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RESUME EN FRANCAIS

Cette recherche a proposé plusieurs algorithmes pour l'identification et le commande
des micro-réseaux basés sur l'opérateur Koopman. Les contributions présentées dans ce
manuscrit se concentrent sur le comman de de la tension et de la puissance réactive. Nous
avons considéré cing scénarios de commande basés sur I'opérateur de Koopman : (i) un
algorithme centralisé qui régule la tension du micro-réseau sans partager l'information en
utilisant MPC. (ii) une commande distribuée non coopérative, avec un terme de consen-
sus dans les restrictions, qui régule la tension en fonction du modele de Koopman des
onduleurs. (iii) un MPC distribué coopératif qui utilise le modele Koopman du micro-
réseau, ou les agents partagent leurs entrées de commande pour générer les signaux de
commandes. Ici, nous identifions les matrices d’entrée en utilisant des données. (iv) un
commande distribuée qui utilise les données pour identifier I'erreur du systeme afin de
concevoir un algorithme ADMM. (v) une commande en ligne pilotée par les données qui
régule la tension du micro-réseau et une analyse des valeurs propres du systeme et des

effets des mesures bruitées.
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RESUME LONG

De nos jours, les systémes électriques comprennent le stockage, la production dis-
tribuée et les charges interactives. Les systémes distribués sont donnés par les généra-
teurs locaux et surtout par les sources renouvelables, c’est-a-dire les générateurs solaires et
éoliens. Les charges interactives peuvent inclure des véhicules électriques ayant la capac-
ité de partager 1’énergie avec le réseau, et les systémes de stockage peuvent comprendre
des bancs de batteries et des systemes a volant d’inertie. Tous ces composants doivent
étre gérés correctement en définissant des points de consigne locaux et en partageant la
puissance entre eux. Le micro-réseau (MG) est une solution au probleme du controle
des sources distribuées. Il s’agit d'un systeme cyber-physique ayant la capacité de fonc-
tionner de maniere isolée du réseau électrique tout en conservant les valeurs de référence
de ses variables. D’autres systémes ont également une structure distribuée, comme les
systemes d’approvisionnement en eau, les systemes de drainage, les véhicules autonomes,
les escadrons de drones et les réseaux de capteurs. Certains de ces systémes présentent un
couplage fort dans leurs grandeurs physiques ; par exemple, un changement dans le débit
d’eau d’'une ligne modifie la pression dans I’ensemble du systéme. D’autres permettent
d’effectuer des changements sans affecter la dynamique des autres agents. Dans le cas des
systemes électriques, ils présentent une structure couplée inhérente ou les changements
dans la production, les charges et les défaillances affectent le comportement de I’ensemble
du systeme. En outre, la modélisation des systemes en réseau peut étre problématique
en raison de ’absence d’un modele précis, des conditions changeantes des parametres et
de leur comportement non linéaire. De nouvelles techniques axées sur les données ont été
développées ces dernieres années, [20], exploitant les données disponibles provenant de
capteurs. Les mesures d’'un systéeme peuvent étre utilisées pour modéliser des systemes
non linéaires et pour la conception de commandes. Plusieurs techniques axées sur les
données ont été proposées, dont celle basée sur I'opérateur de Koopman [36]. Le prin-
cipal avantage de I'utilisation de 'opérateur de Koopman est sa versatilité a représenter
un systeme non linéaire comme un systeme linéaire dans un nouvel espace connu sous
le nom d’espace levé. L’extension de ces algorithmes aux systemes en réseau est encore

un probleme ouvert et son utilisation dans les systemes électriques n’a pas encore été
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présentée. Le theme principal de cette these est 'application et ’analyse d’algorithmes
qui utilisent 'opérateur de Koopman pour commander des systémes distribués en utilisant

des données.

Plusieurs problémes peuvent étre représentés en utilisant le cadre multi-agent. La
nature distribuée de ces phénomenes rend appropriée I'utilisation de la théorie des graphes.
Chaque systeme dynamique local est représenté comme un nceud, et les communications
entre eux sont représentées comme des liens dans un graphe, ou l'interaction entre les
neeuds comprend plusieurs comportements donnés par le couplage. Le MG peut étre
défini comme un courant continu (CC) ou alternatif (AC) qui est donné par le courant
géré par la connexion principale dans le MG. De plus, lorsque le MG est connecté au
réseau principal (réseau d’utilité publique), il fonctionne comme une source de courant
contrdlée ; en revanche, si le MG est en mode iloté, il fonctionne comme une source de
tension contrélée. Dans le premier cas, la MG établit uniquement le point de consigne
de la puissance, tandis que dans le second cas, la MG établit les points de consigne de la

tension, de la fréquence et d’autres variables.

Il est nécessaire de commander la tension et la fréquence ou 'angle de phase pour
commander la puissance active et réactive lorsque le MG est isolé. Ici, les lignes de
transmission ont un effet pertinent sur le comportement global. La partie résistive et
réactive de la ligne de transmission détermine le comportement du flux de puissance active
et réactive entre les sources. Les flux de puissance peuvent étre commandés séparément
dans une ligne de transmission a prédominance réactive (sans perte dans le cas idéal).
La puissance active est commandée en modifiant 'angle de phase ou la fréquence, et la

puissance réactive est commandée en modifiant 'amplitude de la tension.

L’interaction entre les générateurs de tension implique des comportements non linéaires
dus au flux entre les agents. La modélisation et le commande appropriés d’un systeme dis-
tribué, avec un comportement non linéaire et des parametres difficiles a établir, impliquent
un probleme de pointe. Les données sont une alternative pour travailler avec ce type de
phénomenes. Comme le nombre de capteurs a augmenté, de grandes quantités de données
sont disponibles. Ces données peuvent étre utilisées pour le commande et 'identification
de systemes non linéaires. Certaines approches ont été proposées avec des algorithmes
pour exploiter les données, comme 'apprentissage itératif, la commande sans modele,
I’apprentissage par renforcement, etc. Du point de vue de la conception de la commande,
la disponibilité d'un modele de systeme est plus souhaitable qu'une approche complete

de type boite noire. Certaines techniques, comme 'apprentissage itératif, exploitent les
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données pour régler les controleurs PID classiques. Les techniques d’apprentissage par
renforcement sont basées sur la programmation dynamique ; elles peuvent utiliser une ap-
proche boite noire complete. Mais il existe également différentes approches qui établissent

des conditions de stabilité pour la conception des commandes.

Une alternative a la technique présentée précédemment est celle basée sur les opéra-
teurs linéaires, qui généralisent le concept de carte linéaire. En particulier, 'opérateur de
Koopman est un opérateur linéaire dont ’adjoint est l'opérateur de Moore-Penrose qui
agit sur les distributions. L’opérateur de Koopman permet de représenter un systeme
non linéaire comme un systeme linéaire de dimensions infinies dans I'espace des levées
ou l'espace des observables. Les observables peuvent étre définies comme des mesures
du systeme a partir d’'une variable d’état sélectionnée. Déterminer la représentation de
Koopman d’un systeme dans une dimension finie n’est pas une tache simple. Certaines
techniques axées sur les données ont été étudiées, telles que la décomposition en modes dy-
namiques (DMD) et le cas plus général de la décomposition en modes dynamiques étendus
(EDMD), comme réponse & ce probleme. La DMD représente un systéme non linéaire
comme un systéme linéaire de dimension finie en utilisant une minimisation des moin-
dres carrés sur I’ensemble des observables ou en appliquant la décomposition en valeurs
singulieres (SVD). EDMD définit un ensemble de fonctions non linéaires, appelé diction-
naire, et évalue, sur celui-ci, I’ensemble des observables. L'’EDMD résout un probléeme de
minimisation des moindres carrés pour déterminer la matrice de Koopman qui représente
le systeme non linéaire. La maniere de déterminer le bon dictionnaire de fonctions est
un probleme ouvert, avec plusieurs types de fonctions proposées, telles que les fonctions
radiales, les fonctions de Fourier, et les polynémes. Dans plusieurs cas, la nature propre
du probleme peut suggérer les fonctions du dictionnaire. De plus, le nombre de fonctions
choisies détermine la dimension de I'approximation de Koopman. Il est également possi-
ble de trouver la représentation approximative de Koopman des systemes avec entrée de
commande en supposant que le systeme est affine et en incluant un signal de commande

qui varie dans le temps.

L’acquisition de données, pour l'identification et la conception de la commande de
systemes non linéaires, peut se faire a partir de données provenant de capteurs ou de
données issues de simulations détaillées. Elle inclut tous les parametres possibles pour
étre plus précis. Les données sont générées pour plusieurs trajectoires du systeme en
effectuant des simulations en faisant varier les conditions initiales. L’entrée de commande

varie également pour déterminer la matrice d’entrée. Les données sont échantillonnées
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par une période donnée par la réponse inhérente a chaque systeme. La matrice de sortie
est récupérée en comparant l’ensemble des données d’entrée, et ’ensemble des données
évaluées sur le dictionnaire.

La représentation linéaire approximée dans l'espace de Koopman est adaptée a la
conception de commandes. Premiérement, elle fonctionne comme un prédicteur linéaire
dans la commande prédictive par modele (MPC). Ensuite, 'analyse des valeurs propres
de la matrice de Koopman permet d’étudier la stabilité du systéme et la structure du
commande en vérifiant son observabilité et sa controlabilité. La conception d’une iden-
tification et d’'un commande appropriés peut étre problématique dans les systemes en
réseau, en particulier s’il existe un fort couplage entre les agents. Lorsqu’il y a un cou-
plage entre les agents, les changements sur les variables d’un agent affectent les variables
des autres agents. Une alternative pour commander des systemes distribués, méme avec
un couplage, est d’utiliser le MPC distribué. Plusieurs techniques ont été proposées pour
résoudre le MPC de maniere distribuée : non coopérative, coopérative, ADMM distribuée,
etc. Dans la premiere, les agents n’ont pas besoin de connaitre l'action de commande prise
par chaque agent et partagent uniquement son état. Dans le second, les agents partagent
leurs états et leurs signaux de commande. Dans la derniere, les agents partagent une
variable auxiliaire, et le probleme est résolu de maniere itérative.

Pour faire face a la nature en réseau des systemes électriques et, en général, des
systemes distribués, I'identification de chaque agent doit tenir compte de l'effet des autres
agents. Une approche simple du probleme consiste a concevoir un MPC distribué non
coopératif. Ainsi, un terme de consensus, qui réduit les différences d’état entre les agents,
est inclus dans les restrictions du probleme d’optimisation. L’identification de chaque
agent se fait de la méme maniére que pour le modele décentralisé ; cependant, il est
nécessaire de définir les gains pour le MPC, et le gain pour le terme de consensus. Dans
le cas du MG, le commande congu peut réguler la tension par des changements de charge,
des changements dans les lignes de transmission, et des changements dans le réseau de

communication, qui sont les liens dans le graphique.

Objectifs de la these et contributions

Cette these étudie le commande des systemes énergétiques distribués en utilisant des
données. La modélisation d’un systeme distribué est limitée en raison de la difficulté de

définir un cadre mathématique précis. Les systemes énergétiques sont couplés et présen-
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tent des variations lors de leur fonctionnement. Dans cette theése, nous exploitons les don-
nées disponibles du systeme, issues de la simulation de modeles basés sur des principes
fondamentaux. Le MG est également un systéme distribué et nécessite de définir une
stratégie de contrdle garantissant son bon fonctionnement. Les algorithmes proposés
pour les systemes non linéaires sont exploités pour commander un MG défini comme un

systeme distribué. Les principales contributions de cette theése sont résumées comme suit

— La conception centralisée basée sur Koopman utilisant MPC régule la tension du
MG tout en maintenant la condition de partage de puissance pour la puissance
réactive. Pour l'identification du systeme, des données sont recueillies aupres de
chaque agent pour différentes conditions initiales ; de plus, I'entrée varie pour
déterminer la matrice d’entrée. Dans ce cas, chaque agent n’a acces qu’aux mesures
de tension locale, et le MPC minimise la différence entre la tension locale, la
référence et 'action de commande. Comme chaque agent ne prend des mesures que
sur la base de ses mesures, le commande n’atteint qu’un optimum local. Le systeme
complet régule la tension et peut atteindre de bonnes performances ; cependant,
certains problémes peuvent apparaitre lorsque le réseau s’étend, ce qui est un sujet
de travail futur.

— Pour les systemes distribués, le MPC doit connaitre les actions de commande ef-
fectuées par les autres agents. Une approche distribuée peut étre utilisée pour
éviter le probleme d’une conception centralisée avec une communication compleéte
entre les agents. Chaque agent connait alors I'état et l'action de commande de
son ensemble de voisins. Cette approche est connue sous le nom de MPC dis-
tribué coopératif ; elle nécessite de connaitre la matrice d’entrée de couplage entre
les agents. Elle peut étre déterminée en faisant varier le signal de commande de
chaque agent et en vérifiant comment les autres agents sont affectés. La technique
pilotée par les données avec EDMD facilite la vérification de 'effet des signaux
de commande locaux sur les autres agents. Une matrice d’entrée globale est con-
struite pour I’ensemble du systeme. Pour le probleme d’optimisation, la fonction
objectif minimise 1’état et l'entrée de commande, et les restrictions incluent la
représentation linéaire du modele non linéaire dans ’espace soulevé, avec un terme
pour le consensus d’état, et un terme pour 'effet des entrées de commande sur les
agents qui dépend de la matrice d’entrée globale. Le MPC coopératif a 'avantage
d’atteindre une valeur Pareto-optimale par rapport a I’équilibre de Nash atteint

par le MPC non-coopératif, et 'optimum local atteint par le controleur décentral-
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isé. La convergence de chaque algorithme est déterminée, y compris les conditions
pour les gains MPC en utilisant le calcul des variations pour le cas non coopératif,
et la fonction de Lyapunov pour le cas coopératif. Les conditions de stabilité de
la représentation linéaire du systéme dans 'espace de Koopman sont vérifiées en
controlant les valeurs propres de la matrice d’état ; les conditions de controlabilité
et d’observabilité du modele linéaire sont également vérifiées.

— Une alternative pour résoudre le probleme d’optimisation MPC consiste a utiliser
un algorithme alternatif basé sur les multiplicateurs de Lagrange, connu sous le
nom de méthode ADMM (Alternative Direction Multipliers Method). Cet al-
gorithme divise le processus d’optimisation en deux étapes. Dans la premiere,
I’entrée optimale est calculée ; dans la seconde, le multiplicateur de Lagrange est
mis a jour. Il est nécessaire de définir le probleme comme un probleme de régu-
lation pour définir le MPC au lieu d’un probleme de suivi. Ainsi, en éliminant la
dépendance de la référence, la commande minimise l'erreur d’état et ’entrée de
commande. L’algorithme ADMM est utilisé pour résoudre le probleme sous une
forme distribuée ; cet algorithme, appelé ADMM distribué (DADMM), utilise la
matrice Laplacienne pour calculer la variable auxiliaire partagée avec I’ensemble
des voisins de chaque agent. Certaines hypotheses doivent étre faites pour garan-
tir la convergence de l'algorithme. Dans ce cas, la dynamique d’erreur de chaque
agent est identifiée en utilisant EDMD, en définissant le méme dictionnaire que
précédemment. Cet algorithme n’a besoin que de I'information partagée par les
variables auxiliaires, car il peut étre implémenté dans le matériel. L’optimisation a
chaque itération, peut étre résolue par un algorithme récursif, tel que 'algorithme
step descendent. Cet algorithme régule la tension du MG par des changements de
charge, de ligne de transmission et de réseau de communication. Dans le dernier
cas, lorsqu’'un changement dans les graphes déconnecte deux nceuds, la variable
auxiliaire entre eux passe a zéro.

— Dans la derniere partie, l'effet du bruit sur l'identification et la commande des
systemes dynamiques est étudié. Premierement, les mesures bruitées affectent
Iidentification correcte des matrices espace-état. Ce probleme peut étre traité en
incluant un terme de correction dans l'algorithme EDMD. Il s’agit d'un terme
de norme 1 inclus dans la minimisation des moindres carrés pour déterminer la
représentation de Koopman du systéeme. Une autre alternative consiste a définir

un second dictionnaire de fonctions comme proposé dans la littérature. Ce deux-
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ieme ensemble de fonctions doit étre différent de I’ensemble proposé pour le prob-
leme. Ainsi, deux matrices peuvent étre calculées en évaluant I'ensemble des
mesures dans les deux dictionnaires, puis la représentation de Koopman du sys-
teme. L’ensemble des valeurs propres de la matrice d’état utilisant ’algorithme
EDMD avec des mesures bruitées est comparé a ’ensemble des valeurs propres
générées par l'algorithme EDMD a deux dictionnaires. Dans le cas de la MG,
nous avons proposé d’utiliser un ensemble de fonctions exponentielles, ainsi que le
dictionnaire utilisé dans les premiers chapitres. L’algorithme a deux dictionnaires
approxime mieux les valeurs propres au cas idéal avec des mesures sans bruit. Pour
la conception de la commande a ’aide de ’approche de Koopman incluant I'effet
des perturbations et du bruit, il est possible d’introduire un terme supplémentaire
dans le prédicteur linéaire pour inclure I'effet du bruit ou des perturbations bornées.
Le prédicteur linéaire, qui fonctionne dans 'espace soulevé, considere le bruit ou
les perturbations sous une forme limitée. Cela peut étre tres utile dans le cas des
systemes électriques pour le bruit ou les perturbations bornées produites dans les
mesures de tension. L’algorithme proposé dans cette these inclut une perturbation
bornée ; il utilise la conception de Koopman et peut rejeter ces perturbations tout
en conservant la régulation de tension.

Enfin, nous avons proposé une commande en ligne pilotée par les données, basée
sur une approche de la littérature pour un probleme récursif des moindres carrés.
Cet algorithme n’a besoin que des deux ensembles pour DMD ou EDMD et de la
derniére paire de mesures a venir (la mesure et sa version décalée). Dans la littéra-
ture, 'algorithme proposé fonctionne avec DMD, mais, dans notre cas, nous avons
utilisé l'algorithme pour résoudre un probleme d’optimisation EDMD car nous
avons utilisé un petit dictionnaire. Le MPC est congu comme dans 1’approche
décentralisée, mais I’équation de contrainte, qui a la matrice d’état du prédicteur
linéaire donnée par le modele de Koopman, est mise a jour a une période prédéfinie.
Comme le montrent les simulations, le MG régule la tension lorsqu’il y a des change-
ments dans les charges et les lignes de transmission. L’algorithme commence avec
une matrice d’état identique mise a jour avec des données, et la matrice d’entrée
est déterminée dans des simulations précédentes et maintenue constante pendant
la simulation. Le systeme doit étre observable et contrélable pour garantir la con-
vergence de cet algorithme. Ainsi, I’ensemble de données utilisé pour déterminer

la matrice d’état doit étre suffisamment grand pour avoir une matrice d’état de
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rang complet. La taille de I’ensemble de données pour remplir ces conditions est
un probléme ouvert.

— Tous les algorithmes présentés dans ce travail ont permis d’améliorer ’étude et la
conception des commandes pilotées par les données. Ils sont adaptés aux systemes
a structure changeante, ou il est difficile d’établir un modele détaillé en raison de
la structure du probléme ou de sa non-linéarité. De plus, cet algorithme établit
une connexion avec les systemes distribués donnant une meilleure approximation

des systemes de puissance.

Structure du manuscrit et résumé des chapitres

Le manuscrit de these est composé de quatre chapitres, qui sont résumés dans les

paragraphes suivants

Chapitre 1 - Les micro-réseaux et les techniques basées

sur les données : Etat de l’art

Ce chapitre présente un cadre général du probleme pour les systémes électriques et
les MG, a savoir comment 'utilisation de ressources distribuées réduit l'inertie des sys-
temes électriques. Il présente également le concept de MG, les approches basées sur les
données, ainsi que le concept de 'opérateur de Koopman et ses algorithmes basés sur les
données. Enfin, ce chapitre présente les concepts généraux des systemes distribués et de

I'optimisation, ainsi qu’une discussion sur le probleme non linéaire.

Chapitre 2 - Commande décentralisée du MG basée

sur Koopman

Ce chapitre définit le modele dynamique de la MG et le probleme d’optimisation pour
réguler la tension. Le cadre de commande secondaire régule la tension ; pour ce faire, nous
définissons un MPC dont les contraintes comprennent un prédicteur linéaire qui est trouvé
en utilisant les mesures de tension et I'approximation de l'opérateur de Koopman basée
sur les données. Cette commande secondaire proposée régule la tension de MG lorsqu’il

y a des changements de charge et de ligne de transmission. Enfin, 'algorithme proposé
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est comparé a un controleur qui utilise un MPC avec un prédicteur non linéaire dans ses

contraintes, montrant que l'algorithme basé sur Koopman réduit le cotit de calcul.

Chapitre 3 - Approches distribuées pour les comman-

des basées sur Koopman

Ce chapitre présente trois algorithmes de commande pour les systemes distribués ap-
pliqués a la commande secondaire dans les MG. Tout d’abord, il est présenté un MPC
non coopératif qui inclut une équation de consensus comme contrainte avec le prédicteur
linéaire déterminé en utilisant l'opérateur Koopman avec EDMD. Deuxiemement, nous
présentons un MPC coopératif qui régule la tension du MG en tenant compte de 1’état et
des actions de controle de chaque agent du voisinage en utilisant ’algorithme piloté par
les données pour définir la matrice d’entrée des systemes interconnectés. Troisiemement,
il est présenté un algorithme d’optimisation itérative basé sur ’ADMM distribué. Dans
ce cas, le prédicteur de Koopman est défini comme un probleme de régulation au lieu d’un
probléme de suivi. Nous étudions la convergence et les hypotheses de chaque algorithme
pour réguler la tension a travers les changements de charge, de ligne de transmission et

de graphe.

Chapitre 4 - Conception en ligne pilotée par les don-

nées et MPC amélioré

Ce chapitre présente une commande en ligne pilotée par les données pour les MG,
basée sur un algorithme récursif des moindres carrés issu de la littérature. L’algorithme
en ligne utilise 'TEDMD au lieu du DMD en définissant un petit ensemble de fonctions
dans le dictionnaire. L’algorithme proposé régule la tension de la MG tout en mettant a
jour sa matrice d’état avec les données stockées et la derniere paire de mesures a venir.
Ce chapitre présente également un dictionnaire de fonctions a utiliser pour déterminer la
matrice de Koopman d’un systeme avec des mesures bruitées. Enfin, nous avons présenté
un algorithme de rejet du bruit incluant un terme de perturbation dans le prédicteur
linéaire en utilisant EDMM.
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Exemples de résultats
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Figure 1 — Données utilisées pour déterminer 'opérateur de Koopman et ’approximation de Koopman.

Figure 1 montre un segment des données utilisées pour déterminer l'opérateur de

Koopman. Les conditions initiales varient de 0 a 200 v. Un deuxiéme ensemble est utilisé

pour vérifier la validité de I'approximation. Ceci est montré ci-dessous, notez que pendant

les premieres étapes, la matrice de Koopman se rapproche étroitement de la dynamique

du systeme.

Conclusions et perspectives

Ce document se concentre sur l'identification et le commandement des MG. L’identification

correcte des systemes électriques peut étre un probleme difficile en raison de leur structure

en réseau, de leur hétérogénéité, de leurs différentes échelles de temps et de leurs incerti-

tudes. La disponibilité de grandes quantités de données du systeme permet 'utilisation
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de techniques orientées données pour améliorer I'identification et le commande des sys-
temes interconnectés. Nous avons considéré différentes approches de la vue du commande
de MG comme un systeme distribué. Ce document présente plusieurs contributions a la
commande des systeémes en réseau et des MG. La commande décentralisée pilotée par les
données utilisant la théorie de 'opérateur de Koopman régule la tension du MG a I'aide
de techniques d’optimisation. L’algorithme proposé exige que chaque générateur utilise
des mesures locales en ligne pour générer des actions de commande. Nous concevons
un prédicteur linéaire local dont les valeurs propres sont a l'intérieur du cercle unitaire
qui garantit la convergence de 'algorithme. Le prédicteur linéaire réduit également le
temps de calcul par rapport aux autres commandes qui proposent un MPC non linéaire.
L’algorithme proposé est sensible aux changements dans les lignes de transmission, en
particulier dans l'inductance locale, ce qui nécessite également de recalculer la représen-
tation de Koopman. De plus, I'algorithme omet certains comportements des systémes en

réseau, tels que 'effet des actions de commande entre les agents.

Un ensemble d’algorithmes, pour les systemes distribués avec un prédicteur linéaire
basé sur Koopman, a été présenté : ADMM non coopératif, coopératif et distribué.
L’algorithme non coopératif utilise uniquement les mesures de tension des autres généra-
teurs pour réguler sa tension en utilisant un terme de consensus linéaire. Nous avons
démontré que le systeme converge vers la valeur de référence. Pour le MPC coopératif,
nous avons proposé un algorithme hors ligne pour obtenir la matrice d’entrée des généra-
teurs en faisant varier le signal de commande et en mesurant son effet sur les autres
générateurs. Nous avons proposé un troisieme algorithme qui utilise la représentation de
I'erreur dans I'espace de Koopman pour concevoir un MPC qui est résolu en utilisant un
ADMM distribué. Il réduit le temps de calcul et améliore le coiit de calcul. Les trois
algorithmes convergent vers les valeurs de référence, en fonction des matrices de poids et
de la sélection des parametres. Nous avons également utilisé un prédicteur linéaire basé
sur Koopman qui inclut une matrice de perturbation. La simulation montre que le con-
troleur MPC, utilisant la représentation de Koopman, régule la tension dans le MG pour
les changements de charge, les changements de ligne de transmission et les changements
de graphe de communication. L’identification correcte de la dynamique de chaque généra-
teur dépend du traitement correct des données disponibles dans ce premier cas. Comme
les variations rapides, telles que les composantes haute fréquence, pourraient affecter le

calcul correct de la représentation de Koopman, un filtre passe-bas a été utilisé.

Un algorithme proposé traite le probleme des mesures bruitées pour déterminer la
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représentation de Koopman du systeme. Ces outils sont un facteur clé pour la conception
de l'algorithme de Koopman en ligne que nous avons proposé pour réguler la tension dans
le MG. Le probleme de la mise a jour de la matrice de Koopman est résolu en utilisant un
algorithme qui n’utilise qu’une paire de mesures a chaque itération. L’algorithme proposé
converge en suivant un ensemble de restrictions liées aux données mesurées, et avec le
temps fixé pour faire 'actualisation. Enfin, un algorithme qui utilise un terme pour les
perturbations identifiées par EDMD est présenté et utilisé pour concevoir un MPC capable
de rejeter les perturbations de tension.

Les perspectives de ce travail sont liées a 'amélioration de ’algorithme en ligne et au
probléme de travailler avec des mesures bruyantes. Un autre aspect est le traitement des
lignes de transmission sans perte, qui devrait inclure ’angle de phase entre la tension et le
courant. Le travail avec 'opérateur de Koopman dans les systémes distribués peut égale-
ment aborder une identification correcte des noeuds avec plus d’interaction avec d’autres

agents dans un réseau couplé, tel que le systeme électrique.
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INTRODUCTION

0.1 General Context

Power systems have changed from the traditional utility network to a more distributed
and variable system. This phenomenon is due to the growth of renewable sources, storage
systems, and electronic loads. In recent years, it has been a global increase of two times
in wind and six times in solar energy production [1], [2]. The number of non-synchronous
sources in the power system has increased in recent years, such as the case of the Irish
system, with almost 60% of variable renewable energy, and the Australian National Energy
Market (NEM) with 30% of wind and 15% of solar capacity installed. It advocates the
power system to new challenges, especially when synchronous machines are replaced by
non-rotational sources based on electronic converters, causing the system to have a low
inertia [3].

A microgrid (MG) is a cyber-physical system that integrates generators, loads, and
storage systems in a defined geographical area. It can operate connected to the power
grid (utility) or as an isolated unit (islanded mode). On one hand, the MG allows the
integration of non-rotational sources in an organized form; on the other hand, it brings new
challenges due to non-conventional sources, phenomena such as heterogeneity, multiple
time scales, and nonlinear behavior. A system with low inertia presents additional issues
because power electronic converters introduce faster dynamics compared to synchronous
generators, then, unexpected coupling might be present, and control approaches based on
time-scale separation might be less valid, even resulting in unstable behavior [4]. In these
systems, an accurate model of electronic converters is needed. However, this is not always
available and might be not practical for analysis and control design in interconnected
systems [3]. Many control strategies rely on the accurate description of the system by a
dynamical model, usually by a set of nonlinear equations. It can be difficult, especially if
there is high uncertainty about the model parameters, or even prohibitive when a model
is unavailable because of a high-order system or the nature of the physical phenomena.

Low prices in sensors have given access to a large amount of data. Simultaneously,

the increase in computing power has brought new developments in tools for data analysis.
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One perspective uses data series to generate a dynamic system model and to design
control strategies. In particular, the Koopman operator is a linear operator that acts
in the space of observables and allows the representation of a nonlinear system as a
linear combination of new bases in an infinity dimension [5]. Koopman operator has been
used in different fields such as power systems control [6], [7], [8] flow dynamics, video
processing, neuroscience, and economy [9]. For power systems, the Koopman operator
has been used to control individual systems, such as synchronous generators. Also, it
was used to determine zones inside a distribution system based on its phase angle. Some
works have presented a theoretical approach to the Koopman-based distributed control
problem. However, it has not been applied to distributed power systems such as MGs.
The distributed nature of power systems makes implementing a centralized controller
difficult, making the design of a distributed one, based on data gathered from the system,
attractive. It sets a particular problem due to the coupled nature of power systems;
i.e., a change in the voltage in one node changes the voltage in the other nodes. There
is a need to develop a distributed data-based algorithm using the Koopman operator
to overcome the limitations in the modeling and control of distributed power systems
and MGs. It allows establishing a linear representation of the system and facilitates
the use of optimization tools such as model predictive control (MPC) [10], [11]. It is
desirable to fulfill optimization objectives in MGs, such as energy minimization in control
signals, reference tracking, and economic dispatch. In the centralized frame, optimization
processes are developed more easily than in a distributed one; however, the inherent delay
in the measurements and loss of packages can limit the operation of centralized control.
On the other hand, distributed optimization allows overcoming the limitations of a fixed
structure within the communication system. However, several considerations have to be
made to reach the optimal values. Based on Lagrange multipliers, several distributed
optimization algorithms have been developed: Newton-Raphson, penalty, and ADMM

[12], which are also useful for solving nonlinear optimization problems.

This thesis addresses the design of data-driven algorithms based on the Koopman
operator to be applied, in particular, to MGs control. The objective of this work is
designing and simulating a set of algorithms for MGs control, following decentralized and
distributed approaches. The controller includes optimization processes that consider the
restrictions for the control action, communication, noise, and physical constraints. Also,

to design an online algorithm to identify and control the dynamics in a MG.
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0.2 Motivation

Power systems are large-scale systems with a wide variety of phenomena, where the
MG appears as a solution for integrating elements with heterogeneous behavior. When
the MG works in islanded mode can be managed as a distributed problem, including opti-
mization objectives. Several algorithms for the control of AC-MGs have been developed.
However, they rely on the identification of a model for each agent, which most times
is difficult and restricts the scalability and plug-and-play capacity of the system. The
Koopman operator and data-driven Koopman-based techniques allow identifying nonlin-
ear systems. However, these techniques are used for single-agent systems, lacking the
effect introduced by interconnected agents. Several limitations appear when optimization
objectives are searched in distributed systems, making the problem difficult to solve or
very restricted. This work focuses on modeling and controlling MGs using a Koopman-
based data-driven technique with a distributed approach that makes the optimization

problem more treatable by enabling the use of distributed optimization tools.

0.3 Contribution

In this thesis, we develop a framework for the design of Koopman-Based controllers
following optimization strategies. The idea is to improve the performance of controllers
in MGs while dealing with optimization objectives, such as minimizing the control effort
and the voltage deviation while keeping the power-sharing.

This thesis is divided into four chapters as follows:

1. The first chapter presents a literature review of MG control and modeling, focusing
on the voltage regulation problem. Then, the general approach to data-driven
techniques is presented with its application to control, emphasizing the Koopman
operator. Some aspects of the distributed control and optimization approach are

presented too.

2. The second chapter describes the MG model used for a decentralized Koopman-
based voltage controller designing. The design includes an MPC controller for an

inverter-based MG using a linear predictor.

3. The third chapter presents the design of the Koopman-based controller for a dis-
tributed system, following non-cooperative and cooperative approaches. The con-

vergence for the first algorithm is proved. For the second one, it is shown how to
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determine the coupling matrices for the system. As an alternative, a distributed
ADMM is designed to solve the MPC problem with guarantees given by the Koop-

man approach.

4. The fourth chapter shows the design of a data-driven online control algorithm for
the MG, including the guarantee for convergence. Then, it is shown how to deal
with noisy measurements to determine the Koopman operator, and how to design

a controller that includes perturbations in the MG based on data.

All the contributions make the basis for voltage control in networked systems, such
as MGs, following a distributed approach and using data from the system. Also, the
objective function and constraints can be set under non-ideal scenarios.

Finally, this thesis presents a general conclusion and suggests future works aiming to

continue the research.
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CHAPTER 1

MICROGRIDS AND DATA-DRIVEN
TECHNIQUES: STATE OF THE ART

1.1 Introduction

In this chapter, we present the general aspects of MG modeling and control, and the
problem of law inertia in power systems. First, we introduce the hierarchical framework
for the centralized, decentralized, and distributed approaches. Then, we show the data-
driven approaches emphasizing the Koopman operator, and setting the state-of-the art of
these techniques. Finally, we set the bases and the main problems regarding the control

of systems based on data-driven techniques.

1.2 Low Inertia in Power Systems and MG

Inertia is a physical magnitude very desirable in power systems. In conventional power
systems, rotational generators act as an energy source, an energy converter, and an energy
storage [3]. In rotational generators, inertia is directly related to energy storage. However,
in converter-interfaced generators, inertia is not a physical magnitude. The variations of

frequency in a power system with inertia are given in the form

Ma(t) = ps(t) + pns(t) = pu(t) — p;(1) (1.1)

where M is the inertia, ps is the power generated by synchronous machines, p,, is the
generation of non-synchronous generators, p; is the power demanded, and p; are the power

losses.

In a system with no inertia, that means, without synchronous generators, there is no
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relation between inertia and the frequency of the system, (1.1) becomes

0 = ps(t) + pus(t) — pi(t) — pj(t),

then, the frequency can vary freely, increasing the fluctuations. Any non-synchronous
generator reduces the inertia of the system [3]. This lack of inertia is compensated by
managing the DC side of the converters. The faster dynamics of converters compared with
rotating machines introduce rapid changes in frequency and voltage in the system and
possibly a coupling with the dynamics of the transmission lines. Non-synchronous sources
also provide faster primary frequency control. Power systems with high penetration of
renewables present low inertia, which brings new challenges to frequency and voltage
control. The problem is more notorious in MGs working as independent units due to
their very low or complete lack of inertia. The MG concept is a potential solution to deal
with those limitations and to include the increasing number of interconnected distributed

generators and storage devices.

1.3 Microgrid Concept and Framework

The MG is a set of distributed electrical generators, storage systems, and loads con-
nected through a common electrical bus, and limited over a geographic area [13]. The
connection bus determines the type of MG: alternative current (AC) or direct current
(DC) [14] (see Figure 1.1). A MG connected to a utility network follows the references
given by the network, which is known as a grid-following configuration. When the MG
operates in islanded mode, the reference values of voltage and frequency must be set for
the MG itself; this is known as grid-forming configuration [15].

A three-level hierarchical framework was proposed for the MG’s control [16]. At the
first level, the local voltage and current controllers, and droop control act when sources
are connected in parallel [17]. At the secondary level, we find controllers that set the
voltage and frequency reference values for the primary control. The third level is a global
controller used for management objectives such as economic dispatch and energy flux
management between the MG and the utility network or among MGs [18], as it is shown
in Figure 1.2. Primary control is often made in a decentralized mode, which only requires
local information. In contrast, secondary control needs to share information among el-

ements to compare magnitudes. Here, the control might be centralized or distributed
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Figure 1.1 — General representation of the MG where the inverter is the key element for the intercon-
nection.

[19].

In AC MGs, several magnitudes can be controlled: active power, reactive power, volt-
age magnitude, frequency, and phase. The nature of the MG is inherently distributed;
loads and generators can be connected and disconnected at any moment. A centralized
control frame, although possible, can be very prohibitive due to the cost of the commu-
nication system and the limitation of the plug-and-play capacity [19].

In this work, we consider a networked dynamical system represented by a graph, in
which the dynamic of each agent can be nonlinear and have a heterogeneous behavior.
The dynamics of individual agents are analyzed using a data-driven approach. However,

the coupling between agents adds an effect to be considered when modeling with data.

1.4 Data-Driven Methods

Control methods rely on the correct identification of the plant model; this approach
is also known as Model-Based Control (MBC). Proper identification from first principles
could be demanding and sometimes prohibitive. However, the use of first principles mod-
els together with uncertainty models allows the correct design of controllers [20]. The
increasing use of sensors and storage devices in industrial processes gives access to big

amounts of data, which can be used either online or offline for control design, predic-
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Figure 1.2 — Microgrid three-level hierarchical framework.

tion, and performance evaluation. That can be very advantageous when there is not an

accurate model, making the use of data a powerful tool for control design.

Several mathematical tools have been developed for data analysis, some of them used
to identify and control dynamical systems. There is a general classification of control with
data:

— Data Based Control (DBC)
— Data Driven Control (DDC)

The main difference between DBC and DDC is that the former works in an open loop,
while the second one works in a closed loop to generate control actions [20]. DDC can
also be classified depending on how the control action is generated if data is gathered
and action is then decided. DDC is online when batches of data are used to design the
controller, and the control is offline. A hybrid mode is also possible. On the other hand,
the controller can work with a pre-establish structure or a completely black box unknown

model.

DDC Definition: Based on the definition given by [20], DDC gathers all theories
and methods that use data from the system or knowledge from the data processing.

DDC does not use explicit information from the mathematical model to design controllers
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that work either online or offline and guarantee stability, convergence, and robustness
mathematically.

Remark The restriction of explicit information from the mathematical model is bro-
ken in many cases by using a very detailed mathematical model (i.e., partial differential

equations) to generate data used for DDC designing.

“/Mathematical model unavailable or\\
very difficult to generate

High Uncertainty

J

Difficulty (

and High order or complicated

mathematical model

Uncertainty .

Mathematical model with

uncertainties

‘\‘ J

g DY

Accurate mathematical model is
available

Figure 1.3 — DDC techniques appear as an alternative when it is difficult to define a precise process
model or there is increasing uncertainty in the parameters.

DDC methods can be applied to several scenarios, particularly when the degree of
the mathematical model is high enough to make it intractable or when the parameters
uncertainty increases, making difficult the proper tuning of the proposed model as shown
in Figure 1.3. Also, aiming to optimize processes, to have a high order mathematical
model with high uncertainty, makes the algorithms go slowly and, in many cases, be
Nnon-convex.

DDC has some features that make it useful for system identification and control design.
Also, there are a set of new challenges to be addressed as follows

— Similar to traditional control, the analysis of stability and convergence is paramount

— Online DDC overcomes the problem of time-varying parameters in contrast to

MBC and off-line design
— The DDC can deal properly with nonlinear systems; for the online method, there

is no difference between linear and nonlinear systems because it is only based on
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data

— Non-modeled dynamics and uncertainty are involved in the data measured. Then,
some robustness is involved in the DDC; however, an alternative robustness defi-
nition is necessary

— It is possible to have an exchange between DDC and MBC; both approaches can
be complementary

— The different approaches of DDC should be studied and applied according to the

features of each system.
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Operators -'I Programming Q-learning
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Figure 1.4 — Data-Driven methods can be classified according to different features. The main approaches
are based on the way the data is used to represent the system

Several DDC algorithms have been developed recently and applied to industrial pro-
cesses and control. As shown in Figure 1.4, apart from the online and off-line classification,
the main variety of control approaches appears depending if data are used to find a model
only based on them, or if data are used to improve an already defined model [21].

Model-Data Integrated is used to improve the performance of an existing model,
particularly for tuning. IFT and VRFT are techniques that, based on a control structure,
search for the appropriate parameters to tune it. IFT uses a cost function that can be
optimized by gradient iterations. VRFT minimizes a performance criterion by using a
model. Both techniques are mainly used in motion control systems such as robots and
can be limited by their capacity to process huge amounts of data from rapidly changing

and strong nonlinear systems.
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Subspace Approach search to identify parameters from data coming from system
measurements, it can deal with uncertainty and its results are analytically based on data
arrangement as Hankel matrix and singular value decomposition (SVD). However, it needs

more development to be used in nonlinear systems.

Iterative Learning Control is based only on data from the system and is training
for repeating industrial control. ILC uses data to generate the control action based on
the error [21].

Model-Free Adaptive Control can be applied to linear and non-linear systems;
MFAC makes a dynamic linearization using a pseudo-partial derivative (PPD) using
input-output measurements [22]. This approach has some limitations for highly complex
processes, and it has been successfully implemented in motor control, industrial processes,

and economic prediction [22].

Principal Component Analysis (PCA) PCA projects data to a lower dimensional
frame with the principal components of a system. PCA minimizes the mean squared
distance between data points by subtracting the mean and setting the variance to unity.
Then, SVD is performed over the data. The principal components are orthogonal to each
other. PCA allows using either direct data from the system or data from simulations; and
also managing large quantities of data. However, PCA has some limitations in dealing

with nonlinear and complex systems [23].

Dynamic Programming and Reinforcement Learning Dynamic programming
can be based on Markov Decision Processes (MDP), and used to solve optimization prob-
lems forward-in-time. This method works offline and requires a complete knowledge of
the system transitions. Dynamic programming uses the average reward and the Bellman
equation, which relates the present values of a state with their future values [24] [25]. The

controller defines the best policy (action) based on reward.

Reinforcement Learning (RL) works similar to dynamic programming; however,
in RL the optimal policies (actions) are determined not by knowledge of the system
dynamics but by observing the results of policies and following those that are optimal.
Dynamic programming assumes that transitions among states are not probabilistic but
entirely known, which is restrictive for real-world applications. In RL, transitions between
states are unknown, and the system learns through several iterations, enabling the option
to design adaptive controllers that work online. There are several methods to perform
policy and value iteration. The three most common are: exact computation, Monte Carlo
Methods, and temporal difference learning [24], with Q-learning and SARSA as the most
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common algorithms as shown in Figure 1.5.
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Figure 1.5 — Main aspects and algorithm for reinforcement learning.

Several results about control and stability have been obtained for RL [24], [26] includ-
ing some extensions of data-based techniques to multi-agent theory such as distributed RL
[27], [28]. RL has been applied to artificial intelligence and deep learning. The following
features can be emphasized:

— Despite several results on stability and convergence of the approximate dynamic
programming and RL, in many cases, there is not any knowledge about the system
behavior, so there is a black-box model approach. Therefore, there is no informa-
tion about the system structure, and how the stability is affected by changes in
the system parameters.

— The training of RL-based controllers can be demanding and needs to consider
several scenarios to be implemented. In many cases, some knowledge of the system
is required. Also, it is necessary to define an adequate exploration method.

— A policy-based approach may not be computationally efficient; therefore, other

model-free approaches can be more suitable. When the number of states is high,
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the possible combinations among states and inputs grow exponentially, which is
known as the course of dimensionality.

Linear Operators Approach Data-driven methods derived from linear operators
are based on Koopman and Perron-Frobenius operators and their connection with Dy-
namic Mode Decomposition (DMD). These operators offer an interesting set of tools for
nonlinear systems analysis, such as the possibility of determining stability and the do-
main of attraction by finding associated eigenvalues. A data approach allows for finding
an approximated operator representation based on measurements useful for several appli-
cations. In the following subsections, we define the Koopman operator and its data-driven

approach.

1.4.1 Koopman Operator

Koopman operator is a linear operator that allows for predicting the future state of a
dynamic system based on the analysis of observables [5]. The operator extracts spatial-
temporal information from the system variables and represents it as a linear one but of
infinite dimension, making it very suitable for nonlinear systems analysis and control with
uncertainty [29]. Koopman operator has been successfully used in different areas, such
as power system control [6], [8], [30], fluid dynamics [31], video processing, neuroscience,
and economy. And analysis tools such as systems with noisy data [32], control of partial
differential equations (PDEs) [33], data-driven dimension reduction [34].

Suppose a dynamical system with vector field v : X — R defined by a differential

equation of the form

) (1.2)

where f is a nonlinear function.
The set of solutions or trajectories for S* or flow S* : X — X (1.2) with initial

condition zy € X is given by

St(z9) = 70 + /;O Fa(t))dt

Observables: the function space F of observables g(x) with g : X — C is a set of
measurement from the system.

Koopman operator [5] associated to S*, also known as the composition operator,

41



Part, Chapter 1 — Microgrids and Data-Driven Techniques: State of the Art

is a family of linear operators of the form:
K'g(z) = (g 0 Si)(2). (1.3)

As shown in (1.3), the Koopman operator acts over the set of observables. Then, the

choice of the function space F determines the properties of K.

Square integrable functions in X with respect to a measure p can be a good selection

for F [29] as follows

F=L*X,C,u) / \g(z)|Pdp(z) (1.4)

where L?(X,C, i) has an inner product

(91.92) = [ (&) a(w)da(x) (1.5)

where the bar over go(x) denotes the complex conjugation.
Koopman Spectral Properties Koopman operator has spectral properties by se-
lecting the function space F of observables g(z). An eigenfunction ¢, with discrete

map S satisfies

Kox=oroS = Aga (1.6)

where A € C is the associated eigenvalue to ¢,.

Similarly, for a continuous-time system, eigenfunctions and eigenvalues are defined as

follows

Klpy = dro St =eMoy Vt>0 (1.7)

Based on the last fundamental properties of the Koopman operator, the following

decomposition is defined.

Koopman Mode Decomposition (KMD) The set of observables can be defined as
a vector of measurements containing information about the system variables. The vector

of observables can be written as

g(x) =[g1(z) @) ... ga(®)]’ (1.8)
X) = ivzjqﬁj(x), (1.9)
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Then, the vector of observables is rewritten as

8(x) = 36,60V, (1.10)

where v; is known as the Koopman mode associated with the eigenfunction ¢, [23],
[29].
Applying the Koopman operator with (1.10) we have

Rel) = K3 6500, = 3 Ky, = 3 (), (111

Then, a nonlinear system can be represented by an infinite sum of three elements:

eigenvalues \;, eigenfunctions ¢;, and its modes v; as it is represented in Figure 1.6.

X2 Y2(X) "
Xpr1 = Ty W(xgs1) = U (xx)
Y(X,)
X1 T X3 LIJB (X)
<> Ut
Ut
Y (X3)
Y(X,)
Xz X3
X1 PX)
Nonlinear system in space-state Linear Representation
in the Lifted Space

Figure 1.6 — A nonlinear system is represented in the state-space to the left, and the same system
appears in the Koopman space to the right.

Several algorithms have been proposed to approximate the eigenfunctions and eigen-
values of a set of observables [29] by calculating the Koopman matrix [35], [36].
The Koopman operator has the following properties [36]:
— If the flow or map exists and is unique, then the Koopman operator exists and is
unique.

— The Koopman operator is generally bounded, which makes it continuous in usual
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spaces.
— If the space is finite, the Koopman operator is compact; otherwise is not compact
and not self-adjoint.

— The Koopman operator is unitary for conservative systems.

1.4.2 Data-Driven Koopman Approach

Several algorithms have been developed to determine the Koopman operator of a
dynamical system using data such as Galerkin Projections, Laplace averages, and DMD
with its variants [37], [38]. Next, we will focus on the DMD algorithm.

Dynamic Mode Decomposition (DMD):

DMD is a data-driven method used to get a linear representation, in an equation-
free form, of a nonlinear dynamical system. It was developed to analyze high-dimension
dynamical systems such as fluids [39]. The most common DMD algorithm, known as
exact DMD [40], works with data irregularly sampled and concatenated. It is based
on Proper Orthogonal Decomposition (POD) and Singular Value Decomposition (SVD),
which allows dimensional reduction. DMD decomposes a complex system in spatial-
temporal structures that can be used to predict the states in a short-time window, which
appears to be very practical for prediction and control [9)].

As was shown by [41], there is a connection between DMD and the Koopman op-
erator theory. In this case, DMD approximates the Koopman operator based on direct
measurements from the system.

Suppose a discrete-time linear dynamic system of the form:
Tpp1 = Axy,

where the idea is to determine the matrix A only based on data gathered from the system.

First, using N measurements of the system, two vectors of N — 1 are created as follows

XV = a(t) wa(ts) - ana(tyod)] (1.12)

X = [aa(ts) ws(ts) - an(ty)] (1.13)
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where X2 is the matrix of shifted measurements, and At = t, — ¢; is the sampling time
that can be uniform.

Then, the SVD of data-set Xi' ! is given by

XN~ Uusw’,

where the value of X1 is approximated by reducing its rank r and the number of
singular values, with U € C"*", ¥ € C"™", and V € C™*".

The approximated matrix A after the rank reduction is denoted by A, and is given by

A=UTxMwxt

A defines a linear approximation of the dynamical system in reduced coordinates of
the form:

Tpp = Ay

The eigenvalues and eigenvectors of the reduced matrix A are given by

AV =V

where the columns of A V' correspond to the eigenvectors and the values of the diagonal

matrix A correspond to the eigenvalues of A. Finally, the DMD modes are given by

d =X WE v

DMD allows to find the principal modes of a dynamic system, what it is useful to
reduce the dimension of the system.

Several extensions of DMD have been proposed, such as multi-resolution DMD, DMD
with control, and extended DMD (EDMD) [35], [42], [38]. In particular, DMD has been
applied to a wide variety of problems, such as fluid dynamics, epidemiology, trading [43],

video processing [44], and power systems [45] among others.

Extended Dynamic Mode Decomposition (EDMD):

EDMD is an algorithm based on least-squares minimization to determine the Koopman
operator of a dynamical system using data gathered from the system [38]. From a series

of M data samples from the system, two data sets are built of the form y; = F'(z;), where
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F is a nonlinear mapping. Defining the matrix of measurements X and Y where Y is the
shifted version of X

X:[Uﬁ Ty -+ TM Y=\y v - yum|-

In EDMD, rather than in DMD), a set of N, functions or a dictionary is defined as

follows

D:{@Zjl, ¢2a"'7'¢1\”€}7

where ¢; € F with span Fp C F. Then, it is defined the vector of value functions
U(z) : M — CYNe where the measurements from the systems are evaluated at each

dictionary function as

= [(z) o(x),..., UN(2)],

the functions of the dictionary are selected for each particular problem, with the only

condition that the dictionary should be rich enough to approximate the dynamic system.

The next two matrices are built from the two sets of measurements evaluated on the

(hC .() 1A S/
(; ‘ Il ZEZ 3 1‘ M ZEZ y’L .

i=1 i=1

Then, the next minimization problem is set up

K = argmin||A — KG||r (1.14)
K

where || - || is the Frobenius norm.

Finally, the finite-dimensional approximation of the Koopman operator matrix is cal-

culated as

K =GTA, (1.15)

where 1 denotes the pseudo-inverse, T is the transpose, and G, A, K € CNe>*Nk,

EDMD with control The nonlinear system identification by using measurements re-
quires defining a finite-dimensional matrix, which also includes the effect of inputs on the

system. A continuous-time affine system with full- state measurements is described by
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d q
%x(t) = flz) + ) bi(z)u,, (1.16)
i=1
where f(x) : R™ — R" is the nonlinear continuously differentiable dynamic, u € R? is the
set of inputs, and b;(z) is a vector field acting on the state-space. Applying the Koopman
operator to (1.16) can be rewritten as
d q
ﬁgo(x) = Xp(z) + V() > bi(z)u,, (1.17)
i=1
where ¢ represents the set of basis functions. Then, there is a term related to the
unforced system and the other to the control input, which is linear in ¢ [46].

Assuming a linear system of the form

d

%x(t) = f(z) + Bu, (1.18)

where the control matrix B € R"*?. System (1.17) is rewritten as

jtsp(x) — Ap(2) + Vip(2)Bu. (1.19)

If we have a nonlinear non-affine dynamic system of the form

d
%x(t) = f(x,u), (1.20)
where f(x;u) : R” x R? — R" is a continuously differentiable function. We can apply the

Koopman operator as

d
dt”
where 1 correspond to the input multiplied by a factor given by V,¢(x,u), plus the

(x,u) = dp(x,u) + Vyp(x,u) - u, (1.21)

response given by the unforced system [46].

Linear Predictor and Control Koopman’s representation allows state prediction in
nonlinear systems. The dynamics can be predicted by a linear representation in the
lifted space of a higher dimension using DMD or EDMD to generate an approximate
representation of a finite dimension. The eigenfunctions of the Koopman operator define

linear coordinates useful for designing linear predictors for nonlinear systems, making it
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possible to predict the evolution of the observables and output of the system. A linear
predictor for a system with Koopman representation given by a set of eigenfunctions
¢1,...,0N, with associated eigenvalues Ay,..., Ay, which not necessarily are different.

The linear predictor is given by

= Az
20 = <Z5(1130)
y=0Cxz,
where
A1 o
A= o=
AN ON

This linear predictor allows the use of well-known linear tools for estimation and
control, reducing the computational cost for optimization processes such as MPC and
simplifying the control design [46], [47], [36].

1.5 Distributed Systems and Optimization

Several real-life phenomena are modeled by using a multi-agent approach that con-
siders particular dynamics (agents) and global behaviors given by the interactions among
them. Multi-agent theory has been well-developed in the last two decades and uses graph
theory for modeling and controlling dynamical systems [48], [49]. Control theory has been
extended to the multi-agent system with results in optimal control, discrete control, sta-
bility, and game theory [50]. In power systems, several distributed approaches have been
developed for MGs control, because of their intrinsically distributed nature [51], including

distributed optimization [52].

1.5.1 Graph Theory and Consensus

A graph is defined by a set G = (V, E, W), where V = {vy, vy, ... wv,} is the set
of nodes or vertex, and E is the set of edges or links defined by E;; = (v;, v;), also, in some
cases the edges can have a weight assigned of the form w;; [48]. In graph theory, the set of
elements with local dynamics that share information about their states are named agents,

and the communication among those agents is known as [inks. Links can represent just
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communication among nodes or can represent physical connections, such as current in a
circuit or flux in a water network. If there is communication between two nodes in both
directions, it is said that the graph is directed, otherwise it is undirected. When the agents
dynamics are identical, the agents are considered homogeneous; otherwise, the agents are
heterogeneous, which is particularly useful for considering more realistic problems.

Some practical definitions of graphs are given next:

Degree Matrix The degree matrix D is a diagonal matrix containing the degree of

each node; that is, the number of connections that the node has.

Adjacency Matrix The adjacency matrix A of a graph is a symmetric matrix of n xn

where n is the number of nodes in the graph, defined by

1 if (v,v5) € F,
A(G) = (05, 07) (1.22)
0 if Otherwise

Laplacian Matrix The graph Laplacian matrix £(G) of an undirected graph is given
by

This matrix contains most of the relevant information about the graph, such as its con-
nectivity. Also, the Laplacian matrix analysis determines the spectral properties of the
graph. The sum of the rows or columns of the Laplacian matrix is zero; then it has a zero

eigenvalue \; = 0 and associated eigenvector 1 =[1 1... 1]T.

Continuous-Time Consensus The basic idea of consensus implies that several inter-
active agents achieve a common goal, then in dynamic systems that implies that agents
reach a common state. The continuous-time consensus equation, for a set of N agents

with a simple integrator dynamic of the form &; = u;, can be written as

zi(t) = D (z(t) —2i(t)) 2i(0) =z €R, (1.23)

JEN;

where N; represents the set of neighbors of the i*" agent.
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Consensus (1.23) can be written in the matrix form as
i =—Lx. (1.24)

Consensus (1.23) and (1.24) is known as the average consensus. The equilibrium of
the system z* = [« «... a]T, where « is the average of the initial conditions, is given

by o = £ 37, 2, and it is globally exponentially stable [53].

Continuous-Time Tracking The continuous-time tracking equation is given by

ZEZ(t) = Z (l'](t) — l’z(t)) + b](flfz(t) — xref)a 1'1(0) = Z; c R (125)

JEN;
where z,.5 denotes the reference value to be tracked.
This result has been extended and enriched to solve several problems, such as discrete-

time consensus, consensus with delayed information, and consensus with packet loss.

1.5.2 Distributed Optimization

Several problems for control of dynamical systems are solved, including optimization
objectives. In networked systems, the optimization objectives can be solved in a central-
ized mode, which requires a complete communication system. It can be problematic when
the number of agents grows, making the system susceptible to failures. An alternative
to the centralized mode is a distributed approach, in which the agent shares information
only with a small group of agents known as the neighborhood.

A global objective function, which is the sum of all local objective functions, should

be minimized. The optimization problem for x € R" is written as

min Z fi(z

xER”

where f; is the local objective function.
Most of the distributed optimization algorithms are discrete-time consensus-based,

among them stand out the gradient-based algorithm given by
J(kE+1) Z w;;(k —a(k)s;(k),
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where z;(k) is the state of the i"* agent at time k, w;; is the edge weight between agents
ij given by matrix W which is double stochastic, and s;(k) is the gradient of the local
objective function f;(x) that is convex [12].

The distributed constraint optimization problem is given by

N
min ; fi(x)
st. zend

g9(z) < O,

h(z) = 0,.

where f; : R — R is the local convex objective function for the agent i, €2; is the local
constraint set. g : R™ — R™ is the global inequality constraint, and h : R* — RP is the
global equality constraint [54].

The problem of distributed optimization is enhanced when dealing with non-convex
spaces; in this case, several assumptions about the reaching capacity at a finite time have
to be revised [55].

Alternative Direction Multipliers Method (ADMM) The centralized ADMM ap-

plied to solve the convex optimization problem with linear restrictions is defined as follows

min f(z) + g(y)
st Ax+ By =C,

with Lagrangian given by

£ = f(@) + g(y) +w(Az + By — C) + £ || Az + By — C|I°.

Then, the ADMM algorithm is given by
(k -+ 1) = argmin £z, y(k); (k)
)

y(k+1) = arg myin L(z(k+1),y;w(k))
wk+1) =w(k) + p(Ax(k+ 1)+ By(k+ 1) — C)

where argmin can be found by any established method, such as gradient descent or
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Newton-Raphson. This algorithm will be extended to solve an optimization problem in a
distributed mode.

1.6 Discussion

After presenting the main features of the MG, data-driven control and distributed

optimization, we are going to review the problem complexity, and set the research lines.

1.6.1 Nonlinear Problem

Nonlinear system identification and control can be challenging, especially for high
dimensional and high uncertainty systems. We chose the Koopman operator-based tech-
niques compared with other data-driven ones because of their capability of establishing
features for control, such as stability. In general, many data-driven methods suffer from
what is known as the curse of dimensionality [56]. As the number of variables and inputs
increases, the number of possible combinations used to define a policy in learning tech-
niques can grow exponentially. In contrast, the Koopman approach allows reducing the
system order by using DMD or by defining an appropriate dictionary in EDMD. However,
in the case of interconnected systems, as the number of nodes increases, the number of
basis functions increases until the problem becomes unpractical.

In power systems, the dictionary of functions can be defined by using trigonometric
functions [36]. [30] uses deep neural networks to find a dictionary of functions for EDMD;
however, the distributed nature of the problem is not considered in this works. Besides
those limitations, the main advantage of using the Koopman representation is that it
enables the use of tools for linear systems, including those such as linear MPC using
Koopman-based linear predictors [57]. Also, in this case, control of a distributed system
increases the complexity of the problem. The simplification of the calculation by using
a linear representation allows using distributed optimization techniques as ADMM [58].
Figure 1.7 shows a global map for the control of interconnected systems, such as power
systems using data-driven techniques. Notice that it is necessary to get a connection
between a single agent and multi-agent control.

One desirable feature in data-driven systems is the capacity to learn or tune its systems
parameters online. The problem of updating a system using its measurements lies in the

quantity and the quality of the necessary data. Here, we propose an online algorithm to
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Figure 1.7 — The nonlinear power system that represents the MG is controlled using a Koopman
approach. It is also used to control the system in a distributed mode.

update the representation of the system by using a series of data measured following the
study by [59]. Finally, it is important to determine the Koopman operator when there is
noisy-data. Some techniques to process the data are based on regularization and can be

used to have a better approximation of the eigenvalues of the Koopman representation

[60], [61].

1.6.2 Research Perspectives

The literature review presented in this chapter brings a series of research perspectives
to be discussed:

First, the voltage control in the MG requires regulating the voltage and the reactive
power flow, a nonlinear relation that also depends on the type of load and its value.
Some data-driven techniques, such as those based on learning, use batches of data to
determine the best policy to follow. Similarly, the Koopman approach needs data from
several initial conditions to determine the trajectories of the system. Both approaches
have some limitations when working online and acting if there are changes in the system
structure. However, the Koopman operator allows working in a reduced dimension space,
which could be practical for online control or together with learning techniques.

Second, in other data-driven approaches, the optimization tools presented are re-
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stricted and do not allow the implementation of established control techniques, such as
LQR or MPC, which are well-known techniques to be used with linear systems. Some
properties of the Koopman operator enable the study of the convergence of those opti-
mization algorithms, even including restrictions.

Third, the problem of controlling a distributed system is still open. Many models rely
on agent modeling; however, the dynamics among interconnected agents are neglected in
many cases. As mentioned, data-driven identification allows including the dynamics of
interconnected agents whose correct identification should be addressed to not increase the
complexity of the problem (curse of dimensionality).

Fourth, several interconnected systems search to resolve global optimization objec-
tives. Distributed control and optimization techniques have been applied to several of
these problems. Solving global optimization problems with limited time and resources is
challenging in islanded MG. Thus, the Koopman approach with optimization techniques,
that require less computational effort, is of high interest. It enables the design of online
algorithms to update the Koopman representation using data from the system. Also, the
data coming from power converters and generators are not ideal as in simulation environ-
ments; in fact, the correct treatment of these data to determine the Koopman operator
for the system is paramount.

Finally, identification and control of MG based on data using the Koopman operator
are still limited. Also, the nature of the variables in power systems makes them noisy and
the changes in loads arbitrary. The correct identification of the system, the definitions
of its features, its distributed nature, and the data treatment are relevant aspects to
be considered to solve the problem studied. All these reasons justify the study of this
problem that could be also applied to similar scenarios in other disciplines.

The work on this thesis continues and enhances existing research in several forms:

In chapter two, we presented a novel secondary voltage control based on the Koop-
man operator following a decentralized approach, which optimizes a local cost function
considering restrictions for reactive power, voltage, and control input.

In chapter three, we present a distributed approach for the control and optimiza-
tion problem. Based on the data-driven identification of the system using the Koopman
operator, we proposed a distributed non-cooperative approach, a distributed cooperative
approach, and an ADMM algorithm to regulate the voltage in MGs following optimization
criteria.

In chapter four, we address the problem of data treatment to determine the Koopman
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representation in a noisy environment. Also, we proposed an algorithm to control MGs

using data from the system in an online approach.

1.7 Chapter Summary

In this chapter, after introducing the principal features of MG, we presented the main
data-driven techniques for modeling and control of nonlinear systems. Then, we introduce
the Koopman operator and the state-of-the-art of data-driven techniques to find it. After,
we made a general introduction to the problem of distributed systems and optimization.
We focused on the problem of identifying the dynamic of an agent in a distributed system
and how the Koopman operator can set up the use of control and optimization techniques
for linear systems. This model and techniques facilitate the design of controllers for
MG systems that include restrictions such as voltage regulation and reactive power flow
control.

In the next chapter, we present a mathematical model for the MG to be used to design
a Koopman-based observer. The main problem feature includes modeling the inverter to

generate data and how to approach the multiagent problem in a decentralized form.
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CHAPTER 2

DECENTRALIZED KOOPMAN-BASED
CONTROL OF MG

2.1 Introduction

Voltage and power regulation in low inertia power systems such as islanded MG re-
quires improving the identification and control processes. In conventional power systems
based on synchronous generators, the changes in frequency and voltage are dominated
by the inertia of the largest generator. In contrast, in systems with high penetration
of converter-based generators, inertia is very low, and transient stability depends on the
reactive power and the topology of the network [62].

Despite the availability of measurements from MGs, these contain noise and uncer-
tainty. Also, the variations over transmission lines and loads, the connections and dis-
connection of inverter-based generators, and changes in the parameters make the MG
modelling difficult. Thus, improving the control and identification of the dynamics of a
networked system is relevant. In the literature, several approaches have been studied;
some of them try to model the whole MG based on linearization and fundamental prin-
ciples [63]. Others use an agent approach, in conjunction with physical principles [17],
facilitating the growing of the network and the plug and play capacity. Several studies
and designs, based on those models, are suitable for regulating voltage and frequency in
the MG while keeping some restrictions on power. Optimization techniques, such as LQR
and nonlinear optimization, are applied to the control of MG. However, some difficult
aspects of modeling are omitted or generalized.

In this chapter, we design a Koopman-based voltage control using a mathematical
model of the inverter-based MG that allows minimizing the voltage error and the control
input. This chapter considers a fixed Koopman model, and a decentralized controller for
the networked system. The EDMD algorithm is used to find the Koopman approximation,

while a set of basis functions is proposed. Here, there is no considered uncertainty in the
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2.2. Problem Description

model, and the objective is to reduce the computational time in the optimization process.

2.2 Problem Description

Alternate current MG is based on inverters; the state, when it works disconnected
from the utility network, is known as islanded mode, and the inverters should work in
grid forming configuration generating their voltage and frequency references [64]. Then,
voltage and frequency constitute the principal magnitudes for the regulation of the MG
magnitudes [65].

Voltage regulation has some challenges as follows:

— Voltage varies along the transmission lines, unlike the frequency, which is a global

variable

— The increasing use of nonlinear loads, such as rectifiers in electronic devices

— There is a relationship between the voltage regulation and reactive power flow

— Voltage regulation can also be affected by the network topology.

Power flow between inverters connected by transmission lines is modeled by defining

the admittance values between the i'" and the j** inverters as
Y9 =GV 4+ jBY,

where G¥ is the conductance, and B% is the susceptance, with j = /—1.
The active and reactive power between a set of N inverters is given by the Kundur

equation as

N
P =" V'VIY 9| cos(07 + & — o), (2.1)
JENT
Q' = > VWVI|Y|sin(” + ¢ — §"), (2.2)
JjENI

where V*, V7 are the magnitudes of the voltages at nodes i and j, respectively. |Y¥] is
the magnitude of the admittance between nodes ij, N is the set of neighbors for the
inverter, #¥ is the admittance angle, §°, 87 are the voltage phase angles at nodes i, 7,
respectively.

Simplifying (2.2) by assuming a very low resistance value in the transmission lines, we

get
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Q = (V") > |BY|= > V'VI|B|cos(§ —&"). (2.3)
JEN? JEN?
It is important to make some claims about the assumption of a low resistance trans-
mission line
— It allows decoupling the active and reactive power by doing changes over the phase
angle and the voltage magnitude, respectively
— This approximation does not always hold and might be affected by the type of
loads in the system, such as nonlinear ones [66]
— It can be generated by putting an inductance of higher value at the output of each
inverter or by putting a virtual impedance [67]
Reactive power expression (2.3) can be simplified more by considering almost zero the

difference between phase angles

& — 6" =0,
Reactive power (2.2) becomes [68],
Q= (V) X B[ = > V'V |BY. (2.4)
JENI jENT

Droop Control LC Filter
S0 =0,+mP @ _ J’ o Inverter m

Vou = Vo= nQ v PWM > =1 _J_c

v, =0 > V- l

< Iy
P Lo;vilsaarss L p:Vdid+I/(]iq;;1 abe to <
/\a)
PLL <

Figure 2.1 — Droop control scheme for a three-phase inverter using d-q transformation.
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2.2. Problem Description

Based on the hierarchical control scheme presented in [69], [70] and introduced in
Chapter 1, the droop control for a three-phase MG is shown in Figure 2.1. In general,
droop control is a decentralized proportional control that changes the reference values
of frequency and voltage in proportion to the active and reactive power measured. The
main objective of droop control is to reduce the circulating currents when sources are
connected in parallel and to keep the condition of each inverter supply power according
to its maximum power capacity, a condition known as power-sharing [17].

Droop control uses instantaneous active and reactive power measurements to calculate
the proportional action for the voltage and frequency references. The instantaneous values
are filtered using a low-pass filter to avoid abrupt changes over those reference values [16].

The basic droop control equation for voltage is given by

Vi=vreh —nlQ) (2.5)

where V* is the voltage reference after drop for the " inverter, V"¢/ is the reference
voltage, n, is the droop coefficient for reactive power, and Q is the medium reactive

power that can be expressed by the relation

B 1
14 7is

Q' o (2.6)

where Q' is the instantaneous reactive power given by (2.4), and 7° is the low-pass filter

constant. This relation can be written as a differential equation as follows

A

Q=@ 2)

Combining (2.4), (2.5), and (2.7), the next differential equation for voltage is generated

TV = VI V) (Q“ +VVES T BY = Y VIVIBY| - Q“ffﬂ') . (29)
iEN iEN

where Q% is the power load, and Q"¢ is the power reference.

Secondary Control Secondary control corrects the deviations made for the droop con-
trol over the frequency and voltage reference values, as shown in Figure 2.2. This control
layer moves the reference values to keep them constant and can work following a cen-

tralized or a distributed approach [16], [19]. The secondary voltage control is given by
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Vi=yref — né@z + u* where u’ is the secondary control term. In the first case, the con-
troller needs measurements from all inverters to generate the action; in the second case,
local controllers only need measurements from the set of neighbors. The secondary control
must keep the reference values and the power-sharing condition. These two conditions
are opposed, generating a trade-off between them because an improvement in voltage
regulation degrades power-sharing and, in contrast, a better power-sharing deteriorates

voltage regulation.

\Y%

Vo

Voltage
Deviation

VO _ nqui

Inverter 1 "=

T~~~
Q1 Q2

Inverter 2 ==

Q

Figure 2.2 — Secondary control scheme for voltage regulation, the secondary control shifts the curve to
keep the reference value.

Model Predictive Control Design Voltage, current, and droop-control have several
limitations, such as their performance dependence on the control parameters, their load
changes sensibility, their tuning process, and the necessity of a pulse-width modulation
(PWM) stage. MPC allows overcoming some of those limitations by performing an opti-
mization process on finite time. In inverter-based MGs, predictive control can be made
local for converter-level or global for grid-level [71].

For control-level MGs, predictive control can be classified either as a continuous control
set (CCS-MPC) or a finite control set (FCS-MPC). CCS-MPC generates continuous sig-
nals for the PWM converters, while FCS-MPC generates discrete-time signals. Therefore,

60



2.2. Problem Description

using PWM signals is not necessary [71].

The inverter dynamic is represented as follows
w(k+1) = f(x(k),u(k)), (2.9)

where x(k) represents the set of states for the converter at time k, u(k) is the control

input, and f is a function representing the dynamics of the inverter.

For a converter modeled with f given by a linear function, system (2.9) is written as
x(k+1) = Ax(k) + Bu(k), (2.10)

where A € R™" is the matrix of states, B € R™ is the matrix with the control inputs.
One of the control goals is to reach and keep the state variables or output of the
system in their reference values. If reference values are denoted by z* the next condition

represents the control goal
z(k+1) =x(k) =" (2.11)

Then, the cost function V(z,u) can be set
V(z,u) = |lz — 27l + [lu — [} + [lz(k + 1) — 2|3 (2.12)

where Q and R are semi-positive definite and P is positive definite [72].

Combining (2.10) and (2.11), the steady-state input can be determined as

¥ = (I — A)~'Bu.

Secondary Voltage Control and MPC Voltage regulation and optimization prob-
lems in MGs are presented in works, such as [65], [73]. In [65], a nonlinear relation of
voltage-reactive power is used to design a distributed secondary control. However, solving
the non-convex optimization problem at each sampling time requires a particular solver
and might increase computational time. Also, the model is decentralized, keeping the

voltage of the neighbors constant in the prediction horizon.

Secondary control should correct the voltage deviations while maintaining the power-
sharing condition. A local optimization process can correct voltage deviations while re-

ducing the control effort; this is presented as an MPC problem with restrictions. The
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proposed MPC is defined as follows

Hy A ) )
min Y- Vi, = VI + ol (2.13)

Uitk k=0

s.t.

R G R AR WA WATEE B )
ieN ieN
(2.14)

0.95V"el < Vi < 1.05V7"¢f (2.15)

where condition (2.14) is the discrete form of (2.8), and 7T is the sampling time. This
optimization problem is solved at each sampling time k for the prediction horizon H,. The
restriction (2.14) is nonlinear and implies a non-convex problem with more computational
effort and possible convergence issues.

These non-linearities can be managed by using a data-based approach. Usually, series
voltage and current measurements from each inverter are available. The next section
presents the Koopman operator and a data-based approach for non-linear systems repre-

senting.

2.3 Data-Driven Voltage Secondary Control for MGs

Despite model (2.8), several generalizations and approximations should be made, due
to the inherent differences in time constants, tolerances, gains, impedance, and the un-
certainty of each system. The interconnection among systems also introduces more diffi-
culties for modeling the whole networked system. That gap can be fulfilled by using data
measured from each inverter.

The quadratic term V;? in (2.8) can be problematic because it makes the optimization

problem not convex, and it implies more computational time to find the optimal input.

Assumption 1 The system has enough available power to supply the loads connected to

the system.

Assumption 2 All the inverters have a double-way configuration, so each source can

supply and absorb power.
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Data-Generation Data could be obtained from measurements from sensors or by de-
tailed simulations. In the second case, a detailed simulation of the MG can be made in
software packages such as Simulink®or by direct simulations of (2.8) using software such
as Python or Matlabh®.

’ ~\ Complex Microgrid Model
Inverter

\

X1 = f (X, Uk) - =

muin](u, z)

—— = = — ———

1
|
1
Data Series :
1
|

\
'[ ________ X=[x1 - Xy-1] | _
1 Y=[x2 - xn]
EDMD =V, v Vv V¥ VW] | u=[u - un-1])
Base T
: Inverter j
measurements

Figure 2.3 — Decentralized Koopman MPC scheme with a linear predictor using EDMD.

For this case, we used Simulink®to create a model of the MG including the droop-
control for frequency and voltage using (2.14). The initial conditions for voltage at the
i inverter vary randomly from [0.5V7¢/ 1.5V7¢/] loads are considered as perturbations
to the system if they are inside the maximum reactive power value, the input u’ varies
randomly each 1.7s between [—2,2], and voltages j'' as v. The voltage at the output
of each inverter is sampled at 7, = 10ms together with the input at the i*" inverter, as
shown in Figure 2.4.

Thus, using the EDMD algorithm with the base defined by
v=[V, V; V2 VP VYT,
with the initial condition given by

@ = [Vi(0) V;(0) Vi(0) VP(0) Vi(0)V;(0)]",

the matrices A;, B;, and C; are determined by EDMD defining the set of basis functions or

dictionary as shown in Figure 2.3. The matrix A has N eigenvalues that are plotted in the
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unit circle as shown in Figure 2.5, there is one eigenvalue 1, and four smaller eigenvalues.

Voltage (V)

|—Voliage Measured Inverter 1

| | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time (Seconds)

05 N

Voltage (V)
o
I
|

-0.5 b
—Input Inverter 1
_1 | 1 1 | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Figure 2.4 — Data Generated from simulation to obtain the Koopman representation of inverter 1.

The comparison between the Koopman approximation for each inverter-based gen-
erator and the voltage measured at each inverter’s output is shown in Figure 2.6. Data
gathered from each source is split into two sets, one to obtain the Koopman matrices A, B,
and C, and the other one to verify the validity of the approximation. The approximation
is good enough in the first steps, which makes it suitable for MPC.

The comparison between the real measurements and the ones generated by using the
Koopman approximation with matrices A, B, and C is made by plotting the error as
shown in Figure 2.7. The error is inferior to 1 percent in the first 0.5 seconds, which is
suitable for the MPC design.

Assumption 3 [t is assumed that the system with matrices A and B is controllable, and

the system with matrices A and C is observable.

The last assumption is checked directly from the matrices obtained with EDMD and
depends on the selection of the dictionary of functions. The MPC presented in 2.13
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Figure 2.5 — Zoom of the eigenvalues of matrix A;. All eigenvalues are real, with one in 1 and the
others being smaller.

is rewritten using the linear representation of each inverter generated by the EDMD

algorithm as follows

Hp . .
Uilin Z Vi — ‘/tTI{IHZQ + ||u;+k||2R
Ytk k=1
s.t. z,ichl = 2; + T,(Az, + Bu},)
V= cis
0.90V™ < Vi < 1.10V".

Algorithm 1 Decentralized MPC Koopman-Based

1: procedure v’ (V' V7) > Voltage measurements from other inverters
2 System Initialization

3 Read the value

4: Set A*, B, C* > Koopman matrices of each subsystem
5: Set Vel > Voltage of reference
6 Set H,, T’ > Prediction Horizon and Sampling Time
7 Set @, R > MPC Gains
8 while k£ < H, do

9: ul < ming S0P ||V — V)% + AR > Objective function
10: st. zpyq < 2+ T(A'z, + Bluy,) > Restrictions
11: 0.90V™ < Vi< 1.10V7¢f

12: Vi Ciz
13: Solve u* > Solve by using a linear solver
14: Select u’(1) > Select the first optimal value from vector u

The decentralized Koopman-based algorithm is summarized in Algorithm 1.
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Figure 2.6 — Koopman approximation for each inverter-based generator. The five figures show the
comparison between the voltage measured at the output of each inverter and the signal generated by the
Koopman representation.
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Figure 2.7 — Error between the data-measured and the Koopman approximation for inverter one.

2.4 Simulation Results

In this section, a MG is simulated in Simulink using the 14-node IEEE model [74].
Figure 2.8 shows the schematic model, which consists of five VSC inverter-based genera-
tors, 11 PQ loads, and 20 branches. Transmission lines are denoted from B1 to B20 [75].
The predictive controllers were simulated in Matlab using Yalmip [76] as the interface

and Gurobi as the optimization solver, on an Intel i7-5500U processor at 2.4 GHz and 4
GB RAM.

Inverter | P/ (kW) | Q" (kvar) | m; (1 x 107%) [ n; (1 x 107%) | 7 (s) | v/ (RMS)
1 ) ) 2.00 2.00 0.10 120
2 ) ) 2.00 2.00 0.15 120
3 ) ) 2.00 2.00 0.20 120
4 8 8 1.25 1.25 0.25 120
5 8 8 1.25 1.25 0.29 120

Table 2.1 — Microgrid parameters for the decentralized case.

The parameters of the MG’s inverters are summarized in Table 2.4. Each inverter has
a different time-constant 7, and there are two sets of reactive power nominal values. In
Table 2.2 appears the inductance values for the transmission lines. The load values for
active and reactive power are shown in Table 2.3. Finally, the general MPC parameters
for each local controller are shown in Table 2.4. The sample time for the controller is

given by 7%, and the control horizon is limited to ten steps ahead.
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Figure 2.8 — 14-node IEEE model with five inverters and 11 loads
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Line Inductance Line Inductance
(k) (mH)
B1 0.83 B11 2.79
B2 3.13 B12 3.59
B3 2.78 B13 1.82
B4 2.47 B14 247
B5 244 B15 1.54
B6 2.40 B16 1.18
B7 0.59 B17  3.79
B8 2.90 B18 2.69
B9 7.80 B19 2.80
B10 3.54 B20 4.88

Table 2.2 — Transmission line values.

Node 2 3 4 5 6 9
Load (kW) 1 1 1 1 1 1
Node 10 11 12 13 14

Load (kW) 1 1 1 1 1

Table 2.3 — Microgrid loads.

2.4.1 Load Changing Simulation

Loads at nodes 3, 5, 6, 9, 14 change from 0 to 1kW and 1kVar at t = 5s.

The voltage measured at the output of each inverter-based generator is shown in
Figure 2.9. Voltage variations appear first at ¢ = 0s due to the initial conditions of the
system, and at ¢t = 5s when loads at nodes 3, 5, 6, 9, and 14 are connected. The controller
regulates the voltage after almost five seconds with some little oscillations inferior to 0.05
V as shown in Figure 2.10, where the signal from inverter 5 is larger than the others to

achieve the proper regulation. The reactive power measured at each converter is shown in

Table 2.4 — MPC parameters for the decentralized algorithm.

Parameter Inverter 1 | Inverter 2 | Inverter 3 | Inverter 4 | Inverter 5
State gain @) 12 12 15 15 15
Input gain R 1

Sampling Time Tis 0.1s
Voltage restriction V; 115V <V, <125V
Control Horizon H, 10
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Figure 2.9 — RMS voltage measured at the output of each inverter with load changes at t = 0s and
t = 5s.
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Figure 2.10 — MPC signals at each inverter, acting at ¢ = 0s when the system starts. At ¢t = 5s
additional loads are connected, then the signals act until the reference value is reached
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Figure 2.11 — Reactive power measured at the output of each inverter; the power changes when addi-
tional load is connected at ¢ = bs.
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Figure 2.11. The values change when loads are connected at t = 5s. The reactive power
supplied by each inverter not only depends on the maximum power rating but also on
the transmission line’s impedance values. The controller is capable of regulating voltage
while maintaining the power-sharing condition, where the fourth and the fifth inverters

supply more power than inverters one, two, and three.

2.4.2 Transmission Line Changing Simulation

Figure 2.12 — Transmission line changes between nodes two and four, and nodes nine and fourteen.

The change in the transmission lines is simulated by connecting the second, fourth,
ninth, and fourteenth nodes, as shown in Figure 2.12. At ¢ = 0s the two switches are
opened; then at t = 5s, the interrupters are closed, connecting nodes two and four and

nine and fourteen through the transmission lines B4 and B17, respectively.
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Figure 2.13 — Voltage measured at the output of each inverter. At t = 5s, two transmission line
segments change, affecting the voltage at each inverter.
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Figure 2.14 — MPC signal for each inverter. The control signals act at ¢ = Os and ¢t = 5s when the
transmission lines change.
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Figure 2.15 — Reactive power supplied for each inverter. Notice the change in the reactive power after
the changes in the transmission lines configuration at ¢ = 5s.
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The voltage magnitude measured at each inverter is shown in Figure 2.13. At ¢ = 5s
switches are closed in transmission lines B4 and B17 connecting inverters 2 and 4, and 9
and 14, respectively. Voltages stay around the reference value, keeping the power-sharing
condition. The MPC signals take less than 5 seconds to reach the desired condition,
as it is shown in Figure 2.14. The reactive power supplied by each inverter is shown
in Figure 2.15, after the transmission line reconfiguration at t = 5s, the reactive power
supplied by inverter one, two, and four increase while inverter three keeps the same value

than before, and it is reduced in inverter five.

2.4.3 Algorithm Comparison with Nonlinear MPC

Table 2.5 — Comparison between Koopman-based and nonlinear MPC algorithms

Koopman-Based Algorithm | Non-linear Algorithm
Sampling Time 0.1s 0.1s
Prediction Horizon 10 10
Q 10 10
R 1 1
Solver Fmincon Fmincon
Vi, Vj [120, 121] (120, 121]
Time used per cycle 0.2098 0.5700

A comparison between the nonlinear and the Koopman approaches is presented in
Table 2.4.3. Both algorithms use identical parameters and the same nonlinear solver to
compare the time used per cycle for solving the optimization problem. It is clear that
the Koopman-based algorithm uses less time to solve the problem, being about 171.69

percent faster than the one using the nonlinear algorithm.

The output voltages at inverter one for the proposed centralized and the nonlinear
MPC are shown in (2.8). Both approaches behave similarly, approximating to the refer-
ence value at steady state. The control with the Koopman approach is faster to solve the
optimization problem than the one that solves the nonlinear problem. The control signals
generated under each approach are shown in Figure 2.16; each signal reaches a different
value at steady-state; this can be seen in the difference on the output voltage shown in
Figure 2.17.
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Figure 2.16 — Output voltage at inverter one generated by using the Koopman-based and the nonlinear-
based MPC.
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2.5. Conclusion of the Second Chapter

2.5 Conclusion of the Second Chapter

In this chapter, we present a Koopman-based data-driven controller for MGs with a
decentralized perspective. We considered an islanded MG, which only includes inverter-
based generators. The MG model is based on power injections decoupled by considering
lossless transmission lines. It also assumes that there is enough power available for the
control action. We proposed a data-driven control using Koopman operator theory to
regulate optimally the MG voltage. The main objective is to minimize the difference in the
measured voltage with the reference voltage at each inverter while maintaining the power-
sharing condition. The simulation results show that the proposed controller regulates the
voltage, and keeps the condition for the reactive power. Also, the Koopman representation
of the system by designing a linear predictor reduces significantly the computational time
compared with a nonlinear MPC.

This study brings some useful results related to the control of MG and this kind of
energy system:

1. The decentralized nature of predictive control allows controlling each agent by only
using local information, while the Koopman representation involves some dynamics of the
interconnected system.

2. The Koopman representation reduces the computation time for the controller com-
pared with a nonlinear one and simplifies the optimization process.

In this part of the work, it is considered that the dynamics of the system are contained
in the data measured. However, the distributed nature of the system has to be considered
for the proper regulation and optimization of the system. The next chapters focus the

attention on how to deal with this problem.
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CHAPTER 3

DISTRIBUTED APPROACHES FOR
KOOPMAN-BASED CONTROLLERS

3.1 Introduction

Multi-agent theory can manage the problem of interconnected systems, representing
the interactions among subsystems as nodes that share a physical magnitude or just
information. Electrical systems inherently have a distributed nature, accentuated by the
increasing use of inverter-based generators and micro-generation. It was demonstrated
that a decentralized control for MGs achieves a proper regulation but fails to bring all the
generators to a common point and to achieve global optimum [19]. The natural coupling of
power systems implies that any change over the MG components changes the magnitudes
of the whole system. In a networked system, the optimization process can be done by a
centralized or distributed controller. The second one is preferred because the design of
its communication system is more flexible and more reliable to failures.

Several control algorithms have been proposed for the frequency and voltage dis-
tributed control in MGs [16]. Most of them rely on the first principles model, such
as [19] and [17], which uses the hierarchical control frame based on time-scale to sepa-
rate each layer. Thus, MG modeling implies the assumption of a complete separation
between layers, which is not true. Also, the design of a controller that includes the sys-
tem restrictions and optimization such as MPC relies on getting a precise model of the
system. Different schemes can be used to design a distributed MPC (DMPC) such as
non-cooperative and cooperative [77], [78]. The first one optimizes a local cost function
and includes a distributed term in the restrictions using local information. The second
one defines a cost function for the set of neighbors of each agent, which depends on the
information shared. In [65], it is used a nonlinear model of the MG to design a DMPC
that uses a nonlinear solver for the optimization algorithm, increasing the computation

time.
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The limitation of having a nonlinear model can be overcome by using the Koopman
representation of the system in the lifted space. The linear representation simplifies
the optimization problem, including the design of a DMPC. The non-cooperative MPC
only needs local measurements of the state variables, omitting the control inputs of the
neighbors, which can be problematic in some scenarios. The cooperative MPC uses control
signals from the set of neighbors and also requires the coupling matrix among agents.
Here, we determined these matrices that define the interactions among agents by using
the EDMD algorithm and the Koopman operator in a centralized approach.

An alternative to the distributed algorithms is the ADMM; this algorithm has been
modified to work in a distributed form [79] [58], and it has demonstrated its stability
and convergence properties to solve the optimization problem in a distributed form. Dis-
tributed ADMM (DADMM) solves an MPC problem while reducing computational time.
It enables iterative algorithms to find the minimum, such as gradient descent. The def-
inition of convex cost functions, together with linear restrictions given by the Koopman
predictor, simplifies the problem, becoming practical to be used in power systems appli-
cations [52], [80].

In this chapter, we developed the non-cooperative, cooperative, and DADMM algo-
rithms by modeling and designing a linear predictor using the Koopman operator. We
also determine the coupling matrix in a centralized form for the cooperative problem, and
we also show the conditions for the convergence of the algorithms and prove them in a
MG.

3.2 Secondary Non-Cooperative Voltage Control

The non-cooperative distributed control includes a distributed term for the state rep-
resentation of the system [77], which represents the connection of the agent with its set

of neighbors as follows

;i (t) = Ajxi(t) + Biu; + ZJ\; ai;(z;(t) — xi(t)), (3.1)

where z; is the state corresponding to the j™ agent, A} is the set of neighbors of the ™
agent, and a;; represents the ij"™ term of the adjacency matrix.
The additional term depends on the interactions of the agent with its neighbors. This

term tends to zero in regulation problems, where all the differences between agents tend
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to have the same value. (3.1) can be written in matrix form as

x(t) = Ax(t) + Bu + Lx, (3.2)

where £ is the Laplacian matrix of the graph, and x is the vector of states given by

X =[r1 z ... z,
MPC
Complex
; V. V. V; %4
Microgrid Model Data Series ! \ 2‘ ' "\
X=[%1 - Xn-1] ) . )
: i ref,i||2 i 2
Xk+1 = f (% ) Y=[x; = xy] min Vi — Vigi llg + ||ut+k||R]
U= [ul uN—l] t+k
y | Lifted Linear Representation v
1 . i
! Z+1 = Az + Buy, + sL(i,:)V ij
““t"’ Tp+1 = Czp . “;‘2
S- 20 = ¥(zy) Vi]Vj
| EDMD Base

Figure 3.1 — The Koopman-based linear predictor of each agent is used to set a Non-Cooperative MPC
by including a consensus term.

Figure 3.1 shows the general scheme for the non-cooperative distributed MPC. Voltage
measurements are gathered for the set of neighbors of the i*" agent. The MPC is designed
to minimize the cost function with the restriction given by the linear representation ob-

tained by the Koopman operator with matrices A;, B;, and C;.
The MPC design, using the linear representation of (2.3) in the lifted space, is com-

plemented by the consensus agreement between the voltage measurements from the set of
neighbors of the i agent. Then, the predictive controller reduces the differences among

the voltages of the inverter. The distributed MPC design is given by

. H . , .
min 3,7 ||V = VNG + gl (3:3)
t+k

st. zhy = 2 + T(Azp + Buj) + sL(i,:)V; (3.4)
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Vi =Cx, (3.5)

0.90V7™e < Vi < 1.10V"ef (3.6)

where L(i,:) corresponds to the 7" row of the Laplacian matrix, s € R > 0 is the gain

value for the consensus term and the column vector with the voltage values of each agent

Vi=Vi Vo ... Vi ... V]

The linear representation in the lifted space allows using already established conditions

for MPC design and convergence.

3.2.1 Convergence Analysis

The stability of the control algorithm defined by (3.3)-(3.6) is determined by the be-
havior of each inverter represented by the linear matrices A, B in the space of observables,
and the selection of the MPC parameters @), R, and s.

Assumption 4 The graph G is connected with L semi positive definite with an eigenvalue
A =0.

Theorem 3.2.1 The optimization problem given by (3.3)-(3.6) defined by Q, R, s, and
L, with the linear system represented by matrices A, B, and C is asymptotically stable

and converges to the optimal solution.
Proof 3.2.2 The cost function and the linear system are defined by

L(z,u) = ;xTQx + ;uTRu flz,u) = Az + Bu + Lx

The optimization problem for the LQ) regulator is solved by using the calculus of variations.
As shown in [81], the following set of identities should be fulfilled

MN=—L,—-\'f, L,+\f.=0

Assuming A = Px
uw"R+A"B=0 u=—B"PzxR™!
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Pi=—Qx— A" Pz — LPx
P(Azx + Bu + £x) = —Qv — A" Px — LPx
Substituting u
PAz+ A"Px + PLx + LPx — PBB"PR 'z + Qzr =0

Then, the next Riccati equation is obtained

ATP+PA+Q—-PBR'B'"P+LP+PL=0

For a control input of the form uw = —Kx, where K is a square gain matriz given by
K = —uz™", and replacing v = —B"PxR™ we obtain K = —B'PR™".

For a Lyapunov function of the form V(x) = " Pz, the first derivative of x is given

by
V=i Pz+2"Pi

V = [(A—BK)x+ L2]" Pz + 2" P[(A— BK)x + L3]
Replacing K
V =x2[A—PBR'B'P+L]"Px+x2"P[A— PBR'B"P + L]z
Adding the terms @, and —@Q and comparing them with the Riccati equation

V =2[AP + LP+ PA— PBR'B'"P+PL - Q
+Q — BB'PR Pz
V =2[-Q — PBR'B" Pz

d
as matrices Q >0, P > 0, and R~ > 0 the system fulfills the condition of d—V(m) <0,
x

then the closed system is asymptotically stable.

The next section presents some simulation results for the proposed algorithm and the

data-driven simulation to get the Koopman representation of each inverter.
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Algorithm 2 Non-Cooperative Distributed MPC Koopman-Based

1:
2
3
4:
o:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

procedure v (V' V7) > Voltage measurements from other inverters

System Initialization
Read the value

Set A?, BY, C*

Set V=[Vi VZ ... VI > Vector of voltages and voltage of reference
Set Vref > Voltage of reference
Set H,, T > Prediction Horizon and Sampling Time
Set Q, R, s > MPC Gains
Set L > Laplacian Matrix

while £ < H, do
u' = ming: S0 [V = ViR + [lui] 1B
> Cost function

st. zpyq < 2+ T(A'2, + Blup) + sL(:,4) Vi > Restrictions
Vi« C'2!
0.90V"e/ < Vi< 110V
Solve u* > Solve by using a linear solver
Select u'(1) > Select the first optimal value from vector u

3.2.2 Non-Cooperative DMPC Simulations

In this section, we used the same MG model from Figure 2.8. The MG parameters

are shown in Table 3.1, and the communication among converters is defined by a graph

as shown in Figure 3.2 with adjacency matrix denoted A; and Laplacian matrix £,

(00101 0] 2 1 0 -1 ]
10100 1 2 —1 0
Ai=l010 11 Li=]| 0 -1 3 -1 -1

10100 1 0 -1 0
00100 0 0 -1
(00111 1] 4 —1 -1 -1 —1]
10000 11 0 0 0
Ay=11000 0 Lo=|-1 0 1 0 0
10000 10 0 1 0
(1000 0] -1 0 0 0 1

81



Part, Chapter 3 — Distributed Approaches for Koopman-Based Controllers

5| Bus8

Figure 3.2 — Communication graph among generators. The left graph represents the initial configuration
of the communication system, which changes to the configuration represented by the graph at the right.

Load Changing Simulations For this scenario, the MG starts with loads connected
at t = Os, then at t = 10s, loads are connected to the nodes 3, 5, 6, 9, 14.
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Figure 3.3 — Voltage measured at the output of each inverter using the non-cooperative distributed
control. The load changes at t = 10s.

Figure 3.3 shows the voltage measured at each inverter with loads connected at ¢t = 0s
and t = 10s. Voltages approximate the reference value at a steady state but have a small
gap compared with the decentralized controller. The controller also needs more seconds to
reach the reference value. The MPC signals are shown in Figure 3.4, the magnitude of the
signals decreases depending on the maximum capacity of each inverter, which guarantees

the power-sharing condition as it is shown in the reactive power plot shown in Figure 3.5.
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Figure 3.4 — MPC signals for all the inverters when there is a load change at t = 0s and ¢ = 10s using
the non-cooperative scheme.
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Figure 3.5 — Reactive power measured at each inverter when the load changes at ¢ = 10s.
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Figure 3.6 — Secondary control voltage at each inverter after a graph change at ¢ = 10s.
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Figure 3.7 — MPC signals when there is a graph changing at ¢ = 10s, there is no change in inverter five.
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Figure 3.8 — Instantaneous reactive power measured at inverter one for a graph changing at ¢t = 10s.
There is a little oscillation after the graph changes.
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Inverter 1 2 3 4 )
Prel (kW) 10 10 10 10 10
Q"' (kVar) 5 5 5 8 8

m; (1 x 107%) 1 1 1 1 1
n; (1 x 107%) 0.200 | 0.200 | 0.200 | 0.125 | 0.125
vl (V) 120 120 120 120 120
7(s) 0.10 | 0.15 | 0.20 | 0.25 | 0.28
State gain Q" 11 11 14 14 13
Input gain R’ 1 1 1 1 1
Consensus gain s’ 0.02 | 0.02 | 0.02 | 0.03 | 0.04
Prediction horizon H, 10 10 10 10 10
f(Hz) 60 60 60 60 60

Table 3.1 — Microgrid parameters for non-cooperative case.

Graph Changing Simulations For this scenario, the communications graph among
inverters changes at ¢ = 10s, as it is shown in Figure 3.2 where the condition of having at
least a spanning tree for consensus reaching is guaranteed for both graphs. The voltage
from each inverter is shown in Figure. 3.6, where voltages gather around the reference
value. The MPC signal of each inverter is shown in Figure 3.7 where the magnitude of the
signals changes at ¢ = 10s, especially at inverter five. Finally, the instantaneous reactive
power is shown in Figure 3.8, where there are small changes in the reactive power after

the graph changing, with oscillations that vanish after two seconds.

3.3 Secondary Cooperative Voltage Control

In decentralized MPC, each subsystem carries out the optimization problem by only
using local measurements; one of its advantages is its low computational cost. However,
it may lead to a low performance in the control optimization or even stability issues
[82]. In the non-cooperative distributed MPC, each agent communicates its state to other
agents, and uses the state measurements to generate local control signals. This type of
control includes the coupling among agents; however, it can have some limitations when
the dynamic coupling is very strong. In non-cooperative MPC, the system might not
reach a global optimum and only a Nash equilibrium [83].

The cooperative distributed MPC combines the control outputs of local controllers to

solve a global MPC objective function, as shown in the general scheme for cooperative
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Figure 3.9 — Cooperative DMPC scheme.

MPC in Figure 3.9. In this case, the global problem might converge to a Pareto optimum
with the disadvantage that requires communication among all the agents to know the con-
trol signals, which is in many cases unfeasible [83]. It is possible to use an approximation
of the global objective function restricted to the set of neighbors of an agent. However,
this reduces the control performance by only reaching a sub-optimal control signal [83],

in [84] it is presented a cooperative DMPC including convergence and stability features.

The state for the i*" agent is given by

j=1,j#i

where z; is the state corresponding to the j™ agent, A; represents is the local state
matrix, B;; is the local input matrix, A;; is the global matrix that represents the state

interaction with the neighbors, and B;; is the global input matrix.

Different from the non-cooperative control presented previously, each agent should
know the input matrix B;;. As each agent only knows the state and input of its neigh-
bors, we propose to determine the input matrices by using data gathered from the set of

neighbors.
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3.3.1 Determination of the Coupling Matrices

The local and global matrices can be approximated by using the Koopman operator
with the EDMD algorithm. For a system with /V distributed subsystems, the input matrix
B;; € CWV>xm)x(Nxn) determines the relation of each local input with the set of neighbors

of the i*" agent, with the input matrix of each agent denoted by B;; € C"*1),

Bll BIQ T Bl><(N><n)
B — B'21 B22 : B2><(.N><n)
B(nxn)x1 Bnxnyx2  *+* Bvxn)x(Nxn)

In [85], it is proposed a data-driven algorithm to determine the Koopman operator of
a distributed system. In contrast, with a centralized problem, the distributed algorithm
uses a series of data from the set of neighbors of each agent to determine a global Koop-
man operator similar to the Laplacian of a distributed system or supra-Laplacian. This
algorithm requires defining the data for each agent depending on its set of neighbors, and

it does not consider the effect of inputs in a coupled system.

Vari p < Gather the
aries . —
i _ JooJ
the Xl = fld,ul) measurements
. . L ) xj,xj“‘,...xN
Nonlinear Equation control
; i (. - - ) e
} o input u* j+1 _ 1 j+1 X =[x1 XN-1
Xpp1 = f(xh, ub) } Xppr = O U ) V= {x o x ]
L ) = [X2 N ]
. U=|u Un-1
Agent i (2 o 42 je2y ) \ [ ]
Xepr = FOG 5w ) 1
\ J s
Measure the set of variables IEB’1||Y — A[X U]|| J
that interacts with agent i q i

Determine matrices A
and U by using EDMD

Figure 3.10 — General scheme to determine the input matrix B;; by using EDMD. The experiment
should be done for each agent to determine how the local input affects its neighbors.

To build the coupling matrix based on data, we use a centralized approach by consid-
ering only the effect of the i*" agent over the j' if it belongs to its set of neighbors, as it
is shown in Figure 3.10. Similarly, we consider the effect of the j'® input over the other

agents.
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Cooperative Distributed MPC Design For this distributed MPC, it is assumed
that the global objective function is the sum of the weighted local objective functions,
in which each agent shares its state and control signal at each sampling time. The local

objective function for the i*" agent is given by

Hp—1

Li(z;) = ;; hi(xi(k), ui(k)), (3.8)

where H, is the prediction horizon, and h; is the convex objective function for the "
agent that depends on the measured state and input at iteration k. As each agent has
a local function of this type, the global objective function can be written as the convex

weighted combination of local functions as [83]

L(z) = Z:%Li, (3.9)

L(z) =) w; [kzpj hl(xz(k:),uz(k))] ) (3.10)

i=1
where w; > 0 is the weight assigned to each local function that must fulfill the condition

N

dwi=1. (3.11)

Each subsystem solves the global function given by (3.10), obtaining an optimal local
signal at iteration p as w}. All the agents share their optimal local control signals and

calculate their final control input as

u? = wiul + (1 —w;)ul ™, (3.12)
what is an update of the type Gauss-Jacobi for distributed optimization [83].
The state equation for the coupled system (3.7), is rewritten as
Tpy1 = Aﬁk + Bu, (313)

where A is given by the matrices A;; in its diagonal, and A;; which are equal to zero if
there is no interaction between agent ¢ and j. The matrix B contains local matrices B;;

determined by the EDMD algorithm. The cooperative distributed optimization problem
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is defined as

H}}in L(z) (3.14)

s.t. zpo1 = 2 + T(AZ' + Bu') + sL(:,4)Z (3.15)

0927 < 20 <1127 (3.16)

' =Cl", (3.17)

where Z = [z ...2V] is the vector of measurements from the set of neighbors of the "

agent.

Assumption 5 For all agents, i
— The inputs v’ € U; and v/ € U; subsets are conve.
— The constraints are uncoupled. The optimization region of the optimal input is not
affected by the inputs of the other agents.
— The systems given by Koopman matrices A, B, and C are stabilizable and detectable.
— Local systems do not have unstable modes. The eigenvalues of A are located inside

the unit circle.
Lemma 1 [86] The cost function L(z) decreases and converge as the iterations k — oo.

Proof 3.3.1 [86] Assuming that the local cost functions h; are convez, the global cost

function can be written as
L(z,uP™) < w L(z,u;, ul,uly) w2, uf, g, uly) + -+ wnL(z,uf, ul uy)
As p — oo, local inputs tend to the optimal value, then

L(Za up+1) < WlL(Zv ufvufauiju\ﬂ + WQL(za uga“?a uz]?\f) +oe WNL(Z>u€a U’?ﬂﬁV)

as the condition to combine the local inputs is of the form wy +ws+---+wn =1, the last

expression can be written as
L(z,uP*") < L(z,uP)

As the algorithm decreases as p — oo the algorithm converges.
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Algorithm 3 Cooperative Distributed MPC Koopman-Based

1: procedure u; (Vi V7)), u?il > Voltage measurements from other inverters
2 System Initialization

3 Read the value

4: Set A%, B, C*

5 Set V=[Vi V2 ... VI > Vector of voltages and voltage of reference
6 Set Vref > Voltage of reference
7 Set H,, T > Prediction Horizon and Sampling Time
8 Set Q, R, s > MPC Gains
9: Set L > Laplacian Matrix
10: while £ < H, do

11: L(z) =N, w; [Zfﬁgl hi(x;(t, k), u;(t, k))} > Global Objective Function
12: u} < min,, L(z) > Solve for each agent
13: st. 2z 2+ T(A'z + Blup) + sL(:, 1) Vi > Local restrictions
14: Vi Ciz;

15: 0.90Vrel < Vi < 110V

16: Update the input uP = w;u} + (1 — w;)ul ™! > Gauss-Jacobi Update
17: Select uf + u?

18: k< k+1

3.3.2 Cooperative DMPC Simulations

The MG model from Figure 2.8, whose parameters are shown in Table 3.2, with com-
munication among converters defined by the graph shown in Figure 3.2 whose adjacency

matrix A; and Laplacian matrix £; are the same.

Load Changing Simulations For this scenario, the MG starts without any load con-
nected at ¢ = 0Os, then at ¢ = 5s, five 2kvar loads are connected to nodes 3, 5, 6, 9,
14.

The RMS voltage at each inverter is shown in Figure 3.11, after the load connection
at t = bs, the voltage stabilizes after approximate 1s. The final voltages are close to
the reference value. The reactive power does not show a particular behavior; it varies
according to the low-pass filter of the local controllers, as shown in Figure 3.12. Finally,
the control signals are shown in Figure 3.13, where the major control actions are made

by the controller of the inverter.

Graph Changing Simulations We used the one shown in Figure 3.2 for the simu-

lations when the graph changes. The system starts with five 2kvar loads connected at
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Voltage (V)

Figure 3.11 — RMS voltage at each inverter when loads are connected at ¢t = 5s using the distributed
cooperative MPC. After some oscillations, the voltage stabilizes after almost one second around the

Table 3.2 — Cooperative DMPC and MG parameters.

Inverter 1 2 3 4 5
P.cr (kW) 10 10 10 10 10
Qres (kVar) 5 5 5 8 8
m; (1 x 1074) 1 1 1 1 1
n; (1 x1074) 0.200 0.200 0.200 0.125 0.125
Vier(V) 170 170 170 170 170
7;(s) 0.10 0.15 0.20 0.25 0.28
Consensus gain & 0.1 0.1 0.1 0.1 0.1
State gain @) 10 10 10 10 10
Input gain R 1 1 1 1 1
Prediction Horizon H, 10 10 10 10 10
Frequency (Hz) 60 60 60 60 60
=08 | w =08 | w =08 |« =07
Cooperative MPC gain w | ws = 0.1 | we = 0.1 | we = 0.1 wp = 0.1 1wy =09
wy =01 | wy =01 |wy—=01 |« =01 w2=01
Wy = 0.1
120.1
120
nesr ‘—Inverter 1 —Inverter 2 ——Inverter 3 —Inverter4—|nverter57
0 | 2 4 5 6 . 5 5

reference value of 120V.

Time (Seconds)
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Figure 3.12 — Reactive power measured at each inverter with loads connected at t = 5s and using the
cooperative distributed MPC.
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Figure 3.13 — Control signals generated by the cooperative DMPC and loads are connected at ¢t = 5s.

92



3.8. Secondary Cooperative Voltage Control

nodes 3, 5, 6, 9, 14 at t = Os, then at t = 5s the graph changes.

120.1

120.05 - b

Voltage (V)

120 - o

‘—Inverter1 ——Inverter 2 ——Inverter 3 ——Inverter 4 —— Inverter 5‘

119.95 | I I I I I |
2 3 4 5 6 7 8 9 10

Time (Seconds)

Figure 3.14 — RMS voltage at each inverter for a graph changing at ¢ = 5s, the loads are connected at
t = Os.
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o]
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(o]
©

10

Figure 3.15 — Instantaneous reactive power measured at each inverter with load connected at ¢t = Os,
and graph changing at ¢ = 5s. The change in the graph produces only a small variation in the reactive
power.

For a graph changing at ¢t = 5s, the voltage for each inverter is shown in Figure 3.14,
inverter one reaches the reference value while the other inverters voltage moves around
the reference value. In a different graph, the instantaneous reactive power is shown
in Figure 3.15, the graph changing also produces only a small voltage variation that
appears in the reactive power. The control signals are shown in Figure 3.16 where we
can appreciate the variations in the signals due to the change in the graph, especially in

inverters three and four.
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Figure 3.16 — Control signals for the cooperative DMPC, with load connected at ¢t = 0s and graph
changing at ¢ = 5s.

3.4 Koopman-Predictor and ADMM

The previous algorithms solved the optimization problem by including a consensus
term in the restrictions for the non-cooperative case. For the cooperative case, it is
necessary to know the control input for the set of neighbors and include the coupling
terms in the restrictions.

Now, we solve the optimization problem in a distributed and iterative form. The main
idea is that each agent only knows its objective function and shares information with a
limited set of neighbors. The MPC design allows us to convert the local optimization
problem, including the restrictions, to a linear problem defined by a set of matrices. The
state update can be nonlinear, which is set as a linear problem using the Koopman-based

linear predictor.

3.4.1 MPC Matrix Definition

The tracking problem is defined as a regulation problem by eliminating the constant
term during the identification to facilitate the MPC design. Thus, the new objective is to

make zero the steady-state error. To do this, we use the following objective function

V=X"QX +U"RU, (3.18)

as we can predict future states based on the initial state and the vector of inputs, the

next two matrices are defined
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B 0 0 O A

AB B 0O O A?
G, = G, = .
: 0 0 O :

A=l AHp=2 B AHf»

using both matrices we can find a global variable X that depends on the initial value of

the form
X =Gx(0) + G,U. (3.19)

Substituting the value of X in (3.18), and eliminating the terms that do not depend

on U we have
H=G)QG,+R F=2"G]QG, (3.20)

The restrictions are given by

Azx(k) < b, Ayu(k) > b, (3.21)

The state and input restrictions for the whole prediction horizon are written as

A, X <b, AU >b,, (3.22)
with
A, 0 0 O b, A, 0 0 0 by,
N A N N A A :
A = 0 z 0 0 b, — A = 0 +« 0 0 b, =
0 0 A, 0 b, 0 0 A4, 0 y
0 0 A, b, 0 0 A, .,

The global MPC matrices for the whole prediction horizon including the restriction, are
written as R
A, Gy

Ay

_ { b, — Aimex(O) ] |
< ;.

which is rewritten as AU < 3, with
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Finally, the optimization problem is set as follows

1
§UTHU + FU (3.23)
st AU <b (3.24)

3.4.2 Distributed ADMM Design

The MPC problem is set to be solved by an alternating method, such as multipliers
or ADMM algorithms. The general scheme of the problem is shown in Figure 3.17, where
we have the nonlinear system, the linear predictor, the MPC problem matrices, and the
general optimization problem that is solved in a distributed manner by ADMM. Here we
use the distributed algorithm proposed by [87], [88] where for a distributed system with

N agents with x; € R™ is the local state of the i'" agent, as follows

x;(k) = arg min {fz(a:z) — > zu(k)xi + ;pdix?} (3.25)
¢ jEN

zij(k+1) = (1 — a)zj(k) — azi;(k) + 2apz;(k)

where f; : RU {400} is a convex local cost for each node, o > 0 is the step size, and p is

the penalty term.

Definition 1 /58] The convex function f is an extended value function, strongly convex
whose Hessian is positive definite of the form V2 f(x) = mI with m > 0.

Solving problem (3.23) applying (3.25) we have

1 1
u(k) = arg muin {2u2H + Flu — Z zji(k)u + 2pdu2} (3.26)
JEN

zij(k +1) = (1 — a)zi(k) — az;(k) + 2apx;(k)
Optimal input u can be obtained by directly solving (3.26) as follows

dciu(k) = {u <H+ ;pd> +F = Zji(k)} =0,

JEN
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Ui
Nonlinear )
Voltage Equation Define the !ocal _________________________
e 2 cost function /’ ! Gather q;; from \\
— A | ji

X+1 = f (Xk Uge) minJ(u, H, F, A,b) i I each neighbor |
Y |
L J | |
1 u; € U : ui(k) = minfi(ul-) - LZ]l(k) I
( A T | . :
Zk+1 — AZk =+ BUk — : Zji(k + 1) = (1 - a)zji(k) + qji :
ZTpi1 = Czp —[ Gy, Gy, H,F,Ab ] : : ]
' Broadcast g;; from !
zo = ¥(x ' ! J '
\ 0 ( k) J Build the Local \ 1" each neighbor /|
Llfted Linear IVIatriceS for MPC e g

Representation Distributed ADMM

Figure 3.17 — General schematics for the ADMM algorithm using the error of the system.

then, the optimal input u is given by

JEN

(k) = (H 4 ;pd)_l (—F’ + 3 zji(k)) (3.27)

An alternative to solve by using (3.27) that needs to calculate the inverse matrix H, we
can use a gradient descent method that, through iterations, finds the optimal solution.
We need to define the Lagrangian of (3.23) and (3.24) as

1 A
L(u,w) = §UTHU + FU + w(AU —b), (3.28)

and then use an iterative method, such as ADMM.

To design the MPC controller with ADMM, we use the error instead of the direct
measurements of the voltages of the systems. Thus, we defined the error for the i*" node
as

el =yreli vt (3.29)
the error identification can be written in the Koopman mode as
Zpq = Az + By, e =Ca (3.30)
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e’ a1 a2 a3 Q14 dis e’ b1

e’ 21 Q22 Q23 Q24 Aos e’ b12
2 _ 2 i

(e") = | a3 az2 asz az4 ass (e") + | iz | ug (3.31)
2 i\2

(63 ) aq1 Q42 Q43 Q44 Q45 (GJ ) b14

etel a a a a a elel b

I lppr L @1 as2 as3 asa ass | | 1, b5

Algorithm 4 Distributed ADMM for MPC Koopman-Based

1: procedure INPUT: STEP SIZE «, PENALTY TERM p, TERMINATION CONDITION K,

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

u'(0), 2;:(0) jEN, VI VI > Voltage measurements from other inverters

System Initialization
Read the value

Set A*, B!

Set Vref > Voltage of reference
Set H,, T > Prediction Horizon and Sampling Time
Set @, R > MPC Gains

procedure FOR(k =1: H,)
Set Gy, G, H, F, A, b

end
while £ < K do
et Vel — Vi
ei Vel — ij > Determine the error
arg min,i { Ju} (H + %pd) + Fuy + w(Au, — b — S ieN Zjitli }
zji(k +1) + (1 — a)zji + g;i
¢ij < —zji + 2pu(k)
Select u’(1) > Select the first optimal value from vector u
2po1 < 2+ T(A'z) + Bluy)
Vi Ciz
Broadcast g;; to each neighbor

3.4.3 Distributed ADMM Simulations

Using the MG model from Figure 2.8 whose parameters are shown in Table 3.3, and

the communication among converters defined by a graph as shown in Figure 3.2, we obtain

the next simulation results.

Load Changing Simulations For this scenario, the MG starts with loads connected
at t = Os, then at t = bs, five loads of 2kvar are connected to nodes 3, 5, 6, 9, 14.
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120.4 ‘
—Inverter 1
120.3 ﬁ —Inverter 2]
- —Inverter 3
S 1202 ——Inverter 4/ |
%1201 —Inverter 5| |
Ke)
> 120

119.9

119.8 | | | | | | | | |
0
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Figure 3.18 — Voltage RMS measured at each inverter after connecting a load at ¢t = Os by using the
distributed ADMM algorithm.
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Figure 3.19 — Reactive power measured at each inverter after a load changing at ¢t = 0s, using the
distributed ADMM.
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Figure 3.20 — Control signals generated by the distributed ADMM with a load change at ¢ = 5s.
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Inverter 1 2 3 4 5
Prel (kW) 10 10 10 10 10
Q"I (kVar) 5 5 5 8 8

m; (1 x 1077 1 1 1 1 1

n; (1 x 107%) ] 0.200 | 0.200 | 0.200 | 0.125 | 0.125
Vrel(RMS) 120 120 120 120 120
7'(s) 0.10 | 0.15 | 0.20 | 0.25 | 0.28
f(Hz) 60 60 60 60 60
Penalty term p | 0.1 0.1 0.1 0.1 0.1
Step size 0.5 0.5 0.5 0.5 0.5

Table 3.3 — Microgrid parameters for control with distributed ADMM.
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Figure 3.21 — Auxiliary variables z;; for the distributed ADMM algorithm when connecting a load at
t = 5s.

The RMS voltage at each inverter is shown in Figure 3.18; the system response at
steady-state is similar to the cooperative control. However, the system takes more time
to reach the reference value. The correct setting of parameters o and p determines the
convergence speed. However, a high penalty value could affect the convergence of all the
agents, while a high step value allows finding the optimal value faster, but it can make
the system unstable. The medium reactive power and the control signals are shown in
Figure 3.19, and in Figure 3.20, the five control signals converge to a common value in
more than ten seconds. Finally, the magnitude of the auxiliary variables is shown in
Figure 3.21. Those values change when there is a variation in the communication graph.

The algorithm converges faster if the control action is applied in a smaller sampling time.
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Graph Changing Simulations The graph changes as it is shown in Figure 3.2, the
five loads of 2kvar are connected to the nodes 3, 5, 6, 9, 14 at ¢t = 0s, then the graph

changes at t = 5s.

T
120.15 l —Inverter 1
—Inverter 2
| | —Inverter 3
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g
g 120.05 T S £ e oot oot )
120 M 7
| | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time (Seconds)

Figure 3.22 — RMS voltage at each inverter with loads connected at t = 0s and graph changing at
t = bs. There is a little voltage variation at inverters three and four.
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1200

Figure 3.23 — Reactive power at each inverter with loads connected at ¢ = Os and graph changing at
t = 5s using the distributed ADMM. There is no variation in the reactive power due to the filtering effect
of droop control.

After a change in the communication graph, each inverter adjusts its control signal.
The RMS voltage is shown in Figure 3.22 each inverter moves closer to the reference
value, which is only reached by inverter 1. In this case, the reactive power keeps the same
conditions as in other control approaches, as appears in Figure 3.23. Finally, the auxiliary
variables and control signals are shown in Figure 3.24, and Figure 3.25, respectively. The

variations due to the graph change appear in the signals of inverters three and four.
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Figure 3.24 — Auxiliary variables z;; for the distributed ADMM with graph changing at ¢ = 5s, and
loads connected at t = 0s. The auxiliary variables 234 and z43 drop to zero when the graph changes.
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Figure 3.25 — Control signals at each inverter using the distributed ADMM algorithm with graph
changing at t = 5s. There is a small variation at inverters three and four due to the graph variation.
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3.5 Conclusions of the Chapter

In this chapter, we presented three strategies to deal with the problem of distributed
MPC control using a Koopman-based linear predictor: non-cooperative, cooperative, and
distributed ADMM. The three algorithms can be applied to a wide variety of distributed
problems, enhancing control design and using the Koopman-based linear predictors. The
first algorithm sets a consensus term that deals with coupling among agents, and it is
focused only on measurements without any knowledge of the other control signals and
state matrices. The algorithm has a good speed of convergence and a low computational
cost. However, in highly coupled systems, the inputs of other agents can affect their
performance. In the second case, we propose a cooperative MPC algorithm based on the
Koopman linear predictor; it uses the inputs of the neighbors to determine the optimal
control signal. It requires calculating the input coupling matrix for the set of neighbors of
each agent. We proposed a mode to determine the coupling matrix using the Koopman
operator with a centralized method. We show that the proposed algorithm converges to
the reference values, but the algorithm has a larger computational cost when compared
to the non-cooperative one. The third algorithm uses the representation of the error in
the Koopman space to design an MPC that is solved using distributed ADMM. This
algorithm reduces the computational cost and is suitable for applications with limited
hardware resources, such as MGs. The Koopman-based linear predictor facilitates the
design. Finally, the convergence of the three algorithms depends on the weight matrices
and parameter selection. The simulation results show that the MPC controller using the
three approaches with the Koopman predictor regulates the voltage in the MG for load

changes, transmission line changes, and communication graph changes.
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CHAPTER 4

ONLINE DATA-DRIVEN DESIGN AND
IMPROVED MPC

4.1 Introduction

Data-driven design and analysis usually work offline due to their inherited use of
large quantities of data. In practical applications, such as control design, it is desirable
to be able to tune the control parameters by using data from the system. Data-driven
techniques such as reinforcement learning and dynamic programming are based on the
reward concept, in which the learning process requires storing large quantities of data.
In contrast, finding the approximated Koopman algorithm allows reducing the number
of dimensions to represent the dynamics of a nonlinear system [34]. In practical systems
with low computational capacities, the learning should be based on a limited data storage
that allows updating the approximated Koopman operator in a few optimization steps.

Determining the Koopman matrix approximation by data collected from the system
involves dealing with noisy measurements. Noise has the effect of shifting the eigenvalues
of the Koopman matrix, deteriorating or making the approximation unfeasible. Some ap-
proaches have been proposed to deal with it. [60] proposes a second set of observables to
determine the effect of noise in the Koopman operator calculation using EDMD. [61] uses
a statistical approach, including a 1-norm, to calculate the approximation with EDMD.
In the case of power systems, measurements are rich in noise and other phenomena, such
as offset. Measurements can be enriched by shifting them together with the proposed ap-
proaches presented before [89]. The proper determination of the Koopman approximation
enables the design of MPC controllers, including noise rejection.

In this chapter, we present a data-driven online algorithm to regulate the voltage of
the MG. The algorithm updates the Koopman matrix based on EDMD using the last
measurements gathered to deal with the online requirements, reducing the computational

effort significantly. To complement this work, we applied a robust process to determine
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the Koopman matrix using noisy measurements. We also include a perturbation term in

the Koopman identification, to include the effect of noise.

4.2 Online Data-Driven Design

The identification of systems with nonlinear behavior or systems whose behavior is
difficult to model is a paramount aspect of the correct control design. In many cases, it
is desirable to be able to model the system online using only measurements from sensors.
Data-driven techniques, such as DMD and EDMD, generate a linear representation of
the system using the data available. DMD only uses direct measurements, while EDMD
allows using a dictionary of nonlinear functions to represent the system. Some algorithms
have been proposed to update the representation of a system online using DMD that can
be extended to EDMD, enhancing the option of using a wide set of nonlinear functions
[59].

Five online DMD algorithms are compared: batch, minibatch, streaming, online, and
windowed. The updating of matrix A needs to fulfill some requirements to guarantee that
its eigenvalues move inside the desired region [59]. Figure 4.1 shows a general schematic

of how the online EDMD identification works.
We use the next set of observables for the EDMD algorithm

v=[V, V; V2 VP vy (4.1)

Here we emphasize the online algorithm for the MG’s identification and control.

4.2.1 Online EDMD

In this algorithm, the matrix Ag,; is updated when a new pair of measurements
Tk41,Ykt1 1S available, assuming that the matrix Ay, is relatively similar to Ag. As the
Ay matrix is given by

Ay =Y, X

where the pseudo-inverse is calculated as
Xl =X (XX
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Nonlinear To local MPC
Voltage Equation
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Figure 4.1 — Online EDMD matrix updated scheme, the EDMD uses nonlinear bases to approximate
the system matrix A.

assuming that the inverse of the matrix X; X ,I exists. The matrix A is rewritten as
A =V X (X XX ™ = QP
Qx = Vi X]
P, = (X3 X)L

Then, as defined by [59], the matrix Py is invertible, well-defined, and positive definite.
The update of matrices Q. and P, at k + 1 is given as follows

_ T _ T _ T T
= = =
Qre1 = Vi1 X = Vi vl (X Trpa] VX + Yr1Tp44

P = X Xl = X men][Xe 2ia] " = X X)) 4+ 21y,

The matrices Qr11, and Py, are updated by adding a column form by the new available

data xp.1 and yg1 of the form

-
Qr+1 = Qk + Y1 Ty
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1 _ p-1 T
P =B+ ety

The updated state matrix A can be obtained by

A1 = Qei1Prs1 = (Qr + Y1) (P 4 2z~

this formula implies calculating two inverse matrices and one matrix product, which has
a computational cost of O(n?) that is very expensive [59].
The last algorithm is improved to reduce the computational cost for a matrix of the

form A +uv' with u and v vectors using the following formula [90]

Ay T AL

TV=1 _ g—1 _
(Aduv' )" =A 0T ATy

This recursive least-square formula is applied to Py and Axyq, generating the fol-

lowing expressions for the online EDMD algorithm [59]

-1 T -1 T
Pop= (P + $k+1$k+1) = Py — Yer1 Petr17p 1 P,

where

1
Lol Povggr

V41 =

A1 = A+ Yier1 W1 — Aigr)z g Pr.

This improved algorithm has a total computational cost of 4n? and does not need to store
the complete set of data generated [59]. It is possible to initialize the algorithm using an

already stored set of measurements or by starting with an identity matrix.

4.2.2 Online EDMD and Microgrid Design

The control of the MG is based on the EDMD representation of the system. It requires
updating the Koopman-based representation of the system by using measurements for a
defined period. Following the hierarchical control scheme for MGs and the droop-control
low-pass filter time, which is in the order of cents of milliseconds, the system matrix
should be updated at least at the time constant given by the low-pass filter.

The online design for the MG should consider the following aspects

— The MGs start with a set of matrices Ay, By, and Cy, determined by previous
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experiments, matrix Ay can be set as the identity matrix cl,, where ¢ € R

— The update of the matrix should be done when there is a perturbation in the
system or each updating period T,

— Matrices By and Cj are kept unchanged

— Data signals are filtered and saturated to avoid those values that affect the calcu-
lation of the EDMD matrix.

The next MPC controller is proposed using an online structure with the state matrix

Ao

Hp
min Y ([0 — yil[3) + [Juel[% (4.2)
k=1
Ss.t. 2y = Az, + Buy, (43)
Yk = Czy (4.4)

with matrix A updated each multiple of the sampling time

A1 = A + Vi1 (W — AeTr1)Th 41 Pry (4.5)

1
1+ $;—+1P]€$k+1 ’

Assumption 6 [91] The set of observables ¥ (x) is Lipschitz continuous or local Lipschitz

continuous.

From the set of observables (4.1), functions V;, and V; are Lipschitz with Lipschitz
constant L = 1. The functions V;?, and V> are local Lipschitz on the bounded interval
[Vinin, Vinaz, and the product V;V; with bounded functions V;, and V; is bounded too and

Lipschitz continuous.

Assumption 7 The matrices that define the initial dynamics of the system Ay, By, Co

are available.

Assumption 8 The system defined by the Koopman matrices is controllable for (A, By),
and observable for (A, Co).

This condition can be checked directly by determining the observability and control-
lability of the calculated matrices Ag, By, Cp.
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4.2. Online Data-Driven Design

Assumption 9 Fach agent has access to local measurements to update the system ma-
trices and that they do not have a delay. The data from states X and input U are sampled

from a normal probability distribution.
Assumption 10 At each matriz update, the matriz keeps its full rank condition.

Proposition 1 The predictive controller with restriction defined by the linear predictor
in the lifted-space given by Ay, By, Co as shown in (4.2), and following the assumptions
(7)- (10) converges as k — oo.

Proof 4.2.1 The convexr objective function is rewritten as V = %ZTZQ + %UQR with
restrictions zy1 = Az, + Buy, and gain matrices Q@ > 0, and R > 0. Then, we have a

sequence of costs function of the form
1
Viryr = Vi — i(szQ +u’R),

this cost function is bounded and non-increasing along the close-loop trajectory if the
system 1is controllable, then the state cost z'2QQ — 0, and the input cost u?R — 0 as
k — oo. The pair Ay, and By is controllable if the matriz C, =B AB --- A" !B]
is of full rank (n). Matrices Ao, and By has full rank, and the update of matriz Ay with Py

is also full rank due to P, = (X, X, )™, which guarantee the convergence of the algorithm.

4.2.3 Online EDMD Simulations

Using the MG model from Figure 2.8 whose parameters are shown in Table 4.1, we
obtain the next simulation results.

The MG starts with no loads connected at t = Os, then at ¢t = 5s, five loads of 2kvar
are connected to the nodes 3, 5, 6, 9, 14. FEach inverter has stored an initial set of
measurements, whose size guarantees that the matrix Py is invertible. In this case, each
inverter has to store a set of 1000 samples of values V; and V}, the initial state matrix
Ag = 1,,, and matrices By, and Cy are kept constant as calculated by a previous simulation.

The RMS voltage measured at each inverter is shown in Figure 4.2, the state matrix
is updated each 0.1s at each inverter, and the data used to determine the Koopman
operator is also rewritten at each time sample by the voltage measured. The voltages

converge around the reference value with a very small deviation. The reactive power does
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Algorithm 5 Online DMD microgrid control

1: procedure INPUT: u*, V*, VI matrices Ay, By, Co > Initial values and matrices
2 System Initialization
3 Read the value
4: Set Vref > Voltage of reference
5: Set H,, T > Prediction Horizon and Sampling Time
6 Set @, R > MPC Gains
7 while £ < H, do
8 argmin, 7 [k — V|12 + ||uel %
9 s.t.
10: Ty xf + T (A, + B'uj,)
11: yi « Clxl,
12: Select u’(1) > Select the first optimal value from vector u
13: Set z;, and y; using V*
14: if kT =T, then
15: Calculate P, = (X, X, )™!
16: Calculate v, = m
17: Calculate Ag 1 = A + Vo1 (Yps1 — Akxkﬂ)x;lPk
18: Update A+ A
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Figure 4.2 — RMS voltage at each inverter after connecting a load at ¢ = 5s by using the online EDMM
algorithm.
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Figure 4.3 — Reactive power at each inverter after connecting the loads at t = 5s. There is no variation
or oscillations after the load connection.
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Figure 4.4 — Online control signal at each inverter after the load connection at t = 5s using EDMM.
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Figure 4.5 — Evolution of the eigenvalues of the state matrix A, starting with an identity matrix, the
eigenvalues approximate to the limit value represented by red circles in the picture.
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Inverter 1 2 3 4 5

Prel (kW) 10 10 10 10 10

Q" (kVar) 5 5 5 8 8

m; (1 x 107%) 1 1 1 1 1
n; (1 x107%) 0.200 | 0.200 | 0.200 | 0.125 | 0.125
Vel (RMS) 120 | 120 120 120 120
7'(s) 0.10 | 0.15 | 0.20 | 0.25 | 0.28

f(Hz) 60 60 60 60 60
Updating time ¢(s) | 0.1 0.1 0.1 0.1 0.1

Table 4.1 — Microgrid parameters for control with online EDMD.

not show a particular change as shown in Figure 4.3. The control signals show some small
oscillations at ¢ = 0s as shown in Figure 4.4. Finally, the evolution of the eigenvalue is
shown in Figure 4.5, at the beginning, the eigenvalues are at zero and one due to the

initial identity matrix, then they move toward a limit value.

4.3 MPC Algorithm with Disturbances and Noise

Rejection

The proper dynamic system identification and control using data techniques have to
deal with noise and disturbances. During the identification process, noise measurements
affect the correct determination of the system eigenvalues. For the control process, noisy
environments affect the controller performance, requiring proper design for noise rejection.
For online data-driven control, measurements from the system should be processed before
being used by the controller. Regularization is one option to calculate the representation
of a system using measurements, and MPC with noise rejection is an option for control

design.

4.3.1 Determination of the Koopman Operator with Noisy Mea-

surements

Noisy measurements affect the calculation of the Koopman matrix by shifting the
eigenvalues of A or introducing oscillatory terms. This problem is analyzed by using data

techniques such as regularization with improved algorithms to calculate the pseudo-inverse
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of data-vectors, such as Lasso [92].
From a set of data points x; with perturbation norm-bounded deterministic pertur-
bation,
dx, =xp+9, 0€A,

where A is the uncertainty set.

The algorithm proposed by [60] to find the proper Koopman representation of a sys-
tem with noisy measurements needs two sets of dictionary functions denoted by f, g,
and n available measurements of the system. First, three vectors of measurements are

constructed as follows

X=[f0) fO) ... fln—1)], (4.7)
Y=[f(1) J2) ... f@), (4.8)
Z=19(0) g(1) ... gln-1) (4.9)

Second, the next matrices are calculated

1
Go=-XZ" G =-YZ", (4.10)
n

and finally the A matrix is given by
A= G,G). (4.11)

The approximate representation of matrix A is found using the algorithm proposed by
[60]. Next, we proposed a set of observables to calculate the Koopman representation for

the MG with noisy measurements.

4.3.2 Effect of Noise Over the Voltage Measurements

To check the effect of noisy measurements on the eigenvalues of the Koopman repre-
sentation of the MG, we applied (4.10) and (4.11). The two sets of basis that we proposed

to find the Koopman approximation are

f=Wve vy V2VE ViVl (4.12)

g:[eal(Vi*Vj) ea2(Vi*Vj) 6043(‘/2'*‘/1') 6014(‘/2‘*‘/1) ea5(Vi7Vj)]T7 (4.13)
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where ay = 0.02, ag = 0.04, a3 = 0.08, ay = 0.12, a5 = 0.15, are weight factors.

140

—Filtered data
—Noisy data
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Figure 4.6 — Voltage signal for inverter one for simulation with ideal waveform and added noise.
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Figure 4.7 — Eigenvalues for data without noise (red), with noise added (blue), and using the algorithm
for noisy measurements.

We used a set of voltage measurements without noise and a second set by adding
noise with uniform distribution with a magnitude between the interval [—1,1] to com-
pare the effect of noise over the determination of the state matrix A and its eigenvalues.
Both signals are shown in Figure 4.6. The eigenvalues for the three cases: pure signal,
signal with noise, and those found using the algorithm are shown in Figure 4.7. The algo-
rithm approximates better the smaller eigenvalues of the system without noise. Finding
a good approximation of the real eigenvalues relies on using a proper set of different basis

functions, which is not always easy.
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4.3.3 Algorithm with Noise Rejection

A nonlinear system with noise or perturbation represented by w can be written in the

linear form using a Koopman-based linear predictor as follows
Zht1 = Az + Buy, + Dwy, Yrr1 = Czg, (4.14)

where D is the Koopman matrix for the perturbation term [57]. The Koopman matrices
are obtained using EDMD by solving the least-squares problem

min ||[Y — Ax — BU — Dw/||p,

A,B,D

where x is the vector of measurements evaluated in the dictionary of functions, and w is

the vector of perturbations measured.

Control Designing for the MG with Perturbations We set the dynamic model of
the MG for 1000 seconds, varying the initial conditions to generate the set of trajectories.

Then, we use a perturbation signal with uniform perturbation over the range [—1, 1].

min [[0" — gy |3 + [Ju 7 (4.15)

s.t. 21 = Azp + Buy, + Dwy, (4.16)
yr = Czi (4.17)

Unnin < Uk < Umaga (4.18)

The diagram of Figure 4.8 shows the steps to deal with systems with noise. For systems
whose measurements are affected by noise, the algorithm proposed by [60] allows iden-
tifying a better approximation of the system eigenvalues by running several experiments
using a different set of functions or shifted data using a Hankel matrix. Also, the Koop-
man identification allows including the matrix D that models the effect of perturbations

or noise over the system.

4.3.4 Simulation of the System with Perturbations

We simulate a MG with 14 nodes with perturbations at inverters 1, 3, and 4 at 1s, 2s,
and 3s, respectively. The MG starts with a Skvar load connected, the sampling time is
T = 0.1s, and the gains ) = 10, and R = 1, with a prediction horizon of H, = 10.
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Nonlinear Equation
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Figure 4.8 — Identification of systems with noisy measurements using EDMD and determination of the
perturbation term for the linear predictor.
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Figure 4.9 — RMS voltage at each inverter when there are disturbances.
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Figure 4.10 — Control signals from each inverter when there are disturbances.

Figure 4.9 shows the voltage measured at each inverter, where can be seen the three
perturbations at inverters 1, 3, and 4. The control overcomes this constant perturbation
while following the reference value. The control signals for each inverter are shown in
Figure 4.10.

4.4 Conclusions of the Chapter

In this chapter, we presented a Koopman-based data-driven online controller for the
MG, and an algorithm to deal with noise in the identification and control using the Koop-
man operator. The online problem updates the state matrix using the measurements
available at each sampling time and EDMM. The convergence of the algorithm is deter-
mined by the full rank matrix condition.

For noise rejection, the problem is divided into two stages: the first stage uses an
additional set of observables to determine the true eigenvalues of a system whose mea-
surements are affected by noise. The second stage introduces a linear term in the state
representation to include the effect of noise and perturbations over the system. The algo-
rithm controls the system even when it is affected by noise, where the paramount problem
is the detection of the true eigenvalues of the system. This problem requires several ex-
periments when working with data from sensors or real experiments; in the case of online
Koopman identification, the data measurements should be treated by filtering to avoid

high-frequency components.
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CONCLUSIONS AND PERSPECTIVES

This document focuses on the identification and control of voltage in electrical micro-
grids. Proper identification of power systems can be a challenging problem due to their
networked structure, heterogeneity, different time scales, and uncertainties. The availabil-
ity of large amounts of data from the system enables the use of data-driven techniques
to improve the identification and control of interconnected systems. We have considered
different approaches to the MG control view as a distributed system. This document

presents several contributions to the control of networked systems, and in particular, of
MGs.

The first chapter presented the state-of-the-art of data-driven techniques and the prob-
lem of controlling the MG, focused on voltage regulation and reactive power compensation
by using a high-inductive transmission line at the inverter’s output. Among several tech-
niques, that exploits data for identification and control of dynamic systems, we focus
on the Koopman operator and their data-driven approximations due to their capacity to
generate a linear representation of nonlinear systems, and to define a set of observables

to approximate systems.

In the second chapter, we present a decentralized data-driven control using Koopman
operator theory to regulate the voltage of the MG using optimization techniques. The
proposed algorithm requires that each generator uses local online measurement to generate
the control actions. We design a local linear predictor whose eigenvalues are inside the
unit circle that guarantee the algorithm convergence. The linear predictor also reduces
the computational time compared with other controllers that proposed a nonlinear MPC.
The proposed algorithm is susceptible to changes in the transmission lines, especially in
the local inductance, which also requires recalculating the Koopman representation. Also,
the algorithm omits some networked systems behaviors, such as the effect of the control
actions among agents.

In the third chapter, we presented a set of algorithms to deal with distributed systems
using the Koopman-based linear predictor and MPC: non-cooperative, cooperative, and
distributed ADMM. The non-cooperative algorithm uses only voltage measurements from

other generators to regulate its voltage by using a linear consensus term. We demon-
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strated that the system converges to the reference value. For the cooperative MPC, we
proposed an offline algorithm to obtain the input matrix of the generators by varying
the control signal and measuring its effect on the other generators. We proposed a third
algorithm that uses the representation of the error in the Koopman space to design an
MPC that is solved using a distributed ADMM. It reduces the computation time and
improves the computational cost. The three algorithms converge to the reference values,
depending on the weight matrices and parameter selection. We also used a Koopman-
based linear predictor that includes a disturbance matrix. The simulation shows that the
MPC controller, using the Koopman representation, regulates the voltage in the MG for
load changes, transmission line changes, and communication graph changes. The proper
identification of the dynamic of each generator depends on the correct treatment of the
data available in this first case, rapid variations such as high-frequency components might
affect the correct calculation of the Koopman representation. A low-pass filter was used
to avoid fast variations in the voltage.

In the fourth chapter, we use a proposed algorithm to deal with the problem of noisy
measurements to determine the Koopman representation of the system. These tools are
a key factor for the online Koopman algorithm design that we proposed to regulate the
voltage in the MG. The problem of updating the Koopman matrix is solved by using
an algorithm that uses only a pair of measurements at each iteration. We have shown
the proposed algorithm converges by following a set of restrictions related to the data
measured, and with the time set to do the actualization. Finally, an algorithm that uses
a term for perturbations identified by EDMD is presented and used to design a MPC
capable of rejecting voltage perturbations.

The future perspective of this work is related to the improvement of the online algo-
rithm and to the problem of working with noisy measurements. Another aspect is dealing
with non-lossless transmission lines, which should include the phase angle between volt-
age and current. The work with the Koopman operator in distributed systems can also
address a proper identification of the nodes with more interaction with other agents in a

coupled network, such as the power system.
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APPENDIX
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—0.0211 1.0103
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By
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1

State-space and perturbation matrices

1.0337
—0.0045
22.1154
—2.6088
—1.8765

0.0618
1.0155
0.7293
5.2852
14.6171

Alz

—0.0004 —0.0001
0.0001  —0.0000
0.8084 —0.0014
0.0264  0.9843
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—0.0004 |
—0.0002
0.0025
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0.8717
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By
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Titre : Contrdle piloté par les données des réseaux énergétiques interdépendants

Mot clés : Opérateur de Koopman, micro-réseaux, commande distribuée, prédicteur linéaire,

commande prédictive de modéle

Résumé : Cette recherche a proposé plu-
sieurs algorithmes pour lidentification et le
commande des micro-réseaux basés sur
'opérateur Koopman. Les contributions pré-
sentées dans ce manuscrit se concentrent sur
le comman de de la tension et de la puissance
réactive. Nous avons considéré cing scénarios
de commande basés sur I'opérateur de Koop-
man : (i) un algorithme centralisé qui régule
la tension du micro-réseau sans partager I'in-
formation en utilisant MPC. (ii) une commande
distribuée non coopérative, avec un terme de
consensus dans les restrictions, qui régule la
tension en fonction du modéle de Koopman

des onduleurs. (iii) un MPC distribué coopé-
ratif qui utilise le modéle Koopman du micro-
réseau, ou les agents partagent leurs entrées
de commande pour générer les signaux de
commandes. Ici, nous identifions les matrices
d’entrée en utilisant des données. (iv) un com-
mande distribuée qui utilise les données pour
identifier 'erreur du systéme afin de concevoir
un algorithme ADMM. (v) une commande en
ligne pilotée par les données qui régule la ten-
sion du micro-réseau et une analyse des va-
leurs propres du systéme et des effets des me-
sures bruitées.

Title: Data-Driven Control of Interdependent Energy Networks

Keywords: Koopman operator, microgrid, distributed control, linear predictor, model predictive

control

Abstract: This research proposed several al-
gorithms for the identification and control of mi-
crogrids based on the Koopman operator. The
contributions presented in this manuscript are
focused on the control of voltage and reac-
tive power. We have considered five control
scenarios based on the Koopman operator:
(i) a centralized algorithm that regulates the
microgrid voltage without sharing information
using MPC. (ii) a non-cooperative distributed
control, with a consensus term in the restric-
tions, that regulates the voltage based on the

Koopman model of the inverters. (iii)) a coop-
erative distributed MPC that uses the micro-
grid Koopman model, where the agents share
their control inputs to generate the control sig-
nals. Here, we identify the input matrices by
using data. (iv) a distributed control that uses
data to identify the system error to design an
ADMM algorithm. (v) an online data-driven
controller that regulates the microgrid voltage
and an analysis of the eigenvalues of the sys-
tem and the effects of noisy measurements.



	List of figures
	List of tables
	List of acronyms
	Introduction
	General Context
	Motivation
	Contribution

	List of publications
	Microgrids and Data-Driven Techniques: State of the Art
	Introduction
	Low Inertia in Power Systems and MG
	Microgrid Concept and Framework
	Data-Driven Methods
	Koopman Operator
	Data-Driven Koopman Approach
	Dynamic Mode Decomposition (DMD):
	Extended Dynamic Mode Decomposition (EDMD):


	Distributed Systems and Optimization
	Graph Theory and Consensus
	Distributed Optimization

	Discussion
	Nonlinear Problem
	Research Perspectives

	Chapter Summary

	Decentralized Koopman-Based Control of MG
	Introduction
	Problem Description
	Data-Driven Voltage Secondary Control for MGs
	Simulation Results
	Load Changing Simulation
	Transmission Line Changing Simulation
	Algorithm Comparison with Nonlinear MPC

	Conclusion of the Second Chapter

	Distributed Approaches for Koopman-Based Controllers
	Introduction
	Secondary Non-Cooperative Voltage Control
	Convergence Analysis
	Non-Cooperative DMPC Simulations

	Secondary Cooperative Voltage Control
	Determination of the Coupling Matrices
	Cooperative DMPC Simulations

	Koopman-Predictor and ADMM
	MPC Matrix Definition
	Distributed ADMM Design
	Distributed ADMM Simulations

	Conclusions of the Chapter

	Online data-driven design and improved MPC
	Introduction
	Online Data-Driven Design
	Online EDMD
	Online EDMD and Microgrid Design
	Online EDMD Simulations

	MPC Algorithm with Disturbances and Noise Rejection
	Determination of the Koopman Operator with Noisy Measurements
	Effect of Noise Over the Voltage Measurements
	Algorithm with Noise Rejection
	Simulation of the System with Perturbations

	Conclusions of the Chapter

	Conclusion and perspectives
	Bibliography

