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Notations

Some notations and preliminary definitions used throughout the thesis are as follows:

• N - the set of nonnegative integers from 0 to infinity.

• R - the set of reals.

• R
0
+ - the set of non-negative reals.

• R+ - the set of positive reals.

• C0 - the space of continuous functions.

• C1 - the space of continuously differentiable functions.

• C2 - the space of twice continuously differentiable functions.

• Clpw - the set of all piecewise left continuous functions.

• X - the set of left continuous and piecewise C1 functions.

• R
n - the set of n-dimensional Euclidean space with the norm | · |.

• | · | - the absolute value in R.

• M � 0 - the matrix M is symmetric and positive semidefinite.

• M ≻ 0 - the matrix M is symmetric and positive definite.
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viii Notation

• M � 0 - the matrix M is symmetric and negative semidefinite.

• M ≺ 0 - the matrix M is symmetric and negative definite.

• M⊤ - the transpose of the matrix M .

• L2(0, L) - the Hilbert space of square integrable scalar functions on (0, L) with the

corresponding norm ‖ · ‖ L2(0,L), defined by ‖ y ‖ L2(0,L) =
√∫ L

0
|y (x)|2dx.

• ‖q(t)‖2A - for every q(t) := q(·, t) ∈ L2 ((0, L);Rn), ‖q(t)‖2A =
∫ L

0
q⊤(t, x)Aq(t, x)dx

for a positive definite matrix A.

• Hn(0, L) - the Sobolev space of absolutely continuous functions y : (0, L) → R
n

whose spatial derivatives up to nth order are square integrable, defined by

‖ y ‖Hn(0,L)=

√∫ L

0

(
|y (x)|2 + |y′ (x)|2 + · · ·+ |y(n) (x)|

2
)
dx.

• Lp - the temporal norm ‖f‖Lp
=
(∫ +∞

0
|f(t)|pdt

) 1

p

, for p < +∞, and ‖f‖Lp
=

supt≥0 |f(t)|, for p = +∞.

• I - the identity matrix (of appropriate dimension).

• Mn×m - for a matrix M with n rows and m columns, we use the notation Mn×m to
specify the dimension of M (when relevant).

• Sym(A) - the symmetric part of matrix A, defined by Sym(A) = 1
2

(
A+ A⊤

)
.

• λmin(Θ) - the minimum eigenvalue of the matrix Θ.

• λmax(Θ) - the maximum eigenvalue of the matrix Θ.



Notation ix

• ⌈·⌉ - the ceiling function: for x ∈ R, ⌈x⌉ = min{n ∈ N | n ≥ x}.

• ∗ - the elements that can be inferred by symmetry in a matrix.

• ∂xf ≡ fx - the partial derivative of a function f with respect to the variable x.

• ∂tf ≡ ft - the partial derivative of a function f with respect to the variable t.

• ∂xtf ≡ fxt ≡
∂2f

∂t∂x
≡ ∂

∂t

(
∂f

∂x

)
- the partial derivative of a function ∂f

∂x
with respect to

the variable t.

• ∂txf ≡ ftx ≡ ∂2f

∂x∂t
≡ ∂

∂x

(
∂f

∂t

)
- the partial derivative of a function ∂f

∂t
with respect to

the variable x.





Résumé

Dans les systèmes d’ingénierie, la commande mise est généralement en œuvre sous la forme
d’un algorithme informatique et une attention particulière doit être portée à la gestion
rigoureuse de la mise en œuvre numérique. Pour les systèmes décrits par des Équations aux
Dérivées Partielles (en anglais Partial Differential Equations-PDEs), ce problème est très
difficile car la dynamique se produit dans un espace de dimension infinie et l’échantillonnage
induit des discontinuités difficiles à gérer d’un point de vue théorique.

Le problème de l’analyse de stabilité pour une classe de systèmes hyperboliques
linéaires avec des lois de contrôle distribuées à données échantillonnées est étudié dans
cette thèse. Les PDEs hyperboliques considérées sont dotées de lois d’équilibre qui sont
utilisées pour représenter la dynamique fondamentale de nombreux systèmes physiques.
Les questions suivantes se posent naturellement lorsque l’on pense à la stabilité de tels
systèmes dynamiques :

1. Est-il possible de garantir la stabilité d’un système hyperbolique linéaire des lois
d’équilibre avec des correcteurs échantillonnés spatio-temporels ?

2. Quelles sont les conditions à vérifier pour garantir la stabilité du système ?

Cette thèse vise à répondre aux questions ci-dessus. Nous proposons des méthodes
pour l’étude du système hyperbolique 1-D des lois d’équilibre basées sur les techniques
de Lyapunov. En utilisant la technique de Lyapunov-Razumikhin, un cas générique
dans lequel le contrôleur est discrétisé à la fois dans le temps et dans l’espace peut être
abordé. De plus, nous utilisons une méthode de modélisation impulsive pour obtenir des
conditions de stabilité exponentielle globale pour une classe de systèmes hyperboliques
linéaires échantillonnés.

Présentons brièvement les principales contributions de cette thèse.

Contributions et structure de la thèse

Ce manuscrit comprend quatre chapitres, ainsi qu’une conclusion avec des perspectives.

1. Une introduction au domaine des systèmes hyperboliques à données échantillonnées
est présentée dans le Chapitre 1. Dans ce chapitre, nous présentons le contexte de
notre travail, la motivation ainsi que plusieurs résultats liés au contrôle continu aux
bords et dans le domaine pour les systèmes hyperboliques. Une revue de la littérature

1



2 Summary

pour le contrôle à données échantillonnées des systèmes paraboliques et hyperboliques
est également fournie. Enfin, nous formalisons les principaux objectifs de la thèse.

2. Dans le Chapitre 2, nous proposons des méthodes pour analyser la stabilité
d’une classe de systèmes hyperboliques linéaires avec des correcteurs à données
échantillonnées distribuées. On obtient des conditions suffisantes basées sur les
techniques de Lyapunov pour la stabilité pratique locale (Rε-stabilité) du système,
exprimée sous forme d’inégalités matricielles linéaires (en anglais Linear Matrix
Inequalities-LMIs).

3. Dans le Chapitre 3, nous étendons les résultats du Chapitre 2 pour les correcteurs
qui présentent à la fois la discrétisation temporelle et spatiale, en utilisant une
approche basée sur la méthode de Lyapunov-Razumikhin. Nous proposons des
conditions suffisantes pour la stabilité pratique locale (Rε-stabilité) pour les systèmes
hyperboliques linéaires de lois d’équilibre proposés en reformulant le système original
sous une forme entrée-sortie équivalente avec une boucle de contrôle en temps continu
et des opérateurs représentant les erreurs de discrétisation (erreurs d’échantillonnage
spatio-temporelles). De plus, le cas particulier où l’espace n’est pas discrétisé est
également considéré.

4. Dans le Chapitre 4, nous traitons le problème global de stabilité exponentielle pour
une classe de systèmes hyperboliques linéaires échantillonnés. En utilisant l’approche
impulsive, la relation entre l’intervalle d’échantillonnage, l’état du système et son
vecteur échantillonné est caractérisée par une Contrainte Quadratique Intégrale (en
anglais Integral Quadratic Constraint-IQC). L’IQC obtenue est utilisée pour déduire
des critères de stabilité numériquement tractable.

Tout au long de la thèse, nous utilisons la méthode des représentations entrées-sorties et
la méthode impulsive pour analyser les conditions de stabilité des systèmes hyperboliques
avec commande à données échantillonnées. De plus, la méthode de Lyapunov-Razumikhin
peut réduire la conservation de l’analyse. La stabilité exponentielle globale peut également
être considérée en utilisant un système impulsive augmenté.



Summary

In engineering systems, the control is usually implemented as a computer algorithm and
attention has to be paid to rigorously handle the digital implementation. For systems
described by Partial Differential Equations (PDEs), this problem is very challenging since
the dynamics occur in an infinite dimensional space and sampling induces discontinuities
which are difficult to handle from a theoretical point of view.

The problem of stability analysis for a class of linear hyperbolic systems with distributed
sampled-data control laws is investigated in this thesis. The considered PDEs are
hyperbolic systems of balance laws which are used to represent the fundamental dynamics
of many systems in physics. The following questions arise naturally when thinking about
the stability of such dynamical systems:

1. Is it possible to guarantee the stability of linear hyperbolic systems of balance laws
with spatio-temporal sampled controllers?

2. What are the conditions that have to be checked to guarantee the stability of such
systems?

This thesis aims at answering the above questions. We propose methods for the study
of 1-D hyperbolic system of balance laws based on Lyapunov techniques. By using the
Lyapunov-Razumikhin technique, a generic case in which the controller is discretized both
in time and space can be addressed. Moreover, we employ an impulsive modeling method
to derive global exponential stability conditions for a class of sampled linear hyperbolic
systems.

This manuscript includes four chapters, as well as a conclusion and perspectives.

An introduction to the domain of sampled-data hyperbolic system is presented in
Chapter 1. In this chapter, we introduce the context of our work, the motivations as well as
several results related to continuous time boundary and in-domain control for hyperbolic
systems. A literature review for sampled-data control of parabolic and hyperbolic systems
is also given. At last, we formalize the main objectives of the thesis.

In Chapter 2, we provide methods for analysing the stability of a class of linear
hyperbolic systems of balance laws with distributed sampled-data controllers. Sufficient
conditions based on Lyapunov techniques for the local practical stability (Rε-stability) of
the system expressed as Linear Matrix Inequalities (LMIs) are obtained.

3



4 Summary

In Chapter 3, we extend the results from Chapter 2 for controllers with both time and
space discretization based on the Lyapunov-Razumikhin method. We introduce sufficient
conditions for the local practical stability (Rε-stability) of the proposed linear hyperbolic
systems of balance laws by recasting the original system into an equivalent input-output
form with a continuous time control loop and operators representing the discretization
errors (spatio-temporal sampling errors). In addition, the special case where the space is
not discretized is also considered.

In Chapter 4, we deal with the global exponential stability problem for a class of sampled
linear hyperbolic systems. By employing the impulsive approach, the relation between the
sampling interval, the system state and its sampled vector is characterized by an Integral
Quadratic Constraint (IQC). The acquired IQC is utilized to derive numerically tractable
stability criteria.

Throughout the thesis, we use the input-output and the impulsive modeling methods
to provide stability conditions for the hyperbolic systems with sampled-data control. In
addition, the Lyapunov-Razumikhin method can reduce the conservatism of the analysis
methods. The global exponential stability can also be considered by using an augmented
impulsive system.
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6 State of the art and objectives

General introduction

This thesis is devoted to the stability analysis for a class of linear hyperbolic system with
distributed sampled-data control. We propose methods for the study of 1-D hyperbolic
system with balance laws based on Lyapunov techniques. A generic case in which the
controller is discretized both in time and space can be addressed by using the Lyapunov-
Razumikhin technique. Furthermore, we employ an impulsive modelling method to derive
global exponential stability conditions for a class of sampled linear hyperbolic systems.
This chapter is dedicated to an introduction to the domain of sampled-data hyperbolic
system. In the following sections, we introduce the context of our work, the motivation as
well as a literature review for sampled-data control of parabolic and hyperbolic systems,
respectively. At last, we formalize the main objectives of the thesis.

1.1 Context and motivation

In real life, due to the increasing complexity of controlled engineering systems, Large-Scale
Systems (LSS) are frequently encountered in many fields, such as cyber-physical systems,
power engineering, biology systems, micro-electro mechanics and so on. Modelling of these
phenomena often leads to very high-order systems consisting of sets of interconnected
dynamics. Such systems are widely distributed in space and the subsystems are
interdependent, which poses huge challenges to analysis, design, and control problems.
The study of such systems is very important because even small improvements in LSS

operation can bring substantial savings and significant economic effects.

PDEs provide a stylish way to handle LSS in various domains [82, 131, 70, 4, 89]: the
flow of rivers [82], the vibrations of beams [131], the road traffic [4], etc. When controlling
such systems, the use of communications and computational resources is ubiquitous. The
control is usually implemented as a computer algorithm and attention has to be paid to
rigorously handle the digital implementation. Sensor and actuator data is communicated
over digital channels with finite communication capacity. It is important to take into
account such limitations. Therefore, extending the Sampled-Data Control Theory to PDEs

is nowadays a very active topic [79, 65]. An important problem in this context is to
provide methods for estimating the Maximum Allowable Sampling Interval (MASI) for
which the sampled-data implementation preserves the characteristics of the continuous-
time controller. For PDEs, this problem is very challenging since the dynamics occur in
an infinite dimensional space and sampling induces discontinuities which are difficult to
handle from a theoretical point of view.

Roughly speaking, the study of sampled-data systems can be carried out using four
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basic types of models (see [51] for a survey): discrete-time [61], time-delay [109], input-
output [42] and hybrid [99] models. A large number of results are available in the case of
sampled-data Ordinary Differential Equations (ODEs) [57]. Compared to the ODE case,
fewer results are suitable for the case of PDEs. For PDEs with distributed sampled-data
control, we can mention the results in [105, 107, 37] and [60] where the case of parabolic
systems was studied using the time-delay method.

For hyperbolic systems, results for sampled-data control are rare. Event-triggered
control was studied in [31] for linear conservation laws and in [32] for systems with
quantization. A backstepping approach for event-triggered control was developed in
[30]. In [22] the stability analysis problem was investigated for hyperbolic PDEs via
a looped-functional method. See also [63] for linear transport PDEs with non-local
terms. Nevertheless, most of the existing papers address cases of boundary sampled-
data control. Despite the frequent occurrence of distributed sampled-data controllers in
practical applications, the results in this context are sparse and only particular cases of
hyperbolic system have been addressed in the literature [121, 119]. In [121] a sampled-data
observer was studied for a one-dimensional semi-linear wave equation. Therein, sufficient
conditions for the stability of the estimation error are derived by using the time-delay
approach. A network-based distributed controller was designed for the damped semi-linear
beam equation in [119].

As follows, before presenting more details in several existing recent works on sampled-
data control of PDEs, we first introduce some results concerning the continuous time
(boundary and in-domain) control of hyperbolic systems (Section 1.2). The remaining
presentation consists of 4 sections. Section 1.3 presents some results concerning the
distributed sampled-data control of parabolic systems, which have impact for the study of
hyperbolic systems. Section 1.4 is concerned with the description of sampled-data control
analysis methods for hyperbolic systems, including boundary sampled-data control, event-
triggered boundary control and distributed sampled-data control. We mainly give the
problem formulation and stability conditions in the existing papers. Then in Section 1.5
we present our main goal as a result of the literature review.

1.2 Continuous-time control for hyperbolic systems

In this section, we will present several results related to continuous time boundary and in-
domain control for hyperbolic systems. We first introduce briefly the hyperbolic systems
under study.



8 State of the art and objectives

1.2.1 Hyperbolic systems

Among various classes of systems described by infinite dimensional systems and PDEs,
hyperbolic PDEs stand out as relevant in various domains. They have been widely used
to model the dynamics of physical systems: hydrodynamical models for semiconductors
[1], shallow waters [93], traffic flows [17], age-dependent epidemic models [66], etc. In all
of these applications described above, although natural dynamics are three-dimensional,
dynamics can be effectively expressed by the one-dimensional hyperbolic balance laws,
since the main phenomena evolve in a privileged coordinate dimension and the phenomena
in other directions are negligible. This motivates the kernel of this thesis to be the 1-D
hyperbolic systems with balance laws. Referring to [4] and the references therein, we give
a brief mathematical background to hyperbolic systems in the sequel. In this thesis, we
focus on a class of linear hyperbolic systems of balance laws described by the following
PDE:

yt(x, t) + Λyx(x, t) + Υy(x, t) = 0, x ∈ [0, L], t ∈ [0,+∞), (1.1)

where y : [0, L]× [0,+∞) → R
n, Υ is a constant matrix in R

n×n, Λ is a diagonal matrix in
R

n×n and defined as

Λ =

(
Λ+ 0

0 −Λ−

)

with
Λ+ = diag {λ1, . . . , λm} ,

Λ− = diag {λm+1, . . . , λn} ,
λi > 0 ∀ i = 1, . . . , n.

The boundary condition is defined as
(

y+(0, t)

y−(L, t)

)
= G

(
y+(L, t)

y−(0, t)

)
, t ∈ [0,+∞) (1.2)

where G is a constant matrix in R
n×n and the initial condition is defined as

y(x, 0) = y0(x), x ∈ [0, L]. (1.3)

System (1.1)-(1.2) can be related to system

yt(x, t) + Λyx(x, t) +My(x, t) + u(x, t) = 0, x ∈ [0, L], t ∈ [0,+∞) (1.4)

with boundary condition (1.2) and in-domain control

u(x, t) = Ky(x, t), (1.5)

or to system (1.1) subject to boundary condition
(

y+(0, t)

y−(L, t)

)
= B

(
y+(L, t)

y−(0, t)

)
+ u(x, t), t ∈ [0,+∞) (1.6)
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with boundary control

u(x, t) = K

(
y+(L, t)

y−(0, t)

)
, (1.7)

where M,B,K are constant matrices in R
n×n.

Controlling and stabilizing these systems is an important and fundamental issue in the
field of control theory.

1.2.2 Basic stability conditons

In the following, we present the definition of exponential stability in L2-norm, which is
useful in the subsequent theorems.

Definition 1.1 (Bastin 2016 [4])
System (1.1)-(1.2) is exponentially stable in L2-norm if there exist ν > 0 and C > 0 such
that, for every y0 ∈ L2 ((0, L);Rn), the L2-solution of the system (1.1)-(1.3) satisfies

‖y(·, t)‖L2((0,L);Rn) ≤ Ce−νt ‖y0‖L2((0,L);Rn) , ∀t ∈ [0,+∞).

Based on the early stability results in [101, 103], the authors in [4] adopted a L2

Lyapunov function candidate:

V (y) =

∫ L

0

y⊤Q(x)ydx

with

Q(x) , diag
{
Q+(x), Q−(x)

}
,

Q+ ∈ C1
(
[0, L];Rm×m

)
,

Q− ∈ C1
(
[0, L];R(n−m)×(n−m)

)
. (1.8)

From the time derivative of function V along the solutions of the system (1.1)-(1.3), the
following stability result is obtained.

Proposition 1.1 (Bastin 2016 [4])
The solution y(x, t) of the system (1.1)-(1.3) exponentially converges to 0 in L2-norm if
there exists a map Q satisfying (1.8) such that the following (LMIs) hold:

1.

(
Q+(L)Λ+ 0

0 Q−(0)Λ−

)
−G⊤

(
Q+(0)Λ+ 0

0 Q−(L)Λ−

)
G � 0
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2. −(Q(x)Λ)x +Q(x)Υ + Υ⊤Q(x) ≻ 0, ∀x ∈ [0, L].

In the special case where
m = n,Λ = Λ+ ∈ R

n×n

and

Q(x) , P (µx) = diag
{
pie

−µx
}
, pi > 0 for i = 1, . . . , n, (1.9)

the following theorem is a particular case of Proposition 1.1 with an appropriate choice of
the weighting matrix Q(x) characterizing the Lyapunov function.

Theorem 1.1 (Bastin 2016 [4])
If there exists P ∈ Rn×n satisfying (1.9) such that

Υ⊤P + PΥ � 0,

and ∥∥∆G∆−1
∥∥ < 1

with ∆ ,
√
P |Λ|, then the system (1.1)-(1.3) is exponentially stable in L2-norm.

This result in [4] is an important stepping stone for various control design methods.

1.2.3 Boundary control

In this subsection, we present some results related to boundary control for 1-D hyperbolic
systems. The asymptotic stability of a class of time-varying hyperbolic PDEs was
studied in [100] by using Input-to-State-Stable (ISS)-Lyapunov functions. In [130],
the exponential stability for a class of linear hyperbolic systems with relaxation was
considered. Proportional-Integral (PI) boundary feedback control was introduced for
hyperbolic systems in [137].

1.2.3.1 Time-varying hyperbolic PDEs

For time-varying hyperbolic PDEs, the authors in [100] have designed ISS-Lyapunov
functions through a strictification approach. They have ensured the asymptotic stability for
the general case, as well as robustness properties with respect to the additive perturbations.
The following linear PDEs was considered

∂y

∂t
(z, t) + Λ(z, t)

∂y

∂z
(z, t) = F (z, t)y(z, t) + δ(z, t) (1.10)
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with boundary conditions
(

y+(0, t)

y−(L, t)

)
= K

(
y+(L, t)

y−(0, t)

)
(1.11)

and the initial condition

y(z, 0) = y0(z), ∀z ∈ (0, L), (1.12)

where z ∈ [0, L], t ∈ [0,+∞) and Λ(z, t) = diag{λ1(z, t), . . . , λn(z, t)} is a diagonal matrix
in R

n×n whose m first diagonal terms are nonnegative and the n−m last diagonal terms
are nonpositive. y = [ y+, y− ]⊤, y+ ∈ R

m, y− ∈ R
n−m and K ∈ R

n×n is a constant matrix
representing a boundary control law. The function δ is a disturbance of class C1, F is a
periodic function with respect to t of period T and of class C1,Λ is a function of class C1,
periodic with respect to t of period T . X0 is a function [0, L] :→ R

n of class C1.

Since m < n, y(z, t) can be replaced by [y+(z, t), y−(L− z, t)]⊤, then the boundary
conditions (1.11) becomes

y(0, t) = Ky(L, t). (1.13)

The initial condition (1.12) satisfies the following zero-order compatibility condition:
(

y0+(0)

y0−(L)

)
= K

(
y0+(L)

y0−(0)

)

and the following first-order compatibility condition:



−λ1(0, 0)
dX0

1

dz
(0) + (F (0, 0)X0(0) + δ(0, 0))1

...

−λm(0, 0)
dX0

m

dz
(0) + (F (0, 0)X0(0) + δ(0, 0))m

−λm+1(L, 0)
dX0

m+1

dz
(L) + (F (L, 0)X0(L) + δ(L, 0))m+1

...

−λn(L, 0)
dX0

n

dz
(L) + (F (L, 0)X0(L) + δ(L, 0))n




= K




−λ1(L, 0)
dX0

1

dz
(L) + (F (L, 0)X0(L) + δ(L, 0))1

...

−λm(L, 0)
dX0

m

dz
(L) + (F (L, 0)X0(L) + δ(L, 0))m

−λm+1(0, 0)
dX0

m+1

dz
(0) + (F (0, 0)X0(0) + δ(0, 0))m+1

...

−λn(0, 0)
dX0

n

dz
(0) + (F (0, 0)X0(0) + δ(0, 0))n




.

Based on [84], the authors introduced the following assumption.
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Assumption 1.1 (Prieur 2012 [100])
For all t ≥ 0 and for all z ∈ [0, L], all the entries of the diagonal matrix Λ(z, t) are
nonnegative. There exist a symmetric positive definite matrix Q, a real number α ∈ (0, 1),
a continuous real-valued function r, periodic of period T > 0 such that the constant

B =

∫ T

0

[
max{r(m), 0}

‖Q‖
+

min{r(m), 0}

λQ

]
dm

where λQ is the smallest positive eigenvalue of Q. Moreover, for all t ≥ 0 and for all
z ∈ [0, L], the following inequalities:

Sym
(
αQΛ(L, t)−K⊤QΛ(0, t)K

)
≥ 0,

Sym(QΛ(z, t)) ≥ r(t)I,

Sym

(
Q
∂Λ

∂z
(z, t) + 2QF (z, t)

)
≤ 0

are satisfied.

In the light of the above assumption, the author constructed an ISS-Lyapunov function
to analyze the robustness of a linear time-varying hyperbolic PDE with uncertainty. The
results are summarized in the following theorem.

Theorem 1.2 (Prieur 2012 [100])
Assume the system (1.10) with the boundary conditions (1.13) satisfies Assumption 1.1.
Let µ be any real number such that

0 < µ ≤ −
1

L
ln(α).

Then the function U : L2(0, L)× R → R defined, for all φ ∈ L2(0, L) and t ∈ R, by

U(φ, t) = exp

(
1

T

∫ t

t−T

∫ t

ℓ

q(m)dmdℓ

)∫ L

0

φ(z)⊤Qφ(z)e−µzdz

where q is defined as

q(t) = µ

[
max{r(t), 0}

‖Q‖
+

min{r(t), 0}

λQ

]
−

µB

2T
,

is an ISS-Lyapunov function for the system (1.10) with the boundary conditions (1.13).

This is a very generic result with potential to several class of 1-D hyperbolic systems
of balance laws.
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In [100], the authors applied their result to two problems. The first one belongs to
a benchmark hyperbolic equation, the second one pertains Saint-Venant-Exner equations.
It will be interesting to experimentally verify the prediction of the offset inferred from
the proposed ISS-Lyapunov function. Recently, the authors in [130] studied a linear
hyperbolic system of balance laws with boundary disturbances in one dimension by using
an explicit ISS-Lyapunov function in L2-norm. In addition, the numerical discretization
and stabilization of a balance law with boundary disturbance were also discussed in [130].

1.2.3.2 Hyperbolic systems with relaxation

Boundary stabilization for 1-D linear hyperbolic systems with relaxation was considered in
[50]. This seems to be the first place where the structure is explicitly used to demonstrate
exponential stability. Inspired by [24] and [133], the authors in [50] studied a 1-D linear
system

yt(t, x) + Ayx(t, x) +By(t, x) = 0 (1.14)

where x ∈ [0, 1] and t ≥ 0, y = [u, q]⊤, u : [0,∞)× [0, 1] → R
n−r, q : [0,∞)× [0, 1] → R

r,

A :=

(
a b

c d

)
∈ R

n×n, B :=

(
0 0

0 e

)
∈ R

n×n, e ∈ R
r×r.

With respect to system (1.14), the authors used the following two assumptions.

Assumption 1.2 (Herty 2016 [50])
There exists a symmetric positive definite matrix A0 ∈ R

n×n such that

A0

(
a b

c d

)
is symmetric and A0 =

(
X1 0

0 X2

)

with X1 ∈ R
(n−r)×(n−r) and X2 ∈ R

r×r.

Assumption 1.3 (Herty 2016 [50])
The matrix

X2e+ e⊤X2

is positive definite.

Assumptions 1.2 and 1.3 are exactly the structural stability conditions proposed in [134]
for the general system

Yt + AYx = QY.
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The coefficient matrix A can be diagonalized with a transformation matrix T ∈ R
n×n such

that

T−1AT = Λ,Λ :=

(
Λ+ 0

0 Λ−

)
,

(
ξ+
ξ−

)
= T−1Y, (1.15)

where Λ± are diagonal and contain the positive and negative eigenvalues of A, the boundary
conditions are specified as

ξ+(t, 0) =K00ξ+(t, 1), ξ+ ∈ R
m,

ξ−(t, 1) =K11ξ−(t, 0), ξ− ∈ R
n−m. (1.16)

Further, equation (1.14) is accompanied by appropriate initial conditions

y(0, x) = y0(x). (1.17)

The main result of [50] on exponential stability was stated by the following theorem.

Theorem 1.3 (Herty 2016 [50])
Suppose the system (1.14) fulfills the assumptions 1.2 and 1.3. Then there exist K00 and
K11 such that the system (1.14) together with (1.16) and (1.17) is exponentially stable.

In order to prove Theorem 1.3, a suitable Lyapunov function was given below

V (t) =

∫ 1

0

Y ⊤ (αA0 + µ(x)) Y dx

= α‖(u, q)(t)‖2A0
+ ‖(u, q)(t)‖2µ

for some α > 0 and a family of matrices µ(x) ∈ R
n×n given by

µ(x) := (T−1)⊤e(−Λx)T−1

for x ∈ [0, 1] and T and Λ given by equation (1.15).

Instead of requiring the source term to be marginally diagonally stable as in [24], the
authors applied a different method to explore the relaxation construction. This result was
applied to the boundary stabilization problem for water flows in open canals.

1.2.3.3 Hyperbolic systems under PI boundary control

The PI boundary feedback control for the class of linear hyperbolic systems of balance
laws has been investigated in [137]. The authors developed exponential stability conditions
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of closed-loop systems by means of a new weighted Lyapunov function. The work focused
on the 1-D n× n linear hyperbolic systems as shown below

yt + Λyx = My, t ∈ [0,∞), x ∈ (0, L) (1.18)

where y : (0, L) × [0,∞) → R
n,Λ ∈ R

n×n and M ∈ R
n×n. Λ = diag{Λ+,−Λ−}, Λ+ =

diag{λ1, · · · , λm}, Λ− = diag{λm+1, · · · , λn}, 1 ≤ m ≤ n and λi > 0, ∀ i ∈ {1, · · · , n}.

The input and the output of the system (1.18) on the left and the right boundaries
were defined by

yin(t) ,

[
y+(0, t)

y−(L, t)

]
, yout(t) ,

[
y+(L, t)

y−(0, t)

]

where y+ = [y1, . . . , ym]
⊤ ∈ R

m and y = [ym+1, . . . , yn]
⊤ ∈ R

n−m .

In [137], the authors considered the following type PI feedback control

yin(t) = Kpyout (t) +KI

∫ t

0

yout (τ)dτ (1.19)

where Kp ∈ R
n×n and KI ∈ R

n×n are matrix gains.

The initial condition was considered of the following form

y(x, 0) = y0(x), x ∈ (0, L).

Theorem 1.4 (Zhang 2019 [137])
The linear hyperbolic system (1.18)-(1.19) is exponentially stable in L2-norm if there exist
a diagonal matrix P1 ∈ R

n×n, a symmetric matrix P2 ∈ R
n×n and a matrix P3 ∈ R

n×n, a
real constant µ, such that the following matrix inequalities hold, for all x ∈ [0, L],

P =

[
P1 P3

∗ P2

]
> 0,

Ωe(x) =




Ωe

11(x) Ωe
12(x) P3(x)

∗ Ωe
22 Ωe

23

∗ ∗ Ωe
33



 < 0
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where

Ωe
11(x) = M⊤P1(x) + P1(x)M − 2µ|Λ|P1(x),

Ωe
12(x) = M⊤P3(x)− µ|Λ|P3(x),

Ωe
22 =

1

L

(
K⊤

I |Λ|P1E1KI +K⊤
I |Λ|P3E3 + E3P

⊤
3 |Λ|KI

)
,

Ωe
23 =

1

L

(
K⊤

I |Λ|P1E1Kp − |Λ|P3E4 + E3P
⊤
3 |Λ|Kp

)
+ P2,

Ωe
33 =

1

L

(
K⊤

p |Λ|P1E1Kp − |Λ|P1E2

)

with

P1(x) = P1 diag
{
e2µxIm, e

2µxIn−m

}
,

P3(x) = P3 diag
{
e−µxIm, e

µxIn−m

}
,

|Λ| = diag
{
Λ+,Λ−

}
,

E1 = diag
{
Im, e

2µLIn−m

}
,

E2 = diag
{
e−2µLIm, In−m

}
,

E3 =
√

E1, E4 =
√
E2.

In order to prove the exponential stabilization of system (1.18)-(1.19) with the
PI controller, the authors constructed the following candidate Lyapunov function V :

L2((0;L);Rn)× R
n → R

V (y, ζ) =

∫ L

0

[
y⊤P1(x)y + y⊤P3(x)ζ + ζ⊤P⊤

3 (x)y
]
dx+ Lζ⊤P2ζ

=

∫ L

0

[
y

ζ

]⊤ [
P1(x) P3(x)

∗ P2

] [
y

ζ

]
dx

where ζ : [0,∞) → R is the integral of the output of the system (1.18), i.e.,

ζ(t) =

∫ t

0

yout (τ)dτ.
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Their results were illustrated by the linearized Aw-Rascle-Zhang traffic flow model. The
issue of feedback stabilization and disturbance rejection under PI boundary control for a
class of density-flow systems has been addressed in [5], which provided explicit necessary
and sufficient stability conditions in the frequency domain.

1.2.4 Examples of in-domain control problems

Most of the contributions of hyperbolic equation control design involve boundary control
rather than in-domain control. For quasi-linear first-order hyperbolic systems (such as
convective reaction processes) and parabolic systems (such as diffusion reaction processes),
control methods that directly consider the process distribution characteristics have
been developed [15]. Next, we will present two particular applications considering the
stabilization of hyperbolic systems with in-domain control.

1.2.4.1 Freeway traffic flow

For traffic consisting of both Adaptive Cruise Control-equipped (ACC-equipped) and
manual vehicles, the problem of feedback control design for stabilization of traffic flow
in congested regime by time-gap manipulation has been addressed in [6]. The following
2× 2 nonlinear first-order hyperbolic PDEs with in-domain actuation was considered

ρt(x, t) =− ρx(x, t)v(x, t)− ρ(x, t)vx(x, t),

vt(x, t) =−

(
v(x, t) + ρ(x, t)

∂Vmix (ρ(x, t), hacc(x, t))

∂ρ

)
,

× vx(x, t) +
Vmix (ρ(x, t), hacc(x, t))− v(x, t)

τmix

,

qin =ρ(0, t)v(0, t),

vt(D, t) =
Vmix (ρ(D, t), hacc(D, t))− v(D, t)

τmix
(1.20)

where

Vmix (ρ, hacc) = τmix

(
α

τacc
Vacc (ρ, hacc) +

1− α

τm
Vm(ρ)

)

Vacc (ρ, hacc) =
1

hacc

(
1

ρ
− L

)
, ρmin < ρ <

1

L

Vm(ρ) =
1

hm

(
1

ρ
− L

)
, ρmin < ρ <

1

L

τmix =
1

α
τacc

+ 1−α
τm

.
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Here ρ is the traffic density, x ∈ [0, D] is the spatial variable, D > 0 is the length of
a freeway, t ≥ 0 is the time, 0 < v ≤ vf is the traffic speed, where vf is the free-flow
speed, L > 0 is the average effective length of each vehicle, α ∈ [0, 1] is the percentage
of ACC-equipped vehicles with respect to total vehicles, ρmin > 0 is the lowest value for
density for which the model is accurate. qin > 0 is a constant external inflow, τacc , τm > 0

are the time constants of the ACC-equipped and manual vehicles, respectively, hm > 0 is
the time-gap of manual vehicles and hacc > 0 is the time-gap of ACC-equipped vehicles
(which is the control input).

By linearizing and diagonalizing the system, the authors designed the following in-
domain controller

hacc(x, t) = h̄acc +
1

c3

(
−c1e

−
c2x

v̄ z̃(x, t) + kṽ(x, t)
)

= h̄acc +
1

c3
(−c1ρ̃(x, t) + (k − c2) ṽ(x, t)) (1.21)

to get

z̃t(x, t) + v̄z̃x(x, t) = c2z̃(x, t)− ke
c2x

v̄ h̄mixρ̄
2ṽ(x, t), (1.22)

ṽt(x, t)− c4ṽx(x, t) = −kṽ(x, t), (1.23)

z̃(0, t) = −L
ρ̄2

v̄
ṽ(0, t), (1.24)

ṽt(D, t) = −kṽ(D, t) (1.25)

where h̄acc and ρ̄ are steady-state time-gap and steady density for ACC-equipped vehicles,

v̄ = qin/ρ̄, k > 0 being arbitrary, c1 = 1
ρ̄2τmixh̄mix

, c2 = 1
τmix

, c3 = α
τacc h̄2

acc

(
1
ρ̄
− L

)
, c4 =

L
h̄mix

, z̃(x) = e
c2x

v̄

(
ρ̃(x) + h̄mixρ̄

2ṽ(x)
)
, ṽ = v − v̄, ρ̃ = ρ− ρ̄.

System (1.22)-(1.23) has a form which is similar to (1.1). Applying an input-output
approach, the following result was established.

Theorem 1.5 (Bekiaris 2020 [6])
System (1.23), (1.25) is Lp, p ∈ [1,∞], convectively stable in the sense that for any 0 ≤

x2 < x1 ≤ D such that ṽ(x1) ∈ Lp and ṽx(x1) ∈ Lp, the following hold

‖ṽ (x2)‖Lp
< ‖ṽ (x1)‖Lp

,

‖ṽx (x2)‖Lp
< ‖ṽx (x1)‖Lp

.

The control design method proposed by the authors was used to stabilize traffic flow
in congested conditions. The closed-loop system has been proven to be convectively stable
under the developed control law. In the future, it will be interesting to consider the problem
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of nonlinear feedback control design. In addition, since the vehicles have decentralized
actuators and sampling phenomenon cannot be ignored. It would be interested to study
the sampling implementation of the controller (1.21).

1.2.4.2 Nonisothermal plug-flow reactor

In [16], the authors presented an output feedback control methodology which was
implemented on a nonisothermal plug-flow reactor through simulations. The nonisothermal
plug-flow reactor is modeled by three quasi-linear hyperbolic PDEs:

∂CA

∂t
=− vl

∂CA

∂z
− k10e

−E1
RTr CA,

∂CB

∂t
=− vl

∂CB

∂z
+ k10e

−E1
RTr CA − k20e

−E2
RTr CB,

∂Tr

∂t
=− vl

∂Tr

∂z
+

(−∆Hr1)

ρmcpm
k10e

−E1
RTr CA +

(−∆Hr2)

ρmcpm
k20e

−E2
RTr CB

+
Uw

ρmcpmVr

(Tj − Tr) (1.26)

subject to the following boundary conditions:

CA(0, t) = CA0, CB(0, t) = 0, Tr(0, t) = TA0

where k10, k20, E1, E2 denote the kinetic constants and the activation energies of the
reactions, vl is the superficial fluid velocity, R is the ideal gas constant, CA, CB denote
the concentrations of the species A and B in the reactor and Tr denotes the temperature
of the reactor. ∆Hr1 ,∆Hr2 denote the enthalpies of the two reactions, ρm, cpm denote the
density and heat capacity of the fluid in the reactor, Vr denotes the volume of the reactor,
Uw denotes the heat transfer coefficient and Tj denotes the spatially uniform temperature
in the jacket.

The control objective is the regulation of the concentration of the product species B

throughout the reactor by manipulating the jacket temperature Tj. In practice, Tj is
usually operated indirectly through control of the jacket inlet flow rate. Setting:

u = Tj − Tjs, x1 = CA, x2 = CB, x3 = Tr, y = CB

where Tjs is the steady-state profile for Tj. The process model of (1.26) can be expressed
in the following form:

∂x

∂t
= A(x)

∂x

∂z
+ f(x) + g(x)u,

y = h(x), q = p(x) (1.27)
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with the boundary condition:

C1x(a, t) + C2x(b, t) = R(t) (1.28)

and the initial condition:

x(z, 0) = x0(z) (1.29)

where x(z, t) ∈ Hn ([a, b];Rn) is the vector of state variables, z ∈ [a, b] ⊂ R is the position
and t ∈ [0,∞) is the time, u(z, t) denotes the manipulated variable, y(z, t) denotes the
controlled variable and q(z, t) denotes the measured variable. A(x) is a sufficiently smooth
matrix, f(x) and g(x) are sufficiently smooth vector functions, h(x), p(x) are sufficiently
smooth scalar functions, R(t) is a column vector that is assumed to be a sufficiently smooth
function of time, x0(z) ∈ H ([a, b];Rn) and C1, C2 are constant matrices of dimension n×n.

It is important to remark that, linearizing system (1.27) around the equilibrium, we
obtain a system of the form (1.1). By introducing a concept of characteristic index for the
synthesis of distributed state feedback laws, the output tracking in distributed parameter
system (1.27)-(1.29) was guaranteed by combining the theory of PDEs with methods of
geometric control. A distributed control law was obtained. In [16], the conditions to ensure
the exponential stability of the closed-loop system were derived.

It is significant to highlight the fact that for chemical reactors, networked control [110,
138, 58] implementations are usual used. The impact of data communication can not
be ignored, especially when wireless networks are being used [7]. In this context, it is of
interest to study the impact of the sampled-data control implementation on the overall
system behaviour.

1.3 Sampled-data control for parabolic systems

In this section, we present several results considering the stability of sampled-time parabolic
PDEs. This results are of interest since the proposed techniques could also be relevant in
the case of sampled-time hyperbolic PDEs.

Parabolic PDEs are used to describe a wide variety of time-dependent phenomena
[71, 40, 33] including heat conduction [34], particle diffusion [115] and pricing of derivative
investment instruments [52]. The theory of the heat equation was first developed in [34]
for the purpose of modeling how a quantity such as heat diffuses through a given region.
In modern science, the first systematic experimental study of diffusion was performed
by Thomas Graham in [115]. He studied diffusion in gases and the main mathematical
description of the phenomenon was described by him in 1829. Motivations can also be
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found in other domains. In [52], the authors briefly discussed the logic behind the method
of pricing securities that leads to the use of parabolic PDEs. Few results are allowable
for the study of sampled-data parabolic systems. The study of parabolic systems with
distributed sampled-data control has been developed in [37, 107, 60]. In the following, the
main contributions in three mentioned papers will be presented in detail.

1.3.1 Semilinear diffusion equations

For parabolic systems governed by uncertain semilinear diffusion equations with distributed
control on a finite interval, the sampled-data controllers have been investigated in [37]. The
authors considered the following semilinear scalar diffusion equation

zt(x, t) =
∂

∂x
[a(x)zx(x, t)] + φ(z(x, t), x, t)z(x, t) + u(x, t), t ≥ t0, x ∈ [0, l], l > 0 (1.30)

with Dirichlet boundary conditions

z(0, t) = z(l, t) = 0, (1.31)

or with mixed boundary conditions

zx(0, t) = γz(0, t), z(l, t) = 0, γ ≥ 0, (1.32)

where γ may be unknown. In (1.30), u(x, t) is the control input. The functions a and φ

are of class C1 and may be unknown. These functions satisfy the inequalities a ≥ a0 >

0, φm ≤ φ ≤ φM , where a0, φm and φM are known bounds.

The open-loop system under the above boundary conditions may become unstable if φM

is too big (see [21] for φ ≡ φM). It is assumed that there exists a linear infinite-dimensional
state feedback u(x, t) = −Kz(x, t) with big enough K > 0 which exponentially stabilizes
the system.

Then a sampled-data controller implementation is carried out for the case when the
sampled (in time) measurements of the state are taken in a finite number of fixed sampling
points in the spatial domain. It was assumed that both the sampling intervals in time
and in space are bounded. The sampled-data static output feedback enters the equation
through a finite number of shape functions (which are localized in the space) multiplied by
the corresponding state measurements. It is piecewise-constant in time and it may possess
an additional time-delay.

The space variable x = [0, L] has been divided into N on space sampling intervals as

0 = x0 < x1 < · · · < xN = L, (1.33)
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and the time sampling intervals have been considered as follows

0 = t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = ∞. (1.34)

The sampling intervals in time and in space are assumed to be variable but bounded,

0 ≤ tk+1 − tk ≤ h, 0 < xj − xj−1 = ∆j ≤ ∆ (1.35)

where h and ∆ are the corresponding upper bounds. Sensors provide discrete measurements
of the state:

yjk = z (x̄j , tk) , x̄j =
xj+1 + xj

2
, j ∈ {0, . . . , N − 1}, t ∈ [tk, tk+1) , k = N. (1.36)

The following sampled-data controller is obtained:

u(x, t) = −Kz (x̄j , tk) , x ∈ [xj , xj+1) , j ∈ {0, . . . , N − 1}, t ∈ [tk, tk+1) , k = N (1.37)

with the gain K > 0. This controller presents both time and space discretization.

To check the stability of the closed-loop system (1.30) and (1.37), a direct Lyapunov
method for the stability analysis of the resulting closed-loop system was developed, which
was based on the application of Wirtinger’s [46] (see Theorem A.4 in Appendix A) and
Halanay’s inequalities [45] (see Lemma A.3 in Appendix A). The following Lyapunov
function was used

V (z(x, t)) =

∫ l

0

z2(x, t)dx. (1.38)

An extension to the case of sampled-data control with delay is also presented, in which a
more general controller was obtained

u(x, t) = −Kz(x̄j , tk − ηk)

where ηk ∈ [0, ηM ] is an additional delay. The Lyapunov function was modified as follows:

V (z(x, t)) =p1

∫ l

0

z2(x, t)dx+ p3

∫ l

0

a(x)z2x(x, t)dx

+

∫ l

0

[
τMr

∫ 0

−τM

∫ t

t+θ

e2δ(s−t)z2s (x, s)dsdθ

+g

∫ t

t−τM

e2δ(s−t)z2(x, s)ds

]
dx+ qz2(0, t) (1.39)

where p3 > 0, p1 > 0, r ≥ 0, g ≥ 0, τM = h+ ηM .
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The result was also applicable to the convection-diffusion equation

zt(x, t) = a0zxx(x, t)− βzx(x, t) + φ(z(x, t), x, t)z(x, t) + u(x, t),

t ≥ t0, x ∈ [0, l], l > 0 (1.40)

with constant and known β ∈ R, a0 > 0 and unknown φm ≤ φ ≤ φM of class C1 under the
Dirichlet boundary conditions (1.31) or under the mixed boundary conditions

zx(0, t) = γ0z(0, t), z(l, t) = 0, γ0 ≥
β

2a0
, (1.41)

where the measurements are given by (1.36).

This method in [37] gives a general framework for robust control of parabolic systems:
being formulated in terms of LMIs. The conditions can be further adapted to systems
with saturated actuators and to the ISS stabilization problem. It gives tools for network-
based control, where data packet dropouts (resulting in variable in time sampling) and
network-induced delays are taken into account. Extension of the method to various classes
of parabolic systems, as well as its improvement may be topics for the future research.

1.3.2 Reaction-advection-diffusion equation

Reaction-advection-diffusion equations are PDE models that are used to represent the
evolution of a substance (e.g., a drug) in a medium described by spatial coordinates
involving privileged transport (or advection) according to a physical or chemical force
represented by a velocity vector, diffusion, that is, random motion of the substance
molecules in the medium, and reaction (e.g., chemical) with other constituents present
in the medium represented by source or loss terms in the equations [27, 87]. In
biology, the reaction-advection-diffusion equation is used to model chemotaxis observed
in bacteria, population migration, evolutionary adaptation to changing environments and
the spatiotemporal dynamics of molecular species including morphogenesis [11]. For the
sampled-data control case, a vector reaction-advection-diffusion equation on a hypercube
was considered in [107]. The measurements were weighted averages of the state over
different subdomains. These measurements were asynchronously sampled in time. The
discrete control signals were applied through shape functions and Zero-Order Hold (ZOH)
and where subject to matched disturbances. In this work, the authors have focused on a
generalized relay control, that is, the control signals take their values in a finite set. The
following semilinear parabolic system was considered:

zt(x, t) =∆Dz(x, t) + β∇z(x, t) + Az(x, t) + f(x, t, z)

+B
Ns∑

j=1

bj(x) [uj(t) + wj(t)] , x ∈ Ω (1.42)
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with the space domain Ω = [0, 1]N , state z : Ω× [t0,∞) → R
M , matched disturbances

wj(t) and matrices β ∈ R
M×MN , A ∈ R

M×M , B ∈ R
M×L. The diffusion term is defined as

∆Dz =
(
∆1

Dz
1, . . . ,∆M

D zM
)⊤

,

where
∆m

Dz
m(x, t) = div (Dm(x)∇zm(x, t))

with
Dm(x) = (Dm(x))⊤ ∈ C1

(
Ω, RN×N

)
for m ∈ {1, . . . ,M}.

The space domain Ω was divided into Ns rectangular subdomains Ωj , where the control
signals were applied through shape functions bj(x) ∈ H1(0, 1) such that





bj(x) = 0, x /∈ Ωj ,

bj(x) = 1, x ∈ Ωε
j

bj(x) ∈ [0, 1], x ∈ Ωj\Ω
ε
j

(1.43)

with Ωε
j being subsets of Ωj .

Each control signal uj is applied through ZOH changing its value at asynchronous
sampling instants. It was assumed that the measurements of the system (1.42), (1.43)
were given by

yj,p =

∫

Ωj

bj(x)z (x, sj,p) dx, j ∈ {1, . . . , Ns}, p ∈ N,

where sj,p presents the sampling time of the jth sensor. In addition, it was assumed that
sj,0 = t0, ∀j ∈ {1, . . . , Ns} and sj,p+1 − sj,p ∈ (0, h]. Let V = {v1, . . . , vq} ⊂ R

L be a set of
control values. The following generalized sampled-data relay control was considered:

uj(t) = argminv∈V y⊤j,pP1Bv, t ∈ [sj,p, sj,p+1) , j ∈ {1, . . . , Ns}, p ∈ N (1.44)

with
P1 = diag

{
p11, . . . , p

m
1

}
≥ 0.

For instance, if V = {−v, v} with 0 < v ∈ R, the minimum in (1.44) is delivered by

uj(t) = −v sign
{
(P1B)⊤ yj,p

}
, j ∈ {1, . . . , Ns}

which is consistent with the classical relay control.

The goal was to provide a switching control law (1.44) that ensures semi-global practical
stability, that is, for any arbitrarily large domain of initial conditions the trajectories
converge to a set whose size does not depend on the domain size. The control design
procedure was based on Lyapunov-Krasovskii functional

V = V1 + V2 + VW
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with

V1 =

∫

Ω

z⊤(x, t)P1z(x, t)dx,

V2 =h
M∑

m=1

∫

Ω

pm3 (∇zm(x, t))⊤Dm(x)∇zm(x, t)dx,

VW =he2αh
Ns∑

j=1

∫

Ωj

∫ t

tj,k

e−2α(t−s)z⊤s (x, s)Wzs(x, s)dsdx

−
π2h

4

Ns∑

j=1

∫

Ωj

∫ t

tj,k

e−2α(t−s)η⊤(x, s)Wη(x, s)dsdx, t ∈ [tk, tk+1) , k ∈ N, (1.45)

where

η(x, t) =
1

h
[z(x, t)− z (x, tj,k)]

and the notation

tj,k = max
p∈N

{sj,p | sj,p ≤ tk} , [tk, tk+1) =
Ns⋂

j=1

[tj,k, tj,k+1)

were adopted.

This work is an extension of the preliminary results given in [108], that is, generalizing
the preliminary results to a vector system with multi-dimensional domain, convection term,
reaction term and asynchronous sampling. For disturbance-free systems the constructive
switching procedure in [107] guarantees exponential convergence to the origin.

1.3.3 1-D Kuramoto-Sivashinsky equation

Kuramoto-Sivashinsky Equation (KSE) is a fourth-order nonlinear PDE. It was derived
in the late 1970s to model the diffusive instabilities in a laminar flame front [112, 72, 113].
The KSE is known for its chaotic behavior [95]. Applications of the KSE extend beyond
its original context of flame propagation and reaction-diffusion systems. These additional
applications include flows in pipes and at interfaces, plasmas, chemical reaction dynamics
and models of ion-sputtered surfaces [20, 59]. In the context of sampled-data systems, the
case of distributed sampled-data control of nonlinear PDE system governed by 1-D KSE

has been addressed in [60]. A standard 1-D KSE is shown as follows

ut(x, t) + uxx(x, t) + vuxxxx(x, t) + u(x, t)ux(x, t) =
N∑

j=1

bj(x)Uj(t), 0 < x < L, t ≥ 0.

(1.46)
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In [60], the authors considered both the case of systems subject to Dirichlet boundary
conditions:

u(0, t) = u(L, t) = 0, ux(0, t) = ux(L, t) = 0

or to periodic boundary conditions:

∂mu

∂xm
(0, t) =

∂mu

∂xm
(L, t), m ∈ {0, 1, 2, 3}.

Here v is a positive constant, u(x, t) is the state of KSE and Uj(t) ∈ R, j ∈ {1, . . . , N} are
the control inputs.

It was assumed that N sensors provide sampled in time spatially distributed (either
point or averaged) measurements of the state. In terms of (1.33)-(1.35), the control inputs
Uj(t) enter (1.46) through the shape functions

{
bj(x) = 1, x ∈ Ωj ,

bj(x) = 0, x /∈ Ωj ,
Ωj = [xj−1, xj) , j ∈ {1, . . . , N}.

Sensors provide either point as shown in (1.36) or averaged measurements of the state

yjk =

∫ xj

xj−1
u (x, tk) dx

∆j

, j ∈ {1, . . . , N}, k ∈ N. (1.47)

An exponentially stabilizing sampled-data controller for (1.46) was designed and imple-
mented by ZOH:

Uj(t) = −µyjk, t ∈ [tk, tk+1) , (1.48)

where µ is a positive controller gain and yjk is given by (1.36) or (1.47).

Given upper bounds on the sampling intervals in time and in space, sufficient conditions
for regional exponential stability were established by applying the time-delay approach [78,
36]. The results were obtained by employing the following Lyapunov-Krasovskii functional

V1(t) = p1

∫ L

0

u2(x, t)dx+ p3v

∫ L

0

u2
xx(x, t)dx+ r (tk+1 − t)

∫ L

0

∫ t

tk

e2δ(s−t)u2
s(x, s)dsdx,

t ∈ [tk, tk+1) , p1 > 0, p3 > 0, r > 0. (1.49)

Here p1 and p3 terms are extensions of the corresponding terms of [37] to KSE, whereas
r-term treats sampled-data control as introduced in [35]. The parameter δ > 0 stands for
the decay rate.

Distributed control of KSE under the point or averaged state measurements was
initiated in [80]. However, for practical use of such controllers, their sampled-data
implementation was missing. The method in [60] gives efficient tools for sampled-data
observer design. An interesting, yet technically challenging, open question regarding this
approach is how to extend it to the case of observer-based sampled-data controllers.
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1.4 Sampled-data control for hyperbolic systems

Some physical systems are described by hyperbolic PDEs, such as those used to model
the flow of a river and the vibrations of beams, the road traffic [82, 131, 4], etc. Therefore,
the study of hyperbolic equations is of substantial contemporary interest [47, 75]. For
hyperbolic PDEs, we focus on results concerning both sampled-data control and event-
triggered control.

1.4.1 Periodic and aperiodic boundary control

1.4.1.1 1-D linear transport PDEs with non-local terms

The application of boundary feedback control with ZOH to 1-D inhomogeneous, linear,
transport partial differential equations on bounded domains with constant velocity and
non-local terms was provided in [63]. The authors considered the following control system

∂y

∂t
(t, z) +

∂y

∂z
(t, z) = g(z)y(t, 1) +

∫ 1

z

f(z, s)y(t, s)ds, (1.50)

y(t, 0) = u(t)−

∫ 1

0

p(s)y(t, s)ds, for t ≥ 0 (1.51)

where (t, z) ∈ R
0
+ × [0, 1], g ∈ C0([0, 1];R), p ∈ C1([0, 1];R), f ∈ C0 ([0, 1]2;R) are given

functions, y[t] denotes the profile of the state y at certain t ≥ 0, i.e., (y[t])(z) = y(t, z)

for all z ∈ [0, 1] and u(t) is the control input. More specifically, the solution of the
initial-boundary value problem (1.50), (1.51) was considered under boundary sampled-
data control with ZOH:

u(t) = uk, for t ∈ [tk, tk+1) and for all k ∈ N (1.52)

where {tk ≥ 0, k ∈ N} is an increasing sequence (the sequence of sampling times) with
t0 = 0, limk→+∞ (tk) = +∞ and {uk ∈ R, k ∈ N} is the sequence of applied inputs and
initial condition

y(0, z) = y0(z), for all z ∈ [0, 1], (1.53)

where y0 : [0, 1] → R is a given function. The authors adapt the backstepping design
approach from [69] to the sampled-data case. The following sampled-data controller is
considered

ui =

∫ 1

0

(p(s) + k(0, s))y (tk, s) ds, for all i ∈ N. (1.54)
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The function k in (1.54) corresponds to the kernel function in backstepping approach (see
Theorem 1 in [69]).

Theorem 1.6 (Karafyllis 2017 [63])
For every σ > 0 there exist constants T,G > 0 with the following property: for every y0 ∈ X

and for every increasing sequence {tk ≥ 0, k = 0, 1, 2, . . .} with t0 = 0, supk≥0 (tk+1 − tk) ≤

T and limk→+∞ (tk) = +∞ the initial-boundary value problem (1.50)-(1.54) satisfies the
following estimate:

‖y[t]‖∞ ≤ G exp(−σt) ‖y0‖∞ , for all t ≥ 0. (1.55)

It was shown in [63] that the closed-loop system is exponentially stable with the
proposed sampled-data controller for sufficiently small sampling period. Moreover, it was
also shown that, contrary to the parabolic case [64], a smaller sampling period implies a
faster convergence rate with no upper bound for the achieved convergence rate.

1.4.1.2 2× 2 linear hyperbolic systems

The global exponential stability of a 2 × 2 linear hyperbolic system with a sampled-data
boundary feedback control designed by means of the backstepping method was studied in
[22]. The work focused on the following linear hyperbolic system:

ut(t, x) + λ1ux(t, x) = σ1(x)v(t, x)

vt(t, x)− λ2vx(t, x) = σ2(x)u(t, x) (1.56)

with boundary conditions

u(t, 0) = qv(t, 0), v(t, 1) = ρu(t, 1) + U(t) (1.57)

where u, v : R0
+ × [0, 1] → R are the system states, λ1, λ2 ∈ R+, σ1, σ2 ∈ C0([0, 1],R), ρ, q ∈

R are such that |ρq| < 1 and U : R0
+ → R is the control signal.

In this paper, the authors investigated the effect of sampling the control signal on the
exponential convergence of the solution to (1.56)-(1.57) with a backstepping controller. It
is assumed that there exists a strictly increasing sequence of instants {tk}k∈N satisfying

t0 = 0, Tk = tk+1 − tk ∈ (0, h] , lim
k→∞

tk = ∞

with h > 0. The following control signal was considered

U(t) = κ
(
(u (tk, ·) , v (tk, ·))

⊤
)
, t ∈ [tk, tk+1) , (1.58)
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where

κ
(
(u(t, ·), v(t, ·))⊤

)
=− k0ρu(t, 1) +

∫ 1

0

[Ku(x) Kv(x)]

[
u(t, x)

v(t, x)

]
dx (1.59)

where Ku(x) and Kv(x) are kernel functions derived as in [125].

Two theorems were given to show that there exists a sufficiently small inter sampling
time (that encompasses both periodic and aperiodic sampling) for which the global
exponential stability of the closed-loop system is guaranteed.

The first result considers the case of systems with boundary reflection (i.e., ρ 6= 0).

Theorem 1.7 (Davó 2018 [22])
Consider the set T = {T ∈ R+ : ∃m ∈ N, Tp = mT} with Tp =

λ1+λ2

λ1λ2
. There exist constants

η, C > 0 and

T ∗ ∈

{
R+, if k0 = 0

T , if k0 ∈ (0, 1]
(1.60)

such that for all constant T ≤ T ∗ and for all initial conditions (u0, v0)
⊤
∈ C1 ([0, 1],R2),

the solution to system (1.56)-(1.57) satisfies

‖s(t, ·)‖2L2([0,1],R4) ≤ Ce−ηt
∥∥∥
(
u0, v0, u0

x, v
0
x

)⊤∥∥∥
2

L2([0,1],R4)

with
s(t, ·) =

(
u(t, ·), v(t, ·), ∂−

x u(t, ·), ∂
+
x v(t, ·)

)⊤
,

when the control law (1.58) is applied with the following:
1) Tk ∈ (0, T ], k ∈ N for k0 = 0 (aperiodic sampling);
2) Tk = T ∈ T , k ∈ N for k0 = (0, 1] (periodic sampling).

The following theorem considers the case of system without boundary reflection (i.e.,
ρ = 0).

Theorem 1.8 (Davó 2018 [22])
There exist constants T ∗, η, C > 0 such that for all (u0, v0) ∈ C1 ([0, 1],R2) the solution to
system (1.56)-(1.57) with ρ = 0 and control law (1.58) with Tk ∈ (0, T ∗] for all k ∈ N,
satisfies

∥∥(u(t, ·), v(t, ·))⊤
∥∥
L2([0,1],R2)

≤ Ce−ηt
∥∥∥
(
u0, v0

)⊤∥∥∥
L2([0,1],R2)

. (1.61)

The controller under study is the modified version, proposed in [2], of the full state
boundary feedback controller propounded in [125] by means of the backstepping method.
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Two different cases depending on the boundary conditions were analyzed. It could be
interesting to generalize the obtained results to a more general class of systems such as
n× n linear hyperbolic systems and also to relax equation (1.60) for k0 6= 0. In addition,
the proposed method might be combined with an event-triggering mechanism, in order to
design an event-triggering strategy with a greater dwell-time, or a periodic event-triggered
controller following the ideas in [48].

1.4.2 Event-based boundary control

During the last decade, event-triggered control has received increasing attention in real-
time control systems [83, 48, 26, 111, 116]. One distinguished characteristic is that
event-triggered control provides a strategy under which the control task is executed
only when necessary. Compared with traditional time-triggered control, event-triggered
control can efficiently reduce the number of execution of control tasks while preserving the
desired closed-loop performance [81]. Under an event-triggering scheme, extra hardware is
commonly used to monitor the instantaneous system state so that the next event time can
be calculated.

1.4.2.1 An event-based boundary control strategy

Event-based boundary controls for 1-D linear hyperbolic systems of conservation laws was
introduced in [31]. The system was given in Riemann coordinates:

∂ty(t, x) + Λ∂xy(t, x) = 0 x ∈ [0, 1], t ∈ R
0
+ (1.62)

where y : R0
+ × [0, 1] → R

n, Λ is a diagonal matrix in R
n×n such that Λ = diag (λ1, . . . , λn)

with 0 < λ1 < λ2 < · · · < λn. The following boundary condition was considered:

y(t, 0) = Hy(t, 1) +Bu(t), t ∈ R
0
+ (1.63)

where H ∈ R
n×n, B ∈ R

n×m and u : R0
+ → R

m. The initial condition was given by

y(0, x) = y0(x), x ∈ [0, 1] (1.64)

where y0 ∈ Clpw ([0, 1],Rn). The output function was defined as follows:

z(t) = y(t, 1) (1.65)

The following assumption was considered to guarantee that the system (1.62), (1.64) and
(1.65) with boundary condition

y(t, 0) = Gz(t), t ∈ R
0
+ (1.66)

where G = H +BK, K ∈ R
m×n is globally exponentially stable.
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Assumption 1.4 (Coron 2008 [18])
The following inequality holds:

ρ1(G) = Inf
{∥∥∆G∆−1

∥∥ ; ∆ ∈ Dn,+

}
< 1 (1.67)

where ‖ · ‖ denotes the usual 2-norm of matrices in R
n×n and Dn,+ denotes the set of

diagonal matrices whose elements on the diagonal are strictly positive.

Proposition 1.2 (Diagne 2012 [24])
Under Assumption 1.4, there exist µ > 0 and a diagonal positive definite matrix Q ∈ R

n×n

(with Q = Λ−1∆2) such that the following matrix inequality holds

G⊤QΛG < e−2µQΛ. (1.68)

Then, the linear hyperbolic system (1.62), (1.64)-(1.66) is Globally Exponentially Stable
(GES).

In regard of (1.68), the Lyapunov function was defined, for all y(·) ∈ L2 ([0, 1],Rn) , by

V (y) =

∫ 1

0

y(x)⊤Qy(x)e−2µxdx. (1.69)

Then an event-based control scheme relying on both the ISS property with respect to
deviations to sampling and Lyapunov techniques was introduced for hyperbolic systems of
conservation laws.

Definition 1.2 (Espitia 2016 [31])
(Definition of ϕ1): ϕ1 is defined as an operator which maps z to u as follows:

The control function, z 7→ ϕ1(z)(t) = u(t), is defined as

ϕ1 :

{
u(t) = 0, ∀t ∈ [tu0 , t

u
1)

u(t) = Kz (tuk) , ∀t ∈
[
tuk , t

u
k+1

)
, k ≥ 1,

where (tuk) denotes the sampling instants. More precisely, the sampling instants are defined
by the following event-triggered law

tuk+1 = inf
{
t ∈ R

+ | t > tuk ∧ ‖BK (−z(t) + z (tuk))‖
2 ≥ κW1(t) + ε1(t)

}
(1.70)

where

W1

(
1

λ

)
=

n∑

i=1

Qii

∫ 1

0

(
Hiz

(
t−

x

λi

))2

e−2µxdx (1.71)
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and, for all t > 1
λ
, by

W1(t) =
n∑

i=1

Qii

∫ 1

0

(
Hiz

(
t−

x

λi

)
+Biu

(
t−

x

λi

))2

e−2µxdx, (1.72)

ε1(t) = ς1W1

(
1

λ

)
e−ηt∀t ≥

1

λ
.

where λ = min1≤i≤n {λi}, K in R
m×n, Q is a diagonal positive matrix in R

n×n and
ς1, κ, η, µ > 0 are design parameters.

The following theorem provides stability condition for the event-triggered control
system (1.62), (1.65), (1.70), (1.71), (1.72).

Theorem 1.9 (Espitia 2016 [31])
Let K be in R

n×n such that Assumption 1.4 holds for G = H+BK. Let µ > 0, Q a diagonal
positive matrix in R

n×n and v = µλ be as in Proposition 1.2. Let σ be in (0, 1) and α > 0

such that
(1 + α)G⊤QΛG ≤ e−2µQΛ.

Let ρ be the largest eigenvalue of
(
1 + 1

α

)
QΛ,

κ =
2vσ

ρ
, η > 2v(1− σ)

and ε1 and ϕ1 be given in Definition 1.2. Let V be given by (1.69). Then the system
(1.62)-(1.65) with the controller (1.70) has a unique solution and is globally exponentially
stable.

Highly inspired by [118] and [31], an extension to a more general case was given in [32].
Therein the approach is extended to the case of space-quantized measurements. A sampling
algorithm was designed so that L2-norm of y(t, ·) converges to a bound parameterized by
the quantization error. Then the boundary controller was given by u = ϕs(z) where the
operator ϕs(z) enclosed the triggering condition, the quantizer and the control function
characterized as follows:

Definition 1.3 (Espitia 2017 [32])
(Definition of ϕs ): Let σ ∈ (0, 1), γs, ξ, δ, µ, ν > 0 and K ∈ R

m×n. Let

ε1(t) = ε1(0)e
−δt, ∀t ≥

1

λ
,

with

ε1(0) ≤ ξW1

(
1

λ

)
.
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The static control function, z 7→ ϕs(z)(t) = u(t), is described by:

ϕs :

{
u(t) = 0 ∀t ∈ [t0, t1) ,

u(t) = Kq (z (tk)) ∀t ∈ [tk, tk+1) , k ≥ 1,
(1.73)

where q : Rn → Q is the quantizer having the property that

|q(x)− x| ≤ ∆q,

for some countable set Q and a scalar ∆q > 0. The sampling instants are defined by the
following event-triggered law

tk+1 = inf
{
t ∈ R

+ | t > tk∧ γs ‖BK (−z(t) + z (tk))‖
2 ≥ 2νσW1(t) + ε1(t)

}
. (1.74)

If Ṽ
(

1
λ

)
= 0, the time instants are t0 = 0, t1 =

1
λ

and t2 = ∞.

For each t ≥ 1
λ
, the boundary condition (1.63), with (1.65), under static boundary

control, (1.73) as
u(t) = Kq (z (tk)) , t ∈ [tk, tk+1) ,

was rewritten as a nominal continuous time control loop

y(t, 0) = (H +BK)z(t) + dq(t) + ds(t) (1.75)

with perturbations
{

dq(t) := BK (q (z (tk))− z (tk))

ds(t) := BK (z (tk)− z(t)) , ∀t ∈ [tk, tk+1)
(1.76)

that can be seen as errors related to the quantization (dq) and to the sampling (ds)

respectively.

A condition for the stability in the presence of event-based sampling and quantization
errors is provided in the following theorem.

Theorem 1.10 (Espitia 2017 [32])
(L2-stability): Let K ∈ R

m×n be such that Assumption 1.4 holds. Let µ > 0, Q ∈ Dn,+, ν =

µλ, σ ∈ (0, 1) and δ > 2ν(1− σ). Let εs(t) be the decreasing function as in Definition 1.3
and assume that there exist γq and γs > 0 such that

Mc =




G⊤QΛG−QΛe−2µ G⊤QΛ G⊤QΛ

⋆ QΛ− γqI QΛ

⋆ QΛ QΛ− γsI


 ≤ 0 (1.77)

Then the closed-loop system (1.62)-(1.65), (1.75) with controller u in (1.73) is ISS in L2

-norm with respect to dq.
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The paper [31] might be considered as the first contribution to event-based control of
hyperbolic PDEs and complements the work of [37] and [106] on sampled data control of
parabolic PDEs and on event-based control of parabolic PDEs, respectively. However,
the event-based stabilization approaches may be applied to a linear hyperbolic system of
balance laws. In [32], the authors studied ISS in L2− and H1− norms. It could be fruitful
to consider also sampling algorithms for the control input in order to keep it constant until
an update is necessary.

1.4.2.2 2× 2 coupled linear hyperbolic system

A well-established backstepping controller was used to stabilize a 2 × 2 coupled linear
hyperbolic system along with a dynamic triggering condition in [30]. The linear hyperbolic
system under consideration was

ut(t, x) + λ1ux(t, x) = c1v(t, x) (1.78)

vt(t, x)− λ2vx(t, x) = c2u(t, x) (1.79)

along with the following boundary conditions:

u(t, 0) = qv(t, 0) (1.80)

v(t, 1) = U(t) (1.81)

where u, v : R
0
+ × [0, 1] → R are the system states with x ∈ [0, 1], t ≥ 0, U(t) is the

control input and λ1 > 0, λ2 > 0. In addition, for technical issues related to the existence
of solutions, it was assumed that c1, c2 6= 0, q 6= 0,

cos(w)− q
λ1

c1
w sin(w) 6= 0, if c1c2 > 0

and

cosh(w) + q
λ1

c1
w sin h(w) 6= 0, if c1c2 < 0,

where

w =

√
|c1c2|

λ1λ2
.

As it can be seen in [19], U(t) is a continuous full-state feedback control which is
designed to ensure that the closed-loop system is GES in L2 norm. The backstepping
Volterra transformation

α(t, x) =u(t, x)−

∫ x

0

Kuu(x, ξ)u(t, ξ)dξ −

∫ x

0

Kuv(x, ξ)v(t, ξ)dξ

β(t, x) =v(t, x)−

∫ x

0

Kvu(x, ξ)u(t, ξ)dξ −

∫ x

0

Kvv(x, ξ)v(t, ξ)dξ (1.82)
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with the kernel K =

(
Kuu(x, ξ) Kuv(x, ξ)

Kvu(x, ξ) Kvv(x, ξ)

)
is used to get U(t) under the form

U(t) =

∫ 1

0

Kvu(1, ξ)u(t, ξ)dξ +

∫ 1

0

Kvv(1, ξ)v(t, ξ)dξ. (1.83)

Since the system transformation (1.82) is invertible, when applying the continuous control
(1.83), the original is GES. In addition, the definition of an event-based controller under
which global exponential stability of the system is achieved and, furthermore, the existence
of a minimal dwell-time between two triggering times was guaranteed in [30].

The event-triggered approach was extended to output feedback where the design makes
use of observers in [29]. The system under consideration was the same as (1.78)-(1.80), but
(1.81) was changed to

v(t, 1) = ρu(t, 1) + U(t), (1.84)

where ρ is the proximal reflection terms. It was assumed that |ρq| < 1
2

and the initial
conditions

(u(0, x), v(0, x))⊤ =
(
u0, v0

)⊤
∈ L2

(
(0, 1),R2

)
.

In [125] and [74] an observer was proposed by using a collocated output, i.e. having
u(t, 1) available as a measurement output. The observer represents a copy of the system
(1.78)-(1.80) and (1.84) with output injections terms. It was stated as follows:

ût(t, x) + λ1ûx(t, x) = c1(x)v̂(t, x) + p1(x)(u(t, 1)− û(t, 1))

v̂t(t, x)− λ2v̂x(t, x) = c2(x)û(t, x) + p2(x)(u(t, 1)− û(t, 1))

û(t, 0) = qv̂(t, 0)

v̂(t, 1) = ρu(t, 1) + U(t) (1.85)

where û, v̂ : R
0
+ × [0, 1] → R are the states of the observer. Furthermore, the output

injections terms of the observer (1.85) were given as follows:

p1(x) = −λ1P
uu(x, 1)

p2(x) = −λ1P
vu(x, 1) (1.86)

where P uu and P vu are obtained from the solutions of the linear hyperbolic kernel equations
in [29].

As a part of the perspectives in [30], an observer-based event-triggered boundary control
to stabilize a 2 × 2 coupled linear hyperbolic system subject to reflection terms at the
boundaries was proposed in this work. The results in this paper may be extended to m+n

hyperbolic equations and coupled PDE-ODEs (inspired by e.g. [54]). Applications to
hydraulic networks and to traffic congestion control (inspired e.g. by [73, 136]) using ramp
metering strategies are expected.
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1.4.3 Distributed sampled-data control

In the past, sampled-data observers/controllers under the sampled in space and time
measurements were suggested for parabolic systems. In the following sections, we present
some recent results that consider this problem for the case of hyperbolic systems.

1.4.3.1 A semilinear damped wave equation

Many applications are arisen from semilinear damped wave equation, including nonlinear
elasticity as a model of a vibrating string in a viscous medium, where the semilinear term
corresponds to the elastic force [94]. In [121], a sampled-data observer was constructed
for a hyperbolic system governed by 1-D semilinear wave equation with either viscous
or boundary damping. The considered class of systems includes damped sine-Gordon
equations that model the dynamics of a current driven coupled Josephson junctions with
applications in superconducting single-electron transistors [25, 76]. The semilinear damped
wave equation under consideration was given by:

ztt(x, t) = zxx(x, t)− βzt(x, t) + f(z(x, t), x, t), x ∈ (0, π), t ≥ t0 (1.87)

under the Dirichlet

z(0, t) = z(π, t) = 0 (1.88)

or Neumann

zx(0, t) = zx(π, t) = 0 (1.89)

or mixed

z(0, t) = zx(π, t) = 0, or zx(0, t) = z(π, t) = 0 (1.90)

boundary conditions. Here z(x, t) ∈ R is the state, β > 0 is the damping coefficient and f

is a function of class C1. It was assumed that the derivative fz is uniformly bounded by a
constant g1 > 0 :

|fz(z, x, t)| ≤ g1 ∀(z, x, t) ∈ R× [0, π]× [t0,∞) . (1.91)

The initial conditions were given by

z (x, t0) = z0(x), zt (x, t0) = z1(x). (1.92)
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Similar to [37], an observer for (1.87) under the appropriate boundary conditions (1.88)
based on sampled in space and in time measurements (1.36) was considered:

ẑtt(x, t) =ẑxx(x, t)− βẑt(x, t) + f(ẑ, x, t) + L

N−1∑

j=0

χj(x) [yjk − ẑ (x̄j , tk)]

x ∈ (0, π), t ∈ [tk, tk+1) , k = 0, 1, 2, . . . (1.93)

under the boundary conditions

ẑ(0, t) = ẑ(π, t) = 0 (1.94)

and the initial conditions
[ẑ (·, t0) , ẑt (·, t0)]

⊤ ∈ H,

where
H = H1

0 × L2(0, π)

and
H1

0 =
{
z0 ∈ H1(0, π) | z0(0) = z0(π) = 0

}
.

Here L is a scalar observer gain. The measurements are applied after multiplication by the
characteristic functions χj(x), defined by

χj(x) =

{
1, if x ∈ [xj , xj+1] ;

0, else.
(1.95)

Note that
N−1∑

j=0

χj(x) [y (x̄j , t)− ẑ (x̄j , t)] ≈ [y(x, t)− ẑ(x, t)],

when ∆ → 0.

Sufficient conditions for the exponential stability of the estimation error e = z − ẑ

governed by

ett(x, t) = exx(x, t)− βet(x, t) + ge(x, t)− L

N−1∑

j=0

χj(x)e (x̄j , tk) ,

x ∈ (0, π), t ∈ [tk, tk+1) , k ∈ N (1.96)

with ge = f(z, x, t)− f(z − e, x, t) under the Dirichlet boundary conditions

e(0, t) = e(π, t) = 0 (1.97)

were derived by using the time-delay approach to sampled-data control and appropriate
Lyapunov-Krasovskii functionals of the form

V (t) = V0(t) + Vr(t), t ∈ [tk, tk+1) (1.98)
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where V0(t) was given by

V0(t) = p3

∫ π

0

e2xdx+

∫ π

0

[e et]P0 [e et]
⊤ dx, (1.99)

with

P0 ,

[
p1 p2
∗ p3

]
> 0, (1.100)

and

Vr(t) = r

∫ π

0

(tk+1 − t)

∫ t

tk

exp (2α0(s− t)) e2s(ζ, s)dsdζ, r > 0, α0 > 0. (1.101)

The global boundedness assumption (1.91) is restrictive. This assumption can be relaxed
to regional boundedness as considered in Section 4 of [38] that, for the case of control,
should lead to regional stabilization and should be applicable to Klein-Gordon equation.
Regional stabilization under regional boundedness in (1.91) may be a topic for future
research. Moreover, the presented method might be developed for event-triggered control
under discrete time measurements.

1.4.3.2 A damped semilinear beam equation

Vibration analysis of beam-like structures subjected to moving loads provides a wide
range of engineering applications, including railway bridges with crossing vehicles [41,
92]. Since the moving load has a significant impact on the dynamic response of the beam-
like structure, especially at high speeds, people are interested in effectively and reliably
solving the moving loads problem. Based on some initial studies on the vibration of
moving load beams [68, 124], more complex beam models with general boundary conditions,
discontinuities, multiple spans and flexible connections are analyzed to consider for more
general structural categories [53, 8, 23, 28, 49, 114]. In the case of sampled-data controllers,
distributed static output-feedback stabilization of a damped semilinear beam equation was
considered in [119]. The system under consideration was shown as follows:

ztt(x, t) = −zxxxx(x, t)− βzt(x, t) + ρ(z(x, t), x, t) +

N∑

j=1

χj(x)ujk(t),

t ≥ t0, x ∈ (0, π), (1.102)

under the boundary conditions

z(0, t) = zx(0, t) = 0,

z(π, t) = zx(π, t) = 0, (1.103)
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or

z(0, t) = zxx(0, t) = 0,

zx(π, t) = zxxx(π, t) = 0, (1.104)

and the initial conditions

z(x, 0) = z1(x), (1.105)

zt(x, 0) = z2(x). (1.106)

Here z(x, t) ∈ R is the state (modeling the beam height position), ujk(t) is the control input,
β > 0 is the damping coefficient (the damping is proportional to an angle of inclination of
the center of the beam). It was assumed that ρ is of class C2 and satisfies

ρ(0, x, t) ≡ 0.

The authors first considered the case of globally Lipschitz in z nonlinearity ρ. It was
assumed that

φm ≤ ρz(z, x, t) ≤ φM ∀z, x, t. (1.107)

Then

ρ(z, x, t) = φ(z, x, t)z, φ =

∫ 1

0

ρz(θz, x, t)dθ. (1.108)

The later implies

φm ≤ φ ≤ φM (1.109)

for all z, x, t, where φm and φM are known bounds.

Distributed in space measurements were either point or pointlike, similar to the
distribution and boundedness of sampling points in (1.33)-(1.35). The sampling intervals
in time may be variable, but have a known bound

0 ≤ sk+1 − sk ≤ MATI, k ∈ N,

where MATI is Maximum Allowable Transmission Interval. The total round-trip
transmission time-varying delays from sensors to actuators is ηk ≤ MAD, where MAD

is the Maximum Allowable Delay. The updating time of the actuators is tk = sk + ηk
and the authors assume that tk < tk+1, k ∈ N. For all j ∈ {1, . . . , N}, k ∈ N pointlike
measurements were described by:

yj =

∫

Ωj

cj(ξ)z (ξ, sk) dξ, (1.110)
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cj(x) =

{
ε−1
j , x ∈ Ωy

j

0, elsewhere
(1.111)

where Ωy
j is subinterval of Ωj of the length εj and εj ≤ ε with some ε ∈ (0,∆). Point

measurements in the middle of Ωj were given by:

yj = z (x̂j , sk) , x̂j =
xj−1 + xj

2
. (1.112)

The network-based implementation of the control law which enters the PDE through shape
functions was studied. Variable sampling intervals and transmission delays were taken into
account. A static output-feedback controller was considered

uj(t) = −Kyj (tk − ηk) , t ∈ [tk, tk+1) (1.113)

based on the measurements yj given by (1.110) or (1.112). By using the time-delay approach
to networked control systems [39, 43], the resulting control input was modeled as a delayed
one:

uj(t) = −Kyj(t− τ(t)), t ≥ t0

where
τ(t) = t− tk + ηk, t ∈ [tk, tk+1)

and
τ(t) ≤ tk+1 − tk + ηk ≤ MATI+ MAD , τM

For brevity, in what follows the time argument of τ is omitted.

The control input was remodelled as:

uj(t) = −K [z(x, t− τ)− fj − ϑj ] , t ≥ t0 (1.114)

Here

fj = z(x, t)− z
(
x⊤
j , t
)
, ϑj =

∫

Ωj

cj(x)[z(x, t) − z(x, t − τ)]dx

for the pointlike measurements (1.110) and

fj = z(x, t − τ)− z (x̂j , t− τ) , ϑj = z(x, t)− z(x, t− τ)

for the point measurements (1.112). Then the closed-loop system has the form

ztt = −zxxxx − βzt + [φ(z, x, t)−K]z +K

N∑

j=1

χj [fj + ϑj ] , t ≥ t0 (1.115)

In order to derive stability conditions for (1.115) the following Lyapunov-Krasovskii
functional was used

V (t) = V0(t) + Vs(t) + Vr(t), t ∈ [tk, tk+1) (1.116)
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where

V0(t) = p3

∫ π

0

z2xxdx+

∫ π

0

[zzt]P [zzt]
⊤ dx (1.117)

Vs(t) = s

N∑

j=1

∫

Ωj

∫ t

t−τM

e2δ0(s−t)κ2(x, s)dsdx

Vr(t) = rτM

N∑

j=1

∫

Ωj

∫ 0

−τM

∫ t

t+θ

e2δ0(s−t)κ2
s(x, s)dsdθdx (1.118)

with some scalars p1, p2, p3 > 0, s ≥ 0, r ≥ 0, P =

[
p1 p2
∗ p3

]
and κ given by

κ(x, s) =

{ ∫
Ωj

cj(ξ)z(ξ, s)dξ, pointlike measurements,

z(x, s), point measurements.
(1.119)

The results were derived and compared under both types of measurements in terms of the
upper bound on the delays and sampling intervals that preserve the stability for the same
(as small as possible) number of sensors/actuators. For locally Lipschitz nonlinearities,
regional stabilization was achieved. Numerical results have shown that the pointlike
measurements lead to larger delays and samplings, provided the subdomains where these
measurements are averaged, are not too small. Some preliminary results for network-based
control of damped beam equation with globally Lipschitz nonlinearities were presented in
[120].

1.5 Goal of the thesis

In summary, the analysis of sampled-data hyperbolic PDEs is still a wide open problem.
In this thesis we aim at studying the stability properties of sampled-data controlled linear
hyperbolic systems:

∂ty(t, x) + Λ∂xy(t, x) + Υy(t, x) + u(t, x) = 0,

y(t, 0) = Gy(t, L), ∀t ≥ 0,

y(0, x) = y0(x), ∀x ∈ [0, L], (1.120)

where y : [0,+∞) × [0, L] → R
n, t ∈ R+, x ∈ [0, L], Λ = diag {λ1, ..., λm, ..., λn} with

λ1, ..., λm > 0 > λm+1, ..., λn, G and Υ are real n × n matrices. u (t, x) is the control law
which will be represented later. This class of systems is known to be relevant in several
practical problems [4, 6] related to fluid dynamics, road traffic control, etc. - see also [24,
104, 117] for some recent theoretical developments. Although distributed sampled-data
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Figure 1.1: Response of state y1 for the open-loop system.

controllers often appear in practical applications, the results in this case are scarce and
only a few papers discussed the special case of hyperbolic systems [121, 119].

In the following, we use an example to motivate our study: an open-loop unstable
system is stabilized with a continuous time controller. However, the stability can be lost
under some sampled-data control implementations.

Example 1:

Consider a system of the form (1.120) with

L = 1, Λ =

[
1 0

0 −2

]
, Υ =

[
−1.5 1

−3 2

]
, G =

[
1 0

0 1

]
.

The open-loop system is unstable. This is illustrated in Figures 1.1 and 1.2 where the time
evolution of states y1 and y2 for the open-loop system with the initial condition

y0 (x) =

[
(1− cos 4πx) sin 2πx

(cos 2πx− 1) sin 4πx

]

is presented.

For closed-loop system (1.120) with the following continuous-time controller

u(t, x) = Ky(t, x), (1.121)
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Figure 1.2: Response of state y2 for the open-loop system.

Figure 1.3: Response of state y1 for the closed-loop system with continuous-time controller.
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Figure 1.4: Response of state y2 for the closed-loop system with continuous-time controller.

Figure 1.5: Response of state y1 for the closed-loop system with sampled-data controller.
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Figure 1.6: Response of state y2 for the closed-loop system with sampled-data controller.

the stabilizing control gain

K =

[
9 0

7 6

]

was designed using classical continuous-time methods for hyperbolic systems. Then, the
time evolution of states y1 and y2 for the closed-loop system with controller (1.121) are
shown in Figures 1.3 and 1.4.

However, the sampled-data implementation may lead to an unstable behavior. This
is the case for a sampling interval h̄ = 0.5. In order to illustrate the response of the
sampled-data system with h̄ = 0.5, we choose the following controller

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N, (1.122)

where the sampling sequence in (1.122) satisfies

t0 = 0, tk+1 − tk ∈ (0, h̄]. (1.123)

We can see from Figures 1.5 and 1.6 that the system states are divergent with a sampling
interval h̄ = 0.5 for controller (1.122). �

It can be concluded from the above example that, in practice, it is necessary to analyze
the stability of the hyperbolic system under sampled-data control. The following questions
arise naturally when thinking about the stability of such dynamical systems:

• Is it possible to guarantee the stability of the linear hyperbolic system of balance
laws with spatio-temporal sampled controllers?
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• What are the conditions that have to be checked to guarantee the stability of the
system?

This thesis aims at answering the above question. Let us present briefly the main
contributions of this thesis.

1.6 Contributions and structure of the thesis

The rest of the thesis is structured as follows:

• In Chapter 2, we provide methods for analysing the stability of a class of linear
hyperbolic systems with distributed sampled-data controllers. Sufficient conditions
based on Lyapunov techniques for the local practical stability (Rε-stability) of the
system (expressed as LMIs) are obtained.

• In Chapter 3, we extend the results from Chapter 2 for controllers with both time and
the space discretization based on the Lyapunov-Razumikhin method. We introduce
sufficient conditions for the local practical stability (Rε-stability) for the proposed
linear hyperbolic systems of balance laws by recasting the original system into an
equivalent input-output form with a continuous time control loop and operators
representing the discretization errors (spatio-temporal sampling errors). In addition,
the special case where the space is not discretized is also considered.

• In Chapter 4, we deal with the global exponential stability problem for a class
of sampled linear hyperbolic systems. By employing the impulsive approach, the
relation between the sampling interval, the system state and its sampled vector
is characterized by an IQC. The acquired IQC is utilized to derive numerically
tractable stability criteria.
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2.1 Introduction

In this chapter, we address the stability problem for sampled-data hyperbolic PDEs.
Differently from the existing works where boundary control has been considered, here
we study distributed sampled-data controllers. The problem is studied from an input-
output point of view, extending the approaches for finite dimensional systems ([42, 86, 90,
62]). The main idea is to represent the sampling induced error as a perturbation for a
continuous time hyperbolic system. By converting the original sampled-data system into
an interconnection of a continuous-time PDE and a reset-integral operator, we construct
an appropriate Lyapunov functional and obtain sufficient conditions for the Rε - stability
of the system based on LMIs.

The remainder of this chapter is organized as follows. Section 2.2 is dedicated to
the system description and the problem formulation. In Section 2.3, we present the main
results which include two parts. The first part is the system remodeling where an equivalent
continuous hyperbolic PDE is introduced and the stability criteria based on the provided
model are given in the second part. A numerical example illustrating our results is shown
in 2.4. The conclusion of the whole chapter and a useful lemma are given in section 2.5
and section 2.6 respectively.

The main results of this chapter have been included in the accepted work [129].

2.2 System description and problem formulation

In this section, we first introduce the hyperbolic system and the sampled-data controller
under consideration. The existence and uniqueness of the solution are also discussed. Then
we state the stability property of the closed-loop system.

2.2.1 System description

We consider a class of 1-D hyperbolic systems with a control in domain. The system is
represented as follows:





∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(2.1a)

(2.1b)

(2.1c)

In system (2.1), the time variable t ∈ [0,+∞), the space variable x ∈ [0, L]. The state
of the system y : [0,+∞) × [0, L] → R

n depends on both time and space variables. The
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partial derivative with respect to time and with respect to space are presented respectively
by ∂t and ∂x. Λ = diag {λ1, λ2, ..., λn} with λ1, λ2, ..., λn > 0, Υ is a real n × n constant
matrix. u (t, x) is the controller. Since the execution of control in practical applications is
usually a digital signal, we consider its sampled form as shown below:

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N, (2.2)

where K is a real n × n constant matrix, the sampling sequence in (2.2) is defined as
υ = {tk}k∈N where

t0 = 0, tk+1 − tk ∈ (0, h̄], (2.3)

and the maximum sampling interval h̄ > 0. There is no lower bound of h̄ and it can be
any small positive number. The boundary condition and the initial condition are given by
(2.1b) and (2.1c) respectively.

We discuss the solution of the system (2.1) with the sampled-data control (2.2)
satisfying (2.3) in the following remarks.

Remark 2.1

The compatibility condition required for the well-posedness of the Cauchy problem depends
on the functional space to which the solution belongs [4]. In this chapter, the solution of the
closed-loop system (2.1)-(2.3) is considered in H1-norm and the compatibility condition:

y0(0) = 0 (2.4)

is guaranteed by (2.1b) and (2.1c).

Remark 2.2

Let us discuss the notion of the solution used in the present work. The system (2.1)-(2.3)
can be rewritten as a first order system

{
dy(t)
dt

= Ay (t) + f (y (tk)) , t ∈ [tk, tk+1) , k ∈ N,

y (0) = y0,

where f(y(tk)) = −Ky(tk) and the operator A is defined by

Ay = −Λ∂xy (t, x)−Υy (t, x) , (2.5)

with domain
D(A) =

{
y ∈ H1(0, L;Rn)

∣∣ y(0) = 0.
}

(2.6)

The operator A generates a stable C0 semigroup (see the proof of theorem A.1. in [4]).
Moreover, we note that fk : H1(0, L) → H1(0, L) is continuously differentiable for t ∈

[tk, tk+1). If y0 ∈ D(A), then according to Theorem 6.1.5 of [96], there exists a classical
solution for each t ∈ [tk, tk+1), k ∈ N. Therefore, we can construct a solution by choosing
the last value of the previous sampling interval as the initial condition of the following
sampling interval such that it is continuous at each sampling instant.



52 Chapter 2. Hyperbolic system of balance laws with sampled-data control

Figure 2.1: Schematic diagram of Rε-stability under Lyapunov method.

2.2.2 Problem formulation

In this subsection, we first introduce the stability notion used in this chapter. It consists
of local practical stability notion [98]. Given a function V : H1([0, L];Rn) → R+ and a
positive constant C, we use the notation LV≤C to define the set

LV≤C = {y ∈ H1([0, L];Rn) : V (y) ≤ C}.

In the following definition, we introduce the Rε-stability notion.

Definition 2.1 (adopted from Polyakov 2008 [98])
(Definition of Rε-stability): Consider positive scalars R and ε, such that ε < R and a
candidate Lyapunov function V : H1([0, L];Rn) → R+. If for all solutions of system (2.1)-
(2.3) with initial condition y0(x) ∈ LV≤R, the trajectory of the state y(t, x) converges to
LV≤ε as t goes to infinity and the set LV≤ε is positive invariant, then, system (2.1)-(2.3)
is said to be Rε-stable from LV≤R to LV≤ε.

Remark 2.3

Intuitively, Definition 2.1 means that for a given controller (2.2) and an arbitrary initial
condition satisfying y0(0) = 0 in the domain where V < R, the solution of the system (2.1)-
(2.3) converges from the attraction domain (R-neighborhood) to a steady motion domain
(ε-neighborhood) and will never go out. A diagram of Rε-stability under the Lyapunov
method can be found in Figure 2.1.

In this work, our main goal is to guarantee the Rε-stability of the closed loop system
(2.1)-(2.3). We will use an input-output modeling approach which allow us to clearly
identify the perturbation induced by sampling.
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2.3 Main result

In order to achieve the goal for the previously proposed system and controller, we introduce
the input-output modeling method and the main steps of the stability analysis in this
section. The rest of this section is divided into two parts. First, we represent the sampled-
data system as an equivalent continuous hyperbolic PDE where the sampling induced
error appears in the input, as a disturbance. Secondly, based on the provided model,
constructive Rε-stability criteria are provided.

2.3.1 System remodeling

In order to remodel the system, we mainly divide it into four parts: the nominal closed-loop
system, the introduction of the sampling error, the properties of the sampling error and
the interconnection of the operators.

A. Nominal closed-loop system

We first consider the system represented in (2.1), the ideal continuous time control would
have been considered as

uc (t, x) = Ky (t, x) . (2.7)

Under the above controller (2.7), the system (2.1) is represented as the following nominal
closed-loop system:






∂ty (t, x) + Λ∂xy (t, x) + (Υ +K)y (t, x) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) = y0(x), ∀x ∈ [0, L] .

(2.8a)

(2.8b)

(2.8c)

Consider the following Lyapunov functional

V (y) =

∫ L

0

y⊤e−2µxQydx, (2.9)

with µ > 0 and the matrix Q ∈ R
n×n is symmetric positive. The system (2.8) is exponential

stable [4] if the following condition satisfies

(K +Υ)⊤Q +Q(K +Υ) � 0. (2.10)
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B. Sampling error model

Almost all controllers are now implemented in the form of digital algorithms on a computer.
Hence the sampled version of the continuous signal (2.7) is obtained under the sampling
trigger signal at discrete sampling instants tk

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N. (2.11)

Let us define the error between y (t, x) and its sampled version y (tk, x) as follows:

ω (t, x) = y (tk, x)− y (t, x) . (2.12)

Then the system (2.1) can be equivalently re-expressed as a perturbed version of the
nominal system:





∂ty (t, x) + Λ∂xy (t, x) + (Υ +K)y (t, x) +Kω (t, x) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) = y0(x), ∀x ∈ [0, L] .

(2.13a)

(2.13b)

(2.13c)

where ω is the (sampling induced) perturbation parameter.

C. Properties of the sampling error

In the light of the equation defined by the sampling induced error (2.12), we can realize
that the sampling error satisfies the following relation:

ω (t, x) = −

∫ t

tk

∂y (θ, x)

∂θ
dθ, k ∈ N, x ∈ [0, L] . (2.14)

Consider the notion:

ϕ (t, x) =
∂y (t, x)

∂t
, ∀t ≥ 0, x ∈ [0, L] . (2.15)

This parameter represents the derivative of the state between two sampling intervals.

According to (2.14) and (2.15), we have the following expression

ω (t, x) = −

∫ t

tk

ϕ (θ, x) dθ, ∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] . (2.16)

This can be captured by the following operator Jυ :

Jυ :

{
ω (t, x) = (Jυϕ)(t, x) := −

∫ t

tk
ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] .
(2.17)
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ϕ
G

ω
Jυ

Figure 2.2: Alternative representation of the closed-loop system where G is a perturbed
nominal control loop, ϕ is an auxiliary output representing the time derivative of the state
between two sampling intervals, Jυ is an integral operator and ω is the sampling error.

The operator Jυ can also be re-expressed as the following infinite dimensional reset
integrator:

Jυ :






∂φ

∂t
(t, x) = ϕ (t, x) , ∀t ∈ [tk, tk+1) ,

ω (t, x) = −φ (t, x) ,

φ (tk, x) = 0, k ∈ N, x ∈ [0, L] .

(2.18)

D. Interconnection model

We consider system (2.13a) and define an auxiliary output ϕ (t, x) as in (2.15). Then the
sampled closed-loop system can be regarded as the interconnection of two systems G and
Jυ shown in Figure 2.2, where the operator G is defined by

G :





∂ty (t, x) = −Λ∂xy (t, x)− (K +Υ) y (t, x)−Kω (t, x),

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

ϕ (t, x) = −Λ∂xy (t, x)− (K +Υ) y (t, x)−Kω (t, x) = ∂ty (t, x) .

(2.19)

Remark 2.4

Inspired by the existing works [42, 12, 91, 86, 123, 122] in the case of finite dimension
systems, in the remodeling system (2.18)-(2.19), the operator Jυ captures the effect of the
sampling in the system. It has input (the derivative of the state ϕ) and the output (the
sampling error ω).

This description is further used in the following subsection in order to derive our main
analysis result.
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2.3.2 Stability analysis

In this subsection, we provide our main results. It proposes constructive conditions for
the analysis of Rε-stability of sampled-data system (2.1)-(2.3) using the model (2.18) and
(2.19).

Theorem 2.1

Consider systems (2.18)-(2.19) with (2.3)(or equivalently (2.1)-(2.3)) and the initial
condition satisfying the compatibility condition (2.4):

(i) Let λ = min
i∈{1,...,n}

λi. Assume that there exist µ, γ > 0 and symmetric positive matrices

Q1 ∈ R
n×n , Q2 ∈ R

n×n satisfying the commutativity conditions: ΛΘ1 = Θ1Λ,ΛΘ2 = Θ2Λ

and

M(0) � 0, M(L) � 0, (2.20)

with M(x) defined for all x ∈ [0, L] as

M(x) =




Ω(x) −e−2µxQ1K 0 0

∗ −γI 0 0

∗ ∗ E(x) −e−2µxQ2K

∗ ∗ ∗ −γI


 , (2.21)

where

Ω(x) = −e−2µx
[
(K +Υ)⊤Q1 +Q1(K +Υ)

]
,

E(x) = −e−2µx
[
Υ⊤Q2 +Q2Υ+ βQ2

]
. (2.22)

(ii) Let there exist ε ∈ R+; R ∈ R+ such that ε < R and

γ3h̄
(
|Λ|2Φ2 +

(
|Υ|2 + |K|2

)
Φ1

)
+ γΦ2 < (2ν − β)ε, (2.23)

with

Φ1 =
R

λmin (Q1) e−2µL
,

Φ2 =
R

λmin (Q2) e−2µL
, (2.24)

where ν = µλ, 0 < β < 2ν.

Then the considered system (2.18)-(2.19) with (2.3) (or equivalently (2.1)-(2.3)) is Rε-
stable from LV≤R to LV ≤ε with a Lyapunov functional defined as

V (y) = V1(y) + V2(y), (2.25)
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where
LV≤R = {y ∈ H1([0, L];Rn) : V (y) ≤ R},

LV ≤ε = {y ∈ H1([0, L];Rn) : V (y) ≤ ε},

and

V1(y) =

∫ L

0

y⊤e−2µxQ1ydx, (2.26)

V2(y) =

∫ L

0

y⊤x e
−2µxQ2yxdx. (2.27)

Proof of Theorem 2.1:

Before giving the proof of Theorem 2.1, we first state a temporary assumption that
the solutions y are of class C2 (see Comment 4.6 in Bastin 2016 [4]). This assumption can
be relaxed as shown in the proof of Lemma 4.5 in [4]. Indeed, using a density argument
similar to Comment 4.6 in [4], the estimates of (V̇i, i = 1, 2) given below remain valid, in
the distribution sense with y ∈ C0([0,+∞], H1([0, L];Rn)) (see the statement of Theorem
10.1 in [97]).

Consider the Lyapunov functional (2.25)-(2.27). It can be bounded as follows:

Θ ‖y (t, ·)‖2H1( [0,L];Rn) ≤ V (y (t, ·)) ≤ Ξ ‖y (t, ·)‖2H1( [0,L];Rn) , (2.28)

where

Θ = min(λmin (Q1) , λmin (Q2))e
−2µL,

Ξ = max(λmax (Q1) , λmax (Q2)).

The rest of the proof is divided into three steps. In step 1, we investigate the continuity of
the Lyapunov functional V (y) by constructive method. In step 2, we intend to study the
time derivative of the Lyapunov functional V (y) defined in (2.25). The time derivative of
V1(y) defined in (2.26) is first derived, then with the similar computation of V̇1, the time
derivative of V2 defined in (2.27) is obtained. Combining V̇1 and V̇2, we get that the time
derivative of V (y) is bounded. In step 3, we discuss the negative properties of function
V̇ (y) with the assumption (2.23), which proves the Rε-stability.

Step 1: In this step we study the continuity of the function V defined in (2.25).

1. Since y(t, x) is continuous with respect to t for all t ∈ [tk, tk+1), k ∈ N and continuous
at sampling instants by construction (see Remark 2.2) , then V1 is continuous for all
t ≥ 0.
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2. From system (2.1), we can get

yx (t, x) = Λ−1 (−yt (t, x)−Υy (t, x)−Ky (tk, x)) , (2.29)

for all t ∈ [tk, tk+1), k ∈ N. Since all the terms on the right of the equation (2.29) are
continuous in t on (tk, tk+1), ∀k ∈ N, then yx(t, x) and thus V2 are also continuous in
t for all (tk, tk+1), k ∈ N.

Now we consider the time interval [tk, tk+1), for some k ∈ N and an initial condition
yk(x). The solution of (2.1) is defined as y(t, x) on the time interval [tk, tk+1) and is
such that y and yx are both C0 in t ∈ [tk, tk+1).

Next, we prolong the solution to C1 in t on [tk, tk+1]. We denote z(t, x) the solution
on [tk, tk+1] with initial condition yk(x). z(t, x) and zx(t, x) are C0 in t on [tk, tk+1].
We get the following properties on [tk, tk+1)

{
y(t, x) = z(t, x),

yx(t, x) = zx(t, x).
(2.30)

Then the left limit can be calculated as

lim
t→t−

k+1

yx (t, x) = lim
t→t−

k+1

zx (t, x) = zx (tk+1, x) . (2.31)

For the next time interval [tk+1, tk+2), we set the initial condition yk+1(x) = z(tk+1, x).
Then the solution y(t, x) of system (2.1) on [tk+1, tk+2) satisfies yx(t, x) is C0 in t on
[tk+1, tk+2). Therefore, we have the right limit property

lim
t→t+

k+1

yx (t, x) = yx (tk+1, x) = zx (tk+1, x) . (2.32)

According to (2.31) and (2.32), we can see that by construction, yx(t, x) is continuous
in t at time instant tk+1. Similarly, we can show that the function yx(t, x) is
continuous at all sampling instants, which shows both the continuity of yx(t, x) with
respect to time for all t ≥ 0 and the continuity of V2.

Step 2: In this step we study the time derivative of the function of V (y) defined
in (2.25). Thanks to commutativity condition: ΛQ1 = Q1Λ, we first compute the time
derivative of V1(y) along the solutions to (2.18)-(2.19),∀t ∈ [tk, tk+1) , k ∈ N,

V̇1(y) =

∫ L

0

(
∂ty

⊤e−2µxQ1y + y⊤e−2µxQ1∂ty
)
dx

=

∫ L

0

(
(−Λ∂xy − (K +Υ)y −Kω)⊤e−2µxQ1y

+y⊤e−2µxQ1 (−Λ∂xy − (K +Υ)y −Kω)
)
dx
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=

∫ L

0

−∂x
[
y⊤Λe−2µxQ1y

]
dx

+

∫ L

0

(
−y⊤(K +Υ)⊤e−2µxQ1y − y⊤e−2µxQ1(K +Υ)y

−y⊤e−2µxQ1Kω − 2µy⊤Λe−2µxQ1y − ω⊤K⊤e−2µxQ1y
)
dx

= −
[
y⊤Λe−2µxQ1y

]L
0

+

∫ L

0

(
−y⊤

(
(K +Υ)⊤e−2µxQ1 + e−2µxQ1(K +Υ)

)
y

−ω⊤K⊤e−2µxQ1y − y⊤e−2µxQ1Kω
)
dx

− 2µ

∫ L

0

y⊤Λe−2µxQ1ydx. (2.33)

Since we have the assumption that y is of class C2 on [0,+∞) × [0, L], then along the
solutions of the system (2.1)-(2.2), we can obtain

∂xty (t, x) = ∂txy (t, x) = −Λ∂xxy (t, x)−Υ∂xy (t, x)−K∂xy (tk, x) , (2.34)

∀t ∈ (tk, tk+1), k ∈ N.

For the next calculation of the time derivative of V2, we use Lemma 2.1 in the appendix.
According to (2.34) and Lemma 2.1, we have

{
∂xy(t, 0) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

y0(0) = 0, ∂xy0(0) = 0.

(2.35a)

(2.35b)

Similarly to the computation of V̇1, by using the commutativity condition: ΛQ2 = Q2Λ,

the time derivative of V2(y) along the solutions to (2.34)-(2.35), ∀t ∈ (tk, tk+1) , k ∈ N is
shown as follows

V̇2(y) =−
[
∂xy

⊤Λe−2µxQ2∂xy
]L
0

+

∫ L

0

(
−∂xy

⊤
(
Υ⊤e−2µxQ2 + e−2µxQ2Υ

)
∂xy

− ∂xy
⊤ (tk, ·)K

⊤e−2µxQ2∂xy

−∂xy
⊤e−2µxQ2K∂xy

⊤ (tk, ·)
)
dx

− 2µ

∫ L

0

∂xy
⊤Λe−2µxQ2∂xydx. (2.36)

Recalling the definition of ω in (2.12) and adding γ‖ω (t, ·)‖2L2( [0,L];Rn)−γ‖ω (t, ·)‖2L2( [0,L];Rn)

to (2.33) and

γ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn) − γ‖∂xy (tk, ·)‖

2
L2( [0,L];Rn),

β

∫ L

0

y⊤x e
−2µxQ2yxdx− β

∫ L

0

y⊤x e
−2µxQ2yxdx
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to (2.36) for some γ > 0, β > 0, we have

V̇ (y) =V̇1(y) + V̇2(y)

=−
[
y⊤Λe−2µxQ1y

]L
0

+

∫ L

0

(
y⊤Ω(x)y − ω⊤K⊤e−2µxQ1y − y⊤e−2µxQ1Kω − γω⊤ω

)
dx

− 2µ

∫ L

0

y⊤Λe−2µxQ1ydx+ γ ‖ω (t, ·)‖2L2( [0,L];Rn)

−
[
∂xy

⊤Λe−2µxQ2∂xy
]L
0

+

∫ L

0

(
∂xy

⊤E(x)∂xy − ∂xy
⊤ (tk, ·)K

⊤e−2µxQ2∂xy

−∂xy
⊤e−2µxQ2K∂xy

⊤ (tk, ·)− γ∂xy
⊤ (tk, ·)∂xy (tk, ·)

)
dx

− 2µ

∫ L

0

∂xy
⊤Λe−2µxQ2∂xydx

+ γ ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn) + β

∫ L

0

y⊤x Q2yxdx. (2.37)

According to the boundary conditions (2.13b) and (2.35a), the two terms −
[
y⊤Λe−2µxQ1y

]L
0

and −
[
∂xy

⊤Λe−2µxQ2∂xy
]L
0

in (2.37) are both negative. Then the following inequality can
be obtain:

V̇ (y) ≤

∫ L

0

(
y⊤Ω(x)y − ω⊤K⊤e−2µxQ1y −y⊤e−2µxQ1Kω − γω⊤ω

)
dx

− 2νV1(y) + γ ‖ω (t, ·)‖2L2( [0,L];Rn)

+

∫ L

0

(
∂xy

⊤E(x)∂xy − ∂xy
⊤ (tk, ·)K

⊤e−2µxQ2∂xy

−∂xy
⊤e−2µxQ2K∂xy (tk, ·)− γ∂xy

⊤ (tk, ·)∂xy (tk, ·)
)
dx

− 2νV2(yx) + γ ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn)

+ β

∫ L

0

y⊤x Q2yxdx. (2.38)

with ν = µλ and Ω(x),E(x) defined in (2.22).

In the light of M(x) defined in (2.21), the inequality (2.38) can be further written as
follows:

V̇ (y) ≤− 2νV1(y)− (2ν − β)V2(y) +

∫ L

0

η⊤M(x)ηdx

+ γ ‖ω (t, ·)‖2L2( [0,L];Rn) + γ ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn) . (2.39)
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with

η = [y⊤, ω⊤, (∂xy)
⊤, (∂xy)

⊤ (tk, ·)]
⊤. (2.40)

Since M(x) satisfies LMIs (2.20), by convexity we have η⊤M(x)η ≤ 0, ∀x ∈ [0, L] and
thus

∫ L

0

η⊤M(x)ηdx ≤ 0, (2.41)

we deduce from (2.39)

V̇ (y) ≤− 2νV1(y)− (2ν − β)V2(y) + γ‖ω (t, ·)‖2L2( [0,L];Rn)

+ γ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn). (2.42)

Step 3: The negative properties of function V̇ (y) for t ∈ [tk, tk+1), k ∈ N will be discussed
in this step. Consider some k ∈ N and let us first assume that y (t, ·) ∈ LV≤R \ LV≤ε and
∀θ ∈ [tk, t], y (θ, ·) ∈ LV≤R, we have

∫ L

0

y⊤e−2µxQ1ydx ≤ R, ∀y(θ, ·) ∈ LV≤R,

∫ L

0

∂xy
⊤e−2µxQ2∂xydx ≤ R, ∀∂xy(θ, ·) ∈ LV≤R. (2.43)

Then the following inequalities are further derived

‖y (θ, ·)‖2L2([0,L];Rn) ≤ Φ1, ∀θ ∈ [tk, t], (2.44)

‖∂xy (θ, ·)‖
2
L2([0,L];Rn) ≤ Φ2, ∀θ ∈ [tk, t]. (2.45)

with Φ1 and Φ2 defined in (2.24).

Recalling y (t, ·) ∈ LV≤R \LV≤ε and ∀θ ∈ [tk, t], y (θ, ·) ∈ LV≤R, for t ∈ [tk, tk+1), k ∈ N.
The bound of ‖ω (t, ·)‖2L2([0,L];Rn) can be calculated under the definition of L2-norm

‖ω (t, ·)‖2L2([0,L];Rn) =

∫ L

0

|ω (t, x)|2dx. (2.46)

Let us recall the definition of ω in (2.12) as well as the operator Jυ in (2.17), we have

‖ω (t, ·)‖2L2([0,L];Rn) =

∫ L

0

|(Jυϕ) (t, x)|
2dx. (2.47)



62 Chapter 2. Hyperbolic system of balance laws with sampled-data control

By employing the definition of ϕ in (2.15) to (2.47), we have

‖ω (t, ·)‖2L2([0,L];Rn) =

∫ L

0

∣∣∣∣
∫ t

tk

∂y (θ, x)

∂θ
dθ

∣∣∣∣
2

dx (2.48)

According to (2.1) and (2.2), (2.48) is equivalent to the following form

‖ω (t, ·)‖2L2([0,L];Rn) =

∫ L

0

∣∣∣∣
∫ t

tk

(Λ∂xy (θ, x) + Υy (θ, x) +Ky (tk, x))dθ

∣∣∣∣
2

dx (2.49)

Using the absolute value inequality and the inequality of arithmetic and geometric means
for (2.49), it yields

‖ω (t, ·)‖2L2([0,L];Rn) ≤ 3

∫ L

0

∫ t

tk

(
|Λ|2|∂xy (θ, x)|

2 + |Υ|2|y (θ, x) |2 +|K|2|y (tk, x)|
2) dθdx.

(2.50)

Considering the definition of L2-norm to (2.50), we obtain

‖ω (t, ·)‖2L2([0,L];Rn) ≤3

∫ t

tk

(
|Λ|2 ‖∂xy (θ, x)‖

2
L2([0,L]; Rn) +|Υ|2 ‖y (θ, x)‖2L2([0,L]; Rn)

+|K|2 ‖y (tk, x)‖
2
L2([0,L]; Rn)

)
dθ. (2.51)

Based on equation (2.3) and inequalities (2.44) and (2.45), we finally have

‖ω (t, ·)‖2L2([0,L];Rn) ≤ 3h̄
(
|Λ|2Φ2 +

(
|Υ|2 + |K|2

)
Φ1

)
(2.52)

In addition, since y (t, ·) , ∂xy (t, ·) /∈ LV ≤ε, we have

−2νV1(y)− (2ν − β)V2(y) ≤ −(2ν − β)(V1(y) + V2(y))

< −(2ν − β)ε. (2.53)

Therefore, introducing (2.52) and (2.53) into (2.42), we have that for all t ∈ [tk, tk+1), k ∈ N,

V̇ (y) <− (2ν2 − β)ε+ γ3h̄
(
|Λ|2Φ2 +

(
|Υ|2 + |K|2

)
Φ1

)
+ γΦ2, (2.54)

and since condition (2.23) satisfies, we have shown that if y (t, ·) ∈ LV≤R \ LV≤ε and
∀θ ∈ [tk, t], y (θ, ·) ∈ LV≤R for ∀t ∈ [tk, tk+1), k ∈ N

V̇ (y) < 0, (2.55)

which means that since V is continuous, that y will remain in LV≤R during the whole
sampling interval [tk, tk+1], and by recursion, we can see that it will always remains there.
As a consequence, LV≤R is positively invariant. Furthermore, since V̇ < 0 wherever y /∈

LV≤ε, that means that LV≤ε is attractive, which ends the proof of the Rε-stability. �
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Remark 2.5

Theorem 2.1 provides sufficient conditions for the analysis of the Rε-stability of the system
(2.1)-(2.3). If the conditions are satisfied, then the system is Rε-stable with respect to the
sampling interval h ∈ (0, h̄]. Note that if the conditions are satisfied for some other h̄ = h∗,
then the system is Rε-stable also for any other selection of sampling interval h ∈ (0, h∗].
Here the system is stable in the set where V ∈ (0, ε].

Remark 2.6

The Lyapunov functional V (y) chosen in this chapter consists of two parts V1 and V2. In
fact, if it is under continuous control, the function V1 is sufficient to find a upper bound
of y [4]. However, in our case, we study distributed sampled-data control, which increases
the complexity of the calculation. Due to the influence of sampling signal, the term yx is
introduced in the derivative of V1. In order to bound the term yx when calculating the upper
bound of the sampling error ω, we have to introduce function V2.

Remark 2.7

The selection of the parameters in Theorem 2.1 is interpreted as follows. For Rε-stability, R
is the domain of attraction for a given Lyapunov function, ε specifies the positive invariant
level set of V . They satisfy 0 < ε < R. In this work, we can fix R then compute ε or vice
versa. µ is related to the decay rate of V1, V2. γ and β are found by linear search to satisfy
the conditions given in Theorem 2.1. Q1, Q2 can be found by solving the LMIs in (2.20).

2.4 Numerical simulation

In this section, we present a numerical example to illustrate the stability we proposed in
section 2.3. Consider the following system






∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

where

Λ =

[
11 0

0 11

]
, Υ =

[
20 15

20 25

]
, K =

[
2 0

2 3

]
, L = 1, h̄ = 10−4.

According to Remark 2.7, the parameters in Theorem 2.1 are as follows:
the constants β = 0.01, γ = 0.001, the decay rates µ = 0.18, the domain of attraction
R = 20, the positive invariant level set ε = 4.51 and the Lyapunov matrices

Q1 = 10−3 ×

[
5.3 1.2

∗ 2.8

]
, Q2 = 10−3 ×

[
6.8 2.1

∗ 3.5

]
,
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Figure 2.3: Response of state y1 with initial condition (2.56).

Figure 2.4: Response of state y2 with initial condition (2.56).

which satisfy the conditions (2.20), (2.21) and (2.23).

The results of numerical simulations from the initial condition

y0 (x) =

[
4.8(1− cos 2πx) sin 4πx

3(1− cos 4πx) sin 2πx

]
(2.56)
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Figure 2.5: Initial data of y1 and y2 represented by equation (2.56).
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0.3

Figure 2.6: Initial data of ∂xy1 and ∂xy2.

are presented in Figures 2.3-2.7. Figures 2.3-2.4 show that the states converge to the
vicinity of the origin with the sampled-data controller. The initial conditions satisfying the
compatibility condition are given in Figures 2.5-2.6. The time-evolution of the Lyapunov
functional V is shown in Figure 2.7 and the corresponding semi-log plot is shown in Figure
2.8. One can see that the Lyapunov functional V deceases when ε < V (y) < R.
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0 0.1 0.2 0.3 0.4 0.5
0

5
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15

20

Figure 2.7: Time-evolution of function V for the initial condition (2.56) with a fixed
maximum sampling interval h̄ = 10−4.
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Figure 2.8: Zoom of time-evolution of function V in semi-log scale.

2.5 Conclusion

The main goal of this chapter was to provide methods for the analysis of linear hyperbolic
systems with distributed sampled-data control. The closed-loop system was reformulated



2.6. Appendix of Chapter 2 67

from an input-output point of view. We provided methods for checking the local practical
stability of the system by means of the Lyapunov method. This result will be used next in
the following chapters as a stepping stone for a more complex analysis method. In Chapter
3, we will extend the proposed approach by the virtue of the Lyapunov-Razumikhin method
and provide a new result that is able to handle the controller discretized both in space and
time in a more efficient manner.

2.6 Appendix of Chapter 2

In this section, we give a lemma which is necessary in the proof of Theorem 2.1. More
precisely, it is needed when deriving the time derivative of V2, so as to prove the negative
definiteness of the Lyapunov functional V (y).

Lemma 2.1

Consider the system (2.1)-(2.3) with initial condition y0 satisfying the compatibility
condition (2.4). Then we have

∂xy(t, 0) = 0, ∀t ∈ [tk, tk+1), k ∈ N.

Proof of Lemma 2.1: We recall system (2.1)-(2.3)






∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(2.57a)

(2.57b)

(2.57c)

(2.57d)

The time derivative of the boundary condition leads to

∂ty (t, 0) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (2.58)

Combining (2.57a) with (2.58), we obtain

0 = ∂ty (t, 0) = −Λ∂xy (t, 0)−Υy (t, 0)−Ky (tk, 0) . (2.59)

Since y(t, 0) = 0, ∀t ≥ 0, we have

∂xy(t, 0) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (2.60)

�
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This chapter addresses the stability analysis problem for a class of linear hyperbolic
systems with distributed controllers sampled in both space and time. First, the considered
system is recast in an equivalent form with a continuous time control loop and operators
representing the discretization errors (spatio-temporal sampling errors). Then with the
help of the Lyapunov Razumikhin approach, Rε-stability of the linear hyperbolic systems
of balance laws is guaranteed via sufficient conditions. At last, the proposed method is
illustrated numerically.

3.1 Introduction

In the present chapter, we aim at studying the stability properties of sampled-data
controlled linear hyperbolic systems with discrete-space measurements. More precisely,
we study the case of first-order hyperbolic system, which is different from the works
[121, 119]. In those works, higher-order systems have been studied. We consider that
the state-space is divided into several sub-domains, where sensors provide point state
measurements to the controller. By generalizing the input-output approach [90] used for
finite dimensional systems, an equivalent system with two sampling errors is deduced. We
derive sufficient LMI conditions for the Rε-stability by utilizing appropriate Lyapunov-
Razumikhin technique [67]. This chapter is a continuation of our preliminary results in
[129] and Chapter 2, in which we used a simplified version of the current method for the
case of hyperbolic systems where the controller is discretized only in time. Here we extend
the approach by using the Lyapunov-Razumikhin function and we also consider a more
general case of the controller with both time and space discretizations.

3.2 System description and problem formulation

3.2.1 System description

We consider the linear hyperbolic system (3.1) given below





∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

y(t, 0) = Gy(t, L), ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(3.1a)

(3.1b)

(3.1c)

where y : [0,+∞) × [0, L] → R
n, t ∈ R+, x ∈ [0, L], Λ = diag {λ1, λ2, ..., λn} with

λ1, λ2, ..., λn > 0, G and Υ are real n × n matrices. u (t, x) is the control law represented
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as the following

u (t, x) = K

N−1∑

i=0

di (x) y (tk, x̄i) , t ∈ [tk, tk+1) , (3.2)

where K is a real n× n matrix.

Following [37], we assume that N sensors are uniformly distributed over the space
interval [0, L]. The location of the sensors is denoted by

x̄i, i ∈ {0, · · · , N − 1},

such that
x̄0 = 0, x̄i = x̄i−1 + b̄, i ∈ {1, . . . N − 1}

where

b̄ =
L

N − 1
.

Each sensor is in charge of an interval

Ξi = [xi, xi+1), i ∈ {0, · · · , N − 1}

where 


xi =

x̄i−1 + x̄i

2
, i ∈ {1, · · · , N − 1} ,

x0 = 0, xN = L.

(3.3a)

(3.3b)

We consider the sampling time instants

0 = t0 < t1 < · · · < tk · · · , lim
k→∞

tk = ∞,

the sampling sequence is defined as

υ = {tk}k∈N.

The sampling intervals in time is bounded as

tk+1 − tk ∈ [h, h̄]

and h̄ ≥ h > 0 are the corresponding bounds. The control setup is schematically presented
in Figure 3.1. The plant is a linear hyperbolic system. Each sub-domain Ξi provides
discrete time point measurements of the state. Then the sampling state y (tk, x̄i) is
transferred to the controller and the resulting feedback with some constant gains is further
implemented to the hyperbolic system through a ZOH. We consider that a ZOH control
is applied using the shape function

{
di (x) = 1, x ∈ Ξi,

di (x) = 0, otherwise,
i ∈ {0, · · · , N − 1}. (3.4)

The shape function is used to obtain a linear combination of controllers, each controller
is responsible for the control of a region.
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Figure 3.1: The system control setup.

Remark 3.1

To analyze the stability of the closed-loop system (3.1)-(3.2), the compatibility condition:
y0(0) = Gy0(L) is guaranteed by (3.1b) and (3.1c). In order to establish the existence and
uniqueness of solutions in this section, we use the notion of piecewise continuous solutions
as in Remark 2.2 of Chapter 2.

3.2.2 Problem formulation

In this chapter, we prove Rε-stability defined as Definition 2.1 in Chapter 2. Our goal is
to provide numerical tools for analysis of the Rε-stability of the system (3.1)-(3.2), while
ensuring some performances in terms of the convergence.

3.3 Main result

This section is divided into two parts. First, we represent the sampled-data system as
an continuous time hyperbolic PDE. In the equivalent system, spatio-temporal sampling
errors appear in the input as the disturbances. Secondly, based on the provided model,
constructive Rε-stability criteria are proposed.
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3.3.1 System remodeling

1. We first define two parameters ω and ϑ corresponding to the induced errors. The
time sampling error is

ω (t, x) = y (tk, x)− y (t, x) , (3.5)

and ϑ is the space discretization error

ϑ (tk, x) = y (tk, x)−

N−1∑

i=0

di (x) y (tk, x̄i) . (3.6)

Adding and substracting Ky (t, x) and Ky (tk, x) to (3.2), we can rewrite u (t, x),
∀t ∈ [tk, tk+1) as

u (t, x) =Ky (t, x) +K (y (tk, x)− y (t, x))

−K

(
y (tk, x)−

N−1∑

i=0

di (x) y (tk, x̄i)

)
. (3.7)

Combining (3.5) and (3.6) with (3.7), we have

u (t, x) = Ky (t, x) +Kω (t, x)−Kϑ (tk, x). (3.8)

According to (3.8), the closed-loop system (3.1)-(3.2) can be equivalently re-expressed
as





∂ty (t, x) + Λ∂xy (t, x) + (Υ +K)y (t, x) +Kω (t, x)−Kϑ (tk, x) = 0,

∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = Gy(t, L), ∀t ≥ 0,

y(0, x) = y0(x), ∀x ∈ [0, L] .

(3.9a)

(3.9b)

(3.9c)

In (3.9) the parameter ω, as a perturbation input, is the time sampling induced error
satisfying

ω (t, x) = −

∫ t

tk

∂y (θ, x)

∂θ
dθ, k ∈ N, x ∈ [0, L] . (3.10)

The function ϕ is an auxiliary output for system (3.9) defined as follows

ϕ (t, x) =
∂y (t, x)

∂t
, ∀t ∈ (tk, tk+1) , x ∈ [0, L] . (3.11)
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According to (3.5) and (3.11), we have the following expression

ω (t, x) = −

∫ t

tk

ϕ (θ, x) dθ, ∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] . (3.12)

Then the perturbation input ω can be expressed by a sampling υ-dependent operator
Jυ:

Jυ :

{
ω (t, x) = (Jυϕ)(t, x) = −

∫ t

tk
ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] .
(3.13)

The parameter ϑ in (3.9) is another disturbance input, which is an error caused by
space discretization, satisfying

ϑ (tk, x) =

N−1∑

i=0

di (x)

∫ x

x̄i

∂y (tk, ς)

∂ς
dς. (3.14)

We use the function φ as another auxiliary output for system (3.9), ∀t ≥ 0, x ∈

(xi, xi+1) , i ∈ {0, ..., N − 1},

φ (t, x) =
∂y (t, x)

∂x
. (3.15)

The space discretization error ϑ can be handled by the operator E:

E :





ϑ (tk, x) = (Eφ)(tk, x) =
N−1∑
i=0

di (x)
∫ x

x̄i
φ (tk, ς)dς,

∀x ∈ Ξi, i ∈ {0, ..., N − 1}.
(3.16)

3.3.2 Stability analysis

In this subsection, before giving our main results and Rε-stability conditions, we first
introduce the Lyapunov-Razumikhin approach which is adapted in the following theorems.

Compared with the case of ODE, it is much more difficult to find a functional whose
time derivative is non-positive or strictly negative for Retarded Functional Differential
Equations (RFDEs). In 1956, B.S. Razumikhin proposed a method to study the stability
of solutions of time-delay systems [102]. Razumikhin’s method essentially extends the
stability theorem in the sense of Lyapunov. His basic idea is to constrain the derivative
of the Lyapunov function only when the solution is about to exit the steady-state sphere.
The method proposed by B.S. Razumikhin can make the Lyapunov function applicable
in RFDE to a considerable extent. In some cases, this application is simpler and more
intuitive than the application of general functions [55]. Although this method is dedicated
to the stability analysis of time-delay system, we adapt it for the sampled-data hyperbolic
systems.
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Figure 3.2: Schematic diagram of Rε-stability under Lyapunov-Razumikhin method.

Theorem 3.1

Consider systems (3.9)-(3.16) with (3.3)-(3.4) and a candidate Lyapunov functional

V : H1 ([0, L] ; Rn) → R+

which is differentiable with respect to its argument and V (0) = 0, V (̺) > 0, ∀̺ ∈ O \ {0},
where O is the neighborhood of the region. Given constants α > 1, δ > 0, 0 < ε < R,
suppose that along the trajectories of the system (3.9)-(3.16), the corresponding solution
y(t, ·) satisfies

V̇ (y) + 2δV (y) ≤ 0, ∀t ∈ [tk, tk+1) , k ∈ N

whenever

(i) R > V (y(t, ·)) ≥ max
{
ε, V (y(tk ,·))

α

}
,

(ii) y(tk, ·) ∈ LV <R, k ∈ N.

Then the system is Rε-stable from LV <R to LV ≤ε.

The proof of Theorem 3.1 can be found in the appendix.

Remark 3.2

In the Lyapunov-Razumikhin approach, the main idea is that it is not necessary to ensure
the negative definiteness of V̇ (y(t, ·)) along all the trajectories of the system. In fact, it is
sufficient to guarantee its negative definiteness only for the solutions that tend to escape
the neighborhood of V (y(t, ·)) ≤ V (y(tk ,·))

α
of the equilibrium (see Figure 3.2). Furthermore,

the Razumikhin method is also adapted here to local, practical stability from one large open
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set, to a smaller one, with guaranteed exponential decay. Theorem 3.1 is a generic result
concerning the Rε-stability properties of Lyapunov-Razumikhin functionals. It represents
a stepping stone for Theorem 3.2 which is our main theoretical result.

In the following theorem, we provide sufficient conditions for the Rε-stability of systems
(3.9)-(3.16). In order to guarantee the negativeness of the time derivative of the Lyapunov
function, we give four LMIs in condition (i). (3.17) and (3.18) are related to boundary
control and (3.19) is derived by using Schur complement [10] (see Theorem A.5 in Appendix
A) to eliminate some other terms in the derivative. Condition (ii) is an inequality with
respect to the sampling interval h̄ and positive invariant set ε. Combining condition (ii)
with condition (i), the stability of the systems can be proved.

Theorem 3.2

Consider systems (3.9)-(3.16) with (3.3)-(3.4) and an initial condition satisfying y0(0) =

Gy0(L):

(i) Let λ = min
i∈{1,...,n}

λi. Assume that there exist constants µ, γ, κ > 0, α > 1 and

symmetric positive definite matrices Θ1 ∈ R
n×n , Θ2 ∈ R

n×n satisfying the commutativity
conditions: ΛΘ1 = Θ1Λ,ΛΘ2 = Θ2Λ and

−Λe−2µLΘ1 +G⊤ΛΘ1G � 0, (3.17)

P := U⊤ΛΘ2U − χ � 0 (3.18)

with

U =
[
Λ−1GΛ, Λ−1GΥ− Λ−1ΥG, Λ−1GK − Λ−1KG

]
,

χ =

[
Λe−2µLΘ2 0n×2n

∗ 02n×2n

]

and

M(0) � 0, M(L) � 0, (3.19)

with M(x) defined for all x ∈ [0, L] as

M(x) =

[
Q(x) S(x)

∗ I

]
� 0, (3.20)
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where

Q(x) =




Ω1(x) e−2µxΘ1K+κe−2µxΘ1 0 0

∗ γI+κe−2µxΘ1 0 0

∗ ∗ Ω2(x) 0

∗ ∗ ∗ Ω3(x)


 , (3.21)

S(x) =

[
e−2µxΘ⊤

1

03n×n

]
, (3.22)

and

Ω1(x) = e−2µx
[
(K +Υ)⊤Θ1 +Θ1(K +Υ)− κ(α− 1)Θ1

]
,

Ω2(x) = e−2µx
[
Υ⊤Θ2 +Θ2Υ+ βΘ2 − καΘ2

]
,

Ω3(x) = −
b̄2

π2
K⊤K+κe−2µxΘ2. (3.23)

(ii) Assume that there exist ε, R ∈ R+ s.t. 0 < ε < R and

γ3h̄
((
|Λ|2 + 2|K|2L2

)
Φ2 +

(
|Υ|2 + 2|K|2L|G|2

)
Φ1

)
≤ (2σ − β)ε− 2δR, (3.24)

where σ = µλ, 0 < β < 2σ, δ > 0 and

Φ1 =
R

λmin (Θ1) e−2µL
, Φ2 =

R

λmin (Θ2) e−2µL
.

Then the considered system is Rε-stable from LV <R to LV ≤ε for any sampling sequence
satisfying tk+1 − tk ∈ [h, h̄], with the Lyapunov functional defined as

V (y) = V1(y) + V2(y), (3.25)

with

LV≤R = {y ∈ H1([0, L];Rn) : V (y) ≤ R},

LV ≤ε = {y ∈ H1([0, L];Rn) : V (y) ≤ ε},

and

V1(y) =

∫ L

0

y⊤e−2µxΘ1ydx, (3.26)

V2(y) =

∫ L

0

y⊤x e
−2µxΘ2yxdx. (3.27)
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Proof of Theorem 3.2: Similar to the proof of Theorem 2.1, we assume that the
solutions y are of class C2 (see Comment 4.6 in Bastin 2016 [4]).

Consider the Lyapunov functional (3.25)-(3.27). It can be bounded as follows:

Ψ1 ‖y (t, ·)‖
2
H1( [0,L] ;Rn) ≤ V (y (t, ·)) ≤ Ψ2 ‖y (t, ·)‖

2
H1( [0,L] ;Rn) , (3.28)

where Ψ1 = min{λmin (Θ1) , λmin (Θ2)}e
−2µL,Ψ2 = max{λmax (Θ1) , λmax (Θ2)}.

Step 1 : Adopt to Step 1 in the proof of Theorem 2.1, the Lyapunov functional defined
in (3.25) is continuous.

Step 2: In this step we study the time derivative of the function of V (y) defined in
(3.25) and its upper bound is defined by the following inequality:

V̇ (y) ≤ −2σV1(y)− (2σ − β)V2(y) +

∫ L

0

η⊤W (x)ηdx+ γ ‖ω (t, ·)‖2L2( [0,L];Rn) (3.29)

with

σ = µλ,

η = [y⊤, ω⊤, (∂xy)
⊤, (∂xy(tk, ·))

⊤]⊤,

A1(x) = e−2µx
[
(K +Υ)⊤Θ1 +Θ1(K +Υ)

]
,

A2(x) = e−2µx
[
Υ⊤Θ2 +Θ2Υ+ βΘ2

]
,

A3(x) = −A1(x) + e−4µxΘ⊤
1 Θ1

and

W (x) =




A3(x) −e−2µxΘ1K 0 0

∗ −γI 0 0

∗ ∗ −A2(x) 0

∗ ∗ ∗ b̄2

π2K
⊤K


 .

A detailed proof of (3.29) is given in the Appendix of Chapter 3.

Step 3: In this step, we show that under the conditions of Theorem 3.2, for each
sampling interval, V is decaying with a decay rate 2δ whenever it is greater than a target
level set V (y(tk ,·))

α
and a positive invariant level set ε. This can be more intuitively observed

through Figure 3.2 and can be expressed as

V̇ (y) + 2δV (y) ≤ 0,

whenever 



R > V (y(t, ·)) ≥ max

{
ε,
V (y(tk, ·))

α

}
,

y(θ, ·) ∈ LV <R, ∀θ ∈ [tk, t), k ∈ N.

(3.30a)

(3.30b)
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Let us assume that conditions (3.30) hold. Since condition (3.19) holds, by convexity, we
have

M(x) � 0, for x ∈ [0, L].

Moreover, by using Lemma 3.2 in the appendix, we have

W (x) + κN(x) � 0, for x ∈ [0, L].

Therefore, we get
∫ L

0

η⊤(W (x) + κN(x))ηdx ≤ 0, (3.31)

with N(x) defined as below

N(x) = e−2µx




(α− 1)Θ1 −Θ1 0 0

∗ −Θ1 0 0

∗ ∗ αΘ2 0

∗ ∗ ∗ −Θ2


 . (3.32)

Now, consider t ∈ [tk, tk+1) and a trajectory y satisfying (3.30). Since condition (3.30a) is
satisfied, we have

V (y(t, ·)) ≥
V (y(tk, ·))

α
with some α > 1,

which can be rewritten as
αV (y(t, ·))− V (y(tk, ·)) ≥ 0.

According to (3.25)-(3.27), by simple manipulation we get
∫ L

0

η⊤N(x)ηdx ≥ 0. (3.33)

By Integral S-procedure [126] (see Lemma A.2 in Appendix A), (3.31) and (3.33) implies
that

∫ L

0

η⊤W (x)ηdx ≤ 0. (3.34)

And because condition (3.30b) is satisfied, we have
∫ L

0

y⊤e−2µxΘ1ydx < R, ∀y(θ, ·) ∈ LV <R,

∫ L

0

∂xy
⊤e−2µxΘ2∂xydx < R, ∀∂xy(θ, ·) ∈ LV <R.

The following inequalities are further derived

‖y (θ, ·)‖2L2([0,L];Rn) < Φ1, ‖∂xy (θ, ·)‖
2
L2([0,L];Rn) < Φ2, ∀θ ∈ [tk, t]. (3.35)

Using the operator Jυ in (3.13) with (3.11), we can compute the upper bound

‖ω (t, ·)‖2L2([0,L];Rn)
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=

∫ L

0

|ω (t, x)|2dx =

∫ L

0

∣∣∣∣
∫ t

tk

∂y (θ, x)

∂θ
dθ

∣∣∣∣
2

dx

=

∫ L

0

∣∣∣∣
∫ t

tk

(Λ∂xy (θ, x) + Υy (θ, x) +K

N−1∑

i=0

di (x) y (tk, x̄i)

)
dθ

∣∣∣∣∣

2

dx

≤3

∫ L

0

∫ t

tk


|Λ|2|∂xy (θ, x)|

2 + |Υ|2|y (θ, x) |2 + |K|2

∣∣∣∣∣

N−1∑

i=0

di (x) y (tk, x̄i)

∣∣∣∣∣

2

 dθdx, (3.36)

According to (3.9b),

y (tk, x̄i) =y (tk, x̄i)− y (tk, 0) + y (tk, 0)

=

∫ x̄i

0

∂xy (tk, x) dx+Gy (tk, L)

≤

∫ L

0

|∂xy (tk, x) |dx+Gy (tk, L) . (3.37)

This inequality corresponds to an upper bound on the control error due to space
discretization. Cauchy-Schwarz inequality [14] (see Theorem A.2 in Appendix A) yields

∣∣∣∣∣

N−1∑

i=0

di (x)y (tk, x̄i)

∣∣∣∣∣

2

≤L

∣∣∣∣
∫ L

0

|∂xy (tk, x) |dx+Gy (tk, L)

∣∣∣∣
2

≤2L
(
‖∂xy (tk, x)‖

2
L2([0,L];Rn) + |G|2 |y (tk, L)|

2
)
. (3.38)

Then by substituting (3.38) into (3.36) and by using (3.35) we have

‖ω (t, ·)‖2L2([0,L];Rn)

≤3

∫ t

tk

(
|Λ|2 ‖∂xy (θ, x)‖

2
L2([0,L];Rn)+|Υ|2 ‖y (θ, x)‖2L2([0,L];Rn)

+|K|22L2 ‖∂xy (tk, x)‖
2
L2([0,L];Rn) +2L|K|2 |G|2 ‖y (tk, L) ‖

2
L2([0,L];Rn)

)
dθ

≤3h̄
((
|Λ|2 + 2|K|2L2

)
Φ2 +(|Υ|2 + 2L|K|2|G|2)Φ1

)
= ̟. (3.39)

This upper bound corresponds to an estimate of the maximum time sampling error. In
addition, since condition (3.30a) is satisfied, we have

− 2σV1(y)− (2σ − β)V2(y) ≤ −(2σ − β)(V1(y) + V2(y)) < −(2σ − β)ε. (3.40)

The inequality (3.40) corresponds to an estimate of the domain of attraction. Therefore,
instituting (3.34), (3.39) and (3.40) into (3.29), we have

V̇ (y) < −(2σ − β)ε+ γ̟, ∀t ∈ [tk, tk+1).
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Since (3.24) holds, we have
V̇ (y) < −2δR ≤ −2δV (y).

Therefore, we have shown that

V̇ (y) + 2δV (y) ≤ 0,

whenever conditions (3.30) are satisfied.

Step 4: In this step, we show that if

y(tk, ·) ∈ LV <R,

then
y(t, ·) ∈ LV <R, ∀t ∈ [tk, tk+1).

First, we consider y such that
y(tk, ·) ∈ LV <R,

assume that
∃ t◦ ∈ (tk, tk+1) such that V (y(t◦, ·)) ≥ R.

Let us then call T ◦ the minimum of such t◦, then

V (y(t, ·)) < R, ∀t ∈ [tk, T
◦).

Therefore conditions (3.30) are going to be satisfied for any t ∈ [tk, T
◦). From step 3, we

know that V is going to decrease during that time interval, either continuously, or until V

reaches below max
{
ε, V (y(tk ,·))

α

}
and when it reaches that region, it never gets back out.

Therefore, we have
V (y(T ◦, ·)) < V (y(tk, ·)) < R,

which contradicts the assumption that there exists t◦ ∈ (tk, tk+1) such that V (y(t◦, ·)) ≥ R.

Summary: From step 3 and step 4, it is clear that V̇ (y) + 2δV (y) ≤ 0 wherever




R > V (y(t, ·)) ≥ max

{
ε,
V (y(tk, ·))

α

}
,

y(tk, ·) ∈ LV <R,

(3.41a)

(3.41b)

and therefore, the conditions of Theorem 3.1 are satisfied, which concludes the proof of
Rε-stablity. �

Theorem 3.2 provides constructive conditions for the analysis of the sampled-data
hyperbolic system (3.9)-(3.16). On the premise of ensuring that V is continuous, we first
calculate the time derivative of V and then use the Lyapunov-Razumikhin technique to
prove that it is negative. Finally, it is proved that as long as the state at the sampling
instant is in the attraction domain, the state will not escape the domain LV <R during the
entire time sampling interval.
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Remark 3.3

We explain as follows the selection of parameters in the previous theorem. For Rε-stability,
R is the domain of attraction for a given Lyapunov function, ε specifies the positive
invariant level set of V . They satisfy 0 < ε < R. In this chapter, we can fix R then
compute ε or vice versa. α is a parameter introduced in the Lyapunov-Razumikhin method
to define level set in which the time derivative of V (y(t, ·)) should be negative between two
sampling interval, we use a trial-and-error approach to choose it to be greater than 1 but
as small as possible to reduce the conservativeness of conditions. 2µ is related to the decay
rate of V1, V2 and δ is related to the decay rate of V . γ, κ, h̄ and b̄ are found by linear
search to satisfy the conditions given in Theorem 3.1. Θ1, Θ2 can be found by solving the
LMIs in (3.19) and (3.20). Due to (3.24), we adjust γ, β to be the smallest possible and
µ to be the largest possible.

Theorem 3.2 is a general case. Next, we will give a special case in the following theorem
where only time sampling is considered. Their difference is also reflected in the boundary
condition. In Theorem 3.3, the boundary condition is also a special case, that is, y(t, 0) = 0.

Theorem 3.3

Consider systems (2.13)-(2.18) and an initial condition satisfying y0(0) = 0:

(i) Let λ = min
i∈{1,...,n}

λi. Assume that there exist µ, γ, κ > 0, α > 1 and symmetric

positive matrices Θ1 ∈ R
n×n, Θ2 ∈ R

n×n satisfying the commutativity conditions: ΛΘ1 =

Θ1Λ,ΛΘ2 = Θ2Λ and

W (0) + κN(0) � 0, W (L) + κN(L) � 0, (3.42)

with W (x) and N(x) defined for all x ∈ [0, L] as follows:

W (x) =




B1(x) −e−2µxΘ1K 0 0

∗ −γI 0 0

∗ ∗ B2(x) −e−2µxΘ2K

∗ ∗ ∗ −γI


 , (3.43)

N(x) = e−2µx




(α− 1)Θ1 −Θ1 0 0

∗ −Θ1 0 0

∗ ∗ αΘ2 0

∗ ∗ ∗ −Θ2


 (3.44)

where

B1(x) = −e−2µx
[
(K +Υ)⊤Θ1 +Θ1(K +Υ)

]
,

B2(x) = −e−2µx
[
Υ⊤Θ2 +Θ2Υ+ βΘ2

]
.
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(ii) If ∃ε ∈ R+, R ∈ R+ s.t. 0 < ε < R and

γ3h̄
(
|Λ|2Φ2 +

(
|Υ|2 + |K|2

)
Φ1

)
+ γΦ2≤ (2σ − β)ε− 2δR, (3.45)

where σ = µλ, 0 < β < 2σ, δ > 0 and

Φ1 =
R

λmin (Θ1) e−2µL
, Φ2 =

R

λmin (Θ2) e−2µL
, (3.46)

Then the considered system (2.1) is Rε-stable from LV <R to LV≤ε for any sampling
sequence satisfying y0(0) = 0, with the Lyapunov functional defined by

V (y) = V1(y) + V2(y), (3.47)

with
LV≤R = {y ∈ H1([0, L];Rn) : V (y) ≤ R},

LV ≤ε = {y ∈ H1([0, L];Rn) : V (y) ≤ ε},

and

V1(y) =

∫ L

0

y⊤e−2µxΘ1ydx, (3.48)

V2(y) =

∫ L

0

y⊤x e
−2µxΘ2yxdx. (3.49)

Proof of Theorem 3.3:

The proof is obtained using similar arguments as in Theorem 2.1 and using an
appropriate Lyapunov-Razumikhin technique as in Theorem 3.2.

Step 1: The time derivative of V (y) defined in (3.47) is

V̇ (y) = V̇1(y) + V̇2(y) ≤− 2σV1(y)− (2σ − β)V2(y)

+

∫ L

0

η⊤W (x)ηdx+ γ ‖ω (t, ·)‖2L2( [0,L];Rn)

+ γ ‖∂xy (tk, ·)‖
2
L2( [0,L];Rn) . (3.50)

with

σ = µλ,

η = [y⊤, ω⊤, (∂xy)
⊤, (∂xy(tk, ·))

⊤]⊤

and W (x) defined in (3.43).
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For detailed proof, please refer to (2.33)-(2.39) in Chapter 2.

Step 2: In this step, we show that

V̇ (y) + 2δV (y) ≤ 0,

whenever 



R > V (y(t, ·)) ≥ max

{
ε,
V (y(tk, ·))

α

}
,

y(θ, ·) ∈ LV <R, ∀θ ∈ [tk, t), k ∈ N.

(3.51a)

(3.51b)

Let us assume that conditions (3.51) hold. Since condition (3.42) is linear in e−2µx and
0 ≤ x ≤ L, by convexity, we have

W (x) + κN(x) ≤ 0, for x ∈ [0, L].

Therefore, we get

∫ L

0

η⊤(W (x) + κN(x))ηdx ≤ 0, (3.52)

with W (x) and N(x) given in (3.43) and (3.44).

Now, consider t ∈ [tk, tk+1) and a trajectory y satisfying (3.51). Since condition (3.51a)
is satisfied, we have

V (y(t, ·)) ≥
V (y(tk, ·))

α
with some α > 1,

which can be rewritten as
∫ L

0

η⊤N(x)ηdx ≥ 0. (3.53)

In view of (3.52), (3.53) and κ > 0, it implies

∫ L

0

η⊤W (x)ηdx ≤ 0. (3.54)

According to conditions (3.51) and the upper bound of ‖ω (t, ·)‖2L2([0,L];Rn) defined as (2.52):

‖ω (t, ·)‖2L2([0,L];Rn) ≤ 3h̄
(
|Λ|2Φ2 +

(
|Υ|2 + |K|2

)
Φ1

)
= ̟, (3.55)

we have

−2σV1(y)− (2σ − β)V2(y) ≤ −(2σ − β)(V1(y) + V2(y))

< −(2σ − β)ε. (3.56)
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Therefore, substituting (3.54), (3.55) and (3.56) into (3.50), we have for all t ∈ [tk, tk+1), k ∈

N,

V̇ (y) <− (2σ − β)ε+ γ̟ + γΦ2. (3.57)

Since (3.45) holds, we deduce from (3.57),

V̇ (y) < −2δR ≤ −2δV (y). (3.58)

Therefore, we have shown that V̇ (y)+2δV (y) ≤ 0, whenever conditions (3.51) are satisfied.
�

3.4 Numerical examples

In this section, we use two examples to verify Theorem 3.2 and Theorem 3.3. First,
Example 1 corresponds to Theorem 3.2, which illustrates that the reaching time of the
closed-loop system is less than the open-loop system case.

Example 1:

Consider system (3.1)-(3.2) with

Λ =

[
1.4 0

0 1.4

]
,Υ =

[
2 0.5

−0.5 1

]
, K =

[
9 −0.1

−0.5 8

]
,

L = 1, G =

[
0.1 0.02

−0.1 −0.01

]
.

The system is open-loop stable, however, the use of control is required in practice to ensure
some performances (reaching time, peak response, disturbance rejection, etc.). For example
in [Section 5.1, [4]] the control is used for a stable chemical plug flow reactor to avoid the
risk of peaks in the temperature profile. In our context, the use of control can improve
some convergence performances.

In the following, we first provide the comparison of the state responses of the open-loop
and closed-loop system. We can see from Figures 3.3-3.6 that the system states practically
converge much faster in closed-loop. Figure 3.7 illustrates the time-evolutions of ‖ y ‖H1

for open-loop and closed-loop systems. From Figure 3.7 we can see that the reaching
time is t1 = 0.55s for the state with the sampled-data controller (‖ yclose ‖H1) to the 5%

neighborhood of the origin (∆ = 0.62), which is smaller than t2 = 0.85s in open-loop
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Figure 3.3: Response of state y1 for the closed-loop system.

system case. The figures clearly demonstrate that the sampled-data controller improves
system’s performance in terms of reaching time.

We apply Theorem 3.2 in order to verify the Rε-stability of the closed-loop system
with a sampled-data control for several values of the maximum sampling interval h̄ with
a fixed decay rate 2δ = 0.002 and a fixed space discretization step b̄ = 0.1. Table 3.1
summarizes the results obtained based on the same Lyapunov-Razumikhin functional V
defined in (3.47)-(3.49) with a fixed R = 30 and

Θ1 = 10−3 ×

[
4.7 0.24

∗ 4.8

]
, Θ2 =

[
1.24 0.74

∗ 0.91

]
.

The parameters β = 0.01, µ = 0.7, κ = 1, γ = 0.02, α = 1.3 are selected according to
Remark 3.3. The system can be shown to be Rε-stable up to h̄ = 0.0035. It can be seen
that ε linearly depends on h̄ which is consistent with condition (ii) of Theorem 3.2. Fig. 3.8
illustrates the time evolution of V in open-loop and closed-loop for h̄ = 0.0001 respectively
with

y0(x) =

[
(1− cos 2πx) sin 2πx

(cos 2πx− 1) sin 2πx

]
.

The closed-loop dynamics (Vclose in Fig. 3.8) has a reaching time of t = 0.17s

(convergence time to the level set ε = 0.87), while the reaching time in open-loop is
t = 0.43s.
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Figure 3.4: Response of state y1 for the open-loop system.

Figure 3.5: Response of state y2 for the closed-loop system.

Table 3.1: Evaluation of ε for different values of h̄ when R = 30.

h̄|b̄=0.1 0.0001 0.0005 0.0015 0.0025 0.0035
ε 0.87 4.23 12.64 21.04 29.45
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Figure 3.6: Response of state y2 for the open-loop system.
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Figure 3.7: Time-evolutions of ‖ y ‖H1 in open-loop system (green) and closed-loop system
under sampled-data control (blue) with h̄ = 0.0001 and b̄ = 0.1.
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Figure 3.8: Time-evolutions of V in open-loop (black dashed line) and closed-loop (red real
line) systems for h̄ = 0.0001 and b̄ = 0.1.

Next, we verify Theorem 3.3 in the following example. The advantages compared with
Theorem 2.1 in Chapter 2 is also given.

Example 2:

In this numerical example, we illustrate the method we proposed in Theorem 3.3. Consider
systems (2.13)-(2.18) and an initial condition satisfying y0(0) = 0. The system parameters
are the same as those chosen in Theorem 2.1 in Chapter 2, where

Λ =

[
11 0

0 11

]
,Υ =

[
20 15

20 25

]
, K =

[
2 0

2 3

]
, L = 1.

According to Remark 3.3, the parameters in condition (3.42)-(3.46) are selected as: µ =

0.18, κ = 1.8, γ = 0.001, α = 1.001, β = 0.01, δ = 0.001. We fix R = 20, h̄ = 0.1, The Θ1,
Θ2 are satisfying the conditions of Theorem 3.3:

Θ1 =

[
22.86 −9.88

∗ 13.76

]
,Θ2 =

[
26.48 −12.89

∗ 17.97

]
.

The simulation results are presented in Figures 3.9-3.11 for h̄ = 0.1 with the initial
conditions

y0 (x) =

[
0.06(1− cos 2πx) sin 4πx

0.1(1− cos 4πx) sin 2πx

]
.
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Figure 3.9: Response of state y1 for h̄ = 0.1.

Figures 3.9-3.10 present that both state trajectories converge to near the origin with the
controller and the initial conditions satisfying the compatibility condition. As can be
seen from Figure 3.11, the time-evolution of Lyapunov functional V (y(t, ·)) decreases when

R > V (y(t, ·)) ≥ max
{
ε, V (y(tk ,·))

α

}
, α > 1.

Remark 3.4

For the controller gain and sampling interval used here, the results in Chapter 2 are not
feasible. The maximum sampling interval obtained based on results in Chapter 2 is 10−3

(to be compared to h̄ = 0.1 obtained here).

3.5 Conclusion

This chapter provided methods for checking the stability of linear hyperbolic balance laws
under distributed sampled-data control with space discretization. By using the input-
output approach to sampled-data control and Lyapunov-Razumikhin method in stability
analysis, sufficient numerical conditions for the Rε-stability were derived. In the next
chapter we will work on providing a method for a global exponential stability analysis of
such control systems.
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Figure 3.10: Response of state y2 for h̄ = 0.1.
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Figure 3.11: Time-evolution of function V for h̄ = 0.1.
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3.6 Appendix of Chapter 3

Lemma 3.1

Consider system (3.1)-(3.4) with an initial condition y0 satisfying y0(0) = Gy0(L). Then
∀t ∈ [tk, tk+1), k ∈ N, we have

∂xy(t, 0) =Λ−1GΛ∂xy (t, L) +
(
Λ−1GΥ− Λ−1ΥG

)
y (t, L)

+
(
Λ−1GK − Λ−1KG

)
y (tk, L) .

Proof of Lemma 3.1: From (3.1), the time derivative of the boundary condition is

∂ty (t, 0) = G∂ty (t, L) , ∀t ∈ [tk, tk+1), k ∈ N. (3.59)

Combining (3.1a), (3.59) with (3.3b), we obtain

∂xy (t, 0) =Λ−1 (−Υy (t, 0)−Ky (tk, 0)− ∂ty (t, 0))

=Λ−1 (−ΥGy (t, L)−KGy (tk, L)

−G (−Λ∂xy (t, L)−Υy (t, L)−Ky (tk, L)))

=Λ−1GΛ∂xy (t, L) +
(
Λ−1GΥ− Λ−1ΥG

)
y (t, L)

+
(
Λ−1GK − Λ−1KG

)
y (tk, L) (3.60)

�

Lemma 3.2

Consider the condition (3.19) is satisfied. Then

W (x) + κN(x) � 0, ∀x ∈ [0, L]. (3.61)

Proof of Lemma 3.2: According to Schur complement [10] (see Theorem A.5 in
Appendix A), (3.20) is equivalent to

Q(x)− S4n×n(x)I
−1
n×nS

⊤
4n×n(x) � 0 (3.62)

where Q(x) and S(x) are defined as (3.21) and (3.22). If (3.62) holds, we have

Q(x)− S̄4n×4n(x)I
−1
4n×4nS̄

⊤
4n×4n(x) � 0 (3.63)

with
S̄4n×4n(x) =

[
S4n×n(x) 04n×3n

]
.

Then (3.62) can be re-expressed for all x ∈ [0, L] as

W (x) + κN(x) � 0, (3.64)

with W (x) defined in step 2 and N(x) given in (3.32). �
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3.6.1 Proof of Theorem 3.1

During a sampling interval [tk, tk+1) with initial state y(tk, ·):

1. If V (y(tk, ·)) ≤ ε, V (y(t, ·)) will remain in ε during [tk, tk+1). Otherwise, we will have

V̇ (y) > 0 > −2δV (y)

at some point when

V (y(t, ·)) ≥ ε ≥
V (y(tk, ·))

α
,

which would contradict the proposition in Theorem 3.1.

2. If R > V (y(tk, ·)) ≥ ε:

(a) We have V (y(t, ·)) ≤ V (y(tk, ·)) during [tk, tk+1). Otherwise, we will have

V̇ (y) > 0 > −2δV (y)

at some point when

V (y(t, ·)) ≥ V (y(tk, ·)) ≥
V (y(tk, ·))

α
,

which would contradict the proposition in Theorem 3.1.

(b)We can further show that

V (y(t, ·)) ≤ max

{
ε,
V (y(tk, ·))

α
, e−2δ(t−tk)V (y(tk, ·))

}
(3.65)

during [tk, tk+1). In the following, we will discuss two possibilities in case (b):

(b1) If there exists t′ ∈ [tk, tk+1) such that

V (y(t′, ·)) = max

{
ε,

V (y(tk, ·))

α

}
.

If
t ∈ [tk, t

′), V̇ (y) + 2δV (y) ≤ 0

holds and we have

V (y(t, ·)) ≤ e−2δ(t−tk)V (y(tk, ·)), ∀t ∈ [tk, t
′).

Otherwise, we will have
V̇ (y) > 0 > −2δV (y)
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at some point when

V (y(t, ·)) ≥
V (y(tk, ·))

α
,

which would contradict the proposition in Theorem 3.1. If t ∈ [t′, tk+1), V (y(t, ·))

cannot go back above max
{
ε, V (y(tk ,·))

α

}
, otherwise, according to the same principle,

it would contradict the proposition in Theorem 3.1, then we have

V (y(t, ·)) ≤ max

{
ε,

V (y(tk, ·))

α

}
, ∀t ∈ [t′, tk+1).

So, over the whole sampling interval t ∈ [tk, tk+1), we can get inequality (3.65).

(b2) When

V (y(t, ·)) > max

{
ε,
V (y(tk, ·))

α

}
, ∀t ∈ [tk, tk+1),

since
V̇ (y) + 2δV (y) ≤ 0,

we have
V (y(t, ·)) ≤ e−2δ(t−tk)V (y(tk, ·)).

Then it is not hard to get (3.65).

Now, let us consider

y(tk, ·) ∈ LV <R, t ∈ [tk, tk+1), k ∈ N.

We have

V (y(t, ·)) ≤ max

{
ε,
V (y(tk, ·))

α
, e−2δ(t−tk)V (y(tk, ·))

}

= max {ε, ξV (y(tk, ·))}, (3.66)

with ξ = max{ 1
α
, e−2δ(t−tk)} ≤ 1, then

V (y(tk, ·)) ≤ max{ε, ζV (y(tk−1, ·))}, (3.67)

with ζ = max
{

1
α
, e−2δh

}
< 1, ∀k ∈ N \ {0}, where h is the lower bound of the

sampling interval.

By recursion, if y(t0, ·) ∈ LV <R, ∀k ∈ N we have

V (y(tk, ·)) ≤ max{ε, ζmax{ε, ζV (y(tk−2, ·))}}

≤ max{ε, ζε, ζ2V (y(tk−2, ·))}

≤ max{ε, ζ2V (y(tk−2, ·))}

≤ · · ·

≤ max{ε, ζkV (y(t0, ·))}. (3.68)
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Then combining (3.66) and (3.68), we get that

V (y(t, ·)) ≤ max{ε, ξmax{ε, ζkV (y(t0, ·))}}

= max{ε, ξε, ξζkV (y(t0, ·))}

= max{ε, ζkV (y(t0, ·))} = ε (3.69)

when k is large enough. To prove the minimum value of k that guarantees (3.69)
holds, we calculate the following equation

ζkV (y(t0, ·)) = ε

then we get

k =

⌈
logζ

ε

V (y (t0, ·))

⌉
. (3.70)

Therefore,
∃ tk ≥ 0, y(t, ·) ∈ LV≤ε, ∀ t ≥ tk,

with k defined in (3.70), which concludes the proof of Rε-stability. �

3.6.2 Proof of Step 2 in Theorem 3.2

Using the commutativity condition: ΛΘ1 = Θ1Λ, we first compute the time derivative of
V1(y) along the solutions to (3.9)-(3.15),∀t ∈ [tk, tk+1),

V̇1(y) =

∫ L

0

(
∂ty

⊤e−2µxΘ1y + y⊤e−2µxΘ1∂ty
)
dx

=

∫ L

0

(
(−Λ∂xy − (K +Υ)y −Kω)⊤e−2µxΘ1y

+ (Kϑ )⊤e−2µxΘ1y + y⊤e−2µxΘ1Kϑ

+y⊤e−2µxΘ1 (−Λ∂xy − (K +Υ)y −Kω)
)
dx

=

∫ L

0

−∂x
[
y⊤Λe−2µxΘ1y

]
dx

+

∫ L

0

(
−y⊤(K +Υ)⊤e−2µxΘ1y + (Kϑ)⊤e−2µxΘ1y

+ y⊤e−2µxΘ1Kϑ− y⊤e−2µxΘ1(K +Υ)y

− y⊤e−2µxΘ1Kω −2µy⊤Λe−2µxΘ1y − ω⊤K⊤e−2µxΘ1y
)
dx

= y⊤ (·, L)
(
−Λe−2µLΘ1 +G⊤ΛΘ1G

)
y (·, L)

+

∫ L

0

(
−y⊤

(
(K +Υ)⊤e−2µxΘ1
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+e−2µxΘ1(K +Υ)
)
y + (Kϑ)⊤e−2µxΘ1y + y⊤e−2µxΘ1Kϑ

−ω⊤K⊤e−2µxΘ1y − y⊤e−2µxΘ1Kω
)
dx− 2µ

∫ L

0

y⊤Λe−2µxΘ1ydx. (3.71)

Since we have the assumption that y is of class C2 on [0,+∞) × [0, L], then along the
solutions of the system (3.1), we can obtain

∂xty (t, x) =∂txy (t, x) = −Λ∂xxy (t, x)−Υ∂xy (t, x) , ∀t ∈ (tk, tk+1). (3.72)

Using Lemma 3.1 in the appendix and similarly to the computation of V̇1, the time
derivative of V2(y) along the solutions to (3.60)-(3.72), ∀t ∈ [tk, tk+1) , k ∈ N is shown
as follows

V̇2(y) =Z⊤PZ +

∫ L

0

(
−∂xy

⊤
(
Υ⊤e−2µxΘ2 + e−2µxΘ2Υ

)
∂xy
)
dx

− 2µ

∫ L

0

∂xy
⊤Λe−2µxΘ2∂xydx. (3.73)

where P is defined in (3.18) and

Z =
[
(∂xy (·, L))

⊤ , y⊤ (·, L) , y⊤ (tk, L)
]⊤

.

Adding and substracting γ‖ω (t, ·)‖2L2( [0,L];Rn) to (3.71) and β
∫ L

0
yTx e

−2µxΘ2yxdx to (3.73)
for some Υ > 0, β > 0, we have

V̇ (y) =V̇1(y) + V̇2(y)

=y⊤ (·, L)
(
−Λe−2µLΘ1 +G⊤ΛΘ1G

)
y (·, L)

+

∫ L

0

(
−y⊤A1(x)y + (Kϑ)⊤e−2µxΘ1y + y⊤e−2µxΘ1Kϑ

−ω⊤K⊤e−2µxΘ1y − y⊤e−2µxΘ1Kω − γω⊤ω
)
dx

− 2µ

∫ L

0

y⊤Λe−2µxΘ1ydx+ γ‖ω (t, ·)‖2L2( [0,L];Rn)

+ Z⊤PZ +

∫ L

0

(
−∂xy

⊤A2(x)∂xy
)
dx

− 2µ

∫ L

0

∂xy
⊤Λe−2µxΘ2∂xydx+ β

∫ L

0

y⊤x e
−2µxΘ2yxdx. (3.74)

with

A1(x) = e−2µx
[
(K +Υ)⊤Θ1 +Θ1(K +Υ)

]
,

A2(x) = e−2µx
[
Υ⊤Θ2 +Θ2Υ+ βΘ2

]
.

Then by using conditions (3.17) and (3.18) we have

V̇ (y) =V̇1(y) + V̇2(y)
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≤

∫ L

0

(
−y⊤A1(x)y − ω⊤K⊤Te−2µxΘ1y + (Kϑ)⊤e−2µxΘ1y + y⊤e−2µxΘ1Kϑ

−y⊤e−2µxΘ1Kω − γω⊤ω
)
dx− 2σV1(y) + γ ‖ω (t, ·)‖2L2( [0,L];Rn)

+

∫ L

0

(
−∂xy

⊤A2(x)∂xy
)
dx− 2σV2(y) + β

∫ L

0

y⊤x e
−2µxΘ2yxdx. (3.75)

with σ = µλ. Then by using Young’s inequality [135] (see Theorem A.3 in Appendix A)
to
∫ L

0
(Kϑ)⊤e−2µxΘ1ydx, we get

∫ L

0

(Kϑ)⊤e−2µxΘ1ydx

≤
1

2

∫ L

0

(Kϑ)⊤ (Kϑ) dx+
1

2

∫ L

0

(
e−2µxΘ1y

)⊤ (
e−2µxΘ1y

)
dx

=
1

2

N−1∑

i=0

∫ xi+1

xi

(Kϑ)⊤ (Kϑ) dx+
1

2

∫ L

0

(
e−2µxΘ1y

)⊤ (
e−2µxΘ1y

)
dx (3.76)

Let us recall the space discretization error (3.16) with (3.15)

ϑ (tk, x) =

N−1∑

i=0

di (x)

∫ x

x̄i

yς (tk, ς)dς, x ∈ [0, L]

and ϑ (tk, x̄i) = 0, for x̄0 = 0, x̄i+1 = x̄i + b̄, b̄ = L
N−1

, i ∈ {0, · · · , N − 2}.

By using the operator E in (3.16) with (3.15), we rewrite the first term in (3.76) for
x ∈ Ξi, i ∈ {0, · · · , N − 1} as

1

2

N−1∑

i=0

∫ xi+1

xi

(Kϑ)⊤ (Kϑ) dx

=
1

2

N−1∑

i=0

∫ x̄i

xi

(
K

N−1∑

i=0

di (x)

∫ x

x̄i

yς (tk, ς)dς

)⊤(
K

N−1∑

i=0

di (x)

∫ x

x̄i

yς (tk, ς)dς

)
dx

+
1

2

N−1∑

i=0

∫ xi+1

x̄i

(
K

N−1∑

i=0

di (x)

∫ x

x̄i

yς (tk, ς)dς

)⊤(
K

N−1∑

i=0

di (x)

∫ x

x̄i

yς (tk, ς)dς

)
dx

=
1

2

N−1∑

i=0

∫ x̄i

xi

(y (tk, x)− y (tk, x̄i))
⊤K⊤K (y (tk, x)− y (tk, x̄i)) dx

+
1

2

N−1∑

i=0

∫ xi+1

x̄i

(y (tk, x)− y (tk, x̄i))
⊤K⊤K (y (tk, x)− y (tk, x̄i)) dx (3.77)
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Using Wirtinger’s inequality [77] (see Lemma A.1 in Appendix A) with d− c ≤ b̄
2

on each
integral term, the above (3.77) becomes

1

2

N−1∑

i=0

∫ xi+1

xi

(Kϑ)⊤ (Kϑ) dx

≤
1

2

b̄2

π2

N−1∑

i=0

[∫ x̄i

xi

y⊤x (tk, x)K
⊤Kyx (tk, x) +

∫ xi+1

x̄i

y⊤x (tk, x)K
⊤Kyx (tk, x)dx

]

=
b̄2

2π2

N−1∑

i=0

∫ xi+1

xi

y⊤x (tk, x)K
⊤Kyx (tk, x)dx

=
b̄2

2π2

∫ L

0

y⊤x (tk, x)K
⊤Kyx (tk, x)dx (3.78)

The above inequality (3.78) involves the upper bound of the space discretization error.
Combining (3.76) and (3.78), we get

∫ L

0

(Kϑ)⊤e−2µxΘ1ydx

≤
b̄2

2π2

∫ L

0

y⊤x (tk, x)K
⊤Kyx (tk, x)dx+

1

2

∫ L

0

e−4µxy⊤Θ1
⊤Θ1ydx (3.79)

Then substituting (3.79) into (3.75), we get

V̇ (y) ≤− 2σV1(y)− 2σV2(y) +

∫ L

0

η⊤W (x)ηdx

+ γ ‖ω (t, ·)‖2L2( [0,L];Rn) + β

∫ L

0

y⊤x e
−2µxΘ2yxdx

=− 2σV1(y)− (2σ − β)V2(y) +

∫ L

0

η⊤W (x)ηdx+ γ ‖ω (t, ·)‖2L2( [0,L];Rn) (3.80)

with σ, η,W (x) defined below (3.29).

The proof of step 2 is complete. �
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This chapter deals with the global exponential stability problem for a class of linear
hyperbolic systems by using distributed sampled-data control. First, the original system
is transformed into a impulsive infinite dimensional model through an augmented system.
By employing this model, the relation between the sampling interval, the system state and
its sampled vector is characterized by an IQC. The acquired IQC is utilized to derive
numerically tractable stability criteria. Finally, a numerical example illustrates the main
results.

4.1 Introduction

In this chapter, we focus on the global exponential stability analysis problem for a class
of linear sampled-data hyperbolic system by using impulsive system method. The state
measurements can be aperiodically sampled in time. An approach based on impulsive
models [9] and an adaptation of the IQC method [85] is proposed. The general idea of this
chapter is to use an augmented state model with an impulsive form (see [44, 88] for basic
results for ODEs) to derive an IQC that characterizes the sampling effect. While in the
sampled-data control literature for ODEs, such IQCs are usually derived analytically [12,
13, 42, 61, 122, 3], here we proposed simple matrix inequalities where the parameters of the
IQC are derived numerically. Using the obtained IQCs, numerical criteria for analyzing
stability of the state-space model are provided. Differently from our previous works where
local practical (Rε) stability conditions are obtained [127, 129, 128], here global exponential
stability conditions are proposed. A preliminary version of this work [126] was presented
at the virtual ADHS 2021 Congress.

4.2 Problem statement

We consider the following hyperbolic systems:

{
∂ty (t, x) + Φ∂xy (t, x) + Γy (t, x) + u (t, x) = 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(4.1a)

(4.1b)

where y : [0,+∞) × [0, L] → R
n is the system state, Γ is a real n × n constant

matrix, Φ = diag {Φ+,Φ−}, Φ+ = diag {φ1, · · · , φm}, Φ− = diag {φm+1, · · · , φn} with
φ1 > · · ·φm > 0 > φm+1 > · · · > φn, u (t, x) ∈ R

n is the sampled-data control input. We

use the notation y =

[
y+

y−

]
,where y+ : R+ × [0, L] → R

m and y− : R+ × [0, L] → R
n−m.
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Then, we consider the following boundary conditions:
[
y+(t, 0)

y−(t, L)

]
= K

[
y+(t, L)

y−(t, 0)

]
, ∀t ≥ 0 (4.2)

where K is a real n×n constant matrix such that K =

[
K00 K01

K10 K11

]
with K00 in R

m×m, K01

in R
m×(n−m), K10 in R

(n−m)×m and K11 in R
(n−m)×(n−m).

At times tk, k ∈ N, the system state y(·, x) is sampled and used for computing a control
law which is implemented via a ZOH

u (t, x) = Gy (tk, x) , ∀t ∈ [tk, tk+1). (4.3)

where G is a constant n×n matrix. We assume that the sampling sequence {tk}k∈N satisfies

t0 = 0, lim
k→∞

tk = ∞, tk+1 − tk ∈ (0, h̄]. (4.4)

where h̄ > 0 is the maximum sampling interval.

In order to establish the existence and uniqueness of solutions in this section, we use
the notion of piecewise continuous solutions as in Remark 2.2 of Chapter 2.

The goal of this chapter is to provide numerically tractable conditions for checking the
exponential stability of system (4.1)-(4.4).

4.3 System remodeling

To facilitate the stability analysis, we first recast the above system (4.1)-(4.4) into an
impulsive model. Let ŷ indicate a piecewise constant signal representing the latest state
measurement of the plant available at the controller,

ŷ(t, x) = y(tk, x), ∀t ∈ [tk, tk+1), k ∈ N.

Using the augmented system state ϕ = [y⊤(t, x), ŷ⊤(t, x)]⊤, leads to an impulsive system
with following structure:





∂tϕ (t, x) + A∂xϕ (t, x) +Bϕ (t, x) = 0, ∀t ∈ (tk, tk+1), k ∈ N,

ϕ (tk, x) = Dϕ
(
t−k , x

)
, k ∈ N,

ϕ(0, x) = ϕ0(x) = [y0 (x) , y0 (x)]
⊤, ∀x ∈ [0, L] .

(4.5a)

(4.5b)

(4.5c)

with

A =

[
Φ 0n×n

0n×n 0n×n

]
, B =

[
Γ G

0n×n 0n×n

]
, D =

[
In×n 0n×n

In×n 0n×n

]
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and
ϕ
(
t−k , ·

)
= lim

t↑tk
ϕ (t, ·) .

The notation ϕ =
[
(y+)

⊤
, (y−)

⊤
, (ŷ+)

⊤
, (ŷ−)

⊤
]⊤

and the boundary condition is

defined as




y+(t, 0)

y−(t, L)

ŷ+(t, 0)

ŷ−(t, L)


 =

[
K 0n×n

0n×n K

]



y+(t, L)

y−(t, 0)

ŷ+(t, L)

ŷ−(t, 0)


 , ∀t ≥ 0. (4.6)

Note that the initial condition (4.5c) is chosen based on condition (4.1b). Therefore, all
the solution of system (4.1) are characterized by the first n components of the augmented
state ϕ (t, x). As a result, the closed-loop system can be regarded as an augmented
impulsive system where the y (t, x) state variable is continuous and where the ŷ (t, x)

variable is subject to a reset at impulse (i.e. sampling) times. In the following sections we
will see how this new impulsive model is useful in deriving constructive stability conditions.

4.4 Stability analysis

In this section, we focus on providing constructive methods for the analysis of the sampled-
data system (4.1)-(4.4) using the augmented impulsive system (4.5). Before presenting the
main result, we first provide a technical lemma based on model (4.5). This lemma allows
us to characterize the link between the system state y of system (4.1)-(4.4) and its sampled
version ŷ by an IQC. Then, the stability conditions for system (4.1)-(4.4) are derived using
the obtained IQC.

4.4.1 IQC characterization of the sampling effect

The main idea is to use a functional Υ(ϕ), Υ : L2 ([0, L] ; R2n) → R, depending on the
augmented system state ϕ and study the solution of impulsive system (4.5) during one
sampling interval [tk, tk+1). Then, we over-bound the functional Υ using an exponential
function with bounded growth rate. Taking into account this bound, an IQC capturing
the effect of sampling is obtained. Intuitively, the IQC characterizes how much system
(4.1) state deviates without control update.



4.4. Stability analysis 103

Lemma 4.1

Consider sampled-data linear hyperbolic system (4.1)-(4.4), the augmented impulsive
system (4.5) and a given α > 0, assume that there exists a diagonal matrix Λ ∈ R

2n×2n,
satisfying

Θ = 2αΛ− B⊤Λ− ΛB � 0, (4.7)




K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




⊤

AΛ




K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




≺




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11




⊤

AΛ




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11


 . (4.8)

Then the following IQC is satisfied

∫ L

0

ϕ⊤ (t, x)N(t− tk)ϕ (t, x) dx ≥ 0, ∀t ∈ [tk, tk+1), k ∈ N (4.9)

along the solutions ϕ ∈ L2 ([0, L] ; R2n) of (4.5), where

N(h) = e−2αhR⊤ΛR− Λ, (4.10)

with R =

[
0n×n In×n

0n×n In×n

]
.

Then, the IQC (4.9) holds along the solutions ϕ ∈ L2 ([0, L] ; R2n) of (4.5):

Proof. In the following, for the sake of readability, the arguments (t, x) of the different
functions are dropped by an abuse of notations when we think that this would not lead to
any confusion. Let us consider the following functional Υ : L2 ([0, L] ; R2n) → R defined
by:

Υ(ϕ(t, x)) =

∫ L

0

ϕ⊤(t, x)Λϕ(t, x)dx, (4.11)

with ϕ ∈ L2 ([0, L] ; R2n) the solution of (4.5).
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Computing the time derivative of Υ along the solutions of (4.5) leads to

Υ̇(ϕ) =

∫ L

0

(
ϕt

⊤Λϕ+ ϕ⊤Λϕt

)
dx

=

∫ L

0

(
(−A∂xϕ− Bϕ)⊤Λϕ +ϕ⊤Λ (−A∂xϕ−Bϕ)

)
dx

=

∫ L

0

−∂x
[
ϕ⊤AΛϕ

]
dx+

∫ L

0

(
−ϕ⊤

(
B⊤Λ + ΛB

)
ϕ) dx

=ϕ⊤ (t, 0)AΛϕ (t, 0)− ϕ⊤ (t, L)AΛϕ (t, L) +

∫ L

0

(
−ϕ⊤

(
B⊤Λ + ΛB

)
ϕ) dx. (4.12)

Using the boundary condition (4.6), we get

Υ̇(ϕ) =




y+ (t, L)

y− (t, 0)

ŷ+ (t, L)

ŷ− (t, 0)




⊤






K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




⊤

AΛ




K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




−




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11




⊤

AΛ




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11










y+ (t, L)

y− (t, 0)

ŷ+ (t, L)

ŷ− (t, 0)




+

∫ L

0

(
ϕ⊤
(
−B⊤Λ− ΛB

)
ϕ) dx. (4.13)

Next, since (4.7) and (4.8) hold, we have

Υ̇(ϕ) + 2αΥ(ϕ) <

∫ L

0

(
ϕ⊤
(
2αΛ− B⊤Λ− ΛB

)
ϕ) dx ≤ 0, ∀t ∈ [tk, tk+1), k ∈ N. (4.14)

Consequently, according to the comparison lemma we have

Υ(ϕ(t, ·)) ≤ e−2α(t−tk)Υ(ϕ(tk, ·)), ∀t ∈ [tk, tk+1), k ∈ N. (4.15)

Then, inequality (4.15) can be re-expressed as:

e−2α(t−tk)Υ(ϕ(tk, ·))−Υ(ϕ(t, ·)) =

∫ L

0

ϕ⊤ (t, x)N(t− tk)ϕ (t, x) dx ≥ 0, (4.16)

with N(t− tk) defined in (4.10). This concludes the proof of Lemma 4.1.

Remark 4.1

In Lemma 4.1, the IQC (4.9), with

ϕ(t, x) = [y⊤(t, x), ŷ⊤(t, x)]⊤,
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Figure 4.1: Time-evolution of the function Υ(ϕ) along a trajectory of system (4.5) for the
case described in Example 1 (green) and its upper bound in each sampling interval (red).

allows to characterize the link between the state y of system (4.1) and its sampled version
ŷ over the sampling interval. Note that the IQC notion used here is different from the one
usually obtained in the sampled-data literature for ODEs. Here the integration parameter
corresponds to domain variable x and the matrix N(·) depends on the clock variable t −

tk counting the time since the last sampling instant. While IQCs are usually derived
analytically [122, 42, 61], here, in Lemma 4.1, we propose simple matrix inequalities (4.7)
and (4.8) where the parameters of the IQC are derived numerically. In the perturbation
free case, by tuning the parameter α and solving the linear matrix inequality (4.7), one can
derive the matrix Λ, which characterizes the IQC (4.9). In order to give some intuition
about the tuning of α, note that α corresponds to an upper bound on the growth rate of the
functional Υ, i.e. an indicator of the deviation of the system state in open loop. Clearly, the
tighter the estimation of the growth rate α is, the better the obtained IQC (4.9) captures the
effect of sampling on the system. The following example provides a numerical illustration.

Example 1. Consider a system of the form (4.1)-(4.4) with L = 1,

Φ =

[
1.2 0

0 −0.8

]
, Γ =

[
1.3 1.5

−0.5 2.5

]
, G =

[
1.1 0.5

1 0.9

]
, K =

[
1 0

0 −1

]
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a maximum sampling interval h̄ = 0.1. Using the state augmentation leads to an impulsive
system (4.5) with

A =




1.2 0 0 0

∗ −0.8 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0


 , B =




1.3 1.5 1.1 0.5

−0.5 2.5 1 0.9

0 0 0 0

0 0 0 0


 .

Applying Lemma 4.1 with α = 3, we can derive an IQC of the form (4.9) and N(h) in
(4.10) is characterized by

Λ = diag {−0.25,−0.39,−0.19,−0.19} .

Note that the matrix Λ also allows to parameterize the function Υ in (4.11) which leads
to the IQC of the form (4.9). The evolution of the functional Υ along the trajectories of
system (4.1) with an initial condition

y0 (x) =

[
2.5− 1.5 cos(4πx)

− sin(6πx)

]

and an arbitrary sequence of sampling intervals is shown in Figure 4.1. The figure
illustrates for each sampling interval [tk, tk+1), k ∈ {0, . . . , 7}, the deviation of the state
ϕ(t, x) = [y⊤(t, x), ŷ⊤(t, x)]⊤ without control update (captured by the deviation of function
Υ(ϕ(t, ·)) with respect to its value at the sampling times Υ(ϕ(tk, ·))) and the upper bound
e−2α(t−tk)Υ(ϕ(tk, ·)) used for computing the IQC of the form (4.9) – see steps (4.15)-(4.16)
in the proof of Lemma 4.1.

In the following subsection we show how IQCs of the form (4.9) can be used in order
to derive tractable stability criteria for the sampled-data system (4.1).

4.4.2 Main stability result

Before presenting the main results, we first introduce the stability notion in the following
proposition.

Proposition 4.1 (Wang 2021 [126])
Consider the systems (4.1)-(4.4) and a candidate Lyapunov functional V : L2 ([0, L] ; Rn) →

R+ which is differentiable for all t ∈ [tk, tk+1), k ∈ N w.r.t. its argument b ∈ L2 ([0, L] ; Rn)

and there exist 0 < a1 < a2, such that:

a1 ‖b‖
2
L2([0,L];Rn) ≤ V (b) ≤ a2 ‖b‖

2
L2([0,L];Rn) . (4.17)
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Assume that along the trajectories of the system (4.1)-(4.4), the corresponding solution
y(t, ·) satisfies

V̇ (y(t, ·)) + 2λV (y(t, ·)) ≤ 0, ∀t ∈ [tk, tk+1), k ∈ N (4.18)

for some λ > 0. Then the system is exponentially stable in L2−norm with a decay-rate
larger than λ, that is for any initial condition y0 ∈ L2(0, L) for t ∈ [tk, tk+1), k ∈ N

‖y (t, ·)‖2L2([0,L]; Rn) ≤
a2
a1

e−2λt ‖y0‖
2
L2([0,L]; Rn) . (4.19)

Proof. First, we declare that V defined in (4.17) is continuous (One can consult [4]).
Since y(t, x) is continuous with respect to t for all t ∈ [tk, tk+1), k ∈ N and continuous at
sampling instants by choosing the last value of the previous sampling interval as the initial
condition of the following sampling interval, then V is continuous for all t ≥ 0.

Then, we consider the differentiable Lyapunov functional V : L2 ([0, L] ; Rn) → R+ for
which

V̇ (y(t, ·)) + 2λV (y(t, ·)) ≤ 0, ∀t ∈ [tk, tk+1), k ∈ N (4.20)

for some λ > 0.

Applying the comparison lemma, we have

V (y(t, ·)) ≤ e−2λ(t−tk)V (y(tk, ·)), ∀t ∈ [tk, tk+1), k ∈ N, (4.21)

then we can derive

V (y(tk, ·)) ≤ e−2λ(tk−tk−1)V (y(tk−1, ·)), ∀k ∈ N\ {0} , (4.22)

by recursion, the following inequality holds

V (y(tk, ·)) ≤e−2λ(tk−tk−1)e−2λ(tk−1−tk−2)V (y(tk−2, ·))

≤ · · ·

≤e−2λ(tk−tk−1)e−2λ(tk−1−tk−2)

· · · e−2λ(t1−t0)V (y(t0, ·)), (4.23)

Then instituting (4.23) into (4.21), we obtain

V (y(t, ·)) ≤e−2λ(t−tk)V (y(tk, ·))

≤e−2λ(t−tk)e−2λ(tk−tk−1)e−2λ(tk−1−tk−2) · · ·

e−2λ(t1−t0)V (y(t0, ·))

=e−2λ(t−t0)V (y(t0, ·))

=e−2λtV (y0). (4.24)
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Combining (4.17) and (4.24), we get

‖y (t, ·)‖2L2([0,L];Rn) ≤
a2
a1

e−2λt ‖y0‖
2
L2([0,L];Rn) ,

∀t ∈ [tk, tk+1), k ∈ N.

This concludes the proof of Proposition 4.4.2. �

Theorem 4.1

Consider the sampled-data system (4.1) and the impulsive model (4.5). Given a prescribed
decay rate µ and a tuning parameter α > 0, let there exist a diagonal positive definite matrix
M ∈ R

n×n and a diagonal matrix Λ ∈ R
2n×2n satisfying the following set of inequalities

Θ = 2αΛ− B⊤Λ− ΛB � 0, (4.25)




K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




⊤

AΛ




K00 K01 0 0

0 I 0 0

0 0 K00 K01

0 0 0 I




≺




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11




⊤

AΛ




I 0 0 0

K10 K11 0 0

0 0 I 0

0 0 K10 K11


 . (4.26)

and

Q+ σN(0) � 0, Q+ σN(h̄) � 0, (4.27)

[
K00 K01

0 I

]⊤
ΦM

[
K00 K01

0 I

]
≺

[
I 0

K10 K11

]⊤
ΦM

[
I 0

K10 K11

]
(4.28)

with

Q =

[
2µM − Γ⊤M −MΓ −MG

∗ 0n×n

]
, (4.29)

and N(h) = e−2αhR⊤ΛR − Λ as defined as in (4.10). Then system (4.1) is exponentially
stable in L2−norm with a decay-rate larger than µ.

Proof. The proof is based on a Lyapunov functional V : L2 ([0, L] ; Rn) → R+ defined
by

V (y(t, x)) =

∫ L

0

y⊤(t, x)My(t, x)dx. (4.30)
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In this step we first show that the functional V defined in (4.30) is continuous. Since y(t, x)

is continuous with respect to t for all t ∈ [tk, tk+1), k ∈ N and continuous at sampling
instants by construction (see Remark 2.2 of Chapter 2), then V is continuous for all t ≥ 0.
Now consider system (4.1). Let us study the time derivative of the Lyapunov functional
V (y(t, x)) as shown in (4.30). For simplicity, by an abuse of notations, we use the notation
y instead of y(t, x) when we think that no confusion can be made. For t ∈ [tk, tk+1), k ∈ N,
the time derivative of V (y) along the trajectories of (4.1) is

V̇ (y) =

∫ L

0

(
yt

⊤My + y⊤Myt
)
dx

=

∫ L

0

(
(−Φ∂xy − Γy −Gŷ)⊤My + y⊤M (−Φ∂xy − Γy −Gŷ)

)
dx

=−
[
y⊤ΦMy

]L
0
+

∫ L

0

(
−y⊤

(
Γ⊤M +MΓ

)
y − ŷ⊤G⊤My −y⊤MGŷ

)
dx. (4.31)

By using the boundary condition (4.2) and adding the term 2µV (y) to both sides of (4.31),
then, we have

V̇ (y) + 2µV (y)

=

[
y+ (t, L)

y− (t, 0)

]⊤([
K00 K01

0 I

]⊤
ΦM

[
K00 K01

0 I

]

−

[
I 0

K10 K11

]⊤
ΦM

[
I 0

K10 K11

])[
y+ (t, L)

y− (t, 0)

]

+

∫ L

0

(
y⊤
(
2µM−Γ⊤M −MΓ

)
y − ŷ⊤G⊤My −y⊤MGŷ

)
dx (4.32)

By using (4.28), the above inequality (4.32) is equivalent to

V̇ (y) + 2µV (y) <

∫ L

0

ξ⊤Qξdx (4.33)

with
ξ =

[
y⊤ (t, x) , ŷ⊤ (t, x)

]⊤
, ∀t ∈ [tk, tk+1), k ∈ N

and Q defined as (4.29).

Since condition (4.27) is linear in e−2αh and t− tk ≤ h̄, by using a convexity argument,
we have Q + σN(t− tk) � 0, ∀t ∈ [tk, tk+1), k ∈ N. Therefore, we get

∫ L

0

ξ⊤(Q+ σN (t− tk))ξdx ≤ 0. (4.34)

where ξ =
[
y⊤ (t, x) , ŷ⊤ (t, x)

]⊤
, ∀t ∈ [tk, tk+1), k ∈ N.
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By recalling (4.9)
∫ L

0

ϕ⊤ (t, x)N(t− tk)ϕ (t, x) dx ≥ 0, ∀t ∈ [tk, tk+1), k ∈ N,

from (4.25)-(4.26) and Lemma 4.1 we have
∫ L

0

ξ⊤Qξdx ≤ 0. (4.35)

In view of (4.32)-(4.35),

V̇ (y) + 2µV (y) ≤ 0 (4.36)

for ∀t ∈ [tk, tk+1), k ∈ N, which means that the following inequality is obtained:

V (y(t, ·)) ≤ e−2µ(t−tk)V (y(tk, ·)) , t ∈ [tk, tk+1), k ∈ N,

by recursion, we get
V (y(t, ·)) ≤ e−2µtV (y0) ,

i.e. ∀t ∈ [tk, tk+1) , k ∈ N, we have

‖y(t, ·)‖2L2([0,L];Rn) ≤
λmax(M)

λmin(M)
e−2µt ‖y0‖

2
L2([0,L];Rn) .

Hence, according to proposition , we can conclude that the system is exponentially stable.
�

Remark 4.2

Theorem 4.1 provides a simple method for checking the stability of system (4.1). In order
to ease the applicability of the results, we summarize as follows each tuning parameter in
detail. Λ and M are the main variables of the set of inequalities to be solved. M is a
Lyapunov matrix corresponding to the Lyapunov functional

V (y(t, x)) =

∫ L

0

y⊤(t, x)My(t, x)dx.

µ is a positive scalar corresponding to a lower bound on the system decay rate. Λ allows
to characterize the IQC (4.9) in Lemma 4.1. As mentioned in Remark 4.1, α is a scalar
corresponding to an estimation of the growth rate for the system without control update in
between sampling times via the functional

Υ(ϕ(t, x)) =

∫ L

0

ϕ⊤(t, x)Λϕ(t, x)dx.

If (4.25)-(4.26) are found feasible, then the IQC (4.9) is satisfied along the solutions of
system (4.1). Condition (4.27)-(4.28) ensure that while the IQC (4.9) is satisfied, the
Lyapunov functional V decrease with a decay rate µ along the solutions of system (4.1).
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4.5 Numerical example

In this section we illustrate how the proposed conditions can be checked numerically
and used to establish quantitative tradeoff regions between maximum allowable sampling
intervals and performance (in terms of decay rate).

Consider a system of the form (4.1) with

L = 1, Φ =

[
1.2 0

0 −0.8

]
, Γ =

[
1.3 1.5

−0.5 2.5

]
, K =

[
1 0

0 −1

]

and the initial condition

y0 (x) =

[
2.5− 1.5 cos(4πx)

− sin(6πx)

]
.

The stabilizing control gain

G =

[
1.1 0.5

1 0.9

]

was designed using classical continuous-time methods for hyperbolic systems. We apply
Theorem 4.1 for several values of the maximum sampling interval h̄ and of the decay rate
µ. The results obtained using Matlab LMI solvers are illustrated in Figure 4.2. Such plots
can be used in order to make design tradeoffs between system performance (in terms of
decay rate) and robustness to the sampled-data implementation (in terms of maximum
allowable sampling interval). For instance, by increasing the requirements on the system
performance (increasing the decay rate µ), the maximum admissible sampling interval h̄
becomes smaller (i.e. more constraints should be imposed on the sampled-data control
implementation in terms of sampling and control computation frequency). The method
also allows to find the maximum h̄ for which stability is granted. The best value of h̄

for which the conditions of Theorem 4.1 were found feasible is h̄ = 0.024 (derived with
µ = 10−5, α = 3, σ = 1). In order to illustrate the influence of the open-loop growth rate
estimate α on the computation of the maximum allowable sampling interval h̄, Theorem
4.1 was tested for several values of α and h̄. The results are illustrated in Figure 4.3. As
expected, the tighter the estimation of the growth rate α is, the better the obtained IQC

allows to compute the maximum allowable sampling interval h̄. This is consistent with the
theoretical remarks concerning Lemma 4.1.

In order to illustrate the response of the sampled-data system, we choose one point
corresponding to a maximum sampling interval h̄ = 0.01 and a decay rate µ = 0.1. The
conditions (4.25) and (4.27) in Theorem 4.1 were found feasible, leading to a Lyapunov
functional characterized by

M =

[
5.06 0

∗ 4.54

]
.



112 Chapter 4. Sampled-data hyperbolic systems via an impulsive approach

Figure 4.2: Tradeoff regions between system performance and maximum allowable
sampling. Feasible region (blue area) and non feasible region (red area) guaranteed by
Theorem 4.1.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025
Feasible region
Nonfeasible region

Figure 4.3: Influence of the estimate of the open-loop growth rate α on the computation of
the maximum allowable sampling interval h̄. Feasible region (blue area) and non feasible
region (red area) guaranteed by Theorem 4.1 with µ = 10−5.

The evolution of the Lyapunov functional V along the solutions of the sampled-data system
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Figure 4.4: Time-evolution of functional V in the sampled-data system.
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Figure 4.5: Time-evolution of functional V in semi-log scale.

is given in Figure 4.4 and its semi-log plot is given in Figure 4.5. The figures clearly
illustrates the exponential stability of the system. As expected, Figures 4.6-4.7 illustrates
the states convergence to the origin.
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Figure 4.6: Response of state y1 for the closed-loop system.

Figure 4.7: Response of state y2 for the closed-loop system.

4.6 Conclusion

This chapter studied the distributed sampled-data control for a class of hyperbolic systems
using impulsive system method. The closed-loop system is first represented as an
augmented impulsive system. Moreover, the stability of the system has been established
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via a method based on IQCs. The global exponential stability of the system can be
checked. Finally, a numerical example verifies our results. In the future, we will focus on
sampled-data control using space and time discretization for different types of hyperbolic
systems.





Conclusion and perspectives

Conclusion

The problem of stability analysis for a class of linear hyperbolic systems with distributed
sampled-data control laws was investigated in this thesis. We used the Lyapunov method to
derive local stability conditions for 1-D hyperbolic systems of balance laws. With the help
of the Lyapunov-Razumikhin technique, the spatio-temporal sampling controller was also
addressed as a more general case. In addition, we have provided methods for checking the
global stability of the system by rewriting the original system as an augmented impulsive
model.

The main contributions of this thesis are introduced in Chapters 2-4.

• In Chapter 2, we mainly studied the stability conditions of the hyperbolic PDE

with in-domain sampled-data controller. Inspired by the input-output approach on
ODE and boundary control on PDE, we provided a method to check the local
stability (Rε-stability) of the system through the Lyapunov technique. The method
is based on two ingredients. First, we recast the sampled-data system into an
equivalent continuous hyperbolic PDE (including four steps: the nominal closed-
loop system, the introduction of sampling error, the properties of sampling error and
the interconnection of operators). Then, based on the new model, we constructed a
suitable Lyapunov functional and derived sufficient conditions for the stability of the
system by means of LMIs. This method is the basis for the following chapters.

• In Chapter 3, we extended the results in Chapter 2 to the case where the controller
is spatio-temporally sampled. Compared with Chapter 2, in addition to the time
sampling error, it was also necessary to consider the spacial discretization error when
remodeling the system. Based on the ideal continuous-time control loop and the
operators representing the discretization errors, we derived sufficient conditions to
ensure the Rε-stability of linear hyperbolic systems of balance laws by the Lyapunov-
Razumikhin method. In a special case (no sampling in space), a larger estimation
of the maximum allowable sampling interval was observed (in comparison with the
results in Chapter 2), which reflects the advantages of the Lyapunov-Razumikhin
method.

• In Chapter 4, inspired on basic results for sampled-data ODEs, conditions for
checking the global exponential stability of sampled-data hyperbolic systems of
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balance laws are proposed. An augmented state model with an impulsive form was
employed to derive an IQC that characterizes the relation between the sampling
interval, the system state and its sampled vector.

Perspectives

Even though many results have been achieved in the stability analysis of hyperbolic
systems, there are still many open problems worth exploring. According to the work
in this thesis, we list several directions that can be further studied in the future.

• In the light of the results obtained in Chapter 4, it is natural to consider extending
the global exponential stability to the case where the controller is spatio-temporally
sampled. Moreover, inspired by the work in [100], we can consider time-varying
hyperbolic systems, which are more general in physical networks (such as in irrigation
or road networks).

• Since the states of the control systems are not all directly measurable and the cost is
high, output feedback control is widely used in practical engineering systems. In this
context, we have to consider the design of sampled-data observer based controllers.

• In the real world, all systems are non-linear, which motivates us to extend the
methods in this thesis to non-linear systems. The study of a distributed spatio-
temporally sampled controllers for system with Lipschitz nonlinear dynamics would
be valuable.

In short, the conditions provided by using the Lyapunov functionals for analyzing the
stability of hyperbolic systems with distributed sampled-data control have potential.
However, further exploration of the proposed methods may promote the development of
Lyapunov methods in application fields.



Appendix A

Some useful theorems and lemmas

Theorem A.1 (Schwarz’s theorem [56]) For a function f : Θ → R defined on a set
Θ ⊂ R

n, if a ∈ R
n is a point such that some neighborhood of a is contained in Θ and f

has continuous second partial derivatives at the point a, then ∀i, j ∈ {1, 2, . . . , n},

∂2

∂xi∂xj

f(a) =
∂2

∂xj∂xi

f(a)

The partial derivatives of this function commute at that point.

Theorem A.2 (Cauchy-Schwarz inequality [14]) If α = (α1, . . . , αn) and β =

(β1, . . . , βn) are sequences of real numbers, then
(

n∑

i=1

αiβi

)2

≤

n∑

i=1

α2
i

n∑

i=1

β2
i

with equality if and only if the sequences α and β are proportional, i.e., there is a r ∈ R

such that αi = rβi for each i ∈ {1, . . . , n}.

Theorem A.3 (Young’s inequality [135]) If a ≥ 0 and b ≥ 0 are nonnegative real
numbers and if m > 1 and n > 1 are real numbers such that 1

m
+ 1

n
= 1, then

ab ≤
am

m
+

bn

n

Equality holds if and only if am = bn.

Theorem A.4 (Wirtinger’s inequality [46]) Let y ∈ W1[c, d) be a scalar function
with y(c) = 0. Then, ∫ d

c

y2(φ)dφ 6
4(d− c)2

π2

∫ d

c

ẏ2(φ)dφ

This inequality is trivially extended to the vector case.

Lemma A.1 (Liu 2010 [77]) Let y ∈ Wm[c, d). Assume that y(c) = 0. Then, for any
m×m-matrix Λ ≻ 0, the following inequality holds:

∫ d

c

y⊤(φ)Λy(φ)dφ 6
4(d− c)2

π2

∫ d

c

ẏ⊤(φ)Λẏ(φ)dφ.

Theorem A.5 (Schur complement [10]) Let A and D be symmetric matrices. Then,
the following are equivalent:
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1.

[
A B

∗ D

]
≻ 0

(
resp.

[
A B

∗ D

]
� 0

)

2. D ≻ 0, A− BD−1B⊤ ≻ 0 (resp. D � 0, A−BD+B⊤ � 0, B (I −DD+) = 0
)

where D+is the pseudo-inverse of D.

Theorem A.6 (S-procedure [132]) Let Zk ∈ Mn(R), k ∈ {0, · · · , q}. Then, if

1. there exist scalars γk ≥ 0, k ∈ {1, · · · , q}, such that Z0 −
∑q

k=1 γkZk > 0 (resp.
Z0 −

∑q
k=1 γkZk ≥ 0)

then

2. ηTZ0η > 0 (resp. ηTZ0η ≥ 0
)

for any η ∈ R
n satisfying ηTZkη ≥ 0 for all k ∈

{1, · · · , q}

For q = 1, these two statements are equivalent.

Lemma A.2 (Integral S-procedure [126]) Let F and G be symmetric matrices.
Assume that the strict integral inequality

∫ L

0

yT (x)Gy(x)dx ≥ 0,

holds. Then the implication ∫ L

0

yT (x)Fy(x)dx ≤ 0

holds if there exists some nonnegative number ̟ such that

F +̟G � 0

Proof: It is immediately proved by rewriting the inequality above as F � −̟G and
multiplying on the left by yT (x) and on the right by y(x), then taking the integral operation
on both sides of the inequality. We have

∫ L

0

yT (x)Fy(x)dx ≤

∫ L

0

yT (x)(−̟G)y(x)dx.

Since
∫ L

0
yT (x)Gy(x)dx ≥ 0 and ̟ ≥ 0 hold, one can obtain

∫ L

0

yT (x)(−̟G)y(x)dx ≤ 0,
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which leads to ∫ L

0

yT (x)Fy(x)dx ≤ 0.

Hence, this lemma is proved.

Lemma A.3 (Halanay’s inequality [45]) Assume that τ ≥ 0 and V (t) is a positive
function defined on [t0 − τ,+∞), with derivative V̇ (t) on [t0,+∞) . If

V̇ (t) ≤ −αV (t) + β sup
t−τ≤s≤t

V (s), t ≥ t0

where α > β > 0, then there exist γ > 0 and k > 0 such that

V (t) ≤ ke(−γ(t−t0)), t ≥ t0.





Bibliography

[1] Angelo Marcello Anile, Vittorio Romano, and Giovanni Russo. “Hyperbolic hydro-
dynamical model of carrier transport in semiconductors.” In: VLSI Design 8.1-4
(1998), pp. 521–525 (cit. on p. 8).

[2] Jean Auriol, Ulf Jakob Flo Aarsnes, Philippe Martin, and Florent Di Meglio. “Delay-
robust control design for two heterodirectional linear coupled hyperbolic PDEs.”
In: IEEE Transactions on Automatic Control 63.10 (2018), pp. 3551–3557 (cit. on
p. 29).

[3] Matthieu Barreau, Carsten W Scherer, Frédéric Gouaisbaut, and Alexandre Seuret.
“Integral quadratic constraints on linear infinite-dimensional systems for robust
stability analysis.” In: IFAC-PapersOnLine 53.2 (2020), pp. 7752–7757 (cit. on
p. 100).

[4] Georges Bastin and Jean-Michel Coron. Stability and boundary stabilization of 1-d
hyperbolic systems. Vol. 88. Springer, 2016 (cit. on pp. 6, 8–10, 27, 41, 51, 53, 57,
63, 78, 85, 107).

[5] Georges Bastin, Jean-Michel Coron, and Simona Oana Tamasoiu. “Stability of linear
density-flow hyperbolic systems under PI boundary control.” In: Automatica 53
(2015), pp. 37–42 (cit. on p. 17).

[6] Nikolaos Bekiaris-Liberis and Argiris I Delis. “PDE-based feedback control of
freeway traffic flow via time-gap manipulation of ACC-equipped vehicles.” In: IEEE
Transactions on Control Systems Technology (2020) (cit. on pp. 17, 18, 41).

[7] Elena-Veronica Belmega, Samson Lasaulce, Mérouane Debbah, Marc Jungers, and
Julien Dumont. “Power allocation games in wireless networks of multi-antenna
terminals.” In: Telecommunication Systems 47.1 (2011), pp. 109–122 (cit. on p. 20).

[8] Robert D Blevins. Formulas for dynamics, acoustics and vibration. John Wiley &
Sons, 2015 (cit. on p. 38).

[9] Tommaso Borzone, I-C Morărescu, Marc Jungers, Michael Boc, and Christophe
Janneteau. “Hybrid framework for consensus in directed and asynchronous network
of non-holonomic agents.” In: IEEE control systems letters 2.4 (2018), pp. 707–712
(cit. on p. 100).

[10] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory. SIAM, 1994 (cit. on pp. 76,
92, 119).

[11] Nicholas F Britton et al. Reaction-diffusion equations and their applications to
biology. Academic Press, 1986 (cit. on p. 23).

123



124 Bibliography

[12] Michael Cantoni, Chung-Yao Kao, and Mark A Fabbro. “Integral quadratic
constraints for asynchronous sample-and-hold links.” In: IEEE Transactions on
Automatic Control (2020) (cit. on pp. 55, 100).

[13] Michael Cantoni, Mark A Fabbro, and Chung-Yao Kao. “Stability of Aperiodic
Sampled-Data Feedback for Systems with Inputs that Update Asynchronously.”
In: 2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 7118–7123
(cit. on p. 100).

[14] Augustin Louis Baron Cauchy. Cours d’Analyse de l’École Royale Polytechnique,
Ire Partie. Analyse Algébrique, Paris, 1821 (cit. on pp. 80, 119).

[15] Panagiotis D Christofides. “Nonlinear and robust control of PDE systems- Methods
and applications to transport-reaction processes(Book).” In: New York: Birkhaeuser
Boston, 2001. (2001) (cit. on p. 17).

[16] Panagiotis D Christofides and Prodromos Daoutidis. “Feedback control of hyper-
bolic PDE systems.” In: AIChE Journal 42.11 (1996), pp. 3063–3086 (cit. on pp. 19,
20).

[17] Rinaldo M Colombo. “Hyperbolic phase transitions in traffic flow.” In: SIAM Journal
on Applied Mathematics 63.2 (2003), pp. 708–721 (cit. on p. 8).

[18] Jean-Michel Coron, Georges Bastin, and Brigitte d’Andréa Novel. “Dissipative
boundary conditions for one-dimensional nonlinear hyperbolic systems.” In: SIAM
Journal on Control and Optimization 47.3 (2008), pp. 1460–1498 (cit. on p. 31).

[19] Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, and Georges Bastin. “Local
exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using
backstepping.” In: SIAM Journal on Control and Optimization 51.3 (2013),
pp. 2005–2035 (cit. on p. 34).

[20] Rodolfo Cuerno and Albert-László Barabási. “Dynamic scaling of ion-sputtered
surfaces.” In: Physical review letters 74.23 (1995), p. 4746 (cit. on p. 25).

[21] Ruth F Curtain and Hans Zwart. An introduction to infinite-dimensional linear
systems theory. Vol. 21. Springer Science & Business Media, 2012 (cit. on p. 21).

[22] Miguel Angel Davó, Delphine Bresch-Pietri, Christophe Prieur, and Florent Di
Meglio. “Stability Analysis of a 2 × 2 Linear Hyperbolic System With a Sampled-
Data Controller via Backstepping Method and Looped-Functionals.” In: IEEE
Transactions on Automatic Control 64.4 (2018), pp. 1718–1725 (cit. on pp. 7, 28,
29).

[23] Salvatore Di Lorenzo, Mario Di Paola, Giuseppe Failla, and Antonina Pirrotta.
“On the moving load problem in Euler–Bernoulli uniform beams with viscoelastic
supports and joints.” In: Acta Mechanica 228.3 (2017), pp. 805–821 (cit. on p. 38).



Bibliography 125

[24] Ababacar Diagne, Georges Bastin, and Jean-Michel Coron. “Lyapunov exponential
stability of 1-D linear hyperbolic systems of balance laws.” In: Automatica 48.1
(2012), pp. 109–114 (cit. on pp. 13, 14, 31, 41).

[25] RW Dickey. “Stability theory for the damped sine-Gordon equation.” In: SIAM
Journal on Applied Mathematics 30.2 (1976), pp. 248–262 (cit. on p. 36).

[26] Dimos V Dimarogonas, Emilio Frazzoli, and Karl H Johansson. “Distributed event-
triggered control for multi-agent systems.” In: IEEE Transactions on Automatic
Control 57.5 (2011), pp. 1291–1297 (cit. on p. 30).

[27] Werner Dubitzky, Olaf Wolkenhauer, Hiroki Yokota, and Kwang-Hyun Cho.
Encyclopedia of systems biology. Springer Publishing Company, Incorporated, 2013
(cit. on p. 23).

[28] YA Dugush and M Eisenberger. “Vibrations of non-uniform continuous beams under
moving loads.” In: Journal of Sound and vibration 254.5 (2002), pp. 911–926 (cit. on
p. 38).

[29] Nicolás Espitia. “Observer-based event-triggered boundary control of a linear 2× 2
hyperbolic systems.” In: Systems & Control Letters 138 (2020), p. 104668 (cit. on
p. 35).

[30] Nicolás Espitia, Antoine Girard, Nicolas Marchand, and Christophe Prieur. “Event-
Based Boundary Control of a Linear 2 × 2 Hyperbolic System via Backstepping
Approach.” In: IEEE Transactions on Automatic Control 63.8 (2017), pp. 2686–2693
(cit. on pp. 7, 34, 35).

[31] Nicolás Espitia, Antoine Girard, Nicolas Marchand, and Christophe Prieur. “Event-
based control of linear hyperbolic systems of conservation laws.” In: Automatica 70
(2016), pp. 275–287 (cit. on pp. 7, 30–32, 34).

[32] Nicolás Espitia, Aneel Tanwani, and Sophie Tarbouriech. “Stabilization of boundary
controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and
quantization.” In: 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE. 2017, pp. 1266–1271 (cit. on pp. 7, 32–34).

[33] Lawrence C Evans. “Partial differential equations.” In: Graduate studies in mathe-
matics 19.2 (1998) (cit. on p. 20).

[34] Jean Baptiste Joseph baron de Fourier. Théorie analytique de la chaleur. Firmin
Didot, 1822 (cit. on p. 20).

[35] Emilia Fridman. “A refined input delay approach to sampled-data control.” In:
Automatica 46.2 (2010), pp. 421–427 (cit. on p. 26).

[36] Emilia Fridman. Introduction to time-delay systems: Analysis and control. Springer,
2014 (cit. on p. 26).



126 Bibliography

[37] Emilia Fridman and Anatoly Blighovsky. “Robust sampled-data control of a class
of semilinear parabolic systems.” In: Automatica 48.5 (2012), pp. 826–836 (cit. on
pp. 7, 21, 23, 26, 34, 37, 71).

[38] Emilia Fridman and Maria Terushkin. “New stability and exact observability
conditions for semilinear wave equations.” In: Automatica 63 (2016), pp. 1–10
(cit. on p. 38).

[39] Emilia Fridman, Alexandre Seuret, and Jean-Pierre Richard. “Robust sampled-data
stabilization of linear systems: an input delay approach.” In: Automatica 40.8 (2004),
pp. 1441–1446 (cit. on p. 40).

[40] Avner Friedman. Partial differential equations of parabolic type. Courier Dover
Publications, 2008 (cit. on p. 20).
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Titre : Contributions à l’étude des systèmes hyperboliques à données échantillonnées

Résumé : Ce manuscrit présente de nouveaux résultats sur l’analyse de stabilité pour
une classe d’Équations aux Dérivées Partielles (en anglais Partial Differential Equations-
PDEs) hyperboliques linéaires avec commande distribuée à données échantillonnées. Nous
utilisons d’abord la méthode de Lyapunov pour dériver des conditions de stabilité locale
pour les systèmes hyperboliques 1-D de lois d’équilibre. Le système en boucle fermée est
reformulé d’un point de vue entrée-sortie. Ensuite, nous étendons l’approche proposée en
utilisant la méthode de Lyapunov-Razumikhin et nous fournissons un nouveau résultat
capable de gérer le contrôleur discrétisé à la fois dans l’espace et dans le temps. De plus,
nous proposons des méthodes pour vérifier la stabilité du système en réécrivant le système
d’origine comme un système hybride impulsif augmenté. En outre, la stabilité du système
a été établie via une méthode basée sur les Contraintes Quadratiques Intégrales (en anglais
Integral Quadratic Constraints - IQCs). Dans ce cas, la stabilité exponentielle globale du
système peut être vérifiée.

Mots-clefs : PDEs, commande à données échantillonnées, analyse de stabilité.

Title : Contributions to the study of sampled-data hyperbolic systems

Abstract : This manuscript presents new results on the stability analysis for a class
of linear hyperbolic Partial Differential Equations (PDEs) with distributed sampled-data
control. We first use the Lyapunov method to derive local stability conditions for 1-
D hyperbolic systems of balance laws. The closed-loop system is reformulated from an
input-output point of view. Then, we extend the proposed approach by the virtue of
the Lyapunov-Razumikhin method and provide a new result that is able to handle the
controller discretized both in space and time. In addition, we provide methods for checking
the stability of the system by rewriting the original system as an augmented impulsive
hybrid system. Moreover, the stability of the system is established via a method based
on Integral Quadratic Constraints (IQCs). In this case, the global exponential stability of
the system can be checked.

Keywords : PDEs, sampled-data control, stability analysis.
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