29, i.e. under

χ→ eiαχ . (6.D10)

Finally, the 10H multiplet couples to fermions ψ ∼ 16F through the Yukawa term

−LY = Y10
(
ψT
−Γiψ+

)
Hi + h.c. , (6.D11)

where ψ± was defined similarly to χ± (see Eq. (6.D6)).

D.3 Scalar potential for the 16H ⊕ 45H and 45H models
We now specialise expression in Eq. (6.D9) to the case of the simplified model considered in this work,
where the scalar sector only consists of 16H ⊕ 45H . Discarding in addition the relevant operators in
order to achieve scale invariance at the classical level, we write

V (χ, φ) =
λ1
4

Tr(Φ2
16)

2 + λ2 Tr(Φ
4
16) + 4λ6 (χ

†χ)2 + λ7
(
χ†
+Γiχ−

)(
χ†
−Γ

iχ+

)
+ 2λ8 (χ

†χ)Tr(Φ2
16) + 8λ9 χ

†Φ2
16χ .

(6.D12)

We note that the normalisation of the various operators is arbitrary and that the six quartic couplings
λi were defined such that perturbativity is lost around λi & 1. Our notation and conventions translate
to those of [161, 173, 160] according to:

λ1 ↔ 4a1, λ2 ↔ a2, λ6 ↔
λ1
16
, λ7 ↔

λ2
4
, λ8 ↔ α, λ9 ↔

β

4
. (6.D13)

Following the comment made above, the absence of relevant operators in Eq. (6.D12) implies invariance
under the U (1) global symmetry in Eq. (6.D10). Finally, the scalar potential for the 45H model simply
reads

V (φ) =
λ1
4

Tr(Φ2
16)

2 + λ2 Tr(Φ
4
16) . (6.D14)

E Beta-functions
The beta-functions for the couplings of the three models presented in the previous section were computed
up to the two-loop level using the tool PyR@TE 330 [9]. We report here the obtained expressions at
one-loop, first in the case of the 10H ⊕16H ⊕45H model31, then in the case of the simplified 16H ⊕45H

29Note that this global symmetry could be restored for τ1 6= 0 by complexifying and assigning a U (1) charge to the
10H multiplet. Invariance of the Yukawa term in Eq. (6.D11) would in turn require to give a charge to the fermionic 16F

multiplet.
30Note that the one-loop beta-functions can also be obtained from the one-loop scalar potential [188].
31Although this model was not studied in the present work, we provide the corresponding set of beta-functions since these

might be useful to the reader.



200 Chapter 6 – Grand unification and the Planck scale

model. The two-loop contributions to the beta-functions being rather lengthy, we will not report them
here and we invite the interested reader to refer to the ancillary file containing the full expressions in a
computer-readable form. In the following, we use the convention

β (X) ≡ µdX
dµ
≡ 1

(4π)
2 β

(1)(X) +
1

(4π)
4 β

(2)(X) . (6.E1)

E.1 10H ⊕ 16H ⊕ 45H model
We provide below the one-loop beta-functions for the full 10H ⊕ 16H ⊕ 45H model.

Gauge coupling.
β(1)(g) = −139

6
g3 (6.E2)

Yukawa coupling.

β(1)(Y10) = −24Y10Y ∗
10Y10 + 64Tr (Y10Y

∗
10)Y10 −

135

4
g2Y10 (6.E3)

Quartic couplings.

β(1)(Λ1) = 1696Λ2
1 + 412Λ1Λ2 +

279

8
Λ2
2 + 20Λ2

4 + 48Λ4Λ5 + 112Λ2
5 + 64Λ2

8

+ 4Λ8Λ9 − 96Λ1g
2 +

27

16
g4

(6.E4)

β(1)(Λ2) = 384Λ1Λ2 − 4Λ2
2 − 512Λ2

5 + Λ2
9 − 96Λ2g

2 − 3g4 (6.E5)

β(1)(Λ3) = 144Λ2
3 + 360Λ2

4 + 864Λ4Λ5 + 1440Λ2
5 + 16Λ2

10 − 54Λ3g
2 +

27

8
g4

+ 256Λ3 Tr (Y10Y
∗
10)− 256Tr (Y10Y

∗
10Y10Y

∗
10)

(6.E6)

β(1)(Λ4) = 1504Λ1Λ4 + 1728Λ1Λ5 + 206Λ2Λ4 + 276Λ2Λ5 + 96Λ3Λ4 + 96Λ3Λ5

+ 32Λ2
4 + 768Λ2

5 + 64Λ10Λ8 + 2Λ10Λ9 − 75Λ4g
2 +

15

8
g4

+ 128Λ4 Tr (Y10Y
∗
10)

(6.E7)

β(1)(Λ5) = 64Λ1Λ5 − 24Λ2Λ5 + 16Λ3Λ5 + 64Λ4Λ5 − 192Λ2
5 − 75Λ5g

2 − 9

16
g4

+ 128Λ5 Tr (Y10Y
∗
10)

(6.E8)

β(1)(Λ6) = 80Λ2
6 + 160Λ6Λ7 + 320Λ2

7 + 1440Λ2
8 + 90Λ8Λ9 +

105

32
Λ2
9 + 20Λ2

10

− 135

2
Λ6g

2 +
315

32
g4

(6.E9)

β(1)(Λ7) = 24Λ6Λ7 +
3

8
Λ2
9 −

135

2
Λ7g

2 +
9

8
g4 (6.E10)

β(1)(Λ8) = 1504Λ1Λ8 + 45Λ1Λ9 + 206Λ2Λ8 +
93

16
Λ2Λ9 + 68Λ6Λ8 + 2Λ6Λ9

+ 80Λ7Λ8 + 2Λ7Λ9 + 32Λ2
8 +

3

8
Λ2
9 + 20Λ10Λ4 + 24Λ10Λ5

− 327

4
Λ8g

2 +
9

8
g4

(6.E11)

β(1)(Λ9) = 64Λ1Λ9 + 20Λ2Λ9 + 4Λ6Λ9 + 16Λ7Λ9 + 64Λ8Λ9 + 17Λ2
9

− 327

4
Λ9g

2 + 12g4
(6.E12)

β(1)(Λ10) = 1440Λ4Λ8 + 45Λ4Λ9 + 1728Λ5Λ8 + 54Λ5Λ9 + 96Λ10Λ3 + 68Λ10Λ6

+ 80Λ10Λ7 + 8Λ2
10 −

243

4
Λ10g

2 +
27

8
g4 + 128Λ10 Tr (Y10Y

∗
10)

(6.E13)
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Scalar mass and cubic couplings.

β(1)(µ1) = 96Λ3µ1 + 32Λ10µ2 + 720Λ4µ3 + 864Λ5µ3 − 27g2µ1

+ 128µ1 Tr (Y10Y
∗
10) + 64 |τ1|2

(6.E14)

β(1)(µ2) =
45

4
τ22 + 40Λ10µ1 + 68Λ6µ2 + 80Λ7µ2 + 1440Λ8µ3 + 45Λ9µ3

− 135

4
g2µ2 + 80 |τ1|2

(6.E15)

β(1)(µ3) = 40Λ4µ1 + 48Λ5µ1 + 64Λ8µ2 + 2Λ9µ2 + 1504Λ1µ3 + 206Λ2µ3

− 48g2µ3 + τ22
(6.E16)

β(1)(τ1) = 4Λ6τ1 + 64Λ7τ1 + 8Λ10τ1 −
189

4
g2τ1 + 64τ1 Tr (Y10Y

∗
10) (6.E17)

β(1)(τ2) = 4Λ6τ2 − 48Λ7τ2 + 32Λ8τ2 + 29Λ9τ2 −
231

4
g2τ2 (6.E18)

E.2 16H ⊕ 45H and 45H models
We provide below the beta-functions for the simplified 16H ⊕ 45H model up to the one-loop level. The
two-loop contributions being used in the present analysis to establish a quantitative measure of pertur-
bativity (see Appendix C) can be found in the ancillary file.

Gauge coupling.
β(1)(g) = −70

3
g3 (6.E19)

Quartic couplings.

β(1)(λ1) = 424λ21 + 412λ1λ2 +
279

2
λ22 + 256λ28 + 128λ8λ9 − 96g2λ1 +

27

4
g4 (6.E20)

β(1)(λ2) = 96λ1λ2 − 4λ22 + 64λ29 − 96g2λ2 − 3g4 (6.E21)

β(1)(λ6) = 320λ26 + 160λ6λ7 + 80λ27 + 360λ28 + 180λ8λ9 +
105

2
λ29

− 135

2
g2λ6 +

315

128
g4

(6.E22)

β(1)(λ7) = 96λ6λ7 + 24λ29 −
135

2
g2λ7 +

9

8
g4 (6.E23)

β(1)(λ8) = 376λ1λ8 + 90λ1λ9 + 206λ2λ8 +
93

2
λ2λ9 + 272λ6λ8 + 64λ6λ9 + 80λ7λ8

+ 16λ7λ9 + 32λ28 + 24λ29 −
327

4
g2λ8 +

9

8
g4

(6.E24)

β(1)(λ9) = 16λ1λ9 + 20λ2λ9 + 16λ6λ9 + 16λ7λ9 + 64λ8λ9 + 136λ29

− 327

4
g2λ9 +

3

2
g4

(6.E25)

The beta-functions of λ1,2 in the case of the 45H -only model are simply found by taking the limit
λ6,7,8,9 → 0 in the above expressions. Note however that the gauge coupling beta-function reduces to

β(1)(g) = −24g3 . (6.E26)
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